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Abstract

The sample complexity of simple reinforcement learning

by

Horia S Mania

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Benjamin Recht, Co-chair

With potential applications as diverse as self-driving cars, medical robots, and network pro-
tocols, recent years witnessed a staggering interest in building autonomous agents that learn
to interact with the world. Despite impressive successes in games and robotic demonstra-
tions, known reinforcement learning (RL) algorithms remain data hungry, unreliable, and
complex. To address these issues we need to better understand the limits of training agents
that interact with the world.

We theoretically analyze the data requirements of RL in several simple settings. To un-
derstand the sample complexity of system identification, a fundamental building block of
model-based RL and feedback control, we focus on the estimation of linear dynamical sys-
tems and, more generally, on the estimation of dynamical systems whose state transitions
depend linearly on a known feature embedding of state-action pairs. For linear dynamical
systems we present a specialized analysis that captures the correct signal-to-noise behavior
of the problem, showing that more unstable linear systems are easier to estimate. While
linear systems can be identified from data generated by i.i.d. random inputs, to estimate
nonlinear dynamical systems we must use a judicious choice of inputs. We propose an active
learning method that addresses this challenge.

Then, we study the Linear Quadratic Regulator (LQR), a classical problem in control theory,
from a RL perspective by assuming the underlying dynamics are unknown. We consider two
solutions that use estimates of the dynamics to synthesize controllers: certainty equivalence
and robust LQR. Certainty equivalence is the most straightforward approach to controller
synthesis for LQR with unknown dynamics. It generates the optimal controller for the
estimated dynamics, disregarding the effects of the estimation error. We show that when the
estimation error is sufficiently small the difference between the cost achieved by the certainty
equivalent controller and the optimal cost scales like the square of the estimation error.
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We also consider a robust LQR approach that can operate with larger estimation errors.
Our robust LQR method relies on System Level Synthesis to formulate the robust control
problem as a quasi-convex optimization problem. We show that the performance gap of
robust LQR scales linearly with the estimation error. Therefore, certainty equivalence can
outperform robust LQR when the estimation error is small, but the latter approach can
operate with larger estimation error.

Finally, in many settings RL agents have to operate in the presence of other decision makers.
To study RL in such a scenario we take inspiration from the study of two-sided markets and
stable matchings. Agents acting in markets often have to learn about their preferences
through exploration. With the advent of massive online markets powered by data-driven
matching platforms, it has become necessary to better understand the interplay between
learning and market objectives. We propose a statistical learning model in which one side
of the market does not have a priori knowledge about its preferences for the other side
and is required to learn these from stochastic rewards. Our model extends the standard
multi-armed bandits framework to multiple players, with the added feature that arms have
preferences over players. We show surprising exploration-exploitation trade-offs compared
to the single player multi-armed bandits setting.
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Chapter 1

Introduction

Reinforcement learning (RL) aims design autonomous agents that learn to interact with
the world in order to achieve desired goals. With potential areas of application as diverse
as autonomous vehicles, recommender systems, medical devices, and robotics, RL can be
a boon to society. It has already produced agents that surpass human players in games
[100, 139, 159] and has also led to exciting robotics demos [5, 84, 86, 133]. Although these
results are impressive, there are several factors prohibiting the wide adoption of RL methods
for controlling physical systems. RL methods require too much data to achieve reasonable
performance and many algorithms are difficult to implement, evaluate, and deploy [66].

In the quest to find methods that are sample efficient (i.e. methods that need little
data) the general trend in RL has been to develop increasingly complicated methods and
compare these methods through empirical evaluation on games and other simulated tasks
[57, 58, 65, 86, 101, 103, 113, 115, 125, 132, 134, 135, 138, 162, 166]. Unfortunately, this
research trend has led to a reproducibility crisis. Recent studies demonstrate that many
RL methods are not robust to changes in hyperparameters, random seeds, or even different
implementations of the same algorithm [66, 69]. Such unreliability precludes the integration
of RL algorithms into mission critical control systems.

We illustrate the drawbacks of comparing RL algorithms solely through empirical evalu-
ations on simulated tasks and argue that the theoretical analysis of simple RL methods and
problems offers a viable path to illuminating fundamental concepts. In Chapter 2 we pro-
pose a simple baseline that is competitive with popular RL methods on standard continuous
control benchmarks, the MuJoCo locomotion tasks [26, 153]. We use the evaluation of our
simple method to illustrate several limitations of common evaluation practices in RL.

Theoretical analysis is a natural complement to empirical evaluation and can be used to
alleviate some of the issues of common evaluation practices. In general, a RL problem is
defined by a dynamical system with state xt ∈ Rn that can be acted on by a control ut ∈ Rp

and obeys the stochastic dynamics

xt+1 = ft(xt,ut,wt),

where wt is a disturbance that can be stochastic or adversarial. Often, the full state xt
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cannot be observed directly, but information about it can be inferred from observations yt =
ht(xt,ut, νt), where ht is an observation model and νt is a noise process. Then, reinforcement
learning and optimal control seek to find inputs ut that

minimize E
[

1
T

∑T
t=1 ct(yt,ut)

]
subject to xt+1 = ft(yt,ut,wt),

yt = ht(xt,ut, νt).

(1.0.1)

Here, ct denotes the state-control cost at every time step (more generally, the costs can be
stochastic or adversarial). The input ut is allowed to depend on the current observation yt
and all previous observations and actions. In this generality, problem (1.0.1) encapsulates
many of the problems considered in the RL literature.

A solution to problem (1.0.1) is expressed in terms of a map π : {uj,yj+1}t−1
j=0 → ut,

called a policy or controller. Then, the goal of RL is to find a policy that achieves small
cost, a difficult problem even when the dynamics model ft, the observation model ht, and
the cost function ct are known. RL, nevertheless, aims to solve (1.0.1) when one or more of
these elements are unknown. To deal with the unknown components, in RL we assume that
it is possible to interact with the dynamical system and collect data, i.e. take actions ut and
observe the response of the system yt+1. Through repeated interactions with the system, RL
methods aim to either directly learn a good policy π or to learn estimates of the unknown
components that can be used for controller synthesis.

In this thesis we aim to theoretically quantify the amount of data needed to find a policy
that achieves close to optimal performance. To achieve this goal we must consider a simpler
problem than (1.0.1) since (1.0.1) is too general. The simplest optimal control problem with
continuous state is the Linear Quadratic Regulator (LQR), in which we fully observe the
states (i.e., yt = xt), the costs are a fixed quadratic function of state and control, and the
dynamics are linear and time-invariant:

minimize E
[

1
T

∑T
t=1 x>t Qxt + u>t−1Rut−1

]
subject to xt+1 = Axt +But + wt

. (1.0.2)

Here Q (resp. R) is a n × n (resp. p × p) positive definite matrix, A and B are called the
state transition matrices, and wt ∈ Rn is Gaussian noise with zero-mean and covariance
Σw. While it may seem that the modeling assumptions underlying (1.0.2) are too restrictive,
LQR is the basis for many successful nonlinear control methods [27, 85, 151].

We are concerned with the infinite time horizon variant of the LQR problem (1.0.2) where
we let the time horizon T go to infinity and minimize the average cost. When the dynamics
are known, this problem has a celebrated closed form controller based on the solution of
matrix Riccati equations [169]. Indeed, the optimal policy sets ut = Kxt for a fixed p × n
matrix K, and the corresponding optimal cost is the gold-standard to which we compare the
cost of our algorithms.

LQR has been studied for decades and consequently is well understood: it has a simple,
closed form solution on the infinite time horizon and an efficient, dynamic programming
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solution on finite time horizons. However, prior to the work presented in this thesis, little
was known about LQR when the transition parameters A and B are unknown. In Chapter
3 we start by determining the amount of data required to estimate A and B.

The problem of estimating dynamical systems from data is known as system identifica-
tion, a fundamental building block of model-based RL and feedback control. We focus on
the identification of linear dynamical systems and, more generally, on the identification of
dynamical systems whose state transitions depend linearly on a known feature embedding of
state-action pairs. For linear dynamical systems we present a specialized analysis that cap-
tures the correct signal-to-noise behavior of the problem, showing that more unstable linear
systems are easier to estimate. While linear systems can be identified from data generated
by i.i.d. random inputs, to estimate nonlinear dynamical systems we must use a judicious
choice of inputs.

Then, in Chapter 4, we analyze the performance of two methods that use estimates of A
and B to synthesize controllers. One of the most straightforward methods for controlling a
dynamical system with unknown transitions is based on the certainty equivalence principle:
a model of the system is fit by observing its time evolution, and then a controller is designed
by treating the fitted model as the truth [15]. Despite the simplicity of this method, it is
challenging to guarantee its efficiency because small modeling errors may propagate to large,
undesirable behaviors on long time horizons. We show that this cannot happen when the
estimation error is sufficiently small. Concretely, we show that when the estimation error is
small the gap between the performance of the certainty equivalent controller and the optimal
controller scales quadratically with the estimation error.

While this is a strong guarantee, certainty equivalence can fail when the estimation
error is moderately large [41]. For this reason, many methods for controlling systems with
unknown dynamics explicitly incorporate robustness against model uncertainty [41, 42, 70,
107, 167, 169]. We also propose a robust control approach that couples the uncertainty
in estimation with the control design. Namely, our method uses an uncertainty set of the
transition parameters to find a controller that performs well on the worst case dynamics in
the uncertainty set. While this worst case optimization problem cannot be solved exactly,
we offer a quasi-convex relaxation that achieves a performance gap that scales linearly with
the estimation error. This guarantee distinguishes our method from prior robust methods
for LQR.

Finally, in Chapter 5 we consider a problem that cannot be fully captured by (1.0.1) since
(1.0.1) assumes the existence of a single decision maker. In real-world settings, individual
decisions must be made in the context of actions taken by other decision makers. Moreover,
such decisions often involve scarcity, with competition among multiple decision-makers. To
study such settings we need to blend economics with learning.

We take inspiration from the study of two-sided markets, an important area of study in
economics. Agents acting in markets often have to learn about their preferences through
exploration. With the advent of massive online markets powered by data-driven matching
platforms, it has become necessary to better understand the interplay between learning
and market objectives. We propose a statistical learning model in which one side of the
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market does not have a priori knowledge about its preferences for the other side and is
required to learn these from stochastic rewards. Our model extends the standard multi-armed
bandits framework to multiple players, with the added feature that arms have preferences
over players. We show surprising exploration-exploitation trade-offs compared to the single
player multi-armed bandits setting.
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Chapter 2

Simple random search

In this chapter, we aim to determine the simplest model-free RL method that can solve stan-
dard benchmarks. Two different directions have been proposed for simplifying RL. Salimans
et al. [125] introduced a derivative-free policy optimization method, called Evolution Strate-
gies. The authors showed that, for several RL tasks, their method can easily be parallelized
to train policies faster than other methods. While the method of Salimans et al. [125] is
simpler than previously proposed methods, it employs several complicated algorithmic ele-
ments, which we discuss at the end of Section 2.1. As a second simplification to model-free
RL, Rajeswaran et al. [115] have shown that linear policies can be trained via natural policy
gradients to obtain competitive performance on the MuJoCo locomotion tasks, showing that
complicated neural network policies are not needed to solve these continuous control prob-
lems. In this work, we combine ideas from the work of Salimans et al. [125] and Rajeswaran
et al. [115] to obtain the simplest model-free RL method yet, a derivative-free optimization
algorithm for training static, linear policies. We demonstrate that a simple random search
method can match or exceed state-of-the-art sample efficiency on the MuJoCo locomotion
tasks, included in the OpenAI Gym.

Henderson et al. [66] and Islam et al. [69] pointed out that standard evaluation method-
ology does not accurately capture the performance of RL methods by showing that existing
RL algorithms exhibit high sensitivity to both the choice of random seed and the choice of
hyperparameters. We show similar limitations of common evaluation methodology through
a different lens. We exhibit a simple derivative free optimization algorithm which matches or
surpasses the performance of more complex methods when using the same evaluation method-
ology. However, a more thorough evaluation of ARS reveals worse performance. Moreover,
our method uses static linear policies and a simple local exploration scheme, which might
be limiting for more difficult RL tasks. Therefore, better evaluation schemes are needed for
determining the benefits of more complex RL methods. Our contributions are as follows:

• In Section 2.1, for applications to continuous control, we augment a basic random
search method with three simple features. First, we scale each update step by the
standard deviation of the rewards collected for computing that update step. Second, we
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normalize the system’s states by online estimates of their mean and standard deviation.
Third, we discard from the computation of the update steps the directions that yield
the least improvement of the reward. We refer to this method as Augmented Random
Search (ARS).

• In Section 2.2, we evaluate the performance of ARS on the benchmark MuJoCo loco-
motion tasks, included in the OpenAI Gym. Our method learns static, linear policies
that achieve high rewards on all MuJoCo tasks. No neural networks are used, and
yet state-of-the-art average rewards are achieved. For example, for Humanoid-v1 ARS
finds linear policies which achieve average rewards of over 11500, the highest value
reported in the literature. To put ARS on equal footing with competing methods,
we evaluate its sample complexity over three random seeds and compare it to results
reported in the literature [58, 115, 125, 135]. ARS matches or exceeds state-of-the-art
sample efficiency on the locomotion tasks when using standard evaluation methodology.

• For a more thorough evaluation, we measured the performance of ARS over a hundred
random seeds and also evaluated its sensitivity to hyperparameter choices. Though
ARS successfully trains policies for the MuJoCo tasks a large fraction of the time
when hyperparameters and random seeds are varied, ARS exhibits large variance. We
measure the frequency with which ARS finds policies that yield suboptimal locomotion
gaits.

The material presented in this chapter is based on the work by Mania et al. [94].

Problem setup. Problems in reinforcement learning require finding policies for controlling
dynamical systems that maximize an average reward. Such problems can be abstractly
formulated as

max
θ∈Rd

Eξ [r(πθ, ξ)] , (2.0.1)

where θ parametrizes a policy πθ : Rn → Rp. The random variable ξ encodes the randomness
of the environment, i.e., random initial states and stochastic transitions. The value r(πθ, ξ)
is the reward achieved by the policy πθ on one trajectory generated from the system. In
general one could use stochastic policies πθ, but our proposed method uses deterministic
policies.

Basic random search. Note that the problem formulation (2.0.1) aims to optimize reward
by directly optimizing over the policy parameters θ. We consider methods which explore in
the parameter space rather than the action space. This choice renders RL training equivalent
to derivative-free optimization with noisy function evaluations. One of the simplest and
oldest optimization methods for derivative-free optimization is random search [99].

A primitive form of random search, which we call basic random search (BRS), simply
computes a finite difference approximation along the random direction and then takes a step
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along this direction without using a line search. Our method ARS, described in Section 2.1,
is based on this simple strategy. For updating the parameters θ of a policy πθ, BRS and
ARS exploit update directions of the form:

r(πθ+νδ, ξ1)− r(πθ−νδ, ξ2)

ν
, (2.0.2)

for two i.i.d. random variables ξ1 and ξ2, ν a positive real number, and δ a zero mean
Gaussian vector. It is known that such an update increment is an unbiased estimator of the
gradient with respect to θ of EδEξ [r(πθ+νδ, ξ)], a smoothed version of the objective (2.0.1)
which is close to the original objective when ν is small [105]. When the function evaluations
are noisy, minibatches can be used to reduce the variance in this gradient estimate. Evolution
Strategies is a version of this algorithm with several complicated algorithmic enhancements
[125]. Another version of this algorithm is called Bandit Gradient Descent by Flaxman et al.
[52]. The convergence of random search methods for derivative free optimization has been
understood for several types of convex optimization [9, 18, 71, 105]. Jamieson et al. [71] offer
an information theoretic lower bound for derivative free convex optimization and show that
a coordinate based random search method achieves the lower bound with nearly optimal
dependence on the dimension.

The rewards r(πθ+νδ, ξ1) and r(πθ−νδ, ξ2) in Eq. (2.0.2) are obtained by collecting two
trajectories from the dynamical system of interest, according to the policies πθ+νδ and πθ−νδ,
respectively. The random variables ξ1, ξ2, and δ are mutually independent, and independent
from previous trajectories. One trajectory is called an episode or a rollout. The goal of
RL algorithms is to approximately solve problem (2.0.1) by using as few rollouts from the
dynamical system as possible.

2.1 Proposed algorithm

We now introduce the Augmented Random Search (ARS) method, which relies on three
augmentations of BRS that build on successful heuristics employed in deep reinforcement
learning. Throughout the rest of the paper we use M to denote the parameters of policies
because our method uses linear policies, and hence M is a p × n matrix. The different
versions of ARS are detailed in Algorithm 1.

The first version, ARS V1, is obtained from BRS by scaling the update steps by the
standard deviation σR of the rewards collected at each iteration; see Line 7 of Algorithm 1. As
shown in Section 2.2, ARS V1 can train linear policies, which achieve the reward thresholds
previously proposed in the literature, for five MuJoCo benchmarks. However, ARS V1
requires a larger number of episodes, and it cannot train policies for the Humanoid-v1 task.
To address these issues in Algorithm 1 we also propose ARS V2. This version of ARS
trains policies which are linear maps of states normalized by a mean and standard deviation
computed online. Finally, to further enhance the performance of ARS, we introduce a
third algorithmic enhancement, shown in Algorithm 1 as ARS V1-t and ARS V2-t. These
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versions of ARS can drop perturbation directions that yield the least improvement of the
reward. Now, we motivate and offer intuition for each of these algorithmic elements.

Algorithm 1 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t

1: Hyperparameters: step-size α, number of directions sampled per iteration N , stan-
dard deviation of the exploration noise ν, number of top-performing directions to use b
(b < N is allowed only for V1-t and V2-t)

2: Initialize: M0 = 0 ∈ Rp×n, µ0 = 0 ∈ Rn, and Σ0 = In ∈ Rn×n, j = 0.
3: while ending condition not satisfied do
4: Sample δ1, δ2, . . . , δN in Rp×n with i.i.d. standard normal entries.
5: Collect 2N rollouts of horizon H and their corresponding rewards using the 2N policies

V1:

{
πj,k,+(x) = (Mj + νδk)x

πj,k,−(x) = (Mj − νδk)x

V2:

{
πj,k,+(x) = (Mj + νδk) diag (Σj)

− 1
2 (x− µj)

πj,k,−(x) = (Mj − νδk) diag(Σj)
− 1

2 (x− µj)

for k ∈ {1, 2, . . . , N}.
6: V1-t, V2-t: Sort the directions δk by max{r(πj,k,+), r(πj,k,−)}, denote by δ(k) the
k-th largest direction, and by πj,(k),+ and πj,(k),− the corresponding policies.

7: Make the update step:

Mj+1 = Mj + α
bσR

b∑
k=1

[
r(πj,(k),+)− r(πj,(k),−)

]
δ(k),

where σR is the standard deviation of the 2b rewards used in the update step.
8: V2: Set µj+1, Σj+1 to be the mean and covariance of the 2NH(j+1) states encountered

from the start of training.1

9: j ← j + 1
10: end while
.

Scaling by the standard deviation σR. As the training of policies progresses, random
search in the parameter space of policies can lead to large variations in the rewards observed
across iterations. As a result, it is difficult to choose a fixed step-size α which does not allow
harmful variations in the size of the update steps. Salimans et al. [125] address this issue by
transforming the rewards into rankings and then using the adaptive optimization algorithm
Adam for computing the update step. Both of these techniques change the direction of the
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updates, obfuscating the behavior of the algorithm and making it difficult to ascertain the
objective Evolution Strategies is actually optimizing. Instead, to address the large variations
of the differences r(πM+νδ)− r(πM−νδ), we scale the update steps by the standard deviation
σR of the 2N rewards collected at each iteration (see Line 7 of Algorithm 1).

While training a policy for Humanoid-v1, we observed that the standard deviations σR
have an increasing trend; see Figure 2.1. This behavior occurs because perturbations of the
policy weights at high rewards can cause Humanoid-v1 to fall early, yielding large variations
in the rewards collected. Without scaling the update steps by σR, eventually random search
would take update steps which are a thousand times larger than in the beginning of training.
Therefore, σR adapts the step sizes according to the local sensitivity of the rewards to
perturbations of the policy parameters. The same training performance could probably be
obtained by tuning a step size schedule. However, one of our goals was to minimize the
amount of tuning required.

0 50 100 150 200 250 300
iteration

0

200

400

600

800

σ R

Figure 2.1: Showing the standard deviation σR of the rewards
collected at each iteration, while training Humanoid-v1.

Normalization of the states. The normalization of states used by ARS V2 is akin to
data whitening for regression tasks. Intuitively, it ensures that policies put equal weight on
the different components of the states. To see why this might help, suppose that a state
coordinate only takes values in the range [90, 100] while another state component takes values
in the range [−1, 1]. Then, small changes in the control gain with respect to the first state
coordinate would lead to larger changes in the actions than the same sized changes with
respect to the second state component. Hence, state normalization allows different state
components to have equal influence during training.

Previous work has also implemented such state normalization for fitting a neural network
model for several MuJoCo environments [103]. A similar normalization is used by ES as part

1Of course, we implement this in an efficient way that does not require the storage of all the states. Also,
we only keep track of the diagonal of Σj+1. Finally, to ensure that the ratio 0/0 is treated as 0, if a diagonal
entry of Σj is smaller than 10−8 we make it equal to +∞.
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of the virtual batch normalization of the neural network policies [125]. In the case of ARS,
the state normalization can be seen as a form of non-isotropic exploration in the parameter
space of linear policies.

The main empirical motivation for ARS V2 comes from the Humanoid-v1 task. We were
not able to train a linear policy for this task without the normalization of the states described
in Algorithm 1. Moreover, ARS V2 performs better than ARS V1 on other MuJoCo tasks
as well, as shown in Section 2.2. However, the usefulness of state normalization is likely to
be problem specific.

Using top performing directions. To further improve the performance of ARS on the
MuJoCo locomotion tasks, we propose ARS V1-t and V2-t. In the update steps used by
ARS V1 and V2 each perturbation direction δk is weighted by the difference of the rewards
r(πj,k,+) and r(πj,k,−). If r(πj,k,+) > r(πj,k,−), ARS pushes the policy weights Mj in the
direction of δk. If r(πj,k,+) < r(πj,k,−), ARS pushes the policy weights Mj in the direction
of −δk. However, since r(πj,k,+) and r(πj,k,−) are noisy evaluations of the performance
of the policies parametrized by Mj + νδk and Mj − νδk, ARS V1 and V2 might push the
weights Mj in the direction δk even when −δk is better, or vice versa. Moreover, there can be
perturbation directions δk such that updating the policy weights Mj in either the direction δk
or −δk would lead to sub-optimal performance. To address these issues, ARS V1-t and V2-t
order decreasingly the perturbation directions δk, according to max{r(πj,k,+), r(πj,k,−)}, and
then use only the top b directions for updating the policy weights; see Line 7 of Algorithm 1.

This algorithmic enhancement intuitively improves the performance of ARS because it
ensures that the update steps are an average over directions that obtained high rewards.
However, without theoretical investigation we cannot be certain of the effect of using this
algorithmic enhancement, i.e., choosing b < N . When b = N versions V1-t and V2-t are
equivalent to V1 and V2. Therefore, it is certain that after tuning ARS V1-t and V2-t,
they will not perform any worse than ARS V1 and V2.

Comparison to Salimans et al. [125]. ARS simplifies Evolution Strategies in several
ways. First, ES feeds the gradient estimate into the Adam algorithm. Second, instead of
using the actual reward values r(θ± σεi), ES transforms the rewards into rankings and uses
the ranks to compute update steps. The rankings are used to make training more robust.
Instead, our method scales the update steps by the standard deviation of the rewards. Third,
ES bins the action space of the Swimmer-v1 and Hopper-v1 to encourage exploration. Our
method surpasses ES without such binning. Fourth, ES relies on policies parametrized by
neural networks with virtual batch normalization, while we show that ARS achieves state-
of-the-art performance with linear policies.
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2.2 Empirical evaluation

Implementation details. We implemented a parallel version of Algorithm 1 using the
Python library Ray [102]. To avoid the computational bottleneck of communicating per-
turbations δ, we created a shared noise table which stores independent standard normal
entries. Then, instead of communicating perturbations δ, the workers communicate indices
in the shared noise table. This approach has been used in the implementation of Evolution
Strategies by Moritz et al. [102] and is similar to the approach proposed by Salimans et al.
[125]. Our code sets the random seeds for the random generators of all the workers and for
all copies of the OpenAI Gym environments held by the workers. All these random seeds
are distinct and are a function of a single integer to which we refer as the random seed. Fur-
thermore, we made sure that the states and rewards produced during the evaluation rollouts
were not used in any form during training.

We evaluate the performance of ARS on the MuJoCo locomotion tasks included in the
OpenAI Gym-v0.9.3 [26, 153]. The OpenAI Gym provides benchmark reward functions
for the different MuJoCo locomotion tasks. We used these default reward functions for
evaluating the performance of the linear policies trained with ARS. The reported rewards
obtained by a policy were averaged over 100 independent rollouts. For the Hopper-v1,
Walker2d-v1, Ant-v1, and Humanoid-v1 tasks the default reward functions include a survival
bonus, which rewards RL agents with a constant reward at each timestep, as long as a
termination condition (i.e., falling over) has not been reached. During training, we removed
these survival bonuses, a choice we motivate in the full version of this work [94]. The
interested reader will also find in the full version of this work a sensitivity analysis of ARS
to the choice of hyperparameters.

Three random seeds evaluation: We compare the different versions of ARS to the
following methods: Trust Region Policy Optimization (TRPO), Deep Deterministic Policy
Gradient (DDPG), Natural Gradients (NG), Evolution Strategies (ES), Proximal Policy
Optimization (PPO), Soft Actor Critic (SAC), Soft Q-Learning (SQL), A2C, and the Cross
Entropy Method (CEM). For the performance of these methods we used values reported by
Rajeswaran et al. [115], Salimans et al. [125], Schulman et al. [135], and Haarnoja et al. [58].
In light of well-documented reproducibility issues of reinforcement learning methods [66, 69],
reporting the values listed in papers rather than rerunning these algorithms casts prior work
in the most favorable light possible.

Rajeswaran et al. [115] and Schulman et al. [135] evaluated the performance of RL al-
gorithms on three random seeds, while Salimans et al. [125] and Haarnoja et al. [58] used
six and five random seeds respectively. To put all methods on equal footing, for the eval-
uation of ARS, we sampled three random seeds uniformly from the interval [0, 1000) and
fixed them. For each of the six OpenAI Gym MuJoCo locomotion tasks we chose a grid
of hyperparameters2 and for each set of hyperparameters we ran ARS V1, V2, V1-t, and

2Recall that ARS V1 and V2 take in only three hyperparameters: the step-size α, the number of
perturbation directions N , and scale of the perturbations ν. ARS V1-t and V2-t take in an additional
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V2-t three times, once for each of the three fixed random seeds.
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Figure 2.2: An evaluation of four versions of ARS on the MuJoCo locomotion tasks.
The training curves are averaged over three random seeds, and the shaded region shows the
standard deviation. ARS V2-t is only shown for the tasks to which it offered an improvement
over ARS V2.

Table 2.1 shows the average number of episodes required by ARS, NG, and TRPO to reach
a prescribed reward threshold, using the values reported by Rajeswaran et al. [115] for NG
and TRPO. For each version of ARS and each MuJoCo task we chose the hyperparameters
which minimize the average number of episodes required to reach the reward threshold. The
corresponding training curves of ARS are shown in Figure 2.2. For all MuJoCo tasks, except
Humanoid-v1, we used the same reward thresholds as Rajeswaran et al. [115]. Our choice to
increase the reward threshold for Humanoid-v1 is motivated by the presence of the survival
bonuses, as discussed in the full version of this work [94].

Table 2.1 shows that ARS V1 can train policies for all tasks except Humanoid-v1, which
is successfully solved by ARS V2. Secondly, we note that ARS V2 reaches the prescribed
thresholds for Swimmer-v1, Hopper-v1, and HalfCheetah-v1 faster than NG or TRPO, and
matches the performance of NG on the Humanoid-v1. On Walker2d-v1 and Ant-v1, ARS
V2 is outperformed by NG. Nonetheless, ARS V2-t surpasses the performance of NG on
these two tasks. Although TRPO hits the reward threshold for Walker2d-v1 faster than
ARS, our method either matches or surpasses TRPO in the metrics reported by Haarnoja
et al. [58] and Schulman et al. [135].

hyperparameter, the number of top directions used b (b ≤ N).
3N/A means that the method did not reach the reward threshold.
4UNK stands for unknown.
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Average # episodes to reach reward threshold
Task Threshold ARS NG-lin NG-rbf TRPO-nn

V1 V1-t V2 V2-t
Swimmer-v1 325 100 100 427 427 1450 1550 N/A 3

Hopper-v1 3120 89493 51840 3013 1973 13920 8640 10000
HalfCheetah-v1 3430 10240 8106 2720 1707 11250 6000 4250

Walker2d-v1 4390 392000 166133 89600 24000 36840 25680 14250
Ant-v1 3580 101066 58133 60533 20800 39240 30000 73500

Humanoid-v1 6000 N/A N/A 142600 142600 ≈130000 ≈130000 UNK4

Table 2.1: A comparison of ARS, NG, and TRPO on the MuJoCo locomotion tasks. For
each task we show the average number of episodes required to achieve a prescribed reward
threshold, averaged over three random seeds. We estimated the number of episodes required
by NG to reach a reward of 6000 for Humanoid-v1 based on the learning curves presented
by Rajeswaran et al. [115].

Precise comparisons to more RL methods are provided in the full version of this work
[94]. Here we offer a summary. Salimans et al. [125] reported the average number of episodes
required by ES to reach a prescribed reward threshold, on four of the locomotion tasks.
ARS surpassed ES on all of those tasks. Haarnoja et al. [58] reported the maximum reward
achieved by SAC, DDPG, SQL, and TRPO after a prescribed number of timesteps, on four
of the locomotion tasks. With the exception of SAC on HalfCheetah-v1 and Ant-v1, ARS
outperformed competing methods. Schulman et al. [135] reported the maximum reward
achieved by PPO, A2C, CEM, and TRPO after a prescribed number of timesteps, on four
of the locomotion tasks. With the exception of PPO on Walker2d-v1, ARS matched or
surpassed the performance of competing methods.

