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Abstract

This dissertation initiates fundamental lines of inquiry into better understanding learning
from data provided by other agents who have a possible strategic incentive. In many use cases
of modern machine learning (ML), these agents will not be acting in isolation, and it is critical
for them to directly interact with other strategic agents. For example, several pioneering
works in cognitive radio designed multi-agent mechanisms whose equilibrium outcome was
efficient spectrum sharing among multiple cognitive radio agents. However, the attainment of
these equilibria requires co-design among the agents: they have to know each other’s utility
functions and basic strategic nature, which could be stochastic, adversarial, competitive,
or cooperative. In the conceptualized utopia of spectrum sharing, both of these will be
unknown a-priori and will need to be learned through repeated interaction. Nor does this
scenario arise only in cognitive radio: applications of swarm robotics, reinforcement learning
and e-commerce all involve the intersection of principles of ML with multi-agent systems
that are not co-designed.

The ensuing twin questions of how agents should learn from strategically generated data,
as well as how such strategic behavior will manifest, are well-posed and non-trivial even under
the simplest possible instance cases of ML, such as predicting a binary sequence generated
by an unknown environment. We consider the first three categories of strategic nature:
stochastic, adversarial, and competitive. The first part of this thesis designs algorithms for
“optimal" learning in an unknown environment, where the notion of optimality is defined as
being able to adapt to the nature of the environment on-the-fly without knowing this nature
beforehand. The on-the-fly nature of this goal is formalized in the classical framework of
online learning. While the traditional goal of online learning is regret minimization with
respect to a given model class, I motivate that adapting the model class, itself, in an online
fashion is essential to transition from guarantees on regret to guarantees on reward. Ac-
cordingly, we design robust approaches, inspired by seminal approaches to purely stochastic
model selection, to work in both stochastic and adversarial environments for online learning
with full-information and limited-information feedback.

The second part of this thesis considers a strategic, but non-adversarial agent generating
the data that is being used for learning. Such an agent is typically selfish and rational, rather
than being simply malicious — thus, their behavior manifests in a more complex manner than
an adversarial agent’s. I introduce a new frequentist framework to approximately express
such an agent’s incentives and trade-offs involved in reaching the Stackelberg equilibrium of
the ensuing non-zero-sum game. This is in agreement with the classical Bayesian-repeated-
game asymptotic theory, now with constructive strategies for both players. Interestingly,
through this framework we can show that the agent is incentivized to reveal, not obfus-
cate, her information to the learner. This thesis concludes by showing a surprising divergent
outcome in day-to-day behavior that is fundamental to the property of no-regret online learn-
ing when deployed in multi-player, game-theoretic environments. This suggests a possible
re-examination of learning dynamics, inspired by behavioral game theory, in future work.
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Chapter 1

Introduction

The classical paradigm of statistical inference [1| and its contemporary manifestation, ma-
chine learning (ML) [2], are seeing a historic resurgence and tremendous empirical success in
tasks of supervised prediction and unsupervised pattern recognition. This success is largely
owed to the combination of highly expressive models |3|, Big Data, and GPU compute [4], and
has been replicated in a number of application domains. These domains includes computer
vision [5| and natural language processing [6], in which deep neural networks today achieve
“state-of-the-art" empirical performance. Some of this success has also been replicated in the
more difficult task of reinforcement learning |7], which consists of learning optimal control
policies in a stochastic environment with unknown dynamics.

This progress has been largely driven through single-agent perspectives. Underlying
single-agent learning is the classical statistical assumption [1, [2] that the learner has access
to a batch of data, that has been generated by a natural process. Stated alternatively, the
learner is assumed to interact with a fixed stochastic environment, the parameters of which
are being learned about.

However, ML is increasingly being discussed in the context of settings where this as-
sumption is not viable. For example, the principles of ML are currently being applied to
mechanism design in online marketplaces. In these applications, the data that is being
learned from is at least partially impacted by the actions of a selfish agent who, herself,
possesses unknown incentives. In the AI milieu, agents can no longer be assumed to act
in isolation—they will increasingly be forced to interact with each other in addition to the
fixed environment. As we motivate in Sections and [I.2] the success of both current and
future engineering applications critically involves, by their very nature, engaging with core
questions in this kind of multi-agent learning.

On the other hand, interactions between multiple agents of a known strategic nature have
been modeled through the classical framework of game theory. The applications of game
theory and mechanism design are diverse both in engineering (e.g. path routing through net-
works, power grids, and dynamic spectrum sharing) and e-commerce (e.g. auctions, matching
markets, ride-sharing, hiring platforms). However, in the traditional, best understood frame-
work of game theory, the strategic nature of all agents involved is known to be selfish and
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rational with all utility functions as common knowledge; therefore, none of the agents are
engaging in learning. Of course, the assumption of rationality has seen significant push-back
from the behavioral economics community, and a wide range of models for human strate-
gic behavior have been theoretically postulated as well as empirically evaluated on human
data [8H11]. However, the time-scale of this theoretical postulation and empirical evaluation
is on the matter of months or even years. As we motivate in Sections [[.1]and [I.2] automated
multi-agent interaction allows for the same wide range of spectrum of strategic behavior,
usually unknown a-priori; moreover, decisions now need to be made real-time. To optimally
make decisions in this unknown environment, the necessary process of learning of strategic
nature is ideally integrated with real-time interactions.

The above perspectives necessitate a fundamental intersection of our understanding of
single-agent learning with our understanding of multi-agent game theory. Sections re-
views our existing understanding of these classical areas of research and sets up the mathe-
matical framework for this dissertation. At the same time, this section highlights the inherent
non-trivialities involved in intersecting learning and games. As we describe in Section [1.4]
the core problems can be split into two broad categories:

1. Can we understand how to optimally learn the nature of an unknown environment,
and perform decision-making that is almost as optimal as though we had known the
nature of this environment beforehand?

2. Can we understand (approximations) of the optimal behavior of a strategic agent in
the presence of a learner?

Before describing the formal framework for this thesis, and setting up the above core
problems, we ground the reader in two real-world case studies in which questions at the
intersection of learning and strategic behavior are increasingly paramount. We start by
considering the design of automated, online marketplaces.

1.1 Case study: Learning in online marketplaces

As paraphrased by Paul Milgrom in his classic text “Putting Auction Theory To Work" [12],
game theorists in the 20" century “plied their trade" on two important application domains:
large-scale auctions in the public sector, and matching markets. Quote from Milgrom |12}
page 2, Chapter 1]:

“An article in 1995 in the New York Times hailed one of the first US spectrum auctions as
‘The Greatest Auction Ever’. The British spectrum auction of 2000, which raised about $34
billion, earned one of its academic designers a commendation from the Queen and the title
‘Commander of the British Empire’... The National Resident Matching Program, by which
20,000 US physicians are matched annually to hospital residency programs, implemented a
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new design in 1998 with the help of the economist-game theorist Alvin Roth. By the maid-
nineties, thirty-five years of theoretical economic research about fine details of
market design was suddenly bearing very practical fruit.”

These fruits of this success involve human agents and the design of simple (e.g. the
celebrated Vickrey-Clark-Groves mechanism [13-15]), robust (e.g. the property of obvious-
strategy-proof-ness [16]) and computationally efficient (e.g. SAT solvers in the spectrum in-
centive auction |17} |18]) mechanisms that are adjusted as per numerous discussions between
academics and government policy experts (for a representative report on some of these dis-
cussions, see [19]). Today, we are witness to a new avatar of automated-agent participation in
mechanism design, together with dynamic mechanisms that are designed real-time. Promi-
nent examples of this include Google’s Ad-Words auctions and online matching implemented
in applications like hiring and ride-sharing platforms. The design of these mechanisms will
now be done with tremendous amounts of incomplete information, both from the perspective
of the mechanism designer and the participating agents. In what follows, we highlight the
numerous sources of incomplete information that arise, and the ensuing non-trivialities that
ensue in optimal market design. We focus on auction design as a representative example for
the sake of brevity, while noting that similar questions arise in other online platforms such
as matching markets |20, [21].

Representative example: Modern, private-sector auction design

The classic problem of (approximately) optimal auction design directly engages with strategic
agents in a very obvious manner. Large-scale auction design has traditionally been restricted
to the public sector, where the goal is to maximize social welfare of all the agents. However,
one of the most prominent recent examples of large-scale auction design, advertising auctions,
is carried out in the private sector. The mechanism designers here are companies like Google,
Microsoft and Yahoo!; consequently, the aim is frequently to maximize seller revenue. Hence,
we focus on the objective of revenue maximization.

We consider one of the simplest and oldest models for auctions, the single-item auctz’onE]
with symmetric bidders [23]. Here, as depicted in the block diagram in Figure[l.1] the (three)
bidders have valuations (v, ve, v3) for the single item drawn from a common probability dis-
tribution F'(-). A seller’s chosen mechanism maps submitted bids (by, b, b3) to an allocation
of the item (to one of the bidders), and corresponding payment rules that all of the bidders
are bound to follow. Importantly, the bids are being submitted by strategic bidders, and
so the bid of agent i, i.e. b;, need not be equal to her valuation, i.e. v;. Thus, the goal of
seller mechanism design is to maximize her obtained revenue, and indirectly, to elicit the
bidders’ valuation information. One way of doing this is by designing a mechanism that
incentivizes the bidders to report their true values in the ensuing Bayes-Nash equilibrium;
such mechanisms are called truthful, or incentive-compatible mechanisms.

IMultiple items can also be sold, leading to the challenging problem of combinatorial auction design. For
a representative discussion on the computational difficulties involved, see [22, Chapter 11].
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Valuations

Bids

Auctioneer vy ~ F()
[ ] by 2
Auction parameters: w /
Allocation rule + by
— 2 Vg F()

Payment mechanism
PO N b
\‘\v'v/rr 3

vg ~ F(-)

Item

Figure 1.1: Block diagram of a simple single-item auction with 3 bidders whose valua-
tions (vq, vg,v3) are drawn from the same probability distribution F'(-). In general, the bids
(b1, by, b3) need not be equal to the valuations (vy,ve,v3). The auction design is parame-
terized by an allocation rule, that decides who receives the item, and a payment rule, that
decides how much bidders pay. These rules are functions only of (by,bs,b3) and possibly
use knowledge of the valuation distribution F'(-), but never the valuations themselves. This
figure was made using Keynote.

Myerson’s seminal theory |23 for this “one-shot", single-item auction design postulates
that a particular type of reserve price implemented together with a Vickrey (second-price)
auction is revenue-optimal among all mechanisms, truthful or otherwise. Here, the reserve
price is simply a price for the item posted by the seller: if none of the bidders meet this
price, the seller will not sell the item at all. Importantly, the optimal reserve price intricately
depends on knowledge of the valuation distribution F(-). This is an extremely idealized
assumption, as in practice the distributions of preferences among bidders can widely vary
and are unknown to the seller. Below, we motivate that practically effective auction design
requires a non-trivial component of learning about the bidders in a number of ways’|

1. In modern applications of auction design like online advertising, the bidders’ valuation
distributions for item(s) are typically unknown. Regardless of the statistical model for
the unknown valuation distributions, it is clear that for effective Myersonian auction
design, the optimal reserve prices need to be estimated from past data.

2Judging from academic talks given by researchers in industry |24], the issues that arise in practical
private-sector auction design are even more numerous, and several are as yet unformulated mathematically.
Thus, the list provided above is far from comprehensive, but provides a good starting point for motivation.
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2. It has been observed in practical deployments of auctions that bidders consider first-
price, or “winner-pays-bid" auctions as maximally trustworthy. Such auctions are no
longer truth-telling, and their analysis deviates from the classical theory (for a survey of
this recent research, see Jason Hartline’s recent tutorial [25]). Nevertheless, these non-
truthful mechanisms are widely used in practice and can also enjoy improved guarantees
on welfare in prior-free mechanism design, i.e. design with robust guarantees for any
valuation distribution [26]. Such guarantees intricately involve optimizing the reserve
prices used in the auction design from past samples of data. Extensive field experiments
on advertising auctions [27] have shown that these optimizations on reserve prices, while
not publicly available, have a material effect on increasing revenue.

Invariably, while we do not have access to the details of these auctions, we know that at a
high level the auction parameters are optimized as a function of data obtained from previously
run auctions. Moreover, the recent paradigm of dynamicrﬂ mechanism design (e.g. |39, |42,
43, 147]), in which these optimizations are done real-time and online, is increasingly realistic
to model modern market design with automated agents. Thus, learning, in some form or
the other, plays a significant role in the design, as does modeling the strategic behavior of
bidders who interact with the mechanism.

Efforts to effectively integrate learning into modern market design have been recent,
promising, and numerous. A complete survey of all of the literature in private-sector auction
design is beyond the scope of this thesis; however, several key questions remain to be answered
that connect directly to the fundamental issues discussed here. In general, the problem of
learning optimal auctions from provided bidder data is highly non-trivial as bidders are
heterogeneous in their preferences — moreover, they could possess sizable incentives for
complex dynamic strategic behavior as a consequence of long-term interaction with the
mechanism. Nor has this problem been ignored by the research community in economics
and computation, as detailed below:

1. Even the problem of learning optimal auctions from heterogeneous, but myopic bidder
data involves important modeling questions. The best case is homogeneity, in which
case a statistical learning theory perspective can be used to provably learn approxima-
tions to the Myerson-optimal auction from samples of valuations [3138]. This theory
is valid if samples of valuations can be reliably extracted. This might happen if, for
e.g., bidders are myopic and have little incentive to perform strategic manipulation.
On the other hand, the worst case of heterogeneity in bidder preferences is when valua-
tion distributions can vary arbitrarily from round-to-round; in this scenario, ideas from
worst-case online learning can be applied to obtain guarantees on revenue, as in [39).

3We here use the word “dynamic" to indicate the presence of online learning; dynamic mechanism design
is also commonly used to describe online algorithmic mechanism design which does not have a learning
component, but is aimed to maximize revenue well over the single-shot setting when the valuation distribution
is known, but realizations are not [28-30]. We do not discuss this work here as it does not directly engage
with issues of learning.
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2. The possibility of dynamic strategic behavior poses an even more challenging problem:
in the above single-item auction setting, we need to learn the valuation distribution
F(-) from samples (by,...,b,) for any hope of optimal auction design. Is it possible
to do this when the samples are themselves being generated by strategic bidders? It
turns out that when the seller and bidder are equally patient, the worst-case kind of
dynamic strategic behavior could cancel out any potential benefit of learning [40, |41].
However, when bidders are less patient, learning-based schemes, primarily based on
preserving truthfulness, can do almost as well as the Myerson auction in hindsight [42,
43|. Moreover, even when they are incentivized to, bidders may not necessarily en-
gage in dynamic strategic manipulations of their bids as the optimal manipulation
could be extremely complicated, and not analytically evaluate-able or computationally
tractable.

3. Most practical auctions are non-truthful. Learning such auctions will likely pose even
deeper challenges at the intersection of learning and strategic behavior. This is because
even in the purely statistical setting, samples are of bids which are strategic manipula-
tions on true values. Nevertheless, under certain settings, inference of these auctions’
revenue and welfare guarantees is possible using systematic properties of the agents’
bids as a function of their values in Bayes-Nash equilibrium [44-46].

The above discussion shows that modeling the strategic behavior of bidders is an ex-
tremely complicated task, as is designing learning algorithms for auction design that respect
all possible kinds of strategic behavior. We first note that the goal of a “all-purpose" learning
algorithm that adapts to the behavioral model that best describes bidder behavior, while
sometimes utopian, is a worthy methodological goal that is directly connected to this dis-
sertation’s goal of learning from an unknown environment. In fact, the goal of adaptivity in
auctions has already seen some research attention: in particular, repeated auctions can be
shown to be robust to several such “types" of strategic behavior in a setting where the valu-
ation distributions are known [47] — here, the only component of the bidders that is being
learned is their (discrete) strategic type. The situation where both strategic behavior and
valuation distributions are unknown is more challenging and engages with the heart of issues
of learning intersected with strategic behavior. The methodology for adaptivity in Chap-
ters [2| and [3, while developed in simple learning-theoretic models, has particular promise
for auction design given the recent advances in statistical as well as worst-case learning of
optimal auctions. These kinds of interactions also demonstrate the need to better model
strategic behavior of bidders in the presence of learning. Simple rules that approximate
dynamic strategic behavior, if and when they exist, are therefore of sizable interest to real-
istic market design. From the above discussion, we conclude that any treatment of dynamic
mechanism design with a learning component needs to engage with the twin issues of: a)
methodology for online learning in dynamic, potentially strategic environments; b) intellec-
tual tools to understand manifestations of bidder strategic responses to seller mechanisms
designed with a learning component.
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As a final comment, we remark that these issues are not completely foreign to traditional
deployments of auction theory with social-welfare maximization and/or human bidders. Hu-
man behavior is unpredictable, and auctions need to be both simply designed and robust
to deviations from the expected/modeled behavior. However, the scope of the modeling
problem is significantly more acute in dynamic mechanism design with automated agents:
the uncertainty in information is greater, and errors in modeling lead to consequences that
are both real-time and accumulate over time.

1.2 Case study: Game theory in spectrum regulation
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Figure 1.2: Depiction of spectrum allocation according to the command-and-control
paradigm in the United States. Figure credit to U.S. Department of Commerce, National
Telecommunications and Information Administration, Office of Spectrum Management.

Our second case study comprises the landscape of intelligent cognitive radio technol-
ogy and its role in enabling dynamic spectrum sharing . Wireless spectrum is a
valuable resource with tremendous economic opportunity ; however, its supply in recent
times has not kept up with demand. Rather than a lack of availability of the raw resource,
the reason for this is primarily inefficiencies in allocation of the resource across both space
and time. Figure illustrates the traditional command-and-control approach to spectrum
regulation: a single user gets a license for dedicated access to the spectrum band, and (typ-
ically) does not need to share this band. Historically, command-and-control cleanly ensured
spectrum usage rights for license holders, and did not preclude or restrict entrants when
spectrum was plentiful. However, this ability breaks down today in the face of high demand
and spectrum scarcity — it does not allow for robust and flexible sharing of the spectrum
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band across either space or time. This inefficiency, while more recent, was predicted by the
prescient analysis of the economist Ronald Coase more than 50 years ago [51].
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Figure 1.3: An illustration of the various options for spectrum re-purposing. Incumbents
are shown as purple dots, while white-spaces are blue and cleared spectrum is green. White
represents unused spectrum, and the white and blue pattern represents spectrum that could,
but need not, support white-space rules. Figure from [52].

Over the past few decades, ambitious market-driven approaches to re-purpose and reallo-
cate wireless spectrum, primarily through auctions [19, 53, [54], have substantially improved
spatial efficiency of spectrum usage. For example, several of the higher television broadcast-
ing channels are seldom used by most locations in the United States, resulting in a large
amount of “T'V white-space" that is widely utilized by secondary users of spectrum (for
a summary of opportunities afforded by the presence of TV white-spaces, see Kate Harri-
son’s pioneering thesis [55]). In fact, the FCC recently conducted an incentive auction that
successfully completely clears these TV bands for long-term-evolution (LTE) usage while
efficiently “repacking" the few TV stations, that were originally present in these bands, into
lower bands. See Figure[I.3|for a schematic of the eventual outcome of this “efficient clearing"
method. While market-driven efforts to re-purpose spectrum have already paid dividends in
efficiency of spectrum usage, they can only go so far. This is because they do not address the
problem of dynamic, temporal spectrum sharing. For example, spectrum is often still owned
by a primary user who uses it only 5% of the time — the rest of the 95% of the time, this
valuable resource is wasted!

The central question whether we can ensure the protection of primary users’ rights, while
also allowing the unused spectrum to be better utilized. Being able to do this necessitates
modeling dynamic spectrum sharing through real—timeﬂ game-theoretic interaction between

4 Another significant option for temporal spectrum sharing that we do not discuss in detail here is the
framework of pricing competition games [54} |56] between multiple primary users that “lease out" spectrum
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multiple rational, intelligent users of the spectrum. The justification for considering sec-
ondary users of spectrum as rational and intelligent comes from the remarkable advent of
cognitive radio technology in the last 20 years [48|. This technology allows for the design
of radiosﬂ to intelligently sense channels for spectrum availability, as well as adapt to the
environment in an agile manner [57-H62|. In the absence of any external mechanism, such
intelligent radios that are symmetric (in the sense that they cause equal amounts of inter-
ference harm to each other) can self—enforc&ﬂ against one another and share the spectrum
in an equitable manner; but in scenarios of unequal harm, the less vulnerable device domi-
nates [63].

In particular, if the nature of harm is unidirectional (e.g. if packets from two users collide,
the packet is dropped for only one of the users), we need to create external incentives in the
form of explicit enforcement for equitable use of the resources. Kristen Ann Woyach, in her
PhD thesis [64], laid out a pioneering framework of light-handed regulation, implementable
in real-time [65], and inspired by economic analyses of criminal law [66-68| to model desired
interaction between asymmetric users of the spectrum. In this model, the users are asym-
metric in two senses: their demands of the resource are different, but so are their modes of
access and rights of usage. On one hand, our goal from the point of view of a primary user
(who has typically paid for the spectrum) is to ensure as little secondary interference to her
overall activity as possible. On the other hand, our goal from the point of view of a sec-
ondary user (who is typically sensing for the spectrum for free) is to ensure a “best-efforts"
guarantee to a compliant and technically desirable secondary. We will now briefly describe
the mechanism by which these goals are theoretically achievable.

A mechanism for light-handed regulation

The important paradigm shift advocated by Woyach in her thesis constitutes spectrum reg-
ulation through light-handed, ex-post enforcement. At a high level, such enforcement allows
secondary users to use spectrum in an unrestricted manner, but subjects them to “punish-
ment" if they are “caught" in the act of interference to a primary user. More concretely, this
light-handed mode of enforcement works through a third-party enforcer in conjunction with
the participation of the primary user herself:

1. The mode of “punishment" for a secondary user, if caught, is a spectrum jail sentence
for radios: the secondary is forced to turn off his transmissions for a stipulated period
of time denoted by 7. (This stipulated period of time is known-in-advance to the
secondary, but only enforced if the secondary is actually caught interfering.)

when it is not being used to potential secondary users. While these models are interesting and have been
partially put into practice, they are only successful for spectrum sharing on the time scales of weeks or
months, owing to the monetary nature of the transactions. Here, we are most interested in the question of
real-time spectrum sharing amongst many users.

5In fact, in a remarkable leap from theory to practice, much of this technology is now software-
implementable.

6This self-enforcement also underlies the practical success of technologies like WiFi!
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Figure 1.4: The spectrum jail enforcement system as created by Woyach and the ensuing
primary-secondary game. Both figures were made using Keynote.

2. When a secondary user causes interference, the primary has the option (at a cost Cis)
of reporting this interference to the third-party enforcer. With a positive probability,
the interference is correctly attributed to the secondary user and the secondary user is
jailed.

Figure contains a schematic of this mode of enforcement, and Figure provides
a summary of the ensuing primary-secondary game in normal form. While we refer the in-
terested reader to for the details of the analysis, we provide here a brief summary of the
guarantees afforded by this enforcement mechanism. Intuitively, it is clear that a sufficiently
large jail sentence T" would deter a strategic secondary from over-transmitting, thus guar-
anteeing a primary user a minimal level of protection. Muthukumar and Sahai provide
concrete lower bounds on this jail sentence T' > Tq(7y), that also rely on estimates of minimal
primary demand and the fidelity of the enforcement mechanism (Peyep), to guarantee that
the primary is protected a fraction of 7 of the time. (v can approach arbitrarily close to 1,
and the sentence Ty(y) will increase accordingly.) Notably, the calculation of the minimal
jail sentence depends critically on the nature of strategic behavior by secondaries: selfish
and rational secondaries tend to require smaller jail sentences to be deterred, while mali-
cious/adversarial secondaries need larger jail sentences to be shielded from. Alternatively
stated, the same choice of enforcement mechanism would afford greater levels of protection
against selfish and rational secondaries than malicious secondaries!

It is intuitively clear that this light-handed enforcement mechanism can ensure adequate
levels of primary protection — but we want to go further. We want to show that technically
desirable secondaries are incentivized to actually utilize spectrum holes. The original work



CHAPTER 1. INTRODUCTION 11

0.20

| e Simultaneous
—— Stackelberg

Safe harbor

L
0.00 0.05 0.10 0.15 0.20
Prob. of wrongful conviction

Figure 1.5: Figure showing how the size of the “safe harbor" of technically desirable secon-
daries changes for various primary performance requirements, given by ~. Figure from [69],
and details of how parameters are set there-in.

of Woyach [64], in accordance with the criminal law literature, framed such a “desirable"
secondary as one who would honestly use spectrum, i.e. cease to transmit if a primary
transmission was detected. However, even honest secondaries can cause substantial harm
to the primary if they frequently incorrectly sense that spectrum is available, even when
it is not. Muthukumar and Sahai [69] critically re-framed the notion of a desirable sec-
ondary as one that will cause sufficiently little interference harm on average, whether from
cheating or honest usage of the spectrum in conjunction with the primary. Using this re-
framing, their main result shows that the (Stackelberg as well as simultaneous) equilibrium
of the primary-secondary game can result in a sufficiently desirable secondary co-existing in
the same spectrum band with the primary, while causing minimal interference harm to the
primary.

For the class of such desirable secondaries, designated as a “safe harbor", efficient and
equitable spectrum sharing is possible with the primary. The size of this safe harbor as a
function of wrongful conviction rates, for various levels of stipulated primary protection, is
depicted in Figure [L.5

The need for engagement with learning

From the above, the benefits of a light-handed mechanism are demonstrated to be two-fold:
not only is equitable and efficient spectrum sharing possible in equilibrium, but also this
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mechanism incentivizes the development of desirable secondary technology. While these
equilibrium guarantees are a significant and promising step towards equitable and effi-
cient spectrum sharing, they are under-lied by several assumptions embedded in the ide-
alized framework of “one-shot" game-theoretic interaction between primary and secondary
user(s); particularly that the primary and secondary user know important parameters about
each other. In the absence of this critical assumption, the primary and secondary would
conceivably reach this desirable equilibrium through some form of learning each other’s
information—but how they might do this is quite unclear. We give a sense of the scope of
these informational assumptions below.

1. The primary acts with knowledge of important secondary parameters, such as the
probability that he can cause her interference when they use the spectrum band at the
same time.

2. The secondary acts with knowledge of important primary parameters, such as her
inherent demand for spectrum.

3. The primary and secondary both act with knowledge of parameters of the enforce-
ment mechanism, such as the cost of reporting interference, and parameters of the
environment.

4. The primary assumes knowledge of the strategic nature of the secondary — whether
malicious or selfish /rational.

In a dynamic spectrum sharing environment, it is not clear that we can make any of
the above assumptions a-priori. After all, the primary and secondary user are neither co-
designed nor cooperative; therefore, they will not know anything about each other a-priori,
nor can they necessarily rely’| on a trusted exchange of information such as their operating
parameters. With this in mind, communication technology is increasingly designed with a
ML component, see e.g. |[70]. The objective of such technology is to successfully learn about
the environment (as a conglomerate of nature and the aggregate effect of primary/secondary
users), and transmit optimally. A more subtle point is that the primary has to engage in
learning of her own — about the secondary’s strategic nature. This is important because, as
we saw, a primary should interact differently with malicious and rational secondary users,
and the presence of the latter ensures relatively favorable spectrum utility. Other categories
of secondaries that were not considered above are agnostic secondaries, that transmit with a
fixed probability invariant to primary actions and enforcement mechanism; and cooperative
secondaries, which include primary throughput and overall spectral efficiency as a part of
their own utility function.

The scenarios of agnostic and cooperative users are expected to be far more benign for a
primary user, and if successfully detected, can lead to greatly improved spectral efficiency.

"In particular, designing private protocols for doing this could involve inference about the agents’ strategic
types as well.
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In fact, DARPA’s second version of the Spectrum Collaboration Challengd® aimed to bring
separately designed teams of cognitive radios together to “learn to cooperate" to maximally
utilize spectrum in both a fair and efficient manner. The elephant in the room is that
“learning to cooperate" in the absence of co-design requires the ability to detect an intent of
cooperation, and maintain robust/optimal performance in the absence of this intent. More-
over, the practical importance of adaptive regulation in the presence of artificially intelligent,
learning agents beyond the domain of spectrum cannot be over-emphasized. The nascent field
of algorithmic fairness in ML begins to address a future ecosystem in which stakeholders and
regulators, by default, interact with learning agents real-time. A foundational understand-
ing of game-theoretic considerations in environments with learning, whether competitive or
cooperative, will be essential to effective regulatory design in the modern Al age.

1.3 Review: Learning in known environments

The two case studies we considered have amply demonstrated that a fundamental under-
standing of learning in game-theoretic environments is required for further intellectual and
engineering progress. This thesis explores this fundamental question using the simplest pos-
sible models that retain non-triviality. We will now review the important mathematical tools
and framework that we will use for this dissertation.

