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Abstract

We propose a method to estimate and track the 3D pos-
ture as well as the 3D shape of the human body from a
single RGB-D image. We estimate the full 3D mesh of the
body and show that 2D joint positions greatly improve 3D
estimation and tracking accuracy. The problem is inher-
ently very challenging because due to the complexity of the
human body, lighting, clothing, and occlusion. The solve
the problem, we leverage a custom MobileNet implementa-
tion of OpenPose CNN to construct a 2D skeletal model of
the human body. We then fit a low-dimensional deformable
body model called SMPL to the observed point cloud us-
ing initialization from the 2D skeletal model. We do so
by minimizing a cost function that penalizes the error be-
tween the estimated SMPL model points and the observed
real-world point cloud. We further impose a pose prior de-
fine by the pre-trained mixture of Gaussian model to pe-
nalize out unlikely poses. We evaluated our method on the
Cambridge-Imperial APE (Action Pose Estimation) dataset
showing comparable results with non-real time solutions.

1. Introduction

The understanding 3D human pose is a fundamental
problem human-computer interaction and a relatively unex-
plored area in computer vision. Unfortunately, the human
body is a hugely complex system and generating a biolog-
ically accurate computer model is currently an intractable
problem. In the field of digital modeling, we have three
major ways of representing the human body: skeletal, ar-
ticulated, and deformable. The skeletal model parameter-
ized the body joints positions and bone length [14]. The
articulated model builds on top of the skeletal model. It
adds volume information to the body through a combination
of geometric shapes (rectangular prism, frustums, spheres,
etc.)[11]. The deformable model eschews geometric shapes
and uses organic contours to represent the body surface.
The deformable model is the most realistic and expressive

Figure 1. Model fitted to various observed posture. Left is the RGB
camera input. Center is the observed depth camera input as a point
cloud. Left is the estimated deformable model pose.

of the three models [29]. A fast and accurate methodology
of recovering a deformable human model would enable ap-
plications such as virtual closets, photorealistic telepresence
conferencing, and remote physiatry which require the doc-
tor to observe minute body language cues during therapy.

This paper introduces an approach to track human
avatars by fitting a deformable model in near real time. Fit-
ting a deformable model can be a daunting task. Depending
on the complexity of the chosen model, we may have to per-
form non-linear optimization over thousands of parameters.
This requires significant runtime and can easily fail because
of local minima. Further, we face ambiguities caused by the
loss of 3D geometry due to self-occlusion. This ambiguity
is compounded by the non-Gaussian noise characteristics
of the depth camera. Our methodology poses the fitting as a
convex optimization over the parameters of the deformable
model.

We start with a low dimensional model of the human
body. The model we chose is SMPL[13] which has 178
parameters and models most features of the body except for
fingers and facial expressions. We feel that this is a reason-
able compromise between realism and efficiency. Next, we
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compute the 2D skeletal model and 3D head pose model in-
ferred from the RGB image. Finally, we construct a convex
optimization problem to fit the SMPL model to the observed
data given constraints imposed by the 2D skeletal model.

2. Related Works

The recovery of 3D human pose from incomplete data
is by nature an ambiguous problem. Over the past 10
years, different methods deal with this ambiguity in differ-
ent ways. These include reducing the scope of the problem
by only tracking the skeleton of the body. Other approaches
discard the semantic of the human body by reconstructing
the surface using fusion methods.

2.1. Skeletal Fitting

The first camp of approach is skeletal fitting.
OpenPose[5][9] proposes a deep convolutional neural
network that estimates the joint positions of multiple
people in the image[16]. Microsoft Kinect proposes a
random forest classifier on 4D HoG features to estimate the
3D position of human joints[20]. The drawback with this
class of approach is that a skeleton by itself is not enough to
drive a fully deformable model. The body surface contours
are left unmodeled.

2.2. Fusion

The second group of approaches is fusion where hu-
man tracking is treated as a 3D reconstruction problem.
DynamicFusion[18] and DoubleFusion[24] leverage multi-
ple camera views to construct a full point cloud of the hu-
man body. Fusion is very accurate and is capable of pro-
ducing real-time scans. However, to do real-time fusion, we
need camera views from all perspective which often require
a calibrated stationary system. Further, we lose the seman-
tic understanding of the human body. For instance, there is
no way for the computer to tell which part of the body is the
hand versus the torso.