A hundred seeds evaluation: For a more thorough evaluation of ARS, we sampled 100
distinct random seeds uniformly at random from the interval [0, 10000). Then, using the
hyperparameters selected for Table 2.1, we ran ARS for each of the six MuJoCo locomotion
tasks and the 100 random seeds. The results are shown in Figure 2.3. Such a thorough
evaluation was feasible because ARS has a small computational footprint. ARS is at least 15
times more computationally efficient on the MuJoCo benchmarks than competing methods.

Figure 2.3 shows that 70% of the time ARS trains policies for all the MuJoCo locomotion
tasks, with the exception of Walker2d-v1 for which it succeeds only 20% of the time. More-
over, ARS succeeds at training policies a large fraction of the time while using a competitive
number of episodes.

There are two types of random seeds represented in Figure 2.3 that cause ARS to not
reach high rewards. There are random seeds on which ARS eventually finds high reward
policies when sufficiently many iterations of ARS are performed, and there are random
seeds which lead ARS to discover locally optimal behaviors. For the Humanoid model, ARS
found numerous distinct gaits, including ones during which the Humanoid hops only on one
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Average reward evaluated over 100 random seeds, shown by percentile
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Figure 2.3: An evaluation of ARS over 100 random seeds on the MuJoCo locomotion tasks.
The dotted lines represent median rewards and the shaded regions represent percentiles. For
Swimmer-v1 we used ARS V1. For Hopper-v1, Walker2d-v1, and Ant-v1 we used ARS
V2-t. For HalfCheetah-v1 and Humanoid-v1 we used ARS V2.

leg, walks backwards, or moves in a swirling motion. Such gaits were found by ARS on
the random seeds which cause slower training. While multiple gaits for Humanoid models
have been previously observed [65], our evaluation better emphasizes their prevalence. The
presence of local optima is inherent to non-convex optimization, and our results show that
RL algorithms should be evaluated on many random seeds for determining the frequency
with which local optima are found. Finally, we remark that ARS is the least sensitive to the
choice of random seed used when applied to HalfCheetah-v1, a task which is often used for
the evaluation of sensitivity of algorithms to the choice of random seeds.

Linear policies are sufficiently expressive for MuJoCo: We discussed how linear
policies can produce diverse gaits for the MuJoCo models, showing that they are sufficiently
expressive to capture diverse behaviors. Table 2.2 shows that linear policies can also achieve
high rewards on all the MuJoCo locomotion tasks. In particular, for Humanoid-v1 and
Walker2d-v1, ARS found policies that achieve significantly higher rewards than any other
results we encountered in the literature. These results show that linear policies are perfectly
adequate for the MuJoCo locomotion tasks, reducing the need for more expressive and more
computationally expensive policies.
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Maximum reward achieved
Task ARS Task ARS Task ARS

Swimmer-v1 365 HalfCheetah-v1 6722 Ant 5146
Hopper-v1 3909 Walker 11389 Humanoid 11600

Table 2.2: Maximum average reward achieved by ARS, where we took the maximum over
all sets of hyperparameters considered and the three fixed random seeds.

2.3 Discussion

With a few algorithmic augmentations, basic random search of static, linear policies achieves
state-of-the-art sample efficiency on the MuJoCo locomotion tasks. Surprisingly, no special
nonlinear controllers are needed to match the performance recorded in the RL literature.
Moreover, since our algorithm and policies are simple, we were able to perform extensive
sensitivity analysis. This analysis brings us to an uncomfortable conclusion that the current
evaluation methods adopted in the deep RL community are insufficient to evaluate whether
proposed methods are actually solving the studied problems.

The choice of benchmark tasks and the small number of random seeds do not represent the
only issues of current evaluation methodology. Though many RL researchers are concerned
about minimizing sample complexity, it does not make sense to optimize the running time
of an algorithm on a single problem instance. The running time of an algorithm is only
a meaningful notion if either (a) evaluated on a family of problem instances, or (b) when
clearly restricting the class of algorithms.

Common RL practice, however, does not follow either (a) or (b). Instead, researchers run
an algorithm A on a task T with a given hyperparameter configuration, and plot a “learning
curve” showing the algorithm reaches a target reward after collecting X samples. Then the
“sample complexity” of the method is reported as the number of samples required to reach a
target reward threshold, with the given hyperparameter configuration. However, any number
of hyperparameter configurations can be tried. Any number of algorithmic enhancements
can be added or discarded and then tested in simulation. For a fair measurement of sample
complexity, should we not count the number of rollouts used for all tested hyperparameters?

Through optimal hyperparameter tuning one can artificially improve the perceived sample
efficiency of a method. Indeed, this is what we see in our work. By adding a third algorithmic
enhancement to basic random search (i.e., enhancing ARS V2 to V2-t), we are able to
improve the sample efficiency of an already highly performing method. Considering that most
of the prior work in RL uses algorithms with far more tunable parameters and neural nets
whose architectures themselves are hyperparameters, the significance of the reported sample
complexities for those methods is not clear. This issue is important because a meaningful
sample complexity of an algorithm should inform us on the number of samples required to
solve a new, previously unseen task.

In light of these issues and of our empirical results, we make several suggestions for future
work:
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• Simple baselines should be established before moving forward to more complex bench-
marks and methods. We propose the Linear Quadratic Regulator as a reasonable
testbed for RL algorithms. LQR is well-understood when the model is known, prob-
lem instances can be easily generated with a variety of different levels of difficulty, and
little overhead is required for replication.

• When games and physics simulators are used for evaluation, separate problem instances
should be used for tuning and evaluating RL methods. Moreover, large numbers of
random seeds should be used for statistically significant evaluations.

• Rather than trying to develop general purpose algorithms, it might be better to focus
on specific problems of interest and find targeted solutions.

• More emphasis should be put on the development of model-based methods. For many
problems, such methods have been observed to require fewer samples than model-free
methods. Moreover, the physics of the systems should inform the parametric classes of
models used for different problems. Model-based methods incur many computational
challenges themselves, and it is quite possible that tools from deep RL, such as improved
tree search, can provide new paths forward for tasks that require the navigation of
complex and uncertain environments.
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Chapter 3

System identification

In the previous chapter we exemplified and discussed the challenges of determining the sample
complexity of reinforcement learning algorithms solely through empirical evaluation. In an
attempt to eschew these issues we lay the foundation for a theoretical understanding of how
machine learning interfaces with control. We start by quantifying the sample complexity
of estimating transition models for the dynamical problems at hand. In control theory this
area of study is called system identification. The material presented in this chapter is based
on the work by Dean et al. [41], Mania et al. [96], and Simchowitz et al. [141].

In this chapter we focus on two classes of dynamical systems whose unknown parameters
appear linearly. Namely, we consider linear dynamical:

xt+1 = A?xt +B?xt + wt, (3.0.1)

where xt is the state of the system, ut is the input to the system, and wt is stochastic noise.
The state xt and noise wt have dimension n and the input ut has dimension p. The matrices
A? and B? are unknown matrices of appropriate dimensions.

Then, the goal is to identify A? and B? from data collected from the true dynamical
system (3.0.1). Because of the linear structure of the dynamics we can obtain an estimate
by using the ordinary least squares (OLS) estimator:

(Â, B̂) ∈ argmin
A,B

T−1∑
t=0

‖Axt +But − xt+1‖2. (3.0.2)

Unless otherwise noted, the norm ‖·‖ denotes the Euclidean norm when applied to vectors
and denotes the spectral norm when applied to matrices.

The OLS estimator is well understood when the data is generated i.i.d.. However, in
the case of dynamical systems data is dependent across time, i.e., both states and inputs
depend on past observations. We address this challenge and quantify the estimation errors
‖A?−Â‖ and ‖B̂−B?‖ as a function of the amount of data used. In Section 3.1 we present an
empirical approach based on the bootstrap, which works well in practice. Then, in Section 3.2



CHAPTER 3. SYSTEM IDENTIFICATION 18

we discuss a theoretical approach for analyzing the estimation error of (3.0.1) and then in
Section 3.3 we extend this theoretical analysis to a class of nonlinear systems. Finally, there
is a long line of work studying system identification, which we discuss in Section 3.4.

3.1 Empirical confidence sets via the bootstrap

In the previous sections we offered theoretical guarantees on the performance of the least
squares estimation of A? and B? from independent samples. However, there are two impor-
tant limitations to using such guarantees in practice to offer upper bounds on εA = ‖A?− Â‖
and εB = ‖B? − B̂‖. First, using only one sample per system rollout is empirically less effi-
cient than using all available data for estimation. Second, even optimal statistical analyses
often do not recover constant factors that match practice. For purposes of robust control, it
is important to obtain upper bounds on εA and εB that are not too conservative. Thus, we
aim to find ε̂A and ε̂B such that εA ≤ ε̂A and εB ≤ ε̂B with high probability.

We propose a vanilla bootstrap method for estimating ε̂A and ε̂B. Bootstrap methods have
had a profound impact in both theoretical and applied statistics since their introduction [45].
These methods are used to estimate statistical quantities (e.g. confidence intervals) by
sampling synthetic data from an empirical distribution determined by the available data.
For the problem at hand we propose the procedure described in Algorithm 2.1

Algorithm 2 Bootstrap estimation of εA and εB

1: Input: confidence parameter δ, number of trials M , data {(x(i)
t ,u

(i)
t )}1≤i≤N

1≤t≤T
, and (Â, B̂)

a minimizer of
∑N

`=1

∑T−1
t=0

1
2
‖Ax

(`)
t +Bu

(`)
t − x

(`)
t+1‖2.

2: for M trials do
3: for ` from 1 to N do
4: x̂

(`)
0 = x

(`)
0

5: for t from 0 to T − 1 do
6: x̂

(`)
t+1 = Âx̂

(`)
t + B̂û

(`)
t + ŵ

(`)
t with ŵ

(`)
t ∼ N (0, σ2

wIn) and û
(`)
t ∼ N (0, σ2

uIp).
7: end for
8: end for
9: (Ã, B̃) ∈ arg min(A,B)

∑N
`=1

∑T−1
t=0

1
2
‖Ax̂

(`)
t +Bû

(`)
t − x̂

(`)
t+1‖2

2.

10: record ε̃A = ‖Â− Ã‖2 and ε̃B = ‖B̂ − B̃‖2.
11: end for
12: Output: ε̂A and ε̂B, the 100(1− δ)th percentiles of the ε̃A’s and the ε̃B’s.

For ε̂A and ε̂B estimated by Algorithm 2 we intuitively have

P(‖A− Â‖ ≤ ε̂A) ≈ 1− δ and P(‖B − B̂‖ ≤ ε̂B) ≈ 1− δ.
1We assume that σu and σw are known. Otherwise they can be estimated from data.
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(a) Estimation Error in A
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Figure 3.1: In these simulations: n = 3, p = 1, ρ = 0.9, and M = 2000. In (a), the spectral
distances to A? (shown in the solid lines) are compared with the bootstrap estimates (shown in
the dashed lines). In (b), the probability A? lies in B

Â
(ε̂A) estimated from 2000 trials. In (c), the

spectral distances to B∗ are compared with the bootstrap estimates. In (d), the probability B? lies
in B

B̂
(ε̂B) estimated from 2000 trials.

There are many known guarantees for the bootstrap, particularly for the parametric
version we use. We do not discuss these results here; for more details see texts by Van Der
Vaart and Wellner [158], Shao and Tu [137], and Hall [59]. Instead, we show empirically the
performance of the bootstrap for our estimation problem.

We evaluate the efficacy of the bootstrap procedure introduced in Algorithm 2. Al-
though in Section 3.2 we provide theoretical upper bounds on the estimation error of system
identification, for practical purposes we want bounds that are the least conservative possible.

For given state dimension n, input dimension p, and scalar ρ, we generate upper triangular
matrices A? ∈ Rn×n with all diagonal entries equal to ρ and the upper triangular entries i.i.d.
samples from N (0, 1), clipped at magnitude 1. By construction, matrices will have spectral
radius ρ. The entries of B? ∈ Rn×p were sampled i.i.d. from N (0, 1), clipped at magnitude
1. The variance terms σ2

u and σ2
w were fixed to be 1.

Recall that M represents the number of trials used for the bootstrap estimation, and ε̂A,
ε̂B are the bootstrap estimates for εA, εB. To check the validity of the bootstrap procedure
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(a) Estimation Error in A
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Figure 3.2: In these simulations: n = 6, p = 2, ρ = 1.01, and M = 2000. In (a), the spectral
distances to A? are compared with the bootstrap estimates. In (b), the probability A? lies in
B
Â

(ε̂A) estimated from 2000 trials. In (c), the spectral distances to B? are compared with the
bootstrap estimates. In (d), the probability B? lies in B

B̂
(ε̂B) estimated from 2000 trials.

we empirically estimate the fraction of time A? and B? lie in the balls BÂ(ε̂A) and BB̂(ε̂B),
where BX(r) = {X ′ : ‖X ′ −X‖2 ≤ r}.

Our findings are summarized in Figures 3.1 and 3.2. Although not plotted, the theoretical
bounds found in Section 3.2 would be orders of magnitude larger than the true εA and εB,
while the bootstrap bounds offer a good approximation.

3.2 General framework for theoretical analysis

In this work, we consider both the specific problem of estimating linear dynamical systems,
where we measure the estimation error in the operator norm ‖·‖. In Section 3.2.1 we present
upper bounds on the estimation error of the parameters A? of a linear dynamical system,
which hold for any A? with ρ(A?) ≤ 1. In the full version of this work we also show that these
upper bounds are nearly optimal in many regimes of interest [141] and we also offer a more
general results that applies to the problem of linear estimation in time series. This general
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results is useful in extending the analysis to nonlinear dynamical systems, as explained in
Section 3.3.3.

Notation: We let Sd−1 denote the unit sphere in Rd. Given a matrix M we denote by
M † its pseudoinverse. For a symmetric matrix M ∈ Rd×d, we let λmax(M) and λmin(M)
denote its largest and smallest eigenvalues. If M ∈ Rd×d and M � 0, we denote by SM the
set of all points x ∈ Rd such that ‖M−1/2x‖2 = 1.

3.2.1 Linear dynamical systems

We analyze the statistical performance of the OLS estimator of the parameter A? from a
single observed trajectory x1, . . . ,xT+1 satisfying xt+1 = A?xt + wt, where x0 = 0 and
wt ∼ N (0, σ2Id):

Â(T ) := arg min
A∈Rd×d

T∑
t=1

1

2
‖xt+1 − Axt‖2

2 . (3.2.1)

Our bounds are stated in terms of the finite-time controllability Gramian of the system,
denoted by Γt :=

∑t−1
s=0(As?)(A

s
?)
>, which captures the magnitude of the excitations induced

by the process noise. Indeed, we can write xt explicitly as

xt =
t∑

s=1

At−s? ws−1 which implies that E[xtx
>
t ] = σ2Γt . (3.2.2)

Hence, the expected covariance can be expressed in terms of the Gramians via E[
∑T

t=1 xtx
>
t ] =

σ2 ·∑T
t=1 Γt. As is standard in analyses of least-squares, “larger” covariates/covariance ma-

trices correspond to faster rates of learning. We are ready to state our first result, whose
proof can be found in full version of our work [141].

Theorem 3.2.1. Fix δ ∈ (0, 1/2) and consider the linear dynamical system xt+1 = A?xt+wt,
where A? is a marginally stable matrix in Rd×d (i.e. ρ(A?) ≤ 1), x0 = 0, and wt ∼ N (0, σ2I).
Then there exist universal constants c, C > 0 such that

P

[∥∥∥Â(T )− A?
∥∥∥

op
>

C√
Tλmin (Γk)

√
d log

d

δ
+ log det(ΓTΓ−1

k )

]
≤ δ, (3.2.3)

for any k ≥ 1 such that T
k
≥ c(d log(d/δ) + log det(ΓTΓ−1

k )) holds.

Note that σ2 does not appear in the bound from Theorem 3.2.1 because scaling the
noise also rescales the covariates. In the full version of this work [141], we show that for any
marginally stable A?, we can always choose a k ≥ 1 provided T is sufficiently large. Therefore,
even when ρ(A?) = 1 and the system does not mix, we obtain finite-sample estimation
guarantees which also guarantees consistency of estimation. In many cases, these rates are
qualitatively no-worse than random-design linear regression with independent covariates.
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In general, λmin (Γk) is a nondecreasing function of the block length k. The intuition for
this is that larger k takes into account more long-term excitations to lower bound the size
of our covariance matrix. However, as we use longer blocks, our high probability bounds
degrade. Thus, the optimal block length is the maximal value k which satisfies the condition
in Theorem 3.2.1.

The dependence on the minimum eigenvalue of the Gramian λmin (Γk) has two interpreta-
tions. From a statistical perspective, we have 1

2k·σ2E[
∑2k

t=1 xtx
>
t ] = 1

2k

∑2k
t=1 Γt � 1

2
λmin (Γk)·I.

Thus, λmin (Γk) gives a lower bound on the smallest eigenvalue value of the covariance matrix
associated with the first 2k covariates. In fact, one can also show that for any t0 ≥ 0, we still
have 1

2k·σ2E[
∑t0+2k

t=t0+1 xtx
>
t |xt0 ] � 1

2
λmin (Γk) · I. Theorem 3.2.1 thus states that the larger

the expected covariance matrix, the faster A? is estimated. Note that Γk � I for all k ≥ 1.
The second interpretation is dynamical. The term λmin (Γk) corresponds to the “excitabil-

ity” of the system, which is the extent to which the process noise influences future covariates.
This can be seen from (3.2.2), where the slower (At0? )(At0? )> decays as t0 grows, the larger
the contribution of wt−t0−1 is. This is precisely the reason why linear systems with larger
spectral radii mix slowly, and do not mix when ρ(A?) ≥ 1. In this light, Theorem 3.2.1 shows
that with high-probability, the more a linear system is excited by the noise wt, the easier
it is to estimate the parameter matrix A?. We now explicitly describe the consequences of
Theorem 3.2.1 for three illustrative classes of linear systems:

1. Scalar linear system. In this case the states xt and the parameter A? are scalars,
and denoted a∗ = A?. For |a∗| ≤ 1, we can apply Theorem 3.2.1 with block length k =

O(T/ log(1/δ)). This then guarantees that |â − a∗| ≤ O
(√

log(1/δ)/
(
T
∑k∗

t=1 a
2t
∗

))
with probability 1−δ. In the full version of this work [141], we show this statistical rate
is minimax optimal. In Section 3.2.2, we offer a specialized analysis for the scalar case
(Theorem 3.2.4) which yields sharper constants and also applies to the unstable case
|a∗| > 1. Stated succinctly, our results in Section 3.2.2 imply that the OLS estimator
satisfies with probability 1 − δ error guarantees which can be categorized into three
regimes:

|â− a∗| =


Θ

(√
log(1/δ)(1−|a∗|)

T

)
if |a∗| ≤ 1− c log(1/δ)

T
,

Θ
(

log(1/δ)
T

)
if 1− c log(1/δ)

T
< |a∗| ≤ 1 + 1

T

Θ
(

log(1/δ)
|a∗|T

)
if 1 + 1

T
≤ |a∗|.

White [163] showed the same dependence on |a∗| of the estimation error by character-
izing the asymptotic distribution of â − a∗ when appropriately scaled. However, our
results offer finite sample guarantees.

2. Scaled orthogonal systems. Let us assume A? = ρ · O for an orthogonal d × d
matrix O and |ρ| ≤ 1. Then, one can verify that Γt = I ·∑t−1

s=0 ρ
2s and that we can
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choose the block length k = O
(

T
d log(d/δ)

)
. Therefore, Theorem 3.2.1 guarantees that

with probability 1− δ:

‖Â− A?‖op ≤

O
(√

(1− |ρ|) · d log(d/δ)
T

)
if |ρ| ≤ 1− cd log(d/δ)

T
,

O
(
d log(d/δ)

T

)
if 1− cd log(d/δ)

T
< |ρ|.

(3.2.4)

3. Diagonalizable linear systems. Let A? = SDS−1 define a diagonalizable linear
system. We denote by ρ the smallest magnitude of an eigenvalue of A?. It can be

shown that the block length k can be chosen such that k ≥ T

cd log( d cond(S)
δ )

. With this

choice of k the OLS estimator satisfies

P

‖Â− A?‖op ≤ O

√√√√ d log(d cond(S)/δ)

T
(

1 + cond(S)−2
∑k−1

s=0 ρ
2s
)

 ≥ 1− δ

which could once again be split into a slow and fast rate, as in the examples presented
above, depending on the size ρ of the least excitable mode of the system defined by
A?. Note that up to a factor of log(d cond(S)/δ), the above bound is no worse than
the worst-case rate for standard random-design least-squares in the operator norm.

Remark 3.2.2 (Noise dependence). As mentioned before, the estimation guarantee pro-
vided by Theorem 3.2.1 does not depend on the variance σ2 of the noise wt. For Gaus-
sian noise with a general identity covariance wt ∼ N (0,Σ), one can rederive rates from
a more general theorem, shown in the full version of this work, to get a more precise de-
pendence on Γt and Σ. Note that if the covariance Σ is known, an alternative estima-
tor would be to choose Â to minimize a loss which takes Σ into account in the same way
that one would for non-dynamic linear regression with heteroskedastic noise, e.g. ÂΣ(T ) :=

arg minA∈Rd×d
∑T

t=1
1
2

∥∥Σ−1/2 (xt+1 − Axt)
∥∥2

2
.

Remark 3.2.3 (Learning with input sequences). We can also consider the case where the
linear system xt+1 = A?xt + B?ut + ηt is driven by a known sequence of inputs u0, u1, . . . ,
with known B?. Defining the control Gramian ΓB∗t :=

∑t
s=1A

t−s
? B?B

>
? A

t−s
? , the proof of

Theorem 3.2.1 can be modified to show that, if the inputs are white noise ut
i.i.d∼ N (0, σ2

uI),
then there exist universal constants c, C > 0 such that, with probability 1− δ,

‖Â(T )− A?‖op ≤
Cσ2√

Tλmin

(
σ2Γk + σ2

uΓ
B∗
k )
)
√√√√d log

(
1

δ

tr
(
σ2ΓT + σ2

uΓ
B∗
T )
)

λmin

(
σ2Γk + σ2

uΓ
B∗
k

))

for any k such that T
k
≥ cd log

(
tr(σ2ΓT+σ2

uΓB∗T )

δλmin(σ2Γk+σ2
uΓB∗k )

)
. Process noise with covariance not equal

to a multiple of the identity can be absorbed into B?.
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3.2.2 Scalar case

In this appendix, we present specialized upper and lower bounds in the case of scalar sys-
tems. Specifically, we consider xt+1 = a∗xt + wt, where wt ∼ N (0, σ2), and x0 = 0. Our
upper bound has sharp, explicit constants, and captures the correct qualitative behavior for
unstable scalar systems:

Theorem 3.2.4. Let ε ∈ (0, 1) and δ ∈ (0, 1/2). Then P[|â(T )− a∗| ≤ ε] ≥ 1− δ as long as

T ≥
{

8
ε

log
(

2
δ

)
+ 4

ε2
(1− (|a∗| − ε)2) log

(
2
δ

)
a∗ ≤ 1 + ε

max
{

8
(|a∗|−ε)2−1

log
(

2
δ

)
,

4 log( 1
ε
)

log(|a∗|−ε) + 8 log
(

2
δ

)}
a∗ > 1 + ε .

To prove Theorem 3.2.4, we write the error E = â− a =
∑T−1
t=0 xtwt∑T−1
t=0 x2t

. Since are interested

in upper bounding the probability that |E| > ε it suffices to to show that the following two
probabilities are small:

P

(
ε
T−1∑
t=0

x2
t −

T−1∑
t=0

xtwt < 0

)
and P

(
ε
T−1∑
t=0

x2
t +

T−1∑
t0

xtwt < 0

)
.

These probabilities are upper bounded by a standard Chernoff bound

P

(
ε
T−1∑
t=0

x2
t ±

T−1∑
t=0

xtwt < 0

)
≤ inf

λ≤0
E exp

(
λε

T−1∑
t=0

x2
t ± λ

T−1∑
t=0

xtwt

)
. (3.2.5)

We will apply this equation with λ = −ε, controlling its magnitude with following lemma.

Lemma 3.2.5. Let a, ν, µ, and x be real numbers with ν < 1 and let w ∼ N (0, 1). Then

Ew exp
(
ν
2
(ax+ w)2 + µxw

)
=

exp

(
x2 νa

2+2νaµ+µ2

2(1−ν)

)
√

1−ν .

Proof.

Ew exp
(ν

2
(ax+ w)2 + µxw

)
= e

ν
2
a2x2Ewe

ν
2
w2+wx(νa+µ)

=
e
ν
2
a2x2

√
2π

∫ ∞
−∞

e
ν−1
2

w2+wx(νa+µ)dw = e
ν
2
a2x2 e

x2
(νa+µ)2

2(1−ν)

√
1− ν =

exp
(
x2 νa2+2νaµ+µ2

2(1−ν)

)
√

1− ν .

With this lemma in hand, we can construct a recursive sequence which upper bounds
|a− â| with high probability:
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Proposition 3.2.6. Let a be a real number and for α ∈ R+ and ε ∈ (0, 1) define recursively
the sequence ρt by ρT−1 = 1 and

ρt =

{
1 + rρt+1 ρt+1 ≤ α/ε2,

α/ε2 ρt+1 > α/ε2.
where r =

(|a| − ε)2

1 + α
.

With this notation, P (|â− a| ≤ ε) ≤ 2 exp
(
− ε2

2(1+α)

∑T−1
t=1 ρt

)
.

Proof. The proof of this result is similar to the proof of the Azuma-Hoeffding inequality. It
requires upper-bounding the MGF introduced in (3.2.5) by inductively applying the tower
property of conditional expectation. We restrict ourselves to the case a ≥ 0 (the case
a < 0 can be analyzed analogously), and hence r = (a − ε)2/(1 + α). We upper bound the
MGF (3.2.5) when λ = −ε. Note that

E exp

(
−ε2

T−1∑
t=0

x2
t ± ε

T−1∑
t=0

xtwt

)
= E

[
e−ε

2
∑T−1
t=0 x2t±ε

∑T−2
t=0 xtwtEwT−1

[
e±εxT−1wT−1 |FT−1

]]
= E

[
e−ε

2
∑T−2
t=0 x2t±ε

∑T−3
t=0 xtwtE

[
e−

ε2

2
x2T−1±εxT−2wT−2 |FT−2

]]
.

Then, from Lemma 3.2.5 we can upper bound the MGF by induction on k by

E
[
e−ε

2
∑T−k−1
t=0 x2t−ε

∑T−k−2
t=0 xtwtE

[
e−

ε2βT−k
2

x2T−k−εxT−k−1wT−k−1 |FT−k−1

]] T−1∏
j=T−k+1

(1 + ε2βj)
−1/2,

where βt is any positive sequence such that βT−1 = 1 and for 1 ≤ t < T − 1 it satisfies βt ≤
1 + βt+1(a−ε)2

1+ε2βt+1
. It is straightforward to check that the sequence ρt defined in the proposition

statement above satisfies this recursive inequality for any α ∈ (0, 1). Therefore, we obtain
the upper bound

E exp

(
−ε2

T−1∑
t=0

x2
t − ε

T−1∑
t=0

xtwt

)
≤

T−1∏
t=1

(1 + ε2ρt)
−1/2 = exp

(
T−1∑
t=1

−1

2
log(1 + ε2ρt)

)

≤ exp

(
T−1∑
t=1

− ε2ρt
2(1 + ε2ρt)

)
≤ exp

(
− ε2

2(1 + α)

T−1∑
t=1

ρt

)
.

Now, we return to the proof of Theorem 3.2.4. Once again we let a ≥ 0 for simplicity
and recall from Proposition 3.2.6 that we denote r = (a − ε)2/(1 + α). We study the case
a ≤ 1 first. Let us consider the sequence ρt introduced in Proposition 3.2.6 with α = 2ε and
note that

1 + r + . . .+ rt ≤ 1 + (1 + 2ε)−1 + . . .+ (1 + 2ε)−t ≤ 1

1− (1 + 2ε)−1
≤ 2

ε
,
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which shows that for all t we have ρT−1−t = 1+r+ . . .+rt and hence
∑T−1

t=1 ρt =
∑T−1

t=1
1−rt
1−r =

T
1−r −

∑T−1
t=0 rt

1−r . Since T/2 ≥ 1 + r+ r2 + . . .+ rT−1 when T ≥ 6/ε, we obtain that
∑T−1

T=1 ρt ≥
T

2(1−r) ,, which, together with Proposition 3.2.6, it implies that

P(|â− a| ≤ ε) ≤ 2 exp

(
− ε2T

4(1 + 2ε)(1− r)

)
= 2 exp

(
− ε2T

4(1 + 2ε− (a− ε)2)

)
.

The first part of the corollary follows immediately.
We turn to the case |a| > 1 + ε. Once again we assume a > 0 for simplicity. Recall that

we have the freedom to choose any α ∈ R+ for defining the sequence ρt. Since a > 1 + ε, if
we choose α < (a − ε)2 − 1 we guarantee that r > 1. To satisfy this inequality we choose
α = ((a − ε)2 − 1)/2. Then, with this choice of α, the sequence ρt grows exponentially to
α/ε2. More precisely, by construction, since[

(a− ε)2

1 + α

]T−2

=

[
2(a− ε)2

1 + (a− ε)2

]T−2

≥ (a− ε)T−2,

ρ1 is guaranteed to be equal to α/ε2 as long as (a− ε)T−2 ≥ α/ε2. This last inequality holds

when T ≥
log

(
(a−ε)2−1

2ε2

)
log(a−ε) + 2. In particular, if we choose T to be at least double the right-hand

side of the previous expression, then at least half of the terms ρt are equal to α/ε2, implying

P(|â− a| ≤ ε) ≤ 2 exp

(
− αT

4(1 + α)

)
.

The conclusion now follows easily.