The semantics, mathematics and automation of “learning" as an abstract concept have
extremely rich history in statistics |1, 2], information theory [71], control theory [72] and
artificial intelligence |7, 73]. In this thesis, “learning" is used as an umbrella term to describe
the merging of statistical inference from past data with optimal decision-making in a vari-
ety of known environments. We broadly categorize these environments into statistical and
strategic (in the non-cooperative sense) belowf)]

We will see that the conceptual philosophy and technical tools used are both quite differ-
ent for statistical and strategic environments. Throughout the discussion, we highlight the
history of research that attempts to bridge these environments, and evidence for the depth
of the problems formulated in this thesis.

Statistical learning

We denote a batch of data by {Z; € Z}, and a sequence of data by {Z; € Z};>;. The
statistical learning paradigm assumes that underlying the composition of this data is an
unknown component that needs to be inferred (this could be a parameter or a function
from a non-parametric class with special geometric structure [74]), together with stochastic
noise that is independent of the unknown component[®, This model is notably broad; it can
include non-stationarity in the data generation process, and dependencies across the data

8For details, see https://www.darpa.mil/program/spectrum-collaboration-challenge
9We discuss cooperative considerations as future work in Chapter @
10T ypically, the presence of stochastic noise is what makes the learning problem non-trivial.
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points. Correspondingly, the nature of the goals of statistical learning is also broad, ranging
from prediction to data re-generation to optimal decision-making. We now describe the
setting of supervised prediction from batch data as a common sub-paradigm of statistical
learning. Chapters [2| and [3| will also engage with the online variant of this problem (in
statistical as well as adversarial environments).

Example 1. In supervised statistical learning from batch data, the data is given by {Z; =
(X;, Y)Y, where the features are given by X; iid ~ P, and the output is an unknown
function of the features, i.e.

Y = f(X) + W, (1.1)

where f* € F, and W; is iid stochastic noise. Typically, the function class F is either
parametric, meaning that F := © and f*(-) := fp<(+), or non-parametric; for example, F can
represent the space of convex functions or smooth functions or a reproducing kernel Hilbert
space [75, Chapter 12].

The primary goal in supervised statistical learning is to provide an estimate of the un-
known function, denoted by f, and use this estimate to obtain accurate predictions on a fresh
sample of data. In other words, the goal is to ensure that for a new sample (X,Y") generated
in the same way as above, we can get

~

(Y, f(X)) (1.2)

to be as small as possible, where ((-,-) is an appropriately defined non-negative-valued loss
function. Commonly studied loss functions include the squared loss function and the 0 — 1
loss function.

The statistical learning paradigm is remarkably broad, and remains a very active area
of research today. What is essential to this paradigm is the existence of a natural process,
i.e. a distribution P € P(-) that underlies the generation of data that does not respond, or
change in a time-varying manner, to the learner/decision maker’s actions. Also note that
we have de-facto assumed the frequentist formulation in the above informal discussion, as
in |1, Chapter 3| and forthcoming formulations. All of the setups in statistical learning are
also well-formulated and studied under Bayesian models; indeed, Bayesian is also heavily
used in economic decision (expected-utility) theory as well as game theory with incomplete
information |76H78|. For most of this thesis, we will use the frequentist statistical paradigm
by default. In other words, the unknown function f* € F can be arbitrary, and the goal of
frequentist statistical estimation is to design estimators f, := ¢({Z;}}_,) with one, or both
of the following properties:

1. Asymptotic consistency, i.e.

Fo(-) = f*(-) almost surely as n — oo (1.3)
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2. Non-asymptotic minimax optimality, i.e. for any value of n > ng, we have

sup B [((Ja(X), V)] ~ inf sup E£(6({Z:},)(X), V)] (14)
freF o() freF

where the ~ indicates order-optimality in terms of dependencies on n as well as relevant
complexity measures of the function space F.

The above definitions are the gold standard for optimality in frequentist theory of sta-
tistical estimationﬂ. On the other hand, the Bayesian theory |1, Chapter 7| defines a prior
distribution P(F) on the function F), i.e. the generative model for data is Y = F(X) + W.
Then, with knowledge of this prior distribution, the maximum-a-posteriori (MAP) estimate
under the above framework would be:

fn,Bayes. = 1}137_5_([@ (F = f’(Zz)?:1> ) (15)

and this is easily shown to be the quantity that minimizes the Bayes risk, i.e. E[¢(f(X),Y)].

Applied statistical methodology, which is not our focus here, uses both frequentist and
Bayesian principles. From a more conceptual standpoint, we can see from the above def-
initions that notions of optimality are harder to formalize in a frequentist setup than a
Bayesian setup; on the other hand, the MAP estimate could be complicated in its analytical
expression, and difficult to interpret. The frequentist paradigm is considered to be more
robust than the Bayesian paradigm, which is most effective when the prior distribution is
well-specified; and allows for much broader classes of estimators that are often under-lied
by simple principles that highlight fundamental trade-offs involved in statistical estimation
or decision-making. In game-theoretic settings with incomplete information, most statistical
modeling has been Bayesian owing to the simplicity in defining equilibrium concepts |76,
Chapters 4 and 7]; however, in Chapter {4| of this thesis, we make a case for introducing
frequentism to the realm of game theory.

Regardless of the modeling choice of frequentism or Bayesian-ness, the fact remains that
learning algorithms designed with such a statistical assumption in mind, while optimal for
statistical environments, are dramatically brittle if the statistical assumption is wviolated.
Putting this in the context of both of our case studies, this has important practical ramifi-
cations:

1. An auction mechanism that is designed for learning from statistically generated bidder
data will see a significant drop in revenue in the presence of long-term strategic bidders
who aim to game the mechanism for their own benefit.

2. A user of spectrum that senses the environment as though it is static will see a dramatic
drop in throughput from the presence of malicious or competitive users of the spectrum.

UDistributional notions of convergence, like asymptotic normality, are also important when considering
statistical inference, but our focus here is on estimation error guarantees.



CHAPTER 1. INTRODUCTION 16

Sequential learning in non-cooperative, game-theoretic
environments

The discussion above shows that we need to consider the possibility of the data {Z;}i>1
being generated with a strategic incentive in mind. The way we will do this is by modeling
the interaction as a repeated game between learner, whom we designate as “Alice", and the
generator of data, whom we designate as “Bob". At round ¢, Alice’s strategy is precisely
the action that she chooses to take, A;; and Bob’s strategy is the sample of data Z;. As in
the online decision-making setup, Alice will choose a (possibly randomized) strategy {A;}_,
with the aim of (approximately) maximizing her reward function,

T

1
lim T Z r(Zy; At)

T—o0
t=1

R:=E

The principal difference is in how Bob will generate his data. Instead of Z; being indepen-
dent and identically distributed across t (or even evolving according to a stationary stochastic
process), Bob now has a reward function of his own, denoted by g, and will be generating
samples {Z;}_, with the aim of (approximately) maximizing this reward function,

T
.1
G:=E Th_{go T Zg(Zt; Ay)

t=1

(1.6)

Furthermore, we will assume what is commonly called the full-information feedback
structurelﬂ Alice can observe not only her reward r(Z;; A;) at every round, but also the
data Z;. Similarly, Bob can observe Alice’s action A; at every round.

We can now try and ask the same question as before, i.e. what is Alice’s (approximately)
optimal strategy against Bob in this repeated-game. At a high level, it is easy to see that the
nature of this strategy intricately depends on the strategic nature of Bob, i.e. the nature of his
utility function. Ironically, the case that is easiest to study involves Bob being adversarial to
Alice. In other words, under the adversarial model, Bob observes Alice’s action A; at round ¢
and generates data {Z;}_, to minimize Alice’s reward, i.e. g(-,+) = —r(-,-). In other words,
this constitutes a repeated, zero-sum game.

Interestingly, most known guarantees for optimality for Alice are framed in the form
of a quantity called worst-case regret |80, 81|, with respect to the best single action that
Alice could have used in hindsight. The idea of regret goes back to Jim Hannan [80] and
has roots in the seminal work by David Blackwell on approachability of convex sets over
time [82]. While it is most applicable to adversarial environments, it has also been posited

12Even less is known about the limited-information feedback in realistic game-theoretic settings: it is a
nascent but active area of research today. While the adversarial bandits [79] paradigm is popular in the
online learning literature, it does not realistically model even zero-sum game theoretic interaction, as the
adversary in the adversarial bandits model essentially has full-information access to the observed rewards.
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for use in any strategic environment by noting that the worst-case kind of unknown strategic
behavior is, in fact, adversarial. Constructive algorithms that satisfy this no-regret property
have seen a resurgence in the online learning literature in both the computer science |83
84] and economics [85] literature. These algorithms are largely interesting in the context of
zero-sum games because when played against each other, the time averaged payoff of both
players converges to the unique Nash equilibrium payoff, or value, of the zero-sum game.
Thus, no-regret algorithms are viewed as a way to approach Nash equilibrium in zero-sum
games. Even with all of this promise, it is important here to note that the very metric of
regret does not, actually, tell the full story: Chapters[2] and [3| demonstrate the importance of
selecting an offline benchmark in online learning and demonstrate that minimizing regret is
not always synonymous with maximizing reward. Moreover, Chapter o[ shows that no-regret
algorithms, when played against one another, can exhibit surprising day-to-day behavior
even in the simplest 2 x 2 zero-sum games.

Q: How will data be
strategically generated
in response to learning?

Q: How should we learn from equilibrium

strategically generated data? behavior

Figure 1.6: Illustration of infinite-loop reasoning that unavoidably arises in repeated game-
theoretic interaction with learning. Instead of formalizing approximate optimality for agents
in isolation, we need to formalize approximate game-theoretic equilibria. This figure was
made using Keynote.

Even if we do assume the full validity of the metric of regret for the moment, we also
note that the above frequentist perspectives are rooted in optimality from the perspective of
adversarial regret; and in fact the process of minimizing regret against an adversary is really
a strategy of defense, rather than a learning algorithm. In other words, Alice already knows
that Bob will want to hurt her as much as possible, and is playing to avoid such hurt in the
long run. Our understanding of how Alice should play against a competitive Bob, especially
when his utility function is unknown to Alice, is much less mature, and the questions become
far more nuanced. It is worth noting that the game between Alice and Bob is now non-zero-
sum, and here the most basic solution concept of game theory, the Nash equilibria (NE),
remains elusive in several basic ways. For example, in the worst case, a celebrated result in
algorithmic game theory shows that computing a NE is computationally hard, even when
players know each other’s utility functions [86]. When players are both learning from one
another, we also know that no notion of “uncoupled" dynamics will succeed in approaching
NE for certain non-zero-sum games, even asymptotically [87].
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At a higher level, it stands to reason that Alice should find it easier to interact with a
non-cooperative but non-adversarial Bob, as we saw in the spectrum enforcement games.
The catch is that Bob’s utility function is still unknown, and Alice may still have to worry
about the possibility of Bob being totally maliciouﬁ. What could happen in such non-
cooperative interaction is explored at length in Chapter [ of this thesis. As demonstrated in
Figure[1.6] studying how Alice should optimally learn from Bob’s data becomes unavoidably
intertwined with the question of how Bob should optimally shape his data in response to
Alice’s learning. Rather than formalizing optimality for Alice and Bob in isolation, we need
to appeal to repeated game equilibria concepts. Chapter |4] postulates explicit strategies that
Alice and Bob could follow in an approximate notion of sub-game-perfect equilibrium, and
formalizes the beginnings of a new frequentist paradigm for repeated game theory. While the
classical study of repeated game equilibria is Bayesian |76} 78|, which allows the concept to
be exactly formalized, we really want to understand simple and explicit algorithms that Alice
and Bob will use to interact, as opposed to just their summary properties (such as eventually
garnered utility). On the flip-side, formalizing frequentist guarantees in a game-theoretic
environment remains highly challenging, and our understanding as of now is preliminary.

The above insights are especially applicable in a one-sided learning setup, where only
Alice is learning from Bob. This greatly simplifies the problem. When multiple agents are
learning from one another in a non-zero-sum setting, many questions are open. Frequentist
perspectives in the non-zero-sum milieu are more on the heuristic side, although decentralized
(internal) no-regret dynamics do have the intriguing property of converging to the broader
concept of correlated equilibrium. For a survey on this literature, see [22, Chapter 4].

1.4 Intersecting learning and strategic behavior

This dissertation is fundamentally about a first-principles effort to intersect learning and
strategic behavior, and is split into two parts from the philosophical point of view of “Alice",
the learner, and “Bob", the unknown strategic agent. From the point of view of Alice, the
primary question is constructive: how should she learn from data provided by an “unknown"
Bob, who could be stochastic, competitive, adversarial or cooperative? Chapters [2] and
examine candidate algorithms for Alice that can adapt between two of the intellectually eas-
ier categories: stochastic and adversarial. To engage with the more nuanced (and realistic)
categories of competitively and cooperatively generated data, we need to take Bob’s point of
view. The primary question then becomes intellectual: what are the core underlying princi-
ples that approximate optimal, or equilibrium, strategic behavior for Bob in the presence of
a learning agent (Alice)? Chapters [4] and [5] formulate and solve initial lines of inquiry into
this question under various informational frameworks.

13This is, in fact, used as informal justification for studying no-adversarial-regret algorithms even in
non-zero-sum games, although we note that this justification is significantly weaker, and accordingly the
economics literature designates these algorithms as “adaptive heuristics".
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Possible strategic types of Bob

Chapters 2, 3 Chapter 4

(one-sided learning)

Statistical No-regret Learn agent’s

learning defense commitment

Alice's learning algorithm

Figure 1.7: Composite strategic types of Bob and approximately optimal learning strategies
used by Alice corresponding to each type. This figure was made using Keynote.

Part I: Adaptivity In Alice’s Learning

Part I of the thesis focuses on the methodological design of algorithms for Alice that adapt
between statistical and strategic environments. If Alice knew Bob’s type before-hand, Sec-
tion [I.3] shows the way for designing her optimal learning algorithm. An idealistic goal for
Alice would be to adapt to Bob’s type, and obtain performance almost as good as though
she had known the type beforehand. This goal of adaptivity between at least two types,
stochastic and adversarial, frames Chapters [2| and [3] of this thesis. As depicted in Figure
hypothesis-testing her observations of Bob’s behavior for one of the multiple possible types
in a round-robin manner. Once Alice “detects" one of these types, she would then proceed
with the corresponding optimal learning algorithm. This approach does not easily work
against strategic environments, which can manifest in subtle ways: for example, adversarial
agents can masquerade as stochastic for a while and fool naive “round-robin" approaches.
In Chapter [2] we formalize the goal of adaptivity through the lens of full-information online
learning, and build on sophisticated adaptive algorithms in the online learning literature that
were designed with the goal of regret-minimization. We expand this perspective by showing
that regret minimization is not always synonymous with reward maximization, and use this
to motivate adaptive offline benchmark, or model selection, as an important component in
adaptive learning algorithms. Chapter [2| designs successful adaptive model selection between
both stochastic and adversarial environments in the full-information feedback environment.
Work in this chapter is joint with Peter L. Bartlett, Mitas Ray, and Anant Sahai, and is
contained in the paper . Chapter |3| provides similar guarantees in the more challenging
model of limited-information feedback. Work in this chapter is joint with Peter L. Bartlett
and Niladri S. Chatterji, and is contained in the paper [89)].

Even between stochastic and adversarial responses, several open problems remain in
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the broad goal of adaptivity, particularly when limited-information and dynamic feedback
is present, and with modern ML models. We briefly discuss some of these problems in

Chapter [6]

Part II: Bob’s Incentives In The Presence Of Learning

As depicted in Figure understanding Alice’s “optimal" strategy against a competitive
Bob with unknown utility function resists a clean decision-theoretic formulation, precisely
because the interaction is one of a repeated non-zero-sum game with incomplete information.
In other words, Alice’s optimal learning strategy has to be analyzed in conjunction with Bob’s
optimal strategy in the presence of learning. Part II of this thesis focuses on candidate rules
for Bob’s optimal strategy in the presence of Alice, who is learning from her past interactions.

Chapter {4] examines this interaction under a major simplifying assumption of one-sided
learning: in other words, Bob knows Alice’s utility function, but not vice-versa, so Alice
is the only player engaging in learning. This assumption of one-sided learning, also called
information asymmetry, allows us to make a natural connection to the economics literature
on reputation building under Bayesian formulations of incomplete information. Our aim
is to understand approximate sub-game-perfect equilibrium strategies for both Alice and
Bob in the frequentist milieu. While this is a very challenging task, and we do not entirely
succeed in this goal, Chapter [] designates strategies for Alice and Bob that satisfy multiple
criteria for credibility and are thus strong candidates for an approximate repeated-game
equilibrium. Our finding is surprising on the surface, but is entirely consistent with the
indirect conclusion of classical Bayesian formulations: Bob implicitly shares his information
with Alice in these strategies. This constitutes a very interesting incentive alignment that
happens in a setting of non-cooperative interaction. Work in this chapter is joint with Anant
Sahai, and is contained in the paper [90] (see [91] for a shorter version that appeared at ACM
Economics and Computation 2019).

With two-sided learning, the questions become even more preliminary, and a first prin-
ciples study of the eventual outcome of commonly used dynamics is essential as a starting
point. Chapter [5] outlines such a study in the simplest case of zero-sum games, and shows
some surprising properties of the ubiquitous no-regret dynamics. Work in this chapter is
joint with Soham Rajesh-Phade and Anant Sahai, and is contained in the forthcoming pre-
print [92].

Chapter [6] concludes this dissertation with a brief discussion of two topics crucial to this
research agenda that were not directly explored in this thesis; namely: a) engaging with
modern ML models for agents, and b) understanding cooperative behavior.
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Chapter 2
Adaptivity in online prediction

We begin by describing the problem of adapting between a class of stochastic environments
and an adversarial environment that is generating the data. Our goal is to maximize reward
almost as well as if we had known the unique environment generating the data beforehand.

Note that this goal of adaptivity, from a methodological perspective, is immediately
important in several practical applications. A notable example is mechanisms in online
marketplaces, e.g. auctions, that were discussed in Section of this thesis. An auctioneer
repeatedly interacting with bidders aims to maximize her revenue well over the single-shot
auction setting, by attempting to predict the valuations of their future customers from
historical data provided by previous customers. Naturally, the auctioneer needs to “robust-
ify" her mechanism to guard against strategic bidding. However, if the bidders turn out to
behave predictably, she would like to leverage this to greatly increase her revenue. An ideal
mechanism for the auctioneer would be one that is robust to strategic manipulation, but also
exploits predictable bids.

The broadly stated goal of adaptivity in online learning has a rich history [93-99], and
continues to be an extremely active area of research [100-H105]. Much (but not all) of this
work centers around adaptive regret guarantees with respect to a fixed offline benchmark.
However, we demonstrate in this chapter (in Section that the goal of minimizing regret
is not always synonymous with maximizing reward, and offline benchmark selection has to
be a central component of adaptivity in online learning, even in the most basic sequential
prediction paradigm. The main contribution of this chapter is to design online learning
algorithms that are able to adapt in two important ways:

1. Between stochastic and adversarial environments of a given model complexity.
2. Between different model classes within a stochastic (or adversarial) environment.

The problem of offline benchmark selection is synonymous with model selection, and thus
our main contribution in this chapter is to develop methodology for online model selection.
Data-driven model selection also has a rich history in purely stochastic environments dating
back to ideas of model complexity penalization (Akaike’s information criterion and Bayesian
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information criterion heavily used in applied statistical methodology, structural risk mini-
mization that underlies statistical learning theory [106-108]), and data-driven validation of
model classes, the latter of which is ubiquitous in the practice of modern machine learning.
Our online model selection algorithms use ideas of complexity penalization and validation
respectively, and are thus directly inspired by this history.

2.1 Basic setup

In the spirit of supervised machine learning, we will consider a contextual prediction setting
over T' > 0 rounds, in which we receive context-output pairs (X;, Y;)I_;. We consider X; €
XPY; € X, where X = {0, 1} is the binary alphabe It will also be natural to consider the
truncated version of X; that only represents the last d coordinates — we denote this by X;(d),
with the convention that X; := X;(D). Note that this includes the traditional conteztual
tree prediction paradigm [109], as well as the universal sequence prediction paradigm [110]
in which the context X;(d) = {Y,}'Z} , comprises of previous observation values itself.

We follow the online supervised learning paradigm: before round ¢, we are given access
to X;, but not Y;. Let Fp denote the set of all tree experts, expressed as Boolean functions
from XP to X. We will also be considering tree experts that map from the sub-contexts
{Xi(h)} to outputs Y;, denoted by f;, € F}, for all values of h in {0,1,..., D}. (In universal
prediction, these can be thought of as finite-memory predictors.) We use the shorthand
notation f := f € Fp. We define the order of a tree expert, denoted by order(f;), as the
minimum value of d < h for which its functionality can be expressed equivalently in terms
of a function from X to X. That is,

order(f,) := min{d < h : there exists f, € Fy s.t. fi,(z(h)) = f)(x(d)) for all z(h) € X"}.
(2.1)

We define our randomized online algorithm for prediction using tree experts in terms

of a sequence of probability distributions {Witree)}thl over the set Fp of all tree experts.

Note that wﬁ”‘*e) cannot depend on {(Xj,Y;)}s>er1 or Yi. We denote the realization of
the prediction at time ¢ by Y; € X, and the distribution on Y; by w; (clearly induced by

Wt(tree)). After prediction, the actual value Y is revealed, and the expected loss is modeled

as 0 — 1 loss depending on whether we get the prediction right. Formally, we have l; =
[I[Y; # 0] 1I[Y; # 1]], and the expected loss of the algorithm in round ¢ is given by (wy, I;) =
Wy i-y,. We also call this the expected prediction error of the algorithm. We denote as

L As a general note, all our analysis can easily be extended to the m-ary case. We present the binary case
for simplicity.
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shorthand

t
Lyg =Y I[Y, # £(Xy(h))] for all f € Fj,h < D
s=1

t
Lysy =Y IX,=X;Y,#ylforal X € X" h<DyeX
s=1

Lx; = [Lxuo Lxg:] forall X € X" h < D.

The traditional quantity of regret measures the loss of an algorithm with respect to the
loss of the algorithm that possessed oracle knowledge of the best single “action" to take in
hindsight, after seeing the entire sequence offline. In the context of online supervised learning,
this “action" represents the best d**-order Boolean function Fy(T') € F;. The expected regret

with respect to the best d*-order tree expert is defined as Rpq = ZtT:1<wt, 1) — L, Fa(T)-

Stochastic-vs-adversarial assumptions on data

In general, we make no assumptions on our data and we would like to minimize the adversarial
regret Rpgq for every value of d. The optimal scaling for this regret, with matching lower
bound, is known (e.g. [84]) to be

Rpq=ONT-24). (2.2)

However, as we have mentioned informally, we would like to get greatly improved regret
rates for data generated in a certain way (without a-priori knowledge of such generation).
To start, we work with the following general stochastic, stationary, predictable condition on
the responses given the covariates.

Definition 2.1.1 (Stationary d**-order stochastic condition on responses). We say that our
data (Xy, Yi)i>1 satisfies the stationary stochastic condition on responses if, at every round
t, we have

Yi{Xi(h), (Xe1, Vi), .. (X0, Y1)} ~ PP([X(h)) (2.3)

for all X;(h) € X" and h € {0,1,...,D}. More-over, the condition is said to be d"-order
realizable if we have Yi|{X;, (X, Ys)'Z1} ~ P*(-|X:(d)) for allt and all X, € XP. Note that

the realizability condition implies that Y; is independent of all previous observations given
X (d).

For this setting, it is natural to define the best “external predictor" for any h < d:

f*(x(h)) :€ argmax,c» P*(y|z(h)) for all z(h) € X" (2.4)
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We further assume that the best d*’-order predictor is uniqu, ie.
P*(f*(2(d))|z(d)) > P*(y|x(d)) for all y # f*(x(d)) and for all z(d) € X%
and denote the parameterf|

Bla(d)) = P*(f*(x(d))|z(d))
v:= min [(xz(d)).
gi = min Ae(d)
In tandem with the stationary stochastic condition on responses conditioned on contexts,
we need to specify the generative model for the contexts { X, };>;. We specify three generative
models that we will use to prove our results.

Definition 2.1.2 (Independent, identically distributed contexts.). This case considers
X;id.d ~ Q%(), where Q% constitutes a distribution on XP that is supported on the whole
of XP. We also denote the marginal distributions on X;(h) by Q;(+) for all h=0,1,...,D.

Definition 2.1.3 (d""-order Markovian model.). This case considers contexts to be previous
realizations of the responses themselves, i.e. Xy = (Yi—p,...,Yi_1), thus, the process {Y; }1>1
constitutes a d"*-order Markov process. We assume that this Markov process has a stationary
distribution; thus, overloading notation, we define Q(-) as the stationary distribution on
(Yiep, ..., Y1) forallt > h+ 1, and all h = 0,...,D. We again assume that Q(-) is
supported on the whole of X" for allh =0,...,D.

Definition 2.1.4 (Periodic contexts.). This case considers deterministic, periodic con-
texts

X, = (X1 +1) mod 27, (2.7)

and’] X, ~ Unif(XP). Note that this automatically implies that X,(h) == (X;_1(h) + 1)
mod 2" and, marginally, X1(h) ~ Unif(X") for any h € {0,1,..., D}.

The last definition of periodicity in contexts is quite a strong one; we make it primarily
to illustrate the heart of our analysis of online model selection through validation. We use
the more general assumptions of stochastic contexts (iid and Markov) for our first online
model selection procedure, which uses principles of structural risk minimization. Since our
proofs are essentially identical for both the iid and Markov cases, we will treat these cases
together in our theorem statements as well as proofs.

For all of the cases above, we can define the important notions of asymptotic unpre-
dictability for all model orders h € {0,1,..., D}. The definitions and notation are directly
inspired by information-theoretic limits on sequence compression and prediction |110].

2This is the fundamental Tsybakov margin condition |111] that is essential for eventual learn-ability of
the best predictor.

3Note that the uniqueness of best-predictor assumption directly implies that $* > 1/2, since we are
working with a binary alphabet.

4We add the randomness into the first context for convenience in defining the expected unpredictability
7} to be identical for all rounds.
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Definition 2.1.5 ( [110]). For data (X, Y;)i>1 satisfying the stationary stochastic condition,
and the first two cases of iid contexts (Definition and Markovian responses (Defini-
tion m, we define its asymptotic unpredictability under the h*-order predictive model

by

z(h)eXxh

fim X Qi) L max(P (o)) | 25)
(h)

For the case of periodic contexts (Definition , we define asymptotic unpredictability
under the h'"-order predictive model by

i X |1-mad Pl (29)

z(h)exh
In both cases, the sequence {7} }P_ can easily be verified to decrease in h.

In all the contextual models, it is easy to show that the optimal Follow-the-Leader algo-
rithm, tailored to model order d, can give us regret

2d
Rpy=0 (—) . 2.10
(28 17 210

As we will see in the next subsection, the regret rates in Equations (2.2)) and (2.10]) can be
simultaneously achieved with a-priori knowledge of the model order d using existing adaptive
algorithms.

Adaptive algorithms for a known model order

In this section, we present a simple generalization of the ADAHEDGE algorithm [94 95, 98]
as our choice for the “base" adaptive algorithm corresponding to each model order d. Before
specifying the actual choice of learning rate, we start with the definition of a base algorithm
corresponding to model order d € {0,1,..., D}.

Definition 2.1.6. The base algorithm Ay corresponding to function class Fy; comprises of
an exponential weights update over functions in Fy:

(tree)\ (d)
w
( b Y 0 otherwise .

(@) {e_”§d>'Lt—1’f if order(f) > d

The overall weight vector is denoted by (w ™)@ ({®).

A good data-adaptive choice of {n;};>1 has been an intriguing question of significant
recent interest. The idea (borrowing language from [112]) is that we want to “learn the
correct learning rate" for the problem. We consider a particularly elegant choice based on
the algorithm ADAHEDGE, that was defined for the simpler experts setting. We denote
052 = {ns}3=3? for shorthand.

s=
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Definition 2.1.7 (|98|). The ADAHEDGE learning rate process {n,gh)}tzl, corresponding to
every base algorithm Ay, for every h € {0,1,..., D}, is described as

241n 2
) — - I(ld) —, (2.11)
Atq((n )1 )

where the cumulative and instantaneous mizability gaps are defined as below:

t
AP ((D)}) =" 6D (D), where (2.12)
s=1
1 tree
5 (@) 1= (wltree) (3,), 107} 4 = In (wtree) (7,), e o) (2.13)
Ns
(2.14)

For every choice of h, the base algorithm A, = ADAHEDGE(h) can easily be shown to
obtain the adversarial regret guarantee Ry, = O(VT -2"). Proposition (restated in
Section as Proposition [2.6.18)) illustrates the stochastic regret guarantee obtainable by
Ap.

