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Abstract

Physics-based Learning for Large-scale Computational Imaging

by

Michael Robert Kellman

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Laura Waller, Co-chair

Associate Professor Michael Lustig, Co-chair

In computational imaging systems (e.g. tomographic systems, computational optics,
magnetic resonance imaging) the acquisition of data and reconstruction of images are co-
designed to retrieve information which is not traditionally accessible. The performance
of such systems is characterized by how information is encoded to (forward process) and
decoded from (inverse problem) the measurements. Recently, critical aspects of these sys-
tems, such as their signal prior, have been optimized using deep neural networks formed
from unrolling the iterations of a physics-based image reconstruction.

In this dissertation, I will detail my work, physics-based learned design, to optimize the
performance of the entire computational imaging system by jointly learning aspects of
its experimental design and computational reconstruction. As an application, I introduce
how the LED-array microscope performs super-resolved quantitative phase imaging and
demonstrate how physics-based learning can optimize a reduced set of measurements
without sacrificing performance to enable the imaging of live fast moving biology.

In this dissertation’s latter half, I will discuss how to overcome some of the compu-
tational challenges encountered in applying physics-based learning concepts to large-
scale computational imaging systems. I will describe my work, memory-efficient learn-
ing, that makes physics-based learning for large-scale systems feasible on commercially-
available graphics processing units. I demonstrate this method on two large-scale real-
world systems: 3D multi-channel compressed sensing MRI and super-resolution optical
microscopy.
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Chapter 1

Introduction

Over the past century optical imaging systems have seen a steady rise in the reliance on
computation. Originally based solely on the theory of image formation and light propa-
gation, optical imaging systems were designed to directly encode information about the
world into a measurement device, i.e. in a one-to-one manner. As the desire to encode
more information increased, e.g. color and angular information, imaging systems started
to manipulate how that information was encoded onto the sensor, e.g. multiplexing or
mosaicing. With these new rich measurements, the systems then relied on computational
processing to retrieve that information, i.e. decoding. This idea of indirectly encoding in-
formation and computationally decoding it birthed the field of computational imaging.
In this new paradigm, we consider the co-design of hardware and software to push the
envelope for traditional imaging trade-offs, e.g. resolution, field-of-view, signal-to-noise
ratio. This paradigm shift in optical microscopy, termed computational microscopy, has en-
abled imaging beyond the diffraction limit, i.e. super resolution [1, 2], imaging transpar-
ent samples, i.e. phase imaging [3], and the volumetric imaging of samples, i.e. diffraction
tomography [4, 5]; all impractical with either hardware design or computation alone.

Since the discovery of phase contrast by Frits Zernike in 1930 [6], phase imaging has
become the standard label and stain-free method to image transparent biological sam-
ples. The phase of a sample is proportional to the product between a sample’s refractive
index and thickness and thus provides an endogenous source of spatial contrast. Quali-
tative phase imaging methods such as Differential Intensity Contrast (DIC) [7] and phase
contrast (PhC) offer the ability to visually discern a sample’s edges from the background
using a single measurement. Such systems are ubiquitous in biological labratories, how-
ever, they do not extract the sample’s actual phase information, required to measure dry
mass and volumetric information about the sample. With the advent of computational
microscopy, Quantitative phase imaging (QPI) has allowed for the consistent and robust
processing of a sample’s phase information that qualitative imaging does not. Such sys-
tems operate by indirectly mapping a sample’s phase information into measurements, e.g.
using interferometric, coded-illumination, or coded-pupil methods, and computationally
decoding that information from the measurements. The performance of these systems is
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fundamentally governed by how well the desired information is encoded to and decoded
from the measurements.

Of great practical interest, coded-illumination microscopy has offered an accurate and in-
expensive way to capture QPI. To realize coded-illumination, a commercial microscope’s
illumination unit can be replaced with a programmable light-emitting diode (LED) ar-
ray [8]. Each LED illuminating the sample modulates unique spatial frequency infor-
mation of the sample into the measurements. A set of measurements is captured under
diverse illumination patterns and fed into a non-linear phase retrieval optimization to
estimate the sample’s phase information. Using the same hardware, quantitative phase
information can be extracted with resolution twice that of the objective (using four mea-
surements) [9], with resolution beyond twice that of the objective (using Fourier Ptychog-
raphy and tens to hundreds of measurements) [1, 2], and in 3D (using diffraction to-
mography and hundreds of measurements) [4, 5]. While all enable label-free imaging of
transparent samples, the multi-measurement nature of these methods inhibit their use to
image live fast-moving biology due to reduced temporal resolution and the speed of the
sample [10]. Reducing the number of measurements is possible [11], however, as fewer
measurements are acquired, image quality degrades significantly. The natural questions
to ask are: can we design a set of measurements without sacrificing image quality? How
do we design that set of measurements to provide the best reconstruction quality for a
class of images?

Traditionally, design questions similar to these are answered using optimal experi-
ment design [12], where experimental parameters are optimized to maximize some metric
of information, e.g. Fisher information. However, when either the encoding or decoding
is non-linear, e.g. phase imaging or sparse priors, such methods become suboptimal and
difficult to apply. Fortunately, machine learning offers an opportunity to model and opti-
mize non-linear systems. Using the emerging tools from machine learning, the encoding
and decoding process can be modeled as a neural network and optimized (referred to as
physics-free or model-free) to map measurements to the desired reconstructed information.
Using these approaches, the best measurement scheme (encoding) can also be optimized
by including a system’s experimental parameters as learnable variables [13–16]. How-
ever, when dealing with images or higher dimensional data, as is common in computa-
tional imaging, such physics-free methods typically use neural networks with millions of
learnable parameters and thus require a large corpus of training data to properly opti-
mize. In many fields, gathering large amounts of data for a specific application is expen-
sive to capture or completely unavailable, making such blackbox methods impractical.
In addition, such methods do not typically generalize well in experiment due to dataset
distribution shift [17], varying experimental noise levels, and system imperfections.

In contrast, more traditional physics-based inverse problems are able to faithfully re-
construct a wide variety of samples/scenes without the need for ground truth data or
training. There are two significant mechanisms behind this class of decoders: first, the
inclusion of the physics-based forward model that informs the algorithm how measure-
ments are made and second, the architecture of the decoder, i.e. optimization algorithm.
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While there are no learnable parameters, such methods often include hyperparameters
that are laboriously handtuned. The solution is to combine the two classes of decoders,
termed physics-based learning [18–25]. The working principle of physics-based learning is
to form a network from the operations of a physics-based image reconstruction. Specif-
ically, the iterations of the physics-based reconstruction are unrolled to form the layers of
a physics-based network. By combining these two methodologies, the burdens of physics-
based and physics-free approaches can be reduced. The inclusion of known quantities, e.g.
the forward model process and optimization architecture, reduces the magnitude of data
required for learning and the data-driven optimization of certain variables alleviates the
need for tuning parameters by hand.

Contribution

This dissertation describes a novel design paradigm that harnesses data to learn a com-
putational imaging system’s encoding scheme to optimize the performance of the whole
system. This work extends physics-based learning by including learnable experimen-
tal design parameters in the networks created from unrolling the iterations of traditional
physics-based reconstruction. With the goal of improving the system’s temporal reso-
lution, processing time, and reconstructed image quality, I apply this new data-driven
design methodology to optimize how measurements are acquired on a computational mi-
croscope to reconstruct QPI and to perform super-resolution microscopy (Fourier Ptychog-
raphy). My approaches are validated in several experimental settings and compared
against other traditional and heuristic design methodologies.

Further, I delve into the practical issues of implementing physics-based learning for
large-scale real-world computational imaging systems. As our systems grow in scale, so
does the memory required for training. In many real-world applications, e.g. higher di-
mensional magnetic resonance imaging and volumetric microscopy, the memory required
inhibits computing gradients, via backpropagation, on commercially-available graphics
processing units (GPU). In this disseration, I present a novel memory-efficient technique
to enable physics-based learning for large-scale computational imaging systems. I demon-
strate our method’s usefulness on several real-world applications: in computational mi-
croscopy to learn measurement scheme for super-resolution quantitative phase imaging
and in medical imaging to learn image priors for 3D multi-channel magnetic resonance
imaging.

Altogether, the methods in the thesis capture the themes of Physics-based Learned De-
sign and Memory-efficient Learned Design.

Outline

The remainder of this dissertation is organized as follows:
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Chapter 2: Computational Microscopy

This chapter provides an overview of the principles of optical microscopy and compu-
tational imaging in the context of quantitative phase imaging. I introduce quantitative
phase imaging, using coded-illumination measurements and the LED array microscope,
and how phase information can be decoded from these measuments using general image
reconstruction techniques. In addition, I provide some basic intuition behind how dif-
ferent illumination patterns can encode a diverse set of contrasts and when to use which
image reconstruction algorithm.

Chapter 3: Physics-based Learned Design

This chapter introduces the techniques of physics-based learning to optimize the ex-
perimental design of a computational imaging system. I demonstrate these techniques
by learning coded-illumination patterns to more efficiently perform quantitative phase
imaging. I compare the designs physics-based learning produces to others produced us-
ing traditional optimal experimental design and heuristic design methods. Finally, I vali-
date the methods experimentally on the LED array microscope using patterns trained in
simulation.

Chapter 4: Physics-based Learned Design for Fourier Ptychographic

Microscopy

This chapter examines physics-based learned design for super-resolution microscopy (Fourier
Ptychographic microscopy). Fourier Ptychography is typically slow due the number of
measurements required to perform phase imaging at a resolution above the microscope’s
diffraction limit. In this chapter, I utilize physics-based learning to improve the tempo-
ral resolution of the system by optimizing coded-illumination patterns for a reduced set
of measurements. This is demonstrated in simulation and in experiment. Finally, the
learned patterns are discussed to build new intuition for coded-illumination measure-
ments.

Chapter 5: Memory-efficient Learning for Large-scale Computational

Imaging

For real-world large-scale inverse problems, computing gradients via backpropagation
is infeasible due to the memory limitations of commercially available graphics process-
ing units. In this chapter, I present a memory-efficient learning procedure that exploits
the reversibility of the network’s layers to enable physics-based learning for large-scale
computational imaging systems. Here, I demonstrate our method on a small-scale com-
pressed sensing example, as well as several large-scale real-world systems: 3D multi-
channel magnetic resonance imaging and super-resolution optical microscopy.
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Chapter 6: Conclusion

This chapter discusses the themes presented throughout this dissertation and outlines
several future directions.

Appendix A: Open Source: How to implement

physics-based learning

This appendix serves as a tutorial of how to implement physics-based learning. It starts
at an introductory level for people who are familiar with python, computational imaging,
or machine learning to build and optimize proof-of-concept computational imaging sys-
tems. It moves on to describe a more advanced framework that enables memory-efficient
learning for people who are planning to use physics-based learning to design large-scale
systems.
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Chapter 2

Computational Microscopy

Technology behind computational microscopy combines numerous areas of expertises,
from optics, to physics, and computation. In this chapter, I outline the basic concepts
in microscopy, physics for phase imaging, and computational reconstruction required to
understand the underpinnings of the work in this dissertation.

2.1 Optical Microscopy

Imaging and Resolution

Imaging is the technique of manipulating light to reform a scene at a desired plane. In the
visible spectrum, this is often done using glass. Thanks to its refractive properties, glass
lenses can be used to bend the rays of light to refocus them at another plane, thereby form-
ing an image. Photography, microscopy, and astronomy all rely upon these principles to
measure spatial information about the world by imaging scenes onto sensors.

In optical microscopy, these principles are used to relay an image of a sample to a cam-
era sensor. The specific design of such a system is usually abstract to the end user, but can
typically be summarized by two parameters, magnification and numerical aperture (NA)
of the microscope’s objective. Magnification determines how large the sample will ap-
pear at the image plane - thereby determining the field-of-view (FOV) of the microscope.
NA describes the steepest angle of light that is allowed into the system and determines
the system’s diffraction-limited resolution. Specifically, NAobj = n · sin(θ), where n is re-
fractive index of the medium between the sample and the microscope’s objective and θ is
the half angle of the aperture. And while a wide variety of objectives span the possible
magnification-NA space, typically, lower magnification objectives have a lower NA and
higher magnification objectives have a higher NA. This is due to practical issues related
to manufacturing and optical aberations. The implications of this is a trade off between
the FOV and the resolution of the microscope. This relation is further affected by the fixed
space-bandwidth product of sensor.
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(a) Abbe resolution criteria (c) Rayleigh resolution criteria
(two point)

(b) Full-width half max
(single point)

resolved unresolved

Figure 2.1: Microscopy definitions of resolution: (a) Abbe resolution criteria, kAbbe, characterized
by the transfer function’s support in Fourier space. (b) Full-width half max or single point reso-
lution, dFWHM, defined by the point spread function. (c) Rayleigh resolution criteria or two point
resolution, dRay., characterized by minimum resolvable distance between two points. On the left
are two resolvable points as highlighted by the dip between the resultant image and on the right
are two unresolvable points. Below (b) and (c) are cross sections through the system’s response to
a single point, two resolvable points, and two unresolvable points.

There are several main ways to define resolution in microscopy (e.g. Abbe criteria, full-
width half max, Rayleigh criteria) each with their own interpretation. The Abbe criteria
(Fig. 2.1a) defines an imaging system’s maximum resolvable angular frequency,

kAbbe =
NAobj + NAillum

λ
, (2.1)

where NAillum is the numerical aperture of the illumination’s condenser objective and λ is
the wavelength of light. When using spatially coherent illumination, the NAillum = 0 and
the diffraction-limited resolution is kAbbe =

(
NAobj

/
λ
)
. When using spatially incoherent

illumination, the best achievable resolution is when NAobj = NAillum, thus the incoherent
diffraction-limited resolution is d = (2 ·NA/λ).

The full-width half max or single point resolution, dFWHM, characterize the system’s
resolution by the spatial distance between the two points that intersect half of the point
spread function’s maximum value (Fig. 2.1b). And finally, the Rayleigh criteria (Fig. 2.1c)
is the minimum resolvable distance between two points and is defined,

dRay. =
1.22 · λ

NAobj + NAillum
, (2.2)

where 1.22 is the distance of the first dark circle of microscope’s point spread function
(Airy disk). More specifically, it is the first zero of the order-one Bessel function of the
first kind divided by π.
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While all three quantities are related, the Rayleigh criteria and full-width half max
are defined by the shape and contrast of the imaging system’s point spread function (or
transfer function in Fourier space) and the Abbe criteria is defined merely by the support
of the imaging system’s transfer function in Fourier space. Thoughout this dissertation
I will discuss achievable resolution in terms of the Abbe resolution criteria and the max-
imum resolvable angular frequency because of its connection to the Nyquist sampling
criteria.

Once an image is formed at the desired plane, it is captured and sampled on a cam-
era using a 2D grid of discrete pixels. The pitch of pixels (i.e. size) to critically sample
the image is governed by the Nyquist sampling criteria, pNyq = (1/2kAbbe). That is, the
image must be sampled at a minimum of twice the rate of the image’s maximum angular
frequency.

2.2 Quantitative Phase Imaging

(a) Absorption Contrast Image (b) Quantitative Phase Image

1.5

-1.0

ra
d

s
.

Figure 2.2: Bright-field sample contrasts: (a) absorption image and (b) quantitative phase image
(computed using four measurements and quantitative differential phase contrast [9]) of 3T3 cells
plated in a single layer.

Bright-field microscopy is a standard method for imaging biological samples in vitro. Un-
less stained or labeled, most biological samples are optically transparent (i.e. minimal ab-
sorption contrast) making them difficult to image directly (Fig. 2.2a). Quantitative Phase
Imaging (QPI) allows for stain-free and label-free imaging with endogenous contrast pro-
portional to the refractive index and thickness of the sample [3, 26] (Fig. 2.2b). Specifically,
a thin sample can be characterized by its 2D complex transmittance function,

o(r) = ejφ(r)−µ(r), (2.3)
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(b) Fourier perspective (c) LED patterns and measurements

Figure 2.3: Light-emitting diode microscope: (a) Schematic of experimental setup imaging the a
USAF phase resolution target. (b) Each light-emitting diode (LED) modulates a different part of
the sample’s Fourier space into the passband of the microscope. The colored circles correspond to
different LED’s Fourier space support, each of which has a small bandwidth (low resolution). The
outer dashed circle represents the upper limit of the Fourier support for the LED array microscope
(determined by the position of the outer most LEDs). (c) Intensity images are captured in real
space by the camera sensor under different LED illuminations (displayed). Each colored circle in
(b) corresponds to a color-outlined measurement in (c).

where φ(r) = 2π
λ
n(r)t(r) is the phase contrast, n(r) is the refractive index distribution,

t(r) is the thickness, µ(r) is the absorption contrast of the sample, λ is the wavelength of
illumination, j =

√
−1, and r ∈ R2 is the spatial coordinate vector.

Phase contrast information cannot be directly observed in intensity measurements ac-
quired on a camera. However, it is possible to indirectly map phase information into
intensity. Common methods include: interference [27, 28], coded-illumination [1, 11],
and coded-pupil (usually defocus) [29–31].
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2.3 Computational LED Array Microscope

Coded-illumination microscopy can be efficiently and inexpensively implemented on a
commercial microscope by replacing the standard illumination unit with an LED array
(Fig. 2.3). The programmability of the illumination device allows it to reveal a vari-
ety of contrasts (e.g. bright field, dark field, differential phase contrast) (visualized in
Fig. 2.4). By understanding how the different illumination patterns encode phase infor-
mation about a sample, the model can be inverted to retrieve that information.

Each individual LED’s illumination at the sample plane is modeled as a monochro-
matic plane wave (with wavelength λ) propagating at an angle characterized by the LED’s
physical position with respect to the azimuth of the microscope [1]. When the lth LED is
“on”, the complex-field after the sample can thus be written as x(r) exp (2πj〈ξl, r〉), where
ξl ∈ R

2 is the spatial frequency vector corresponding to the illumination’s angle of prop-
agation for the lth LED. The illumination of the sample can be interpreted as a translation
of the sample’s spatial spectrum,

F {x(r)} (u− ξl) = F {x(r) exp (2πj〈ξl, r〉)} , (2.4)

where u is the 2D spatial frequency vector.
The product of the illumination field and the sample’s 2D transmittance function are

propagated to the pupil plane of the microscope. This operation is modeled as a Fourier
transform [32]. At the pupil plane, the sample’s shifted Fourier space is low-pass filtered
by the finite-aperture of the objective lens. Finally, an image is formed by propagating
the field through the (2nd) (tube) lens of the microscope to the camera plane (performing
another Fourier transform). At the camera, an intensity-only (i.e. phaseless) real-space
image is captured of the complex field. Mathematically, the process relating the sample’s
transmission function to the measured low-resolution image yl(r) is expressed as

yl(r) =
∣
∣
∣F−1 {P (u)F {x(r)} (u− ξl)}

∣
∣
∣

2

. (2.5)

Here, F and F−1 denote Fourier transform and its inverse, respectively, P is the pupil
function of the microscope objective, which has a hard frequency cutoff at the diffraction

limit set by its numerical aperture (‖u‖2 < NAobj

λ
) [32].

Often it is desirable to encode multiple LED’s information into a single measurement,
termed multiplexing, to increase signal-to-noise ratio (SNR) and to increase phase contrast
(Fig. 2.4). When multiple LEDs are turned on simultaneously, the measured intensity is
the weighted sum of the individual LED measurements, since LEDs are mutually inco-
herent with each other. The resultant measurement is,

ym(r) =
L∑

l=1

clyl(r), (2.6)

where the non-negative scalar cl represents the relative brightness of the lth LED.
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Figure 2.4: Multiplexed LED illumination patterns: (a) the LED illumination patterns for bright
field, dark field, differential phase contrast and (b) their resulting intensity measurements of a
phase USAF resolution target. Insets highlight the variety of contrasts each illumination pattern
produces.