3.3 Extension to nonlinear dynamics

The estimation of nonlinear dynamical systems with continuous states and inputs is generally
based on data-collection procedures inspired by the study of optimal input design for linear
dynamical systems [131]. Unfortunately, these data-collection methods are not sufficient in
general to enable the estimation of nonlinear systems. To attempt to circumvent this issue,
studies of system identification have either assumed that the available data is informative
enough for estimation [67, 89, 131] or considered systems for which i.i.d. random inputs
produce informative data [19, 53, 109, 130]. However, as we will see, there are many nonlinear
dynamical systems that require a more judicious choice of inputs for estimation to be possible.

Inspired by experimental design and active learning, we present a data-collection scheme
that is guaranteed to enable system identification in finite time. Our method applies to
dynamical systems whose transitions depend linearly on a known feature embedding of state-
input pairs. This class of models can capture many types of dynamics and is used widely
in system identification [67, 89]. For example, Ng et al. [106] used such a model to estimate



CHAPTER 3. SYSTEM IDENTIFICATION 27

the dynamics of a helicopter and Brunton et al. [28] showed that sparse linear regression of
polynomial and trigonometric feature embeddings can be used to fit models of the chaotic
Lorentz system and of a fluid shedding behind an obstacle. These models can be parametrized
as follows:

xt+1 = A?φ(xt,ut) + wt, (3.3.1)

where xt and ut are the state and input of the system at time t, and wt is stochastic noise.
The feature map φ is assumed known and the goal is to estimate A? from one trajectory by
choosing a good sequence of inputs. The input ut is allowed to depend on the history of
states {xj}tj=0 and is independent of wt.

The class of systems (3.3.1) contains any linear system, with fully observed states, when
the features include the states and inputs of the system. Moreover, any piecewise affine
(PWA) system can be expressed using (3.3.1) if the support of its pieces is known. First
introduced by Sontag [146] as an approximation of nonlinear systems, PWA systems are a
popular model of hybrid systems [24, 32, 64] and have been successfully used in a wide range
of applications [23, 55, 60, 97, 124, 168].

While linear dynamical systems can be estimated from trajectories induced by i.i.d. ran-
dom inputs [141], the following example shows that this is not possible for PWA systems.

Example 3.3.1. Let us consider the feature map φ : Rd × Rd → R3d defined by:

φ(x,u) =

x · 1{‖x‖ ≤ 3
2
}

x · 1{‖x‖ > 3
2
}

u · 1{‖u‖ ≤ 1}

 ,
where 1{·} is the indicator function and the multiplication with x is coordinatewise. We
assume there is no process noise and let A? =

[
1
2
Id A2 Id

]
for some d× d matrix A2 and

the d× d identity matrix Id. Also, we assume x0 = 0.
Then, since the inputs to the system can have magnitude at most 1, the state of the system

can have magnitude larger than 3/2 only if consecutive inputs point in the same direction.
However, the probability that two or more random vectors, uniformly distributed on the unit
sphere, point in the same direction is exponentially small in the dimension d. Therefore, if
we used random inputs, we would have to wait for a long time in order to reach a state with
magnitude larger than 3/2.

On the other hand, if we chose a sequence of inputs ut = u for a fixed unit vector u, we
would be guaranteed to reach a state with norm larger than 3/2 in a couple of steps. Hence,
despite the input constraint, we would be able to reach the region ‖x‖ > 3/2 with a good
choice of inputs. �

Therefore, in general the estimation of (3.3.1) requires a judicious choice of inputs. To
address this challenge we propose a method based on trajectory planning, which, at a high
level, repeats three steps:
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• Given past observations and an estimate Â, our method plans a reference trajectory
from the current state of the system to a high uncertainty region of the feature space.

• Then, our method attempts to track the reference trajectory using Â.

• Finally, using all data collected so far, our method re-estimates Â.

The ability to find reference trajectories from a given state to a desired goal set is re-
lated to the notion of controllability, a standard notion in control theory. A system is called
controllable if it is possible to take the system from any state to any other state in a finite
number of steps by using an appropriate sequence of inputs. In our case, a system is con-
sidered more controllable the bigger we can make the inner product between the system’s
features and goal directions in feature space. The number of time steps required to obtain a
large inner product is called the planning horizon.

The controllability of the system and the planning horizon are system-dependent prop-
erties that influence our ability to estimate the system. Intuitively, the more controllable a
system is, the easier it is to collect the data we need to estimate it. The following informal
version of our main result clarifies this relationship.

Theorem 3.3.2 (Informal). Our method chooses actions ut such that with high probability

the ordinary least squares (OLS) estimate Â ∈ arg minA
∑T−1

t=0 ‖Aφ(xt,ut)− xt+1‖2 satisfies

‖Â− A?‖ ≤
size of the noise

controllability of the system

√
dimension× planning horizon

number of data points
.

This statistical rate is akin to that of standard supervised linear regression, but it has
an additional dependence on the controllability of the system and the planning horizon. To
better understand why these two terms appear, recall that our method uses Â, an estimate
of A?, to plan and track reference trajectories. Therefore, the tracking step is not guaranteed
to reach the desired region of the feature space. The main insight of our analysis is that
when trajectory tracking fails, we are still guaranteed to collect at least one informative
data point per reference trajectory. Therefore, in the worst case, the effective size of the
data collected by our method is equal to the total number of data points collected over the
planning horizon.

In the next section we present our mathematical assumptions and in Section 3.3.2 we
discuss our method and main result. Section 3.3.3 includes a general result derived using
the same techniques as those that led us to the results shown in Section 3.2. Then, in
Section 3.3.4 we present in detail the proof of our main result.

Notation: We use c1, c2, c3, . . . to denote different universal constants. Also, Sp−1 is the
unit sphere in Rp and Bpr is the ball in Rp centered at the origin and of radius r. The symbol
� is used to indicate the end of an example or of a proof.
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3.3.1 Assumptions

To guarantee the estimation of (3.3.1) we must make several assumptions about the true
system we are trying to identify. We denote the dimensions of the states and inputs by d
and p respectively. The feature map φ maps state-action pairs to feature vectors in Rk.

The main challenge in the estimation of (3.3.1) is choosing inputs ut so that the minimal
singular value of the design matrix is Ω(

√
T ), where T is the length of the trajectory collected

from the system. To reliably achieve this we must assume the feature map φ has some degree
of smoothness. Without a smoothness assumption the noise term wt at time t might affect
the feature vector φ(xt+1,ut+1) at time t + 1 in arbitrary ways, regardless of the choice of
input at time t.

Assumption 1. The map φ : Rd × Bpru → Rk is L-Lipschitz.2

In order to use known techniques for the analysis of online linear least squares [2, 39,
123, 141] we also assume that the feature map φ is bounded. For some classes of systems
(e.g., certain linear systems) this condition can be removed [141].

Assumption 2. There exists bφ > 0 such that ‖φ(x,u)‖ ≤ bφ for all x ∈ Rd and u ∈ Bru.

This assumption implies that the states of the system (3.3.1) are bounded, a consequence
which can be limiting in some applications. To address this issue we could work instead with
the system

xt+1 = A?φ(xt,ut) + xt + wt. (3.3.2)

In this case, φ being bounded implies that the increments xt+1 − xt are bounded, allowing
the states to grow in magnitude. However, formulation (3.3.2) complicates the exposition so
we choose to focus on (3.3.1).

As mentioned in the introduction, our method relies on trajectory planning and tracking
to determine the inputs to the system. Suppose we would like to track a reference trajectory
{(xRt ,uRt )}t≥0 that satisfies xRt+1 = A?φ(xRt ,u

R
t ). In other words, we wish to choose inputs ut

to ensure that the tracking error ‖xt−xRt ‖ is small. Simply choosing ut = uRt does not work
even when the initial states x0 and xR0 are equal because the true system (3.3.1) experiences
process noise.

To ensure that tracking is possible we assume that there always exists an input to the
true system that can keep the tracking error small. There are multiple ways to formalize
such an assumption. We make the following choice.

2Since φ is continuous and since u lies in a compact set, we know that any continuous function of φ(x,u)
achieves its maximum and minimum with respect to u. This is the only reason we assume the inputs to
the system are bounded. Alternatively, we could let the inputs be unbounded and work with approximate
maximizers and minimizers.
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Assumption 3. There exist positive constants γ and bu such that for any x,x′ ∈ Rd and
any u′ ∈ Bpbu we have

min
u∈Bpru

‖A? (φ(x,u)− φ(x′,u′))‖ ≤ γ‖x− x′‖. (3.3.3)

Moreover, if ‖u′‖ ≤ bu/2, there exists u, with ‖u‖ ≤ bu, that satisfies (3.3.3).

Suppose we wish to track a trajectory {(xRt ,uRt )}t≥0 that satisfies xt+1 = A?φ(xt,ut).
Then, Assumption 3 guarantees the existence of an input ut ∈ Bpbu such that

‖xt+1 − xRt+1‖ = ‖A?φ(xt,ut) + wt − A?φ(xRt ,u
R
t )‖

≤ γ‖xt − xRt ‖+ ‖wt‖.

In other words, Assumption 3 allows us to find an input ut such that the tracking error
‖xt+1 − xRt+1‖ is upper bounded in terms of noise wt and the tracking error at time t. By
induction, Assumption 3 guarantees the existence of inputs to the system such that

‖xH − xRH‖ ≤ max
t=0,...,H−1

‖wt‖(1 + γ + . . .+ γH−1) + γH‖x0 − xR0 ‖.

Hence, when γ < 1 we can choose a sequence of inputs such that the state xH at time H is
close to xRH , as long as the process noise is well behaved.

Note that in Assumption 3 we allow γ ≥ 1. However, we pay a price when γ is large. The
larger γ is the more stringent the following assumptions become. Finally, we note that the
parameter bu appearing in Assumption 3 makes it easier for systems to satisfy the assumption
than requiring that (3.3.3) holds for all u′.

To estimate (3.3.1) we must collect measurements of state transitions from feature vectors
that point in different directions. To ensure that such data can be collected from the system
we must assume that there exist sequences of actions which take the dynamical system from
a given state to some desired direction in feature space. This type of assumption can be
formulated in terms of controllability. Recall that a linear system xt+1 = Axt + But is
said to be controllable when the matrix

[
B AB . . . Ad−1B

]
has full row rank. It can be

easily checked that for a controllable linear system it is possible to get from any state to
any other state in d steps by appropriately choosing a sequence of inputs. Moreover, this
notion of controllability can be extended to a class of nonlinear systems, called control affine
systems, through the use of Lie brackets [129, 145]. We require, however, a different notion
of controllability. In particular, we assume that in the absence of process noise we can take
the system (3.3.1) from any state to a feature vector that aligns sufficiently with a desired
direction in feature space.

Assumption 4. There exist α and H, a positive real number and a positive integer, such that
for any initial state x0 and goal vector v ∈ Sk−1 there exists a sequence of actions ut, with
‖ut‖ ≤ bu/2, such that |〈φ(xt,ut), v〉| ≥ α > 0 for some 0 ≤ t ≤ H, with xj+1 = A?φ(xj,uj)
for all j.
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If the assumption is satisfied for some horizon H, it is clear that it is also satisfied for
larger horizons. Moreover, one expects that a larger horizon H allows a larger controllability
parameter α. As discussed in the introduction, the larger H is, the weaker our guarantee on
estimation will be. However, the larger α is, the better our guarantee on estimation will be.
Therefore, there is a tension between α and H in our final result.

Assumptions 1 to 4 impose many constraints. Therefore, it is important to give examples
of nonlinear dynamical systems that satisfy these assumptions. We give two simple examples.
First we present a synthetic example for which it is easy to check that it satisfies all the
assumptions, and then we discuss the simple pendulum.

Example 3.3.3 (Smoothed Piecewise Linear System). When the support sets of the different
pieces are known, piecewise affine systems can be easily expressed as (3.3.1). However, the
feature map φ would not be continuous. In this example, we present a smoothed version of a
PWA system, which admits a 1-Lipschitz feature map. Let f : R→ R be defined by

f(x) =


0 if x < −1/2,
x+ 1/2 if x ∈ [−1/2, 1/2],
1 if x > 1/2.

We also consider the maps g(x) = xt
‖xt‖ min{‖xt‖, bx} and h(u) = u

‖u‖ min{‖u‖, ru}, for some
values bx and ru. In this example both the inputs and the states are d-dimensional. Then,
we define the feature map φ : R2d → R3d as follows:

φ(x,u) =

 g(x)f(x1)
g(x)(1− f(x1))

h(u)

 ,
where x1 denotes the first coordinate of x. Now, let us consider the following dynamical
system:

xt+1 =
[
A1 A2 Id

]
φ(xt,ut) + wt, (3.3.4)

where A1 and A2 are two unknown d× d matrices. For the purpose of this example we can
assume the noise wt is zero almost surely.

To better understand the system (3.3.4) note that when ‖xt‖ ≤ bx and ‖ut‖ ≤ ru we have

xt+1 = A1xt + ut if xt1 ≥ 1/2,

xt+1 = A2xt + ut if xt1 ≤ −1/2.

By construction, the feature map of the system is 1-Lipschitz and bounded. Therefore, (3.3.4)
satisfies Assumptions 1 and 2. We are left to show that we can choose A1, A2, bx, and ru so
that (3.3.4) satisfies Assumptions 3 and 4 as well.

It is easy to convince oneself that if bx > 2
√

2, Assumptions 3 and 4 hold for any A1 and
A2 as long as ru is sufficiently large relative to A1, A2, and bx. In fact, if ru is sufficiently
large, Assumption 3 is satisfied with γ = 0. �
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Example 3.3.4 (Simple Pendulum). The dynamics of a simple pendulum are described in
continuous time by the equation

m`2θ̈(t) +mg` sin θ(t) = −bθ̇(t) + u(t), (3.3.5)

where θ(t) is the angle of the pendulum at time t, m is the mass of the pendulum, ` is its
length, b is a friction coefficient, and g is the gravitational acceleration.

Discretizing (3.3.5) according to Euler’s method3 with step size h and assuming stochastic
process noise, we obtain the following two-dimensional system:

xt+1 = xt +

[
a1 a2

h 0

] [
xt1

sin (xt2)

]
+

[
a3

0

]
ut + wt,

where xt1 and xt2 are the coordinates of xt and a1, a2, and a3 are unknown real values.
The first coordinate of xt represents the angular velocity of the pendulum at time t, while
the second coordinate represents the angle of the pendulum. Therefore, to put the inverted
pendulum in the form of (3.3.2) we consider the feature map

φ(xt,ut) =

 xt1
sin (xt2)

ut

 .
It can be easily checked that this feature map is 1-Lipschitz. While it is not bounded, if the
pendulum experiences friction, we can ensure the feature values stay bounded by clipping the
inputs ut; i.e., we replace ut with sgn(ut) min{|ut|, ru} for some value ru.

The simple pendulum satisfies Assumption 4 because we can drive the system in a finite
number of steps from any state xt to states xt+H for which the signs of x(t+h)1 and sin (xt1)
can take any value in {−1, 1}2, with their absolute values lower bounded away from zero.

Finally, Assumption 3 holds with γ ≥ 1 + h. This assumption is pessimistic because the
simple pendulum is stabilizable and can track reference trajectories. However, Assumption 3
does not hold with γ < 1 since the input at time t does not affect the position at time t+1. �

We now turn to our final two assumptions. We need to make an assumption about the
process noise and we also must assume access to an initial Â to warm start our method.

Assumption 5. The random vectors wt are independent, zero mean, and ‖wt‖ ≤ bw almost
surely4. Also, wt is independent of (xt,ut). Furthermore, we assume

bw ≤
α

c1L(1 + γ + . . .+ γH−1)
, (3.3.6)

for some universal constant c1 > 2.
3Using a more refined discretization method, such as a Runge-Kutta method, would be more appropriate.

Unfortunately, such discretization methods yield a discrete-time system which cannot be easily put in the
form (3.3.2).

4We can relax this assumption to only require wt to be sub-Gaussian. In this case, we would make a
truncation argument to obtain an upper bound on all wt with high probability.
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Equation 3.3.6 imposes on upper bound on the size of the process noise in terms of
system-dependent quantities: the controllability parameter α introduced in Assumption 4,
the Lipschitz constant L of the feature map, and the control parameter γ introduced in
Assumption 3. An upper bound on bw is required because when the process noise is too
large, it can be difficult to counteract its effects through feedback.

Finally, we assume access to an initial guess Â that is sufficiently close to A?. Namely,
we require an initial estimate Â such that ‖Â − A?‖ = O

(
L−1(1 + γ + . . .+ γH−1)−1

)
. To

understand the key issue this assumption resolves, suppose we are trying to track a reference
trajectory {(xRt ,uRt )}t≥0 and ‖(Â − A?)φ(xRt ,u

R
t )‖ is large. Without an assumption on the

size of ‖Â − A?‖, the magnitude of (Â − A?)φ(xRt ,u
R
t ) might be large while ‖φ(xRt ,u

R
t )‖

is small. Then, making a measurement at a point (xt,ut) close to (xRt ,u
R
t ) might not be

helpful for estimation because φ(xt,ut) could be zero. Therefore, if ‖Â − A?‖ is too large,
we might both fail to track a reference trajectory and to collect a useful measurement. For
ease of exposition, instead of assuming access to an initial guess Â, we assume access to a
dataset.

Assumption 6. We have access to an initial trajectory D = {(xt,ut,xt+1)}0≤t<t0 of transi-
tions from the true system such that

λmin

(
t0−1∑
t=0

φ(xt,ut)φ(xt,ut)
>

)
≥ 1 + c2b

2
wL

2

(
H−1∑
i=0

γi

)2(
d+ k log(b2

φT ) + log

(
π2T 2

6δ

))
,

where c2 is a sufficiently large universal constant and T is the number of samples to be
collected by our method. We make explicit the requirement on c2 in Section 3.3.4. In the full
version of this work we show how to replace T by a fixed quantity T? [96].

As shown in Section 3.3.3, Assumption 6 guarantees that the OLS estimate Â obtained
from D satisfies ‖Â − A?‖ ≤ c3√

c2
L−1(1 + γ + . . . + γH−1)−1 for some universal constant c3.

Since the features φ(x,u) can have magnitude as large as bφ, Assumption 6 only implies

‖(Â − A?)φ(x,u)‖ = O(bφL
−1(1 + γ + . . . + γH−1)−1). Therefore, Assumption 6 does not

imply a stringent upper bound on ‖(Â − A?)φ(x,u)‖ because bφ can be arbitrarily large
relative to L and γ.

3.3.2 Main result

Our method for estimating the parameters of a dynamical system (3.3.1) is shown in Algo-
rithm 3. The trajectory planning and tracking routines are discussed in detail below. We
now state our main result.

Theorem 3.3.5. Suppose xt+1 = A?φ(xt,ut) + wt is a nonlinear dynamical system which
satisfies Assumptions 1-5 and suppose D is an initial trajectory that satisfies Assumption 6.
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Algorithm 3 Active learning for nonlinear system identification

Require: Parameters: the feature map φ, initial trajectory D, and parameters T , α, and β.
1: Initialize Φ to have rows φ(xj,uj)

> and Y to have rows (xj+1)>, for (xj,uj,xj+1) ∈ D.

2: Set Â← Y >Φ(Φ>Φ)−1; i.e., the OLS estimate according to D.
3: Set t← t0.
4: while t ≤ T + t0 do
5: Set xR0 ← xt,
6: Set v to be a minimal eigenvector of Φ>Φ, with ‖v‖ = 1.
7: Trajectory planning: find inputs uR0 , uR1 , . . . , uRr , with ‖uRj ‖ ≤ bu and r ≤ H, such

that ∣∣〈φ(xRr ,u
R
r ), v〉

∣∣ ≥ α

2
or φ(xRr ,u

R
r )>(Φ>Φ)−1φ(xRr ,u

R
r ) ≥ β,

where xRj+1 = Âφ(xRj ,u
R
j ) for all j ∈ {0, 1, . . . , r − 1}.

8: Trajectory tracking: track the reference trajectory {(xRj ,uRj )}rj=0 and increment t
as described in the main text.

9: Set Φ> ← [φ0, φ1, . . . , φt−1] and Y > ← [x1,x2, . . . ,xt], where (φj,xj+1) are all feature-
state transitions observed so far.

10: Re-estimate: Â← Y >Φ(Φ>Φ)−1.
11: end while
12: Output the last estimate Â.

Also, let β = c4

(
d+ k log(β2

φT ) + log(π2T 2/(6δ))
)−1

with c4 ≤ (c1−2)2

36c23
and let:5

Ne :=


2k log

(
2kb2φ

log(1+β/2)

)
log(1 + β/2)

 .
Then, with probability 1−δ, and given parameters T and β, Algorithm 3 outputs Â such that

‖Â− A?‖ ≤ c5
bw
α

√
d+ k log(b2

φT ) + log
(
π2T
6δ

)
T/H −Ne

,

whenever T ≥ 32kb2φH

α2 +HNe.

There are several aspects of this result worth emphasizing. First, the statistical rate
we obtain in Theorem 3.3.5 has the same form as the standard statistical rate for linear

5Recall that c1 is the universal constant appearing in Assumption 4 and c3 is the universal constant
appearing in the upper bound on the error of the OLS estimate, shown in Section 3.3.3.
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regression, which is O
(
bw

√
k
T

)
. The two important distinctions are the dependence on the

planning horizon H and the controllability term α, both of which are to be expected in our
case. Algorithm 3 uses trajectory planning for data collection and the length of the reference
trajectories is at most H. Since we can only guarantee one useful measurement per reference
trajectory, it is to be expected that we can only guarantee an effective sample size of T/H.
The controllability term α is also natural in our result because it quantifies how large the
feature vectors can become in different directions. Larger feature vectors imply a larger
signal-to-noise ratio, which in turn implies faster estimation.

Trajectory planning. The trajectory planning routine shown in Algorithm 3 uses the
current estimate Â to plan, assuming no process noise, a trajectory from the current state of
the system xR0 = xt to a high-uncertainty region of the feature space, assuming no process
noise. More precisely, it finds a sequence of actions {uRj }rj=0 which produces a sequence of
reference states {xRj }rj=0 with the following properties:

• xRj+1 = Âφ(xRj ,u
R
j ).

• The last reference state-action pair (xRr ,u
R
r ) is either well aligned with v, the minimum

eigenvector of Φ>Φ, or its feature vector is in a high-uncertainty region of the state
space. More precisely, (xRr ,u

R
r ) must satisfy one of the following two inequalities:∣∣〈φ(xRr ,u

R
r ), v〉

∣∣ ≥ α

2
or φ(xRr ,u

R
r )>(Φ>Φ)−1φ(xRr ,u

R
r ) ≥ β.

It is not immediately obvious that we can always find such a sequence of inputs. In Sec-
tion 3.3.4 we prove that when Assumptions 4 and 6 hold the trajectory planning problem is
feasible.

From the study of OLS, discussed in Section 3.3.3, we know that the matrix Φ>Φ deter-
mines the uncertainty set of OLS. The larger λmin

(
Φ>Φ

)
is, the smaller the uncertainty set

will be. Therefore, to reduce the size of the uncertainty set we want to collect measurements
at feature vectors φ such that the smallest eigenvalues of Φ>Φ + φφ> are larger than the
smallest eigenvalues of Φ>Φ. Ideally, φ is a minimal eigenvector of Φ>Φ. However, we cannot
always drive the system to such a feature vector, especially in the presence of process noise.

Instead, we settle for feature vectors of the following two types. Firstly, the trajectory
planner tries to drive the system to feature vectors φ that are well aligned with the minimal
eigenvector v of Φ>Φ; i.e., such that |〈φ, v〉| ≥ α. Such a data collection scheme is an
instance of E-optimal design [114], which has been shown by Wagenmaker and Jamieson
[160] to produce inputs that allow the estimation of linear dynamics at an optimal rate.

However, if reaching a feature vector that aligns with the minimal eigenvector is not
possible, the trajectory planner finds a reference trajectory to a feature vector φ such that
φ>(Φ>Φ)−1φ ≥ β. When this inequality holds our uncertainty about the estimate Â in the
direction φ is large. As shown in Section 3.3.4, such feature vectors can be encountered for
only a small number of iterations.
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Finally, trajectory planning is computationally intractable in general. However, in this
work we quantify the data requirements of identifying A?, leaving computational consider-
ations for future work. We assume access to a computational oracle. This assumption is
reasonable since trajectory planning is often solved successfully in practice [75, 83, 170].

Trajectory tracking. Now we detail the trajectory tracking component of our method.
We saw that the trajectory planner produces a reference trajectory {(xRj ,uRj )}rj=0, with
r ≤ H. However, the planner assumes no process noise to generate this reference trajectory.
Therefore, if we were to simply plug the sequence of actions {uRj }rj=0 into (3.3.1), the states
of the system would diverge from xRj . Instead, after observing each state xt of the system
(3.3.1), our method chooses an input ut as follows:

• Given the current state xt, our method chooses an input ut such that

φ(xt,ut)
>(Φ>Φ)−1φ(xt,ut) ≥ β,

if there exists such an input. In other words, if there is an opportunity to greedily collect
an informative measurement, our method takes it. If this situation is encountered, the
trajectory tracker increments t by 1 and then stops tracking and returns.

• If there is no opportunity for greedy exploration, our method chooses an input ut
that minimizes ‖Â(φ(xt,ut) − φ(xRj ,u

R
j ))‖, and then increments t and j by one (t

indexes the time steps of the system (3.3.1) and j indexes the reference trajectory).
Therefore, our method uses closed loop control for data generation since minimizing
‖Â(φ(xt,ut)−φ(xRj ,u

R
j ))‖ requires access to the current state xt. At time t we choose

ut in this fashion in order to minimize the tracking error E‖xt+1 − xRt+1‖2 at the next
time step, where the expectation is taken with respect to wt.

• Our method repeats these steps until j = r; i.e., until it reaches the end of the reference
trajectory. When j = r the trajectory tracker sets ut = uRj , increments t by one, and
returns.

3.3.3 General guarantee on estimation

In this section we provide a general upper bound on the error between an OLS estimate
Â and the true parameters A?. The guarantee is based on the work of Simchowitz et al.
[141]. We note also that results of this kind have been previously used in the study of online
least squares and linear bandits [2, 39, 123]. We assume that we are given a sequence of
observations {(xt,ut,xt+1)}t≥0, generated by the system (3.3.1), with ut allowed to depend
on x0, x1, . . . , xt−1 and independent of wj for all j ≥ t. In what follows we denote φt :=
φ(xt,ut).

Our method re-estimates the parameters A? as more data is being collected. For the
purpose of this section let us denote by Âj the OLS estimate obtained using the first j
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measurements (xt,ut,xt+1):

Âj = arg min
A

j−1∑
t=0

‖Aφt − xt+1‖2. (3.3.7)

Proposition 3.3.6. If the system (3.3.1) satisfies Assumptions 5 and 2 and if
λmin

(∑t0−1
t=0 φtφ

>
t

)
≥ λ, for some λ > 0 and t0 > 0, the OLS estimates (3.3.7) satisfy

P

∃u ∈ Sk−1 and j ≥ t0 s.t. ‖(Âj − A?)u‖ ≥ µj

√√√√u>

(
j−1∑
t=0

φtφ>t

)−1

u

 ≤ δ,

where µj = c3bw

√
d+ k log

(
b2φj

λ

)
+ log

(
π2j2

6δ

)
for some universal constant c3.

Proof. By assumption λmin

(∑t0−1
t=0 φtφ

>
t

)
≥ λ > 0. Therefore,

∑j−1
t=0 φtφ

>
t is invertible and

Âj − A? = W>
j Φj(Φ

>
j Φj)

−1,

where W>
j = [w0, . . . ,wj−1] and Φ>j = [φ0, . . . , φj−1]. Now, we fix the index j and we

consider the SVD decomposition Φj = UΣV >. Therefore, Âj − A? = W>
j UΣ†V >.

Recall that supx,u ‖φ(x,u)‖2 ≤ bφ by assumption. Then, according to the analysis of
Simchowitz et al. [141] we know that ‖W>

j U‖ ≤ µj with probability at least 1− 6δ/(π2j2).
Note that for all u ∈ Sk−1 we have

‖(Âj − A?)u‖ ≤ ‖W>
j U‖‖Σ†V >u‖ = ‖W>

j U‖
√
u>V (Σ†)>Σ†V >u

= ‖W>
j U‖

√
u>(Φ>j Φj)−1u.

Therefore, for a fixed index j, we have

P

∃u ∈ Sk−1 s.t. ‖(Âj − A?)u‖2 ≥ µj

√√√√u>

(
j−1∑
t=0

φtφ>t

)−1

u

 ≤ 6δ

π2j2
.

A direct application of the union bound yields the desired conclusion.

3.3.4 Proof of the main result

First let us observe that when bw = 0 the result is trivial. Because we assume access
to an initial trajectory D which satisfies Assumption 6 we are guaranteed Â = A? when
bw = 0. Therefore, we can assume that bw > 0, which implies that α must be strictly
positive according to Assumption 4. Throughout the proof we denote φt := φ(xt,ut) and
φRj := φ(xRj ,u

R
j ).

The proof of our result has three parts, which we now outline:
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• We show that the trajectory planning step in Algorithm 3 is always feasible.

• We show that during the execution of Algorithm 3 there are at most Ne iterations for
which there exist t and j with:

max
u∈Bru

φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β or (φRj )>(Φ>Φ)−1φRj ≥ β.

• We show that Algorithm 3 collects at least T/H−Ne measurements (φt,xt+1) such that
|〈φt, v〉| ≥ α/4, where v is a minimal eigenvector used to plan the reference trajectories.
As a consequence, we show that Algorithm 3 collects measurements (φt,xt+1) such that

λmin

(
T+t0∑
t=1

φtφ
>
t

)
≥ O(1)α2

(
T

H
−Ne

)
− k − 1

2
b2
φ. (3.3.8)

Once we have shown (3.3.8) is true, Theorem 3.3.5 follows from Proposition 3.3.6 and
some algebra.