Proposition 2.1.8. Let h > d. For any sequence {X;,Y;}L |, we have

teins=o{t [(ron ()

simultaneously for all h € {d, ..., D} with probability at least (1—e¢) on a sequence (X, Y:)i>1
that satisfies the d'"-order stochastic condition with parameter [3*.

The proof of Proposition [2.1.8] is simply a standard application of the proof of ADA-
HEDGE to contextual prediction, and is also contained in Section 2.6, Observe that the
dependencies of the regret guarantee on the number of rounds, 7T, is optimal in both ad-
versarial and stochastic environments—however, the dependence on the true model order d
critically depends on the choice of h. Observe that if we just picked h = d, the above propo-
sition provides the optimal stochastic regret guarantee; however, if h > d, the dependence
on h is exponential and thus highly sub-optimal. Also, observe that any guarantee on Ry g4
vanishes completely if we instead chose h < d, as we will demonstrate next, this regret will
in general be linear in 7.

We can already see from the above discussion that there is a sizable cost to both over-
specifying and under-specifying the model order in regret minimization. This provides a
hint that the very goal of regret minimization does not tell the full story. We now make the
limitations of regret clear through a simple example.
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2.2 The need for adaptive model selection/The
limitations of regret

The simplest use case of online learning constitutes the example of binary sequence predic-
tion, where there are no contexts {X;};>1, but there are responses {Y; € {0, 1}};>; that we
wish to predict from past data. Here, regret is minimized with respect to the performance
obtained by predicting the best fixed choice of letter — y = 0 or y = 1 — on all rounds.
This corresponds to the quantity Rr( in our formulation of contextual prediction.

Binary sequence prediction by itself has seen sizable attention dating back to the work
of Thomas Cover, and more recently in the context of adaptivity [110, 113-115]. This is
because the binary sequence prediction problem, while appearing simple on the surface,
captures much of the central non-trivialities in online learning’} We now consider the com-
position of unpredictable, or “adversarial" binary sequences relative to a given choice of
regret-minimizing algorithm. For example, deRooij et al [98| considered the following choice
of binary sequence as “unpredictable" with respect to several algorithms, including ADA-
HEDGE, that adapt between stochastic and adversarial environments:

1if ¢t
y, = - hreve (2.15)
0 if ¢ odd.

This example was taken slightly further by Gravin, Peres, and Sivan [116]|, who studied
the optimal choice of adversarial sequence against exponential weights families.

Definition 2.2.1. The sequence that is adversarial to exponential weights families of al-
gorithms is defined for a fired number of rounds T as follows: Fix Ty := T — TP for some
0 <p<1. Then, we pick

1ift <Tp, t even .
Yi=10ift <Tp, t odd . (2.16)

1 otherwise.

Notably, the adversaries in Equations and can both be shown to incur w(\/T )
on exponential-weights families, including sophisticated methods that learn the learning rate
like ADAHEDGE. The reason that this property continues to hold for ADAHEDGE is, roughly,
as follows: since the number of 1’s never becomes significantly greater than the number
of 0’s; thus, for most of the duration of the game, ADAHEDGE treats these sequences as
unpredictable. This is clearly undesirable behavior: the “adversary", as described above, is
easily predictable to the human eye—simply predicting a 1 after seeing a 0, and vice-versa,
would lead to very few prediction errors on both examples.

5Indeed, the example that demonstrates the w(\/T) lower bound on regret is precisely a binary sequence
prediction example [81, Chapter 3|.
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We can define a “FOLLOW-THE-LEADER(1)" algorithm (henceforth abbreviated to FTL)
with this spirit, as below:

}’} {1 lf ZS:YS,1:Yt71 lfs Z ZSZYS—IZY;Sfl(l o ng)

! 0 otherwise . ( )

500 -

Total loss
S =1
o o

100 A

0 200 400 600 800 1000
Number of rounds

Figure 2.1: Sub-optimality of 0*"-order regret minimizing algorithms on “adversarial" se-
quence due to under-fitting. Figure from [8§].

Equation simply uses the maximum likelihood estimation principle for Bayes-
optimal classification of the sequence into {0, 1} at every round. Thus, it corresponds to the
optimal algorithm we would use if we knew that {Y;};>1 evolves according to a l-memory
Markov process. It can be verified that this approach would clearly incur only constant,
as opposed to /T, regret on the adversarial sequence — however, the regret metric Rryo
does not capture the full extent of the benefit. Figure compares the overall loss (i.e.
number of prediction errors) of three algorithms: HEDGE(0), ADAHEDGE(0), and FTL(1).
It also provides, for reference, the overall loss of the best letter in hindsight (which, here,
corresponds to predicting 1 all the time). It is clear that FTL(1) is doing even better (and by
a significant amount) than the offline benchmark, and thus its improvement over the other
regret-minimizing algorithms is actually linear in T

Thus, adversaries designed for online learning algorithms using the 0**-order offline bench-
mark tend to be highly predictable under a more complex benchmark (here, corresponding
to 1-memory Markov predictors). This suggests that we may want to increase the complexity
of our offline benchmark so as to “catch" all such complex, but highly predictable patterns.
In the above reasoning, we do not want to stop at predictors using a memory of length 1:
of course, a sequence with memory of dependency 2 can be designed to be an “adversary"
to all such algorithms using an offline benchmark. In general, we may want to define some
maximal memory length D for our benchmark, and use a regret-minimizing algorithm with
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respect to this benchmark. Such an algorithm would capture all statistical patterns in the
data, including the most complex possible, if they existed. The equivalent algorithms for
this case, as discussed in Section 2.1 are FTL(D), HEDGE(D), and ADAHEDGE(D). No-
tably, the classical universal prediction paradigm [110, 113] takes this reasoning even further
and uses prediction schemes inspired by Lempel-Ziv compression to asymptotically capture
stochastic patterns with an infinite memory, i.e. D — oo.

500 1

400

w

o

o
A

Total loss
N
o

100

0 200 400 600 800 1000
Number of rounds

Figure 2.2: Sub-optimality of regret-minimizing algorithms with respect to a higher-than-
needed model order, e.g. ADAHEDGE(8), on 1-memory sequences due to over-fitting. Figure
from [88].

However, de-facto using the most complex model order is not optimal in a non-asymptotic
sense. Figure shows the stark sub-optimality in AdaHedge(D)’s overall loss with respect
to AdaHedge(1). In regret-minimizing language, while AdaHedge(D) does incur a constant
regret that does not grow with 7', the value of this constant is too large. Instead of the
best possible regret guarantee of Rr; = O(2'), ADAHEDGE(D) incurs a much larger regret
scaling as Ry = ) (2D ) This larger constant is what is showing up in Figure as a high
sub-optimality in performance.

Thus, it is clear that we need to adaptively select the offline benchmark as a function
of the properties of the data: there is a significant price paid in overall loss (or reward) by
under-specifying or over-specifying the model order. In general, the true model order d (in
this example, d = 1) is unknown to the algorithm. This implies that in addition to adapting
between stochastic and adversarial environments, data-adaptive model selection is essential
to successful adaptive online learning methodology. We now discuss the prior art on model
selection in stochastic and adversarial environments.
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2.3 Related work in stochastic and adversarial model
selection

Data-driven model selection in offline, purely stochastic environments is central to applied
statistics and machine learning methodology; thus, it has a rich history. Traditional statis-
tical learning theory concepts such as the Vapnik-Chervonenkis dimension and Rademacher
complexity [117,/118] demonstrate a general principle by which the estimation error (which is
synonymous with regret) increases as we increase the complexity of the model class (which is
synonymous with the complexity of the offline benchmark). Therefore, classical approaches
to model selection explicitly penalize overly complex models in a model selection criterion.
This criterion is known as Akaike’s information criterion or Bayes’ information criterion [119]
in classical statistics, and structural risk minimization (SRM) [106] in statistical learning the-
ory. More recently, SRM has been shown to perform data-adaptive model selection success-
fully with high probability through estimation error bounds that are obtained via empirical
process theory. Theoretical work on SRM is broad in scope and we refer the reader to [108]
for a review. More recently, an alternative method of model selection constitutes evaluating
a trained procedure tailored to a particular model class on a separate “hold-out" set, and
using the measured error as a proxy for the population test error that using this model
class would incur. The most sophisticated variants on this validation-style approach include
cross-validation, which interleaves a single data-set into multiple training and “hold-out"
categories 120, [121].

The SRM approach can be directly plugged into full-information online learning algo-
rithms when the existence of stochasticity is known; while the validation approach is non-
trivial to analyze even when stochasticity is known. Whether SRM or validation-based
approaches are used, the equivalent problem of purely stochastic model selection in limited-
information feedback settings is far more challenging. We discuss partial solutions to model
selection under bandit feedback in Chapter [3| but several open problems remain.

On the other side, the paradigm for adversarial regret minimization was laid out in the
discrete “experts" setting in seminal work (for a review, see [84]), and subsequently lifted up
to the more general online convex optimization framework (for a review, see [122]). The next
natural goal was adaptivity to several types of “easier" instances while preserving the worst-
case guarantees. Most pertinent to our work are the easier stochastic losses [98|, under which
the greedy Follow-the-Leader algorithm achieves regret O(1). In the experts setting, multiple
algorithms have been proposed [94} 95, (98, 100, 101}, [123] that adaptively achieve O(1) regret.
Some of these guarantees have been extended to online optimization [103]. As we will see,
naively extending these analyses to the contextual prediction problem gives a pessimistic
O(2P) regret bound. In our work, we show that we can get the best of many worlds and
greatly improve the exponent to (5(22‘1), reducing the dependence on the maximum model
complexity D from exponential to linear.

Recent guarantees on adapting to a simpler model class, but not to stochasticity, have
also been developed (93,97, [99H102} [104]. Many of these approaches [97, 99,102, |104] do not
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improve the 6(\/T ) rate for stochastic data, and can thus be thought of as purely adversarial
algorithms. However, some of them are notably far broader in scope than the binary sequence
paradigm, and deal with online optimization [99] and online supervised learning [104] with
“multi-scale" predictors.

The problem of simultaneous stochastic and adversarial model selection is also not en-
tirely new. We address in particular two recent algorithms, ADANORMALHEDGE [101]
and SQUINT [100], both of which obtain second-order quantile regret bounds in terms of a
“variance" term and the correct model complexity. The analysis of both ADAHEDGE and
ADANORMALHEDGE in the stochastic regime avoids the model selection issue, and yields a
pessimistic O(2P%4) regret bound. Squint cleverly applies the Bernstein condition [123] and
obtains the optimal stochastic rate of O(29) for the special “realizability" case. However,
the elegance of these approaches comes at some cost to broader applicability, as discussed
below:

1. The computational complexity of SQUINT necessarily scales linearly with the number
of experts, which in the case of the contextual prediction problem is a prohibitive
double-exponential-in-D complexity.

2. The analysis of both ADANORMALHEDGE and SQUINT in the stochastic regime re-
quires data to be realizable under the d*-order stochastic condition, and does not
explicitly connect to statistical model selection frameworks.

3. ADANORMALHEDGE and SQUINT are designed for explicit complexity hierarchies in
model classes; thus, will not yield meaningful model selection guarantees even empiri-
cally in modern environments where highly complex (indeed over-parameterized with
respect to data) models provide the most successful performance [124, [125].

For online model selection to be broadly applicable, we need all of these ingredients—i.e.
computational efficiency, guarantees under model mis-specification, and flexible methodology
in a variety of statistical environments beyond traditional complexity hierarchies. Regardless
of the choice of algorithm, it appears that satisfying the first two conditions requires directly
reasoning about model selection guarantees in a probabilistic sense. Both of the algorithms
described in this chapter do precisely this by explicitly connecting to the methodology of
SRM and validation. While our main results are still restricted to the realizable case of a d'-
order model generating the data, we are optimistic about being able to apply our techniques
to analyze online prediction error in mis-specified environments in the future (for a detailed
discussion on this point, see Section .

Finally, regarding the third condition, a theoretical analysis of online validation method-
ology is of especial interest, as it is the only known empirically successful methodology for
model selection that does not explicitly encode model complexity information, and is there-
fore heavily used in modern machine learning. Our result constitutes one of the first such
theoretical analyses in an online prediction environment, even if for traditional complexity
hierarchies. As we discuss in Chapter [0] theoretical analysis of online validation in modern
ML environments is a future topic of sizable interest.
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2.4 Online model selection through complexity
penalization

Our first algorithm leverages the framework for offline structural risk minimization (SRM)
in purely stochastic environments. The central idea in SRM is to use a model selection
criterion that, in addition to minimizing training error on data, penalizes overly complex
models that have the potential to over-fit. In other words, the model selection criterion
trades off estimation error, i.e. the complexity of the model class, and approximation error,
i.e. the approximability of the best model-in-class to the actual data.

Since online prediction in adversarial environments needs to be randomized, our first algo-
rithm essentially implements SRM in a Bayesian manner. Essentially, we use an exponential-
weights update on tree experts equipped with a time-varying, data-dependent learning rate
and a suitable prior distribution on tree experts, where the prior acts precisely as the model
complexity regularizer. We start by describing the structure of the prior distribution.

Definition 2.4.1. For any non-negative-valued function g : {0,1,...,D} — R, U {0}, we
D
define the prior distribution on all tree experts in Fp, wﬁee) (9) = M, where Z(g)

. o Z(9)
is the normalizing factor.

We select a function g(-) and use the prior defined above to effectively down-weight more
complex experts. We will see that the choice of prior is crucial to recovering stochastic model
selection. We now describe our algorithm.

Definition 2.4.2. The algorithm SRMOVERADAHEDGE(D) whose prior is derived from
the function g(-) updates its probability distribution on tree expert as follows:

D _
<Zh:order(f) g(h)> € oLt

(tree) ;.
Wy g (e 9) = — | 0.18)
Zfle]-'D (Zh:order(fl) g(h)) e*ﬁtLt’f/
and learning rate update {n:}+>1 made as below:
In 2
TTASEY (2.19)
A (m ™)

where Ay(nt™1) is called the “cumulative mizability gap” at time t and is given by

¢
At = Z ds(ns) where (2.20)
s=1

5,(n) = (w(m), L) + ni In(w,(n,), € ). (2.21)

S



CHAPTER 2. ADAPTIVITY IN ONLINE PREDICTION 34

The algorithm SRMOVERADAHEDGE(D) appears to have a prohibitive computational
complexity of O(|Fp|) = O(22”). However, the distributive law enables a clever reduction
in computational complexity to O(2P). The main idea is that instead of keeping track of
cumulative losses of all the 22 functions in JF, p, represented by {Li¢}ecr,, we only need
to keep track of the cumulative losses of making certain predictions as a function of certain
contexts, represented by {{Ls:y}yex tzexp. This reduction was first considered for tree
expert prediction in the worst-case [109], with a fixed learning rate n > 0, and can easily be
extended to the broader class of exponential-weights updates. The idea is that the update on
probability distribution on tree experts, described in Equation — can be equivalently
written as a computationally faster update on probability distribution on predictors:

Zl?:o g/<h) 77t)€7ntLXt(h),t,y

S0 9 (hime) <Zye)( e_”tLth),t,y)
g (im) =9 ] (Z e_mLﬂ”“”)’t*y) (2.22h)
(h)

z(h)#X¢ yeXx

Wy (M5 9) where (2.22a)

The equivalence is in the sense that the expected loss incurred by updates and
is the same. The computational complexity of the latter update is O(2”) per itera-
tion, as shown in Proposition [2.7.8]

We now consider the realizable case in which the data is actually coming from model
order d. We study the algorithm SRMOVERADAHEDGE(D) with the following choice of
model-order-proportional prior function.

gorop(h) = 272" (2.23)

We will later see that this choice of prior effectively recovers the SRM framework in the
online setting. Our first result shows that the algorithm with this choice of prior helps us
effectively learn the model order while staying worst-case robust.

Theorem 2.4.3. 1. For any sequence {X;,Y;}L |, the algorithm
SRMOVERADAHEDGE(D) with prior defined according to function gpeop(-) gives us
regret rate

Rra =0 (VT2') (2.24)

with respect to the best d-order tree expert in hindsight for every d € {0,1,..., D}.

2. Consider any § € (0,1]. Let the stationary stochastic sequence (X, Y;)i>1 satisfy the
d"-order stationary stochastic condition on responses given contexts with parameter

B*, and either of Definitions|2.1.9 or|2.1.5 Denote cg—1,q := ﬂ;;;ﬂ; Then,
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SRMOVERADAHEDGE(D) with prior function geop(-) incurs regret with probability
greater than or equal to (1 —6):

2 .
Ryg=0 (2% ,fl—ln 2d +D*C§ln(€)> (2.25)
Qg 14 Qg _1,4¢ (a*) Qa’e

where o = min{ag_1 4, (26* — 1)}.

Note that this regret bound is non-trivial for model selection, but sub-optimal owing to
the extraneous factor of 2d in the exponent.

2.5 Online model selection through validation

Theorem [2.4.3] above provides a positive, but non-trivial, model selection result. The main
difficulty with adapting SRM to the online setting is meshing the idea of non-uniform priors,
which adapts model complexity, with the data-dependent learning rate, which adapts be-
tween stochasticity and adversity. The sub-optimalities in our bounds are reminiscent of past
discussions on the difficulty of adapting exponential weights-style algorithms to work with
non-uniform prior weighting, and indeed the algorithms ADANORMALHEDGE and SQUINT
were created to resolve this difficulty. However, as discussed in Section [2.3] the elegance of
these approaches comes at the cost of their broader applicability in computational efficiency,
robustness to model mis-specification and model selection beyond complexity hierarchies.

We aim for a resolution of this sub-optimality while aiming to preserve broad applicability.
We now consider a second natural way of doing online model selection, also motivated by
an ubiquitous approach to purely statistical model selection: data-driven validation. To see
the usefulness of data-driven validation in online prediction, recall that Figures and
displayed the sub-optimality of algorithms using under-specified or over-specified models in
overall loss.

The hope with an online validation approach is that we can fruitfully use the information
provided by this algorithmic sub-optimality, in an online fashion, to perform optimal model
selection.

Remarkably, the roots of an online validation approach have been explored in purely
adversarial environments as well. The seminal work of Hutter and Poland [93] use a “meta-
expert" layer for randomized algorithm selection, and show that optimal purely adversarial
model selection is possible. We define this meta-algorithmic framework below.

Definition 2.5.1. For every base algorithm Ay, we denote hy(h) := ((w{"™)® 109} 4nd
Hy(h) == Y1\ hy(h). Then, our meta-algorithm METAALG ({An ({0 YL Y2 0: {nehist)
chooses weighted prediction

D
Wi = 3 i) () (2:26)

h=0
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where we have
qe(h;my) o e MHe—1 (W) for qll h € {0,1,...,D},

and the learning rate m; is chosen as in Fquation (2.19). We define the algorithm
VALIDATIONOVERADAHEDGE(D) as METAALG when the base algorithms are chosen as
Ay, = ADAHEDGE(h).

This algorithmic structure is inspired by the hierarchy-of-experts in adaptive FTPL
(Theorem 9 of Hutter and Poland [93]) and can be implemented with any meta-learning
rate schedule. While Hutter and Poland consider meta-learning rate schedules that lead to
small-loss and quantile bounds, we use the ADAHEDGE meta-learning rate schedule to give
the strongest possible stochastic regret boundsﬁ. Further, we use the base algorithms {A4; =
ADAHEDGE(d)}L.,. We call the resulting algorithm VALIDATIONOVERADAHEDGE(D). We
show in Proposition that the computational complexity—per—iterationm of
VALIDATIONOVERADAHEDGE(D) is O(D); this is even better than the O(2”) complexity
for SRMOVERADAHEDGE(D).

We will see that the resulting model selection analysis in stochastic environments man-
ifests as a natural online form of leave-one-out cross-validation [120, 121], which cannot
be reduced to the traditional analyses of ADAHEDGE in well-behaved stochastic environ-
ments [95]. Our model selection guarantees for VALIDATIONOVERADAHEDGE(D) are stated
below.

Theorem 2.5.2. 1. For any sequence {X,,Y;}]_;, VALIDATIONOVERADAHEDGE(D)
with prior defined according to function guop(-) gives us regret rate

RT,d:O(\/T.zdlnz-lnDﬂnDHdlnz) (2.27)

with respect to the best d*-order tree expert in hindsight for every d € {0,1,...,D}.

2. Consider any 6 € (0,1]. Let the stationary stochastic sequence (X, Y:)i>1 satisfy the
d"-order stationary stochastic condition on responses given contexts with parameter
B*, and Definition on the contexts. Then, VALIDATIONOVERADAHEDGE(D)

6Note that, relative to SRMADAHEDGE(D), we have given the algorithm additional flexibility by using
base algorithms that each use a different learning rate. (This idea also shows up in other adaptive online
learning approaches, notably, to meet the goal of multi-scale adaptivity.) This additional flexibility will
underlie improved dependencies in the exponent for model selection, with the caveat that the analysis is
significantly more involved in the stochastic regime.

"We are considering time complexity here; it is easy to verify that the spatial complexity of the algorithm
will still be O(2P) as information pertaining to all 2P of the contexts needs to be stored.



CHAPTER 2. ADAPTIVITY IN ONLINE PREDICTION 37

) (n(5)) (S0 ()
) -

(2.29)

meurs regret

STIRSY

Rrg= O(d2 : 2d+d1n<

+D3/2-d-2d<1n<

with probability at least (1 — §). Ignoring the In(1/0) dependencies, this gives us a
regret bound Ry 4 = O (d2 294 D34 D32 . (- Qd), which 1s optimal up-to polynomial
factors in (d, D).

>[

The proofs of Theorem follows from a careful combination of adversarial-stochastic
interpolation and structural risk minimization, and is deferred to the appendix. Of particular
technical involvement is the proof of ruling out higher-order models in model selection (Ap-
pendix . This is difficult because it involves obtaining confidence intervals on averages
of test errors across different rounds, which are highly dependent quantities. These depen-
dencies also form the central non-triviality in obtaining confidence intervals on estimates of
the test error via leave-k-out cross-validation [126-129]. However, here, we are able to deal
with the dependencies through martingale arguments to study the online evolution of the
validation error. The periodic-contexts assumption that we have made (Definition is
for relative simplicity in this proof structure.

Theorem shows that the efficient algorithm VALIDATIONOVERADAHEDGE(D) ob-
tains optimal (up-to polynomial factors in (d, D)) regret rates as would be achieved by an
algorithm that had oracle knowledge about the presence of stochasticity and the model order.
This is the strongest possible side information that an algorithm could conceivably possess
keeping the online learning problem non-trivial.

Finally, it is worth noting that these positive model selection results for validation are
still in a standard complexity-hierarchy setup, and in fact we crucially rely on the evolution
of over-fitting error to rule out over-fitting models. It is a fascinating question to ask whether
online validation ideas will also be effective in modern ML setups where prediction error can
decrease as model complexity increases: both in over-parameterized neural networks and
the “double descent" models on random features [124, 125|. If the answer turned out to
be positive, adaptive online validation would be an extremely attractive “one-size-fits-all"
solution to online model selection in a variety of statistical learning environments.

Figure displays the benefits of online model selection, whether through SRM or vali-
dation, on our 1-memory Markov chain example in the context of binary sequence prediction.

2.6 Proofs

In this section, we collect the proofs of Theorems [2.4.3]and 2.5.2] The proofs, while diverging
significantly in model selection methodology, follow a common high-level sequence of steps.
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Figure 2.3: Approximate optimality of model selection algorithms using SRM and validation
on l-memory Markov chain. Figure from [88].

] Notation ‘ Meaning ‘
Fn Set of all ht*-order tree experts f : X* - X
lsfree) Instantaneous loss suffered by tree expert f
L;tfree) Cumulative loss suffered by tree expert f
li’t;ee) = [lt(ffree)]fe s Instantaneous losses suffered by tree experts in Fp
Lgffree) = [Lg;ee)]fe Fp Cumulative losses suffered by tree experts in Fp
Lty Instantaneous loss from predicting y € X
Lyty Cumulative loss from predicting y € X after seeing € X
ﬁh(t) = argminger, Lyg Best h'*-order tree expert at time t
Lip:=L, i (t) Cumulative loss suffered by tree expert F},(t)
Ry, Regret with respect to best hth-order tree expert

Table 2.1: Basic notation for regret minimization under contextual experts framework.

We begin by collecting basic notation that is common to the framework, and then provide
the sequence of steps for both proofs in parallel.

Basic notation

Tables [2.1] and [2.2] contain basic notation for the regret minimization framework and
algorithm-specific notation respectively for both algorithms, SRMOVERADAHEDGE(D) and
VALIDATIONOVERADAHEDGE(D).

Tables and recap the basic notation for regret minimization and important al-
gorithmic notation, and are useful to look at while reading the proof of the second-order
bound.
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] Notation

Meaning

771T = {nt}$:1
g:{0,1,..
w1 (g) ‘Wgtree) (9)

wi (13 )

(tree)

W, (77t3 9)

LD}y =Ry

Sequence of learning-rates
Prior function on order of tree expert
Initial distribution on prediction | choice of tree expert
Distribution at round ¢ on prediction
Distribution at round ¢ on choice of tree expert
Normalizing factor for initial distribution on tree experts
Instantaneous expected loss incurred by algorithm at time ¢
Cumulative expected loss incurred by algorithm at time ¢
Instantaneous mixability gap of algorithm at time ¢
Cumulative mixability gap of algorithm at time ¢
Instantaneous variance of loss incurred by algorithm at time ¢
Cumulative variance of loss incurred by algorithm at time ¢

Table 2.2: Notation specific to algorithm SRMOVERADAHEDGE.

] Notation

Meaning ‘

7)? = {nt};f:l
(™) = {n"VL,
Wt(ﬁt)

Wi (,)
wi (")
(w1
ht(m)

H, (775 )

Sequence of learning-rates used in meta-algorithm update

Sequence of learning-rates used in base algorithm update
Distribution of meta-algorithm at round ¢ on prediction

Distribution of meta-algorithm at round ¢ on tree experts
Distribution of base algorithm A; at round ¢ on prediction

Distribution of base algorithm .4; at round ¢ on tree experts
Instantaneous expected loss by meta-algorithm at time ¢
Cumulative expected loss by meta-algorithm at time ¢

Instantaneous expected loss by base algorithm A;, at time ¢

Cumulative expected loss by base algorithm A, at time ¢
Instantaneous mixability gap of meta-algorithm at time ¢
Cumulative mixability gap of meta-algorithm at time ¢

Instantaneous mixability gap of base algorithm A, at time ¢

Cumulative mixability gap of base algorithm A, at time ¢
Instantaneous variance of loss by meta-algorithm at time ¢
Cumulative variance of loss by meta-algorithm at time ¢

Instantaneous variance of loss by base algorithm A, at time ¢
Cumulative variance of loss by base algorithm A;, at time ¢

Table 2.3: Notation specific to algorithm VALIDATIONOVERADAHEDGE(D).
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Adversarial model selection

The essence of adversarial model selection for both SRMOVERADAHEDGE(D) and
VALIDATIONOVERADAHEDGE(D) involves getting what is known as a second-order regret
bound in terms of the cumulative variance of the algorithm. These second-order regret
bounds have a long history in adaptive online learning [94] (95, 98, [100], and are relatively
straightforward to prove for both our algorithms. We includes the proofs here for complete-
ness.

Second-order bound for SRMOVERADAHEDGE(D)

We first obtain our second-order-regret bound, stated generally for a prior function ¢ :
{0,1,..., D} — R. Tables and recap the basic notation for regret minimization and
important algorithmic notation, and are useful to look at while reading the proof of the
second-order bound.

Recall the expression for the computationally naive update in Equation :

(ZhD:order(f) g(h)) e*mLt,f
D - .
Zfe]—'D (Zh:order(f) g(h)) e—ntLig

and the expression for the initial distribution on tree experts based on Definition [2.4.1}

(tree)

wy o (M59) =

D
(tree)( ) _ Zh:order(f) g(h)
o Z(9)

where Z(g) > 0 is the initial normalizing factor. The explicit expression for the normal-
izing factor is Z(g) = ZhD:O 22" g(h).

Lemma 2.6.1. SRMOVERADAHEDGE(D) with prior function g(-) obtains regret

2 111(&?)
Rea< (VVeln24 Zm2+1) [ 14 297
’ 3 In2

for every d € {0,1,...,D}.

Proof. Recall that F\d(T ) denotes the best d-order tree expert at round T for the given
loss sequence. We denote ETd = Lt,ﬁd(t) as the actual loss incurred by this expert. We
start with the computationally naive update in probability distribution over tree experts as
in Equation , and the proof proceeds in a very similar manner to the variance-based
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regret bound for vanilla AdaHedge [98]. We denote
ht(ntag) = <Wt<nt;g), lt> _ <W§tree)(77t;g)7 lgtree)>

T
Hr(n{;9) == hi(mi g)
t=1

]- _ 1 ree _ (tree)
my(ne; ) = ?H(Wt(m;g), e M) = EIH<W? s g), e

T
Mr(n{s9) == mi(ni; 9).
t=1

Recall that the mixability gap &;(n:; g) = he(ne; g) — my(ne; g) and
Ar(nT;g) = S, 6,(ni; g). Since the instantaneous losses are bounded between 0 and 1, it
is easy to show that
0<d(ng) <1

A standard argument tells us that

Rpg = Hr(n{;9) — L,
= Hr ({5 9) — Mr(n{;9) + Mr(1{;9) — Ly
= Mr(n{;9) — Ly g+ Ar(nf;g).

