
Jupyter’s Archive: Searchable Output Histories for
Computational Notebooks

Kunal Chaudhary
Andrew Head, Ed.
Björn Hartmann, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-72
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-72.html

May 17, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Jupyter’s Archive: Searchable Output Histories for
Computational Notebooks

 Kunal Chaudhary

ABSTRACT

When using a computational notebook, programmers tend
to run, overwrite, and delete cells many times. These
actions, which are core to exploratory programming, tend to
create a long history of outputs that become fragmented and
difficult to track. These outputs are critical to returning to
past states when programmers make mistakes in
implementation. They are also critical to understanding the
evolution of a notebook which can help programmers
improve how they code in different situations. To resolve
this, this paper introduces the Output Archive, a thumbnail-
based output history built into Jupyter Lab that
automatically records all outputs produced over the lifetime
of a notebook and makes the code that produced them
available. This paper also introduces a new class of
grouping filters which allows users to navigate large output
histories by clustering outputs based on similarities in their
underlying code (similar function name, object names,
parameters). To test the tool, a usability study was run on
12 computational notebook users who found the Output
Archive useful and were able to use its accompanying
grouping filters to quickly find important outputs.

INTRODUCTION

When a programmer wants to explore a new data set,
implement algorithms, or test different hypotheses, they use
computational notebooks. These notebooks allow
programmers to run individual pieces of their programs
independently of each other. This is a critical affordance in
exploratory programming because it saves programmers
time and enables programmers to iterate and improve their
code at a much quicker pace. For example, if a programmer
has just trained multiple neural networks, instead of re-
running the entire script to change how one of the models
was visualized, in a notebook they could just change the
plotting code without affecting the training code. The
specific feature that enables this affordance is the cell
structure of computational notebooks. Each cell is a
runnable script that enables a user to break up their program
into modular chunks.

Often, each time a programmer runs a cell, they create an
output (table, graph, text, etc.) in order to check that their
code is working as intended or in order to visualize some
part of the data set for analysis. As the programmer tweaks
and improves their code in a notebook, they quickly
produce a “large number” of outputs that becomes
“laborious” to sort through [1]. These past outputs produced
are vital to tracking “which steps” in the notebook “lead to

Jupyter’s archive: search through all past outputs generated in a notebook

which results”, or to recover previous states in the notebook
[2].

Unfortunately, there has been a lack of useful tools that
help computational notebook users keep track of the outputs
they generate. Generally, notebook users resort to using
“version control tools”, copying “scripts” and “outputs”, or
commenting out code in order to take snapshots of the
notebook’s state [1]. Recent work in this field, however, has
proved more promising with the advent of output history
extensions that enable users to explore different output
variants [1]. These recent tools, however, only offer
histories relevant to specific cells and fail to look at the
relationships between outputs spread through the entire
notebook.

In this paper, we aim to improve how notebook output
history is preserved, presented, and searched. We introduce
a tool that automatically organizes and makes past outputs
searchable. We use a thumbnail-based interface to display
all outputs ever produced in a notebook. This tool is built
on top of code gathering tools which associates outputs
with the exact slice of code that produced it [9]. A slice is a
mini-program that only contains the code that led to a
specific output. Without slices, each output would be
associated with the entire notebook that produced it,
making it tedious or even impossible for the programmer to
recover the relevant code.

Other techniques leveraged in implementation include
Abstract Syntax Tree (AST) node traversal, program
parsing, and AST diffing. These techniques allow us to not
only compare the lines of code that produced an output, but
also break apart those individual lines to find similarities.

This paper makes two unique contributions. The first is the
design and implementation of the Output Archive for
Jupyter Lab, an interface for Jupyter Notebook which is an
open-source notebook used by millions of people [3]. This
tool allows computational notebook users to quickly
recover the exact slice of code that produced any past
output. A key feature that enables quick output recovery is
our new class of grouping filters that enables a user to
group outputs by similarities in the code that produced
them. For example, with our group by function name filter,
a user can find the name of the function that produced a
unique plot even after they overwrote the code preceding
the plot. The unique insight powering these grouping filters
is that users can see valid relationships between outputs
produced across different cells, instead of just in the same
cell which is what current tools focus on [9]. This more
flexible definition of variants, or the different versions and
types of outputs, and similarity in outputs allowed us to
achieve a large dimensionality reduction that made output
search easier

Users looking to recover a past output merely have to click
on a toolbar command which visualizes the outputs (text,
tables, graphs, errors, etc.) generated and search through the
outputs using filters.

The second contribution of this paper is a controlled
usability study that explores the usability and usefulness of
the Output Archive and its filters in navigating large output
histories. 12 notebook users from a variety of backgrounds
ranging from students to software engineers participated in
an in-lab study to recover past outputs produced by a
notebook coding session. We discovered that not only was
the Archive useful, but the filters we developed enabled
easier search. On top of this, we discovered a variety of
ways programmers would like to group and search their
outputs, which revolved around visualizing different types
of variants. For example, one variant that participants stated
they would like to see is grouping outputs that were
produced by the same data set.