Depending on an LED’s illumination angle, its resulting intensity image will either be
a bright-field or dark-field image [33]. Bright-field images (see Fig. 2.3c) are produced by
central LEDs (inner circle of LED patterns in Fig. 2.3c) whose spatial-frequency vectors are

within the acceptance angle of the objective (where ‖ξ‖2 <
NAobj

λ
). These measurements

encode a sample’s lower spatial-frequency information, are generally very bright, with
high signal-to-noise ratio (SNR), and have a strong background component. Dark-field
images are produced by LEDs in the outer shell of patterns in Fig. 2.3c (where ‖u‖2 >
NAobj

λ
). These measurements encode a sample’s higher spatial-frequency information, are

generally very dim, with low SNR, and have no background component. Because bright-
field and dark-field images have orders-of-magnitude different brightness, they will be
affected by Poisson noise differently [34]. Generally, the design of measurements consider
bright-field and dark-field LEDs separately because of the high dynamic range between
bright-field and dark-field measurements.

2.4 Generalized Image Reconstruction

Decoding, the latter half of a computational imaging system, is how one retrieves the
encoded information from a set of measurements. Typically performed via an image re-
construction, the process requires a forward model representation of the measurement
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process and information about the noise under which the measurements are taken. De-
coding is then performed by inverting the model for the forward process for the given set
of measurements.

The forward process for a typical computational imaging system describes how in-
formation about the image to be reconstructed, x, is encoded into the measurements, y.
Specifically,

y = A(x) + n, (2.7)

where A is the forward model that characterizes the measurement system physics and
n is noise. The forward model is a continuous process, but is often represented by a
discrete approximation. Similar to sampling measurements, bold face variables represent
a discretized and vectorized version of their corresponding continuous signal (except for
the noise vector n, which is formed for each sensor pixel in a 2D grid).

The inverse problem (i.e. decoding) is commonly formulated as an optimization prob-
lem,

x⋆ = argmin
x
D(x;y) + P(x), (2.8)

where D(·) is a data consistency penalty and P(·) is a signal prior penalty. The data
consistency penalty is commonly chosen to be the negative-log likelihood of the noise’s
distribution (e.g. ‖A(x)−y‖2 for normally distributed noise). The signal prior penalty, also
called regularization, models constraints on the signal x, for example, non-negativity or
image support, or other subspace constraints. Practically, it is used to reject noise, mitigate
the amplification of noise, and stablize the image reconstruction.

Physics-based Iterative Reconstruction

Depending on the linearity and structure of the forward model, A, and the prior, P ,
there are several options to minimize Eq. 2.8. If A is linear then optimizers such as half
quadratic splitting (HQS) [35] and conjugate gradient (CG) can be very efficient. If A is
non-linear then methods such as proximal gradient descent (PGD) [36], or its accelerated
variants, can be used. In both cases prior penalty, P is typically minimized by iteratively
applying proximal updates alternated between data consistency updates.

The PGD algorithm (Alg. A.1) is composed of alternating gradient and proximal up-
date steps. In Alg. A.1, α is the gradient step size, ∇x is the gradient operator, proxP is a
proximal function that enforces the prior [37], and x(n) and z(n) are intermediate variables
for the nth iteration.

While similar to PGD in alternating between data consistency and prior updates, HQS
(Alg. 2.2) instead performs a full model inversion rather than a single gradient step for
the data consistency update.
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Algorithm 2.1 Proximal Gradient Descent

Inputs x(0)-initialization, α-step size, N -maximum number of iterations
Output x(N)-final estimate of image

1: n← 1
2: for n < N do
3: z(n) ← x(n−1) − α∇xD(x(n−1);y) ⊲ Gradient update
4: x(n) ← argmin

x
P(x) + µ‖x− z(n)‖22 ⊲ Proximal update

5: n← n+ 1
6: end for

Algorithm 2.2 Half Quadratic Splitting

Inputs x(0)-initialization, µ-penalty parameter, N -maximum number of iterations
Output x(N)-final estimate of image

1: n← 1
2: for n < N do
3: z(n) ← argmin

z
D(z;y) + µ‖z− x(n−1)‖22 ⊲ Regularized least squares update

4: x(n) ← argmin
x
P(x) + µ‖x− z(n)‖22 ⊲ Proximal update

5: n← n+ 1
6: end for

In Alg. 2.2, µ is a penalty parameter that weights the data consistency and signal prior
penalties. When the noise has a normal distribution andA is linear,D(x;y) = ‖A(x)−y‖2
and Alg. 2.2 line 3 can be efficiently solved via the CG method.

Physics-free Learned Reconstruction

With the popularization of data-driven algorithms, many methods have been developed
to learn the decoding process that maps the measurements back to encoded information.
Unlike the physics-based methods outlined above, these methods rely on datasets of mea-
surements and ground truth rather than the physics-based model and inverse problem
formulation. The UNet architecture [38] is most commonly used for these methods [39]
for its multi-level representative power.
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Chapter 3

Physics-based Learned Design

3.1 Introduction

Quantitative Phase Imaging (QPI) enables stain-free and label-free microscopy of trans-
parent biological samples in vitro [3, 26]. Compared with coherent methods [40, 41], QPI
techniques that use partially coherent light achieve higher spatial resolution, more light
throughput, and reduced speckle artifacts. Phase contrast can be generated by interfer-
ence [27, 28] or defocus [29–31]. More recently, coded-illumination microscopy [2, 4, 11, 42–
44] has been demonstrated as an accurate and inexpensive QPI scheme. To realize coded-
illumination, I replace a commercial microscope’s illumination unit with a light-emitting
diode (LED) domed array [8]. This flexible hardware platform has been used for various
QPI applications including super-resolution [2, 11, 42], multi-contrast [33, 43], and 3D
imaging [4, 44].

Coded-illumination microscopy uses intensity measurements with asymmetric source
patterns [45] to retrieve 2D phase information. Quantitative Differential Phase Con-
trast [46–49] (qDPC) typically captures four measurements with rotated half-circle source
patterns, from which the phase is computationally recovered using a partially coherent
model. The performance of qDPC is predominantly determined by how the phase infor-
mation is encoded in (via coded-illumination) and decoded from (via phase recovery) the
intensity measurements.

The half-circle illumination designs of qDPC were derived analytically based on a
Weak Object Approximation [47, 48, 50, 51] which linearizes the physics in order to make
the inverse problem mathematically convenient. This linearized model enables one to
derive a phase transfer function and analyze the spatial frequency coverage of any given
source pattern [48, 49, 52, 53]. However, the non-linearities (camera intensity and phase
information) of the actual system makes it impossible to predict an optimal source design
without knowing the sample’s phase a priori. In addition, these types of analysis are
inherently restricted to linear reconstruction algorithms and will not necessarily result in
improved accuracy when the phase is retrieved via non-linear iterative methods.
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Motivated by the success of deep learning [54] for image reconstruction problems [39,
55–59], data-driven approaches have been adopted for learning coded-illumination pat-
terns. For instance, researchers have used machine learning to maximize the phase con-
trast of each coded-illumination measurement [60], to improve accuracy on classification
tasks [14], and to reconstruct phase [61]. All of these techniques learn the input-output
relationship with a deep convolutional neural network (CNN) using training data. It is
not straightforward to include the well-characterized system physics; hence, the CNN is
required to learn both the physical measurement formation and the phase reconstruction
process. This task requires training of 10s to 100s of thousands of parameters and an
immense number of training examples.

Contribution

Here, I introduce a new data-driven approach to optimizing the source pattern design
for coded-illumination phase retrieval by directly including both the system physics and
the non-linear nature of the decoder in the learning process. The approach unrolls the
iterations of a generic non-linear decoder to construct an unrolled network [18–20, 22, 62–
64]. Similar to CNNs, unrolled networks consist of several layers (one for each iteration);
however, in this case each layer consists of well-specified operations to incorporate mea-
surement formation and sparse regularization, instead of standard operations such as
generic convolutions. The key benefits of the approach are:

• incorporation of the system physics and reconstruction non-linearities in the illumi-
nation design process.

• efficient parameterization of the unrolled network.

• incorporation of practical constraints.

• reduced number of training examples required.

I deploy the data-driven approach to learn improved coded-illumination patterns for
phase reconstruction. Each layer of the unrolled network is parameterized by only a
few variables (LED brightness values), enabling an efficient use of training data (< 100
simulated training examples). I compare the QPI performance of the learned designs
to previous work and demonstrate that the designs generalize well to the experimental
setting with biological samples.

3.2 Quantitative Differential Phase Contrast

qDPC recovers a sample’s complex transmittance function from several coded-illumination
measurements. The phase recovery optimization algorithm aims to minimize the Eu-
clidean norm of the error between the measurements and the expected measurements
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formed with the current phase estimate. Using a gradient-based procedure, the phase es-
timate is iteratively updated until convergence. For a partially coherent source, the phase
can be recovered with resolution up to twice the coherent diffraction limit. In this section,
I describe the measurement formation process and phase recovery optimization.

System Modeling

As previously reviewed in Chap. 2, a thin sample’s transmission function can be approx-
imated as a 2D complex function, o(r) = ejφ(r)−µ(r), where φ(r) and µ(r) are the sample’s
phase and absorption, respectively. Intensity measurements, y(r), of the sample are a
non-linear function of o(r), mathematically described by,

y(r) = |p(r) ∗ (s(r)⊙ o(r))|2, (3.1)

where ∗ denotes 2D spatial convolution, ⊙ denotes elementwise multiplication, s(r) is
the illumination’s complex-field at the sample plane and p(r) is the point spread function
(PSF) of the microscope. The illumination from each LED is approximated as a tilted
plane wave, s(r) = exp (2πj〈ξl, r〉), with tilt angle, ξl, determined by the physical position
of the lth LED relative the azimuth of the microscope [1].

Because the measured image in Eq. 3.1 is non-linear with respect to the sample’s trans-
mission function, recovering phase generally requires non-convex optimization. How-
ever, biological samples in closely index-matched fluid have a small scatter-scatter term.
This means that a weak object approximation can be made; linearizing the measurement for-
mation model such that phase recovery requires only a linear deconvolution of the mea-
surements with their respective weak object transfer functions (WOTFs) [47–51]. Further,
unstained biological samples are predominantly phase objects since they are only weakly
absorbing (i.e. µ(r) is small), however, throughout this section I will outline measurement
formation a sample with both phase and absorption contrast. With these approximations,
each intensity measurement can be modeled as a linear system with contributions from
the background, phase contrast, and absorption contrast. Mathematically,

y(r) ≈ B + hφ(r) ∗ φ(r) + hµ(r) ∗ µ(r), (3.2)

where B is the measurement’s background and hφ(r) and hµ(r) are the phase and ab-
sorption WOTF respectively. The WOTFs are a function of the source and the pupil dis-
tributions of the microscope [48]. For a single LED the WOTF for phase and absorption
are,

hφ(u) = j(p(u) ⋆ (p(u) · s(u))− (p(u) · s(u)) ⋆ p(u)) (3.3)

hµ(u) = p(u) ⋆ (p(u) · s(u)) + (p(u) · s(u)) ⋆ p(u), (3.4)
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where u are 2D spatial frequency coordinates, p(u) and s(u) are the Fourier transform
of the system’s point spread function and illumination respectively, ⋆ is the correlation
operator, defined as (x1 ⋆ x2)(r) =

∫
x1(r̃)x

∗
2(r̃− r)dr̃ for r in the domain of p(u) and s(u).

An indepth derivation of these transfer functions can be found in App. ??.
Multiple LEDs can be turned on simultaneously to increase signal-to-noise (SNR) and

improve phase contrast. As previously discussed, the fields generated by each LED’s
illumination are spatially incoherent with each other and the measurement from mul-
tiple LEDs will simply be the weighted sum of each LED’s individual measurement,
with weights corresponding to the LEDs’ brightness values. It follows that, the phase
WOTF for multi-LED illumination will also be the weighted sum of the single-LED phase
WOTFs.

ym(r) =
L∑

l=0

clyl(r); (3.5)

hφ,m(u) =
L∑

l=0

clhφ,l(u); (3.6)

hµ,m(u) =
L∑

l=0

clhµ,l(u), (3.7)

where cl ≥ 0 is the lth LED’s brightness value.
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Figure 3.1: LED illumination patterns: Absorption and phase weak object transfer functions
(WOTF) and the resulting intensity measurements for (a) single-LED patterns and (b) multi-LED
patterns. Asymmetric LED patterns provide a significant amounts of phase contrast, while sym-
metric pattern provide better absorption contrast. All weak object transfer functions are normal-
ized for visualization purposes.

Following common practice [65], I discretize the 2D spatial distributions and format
them as vectors (bold lower case) (e.g. h represents the transfer function’s 2D spatial
distribution, φ represents the 2D spatial phase distribution, F represents the 2D discrete
Fourier transform). The measurements1 are described as y = F−1AFφ with system func-
tion A = diag(Fhφ) (assuming the object is weakly absorbing).

Based on this model, I define Y ∈ RM×S as S single LED measurements, y, stacked
along the columns. Then, C ∈ RS×K is defined as the S single-LED weights for each of
K measurements, and ck ∈ RS is the kth column of C. The product yk = Yck simulates
the kth multiple-LED measurement. Similarly, I define H ∈ RN×S as S single LED phase
WOTFs, hφ(u), stacked along the columns, such that the product Ak = diag(Hck) gives
the corresponding multiple-LED phase WOTF for the kth measurement.

Phase Recovery

Phase recovery using the forward model described earlier in Sec. 3.2 can be formulated
as a regularized linear inverse problem,

1In practice, y typically refers to the so-called flattened image, where the background energy in (3.2) is
removed via background subtraction.
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x⋆ = R({yk}Kk=1, {Ak}Kk=1) (3.8)

= argmin
x

K∑

k=1

‖yk − F−1AkFx‖22 + P(x), (3.9)

where x⋆ is the recovered phase, K is the number of measurements acquired, yk is the
Fourier transform of the kth measurement and P(·) is a user-chosen regularizer. I solve
this optimization problem efficiently using the accelerated proximal gradient descent
(APGD) algorithm by iteratively applying an acceleration update, a gradient update and
a proximal update [36, 66]. The algorithm is detailed in Alg. 3.1, where α is the gradient
step size, N is the number of iterations, s and z are intermediate variables, µ(n) is the ac-

celeration parameter derived by the recursion, µ(n) =
1+
√

1+4(µ(n−1))2

2
[66], and proxP(·) is

the proximal operator corresponding to the user-chosen regularizer P(·) [36].

Algorithm 3.1 Accelerated Proximal Gradient Descent (APGD) for Phase Recovery

Inputs {yk}Kk=1-set of K measurements, {Ak}Kk=1-set of K transfer functions, N -number
of iterations, α-step size, P(·)-signal prior penalty
Output x(N)-final phase estimate after N th iteration

1: x(0) ← 0,x(−1) ← 0, n← 1
2: for n < N do
3: s(n) ← µ(n)x(n−1) + (1− µ(n))x(n−2)

4: z(n) ← s(n) − α
∑K

k=1(−FHAH
k F)(yk − FHAkFs

(n))
5: x(n) ← prox

αP(z
(n))

6: n← n+ 1
7: end for

3.3 Physics-Based Learned Design

Given the phase recovery algorithm in Sec. 3.2, I now describe the main contribution of
learning the coded-illumination designs for a given reconstruction algorithm and training
set.

Unrolled Physics-based Network

Traditionally, DNNs contain many layers of weighted linear mixtures and non-linear ac-
tivation functions [54] and are learned using large amounts of training data. Here, I
consider structured linear functions which capture the system physics of measurement
formation and non-linear activation functions which promote sparsity [18, 62]. Termed,
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Figure 3.2: Physics-based networks (PbN) are formed by unrolling the iterations of an image re-
construction optimization. Each layer contains one iteration, made up of a data consistency update
and signal prior update. The PbN input is the reconstruction’s initialization, x(0), and the system’s
measurements, {yk}k, and the output is the reconstructed image from the N th layer, which is fed
into the learning loss, L.

physics-based networks (PbN) are constructed from the operations of image reconstruc-
tion algorithms (e.g. proximal gradient descent or half quadratic splitting), where the iter-
ations of the optimizer form the layers of the network. By including known structures and
quantities, such as the forward model, data consistency, and signal prior, PbNs can be ef-
ficiently parameterized by only a limited number of learnable variables, thereby enabling
an efficient use of training data [21] while still retaining the robustness and interpretabil-
ity associated with conventional physics-based inverse problems.

Here, I form a PbN using APGD algorithm outlined in Alg. 3.1 used for phase retrieval
under the WOA. Each layer of the PbN is formed by the operations of the acceleration,
data consistency, and prior updates. During training time, the network’s inputs comprise
the single-LED measurements, {yl}Ll=1, and single-LED WOTFs, {Al}Ll=1, for L LEDs, and
initialization, x(0), and the network’s output is x(N) (as outlined in Fig. 3.2). The network’s
learnable parameters are the brightness levels of the LED patterns for each measurement
and are encapsulated within the input measurements and the system WOTFs. Specifi-
cally, the learnable parameters can be viewed as weights of linear layer with the single-
LED measurements as input and multi-LED measurements as output (Eq. 3.5), similarly
for the multi-LED WOTFs (Eq. 3.7 and Eq. 3.6).

Learning Objective

The learning objective is to minimize the phase reconstruction error of the training data
over the space of possible LED configurations, subject to constraints that enforce physical
feasibility and reduce degenerate and trivial solutions:
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C⋆ =argmin
C
L(C) (3.10)

s.t. ck ≥ 0 (non-negativity) (3.11)

‖ck‖1 = 1 (scale) (3.12)

mk ⊙ ck = 0 (geometric) (3.13)

∀k ∈ {1 . . . K},

where,

L(C) =
1

W

W∑

w=1

Lw(C) (3.14)

=
1

W

W∑

w=1

‖R({Ywck}Kk=1, {Hck}Kk=1)− x′
w‖22. (3.15)

Here, (Yw,x
′
w)

W
w=1 are W training pairs for which Yw is a matrix of single-LED measure-

ments for the wth sample with ground truth optical phase, x′
w. ⊙ is the elementwise

product operator, mk is a geometric constraint mask for the kth measurement, and 0 is the
null vector.

The non-negativity constraint (Eq. 4.9) prevents non-physical solutions by enforcing
the brightness of each LED to be greater than or equal to zero. This is enforced by pro-
jecting the parameters onto the set of non-negative real numbers. The scale constraint
(Eq. 3.12) enforces that each coded-illumination design must have weights with sum
equal to 1, in order to eliminate arbitrary scalings of the same design. This is enforced
by scaling the parameters for each measurement such that their sum is one. The geomet-
ric constraint (Eq. 4.8) enforces that the coded-illumination designs do not use conjugate-
symmetric LED pairs to illuminate the sample within the same measurement, since these
would also result in degenerate solutions (e.g. two symmetric LEDs produce opposite
phase contrast measurements that would cancel each other out). To prevent this, I force
the source patterns for each measurement to reside within only one of the major semi-
circle sets (e.g. top, bottom, left, right). This constraint is enforced by setting the LED
brightnesses outside the allowed semi-circle to zero.

I solve Eq. 3.10 iteratively via accelerated projected gradient descent (Alg. 3.2). At each
iteration, the coded-illumination design for each measurement is updated with the ana-
lytical gradient, projected onto the constraints (denoted by B(·)) and updated again with
a contribution from the previous iteration (weighted by β(t)). B(·) enforces the constraints
in the following order: non-negativity, geometric, and scale.
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Algorithm 3.2 Physics-based Learned Design Algorithm

Inputs {Yw,x
′
w}Ww=1-set of W training examples, C-illumination design initialization, γ-

learning rate, T -number of learning iterations
Output C(T )-learned illumination design

1: for t < T do ⊲ Learning loop
2: for w < W do ⊲ Training data loop
3: rw ← R({Ywck}Kk=1, {Hck}Kk=1)− x′

w

4: Gw ← BackPropagation(rw)
5: w ← w + 1
6: end for
7: C(t+1) ← B(C(t) − γ

W

∑W

w=1 Gw) ⊲ Projected gradient step
8: C(t+1) ← β(t)C(t+1) + (1− β(t))C(t) ⊲ Acceleration step
9: t← t+ 1

10: end for

Gradient Update

The gradient of the loss function (Eq. 3.10) with respect to the design parameters has con-
tributions at every layer of the unrolled network through both the measurement terms,
yk, and the phase WOTF terms, Ak, for each measurement k ∈ {1...K}. Here, I outline the
algorithm for updating the coded-illumination design weights via a two-step procedure:
backpropagating the error from layer-to-layer and computing each layer’s gradient con-
tribution. For simplicity, I outline the gradient update for only a single training example,
w, as the gradient for all the training examples is the sum of their individual gradients.