2.3. Parameter Fitting

The third group of approaches is parameter fitting on a
deformable kinematic model. The current literature on the
subject is mostly geared towards animations[21][6]. Meth-
ods proposed intakes a single RGB image and attempt to fit
the highly parameterized model[12]. Guan et al[17]. take
manually marked 2D joints and first estimates skeletal joint
positions. Then they use this estimate to pose a SCAPE
model. In similar work, Hasler et al[25]. fit the SCAPE
model to human silhouettes[1] with a known segmentation
of the human and a few manually labeled correspondences.
While these methods are highly accurate, none are scalable
to tracking situations.

Figure 2. System pipeline that takes in a single view RGB-D and
fits an initial pose to the observed data. In this pipeline, three
models (MPII Skeletal Model, Head Pose Model, and SMPL Body
Model) are built and fused via a convex optimization.

3. Method Overview
Figure 2 shows an overview of our system. We acquire

time and spatially synchronized depth and RGB frames
from our sensor. We begin with a preprocessing step that
segments the human body. We remove the ground plane as
well as objects not in direct contact with the human. From
the segmented human, we leverage the OpenPose CNN[9]
to construct a 2D skeletal model of the body. In the next
stage, we construct a convex optimization problem C(θ, β)
where is the pose of the joints and are coefficients of a low-
dimensional shape space, learned from a set of thousands
of labeled body scans. We define C(θ, β) to be how closely
the body model parameterized by θ and β matches the ob-
served human body. The objective is to minimize C. To
solve this problem we rely on a reasonably good estimate
of the 2D joint positions. We observed that the 2D skele-
tal model initialization significantly improved accuracy and
convergence speed.

4. Data Processing
We used the Intel Realsense D435 to acquire data.

We chose the Realsense D435 over the popular Microsoft
Kinect for three reasons. First, it is being actively devel-
oped by Intel versus the now discontinued Kinect line which
means more developer will likely have access to the Re-
alsense D435 in the future. Secondly, the D435 combines
a short-range structure light sensor and a long-range time
of flight sensor allow it to achieve an impressive operating
range of 0.2 meters to 10 meters. Lastly, it is light, portable,
and does not require an external power source which means
it can be deployed in a variety of environments. The raw in-
put data from the D435 first undergo a 3-step preprocessing



Figure 3. The raw image is acquired from the depth camera the human point cloud is extracted through the preprocessing procedure. First,
the background and ground plane are removed. Next, small blobs are the human are removed. Finally, the data is downsampled, averaged,
and outlier points are removed.

stage.

4.1. Background Removal

We use a Histogram of Oriented Gradients (HoG)[15]
classifier to compute a 2D bounding box around the human
on the RGB image. We project the bounding box on the
depth image and computed the median depth of the points
inside the frustum. That computed depth is believed to be
the distance the human is away from the camera. Subse-
quently, we remove all points with depth outside 1 meter
radius from the body center.

4.2. Ground Removal

Next, we remove the floor by fitting a plane to the ground
via RANSAC method[8]. We take extra precaution in this
step since the human body can be misinterpreted as a plane
in certain poses. We begin by removing all the points in
the human bounding box. Next, we fit a plane model to
the remaining points. Subsequently, we remove all points
belongs to the plane within a threshold of 0.1 meters.

4.3. Noise Removal

The Realsense D435 has higher noise around edges of
objects. This causes a lot of points at the edge of the hu-
man body to be especially erroneous. We apply a statisti-
cal outlier removal method[7]. For each point, we compute
the mean distance from its 30 nearest neighbors. The near-
est neighbors are determined through a KD-tree search. By
assuming that the resulted distribution is Gaussian with a
mean and a standard deviation, all points whose mean dis-
tances are outside an interval defined by the global distances
mean and standard deviation can be considered as outliers
and trimmed from the dataset. This noise removal method
significantly improves the quality of our human point cloud.