Part 1 of the Proof of Theorem 3.3.5. We show that the trajectory planning step of
Algorithm 3 is always feasible. Let

µ = c3bw

√
d+ k log

(
b2
φT
)

+ log

(
π2T 2

6δ

)
,

where c3 is the universal constant appearing in Proposition 3.3.6. Since Assumption 6
guarantees that the minimum eigenvalue of the design matrix is at least 1, we know that

‖(Â− A?)φ‖ ≤ µ

√
φ> (Φ>Φ)−1 φ, (3.3.9)

for all φ ∈ Sk−1 and all iterations of Algorithm 3 with probability 1− δ.
Now, let β = c4

(
d+ k log(β2

φT ) + log(π2T 2/(6δ))
)−1

with c4 ≤ c2
1/(4c

2
3). Then, since

α ≥ c1Lbw(1 + γ + . . .+ γH−1), we have

β ≤
(

α

2L(1 + γ + . . .+ γH−1)µ

)2

. (3.3.10)

Let us x̃0 be equal to the initial state xR0 of the trajectory planning and let v ∈ Rk

be the desired goal direction. By Assumption 4 we know that there must exist a sequence
of inputs ũ0, ũ1, . . . , ũr, with r ≤ H and ‖ũj‖ ≤ bu/2, such that |〈φ(x̃r, ũr), v〉| ≥ α,

where x̃j+1 = A?φ(x̃j, ũj). Now, let xRj+1 = Âφ(xRj ,u
R
j ), where uRj is any input vector with

‖uRj ‖ ≤ bu such that

‖A?[φ(xRj ,u
R
j )− φ(x̃j, ũj)]‖ ≤ γ‖xRj − x̃j‖, (3.3.11)



CHAPTER 3. SYSTEM IDENTIFICATION 39

for j < r. Assumption 4 guarantees the existence of uRj . We set uRr = ũr and denote

φ̃j = φ(x̃j, ũj) and φRj = φ(xRj ,u
R
j ).

Case 1. There exists j ∈ {0, 1, 2, . . . , r} such that (φRj )>
(
Φ>Φ

)−1
φRj ≥ β. If this is the

case, we are done because we found a feasible sequence of inputs uR0 , uR1 , . . . , uRj .

Case 2. We have (φRj )>
(
Φ>Φ

)−1
φRj ≤ β for all j ∈ {0, 1, 2, . . . , r}. In this case, we have

x̃j+1 − xRj+1 = A?φ̃j − ÂφRj = A?(φ̃j − φRj ) + (A? − Â)φRj .

Therefore, using (3.3.9), (3.3.10), and (3.3.11) we find

‖x̃j+1 − xRj+1‖ ≤ ‖A?(φ̃j − φRj )‖+ ‖(A? − Â)φRj ‖
≤ γ‖x̃j − xRj ‖+

α

2L(1 + γ + . . .+ γH−1)
.

Applying this inequality recursively, we find ‖x̃r − xRr ‖ ≤ α
2L

, which implies |〈φRr , v〉| ≥ α/2

because ‖φRr − φ̃r‖ ≤ L‖x̃r−xRr ‖ by Assumption 1 and |〈φ̃r, v〉| ≥ α by construction. Hence,
we constructed a feasible sequence of inputs {uj}rj=0 and Part 1 of the proof is complete.

Part 2 of the Proof of Theorem 3.3.5. Now, we show that the number of iterations
for which Algorithm 3 satisfies

max
u∈Bru

φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β or (φRj )>(Φ>Φ)−1φRj ≥ β (3.3.12)

is upper bounded by

Ne :=


2k log

(
2kb2φ

log(1+β/2)

)
log(1 + β/2)

 . (3.3.13)

We rely on the following proposition.

Proposition 3.3.7. Let M0 be a positive definite matrix and let us consider a sequence of
vectors {vt}t≥1 in Rk with maxt≥1‖vt‖ ≤ b. Then, the number of vectors vt+1 such that

v>t+1

(
M0 +

t∑
i=1

viv
>
i

)−1

vt+1 ≥ β,

is upper bounded by 
2k log

(
2kb2

λk(M0) log(1+β)

)
log(1 + β)

 . (3.3.14)
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Proof. First we relate the scaling of ellipsoids in one direction with the scaling of their
volumes. Namely, if M and N are two positive definite matrices with M � N � 0, then

sup
v 6=0

v>Mv

v>Nv
≤ det(M)

det(N)
. (3.3.15)

A proof of this fact can be found in the work by Abbasi-Yadkori et al. [2].
Now, we are ready to prove Proposition 3.3.7. We denote by Nt = N0 +

∑t
i=1 viv

>
i . First,

we prove that det(N−1
t+1) ≤ det(N−1

t )/(1 + β) whenever v>t+1N
−1
t vt+1 ≥ β.

By definition we have Nt+1 � Nt � 0. Therefore, N−1
t+1 � N−1

t . Now, we apply the
Sherman-Morrison rank-one update formula to find

v>t+1N
−1
t+1vt+1 = v>t+1N

−1
t vt+1 −

(
v>t+1N

−1
t vt+1

)2

1 + v>t+1N
−1
t vt+1

=

(
1− v>t+1N

−1
t vt+1

1 + v>t+1N
−1
t vt+1

)
v>t+1N

−1
t vt+1.

Since the function x 7→ x
1+x

is increasing for x > −1, we find

v>t+1N
−1
t+1vt+1 ≤

v>t+1N
−1
t vt+1

1 + β
,

whenever v>t+1N
−1
t vt+1 ≥ β. Then, (3.3.15) implies that det(N−1

t+1) ≤ det(N−1
t )/(1 + β)

whenever v>t+1N
−1
t vt+1 ≥ β, which in turn implies det(Nt+1) ≥ (1 + β) det(Nt) whenever

v>t+1N
−1
t vt+1 ≥ β.

Let us denote by λ1(t), λ2(t), . . . , λk(t) the eigenvalues of Nt sorted in decreasing order.
Recall that λi(t) is a non-decreasing function of t. Now, let εi,t = log1+β(λi(t)/λi(t − 1)).
Therefore, we have λi(t) = (1 + β)εi,tλi(t− 1). We know εi,t ≥ 0 for all i and t and we know

that
∑k

i=1 εi,t ≥ 1 when v>t N
−1
t−1vt ≥ β because det(Nt+1) ≥ (1 + β) det(Nt).

By definition, we have λi(t) = (1 + β)
∑t
j=1 εi,jλi(N0) ≥ (1 + β)

∑t
j=1 εi,jλk(N0). Since

maxj‖vj‖ ≤ b, we know that λi(t+ 1) ≤ λi(t) + b2. Therefore,

(1 + β)εi,t+1 =
λi(t+ 1)

λi(t)
≤ 1 +

b2

λi(t)
≤ 1 +

b2

(1 + β)
∑t
j=1 εi,jλk(N0)

.

In other words, we have

εi,t+1 ≤
log

(
1 + b2

(1+β)
∑t
j=1

εi,jλk(N0)

)
log(1 + β)

≤ b2

(1 + β)
∑t
j=1 εi,jλk(N0) log(1 + β)

.

Therefore, when
∑t

j=1 εi,j > log
(

2kb2

λk(N0) log(1+β)

)
/ log(1 + β), we have εi,t+1 ≤ 1/(2k). We

denote ρ = log
(

2kb2

λk(N0) log(1+β)

)
/ log(1 + β).
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Suppose there are n vectors vj such that v>j N
−1
j−1vj ≥ β with j ≤ t. Since

∑k
i=1 εi,j ≥ 1

whenever v>j N
−1
j−1vj ≥ β, we have

∑t
j=1

∑k
i=1 εi,j ≥ n. Moreover, at each time j with

v>j N
−1
j−1vj ≥ β we know that

εi,j ≥ 1−
∑
i′ 6=i

εi′,j ≥ 1−
∑

i′:
∑j−1
s=1 εi′,s<ρ

εi′,j −
∑

i′:
∑j−1
s=1 εi′,s≥ρ

εi′,j

≥ 1−
∑

i′:
∑j−1
s=1 εi′,s<ρ

εi′,j −
∑

i′:
∑j−1
s=1 εi′,s≥ρ

1

2k
≥ 1

2
−

∑
i′:
∑j−1
s=1 εi′,s<ρ

εi′,j.

Summing these inequalities over j, for any i we have

t∑
j=1

εi,j ≥
n

2
−
∑
i′ 6=i

min

{
log

(
2kb2

λk(N0) log(1 + β)

)
/ log(1 + β),

t∑
j=1

εi′,j

}

≥ n

2
− (k − 1) log

(
2kb2

λk(N0) log(1 + β)

)
/ log(1 + β).

Then, once n ≥ 2k log
(

2kb2

λk(N0) log(1+β)

)
/ log(1 + β), we obtain

t∑
j=1

εi,j ≥ log

(
2kb2

λk(N0) log(1 + β)

)
/ log(1 + β),

which implies εi,j <
1
2k

for all j > t. Since i was chosen arbitrary, we see that whenever

n ≥ 2k log
(

2kb2

λk(N0) log(1+β)

)
and j > t we get

∑k
i=1 εij < k 1

2k
< 1. Hence, n must be smaller

or equal than
⌈
2k log

(
2kb2

λk(N0) log(1+β)

)⌉
.

Given Proposition 3.3.7, to prove (3.3.13) it suffices to show that during each iteration
of Algorithm 3 when (3.3.12) occurs our method collects a measurement (φt,xt+1) such that
φ>t (Φ>Φ)−1φt ≥ β/2.

By the definition of our trajectory tracker, whenever supu φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β
we collect a measurement (φt,xt+1) such that φ>t (Φ>Φ)−1φt ≥ β.

Next, we show that when (φRj )>(Φ>Φ)−1φRj ≥ β, for some j ≤ r, Algorithm 3 is guar-
anteed to collect a measurement (φt,xt+1) such that φ>t (Φ>Φ)−1φt ≥ β/2. Let s be the
smallest index in the reference trajectory such that (φRs )>(Φ>Φ)−1φRs ≥ β.

For the remainder of this section we re-index the trajectory {(xt,ut)}t≥0 collected by
Algorithm 3 so that xRj = xj for all j ∈ {0, 1, . . . , s}. Then, we show that (φRs )>(Φ>Φ)−1φRs ≥
β implies the existence of j ∈ {0, 1, . . . , s} such that φ>j (Φ>Φ)−1φj ≥ β/2.

Let ∆ = φRs − φs. The Cauchy-Schwarz inequality implies

φs(Φ
>Φ)−1φs = φRs (Φ>Φ)−1φRs + ∆>(Φ>Φ)−1∆ + 2∆T (Φ>Φ)−1φRs

≥
(√

φRs (Φ>Φ)−1φRs −
√

∆>(Φ>Φ)−1∆
)2

.
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Then, as long as ∆>(Φ>Φ)−1∆ ≤ β
2
(3 − 2

√
2), we are guaranteed to have φ>s (Φ>Φ)−1φs ≥

β/2.
Now, since s is the smallest index such that (φRs )>(Φ>Φ)−1φRs ≥ β, we know that for

all j ∈ {0, 1, . . . , s − 1} we have (φRj )>(Φ>Φ)−1φRj ≤ β. Also, we can assume that during
reference tracking we do not encounter a state xj, with j ∈ {0, 1, . . . , s− 1}, such that

max
u∈Bru

φ(xj,u)>(Φ>Φ)−1φ(xt,u) ≥ β,

because we already treated this case. Now, let us consider the difference

xj+1 − xRj+1 = A?φj + wj − ÂφRj = (A? − Â)φj + wj − Â[φRj − φj].

We obtain

‖xj+1 − xRj+1‖ ≤ ‖(A? − Â)φj‖+ bw + ‖Â[φRj − φj]‖.

Let us denote δj(u) = φ(xj,u)−φRj . Hence, δj(uj) = φj−φRj . Now, let u? ∈ Bru an input such
that ‖A?δt(u?)‖ ≤ γ‖xj−xRj ‖, which we know exists by Assumption 3 (note that u? depends
on the index j, but we dropped this dependency from the notation for simplicity). Since our

method attempts trajectory tracking by choosing uj ∈ arg minu∈Bru‖Â(φ(xt,u)−φ(xRj ,u
R
j ))‖

we have

‖Âδj(uj)‖ ≤ ‖Âδj(u?)‖ ≤ ‖A?δj(u?)‖+ ‖(A? − Â)δj(u?)‖
≤ γ‖xj − xRj ‖+ ‖(A? − Â)δj(u?)‖
≤ γ‖xj − xRj ‖+ ‖(A? − Â)φ(xj,u?)‖+ ‖(A? − Â)φRj ‖.

As mentioned above, we can assume φ(xj,u?)
>(Φ>Φ)−1φ(xj,u?) < β. Also, recall that

(φRj )>(Φ>Φ)−1φRj ≤ β,

since j < s and s is the smallest index so that this inequality does not hold. Hence,
Proposition 3.3.6 implies that ‖(A? − Â)φ(xt,u?)‖ ≤ µ

√
β and ‖(A? − Â)φRr ‖ ≤ µ

√
β.

Putting everything together we find

‖xj+1 − xRj+1‖ ≤ γ‖xj − xRj ‖+ 3µ
√
β + bw.

Then, since the reference trajectory is initialized with the state xR0 = x0, we find

‖∆‖ = ‖φs − φRs ‖ ≤ L(bw + 3µ
√
β)(1 + γ + . . .+ γs−1)

= (3c3

√
c4 + 1)Lbw(1 + γ + . . .+ γs−1),

where the last identity follows because µ
√
β = c3

√
c4bw.

Then, as long as c2 ≥ 2(3c3
√
c4+1)2

(3−2
√

2)c4
, Assumption 6 offers a lower bound on λmin(Φ>Φ)

which ensures that ∆>(Φ>Φ)−1∆ ≤ β
2
(3− 2

√
2), implying φ>s (Φ>Φ)−1φs ≥ β/2.
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To summarize, we have shown whenever Algorithm 3 encounters a situation in which
either

sup
u
φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β or (φRj )>(Φ>Φ)−1φRj ≥ β, (3.3.16)

it collects a measurement (φt,xt+1) such that φt(Φ
>Φ)−1φt ≥ β/2. Hence, according to

Proposition 3.3.7, the event (3.3.16) can occur at most Ne times (the value Ne was defined
in (3.3.13)).

Part 3 of the Proof of Theorem 3.3.5. In this final part of the proof we analyze what
happens when the trajectory planning problem returns a reference trajectory (xRj ,u

R
j ) for

which |〈φRr , v〉| ≥ α/2, where v is a minimal eigenvector with unit norm of Φ>Φ.
During its execution the algorithm produces T/H reference trajectories. Part 2 of the

proof implies that at least T/H−Ne of the reference trajectories satisfy |〈φRr , v〉| ≥ α/2, with

all states xt encountered during tracking satisfying supu φ(xt,u)>
(
Φ>Φ

)−1
φ(xt,u) ≤ β and

all reference features φRj satisfying (φRj )>(Φ>Φ)−1φRj ≤ β.
Following the same argument as in Part 2 of the proof we know that tracking the reference

trajectory in this case takes the system to a state xt such that

‖xt − xRr ‖ ≤ (3c3

√
c4 + 1)bw(1 + γ + . . .+ γr−1),

which implies by Assumption 1 that

‖φt − φRr ‖ ≤ (3c3

√
c4 + 1)Lbw(1 + γ + . . .+ γr−1).

This last inequality implies that |〈φt, v〉| ≥ α/4 if 3c3
√
c4 + 1 ≤ c1/2. Recall that the only

condition we imposed so far on c4 is c4 ≤ c2
1/(4c

2
3) in Part 1 of the proof. Hence, since c1 > 2,

we can choose c4 ≤ (c1−2)2

36c23
to ensure that c4 ≤ c2

1/(4c
2
3) and 3c3

√
c4 + 1 < c1/2. Now, to

finish the proof of Theorem 3.3.5 we rely on the following result, whose proof we defer to
the end of this section.

Proposition 3.3.8. Let V ⊂ Rk be a bounded set, with supv∈V‖v‖ ≤ b, such that for any
u ∈ Sk−1 there exists v ∈ V with |〈u, v〉| ≥ α. Then, for all T ≥ 0, given any sequence of
vectors {vt}t≥0 in Rk we have

λmin

(
T∑
i=1

viv
>
i

)
≥ α2K(T )

2k
− k − 1

2

(
b2 − α2

2

)
,

where K(T ) is the number of times

vt+1 ∈ {v|v ∈ V and |〈ṽt+1, v〉| ≥ α} ,

with ṽt+1 ∈ arg min‖v‖=1 v
> (∑t

i=1 viv
>
i

)
v and t < T .
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We have shown that at least T/H − Ne times the algorithm collects a state transition
(xt,ut,xt+1) for which φt is at least α/4 aligned with the minimal eigenvector of Φ>Φ, where
Φ is the matrix of all φj observed prior to the last trajectory planning episode. Therefore,
Proposition 3.3.8 implies that Algorithm 3 collects a sequence of measurements (φt,xt+1)
such that

λmin

(
T+t0∑
t=1

φtφ
>
t

)
≥ α2

32

(
T

H
−Ne

)
− k − 1

2
b2
φ.

Putting this result together with Proposition 3.3.6 yields the desired conclusion, as long as
we prove Proposition 3.3.6.

Proof of Proposition 3.3.6 To prove Proposition 3.3.8 we need the following lemma,
which intuitively shows that the sum of the smallest eigenvalues cannot lag behind the
larger eigenvalues by too much.

Lemma 3.3.9. Let M ∈ Rk×k be a positive semi-definite matrix. Let λ1 ≥ λ2 ≥ . . . ≥ λk be
the eigenvalues of M and let u1, u2, . . . , uk be the corresponding eigenvectors of unit norm.
Suppose v is a vector in Rk such that ‖v‖ ≤ b and |〈v, uk〉| ≥ α. Let ν1 ≥ ν2 ≥ . . . ≥ νk be
the eigenvalues of M + vv>. Then, for any s ∈ {2, . . . k} such that λs−1 ≥ λs + b2−α2/2 we
have

k∑
i=s

νi ≥
k∑
i=s

λi +
α2

2
. (3.3.17)

Proof. First, we express v in M ’s eigenbasis: v =
∑k

i=1 ziui. Then, by assumption we know

that ‖v‖2 =
∑k

i=1 z
2
i ≤ b2 and z2

k ≥ α2. Using a result by Bunch, Nielsen, and Sorensen [31]
we know that ν1 ≥ λ1 and νi ∈ [λi, λi−1] for every i ∈ {2, . . . k} and that the k eigenvalues
νi are the k solutions of the secular equation:

f(ν) := 1 +
k∑
i=1

z2
i

λi − ν
= 0 (3.3.18)

if zi 6= 0 for all i. If zi = 0, there is an eigenvalue νj such that νj = λi. We assume zi 6= 0
for all i.

If νs ≥ λs + α2

2
, there is nothing to prove. Let us assume νs < λs + α2

2
. Hence, the

eigenvalues νs, νs+1, . . . , νk lie in the interval [λk, λs +α2/2). For any ν ∈ [λk, λs +α2/2) we
have

0 ≤ ζ(ν) :=
s−1∑
i=1

z2
i

λi − ν
≤
∑s−1

i=1 z
2
i

λs−1 − ν
(3.3.19)

≤ b2 − α2

λs−1 − ν
≤ b2 − α2

b2 − α2
= 1. (3.3.20)
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By rewriting the equation f(ν) = 0, for any solution ν? which lies in [λk, λs + α2/2) we
obtain

0 = 1 +
k∑
i=s

z2
i

(λi − ν?)(1 + ζ(ν?))
≤ 1 +

k∑
i=s

z2
i

2(λi − ν?)

because 1 < 1+ζ(ν?) ≤ 2 and
∑k

i=s
z2i

(λi−ν?)
< 0. Now, let νj be the unique solution f(νj) = 0

in the interval [λj, λj−1] for j ∈ {s+ 1, . . . , k} or in the interval [λs, λs + α2/2) for j = s.

Since the function g(ν) = 1+
∑k

i=s
z2i

2(λi−ν)
is increasing on the interval [λj, λj−1] (if j = s,

the interval is [λs,∞)) we know that the unique solution ν ′j ∈ [λj, λj−1] of the equation
g(ν) = 0 satisfies ν ′j ≤ νj for all j ∈ {s, . . . , k}.

Therefore, we have shown that
∑k

j=s νj ≥
∑k

j=s ν
′
j, where ν ′j are the solutions to the

equation

1 +
k∑
i=s

z2
i

2(λi − ν)
= 0.

However, the solutions of this equation are the eigenvalues of Q = diag(λs, λs+2, . . . , λk) +
1
2
zz>, where z = [zs, zs+1, . . . , zk]

>. Hence,

k∑
j=s

νj ≥
k∑
j=s

ν ′j = tr(Q) =
k∑
j=s

λj +
1

2

k∑
j=s

z2
j ≥

k∑
j=s

λj +
α2

2
.

Now we can turn back to the proof of Proposition 3.3.8. Let λi(t) be the i-th largest
eigenvalue of

∑t
j=1 vjv

>
j and let K(t) be the number of times

vj+1 ∈ {v|v ∈ V and |〈ṽj+1, v〉| ≥ α}

with ṽj+1 ∈ arg min‖v‖=1 v
>
(∑j

i=1 viv
>
i

)
v and j < t.

Suppose we know that
∑k

i=j−1 λi(t) ≥ cj−1α
2K(t)−dj−1 for all t ≥ 1, where cj−1 > 0 and

dj−1 ≥ 0 are some real values. Since ‖vj‖ ≥ α for all j, we can choose c1 = 1 and d1 = 0. Now,

we lower bound
∑k

i=j λi(t) as a function of t. To this end, we define tj to be the maximum

time in {1, 2, . . . , t} such that λs−1(t2)− λs(t2) < b2 − α2

2
for all s ∈ {j, j + 1, . . . , k}.

Then, Lemma 3.3.9 and our induction hypothesis guarantee that

k∑
i=j

λi(t) ≥
k∑
i=j

λi(tj) +
α2(K(t)−K(tj))

2

≥ α2(K(t)−K(tj))

2
+ cj−1α

2K(tj)− dj−1 − λj−1(tj).
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By the definition of tj we know that λi(tj) ≥ λj−1(tj) − (i − j + 1)(b2 − α2) for all i ≥ j.
Therefore, we have the lower bound:

k∑
i=j

λi(t) ≥
k∑
i=j

λi(tj) ≥ (k − j + 1)λj−1(tj)−
(k − j + 1)(k − j + 2)

2

(
b2 − α2

2

)
.

We minimize the maximum of the previous two lower bounds with respect to λj−1(tj), which
can be done by finding the value of λj−1(tj) which makes the two lower bounds equal. Then,
we find

k∑
i=j

λi(t) ≥
α2

2

k − j + 1

k − j + 2
((2cj−1 − 1)K(tj) +K(t))− k − j + 1

k − j + 2
dj−1 −

k − j + 1

2

(
b2 − α2

2

)
.

Case 1: 2cj−1 ≥ 1. Then, since K(tj) ≥ 0, we obtain

k∑
i=j

λi(t) ≥
α2

2

k − j + 1

k − j + 2
K(t)− k − j + 1

k − j + 2
dj−1 −

k − j + 1

2

(
b2 − α2

2

)
.

Case 2: 2cj−1 < 1. Then, since K(tj) ≤ K(t), we obtain

k∑
i=j

λi(t) ≥ α2k − j + 1

k − j + 2
cj−1K(t)− k − j + 1

k − j + 2
dj−1 −

k − j + 1

2

(
b2 − α2

2

)
.

We see that c2 = 1
2
k−1
k
< 1

2
and k−j+1

k−j+2
cj−1 < cj−1. Therefore, the following recursions hold

cj =
k − j + 1

k − j + 2
cj−1

dj =
k − j + 1

k − j + 2
dj−1 +

k − j + 1

2

(
b2 − α2

2

)
,

with c2 = k−1
2k

and d2 = k−1
2

(
b2 − α2

2

)
. By unrolling the recursions, we obtain the conclusion.

3.4 Related work

System identification, being one of the cornerstones of control theory, has a rich history,
which we cannot hope to summarize here. For an in-depth presentation of the field we
direct the interested reader to the book by Ljung [89] and the review articles by Åström
and Eykhoff [16], Bombois et al. [22], Chiuso and Pillonetto [35], Hong et al. [67], Juditsky
et al. [74], Ljung et al. [90], Schoukens and Ljung [131], and Sjöberg et al. [144]. Instead, we
discuss recent studies of system identification that develop finite-time statistical guarantees.
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Most recent theoretical guarantees of system identification apply to linear systems under
various sets of assumptions [33, 38, 47, 48, 61–63, 111, 126–128, 142, 149, 154, 155, 160].
Several works built on the results and techniques we developed in Section 3.2. Notably,
Sarkar and Rakhlin [126] developed a more general analysis that also applies to a certain
class of unstable linear systems. Both of these studies assumed that the estimation method
can directly observe the state of the system. We make the same assumption in our work.
However, in many applications full state observation is not possible. Recently, Simchowitz
et al. [142] proved that marginally stable linear systems can be estimated from partial obser-
vations by using a prefiltered least squares method. From the study of linear dynamics, the
work of Wagenmaker and Jamieson [160] is the closest to our own. Inspired by E-optimal
design [114], the authors propose and analyze an adaptive data collection method for linear
system identification which maximizes the minimal eigenvalue λmin(

∑T−1
t=0 xtx

>
t ) under power

constraints on the inputs. Wagenmaker and Jamieson [160] prove matching upper and lower
bounds for their method.

There is comparatively little known about the sample complexity of nonlinear system
identification. Oymak [109] and Bahmani and Romberg [19] studied the estimation of the
parameters A and B of a dynamical system of the form xt+1 = φ(Axt + But), where φ is
a known activation function and the inputs ut are i.i.d. standard Gaussian vectors. Impor-
tantly, in this model both xt and ut are observed and there is no unobserved noise, which
makes estimation easy when the map φ is invertible. In follow-up work, Sattar and Oymak
[130] and Foster et al. [53] generalized these results. In particular, Foster et al. [53] took
inspiration from the study of generalized linear models and showed that a method developed
for the standard i.i.d. setting can estimate dynamical systems of the form xt+1 = φ(Axt)+wt

at an an optimal rate, where wt is unobserved i.i.d. noise. All these works share a common
characteristic, they study systems for which identification is possible through the use of non-
adaptive inputs. We take the first step towards understanding systems that require adaptive
methods for successful identification.

In a different line of work, Singh et al. [143] proposed a learning framework for trajectory
planning from learned dynamics. They propose a regularizer of dynamics that promotes
stabilizability of the learned model, which allows the tracking of reference trajectories based
on estimated dynamics. Also, Khosravi and Smith [76] and Khosravi and Smith [77] de-
veloped learning methods that exploit other control-theoretic priors. Nonetheless, none of
these works characterize the sample complexity of the problem.

While most work that studies sample-complexity questions in the setting of tabular MDPs
focuses on finding optimal policies, Jin et al. [72] and Wolfer and Kontorovich [164] recently
analyzed data collection for system identification. More precisely, Jin et al. [72] developed
an efficient algorithm for the exploration of tabular MDPs that enables near-optimal policy
synthesis for an arbitrary number of reward functions, which are unknown during data col-
lection, while Wolfer and Kontorovich [164] derived minimax sample complexity guarantees
for the estimation of ergodic Markov chains. Finally, we note that Abbeel and Ng [4] quan-
tified the sample complexity of learning policies from demonstrations for tabular MDPs and
for a simpler version of the model class (3.3.1).
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Chapter 4

The Linear Quadratic Regulator

In this chapter we study the amount of data needed to find a controller that achieves near
optimal performance on the Linear Quadratic Regulator (LQR), one of the most well-studied
problems in classical optimal control. The results in this chapter are based on the work by
Dean et al. [41] and Mania et al. [95].

An instance of the LQR is defined by four matrices: two matrices A ∈ Rn×n and B ∈
Rn×p that define the linear dynamics and two positive semidefinite matrices Q ∈ Rn×n and
R ∈ Rp×p that define the cost function. Given these matrices, the goal of LQR is to solve
the optimization problem

min
u0,u1,...

lim
T→∞

E

[
1

T

T∑
t=0

x>t Qxt + u>t Rut

]
(4.0.1)

s.t. xt+1 = Axt +But + wt,

where xt, ut and wt denote the state, input (or action), and noise at time t, respectively.
The expectation is over the i.i.d. noise wt ∼ N (0, σ2

wIn). For simplicity of bookkeeping, in
our analysis we further assume that we can prepare the system in initial state x0 = 0. As
implied by the dimensions of the matrices A and B, the state and noise vectors are n and p
dimensional, respectively. The input at time t is allowed to depend on the state at time t and
all the previous states and actions. Nonetheless, when the problem parameters (A,B,Q,R)
are known the optimal policy is given by linear feedback, ut = K?xt, and can be computed
efficiently [e.g., see 11]. More precisely, K? = −(R+B>PB)−1B>PA where P is the unique
positive-definite solution to the discrete Riccati equation

P = A>PA− A>PB(R +B>PB)−1B>PA+Q (4.0.2)

and can be computed efficiently. A few standard assumptions are needed to ensure that
(4.0.2) has a unique positive-definite solution: R is positive definite, (A,B) is controllable,
(Q,A) is observable [see 169, for details]. Problem (4.0.1) considers an average cost over an
infinite horizon. The optimal controller for the finite horizon variant is also static and linear,
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but time-varying. The LQR solution in this case can be computed efficiently via dynamic
programming.

In this chapter we are interested in the control of a linear dynamical system with unknown
transition parameters (A?, B?)based on estimates (Â, B̂) and upper bounds εA and εB on

the estimation error, i.e., ‖A? − Â‖ ≤ εA and ‖B? − B̂‖ ≤ εB. Unless otherwise noted, ‖·‖
denotes the Euclidean norm when applied to vectors and the operator norm when applied
to matrices. In Chapter 3 we discussed how to find estimates (Â, B̂, εA, εB). From now on

we assume access to estimates Â and B̂ and to upper bounds on their estimation error. The
cost matrices Q and R are assumed known.