Unlike pure gradient descent, where each iteration’s estimate only depends on the
previous’, accelerated methods like Alg. 3.1 linearly combine the previous two iteration’s
estimates to improve convergence. As a consequence, backpropagating error from layer-
to-layer requires contributions from two successive layers. Specifically, I compute the
error at all N layers with the recursive relation,

∂Lw

∂x(n−2)
=

∂s(n)

∂x(n−2)

∂z(n)

∂s(n)
∂x(n)

∂z(n)
∂Lw

∂x(n)

+
∂s(n−1)

∂x(n−2)

∂z(n−1)

∂s(n−1)

∂x(n−1)

∂z(n−1)

∂Lw

∂x(n−1)
, (3.16)

where each partial gradient constitutes a single step in Alg. 3.1 and are defined,
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∂x(n)

∂z(n)
=

∂prox
αP(z

(n))

∂z(n)
;

∂z(n)

∂s(n)
=

(

I − α

K∑

k=1

FHAH
k AkF

)

; (3.17)

∂s(n)

∂x(n−2)
=
(
1− µ(n)

)
;

∂s(n−1)

∂x(n−2)
= µ(n−1). (3.18)

With the backpropagated error at each layer, I compute the gradient of the loss function
with respect to C as,

∇CLw(C) =
N∑

n=0

Q(n), (3.19)

for which,

Q(n) = α
K∑

k=1

(
∂FHAH

k Fyk

∂C
− ∂FHAH

k AkF

∂C
s(n−1))

∂x(n)

∂z(n)
∂Lw

∂x(n)
. (3.20)

Here,
(
∂x(n)

/
∂z(n)

)
backpropagates the error through the proximal operator and other

partials with respect to C relate the backpropagated error at each layer to the changes in
C. In what follows, I establish the update step for a single measurement—as the gradient
updates are computed independently for each measurement—by using the product rule
for computing derivatives:

∂FHAH
k Fyk

∂ck
=

∂FHdiag(Hck)
HF(Yck)

∂ck
(3.21)

= FH ∂diag(Hck)
H

∂ck
FYck + FHdiag(Hck)

HF
∂Yck

∂ck
;

∂FHAH
k AkF

∂ck
= FH ∂diag(Hck)

Hdiag(Hck)

∂ck
F (3.22)

= 2FH ∂diag(Hck)

∂ck
diag(Hck)F

In Alg. 3.3, I unite these two steps to form a recursive algorithm which efficiently com-
putes the analytic gradient for a single training example. Alternatively, general purpose
auto-differentiation included in learning libraries (e.g. PyTorch, TensorFlow) can be used
to perform the gradient updates.
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Algorithm 3.3 Gradient Update for Single Training Example

Inputs r(N)-residual, {yk}Kk=1-set of K measurements, {Ak}Kk=1-set of K transfer functions
Output ∇CLw(C)-gradient of loss function wrt. illumination designs

1: n← N
2: for n ≥ 0 do
3: b(n) ← ∂x

∂z
r(n)

4: v(n) ← (I − α
∑K

k=1 F
HAH

k AkF)b
(n)

5: r(n−1) ← µ(n)v(n) + (1− µ(n+1))v(n+1)

6: Q(n) ← α
∑K

k=1(
∂FHAH

k
Fxk

∂C
− ∂FHAH

k
AkF

∂C
s(n−1))b(n)

7: n← n− 1
8: end for
9: ∇CLw(C)←∑N

n=0 Q
(n)

3.4 Results

the proposed method learns the coded-illumination design for a given reconstruction and
training set (Fig. 3.3b), yet up to this point I have not detailed specific parameters of the
phase reconstruction. In the results, I set the parameters of the reconstruction algorithm
(Alg. 3.1) to have a fixed CPU time by fixing the number of iterations at N = 40 and
the step size to α = 0.2 (see supplement for parameter analysis). In addition, the reg-
ularization term, P(φ), has been defined generally (e.g. ℓ1 penalty, total variation (TV)
penalty [67], BM3D [68]). Here, I choose to enforce TV-based sparsity:

P(x) = τ
∑

i

‖Dix‖1, (3.23)

where τ = 1e−3 is set to trade off the TV cost with the data consistency cost and Di is
the first-order difference operator along the ith image dimension. I efficiently implement
the proximal operator of Eq. 3.23 in closed form via parallel proximal method [64, 69, 70]
(details in App. B).

Learning

To train the coded-illumination design parameters using Alg. 3.2, I generate a dataset of
100 examples (90 for training, 10 for testing). Each example contains ground truth phase
from a small region (95 × 95pixels) of a larger image and 69 simulated single LED mea-
surements (using Eq. 3.1). The LEDs are uniformly spaced within a circle such that each
single-LED intensity measurement is a brightfield measurement. The physical system pa-
rameters used to generate the phase WOTFs and simulate the training data measurements
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Figure 3.3: Coded-illumination designs and their corresponding phase weak object transfer func-
tions (WOTFs) for: (a) Traditional qDPC and (b) learned designs for the case where 4, 3, or 2
measurements are allowed for each phase reconstruction. The illumination source patterns are in
the upper left corners, with gray semi-circles denoting where the LEDs are constrained to be “off”.

are λ = 0.532µm, pixel pitch = 6.5µm, magnification = 20×, and NAobj = 0.25. To train, I
use ℓ2 cost between reconstructed phase and ground truth phase as the loss function and
approximate the full gradient of Eq. 3.10 with a batch gradient from random batches of
10% of the training pairs at each iteration. I use a learning rate of γ = 1e−2 (training and
testing convergence curves are provided in the supplement). The training is performed
on a multi-core CPU (Dual-socket Intel Xeon R© E5 Processor @ 2.1GHz with 64 cores and
504GB of RAM) and batch updates are computed in parallel with each training exam-
ple on a single core. Each batch update takes ∼ 6 seconds. 200 updates are performed,
resulting in a total training time of 20 minutes.
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Figure 3.4: Phase reconstruction results using simulated measurements with different coded-
illumination designs. I compare results from: traditional qDPC (half-circles), annular illumina-
tion, condition number optimization, A-optimal design, and the proposed physics-based learned
designs. I show results for the cases of (a) four, (b) three, and (c) two measurements allowed for
each phase reconstruction. Absolute error maps are shown below each reconstruction.
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(a) Traditional qDPC
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(e) Physics-based Learned Design
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Figure 3.5: Coded-illumination designs and their phase weak object transfer functions for (a) tra-
ditional qDPC, (b) annular illumination, (c) condition number optimized, (d) A-optimal, and (e)
physics-based learned designs.

Table 3.1: PSNR Results: Average and standard deviation PSNR (dB) of phase reconstructions
from the simulated testing examples using different illumination schemes and different numbers
of measurements. Factor format: Mean ± Std.

# Meas. Random Traditional Annular Cond. Number A-optimal Physics-based
Illumination qDPC Illumination Optimization Design Learned Design

4 12.30 ± 2.12 15.67 ± 2.19 20.40 ± 2.09 20.37 ± 2.41 17.94 ± 2.54 28.46 ± 2.50
3 12.33 ± 2.12 15.28 ± 2.18 20.44 ± 2.26 19.33 ± 2.03 18.05 ± 2.59 28.04 ± 2.59
2 12.25 ± 2.12 14.87 ± 2.23 20.21 ± 2.24 17.19 ± 2.28 18.08 ± 2.64 23.73 ± 2.18

Analysis

Traditional qDPC uses 4 measurements to adequately cover frequency space. the learned
designs are more efficient and may require fewer measurements; hence, I show learned
designs for the cases of 4, 3 and 2 measurements. The designs and their corresponding
phase WOTFs are shown in Fig. 3.3.

Comparing the learned designs with previous work, Fig. 3.4 shows the phase re-
construction for a single simulated test example using 4, 3 and 2 measurements. The
ground truth phase is compared with the phase reconstructed using traditional qDPC de-
signs [48], annular illumination designs [48], condition number optimized designs [71],
A-optimal designs [72], and the physics-based learned designs. Figure 3.5 visualizes the
LED patterns and WOTFs for these heuristic and optimized designs. Table 3.1 reports the
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Figure 3.6: USAF phase target reconstructions: Experimental comparison between phase results
with (a) Fourier Ptychography (FP) using 69 images, (b) traditional qDPC and (c) learned designs,
for the case of 4, 3, and 2 measurements. Error maps show the difference from the FP reconstruc-
tion. (d) Cross-sections show that phase from the learned designs (long-dashed red) is closer to
that of FP (solid blue) than traditional qDPC (short-dashed green).
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Figure 3.7: 3T3 mouse fibroblast cells reconstructions: Experimental comparison between phase
results with (a) Fourier Ptychography (FP) using 69 measurements, (b) traditional qDPC and (c)
learned designs, for the case of 4, 3, and 2 measurements. Error maps show the difference from
the FP reconstruction. (d) Cross-sections show that phase from the learned designs (long-dashed
red) is closer to that of FP (solid blue) than traditional qDPC (short-dashed green).
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Table 3.2: PSNR Results: Average and standard deviation PSNR (dB) of phase reconstructions
from the simulated testing examples using learned design for different numbers of unrolled itera-
tions. Factor format: Mean ± Std.

# of
unrolled iterations 10 40 100
Mean ± Std. (dB) 22.53 ± 2.29 28.48 ± 2.50 27.39 ± 1.92

peak SNR (PSNR) statistics (mean and standard deviation) for the phase reconstructions
from R evaluated on the set of testing examples. The learned designs give significant
improvement over other designs, recovering both the high and low frequencies more
accurately. The reduction in performance for learned design with 2 measurements (as
compared to 3 and 4 measurements) is due to reduced sensitivity to low frequencies.

Comparing varying depth networks, in Table 3.2 I report the PSNR statistics for the
phase reconstructions from R evaluated on the set of testing examples using learned de-
signs for networks with 10, 40, and 100 unrolled iterations with fixed step size, α = 0.2,
and regularization parameter, τ = 1e−3. If too few iterations are unrolled, the network
cannot fully reconstruct the phase, resulting in lower mean PSNR. As more iterations are
unrolled, the mean PSNR is reduced due to over regularization and over smoothing.

Experimental Validation

To demonstrate that the learned designs generalize well in the experimental setting, I
implement the method on an LED array microscope. A commercial Nikon TE300 micro-
scope is equipped with a custom quasi-Dome [8] illumination system (581 programmable
RGB LEDs: λR = 625 nm, λG = 532 nm, λB = 450 nm) and a PCO.edge 5.5 monochrome
camera (2560×2160, 6.5µm pixel pitch, 16 bit). I image two samples: a USAF phase target
(Benchmark Technologies) and fixed 3T3 mouse fibroblast cells (prepared as detailed in
the supplement). In order to validate the method, I compare results against phase experi-
mentally estimated via pupil-corrected Fourier Ptychography (FP) [1, 11, 73] with equiv-
alent resolution. FP is expected to have good accuracy, since it uses significantly more
measurements (69 single-LED measurements) and a non-linear reconstruction process.

Using the USAF target, I compare phase reconstructions from FP with traditional
qDPC and the learned design measurements (Fig. 3.6). Traditional qDPC reconstructions
consistently under-estimate the phase values. However, phase reconstructions using the
learned design measurements are similar to phase estimated with FP. As the number of
measurements is reduced, the performance quality of the reconstruction using traditional
qDPC degrades, while the reconstruction using the learned design remains accurate.

To demonstrate the method with live biological samples, I repeated the experiments
with 3T3 mouse fibroblast cells. Figure 3.7 shows that phase reconstructions from tradi-
tional qDPC again consistently under-estimate phase values, while phase reconstructions
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using learned design measurements match the phase estimated with FP well.

3.5 Remarks

Discussion

The proposed experimental design method efficiently learns the coded-illumination de-
signs by incorporating both the system physics and the non-linear nature of iterative
phase recovery. Learned designs with only 2 measurements can efficiently reconstruct
phase with quality similar to Fourier Ptychography (69 measurements) and better than
qDPC (4 measurements), giving an improvement in temporal resolution by a factor of
2× over traditional qDPC and far fewer than FP. Additionally, I demonstrate (Table 3.1)
that the performance of the designs on a set of testing examples is superior to previously-
proposed coded-illumination designs. Visually, the learned design reconstructions closely
resemble the ground truth phase, with both low-frequency and high-frequency informa-
tion accurately recovered.

By parameterizing the learning problem with only a few weights per measurement,
the method can efficiently learn an experimental design with a small simulated dataset.
This enables fast training and reduces computing requirements significantly. Obtaining
large experimental datasets for training may be difficult in microscopy, so it is important
that the method can be trained on simulated data only. Experimental results in Sec. 3.4
show similar quality to simulated results, with both using the designs learned from sim-
ulated data only.

Phase recovery with the learned designs’ measurements are trained with a given num-
ber of reconstruction iterations (e.g. determined by a CPU budget). This makes the
method particularly well-suited for real-time processing. qDPC can also be implemented
in real-time, but limiting the compute time for the inverse problem (by restricting the
number of iterations) limits convergence and causes low-frequency artifacts. The learned
designs incorporate the number of iterations (and hence processing time) into the de-
sign process, producing high-quality phase reconstructions within a reasonable compute
time. While one can reduce the number of iterations, if too few iterations are unrolled the
accuracy of the model inversion decreases (Table 3.2).

Finally, rather than using a fixed step size and regularization parameter (as outlined
in Sec. 4.4), these parameters can be jointly learned with the illumination patterns to
optimize the whole system. For given noise statistics the regularization parameter could
be learned; however, it would perform sub optimally for different noise statistics and
would require retraining. Future systems should learn regularization parameters that
can be adapted post training to account for variable noise levels similar to in [74].
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Outlook

The method is general to the problem of experimental design. Similar to QPI, many
fields (e.g. Magnetic resonance imaging (MRI), fluorescence microscopy) use physics-
based non-linear iterative reconstruction techniques to achieve state-of-the-art perfor-
mance. With the correct model parameterization and physically-relevant constraints, the
method could be applied to learn optimal design for these applications (e.g. undersam-
pling patterns for compressed sensing MRI [75], PSFs for fluorescence microscopy [76]).

Requirements for applying the method are simple: the reconstruction algorithm’s up-
dates must be differentiable (e.g. gradient update and proximal update) so that analytic
gradients of the learning loss can be computed with respect to the design parameters. Of
practical importance, the proximal operator of the regularizer should be chosen so that
it has a closed form. While this is not a strict requirement, if the operator itself requires
an additional iterative optimization, error will have to be backpropagated through an
excessive number of iterations. Here, I choose to penalize anisotropic TV, whose proxi-
mal operator can be approximated in closed form [70]. Further, including an acceleration
update improves the convergence of gradient-based reconstructions. As a result, the un-
rolled network can be constructed using fewer layers than its unaccelerated counterpart.
This will reduce both computation time and training requirements.

Conclusion

I have presented a general framework for incorporating the non-linearities of regularized
reconstruction and known system physics to learn optimal experimental design. Here,
I have applied this method to learn coded-illumination source designs for quantitative
phase recovery. the coded-illumination designs can improve the temporal resolution
of the acquisition and enable real-time processing, while maintaining high accuracy. I
demonstrated here that the learned designs achieve high-quality reconstructions experi-
mentally without the need for retraining.
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Chapter 4

Physics-based Learned Design for
Fourier Ptychographic Microscopy

4.1 Introduction

Fourier Ptychographic Microscopy (FPM) [1] is a computational imaging method that
achieves both large field-of-view (FOV) and high resolution for both amplitude and quan-
titative phase imaging (QPI), enabling high-throughput imaging for applications in pathol-
ogy [1] and live cell imaging [77]. It can be conveniently implemented using an inexpen-
sive hardware modification to a conventional microscope simply by replacing the illumi-
nation source with a programmable LED array [1, 8]. By capturing many low-resolution
images, each using a different LED to encode a distinct part of the sample’s Fourier space,
the high-resolution complex transmittance function of the sample can be recovered via
non-linear phase retrieval optimization.

FPM increases the space-bandwidth product of the microscope, but comes at the cost
of significantly reduced temporal resolution. In the originally proposed FPM system, a
single measurement is acquired per LED [1] (single-LED design). To produce a high-
quality reconstruction, measurements must redundantly encode information such that
neighboring LEDs result in at least 60% overlapping coverage of the sample’s Fourier
space [78, 79]. This results in a poor data input:output ratio - approximately 10× more
pixels are acquired than the number of pixels reconstructed [77]. In practice, dozens of
measurements are used and the slow speed of capture prevents imaging of live cell dy-
namics. Several works have improved upon the temporal resolution of the single-LED
design, by turning on multiple LEDs simultaneously [11, 77], spatially multiplexing the
measurements across the sensor [80], color-multiplexing [81], only acquiring the most
important measurements [82], or motion correction [83, 84].

Multiplexed FPM [11, 77] improves upon the measurement requirement for single-LED
design to achieve a data input:output ratio of approximately 1× without sacrificing FOV
or resolution. This is accomplished by acquiring fewer measurements, each taken under
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multiple-LED illumination, thereby encoding multiple parts of the sample’s Fourier space
into each measurement. However, as fewer measurements are acquired and more of the
sample’s Fourier space is encoded per measurement, the reconstructions become blurry.
Practically, the reconstruction’s performance is governed by the system’s experimental
design: which LEDs are turned on in each measurement and how many measurements
are acquired.

Recent work has shown that supervised learning can be used to find the experimen-
tal design that optimizes the performance of a computational imaging system. Several
physics-free methods [85, 86] consider learning design parameters in addition to a black-
box Neural Network (NN) that learns an image reconstruction. These methods require
a huge number of training examples to properly learn millions of parameters that model
the reconstruction process, and they often do not transfer well to the experimental setting.
In comparison, physics-based methods [24, 87] are able to efficiently learn the experimen-
tal design with very few training examples and have been shown to learn designs that do
transfer well to the experimental setting. This is achieved by unrolling the image recon-
struction process [19, 22, 88, 89] to form a Physics-based Network (PbN) [24] and learning
the experimental design parameters to maximize system’s performance.

Contribution

In this work, I use the physics-based learned design framework [24] (outlined in Chap.3)
to find LED pattern designs that maximize the reconstruction performance of the FPM
system. Using the learned designs, I demonstrate the ability to reduce the data input:output
ratio below 1 without compromising reconstruction performance, thereby improving tem-
poral resolution of the system, without sacrificing FOV or resolution. Next, by incorpo-
rating a context-specific loss function, I are able to tailor the learned LED patterns to
different applications (e.g. amplitude contrast imaging vs. QPI). In experiment, I demon-
strate that the LED patterns learned in simulation work well for both amplitude contrast
imaging and QPI applications. Finally, I discuss interpretations of the learned designs
and confirm that they match conventional intuition, as well as practical implementation
details required to build PbNs for large-scale systems.