Recall that the sequence n! is decreasing as an automatic consequence of the update in
Equation (2.19)), and non-negativity of ¢;. Handling a time-varying, data-dependent learning
rate is well known to be challenging [95] 98]. We invoke a simple lemma from the original
proof of AdaHedge [98] that helps us effectively substitute the final learning rate.

Lemma 2.6.2 (|98]). For any exponential-weights update with a decreasing learning rate ni
and prior function g(-), we have Mp(nl; g) < Mr({nr},;g).

Thus, we get

Rra < Mr({nr}{_i;9) — Ly.q+ Ar(nf'; 9). (2.30)

We also have the following simple intermediate result for Mr({nr}_,; g), which is simply
a slightly more general version of the lemma in [98] that can apply to non-uniform priors.

Lemma 2.6.3.

R B a0
Mil{nr}oaio) < D+ —1 (g(d)) |

Proof. We note that

_ (tree) _ *
(Wi g), ) 2wl (g)e e
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Because the initial distribution W&tree) is normalized to sum to 1, a simple telescoping

. o (tree)
argument gives Mr({nr}139) = X me({nr}iiisg) = —- In <<W§”ee) (9), etr >>.
This automatically tells us that

1 ree _ (tree)
MT({UT};F:ﬁQ) = _U_Tln ((Wgt )(g)’ e~ Ly >>

1 (tree) *
< o ln(wl,f;’d(g)) + L1g

1
w(tree) (g)

17]6';"@

e (2
] (zi’:dgw))

<L+ niTln (%’)))

thus proving the lemma. O

1
AL
rd nr

Now, Equation (2.30) and Lemma together with the definition of 7; in Equa-
tion (2.19)) give us

1 Z(g)) T
Rrgy< —In{—=|+A :
Td < nr (g(d) (113 9)
In Z(g)
(d) _
= —ger >AT—1(?71T L9)+ Ar(nf; g).

From non-negativity of &;, we have Ar_1(nT;g) < Ar(nT;g) and so
In <Z(9)>
g(d)
—). 2.31
PO (2.31)

It now remains to bound the quantity Az in terms of variance. In fact, it will be useful
to define slightly more generic quantities

Rra < Ar(nf;9)(1 +

T
AL (i 9) =Y 6 9)
t=Top
T

Vi 15y 9) == > vi(mi; g) where
t=Top

Ut(nt; 9) ‘= VAl Ky ~wy (ne;9) [lth] .

The bound is described below.
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Lemma 2.6.4. We have
2
A%}(?ﬁo;g) < \/V{:g(ngﬁo;g) In2+ <§1n2 + 1) )

Proof. The argument is similar to the original AdaHedge proof [98] and proceeds below. We
use a telescoping sum to get

(3h050))' = S (A 0hia)) — (A5 0t 0))

+

3

2

(A% (ks g)>2

I
M”

<A§101 77 7g +5t 77t7

=

9) -
25t(7]t; )AtTOl TITO ,g + (51& N, 9 )

I
M= ]

i
S

E

2515(7715; )Atl %Y + 5t N 9 )

T
=

In2
26, (m;g)n— + <5t s g

(o
)

I
]~

i
S

In2
26, (ne; 9)2— + 6:(ne; g) since &;(mi59) <1

E

t

3

<(2ln2) ) %(; 9) + A7 (17,3 9)-

t=Top T]t

We also recall the following lemma from the original proof of AdaHedge [98|. The proof
of this lemma involves a Bernstein tail bounding argument.

Lemma 2.6.5 (|98]). We have

Ot (77t3 9) < 1
Tt 2
Using Lemma [2.6.5 we then get

2 2
(A%O (1 9)) < Vi (ngy;9) In2+ (5 In2+ 1) AT (n1,:9) (2.32)

1
vt(m;g) + gét(ﬁtég)-

which is an mequahty for the quantity ATO (nTO, g) in quadratic form. We now solve

Equation (|2 , and use Fact m 1| from Appendix E to get

2
AL (5,5 9) < \/VTTO’ (nh:g) In2+ gm2+1 (2.33)
O
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Now we complete the proof of Lemma by combining Equations (2.31)) and ([2.33)
for the special case of Ty = 1. O

Now, noting that Vy(nT;g) < % and substituting the expression for g = gprop from

Equation ([2.23]) directly proves Equation (2.24)) from Lemma[2.6.1} To see this, we substitute
g = Gprop into the statement of Lemma to get

2 hl (Z(gpr(o;))>
Rra < (\/Ve(T;9)In2+Im2+1) |14 —2=2/
T.d > ( T(7717g) n +3 n + > + ln2
D oh o _oh+1
In (_Zh_gfgdil )

2
= (\/V; T g)In24+ =In2+1 1

e R N

D _oh
Vr(ni'; g)1 2 Zm2+1 1+l ( o )
J n n
T\ 3 3 n?2

IA

In2

2
Vr(ni;9)In2 + 3 In2+ 1> (24 241

1 2
FVTIn2+ 2in2+ 1) (24 2%

2 111 (2 . 22d+1>
Vr(ni';9)In2 + §1n2+1> [ N

<
which is precisely Equation (2.24])) when expressed in big-O notation.

Second-order bound for VALIDATIONOVERADAHEDGE(D)

Lemma 2.6.6. VALIDATIONOVERADAHEDGE(D) gives second-order regret bound

Rpa=0 (\/VTIHQ-IHDJr \/VT(d)-2d1n2+lnD+2dln2) .
for every d € {0,1,...,D}.

Proof. The principal ingredient in this proof is essentially a chaining argumeniﬁ: we observe
that

Rpq = Hr(nT) — Ly
= He(nT) = He(d; (n{")T) + He(d; ()i)T) = L.

8This step is spiritually similar to Theorem 9 of Hutter and Poland 93], who did this for a different
algorithm FTPL and with learning rate schedules that were not data-dependent.
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We start with the first term, which is effectively a bound on the regret of the meta-
algorithm.

Lemma 2.6.7. For every d € {0,1,..., D}, we have
Hr(nl) = He(d; (i")]) < Ar (1+1n D).

Proof. We denote

i) = (8t
0
)= Z me(ne).-
s=1

A standard argument tells us that

Hey (i) = He(ding) = He(ny) = Mr(ni) + Mr(n)') — He(dsny) -

T1 T2

We first bound the term Th. Observing that n! is a decreasing sequence, a simple adap-
tation of Lemma 2 from [98] gives us Mr({n:}_,) < Mr({nr}L,) := Mr(nr) for shorthand.
Then, since ny < oo, we can apply Lemma 1, part 2 from [98] to get

1
MT(UT) =——lIn (Z Ql h 77T)e meHr (hi(nf") 1)>

nr 0

1 D
:——ln< Ze neH (h ’”)fza)’

"I h=0

and then we note that

; 1 1 ()T
__ln e —neHr (h;(n (’) 1) <—"In (_eWtHT(d( ra 1)>
(53 <L}

— T2 = MT(U{) - HT(d (ﬁéd)) ) S —_— = AT—l -InD S AT -In D.
Next, we bound the term 7). Noting that f(-) = e ™) is convex for all 7, applying
Jensen’s inequality tells us that

(h) (h)
(), ey > ¢ 10— et
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and so, we have

q:(h; nt)e_”tht(hmt(h))>

5
|
2|
;PS
(1= I0]=

1
= ( ge(hs me) (wi', e‘"tlt>>
e h=0
1 —n¢l
= _ﬁ_ln ((we(me), e7™))
t

= hy(ne) — 6:(n:)

where the last equality follows from the definition of §;(7;) in Equation (2.33)). Thus, we
have

Ty = Hr(n) — Mr(n) th ) — ma(1e)

< Z 0¢(1e)
t=1
- AT-
Finally, we have
Hr(n{) — Hr(din{) =Ty + Ty = Ap + Arln D = Ap (1 4+ In D),

which completes the proof.
O

Next, we bound the second term, Wthh is simply the regret of the base algorithm A4,
under decreasing learning rate schedule {nt }t - This proof is a simple adaptation of the
proof of ADAHEDGE(d) to contextual experts.

Lemma 2.6.8. For every d € {0,1,...,D}, we have
Hr(dn]) — Lya < 2A%

Proof. For this proof, it will be convenient to work with the naive update as defined in
Equation ([2.18)). We defined (instantaneous and cumulative) mix loss

d 1 Q) _p@
mi ) = g In (i, 7))
Tt

t
d d d d
MO () =" mi® (i
s=1
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Then, we have
H(d; (™)) = Lua = Hr(d; (0f)]) = M (0)]) + My ()]) = L.

~~
T1 T>

We first bound the term T5. Notice that nt(d) is also a decreasing sequence, so we can

apply Lemmas 1 and 2 from [98] to get

d d d d
M () < MY ({n¥™ L))

1
=-—5 In ((wgd), e_ﬂg)Lﬂ)
Nr

1 1 (d)
< - ") In (22d e LT’d)

Nr
~ 291n 2
= Lrat—a~
T
d _ = d d
= Lra+ A () < Ty + AP (),

where the last line follows from the definition of nlfd) in Equation ([2.19).

Thus we have
Ty = M (7)) — Lia < AP

Next, by definition we note that T} = Agfl ). This completes the proof.
O

Assuming Lemmas [2.6.7] and [2.6.8] we have
Rra < Ar(nf) (1410 D) + 288 (n")).

(2.34)

It remains to bound the quantities Ay and Agﬁi )in terms of variance. In fact, it will be useful

to define slightly more generic quantities

A%O 77T0 Z 6t (1)

t=Tp
T

V%(U%O) = Z v(n;) where

t=To
Ut(nt) ‘= Varg, ~wy(ne) [lt,Kt] .

We describe these second-order bounds below.
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Lemma 2.6.9. We have

2
AT (7)) < A/ VE@E ) In2 + <§ In2+ 1> : (2.35)
4
AW <\ Jvi . 2dn2 4+ <§ : 2d1n2—|—2) . (2.36)

Proof. Since it suffices to prove the statement of Equation (2.36)) for the naive update, this
statement follows as a special case of Theorem 6 in [98] with K = 22* experts; we refer the
reader to that proof.

For the statement of Equation , the proof is similar to the argument in Theorem
6 as well (with different constants, however, so we reproduce it here). We use a telescoping
sum to get

and we have

(30 08)) " - (8508

]~

(a%,()) =

~+~
Il
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+

=

&~
Il
o

Il
1~
oS
>
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]
SN—"
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g
—~
=
SN—"
A~ ~_
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>
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3{‘#
=k
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2
26, () A (0 1) + (6 (m))

I
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Il
o

o~
Il
=)
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= S
—~ —~
e S
= b
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=
S -
~—— A~
gl
—~
=
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N
[\V)

ﬁ.
Il
IS

In2
20, (m)r:]_ + 0 (nt) since () <1

t

Mq

o~
Il
o

T

< (2In2) Z %(m) —I—ATO(UTO)

t=Top n

We also recall the following lemma from the original proof of the ADAHEDGE learning
rate choice n; = 1/A;_;1 |98]. The proof of this lemma involves a Bernstein tail bounding
argument.

Lemma 2.6.10 (|98]). We have

o () <1
mo 2

Ut (TH) + %515 (Ut)-
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Using Lemma [2.6.10, we then get
2 2
<AC§O (ﬂ%)) < Vi (nk)In2+ <§ In2+ 1) AL (nk) (2.37)

which is an inequality for the quantity A%O (77% ) in quadratic form. We now solve Equa-

tion (2.37)), and use Fact [2.7.11] from Appendix [2.7| to get

N () < VA () n2 + S 41 (2.38)

[]

Substituting Equations ([2.35) and (2.36)) into Equation (2.34)), we get the second-order
bound

2
RmnzwvAﬁ)m2u+hun+2v@fkm@ﬁdaﬂn2+(§m2+1)m44nD)@3%

4
+§-2dln2—|—2,

which completes the proof of Lemma [2.6.6{when expressed in big-O notation. Further, noting
that Vr(nT) < % gives us Equation (2.27)when expressed in big-O notation.
O

Stochastic model selection

We now provide the proofs for stochastic model selection for both algorithms:
SRMOVERADAHEDGE(D) and VALIDATIONOVERADAHEDGE(D). We begin by providing
basic notation for stochastic contextual prediction that is common to both algorithms.

Notation for contextual prediction

First, we define a couple of convenient counts for the number of appearances of a particular
context, and the number of contexts that have so far appeared.

Definition 2.6.11. The appearance frequency of a particular context x(h) € X" at time
t is given by

No(a(h) = S IX (k) = (b)),

The fraction of times the value y € X seen after a particular context is given by

Y1 X (h) = 2(h), Y, = y]
>y IX(h) = x(h)]

(=1- %00

Py(ylz(h)) =
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‘ Notation ‘ Meaning /Interpretation
Ni(x(h)) Appearance frequency of a sub-context x(h) € X"
P,(h|z(h)) Fraction of times that we observed X;(h) = z(h),Y; =y
St.h Number-of-seen sub-contexts of length h at time ¢
(1) Estimated unpredictability based on h*"-order tree expert predictors
D, (h) Gap between correct and incorrect predictors at time ¢
wgh) Probability distribution on predictions
qi(h) o< Q¢(h) Posterior probability that the h'"-order model is the right model
d True model order of data (X;, V)L,
(),h<d Marginal distribution on X;(h),h < d
P*(-|z(h) Conditional distribution on Y; given X; = x(h)
B(x(d)), 5* Average prediction accuracy with context x(d)
., h <D Asymptotic unpredictability under hA"-order model.

Table 2.4: Notation for analysis.

The number-of-seen-contexts is given by

Spn =Y I[Ny(x(h)) > 0].

z(h)exh

Next, we define our estimates for unpredictability, effectively an estimate for the approx-
imation error, under various model orders.

Definition 2.6.12 ([110]). For every value of h > 0 and a sequence {(X3,Y?) }+>1, we define
its estimated unpredictability

A= 3 M (1wl )

z(h)eXxh
r .
= > min{lege}
z(h)exh
This definition is inspired by the information-theoretic perspective on universal sequence
prediction [110]. In this line of work, the quantity 7,(¢) represents the estimated unpre-
dictability of a binary sequence under a h-memory Markov model. We will see that this is
the natural estimate of approzimation error of the h'*-order model that is used to carry out
data-driven model selection under the d*-order stochastic condition on responses (Defini-
tion 2.1.1)), and all three generative assumptions we have made on contextual information
(Definitions [2.1.2] and [2.1.4)).
Finally, we denote the true prediction (the one we would make if we had oracle knowledge
of the best predictor f*(-)) as

Y= fH(X(d)).
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Then, for every h > d we define

Dy(h) == Lx,(nt1-vy — Lx,(nyt.vy (2.40)

represents the “gap" between the correct predictor Y;* and the worse predictor 1 — Y;* at
time ¢, and pertaining to the current context X;(h).

Probabilistic model selection

As hinted in the algorithm design, both SRMOVERADAHEDGE(D) and
VALIDATIONOVERADAHEDGE(D) can be interpreted as explicitly performing probabilistic
model selection using the principles of SRM and validation respectively. We now show this
explicitly, starting with SRMOVERADAHEDGE(D).

Probabilistic model selection for SRMOVERADAHEDGE(D)

To effectively bound regret for the “easier" stochastic instances, we need finer control on the
cumulative mixability gap term Az(nT;g). Our starting point is the following thresholding
lemma.

Lemma 2.6.13. Fizty > 0. Let Ty := max{0 <t < T :n, > 22} Then, we have

to

2
Ar(nl;g) §t0+1+\/V%(ngo;g)1n2+§1n2+l. (2.41)

Proof. From the definition of T, we observe that

In2 In2

= — >
ATOfl(T]{O 179) to

= AT0—1(771T071;9) <o

nr,

= ATo(anO;g) <ty + 1.

Then, using Ar(n; ) = Az, (n%; g) + AL (nh ; g) and Lemma directly gives us the
statement in Equation (2.41)) and completes the proof. ]

We observe that the threshold Ty depends on the choice of ty as well as the data (in
fact, it is a random variable when the process {(X;, Y;)}., is stochastic). We have the
freedom to choose tg > 0 for our analysis. Conceptually, in the stochastic regime, the choice
of ty thresholds the number of rounds T below which we can make few, if any, statistical
guarantees, and will become clear in subsequent sections. Effectively, Lemma [2.6.13] uses
the elegant inverse relationship between learning rate and mixability (in Equation (2.19))) to
show that a minimal amount of regret, precisely, in terms of ¢y, is accumulated even before
we can make high-probability statistical guarantees.
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Now, we have stated the problem of wanting to exploit the structure of a d™-order
stochastic sequence {(X3, Y;)}+>1 in an online fashion, as a model selection problem. This
has been implicitly clear in the choice of prior function in Equation ([2.23)): more complex
experts are down-weighted. Now, we make the connection clear.

As a reminder, we evaluate the performance of the algorithm SRMOVERADAHEDGE(D)
with prior function gerp(+)), and using Equation as a jumping point, we are concerned
with bounding the cumulative variance Vi, (n7,; 9).

First, we observe that

E

ngg (77%05 gprop) Uy (7715; gprop)

o~
Il
S

E

wt,Yt* (nt; gprop) (1 — wt,l—Yt* (nt; gprop)) since lt,Kt iid ~ Ber(wt,l)

H.
Il
o

] =

Wi, 1-vy (nt; gprop)

~~
Il
o

and thus, it is sufficient to control the evolution of the term wy; vy (74; gprop) With t. This
is the probability with which we select the prediction 1 — Y,* that is more likely to be wrong
under the stochastic model for the data.

The first step is to express the update in this probability in terms of a posterior probability
on the effective order of the model the algorithm is selecting. Explicitly, we can re-write

Equation ([2.22a]) as
D

h
W1y (1 Gorop) = Y Ge(h3 e, Gorop 013y (1)
h=0

where we have defined the shorthand notation for the update used by
SRMOVERADAHEDGE(h) with uniform prior,

(h) efntDt(h)
wm_yt* (77t) = We-vy (Ut;gunif) = m;

where D;(h) is according to Equation (2.40) and the quantities {q:(h; 1, gprop) } are ex-
plicitly written as

%(h; 77t7 gprop) X Qt(h; 7]t7 gprop) = gprop<h) H (Z emLz(h)’t’y> (242>

z(h)eXh \yeXx

where the proportionality constant is set such that 2320 qt(h; M, gorop) = 1. The quantity
qt(h; e, Gerop) 15 exactly the posterior probability that SRMOVERADAHEDGE(D) selects a
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ht"-order model. We will see that controlling the posterior on model order selection is crucial
to bounding the variance in our desired manner.

First, we state a simple lemma that bounds Equation (2.42) in terms of more intuitive
quantities.

Lemma 2.6.14. We have

exp{ =T ()t + In Gorop(h)} < Q1(s 01, Gorop) < exp{—meTn(£)t + 2" In 2 + In gprop (h) }-

(2.43)
Proof. For the upper bound, we have
Qt(h; T, gprop) = gprop(h) H <Z e_mLI(h)’t’y>
z(h)exh \yeXx
z(h)exh yex
< exp Z In (2" mi“yeX{Lﬂ”(h“vy}) + 10 gprop(h)
z(h)exh
= exp Z i mm{L Vw2702 + 10 Gorop(h)
z(h)eXh
= exp {—nmh t)t+2"In2 +1In gprop(h)}
and for the lower bound, we have
Qt(h; Mt gprop) = exp Z In (Z emLz(h)’t’y> + In gprop<h>
z(h)exh yex
> exp Z In (e minye’f{L“h)»tvy}) + 10 gprop(h)
z(h)eXh
= exp Z i mm{L )it 10 Gprop ()
z(h)eXxh
= exp {—nema (1)t + In gorop(h) }
m

Substituting In gprp(h) = =21 1In2 = —2-2"In 2, we get

exp{—n7n(t)t —2- 2" In 2} < Qi (h; 1, Gprop) < exp{—n:Tn(t)t — 2" In 2}. (2.44)
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Equation ([2.44)) effectively makes the trade-off between approximation error (reflected
by the quantity 7,(¢)) and model complexity (reflected by the quantity 2" In2 clear in the
model-order selection problem. We can think of the model orders as “meta-experts" that are
being randomized over. Note that the learning rate that is being used to randomize their
selection is still 7,!

Probabilistic model selection for VALIDATIONOVERADAHEDGE(D)

We now express the analysis of the cumulative variance of the algorithm
VALIDATIONOVERADAHEDGE(D) as a stochastic model selection problem.
First, we observe that

V(i) = Z v (1)

w
Il
—_

I
]~

wt,Yt* (nt;gprop) (1 - wt,l—Yt* (nt; gprop)) since lt,Kt iid ~ Ber<wt,1)

H.
Il
o

[M] =

Wi 1-vy (nt; gprop)

H.
Il
S

and thus, it is sufficient to control the evolution of the term w;;_y> (743 gprop) With £. This
is the probability with which we select the prediction 1 —Y,* that is more likely to be wrong
under the stochastic model for the data.

The first step is to express the update in this probability in terms of a posterior probability
on the effective order of the model the algorithm is selecting. Recall from Equation (2.22al)
that

D

h h
wt,k)@*(ﬁt; Jprop) = Z a(h; nt)wt(;)_yt* (7715 ))7
h=0
where recall that wiﬁ)_yt* (nt(h) was defined as the weight vector used by base algorithm
Ay, and the “model selecting" probabilities are defined as

(1 s Gorop) O Qi (R 1) = e~ M1 (W), (2.45)

where H,; 1(h) represents the cumulative loss experienced by base algorithm A4, at
time (¢ — 1). The quantity ¢,(h;n;) is exactly the posterior probability that the algorithm
VALIDATIONOVERADAHEDGE(D) selects a h''-order model, and so this is a kind of proba-
bilistic model selection. Clearly, controlling the posterior on model order selection is crucial
to bounding the variance in our desired manner.
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Note that we can decompose
Hy(h) = Ly + R" =t -7 (t) + R,

where recall that Rgh) is the regret incurred by the base algorithm Aj;. Thus, our prob-
abilistic model selection procedure will pick a base algorithm that minimizes the additive
combination of approximation error (reflected by the quantity 7,(¢)) and estimation error
(reflected by the regret accumulated) in the model-order selection problem. More directly,
this can be thought of as online validation.

Analysis for a higher-than-needed model order

Before getting into the essence of model selection, we recap guarantees on regret with respect
to a particular model order to illustrate the perils of picking an over-fitting model formally.
These guarantees are slightly different for the SRM algorithm owing to the choice of learning
rate (which is actually sub-optimal), and so we describe the guarantee separately for both
algorithms.

Analysis for a higher-than-needed model order for SRMOVERADAHEDGE(D)

Here, we analyze the contribution of a specific selected model order to the variance, an
important intermediate step. Formally, we consider the algorithm SRMOVERADAHEDGE(h)
equipped with the uniform prior function gu.¢(h') = I[h" = h|. The regret guarantee is given
by the following proposition.

Proposition 2.6.15. 1. For any sequence {X;,Y;:}_;, SRMOVERADAHEDGE(h) with
uniform prior gives us regret rate

Rrg=0 (\/:TQh) (2.46)

with respect to the best d"-order tree expert in hindsight, and for every d < h.

2. SRMOVERADAHEDGE(h) with uniform prior gives regret with probability greater than

(1—e):
=l (=)

on a sequence (Xi,Y;)i>1 that satisfies the d*-order stochastic condition on responses

(Definition with parameter B*.

Observe the sub-optimal scaling in terms of
d < h. We now proceed to prove Proposition [2.6.15]

22" in the regret bound for the case where
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Formally, the algorithm SRMOVERADAHEDGE(h) equipped with the uniform prior func-
tion gunis (') = I[A = h] gives us ¢;(h'; i, gunie) = L[’ = h], and we would get

T
ZZQt h 77tagun|f wtl Y*(T’t) = ng 1) Yy

t=1 h/=0 t=1

E,T: e 77tDt(h’)

- Dy (h
1+ emDeh)
T

< Z in{e ﬁtDt(h)jl}
t=1
T

where D,(h) is the gap between predictions as in Equation (2.40)), and the last inequality
is because 7! is a decreasing sequence according to the update in Equation (2.19).
Therefore, we have

T
Vr(ni's gunit) < Zmin{e_me(h), 1}. (2.47)

t=1

We observe that Equation can be effectively unraveled to get a closed-form variance
bound for particular evolutions of { D;(h)};>1. Particularly, we care about D;(h) as a function
of Ni(X¢(h)), the number of appearances so far of the current context. We show this result
in the following lemma.

Lemma 2.6.16. Let the following condition hold for some to(h) > 0 and a > 0.
Di(h) > aNy(X(h)) for allt such that Ny(X.(h)) > to(h) (2.48)

for some a > 0.
Then, we have

Zwtl v (1) <2h( (h)+i) (2.49)

nro

Proof. We can directly use the condition in Equation (2.48). For values of ¢ such that
Ni(Xi(h)) < to(h), we apply wgﬁ)_yt* (n:) < 1. Otherwise, we use wgﬁ)_yt*(m) < emmmalNu(Xe(h))
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Combining the two gives us

= Nr(z(h))
Z Wy (M) < to + Z —nras
t=1 x(h)eXxh s=to(h)

Now, we have

e~ e 1

1—e e enre — 1]

S -

nro
by the inequality e* > 1+ a for a > 0. Substituting this above gives us our required
result. O

It remains to show that the condition in Equation (2.48) is met with high probability for
(X}, Y;)>1 satisfying the d"-order realizability condition on responses (Definition [2.1.1]) with
parameter 3%, and for any d < h. We use a standard Hoeffding-bounding technique to show
this.

Lemma 2.6.17. Let € € (0,1]. For a process {(Xs, Y;) }i>1 satisfying the d™"-order realizabil-
ity condition with parameter B* > 1/2, the condition in Equation (2.48|) holds for all h > d
for parameter values

(25" - 1)

Q= o (2.50)

R T e (251)

o2

with probability greater than or equal to (1 —€/2).

Proof. Essentially, we need to obtain to bound properties of the gap sequence {Dt,(h)}thl
so defined in Equation — we use the Hoeffding bound for this. This proof is a sim-
ple adaptation of the proof in the original AdaHedge paper [95] to the case of contextual
prediction.
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We denote the p™ epoch of arrival of context z(h) € X" by T,(z(h)). Showing that the
condition in Equation (2.48]) holds with probability greater than or equal to (1 — €/2) is
exactly equivalent to showing that the probability of the following bad event

NT CE
{ Uh d Ux(h)e/\’h Up to(h) ) {DTp (z(h) )(h’) < ap} } (2'52>

is less than or equal to 5. We proceed by showing exactly this.

From the definition of a d**-order stochastic process, we have Y;|[{ X, (X, Y,)'Z}} iid ~
P*(-|X(d)). This means that Y; is independent of (X,(D, ..., Dy), X, Ys)'~! conditioned on
X;(d), and we can write

D1, (a(n)) Z 27

s'=1
where
. Lw. p. B(z(d))
Z g1 1id ~
{Z}oz 1 {—1 otherwise .
Denote « := 2&_2—1 We have E [Z,] = 26(z(d)) — 1 > (26* — 1) = 2« and so we have

E [Dr,(s(n))(h)] > 2ap. Noting that Z, € {—1,1}, we can directly use the Hoeffding bound
to get

Pr [Dr, oy (h) < ap] < Pr [DTp@(h))(h) < (%) p}

(26(x(d)) — 1)21?}

< exp{— 5

2
< exp{—=L},

and so, for any to(h) > 1 and z(h) € X", we can use the union bound to get

N (xz(h))

Oé2p
Pr [UY7 ) {Dr () <ap}] < Y exp{~2F)
P_to(h)

< Z exp{——}

p=to(h)

o] 2

< / eXP{—T}dU
uzto(h)

90 a2tg(h)

o
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We need to bound the probability that the above bad event happens for any context
x(h) € X" and model order h > d. To do this, we apply the union bound twice more, to get

_« to(h)
Nr(z(h
Pr [UhD:d Ul‘(h)EXh Up Tto ) {DTP h)) < ap}} Z Z
h=d z(h)exh
2.9k o~ 4
(> -
h=d
<e€/2

if to(h) > thign(h) = 25 In (4(Dfd)-2h)'

(a)? e(@)?
Setting to(h) = tnign(h) bounds the probability of the bad event as defined in Equa-
tion (2.52)), and completes our proof.
O]

Now, the proof of Proposition [2.6.15| follows directly from Lemmas [2.6.1] and [2.6.16 We
denote as shorthand the following:

h
A(T) = Ar(n1'; Gunif)
h
VY(“ ) = VT(U? gunif)
Substituting ¢(-) = gunif(-) into Lemma [2.6.1], we have

/() 2 In (gunf(h)>
RT7d§RT,h§< VT ln2+§ln2+1) 1+T
n

2
< ( v}h)1n2+§1n2+1) (1+2")

Thus, it remains to bound the variance term ngh). We denote the final learning rate as

T](h)_ In2 > In2
T T () T A(h)
NI

and from [98] that

2
AP <\ /v 2+ gln2+1
4 1
< Vv (Vin2 + §1n2+2>(as VP > 1 fo®) = 5)

< 6y/ Vi m2.
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Together, these give us

m o 1

Nr =
64/ V"

and therefore, we have with probability greater than or equal to (1 — €),

T
v SZ wyy

]
o (o ()4 ——
: thgh()+n§rh)(25*—1))
61/
§2h thigh“ﬂ""ﬁ
8 8. 2h 6/ V4"
=2 <2ﬂ*—1>21“<e<25*—1>2)*(25*—1)

Therefore, we have

h h h
W 82 8.2 6-2
iU smp e " \qer o) T es o

14 -2k 8.2n
In
28— 12 \e(2B — 1)

Ryg=0 25*_1 (’”“‘( 26*—1)>>>

with probability greater than or equal to (1 — €). This completes the proof.