Figure 4. Two stage neural network proposed by OpenPose. Mod-
ification are made to the part affinity map to use less convolutional
layers since our tracking is constrained to a single person.

5. Model Construction

5.1. 2D Skeletal Model

We adopt the neural network from OpenPose to train a
model to compute 2D joint positions from a single RGB
image. The convolutional neural network consists of two
branches. The top branch produces a probability heat map
of joint locations. Each pixel on the heatmap represents the
likelihood of a joint at that pixel. The bottom branch pro-
duces a part affinity map (PaF)[9]. The PaF predicts which
joints are associated with each other. The joint mapping and
the PaF are concatenated and interpolated on top of the in-
put data and sent through the next stage which is the two
branches repeated.

We modified the original OpenPose implementation to
use depth-wise separable convolution methods as described
in MobileNet[3]. Our implementation of OpenPose in Mo-
bileNet reduced the number of trainable parameters by 89%.
We further reduced the footprint of the network by using 15
PaF unit rather than 20 PaF units.

We trained the model on the MPII human joint dataset
containing 25K human image performing 410 classes
of activities. We chose to train the network on the



Figure 5. Positions of 6 corresponding facial landmarks are com-
puted both on the RGB and synthetic face mesh. We solve 2D-3D
correspondence problem[28] to recover the head direction from
the RGB view,

MPII dataset[12] rather than the more common COCO
dataset[26] for two reasons. First, MPII contains fewer
joints which meant we could use a simpler neural network
architecture. Second, the MPII joint annotations are closely
matched with the SMPL model. This meant we use the
MPII model to initialize the SMPL model.Our formulation
greatly reduced the footprint of OpenPose while maintain-
ing acceptable accuracy.

5.2. 3D Face Modeling

The depth data from the Intel Realsense D435 is too
noisy to distinguish facial features. As a result, we decided
to infer the head direction from the RGB image which con-
tains clear facial features. We use the pre-trained Linear Bi-
nary Features (LBF)[19] classifier available in OpenCV[4]
to track the 2D locations of 6 facial features (right eye right
corner, left eye left corner, nose, mouth left corner, mouth
right corner) as shown in Figure 5. We pick the same 6 fea-
tures on a 3D model of a generic human face and record
their 3D coordinates. We solve the 2D-3D correspondence
problem[28] to recover the pose of the face in the RGB im-
age.

5.3. 3D Body Modeling

We chose the SMPL model[13] to represent the de-
formable human body. SMPL provides a good compromise
between efficiency and realism. It contains 24 joint posi-
tions and 6890 surface points. Each surface point position
is computed through a linear combination of its 4 nearest
joint positions. In other words, by moving the joints, we can
drive the surface points movement. Additionally, it contains
80 shape keys that control the deformation of various parts
of the body. We chose 10 shape keys in our model to reduce
computation cost.

6. Model Fusion
The 2D and 3D body models are fitted through the con-

vex optimization problem.

C(θ, β) = λsEs(θ, β) + λJEJ(θ) + λpEp(θ)

θ is a vector of bone parameters. Naively, each bone should
have 9 degrees of freedom (3-axis position, 3-axis rotation,
and 3-axis scale). In our formulate we reduced each bone to
3 degrees of freedom by making the following two observa-
tions. First, the relative position of each bone can be related
to the global positioning of the body center. After all, bones
in the body have to stay in their relative arrangements. Sec-
ondly, we found that the scale can be determined by the
body shape coefficient that controls overall body scale. We
observed that in different height humans, bone length tend
to change proportionally. By representing the bones only
by their rotation quaternion, we reduced the number param-
eters to optimize from 240 to 144.
β which is a vector of 80 floating decimal shape keys.

However, we observed that the majority of shape keys only
marginally impact the shape of the body. Thus, we chose
the top 10 keys that have the most impact on the body con-
tour to be included in the convex optimization. We used the
Google’s Ceres Solver as our convex optimizer[2].

6.1. ICP Error

The ICP error measure how closely the SMPL model
matches the observed depth data.