4.2 Fourier Ptychographic Microscopy

As mentioned in Section A.1, FPM achieves super-resolution, in that it resolves features
beyond the diffraction limit of the microscope’s objective. To do so, a set of low-resolution
measurements recorded under varying illumination configurations are combined using
a computational reconstruction. In this section, we revisit the principles of FPM and
mathematically describe how a complex-valued reconstruction is obtained.
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Forward Model

As reviewed in Chap. 2, an optically-thin sample can be modeled by its 2D transmit-
tance function, x(r) = ejφ(r)−µ(r), where φ(r) and µ(r) represent the phase and absorption
distributions of the sample, respectively, and r ∈ R

2 is the spatial coordinate vector. Mea-
surements of this sampling using the LED array microscope are formed following,

y(r) =
∣
∣
∣F−1 {P (u)F {x(r)} (u− ξl)}

∣
∣
∣

2

. (4.1)

Here, F and F−1 denote Fourier transform and its inverse, respectively, ξ is the il-
lumination’s angle determined by the LED’s position, and P is the pupil function of the
microscope objective, which has a hard frequency cutoff at the diffraction limit set by its

numerical aperture (‖u‖2 < NAobj

λ
) [32]. In multiplexed FPM (where L LEDs illuminate the

sample simultaneously), the measured intensity is the weighted sum of the individual
LED measurements, since LEDs are mutually incoherent with each other [11, 77]:

ym(r) =
L∑

l=1

clyl(r), (4.2)

where the non-negative scalar cl represents the relative brightness of the lth LED. The
implication of Eq. (4.2) is that multiplexing mixes images, each of which non-linearly en-
codes information from a distinct region in the sample’s Fourier space, thereby reducing
the number of required measurements and improving the temporal resolution over the
single-LED design.

However, there is a limit: as more LEDs are used per measurement, it becomes harder
to retrieve the high-resolution complex image. It has been shown that the data input:output
ratio can be reduced to approximately 1, without a significant reduction in reconstruction
quality [11, 77]. Beyond a data input:output ratio of 1, image quality is reduced and ap-
pears blurred.

Inverse Problem

Given a forward model described above, the sample’s complex-field is reconstructed
by solving a non-linear inverse problem. Following convention, we discretize the 2D
transmission function and multiplexed measurements as x ∈ C

q and ym ∈ R
p, respec-

tively. Note that p < q since the reconstructed transmission function has a higher space-
bandwidth product than that of the measurements [1].

Reconstruction of the super-resolved complex transmittance function is then cast as
an optimization problem:

x⋆ = argmin
x

K∑

k=1

∥
∥
∥ymk

−
∑

l∈Ωk

cl|Alx|2
∥
∥
∥

2

2
, (4.3)
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Figure 4.1: Physics-based Learned Design: (a) We start with an input dataset of single-LED im-
ages. (b) For each measurement’s LED pattern, we learn the scalar weights, cl, that correspond
to the brightness of each LED. (c) Each multiplexed measurement is then fed into (d) the Physics-
based Network (PbN), where each layer represents a single gradient descent (GD) step of the
image reconstruction. (e) The output super-resolved reconstruction is then compared to the target
reconstruction via (f) a context-specific loss function, in order to optimize the brightness of each
LED.

where Ωk is the index set for LEDs that are “on” during the kth multiplexed measurement
ymk

. In Eq. (4.3), the discretized system model is given by

Al = FHPlF, (4.4)

where Pl ∈ C
p×q is the matrix representation of the pupil function shifted by ξl, and

F and FH represent the discrete (normalized) Fourier transform matrix and its inverse,
respectively. In this work we solve the optimization problem via gradient descent for
which the convergence of the iterates to a stationary point is established [34, 90].

4.3 Physics-based Learned Design

Physics-based Learned Design [24] formulates the experimental design as a supervised
learning problem that optimizes the source patterns to maximize the performance of the
system. The method takes advantage of the PbN, a rethinking of iterative optimization
procedures as NNs that incorporate known quantities such as the system model and
reconstruction non-linearities. The inclusion of these quantities provide the robustness
and generality associated with physics-based reconstruction and reduces the number of
learnable parameters, thereby significantly reducing the number of training examples re-
quired. In this section, we show how to utilize this framework for FPM, analyze tailoring
the experimental design for a specific application, and discuss memory limitations.
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Physics-based Network

The PbN is defined by the gradient-based optimizer used to solve the inverse problem
in Eq. 4.3 (Fig. 4.1d). Rather than using a network made up of millions of learnable pa-
rameters (e.g. convolutional filters), which would require a large number of training ex-
amples, the network is constructed from well-defined functions (i.e. gradient operations
and the system model). Each layer of the network corresponds to a single iteration of the
gradient-based optimizer. The network,

x⋆ = RC({yl}Ll=1), (4.5)

takes as input a set of single LED measurements {yl}l (Fig. 4.1a), linearly combines them
according to the scalar weights in C ∈ R

K×L (Fig. 4.1b) (which represent the relative
brightness for each of L LEDs across K measurements), and outputs the reconstructed
super-resolved complex image, x⋆ (Fig. 4.1e). The only learnable parameters in the PbN
are the scalar weights that set the relative brightness of each LED, thereby enabling learn-
ing with just a few training examples.

Context-Specific Learning Objective

For specific applications, we can learn a custom experimental design by tailoring the loss
function and training dataset. For example, with stained pathology slides, only ampli-
tude contrast imaging is desired and phase is not used. In this case, the loss function
penalizes only the amplitude error of the reconstruction. For live cell imaging applica-
tions, samples are nearly transparent and essentially pure phase objects. Hence, the loss
function penalizes just the phase error of the reconstruction. For the general case, we can
design for a spectrum of applications using this non-convex loss function,

L(C) =
W∑

w=1

γ ‖|x⋆
w(C)| − |x̃w|‖22

︸ ︷︷ ︸

amplitude loss

+(1− γ) ‖∠x⋆
w(C)− ∠x̃w‖22

︸ ︷︷ ︸

phase loss

, (4.6)

where x̃w is the ground truth complex transmittance function for the wth training example,
W is the total number of training examples, γ ∈ [0, 1] weights the loss between the phase
(γ = 0) and amplitude (γ = 1) loss functions, and | · | and ∠ return the amplitude and
phase of the complex image, respectively.

In addition to tailoring the loss function, we also tailor the training examples to be
predominately amplitude or phase samples, simulated from stock images of cells. For
pathology applications, the dominant structural contrast is simulated in the absorption
component of the sample’s transmittance function. For QPI, the dominant structural con-
trast is in the phase component. Thanks to the efficient parameterization of the network
by only the design parameters, we do not require a large amount of training data (90
image patches).
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The loss function is then minimized via stochastic gradient descent (SGD) subject to
several practical constraints,

C⋆ =argmin
C
L(C) s.t. (4.7)

bk ⊙ ck = 0 (geometric) (4.8)

ckl ≥ 0 ∀l ∈ {1 . . . L}, (non-negativity) (4.9)

‖ck‖1 = 1 (scaling) (4.10)

∀k ∈ {1 . . . K},

where ⊙ is element-wise multiplication. The geometric constraint (Eq. 4.8) allows us to
insert prior knowledge about the design by constraining certain LEDs to be “on” or “off”
in each measurement. This is enforced using a mask, bk, for the kth measurement. In
practice, we use the geometric constraint to separately design source patterns for the
bright-field and dark-field regions. The non-negativity constraint (Eq. 4.9) on the LED
brightnesses enables the designs to be feasibly implemented in hardware. Finally, the
scaling constraint (Eq. 4.10) removes degenerate solutions by eliminating arbitrary scal-
ings of the same solution. After training, the overall brightness of the LED patterns can be
scaled to utilize the full dynamic range of the camera or to a match desired image noise
level.

Computational Limitations

The feed-forward process of the PbN has identical speed and memory complexity to that
of its iterative reconstruction. However, when using graphics processing units (GPU)
to accelerate the training process, the memory required for backpropagation to compute
gradients to learn is limiting. The memory required is proportional to the product of
the number of unrolled iterations, the number of measurements, and the size of the re-
constructed image. To ensure convergence, we must use a sufficient number of unrolled
iterations, which limits us to tuning only the latter two factors. To stay within the GPU’s
memory limit (12GB on an NVIDIA TITAN X Pascal GPU), we learn the design for re-
constructing small patches (35px × 35px) using up to 15 measurements. Thanks to the
Fourier relationship between FOV and sampling in Fourier space, the designs generalize
well to larger FOVs. Broadly, this challenge is seen beyond just this particular applica-
tion and has led to interesting line of research. In the next chapter (Chap. 5), I propose a
new methodology to enable physics-based learning for large-scale computational imag-
ing systems.
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(a) Heuristic Multiplexing Design (b) Learned Design for Amplitude (c) Learned Design for Phase
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Figure 4.2: LED Designs: LED source patterns for (a) heuristic multiplexing designs with 15, 10
and 5 measurements, (b) the learned designs for super-resolved amplitude imaging with 15, 10
and 5 measurements, and (c) the learned designs for super-resolved quantitative phase imaging
with 15, 10 and 5 measurements. The inner blue circle denotes LEDs in the bright-field region,
while the outer blue shell denotes the dark-field region. An LED’s shade of green corresponds to
that LED’s brightness.

4.4 Results

I validate the learned designs for FPM with both simulated and experimental results. To
learn the designs, we create a PbN by unrolling 100 iterations of gradient descent (as
described in Sec. 4.1) with the step size of 0.5. Training is conducted in Pytorch using
auto-differentiation [91] to compute the gradients with respect to the learnable parame-
ters. Data examples (100 patches each of 35px × 35px) are generated in simulation for
two context-specific applications (amplitude contrast imaging and QPI). Each set of ex-
amples is shuffled and split into groups of 90 and 10 for training and testing, respectively.
The training process is initialized using LED brightnesses drawn from a uniform random
distribution.

Simulations are set up to match the experimental system parameters (8× objective,
NAobj = 0.2, with camera pixel size pscamera = 6.5µm and LEDs of wavelength λ =
0.514µm). I consider 89 total LEDs on a Cartesian grid separated by a distance of 4mm in
x and y with 21 in the bright-field region and 68 in the dark-field region, up to NAillum. =
0.42. This allows us to reconstruct features up to NArecon. = NAobj + NAillum. = 0.62. To
mimic experimental noise, each measurement is simulated with a fixed exposure time
such that the shot noise for bright-field measurements has a mean rate of 10,000.
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Figure 4.3: Simulations of super-resolution amplitude imaging: (a) Ground truth amplitude. (b)
Amplitude reconstructions from simulated measurements using heuristic multiplexing designs
and (c) the proposed learned designs, with 15, 10 and 5 measurements. Insets highlight detailed
features and their error maps.

Simulation Results

In Fig. 4.2, we display LED patterns for heuristic multiplexing designs for 15, 10, and
5 measurements [11, 77], as compared to the proposed learned designs for 15, 10, and
5 measurements for both amplitude contrast imaging (γ = 1) and QPI (γ = 0) appli-
cations. The heuristic multiplexing design for K measurements consists of 3 half-circle
bright-field measurements and K − 3 dark-field measurements. The LEDs in the dark-
field measurements are randomly distributed such that each measurement has an equal
number of LEDs “on” with equal brightness and each LED is “on” exactly once.

For the learned designs, the geometric constraint (Eq. 4.8) enforces separate LED pat-
terns for bright-field and dark-field LEDs. Specifically, we learn a single bright-field mea-
surement for amplitude contrast imaging and two bright-field measurements for QPI.
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Figure 4.4: Simulations of super-resolution quantitative phase imaging: (a) Ground truth phase.
(b) Phase reconstructions from simulations using heuristic multiplexing designs and (c) the pro-
posed learned designs, with 15, 10 and 5 measurements. Insets highlight detailed features and
their error maps.

Generally, the amplitude contrast learned designs are symmetric in the bright-field, while
the QPI learned designs are asymmetric in the bright-field (Fig. 4.2b,c). This makes sense
because phase is anti-symmetrically encoded in Fourier space, whereas amplitude is sym-
metrically encoded. Unlike in heuristic multiplexing designs, the learned dark-field pat-
terns are not random, but systematic. First, the learned designs are predominantly sym-
metric and LEDs are turned on in clusters, thereby encoding similar information of the
sample’s Fourier space in each measurement. Second, the LED clusters are fairly disjoint
between measurements, thereby encoding different parts of the sample’s Fourier space.
Finally, as the number of measurements increases, the LED clusters decrease in size. These
themes are further discussed in Section 4.5.

In Fig. 4.3 and Fig. 4.4, we show super-resolved amplitude and QPI reconstructions
from simulated measurements. We compare results for heuristic multiplexing designs [11,
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Table 4.1: PSNR for simulated amplitude reconstructions: average testing LF-PSNR and HF-PSNR
(dB) for different numbers of measurements.

Heuristic Physics-based
# Meas. Multiplexing Learned Design

(LF-PSNR/HF-PSNR) (LF-PSNR/HF-PSNR)
15 47.84 / 16.15 50.30 / 19.86
10 46.28 / 17.37 49.39 / 19.83
5 43.83 / 18.40 47.03 / 19.43

Table 4.2: PSNR for simulated phase reconstructions: average testing LF-PSNR and HF-PSNR (dB)
for different numbers of measurements.

Heuristic Physics-based
# Meas. Multiplexing Learned Design

(LF-PSNR/HF-PSNR) (LF-PSNR/HF-PSNR)
15 31.01 / 14.97 32.80 / 19.76
10 30.47 / 16.25 31.85 / 19.88
5 29.94 / 19.42 28.93 / 20.00

77] and the learned designs to ground truth for 15, 10, and 5 measurements (correspond-
ing to data input:output ratios of 1, 0.66, and 0.33, respectively). Insets highlight a small
region and their differences with ground truth. Using heuristic multiplexing designs, as
the number of measurements increases, finer detail features are resolved, but reconstruc-
tions become corrupted by artifacts. As the number of measurements decreases, recon-
struction results become less noisy, but blurrier. In comparison, reconstructions using the
learned designs remain sharp as the number of measurements decreases.

To further quantify this trend, we report average testing peak signal-to-noise ratio
(PSNR) for different regions of the reconstruction’s Fourier space. Specifically, we cal-
culate the PSNR for the low spatial-frequency region (LF-PSNR) up to the incoherent
diffraction limit (NA = 0.4) and the PSNR for the high spatial-frequency region (HF-
PSNR) (NA = 0.4 to NA = 0.62) to quantify high-frequency noise and the quality of
super-resolved features. In Table 4.1 and Table 4.2 we report average testing LF-PSNR
and HF-PSNR for super-resolved amplitude contrast imaging and super-resolved QPI ap-
plications, respectively. For heuristic multiplexing design, blurring causes the HF-PSNR
for 5 measurements to be relatively higher and noise causes the HF-PSNR for 15 mea-
surements to be relatively lower. In comparison, HF-PSNR for the learned designs are
able to achieve approximately consistent performance as the number of measurements
decreases.
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Figure 4.5: Experimental amplitude target results: (a) Single-LED amplitude reconstruction using
89 measurements serves as ground truth. (b) Amplitude reconstructions using heuristic multi-
plexing designs and (c) the proposed learned designs, with 15, 10 and 5 measurements. Insets
highlight detailed features and difference with the ground truth.

Experimental Results

To validate the learned designs experimentally and show that training on simulated data
is sufficient, the method is implemented on an LED array microscope. The setup is a
commercial Nikon TE300 microscope equipped with a custom LED array illumination
system and a PCO.edge 5.5 monochrome camera (2560× 2160, 6.5µm pixel pitch, 16 bit).
We image two samples: a USAF amplitude target and a USAF phase target (Benchmark
Technologies).

The experimental reconstructions of amplitude (Fig. 4.5) and phase (Fig. 4.6) targets
compare the proposed learned designs to heuristic multiplexing designs [11, 77] and FPM
single-LED design (89 measurements), which will serve as “ground truth” for validation.
To make a fair comparison between different methods, we synthesize measurements for
different designs by digitally combining a fixed set of single LED measurements. For am-
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Figure 4.6: Experimental phase target results: (a) Single-LED phase reconstruction using 89 mea-
surements serves as ground truth. (b) Phase reconstructions using heuristic multiplexing designs
and (c) the proposed learned designs, with 15, 10 and 5 measurements. Insets highlight detailed
features and difference with the ground truth.

plitude contrast imaging (Fig. 4.5), we show insets and their error maps, demonstrating
resolution of features with a pitch of 0.97µm, even as the number of measurements is re-
duced. Heuristic multiplexing designs, on the other hand, lose quality and resolution as
the number of measurements decreases. For QPI (Fig. 4.6), we show insets and their error
maps, demonstrating resolution of features with a pitch of 1.38µm, while reconstructions
with heuristic multiplexing designs degrade with fewer measurements.
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Figure 4.7: Bright-Field vs. dark-Field LED designs: (a) Asymmetric and symmetric bright-field
LED patterns for amplitude and phase samples. (b) Asymmetric and symmetric dark-field LED
patterns for amplitude and phase samples.

4.5 Remarks

Discussion

Physics-based learned design for FPM breaks the trade-off between temporal resolution
and reconstruction quality. While heuristic multiplexing designs have significantly im-
proved temporal resolution, as compared to single-LED design, reconstruction quality
degrades as fewer measurements are acquired (data input:output ratio less than 1). The
learned designs produce systematic LED patterns that more efficiently encode the sam-
ple’s Fourier space, thereby allowing for high-quality reconstructions using even fewer
measurements.

For LED patterns in the bright-field region, the learned designs (Fig. 4.2) can be ex-
plained intuitively. Asymmetric illumination yields strong phase contrast and symmetric
illumination yields strong amplitude contrast. In Fig. 4.7a, we illustrate this by simulat-
ing measurements of a circular object with asymmetric and symmetric LED illumination.
For an amplitude object, a pair of asymmetric LEDs produce identical contrast intensity
measurements, such that when the sample is symmetrically illuminated the image con-
trasts add constructively. For a phase object, a pair of asymmetric LEDs produce opposite
contrast intensity measurements, such that when the sample is illuminated the two image
contrasts add destructively, reducing image contrast. Hence, phase samples will provide
better contrast with asymmetric bright-field LED patterns, whereas amplitude samples
favor symmetric patterns.

In contrast, the learned designs for dark-field LEDs always form symmetric clusters
(Fig. 4.2). In Fig. 4.7b, we simulate measurements of a circular object with asymmetric and
symmetric dark-field LED patterns to understand why. For both amplitude and phase
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samples, pairs of asymmetric LEDs produce similar image contrasts such that when ei-
ther sample is illuminated symmetrically the two image contrasts add constructively. We
speculate that by turning on dark-field LEDs that produce similar contrast within the
same measurement, it is less ambiguous where the encoded information is from in the
sample’s Fourier space and thus the reconstruction is able to retrieve the sample’s high-
resolution Fourier space more faithfully. Practically, symmetrical illumination increases
the total illumination brightness, thereby allowing a reduction in the total acquisition
time.

How to decided the number of iterations to unroll (i.e. the depth of the physics-based
network) is still unclear. Practically, one can set the number of unrolled iterations to fill
the allowed computation budget, however, as we have seen in Chap. 3, the image recon-
struction quality does not monotonically increase with the number of unrolled iterations,
thus as the computational budget is increased improvement in performance is not always
observed. This effect can be caused by model error or over regularization. The solution,
referred to as early stopping, can improve performance by mitigating these effects (e.g.
over smoothing) by terminating the optimization after a fixed number of iterations rather
than running the inverse problem to convergence. Ideally, this fixed number of itera-
tions should be optimized, similar to the rest of the learnable design (e.g. experimental
design and signal prior). This could be achieved by making the number of unrolled itera-
tions adaptive. Rather than specifing a number of iterations, a stopping criteria could be
specified (e.g. mean square error with ground truth). Inaddition, the maximum number
of unrolled iteration can be limited by the memory required for physics-based learning
(discussed in Sec. 4.3 and Chap. 5).