This gives us

Analysis for a higher-than-needed model order for
VALIDATIONOVERADAHEDGE(D)

Here, we consider the regret accumulated by the base algorithm A, for any h > d. The
regret guarantee is given by the following proposition.

Proposition 2.6.18. Let h > d. For any sequence {X;,Y;}L | the base algorithm A, gives
regret with respect to the best d"-order tree expert in hindsight

R B A=)
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with probability at least (1—¢€) on any sequence (X, Y;)i>1 that satisfies the d-order stochas-
tic condition on responses (Definition with parameter B*.

Observe the sub-optimal scaling in terms of 2" in the regret bound for the case where
d < h. We now proceed to prove Proposition [2.6.18] which is really a simple adaptation of
the stochastic ADAHEDGE proof [95] to the contextual prediction case. (Note that the result
cannot be applied out-of-the-box as if for the naive update, as it is linear in the number of
experts K, which would be prohibitively large here (22").)

Observe from the second-order bound on the base algorithm A4; that we have

8
Ry =2A0 = 2\/V§h>-2h1n2+§-2h1n2+4,

and thus it suffices to bound the variance of the algorithm VT(h). By a similar argument
as before, we have

T
h h h
V:ﬁ ) < ng,l)—Yt*<n£ )>

T 0 Din)
= Z D)
1 1+e ™ Dy (h)

min{e—m(h)Dt(h) 7 1}

min{e_néwh)[)t(h)7 1}

where D;(h) is the gap between predictions as in Equation (2.40)), and the last inequality
is because 7! is a decreasing sequence according to the update in Equation (2.19).
Therefore, we have

T
Ve((n™)T) < 37 minfe P 1), (2.53)
t=1

We observe that Equation (2.53)) can be effectively unraveled to get a closed-form variance
bound for particular evolutions of { D;(h) };>1. Particularly, we care about D;(h) as a function
of Ni(X;(h)), the number of appearances so far of the current context. For a given model
order h, we define the following statistical event of the statistics D;(h) increasing linearly as
a function of Ny(X;(h)) after a sufficient number of appearances of the context X, (h):

Y(h;to(h), ) == {D¢(h) > aN(X;(h)) for all t such that Ny(X:(h)) > to(h)}.  (2.54)

We will subsequently show (in Lemma that the intersection of the events
{Y(h;to(h),a)}P_, holds with high probability for appropriately chosen parameters
{to(h)}P_, and .

We will now show that, given this event, we can bound the variance of the algorithm.
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Lemma 2.6.19. Given the event Y(h;to(h), ) in Equation (2.54) for a given value of h
and choice of parameters (to(h), ), we have

Z w <2h< olh) + —— ) (2.55)

N

Proof. We can directly use the condition in Equation (2.54)). For values of ¢ such that

Ny(Xi(h)) < to(h), we apply wgﬁ)_yt* (n:) < 1. Otherwise, we use wt(ﬁ)_yt*(m) < emnmralNuXi(h)),
Combining the two gives us

> ") Nr@®)
Z Wy« () < Z to + Z o s
= a(h)ex™ s—to(h)

= (n)
<2 | tp(h)+ D e
Szto(h)
EON
< 2" | to(h) + o
1 —e e
Now, we have
1—ene  ene ]
< 1
="
Wa
by the inequality e* > 1+ a for a > 0. Substituting this above gives us our required
result. O

It remains to show that the event in Equation (2.54]) is met with high probability for
(X, Yy)i>1 satisfying the d-order realizability condition with parameter 3*, and for any
d < h. We use a standard Hoeffding-bounding technique to show this.

Lemma 2.6.20. Let ¢ € (0,1]. For a process {(X;,Y;) i1 satisfying the d™-order realiz-
ability condition with parameter 3* > 1/2, the event NP_, T (h;to(h),a) holds for parameter
values

(28" = 1)

a:= (2.56)

to(h) = thign(h) == % In (4(D —4). 2h+1) (2.57)

o2

with probability greater than or equal to (1 —€/2).
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Proof. Essentially, we need to obtain to bound properties of the gap sequence {Dt,(h)}thl
so defined in Equation — we use the Hoeffding bound for this. This proof is a sim-
ple adaptation of the proof in the original AdaHedge paper [95] to the case of contextual
prediction.

We denote the p' epoch of arrival of context z(h) € X" by T,(z(h)). Showing that the
event NP_ T (h;to(h), @) holds with probability greater than or equal to (1 — ¢/2) is exactly
equivalent to showing that the probability of the following bad event

Nr(z(h
{ Uiz Usgyeaen Uyt { Drygai () < o} } (2.58)

is less than or equal to 5. We proceed by showing exactly this.
We condition on the partition of the time horizon [T] into the subsets

{Tlx) == {t € [T]: Xy (t) = x} |

x(h>€Xh

From the definition of a d**-order stochastic process, we have Y;|[{ X, (X, Y,)'Z1} iid ~
P*(1|X;(d)). This means that Y; is independent of (X,(D, ..., Dy), X,, Ys)"_! conditioned on
X;(d), and we can write

p
DTp(x(h))(h) = Z 27

s'=1
where

1w, p. Be(d))
—1 otherwise .

{Z;}s’21 lld ~ {

Denote « := 2[3—2_1 We have E [Z,] = 26(z(d)) — 1 > (26* — 1) = 2a and so we have
E [Dr, (s(n))(h)] > 2ap. Noting that Z, € {—1,1}, we can directly use the Hoeffding bound
to get

Pr [ Dy a(n (h) < ap] < Pr [DTpu(h))(h) < (

(28(x(d)) —1)%p
8

23(e(d) - 1) p}

}

< exp{—

2
< exp{~ "1},
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and so, for any to(h) > 1 and z(h) € X", we can use the union bound to get

Nr(a(h) o
Pr [UY1C0) {Dr () < ap)] < S exp{~2L)
p=to(h)
< . exp{——-}
p=to(h)
< / exp{—w}du
u=tg(h)
_oPr()
(& 2

We need to bound the probability that the above bad event happens for any context
x(h) € X" and model order h > d. To do this, we apply the union bound twice more, to get

_« to(h)

Pr [UP, Usgoean Unmiit? { Do oy (B) < ap}]| <Z v

h=d z(h)exh

_a 2t (h)

2.2k,
(x K

h=d

(0)?tg
2

2.2D+1 e~

=T )

<e€/2

£ 10(0) > tagn() = o n (M550 ).
Since the expression is independent of the partitioning {7 (x(x))} on which we conditioned,
we have

Nr(x1))
Pr [Uh 1 Uxgerr Upme {Dtl’(x(h)) < ap}] < €/2

Setting to(h) = tnign(h) bounds the probability of the bad event as defined in Equa-

tion (|2.58]), and completes our proof.
O

Now, the proof of Proposition [2.6.18| follows directly from Lemmas [2.6.6 and [2.6.19] We
denote the final learning rate as

(h) 2h In2 2h In2
™ = ") = A
A, A
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and thus we have

(h) < oh L 207"
< 2" [ty
Vo= g )+2h1n2-(25*—1)
2

= 2" - thign(h) + In2-(26*—1)

Further, recall that

4
AP <\ VP 22+ 2 2 242

202 AP 4
e T L RO )
(25*_1) —1-3 n2z4+

S \/22h In2 - thigh(h) +

—\JA+BAW 1 C

where

A= 22h In2- thigh (h)
2"1n 2

Thus, we have

Al <\JA+BAP 4 C

— (A - 0)2 < A+ BAW.

2
Noting that (AU)2 — 02 —2AW 0 < (AP)2 1 2 — oA = <A(Th) - c) , this implies

— (A2 —(B+20)AY —(A+C?) <0
— AV < VAT + (B+20)
<VA+ B+3C

where the second-to-last inequality follows from Fact[2.7.11], and the last inequality follows
because for any two numbers a,b > 0, we have va + b < y/a + V.
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Substituting back, we get

2h1n 2

AP < ohno. [t L 4 4.9"In2
< 2"In th,gh(h)+(2ﬁ*_1)+ n2+6
2" In 2 (4(D —d)- 2h+1) 2" In 2
—2v/2.— = . |In 1+ +4.2"In246
(28* = 1) \/ (26* —1)% (28* —1)

o+ (5))

with probability greater than or equal to (1 — €). This completes the proof.

Ruling out higher-order models that over-fit

Now, we get into the essence of provable model selection guarantees, starting by showing
that we can effectively limit the contribution of higher-order models to the algorithmic vari-
ance. Owing to the explicit complexity penalty in SRM, this is a much easier task for
SRMOVERADAHEDGE(D) than for VALIDATIONOVERADAHEDGE(D). The latter algo-
rithm relies on algorithmic errors to approximately capture over-fitting error and successfully
rule out higher-order models in an online fashion.

Ruling out higher-order models for SRMOVERADAHEDGE(D)
We can make two clear inferences from Lemma [2.6.16k

1. SRMOVERADAHEDGE(d) gives us a regret scaling only as a function of d in terms of
022 (d+In (1))).

2. For h > d, SRMOVERADAHEDGE(h) gives us sub-optimal scaling
Oh(2*" (h+1n (1))). The reason for sub-optimality is because of sample splitting: for
every true context x(d) € X¢, we are unnecessarily splitting the data into 2¢~" extra
contexts and treating the best predictors for these contexts as independent.

It is clear, particularly from the second inference, that we would like to control the
posterior probability with which we select overly complex models. This quantity is expressed
as qt(h; e, gprop) for all h > d. Now, we consider an explicit upper bound on g:(h; 1, Gprop)
and show how it decreases with .
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Using Equation ([2.44)), it is convenient to consider the following upper bound on the
quantity ¢ (h; nt, gprop) for h > d:

Qe (73 1t Gorop)
S —o Qe(B3 M, Gorop)
< Qu(hi i, Gorop)
= Qu(d; e, Gprop)
< exp{n(Ta(t) — 7 (t))t —2"In2+2-2¢In 2}

(P M, Gprop) =

We should expect that as t becomes large the difference in estimated approximation errors
is negligible, i.e. we will observe that 7, (t) = 7T4(¢) with high probability. We would then
get a scaling of ¢, (h; i, Gprop) < exp{—2"1n2}. However, we can say 7,(t) = 74(t) with high
probability only after O(2") rounds. Before this, and particularly for times between O(2¢)
and O(2"), we have to worry about the difference in approximation errors, n, (7, (t) — w4(t))t.
This is the over-fitting regime in which the hth order model may look deceptively better.
Luckily, we can cap this quantity as well owing to already established statistical guarantees
on the sequence {X;};>1. The following lemma expresses this.

Lemma 2.6.21. The process {(Xy, Y:) hi>1 satisfying Equation (2.48) for all h > d and for
to(h) = trigh(h)

directly 1mplies
~ ~ P AN
(Wd(t) — Wh(t))t S m1n{§, 2h 1thigh(h)}- (259)

The two quantities on the right hand side of Equation have different operational
meaning. The bound in terms of % will be used to show that for a small number of rounds,
the doubly exponential prior on model order h will weigh this model order down and prevent
it from being selected prematurely even if it could be leveraged for more accurate prediction
wn later rounds, as would be the case when the data is out-of-model. On the other hand, the
bound in terms of 2h_1thigh(h) is useful to conclusively rule out the h'*-order model even in
later rounds for the case where data is realized from a d™-order model, by which time it is
clear that the higher-order model does not lead to any improvement in approximability.

Proof. 1t suffices to prove the following two inequalities separately:

Recall the notation we defined for the best d*-order tree expert at time ¢, ﬁd(t), as well
as the number of appearances of context x(h) at time ¢, denoted by Ny(x(h)).
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From Definition [2.6.12] we have
(Ta(t) — ma(t))t

= 2 M) (1 s P @) )~ 3 M) (1 (Pt

z(d)eXxd z(h)exh

-S| T e (ma Bk} - PEOe@)e() )

z(d)exd \z(h):z(d)Ca(h)

-~

T

Let T} be the quantity under the brace (for shorthand). We also define the number of
super-contexts of length h that contain z(d),

Sen—a(x(d)) == Y I[Ny(x(h)) > 0].
z(h):z(d)Cx(h)
Now, we have one of two cases:

1. We have N;(z(d)) < thigh. In this case, we have T} < tthh

2. Ni(z(d)) > tnign. In this case, we have Fy(t)(z(d)) = f*(2(d)) from Equation (2.43),
and we directly get

Ti= 3 Nla(h) (mex(Blle)} - PLiG@)la(@))

z(h)eX_4(h)

where &_(h) := {x(h) : 2(d) C 2(h) and argmax{PB(ylz(h))} # *(x(d))}.
Clearly, the over-fitting effect is created only by the set of contexts x(h) for which

the best predictor does not match f*(z(d)). From Lemma [2.6.17, Equation (2.48) is
satisfied for all h > d and for Ny(z(h)) > thign(h). It is easy to see that Equation ([2.48))

implies a non-negative separation between the truly correct predictor f*(z(d)) and its
alternative, and so we have

arg max, e { P (yl(h)} = 7 (x(d)) if Ni(w(h)) > trign(h).
Substituting this directly, and noting that

max(P(yla(1)} ~ P(fi (o(@)]a(d)) < 1/2
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gives us

T, < Z min{N;(z(h), thigh(h)}}

2
z(h):z(d)Cz(h) and Ni(z(h))<thigh(h)

thigh (R
S 5 0

x(h):z(d)Cx(h) and N¢(x(h))<thigh(h)

< Sucalo(@) ™)

Noting that 1 < 2"=¢ and S, ;,_4(x(d)) < 2"~ gives us

Y

T < 2h7dthigh(h>
= 2

and substituting back this expression yields

This completes our proof.
O

Recall that for all ¢ > Ty(h) where Ty(h) is as defined in Lemma with respect to
to(h) = thign(h), we have n, < . Under this condition, the explicit cap on the over-fitting
effect as defined in Lemma , together with the adaptive regularization of ADAHEDGE,
ensures that we can sufficiently restrict the contribution of higher-order models.

We use Equation (2.59) to get

(M Mt Gorop) < exp{n;(Ta(t) — Tn(t))t — 2" In2 +2-2%In 2}
Qh_lthigh<h) In2

< exp —2"n2 + 21 2
¢ thigh(h) J
< exp{—Qh*1 In?2+ 24 n 2}

. 272h—1+2d+1

Therefore, we can apply Lemma [2.6.16] to get

d T
h _oh—1_ 0d+1 h
E q:(h; ?7t7gprop)wt(71)_yt* () <2 2" 142 2 : w§,1)—yz*
t=To t=To

_ 1
S 2h72h 1+2d+1 (thlgh(h) + _)
nro
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It is now easy to check that

oh < 2h 1 9l forallh >d+4and d >0
— h 2" 1ol < _p
— 2h72h_1+2d+1 S 27h

Therefore, for h > d + 4, we get

T
_ 1

(0
t=To i

For h < d + 4, we do not try to non-trivially bound ¢;(h;n:, gorop). We directly use
Lemma [2.6.16] to get

T

Z qt(h)wt(ﬁ)%*(nt) <2h (thigh(h) + L) .

«
t=Tp i

We have thus guaranteed that the contribution from the higher-order models (particularly
for h > d + 4) not only has no exponential dependence on h, but is in fact exponentially
decaying in h! Ultimately, we will see that we get a very weak linear dependence on D, the
maximum model order, in our regret bound.

Ruling out higher-order models for VALIDATIONOVERADAHEDGE(D)

Using Equation (2.45), it is convenient to consider the following upper bound on the quantity
qi(h;m) for h > d:

Qt(hE TIt)
23:0 Qt(h'§ TZt)
< Q:(h; )

— Quld;me)
< exp{—m(Hy(h; {ns}eey) — Hi(d; {ns}ocy)) }-

Thus, it suffices to obtain a uniform lower bound on the excess over-fitting loss,
Hy(h;{ns}t_,) — Hy(d; {ns}t_,) for any h > d. This is a highly technical quantity to analyze,
owing to the dependencies between contexts, responses, and algorithmic updates. Defini-
tion makes a major simplification on the evolution of the contexts that allows us to
still highlight the key ideas in characterizing validation error of over-fitting models. Without
loss of generality, we conditionﬂ on X; = 0, which is the only randomness in the context
process. In this case, the contexts become

Qt(hS 77t> =

X, =z, =t mod 27, (2.60)

9The analysis will be identical for any choice of z; € XP; we only make this choice for convenience.
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Note that this automatically implies that z;(h) = (t+ mod 2") for any h € {0,1,..., D}.
For convenience, we will define kq(t, h) := [t/2"] as shorthand for the number of times the
context X; has been seen at round ¢.

Under the above assumption, we state and prove the following main lemma that bounds
the excess over-fitting loss.

Lemma 2.6.22. Let the contexts be periodic according to Definition |2.1.4]. Then, for all
he{l,...,D}, and given the event Y (h,tngn(h); ), we have

a*t 15- 2 thlgh ft ( ) < t < T(h)
H h’a s t— - H, d, s t_ > 4’20(7(}1)7}1) high A >
t(h; {mstemt) t(d; {nstomr) = a 2.2h —d(a*) - In (Ef*)@) 1524 ;hngh(d) ift > r(h).

(2.61)
with probability at least (1 —€). Here, we define
C(Oé*) : h2 : thi h(h) C(Oé*) . h2 . thi h(h)(D — d)
t;ﬁgh(h) = (a*)? : ‘In (a*g)Qe and

T(h) = 13h - thigh<h) : 2h,

and c(a*), d(a*) are universal positive constants that only depend on o*.

We first prove this lemma, and then subsequently use it to bound the contribution coming
from higher-order models. Notice the scaling of t},,(h) = O(h?%).

Proof. We consider the sub-sequences

T(x(d)) = {k- 2" + 2(d) }zo,
for all z(d) € X(d). By the periodic assumption on contexts, we have

Y; ~ Ber(P*(1|z(d))) for all t € T (z(d)).
Thus, we get

Hi 1 (h) — Hy o ( Z Z wm —f*(z(d)) wl(cdi 7 (( d)) Zi(x(d))

z(d GX(d k=0

(R) (d)
+ Z Wit d)1—f*(x(d)) — Who(t,d),1—f*(x(d )Wkotd)( z(d)),

where we define

(1). (2.62)

_ [2Vila() — 1 f*(a(d)



CHAPTER 2. ADAPTIVITY IN ONLINE PREDICTION 72

For the case of ADAHEDGE(d), we have for all ¢,

ko td

Z Z wkl £7( Z wko ) 1—f*(z ))'Wko(t)(x(d))
z(d)eX(d) 2(d)=

t—1
<y wily,

s=1
< o [ tyge(d) ¢ Yol L4 6
SO\ T e o) T2 -1 (260 -1 (267 - 1)

15-2 thigh(d)

where the last inequality can be verified by substituting expressions for tyign(d) and noting
that thigh(d)/(Qﬁ* — 1)2 Z 1.

Thus, we will henceforth focus on the term coming from ADAHEDGE(h), which is given
by:

z¢(d)

Z Z wkl F(a(d) Z w V1 fe () Whota) (2(d))

d)ex(d) k=0

Alternatively, recalling the definition of Y;*, we can also write

h
= Z wi,l)—Ys* Whosa)(25(d)),

where recall that z,(d) = (s mod 2%). We state and prove the following technical lemma
on Ty4(t, h) that uses a martingale argument.

Lemma 2.6.23. We define the event

a*
II(h, to(h Ta(t,h) > ———— Hty(h) <t <T7(h);.
(hotofh).0) = {Talt.h) 2 s for allto(h) <t < 7(0)
Then, the events I1(h, ty,.,(h),a*) hold for all h = d, ..., D with probability at least (1 — ¢),
where we define

thign(h) == c(a”) - 1* - tigh(h) In (C<0‘*) - h? - thign(h) (D — d)) |

(ar)? (a*)%e

and c(a*) is a positive constant that depends on o*.
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Given Lemma [2.6.23) or more precisely, assuming the event II(h, t},(h), @) to be given
for the moment, we can complete the proof of Lemma [2.6.22] This is because we can use
the event Y(h, thignh(h); a*) to lower bound the process T4(t, h) for all ¢ > 7(h). Since the

random variables |Wy| < 1, we have Ta(t,h) — Ta(t —1,h) > —wﬁﬁ)_yt*, and thus we get, for
any t > 7(h),

Tat,h) > ————= 4.]{:0 Z+1wsl vy

E wu Yy
1

+

| \/

Furthermore, we recall that

(h) —" Dy (h)
Wy oy <er .

It is easy to verify from the proof of Proposition [2.6.18| that under the event
T (h, thigh(h); a*), we have

() < 1
=13 St (D)

Further, by the periodic Definition [2.1.4] the number of appearances of each context is
Ni(xz(h)) > ko(7(h), h) for all t > 7(h) and all z(h) € X (h). Putting all of this together, we
get (under the event Y (h, thign(h); o)),

t
’LU(h) U)
s,1-Yx* s, 1 Y*
)+1
___a'k
— 9oh, E 134/ thigh (h)

k=ko (7 (h),h)

_ I T(h)
oh . o 1820 ftpioh (h)

— a*

1—e 134 /thigh (h)

Substituting the definition of 7(h), the numerator of the above becomes 2" - e = (2)h,
while the denominator becomes

e Ve s o[ — 2.
- 13 thigh<h)
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Thus, we get

t

h 2\"
> ule <) fimat)- (%)

s=7(h)+1

where the last inequality easily follows as the function v/A - (2/e)" is decreasing in h.
From the above, we get
a* -2

*4 ‘- d(a*)-1In (%) for all ¢t > 7(h).

(o

Ta(t,h) >

Plugging the three cases for T4(t, h) back into the definition of H,_; j, — H;_1 4 completes

the proof of Lemma [2.6.22]
Thus, it only remains to prove the technical Lemma [2.6.23] which we do below.

Proof. We define the sequence
a* . efko(t,h)
2

It turns out that {Z;(h)}:>1 is a sub-martingale difference sequence. This follows because
we have

Z,(h) == Ta(t,h) — Ta(t — 1, h) —

By [Ta(t,h) — Ta(t — 1,h)] = Eey [w;’?,y;  Zig(t.0) (xt<d>>]

w0 (R)
Z o wt71_Yt*,

where the last step follows because of the periodic assumption on the contexts. Since Y,*
is deterministic, the quantity wt(fi)_yt* is a deterministic function of the past, and since Y} is

independent of the past, we get that Y; is conditionally independent of wiﬁ)_yt* at time ¢.

Then, by Equation (2.62) we have E [Zy, .0 (2:(d))] = (2B8(z(d)) — 1) > (28" — 1) = o™
Moreover, by the periodic context assumption (Definition [2.1.4)), the context x;(h) has

appeared ko(t, h) times by round ¢. Therefore, we get

e_ngh)'Dt(h)

(h)
wt’liy;* —

1+ e—n"-Di(h)

h
677715 )-k‘o(t,h)

vz

1+ e ko(th)

e_nt(h> 'kU (tvh)
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Here, inequality (i) follows because we have D,(x;(h)) > ko(t,h), and inequality (ii)
follows because we can trivially bound nt( ) <lforallt>1.
Thus, we have shown that {Z;(h)};>; is a sub-martingale difference sequence. For short-

hand, we define c(t, h; o) := &--e *®h) "and write Z,(h) = Ta(t, h)—Ta(t—1, h)—c(t, h; o*).
We also note that |Z;(h)| < 2 for all £. Thus, we can use the Azuma-Hoeffding inequality to

show that for any ¢t > 1, we have

Pr

t P
Z Zs(h) < —zt] <eTw
s=1

for any z; > 0.
We will consider z := S, g(s’lga ). With this choice, we can substitute the definition
of Z;(h) to get

(Ei— 2(517"'?04*) )2

Pr | Tu(t,h) < ZM] <= (2.63)

We will show using the above concentration bound that the event I1(h, t},.,(h); a*) holds
with probability at least (1 — ¢) for the given choice of t},, (h). Note that

ko(T(h), h) < c(a*) - 13h/thign(h) for appropriately chosen constant c¢(a*) > 0. Further, we
note that for all values of ¢ such that ko(t,h) > 1, we have

t ko th)

Zshoz Zoz 2he

s=1

a-kzo(,h)-Zh a* -t
> > ,
— 2ko(t,h) T 4ko(t, h)

where the last inequality follows for ko(¢,h) > 1, noting that
t
ko(t,h) - 2" <t <[]+ 2" < 2|55 ] - 2" < 2ko(t, h) - 2"

On the other hand, for ky(¢,h) = 0 (i.e. t < 2"), we have

t

Zg(s,h;a*) >at- %>

s=1

a*t
4ko (T(h)v h)
where the last inequality follows because ko(7(h), h) > 1/2. Thus in both cases, we get
t *

;g(s, hiat) > W}S’h) for all ¢t < 7(h). (2.64)
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We then plug in Equation (2.64]) into the tail bound of Equation (2.63)), we get

* .t (a*)242 (a™)2t

a ' i SO0 ST
Pr|Ta(t.h) <« ————— | < ¢ 320k((mh) — o B32k5(r(h),h)
[( ETEORI] ©

for every t € {1,...,7(h)}. Thus, the probability of the complement of II(h,ty(h); a*) is
upper bounded by

i 6_% < 32 - k%(T(jl)a h) 6_ 3;?;(2))(2:(011()}31) < € ;
e (o) D-d
provided that
2k2 2 2(D -
to(h) > 32k5(7(h), h) I 32ko(T(h), h)*( d) '
()2 (a)2e

Note that ko(7(h), h) < c(a*)-13hy/thign(h) for appropriately chosen constant c¢(a*), and
so for the choice

t;ﬂgh(h) _ c(@*) - h2 - thign(R) n (c(a*) - h% - thign(R) (D — d)) ’ (2.65)

(a*)? (a*)2e

the events II(h; ty;,,(h); a*) hold for all h =d, ..., D with probability at least (1 — ).
This completes the proof of Lemma [2.6.23 ]

Now that we have completed the proof of Lemma [2.6.23] we have completed the proof of

Lemma [2.6.22 O

We now use Lemma [2.6.22] to characterize the contribution coming from higher-order
models. First, note that the bounds in Equation are primarily useful for large enough
t so that:

a*-t 1527 tyign(d) L at-t

dko(T(h), h) 2 ~ 8ko(7(h), h)

60 - 27 - ko(7(h), h) - thigh(d)

a*

(2.66)

,t;igm}. (2.67)

Thus, we can consider any ¢ >t (D, d). Note that #[, (D, d) = O(D3¥?.\/d-2¢ + D?).
Then, we get

D t;\/lgh (D d) t;\/igh (D’d)

Z Z qe(h wtl vy S Z we1—yy < thigh(D, d).

h=d+1 t=1 t=1
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Next, we require a lower bound on h, above which we apply our bounds. We note that

o - 2h 15 - 2d . thigh (d) ’ (D — d) a* - 2h
— — V.1 >
4 2 ¢(a’) n( (a*)%e ) 8

= h > ho(d) = 1In C(Oé*> +d+ ln(thigh(d)) + Inln (%) .

*)26

Note that ho(d) = O (d +Ind + Inln D), which is useful to keep in mind when we put the
pieces together in the final bound.
Then, for all h > hy(d), we get:

[e.9]

§ q wtl Y*<§ e 4kor(h)h)_|_

E U}t 1 (AR
t=t]] (D) +1 t=

A 75?