Given an estimate (Â, B̂, εA, εB) of the linear dynamics, there are two main strategies

for producing a controller: compute the optimal LQR controller for (Â, B̂) or compute a

robust controller for the worst case transition matrices (A,B) such that ‖A− Â‖ ≤ εA and

‖B − B̂‖ ≤ εB. The former approach is known as certainty equivalence or as the plug-in

method. We refer to the second approach as robust LQR. If we denote by Ĵ the LQR cost
achieved by one of these methods and by J? the optimal LQR cost, in Section 4.2 we show
that Ĵ − J? = O(max{ε2

A, ε
2
B}) in the case of certainty equivalence and in Section 4.2 we

show that Ĵ − J? = O(max{εA, εB}) in the case of robust LQR.
The importance of these results becomes clearer when viewed from a statistical lens. In

Chapter 3 we saw that if we use T data points to estimate the dynamics (A,B) we get

max{εA, εB} = Õ(
√
n+ p/T ). Therefore, putting everything together, we see that as we

collect more data Ĵ − J? decays quadratically faster in the case certainty equivalence than
in the case of robust LQR. Nonetheless, we also show that robust LQR can surpass the
performance of certainty equivalence in certain regimes.
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4.1 Robust controller synthesis

In this section we analyze the suboptimality gap Ĵ−J? obtained by optimizing the objective

minimize sup
‖∆A‖2≤εA
‖∆B‖2≤εB

limT→∞
1
T

∑T
t=1 E

[
x>t Qxt + u>t Rut

]
subject to xt+1 = (Â+ ∆A)xt + (B̂ + ∆B)ut + wt

, (4.1.1)

where we dropped the boldface notation from the vectors xt, ut, and wt because throughout
this section we reserve boldface notation to denote transfer functions, as described shortly.

Although classic methods exist for computing such controllers [50, 112, 150, 165], they
typically require solving nonconvex optimization problems, and it is not readily obvious how
to extract interpretable measures of controller performance as a function of the perturbation
sizes εA and εB. To that end, we leverage the recently developed System Level Synthesis
(SLS) framework [161] to create an alternative robust synthesis procedure. Described in
detail in Section 4.1.2, SLS lifts the system description into a higher dimensional space
that enables efficient search for controllers. At the cost of some conservatism, we are able to
guarantee robust stability of the resulting closed-loop system for all admissible perturbations
and bound the performance gap between the resulting controller and the optimal LQR
controller.

With estimates of the system (Â, B̂) and operator norm error bounds (εA, εB) in hand,
we now turn to control design. In this section we introduce some useful tools from System
Level Synthesis (SLS), a recently developed approach to control design that relies on a
particular parameterization of signals in a control system [98, 161]. We review the main
SLS framework, highlighting the key constructions that we will use to solve the robust LQR
problem. As we show in this and the following section, using the SLS framework, as opposed
to traditional techniques from robust control, allows us to (a) compute robust controllers
using semidefinite programming, and (b) provide sub-optimality guarantees in terms of the
size of the uncertainties on our system estimates.

4.1.1 Useful results from system level synthesis

The SLS framework focuses on the system responses of a closed-loop system. As a motivating
example, consider linear dynamics under a fixed a static state-feedback control policy K,
i.e., let uk = Kxk. Then, the closed loop map from the disturbance process {w0, w1, . . . } to
the state xk and control input uk at time k is given by

xk =
∑k

t=1(A? +B?K)k−twt−1 ,

uk =
∑k

t=1K(A? +B?K)k−twt−1 .
(4.1.2)
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Letting Φx(k) := (A? +B?K)k−1 and Φu(k) := K(A? +B?K)k−1, we can rewrite Eq. (4.1.2)
as [

xk
uk

]
=

k∑
t=1

[
Φx(k − t+ 1)
Φu(k − t+ 1)

]
wt−1 , (4.1.3)

where {Φx(k),Φu(k)} are called the closed-loop system response elements induced by the
static controller K.

Note that even when the control is a linear function of the state and its past history (i.e. a
linear dynamic controller), the expression (4.1.3) is valid. Though we conventionally think of
the control policy as a function mapping states to input, whenever such a mapping is linear,
both the control input and the state can be written as linear functions of the disturbance
signal wt. With such an identification, the dynamics require that the {Φx(k),Φu(k)} must
obey the constraints

Φx(k + 1) = A?Φx(k) +B?Φu(k) , Φx(1) = I , ∀k ≥ 1 , (4.1.4)

As we describe in more detail below in Theorem 4.1.1, these constraints are in fact both
necessary and sufficient. Working with closed-loop system responses allows us to cast optimal
control problems as optimization problems over elements {Φx(k),Φu(k)}, constrained to
satisfy the affine equations (4.1.4). Comparing equations (4.1.2) and (4.1.3), we see that
the former is non-convex in the controller K, whereas the latter is affine in the elements
{Φx(k),Φu(k)}.

As we work with infinite horizon problems, it is notationally more convenient to work
with transfer function representations of the above objects, which can be obtained by taking
a z-transform of their time-domain representations. The frequency domain variable z can
be informally thought of as the time-shift operator, i.e., z{xk, xk+1, . . . } = {xk+1, xk+2, . . . },
allowing for a compact representation of LTI dynamics. We use boldface letters to denote
such transfer functions signals in the frequency domain, e.g., Φx(z) =

∑∞
k=1 Φx(k)z−k. Then,

the constraints (4.1.4) can be rewritten as

[
zI − A? −B?

] [Φx

Φu

]
= I ,

and the corresponding (not necessarily static) control law u = Kx is given by K = ΦuΦ
−1
x .

We formalize our discussion by introducing notation that is common in the controls
literature. For a thorough introduction to the functional analysis commonly used in control
theory, see Chapters 2 and 3 of Zhou et al. [169]. Let T (resp. D) denote the unit circle
(resp. open unit disk) in the complex plane. The restriction of the Hardy spaces H∞(T)
and H2(T) to matrix-valued real-rational functions that are analytic on the complement of
D will be referred to as RH∞ and RH2, respectively. In controls parlance, this corresponds
to (discrete-time) stable matrix-valued transfer functions. For these two function spaces, the
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H∞ and H2 norms simplify to

‖G‖H∞ = sup
z∈T
‖G(z)‖2 , ‖G‖H2 =

√
1

2π

∫
T
‖G(z)‖2

F dz . (4.1.5)

Finally, the notation 1
z
RH∞ refers to the set of transfer functions G such that zG ∈ RH∞.

Equivalently, G ∈ 1
z
RH∞ if G ∈ RH∞ and G is strictly proper.

The most important transfer function for the LQR problem is the map from the state
sequence to the control actions: the control policy. Consider an arbitrary transfer function
K denoting the map from state to control action, u = Kx. Then the closed-loop transfer
matrices from the process noise w to the state x and control action u satisfy[

x
u

]
=

[
(zI − A−BK)−1

K(zI − A−BK)−1

]
w. (4.1.6)

We then have the following theorem parameterizing the set of stable closed-loop transfer
matrices, as described in equation (4.1.6), that are achievable by a given stabilizing controller
K.

Theorem 4.1.1 (State-Feedback Parameterization [161]). The following are true:

• The affine subspace defined by[
zI − A −B

] [Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ (4.1.7)

parameterizes all system responses (4.1.6) from w to (x,u), achievable by an internally
stabilizing state-feedback controller K.

• For any transfer matrices {Φx,Φu} satisfying (4.1.7), the controller K = ΦuΦ
−1
x is

internally stabilizing and achieves the desired system response (4.1.6).

Note that in particular, {Φx,Φu} = {(zI−A−BK)−1,K(zI−A−BK)−1} as in (4.1.6) are
elements of the affine space defined by (4.1.7) whenever K is a causal stabilizing controller.

We will also make extensive use of a robust variant of Theorem 4.1.1.

Theorem 4.1.2 (Robust Stability [98]). Suppose that the transfer matrices {Φx,Φu} ∈
1
z
RH∞ satisfy [

zI − A −B
] [Φx

Φu

]
= I + ∆. (4.1.8)

Then the controller K = ΦuΦ
−1
x stabilizes the system described by (A,B) if and only if

(I + ∆)−1 ∈ RH∞. Furthermore, the resulting system response is given by[
x
u

]
=

[
Φx

Φu

]
(I + ∆)−1w. (4.1.9)
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Corollary 4.1.3. Under the assumptions of Theorem 4.1.2, if ‖∆‖ < 1 for any induced
norm ‖ · ‖, then the controller K = ΦuΦ

−1
x stabilizes the system described by (A,B).

Proof. Follows immediately from the small gain theorem, see for example Section 9.2 in
[169].

4.1.2 Robust LQR synthesis

We return to the problem setting where estimates (Â, B̂) of a true system (A,B) satisfy

‖∆A‖2 ≤ εA, ‖∆B‖2 ≤ εB

where ∆A := Â−A and ∆B := B̂−B and where we wish to minimize the LQR cost for the
worst instantiation of the parametric uncertainty.

Before proceeding, we must formulate the LQR problem in terms of the system responses
{Φx(k),Φu(k)}. It follows from Theorem 4.1.1 and the standard equivalence between infinite

horizon LQR and H2 optimal control that, for a disturbance process distributed as wt
i.i.d.∼

N (0, σ2
wI), the standard LQR problem (1.0.2) can be equivalently written as

min
Φx,Φu

σ2
w

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥2

H2

s.t. equation (4.1.7). (4.1.10)

A full derivation of this equivalence can be found in appendix of the paper by Dean et al.
[41]. Going forward, we drop the σ2

w multiplier in the objective function as it affects neither
the optimal controller nor the sub-optimality guarantees.

We begin with a simple sufficient condition under which any controller K that stabilizes
(Â, B̂) also stabilizes the true system (A,B). To state the lemma, we introduce one additional
piece of notation. For a matrix M , we let RM denote the resolvent

RM := (zI −M)−1 . (4.1.11)

We now can state our robustness lemma.

Lemma 4.1.4. Let the controller K stabilize (Â, B̂) and (Φx,Φu) be its corresponding system

response (4.1.6) on system (Â, B̂). Then if K stabilizes (A,B), it achieves the following LQR
cost

J(A,B,K) :=

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

] [
Φx

Φu

](
I +

[
∆A ∆B

] [Φx

Φu

])−1
∥∥∥∥∥
H2

. (4.1.12)

Furthermore, letting

∆̂ :=
[
∆A ∆B

] [Φx

Φu

]
= (∆A + ∆BK)RÂ+B̂K . (4.1.13)

a sufficient condition for K to stabilize (A,B) is that ‖∆̂‖H∞ < 1.
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Proof. Follows immediately from Theorems 4.1.1, 4.1.2 and corollary 4.1.3 by noting that
for system responses (Φx,Φu) satisfying[

zI − Â −B̂
] [Φx

Φu

]
= I,

it holds that [
zI − A −B

] [Φx

Φu

]
= I + D̂

for D̂ as defined in equation (4.1.13).

We can therefore recast the robust LQR problem (4.1.1) in the following equivalent form

min
Φx,Φu

sup
‖∆A‖2≤εA
‖∆B‖2≤εB

J(A,B,K)

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ .

(4.1.14)

The resulting robust control problem is one subject to real-parametric uncertainty, a class
of problems known to be computationally intractable [25]. Although effective computational
heuristics (e.g., DK iteration [169]) exist, the performance of the resulting controller on the
true system is difficult to characterize analytically in terms of the size of the perturbations.

To circumvent this issue, we take a slightly conservative approach and find an upper-
bound to the cost J(A,B,K) that is independent of the uncertainties ∆A and ∆B. First,

note that if ‖D̂‖H∞ < 1, we can write

J(A,B,K) ≤ ‖(I + D̂)−1‖H∞J(Â, B̂,K) ≤ 1

1− ‖D̂‖H∞
J(Â, B̂,K). (4.1.15)

Because J(Â, B̂,K) captures the performance of the controller K on the nominal system

(Â, B̂), it is not subject to any uncertainty. It therefore remains to compute a tractable

bound for ‖D̂‖H∞ , which we do using the following fact.

Proposition 4.1.5. For any α ∈ (0, 1) and ∆̂ as defined in (4.1.13)

‖∆̂‖H∞ ≤
∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

=: Hα(Φx,Φu) . (4.1.16)

Proof. Note that for any block matrix of the form
[
M1 M2

]
, we have∥∥[M1 M2

]∥∥
2
≤
(
‖M1‖2

2 + ‖M2‖2
2

)1/2
. (4.1.17)
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To verify this assertion, note that∥∥[M1 M2

]∥∥2

2
= λmax(M1M

∗
1 +M2M

∗
2 ) ≤ λmax(M1M

∗
1 ) + λmax(M2M

∗
2 ) = ‖M1‖2

2 + ‖M2‖2
2 .

With (4.1.17) in hand, we have∥∥∥∥[∆A ∆B

] [Φx

Φu

]∥∥∥∥
H∞

=

∥∥∥∥∥[√αεA ∆A

√
1−α
εB

∆B

] [ εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤
∥∥∥[√αεA ∆A

√
1−α
εB

∆B

]∥∥∥
2

∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤
∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

,

completing the proof.

The following corollary is then immediate.

Corollary 4.1.6. Let the controller K and resulting system response (Φx,Φu) be as defined
in Lemma 4.1.4. Then if Hα(Φx,Φu) < 1, the controller K = ΦuΦ

−1
x stabilizes the true

system (A,B).

Applying Proposition 4.1.5 in conjunction with the bound (4.1.15), we arrive at the
following upper bound to the cost function of the robust LQR problem (4.1.1), which is
independent of the perturbations (∆A,∆B):

sup
‖∆A‖2≤εA
‖∆B‖2≤εB

J(A,B,K) ≤
∥∥∥∥[Q 1

2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

1

1−Hα(Φx,Φu)
=

J(Â, B̂,K)

1−Hα(Φx,Φu)
. (4.1.18)

The upper bound is only valid when Hα(Φx,Φu) < 1, which guarantees the stability of the
closed-loop system as in corollary 4.1.6. We remark that corollary 4.1.6 and the bound in
(4.1.18) are of interest independent of the synthesis procedure for K. In particular, they can

be applied to the optimal LQR controller K̂ computed using the nominal system (Â, B̂).
As the next lemma shows, the right hand side of Equation (4.1.18) can be efficiently

optimized by an appropriate decomposition. The proof of the lemma is immediate.

Lemma 4.1.7. For functions f : X → R and g : X → R and constraint set C ⊆ X , consider

min
x∈C

f(x)

1− g(x)
.

Assuming that f(x) ≥ 0 and 0 ≤ g(x) < 1 for all x ∈ C, this optimization problem can
be reformulated as an outer single-variable problem and an inner constrained optimization
problem (the objective value of an optimization over the emptyset is defined to be infinity):

min
x∈C

f(x)

1− g(x)
= min

γ∈[0,1)

1
1−γ min

x∈C
{f(x) | g(x) ≤ γ}
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Then combining Lemma 4.1.7 with the upper bound in (4.1.18) results in the following
optimization problem:

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I,

∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤ γ

Φx,Φu ∈
1

z
RH∞.

(4.1.19)

We note that this optimization objective is jointly quasi-convex in (γ,Φx,Φu). Hence, as a
function of γ alone the objective is quasi-convex, and furthermore is smooth in the feasible
domain. Therefore, the outer optimization with respect to γ can effectively be solved with
methods like golden section search. We remark that the inner optimization is a convex
problem, though an infinite dimensional one. We show in Section 4.1.3 that a simple finite
impulse response truncation yields a finite dimensional problem with similar guarantees of
robustness and performance.

We further remark that because γ ∈ [0, 1), any feasible solution (Φx,Φu) to optimization
problem (4.1.19) generates a controller K = ΦuΦ

−1
x satisfying the conditions of corollary

4.1.6, and hence stabilizes the true system (A,B). Therefore, even if the solution is approx-
imated, as long as it is feasible, it will be stabilizing. As we show in the next section, for
sufficiently small estimation error bounds εA and εB, we can further bound the sub-optimality
of the performance achieved by our robustly stabilizing controller relative to that achieved
by the optimal LQR controller K?.

Now, we upper bound the performance of the controller synthesized using the optimiza-
tion (4.1.19) in terms of the size of the perturbations (∆A, ∆B) and a measure of complexity
of the LQR problem defined by A, B, Q, and R. The following result is one of our main
contributions.

Theorem 4.1.8. Let J? denote the minimal LQR cost achievable by any controller for the
dynamical system with transition matrices (A,B), and let K? denote the optimal contoller.

Let (Â, B̂) be estimates of the transition matrices such that ‖∆A‖2 ≤ εA, ‖∆B‖2 ≤ εB. Then,
if K is synthesized via (4.1.19) with α = 1/2, the relative error in the LQR cost is

J(A?, B?,K)− J?
J?

≤ 5(εA + εB‖K?‖2)‖RA+BK?‖H∞ , (4.1.20)

as long as (εA + εB‖K?‖2)‖RA+BK?‖H∞ ≤ 1/5.

This result offers a guarantee on the performance of the SLS synthesized controller re-
gardless of the estimation procedure used to estimate the transition matrices. Together with
the results shown in Chapter 3 on system identification, Theorem 4.1.8 yields a sample com-
plexity upper bound on the performance of the robust SLS controller K when (A,B) are not
known. The rest of the section is dedicated to proving Theorem 4.1.8.
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Recall that K? is the optimal LQR static state feedback matrix for the true dynamics
(A,B), and let ∆ := − [∆A + ∆BK?]RA+BK? . We begin with a technical result.

Lemma 4.1.9. Define ζ := (εA + εB‖K?‖2)‖RA+BK?‖H∞, and suppose that ζ < (1 +
√

2)−1.
Then (γ0, Φ̃x, Φ̃u) is a feasible solution of (4.1.19) with α = 1/2, where

γ0 =

√
2ζ

1− ζ , Φ̃x = RA+BK?(I + ∆)−1, Φ̃u = K?RA+BK?(I + ∆)−1. (4.1.21)

Proof. By construction Φ̃x, Φ̃u ∈ 1
z
RH∞. Therefore, we are left to check three conditions:

γ0 < 1,
[
zI − Â −B̂

] [Φ̃x

Φ̃u

]
= I , and

∥∥∥∥∥
[

εA√
α
Φ̃x

εB√
1−αΦ̃u

]∥∥∥∥∥
H∞

≤
√

2ζ

1− ζ . (4.1.22)

The first two conditions follow by simple algebraic computations. Before we check the last
condition, note that ‖∆‖H∞ ≤ (εA + εB‖K?‖2)‖RA+BK?‖H∞ = ζ < 1. Now observe that,∥∥∥∥∥

[
εA√
α
Φ̃x

εB√
1−αΦ̃u

]∥∥∥∥∥
H∞

=
√

2

∥∥∥∥[ εARA+BK?

εBK?RA+BK?

]
(I + ∆)−1

∥∥∥∥
H∞

≤
√

2‖(I + ∆)−1‖H∞
∥∥∥∥[ εARA+BK?

εBK?RA+BK?

]∥∥∥∥
H∞

≤
√

2

1− ‖∆‖H∞

∥∥∥∥[ εAIεBK?

]
RA+BK?

∥∥∥∥
H∞

≤
√

2(εA + εB‖K?‖2)‖RA+BK?‖H∞
1− ‖∆‖H∞

≤
√

2ζ

1− ζ .

Proof of Theorem 4.1.8. Let (γ?,Φ
?
x,Φ

?
u) be an optimal solution to problem (4.1.19) and let

K = Φ?
u(Φ

?
x)
−1. We can then write

J(A,B,K) ≤ 1

1− ‖D̂‖H∞
J(Â, B̂,K) ≤ 1

1− γ?
J(Â, B̂,K),

where the first inequality follows from the bound (4.1.15), and the second follows from

the fact that ‖D̂‖H∞ ≤ γ? due to Proposition 4.1.5 and the constraint in optimization
problem (4.1.19).

From Lemma 4.1.9 we know that (γ0, Φ̃x, Φ̃u) defined in equation (4.1.21) is also a feasible
solution. Therefore, because K? = Φ̃uΦ̃

−1
x , we have by optimality,

1

1− γ?
J(Â, B̂,K) ≤ 1

1− γ0

J(Â, B̂,K?) ≤
J(A,B,K?)

(1− γ0)(1− ‖∆‖H∞)
=

J?
(1− γ0)(1− ‖∆‖H∞)

,
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where the second inequality follows by the argument used to derive (4.1.15) with the true and
estimated transition matrices switched. Recall that ‖∆‖H∞ ≤ ζ and that γ0 =

√
2ζ/(1 + ζ).

Therefore

J(A,B,K)− J?
J?

≤ 1

1− (1 +
√

2)ζ
− 1 =

(1 +
√

2)ζ

1− (1 +
√

2)ζ
≤ 5ζ ,

where the last inequality follows because ζ < 1/5 < 1/(2+2
√

2). The conclusion follows.

Therefore, we have shown that robust LQR that leverages System Level Synthesis achieves
a suboptimality gap Ĵ − J? = O(max{εA, εB}), as promised.

4.1.3 Finite impulse response approximation

As posed, the main optimization problem (4.1.19) is a semi-infinite program, and we are not
aware of a way to solve this problem efficiently. An elementary approach to reducing the
aforementioned semi-infinite program to a finite dimensional one is to only optimize over
the first L elements of the transfer functions Φx and Φu, effectively taking a finite impulse
response (FIR) approximation. Since these are both stable maps, we expect the effects of
such an approximation to be negligible as long as the optimization horizon L is chosen to be
sufficiently large – in what follows, we show that this is indeed the case.

By restricting our optimization to FIR approximations of Φx and Φu, we can cast the
H2 cost as a second order cone constraint. The only difficulty arises in posing the H∞
constraint as a semidefinite program. Though there are several ways to cast H∞ constraints
as linear matrix inequalities, we use the formulation in Theorem 5.8 of Dumitrescu’s text to
take advantage of the FIR structure in our problem [44]. We note that using Dumitrescu’s
formulation, the resulting problem is affine in α when γ is fixed, and hence we can solve
for the optimal value of α. Then the resulting system response elements can be cast as a
dynamic feedback controller using Theorem 2 of Anderson and Matni [12].

4.1.3.1 Sub-optimality guarantees

In this subsection we show that optimizing over FIR approximations incurs only a small
degradation in performance relative to the solution to the infinite-horizon problem. In par-
ticular, this degradation in performance decays exponentially in the FIR horizon L, where
the rate of decay is specified by the decay rate of the spectral elements of the optimal closed
loop system response RA?+B?K? .

Before proceeding, we introduce additional concepts and notation needed to formalize
guarantees in the FIR setting. A linear-time-invariant transfer function is stable if and only
if it is exponentially stable, i.e., Φ =

∑∞
t=0 z

−tΦ(t) ∈ RH∞ if and only if there exists positive
values C and ρ ∈ [0, 1) such that for every spectral element Φ(t), t ≥ 0, it holds that

‖Φ(t)‖2 ≤ Cρt. (4.1.23)



CHAPTER 4. THE LINEAR QUADRATIC REGULATOR 59

In what follows, we pick C? and ρ? to be any such constants satisfying ‖RA?+B?K?(t)‖2 ≤ C?ρ
t
?

for all t ≥ 0.
We introduce a version of the optimization problem (4.1.14) with a finite number of

decision variables:

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu,V

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I +

1

zL
V,∥∥∥∥∥

[
εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

+ ‖V ‖2 ≤ γ

Φx =
L∑
t=1

1

zt
Φx(t), Φu =

L∑
t=1

1

zt
Φu(t).

(4.1.24)

In this optimization problem we search over finite response transfer functions Φx and Φu.
Given a feasible solution Φx, Φu of problem (4.1.24), we can implement the controller KL =
ΦuΦ

−1
x with an equivalent state-space representation (AK , BK , CK , DK) using the response

elements {Φx(k)}Lk=1 and {Φu(k)}Lk=1 via Theorem 2 of [12].
The slack term V accounts for the error introduced by truncating the infinite response

transfer functions of problem (4.1.14). Intuitively, if the truncated tail is sufficiently small,
then the effects of this approximation should be negligible on performance. The next result
formalizes this intuition.

Theorem 4.1.10. Set α = 1/2 in (4.1.24) and let C? > 0 and ρ? ∈ [0, 1) be such that
‖R(A?+B?K?)(t)‖2 ≤ C?ρ

t
? for all t ≥ 0. Then, if KL is synthesized via (4.1.24), the relative

error in the LQR cost is

J(A?, B?,KL)− J?
J?

≤ 10(εA + εB‖K?‖2)‖RA?+B?K?‖H∞ ,

as long as

εA + εB‖K?‖2 ≤
1− ρ?
10C?

and L ≥
4 log

(
C?

(εA+εB‖K?‖2)‖RA?+B?K?‖H∞

)
1− ρ?

.

The proof of this result is conceptually the same as that of the infinite horizon setting.
The main difference is that care must be taken to ensure that the approximation horizon L is
sufficiently large so as to ensure stability and performance of the resulting controller. From
the theorem statement, we see that for such an appropriately chosen FIR approximation
horizon L, our performance bound is the same, up to universal constants, to that achieved
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by the solution to the infinite horizon problem. Furthermore, the approximation horizon L
only needs to grow logarithmically with respect to one over the estimation rate in order to
preserve the same statistical rate as the controller produced by the infinite horizon problem.

Now, we turn to the proof of Theorem 4.1.10. To understand the effect of restricting
the optimization to FIR transfer functions we need to understand the decay of the transfer
functions RÂ+B̂K?

and K?RÂ+B̂K?
. To this end we consider C? > 0 and ρ? ∈ (0, 1) such

that ‖(A? + B?K?)
t‖2 ≤ C?ρ

t
? for all t ≥ 0. Such C? and ρ? exist because K? stabilizes the

system (A?, B?). The next lemma quantifies how well K? stabilizes the system (Â, B̂) when
the estimation error is small.

Lemma 4.1.11. Suppose εA + εB‖K?‖2 ≤ 1−ρ?
2C?

. Then,

‖(Â+ B̂K?)
t‖2 ≤ C?

(
1 + ρ?

2

)t
, for all t ≥ 0.

Proof. The claim is obvious when t = 0. Fix an integer t ≥ 1 and denote M = A? + B?K?.
Then, if ∆ = ∆A + ∆BK?, we have Â+ B̂K? = M + ∆.

Consider the expansion of (M + ∆)t into 2t terms. Label all these terms as Ti,j for
i = 0, ..., t and j = 1, ...,

(
t
i

)
where i denotes the degree of ∆ in the term. Since ∆ has degree

i in Ti,j, the term Ti,j has the form Mα1∆Mα2∆ . . .∆Mαi+1 , where each αk is a non-negative
interger and

∑
k αk = t− i. Then, using the fact that ‖Mk‖2 ≤ C?ρ

k
? for all k ≥ 0, we have

‖Ti,j‖2 ≤ Ci+1ρt−i‖∆‖i2. Hence by triangle inequality:

‖(M + ∆)t‖2 ≤
t∑
i=0

∑
j

‖Ti,j‖2

≤
t∑
i=0

(
t

i

)
Ci+1
? ρt−i? ‖∆‖i2

= C?

t∑
i=0

(
t

i

)
(C?‖∆‖2)iρt−i?

= C?(C?‖∆‖2 + ρ?)
t

≤ C?

(
1 + ρ?

2

)t
,

where the last inequality uses the fact ‖∆‖2 ≤ εA + εB‖K?‖2 ≤ 1−ρ?
2C?

.

For the remainder of this discussion, we use the following notation to denote the restric-
tion of a system response to its first L time-steps:

Φx(1 : L) =
L∑
t=1

1

zt
Φx(t), Φu(1 : L) =

L∑
t=1

1

zt
Φu(t). (4.1.25)
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To prove Theorem 4.1.10 we must relate the optimal controller K? with the optimal solu-
tion of the optimization problem (4.1.24). In the next lemma we useK? to construct a feasible
solution for problem (4.1.24). As before, we denote ζ = (εA + εB‖K?‖2)‖RA?+B?K?‖H∞ .

Lemma 4.1.12. Set α = 1/2 in problem (4.1.24), and assume that εA + εB‖K?‖2 ≤ 1−ρ?
2C?

,
ζ < 1/5, and

L ≥
4 log

(
C?
ζ

)
1− ρ?

. (4.1.26)

Then, optimization problem (4.1.24) is feasible, and the following is one such feasible solu-
tion:

Φ̃x = RÂ+B̂K?
(1 : L), Φ̃u = K?RÂ+B̂K?

(1 : L), Ṽ = −RÂ+B̂K?
(L+ 1), γ̃ =

4ζ

1− ζ .
(4.1.27)

Proof. From Lemma 4.1.11 and the assumption on ζ we have that ‖(Â+B̂K?)
t‖2 ≤ C?

(
1+ρ?

2

)t
for all t ≥ 0. In particular, since RÂ+B̂K?

(L + 1) = (Â + B̂K?)
L, we have ‖Ṽ ‖ = ‖(Â +

B̂K?)
L‖ ≤ C?

(
1+ρ?

2

)L ≤ ζ. The last inequality is true because we assumed L is sufficiently
large.

Once again, since RÂ+B̂K?
(L+ 1) = (Â+ B̂K?)

L, it can be easily seen that our choice of

Φ̃x, Φ̃u, and Ṽ satisfy the linear constraint of problem (4.1.24). It remains to prove that

√
2

∥∥∥∥[εAΦx

εBΦu

]∥∥∥∥
H∞

+ ‖Ṽ ‖2 ≤ γ̃ < 1.

The second inequality holds because of our assumption on ζ. We already know that
‖Ṽ ‖2 ≤ ζ. Now, we bound:∥∥∥∥∥

[
εAΦ̃x

εBΦ̃u

]∥∥∥∥∥
H∞

≤ (εA + εB‖K?‖2)‖RÂ+B̂K?
(1 : L)‖H∞

≤ (εA + εB‖K?‖2)(‖RÂ+B̂K?
‖H∞ + ‖RÂ+B̂K?

(L+ 1 :∞)‖H∞).

These inequalities follow from the definition of (Φ̃x, Φ̃u) and the triangle inequality.
Now, we recall that RÂ+B̂K?

= RA?+B?K?(I+∆)−1, where ∆ = −(∆A+∆BK?)RA?+B?K? .

Since ‖∆‖H∞ ≤ ζ (due to Proposition 4.1.5), we have ‖RÂ+B̂K?
‖H∞ ≤ 1

1−ζ‖RA?+B?K?‖H∞ .
We can upper bound

‖RÂ+B̂K?
(L+ 1 :∞)‖H∞ ≤

∞∑
t=L+1

‖RÂ+B̂K?
(t)‖2 ≤ C?

(
1 + ρ?

2

)L ∞∑
t=0

(
1 + ρ?

2

)t
=

2C?
1− ρ?

(
1 + ρ?