Es(θ, β) = Σi||pi − S(pi; θ, β)||2

So here pi is the observed point on the sensor, the func-
tion S(pi; θ, β) returns the closest point on the SMPL model
given a pi and the pose parameters (θ and β). The ICP error
is the sum of the squared distances.

6.2. Joint Prior

The Joint Prior measures how far the SMPL joints are
away from the neural net joint positions.

Ej(θ) = Σi||Ĵi − Ji(θ)||2

The Ĵi represents the pose of the ith joint as predicted by
the neural network. The function Ji(θ) returns the pose of
the ith joint in the SMPL model. We sum over the squared
errors over 24 joints in the pose.

6.3. Pose Prior

The goal of the pose prior is to provide a measure of how
likely is pose is done by a real human. It is possible to use
joint-angle limits to verify whether two connected bones are
valid or not. However, the problem becomes complex as
there are dependencies in joint-angle limits between certain



Figure 6. SMPL model[13] parameterized to fit various poses and body shapes. The first three shows the skeletal of the body driving the
surface point movements. The last two shows the shape keys affecting the surface contours of the body.

pair of bones. For example, how much a person can flex
their elbow depends their arm is in front or behind them.
Thus constructing a rule based reverse kinematic model is
unfeasible.

Ep(θ) = min(−log(ciNi(θ;uθ,i,Σi))

We used a pretrained pose prior from the CMU MoCap
Dataset[10] to enforce the realism of human poses. Each
distribution Ni(θ;uθ,i,Σi) gives a likelihood of a pose pa-
rameterized by θ and β. ci is the weight assigned to the ith
distribution and is determined during training.

7. Frame to Frame Tracking
Our tracking is relatively simple. For every new frame,

we initialize our convex optimization from the previous
frame. We only optimize for joint positions and ignore body
shape during tracking. During the tracking stage, we add an
extra loss term that exponentially penalizes poses that are
dissimilar to the previous pose.

C(θ, β) = λsEs(θ, β)+λJEJ(θ)+λpEp(θ)+λne
||θt−θt−1||

Although the human body pose within 1/30th second in-
tervals remains relatively consistent, random noise from the
depth sensor may introduce rapid changes to the body con-
tour.

8. Experiments and Results
8.1. Dataset

We evaluated on the Cambridge-Imperial APE (Action
Pose Estimation) dataset[23]. The APE dataset contains
245 sequences from 7 subjects performing 7 different cat-
egories of actions. Videos of each subject were recorded
in different unconstrained environments, changing camera
poses and moving background objects. The dataset con-
tains fully 3D point clouds of human subjects and labeled
3D position for 20 joints. We evaluated the accuracy of 12
joints (list out what the joints are) since they matched up

Method Wave 1 Wave 2 Bend Balance
Ours 32.2 35.8 68.1 45.2
Eichner et. al[22] 30.1 34.6 58.8 37.8
Yang et. al[30] 33.2 40.4 56.7 34.4
Tsz-Ho et al[27] 35.6 37.1 44.5 43.5

Table 1. Comparison between our method and state of the art fit-
ting methods designed for animation and none-realtime fitting.
Our accuracy is competitive with non realtime methods

with the SMPL model. We computed the cumulative the
drift of the 12 joints between our predicted 3D joint posi-
tions and the ground truth provided by APE[23]. This gives
us a per frame error. We computed the average per frame
error over 4 sequences and reported them below.

8.2. Evaluation

The algorithm performed relatively well on stationary
poses sequences such as waving with one hand and waving
with two hands. The average drift is between 60-70 mil-
limeters which is not noticeable by the eye. However, for
moving poses such as balancing on one leg and bending the
body, the drift becomes more apparent.

These results represent the accuracy of our algorithm on
a near perfect point cloud. The APE dataset differ from
observations made by the RealSense D435 in three ways.
First, the RealSense provides one camera view of the point
cloud so, in practice, half of the human would be missing
due to self-occlusion. Conversely, the APE dataset is cap-
tured by multiple depth cameras producing complete point
cloud. Secondly, the APE dataset has 20 times the resolu-
tion compared to the single D435 camera. The APE dataset
captures distinguishable features on the D435 such as feet
direction and hands. Finally, the APE dataset only label 3D
joint locations. Currently, we have no way of evaluating
body surface tracking accuracy.