To bound the term A, we note, from a similar argument as in the proof of Proposi-

tion [2.6.18] that

~ Ky
4< e T
1—e 1
- Hhor(h), )
a*nr

where the last inequality follows from e* > 1 + z.
To bound the term B, a direct substitution of the proof argument of Proposition [2.6.18
gives

1
ZwtlY——

t=7(h) n'} )Oé*

and so we get

e—nrat2"/8 ohln 9. thigh (R)
(Oé*)3
_ c(a*) - thign(h) - In2

— Y

nr

B <
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where the last inequality follows from the inequality e=* < 1/x which holds for any = > 0.
Thus, the total contribution from the higher-order models becomes

i @ (h)w)y . < Ako(T(h),h) | cla”) - tuign(h) - In2 _ (ﬂ?) (2.68)

=t (D.d) ¢ arnr nr nr
D tgigh(D’d)
S>> ahwl . < Hig(D,d) = O(D¥? - Vd-2* + D). (2.69)
h=d+1 t=1

Ruling our bad lower models

We now turn to the second component of provable model order selection, which involves
ruling out lower-order models that incur sizable approximation error. This proof utilizes
empirical process theory in an online fashion and is quite similar for both algorithms.
It is worth noting that the optimal choice of learning rate as afforded by the design of
VALIDATIONOVERADAHEDGE(D) allows for a better overall contribution from lower-order
models.

Ruling out lower-order models for SRMOVERADAHEDGE(D)

Using Equation ([2.44]), it is convenient to consider the following upper bound on the quantity
q:(h) for h < d:

Qt(h; M, gprop)
(s M, Gorop) < A<
t( " ) p) Qt(d; ntagprop)
< exp{—n:(7Tn(t) — Ta(t))t +2-29In2 — 2" In 2} (2.70b)

(2.70a)

Ruling out lower-order models actually stems from the fact that we can make concrete
statements about the sequence’s unpredictability (poor approximability) under these models.
The kind of concrete statement that we would like is detailed in the lemma below.

Lemma 2.6.24. Let h < d. Consider a sequence {x;};>1 such that we have

(Th(t) — 7a(t))t > apat for allt > to(h) >0 (2.71)
for some oy, q > 0.
Then, we have
d 1
h
> (hi s Gorop) W4 3y () <t () + (2.72)
—1 Nroh.d
where
2.2%1n2
#(h) = max{to(h), —=—21. (2.73)

nrag 4
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Proof. The condition in Equation (2.71]) is essentially the same as the condition on gaps
between losses in the original AdaHedge paper |95] used to prove constant regret bounds.

We use a similar argument here.
First, we substitute the condition in Equation (2.71) into Equation (2.70b)) to get the
upper bound

@i (R e, Gorop) < exp{—nsapat +2-29In2 — 2" In 2}
< exp{—mapat +2-29}
= exp{2-2In2 — nap 4t}
<exp{2-2¢In2 — Nro gt}

where the last inequality applies because 1 is a decreasing sequence. Putting this to-
gether with the trivial bound g;(h; 7, gprop) < 1 gives us

1 for t <t (h)
exp{2-2%In2 — nray 4t} for t >t (h).

low

Qt(h;ntagprop) S {

where we have
2.241n2

tiow = max{to(h),
o {to(h) -~

From this, using the trivial bound wy;_y+(n;) < 1 we get

T o)

> (s e, Gorop)Wea—ve () <ty (B) + > exp{2-2'In2 — nray 4t}
t=1 t=t! (h)+1

low
< tl/ow<h) + eXp{2 : 2d In2— nTOéh,dtI/ow(h)} <Z enTa}L?dt)
t=1
1)+ 3 e
t=1

<o)+ [ ety

=0

1 o0
/ e ’dv
Nr&hd Jy=0

= tiow(h) +

= tiow () +

This completes the proof. O
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From Lemma [2.6.24] we can clearly bound the contribution of lower-order models to
cumulative variance by a constant term. This is because the difference in estimated unpre-
dictability between the right model and the bad lower-order model remains as the number of
rounds increase — leading to an exponentially decaying likelihood of selecting the lower-order
model. (We do not even need to use any information about whether the online learning algo-
rithm would ensure low regret when selecting a lower-order model, although this is sometimes
the case in practicd})

It is of interest to characterize when the condition in Equation holds. We show
that this holds under the d*"-order stochastic condition on responses, and the iid and Markov
assumptions on contexts (Definitions [2.1.2] and [2.1.3). The informal statement is stated
below; for a formal statement and proof see Appendix [2.7]

*

Lemma 2.6.25 (Informal.). The condition in Equation (2.71)) holds for a4 = Wz;rd, some
constant ¢ > 0, and

to(h) = tiow(h) = —o- (d 2"In 2+ In ( 64d )) . (2.74)

ap, 4 €, 4

with probability greater than equal to (1 — €) when Y;| X, satisfies the d*"-order stochas-
tic condition with unpredictability factors {7} }¢_,, and the contexts are one of iid (Defini-

tion[2.1.9) or Markov (Definition [2.1.5).
Ruling out bad lower models for VALIDATIONOVERADAHEDGE(D)

Using Equation ([2.45)), it is convenient to consider the following upper bound on the quantity
q:(h) for h < d:

. Qt(h§ 77t>
q:(h;ne) < Qud:m) (2.75a)
< exp{—m((Fn(t) — Fa(t))t + R — R} (2.75b)
< exp{—n((Fn(t) — alt))t — R}, (2.75¢)

where the last inequality follows because Rl@l > 0. Ruling out lower-order models

actually stems from the fact that we can make concrete statements about the sequence’s
unpredictability (poor approximability) under these models.
The kind of concrete statement that we would like is detailed in the lemma below.

Lemma 2.6.26. Let h < d. Consider a sequence {:}+>1 such that we have

(Fa(t) — Ra()t = anat for allt > to(h) > 0 (2.76)

10Tn fact, models that are close in approximability to the true model will suffer less regret. Ideally, our
analysis should consider this nuance, but doing so is likely to be technically challenging because of the
data-dependent learning rate.



CHAPTER 2. ADAPTIVITY IN ONLINE PREDICTION 81

for some ay, g4 > 0.
Then, we have

T

h
> (i s Gorop) 04 1y () < o (B) +
t=1

1

Nran.d

(2.77)

where

2.241n2
O(hjd(Qﬂ* — 1)2

Proof. The condition in Equation is essentially the same as the condition on gaps
between losses in the original AdaHedge paper |95] used to prove constant regret bounds.
We use a similar argument here.

First, we substitute the condition in Equation into Equation to get the
upper bound

tiow (R) = max{ty(h),

1. (2.78)

gi(h;m) < exp{—n(anat — R}

Recall that the regret effectively measures the estimation error under the correct model
order d. We can get a slightly cruder (in terms of constants) upper bound on the regret from
Proposition [2.6.18 In particular, we get

Rgd_)l S 6 - 2d In2- thigh(d)-
Substituting that above, we get for all ¢ > t5(h) that

q:(h;m) < exp{—ni(apgt —6-29In2 - thigh(d))}

< qi(hyme) if t <t (h)
| exp{—nian.alt — ti,,(h))} otherwise

where we have defined

tiow(h) := max{ty(h),

6 - 2dln2 : \/thigh<d)}
Oh,d '

For t > t|,,,(h), this gives us

low

qi(h;me) < exp{—mana(t — tio, (1))}
< exp{—nrana(t — i, (1))}
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/

low(R), we use the trivial bound

because 5! is a decreasing sequence. For ¢ < t
we1-yy(n:) < 1. Thus, we get

T tow (h) oo
S a(hsnwe vy () < > a(hsn) + Y exp{—nrana(t — t, (7))}
t=1 t=1 t=t;, (h)+1
tiow (P) oo
< Z ai(h;ne) + <Z enwn,ﬁ)
t=1 t=1
tiow (P) o
<> alhim) + / e ety
t=1 u=0
tiow (R) 1 o
= q(h;ne) + / e “dv
—1 NTrQh,d Jv=0
fow () 1
= qe(hyme) + ,
—1 NrQh.d
This completes the proof. O

From Lemma [2.6.26] we can clearly bound the contribution of lower-order models to
cumulative variance by a constant term. This is because the difference in estimated unpre-
dictability between the right model and the bad lower-order model remains as the number of
rounds increase — leading to an exponentially decaying likelihood of selecting the lower-order
model. (We do not even need to use any information about whether the online learning algo-
rithm would ensure low regret when selecting a lower-order model, although this is sometimes
the case in practicd'])

It is of interest to characterize when the condition in Equation holds. In the
previous section, we showed that the condition held for the case of responses being drawn
from the d*"-order stochastic condition, as well as iid or Markovian contexts. The following
lemma postulates that the condition holds for the case of periodic contexts (Definition
as well. The informal statement is stated below; for a formal statement and proof see

Appendix 2.7

Lemma 2.6.27 (Informal.). The condition in Equation (2.76|) holds for a4 = Wz;rd, some
constant ¢ > 0, and

to(h) = tiow(h) = —2- (d 2" In2+1In ( 0dd )) | (2.79)

Qa4 €y, 4

1Tn fact, models that are close in approximability to the true model will suffer less regret. Ideally, our
analysis should consider this nuance, but doing so is likely to be technically challenging because of the
data-dependent learning rate.
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with probability greater than equal to (1 — €) when Y;|X; satisfies the d™"-order stochas-
tic condition with unpredictability factors {m;}4_,, and the contexts are periodic (Defini-

tion .

Putting the pieces together: SRMOVERADAHEDGE(D)

Now, we put the pieces together to complete the proof of Theorem [2.4.3]

In Section [2.6] we determined the overall contribution to the cumulative variance coming
from the vicinity of the true model orders, h € {d,d + 1,d + 2,d + 3}. Then, in Section
+ [2.6) we appropriately limited the contribution of lower-order and higher-order models to
the cumulative variance. Now, we put together the pieces and characterize cumulative regret
to complete the proof of Theorem [2.4.3]

First, we apply Lemma setting ty = thigh(D). Recall that tpignh(D) represents the
number of appearances of a full context before which we cannot necessarily make statistical
guarantees about the predictor. This gives uslﬂ

2
A < tign(D) + Vi ) In2 + 5 In2 + 2, (2.80)

We now proceed to bound the quantity VTTO (D)- Recall that

D
Vi) < D_alh Z wihx;

h=0 t= TO(D)
d—1 a+3 T D
(d)
E, wtl X*+§: E wt,l—Xt*+ E:Qt E, wtl Xy
h=0 t=To(D) h=d t=Ty (D) h=d+4 t=To(D
TV A TV - Vv 4
Ty Ts T3

We start with summarizing the lower-order model contribution 7;. From Lemmas

and we have
d—1 d—1
1 1
n<S i (S0 )
h=0

nr \ ;=5 “hd

1 (&1
< dbjo,(d—1) + — — .
i ()

12Equation exposes new conceptual beauty in the umbrella of approaches to varying the learning
rate inversely proportional to accumulated regret so far. The only reason a high learning rate does not
affect us is because it means that very little regret has been accumulated up to that point. Effectively,
to = thigh(D) represents the extent of cumulative mixability the algorithm is willing to tolerate in this regime
before carrying out probabilistic stochastic model selection, and is the natural statistical quantity to reflect
this.
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Notice that Ty is a constant independent of the horizon T as long as nr does not decay
with T.

Next, we move on to the vicinity of the true model order contribution, represented by
model orders {d,d + 1,d + 2,d + 3}. From Lemmas [2.6.16| and [2.6.17], we get

iy .
igh(h) + ———
= ;2 (thgh( )+ nr(26* — 1))

1
S 15- 2d (thigh(d + 3) + m) .

Notice that Ty is roughly what we should expect (up-to constant factors) if we knew the
model order exactly.

Finally, we summarize the higher-order-model contribution 73. From Lemma and
the analysis in Section [2.6] we have

1
fo= ZE: (tmgh " nT(2ﬁ*-—-1))

h=d+4

D 9
— } : —hy
2 rign (1) nr(26* —1)°

h=d+4

Recall from Equation (2.50|) that

e (=d)
thM—wm%_lpl(cm*—U%>

2 2 (_(D=d)
BT ) R G R <(25* - 1)26)

and since Y 0 27" < S b 27 =4, we get

8 8 (D —d) 2
I3 < o2+ )2 n ((25* — 1)26) " nr(26* — 1)

Notice that Ty is a constant that scales only logarithmically in the maximum model order
D!
Now combining the three equations for 77,75 and T3, we get

(d+1)-24

W&m§dmﬁd—U+&5Q%de+$+ﬁm@u)+——%§—ﬂ
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where
11 (d‘l L, 15
7 . d +1 h—0 Qp.d (26* - 1)
Next, recall from Equation (2.73)) that
2. 24 2. 24
#(d—1) = max{tiow(d — 1), ———} < tiow(d — 1) + ———
! ( ) { | ( ) 7]TOéd—1,d} ! ( ) Nrog—1.d

using Fact [2.7.10] Substituting this expression gives us

d+2)-24
Vi) < d-tiow(d = 1) +15 - 2% - thign(d + 3) + Sthign(1) + %
T
Next, we use the connection between learning rate and mixability gap from Equa-
tion (2.19)) to get
~ In2 S In 2
G Ary = Ar
nr " In2

thigh(D) 1 / T 2
S 1n2 —|—E VTO(D)1n2+§1n2+1

where in the last step we applied Equation ([2.80)).
Ultimately, we get the following inequality for V7 (D)’

VTTO(D) < d - tiow(d — 1) 4+ 15 2% - tpign(d + 3) + Stpign(1)

(d+2)-2¢ (thgn(D) 1 \/Ti 2
In24+-In2+1 .
+ 5 In 2 + In 2 VTO(D) et 3 net

Now, we have two cases:

L VLo <1
2. VYZ(;(D) > 1, in which case, we get
Vi) < Vi <2d tiow(d — 1) + 30 - 29 g (d + 3) + 16 - tnign(1)

2-(d+2 -2d~t; D 1 2 1
N ( 2_ high(D) N )
~1In2 In2

= \/Vihp) < 2d - tiow(d — 1) +30 - 27 - thign(d + 3

3

)

2~d+2-2d~t; D 1 2
N ( 2_ high(D) N L2
~1In 2 In2 3
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So, we have bounded the cumulative variance term VTTO (D)- We now substitute back into
Equation ([2.80]) to get
A < thign(D) + <2d iow(d — 1) 430 - 29 - tyigh (d + 3) + 16 - thign (1)+
2-(d+2)- 2% thign(D)
7 1n 2

1 2
+ —+= + VIn2 +—ln2+2
vVin2 3 )

Observe, from this inequality, that the cumulative mixability gap Ar is dominated by
three intuitive quantities (other than the constant additive term):

1. tiow(d — 1), which represents the number of rounds after which all lower-order models
can be conclusively ruled out. The dependence on tj,,(d — 1) is saying that this much
mixability could have accumulated (due to poor approximability) before then.

2. thign(D), which represents the amount of mixability the algorithm has to accumulate

before performing effective higher-order model selection to rule out the over-fitting
modeld™]

3. 2¢. thigh(d), which represents the amount of mixability accumulated by the algorithm
at the right model order. This is the term in analysis that corresponds to standard
best-of-both-worlds analysis over a fixed model order.

Now, we know from Equation ([2.50) m that thigh(h) =

(
tion (Z74) that fiow(d — 1) = —22L (d 9d- 11n2+1n<
d—1,d
get

> d D(d+2) D
Ar=0 (2d (O‘d 1,d " (a?ll,de> " y(28* — 1) " ((25* - 1)2€>)> (281)

and substituting this into Lemma [2.6.1]| gives

B oy [ @ d D(d +2) D
= (2 (azl,d " (a) a3 (s 1)%))) e

completing the proof. To highlight the dependence on true model order d and maximum
model order D (as is expressed in the informal statement of Theorem [2.4.3)), we can hide the
constants in terms of parameters and write

Ryg=Ar (1427 (2.83)

ofe(04n(2))

13Tt is also possible that the algorithm would not have accumulated even this mixability, and the model
selection phase is never reached — however, we never observed this case empirically.

(26*-1)
>> Substituting these in, we

25* 1) In <(D_d)'22h€> and from Equa-
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Putting the pieces together: VALIDATIONOVERADAHEDGE(D)

Now, we put the pieces together to complete the proof of Theorem [2.5.2] In Section we
determined the overall contribution to the cumulative variance coming from the vicinity of
the true model orders, h € {d,...,ho(d)}. Then, in Sections + we appropriately
limited the contribution of lower-order and higher-order models to the cumulative variance.
Now, we put together the pieces and characterize cumulative regret to complete the proof of
Theorem

We start with bounding the quantity V:ﬁ; (D)- Recall that

D T
h
Vi) <D ah) Y wply.
h=0 tZﬂMD)
d—1
ST RTINS S ST SRTAT St
h=0 t= To(D h d t=Tp D) h h() ) t=Ty(D)
Ty T Ty

We start with summarizing the lower-order model contribution 7}. From Lemma [2.6.20),
we have

d—1 1 d—1 1
T ng{:tkw(h)_+'__ (j{:____)
h=0 i

@
h—0 h,d

<dt (d—1)+— (di i) |

o
nr o “h.d

Notice that Ty is a constant independent of the horizon T as long as ny does not decay
with T.

Next, we move on to the vicinity of the true model order contribution, represented by
model orders {d, ..., ho(d)}. From Lemmas [2.6.19| and [2.6.20 we get

ho(d)

T, < }; 2" (thigh(h) - m>

< ho(d) - 2M0@ (thigh(ho(d)) + m) :

Notice that Ty = O(ho(d)*/?-2"@D) = O((d+Ind+1Inln D)*?(d1n D)-2%), which is worse
than O(2%) by factors of O(d**In D).
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Finally, we summarize the higher-order-model contribution 75. From Lemma [2.6.22] and
the analysis in Section [2.6] we got

D
*) - thieh(R) - In 2
Ty < (D, d) + Z +C(a) righ(R) - In
o nr
~ D5/2
:O(D3/2-\/E-2d+D3+ )
nr

Notice that Tz scales worst-case cubic in D, which is far better than the worst-case ex-
ponential dependence in D that would be afforded by an algorithm that does not do model
selection.

Now combining the three equations for 77,7, and T3, we get

T /
Viypy < dligy(d — 1) + i

1
ho(d) - 2" ( tign(ho(d)) + —m—
+ho(d) (o) + —s
4D D), D *) + Dthigh(D) - 1In2
a nr Uis
Next, recall from Equation (2.73)) that

2. 24 2 .24
#(d—1) = max{tow(d — 1), ———} < tio(d — 1) + ———
jow(d = 1) {tiow( )77T05d71,d} jow(d = 1) e 1a

2.k (r Ay, ,
using Fact 2.7.10, Moreover, we have ty. (D, d) < t,..(D) + 0027 kol (SE’D) g Sy bysti-
tuting these expressions gives us

B
VYEZ(D) <A+ - where

A=d-tigy(d—1) 4 ho(d) - 2D -ty (ho(d)) + thign(D) +

d N ho(d) - 2@ 4D - ko(7(D), D)
Qd—1,d a*

60 - 2d . ko(T(D), D) . thigh(d>

a*

B =

+ C(Oz*) . Dthigh(D) -In 2.

Next, we use the connection between learning rate and mixability gap from Equa-

tion (2.19) to get

B In2 In2

"= A T Ar
— i<£
nr ~ In2

1 2
< — T .
SR (MV 1n2+31n2+1)
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Thus, we get the following inequality for VTTO (D)
Vi, 5B
T To (D)
VTO(D)§A+B W—i‘?

T l . .
1. VTO(D) < 7, in which case we are done.

Now, we have two cases:

2. VIES(D) > 1, in which case, we get

8B
Viyo) < Vi) (A + ?)

8B
— VIZ;(D)SA—F?

and thus Equation (2.39) together with Proposition [2.6.18| gives us
8B
RTﬂl S (A + ?) (1 + In D) + O(Qd . thigh(d))
= O(d - tiou(d = 1) + ho(d) - 2'°“) - thign(ho(d) + thign (D)
N 60 - 2% - ko(7(D), D) - thign(d)

O[*
d ho(d) - 2D 44D - ko(7(D), D
+ + 0( ) - 0(7'( ) ) —|—c(a*) . Dthigh<D) 1n2>
g—1,d «

2 2
- O<d2~2d+dln (51) . (m (2)) 94 4 D31p (D—ln (9»
€ € € €
3/2
L DY 490 (ln (2)) )
€

= 6 (d2 . 2d +dlnd+ d2(lnD)2 + D3 1H(D2 111D> + D3/2 od- Qd(lnD)3/2) ’

and this completes the proof of Theorem [2.5.2]

2.7 Future work

In this chapter, we motivated online model selection in full-information environments as an
important goal in the context of the broader goal of adaptively maximizing reward (minimiz-
ing loss) in an unknown environment that could be stochastic or adversarial. This methodol-
ogy does not yet explicitly consider competitive or cooperative environments for adaptivity.
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1000 1000

Robust, model order adaptive
Robust, model order 5
Robust, model order 6
Robust, model order 7
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(a) Total loss as a function of T com- (b) Total loss as a function of T com-
pared to lower-model orders. pared to higher-model orders.

Figure 2.4: Comparison of model-adaptive SRMOVERADAHEDGE(D) with uniform-prior
SRMOVERADAHEDGE(d) for fixed model orders on a HMM with slowly transitioning states.
Figures from [88].

However, full-information online model selection even between stochastic and adversarial
environments is a practically important objective, and has several independently interesting
future directions. In particular, the three essential ingredients for practical applicability —
computational efficiency beyond binary prediction, effectiveness in mis-specified models, and
applicability beyond traditional statistical learning — are not yet fully established. We now
discuss future directions along these lines.

Mis-specification

As mentioned in Section 2.3 the paradigm of data-driven model selection is most broadly
applied in mis-specified stochastic environments: that is, the data is stochastic, but not
realizable by any of the model orders. It is of substantial interest to obtain the corresponding
online model selection results in a mis-specified environment. Indeed, meaningful theoretical
guarantees do not even exist for the purely stochastic case in online learning. This is because,
unlike in the d*"-order realizable stochastic environment, none of the benchmarks for regret
correspond to an optimal guarantee on reward! A meaningful guarantee in mis-specified
environments would constitute an upper bound on time-averaged prediction error rather
than any fixed notion of regret.

We motivate the pursuit of this guarantee through a preliminary empirical evaluation of
SRMOVERADAHEDGE(D) in a mis-specified environment. Our representative example of
mis-specification is that of a hidden Markov model (HMM) with the following parameters:

Hidden state evolution W, ~ Ber (|W; — 0.001])
Y;|W; = 0 ~ Ber(0.2) and Y;|W; = 1 ~ Ber(0.9).

This is an interesting example of a HMM with very slowly transitioning hidden states,
that has long-range dependencies. From the simulation results in Figure [2.4] it appears that
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the best model fit is of order 3 or 4; we observe that our adaptive algorithm naturally tracks
the performance of such a model fit in this example as well. If we do not select models of
roughly this order, we either over-fit or under-fit as seen in the simulations. It is worth noting
that depending on the parameters of the HMM, different model orders could be considered as
optimal fits for increasing numbers of rounds; it is notable that SRMOVERADAHEDGE(D)
adapts to a suitable model order for different choices of parameters.
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Figure 2.5: Posterior probabilities of model order selected by SRMOVERADAHEDGE(D) at
different numbers of rounds, ¢ = 250 and ¢ = 1500, when played against a “sticky" HMM.
We see that the algorithm is most likely to select increasing model orders as more rounds of
the game are played. Figures from [88].

Moreover, Figure 2.5 shows that the model order most likely to be selected by
SRMOVERADAHEDGE(D) increases with the number of rounds T; eventually, the largest
model order would be selected. These pictures show that a direct analysis of the average
prediction error is necessary for any non-trivial guarantee; any regret-based analysis would
necessarily scale as O(2”), which is extremely pessimistic for this class of models. This
is an interesting and non-trivial direction for future work. On one hand, the algorithms
SRMOVERADAHEDGE(D) and VALIDATIONOVERADAHEDGE(D) make explicit connec-
tions to the statistical methodologies of SRM and cross-validation, both of which are heavily
used in mis-specified environments. Their proven success in the realizable case thus bodes
well for an eventual guarantee under mis-specification. On the other hand, obtaining simul-
taneously adversarial and stochastic bounds on average prediction error, rather than regret,
remains a challenge. Doing this likely requires a new “second-order-bounding" technique, as
the current second-order bounding techniques |94} 95| 98| |100| are critically framed in the
context of regret.
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Computational efficiency

The question of computational efficiency has critically under-lied the novelty of our results
as restricted to the binary contextual prediction setup with d*"-order realizable stochastic
data. Achieving efficiency in two-fold adaptive algorithms between stochastic and adver-
sarial model selection is a significant challenge: even the most sophisticated algorithms like
ADANORMALHEDGE and SQUINT suffer from double-exponential in D complexity (in the
case of SQUINT, primarily because it departs significantly from the exponential weighting
framework), or highly non-trivial model selection analysis (in the case of the sleeping-experts
implementation of ADANORMALHEDGE). Our algorithms, while admitting a more involved
analysis for stochastic settings, are efficient per iteration and thus simulate-able.

Obtaining computationally efficient adaptive online learning algorithms remains a signif-
icant, and largely open, challenge. The primary difficulty lies in obtaining the adversarial
guarantee: in a generic online supervised learning setup with function class {F,}2_,, the
computational complexity-per-iteration of most standard online learning algorithms (e.g.
HEDGE) scales as O(|Fp|), which is far worse than the complexity of purely stochastic
approaches based on empirical risk minimization. Until recently, efficient approaches took
advantage of special structure in the function classed™] and were not known more generally.
More recently, there has been promising progress in the online learning community in un-
derstanding the computational trade-offs as well as explicit efficient algorithm design. On
one hand, there do exist worst-case function classes for which a O(\/|Fp|) complexity-per-
iteration is unavoidable [131]. On the other hand, it was shown recently [39] that certain
function classes afford oracle-efficient online learning, i.e. online learning algorithms with
the optimal worst-case guarantee whose computational complexity per iteration is equivalent
to the computational complexity per iteration of empirical risk minimization. This oracle-
efficient algorithms uses classical perturbation-based techniques in online learning |80, |132]
with shared randomness across multiple actions/functions to achieve an efficient implemen-
tation. In fact, these algorithms underlie the design of repeated auctions with worst-case
guarantees against a stream of (myopic) bidders.

This recent progress provides a possible road-map for recovering adaptive guarantees
in the online supervised learning setup while retaining computational efficiency. This goal
requires non-trivial work in itself, as the analysis of the oracle-efficient framework that was
developed in [39] was restricted to the “worst-case" choice of learning rate 1, = 1/v/t. It
would be very interesting to understand whether oracle-efficient approaches can be made to
work with data-adaptive learning rates.

As a final remark, we note that meta-experts-based approaches to model selection, like
VALIDATIONOVERADAHEDGE(D), only incur a computational overhead of O(D) over the
complexity of the base algorithms; thus, model selection by itself adds minimal computational
complexity even in a generic supervised learning framework. The more difficult aspect of
computationally efficient adaptivity is between adversarial and stochastic environments.

1 As in the tree-experts case, which was studied in this chapter. The computationally efficient implemen-
tations that we use were first proposed for the worst case by [109, [130].
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Online model selection beyond traditional statistical learning

Finally, as already mentioned in Section [2.3] all existing theoretical guarantees for online
model selection algorithms are for the traditional complexity hierarchy, where we only wish
to select more complex models when we have enough data. While this is true of the worst-case
generalization bounds, such bounds are not always indicative of true model performance, as
evidenced by the modern success of over-parameterized models [124} 125]. It would be inter-
esting to see whether online model selection is successful under these modern environments,
whose offline guarantees are still not well-understood (see Chapter [6] for further delving into
this point). While the very principle of SRM is antithetical to a possible desire to select
more complex models early, it would be especially interesting to see whether data-driven
validation is more successful. Viewed alternatively, the success of over-parameterized mod-
els already suggests that a data-driven validation approach could be the better approach to
online model selection in real-world settings.

From a theoretical standpoint, the last few years have seen a flurry of activity in analyzing
the algorithmic generalization error of over-parameterized models [133-136|. These analyses
decompose the algorithmic generalization error along quantities that are starkly different
from the standard quantities of bias (approximation error) and variance (estimation error).
Our hope is that these perspectives can be leveraged to show that adaptive online validation,
with its reliance on precisely the algorithmic generalization error, continues to provably select
the optimal model even in these non-standard, modern ML regimes.

Appendix: Stochastic model selection guarantees

In the analyses of both SRMOVERADAHEDGE(D) and VALIDATIONOVERADAHEDGE(D),
we required the estimates of approximation error to concentrate sufficiently quickly — in
particular, we required that the difference in approximability between a higher-order model
and lower-order model not look too small — in order to rule out lower-order models when
appropriate. This was encapsulated in Lemmas [2.6.24] and [2.6.26 It is therefore of interest
to understand when the conditions in Equations and holds, and in particular,
characterize t,,,(h) in both cases.

Recall the definition of asymptotic unpredictability for the cases of iid contexts (Defini-

tion [2.1.2) and Markov process (Definition [2.1.3), i.e.

mim Y Q) |1 max(P )]

z(h)eXxh

and for periodic contexts (Definition [2.1.4)), i.e.