RELATED WORK

Software history, the history of code executions (logs of
executions), has been a core focus of academic research for
many years. Software history can help exploratory
programmers recover from mistakes and learn more about
their code. Unsurprisingly, over 80% of programmers find
software history useful while developing software [4].

In order build a history for computational notebooks, we
studied past work in making histories for other coding
systems. Some approaches have instrumented entire
operating systems in order to record and visualize all past
activities relevant to code generation (e.g. creating code,
visiting a coding website, viewing an image) [5]. Other
approaches have narrowed their scope by just instrumenting
an underlying programming language like Python and
recording all function calls and associated parameters [6].
Most relevant to our work are tools that instrument the code
editor to provide useful features like the ability to undo
changes back to a previous state of code [7]. All of these
approaches have some way of grafting tools for logging and
displaying history onto existing coding environments and
making the history accessible to programmers. We took
inspiration from these approaches and decided to introduce
an extension to computational notebooks that managed the
logging and displaying of history.

In order to build our notebook history, we had to figure out
what to record. One approach in this space revolved around
preserving an individual cell’s code history and enabling
programmers to swap a cell with previous versions of itself
[2]. Another tool took this same approach except dove
deeper in the cell and recorded and presented histories of
individual, user versioned scripts [8]. The tool which we
built on top of, code gathering tools, also enabled users to
see all previous versions of a cell’s code when examining
code slices [9]. This past work informed the overall design
our Output Archive architecture, but we deviated from their
code-focused histories when creating our output-focused
history because our primary goal was to help programmers
find past important outputs.

Paradigm 1: Single output in a cell – code that
produced that output is last line of preceding cell

Paradigm 2: Multiple Outputs in a cell.

The tool our output-focused history most closely resembles
is Verdant, which is a plugin that records history of all
outputs produced by a specific cell in a notebook. This tool
provides a graphical interface for navigating a specific
cell’s past outputs [1]. While we share the same type of
output history, we chose to present our history in a way that
was more optimized for search.

The primary purpose of our output history is to enable users
to find a past output and its associated code effectively.
This meant that we had to take a large history and provide
different ways to filter it in order to make searching easier.
Clustering outputs only by their common cells restricted the
different types of filters that could be created. Past work has
suggested that there exist types of variants that users care
about besides outputs or code versions that originate from
the same cell [9]. We recognized the validity in this and
structured our Output Archive so that our default history
view showed all outputs generated in the notebook in
unfiltered rows and columns.

With our unstructured, default history interface, we set out
to explore how we could cluster the outputs in ways that
make sense to the user. We took inspiration from other
tools that cluster code, such as those in the education realm,
where past attempts have successfully clustered different
types of homework code into a navigable user interface
[10]. In the tutorial realm, approaches have used clustering
to make it easier to navigate a vast body of tutorials [12]
[13]. In software engineering, tools have focused on
clustering GitHub code in order to find usable code snippets
using abstract syntax tree (AST) traversal [11]. The
existence of these different approaches in different domains
motivated us to use clustering algorithms in our grouping
filters and to implement them with AST traversals.
Furthermore, these approaches demonstrated that the best
way to cluster bodies of work/code was to focus on
clustering specific subsets of code.

The final area we explored was how users traditionally
found the code that produced an output. Previous attempts
have been made at tracing a program output back to the
code that caused it [14], or using visual effects on web
pages to find the web code that produce it [15]. These
attempts showed us that finding the most granular code that
caused an output was important, so we focused on
associating notebook outputs with the most relevant lines of
code possible, their slices.

EXPLORATORY ANALYSIS OF OUTPUTS AND
VARIATION IN COMPUTATIONAL NOTEBOOKS

Before we implemented our Output Archive, we analyzed
the outputs of 25 notebooks from a random sample of 1000
notebooks of the UCSD Jupyter Notebook GitHub Dataset
which contains approximately 1.25 million Jupyter
Notebooks [16]. We felt this was necessary because we
wanted to base our implementation and design decisions in
data, instead of anecdotal evidence. This data set was a
snapshot of all available Jupyter Notebooks on GitHub as
of July 2017. We analyzed these notebooks in order to
answer two primary questions that would help us craft
grouping algorithms that would make it easier find
important outputs:

Q1) How is the code that produces outputs distributed
throughout cells? Are there usually multiple outputs per
cell? Or only 1?

Q2) What are the different ways a programmer might want
to group outputs in an output archive? Do we have to look
at the outputs themselves, or are there similarities in the
code that produced them?

How many outputs does each cell have?