2

)L
.
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Then, since we assumed that εA and εB are sufficiently small and that L is sufficiently
large, we obatin

(εA + εB‖K?‖2)‖RÂ+B̂K?
(L+ 1 :∞)‖H∞ ≤ ζ.

Therefore, ∥∥∥∥∥
[
εAΦ̃x

εBΦ̃u

]∥∥∥∥∥
H∞

≤ ζ

1− ζ + ζ ≤ 2ζ

1− ζ .

The conclusion follows.

Proof of Theorem 4.1.10. As all of the assumptions of Lemma 4.1.12 are satisfied, optimiza-
tion problem (4.1.24) is feasible. We denote (Φ?

x,Φ
?
u, V?, γ?) the optimal solution of problem

(4.1.24). We denote

D̂ := ∆AΦ?
x + ∆BΦ?

u +
1

zL
V?.

Then, we have

[
zI − A? −B?

] [Φ?
x

Φ?
u

]
= I + D̂.

Applying the triangle inequality, and leveraging Proposition 4.1.5, we can verify that

‖D̂‖H∞ ≤
√

2

∥∥∥∥[εAΦ?
x

εBΦ?
u

]∥∥∥∥
H∞

+ ‖V?‖2 ≤ γ? < 1,

where the last two inequalities are true because the optimal solution is a feasible point of
the optimization problem (4.1.24).

We now apply Lemma 4.1.4 to characterize the response achieved by the FIR approximate
controller KL on the true system (A?, B?):

J(A?, B?,KL) =

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φ?
x

Φ?
u

]
(I + D̂)−1

∥∥∥∥
H2

≤ 1

1− γ?

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φ?
x

Φ?
u

]∥∥∥∥
H2

.

Denote by (Φ̃x, Φ̃u, Ṽ , γ̃) the feasible solution constructed in Lemma 4.1.12, and let

JL(Â, B̂,K?) denote the truncation of the LQR cost achieved by controller K? on system

(Â, B̂) to its first L time-steps.
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Then,

1

1− γ?

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φ?
x

Φ?
u

]∥∥∥∥
H2

≤ 1

1− γ̃

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
Φ̃x

Φ̃u

]∥∥∥∥∥
H2

=
1

1− γ̃ JL(Â, B̂,K?)

≤ 1

1− γ̃ J(Â, B̂,K?)

≤ 1

1− γ̃
1

1− ‖∆‖H∞
J?,

where ∆ = −(∆A + ∆BK?)RA?+B?K? . The first inequality follows from the optimality of

(Φ?
x,Φ

?
u, V?, γ?), the equality and second inequality from the fact that (Φ̃x, Φ̃u) are trunca-

tions of the response of K? on (Â, B̂) to the first L time steps, and the final inequality by
following similar arguments to the proof of Theorem 4.1.8, and in applying Theorem 4.1.2.

Noting that
‖∆‖H∞ = ‖(∆A + ∆BK?)RA?+B?K?‖H∞ ≤ ζ < 1,

we then have that

J(A?, B?,KL) ≤ 1

1− γ̃
1

1− ζ J?,

Recalling that γ̃ = 4ζ
1−ζ , we obtain

J(A?, B?,KL)− J?
J?

≤ 1− ζ
1− 5ζ

1

1− ζ − 1 =
5ζ

(1− 5ζ)
≤ 10ζ,

where the last equality is true when ζ ≤ 1/10. The conclusion follows.
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4.2 Certainty equivalence

We analyze the certainty equivalence approach: use the estimates (Â, B̂) to solve the opti-
mization problem (4.0.1) while disregarding the modeling error, and use the resulting con-
troller on the true system (A?, B?). We interchangeably refer to the resulting policy as the
certainty equivalent controller or, following Dean et al. [41], the nominal controller. We

denote by P̂ the solution to the Riccati equation (4.0.2) associated with the parameters

(Â, B̂) and let K̂ be the corresponding controller. We denote by J(A,B,K) the cost (4.0.1)

obtained by using the actions ut = Kxt on the system (A,B), and we use Ĵ and J? to denote

J(A?, B?, K̂) and J(A?, B?, K?), respectively.

Let ε ≥ 0 such that ‖A? − Â‖ ≤ ε and ‖B? − B̂‖ ≤ ε. (Here and throughout this
work we use ‖·‖ to denote the Euclidean norm for vectors as well as the spectral (oper-
ator) norm for matrices.) Dean et al. [41] introduced a robust controller that achieves

Ĵ − J? ≤ C1(A?, B?, Q,R)ε for some complexity term C1(A?, B?, Q,R) that depends on the

problem parameters. We show that the nominal controller ut = K̂xt achieves Ĵ − J? ≤
C2(A?, B?, Q,R)ε2. Both results require ε to be sufficiently small (as a function of the prob-
lem parameters) and it is important to note that ε must be much smaller for the nominal
controller to be guaranteed to stabilize the system than for the robust controller proposed
by Dean et al. [41]. However, our result shows that once the estimation error ε is small
enough, the nominal controller performs better: the sub-optimality gap scales as O(ε2) ver-
sus O(ε). Both the more stringent requirement on ε and better performance of nominal
control compared to robust control, when the estimation error is sufficiently small, were
observed empirically by Dean et al. [41].

Before we can formally state our result we need to introduce a few more concepts and
assumptions. It is common to assume that the cost matrices Q and R are positive definite.
Under an additional observability assumption, this condition can be relaxed to Q being
positive semidefinite.

Assumption 7. The cost matrices Q and R are positive definite. Since scaling both Q and
R does not change the optimal controller K?, we can assume without loss of generality that
σmin(R) ≥ 1.

A square matrix M is stable if its spectral radius ρ(M) is (strictly) smaller than one.
Recall that the spectral radius is defined as ρ(M) = max{|λ| : λ is an eigenvalue of M}.
A linear dynamical system (A,B) in feedback with K is fully described by the closed loop
matrix A + BK. More precisely, in this case xt+1 = (A + BK)xt + wt. For a static linear
controller ut = Kxt to achieve finite LQR cost it is necessary and sufficient that the closed
loop matrix is stable.

In order to quantify the growth or decay of powers of a square matrix M , we define

τ(M,ρ) := sup
{
‖Mk‖ρ−k : k ≥ 0

}
. (4.2.1)
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In other words, τ(M,ρ) is the smallest value such that ‖Mk‖ ≤ τ(M,ρ)ρk for all k ≥ 0. We
note that τ(M,ρ) might be infinite, depending on the value of ρ, and it is always greater or
equal than one. If ρ is larger than ρ(M), we are guaranteed to have a finite τ(M,ρ) (this is
a consequence of Gelfand’s formula). In particular, if M is a stable matrix, we can choose
ρ < 1 such that τ(M,ρ) is finite. Also, we note that τ(M,ρ) is a decreasing function of ρ; if
ρ ≥ ‖M‖, we have τ(M,ρ) = 1. At a high level, the quantity τ(M,ρ) measures the degree
of transient response of the linear system xt+1 = Mxt + wt. In particular, when M is stable,
τ(M,ρ) can be upper bounded by the H∞-norm of the system defined by M , which is the
`2 to `2 operator norm of the system and a fundamental quantity in robust control [see 157,
for more details].

Throughout this work we use the quantities Γ? := 1 + max{‖A?‖, ‖B?‖, ‖P?‖, ‖K?‖} and
L? := A?+B?K?. We use Γ? as a uniform upper bound on the spectral norms of the relevant
matrices for the sake of algebraic simplicity. We are ready to state our meta theorem.

Theorem 4.2.1. Suppose p ≤ n. Let γ > 0 such that ρ(L?) ≤ γ < 1. Also, let ε > 0 such

that ‖Â − A?‖ ≤ ε and ‖B̂ − B?‖ ≤ ε and assume ‖P̂ − P?‖ ≤ f(ε) for some function f

such that f(ε) ≥ ε. Then, under Assumption 7 the certainty equivalent controller ut = K̂xt
achieves

Ĵ − J? ≤ 200σ2
w pΓ9

?

τ(L?, γ)2

1− γ2
f(ε)2, (4.2.2)

as long as f(ε) is small enough so that the right hand side is smaller than σ2
w.

In Section 4.2.4 we present two upper bounds f(ε) on ‖P̂ − P?‖: one based on a proof
technique proposed by Konstantinov et al. [79] and one based on our direct approach. Both
of these upper bounds satisfy f(ε) = O(ε) for ε sufficiently small. For simplicity, in this
section we only specialize our meta-theorem (Theorem 4.2.1) using the perturbation result
from our direct approach.

To state a specialization of Theorem 4.2.1 we need a few more concepts. A linear system
(A,B) is called controllable when the controllability matrix

[
B AB A2B . . . An−1B

]
has

full row rank. Controllability is a fundamental concept in control theory; it states that there
exists a sequence of inputs to the system (A,B) that moves it from any starting state to
any final state in at most n steps. In this work we quantify how controllable a linear system
is. We denote, for any integer ` ≥ 1, the matrix C` :=

[
B AB . . . A`−1B

]
and call the

system (`, ν)-controllable if the n-th singular value of C` is greater or equal than ν, i.e.

σmin(C`) =
√
λmin

(
C`C>`

)
≥ ν. Intuitively, the larger ν is, the less control effort is needed to

move the system between two different states.

Assumption 8. We assume the unknown system (A?, B?) is (`, ν)-controllable, with ν > 0.

Assumption 8 was used in a different context by Cohen et al. [36]. For any controllable
system and any ` ≥ n there exists ν > 0 such that the system is (`, ν)-controllable. Therefore,
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(`, ν)-controllability is really not much stronger of an assumption than controllability. As `
grows minimum singular value σmin(C`) also grows and therefore a larger ν can be chosen so
that the system is still (`, ν) controllable.

Note that controllability is not necessary for LQR to have a well-defined solution: the
weaker requirement is that of stabilizability, in which there exists a feedback matrix K so
that A? + B?K is stable. The result of Dean et al. [41] only requires stabilizability. While

our upper bound on ‖P̂ − P?‖ requires controllability, the result of Konstantinov et al. [79]

only requires stabilizability. However, our upper bound on ‖P̂ − P?‖ is sharper for some
classes of systems (see Section 4.2.4). Together with Theorem 4.2.1, our perturbation result,
presented in Section 4.2.4, yields the following guarantee.

Theorem 4.2.2. Suppose that p ≤ n. Let ρ and γ be two real values such that ρ(A?) ≤ ρ

and ρ(L?) ≤ γ < 1. Also, let ε > 0 such that ‖Â − A?‖ ≤ ε and ‖B̂ − B?‖ ≤ ε and define
β = max{1, ετ(A?, ρ) + ρ}. Under Assumptions 7 and 8, the certainty equivalent controller

ut = K̂xt satisfies the suboptimality gap

Ĵ − J? ≤ O(1)σ2
w p `

5 Γ15
? τ(A?, ρ)6β4(`−1) τ(L?, γ)2

1− γ2

max{‖Q‖2, ‖R‖2}
min {σmin(Q)2, σmin(R)2}

(
1 +

1

ν

)2

ε2 ,

(4.2.3)

as long as the right hand side is smaller than σ2
w. Here, O(1) denotes a universal constant.

The exact form of Equation 4.2.3, such as the polynomial dependence on `, Γ?, etc, can
be improved at the expense of conciseness of the expression. In our proof we optimized for
the latter. The factor max{‖Q‖2, ‖R‖2}/min {σmin(Q)2, σmin(R)2} is the squared condition
number of the cost function, a natural quantity in the context of the optimization prob-
lem (4.0.1), which can be seen as an infinite dimensional quadratic program with a linear

constraint. The term τ(L?,γ)2

1−γ2 quantifies the rate at which the optimal controller drives the
state towards zero. Generally speaking, the less stable the optimal closed loop system is, the
larger this term becomes.

An interesting trade-off arises between the factor `5β4(`−1) (which arises from upper
bounding perturbations of powers of A? on a time interval of length `) and the factor ν
(the lower bound on σmin(C`)), which is increasing in `. Hence, the parameter ` should be
seen as a free-parameter that can be tuned to minimize the right hand side of (4.2.3). Now,
we specialize Theorem 4.2.2 to a few cases.

Case: A? is contractive, i.e. ‖A?‖ < 1. In this case, we can choose ρ = ‖A?‖ and ε
small enough so that ε ≤ 1− ‖A?‖. Then, (4.2.3) simplifies to:

Ĵ − J? ≤ O(1) p σ2
w `

5 Γ15
?

τ(L?, γ)2

1− γ2

max{‖Q‖2, ‖R‖2}
min {σmin(Q)2, σmin(R)2}

(
1 +

1

ν

)2

ε2 .
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Case: B? has rank n . In this case, we can choose ` = 1. Then, (4.2.3) simplifies to:

Ĵ − J? ≤ O(1) p σ2
w Γ15

? τ(A?, ρ)6 τ(L?, γ)2

1− γ2

max{‖Q‖2, ‖R‖2}
min {σmin(Q)2, σmin(R)2}

(
1 +

1

ν

)2

ε2 .

4.2.1 Comparison to robust LQR

In Section 4.1 we saw that when our robust synthesis procedure is run with estimates (Â, B̂)

satisfying max{‖Â − A?‖, ‖B̂ − B?‖} ≤ ε ≤ [5(1 + ‖K?‖)Ψ?]
−1, the resulting controller

satisfies:

Ĵ − J? ≤ 10(1 + ‖K?‖)Ψ?J?ε+O(ε2) . (4.2.4)

Here, the quantity Ψ? := supz∈T‖(zIn − L?)−1‖ is the H∞-norm of the optimal closed loop
system L?. In order to compare Equation 4.2.4 to Equation 4.2.3, we upper bound the
quantity Ψ? in terms of τ(L?, γ) and γ. In particular, by a infinite series expansion of the

inverse (zIn − L?)
−1 we can show Ψ? ≤ τ(L?,γ)

1−γ . Also, we have J? = σ2
w Tr(P?) ≤ σ2

wnΓ?.
Therefore, Equation 4.2.4 gives us that:

Ĵ − J? ≤ O(1)nσ2
wΓ2

?

τ(L?, γ)

1− γ ε+O(ε2) .

We see that the dependence on the parameters Γ? and τ(L?, γ) is significantly milder com-
pared to Equation 4.2.3. Furthermore, this upper bound is valid for larger ε than the upper
bound given in Theorem 4.2.2. Comparing these upper bound suggests that there is a price
to pay for obtaining a fast rate, and that in regimes of moderate uncertainty (moderate size
of ε), being robust to model uncertainty is important. This observation is supported by the
empirical results of Dean et al. [41].

A similar trade-off between slow and fast rates arises in the setting of first-order convex
stochastic optimization. The convergence rate O(1/

√
T ) of the stochastic gradient descent

method can be improved to O(1/T ) under a strong convexity assumption. However, the
performance of stochastic gradient descent, which can achieve a O(1/T ) rate, is sensitive
to poorly estimated problem parameters [104]. Similarly, in the case of LQR, the nominal
controller achieves a fast rate, but it is much more sensitive to estimation error than the
robust controller of Dean et al. [41].

End-to-end guarantees. Theorem 4.2.2 can be combined with finite sample learning
guarantees as the ones described in Chapter 3 to obtain an end-to-end guarantee similar to
Proposition 1.2 of Dean et al. [41]. In general, estimating the transition parameters from
N samples yields an estimation error that scales as O(1/

√
N). Therefore, Theorem 4.2.2

implies that Ĵ−J? ≤ O(1/N) instead of the Ĵ−J? ≤ O(1/
√
N) rate from Proposition 1.2 of

Dean et al. [41]. This is similar to the case of linear regression, where O(1/
√
N) estimation

error for the parameters translates to a O(1/N) fast rate for prediction error. Furthermore,
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we discussed in Chapter 3 that faster estimation rates are possible for some linear dynamical
systems. Theorem 4.2.2 translates such rates into control suboptimality guarantees in a
transparent way.

Our result explains the behavior observed in Figure 4 of Dean et al. [41]. The authors
propose two procedures for synthesizing robust controllers for LQR with unknown transi-
tions: one which guarantees robustness of the performance gap Ĵ − J?, and one which only
guarantees the stability of the closed loop system. Dean et al. [41] observed that the latter
performs better in the small estimation error regime, which happens because the robust-
ness constraint of the synthesis procedure becomes inactive when the estimation error is
small enough. Then, the second robust synthesis procedure effectively outputs the certainty
equivalent controller, which we now know to achieve a fast rate.

4.2.2 Implications for the online setting

The regret formulation of adaptive LQR was first proposed by Abbasi-Yadkori and Szepesvári
[1]. The task is to design an adaptive algorithm {ut}t≥0 to minimize regret, as defined by
Regret(T ) :=

∑T
t=1 x>t Qxt + u>t Rut − TJ?. Abbasi-Yadkori and Szepesvári [1] study the

performance of optimism in the face of uncertainty (OFU) and show that it has Õ(
√
T )

regret, which is nearly optimal for this problem formulation. However, the OFU algorithm
requires repeated solutions to a non-convex optimization problem for which no known effi-
cient algorithm exists.

To deal with the computational issues of OFU, Dean et al. [42] propose to analyze
the behavior of ε-greedy exploration using the suboptimality gap results shown in Sec-
tion 4.1. In the context of continuous control, ε-greedy exploration refers to the applica-
tion of the control law ut = π(xt,xt−1, ...,x0) + ηt with ηt ∼ N (0, σ2

η,tIp), where π is the
policy, updated in epochs, and σ2

η,t is the variance of the exploration noise. Dean et al.

[42] set the variance of the exploration noise as σ2
η,t ∼ t−1/3, and show that their method

achieves Õ(T 2/3) regret. They use epochs of size 2i and decompose the regret roughly as

Regret(T ) = O
(
T (Ĵ − J?) + Tσ2

η,T

)
. Since the estimation error of the model parameters

scales asO((ση,T
√
T )−1), and since the suboptimality gap Ĵ−J? of the robust controller is lin-

ear in the estimation error, we have Regret(T ) = O
( √

T
ση,T

+ Tσ2
η,T

)
. Then, setting σ2

η,t ∼ t−1/3

balances these two terms and yields Õ(T 2/3) regret. However, Theorem 4.2.2, which states

that the gap Ĵ − J? for the nominal controller depends quadratically on the estimation

rate, implies that online certainty equivalent control achieves Regret(T ) = O
(

1
σ2
η,T

+ Tσ2
η,T

)
.

Here, the optimal variance of the exploration noise scales as σ2
η,t ∼ t−1/2, yielding Õ(

√
T )

regret. We note that the observation that certainty equivalence coupled with ε-greedy ex-
ploration achieves Õ(

√
T ) regret was first made by Faradonbeh et al. [46].
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Corollary 4.2.3. (Informal) ε-greedy exploration with exploration schedule σ2
η,t ∼ t−1/2

combined with certainty equivalent control yields an adaptive LQR algorithm with regret
bounded as Õ(

√
T ).

4.2.3 Proof of a meta-theorem

In this section we prove our meta theorem; we show how an upper bound ‖P̂ − P?‖ ≤ f(ε)
can be used to quantify the mismatch between the performance of the the nominal controller
and the optimal controller. First, we upper bound ‖K̂ −K?‖ and offer a condition on this

mismatch size so that A? + B?K̂ is a stable matrix. The next two optimization results are
helpful in proving ‖K̂ −K?‖ is small.

Lemma 4.2.4. Let f1, f2 be two µ-strongly convex twice differentiable functions. Let x1 =
arg minx f1(x) and x2 = arg minx f2(x). Suppose ‖∇f1(x2)‖ ≤ ε, then ‖x1 − x2‖ ≤ ε

µ
.

Proof. Taylor expanding ∇f1, we have:

∇f1(x2) = ∇f1(x1) +∇2f1(x̃)(x2 − x1) = ∇2f1(x̃)(x2 − x1) .

for x̃ = tx1 + (1− t)x2 with some t ∈ [0, 1]. Therefore:

µ‖x1 − x2‖ ≤ ‖∇2f1(x̃)(x2 − x1)‖ = ‖∇f1(x2)‖ ≤ ε .

Lemma 4.2.5. Define fi(u; x) = 1
2
uTRu + 1

2
(Aix + Biu)TPi(Aix + Biu) for i = 1, 2, with

R, P1, and P2 positive definite matrices. Let Ki be the unique matrix such that ui :=
arg minu fi(u; x) = Kix for any vector x. Denote Γ := 1 + max{‖A1‖, ‖B1‖, ‖P1‖, ‖K1‖}.
Suppose there exists ε such that 0 ≤ ε < 1 and ‖A1 − A2‖ ≤ ε, ‖B1 − B2‖ ≤ ε, and
‖P1 − P2‖ ≤ ε. Then, we have

‖K1 −K2‖ ≤
7εΓ3

σmin(R)
.

Proof. We first compute the gradient ∇fi(u; x) with respect to u:

∇fi(u; x) = (BT
i PiBi +R)u +BT

i PiAix .

Now, we observe that:

‖BT
1 P1B1 −BT

2 P2B2‖ ≤ 7Γ2ε and ‖BT
1 P1A1 −BT

2 P2A2‖ = 7Γ2ε.

Hence, for any vector x with ‖x‖ ≤ 1, we have

‖∇f1(u; x)−∇f2(u; x)‖ ≤ 7Γ2ε(‖u‖+ 1).

We can bound ‖u1‖ ≤ ‖K1‖‖x‖ ≤ ‖K1‖. Then, from Lemma 4.2.4 we obtain

σmin(R)‖(K1 −K2)x‖ = σmin(R)‖u1 − u2‖ ≤ 7Γ3ε.
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Recall that Γ? := 1 + max{‖A?‖, ‖B?‖, ‖P?‖, ‖K?‖}. Now, we upper bound ‖K̂ −K?‖.

Proposition 4.2.6. Let ε > 0 such that ‖Â − A?‖ ≤ ε and ‖B̂ − B?‖ ≤ ε. Also, let

‖P̂ − P?‖ ≤ f(ε) for some function f such that f(ε) ≥ ε. Then, under Assumption 7 we
have

‖K̂ −K?‖ ≤ 7Γ3
? f(ε). (4.2.5)

Let γ be a real number such that ρ(L?) < γ < 1. Then, if f(ε) is small enough so that the
right hand side of (4.2.5) is smaller than 1−γ

2τ(L?,γ)
, we have

τ

(
A? +B?K,

1 + γ

2

)
≤ τ(L?, γ).

Proof. By our assumptions ‖Â − A?‖, ‖B̂ − B?‖, and ‖P̂ − P?‖ are smaller than f(ε), and
σmin(R) ≥ 1. Then, Lemma 4.2.5 ensures that

‖K̂ −K?‖ ≤ 7Γ3
? f(ε).

Finally, when ε is small enough so that the right hand side of (4.2.5) is smaller or equal
than 1−γ

2τ(A?+B?K?,γ)
, we can apply Lemma 4.2.11, presented in Section 4.2.4, to guarantee that

‖(A? +B?K̂)k‖ ≤ τ(A? +B?K?, γ)
(

1+γ
2

)k
for all k ≥ 0.

In order to finish the proof of Theorem 4.2.1 we need to quantify the suboptimality
gap Ĵ − J? in terms of the controller mismatch K̂ − K?. For a stable matrix L and a
symmetric matrix M , we let dlyap(L,M) denote the solution X to the Lyapunov equation
L>XL − X + M = 0. The following lemma offers a useful second order expansion of the
average LQR cost.

Lemma 4.2.7 (Lemma 12 of Fazel et al. [49]). Let K be an arbitrary static linear controller
that stabilizes (A?, B?). Denote Σ(K) := dlyap((A? +B?K)T, σ2

wIn) the covariance matrix of
the stationary distribution of the closed loop system A? +B?K. We have that:

J(A?, B?, K)− J? = Tr(Σ(K)(K −K?)
T(R +BT

? P?B?)(K −K?)) . (4.2.6)

Now, we have the necessary ingredients to complete the proof of Theorem 4.2.1. Equa-
tion 4.2.6 implies:

J(A?, B?, K)− J? ≤ ‖Σ(K)‖‖R +BT
? P?B?‖‖K −K?‖2

F .

Proposition 4.2.6 states that K̂ stabilizes the system (A?, B?) when the estimation er-
ror is small enough. More precisely, under the assumptions of Theorem 4.2.1, we have
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τ
(
A? +B?K̂,

1+γ
2

)
≤ τ(L?, γ). When L̂ = A? + B?K̂ is a stable matrix we know that

Σ(K) = σ2
∑

t≥0(L>)tLt. Then, by the triangle inequality we can bound

‖Σ(K)‖ ≤ σ2
wτ(L?, γ)2

1−
(
γ+1

2

)2 ≤
4σ2

wτ(L?, γ)2

1− γ2
.

Recalling that Γ? := 1 + max{‖A?‖, ‖B?‖, ‖P?‖, ‖K?‖}, we have ‖R+BT
? P?B?‖ ≤ Γ3. Then,

J(K)− J? ≤ 4σ2
wΓ3 τ(L?, γ)2

1− γ2
‖K −K?‖2

F

≤ 4σ2
w min{n, p}Γ3 τ(L?, γ)2

1− γ2
‖K −K?‖2

≤ 200σ2
wdΓ9 τ(L?, γ)2

1− γ2
f(ε)2,

where we used Proposition 4.2.6 and the assumption on f(ε).

4.2.4 Riccati perturbation theory

As discussed in Section 3.3.2, a key piece of our analysis is bounding the solutions to discrete
Riccati equations as we perturb the problem parameters. Specifically, we are interested in
quantities b, L such that ‖P̂ − P?‖ ≤ Lε if ε < b, where ε represents a bound on the
perturbation. We note that it is not possible to find universal values b, L. Consider the
systems (A?, B?) = (1, ε) and (Â, B̂) = (1, 0); the latter system is not stabilizable and hence

P̂ does not even exist. Therefore, b and L must depend on the system parameters.
While there is a long line of work analyzing perturbations of Riccati equations, we are

not aware of any result that offers explicit and easily interpretable b and L for a fixed
(A?, B?, Q,R); see Konstantinov et al. [80] for an overview of this literature. In this section,
we present two new results for Riccati perturbation which offer interpretable bounds. The
first one expands upon the operator-theoretic proof of Konstantinov et al. [79]. In this result
we assume the cost matrix Q can also be perturbed, which is needed for our LQG guarantee.
In order to be consistent we denote the true cost matrix by Q? and the estimated one by Q̂.

Proposition 4.2.8. Let γ ≥ ρ(L?) and also let ε such that ‖Â − A?‖, ‖B̂ − B?‖, and

‖Q̂−Q?‖ are at most ε. Let ‖·‖+ = ‖·‖+ 1. We assume that R � 0, (A?, B?) is stabilizable,
(Q1/2, A?) observable, and σmin(P?) ≥ 1.

‖P̂ − P?‖ ≤ O(1) ε
τ(L?, γ)2

1− γ2
‖A?‖2

+‖P?‖2
+‖B?‖+‖R−1‖+,

as long as

ε ≤ O(1)
(1− γ2)2

τ(L?, γ)4
‖A?‖−2

+ ‖P?‖−2
+ ‖B?‖−3

+ ‖R−1‖−2
+ min

{
‖L?‖−2

+ , ‖P?‖−1
+

}
.
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We note that the assumption σmin(P?) ≥ 1 can be made without loss of generality when
the other assumptions are satisfied. When R � 0 and (Q1/2, A) observable, the value function
matrix P? is guaranteed to be positive definite. Then, by rescalling Q and R we can ensure
that σmin(P?) ≥ 1.

We now present our direct approach, which uses Assumption 8 to give a bound which is
sharper for some systems (A?, B?) then the one provided by Proposition 4.2.8. Recall that
any controllable system is always (`, ν)-controllable for some ` and ν.

Proposition 4.2.9. Let ρ ≥ ρ(A?) and also let ε ≥ 0 such that ‖Â−A?‖ ≤ ε and ‖B̂−B?‖ ≤
ε. Let β := max{1, ετ(A?, ρ) + ρ}. Under Assumptions 7 and 8 we have

‖P̂ − P?‖ ≤ 32 ε `
5
2 τ(A?, ρ)3β2(`−1)

(
1 +

1

ν

)
(1 + ‖B?‖)2‖P?‖

max{‖Q‖, ‖R‖}
min{σmin(R), σ(Q)} ,

as long as ε is small enough so that the right hand side is smaller or equal than one.

We return to the proof of this result shortly. For now, we note that Proposition 4.2.9 can
also be extended to handle perturbations in the cost matrix Q, as we describe in the proof.
Proposition 4.2.9 requires an (`, ν)-controllable system (A?, B?), whereas Proposition 4.2.8
only requires a stabilizable system, which is a milder assumption. However, Proposition 4.2.9
can offer a sharper guarantee. For example, consider the linear system with two dimensional

states (n = 2) given by A? = 1.01 · I2 and B? =

[
1 0
0 β

]
. Both Q and R are chosen to be

the identity matrix I2. This system (A?, B?) is readily checked to be (1, β)-controllable. It
is also straightforward to verify that as β tends to zero, Proposition 4.2.8 gives a bound of
‖P̂−P?‖ = O(ε/β4), whereas Proposition 4.2.9 gives a sharper bound of ‖P̂−P?‖ = O(ε/β3).

Proof of Proposition 4.2.8. Given parameters (A,B,Q) (R is assumed fixed through-
out; Q is assumed positive semidefinite throughout) we denote by F (X,A,B,Q) the matrix
expression

F (X,A,B,Q) = X − A>XA+ A>XB(R +B>XB)−1B>XA−Q
= X − A>X

(
I +BR−1B>X

)−1
A−Q . (4.2.7)

Then, solving the Riccati equation associated with (A,B,Q) corresponds to finding the
unique positive definite matrix X such that F (X,A,B,Q) = 0. We denote by P? the
solution of the Riccati equation corresponding to the true system parameters (A?, B?) and

we denote by P̂ the solution associated with (Â, B̂, Q̂). Our goal is to upper bound ‖P̂ −P?‖
in terms of ε, where ε > 0 such that ‖Â− A?‖ ≤ ε, ‖B̂ −B?‖ ≤ ε, and ‖Q̂−Q?‖ ≤ ε.