Mg X |- ma Pt

yeX
z(h)exh
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Under all three cases, we have m; = «; for h > d; and 7; > 7 for h < d. It is also
well-known [110] that under all three cases,

T (t)&)ﬂ'h for all h € {0,1,...,D}.

So the intuition is that for a large enough value of ¢, we should also start to see a strict
decaying in the estimated unpredictability as h increases to d — and we should be able to
rule out the poorly performing h*"-order models when h < d. That is,

Fu(t) > 7a(t) for all h < d.

In this section, we show that this condition holds for all three cases we have considered.
Proving concentration bounds for the cases of iid and periodic contexts is straightforward
by Hoeffding’s inequality. To prove concentration bounds for the Markov case, we invoke
results from the information theory community on transportation-cost inequalities, used to
establish concentration of measure for weakly dependent random variables.

Sufficient condition for concentration of estimate of approximability

We start by expressing our estimate for approximability for the ht"-order model, 7,(t), as a
minimum of |F},| Lipschitz functions as below:

t7n(t) = }nifn {f(h)({(XS,Y) t_ 1,f)} where

f(h)({(XSaY s= 17 ZHY #f ))]

— Z A
s=1

where Z, = I[Y; # f(X(h))]. Note that for the cases of iid and periodic contexts, the
random variables {Z,}!_, are independent and take values in {0, 1}.
We now state the following technical lemma:

Lemma 2.7.1. Let the following condition hold for every f € F*, t > h+1 and § > 0:
Pr [ fony (X, Yo)smis £) = E [foy (X5, Yo)emys )] > t6] < 2exp{—ctd®} (2.85)

for some constant ¢ > 0 (that can depend linearly on d as well as h)

Then, the conditions in Equations (2.71) and ( - ) hold for apq = ﬂz and

2 4
to(h) = tiow(h) := 32 <d.2hln2+ln< 64d ))
C'Oéh’d C'EOéh’d

with probability greater than equal to (1 — €).
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Proof. Observe that 7y (t) itself is not an unbiased estimate of 7. But, for all three contex-
tual models, it is easy to show that

E[t%h(t)] =E fnel}-'rif ({<XS>Y) s= l’f) S]E[f(h)({(XsaY;) s= lvfh)} :tﬂ-;;

for all f € Fj,. The upper tail bound therefore follows easily — from Equation ([2.85)), we
have

Pr[tRa(t) — t; > 0] < Pr [o(Xer Yol i ) — E [ (X Yoy )] > ]
< exp{—ctd?}.

To get the lower tail bound, we need to use the union bound.

Pr[tni — t7a(t) > 6t] = Pr [t7a(t) < trr — 1]

< Pr[fun(Xe, Yooy ) < tmy, — ot
feFn
= > Pr[fog (X Yo Yeis ) = B [fin ({(X, YO ey )] <
feFh
m}EMﬂK&X)“Jﬂ—M
< ZPr X57Y> s= 17f)_E[f( <{<X87Y) s= 17f>} < _51;}
feFr

< 22" exp{—cté?}.

Next, we plug in § = “5¢ = @ and re-apply the union bound to get
Pr (U0 {(Tn(t) — Ta(t)) < apq for some ¢ > to(h)}]

< Pr [u;ﬁ O{wh Fult) < —} U {Falt) — 75 < %} for some ¢ > to(h)

d-1
< Pr [ﬂ}i—%h(t) < %} +Pr [wd( ) -k < %}
h=0 t>t0(h)
d—1 2 2
caz to(h) c-af tg(h)
<Y B e
h=o © € Qg
< 6/2 When
32 64d
to(h) > tiow(h) == 5 (d 2" In2 +In ( 5 )) :
C'Oéh7d C’EOéh7d

This completes our proof. O
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Clearly, the condition in Equation holds for the cases of iid contexts as well as
periodic contexts. In the case of iid contexts the Z,’s are iid, and in the case of periodic
contexts the Z,’s are independent for any value of X;. In both cases, we can apply the
Hoeffding bound directly to get Equation .

We now proceed to show that Equation also holds for finite-memory Markov models
using the transportation cost method.

Concentration for finite-memory Markov models

The concentration of sums of random variables to its mean is a classical topic in statistics and
probability theory. The special case when the random variables are iid is well-understood.
Intuitively, a Markov process that is well-approximated by an iid process should follow sim-
ilar concentration laws — the transportation cost argument uses this to prove concentration
bounds on sums of random variables following a Markov process.

Formally, this notion of approximability by a product distribution is captured by the
contractivity of a Markov process which we define below.

Definition 2.7.2. 1. For a d"-memory Markov process on Yi,...,Y; on state space X,
we define the aggregated state at time s by

W= Wsa,.. ., Waa) = Yiemyat1, Yis—1)d+2, - - - » Ysad)- (2.86)

Then, clearly, for any s > 1, we have Wy L W, _5|W 1 and so that the states {W, €
X} 51 satisfy the 1-memory Markov property. Explicitly, we have for any w,w' € X<,

]P’(w) = P(d)(w)
Py (w'w) = [ Pw)l(wi,. .. ,wa, ..., w ).

i=1

2. A d"-memory Markov process on Yi,...,Y; is y-contractive if for every w,w’ € X9,
we have

IP_s(Jw) = Py (Ju)lry <7 < L. (2.87)

The transportation cost method can then be easily leveraged to show that Equation ([2.85)
holds, as we show in the following minor lemma.

Lemma 2.7.3. Equation ([2.85)) holds for a d"*-memory ~-contractive Markov process with

(1*v)_

constant ¢ = <

Proof. We invoke Marton’s concentration theorem for ~-contractive Markov processes as
described in Theorem [2.7.7] (details about the transportation cost method are provided in

Section .
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We recall the definition of functions

f(h)((Xs7Y)s 1af) = f(h)((Ys)zzl;f) = ZZS

where Z; = I[Y; # f(Ys(h))]. To obtain concentration bounds from Theorem [2.7.7] it
remains to rewrite f((Y;)._;;f) as a sum of indicator functions on {W}>; and show the
Lipschitz property.

Let t = |t/d] + k for some k € {0,...,d —1}. Then, we can write (with a slight abuse
of notation) for any h € {0,1,...,d},

[t/d] d
Fan (V5 8) = dfi (WA 0) = (D0 3 TWas 2 F(Waio o Wag )]
s=1 i=h+1
h
+ Z ]I[Ws+1,i 7& f(Ws,df(hfi)a sy Ws,da Werl,la ) Ws+1,i71)]>
=1

Now, it’s easy to verify that that a change in Wy will only affect two terms in the sum
over [t/d] terms, and some simple algebra tell us that the Lipschitz constant of function f
is at most 2. We now apply Theorem [2.7.7] directly to get

20%(1 — )%t

Pr || fm (Wl f) — E [f(h(W[é];fd)} | > 5%1] < 2exp{— 1d } (2.88)
and so, we finally get
Pr [foy (Y £a) = E [foy (Y5 £a)] > (8 = h —1)d] < eXP{—62(1 - 7)22(; ke 1)} and
Pr [E [fun (V9] — fan (Y ) > (6~ h - 18] < expf 20— U=y
completing the proof of Lemma [2.7.3]
O

Technical details about the transportation cost method

Let ¢t > 0. Consider a metric space X* with metric p.
We will consider functions of the form f : X* — R that are Lipschitz with respect to
metric p; that is, there exists some L > 0 such that

[F(X1) = F(X)] < Lp(XT, X).

We denote the Lipschitz constant of the function by || f]|Lip-
Now we define a useful notion of distance called the Wasserstein distance.



CHAPTER 2. ADAPTIVITY IN ONLINE PREDICTION 98

Definition 2.7.4. The Wasserstein distance between distributions P and Q on X' with
respect to metric p is defined as

W,(P,Q) = sup /fd]P’ — fdQ = inf E [p(X}, X3)]

Fillflup<t M couples P and Q on (X%,X1)

We will consider X* € X' be distributed according to P. For a function f such that
| fllp = L, we care about the concentration of the quantity f(X') around its mean,
E[f(X")], as a function of t.

In our case, X* = {0, 1} is finite. We consider the additive Hamming metric

p(X1,X5) =) T[Xy, # Xl (2.89)

(For the special case of t = 1 the Wasserstein distance between P and Q corresponding
to this metric is the total variation distance, denoted by ||P — Q||
Our basic ingredient is a transportation cost inequality, which we define below.

Definition 2.7.5. We say that the distribution P satisfies a transportation cost inequality
if, for every distribution Q, we have

W,(P,Q) < v29D(Q || P) (2.90)

Marton showed [137] that a transportation inequality on the underlying distribution P on
X" implied nice concentration bounds on f(X*) around its mean, when f(-) is Lipschitz with
respect to the metric p. This technique is powerful because we can establish transportation
cost inequalities for a much broader class of distributions P than just product distributions;
in particular, we can handle weak dependencies. In the special case of the Wasserstein metric
corresponding to total variation distance, the classical Pinsker’s inequality is a special case
of the transportation cost inequality . It turns out we can adapt Pinsker’s inequality
together with the chain rule on KL-divergence to prove a transportation cost inequality on
the additive Hamming distance for product distributions [138]. We can also do this more
generally for the case where P is a Markov distribution on X, provided the Markov chain
satisfies an important contractivity condition. Consider the Markov process with stationary
distribution Py(.), and transition probabilities P_;(.|z) for all z € X. We again define
~-contractivity for a general-state-space Markov process below.

Definition 2.7.6. A Markov chain is y-contractive if for every two states x,z’ € X, we
have

P_1(|z) =Py (fa)[lrv < v < 1. (2.91)

Under this condition, the Markov distribution satisfies a transportation cost inequality,
as shown by the following theorem.
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Theorem 2.7.7 ( [137]). Let P be a Markov distribution on X* that satisfies Equation ([2.91)
with parameter v < 1. Then, we have

1 t
W,(P,Q) < — §D(Q | P) (2.92)

This directly implies a concentration bound of the form

20%(1 — )%t

) (2.93)

Pr{|f(X") —E[f(X")] | > 0] < 2exp{—

Appendix: Algorithmic benefits of SRMOVERADAHEDGE(D)

In this section, we expound on the algorithmic benefits of SRMOVERADAHEDGE(D)
equipped with prior function g(-), as well as VALIDATIONOVERADAHEDGE(D): in particu-
lar; we formally show the reduced computational complexity of the algorithm, and the equiv-
alence of the computationally efficient update in Equation (2.22al) and the computationally
naive update in Equation . The equivalence was originally proved for the multiplica-
tive weights algorithm with a fixed learning rate [109]: here, we generalize the argument
to include the family of exponential-weights updates with a time-varying, data-dependent
learning rate.

Proposition 2.7.8. The run-time of SRMOVERADAHEDGE(D) per prediction round is
O(2P).

Proof. Consider round ¢ of prediction. To carry out the efficient update in Equation (2.22al),
we need to visit every node in the path of the context X;. Since the full context is of length
D, the update runs in O(D). To perform the prediction, we must calculate the probability
distribution w;, which has 2 entries. To calculate w;, we must visit every node in the single
complete height D tree to access the cumulative loss vectors {Lo(py:}e(p)exp-

Since there are 2 such loss vectors (i.e. 2P nodes to visit), this operation takes O(2P)
time. For a general prior, these cumulative contextual losses are accessed for every value of
h € {0,1,...,D}. Thus, the total computational complexity of performing an update is

D
D 2 =2P —1e0(2”).

h=0

After performing prediction and receiving loss feedback, we need to access all these nodes
again and update the cumulative losses. By a similar argument as above, this is also a O(27)
operation. Therefore, the total computational complexity per round is O(27). O]

Proposition 2.7.9. The run-time of VALIDATIONOVERADAHEDGE(D) per prediction
round is O(D).
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Proof. In the meta-algorithm VALIDATIONOVERADAHEDGE(D), we use the efficient im-
plementations of the base algorithms A, = ADAHEDGE(h) for h = 0,...,D. Then, it
suffices to show that each of the algorithms ADAHEDGE(h) has run-time O(1) per round,
for every h = 0,..., D. This is because the additional step of storing the loss incurred by
ADAHEDGE(h) adds O(1) complexity per round, and then the meta-algorithm adds com-
plexity O(D) per round as it uses exactly D meta-experts.

Thus, we show that the complexity of Equation , i.e. ADAHEDGE(h) with uniform
prior gunif(-), is O(1) per iteration. To do this, recall that under the uniform prior gms(-),

Equation (2.22al) becomes
w oc e Txin, (2.94)

Thus, with knowledge of the learning rate n,gh), the complexity of this update is clearly
O(1), as it only needs access to one context vector X;(h) € X”. (Note that this inference
can only be made for the special case of g(-) = gunif(-) — for non-uniform priors, as we noted
in the proof of Proposition [2.7.8] all the contexts #(D) € X" need to be accessed.)

Therefore, it remains to evaluate the complexity per iteration of updating the learning
rate, nt(h). Recall from Equation that we have

(h) _ 2d1112
— .
ALY (@)t

where the cumulative and instantaneous mixability gaps are defined as below:

t
AP ((™)1) =3 6™ (™), where
s=1

1 tree
dgh)( (h)) - <Wgtree)<ns)’ l(tree)> + = ln<w(tree)(ns)’ e_nslg )>

S S S
S

Thus, at round (¢t — 1), we have access to the quantity A§’j’1, and the complexity of
computing ngh) is exactly equal to the complexity of computing (5§h) (ngh)). It is easy to see that
(tree)

(W™ (n,), 187°) = (w(ns), 1) and (w9 (1), e ) = (w, (1), e7%). Therefore, we
get

1
5 n") = (), 1)+ I, ),

t

and since the size of all the vectors is equal to 2, the complexity of computing 5§h)(77t(h))

is O(1). Therefore, the complexity of computing m“” is also O(1), and this completes the

proof of the proposition. O
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Supplementary algebra

In this section, we state a couple of supplementary algebraic statements (and prove them
when necessary).

Fact 2.7.10. For two quantities B,C > 0, we have max{B,C} < B+ C.
Fact 2.7.11. For two numbers B,C' > 0,

22— Br—-C<0 = <VC+B.

This results from the quadratic formula, which gives us

_B+VBTIC
i
- 2
B+ B+ 2vC
< B+ ;f:fmg

where the last inequality is a consequence of

a,b>0 = Va+b<+a+ Vb
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Chapter 3

Model selection under bandit feedback

In the last chapter, we saw schemes that successfully adapt along two axes: a) between
stochastic and adversarially generated data, b) offline benchmark, or model selection. These
schemes critically relied on full-information feedback, i.e. the learner has the ability to ob-
serve the loss she would have incurred had she played any action, not just the one that she
took. However, we noted in Chapter [I] that this is not a realistic assumption for several
real-world applications. In real-world applications, often the learner can only receive loss/re-
ward feedback for the action she took, and not observe feedback from any other action.
For example, in wireless spectrum applications [139H141], the learner is a cognitive radio
(or a decentralized set of radios), and the set of actions corresponds to a set of candidate
channels or routing paths. Thus, the learner will receive reward feedback only correspond-
ing to the action (channel or path) that she picked. We will subsequently see that models
for online learning with contextual information in applications like recommender systems,
advertisement placement, and mobile healthcare also receive feedback only corresponding to
the action that was taken by the learner.

For these applications, we need to consider the limited-information feedback model, more
colloquially known as the bandit model. This model introduces new challenges in the form
of exploration: now actions need to be chosen not only to maximize estimated reward on a
round (exploration), but also with the aim of maximizing “information gain" (exploitation).
In this section, we explore the possibility of online learning algorithms that adapt in this
more challenging environment, and particularly explore the problem of model selection in
contextual bandit problems. While we provide a partial solution to this problem, several
important questions remain open and we discuss these at the end of the chapter.

3.1 Setup

Here, we introduce the limited-information feedback (bandit problem) with side information.
The sense in which we will consider model selection, is in deciding whether or not this side
information matters. Before defining our setup, we provide basic notation and definitions
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for this chapter below.

Notation and definitions

Given a vector v, let v; denote its i'" component. For a vector we let ||v],, for p € [1, o0] denote
the £,-norm. Given a matrix M we denote its operator norm by ||M]|,,, and use | M||r to
denote its Frobenius norm. Given a symmetric matrix S let pax(S) and min(S) denote its
largest and smallest eigenvalues. Given a positive definite matrix V' we define the norm of a
vector w with respect to matrix V as ||w||} = w' Vw. Let {F;}22, be a filtration. A stochastic
process {&}52, where & is measurable with respect to F;_; is defined to be conditionally
o-sub-Gaussian for some o > 0 if, for all A € R, we have, E [eX|F,_;] < exp(A\?0?/2).

The multi-armed bandit problem (Simple model)

The most basic version of the problem of learning under limited-information feedback con-
stitutes the multi-armed bandit problem with stochastic reward feedback. Under this model,
the rewards of K arms are iid over rounds, and so we have

Gix = Wi +mip, Vi€ K]

where p; € [-1,1], {n:,}X, are identical, independent, zero mean, o-sub-Gaussian noise
(defined below). The mean parameters p; are unknown beforehand to the learner. Criti-
cally, the learner receives reward feedback only for the arm she pulls at every round. More
formally, if she plays arm A; at time ¢, she will only observe the reward g; 4,. Informally
speaking, this necessitates the learner to trade-off exploration — playing arms that she has
seen relatively fewer samples of thus far to learn more about the environment, and exploita-
tion — playing the arm that seems to have the highest expected reward as estimated so far,
to play optimality. How we define optimality is not immediately clear, and is traditionally
formalized through two statistical paradigms:

1. The Bayesian paradigm, in which there is a prior over the reward means {u;}X, and
rewards are discounted over time. In this paradigm, the multi-armed bandit problem is
formulated as a partially observed Markov decision process (POMDP) and remarkably,
its optimal policy is an index policy as highlighted in the seminal work of Gittins [142,
143].

2. The frequentist paradigm, in which we wish to asymptotically optimize the total ex-
pected reward of the policy, in the sense that the time-averaged gap to the maxi-
mal possible reward decays to 0 as the number of rounds, 7" — oo, and/or obtain a
minimaz-optimal guarantee on regret as a function of the number of rounds for any
finite T > 0.
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For convenience and simplicityE] in algorithm design, we use the frequentist paradigm for
the multi-armed bandit problem — asymptotically optimal algorithms, as we will describe
below, include the popular algorithms UCB as well as Thompsonﬂ sampling [148]. Let the
arm with the highest reward have mean p* and be indexed by ¢*. Our certificate of optimality
is minimizing the pseudo-regret quantity (henceforth regret for brevity), defined as

T
Ry =Tu" =Y pa,.

s=1

Define the gap as the difference in the mean rewards of the best arm compared to the
mean reward of the i arm, that is, A; := p* — ;. The classical literature on multi-armed
bandits [149] tells us that the best one can hope to do in this setting in the worst case is
E [R7] = Q(>_;log(T)/A;). Several algorithms like UCB [150] and MOSS 151} 152] achieve
this lower bound up to logarithmic (and constant) factors.

The contextual bandit problem (Complex model)

The contextual bandit paradigm also studies limited-information feedback, but the rewards
are now an unknown function of side, or contertual, information that is available to the
learner. This model was first considered to model clinical trials [153]. Since then, it has
been studied intensely both theoretically and empirically in many different application areas
under many different pseudonyms. Applications of this paradigm include advertisement
placement/web article recommendation [154} |155|, clinical trials and mobile health-care [153),
156]. We point the reader to [156] for an extensive survey of the contextual bandits history
and literature.

In this chapter, we will consider the simplest model for contextual bandits: the standard
linear contextual bandits [157] paradigm. In this model, we assume there exists an under-
lying linear predictor §* € R? shared across all arm, ;s € R? represents the contextual
information and {»;,}y, represents noise in the reward observations. We impose compact-
ness constraints on the parameters: in particular, we have y; € [—1,1], 0* € B4(1). Further,
the noise {n;;}~, is assumed to be identical, independent, zero mean, and o-sub-Gaussian.

'We touch more upon the debate between Bayesian and frequentist paradigms in a realm in which this
has been relatively unexplored, game theory, in Chapter

2 Actually, Thompson sampling is a heuristic that can effectively utilize prior information in its algorithm
design. However, it does not come with the Bayesian optimality certificate of the Gittins index policy — its
guarantees are primarily frequentist in nature [1441146|, although important Bayesian regret bounds have
been proved as well [147].

3This is the model that was described in |157]. It is worth noting that more complex variants of this model
with a separate 6} for every i € [K] have also been empirically evaluated [154], and biases [y, .. ., ux] € RE
of the K arms, such that the mean rewards of the arms are affine functions of the contexts, that is, we have

Gijt = i + <9*,Oéi7t> + N5t for all 7 € [K]
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At each round define k; = argmax,cqy  gyx {#s + (67, ) } to be the best arm at round
t. Here, we define pseudo-regret with respect to the optimal policy under the generative linear
model:

T
% = Z [ILLKS + <0*a aﬁs,s> - HA, — <9*7 aAS:S>] ’

s=1

For the linear contextual bandit model with finite number of actions, it is well-known
that variants of linear upper confidence bound algorithms like LinUCB [157] and OFUL [158]
suffer at most O ((Vd++vEK)VT) regret with respect to the optimal linear policy. Moreover,
these algorithms are computationally efﬁcientl_ﬂ

It is particularly clear that while employing the contextual bandits paradigm, the choice
of policy class is critical to maximize the overall reward of the algorithm. As can be seen
in applications of contextual bandits models for article recommendation [154], the choice is
often made in hindsight, and more complex policy classes are used if the algorithm is run for
more rounds. A quantitative understanding of how to do this is still lacking, and intuitively,
we should expect the optimal choice of policy class to not be static. Ideally, we could design
adaptive contextual bandit algorithms that would initially use simple policies, and switch
over to more complex ones as more data is obtained.

Theoretically, what this means is that the regret bounds derived for a contextual bandit
algorithm are only meaningful for rewards that are generated by a policy within the policy
class to which the algorithm is tailored. If the rewards are derived from a “more complex"
policy outside the policy class, even the optimal policy may neglect obvious patterns and
obtain a very low reward. If the rewards are derived from a policy that is expressible by a
much smaller class, the regret that is accumulated is unnecessary.

Model selection, or, does the contextual information matter?

Let us view the model selection problem wis-a-vis the two model classes that we have de-
scribed above: the standard multi-armed bandits paradigm (MAB) v.s. the standard linear
contextual bandits [157] paradigm (CB). Observe that in CB, setting 0* = 0 yields the im-
portant case of the reward distribution being independent from the contextual information
and thus the simple model (MAB) is nested within the complex model (CB). On one hand,
if we knew the MAB structure beforehand, a simple upper confidence bound algorithm like
UCB [150] would yield the optimal O(logT) regret bound, which does not depend on the

4In the general contextual bandits paradigm, the question of computational efficiency has seen substan-
tial research attention. Treating policies as experts (EXP4 [79]) with careful control on the exploration
distribution led to the optimal regret bounds of O(1/KT log |II|) in a number of settings. From an efficiency
point of view (where efficiency is defined with respect to an arg-maz-oracle that is able to compute the best
greedy policy in hindsight), the first approach conceived was the epoch-greedy approach [159], that suffers
a sub-optimal dependence of T%/% in the regret. More recently, “randomized-UCB" style approaches [160]
have been conceived that retain the optimal regret guarantee with (5(\/T ) calls to the arg-max-oracle. This
question of computational efficiency has generated a lot of subsequent, recent research interest [161-164].
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dimension of the contexts d. But UCB ignores the contextual information and will not guar-
antee any control on the policy regret in the CB setting: it can even be linear. On the
other hand, as we noted above, algorithms tailored to the CB setting like LinUCB [157] and
OFUL [158] incur the minimax-optimal policy regret of O((vd++v/K)v/T) in the CB setting.
But these algorithms also incur this sub-optimal dependence on the dimension even in simple
instances when 6* = 0. Thus, we pay substantial extra regret by using the algorithm meant
for CB on MAB instances, which have simpler structure.

The above discussion shows that neither of the algorithms tailored to the MAB or CB
setting automatically adapt to the correct model class. This motivates the design of a single
approach that adapts to the inherent complexity of the reward-generating model and obtains
the optimal regret bound as if this complexity was known in hindsight. Specifically, we seek
an answer to the following question:

Does there exist a single algorithm that simultaneously achieves the O(logT) regret rate
on simple multi-armed bandit instances and the O((vd + VK)VT) regret rate on linear
contextual bandit instances?

3.2 Related work: Challenges specific to
limited-information model selection

The problem of policy class selection in contextual bandits has received some attention from
an empirical perspective, although publicly available results are few and far between. A
popular application of linear contextual bandits is to personalized article recommendation
using hand-crafted features of users: in experiments conducted by Li et al [154], two classes
of linear contextual bandit models with varying levels of complexity were compared to sim-
ple (multi-armed) bandit algorithms in terms of overall reward (which in this application
represented the click-through rate of ads). A striking observation was that the more com-
plex models won out when the algorithm was run for a longer period of time (e.g. 1 day as
opposed to half a day). Surveys on contextual bandits as applied to mobile health-care [156|
have expressed a desire for algorithms that adapt their choice of policy class according to
the amount of information they have received (e.g. the number of rounds).

At a high level, we seek a theoretically principled way of doing this. A natural initial
question is whether any of the full-information approaches that we described in Chapter
can be adapted to work in the bandit setting. Indeed, perhaps the most relevant work
to online policy class selection involves significant attempts to corral a band of M base
bandit algorithms into a meta-bandit framework [165]. The idea is to bound the regret
of the meta-algorithm in terms of the regret of the best base algorithm in hindsight. The
CORRAL framework is a variation of the online validation framework proposed in Chapter [2]
under limited-information feedback. Thus, it is very general and can be applied to any set of
base algorithms, whether efficient or not. CORRAL, however, turns out not to be the optimal
choice of computationally efficient algorithm for the multi-armed-vs-linear-contextual bandit
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problem for a couple of reasons.

1. It is not clear what (if any) choice of base algorithms would lead to a computationally
efficient algorithm that is also statistically optimal in a minimax sense simultaneously
for both problems.

2. The meta-algorithm framework uses an experts algorithm (in particular, mirror descent
with log-barrier regularizer and importance weighting on the base algorithms) to choose
which base algorithm to play in each round. Thus, it is impossible to expect the
instance-optimal regret rate of O(logT") on the simple bandit instance. More generally,
the CORRAL framework will not yield instance-optimal rates on any policy clasg’|

As evidenced by the sub-optimalities of CORRAL in performing nested model selection,
the principal difficulty in applying online validation approaches to contextual bandit model
selection is the navigation of an even finer exploration-exploitation trade-off: algorithms
(designed for particular model classes) that fall out of favor in initial rounds could be picked
very rarely and the information required to truly perform model selection may be absent even
after many rounds of play. CORRAL tackles this difficulty using the log-barrier regularizer for
the meta-algorithm as a natural form of heightened exploration [166|, together with clever
learning rate schedules — but these turn out to not give optimal model selection guarantees
in our setting. Similarly, directly extending SRM-based approaches to model selection in the
contextual bandit problem without taking proper care of exploration schedules would lead
to similar issues. In fact, in the non-contextual setup, impossibility results exist showing
that model selection is not possible [167]. The question that we want to address is whether
we can do better in a contextual environment.

3.3 Model selection: Multi-armed-bandit vs contextual
bandit

Our algorithms use a more direct approach to model selection using cleverly designed sta-
tistical tests. We utilize a simple “best-of-both-worlds” principle: exploit the possible simple
reward structure in the model until (unless) there is significant statistical evidence for the
presence of complex reward structure that would incur substantial complex policy regret if
not exploited. This algorithmic framework is inspired by the initial “best-of-both-worlds”
results for stochastic and adversarial multi-armed bandits; in particular, the “Stochastic and
Adversarial Optimal” (SAO) algorithm [168] (although the details of the phases of the algo-
rithm and the statistical test are very different). In that framework, instances that are not
stochastic (and could be thought of as “adversarial”) are not always detected as such by the
test. The test is designed in an elegant manner such that the regret is optimally bounded

50n our much simpler instance of bandit-vs-linear-bandit, we do obtain instance-optimal rates for at
least the simple bandit model.
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on instances that are not detected as adversarial, even if an algorithm meant for stochastic
rewards 1s used. Our test to distinguish between simple and complex instances shares this
flavor — in fact, all theoretically complex instances (#* # 0) are not detected as such.
Another closely related algorithm, that also uses the sequential testing approach, is the
concurrent work of [169] which tackles the problem of selecting among a hierarchy of linear
classes with growing dimension. They work with stochasticity assumptions on the con-
texts that are weaker than the assumptions that we make in this chapter. However, they
are only able to establish a sub-optimal bound on the regret of (5(di/ 5T2/3) (where d, is
dimension of the optimal linear policy) as opposed to the minimax optimal regret rates
(that scale with T%/2) which we establish in this chapter. Our main observation is that com-
monly encountered sequences of contexts can help us carefully navigate the finer exploration-
exploitation trade-off when the model classes are nested. We discuss comparisons between

our algorithm OSOM and their algorithm, ModCB, in Section [3.6] at the end of this chapter.