The first characteristic we noticed was that cells either
contained multiple outputs, or a single output that was
typically the last line of the cell. We rarely noticed single
output cells where the output was not the last line of the
cell. In the following images, paradigm 1 produces one
table with the head() function.

In paradigm 2, the 2 plot() functions produce separate plots.

From an analysis of the 25 random notebooks, we saw that
paradigm 1 accounted for roughly 80% of all outputs
produced. This meant we could focus on only grouping

Figure 10: The three parts of code that causes outputs

Figure 11: 37th Image printed out in a notebook

Figure 12: 38th Image printed out in a notebook

Figure 13: 40th Image printed out in a notebook

Figure 14: 41st Image printed out in a notebook

paradigm 1 outputs (code that produced output is directly
above the output and is the last line of the preceding cell)
and still produce useful groupings. This was fortunate
because we were unable to properly slice multiple outputs
in the same cell because our slicing algorithm provided by
code gathering tools wasn’t set up to handle that case.
How can we group outputs together?

The next thing we looked for in these notebooks were
different ways to group outputs together in order to capture
different forms of variants. These different forms of
variants would allow us to filter huge lists of outputs into
groupings that made finding important outputs easier.

From the outset, we decided to capture variants by grouping
outputs that were similar in some way. This presented a
design challenge because it’s not immediately obvious what
defines similarity. Outputs could be similar in their content,
data type, or underlying data set.

In looking at the code of these outputs, we noticed that they
differed primarily in 3 ways: their object, function, or
parameters (Figure 10):

Taking this observation, we found many examples in the
data set:

In these two outputs, the programmer modified the
parameters of their Image() function to produce two images
of a table that shared similar values (Figure 11 & 12). We
saw that examples like this, where the programmer only
modified the parameters, object, or function, occurred at a
high frequency, so we chose to capture similarity through a
simple heuristic: Similar outputs might share similar code.

While this heuristic made groupings that were
understandable to a programmer, this definition also
produced some groupings that were less clear:

Although these two images have different contents, they are
similar in data type (both are images), and they might share
a similar purpose: displaying all the images of an image
library (Figure 13 & 14). Ultimately, even if our heuristic
creates groupings that are unclear or false positives, we
were satisfied because it increased our chances of capturing
axes of similarities that we couldn’t predict beforehand.

We structured our grouping algorithms to capture how the
code that causes outputs differed in objects names, function
names, and parameter names.

To get a sense for how often we could properly group
outputs using the similar code heuristic, we took all the
pairs of outputs generated by our heuristic and divided it by
the total number of possible pairings (total number of
permutations of outputs) in each of the 25 notebooks. We
then averaged this percentage across all notebooks. In the
end we found that our grouping heuristic had the capacity to
group together 41% of all possible pairings on average in a
notebook. This number is relatively high because many of
the notebook in the data set were relatively short and
created for very specific purposes (e.g. printing 5 plots that
were related to each other).

While many of the other possible groupings may not make
sense, this percentage shows that there exist other
approaches that could capture different types of variants.
One such type of variants could be outputs that had similar
input data, but different output code. Another type of
variants not captured by our heuristic could be percentage
of lines in the respective code slice that were the same.
These cases are common enough that they could each easily
cover over 5% of all possible pairings.

We ultimately chose to implement only a subset of the
grouping algorithms we came up because they didn’t appear
with enough frequency. Another reason is that we didn’t
want to overwhelm the user with too many grouping filters.

DESIGN MOTIVATIONS

The initial motivation to build an Output Archive stemmed
primarily from a study of past work done in this space
[1][2][9]. In each of these studies, users consistently
expressed desire for some sort of version control for
computational notebooks. Those users also expressed an
interest in having features that allow them to recall how
something was produced in a way that current versioning
tools don’t catch. We outline in this section the specific
motivations behind various design decisions.

Group outputs based on the data transformations that
produced them, not the cell they come from. We wanted
some way to achieve dimensionality reduction from the
unfiltered view in order to make search easier. Past work in
this space has explored grouping outputs by the cell they
were generated in, but we analyzed a 25 notebooks at

random in the UCSD Jupyter notebook dataset and found
that outputs generated in different cells shared many
similarities and variants that would make sense to a user if
clustered together [16]. Ultimately, we felt that grouping
based on underlying code and not location in a notebook
would achieve groupings that could capture different types
of variants, especially considering cells can get overwritten.

Guide exploration with output thumbnails, not code. Faced
with the reality that notebooks users generate a plethora of
outputs during their coding sessions, we required a
condensed way to display all the outputs in an unfiltered,
top-level view. One alternative we considered was just
listing the code that caused each output in a table view.
From our body of research, we discovered that
programmers generally look at outputs, changelogs, and
source code when they are navigating an overabundance of
code [18]. This inspired us to try out the visual output
approach as an alternative to the source code and changelog
approach.