Conclusion

In this work, we have introduced a physics-based learned design framework to create
interpretable context-specific LED source patterns for Fourier Ptychographic Microscopy,
a highly non-linear computational imaging system. With these learned designs, we can
achieve a more favorable trade off between temporal resolution and reconstruction qual-
ity, and tailor the learned source designs for context-specific applications such as am-
plitude imaging and quantitative phase imaging. Finally, we demonstrate that designs
learned in simulation generalize well in the experimental setting.
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Chapter 5

Memory-efficient Learning for
Large-scale Computational Imaging

5.1 Introduction

Computational imaging systems (e.g. tomographic systems, computational optics, mag-
netic resonance imaging (MRI)) jointly design software and hardware to retrieve infor-
mation which is not traditionally accessible. Generally, such systems are characterized by
how the information is encoded (forward process) and decoded (inverse problem) from
the measurements. Recently, physics-based learning [88] has demonstrated the ability to
directly optimize a computational imaging system’s performance [19–21, 23–25, 87, 92–
97]. Physics-based learning takes advantage of both the known physics of the system’s
forward model process and the architecture of the decoder’s iterative optimizer to build
a differentiable neural network that is efficiently parameterized by only a limited num-
ber of learnable variables, thereby enabling training using less data [21, 24, 25], while
still retaining the robustness and interpretability associated with conventional physics-
based inverse problems. Specifically, physics-based networks (PbN) are constructed by
unrolling the iterations of an image reconstruction algorithm (e.g. proximal gradient de-
scent [37] or half quadratic splitting [35]), where the iterations of the optimizer form the
layers of the network. Hence, the physical forward model is built into the architecture of
the network. Commonly, standard signal prior models (e.g. total variation) or a function
that enforces consistency (i.e. proximal operators) have been replaced by a learnable con-
volutional neural network [19, 21, 23, 94, 96, 98] to model the image priors. One can also
learn the data capture scheme (i.e. experimental design) by making the system parameters
that form the measurements learnable [24, 25, 87]).

Many computational imaging systems present a unique challenge for PbN imple-
mentation, due to the large size and dimensionality of variables that are decoded from
the measurements. Training such a PbN relies on gradient-based updates computed us-
ing backpropagation (an implementation of reverse-mode differentiation [99]) for learn-
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ing. As the quantity of decoded information grows, the memory required to perform
backpropagation (via automatic differentiation) may exceed the memory capacity of the
graphics processing unit (GPU).

Storage

Computational

Complexity
Standard

Backpropagation

Forward

Recalculation

Forward

Recalculation

(Checkpointing)

Reverse

Recalculation

Reverse

Recalculation

(Checkpointing)
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exact
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Figure 5.1: Overview of memory-efficient methods: Storage and computational complexity of
standard backpropagation, forward recalculation, forward recalculation with checkpointing, re-
verse recalculation, and reverse recalculation with checkpointing for a physics-based network
with N layers and K is the spacing between checkpoints. Methods’ computational accuracy are
qualitatively reported from exact (three greens dots) to approximate (one green dot).

Methods to save memory during backpropagation (forward recalculation, forward
checkpointing, and reverse recalculation) trade off storage and computational complex-
ity (i.e. the amount of memory and time required for each unrolled layer) [99]. Rather
than storing the whole computational graph required for auto-differentiation in mem-
ory, these methods reform the graph on an on-demand basis. For a PbN with N layers,
standard backpropagation stores the whole graph, achieving O(N) computational and
storage complexity. Forward recalculation instead reforms unstored parts of the graph
by reevaluating the operations of the network forward from the beginning. This achieves
O(1) storage complexity, but has O(N2) computational complexity because layers of the
graph are recomputed from the beginning of the network, while backpropagation re-
quires access to the layers in reverse order. Forward checkpointing saves variables every
K layers and forward-recalculates unstored layers of the graph from the closest stored
variables (checkpoints), thus directly trading off computational, O(NK), and storage,
O(N/K), complexity. Reverse recalculation provides a practical solution to beat the trade-
off between storage vs. computational complexities by reforming unstored layers of the
graph in reverse order from the output of the network (in the same order as required for
backpropagation), yielding O(N) computational and O(1) storage complexities.

Contribution

Here, we propose a memory-efficient learning procedure based on the concept of reverse
recalculation and invertibility that will enable physics-based learning for general large-
scale computational imaging systems. The main contributions of this work are:

1. General memory-efficient learning procedure for physics-based networks. I de-
scribe how to compute gradients for physics-based learning for networks formed
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from gradient and proximal update layers without any significant modifications
to the architecture of the layers. These layers are seen in a large swath of image
reconstruction algorithms, making physics-based learning more feasible for many
large-scale physics-based networks. In this work, we focus on the commonly-used
proximal gradient descent [37] and half quadratic splitting [35] algorithms.

2. A hybrid reverse-recalculation and checkpointing scheme to ensure accuracy. There
are several common sources of error: accumulation due to numerical precision and
the convergence of PbNs constructed from convex programs. Our hybrid scheme
mitigates both issues with a small number of checkpoints.

3. Demonstration of results for general computational imaging systems. I learn the
design for several large-scale computational imaging systems: 3D multi-channel
compressed sensing MRI and super-resolution optical microscopy. In each of these
applications, the method are able to learn the computational imaging system’s de-
sign using PbNs previously proposed in literature at a scale larger than was pre-
viously possible. These specific architectures were selected from already published
works to demonstrate the broad class of physics-based network to which the method
applies. I observe similar quality results to those works, but do not claim that they
are the best performing. To the best of my knowledge, this is the first demonstration
of memory-efficient learning in the area of computational microscopy.

4. An open source implementation. The implementation of the work contained here
in this chapter is available open source 1 and is further discussed in Appendix A.

5.2 Related Works

This work considers memory-efficient learning for a general class of physics-based net-
works to enable learning for large-scale computational imaging systems. Previous work
can be classified under the following categories:

Learning for Computational Imaging: Methods can be categorized into physics-based
and physics-free approaches. Physics-based [19–21, 23–25, 87, 88, 92–97] methods consider
the inclusion of the forward model process and the structure of inverse problem opti-
mization in the physics-based network. Physics-free approaches use a black box architec-
ture (e.g. UNets [38]) to learn the decoder relationship without prior knowledge of the
forward model. The former require fewer learnable parameters than the later, allowing
them to be trained using less data. In addition, physics-based methods are more robust in
experimental settings and inherit the interpretability associated with classic inverse prob-
lems. The recent work by Ongie et al. [97] has a comprehensive review of these methods.

Invertible Learning: Recently, invertible networks have been popularized to perform
reverse-mode differentiation to save memory [98, 100–103] and model high-dimensional

1https://github.com/kellman/MELD

https://github.com/kellman/MELD
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densities [104–110]. All based on the concept of reverse recalculation [99], these meth-
ods form networks from a sequence of invertible operations, thereby alleviating the need
to store intermediate variables in memory for computing gradients using backpropaga-
tion. Our method relies on the same concept of reverse recalculation to perform memory-
efficient learning [99, 101] for networks composed of gradient and proximal update lay-
ers, making physics-based learning feasible for a wider variety of large-scale physics-
based networks.

The work by Putzky and Welling (2019) [98] is most similar to our work. It demon-
strates memory-efficient learning using a modified recurrent inference machine [95] ar-
chitecture that relies on the forward model and an invertible layer with orthogonal 1× 1

convolutions for applications in MRI. With a similar in goal in mind, our work presents
a more general method that does not require any significant modification to the physics-
based network for invertibility and includes many options for layers (i.e. gradient, prox-
imal, least-squares update layers). This will make physics-based learning more feasi-
ble for users wanting to design large-scale computational imaging systems. The storage
and computation required for our method and the work in [98] are further contrasted in
Sec. 5.6.

Implicit function theorem: Memory-efficient differentiation can be performed us-
ing implicit function theorem (IFT) when the network minimizes an objective function.
Specifically, IFT can compute gradients of a network that achieves a fixed point or an op-
timum by differentiating its optimality equations at that point with respect to the learn-
able parameters. It’s usefulness has been demonstrated to differentiation through opti-
mization problems via the Karush–Kuhn–Tucker conditions [111], for meta-learning [112,
113], to learn fixed-point methods [114], and to backpropagate through recurrent net-
works [115]. Physics-based networks are formed by optimization problems and thus
could potentially benefit from these concepts. However, in many cases physics-based
networks are stopped early prior to convergence to a fixed point due to limited com-
putation or as a method of regularization. Using IFT also does not allow independent
parameters to be learned for different layers of the network and variables associated with
the optimizer itself (e.g. step size and acceleration rate), while computing gradients via
backpropagation does.
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5.3 Methods
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(a) Physics-based network (b) Memory-efficient learning procedure

Figure 5.2: Memory-efficient learning for physics-based networks: (a) Physics-based networks
(PbN) are formed by unrolling the iterations of an image reconstruction optimization. Each layer
contains one iteration, made up of a data consistency update and signal prior update. The PbN
input is the reconstruction’s initialization, x(0), and the output is the reconstructed image from
the N th layer, which is fed into the learning loss, L. (b) Memory-efficient learning procedure for
a single layer: (1) recalculate the layer’s input, x(n−1), from the output, x(n), by applying that
layer’s inverse operations. (2) Recompute the auto-differentiation graph for that single layer. (3)
Backpropagate gradients, q(n)

= ∂L/∂x(n), through the layer’s auto-differentiation graph.

The main contribution this method is to improve the storage and computational com-
plexity of computing gradients via backpropagation for PbNs. First, we treat the single
large graph for auto-differentiation as a series of smaller graphs. Then, we rely on each
physics-based layer’s invertibility to reform each smaller graph from the network’s out-
put in reverse order. By only requiring a single layer to be stored in memory at a time, we
save a factor of N in memory. By computing the smaller graphs in reverse order, we save
on computation compared to other methods such as forward checkpointing.

Consider a PbN, F , composed of a sequence of layers,

x(n) = F (n)
(
x(n−1); θ(n)

)
, (5.1)

where x(n−1) and x(n) are the nth layer input and output, respectively, and θ(n) are its
learnable parameters. When performing reverse-mode differentiation, the method treats
a PbN of N layers as N separate smaller graphs, generated on demand, processed and
stored one at a time, rather than as a single large graph, thereby saving a factor N in
memory. As outlined in Alg. 5.1 and Fig. 5.2, we first recalculate the current layer’s input,

x(n−1), from its output, x(n), usingF (n)
inverse (Alg. 5.1 line 3), and then form one of the smaller

graphs by recomputing the output of the layer, v(n), from the recalculated input (Alg. 5.1
line 4). To compute gradients, we then rely on auto-differentiation of each layer’s smaller
graph to compute the gradient of the loss, L, with respect to x(n) (denoted q(n)) (Alg. 5.1
line 5) and ∇θ(n)L (Alg. 5.1 line 6). The procedure is repeated for all N layers in reverse
order.
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Algorithm 5.1 Memory-efficient learning for physics-based networks

Inputs x(N)-output of physics-based network, q(N)-gradient of loss with respect to state
at output
Output {∇θ(n)L}Nn=1-gradients with respect to learnable parameters at each layer

1: n← N
2: for n > 0 do
3: x(n−1) ← F (n)

inverse(x
(n); θ(n−1))

4: v(n) ← F (n)(x(n−1); θ(n−1))

5: q(n−1) ← ∂v(n)

∂x(n−1)q
(n)

6: ∇θ(n)L ← ∂v(n)

∂θ(n) q
(n)

7: n← n− 1
8: end for

In order to perform the reverse-mode differentiation efficiently, our method must be

able to compute each layer’s inverse operation, F (n)
inverse. The remainder of this section

overviews the procedures to invert gradient and proximal update layers. In addition,
special treatment is given to the proximal operation performed in the least-squares update
layer to highlight several computational details.

Inverse of gradient update layer

A common interpretation of gradient descent is as a forward Euler discretization of the
continuous-time ordinary differential process [37] gradient flow,

dx(t)

dt
= −∇xD(x(t);y) ⇒ x(t+α) − x(t)

α
= −∇xD(x(t);y). (5.2)

With uniform steps of size α the nth gradient descent step is,

x(n) ← x(n−1) − α∇xD(x(n−1);y). (5.3)

As a consequence, the inverse of the gradient update layer (Eq. 5.3) can be viewed as a
backward Euler step,

x(n−1) = x(n) + α∇xD(x(n−1);y). (5.4)

This implicit equation can be solved iteratively via the backward Euler method using
a fixed point algorithm (Alg. 5.2) [37]. Convergence is guaranteed if



CHAPTER 5. MEMORY-EFFICIENT LEARNING FOR LARGE-SCALE

COMPUTATIONAL IMAGING 53

Lip (α∇xD(x;y)) < 1, (5.5)

where Lip(·) computes the Lipschitz constant of its argument [116]. In the setting when
D(x;y) = ‖Ax − y‖2 and the forward model, A, is linear, this can be ensured if α <

1
σmax(AHA)

, where σmax(·) computes the largest singular value of its argument. Finally, as

given by Banach Fixed Point Theorem, the fixed point algorithm (Alg. 5.2) will have an
exponential rate of convergence [116].

Algorithm 5.2 Inverse for gradient layer

Inputs z-output of gradient descent layer, L-number of iterations
Output x(L)-estimate of gradient descent layer’s input

1: l ← 0
2: x(l) ← z

3: for l < L do
4: x(l+1) ← z+ α∇xD(x(l);y)
5: l ← l + 1
6: end for

Inverse of proximal update layer

The proximal update is defined as the optimization problem [37],

x(n) ← proxP(x
(n−1)) (5.6)

← argmin
v

1

2
‖v − x(n−1)‖22 + P(v). (5.7)

For differentiable P(·), the solution to Eq. 5.7 gives,

x(n) = x(n−1) −∇xP(x(n)). (5.8)

In contrast to the gradient update layer, the proximal update layer can be thought of
as a backward Euler step of a continuous-time ordinary differential process [37],

dx(t)

dt
= −∇xP(x(t)) ⇒ x(t+α) − x(t)

α
= −∇xP(x(t+α)), (5.9)

with step size of α = 1. This allows its inverse to be expressed as a forward Euler step,
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x(n−1) = x(n) +∇xP(x(n)), (5.10)

when the proximal function is bijective (e.g. prox
ℓ2

). If the proximal function is not bi-
jective (e.g. prox

ℓ1
), the inversion is not straightforward; however, in many cases we can

substitute it with a bijective function with similar behavior. For example, soft threshold-
ing, the proximal operator of ℓ1 norm, is not bijective, but can be made so by adding a
small slope.

Inverse of least-squares update layer

The least-squares update is used in optimizers such as HQS and alternating direction
method of multiplers (ADMM) and is more efficient than PGD in the number of unrolled
layers required as it performs the complete minimization of the data consistency penalty
at each iteration. When examined, this update is technically a proximal operation and
thanks to its differentiability it has an exact inverse as outlined in the previous section
(Sec. 5.3). We treat it separately because of its importance in many algorithms and because
of efficient solution using conjugate gradient method (CG).

This update minimizes the data consistency penalty regularized by the previous esti-
mate, x(n−1),

x(n) ← argmin
v
‖A(v)− y‖22 + µ‖v − x(n−1)‖22, (5.11)

where µ varies the amount of regularization. Giving its name, this optimization can be
solved in closed form using least-squares when the forward model, A(·), is linear,

x(n) ←
(
AHA+ µI

)−1
(AHy +

µ

2
x(n−1)), (5.12)

where A denotes the linear forward model. When A models a linear translation invariant
system, it is a circular convolution, the Fourier transform diagonalizes the model, and
Eq. 5.12 can be computed in closed form by dividing by the power spectrum of the sys-
tem’s convolution kernel. However, computational imaging systems often form A not as
an explicit matrix, but as a series of operators. In this case, the inversion can be efficiently
computed using the CG method.

The inverse operation of this layer (Eq. 5.12) can be expressed in closed form as

x(n−1) =
1

µ

((
AHA+ µI

)
x(n) −AHy

)
. (5.13)

When using a CG method to perform the forward model inversion (Eq. 5.12), Eq. 5.13 is
accurate only if CG performs the forward model inversion accurately. This is source of
numerical error is further discussed in Sec. 5.4.
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5.4 Hybrid Reverse Recalculation and Checkpointing

Reverse recalculation of the unstored variables is non-exact, as the operations to calcu-
late the variables are not identical to forward calculation. The result is numerical error
between the original forward and reverse calculated variables. As more iterations are
unrolled, numerical errors can accumulate.

To mitigate these effects, we can use checkpointing. Some of the intermediate vari-
ables can be stored from forward calculation and used in substitution for the recalculated
variables, that could incur accumulated numerical errors. Memory permitting, as many
checkpoints as possible should be stored to ensure accuracy while performing reverse re-
calculation. Due to the size of the intermediate variables, large-scale PbNs cannot afford
to store all variables required for reverse-mode differentiation, but it is often possible to
store a few as checkpoints.

Further, when enough iterations of the reconstruction optimization (Eq. 2.8) are un-
rolled, convergence of the intermediate variables can often be observed. When this oc-
curs, inversion of each layer’s operations (Alg. 5.1 line 3) becomes ill-posed. For example,
when PGD converges the gradient of the reconstruction loss will be zero, thus Alg. 5.2
will return its input and the inversion will fail.

Checkpointing can again be used to reduce these effects. If convergence behavior is
observed, then checkpoints can be stored during later layers to correct inversion error.
Economically, checkpoints should be placed closer together for later layers and less fre-
quently for earlier layers (this further discussed in Sec. 4.5).

5.5 Results

I first demonstrate memory-efficient learning method with a compressed sensing sys-
tem as an example, then with two real-world large-scale applications. In the compressed
sensing example, I learn the measurement matrix to improve reconstruction performance
and empirically test the method’s storage and computational complexities. In the first
of the large-scale applications, I improve the image quality for 3D multi-channel com-
pressed sensing MRI by learning better signal priors to regularize the reconstruction. In
the second, I improve the temporal resolution of super-resolution microscopy (Fourier
Ptychography) by learning the system’s experimental design.

Learned measurements for compressed sensing

Compressed sensing combines random measurements and regularized optimization to
reduce the sampling requirements of a signal below the Nyquist rate [117]. It has seen
practical success in many fields (e.g. MRI [118], holography [119], optical imaging [120]).
A natural question to ask is, which measurements provide the best signal recovery for a
class of signals? Specifically, I recover arbitrary one-sparse signals from linear measure-
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ments and learn the linear measurement matrix with a PbN. I learn a set of 7 coded 1D
masks; each scalar measurement is the dot product of a mask with the signal. I optimize
recovery of the signal in terms of mean square error, for a problem with relatively small
dimensions and scale. This small-scale problem lets us rapidly demonstrate the accuracy
of our method and compare against other methods. The PbN is constructed by unrolling
PGD for the reconstruction loss,

x⋆ = argmin
x
‖Ax− y‖22 + λ‖x‖1. (5.14)

where A ∈ R7×10, x ∈ R10 is a one-sparse signal, y ∈ R7 is a measurement signal, and
λ trades off the data consistency and sparsity prior penalties. The PbN is formed from
800 unrolled iterations of PGD with a step size of 0.05 and λ = 0.06. For the method, a
modified soft thresholding function is used as the proximal operator, where a small slope
(on the order of 1e−6) is added to the zeroed region to make it an invertible function (as
discussed in Sec. 5.3). Training was conducted for 20 epochs with 20 training data points,
batch size of 4, and learning rate of 1e−2 using ADAM [121]. 50 checkpoints are used to
mitigate error due to numerical precision (as discussed in Sec. 5.4).
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Figure 5.3: Learned measurements for 1D compressed sensing: (a) Mean testing loss for learning
using standard and memory-efficient learning techniques. (b) Initial (Gaussian randomly dis-
tributed) and learned measurement matrices using standard and memory-efficient techniques. (c)
Two testing examples of reconstructions with random and learned measurement schemes, demon-
strating both improved signal recovery using the learned measurements in comparison to the
random measurements and similarity between standard and memory-efficient learning (while re-
quiring 4.1KB, ∼ 800× less memory than standard backpropagation).

Figure 5.3 shows a comparison between the testing loss for standard and memory-
efficient learning techniques, initial random and optimized measurement matrices, and
several testing data points for the ground truth with the signal recovered using the learned
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and initial matrix (random Gaussian variable). As seen in Fig. 5.3c, the learned measure-
ment matrices have better signal recovery than the random matrix. The learned mea-
surements and signal recovery using the method and standard learning are similar, but
∼ 800× less memory is used. Where as the method uses a modified soft thresholding
function, standard learning uses the ordinary version of the function. Learning results
are comparable (Fig. 5.3) between the uses of the two functions, suggesting the affect of
the modification is negligible; further discussion is included in Sec. 4.5.