We denote ∆P = P̂ − P?. The proof strategy goes as follows. Given the identities
F (P?, A?, B?, Q?) = 0 and F (P̂ , Â, B̂, Q̂) = 0 we construct an operator Φ such that ∆P is its
unique fixed point. Then, we show that the fixed point of Φ must have small norm when ε
is sufficiently small.
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We denote S? = B?R
−1B>? and Ŝ = B̂R−1B̂>. Also, recall that L? = A? + B?K?. For

any matrix X such that I + S?(P? +X) is invertible we have

F (P? +X,A?, B?, Q?) = X − L>?XL? + L>?X [I + S?(P? +X)]−1 S?XL?. (4.2.8)

To check this identity one needs to add F (P?, A?, B?, Q?), which is equal to zero, to the right
hand side of (4.2.8) and use the identity (I + B?R

−1B>? P?)
−1A? = A? + B?K?. This last

identity can be checked by recalling K? = −(R + B>? P?B?)
−1B>? P?A? and using the matrix

inversion formulat.
To write (4.2.8) more compactly we define the following two matrix operators

T (X) = X − L>?XL? and H(X) = L>?X (I + S?(P? +X))−1 S?XL?.

Then, Equation 4.2.8 becomes F (P? +X,A?, B?, Q?) = T (X) +H(X). Since Equation 4.2.8
is satisfied by any matrix X with I + S?(P? +X) invertible, the matrix equation

F (P? +X,A?, B?, Q?)− F (P? +X, Â, B̂, Q̂) = T (X) +H(X) (4.2.9)

has a unique symmetric solution X such that P? +X � 0. That solution is X = ∆P because
any solution of (4.2.9) must satisfy F (P? +X, Â, B̂, Q̂) = 0.

The linear map T : X 7→ X −L>?XL? has eigenvalues equal to 1− λiλj, where λi and λj
are eigenvalues of the closed loop matrix L?. Since L? is a stable matrix, the linear map T
must be invertible. Now, we define the operator

Φ(X) = T −1
(
F (P? +X,A?, B?, Q?)− F (P? +X, Â, B̂, Q̂)−H(X)

)
.

Then, solving for X in Equation 4.2.9 is equivalent to finding X satisfying P? +X � 0 such
that X = Φ(X). Hence, Φ has a unique symmetric fixed point X such that P? +X � 0 and
that is X = ∆P . Now, we consider the set

Sν :=
{
X : ‖X‖ ≤ ν, X = X>, P? +X � 0

}
and we show that for an appropriately chosen ν the operator Φ maps Sν into itself and is
also a contraction over the set Sν . If we show these two properties, Φ is guaranteed to have
a fixed point in the set Sν . However, since ∆P is the only possible fixed point of Φ in a set
Sν we find ‖∆P‖ ≤ ν.

We denote ∆A = Â−A?, ∆B = B̂−B?, ∆Q = Q̂−Q?, and ∆S = Ŝ−S?. By assumption
we have ‖∆A‖ ≤ ε, ‖∆B‖ ≤ ε, ‖∆Q‖ ≤ ε. Then, ‖∆S‖ ≤ 3‖B?‖‖R−1‖ε because ε ≤ ‖B?‖.
Lemma 4.2.10. Suppose the matrices X, X1, X2 belong to Sν, with ν ≤ min{1, ‖S?‖−1}.
Furthermore, we assume that ‖∆A‖ ≤ ε, ‖∆B‖ ≤ ε, and ‖∆Q‖ ≤ ε with ε ≤ min{1, ‖B?‖}.
Finally, let σmin(P?) ≥ 1. Then

‖Φ(X)‖ ≤ 3
τ(L?, γ)2

1− γ2

[
‖L?‖2‖S?‖ν2 + ε‖A?‖2

+‖P?‖2
+‖B?‖+‖R−1‖+

]
,

‖Φ(X1)− Φ(X2)‖ ≤ 32
τ(L?, γ)2

1− γ2

[
‖L?‖2‖S?‖ν + ε‖A?‖2

+‖P?‖3
+‖B?‖3

+‖R−1‖2
+

]
‖X1 −X2‖.
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Proof. We wish to upper bound ‖Φ(X)‖ and ‖Φ(X1)−Φ(X2)‖ forX, X1, andX2 in Sν . First,
we upper bound the operator norm of the linear operator T −1, the inverse of T : X 7→ X −
L>?XL?. Since L? is a stable matrix, the linear map T must be invertible. Moreover, when
L? is stable and X −L>?XL? = M for some matrix M , we know that X =

∑∞
k=0(Lk?)

>MLk?.
Therefore, by the triangle inequality, the operator norm of T −1 can be upper bounded by

‖T −1‖ ≤ τ(L?,ρ)2

1−ρ2 . Before we proceed with the rest of the proof we check the following fact.
For any positive semidefinite matrices M and N of the same dimension we have

‖N(I +MN)−1‖ ≤ ‖N‖. (4.2.10)

To check this, we assume that M and N are invertible. If they are not, we can work with
the matrices M + νI and N + νI and take the limit of ν going to zero. Then, we have
N(I +MN)−1 = NN−1(N−1 +M)−1 = (N−1 +M)−1 � N , which proves (4.2.10).

Now, ecall that H(X) = L>?X (I + S?(P? +X))−1 S?XL?. Then, fact (4.2.10) yields

‖H(X)‖ ≤ ‖L?‖2‖S?‖‖X‖2.

We turn our attention to the difference F (P? + X,A?, B?) − F (P? + X, Â, B̂). We use the
notation PX as a shorthand for P? +X. Then, by Equation 4.2.7 we find

F (PX , Â, B̂, Q̂)− F (PX , A?, B?, Q?) = A>? PX(I + S?PX)−1A? − Â>PX
(
I + ŜPX

)−1

Â−∆Q

= A>? PX(I + S?PX)−1∆SPX(I + ŜPX)−1A? − A>? PX(I + ŜPX)−1∆A

−∆>APX(I + ŜPX)−1A? −∆>APX(I + ŜPX)−1∆A −∆Q. (4.2.11)

Then,

‖F (P? +X, Â, B̂, Q̂)− F (P? +X,A?, B?, Q?)‖
≤ ‖A?‖2‖PX‖2‖∆S‖+ 2‖A?‖‖PX‖ε+ ‖PX‖ε2 + ε,

where we used fact (4.2.10). Since X ∈ Sν , we know ‖X‖ ≤ ν and hence ‖PX‖ ≤ ‖P?‖ +
ν. We assumed that ν ≤ 1/2 and so ‖PX‖ ≤ ‖P?‖ + 1. Now, we know that ‖∆S‖ ≤
2‖B?‖‖R−1‖ε + ‖R−1‖ε2 and since we assumed ε ≤ ‖B?‖, we have ‖∆S‖ ≤ 3‖B?‖‖R−1‖ε.
Therefore,

‖Φ(X)‖ ≤ τ(L?, ρ)2

1− ρ2

[
‖L?‖2‖S?‖ν2 + 3‖A?‖2

+‖P?‖2
+‖B?‖+‖R−1‖+ε

]
.

We use fact (4.2.10), the assumption ν ≤ ‖S?‖−1, and the definition of H to upper bound

‖H(X1)−H(X2)‖ ≤ ‖L?‖2
[
‖S?‖2ν2 + 2‖S?‖ν

]
‖X1 −X2‖ ≤ 3‖L?‖2‖S?‖ν‖X1 −X2‖.

Let us denote G(X) = F (P? + X, Â, B̂, Q̂) − F (P? + X,A?, B?, Q?). In order to upper

bound ‖G(X1)− G(X2)‖ we first upper bound the norm of (I + S?PX)−1 and (I + ŜPX)−1.
Since ‖X‖ ≤ ν ≤ 1/2 and since P? � I, by fact 4.2.10 we get

‖(I + S?PX)−1‖ = ‖P−1
X PX(I + S?PX)−1‖ ≤ ‖P−1

X ‖‖PX(I + S?PX)−1‖ ≤ 2‖PX‖.
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Therefore, after some algebraic manipulations, we obtain

‖G(X1)− G(X2)‖ ≤ 32ε‖A?‖2
+‖P?‖3

+‖B?‖3
+‖R−1‖2

+‖X1 −X2‖.

Now, we choose

ν = 6 ε
τ(L?, γ)2

1− γ2
‖A?‖2

+‖P?‖2
+‖B?‖+‖R−1‖+. (4.2.12)

Since ε is assumed to be small enough, we know

ν ≤ min

{
1− γ2

128τ(L?, γ)2‖L?‖2‖S?‖
, ‖S?‖−1,

1

2

}
.

Then, the operator Φ satisfies ‖Φ(X1) − Φ(X2)‖ ≤ 1
2
‖X1 − X2‖ for all X1 and X2 in Sν .

Moreover, we have ‖Φ(X)‖ ≤ ν for all X ∈ Sν . Since ν ≤ σmin(P?), we know that P? +
Φ(X) � 0

Therefore, Φ maps Sν into itself and is a contraction over Sν . Hence, Φ has a fixed point
in Sν since Sν is a closed set. However, we already argued that the unique fixed point of Φ
is ∆P . Therefore, ∆P ∈ Sν and ‖∆P‖ ≤ ν. Proposition 4.2.8 is now proven.

Proof of Proposition 4.2.9. Since both noisy and noiseless LQR have the same associated
Riccati equation and the same optimal controller, we can focus on the noiseless case in this
section. Namely, noiseless LQR takes the form

min
u

∞∑
t=0

x>t Qxt + u>t Rut , where xt+1 = A?xt +B?ut,

for a given initial state x0. Then, we know that the cost achieved by the optimal controller
when the system is initialized at x0 is equal to x>0 P?x0.

We denote by J(A,B,x0, {ut}t≥0) the cost achieved on a linear system (A,B) initialized
at x0 by the input sequence {ut}t≥0. When the input sequence is given by a time invariant
linear gain matrix K we slightly abuse notation and denote the cost by J(A,B,x0, K). In this
case, J(A,B,x0, K) = x>0 Px0, where P is the solution to the associated Riccati equation.

Now, let x0 be an arbitrary unit state vector in Rn. Then,

x>0 P̂x0 − x>0 P?x0 = J(Â, B̂,x0, K̂)− J(A?, B?,x0, K?)

≤ J(Â, B̂,x0, {ût}t≥0)− J(A?, B?,x0, K?)

for any sequence of inputs {ût}t≥0. We denote by x̂t the states produced by ût on the system

(Â, B̂) and by xt and ut the states and actions obtained on the system (A?, B?) when the
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optimal controller ut = K?xt is used. To prove Proposition 4.2.9 we choose a sequence of
actions {ût}t≥0 such that J(Â, B̂,x0, {ût}t≥0) ≈ J(A?, B?,x0, K?).

For any sequence of inputs {ût}t≥0 such that the series defining J(Â, B̂,x0, {ût}t≥0) is
absolutely convergent, we can write

J(Â, B̂,x0, K̂)− J(A?, B?,x0, K?) =
∞∑
j=0

`−1∑
i=0

[
x̂>`j+iQx̂`j+i − x>`j+iQx`j+i

]
(4.2.13)

+
∞∑
j=0

`−1∑
i=0

[
û>`j+iRû`j+i − u>`j+iRu`j+i

]
.

Then, the key idea is to choose a sequence of inputs {ût}t≥0 such that the system (Â, B̂)
tracks the system (A?, B?, K?), i.e., x̂`j = x`j for any j ≥ 0 ( x̂0 = x0 because both systems

are initialized at the same state). This can be done because (Â, B̂) is (`, τ/2)-controllable
when (A?, B?) is (`, τ)-controllable and the estimation error is sufficiently small, as shown in
Lemma 4.2.12. First, we present a result that quantifies the effect of matrix perturbations
on powers of matrices.

Lemma 4.2.11. Let M be an arbitrary matrix in Rn×n and let ρ ≥ ρ(M). Then, for all
k ≥ 1 and real matrices ∆ of appropriate dimensions we have

‖(M + ∆)k‖ ≤ τ(M,ρ)(τ(M,ρ)‖∆‖+ ρ)k,

‖(M + ∆)k −Mk‖ ≤ k τ(M,ρ)2(τ(M,ρ)‖∆‖+ ρ)k−1‖∆‖.
Recall that τ(M,ρ) is defined in Equation 4.2.1.

Proof. This proof is a simple modification of Lemma D.1 in [41]. We replicate the argument
here for completeness.

Fix an integer k ≥ 1. Consider the expansion of (M + ∆)k into 2k terms. Label all these
terms as Ti,j for i = 0, ..., k and j = 1, ...,

(
k
i

)
where i denotes the degree of ∆ in the term

(hence there are
(
k
i

)
terms with a degree of i for ∆). Using the fact that ‖Mk‖ ≤ τ(M,ρ)ρk

for all k ≥ 0, we can bound ‖Ti,j‖ ≤ τ(M,ρ)i+1ρk−i‖∆‖i. Hence by triangle inequality:

‖(M + ∆)k‖ ≤
k∑
i=0

∑
j

‖Ti,j‖

≤
k∑
i=0

(
k

i

)
τ(M,ρ)i+1ρk−i‖∆‖i

= τ(M,ρ)
k∑
i=0

(
k

i

)
(τ(M,ρ)‖∆‖)iρk−i

= τ(M,ρ)(τ(M,ρ)‖∆‖+ ρ)k.
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To prove the first part of the lemma we follow the same argument. We find

‖(M + ∆)k −Mk‖ ≤
k∑
i=1

∑
j

‖Ti,j‖

≤
k∑
i=1

(
k

i

)
τ(M,ρ)i+1ρk−i‖∆‖i

= τ(M,ρ)
k∑
i=1

(
k

i

)
(τ(M,ρ)‖∆‖)iρk−i

= τ(M,ρ)
[
(τ(M,ρ)‖∆‖+ ρ)k − ρk

]
≤ kC2

M(τ(M,ρ)‖∆‖+ ρ)k−1‖∆‖ ,

where the last inequality follows from the mean value theorem applied to the function z 7→
zk.

Lemma 4.2.11 quantifies the effect of a perturbation ∆, applied to a matrix M on the
spectral radius of M + ∆. We are interested in quantifying the sizes of these perturbations
for all k = 1, 2, . . . , `. Depending on ‖∆‖, M , and ρ the sum τ(M,ρ)‖∆‖ + ρ can either
be greater than one or smaller than one. For notational simplicity, in the rest of the proof
we denote β = max{1, ετ(A?, ρ) + ρ}. Then, we have ‖(A? + ∆)k‖ ≤ τ(A?, ρ)β`−1 and
‖(A? + ∆)k −Ak?‖ ≤ `τ(A?, ρ)2β`−1ε for all k ≤ `− 1 and all real matrices ∆ with ‖∆‖ ≤ ε.

We denote C` =
[
B? A?B? . . . A`−1

? B?

]
and Ĉ` =

[
B̂ ÂB̂ . . . Â`−1B̂

]
. Before

presenting the next result we recall that for any block matrix M with blocks Mi,j we have
‖M‖2 ≤ ∑i,j ‖Mi,j‖2. The next lemma gives us control over the smallest positive singular

value of the controllability matrix Ĉ` in terms of the corresponding value for C`.

Lemma 4.2.12. Suppose the linear (A?, B?) is (`, ν)-controllable and let ρ be a real number

such that ρ ≥ ρ(A?). Then, if ‖Â− A?‖ ≤ ε and ‖B̂ −B?‖ ≤ ε, we have

σ(Ĉ`) ≥ τ − 3ε`
3
2 τ(A?, ρ)2 max{1, τ(A?, ρ)‖∆‖+ ρ}`−1 (‖B?‖+ 1) .

Proof. We can write

σ
([
B̂ ÂB̂ . . . Â`−1B̂

])
= min

v∈Sn−1

∥∥∥v> [B̂ ÂB̂ . . . Â`−1B̂
]∥∥∥ .
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Fix an arbitrary unit vector v in Rp. Then,∥∥∥v> [B? A?B? . . . A`−1
? B?

]
− v>

[
B̂ ÂB̂ . . . Â`−1B̂

]∥∥∥
≤
∥∥∥v> [B? A?B? . . . A`−1

? B?

]
− v>

[
B? ÂB? . . . Â`−1B?

]∥∥∥
+
∥∥∥v> [B? ÂB? . . . Â`−1B?

]
− v>

[
B̂ ÂB̂ . . . Â`−1B̂

]∥∥∥
≤ ε`

3
2 τ(A?, ρ)2β`−1‖B?‖+ ε

√
`τ(A?, ρ, β)`−1

≤ ε`
3
2 τ(A?, ρ)2β`−1 (‖B?‖+ 1) .

We used ` ≥ 1, τ(A?, ρ) ≥ 1, Lemma 4.2.11, and the upper bound ‖M‖2 ≤∑i,j‖Mi,j‖2 on
the operator norm of a block matrix. The conclusion follows by the triangle inequality.

Lemma 4.2.12 tells us that by the assumption made in Proposition 4.2.9 on ε, we have
σ(Ĉ`) ≥ τ`

2
. Hence, we know that for any x0 ∈ Rn and u0,u1, . . . ,u`−1 ∈ Rp, there exist

û0, û1, . . . , û`−1 ∈ Rp such that

A`?x0 +
`−1∑
i=0

Ai?B?u`−1−i = Â`x0 +
`−1∑
i=0

ÂiB̂û`−1−i (4.2.14)

because the system (Â, B̂) is controllable. This equation implies that x̂` = x`.
We denote the concatenation of ui, for i from 0 to `−1 by u(`). We define û(`) analogously.

Therefore, Equation (4.2.14) can be rewritten as(
A`? − Â`

)
x0 +

(
C` − Ĉ`

)
u(`) = Ĉ`(û(`) − u(`)). (4.2.15)

Recall that β = max{1, τ(A?, ρ)‖∆‖ + ρ}. Combining Lemma 4.2.11 and the upper bound

on operator norms of block matrices we find ‖Ĉ` − C`‖ ≤ ε`
3
2 τ(A?, ρ)2β`−1 (‖B?‖+ 1).

We are free to choose û(`) anyway we wish as long as Equation (4.2.15) is true. Therefore,

we can choose û(`) such that û(`) − u(`) is perpendicular to the nullspace of Ĉ`. Then,

τ`
2
‖û(`) − u(`)‖ ≤ ‖Ĉ`(û(`) − u(`))‖ ≤ ε`τ(A?, ρ)2β`−1‖x0‖+ ‖Ĉ` − C`‖‖u(`)‖

≤ ε`τ(A?, ρ)2β`−1‖x0‖+ ε`
3
2 τ(A?, ρ)2β`−1 (‖B?‖+ 1) ‖u(`)‖.

Hence,

‖û(`) − u(`)‖ ≤ 2ε`
3
2

τ`
τ(A?, ρ)2β`−1(‖B?‖+ 1)

(
‖x0‖+ ‖u(`)‖

)
=: η

(
‖x0‖+ ‖u(`)‖

)
. (4.2.16)
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Let us consider the block Toeplitz matrix

T` =


0 0 0 . . . 0
B? 0 0 · · · 0
A?B? B? 0 · · · 0

... · · · · · · · · · · · ·
A`−2
? B? A`−3

? B? · · · B? 0

 .

From Lemma 4.2.11 and the upper bound on operator norms of block matrices we have
‖T` − T̂`‖ ≤ ε`2τ(A?, ρ)2β`−2(‖B?‖+ 1). Let x(`) be the concatenation of the vectors x0, x1,
. . . , x`−1. Then,

x(`) = T`u(`) +


In
A?
...

A`−1

x0.

Hence,

‖x(`) − x̂(`)‖ ≤ ‖T`u(`) − T̂`û(`)‖+ ε`
3
2 τ(A?, ρ)2β`−2‖x0‖

≤ ‖T`u(`) − T̂`u(`)‖+ ‖T̂`u(`) − T̂`û(`)‖+ ε`
3
2 τ(A?, ρ)2β`−2‖x0‖

≤ ‖T` − T̂`‖‖u(`)‖+ ‖T̂`‖‖u(`) − û(`)‖+ ε`
3
2 τ(A?, ρ)2β`−2‖x0‖

≤ ε`2τ(A?, ρ)2β`−2(‖B?‖+ 1)‖u(`)‖+ ε`
3
2 τ(A?, ρ)2β`−2‖x0‖

+ `τ(A?, ρ)β`−2(‖B?‖+ 1)‖u(`) − û(`)‖
≤ 2ε`

5
2 τ(A?, ρ)3β2(`−1)(1 + τ−1)(‖B?‖+ 1)2

[
‖x0‖+ ‖u(`)‖

]
=: µ

[
‖u(`)‖+ ‖x0‖

]
. (4.2.17)

In Equations (4.2.16) and (4.2.17) we proved that the inputs and states of the system (Â, B̂)
are close to the inputs and states of the system (A?, B?) from time 0 to `. Since the inputs to

the system (Â, B̂) satisfy Equation (4.2.15), we know that x̂`j = x`j for all j. We can repeat
the same argument as above, with x`j taking the place of x0, to show that the inputs and

states of the two systems are close to each other from time `j to `(j+1). Let us denote by x
(`)
j

the concatenation of the vectors x`j, x`j+1, . . . , x`j+`−1 and let u
(`)
j be defined analogously.

Then,

‖û(`)
j − u

(`)
j ‖ ≤ η

[
‖u(`)

j ‖+ ‖x`j‖
]
, and ‖x̂(`)

j − x
(`)
j ‖ ≤ µ

[
‖u(`)

j ‖+ ‖x`j‖
]
. (4.2.18)
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Now, we note that

x>0 P̂x0 − x>0 P?x0 ≤
∞∑
j=0

`−1∑
i=0

[
x̂>`j+iQx̂`j+i − x>`j+iQx`j+i

]
+
∞∑
j=0

`−1∑
i=0

[
û>`j+iRû`j+i − u>`j+iRu`j+i

]
≤

∞∑
j=0

2‖Q‖‖x(`)
j ‖‖x(`)

j − x̂
(`)
j ‖+ ‖Q‖‖x(`)

j − x̂
(`)
j ‖2

+
∞∑
j=0

2‖R‖‖u(`)
j ‖‖u(`)

j − û
(`)
j ‖+ ‖R‖‖u(`)

j − û
(`)
j ‖2 .

Now, we use the upper bounds from (4.2.18). We always have η ≤ µ. Since Proposition 4.2.9
assumes ε is small enough, we also have µ ≤ 1. Using these upper bounds, we find

Ĵ − J? ≤ µ
∞∑
j=0

2‖Q‖‖x(`)
j ‖
[
‖u(`)

j ‖+ ‖x`j‖
]

+ ‖Q‖
[
‖u(`)

j ‖+ ‖x`j‖
]2

+ µ
∞∑
j=0

2‖R‖‖u(`)
j ‖
[
‖u(`)

j ‖+ ‖x`j‖
]

+ ‖R‖
[
‖u(`)

j ‖+ ‖x`j‖
]2

.

Then, we get Ĵ − J? ≤ 8µmax{‖Q‖, ‖R‖}∑∞j=0 ‖x
(`)
j ‖2 + ‖u(`)

j ‖2 after using the inequalities

(a+ b)2 ≤ 2(a2 + b2) and 2ab ≤ a2 + b2. Now, As long as ‖x0‖ ≤ 1 we have

min{σ(Q), σ(R)}
∞∑
j=0

‖x(`)
j ‖2 + ‖u(`)

j ‖2 ≤
∞∑
t=0

x>t Qxt + u>t Rut = x>0 P?x0 ≤ ‖P?‖. (4.2.19)

Since the initial state is an arbitrary unit norm vector, our upper bound on x>0 (P̂ − P?)x0

becomes

λmax

(
P̂ − P?

)
≤ 16ε`

5
2 τ(A?, ρ)3β2(`−1)(1 + ν−1)(1 + ‖B?‖)2‖P?‖

max{‖Q‖, ‖R‖}
min{σ(Q), σ(R)} .

(4.2.20)

Now, we can reverse the roles of (Â, B̂) and (A?, B?) and repeat the same argument and

obtain an upper bound on λmax

(
P? − P̂

)
analogous to Equation (4.2.20), but which has ‖P?‖

replaced by ‖P̂‖ on the right hand side. However, (4.2.20) implies that ‖P̂‖ ≤ ‖P?‖ + 1 ≤
2‖P?‖ because we assumed that ε is small enough such that the right hand side of (4.2.20)
is less than one, and because P? � In. The conclusion follows.
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We note that the proof can be extended to the case when the cost matrix Q is also
being perturbed. Moreover, the only essiential step in the argument where we used Q � 0 is
(4.2.19). The goal of (4.2.19) is to upper bound

∑∞
j=0 ‖x

(`)
j ‖2 +‖u(`)

j ‖2. This quantity can be

upper bounded even when Q is not positive definite, but the system (Q1/2, A) is observable;
which is a necessary requirement for LQR on the parameters (A,B,Q,R) to stabilize the
system (A,B).

4.3 Related work

For the offline LQR batch setting, Fiechter [51] proved that the sub-optimality gap Ĵ −
J? scales as O(ε) for certainty equivalent control. A crucial assumption of his analysis is
that the nominal controller stabilizes the true unknown system. We give bounds on when
this assumption is valid. Recently, Dean et al. [41] proposed a robust controller synthesis
procedure which takes model uncertainty into account and whose suboptimality gap scales
as O(ε). Tu and Recht [156] show that the gap Ĵ − J? of certainty equivalent control scales
asymptotically as O(ε2); we provide a non-asymptotic analogue of this result. Fazel et al.
[49] and Malik et al. [93] analyze a model-free approach to policy optimization for LQR, in
which the controller is directly optimized from sampled rollouts. Malik et al. [93] showed
that, after collecting N rollouts, a derivative free method achieves a discounted cost gap that
scales as O(1/

√
N) or O(1/N), depending on the oracle model used.

In the online LQR adaptive setting it is well understood that using the certainty equiv-
alence principle without adequate exploration can result in a lack of parameter convergence
[see e.g. 14]. Abbasi-Yadkori and Szepesvári [1] showed that optimism in the face of uncer-

tainty (OFU), when applied to online LQR, yields Õ(
√
T ) regret.

Ibrahimi et al. [68] showed that when the underlying system is sparse, the dimension
dependent constants in the regret bound can be improved. The main issue with OFU for
LQR is that there are no known computationally tractable ways of implementing it. In order
to deal with this, both Dean et al. [42] and Abbasi-Yadkori et al. [3] propose polynomial

time algorithms for adaptive LQR based on ε-greedy exploration which achieve Õ(T 2/3)

regret. Only recently progress has been made on offering Õ(
√
T ) regret guarantees for

computationally tractable algorithms. Abeille and Lazaric [7] show that Thompson sampling

achieves Õ(
√
T ) (frequentist) regret for the case when the state and inputs are both scalars.

In a Bayesian setting Ouyang et al. [108] showed that Thompson sampling achieves Õ(
√
T )

expected regret. Faradonbeh et al. [46] argue that certainty equivalence control with an

epsilon-greedy-like scheme achieves Õ(
√
T ) regret, though their work does not provide any

explicit dependencies on instance parameters. Finally, Cohen et al. [37] also give an efficient

algorithm based on semidefinite programming that achieves Õ(
√
T ) regret.

The literature for LQG is less complete, with most of the focus on the estimation side.
Hardt et al. [61] show that gradient descent can be used to learn a model with good predictive
performance, under strong technical assumptions on the A matrix. A line of work [62, 63]
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has focused on using spectral filtering techniques to learn a predictive model with low regret.
Beyond predictive performance, several works [110, 142, 154] show how to learn the system
dynamics up to a similarity transform from input/output data. Finally, we remark that
Boczar et al. [21] give sub-optimality guarantees for output-feedback of a single-input-single-
output (SISO) linear system with no process noise.

A key part of our analysis involves bounding the perturbation of solutions to the discrete
algebraic Riccati equation. While there is a rich line of work studying perturbations of Riccati
equations [79, 80, 147, 148], the results in the literature are either asymptotic in nature or
difficult to use and interpret. We clarify the operator-theoretic result of Konstantinov et al.
[79] and provide an explicit upper bound on the perturbation based on their proof strategy.
Also, we take a new direct approach and use an extended notion of controllability to give
a constructive and simpler result. While the result of Konstantinov et al. [79] applies more
generally to systems that are stabilizable, we give examples of linear systems for which our
new perturbation result is tighter.
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Chapter 5

Multi-player bandits and matching
markets

We study an economic version of the multi-armed bandit (MAB) problem in which there are
multiple agents solving a bandit problem, and there is competition—if two or more agents
pick the same arm, only one of the agents is given a reward. We assume that the arms have
a preference ordering over the agents—a key point of departure from the line of work on
multi-player bandits with collisions [30, 34, 87, 136]—and this ordering is unknown a priori
to the agents.

We are motivated by problems involving two-sided markets that link producers and con-
sumers or workers and employers, where each side sees the other side via a recommendation
system, and where there is scarcity on the supply side (for example, a restaurant has a lim-
ited number of seats, a street has a limited capacity, or a worker can attend to one task at
a time). The overall goal is an economic one—we wish to find a stable matching between
producers and consumers. To study the core mathematical problems that arise in such a
setting, we have abstracted away the recommendation systems on the two sides, modeling
them via the preference orderings and the differing reward functions. Several massive online
labor and service markets can be captured by this abstraction; see the end of this section for
an illustration of an application. In the context of two-sided markets the arms’ preferences
can be explict, e.g. when the arms represent entities in the market with their own utilities
for the other side of the market, or implicit, e.g. when the arms represent resources their
“preferences” encode the skill levels of the agents in securing those resources.

To determine the appropriate notions of equilibria in our multi-agent MAB model, we
turn to the literature on stable matchings in two-sided markets [54, 56, 78, 120, 121]. Since its
introduction by Gale and Shapley [54], the stable matching problem has had high practical
impact, leading to improved matching systems for high-school admissions and labor markets
[119], house allocations with existing tenants [6], content delivery networks [92], and kidney
exchanges [122].

In spite of these advances, standard matching models tend to assume that entities in
the market know their preferences over the other side of the market. Models that allow
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unknown preferences usually assume that preferences can be discovered through one or few
interactions [13], e.g., one interview per candidate in the case of medical residents market
[119, 121]. These assumptions do not capture the statistical uncertainty inherent in problems
where data informs preferences. We discuss related work in further detail in Section 5.3.