INTERACTING WITH THE OUTPUT ARCHIVE

In order to understand the user experience of the Output
Archive, we will walk through a short scenario using
Jupyter Lab. Our scenario is centered around a programmer
named Abe who is working with an IMDB movie ratings
data set. His goal is to understand different characteristics
about popular and unpopular movies, like their genre,
duration, and ratings. Over the course of a few hours Abe
generates hundreds of different outputs from dozens of
different cells. These outputs include text, errors, tables,
and images.

At some point in the present, Abe tries to recall an output
that he previously produced which counted the number of
PG-13 movies in his dataset. He’s long since overwritten
the initial cell that produced this output and he only vaguely
remembers pieces of the code he used to generate that
output. He anticipates the result will be hard to reproduce.
Eager to retrace his steps, he turns to the Output Archive for
help.

Opening up the Archive and an initial scan of outputs

Abe clicks on View Archive in the plugin toolbar on
Jupyter Lab (Figure 1). A separate notebook tab, labeled
“archive”, appears and he is met with an unfiltered archive
that contains all outputs ever produced in his notebook,
even if the kernel was restarted at any point (Figure 2).

Figure 3. Clicking on a thumbnail

Figure 4. Clicking on type filters

He scrolls through to see if any of the output thumbnails are
immediately obvious to his task at hand. He notices that
these output thumbnails are scaled down so that many of
them fit on his large desktop monitor.

He also notices that the outputs are listed in reverse
chronological order so that he can access the most recently
generated cells more easily than the older cells. He clicks
on a few of the outputs to get greater detail about the exact
lines of code that caused the selected output (Figure 3).
Upon clicking on an output, a full-size scrollable version of
the output and the ordered subset of code that produce it
appears.

He notices that he could export this code to a new notebook
if he wanted to recreate the output. After doing this a few
times with different outputs, he remembers that he’s
looking for some sort of text output.
Trying the first few type filters

Abe notices the type filters at the top of the Output Archive.
He clicks on the type filter and sees that he can select table,
error, text, and image (Figure 4).

He clicks on error because he wants to see how many he’s
produced over his coding sessions and his Archive narrows
down to 15 errors (Figure 5). Abe realizes that this view
could be useful if he ever runs into an error and wants to
remember how he dealt with it in the past.

Figure 1. Plugin toolbar on Jupyter Lab

Figure 2. Initial archive view

Filters

Thumbnails

Expanded
Thumbnail

Code that produced
output

Figure 5. Clicking on type filter: error

Figure 6. Clicking on type filter: text

Figure 7. Clicking on group_by filter

Figure 8. Clicking on group_by filter: function

Figure 9. Export code to new notebook

Abe, remembering that he’s looking for a text output, uses
the type filter to narrow down his selection to just
thumbnails that show text outputs (Figure 6).
Unfortunately, he realizes that he’s still dealing with over
70 different outputs.

70 Outputs is ultimately too many to parse through
individually, especially since they were all produced for
different purposes. After exploring some more, he gets a
feel for how some of his older output code was structured.
He then realizes that he used some sort of count function to
produce his text output.

Using grouping filters to group by code

Abe decides to use the group by function name filter in
conjunction with the text filter (Figure 7).

Abe scrolls down to find a function called value_counts()
(Figure 8).

After scrolling horizontally for a moment, he sees a tally of
the number of films that have specific ratings. He’s arrived
at his output and decides to replicate this exact slice of code
so he can do further manipulations on the data set. He
exports it to a new notebook (Figure 9).

IMPLEMENTATION

The Output Archive was built on top of code gathering
tools, an existing plugin for Jupyter Lab [9]. The code
gathering tools provided a convenient way to associate each
output with its associated slice of code. The Output Archive
was implemented with roughly 1,000 lines of TypeScript
code. This code covered both tweaks to the program
analysis code and the user interface implementation.
Persistent History

Figure 15: Cells grouped together by function name
value_counts()

Figure 16: Cells grouped together by object name,
movies.describe()

Figure 17: Cells grouped together by parameter name,
kind=“box”

The code gathering tools extension provided an execution
log of all cells. These cells contained various pieces of
information like id, text, and outputs. Each time a cell is run
in a notebook, it is stored in code gathering tool’s execution
log.