Learned priors for multi-channel MRI

As our first large-scale example of real-world applications, we look at MRI, a power-
ful medical imaging modality that non-invasively captures rich biophysical information
without ionizing radiation. Since MRI acquisition time is often directly proportional to
the number of acquired measurements, reducing measurements leads to immediate im-
pact on scan time, patient throughput, and enables capturing fast-changing physiological
dynamics. Multi-channel MRI is the standard-of-care in clinical systems and uses multi-
ple receive coils distributed around the body to acquire measurements in parallel. This
parallel imaging technique reduces the total number of required acquisition frames for
decoding [122]. Further, scan time and noise amplification can be additionally reduced
by relying on signal prior knowledge, allowing undersampling of the acquisition frames
(i.e. with compressed sensing [118]). Recently, PbNs have been developed to learn the sig-
nal priors, achieving state-of-the-art performance for multi-channel accelerated MRI [20,
21]. However, the PbNs are limited in network size and number of unrolled iterations
due to the amount of memory required for training. This is an especially prominent prob-
lem when moving to high-dimensional problems (e.g. 3D anatomical imaging, temporal
dynamics, etc.). The proposed memory-efficient learning reduces memory footprint at
training time, thereby enabling learning for larger problems.
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Figure 5.4: Learned priors for multi-channel 2D under-sampled MRI: (a) Mean testing loss is
similar for both standard backpropagation and memory-efficient learning. (b) Ground truth re-
construction using fully sampled measurements, (c) linear parallel imaging reconstruction (no
prior), (d) PbN reconstruction learned using standard backpropagation and (e) PbN reconstruc-
tion learned using memory-efficient learning (3.7× reduced memory requirement, 1.2× increase in
compute time). Insets highlight fidelity of high-resolution features and noise reduction in both of
the learned designs, as compared to the CG reconstruction. Reported memory and time required
is for a single learning update with batch size one.

To validate the method, we first show results for the 2D problem in [21], which has
small enough memory requirements for the standard backpropagation to fit on my GPUs.
The PbN is formed from 4 unrolled iterations of the HQS method and uses a learnable
Resnet as the image prior [21, 23]. Specifically, the objective the PbN is minimizes

x⋆ = argmin
x
‖PFSx− y‖22 + µ‖x−R(x)‖22, (5.15)

where S are the multi-channel coil sensitivities, F denotes Fourier transform, and P is the
undersampling mask used for compressed sensing. The image prior is learned using a
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network, R(x), with the invertible residual convolutional neural network (RCNN) [101,
110, 123] architecture composed of a 5-layer CNN where each layer has 64 channels and
filters of 3× 3. The RCNN’s learnable parameters are shared between each PbN layer.

I learn to reconstruct 256×320 slices with measurements from 8 channels and variable
density Poisson Disc Fourier undersampling at a rate of 4×. Data used for training and
testing is from [21], where ground truth brain images are used and data is synthetically
generated given the sensitivity and undersampling masks. Training was conducted for
10 epochs with 350 training data points and 10 testing data points, a batch size of 4, and a
learning rate of 1e−5 using ADAM [121]. In Fig. 5.4, we compare image reconstructions us-
ing the priors learned by standard and memory-efficient learning. As shown in Fig. 5.4a,
testing losses and image reconstruction quality are similar for both methods (Fig. 5.4d,e),
but our method uses 4.82× less memory, while only requiring a 1.09× increase in time.

Finally, I demonstrate the proposed method’s ability to learn priors for a 3D volume
reconstruction from under-sampled multi-channel measurements - a problem that does
not typically fit within standard GPU memory limits. Specifically, I reconstruct volumes
of 50 × 256 × 320 with measurements from 8 channels and variable density Poisson Disc
undersampling at a rate of 4×. Data used is from [21] and is augmented to create more
training examples by cropping down larger volumes to 50 × 256 × 320. We use a similar
PbN architecture as before for the reconstruction and training parameters, but now with
a RCNN with 3D filters (3× 3× 3) and 32 channels. This model would ordinarily require
∼ 40GB of memory using standard backpropagation (∼ 10GB per unrolled iteration), but
only requires ∼ 10GB of memory using our method. In Fig. 5.5, we show results of the
learning loss and a single slice of the reconstructed volumes from the ground truth (fully
sampled), conjugate gradient (no learning or signal prior), and after learning priors with
our memory-efficient learning scheme.

To further motivate the need for large-scale models, I perform an analysis of perfor-
mance (PSNR) versus number of unrolled iterations (Fig. 5.6). While the return dimin-
ishes as the number of unrolled iterations increases, performance continues to increase
past 20 iterations. In this setting, when even single-layer and checkpointing require ap-
proximately 12GB of memory, the method will be more computationally efficient than
other memory-friendly methods such as forward checkpointing (further discussed in
Sec. 5.6).

Learned experimental design for Fourier Ptychographic Microscopy

In this section, I revisit the problem of learning illumination patterns for Fourier ptycho-
graphic microscopy (FPM) (Chap. 4). As highlighted in Chap. 4 Sec. 4.3, 100s gigabytes
to terabytes of memory is required to perform physics-based learning for FPM at higher
factors of super resolution. Here, I show that the proposed memory-efficient learning
framework reduces the necessary memory only a few gigabytes, thereby enabling full-
scale learning on a consumer-grade GPU.
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Figure 5.5: Learned priors for multi-channel under-sampled 3D MRI: (a) Mean training and testing
loss for learning with the proposed memory-efficient technique. (b) One slice of ground truth 3D
reconstruction using fully sampled measurements, (c) linear parallel imaging reconstruction (no
prior), (d) PbN reconstruction using memory-efficient learning with∼ 10GB of memory. Standard
learning is not shown because it requires more memory than would fit on a commercial GPU.

As detailed in Chap. 4, the PbN for learning FPM LED source patterns is formed from
the following phase retrieval optimization:

x⋆ = argmin
x

K∑

k=1

∥
∥
∥ymk

−
L∑

l=1

ckl|Alx|2
∥
∥
∥

2

2
, (5.16)

where ymk
is the kth multi-LED measurement, Al = FHPlF is the forward model for the

lth LED [1, 25], Pl is the microscope’s pupil function for the l LED, F denotes 2D Fourier
transform, and ckl is the learnable brightness for the lth LED in the kth measurement. A
PbN is formed from N unrolled iterations of gradient descent. I then minimize the loss
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Figure 5.6: Multi-channel MRI performance versus number of unrolls: Average testing PSNR for
varying number of unrolled iterations. In this example we learn independent parameters for each
layer.

between the output of the PbN and the ground truth to learn LED brightnesses over the
dataset.
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Figure 5.7: Learned illumination design for Fourier Ptychographic Microscopy (FPM): (a) Mean
testing loss is similar for both standard backpropagation and memory-efficient learning. (b) Exam-
ple low-resolution measurement, (c) ground truth reconstruction using all 89 LED measurements
to perform 3.1× super resolution, (d) reconstruction from only 8 measurements learned using
standard backpropagation and (e) memory-efficient learning (92× reduced memory requirement,
1.7× increase in compute time). Reported memory and time required is for a single learning up-
date with batch size one.
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I again start by validating the method’s accuracy on a small-scale problem that fits in
GPU memory using standard learning. I reproduce results in Chap. 4, learning illumina-
tion patterns for eight measurements, which gives 3.1× resolution improvement and 10×
faster data capture. I set L = 4, the number of fixed point iterations to invert gradient lay-
ers, and checkpoints every 10 unrolled iterations. The testing loss between the proposed
method and standard learning are similar (Fig. 5.7a), and the SR reconstructions with
learned designs using standard (Fig. 5.7d) and memory-efficient (Fig. 5.7e) methods are
both similar to the ‘ground truth’ reconstruction using 89 measurements (Fig. 5.7c). The
memory-efficient learning approach, however, reduces memory required from 5.69GB to
0.062GB, with compute time increasing by less than a factor of 2×. Hence, the proposed
method produces comparable quality results as the standard learning, but with signifi-
cantly reduced (more than 91×) memory requirements.
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Figure 5.8: Large-scale learned illumination design for FPM: (a) Training and testing loss for
memory-efficient learned design. (b) Example low-resolution measurement, (c) ground truth re-
construction using all 293 LED measurements to perform 4.2× super resolution, (d) reconstruction
from only 16 measurements learned using memory-efficient learning with ∼ 3GB memory. Stan-
dard learning is not shown because it would require ∼ 500GB of memory, which is not available
on commercial GPU. Insets highlight high-resolution features.



CHAPTER 5. MEMORY-EFFICIENT LEARNING FOR LARGE-SCALE

COMPUTATIONAL IMAGING 63

Next, I use the proposed memory-efficient learning scheme to solve a larger-scale
problem than was previously possible. For FPM, that means using all 293 LEDs to achieve
a higher factor of super resolution (4.2×). 200 iterations are unrolled to create the PbN,
I set L = 4, and checkpoints every 13 unrolled iterations. For this problem, standard
backpropagation would require ∼ 500GB of memory, while the proposed method only
requires ∼ 3GB (using 15 checkpoints). In Fig 5.8, I demonstrate the learned design’s
ability to reduce the number of measurements required from 293 to 16, demonstrating
20× faster data capture with comparable image quality to ground truth.
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Figure 5.9: Fourier Ptychographic Microscopy performance versus number of unrolls: Average
testing PSNR for varying number of unrolled iterations.

In this example, the number of unrolled iterations is determined by the conditioning
of the problem as aspects of the reconstruction are not learned (as they are in Sec. 5.5). I
perform an analysis of performance (PSNR) versus number of unrolled iterations (Fig. 5.9)
and show that for this problem at least 100 iterations must be unrolled before diminishing
returns in performance. This analysis is in the context of this level of super resolution and
the number of measurements learned. As the degree of super resolution grows or the
number of measurements is decreased, the problem will become worst conditioned and
more unrolled iterations will be required.

5.6 Memory-Computation Analysis

In Sec. 4.4 I demonstrated several example uses of the proposed method, each represent-
ing a single point in the storage-computation trade-off space. Here, I provide analysis
to determine when our method provides advantage over standard backpropagation and
forward checkpointing. I visualize the complete storage-computation space and calculate
when each method is best (the fastest method that accommodates the memory required).
Specifically, I visualize the relationship between storage-computation for varying input
sizes (referred to as checkpoint sizes), varying physics-based layer sizes, varying num-
bers of unrolls, and varying amounts of computation required.

First, I calculate the memory and computation time requirements for all three meth-
ods. For standard backpropagation the memory required is N × A + B, where N is the
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Figure 5.10: Fastest method for varying layer and checkpoint size: (a) Fastest method for three
scenarios where the ratio between forward and inverse layer computation varies. The proposed
method performs better with larger ratios because it calls each layer’s inverse more and forward
checkpointing calls each layer’s forward more. (b) Fastest method for three scenarios with in-
creasing number of unrolled iterations. The proposed method performs better as more iterations
are unrolled. Sector color corresponds to the fastest method: purple, orange, yellow, and blue
representing standard backpropagation, forward checkpointing, my method, and problems that
do not fit on a single GPU (12 GB), respectively.

number of layers, A is the memory for a single physics-based layer, and B is the memory
for a single data input. The time required is N × (Tfwd + Tbck), where Tfwd and Tbck are
the computation times for running a layer forward and backwards, respectively. Forward
checkpointing stores as many checkpoints as memory affords. Once there are more layers
than available memory for checkpoints, layers are recomputed from the previous closest
checkpoint. Because backpropagation is performed in the reverse order of the forward
pass, it is computationally expensive to recompute layers when the number of layers far
exceeds the number of checkpoints. When checkpoints are stored every K iterations the

computational time required is N × (Tfwd + Tbck) +
N(K+1)

2
× Tfwd. Finally, the proposed

method only requires A + B in memory and N × (2Tfwd + Tbck + Tinv), where Tinv is the
time to invert each layer’s operations.

Both forward checkpointing and my method are memory-friendly, but the computa-
tion time they require varies drastically based on how many checkpoints can be stored
and the computational cost of performing a layer’s forward versus its inverse operations.
Once forward checkpointing cannot store a single checkpoint per layer, its computation
time grows quadratically, while my method remains linear. Further, forward checkpoint-
ing relies on the evaluation of layers’ forward operations, while my method relies on the
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evaluation of layers’ inverse operations.
Figure 5.10 illustrates when each method is fastest for varying size physics-based lay-

ers and checkpoint sizes (determining how many checkpoints can fit in memory). This
analysis is done using a GPU with 12GB of memory. Figure 5.10a shows the fastest choice
of method for three different cases: when inverse layer computation is faster, the same
speed, and slower than forward layer computation. The proposed method (yellow) spans
a larger area of the trade-off space than forward checkpointing (orange) and standard
backpropagation (purple) when inverse layer evaluation is faster. This is the case when
evaluating proximal and least-squares update layers, often implemented using iterative
methods such as conjugate gradient, but whose inverse can be expressed in closed form.
For this experiment the number of unrolls is held constant with a value of 25. Figure 5.10b
shows which method is fastest for varying size problems as the number of unrolled iter-
ations varies. As more iterations are unrolled, forward checkpointing can store relatively
fewer checkpoints and thus slows relative to the proposed method. For this experiment
Tfwd = Tinv.

The work of Putzky and Welling [98] ensures invertibility by passing two interme-
diate variables into each layer requiring double a checkpoint’s memory size in storage.
The proposed method only requires a single variable to be stored to ensure invertibility,
thereby enabling larger physics-based networks. The computation time required in [98]
to perform inversion for each layer is equal to the forward evaluation time, Tfwd/Tinv = 1.
For the proposed method, the amount of computation required for a layer’s inversion
varies depending on its architecture. For gradient layers, the typical amount of computa-
tion is 4× slower than its forward evaluation, Tfwd/Tinv < 1. For proximal layers, iterative
in nature, the inverse can often be expressed in closed form, i.e. Tfwd/Tinv > 1.

5.7 Remarks

Discussion

The proposed memory-efficient learning opens the door to using unrolled physics-based
networks for learning the design of large-scale computational imaging systems that are
not otherwise possible due to GPU memory constraints, without a significant increase in
training time. Within this work I detail how physics-based networks composed of gradi-
ent and proximal update layers can be reversible to allow for memory-efficient gradient
computation. While I have demonstrated our procedure for PbNs formed from PGD and
HQS methods, the update layers I describe form the fundamental building blocks of many
larger PbNs (e.g. unrolling the updates of alternating minimization).

For the proposed method, the physics-based network must be invertible. To achieve
this at the layer level, sufficient conditions for invertibility must be met. For gradient
update layers, this comes in the form of a Lipschitz constant constraint (Eq. 5.5). At the
network level, the convergent behavior of physics-based networks and reconstruction
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optimization (Eq. 2.8) makes accurate reverse recalculation ill-posed and can cause nu-
merical error accumulation (as outlined in Sec. 5.4). This is not an issue for many PbNs as
they truncate the number of unrolled iterations prior to the optimizer’s convergence as an
additional form of regularization (i.e. early stopping) or to save computation. In the case
when convergent behavior is observed, checkpoints should be used. A possible option is
to measure the difference between successive intermediate variables on the forward pass
of the network. If that quantity falls below a threshold, then the optimization is approach-
ing convergence and checkpoints should be placed to mitigate the accumulation of error
on the reverse pass.

In some situations the relationship between storage and computational complexity
can be traded off with accuracy. For gradient descent layers, the fixed-point method out-
lined in Alg. 5.2 is used to invert and, if not run to convergence, the inversion will be less
accurate. When the Lipschitz constant of the gradient operator is large, more iterations (a
larger value of L) will be required to accurately invert the layer. Unfortunately, the ideal
Lipschitz constant for a gradient descent layer is larger. Practically, we find that only
a few (e.g. 4 to 8) iterations are required. For proximal layers, the inversion is accurate
up to numerical precision, but requires the iterative forward process of the layer to be
computed accurately for the proposed method to be accurate.

In Sec. 5.5 a modified soft thresholding function is used in place of the proximal oper-
ator for the ℓ1. While results in Fig. 5.3 suggest the effect of this change is negligible, the
performance of the reconstruction could be reduced to allow for the invertibility of the op-
eration (Sec. 5.3) and use of the proposed method. Depending on the slope added the soft
thresholding function, the performance and invertibility are traded off. When the slope is
very small (on the order of machine epsilon), the performance of the reconstruction will
behave similar to the ordinary function, however, it will be less invertible due to floating
point quantization. When the slope is larger, the reconstruction performance could be re-
duced because the operator does not well model the original proximal function, but will
be more linear, thus be less affected by quantization and more invertible.

Acceleration layers to improve convergence of image reconstruction are commonly
used in variants of PGD (termed FISTA [124]) and can be incorporated into the proposed
framework. Typically, such layers linearly combine the output of the current and previ-
ous layers, so inherently, the acceleration layer cannot be inverted from only the current
layer’s output. However, with the storage of additional information (this layer’s output
and the previous layer’s output) it is possible to invert an acceleration layer by computing
the inverse of a 2× 2 matrix.

A limitation of our method is when each smaller auto-differentiation graph (discussed
in Sec. 5.3) is still too large to fit in memory. In this situation more context-specific solu-
tions (e.g. coil compression for multi-channel MRI, using a smaller field-of-view) or more
efficient implementation of the system’s fundamental operations is required.
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Conclusion

Memory-efficient learning with physics-based networks is a practical tool for large-scale
computational imaging problems. Using the concept of reversibility, I implement reverse-
mode differentiation with favorable storage and computational complexities. I demon-
strated the proposed method on several representative large-scale applications: 3D multi-
channel compressed sensing MRI and super-resolution optical microscopy, and expect
many other computational imaging systems to fall within my framework.
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Chapter 6

Conclusion

6.1 Outlook

Physics-based learned design allows us to rely on data to learn aspects of a computational
imaging system that we do not understand and to hard code parts that we do understand.
The benefits of this are several fold. The design learned is optimized to directly improve
the performance of the system. Less training data is required because the physics-based
network has fewer learnable parameters than its physics-free counterpart. The results are
more interpretable because the network’s architecture is constructed from the structure of
an inverse problem’s optimization problem.

The demand for the methods presesnted in this dissertation (physics-based learned de-
sign and memory-efficient learning) will continue to increase as future computational imag-
ing system’s grow in size and dimension. Even now, examples of larger-scale systems
exist: extreme MRI [125] and XD-GRASP [126] in the area of medical imaging, 3D flu-
orescence microscopy [127, 128] and optical diffraction tomography [129] in the area of
biological imaging, and hyper-spectral imaging in the area of remote sensing. As these
systems scale in size, it will become ever more difficult to capture large datasets or com-
plete ground truth to supervise physics-based learning methodologies. To continue, new
unsupervised methods will be required to perform learning in the field of computational
imaging.

6.2 Future work

Beyond the topics I have detailed in the previous chapters, the next few sections outline
several future ideas and their challenges.
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Task-based computational imaging

Computational imaging seeks to extract information that is ordinarily inaccessible. Through-
out this manuscript my outlook, and I also believe most other image researchers’ outlook,
is to produce an image that contains that information which a human will then “read”.
This will suffice when we design a general purpose imaging system, but when we de-
sign a task-specific imaging system, I believe we can achieve better. Typcially, compu-
tational imaging systems reconstruct information as pixels and are designed to improve
each pixel’s SNR and resolution, but what if we could design an imaging system to per-
form that task directly. How will this effect the design of the imaging system? Could that
imaging system be made to be more efficient?

Prior to learning in the field of computational imaging, data-driven methods have
seen huge success in performing higher-level tasks such as classification, detection, and
segmentation. These systems do not ordinarily consider how or where the images are
captured or come from and thus require immense training sets to learn these relations.
With physics-based learning, we now understand how to include critical aspects of the
imaging system into the learning pipeline and using the same learning mechanisms and
the details of this manuscript we can learn how best to design an imaging system for a
particular task. This is currently becoming a popular idea in the area of photography [130]
and microscopy [131, 132].