We compared the results to the state of the art approaches
used in animation. While our performance is not much
worse in simple movements, error started accumulating in
the more complex poses.



Configuration Wave 1 Wave 2 Bend Balance
Ours 32.2 35.8 68.1 45.2
No Pose Prior 56.7 68.9 140.4 179.2
No Joint Prior 55.2 40.5 80.0 103.6
No MobileNet 44.2 37.1 65.7 42.9

Table 2. Comparison of accuracy by excluding certain parameters
from the convex optimization. Without imposing a pose prior, the
accuracy quickly deteriorated. We observe very minor accuracy
gains by using the fully OpenPose CNN rather than the MobileNet
implementation

Figure 7. Poses that introduces significant self occlusion are prob-
lematic for the current approach. We hypothesis this may be due
excessive sensor noise in these fast moving cases

8.3. Ablation Studies

We did experts on the effect of various parameter on both
the accuracy our system.Without a pose prior, we perform
especially poorly on complex poses such as the Wave 2 and
Bend. This is likely due to noisy data and the algorithm is
unable to estimate a realistic pose. Without the joint prior,
the algorithm performs worse overall in all categories. Fi-
nally, we measured the effect of using a full OpenPose net-
work to estimate the pose prior. The accuracy gain is mini-
mal.

8.4. Failure Postures

In our experiments, we noticed one major class of failure
the spinning pose. We noticed that when the side profile
is exposed to the D435 camera, we failed to fit the pose
completely. The main source of error stems from incorrect
joint prior when the camera doesnt see enough information.

Configuration Wave 1 Wave 2 Bend Balance
Intel i7 + TitanX 25 FPS 24 FPS 24 FPS 24 FPS
Intel i7 + 1060 25 FPS 24 FPS 24 FPS 24 FPS
Intel i7 + No GPU 14 FPS 14 FPS 14 FPS 14 FPS
Intel i5 + No GPU 11 FPS 11 FPS 10 FPS 10 FPS

Table 3. Comparison of performance under various hardware con-
figurations. A Intel i7 paired with a NVIDIA 1060 GPU can
achieve real time performance. A CPU only configuration can run
in near real time.

8.5. Performance

We ran our algorithm on a combination of CPUs (In-
tel i7-9700k, Intel i5-8600k) and GPUs (NVIDIA TitanX,
and NIVIDA 1060). We chose the Intel i7 + Nivdia TitanX
to represent a top end enterprise server configuration. We
chose the Intel i7 + Nvidia 1060 to represent a mobile GPU
configuration. Finally, we chose the Intel i5 by itself to rep-
resent an embedded device.

Currently, the only component that takes advantage of
the GPU is the neural network that predicts the 2D joint
positions. All other computations are CPU bound. Our al-
gorithm is able to run in real time (24 FPS) with a NVIDIA
1060 or better. We noticed no performance gain with GPUs
better than NVIDIA 1060. We believe this is due to the
bottleneck being CPU bound computations.

However, even without a GPU, we are able achieve 10-
14 FPS. Our tracking solution can be deployed to embedded
devices for non-real time applications.

9. Conclusion
We present a fully automated method to estimate 3D

body posture from a single RGB-D camera view in real
time. Our method first uses a CNN to estimate 2D joint
positions then initializes the 3D fitting with these joint lo-
cations. We use the recently proposed SPML body model
which linearly related joint positions and body shape, al-
lowing us to construct a highly constrained fitting process.
We define our objective function and optimize the joint pose
and body shape directly by minimizing the error between
the model points and the real world point cloud observed
by the depth camera. This gives us a simple and efficient
solution to estimate pose and shape at the same time. We
track the pose changes between frames by initializing each
subsequent convex optimization with the posture from the
previous frame. We evaluated the accuracy on the newest
APE dataset and found that it performs comparably with
non-real time methods.

Our formulation opens up many directions for future
work. We will immediately address the failure cases by
reexamining the pose prior and imposing a constraint on
frame-to-frame changes in pose. We are currently explor-



ing use cases of this technology in driver safety.
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