One of the initial challenges we faced was creating a
persistent history that exists after a user leaves Jupyter Lab.
Wanting to avoid introducing an external storage
repository, we discovered that Jupyter Lab maintains a
metadata associated with each notebook that persists
between individual sessions. This implementation decision
makes notebooks more shareable because the history is
preserved in the metadata, and it allows someone to open
up a notebook years after its creation and still have access
to all the outputs produced and the code that produced
them. To take advantage of this feature, we implemented a
serialization of a notebook’s entire execution log (execution
time, code, output) on save, and deserialization of it on
open. Another obstacle we faced in making a persistent
history was the fact that Jupyter notebook changes the ID of
cells on different kernel sessions. To solve this, we had to
create a persistent ID stored in the metadata of a cell that
would stay constant even if the default cell ID changed.
Visualization

The front end is implemented as a Widget, a building block
UI element of Jupyter Lab. The frontend was developed
with large laptops and desktop displays in mind and utilizes
different jQuery events to handle the filtering and clicking
features. The filters function primarily based on a class
tagging system. As each widget is generated, it’s pre-tagged
with a type of output (table, image, text, etc), and a specific
type of grouping. As a user clicks on different filters, the UI
hides all elements that don’t have the specified class. This

provides a large performance gain while using the Output
Archive because the grouping filters don’t need to run
every time a user clicks on them. There is a setup cost of 1-
5s in order to properly load and sort all of the different
outputs. This cost occurs only when archive is initially
loaded. (this could easily be folded into the initialization of
the notebook itself and can be unnoticeable to the user.
Grouping Filters

In order to develop our grouping algorithm, we analyzed 25
random notebooks from the UCSD Jupyter notebook
dataset and discovered two primary output paradigms (refer
to Paradigm 1 and Paradigm 2 images in Exploratory
Analysis section) [16].

We ultimately chose to target outputs that fell into
Paradigm 1 (code that produced an output was in the last
line of the preceding cell, and the output was the only
output produced by the preceding cell). In order to compare
the code that produced outputs with one another, we had to
compare their ASTs.

We developed three grouping algorithms for objects,
function names, and parameters that traversed their AST
and then fed an inner node into a tree diffing algorithm
called Zhang-Shasha [18]. More specifically, each grouping
algorithm performs an equality check on only one part of
the code. In order to effectively work with Zhang-Shasha,
we had to convert our ASTs into an appropriate format.
This required us to modify code gathering tool’s underlying
parser to insert parseable labels into each node. This
approach allowed us to generate clusters based on equal
object names/chains of object transformations, equal
function names, and equal parameter names (Figure 15-17).

IN-LAB USABILITY STUDY

We designed a 30 minute, in-lab usability study designed to
understand how users interact with the Output Archive. We
ran one pilot study with two users to determine the basic
comprehensibility and usability of the tool. From these
users we discovered that they understood the premise of the
tool relatively quickly, so we focused our in-lab usability
study primarily on search and utility of the archive. Our

study was designed to answer the following research
questions:

RQ1. Does filtering by type and grouping code in different
ways help programmers find important outputs amidst an
abundance of past outputs? In what situations does
grouping by variants help? What other types of variants
would be useful to group by?

RQ2. Do users find the Output Archive useful? How would
an Output Archive have helped them in their past coding
experiences? Would they use an archive in the future?

We selected 12 participants with coding and computational
notebook experience from individuals that the researchers
previously knew. This was a convenience sample of
participants; however, we took precautions to mitigate bias
present from selecting the convenience sample by recruiting
participants from a variety of places (industry, research,
undergrad) and informing the participants that the facilitator
was evaluating the system, but had not created it. Five
participants were professional programmers, and seven
were students (2 female, 10 male). The median experience
in programming on a Likert Scale was 3-5 years and the
average age was 21.75 years old. The majority of our
participants (8/12) used computational notebook at least on
a monthly basis (4 Daily, 2 Weekly, 2 Monthly, 4 Yearly).
All participants were offered a $20 Amazon gift card as
compensation for the time.
Tasks

Participants began the study by signing a consent form. The
study centered around identifying different outputs in a pre-
made notebook. This notebook was 50 cells long and had
generated 150 different outputs. Participants were told that
this was a notebook they had generated over a long coding
session that primarily dealt with visualizing and analyzing
an IMDB movie ratings data-set. They were then given 4
tasks, each with an explanation of why they needed to find
a specific output. These tasks were inspired by the tasks
proposed in the Verdant’s usability study, which also
focused on evaluating computational notebook histories [1].
The 4 tasks, with background information shortened, were
the following questions:

1. What are the different ways you visualized movie
durations?

2. You’ve run into an error while trying to make a
Kernel Density (KDE) plot to visualize movie
ratings. You previously ran into this error when
trying to visualize movie genres. Figure out why
that previous error occurred.

3. You remember you printed out all the movies that
have a runtime of over 3 hours and 20 minutes.
Name a movie with that runtime.

4. You’re coding and you print out an empty graph.
You remember you previously printed out some
empty graphs. Figure out what parameters caused
those empty graphs previously.

Each participant was timed, and the number of clicks on
each feature (type filter, widget, size filter, grouping filter)
in the archive was recorded. In order to get a control for the
efficacy of our filters, we only enabled filters for two of the
4 tasks (either task 1 and 2 or task 3 and 4). 6 participants
were given the study where tasks 1 and 2 had no filters and
the other six were given task 3 and 4 with no filters.