The main challenge I envision regarding this trajectory of research is the over opti-
mization of the system. Today, imaging systems are built to be general and as a conse-
quence are robust in many scenarios. The idea of task-based imaging goes the other way,
designing the system to image a specific class of samples or specimens. If in reality that
particular class of sample or specimen is altered, then the performance of such a system
could be significantly reduced. One potential remedy for this situation is to still require
the imaging system to produce reasonable images as an intermediate step.

Implicit differentiation for memory-efficient auto-differentiation

Memory-efficient learning (introduced in Chap. 5) has enabled the practical data-driven
design of large-scale computational imaging systems using commercially-available hard-
ware. The method relies on the invertibility of the physics-based network. As discussed
in Chap. 5, if the iterates of the optimizer that form the physics-based network con-
verge, the layer’s lose their invertibility properties. As a solution, we propose the use
of checkpoints to mitigate these errors, but there is no theory as to where to place them.
Fortunately, backpropagation is not the only way to compute gradients for learning.

The backpropagation procedure relies on the mechanics of chain rule to compute gra-
dients for learning. This is accomplished by performing a series of Jacobian vector prod-
ucts (JVP). For a physics-based network,
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∇θL(θ) =
∂x

(N)
θ

∂θ

∂L(θ)
∂x

(N)
θ

, (6.1)

where L is the learning loss and θ are the learnable parameters, is the first application of
chain rule. When the outlined problem occurs, it is the red highlighted partial derivative
that is difficult to compute. Instead of computing it, my proposed solution relies on x(N) =
x⋆ and differentiation of this physics-based network’s optimality equations to compute
this derivative (termed implicit differentiation).

To simplify the inverse problem formulation from Chap. 2,

x⋆ = argmin
x
Rθ(x,y), (6.2)

letR encapsulates both the data consistency and signal prior penalties and θ are the user-
specified learnable parameters. Once solved, the optimum (or referred to as a fixed point),
x⋆, must satisfy primal optimality,

∇xRθ(x
⋆
θ,y) = 0, (6.3)

where 0 is the zero vector. Differentiating the above equation with respect to θ,
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⋆
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= 0 (6.4)
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= −∂∇xRθ(x

⋆
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∂θ
, (6.6)

reveals a new equation with access to (∂x⋆
θ/∂θ). Solving for the highlighted term amounts

of inverting (∂∇xRθ(x
⋆
θ,y)/∂x

⋆
θ) and can accomplished in many cases using the conjugate

gradient method. Once computed, Eq. 6.1 can be used to form the desired gradients and
learning can commence.

If the physics-based network has converged, implicit differentiation offers the ability
to compute derivatives without needing to store any intermediate variables. The main
challenge of this approach will be implementation and integration with standard learning
libraries (e.g. PyTorch and Tensorflow).
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Unsupervised physics-based learning

In many senarios training data that contains the ground truth decoded information is un-
available. This is will inhibit the use of most supervised learning techniques, however,
large amounts of measurements (sometimes incomplete) exist and this opens the door
to unsupervised learning approaches. Throughout this dissertation the presented meth-
ods have been paired with supervised learning technniques, but I am optimistic of their
usefulness when combined with unsupervised techniques.

Intrinsically, image reconstruction is not supervised by ground truth data, but rather
guided by the knowledge of the forward model process and supervised by measure-
ments. Image reconstruction uses the forward model process to estimate information
by penalizing its inconsistency with the measurements (i.e. data consistency). This con-
cept should be reused. Rather than penalize an estimate of some information with ground
truth (supervised learning), penalize that estimated quantity in the measurement domain.
The learning loss,

L(θ) = ‖A(x(N)
θ )− y‖22, (6.7)

does not rely on having ground truth, x′, but uses the same measurements, y, used as
input to the network to supervise learning. This concept has been recently demonstrated
in the field of MRI [133–135], as well as for the problem of image denoising [136–138].

The fundamental difficulty with this concept occurs in two places. First, when the
measurements are noisy. This injects noise into the learning process. Second, when the
inverse problem is underdetermined (e.g. in compressed sensing) and the forward model
process has a non-trivial null space. Physics-based learning can be viewed as reducing
the size of the forward model’s null space (i.e. experimental design) or finding the best
solution of many plausible (i.e. signal prior). When learning is penalized through the
forward model’s transform two estimates could result in equal learning loss even though
one is much better than the other. In both cases, this will be create difficulty reducing the
learning loss to match that of supervised learning methods.
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Appendix A

Open Source: How to implement
physics-based learning

A.1 Introduction

This chapter overviews two implementations of physics-based learning: one a basic tu-
torial that prioritizes rapid prototyping and another more advanced implementation that
incorporates memory-efficient learning. The tutorial demonstrates how to use several
Pytorch mechanisms to construct physics-based networks and to perform physics-based
learning, while only require an implementation of the forward model process. The ad-
vanced implementation is for the more expert user that knows their system already works
and is ready to learn for larger-scale versions that would require memory-efficient learn-
ing or use more specific physics-based networks (e.g. half quadratic splitting).

A.2 Basic Tutorial

The goal of this tutorial is to explain step-by-step how to implement physics-based learn-
ing for the rapid prototyping of a computational imaging system. Specifically, I advo-
cate exploiting the auto-differentiation functionality [99] twice, once to build a physics-
based network and again to perform physics-based learning. Thus, the user need only
implement the forward model process for their system, speeding up prototyping time. I
provide an open-source Pytorch [91] implementation 1 of a physics-based network and
training procedure.

For this demonstration, I implement physics-based learning on a compressed sens-
ing problem – under-determined sparse recovery from linear Gaussian random measure-
ments. The sparse signals have normally-distributed amplitude values. The learnable
parameters in the physics-based network will be the measurement matrix, the sparsity

1https://github.com/kellman/physics_based_learning

https://github.com/kellman/physics_based_learning
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prior penalty, and the step size of the optimizer. Specifically, I solve the ℓ1 relaxation of
the sparse recovery problem,

x⋆ = argmin
x
‖Ax− y‖2
︸ ︷︷ ︸

D(x;y)

+λ‖x‖1, (A.1)

where λ is the sparsity prior penalty that trades off the penalty of the prior with the data
consistency term, and A ∈ RJ×K is the linear measurement matrix. I use the proximal
gradient descent algorithm (Alg. A.1) to solve the optimization problem (Eq. A.1) and to
form the architecture of the physics-based network.

Algorithm A.1 Proximal Gradient Descent

Inputs x(0)-initialization, α-step size, N -number of iterations, y-measurements
Output x(N)-final estimate of image

1: n← 1
2: for n < N do
3: z(n) ← x(n−1) − α∇xD(x(n−1);y)
4: x(n) ← soft_thrαλ(z

(n))
5: n← n+ 1
6: end for

Physics-based network

With some extra Pytorch specific flags and functionalities, the physics-based network
(Fig. A.1) mirrors the basic structure of Alg. A.1. In implementation, it requires all learn-
able parameters as input (measurement matrix, step size, and sparsity penalty), initial-
ization, ground truth, and number of iterations (or depth of network). As output, the
network returns the final estimate of the sparse recovery optimization.

The specific Pytorch flags and functionalities that enable us to properly use the auto-
matic differentiator for sparse recovery and for physics-based learning are contained in
lines 14, 15, and 26. Lines 14 and 15 set up the initialization to the network, first in line
14 detaching it from any previous automatic differentiation graphs and second in line 15
setting its requires_grad field to be True. This will allow the automatic differentiation to
track operations related to x for taking derivatives of D(x;y) with respect to x. Line 26
sets the create_graph flag of the automatic differentiator to True. This tells Pytorch to store
these operations so that they can be traced through by a second automatic differentiator
for computing derivatives with respect to learnable parameters at training time.

While some physics-based networks take in measurements as input, this is often not
possible when learning a system’s experimental design. Here, in line 17, the measure-
ments are synthesized using the learnable measurement matrix and ground truth sparse
vector.
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Figure A.1: Implementation of a physics-based network for compressed sensing sparse recovery
using automatic differentiation to compute gradients with respect to x. The network is setup to
learn the measurement matrix, step size, and sparsity penalty. Soft thresholding is used as the
proximal operator.

Physics-based Learning

The mechanics of training a physics-based network are similar to that of training any
neural net or convolutional neural network in that it relies on a dataset, an optimizer,
and automatic differentiation to compute gradients. In our particular application, our
dataset consists of sparse vectors with amplitudes that are normally distributed. As for
the optimizer, we use the adaptive moment estimation (Adam) [121] algorithm to perform
the gradient updates. For researchers that are interested in learning for large-scale com-
putational imaging systems, automatic differentiation will require more memory than
available on commercial graphical processing units. To enable learning at these scales,
vanilla automatic differentiation can be replaced with memory-efficient techniques [139]
as outlined in Chapter 5 and the following section.

A.3 Advanced Implementation

This section is for more expect users that want to use physics-based learning to design
large-scale systems. It overviews how to use the memory-efficient learning framework
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(b) Physics-based Networks
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Figure A.2: Memory-efficient Learning Framework: (a) physics-based layers encode the forward
model process into the each layer’s operations, (b) physics-based networks are formed from a list
of physics-based layers to perform the image reconstruction, and (c) network managers handle
how to compute gradients using backpropagation through the physics-based networks.

(concepts introduced in Chapter 5). The main difference that sets this implementation
apart from the tutorial one is that it no longer relies on using the auto-differentiator to
compute image reconstruction gradients. The implementation of memory-efficient learn-
ing hinges on turning off the auto-differentiation for the forward computation of the net-
work and it becomes difficult to use it for individual layers’ operations. The code for this
memory-efficient learning framework is available open source 2

Framework Overview

The framework is comprised of three layers of abstraction: physics-based layers, physics-
based networks, and network managers. Physics-based layers (Fig. A.2a) capture the sys-
tem forward model process, architecture of the image reconstruction optimization, and
contain the network’s learnable parameters. Physics-based networks (Fig. A.2b) contain
a list (torch.nn.ModuleList) of physics-based layers, as well as basic initialization proce-
dures. Finally, the network manager handles how to compute gradients with respect to
the system’s learnable parameters.

Physics-based Layers

The physics-based layer inherits from the Pytorch torch.nn.Module class, requiring a for-
ward function. In this framework, we additionally require it to have a reverse function
that performs the forward function’s inverse operations. Fig. A.3 highlights the structure

2https://github.com/kellman/MELD

https://github.com/kellman/MELD
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Figure A.3: Physics-based Gradient Descent Layer: A template for a gradient descent based layer.
The forward performs the layer’s operations and reverse function performs the layer’s inverse
operations.

Figure A.4: Physics-based Network: A template for a physics-based network formed from gradi-
ent descent. The main attribute of this class is a list, torch.nn.ModuleList, of physics-based layers.

of a gradient descent based update and can serve as a template to implement your own
physics-based layer.

Physics-based Networks

The physics-based network contains basic functionality to setup and initialize the net-
work, as well as, several functions useful for training and testing. The main attribute of
the class is the network, which is a list of lists, torch.nn.ModuleList, of physics-based lay-
ers that comprise the network. Each sublist contains the operations for a single layer (e.g.
gradient and proximal update). The projection function is useful for constraining learn-
able parameters to be feasible. The initialize function is useful for computing the input
to the network given a new training or testing data point. Fig. A.4 highlights the basic
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structure of a gradient descent based network and can serve as a template to implement
your own.

Network Manager

This class performs gradient computation to update the learnable parameters of the net-
work. At setup it evaluates the memory required for backpropagation and with the mem-
ory limit of current hardware determines what style of gradient computation is most effi-
cient (i.e. fastest). It chooses from standard backpropagation, checkpointing with forward
recalculation, and our memory efficient learning procedure (reverse recalculation). Chap-
ter 5 contains an indepth discussion on the speed of each method and when each method
should be used.
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Appendix B

Total Variation Regularization

One of the most popular approaches for regularized image reconstruction is to use to-
tal variation (TV) [67]. For our learning framework, we consider the parallel proximal
algorithm implementation of TV regularization. At its core, the method uses a simple
wavelet-domain soft-thresholding operation to compute the proximal operator associ-
ated with TV in closed form. This eliminates the usual need for an additional iterative
solver to compute the TV proximal operator.

Parallel Proximal Method

We now provide the basic concepts of the parallel proximal method [70]. Let us first note
that the (anisotropic) TV functional is defined as

PTV(x) = τ
∑

i

‖Dix‖1, (B.1)

where x represents the image, Di is the discrete gradient operator along the ith dimension,
and τ is a positive scalar that determines the strength of regularization.

Using a union of orthogonal transforms {Wk}k, composed of first-level shifted Haar
wavelet functions, one can rewrite the TV regularizer in (B.1) as

PTV(x) = τ
√
2
∑

k=1

∑

n∈Pk

|[Wkx]n|, (B.2)

where Pk is the set of indices that correspond to the detail coefficients for the kth trans-
form. As a consequence of this reinterpretation, the corresponding proximal operator
admits a closed form since each Wk is an orthogonal transform. Given a vector x, the
proximal step reads
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proxTV(x) =
∑

k

WH
k S√2τ (Wkx), (B.3)

where Sξ(·) = max(| · | − ξ, 0) is the soft thresholding function operating only on the
detail coefficients with ξ > 0 being the threshold parameter.

Proximal Backpropagation

As referenced earlier, we must be able to backpropagate error through our proximal oper-
ator in order to compute the analytic gradient with respect to our design parameters. For
our particular choice of proximal operator the gradient with respect its input is expressed
as,

∂ proxTV(x)

∂z
=
∑

k

WH
k S

′√
2τ
(Wkx)Wk, (B.4)

where S ′

ξ(·) is the derivative of Sξ(·) with respect to its input argument.



80

Bibliography

[1] G. Zheng, R. Horstmeyer, and C. Yang. “Wide-field, high-resolution Fourier pty-
chographic microscopy”. In: Nature Photonics 7.9 (July 2013), pp. 739–745.

[2] L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller. “Computational il-
lumination for high-speed in vitro Fourier ptychographic microscopy”. In: Optica
2.10 (2015), pp. 904–911.

[3] G. Popescu. Quantitative Phase Imaging of Cells and Tissues. McGraw-Hill biopho-
tonics. McGraw-Hill Education, 2011.

[4] L. Tian and L. Waller. “3D intensity and phase imaging from light field measure-
ments in an LED array microscope”. In: Optica 2.2 (Feb. 2015), pp. 104–111.

[5] M. Chen, L. Tian, and L. Waller. “3D differential phase contrast microscopy”. In:
(Sept. 2016), pp. 1–11.

[6] F. Zernike. “How I Discovered Phase Contrast”. In: Science 121.3141 (1955),
pp. 345–349.

[7] W. Lang. Nomarski differential interference-contrast microscopy. Carl Zeiss, 1982.

[8] Z. F. Phillips, R. Eckert, and L. Waller. “Quasi-Dome: A Self-Calibrated high-NA
LED Illuminator for Fourier Ptychography”. In: Imaging and Applied Optics 2017.
Optical Society of America, June 2017.

[9] L. Tian and L. Waller. “Quantitative differential phase contrast imaging in an LED
array microscope”. In: Optics Express 23.9 (May 2015), pp. 11394–11403.

[10] R. Milo and R. Phillips. Cell Biology by the numbers. Garland Science: Taylor & Fran-
cis Group, 2015.

[11] L. Tian, X. Li, K. Ramchandran, and L. Waller. “Multiplexed coded illumination
for Fourier Ptychography with an LED array microscope”. In: Biomedical Optics
Express 5.7 (June 2014), pp. 1–14.

[12] F. Pukelsheim. Optimal design of experiments. SIAM, 2006.

[13] A. Chakrabarti. “Learned Sensor Multiplexing Design through Back-
propagation”. In: (Nov. 2016), pp. 1–9.



BIBLIOGRAPHY 81

[14] R. Horstmeyer, R. Chen, B. Kappes, and B. Judkewitz. “Convolutional Neural Net-
works That Teach Microscopes How to Image”. In: (Sept. 2017), pp. 1–14.

[15] C. D. Bahadir, A. V. Dalca, and M. R. Sabuncu. “Adaptive Compressed Sensing
MRI with Unsupervised Learning”. In: arXiv preprint arXiv:1907.11374 (2019).

[16] H. Sun, A. V. Dalca, and K. L. Bouman. “Learning a Probabilistic Strategy for Com-
putational Imaging Sensor Selection”. In: arXiv preprint arXiv:2003.10424 (2020).

[17] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. “Do imagenet classifiers general-
ize to imagenet?” In: arXiv preprint arXiv:1902.10811 (2019).

[18] K. Gregor and Y. LeCun. “Learning fast approximations of sparse coding”. In: Pro-
ceedings of the 27th International Conference on International Conference on Machine
Learning. Jun. 2010, pp. 399–406.

[19] J. Sun, H. Li, Z. Xu, et al. “Deep ADMM-Net for compressive sensing MRI”. In:
Advances in Neural Information Processing Systems. 2016, pp. 10–18.

[20] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and
F. Knoll. “Learning a Variational Network for Reconstruction of Accelerated MRI
Data”. In: Magnetic Resonance in Medicine 79.6 (Nov. 2017), pp. 3055–3071.

[21] H. K. Aggarwal, M. P. Mani, and M. Jacob. “Modl: Model-based deep learning
architecture for inverse problems”. In: IEEE transactions on medical imaging 38.2
(2018), pp. 394–405.

[22] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein. “Unrolled Optimization with
Deep Priors”. In: arXiv:1705.08041 [cs.CV] (May 2017), pp. 1–11.

[23] K. Zhang, W. Zuo, S. Gu, and L. Zhang. “Learning deep CNN denoiser prior for
image restoration”. In: Proceedings of the IEEE conference on computer vision and pat-
tern recognition. 2017, pp. 3929–3938.

[24] M. Kellman, E. Bostan, N. Repina, and L. Waller. “Physics-based learned design:
Optimized coded-illumination for quantitative phase imaging”. In: IEEE Transac-
tions on Computational Imaging 5.3 (2019), pp. 344–353.

[25] M. Kellman, E. Bostan, M. Chen, and L. Waller. “Data-Driven Design for Fourier
Ptychographic Microscopy”. In: Proceedings of the International Conference on Com-
putational Photography. 2019.

[26] M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu. Quantitative phase imaging.
Vol. 57. Elsevier Amsterdam, The Netherlands, 2012, pp. 133–217.

[27] B. Bhaduri, H. Pham, M. Mir, and G. Popescu. “Diffraction phase microscopy with
white light”. In: Opt. Lett. 37.6 (Mar. 2012), pp. 1094–1096. DOI: 10.1364/OL.37.
001094.

[28] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and
G. Popescu. “Spatial light interference microscopy (SLIM)”. In: Optics Express 19.2
(Jan. 2011), pp. 1016–1026.

https://doi.org/10.1364/OL.37.001094
https://doi.org/10.1364/OL.37.001094


BIBLIOGRAPHY 82

[29] T. E. Gureyev, A. Roberts, and K. A. Nugent. “Partially coherent fields, the
transport-of-intensity equation, and phase uniqueness”. In: Journal of the Optical
Society of America A 12.9 (Sep. 1995), pp. 1942–1946.

[30] N. Streibl. “Phase imaging by the transport equation of intensity”. In: Optics com-
munications 49.1 (1984), pp. 6–10.

[31] L. Waller, L. Tian, and G. Barbastathis. “Transport of Intensity phase-amplitude
imaging with higher order intensity derivatives”. In: Optics Express 18.12 (Jun.
2010), pp. 12552–12561.

[32] J. Goodman. Introduction to Fourier Optics. McGraw-Hill, 2008.

[33] Z. Liu, L. Tian, S. Liu, and L. Waller. “Real-time brightfield, darkfield, and phase
contrast imaging in a light-emitting diode array microscope”. In: Journal of Biomed-
ical Optics 19.10 (Oct. 2014), p. 106002.

[34] L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L.
Waller. “Experimental robustness of Fourier ptychography phase retrieval algo-
rithms”. In: Optics Express 23.26 (Dec. 2015), pp. 33214–33227.

[35] D. Geman and C. Yang. “Nonlinear image recovery with half-quadratic regular-
ization”. In: IEEE transactions on Image Processing 4.7 (1995), pp. 932–946.