In contrast, our work is motivated by modern matching markets which operate at scale
and require repeated interactions between the two sides of the market, leading to exploration-
exploitation tradeoffs. We consider two-sided markets in which entities on one side of the
market do not know their preferences over the other side, and develop matching and learning
algorithms that can provably attain a stable market outcome in this setting. Our contribu-
tions are as follows:

• We introduce a new model for understanding two-sided markets in which one side of
the market does not know its preferences over the other side, but is allowed multiple
rounds of interaction. Our model combines work on multi-armed bandits with work
on stable matchings. In particular, we define two natural notions of regret, based on
stable matchings of the market, which quantify the exploration-exploitation trade-off
for each individual agent.

• We extend the Explore-then-Commit (ETC) algorithm for single agent MAB to our
multi-agent setting. We consider two versions of ETC: centralized and decentralized.
For both versions we prove O(log(n)) problem-dependent upper bounds on the regret
of each agent.

• In addition to the known limitations of ETC for single agent MAB, in Section 5.2.2
we discuss other issues with ETC in the multi-agent setting. To address these issues
we introduce a centralized version of the well-known upper confidence bound (UCB)
algorithm. We prove that centralized UCB achieves O(log(n)) problem-dependent
upper bounds on the regret of each agent. Moreover, we show that centralized UCB is
incentive compatible.

Most of the above results can be extended to the case where arms also have uncertain
preferences over agents in a straightforward manner. For the sake of simplicity, we focus on
the setting where one side of market initiates the exploration and leave extensions of our
results to future work. The material presented in this chapter is based on the work by Liu
et al. [88].

Online labor markets Our model is applicable to matching problems that arise in online
labor markets (e.g., Upwork and Taskrabbit for freelancing, Handy for housecleaning) and
online crowdsourcing platforms (e.g., Amazon Mechanical Turks). In this case, the employ-
ers, each with a stream of similar tasks to be delegated, can be modeled as the players, and
the workers can be modeled as the arms. For an employer, the mean reward received from
each worker when a task is completed corresponds to how well the task was completed (e.g.,
did the Turker label the picture correctly?). This differs for each worker due to differing
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skill levels, which the employer does not know a priori and must learn by exploring different
workers. A worker has preferences over different types of tasks (e.g., based on payment or
prior familiarity the task) and can only work on one task at a time; hence they will pick
their most preferred task to complete out of all the tasks that are offered to them.

5.1 Problem setting

We denote the set of N agents by N = {p1, p2, . . . , pN} and the set of K arms by K =
{a1, a2, . . . , aK}. We assume N ≤ K. At time step t, each agent pi selects an arm mt(i),
where mt ∈ KN is the vector of all agents’ selections.

When multiple agents select the same arm only one agent is allowed to pull the arm,
according to the arm’s preferences via a mechanism we detail shortly. Then, if player pi
successfully pulls arm mt(i) at time t, they are said to be matched to mt(i) at time t and
they receive a stochastic reward Xi,mt(t) sampled from a 1-sub-Gaussian distribution with
mean µi(mt(i)).

Each arm aj has a fixed known ranking πj of the agents, where πj(i) is the rank of
player pi. In other words, πj is a permutation of [N ] and πj(i) < πj(i

′) implies that arm aj
prefers player pi to player pi′ . If two or more agents attempt to pull the same arm aj, there
is a conflict and only the top-ranked agent successfully pulls the arm to receive a reward;
the other agent(s) pi′ is said to be unmatched and does not receive any reward, that is,
Xi′,mt(t) = 0. As a shorthand, the notation pi �j pi′ means that arm aj prefers player pi
over pi′ . When arm aj is clear from context, we simply write pi � pi′ . Similarly, the notation
aj �i aj′ means that pi prefers arm aj over aj′ , i.e. µi(j) > µi(j

′).
We now proceed to develop suitable notions of regret for the agents. Recall that when

preferences are known on both sides, the goal is to attain a stable matching, where no pair
of agent and arm prefer each other over their respective matches and hence no pair has the
incentive to deviate. Given the full preference rankings of the arms and players, arm aj is
called a valid match of player pi if there exists a stable matching according to those rankings
such that aj and pi are matched.

We say aj is the optimal match of agent pi if it is the most preferred valid match. Similarly,
we say aj is the pessimal match of agent pi if it is the least preferred valid match. Given
complete preferences, the Gale-Shapley (GS) algorithm [54] finds a stable matching after
repeated proposals from one side of the market to the other. The matching returned by the
GS algorithm is always optimal for the proposing side and pessimal for the non-proposing
side [78]. We denote by m and m the functions from N to K that define the optimal and
pessimal matchings of the players according to the true preferences of the players and arms.

In the online matching problem where agent preferences are a priori unknown, agents aim
to perform well relative to their best action in hindsight1, as is typical in online learning.

1When the stable matching is unique, it is not hard to see that the best action for any agent—if all
agents knew their own preferences and are maximizing reward—is to choose their unique valid match.
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Thus, it is natural to define the agent-optimal stable regret of agent pi as

Ri(n) := nµi(m(i))−
n∑
t=1

EXi,mt(t), (5.1.1)

because when the arms’ mean rewards are known the GS algorithm outputs the optimal
matching m. However, as we show in Section 5.2.2, there are natural algorithms which
cannot achieve sublinear agent-optimal stable regret. Therefore, we also consider the agent-
pessimal stable regret, defined as

Ri(n) := nµi(m(i))−
n∑
t=1

EXi,mt(t). (5.1.2)

When the stable matching is unique, the agent-optimal and agent-pessimal stable regrets
coincide. Also, we note that when N > K stable matches will not match all players with
arms. Then, we denote m(i) = ∅ if player pi does not have a match in m and we let µi(∅) be
the reward player pi receives when not matched. Then, the results presented below extend
to this case. For simplicity, we assume N ≤ K throughout.

The central question of our investigation is as follows:

How to achieve a sequence of matchings
where all agents have low stable regret?

Several interaction settings are of interest:

Centralized: At each time step the agents are required to send a ranking of the arms to a
matching platform. Then, the platform decides the action vectormt. In this work we consider
two platforms. The first platform, shown in Algorithm 4, outputs a random assignment for
a number of time steps and then computes the agent-optimal stable matching according to
the agents’ preferences. The second platform, shown in Algorithm 5, takes in the agent’s
preferences at each time step and outputs a stable matching between the agents and arms.
Both platforms ensure that there will be no conflicts between the agents. The first platform
corresponds to an explore-then-commit strategy. When the second platform is used the
agents must rank arms in a way which enables exploration and exploitation. We show that
ranking according to upper confidence bounds yields O(log(n)) agent-pessimal stable regret.

Decentralized: Agents observe each other’s actions and the outcomes of the ensuing con-
flicts, but do not have a platform for coordination and communication. We can also ask what
happens if, after selecting an arm, agents observe whether they lost a conflict and if they
successfully pull an arm they observe their own reward, but they do not observe any other
information. Both decentralized cases are interesting and we leave their study for future
work.
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5.2 Multi-agent bandits with a platform

5.2.1 Centralized Explore-then-Commit

In this section we give a guarantee for the explore-then-commit planner defined in Algo-
rithm 4. At each iteration, each agent pi updates their mean reward for arm j to be

µ̂i,j(t) =
1

Ti,j(t)

t∑
s=1

1{ms(i) = j}Xi,ms(s), (5.2.1)

where Ti,j(t) =
∑t

s=1 1{mt(i) = j} is the number of times agent pi successfully pulled arm
aj. At each time step, player pi ranks the arms in decreasing order according to µ̂i,j(t) and
sends the resulting ranking r̂i,t to the platform. As seen in Algorithm 4, for the first hK
time steps, the platform assigns players to arms cyclically, ensuring that each agent samples
every arm h times. We now provide a regret analysis of centralized ETC.

Algorithm 4 Explore-then-Commit Platform.

1: for t = 1, . . . , T do
2: if t ≤ hK then
3: mt(i)← at+i−1 (mod K)+1, ∀i.
4: else if t = hK + 1 then
5: Receive rankings r̂i,t from all pi.
6: Compute agent-optimal stable matching mt(i) according to r̂i,t and πj.
7: else
8: mt(i)← mhK+1(i), ∀i.
9: end if

10: end for

Algorithm 5 Gale-Shapley Platform.

1: for t = 1, . . . , T do
2: Receive rankings r̂i,t from all pi.
3: Compute agent-optimal stable matching mt according to all r̂i,t and πj.
4: end for

Theorem 5.2.1. Suppose all players rank arms according to the empirical mean rewards
(5.2.1) and submit their rankings to the explore-then-commit platform. Let ∆i,j = µi(m(i))−
µi(j), ∆i,max = maxj ∆i,j, and ∆ = mini∈[N ] minj : ∆i,j>0 ∆i,j > 0. Then, the expected agent-
optimal regret of player pi is upper bounded by

Ri(n) ≤ h

K∑
j=1

∆i,j + (n− hK)∆i,maxNK exp

(
−h∆2

4

)
.
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In particular, if h = max
{

1, 4
∆2 log

(
1 + n∆2N

4

)}
, we have

Ri(n) ≤max

{
1,

4

∆2
log

(
1 +

n∆2N

4

)} K∑
j=1

∆i,j

+
4K∆i,max

∆2
log

(
1 +

n∆2N

4

)
.

This result shows that centralized ETC achieves O(log(n)) agent-optimal stable regret
when the number of exploration rounds is chosen appropriately. As is the case for single
agent ETC, centralized ETC requires knowledge of both the horizon n and the minimum
gap ∆ [see, e.g., 82, Chapter 6]. However, a glaring difference between the settings is that
in the latter the regret of each agent scales with 1/∆2, where ∆ is the minimum reward gap
between the optimal match and a suboptimal arm across all agents. In other words, the
regret of an agent might depend on the suboptimality gap of other agents. Example 5.2.2
shows that this dependence is real in general and not an artifact of our analysis. Moreover,
while single agent ETC achieves O(

√
n) problem-independent regret, Example 5.2.2 shows

that centralized ETC does not have this desirable property. Finally,
∑K

j=1 ∆i,j could be
negative for some agents. Therefore, some agents can have negative agent-optimal regret,
an effect that never occurs in the single agent MAB problem.

Example 5.2.2 (The dependence on 1/∆2 cannot be improved in general). Let N = {p1, p2}
and K = {a1, a2} with true preferences:

p1 : a1 � a2 a1 : p1 � p2

p2 : a2 � a1 a2 : p1 � p2.

The agent-optimal stable matching is given by m(1) = 1 and m(2) = 2. Both a1 and a2

prefer p1 over p2. Therefore, at the end of the exploration stage p1 is matched to their top
choice arm while p2 is matched to the remaining arm. In order for p2 to be matched to
their optimal arm, p1 must correctly determine that they prefer a1 over a2. The number of

exploration rounds would then have to be Ω(1/∆
2

1,2) where ∆1,2 = µ1(1) − µ1(2). Hence,

when ∆1,2 ≤ 1/
√
n, the regret of p2 is Ω(n∆2,1). Figure 5.1 depicts this effect empirically;

we observe that a smaller gap ∆1,2 causes p2 to have larger regret.
In Figure 5.1, there are two agents and two arms. Player p2 receives Gaussian rewards

from the arms a1, a2 with means 0 and 1 respectively and variance 1. Player p1 receives
Gaussians rewards ∆ and 0 from the arms a1 and a2. Both arms prefer p1 over p2. Figure 5.1
shows the regret of each agent as a function of ∆ when we run centralized UCB with horizon
400 and average over 100 trials.
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Figure 5.1: The empirical performance of centralized UCB in the setting described in Exam-
ple 5.2.2

5.2.2 Centralized UCB

We saw that centralized ETC achieves O(log(n)) agent-optimal regret for all agents. How-
ever, centralized ETC must know the horizon n and the minimum gap ∆ between an optimal
arm and a suboptimal arm. While knowing the horizon n is feasible in certain scenarios,
knowing ∆ is not plausible. It is known that single agent ETC achieves O(n2/3) when the
number of exploration rounds is chosen deterministically without knowing ∆, and there are
also known methods for adaptively choosing the number of exploration rounds so that single
agent ETC achieves O(log(n)) [82]. However, in our setting, the O(n2/3) guarantee does
not hold because the suboptimality gaps of one agent affect the regret of other agents, and
the known adaptive stopping times cannot be implemented because the platform does not
observe the agents’ rewards. Therefore, it is necessary to find methods which do not need
to know ∆.

Another drawback of centralized ETC is that it requires agents to learn concurrently,
i.e. players must explore randomly at the same time. Hence, even if a player knew their
preferences a priori, they would still be required to explore randomly in order to guarantee
low regret for all players. The Gale-Shapley Platform shown in Algorithm 5 resolves this
problem, always outputting a matching that is stable—in fact, agent-optimal—according to
the rankings received from the agents. We derive an upper bound on the agent-pessimal
stable regret in this setting when all agents use upper confidence bounds to rank arms. In
Section 5.2.3 we show this method is incentive compatible.

Before proceeding with the analysis we define more precisely the UCB method employed
by each agent and also introduce several technical concepts. At each time step the platform
matches agent pi with arm mt(i). Each player pi successfully pulls arm mt(i), receives reward
Xi,mt(t), and updates their empircal mean for mt(i) as in (5.2.1). They then compute the
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upper confidence bound

ui,j(t) =

{
∞ if Ti,j(t) = 0,

µ̂i,j(t) +
√

3 log t
2Ti(t−1)

otherwise.
(5.2.2)

Finally, each player pi orders the arms according to ui,j(t) and computes the ranking r̂i,t+1

so that a higher upper confidence bound means a better rank, e.g. arg maxj ui,j(t) is ranked
first in r̂i,t+1.

Let m be an injective function from the set of players N to the set of arms K; hence m
is the matching where m(i) is the match of agent i. Then, let Tm(t) be the number of times
matching m is played by time t. We say a matching is truly stable if it is stable according
to the true preferences induced by the mean rewards of the arms, and non-truly stable,
otherwise. For agent pi and arm a` we consider the set Mi,` of non-truly stable matchings m
such that m(i) = `. Let ∆i,` = µi(m(i))− µi(`).

Then, since any truly-stable matching yields agent-pessimal regret smaller or equal than
zero for all agents, we can upper-bound the agent-pessimal regret of agent i as follows:

Ri(n) ≤
∑

` : ∆i,`>0

∆i,`

 ∑
m∈Mi,`

ETm(n)

 . (5.2.3)

For any matching m that is non-truly stable there must exist an agent pj and an arm ak,
different from arm m(j), such that the pair (pj, ak) is a blocking pair according to the true
preferences µ, i.e. µj(k) > µj(m(j)) and arm ak is either unmatched or πk(j) > πk(m

−1(k)).
We say a triplet (pj, ak, ak′) blocks a matching when pj is matched with ak′ and (pj, ak) is
a blocking pair. Let Bj,k,k′ be the set of all matchings blocked by the triplet (pj, ak, ak′).
Given a set S of matchings, we say a set Q of triplets (pj, ak, ak′) is a cover of S if⋃

(pj ,ak,ak′ )∈Q

Bj,k,k′ ⊇ S.

Let C(S) denote the set of covers of S. Also, let ∆j,k,k′ = µj(k)− µj(k′). Now we state our
result.

Theorem 5.2.3. When all agents rank arms according to the upper confidence bounds (5.2.2)
and submit their preferences to the Gale-Shapley Platform, the agent-pessimal regret of agent
pi up to time n, Ri(n), is upper-bounded by

∑
` : ∆i,`>0

∆i,`

 min
Q∈C(Mi,`)

∑
(pj ,ak,ak′ )
∈Q

(
5 +

6 log(n)

∆2
j,k,k′

) .
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Theorem 5.2.3 offers a problem-dependent O(log(n)) upper bound guarantee on the
agent-pessimal stable regret of each agent pi. Similarly to the case of centralized ETC,
the regret of one agent depends on the suboptimality gaps of other agents. However, we
saw in Section 5.2.1 that centralized ETC achieves O(log(n)) agent-optimal stable regret, a
stronger notion of regret. Example 5.2.4 shows that centralized UCB cannot yield sublinear
agent-optimal stable regret in general. While centralized ETC has stronger regret guaran-
tees, it requires knowledge of the reward gaps and of the horizon of the problem. Also,
centralized ETC requires all players to have synchronized exploration rounds. UCB with the
Gale-Shapley platform does not have these drawbacks.

Example 5.2.4 (Centralized UCB does not achieve sublinear agent-optimal stable regret).
Let N = {p1, p2, p3} and K = {a1, a2, a3}, with true preferences given by:

p1 : a1 � a2 � a3 a1 : p2 � p3 � p1

p2 : a2 � a1 � a3 a2 : p1 � p2 � p3

p3 : a3 � a1 � a2 a3 : p3 � p1 � p2.

The agent-optimal stable matching is (p1, a1), (p2, a2), (p3, a3). When p3 incorrectly ranks
a1 � a3 and the other two players submit their correct rankings, the Gale-Shapley Platform
outputs the matching (p1, a2), (p2, a1), (p3, a3). In this case p3 will never correct their mistake
because they never get matched with a1 again, and hence their upper confidence bound for a1

will never shrink. Figure 5.2 illustrates this example; the optimal regret for p1 and p2 is seen
to be linear in n.

In Figure 5.2, the rewards of the arms for each agent are Gaussian with variance 1. The
mean rewards of the arms are set so that the preference structure shown in Example 5.2.4
is satisfied. For agents p1 and p2, the gap in mean rewards between consecutive arms is 1.
For agent p3 the gap between arms a1 and a3 is 0.05. Figure 5.2 shows the performance of
centralized UCB, averaged over 100 trials, as a function of the horizon.

Proof of Theorem 5.2.3. Let Lj,k,k′(n) be the number of times agent pj pulls arm ak′ when
the triplet (pj, ak, ak′) is blocking the matching selected by the platform. Then, by definition∑

m∈Bj,k,k′

Tm(n) = Lj,k,k′(n). (5.2.4)

By the definition of a blocking triplet we know that if pj pulls ak′ when (pj, ak, ak′) is blocking,
they must have a higher upper confidence bound for ak′ than for ak. In other words, we are
trying to upper bound the expected number of times the upper confidence bound on ak′ is
higher than that of the better arm ak when we have the guarantee that each time this event
occurs ak′ is successfully pulled. Therefore, standard analysis for the single agent UCB [e.g.,
29, Chap. 2] shows that

ELj,k,k′(n) ≤ 5 +
6 log(n)

∆2
j,k,k′

. (5.2.5)
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Figure 5.2: The empirical performance of centralized UCB in the setting described in Exam-
ple 5.2.4

The conclusion follows from equations (5.2.3) and (5.2.4).

To better understand the guarantee of Theorem 5.2.3 we consider two examples in which
the markets have a special structure which enables us to simplify the upper bound on the
regret. Moreover, in Corollary 5.2.7 we consider the worst case upper bound over possible
coverings of matchings.

Example 5.2.5 (Global preferences). Let N = {p1, · · · , pN} and K = {a1, · · · , aK}. We
assume the following preferences: pi : a1 � · · · � aK and aj : p1 � · · · � pN . In other
words all agents have the same ranking over arms, and all arms have the same ranking over
agents. Hence, the unique stable matching is (p1, a1), (p2, a2), . . . , (pN , aN). Moreover, for
any pi and a` we can cover the set of matchings Mi,` with the triplets (pi, ak, a`) for all k
with 1 ≤ k ≤ i. Then, Theorem 5.2.3 implies (5.2.6) once we observe that ∆i,k,` ≥ ∆i,` for
all k ≤ i.

Ri(n) ≤ 5i
K∑

`=i+1

∆i,` +
K∑

`=i+1

6i log(n)

∆i,`

. (5.2.6)

Figure 5.3 illustrates this example empirically, displaying the pessimal stable regret of 5 out
of 20 agents. In this experiment, there are 20 agents and 20 arms. The rewards of the
arms are Guassian with variance 1. The mean reward gap between consecutive arms is 0.1.
Figure 5.3 shows the performance of centralized UCB, averaged over 50 trials, as a function
of the horizon.

As one can see, the 1st-ranked agent has sublinear regret, consistent with (5.2.6), while
the 20th-ranked agent has negative regret and our upper bound is indeed 0.

Example 5.2.6 (Unique pairs). Let N = {p1, · · · , pN} and K = {a1, · · · , aN} and assume
that agent pi prefers arm ai the most and that arm ai prefers agent pi the most. Therefore, the
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Figure 5.3: The empirical performance of centralized UCB in the setting described in Exam-
ple 5.2.5

unique stable matching is (p1, a1), (p2, a2), . . . , (pN , aN). Then, we can cover each set Mi,`

with the triplet (pi, ai, a`). Therefore, Theorem 5.2.3 implies (5.2.7); note that the right-hand
side is identical to the guarantee for single agent UCB:

Ri(n) ≤ 5
K∑
` 6=i

∆i,` +
K∑
` 6=i

6 log(n)

∆i,`

. (5.2.7)

Corollary 5.2.7. Let ∆ = mini minj,j′ |µi(j)−µi(j′)|. When all players follow the centralized
UCB method, the regret of pi can be upper bounded as follows

Ri(n) ≤ max
`

∆i,`

(
6NK2 + 12

NK log(n)

∆2

)
.

Proof. We consider the covering (j, k, k′) composed of all possible triples with µj(k) > µj(k
′).

Then, Theorem 5.2.3 implies the result because
∑

k′ : µj(k′)<µj(k)
1

∆2
j,k,k′
≤∑K

`=1
1

`2∆2 ≤ 2
∆2 .

5.2.3 Honesty and strategic behavior

Classical results show that in the agent-proposing GS algorithm, no single agent can improve
their match by misrepresenting their preferences, assuming that the other agents and arms
submit their true preferences [43, 118]. The result generalizes to coalition of agents. More-
over, when there is a unique stable matching, the Dubins-Freedman Theorem says that no
arms or agents can benefit from misrepresenting their preferences [43].

The ETC Platform does not allows agents to choose which arms to explore. In this case,
the classical results on honesty in agent-proposing GS apply; the agents are incentivized to
submit the rankings according to their current mean estimates. When agents have some
degree of freedom to explore over multiple rounds, it is no longer clear if any agents, or
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arms, can benefit from misrepresenting their preferences in some of the rounds. In general,
one agent’s preferences can influence not only the matches of other agents, but also their
reward estimates. One might be able to improve their regret by capitalizing on the ranking
mistakes of other agents. The possibilities for long-term strategic behavior are more diverse
than in the single-round setting.

In general, the optimal regret for a player can be negative if the player is on average
getting rewards higher than its optimal stable arm, as seen in Figure 5.3.

We now show that when all agents except one submit their UCB-based preferences to
the GS Platform, the remaining agent has an incentive to also submit preferences based on
their UCBs, so long as they do not have multiple stable arms. This result is a lower bound
on the optimal regret of the remaining agent, hence establishing that they have limited gains
from deviating from their UCB-based preferences.

First, we establish the following lemma, which is an upper bound on the expected number
of times the remaining agent can pull an arm that is better than their optimal match,
regardless of what preferences they might have submitted to the platform.

Lemma 5.2.8. Let T il (n) be the number of times an agent i pulls an arm l such that the
mean reward of l for i is greater than i’s optimal match. Then

E[T il (n)] ≤ min
Q∈C(Mi,`)

∑
(j,k,k′)∈Q

(
5 +

6 log(n)

∆2
j,k,k′

)
. (5.2.8)

Proof. If agent i is matched with arm l in any round, the matching m must be unstable
according true preferences. We claim that there must exist a blocking triplet (j, k, k′) where
j 6= i.

Arguing by contradiction, we suppose otherwise, that all blocking triplets in m only
involve agent i. By Theorem 4.2 in Abeledo and Rothblum [8], we can go from the matching
m to a µ-stable matching, by iteratively satisfying block pairs in a ‘gender consistent’ order
O. To satisfy a blocking pair (k, j), we break their current matches, if any, and match (k, j)
to get a new matching. Doing so, agent i can never get a worse match than l or become
unmatched as the algorithm proceeds, so the matching remains unstable—a contradiction.
Hence there must exist a j 6= i such that j is part of a blocking triplet in m. In particular,
agent j must be submitting its UCB preferences.

The result follows from Equation (5.2.5) and the identity

E[T il (n)] =
∑

m∈Mi,`

ETm(n).

Lemma 5.2.8 directly implies the following lower bound on the remaining agent’s optimal
regret.



CHAPTER 5. MULTI-PLAYER BANDITS AND MATCHING MARKETS 95

Proposition 5.2.9. Suppose all agents other than pi submit preferences according to the
UCBs (5.2.2) to the GS Platform. Then the following lower bound on agent i’s optimal
regret holds:

Ri(n)≥
∑

` : ∆i,l<0

∆i,l

 min
Q∈C(Mi,`)

∑
(j,k,k′)∈Q

(
5 +

6 log(n)

∆2
j,k,k′

) .
Therefore, there is no sequence of preferences that an agent can submit to the GS Plat-

form that would give them negative optimal regret greater than O(log n) in magnitude.
When there is a unique stable matching, Proposition 5.2.9 shows that no agent can gain
significantly above and beyond the mean reward of their optimal stable arm by submitting
preferences other than their UCB rankings. When there exist multiple stable matchings,
however, Proposition 5.2.9 leaves open the question of whether any agent can submit a
sequence of preferences that achieves super-logarithmic negative pessimal regret for them-
selves, when all other agents are playing their UCB preferences. In other words, can an
agent do significantly better than its pessimal stable arm, by possibly deviating from their
UCB rankings?

5.3 Related work

Since its introduction by Thompson [152], the stochastic multi-armed bandit problem has
inspired a rich body of work spanning different settings, algorithms, and guarantees [29, 81,
82].

There has been recent interest in the MAB literature in problems with multiple, inter-
acting players [34, 136]. In one popular formulation known as bandits with collision, multiple
players choose from the same set of arms, and if two or more players choose the same arm,
no reward is received by any player [e.g. 10, 17, 30, 87, 91, 116]. This differs from our for-
mulation, in which arms have preferences and the most preferred player receives a reward,
while the other players selecting the arm do not.

A variant of this problem is where agents have different preferences over arms. Then,
Bistritz and Leshem [20]’s algorithm approximately finds the maximum matching of players
to arms with O(log(n)2+κ) regret. However, stable matching does not reduce to maximum
matching in general, so such guarantees do not apply to matching with two-sided preferences.

The two-sided matching problem has also been studied in sequential settings. Das and
Kamenica [40] performed an empirical study of a two-sided matching problem with uncertain
preferences. Johari et al. [73] studied a sequential matching problem, where participants are
one of several types and the goal is to learn the type of agents on one side of the market.

Ashlagi et al. [13] considered the communication and preference learning cost of stable
matching. Their model formulates preference learning as querying a noiseless choice function,
rather than obtaining noisy observations of one’s underlying utility. Different players can
query their choice functions independently; hence congestion in the preference learning stage
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is not captured by this model. In many markets, obtaining information about the other
side of the market itself can lead to congestion and thus the need for strategic decision.
For example, Roth and Sotomayor [121, chap. 10] noted that graduating medical students
go to interviews to ascertain their own preferences for hospitals, but the interviews that a
student can schedule are limited. Our model begins to capture such tradeoffs by introducing
statistical uncertainty in the preferences of one side of the market and providing a natural
mode of interaction between the learning agents.
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Chapter 6

Conclusion and future work

We described the challenges of empirical evaluation of RL algorithms in Chapter 2 and
throughout the rest of the thesis we aimed to build a theoretical understanding of methods
and problems that can elucidate the data requirements of RL, complementing empirical
evaluation.

Finding the optimal exploration-exploitation tradeoff is often the main challenge in de-
signing efficient RL algorithms. Interestingly, in the case of linear dynamical systems and
LQR exploration is easy: adding small exploratory noise to the inputs is sufficient for both
estimation and controller synthesis. However, LQR requires careful exploitation, i.e., a
method that uses available data effectively to build controllers. We proposed two such
methods, robust LQR and certainty equivalence, and we saw that certainty equivalence (the
straightforward approach) surpasses robust LQR when the estimation error is small. In
fact, it is known that certainty equivalence is optimal in the case of online control [140].
Nonetheless, the robust method is beneficial in a higher estimation error regime, enabling
the stabilization of unknown linear systems when certainty equivalence fails.

Exploration-exploitation tradeoffs are still a concern when departing from linear dynami-
cal systems. For example, in this thesis we considered two such departures: the identification
of nonlinear dynamical systems and the assignment of players to arms in two-sided markets.
While our results take us closer to understanding the fundamental limits of data-driven con-
trol, there are many limitations to the models studied here and the proposed solutions. We
end with a list of open questions.

Open questions regarding system Identification:

• To solve trajectory planning problems we assumed access to a computational oracle.
Is it possible to develop a method that has good statistical guarantees and is also
computationally tractable? In practice, successful nonlinear control is often based on
linearizations of the dynamics. Is it possible to quantify the sample complexity of
system identification when trajectory planning is implemented using linearizations?
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• Our method relies on full state observations. However, in many applications full state
observations are impossible. Is it possible to obtain finite-time statistical guarantees
for nonlinear system identification from partial observations?

• Our guarantee holds only when the true system being identified lies in the model class
(3.3.1). When the true system is not part of the model class, how much data is needed
to find the best model in class? Ross and Bagnell [117] studied this problem under a
generative model.

• Only fully actuated systems can satisfy Assumption 3 with γ < 1. Is it possible to
extend our result to systems that require multiple time steps to recover from distur-
bances?

• Assumption 4 allows only systems whose feature vectors can align with any direction.
What if the feature vectors can align only with vectors in a subspace? In this case, it
is not possible to recover A? fully. However, in this case, it would not be necessary to
know A? fully in order to predict or control. Is it possible to estimate A? only in the
relevant directions?

• What if we consider infinite-dimensional feature maps φ? For example, can we develop
a statistical theory of learning reproducing kernel Hilbert space models of dynamical
systems?

Open questions regarding multi-player bandits:

• We assumed access to a central matching platform. Is it possible to design robust
decentralized methods that allow players to enter and exit the market asynchronously?

• In practice, methods should take advantage of context in order to achieve effective
matching. Is it possible to extend our model and method to a contextual setting?

• We considered a simple reward structure. However, markets have other reward or cost
components that we did not model. Is there a good way to integrate prices in our
model?
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