Before all 4 tasks, participants followed a small tutorial on
how the archive worked. This primarily entailed clicking on
different outputs with only context being to familiarize
themselves with the available affordances. Before the
filtered tasks, participants were given a tutorial on how the
different filters worked. After each task, the user filled out a
survey that asked three questions about the difficulty of the
task and the usefulness of the different archive features in
accomplishing the task.

After all four tasks were complete, the users were asked a
series of 4 open-ended questions. 3 questions focused on
the comprehensibility of the grouping filters. The final
question was an open-ended question about the usefulness
of the Output Archive. After these questions, the users
filled out a demographic survey.

Each participant was given the same 13-inch MacBook Pro
with the archive preloaded onto it. This MacBook was
connected to a 1920x1080 monitor in which they had the
archive opened up in one tab, and the survey opened in
another. The study was performed with the Output Archive
open on the desktop monitor. The MacBook screen showed
the console logs associated with the browser.

During and directly after each task, 4 primary measures
were taken to gauge the efficacy and usefulness of various
features. These measurements were the time it took to
complete the task, perceived difficulty of the task, number
features clicked in order to accomplish task, and perceived
usefulness of features. For all 4 tasks, we changed whether
or not the participant had access to filters. This involved
counterbalancing the order of the interfaces while the
question order remained the same. This was done to reduce
the effect of which interface affected the participant’s
preferences and task performance. The intended goal of this
was to learn more about the efficacy of filters in the archive
to aid search.

RESULTS

In this section, we refer to the 12 participants with the
pseudonyms P1-P12.
Are the filters helpful in finding important outputs?

Timing

Filters allowed participants to accomplish their tasks at
faster speeds to the non-filtered tasks, though the result is
not statistically significant (P = .08544, U = 204, Using

Mann Whitney U Test). Although the distributions of the
timing data were similar, the timing data did informally
trend towards suggesting that filters provided some speed
up in certain tasks.

In tasks where the desired outputs were spread throughout
the archive (Tasks 1 and 4), the filters appeared to provide
on average a 62.5% speed up in search time. In tasks where
the desired outputs were clustered together, towards to the
top of the archive, or were visually easy to spot, the
presence of filters provided a 49% slowdown (Tasks 2 and
3). Although these measurements aren’t definitive in
showing the efficacy of filters, they do provide a sense of
which way the data leaned. Another interesting note is that
8/12 participants accomplished the filtered tasks faster on
average than the no-filter tasks.

These informal differences could be attributed to a few
reasons. In the absence of filters, users quickly realized that
they had to perform an exhaustive search of all relevant
thumbnails in the archive in order to find the answer. In
Tasks 2 and 3, those outputs were towards the upper half of
the archive. In Tasks 1 and 4, the outputs desired were at
the top of the archive and at the bottom of the archive, so
users had to perform an exhaustive search.

Ultimately although the data suggests filters provided a
speed up, it’s not a pronounced enough effect to be
statistically conclusive.

Perceived Difficulty

Although users had differing performance times based on
the existence of filters and the order of activities, they
always found tasks more difficult or as difficult when filters
weren’t available. To measure this, we took their responses
to “How difficult was the given task” that they filled out
after each activity and assigned each rating from (Hard to
Easy) a score from 1 to 5. We then added those scores up
and created a perceived easiness rating. Tasks 1 and 4 were
perceived to be much easier when filters were around, and
tasks 2 and 3 were perceived to be only slightly easier when
filters were around. This suggests that the presence of filters
caused people to rate tasks as easier even when they didn’t
use them or even when the task was harder for them to
accomplish. This conclusion mirrors many of the comments
that participants had during the study when they were asked
to do tasks without filters. P2 stated once they realized they
had to click through the entire Archive to find the result,
“Do I really have to?”. Multiple other participants
expressed verbal frustration mirroring P2’s sentiment when
searching without filters.

Number of Features Clicked

The numbers of features clicked measured the number of
thumbnail clicks and filter clicks. The number of features
clicked loosely follows the timing measurements. Taken in
aggregate, the presence of filters decreased the number of
features clicked by 14% in order to arrive to the find the
final answer.

Usefulness of Features

When participants didn’t have access to filters, they found
the thumbnail and code visualization (code snippet that
appears when you click on a thumbnail on the right side of
the page) most useful for accomplishing a given task. When
participants did have access to the filters, the vast majority
found the grouping filters useful, with only 3 specific
instances of ratings less than somewhat useful. Participants
found that filtering by the type of output (table, text, image,
error) was useful for all tasks except for the third task. This
suggests that the presence of filters for all tasks provided
utility. The results of the usefulness measurements are
shown listed in Figure 17.