[36] N. Parikh and S. Boyd. “Proximal Algorithms”. In: Foundations and Trends R© in
Optimization 1.3 (Aug. 2014), pp. 127–239.

[37] N. Parikh and S. Boyd. “Proximal algorithms”. In: Foundations and Trends R© in Op-
timization 1.3 (2014), pp. 127–239.

[38] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical image com-
puting and computer-assisted intervention. Springer. 2015, pp. 234–241.

[39] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. “Deep Convolutional Neural
Network for Inverse Problems in Imaging”. In: IEEE Transactions on Image Process-
ing 9 (Jun. 2017), pp. 4509–4522.

[40] B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti. “Digital holographic microscopy:
A quantitative label-free microscopy technique for phenotypic screening”. In:
Combinatorial Chemistry & High Throughput Screening 17.1 (Jan. 2014), pp. 80–88.

[41] E. Cuche, P. Marquet, and C. Depeursinge. “Simultaneous amplitude-contrast and
quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-
axis holograms”. In: Appl. Opt. 38.34 (Dec. 1999), pp. 6994–7001. DOI: 10.1364/
AO.38.006994.

[42] G. Zheng, R. Horstmeyer, and C. Yang. “Wide-field, high-resolution Fourier pty-
chographic microscopy”. In: Nature Photonics 7.9 (July 2013), pp. 739–745.

[43] G. Zheng, C. Kolner, and C. Yang. “Microscopy refocusing and dark-field imaging
by using a simple LED array”. In: Optics Letters 36.20 (Oct. 2011), pp. 3987–3989.

https://doi.org/10.1364/AO.38.006994
https://doi.org/10.1364/AO.38.006994


BIBLIOGRAPHY 83

[44] R. Ling, W. Tahir, H.-Y. Lin, H. Lee, and L. Tian. “High-throughput intensity
diffraction tomography with a computational microscope”. In: Biomedical Optics
Express 9.5 (Jan. 2018), pp. 2130–2141.

[45] B. Kachar. “Asymmetric illumination contrast: a method of image formation for
video light microscopy”. In: Science 227.4688 (Feb. 1985), pp. 766–768.

[46] D. Hamilton and C. Sheppard. “Differential phase contrast in scanning optical mi-
croscopy”. In: Journal of microscopy 133.1 (1984), pp. 27–39.

[47] S. B. Mehta and C. J. Sheppard. “Quantitative phase-gradient imaging at high res-
olution with asymmetric illumination-based differential phase contrast”. In: Optics
letters 34.13 (2009), pp. 1924–1926.

[48] L. Tian and L. Waller. “Quantitative differential phase contrast imaging in an LED
array microscope”. In: Optics express 23.9 (2015), pp. 11394–11403.

[49] R. A. Claus, P. P. Naulleau, A. R. Neureuther, and L. Waller. “Quantitative phase
retrieval with arbitrary pupil and illumination”. In: Optics Express 23.20 (Oct.
2015), pp. 26672–26682.

[50] D. K. Hamilton, C. J. R. Sheppard, and T. Wilson. “Improved imaging of phase gra-
dients in scanning optical microscopy”. In: Journal of Microscopy 135.3 (Sep. 1984),
pp. 275–286.

[51] N. Streibl. “Three-dimensional imaging by a microscope”. In: Journal of the Optical
Society of America A 2.2 (Feb. 1985), pp. 121–127.

[52] J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo. “Efficient quantitative phase
microscopy using programmable annular LED illumination”. In: Biomedical Optics
Express 8.10 (Oct. 2017), pp. 4687–4705.

[53] Y.-Z. Lin, K.-Y. Huang, and Y. Luo. “Quantitative differential phase contrast imag-
ing at high resolution with radially asymmetric illumination”. In: Optics Letters
43.12 (2018), pp. 2973–4.

[54] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (May
2015), pp. 436–444.

[55] S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang. “Acceler-
ating magnetic resonance imaging via deep learning”. In: 2016 IEEE 13th Interna-
tional Symposium on Biomedical Imaging (ISBI). Apr. 2016, pp. 514–517.

[56] Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan. “Phase recovery and
holographic image reconstruction using deep learning in neural networks”. In:
Light: Science & Applications 7.2 (Feb. 2018), p. 17141.

[57] A. Sinha, J. Lee, S. Li, and G. Barbastathis. “Lensless computational imaging
through deep learning”. In: Optica 4.9 (Sep. 2017), pp. 1117–1125.

[58] Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan. “Deep
learning microscopy”. In: Optica 4.11 (Nov. 2017), pp. 1437–1443.



BIBLIOGRAPHY 84

[59] T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah. “Deep learning approach
for Fourier ptychography microscopy”. In: arXiv preprint arXiv:1805.00334 (Sept.
2018), pp. 1–15.

[60] B. Diederich, R. Wartmann, H. Schadwinkel, and R. Heintzmann. “Using machine-
learning to optimize phase contrast in a low-cost cellphone microscope”. In: PLoS
ONE 13.3 (Mar. 2018), e0192937–20.

[61] A. Robey and V. Ganapati. “Optimal physical preprocessing for example-based
super-resolution”. In: Optics Express 26.24 (Nov. 2018), pp. 31333–31350.

[62] B. Xin, Y. Wang, W. Gao, D. Wipf, and B. Wang. “Maximal sparsity with deep
networks?” In: Advances in Neural Information Processing Systems. 2016, pp. 4340–
4348.

[63] U. Kamilov and H. Mansour. “Learning optimal nonlinearities for iterative thresh-
olding algorithms”. In: arXiv preprint arXiv:1512.04754s (Dec. 2015), pp. 1–9.

[64] E. Bostan, U. S. Kamilov, and L. Waller. “Learning-Based Image Reconstruction via
Parallel Proximal Algorithm”. In: IEEE Signal Processing Letters 25.7 (May 2018),
pp. 989–993.

[65] E. Bostan, U. S. Kamilov, M. Nilchian, and M. Unser. “Sparse Stochastic Processes
and Discretization of Linear Inverse Problems”. In: IEEE Transactions on Image Pro-
cessing 22.7 (Jul. 2013), pp. 2699–2710.

[66] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems”. In: SIAM Journal on Imaging Sciences 2.1 (Jan. 2009),
pp. 183–202.

[67] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. “An iterative regularization
method for total variation-based image restoration”. In: Multiscale Modeling & Sim-
ulation 4.2 (2005), pp. 460–489.

[68] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. “Image denoising by sparse 3-D
transform-domain collaborative filtering”. In: IEEE Transactions on Image Processing
16.8 (Aug. 2007), pp. 2080–2095.

[69] P. L. Combettes and J.-C. Pesquet. “Proximal splitting methods in signal process-
ing”. In: Fixed-point algorithms for inverse problems in science and engineering. 2011,
pp. 185–212.

[70] U. S. Kamilov. “A Parallel Proximal Algorithm for Anisotropic Total Variation
Minimization”. In: IEEE Transactions on Image Processing 26.2 (Dec. 2016), pp. 539–
548.

[71] P. Marechal and J. Ye. “Optimizing Condition Numbers”. In: SIAM Journal on Op-
timization 20.2 (2009), pp. 935–947.

[72] C. S. Wong and J. C. Masaro. “A-optimal design matrices”. In: Discrete Mathematics
50 (1984), pp. 295–318.



BIBLIOGRAPHY 85

[73] X. Ou, G. Zheng, and C. Yang. “Embedded pupil function recovery for Fourier
ptychographic microscopy”. In: Optics Express 22.5 (Mar. 2014), pp. 4960–4972.

[74] H. Q. Nguyen, E. Bostan, and M. Unser. “Learning convex regularizers for op-
timal Bayesian denoising”. In: IEEE Transactions on Signal Processing 66.4 (2018),
pp. 1093–1105.

[75] M. Lustig, D. Donoho, and J. M. Pauly. “Sparse MRI: The application of com-
pressed sensing for rapid MR imaging”. In: Magnetic Resonance in Medicine 58.6
(Dec. 2007), pp. 1182–1195.

[76] S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Pies-
tun, and W. E. Moerner. “Three-dimensional, single-molecule fluorescence imag-
ing beyond the diffraction limit by using a double-helix point spread function”.
In: Proceedings of the National Academy of Sciences 106.9 (Mar. 2009), pp. 2995–2999.

[77] L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller. “Computational il-
lumination for high-speed in vitro Fourier ptychographic microscopy”. In: Optica
2.10 (Oct. 2015), pp. 904–908.

[78] J. Sun, Q. Chen, Y. Zhang, and C. Zuo. “Sampling criteria for Fourier ptycho-
graphic microscopy in object space and frequency space”. In: Optics Express 24.14
(July 2016), pp. 15765–15781.

[79] O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer. “Influence of the
overlap parameter on the convergence of the ptychographical iterative engine”. In:
Ultramicroscopy 108.5 (Apr. 2008), pp. 481–487.

[80] P. Sidorenko and O. Cohen. “Single-shot ptychography”. In: Optica 3.1 (Jan. 2016),
pp. 9–14.

[81] S. Dong, R. Shiradkar, P. Nanda, and G. Zheng. “Spectral multiplexing and
coherent-state decomposition in Fourier ptychographic imaging”. In: Biomedical
Optics Express 5.6 (June 2014), pp. 1757–1767.

[82] L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai. “Content adaptive illumi-
nation for Fourier ptychography”. In: Optics Letters 39.23 (Dec. 2014), pp. 6648–
6651.

[83] M. Kellman, M. Chen, Z. F. Phillips, M. Lustig, and L. Waller. “Motion-resolved
quantitative phase imaging”. In: Biomedical Optics Express 9.11 (Nov. 2018),
pp. 5456–5466.

[84] L. Bian, G. Zheng, K. Guo, J. Suo, C. Yang, F. Chen, and Q. Dai. “Motion-corrected
Fourier ptychography”. In: Biomedical Optics Express 7.11 (Nov. 2016), pp. 4543–
4553.

[85] A. Robey and V. Ganapati. “Optimal Physical Preprocessing for Example-Based
Super-Resolution ”. In: Optics Express 26.24 (Nov. 2018), pp. 31333–31350.



BIBLIOGRAPHY 86

[86] H. Haim, S. Elmalem, R. Giryes, A. M. Bronstein, and E. Marom. “Depth Esti-
mation From a Single Image Using Deep Learned Phase Coded Mask”. In: IEEE
Transactions on Computational Imaging 4.3 (Sept. 2018), pp. 298–310. DOI: 10.1109/
TCI.2018.2849326.

[87] V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich, F. Heide, and
G. Wetzstein. “End-to-end optimization of optics and image processing for achro-
matic extended depth of field and super-resolution imaging”. In: ACM Transactions
on Graphics 37.4 (July 2018), pp. 1–13.

[88] K. Gregor and Y. LeCun. “Learning Fast Approximations of Sparse Coding”. In:
Proceedings of the 27th International Conference on Machine Learning. 2010, pp. 399–
406.

[89] H. Jiang, Q. Tian, J. Farrell, and B. A. Wandell. “Learning the Image Processing
Pipeline”. In: IEEE Transactions on Image Processing 26.10 (Oct. 2017), pp. 5032–5042.
DOI: 10.1109/TIP.2017.2713942.

[90] E. Bostan, M. Soltanolkotabi, D. Ren, and L. Waller. “Accelerated Wirtinger Flow
for Multiplexed Fourier Ptychographic Microscopy”. In: 2018 25th IEEE Interna-
tional Conference on Image Processing (ICIP). Oct. 2018, pp. 3823–3827. DOI: 10.
1109/ICIP.2018.8451437.

[91] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer. “Automatic differentiation in PyTorch”. In: (2017).

[92] Y. Chen and T. Pock. “Trainable nonlinear reaction diffusion: A flexible framework
for fast and effective image restoration”. In: IEEE transactions on pattern analysis and
machine intelligence 39.6 (2016), pp. 1256–1272.

[93] J. Zhang and B. Ghanem. “ISTA-Net: Interpretable optimization-inspired deep net-
work for image compressive sensing”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2018, pp. 1828–1837.

[94] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein. “Unrolled optimization with
deep priors”. In: arXiv preprint arXiv:1705.08041 (2017).

[95] P. Putzky and M. Welling. “Recurrent inference machines for solving inverse prob-
lems”. In: arXiv preprint arXiv:1706.04008 (2017).

[96] M. Mardani, Q. Sun, D. Donoho, V. Papyan, H. Monajemi, S. Vasanawala, and J.
Pauly. “Neural proximal gradient descent for compressive imaging”. In: Advances
in Neural Information Processing Systems. 2018, pp. 9573–9583.

[97] G. Ongie, A. Jalal, C. A. M. R. G. Baraniuk, A. G. Dimakis, and R. Willett. “Deep
learning techniques for inverse problems in imaging”. In: IEEE Journal on Selected
Areas in Information Theory (2020).

[98] P. Putzky and M. Welling. “Invert to learn to invert”. In: Advances in Neural Infor-
mation Processing Systems. 2019, pp. 444–454.

https://doi.org/10.1109/TCI.2018.2849326
https://doi.org/10.1109/TCI.2018.2849326
https://doi.org/10.1109/TIP.2017.2713942
https://doi.org/10.1109/ICIP.2018.8451437
https://doi.org/10.1109/ICIP.2018.8451437


BIBLIOGRAPHY 87

[99] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Second. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2008.

[100] D. Maclaurin, D. Duvenaud, and R. Adams. “Gradient-based hyperparameter
optimization through reversible learning”. In: International Conference on Machine
Learning. 2015, pp. 2113–2122.

[101] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. “The reversible residual net-
work: Backpropagation without storing activations”. In: Advances in neural infor-
mation processing systems. 2017, pp. 2214–2224.

[102] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. “Re-
versible architectures for arbitrarily deep residual neural networks”. In: Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.

[103] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L.
Maier-Hein, C. Rother, and U. Köthe. “Analyzing inverse problems with invertible
neural networks”. In: arXiv preprint arXiv:1808.04730 (2018).

[104] L. Dinh, D. Krueger, and Y. Bengio. “Nice: Non-linear independent components
estimation”. In: arXiv preprint arXiv:1410.8516 (2014).

[105] L. Dinh, J. Sohl-Dickstein, and S. Bengio. “Density estimation using real nvp”. In:
arXiv preprint arXiv:1605.08803 (2016).

[106] D. P. Kingma and P. Dhariwal. “Glow: Generative flow with invertible 1x1 con-
volutions”. In: Advances in neural information processing systems. 2018, pp. 10215–
10224.

[107] J.-H. Jacobsen, A. Smeulders, and E. Oyallon. “i-revnet: Deep invertible networks”.
In: arXiv preprint arXiv:1802.07088 (2018).

[108] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. “Neural ordinary
differential equations”. In: Advances in neural information processing systems. 2018,
pp. 6571–6583.

[109] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. “Ffjord:
Free-form continuous dynamics for scalable reversible generative models”. In:
arXiv preprint arXiv:1810.01367 (2018).

[110] J. Behrmann, D. Duvenaud, and J.-H. Jacobsen. “Invertible residual networks”. In:
arXiv preprint arXiv:1811.00995 (2018).

[111] B. Amos and J. Z. Kolter. “Optnet: Differentiable optimization as a layer in neural
networks”. In: arXiv preprint arXiv:1703.00443 (2017).

[112] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. “Bilevel program-
ming for hyperparameter optimization and meta-learning”. In: arXiv preprint
arXiv:1806.04910 (2018).



BIBLIOGRAPHY 88

[113] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. “Meta-learning with implicit
gradients”. In: Advances in Neural Information Processing Systems. 2019, pp. 113–124.

[114] S. Bai, J. Z. Kolter, and V. Koltun. “Deep equilibrium models”. In: Advances in Neu-
ral Information Processing Systems. 2019, pp. 690–701.

[115] R. Liao, Y. Xiong, E. Fetaya, L. Zhang, K. Yoon, X. Pitkow, R. Urtasun, and R.
Zemel. “Reviving and improving recurrent back-propagation”. In: arXiv preprint
arXiv:1803.06396 (2018).

[116] S. Banach. “Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales”. In: Fund. math 3.1 (1922).

[117] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on Information Theory
52.4 (2006), pp. 1289–1306. DOI: 10.1109/TIT.2006.871582.

[118] M. Lustig, D. Donoho, and J. M. Pauly. “Sparse MRI: The application of com-
pressed sensing for rapid MR imaging”. In: Magn. Reson. Med. 58.6 (Dec. 2007),
pp. 1182–1195. DOI: 10.1002/mrm.21391.

[119] D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim. “Compressive hologra-
phy”. In: Optics express 17.15 (2009), pp. 13040–13049.

[120] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and
R. G. Baraniuk. “Single-pixel imaging via compressive sampling”. In: IEEE signal
processing magazine 25.2 (2008), pp. 83–91.

[121] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[122] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger. “SENSE: sensi-
tivity encoding for fast MRI”. In: Magn. Reson. Med. 42.5 (Nov. 1999), pp. 952–962.

[123] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recogni-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[124] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems”. In: SIAM journal on imaging sciences 2.1 (2009), pp. 183–
202.

[125] F. Ong, X. Zhu, J. Y. Cheng, K. M. Johnson, P. E. Larson, S. S. Vasanawala, and M.
Lustig. “Extreme MRI: Large-scale volumetric dynamic imaging from continuous
non-gated acquisitions”. In: Magnetic Resonance in Medicine (2020).

[126] L. Feng, L. Axel, H. Chandarana, K. T. Block, D. K. Sodickson, and R. Otazo. “XD-
GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimen-
sions using compressed sensing”. In: Magnetic resonance in medicine 75.2 (2016),
pp. 775–788.

https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1002/mrm.21391


BIBLIOGRAPHY 89

[127] B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Jane-
topoulos, X. S. Wu, J. A. Hammer, Z. Liu, et al. “Lattice light-sheet microscopy:
imaging molecules to embryos at high spatiotemporal resolution”. In: Science
346.6208 (2014).

[128] F. L. Liu, G. Kuo, N. Antipa, K. Yanny, and L. Waller. “Fourier DiffuserScope:
Single-shot 3D Fourier light field microscopy with a diffuser”. In: arXiv preprint
arXiv:2006.16343 (2020).

[129] S. Chowdhury, M. Chen, R. Eckert, D. Ren, F. Wu, N. A. Repina, and L. Waller.
“High-resolution 3D refractive index microscopy of multiple-scattering samples
from intensity images”. In: Optica 6.9 (Sept. 16, 2019), pp. 1211–1219. DOI: 10.
1364/OPTICA.6.001211. published.

[130] E. Tseng, F. Yu, Y. Yang, F. Mannan, K. S. Arnaud, D. Nowrouzezahrai, J.-F.
Lalonde, and F. Heide. “Hyperparameter optimization in black-box image pro-
cessing using differentiable proxies.” In: ACM Trans. Graph. 38.4 (2019), pp. 27–1.

[131] R. Horstmeyer, R. Y. Chen, B. Kappes, and B. Judkewitz. “Convolutional
neural networks that teach microscopes how to image”. In: arXiv preprint
arXiv:1709.07223 (2017).

[132] C. L. Cooke, F. Kong, A. Chaware, K. C. Zhou, K. Kim, R. Xu, D. M. Ando, S. J.
Yang, P. C. Konda, and R. Horstmeyer. “Physics-enhanced machine learning for
virtual fluorescence microscopy”. In: arXiv preprint arXiv:2004.04306 (2020).

[133] J. I. Tamir, X. Y. Stella, and M. Lustig. “Unsupervised deep basis pursuit: Learn-
ing reconstruction without ground-truth data”. In: Proc. Intl. Soc. Mag. Reson. Med.
Vol. 27. 2019, p. 0660.

[134] J. Liu, Y. Sun, C. Eldeniz, W. Gan, H. An, and U. S. Kamilov. “RARE: Image Re-
construction using Deep Priors Learned without Ground Truth”. In: IEEE Journal
of Selected Topics in Signal Processing (2020).

[135] B. Yaman, S. A. H. Hosseini, S. Moeller, J. Ellermann, K. Uğurbil, and M. Akçakaya.
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