Analysis of Grouping Filters

In general, while participants were able to successful use
the grouping filters to find important outputs, they faced
challenges understanding exactly what the rules were
grouping outputs together. When asked what they thought a
grouping filter (object, function, parameter) did,
participants offered alternate wordings that they felt better
represented the functionality of the grouping filters. For
example, many participants thought that the group by

Figure 17: Likert scores for feature usefulness during
tasks. Important note: For each task, 6 participants

didn’t have access to filters.

parameter function grouped on functions and parameters.
As P8 puts it, the group by parameter should be more
“granular than function”, implying that they expected group
by parameters to share similarities with group by functions.

Group by function name was the easiest to understand, but
difficult to use because many users weren’t familiar with
the types of functions used in Pandas. One participant stated
that they would “be able to better know what the function
groupings would exist if they knew how to use pandas”
(P3). This led to users having to scroll down with the
grouping filter applied in order to understand the full range
of function names. Other users coped with this
unfamiliarity by using the command-F within page search
tool to find keywords in the actual thumbnails. One user
stated that they wanted “the function signature to be
included” (referring to function definition and explanatory
comments) at the top of each grouped section because they
weren’t familiar with what the functions did (P5).

Group by Object was confusing because of a coding
practice in pandas to chain accessor methods and properties
in order to create sub objects before the final function call.
P5 pointed out that they wouldn’t have expected an object
to be something that “has a member function called”. No
participant predicted that the group by object filter would
do this. Some participants wanted to see an object tree
showing how the parent objects and its sub-objects were
related. Furthermore, some users wanted the group by
object to not be mutually exclusive in its groupings (e.g. all
outputs with the movies object would go in the same group,
then it would narrow down as the following groupings were
proposed like movies.columns).

Group by Parameters generally seemed to be the least
useful filter primarily because users didn’t really
understand the situations where they would care about
grouping on just parameters, without the function names the
same. As P2 put it, the group by parameter “seems largely
redundant with the group by function”. The most important
feedback on this filter was that it would be more useful if it
grouped by function name and parameters.

Overall although users recognized the utility of the
grouping filters, many aspects of the filters need to be better
communicated.
Is the Output Archive useful?

11/12 participants stated that this tool would have been
useful for them in their past computational notebook usage.
5 participants were so excited about it they asked when the
Output Archive as a whole was going to launch. P4 stated
that, “this tool is very useful if you don’t have great coding
practices. A lot of people don’t have great coding
practices...which is why this is very useful”. The coding
practices P4 was referring to are keeping an immaculate,
append only notebook where all outputs are organized and
preserved (no deleting, or overwriting cells).

A few participants explained that they resorted to
homebrewed version control methods while using
notebooks in the past. These methods included keeping
separate notebooks for different approaches or copying and
pasting results into an external text editor. P6 stated that
they “stopped using computational notebooks in the past
because he kept overwriting previous states and got
frustrated”. Nearly all of the participants mentioned that
recovering past states had utility and was something they
wanted. Many of the participants used notebooks for
classwork in the past and lamented that many times they
ruined their notebook by making mistakes and were unable
to return to versions of the notebook or cell that worked.
This feedback from participants confirmed that Output
Archives should be a mainstay feature of computational
notebooks.
Design motivations revisited

The usability study validated the choice to make the
notebook visually driven based on the fact that participants

found the thumbnail visualization feature useful in nearly
every task they were given, with or without filters. The
grouping filters provided measurable utility to the end user,
even despite the difficulties in education.
Conclusions

The usability study with 12 programmers confirmed that
output histories for computational notebooks are useful and
that our new grouping filters can help a programmer find a
specific output among an overabundance of outputs.

LIMITATIONS

This study and tool had two primary limitations. The first
limitation was that our participants didn’t write the code
that produced the outputs in the usability study. This led to
an unrealistic testing environment where users had to figure
out the relationship between outputs and code without much
context. It’s important to note however, this situation could
mirror a programmer coming back to their own notebook
months after making it. The other primary limitation of this
tool lies in the fact that the underlying slicing algorithm
didn’t slice the immediate cell that produced the output. For
example, if a cell had multiple outputs, each output would
include that cell in their slice, even if everything in slice,
sans the cell, was different. This prevented us from
generalizing the algorithm to 20% of output cases.

FUTURE WORK

The following outlines areas for future improvements to the
Output Archive.

More Grouping Filters

The current grouping filters only captures a subset of
possible variants in a notebook. Other types of grouping
filters could capture important qualities about the code
associated with outputs. These other types of filters could
include filtering by loaded in data source, slice similarity,
or cell location.
Notebook-First Code or Output Search

A programmer with intimate knowledge of their notebook
and the code inside it may not want to go to the Output
Archive to recover an output. For example, if a programmer
knew that they were looking for a specific function, instead
of going to the Output Archive and clicking the group by
function filter, they may just want to click on an instance of
that function in their own notebook to bring up the relevant
histories. An area for future work is to integrate the Output
Archive directly into a working notebook instead of as a
separate tab.

REFERENCES

1. Kery, Mary Beth, et al. “Towards Effective Foraging
by Data Scientists to Find Past Analysis
Choices.” Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems - CHI ’19,
ACM Press, 2019, pp. 1–13. Crossref,
doi:10.1145/3290605.3300322.

2. Rule, Adam, et al. “Aiding Collaborative Reuse of
Computational Notebooks with Annotated Cell
Folding.” Proceedings of the ACM on Human-
Computer Interaction, vol. 2, no. CSCW, Nov. 2018,
pp. 1–12. Crossref, doi:10.1145/3274419.

3. Kyle Kelley and Brian Granger. 2017. Jupyter
frontends: From the classic Jupyter Notebook to
JupyterLab, Interact, and beyond. (2017). Talk.
JupyterCon.

4. Codoban, Mihai, et al. “Software History under the
Lens: A Study on Why and How Developers Examine
It.” 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2015, pp.
1–10. Crossref, doi:10.1109/ICSM.2015.7332446.

5. Philip J. Guo and Margo Seltzer. 2012. BURRITO:
Wrapping Your Lab Notebook in Computational
Infrastructure. In Proceedings of the 4th USENIX
Workshop on the Theory and Practice of Provenance
(TaPP’12). USENIX Association, Berkeley, CA, USA.
http://dl.acm.org/citation. cfm?id=2342875.2342882

6. João Felipe Pimentel, Juliana Freire, Leonardo Murta,
and Vanessa Braganholo. 2016. Fine-Grained
Provenance Collection over Scripts Through Program
Slicing. In International Provenance and Annotation
Workshop. Springer, 199–203.

7. Yoon, YoungSeok, and Brad A. Myers. “Supporting
Selective Undo in a Code Editor.” 2015 IEEE/ACM
37th IEEE International Conference on Software
Engineering, IEEE, 2015, pp. 223–33. Crossref,
doi:10.1109/ICSE.2015.43.

8. Kery, Mary Beth, et al. “Variolite: Supporting
Exploratory Programming by Data
Scientists.” Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems - CHI ’17,
ACM Press, 2017, pp. 1265–76. Crossref,
doi:10.1145/3025453.3025626.

9. Head, Andrew, et al. “Managing Messes in
Computational Notebooks.” Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems - CHI ’19, ACM Press, 2019, pp. 1–
12. Crossref, doi:10.1145/3290605.3300500.

10. Glassman, Elena L., et al. “OverCode: Visualizing
Variation in Student Solutions to Programming
Problems at Scale.” ACM Transactions on Computer-
Human Interaction, vol. 22, no. 2, Mar. 2015, pp. 1–
35. Crossref, doi:10.1145/2699751.

11. Glassman, Elena L., et al. “Visualizing API Usage
Examples at Scale.” Proceedings of the 2018 CHI
Conference on Human Factors in Computing
Systems - CHI ’18, ACM Press, 2018, pp. 1–
12. Crossref, doi:10.1145/3173574.3174154.

12. Pavel, Amy., et al. “Browsing and Analyzing the
Command-Level Structure of Large Collections of
Image Manipulation Tutorials”. Technical Report No.
UCB/EECS-2013-167, 2013

13. Kong, Nicholas, et al. “Delta: A Tool for Representing
and Comparing Workflows.” Proceedings of the 2012
ACM Annual Conference on Human Factors in
Computing Systems - CHI ’12, ACM Press, 2012, p.
1027. Crossref, doi:10.1145/2207676.2208549.

14. Ko, Andrew J., and Brad A. Myers. “Finding Causes of
Program Output with the Java Whyline.” Proceedings
of the 27th International Conference on Human
Factors in Computing Systems - CHI 09, ACM Press,
2009, p. 1569. Crossref,
doi:10.1145/1518701.1518942.

15. Burg, Brian, et al. “Explaining Visual Changes in Web
Interfaces.” Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology -
UIST ’15, ACM Press, 2015, pp. 259–68. Crossref,
doi:10.1145/2807442.2807473.

16. Rule, Adam, et al. “Exploration and Explanation in
Computational Notebooks.” Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems - CHI ’18, ACM Press, 2018, pp. 1–
12. Crossref, doi:10.1145/3173574.3173606.

17. Srinivasa Ragavan, Sruti, et al. “Foraging Among an
Overabundance of Similar Variants.” Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems - CHI ’16, ACM Press, 2016, pp.
3509–21. Crossref, doi:10.1145/2858036.2858469.

18. Zhang, K. Z., et al. “Approximate Tree Matching in the
Presence of Variable Length Don′t Cares.” Journal of
Algorithms, vol. 16, no. 1, Jan. 1994, pp. 33–
66. Crossref, doi:10.1006/jagm.1994.1003.