Construction of Confidence Sets

Underlying the design of both our algorithms is the design of appropriate upper confi-
dence estimates corresponding to the bias of each arm, as well as the linear model pa-
rameter. We let T;(t) := S.._,I[A, = i] be the number of times arm i was pulled and

Git = 2221 9i.s1[As =] /Ti(t) be the average reward of that arm at the end of round ¢. For
each arm we define the upper confidence estimate as follows,

ﬂi,t = Git (3-1)

1+ T(t) K(1+Ti(t)2 :
—Tf(t) <1+210g(—5 ))] )

Lemma 6 in [158| (restated below as Lemma here) uses a refined self-normalized mar-
tingale concentration inequality to bound |u; — g; | across all arms and all rounds.

+o

Lemma 3.3.1. Under the simple model, with probability at least (1 — §) we have, Vi €
{1,...,K},¥t >0,

\pi — Gisl

1+ Ti(t) K(1+Ti(t)2 :
—Tf(t) <1+210g<—5 >>] :

This controls the upper confidence bounds for the estimates of the bias terms {u; K.
For any round ¢t > K, let 6, be the (*-regularized least-squares estimate of 6* defined
below.

<gc

~

1
0 = (aIT(H:tO‘KH:t + I) afT<+1;tGK+1;t, (3.2)
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where a1+ is the matrix whose rows are the context vectors selected from round K + 1 up
until round ¢: a£K+17K+1, . 7ajlt,t and Ggy14 = [QAK+1,K+1 — PAgei1 K-y GAnt — ﬂAt,t_l]T.
Here we are regressing on the rewards seen to estimate 6*, while using the bias estimates
fli1—1 obtained by our upper confidence estimates defined in Equation (3.1).

Lemma 3.3.2. Let 6, be defined as in Equation (13.2)). Then, with probability at least (1—36)
we have that for allt > K, 6* lies in the set

e = {9 eR: (|0 — 6,2 < IC(;(t,T)} , (3.3)

where Ks(t,T) = (5(0 -d-/T) is defined in Equation (3.8d).

We prove this lemma in Section [3.7]

Optimal model selection under context diversity

It is of particular interest to identify whether optimal model selection is ever possible in
contextual bandits. A “greedy" refinement of the sequential testing that uses no forced
exploration is proposed below in Algorithm [I]

The intuition behind Algorithm [1} is straightforward. The algorithm starts off by using
the simple model estimate of the recommended action, that is, #;; until it has reason to
believe that there is a benefit from switching to the complex model estimates. If the rewards
are truly coming from the simple model, or from a complex model that is well approximated
by a simple multi-armed bandit model, then Condition [3.6| will not be violated and the regret
shall continue to be bounded under either model. However, if Condition [3.6| ¢s violated then
algorithm switches to the complex estimates — j; for the remaining rounds. The condition is
designed using the function Wj(t, T') which is of the order O (o (d++/K)+/t). This corresponds
to the additional regret incurred when we attempt to estimate the extra parameter — 6, € R%.

At each round Condition [3.6|compares the algorithm’s estimate for the cumulative reward
that could be obtained by playing according to the complex estimates — Zi;lK 1 js—1 T+
(aj, s, és) — with the actual cumulative rewards seen so far ZZ;IK +10is,s Dy sticking to the
simple estimates.

Under the simple model, given our construction of the confidence sets the term
22;1K+1<O‘js,57 f,) will be bounded by O((d 4+ v/ K)/t) as the true underlying vector §* = 0.
While the remaining terms ZZ;IK +1Hjas—1 — Yi,,s shall be at most 6(\/@), as the simple
estimates (is) shall be picking out the best arm quite often under the simple model. In
fact under this model we show in Lemma that Condition [3.6|is not violated with high
probability and the algorithm shall continue using simple estimates throughout its entire
run.

On the other hand, under the complex model, we switch to the complex estimates only
if the difference between the algorithm’s estimate for the cumulative reward that could

be obtained by playing according to the complex estimates — Zi;lKH fj, s—1 + (a5, 05) —
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Algorithm 1: OSOM (Optimistic Selection Of Models)
1 fort=1,...,K do
2 L Play arm ¢ and receive reward g ., (Play each arm at least once.)

fort=K+1,...,ndo
4 Current Model «+ ‘Simple’
Simple Model Estimate:

w

it € argmax {ﬂi’tfl} (34)
€{1,...,K}
6 Complex Model Estimate:
jtv ét & argmax {ﬂi,t—l + <Oél'7t, 9>} s (35)

i€{1,...,K},0Cs_,

where C;_; defined in Equation (3.3).
if Current Model = ‘Simple”’ andt > K + 1 then
Check the condition:

t—1 ~
Z {ﬂjs,s—l + <ajs,s7 93) - gis,s}

s=K+1
10 where Ws(t,T') defined in Equation (3.8¢)).
11 | If violated then: Current Model « ‘Complex’.
12 If Current Model = ‘Simple’: Play arm ¢, and receive reward g;, ;.
13 Else if Current Model = ‘Complex’: Play arm j; and receive gj, ;.

14 | Update {ﬂi,t}fil and Cy.

exceeds the rewards seen so far ZZ;IK +10iss DY (5((d + V/K)v/t). That is, only when the
algorithm starts to suffer a regret that is equal to the minimax rate of regret. While instead
if this condition is not violated under the complex model, that is, our estimated cumulative
reward for switching to the complex model is close to the rewards seen far. Then we show
that the regret under the complex model is small even by using simple estimates. We do
this in Lemma [3.4.2]

By combining the arguments outlined above our main theorem optimally bounds the
regret of OSOM under either of the two reward-generating models. Underlying the success
of our statistical test, and therefore optimal model selection guarantees, are the following
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stochastic assumptions on the context vector{’. We assume that these contexts vectors
€ B4(1) and are drawn independent of the past from a distribution such that Q¢ 1S
independent of {a;};»; and, Vi € [K] and Vt € [T,

Ei 1 [ai,t] =E |:05i,t

{nj,sa aj,s}jG[K],se[t—l]:| = 07

Ei1 [aio,] :=E [az-,toz?,t {njs, Oéj,s}jem,se[t—u]
— Zc t Pmin * Ia (37>

where we have py;, = ¢/d for some positive constant ¢ € (0, 1] that does not depend on

d. (Note that this scaling on puin is because we have assumed ||a;4||2 < 1, and so we trivially
have puin < 1/d.)
Under this assumption, we are ready to state our model selection result.

Theorem 3.3.3. With probability at least (1 —99), we obtain the following upper bounds on
regret for the algorithm OSOM (Algorithm :

1. Under the Simple Model:

16 2K
Ry, <o- Z [3Ai+K10g (A(S)]

:;>0

2. Under the Complex Model:

Ry SA(K +1) + 4T, T) = 0 {o(d + VE)WWT},

where Ws(T,T) is defined in Equation (3.8€)).

Notice that Theorem [3.3.3] establishes regret bounds on the algorithm OSOM which are
near-minimax-optimal under both simple model and the complex model up to logarithmic
factors. In fact, under the simple model we are able to obtain problem-dependent regret
rates.

In the complex model we are close to the minimax rates obtained by OFUL (which holds
for adversarial contexts as well), with a slight sub-optimality in the dimension dependence.
A natural question for future work is if it is also possible to obtain problem dependent rates
in the complex model simultaneously. For example under the complex model by using OFUL
it is possible to show that regret grows poly-logarithmically with T: RS < O ((d + K)?/Ay),
where A, is an appropriately defined gap in the linear model.
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Figure 3.1: Experiments on synthetic data with K = 5, d = 50 and 7' = 300. The three
algorithms plotted are OSOM, UCB and OFUL. Figure from [89].

Empirical evaluation of algorithms

To experimentally corroborate our claims, we ran our model-selecting algorithm, OSOM, on
both simple and complex instances. We compared its performance to that of UCB (which
is optimal up to logarithmic factors under the simple model) and OFUL (which is minimax
optimal under the complex model)ﬂ.

When data is generated according to the simple model (6* = 0), we see that OSOM and
UCB suffer regret that is sub-linear, and is significantly lower than the regret suffered by

60ur assumption is essentially one of context diversity — the conditional mean of the context vectors
are 0 and the co-variance matrix has its minimum eigenvalue bounded below by pmin := ¢/d for a positive
constant ¢ € (0,1]. The context diversity assumption has also been made to analyze the greedy algorithm
in linear contextual bandits [170H172|.

"Here is a more detailed description of the experiment: data was generated synthetically with the number
of arms K = 5, and the dimension of 6*, d = 50. The mean rewards of the arms p; ~ Unif(—1,1), were
drawn independently from a uniform distribution, and the context vectors c;; were drawn independently
from the uniform distribution over the sphere. The noise 7;+ ~ N(0,1) was drawn from a 1-dimensional
Gaussian with unit variance. Under the simple model 8* = 0, while under the complex model 8* was also
drawn from the uniform distribution over the unit sphere in d-dimensions. In both the experiments we
average over 50 runs over 7' = 300 rounds to estimate the expected regret incurred. The realizations of the
problem were drawn independently for each run of each algorithm. For both OFUL and OSOM we used the
empirical covariance matrix to build the upper confidence ellipsoid.
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OFUL whose regret is also sub-linear but pays for the additional variance of estimating a
more complex model. While when the data is generated from the complex model (]|0*||s = 1)
the regret suffered by UCB is linear as it does not identify and estimate the linear structure
of the mean rewards. Here, the regret suffered by both OFUL and OSOM is sub-linear and
almost identical.

It is important to note here that algorithms designed solely for the linear contextual
bandit problem, like OFUL, work for stochastic conditional rewards regardless of the sequence
of contexts, which can be chosen adversarially. However, our goal here is to optimally adapt
to simpler model structure while retaining the contextual bandit regret guarantee. Currently
designed algorithms tailored to the linear contextual bandits problem, like OFUL, will fail at
this objective even under the stochastic assumption. Our stochastic assumption essentially
constitutes a sufficient condition for optimal model selection in linear contextual bandits.
Whether it is necessary, that is, whether model selection is possible for the case of adversarial
contexts, is an intriguing question left to future work.

3.4 Proofs

In this section, we collect the proofs of both algorithms.

Proof of Theorem 3.3.3

In this section, present the key lemmas that underlie the proof of Theorem below.
(These lemmas are proved in Section [3.5]) We then use them to prove our main theorem.

To prove Theorem we need to show that the regret of OSOM is appropriately
bounded under either underlying model. In Lemma we demonstrate that whenever
the rewards are generated under the simple model, Condition is not violated with high
probability.

Lemma 3.4.1. Assume that rewards are generated under the simple model. Then, with
probability at least (1 — 50), we have for allt € {K +2,...,T}:

t—1 t—1

Z [ﬂjs,sfl + <ajs,svés>:| - Z Gis < Ws(t —1,T).

s=K+1 s=K+1

This ensures that when the data is generated from the simple model, we have that the
Boolean variable Current Model = ‘Simple’ throughout the run of the algorithm. Thus, the
regret is equal to the regret incurred by the UCB algorithm, which is meant for simple model
instances.

On the other hand, when the data is generated according to the complex model, we first
demonstrate in Lemma [3.4.2] that the regret remains appropriately bounded if Condition
is not wviolated.
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Lemma 3.4.2. For allt € {K +1,...,T}. Let Condition[3.¢ not be violated up until round
t+1, that is,

t

Z {ﬁj875*1 + (s §S> - giS,s} < Wis(t,T).

s=K+1
Then, we have Rf < 4K + 2W;(t,T'), with probability at least (1 — 59).

While when the data is generated according to the complex model and if the condition
does get violated at a certain round, we switch to the estimates of the complex model, that
is, j;. This corresponds to a variant of the algorithm OFUL, which is meant for complex
instances. Thus, the regret remains bounded in the subsequent rounds under this event as
well (formally proved in Lemma in Section . Combining the results of these three
lemmas yields the regret bound, as described below.

Proof of Theorem|3.5.5. The proof is split into three cases.

Simple model (MAB): We have established in Lemma that Condition is not
violated with probability at least (1 — 59) under the simple model. Conditioned on this
event, OSOM plays according to the simple model estimate, i;, for all rounds. Invoking
Theorem 7 in [158] gives us that with probability at least (1 —0), Ry < >0 4 034 +
(16/A;) log(2K/A;6). Applying the union bound over these two events gives this regret
bound with probability at least (1 — 66).

Complex model (CB): One out the two disjoint events are possible under the complex
model.

Case 1: In this event Condition [3.6|is never violated throughout the run of the algorithm.
Then by Lemma [3.4.2| we have

RS < AK + 2W;s(T,T)

with probability at least (1 — 59).
Case 2: The other event is when Condition [3.6]is violated in round 7, < T. We know

by Lemma [3.4.2}

RS, <AK + 2Ws(T,T)

Tx

with probability at least (1 — 5J). Also, by Lemma [3.5.1}

t

Rﬂc'*:T = Z [/’L"is + <9*7 a5375> - ILLAS - <9*7 OéA375>]

S=Tx

< 2Ws (Ta T)
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with probability at least (1 — 46). We can decompose the cumulative regret up to round T
as follows:

Rfcf S Rf'*—l + Rf'*:T + 47

where R . denotes the regret of the algorithm starting from round 7* up to round 7" and the
4 appears as it is the maximum regret that could be incurred in round 7, by the algorithm
under the complex model. By taking a union bound and using the decomposition of the
regret above, we get RS < 4(K + 1) + 4W;(T,T), with probability at least (1 — 99). O

It remains to prove Lemmas |3.4.1| and [3.4.2] and the remainder of this section is devoted
to doing this.

Useful functions

Before proving the lemmas, we formally define some useful functions that arise by applying
the concentration inequalities on terms that appear while controlling the regret.

16 8 2dT
el T) 1= (p?mn i 3pmin) o (T) ' (38a)
)= (3 52 12 (1] ) (35t

log (24- + 4 /1 24T + log® 24T
g | = og | =5 og 5

d t 1
M;(t) == \/202 §log (1 + 3) + log (5)> + 1. (3.8¢)

K (t T) M(;(t) + Ta(t, T), fK<t< K-+ Tmin(57 T), (3 8d)
) = M (t Ts(t,T . .
6 v 1+Pmij'((t)—K)/2 + 1+pmii-((tf)K)/2’ if K+ Tanin(0,T) < 2.
t
141 1
Wis(t,T) =2 Z Ks(s—1,T)+ 0\/% log (S) (3.8¢)
s=K+1

VKt.

+

o (r2en (7))

It is straightforward to verify that Wj(t,T) = O (a(d + \/F)ﬁ)
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3.5 Proof of key lemmas

We define several statistical events that will be useful in proofs of the lemmas that follow in
this section.

t—1
t 1
51 = { E Nis,s SU ilOg <5>>Vt€ {K+27’T}}’ (39&)
s=K+1

£, = {mi — gl < g\/H_Ti(S) (1+210g (K(l +?(8))1/2)>,w € [K] and t € [T]},

T7(s)
(3.9b)
& = {||ét — ||y < Ks(t, T), Wt € {K +1,... ,T}} . (3.9¢)

Event &; represents control on the fluctuations due to noise: applying Theorem in the
one-dimensional case with V' =1 and Y; = 1, we get P(Ef) < ¢ for all £ > 0. Event &
represents control on the fluctuations of the empirical estimate of the biases [u1,. .., k]
around their true values: by Lemma we have P(£5) < 4. Finally, event & represents
control on the fluctuations of the empirical estimate of the parameter vector 8* around its
true value: by Lemma , we have P(£5) < 36. We define the desired event £ := £,NENE;
as the intersection of these three events. The union bound gives us P(€¢) < 54. For the rest
of the proof, we condition on the event &£.

Regret under the simple model

We restate and prove the following lemma establishes that under the simple model, Condition
is not violated with high probability.

Lemma 3.4.1. Assume that rewards are generated under the simple model. Then, with
probability at least (1 — 50), we have for allt € {K +2,...,T}:

t—1 t—1

Z |:ﬂj5,8—1 + <aj57syés>:| - Z Gig,s < Wg(t - I,T).

s=K+1 s=K+1

Proof. Under the simple model, We have the model for the rewards is g;; = p; + 1.
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Therefore, we have

t—1 t—1

Z [ﬁjms—l + <O‘js7s>9~s>] - Z Gis.s

s=K+1 s=K+1
t—1 =1
- Z |:’LL]575 1 + Q]5757 ] Z lu“ls Z ni573
s= K+1 s=K+1 s=K+1
t—1 i—1
= E —MNig,s T E ,Uzs,s 1= i) + E ,ujs,s 1= fligs— 1] + § <04js,5’95>
s=K+1 s= K+1 s= K+1 s=K+1
t—1 t—1
= E —MNig,s T+ E /’I/’Ls;S 1~ M) + E ﬂjs,s 1= fhiys— 1]+ E <O‘j378798>
s=K+1 s K+1 s K+1 s=K+1
vV - vV vV
—-Fno =Tsim1 =Tsim2 ::Flin

= I_\no + I_\siml + Fsim2 + Flin-

Notice that the difference neatly decomposes into four terms, each of which we interpret
below. The first term I',, is purely a sum of the noise in the problem that concentrates
under the event &. The second term I'y;,,; corresponds to the difference between the true
mean reward f;, and simple estimate of the mean reward fi;, s—1, which is controlled under
the event &. The third term I'y;,,5 is the difference between the mean rewards prescribed by
the simple estimate and complex estimate fi;, s—1 and fi;, s—1 respectively. Finally, the last
term T'j;, is only a function the estimated linear predictor (and since the true predictor is
0* = 0, this term is controlled by even &;).
Step (i) (Bound on I',,): Under the event &, we have

t 1
Fno S g 5 lOg (5) .
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Step (ii) (Bound on Iy, ): By the definition of fi; ;1 we have,

t—1
Limi = E Hig s—1 — Hig

s=K+1
@) e 1+ T (s—1) K(1+4Ty(s —1))1/2
<2 ls 1+21 !
72\ G- (* Og( ; ))
s=K+1 s
t—1
1+ T, (s — 1) K(t—1)1/2
<2 : 1+21
72\ (* Og( 5
s=K+1 s
- 1 K Tit-2)
K(t—1)1/2 & 1+7
= 20\/<1 + 2log ( 5 2 ; 32

(? [20\/(1+210g (K (t—1) 1/2))] VE(t—1),

where (i) follows under the event &, (ii) follows as

Ti(t-2) 1 Ti(t=2)  [q
2 - <2 - < Ti(t—2
I A

and (iii) follows by Jensen’s inequality and the fact that S/ Tj(t —2) =t —2 <t — 1.
Step (iii) (Bound on T2 ): Equation (3.4), which shows the optimality of arm i, tells
us that fi;, s—1 > fi;, s—1 for all s. Therefore I's;2 < 0.
Step (iv) (Bound on I'j;;,): By the Cauchy-Schwarz inequality, the constraint |la; 4|2 < 1
and the triangle inequality, we get

t—1 t—1
Diin = Z ajssv s < Z ||O‘JSS|| HQ ||2 Z HQS_Q*H?

s=K+1 s=K+1 s=K+1
t—1 R t—1
< 0t = Oy + 10 — 02 <2 Y Ks(s —1,7),
s=K+1 s=K+1

where ICs(s — 1,T) is defined in Equation (3.8d)).
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Combining the bounds on 'y, sim1, Lsime and Ty, and by the definition of Wy(t —1,T),
we have

t—1 t—1

Z |:/1jg,s—1 + <ozjs,s,§s>} — Z Gios < Ws(t—1,T),

s=K+1 s=K+1

which completes the proof. O

Regret under the complex model

The bound on the regret under the complex model follows by establishing two facts. First,
when Condition [3.6]is not violated, we demonstrate in Lemma that the regret is appro-
priately bounded. Second, if the condition does get violated, say at round 7, our algorithm
OSOM chooses arms according to the complex model estimates ‘j," for t € [r,...,T]. In
Lemma [3.5.1], we show that the regret remains bounded in this case as well.

We start with the first case by proving Lemma [3.4.2]

Lemma 3.4.2. Forallt € {K+1,...,T}. Let Condition|3.6 not be violated up until round
t+ 1, that s,

t

Z {’&jsvsfl + <ajs,87 0~S> - gis,s} < W(S(t,T)

s=K+1
Then, we have R{ < 4K + 2Wjs(t,T), with probability at least (1 — 50).

Proof. Since we have already conditioned on the event £, we can assume that events &, &
and &3 hold. Note that if Condition is not violated up to round t then we have that
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As =i, for all s <t. Using the definition of Ry, we get

t

Rf = Z [/‘Lns + <0*7 a1€375> - Hig — <9*’ ai3’5>]

s=1

t
< 4K + Z [fr, + (07, Qe s) — pi, — (07, i, 6]

s=K+1
t
= 4K+ Z (,uns + <6*7aliss g'LSs + Z Gis,s — Hig — <9 7a’is,8>)
s=K+1 s=K+1

= 4K + Z (MRS + (0%, vy 5) — [jy,5—1 — <9~57Oéjs,s>>

t
+30 (Ao (B 00) — 910 ) + Z "

s=K+1 s=K+1

<Ws(t,T)
t

ST+ S (e + O~ s () + Y

s=K+1 5 K+1
~ /
g v~
::Flin —-Fno

where 4K is the maximum possible regret incurred in the first K rounds under the complex
model. By the definition of &, we get Iy, < o1/((1+1)/2)log(1/d). Next, let us control
I';;,. We have

Flzn = Z (Mns 9 y Ok S> - ﬁjs,s—l - <9~S> aj575>>

s= K+1

=3 (et ) — e — ()

s=K+1

t
+ Z (ﬂns,sfl + <657 Ofm,s) - /1]'3,8*1 - <957 ajs,8>)7

s=K+1
NS

J/

-~

<0

where the non-positivity of the second term is because of the optimality of arm j, as expressed
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in Equation (3.5)). Hence, we have

t
i < Z (Mfes + <0*7 aﬁs,s> - ﬁms,s—l - <057 ans,S>>

s=K+1
t t B
- Z Hrs — ﬁ/ns,s—l + Z <ai€s,8> 0" — 98)
s=K+1 s=K+1
t t -
< Z Mg — ﬁn57s—1 + Z ||O‘Hs,8 ’2”9* - 98H2
s=K+1 s=K+1
t t
< Z Prg — Hrgs—1 + Z He* - QSH??
s=K+1 s=K+1

where the last two inequalities follow from the Cauchy-Schwarz inequality and the constraint
|cviella < 1respectively. Under the event &, we have ji., —fi,, s—1 < 0. Also, by the definition
of A, and under event &, we have

t
Tin <2 ) Ks(s = 1,7),

s=K+1
Combining these bounds, we get
1+t 1 :
RS < AK +Ws(t, T) + o—\/T log <5> 2 ) Ks(s—1,T) < 4K +2W;(t,T)
s=K+1

under the assumption that event £ holds. Since we already showed that P(€) > 1 — 56, our
proof is complete. O

Now, we move on to the second case. The next lemma shows that if Condition [3.6| was
violated at round 7, (which is, in general, a random variable), then playing the complex
model estimates j, for all s > 7, keeps the regret bounded in subsequent rounds.

Lemma 3.5.1. If Condition[3.6 is violated at round T, that is,

Te—1

Z {ﬁj573—1 + <Oéjs7s>9~s> — gis,s} > Wg(T* — 1,T)_

s=K+1

Then with probability at least (1 — 49) we have,

t

R .= Z [bey + (07, Queyys) — pa, — (07, aa,6)] < 2Ws(T, T).

S=Tx
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Proof. For this proof, we only need events & and &5 to simultaneously hold. We define the
event & = & N &. Again, by the union bound we have P(£¢) < 46. For the rest of this
proof we assume the event &’.

If Condition is violated at round 7*, then we have A, = j, for all rounds s > 7.
Thus,

T
R7C'*IT = Z |:Iu”€s + <9*7 a5575> - ILL]S - <9*’ aj573>]
T ~
= Z [,um + <9*7 ams,s> - ﬁjs,s—l - <957 aj575>:|
T ~
+ Z [ﬁjs;s_l + <95’ aj575> - M]s - <9*7 aj575>:|
T ~
= Z |:/~L,‘€5 + <9*7 an575> - ,&%5,3—1 - <987 ans,s>:|
T ~ ~
+ Z [[Nlns,s—l + <95a ans,s> - ﬂjs,s—l - <957 aj575>:|
N ;6 J/
T ~
3 [t + g ) = s, — (0%, 03,)]

where the second term is non-positive by the optimality of arm j, as expressed in Equa-
tion (3.5)). Under the event &, we have u; — fi; s—1 < 0 for all s > 0 and i € [K]. Therefore,
we get

T T
R, <> [<9* — 0y, . ) + (0, — 0%, ajs,s)} + > [fjas — p5,]
T ~ T
< 118 = 02 (e, sl + Nl slla) + ) [g,am1 = p5.]
T _ T
<2 ZHes —0"[]2+ Z [fje,s-1 = 15.],
h :}‘rlln ] h F:iras ’

where the inequalities follow by two applications of the Cauchy-Schwarz inequality and the
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constraint ||, ¢||2 < 1. First we control I'j;,. Under the event & we have

rlm_zzue —0*y|2<421c5 s—1,T).

S=Tx

Next, we control the term I'y;,5. By the definition of fi;, 1, we have

T

Pyos = 3 [igons — i <202 %(_1)1)(1+210g(K(1+E(s—1))1/2)>

=)

S=Tx S=Tx

1+T,(s—1) KT/
<2<;Z T23—1 (1+210g( ))

'QUWMM(K sV
!

IA

=1 r=
TZ(T 1)

) Z 2

1 r=1

[\
S
Q
Q
VR
—_
+
\)
o
o

It

j

IN
T w 1
Q
Q
N

=1

)

(
s (150))| 35 v
(

INS
r o 1
=

7 N\

—_

+

[\

<)

o3

where (i) follows by Jensen’s inequality and the fact that S0 T)(T—1) =T —1 < T. The
rest of the inequalities can be verified by some simple algebra. Combining the bounds on

the respective terms, we get
KT1/2
20\/(1 + 2log ( 5 )>

which completes the proof. O]

T
r<4Y Ks(s—1,T)+

S=Tx

VKT < 2W;s(T, T),

3.6 Conclusions and future work

Our results should be thought of as initial progress on the goal of online model selection in
contextual bandits, i.e. we identified sufficient conditions for contexts under which optimally
preserving simple model performance with (slightly sub-optimal) complex model guarantees.
Under these conditions, we have shown that the algorithm tailored to the simple model
automatically performs sufficient exploration to be able to perform model selection.
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Whether these conditions are necessary is not clear, and more generally fundamental
limits on contextual bandit model selection as well as instance-optimal algorithms remain
open |173|. It is worth noting that the critical difficulty of the problem lies in reliably testing
whether the maximal reward by any model in the complex model class is much greater
than the maximal reward by any model in the simple model class. If this was given as
side information, elegant schemes based on Corraling [165, 174] and regret balancing [175]
show that optimal model selection is possible. However, knowing this information would
correspond to actually knowing the model order, which is unrealistic when considering nested
model classes in particular. Both our approach and that of [169] utilize being able to estimate
this information in a much smaller number of samples than that required to estimate the
optimal complex model, but in different ways. All of these observations suggest that the
difficulty of contextual bandit model selection, at least in purely stochastic environments,
could be intricately linked to the sample complexity of estimating this quantity. It would be
interesting to turn these observations into concrete fundamental limits on model selection
under limited-information feedback. Additionally, model selection beyond linear classes is of
natural interest, and has already been considered in recent work [174, (176, |177].

Finally, we have not considered the possibility of an adversarial environment in this
chapter. While we have “state-of-the-art" algorithms that adapt between stochasticity and
adversity for a given model class [168, 178], it is likely that a tractable solution to the purely
stochastic model selection problem will be needed before moving to robust model selection
under limited-information feedback.

3.7 Omitted proof details

In this section, we fill in omitted proof details for completeness. We recall Lemma [3.3.2]
which is an error bound on the ridge regression estimate #;, and present a proof below.

Proof. To unclutter notation, let &« = a11.+, G = Ggy14. Further, define

n= [nAK+1ij‘1’ < 777At7t]T7 B = [HAK—Q-l’ s 7:uAt]T and i}’ = [ﬂAK-',-lyK’ s 7ﬁAt,t—1]T' By the
definition of 6;, we have

0, = (a'a+ ])_1 a'G
=(a"a+1) " a (@ + (i +n)
(et 1) 4 (@l 1) aT (u )+ (aTat 1) aTn

Now, let us define V; := "+ I. Then, for any vector w € R? (whose choice we will specify
shortly), we get

wT (ét _ 9*> = WV WV e (p— )+ w Ve Ty

_ —wTVrlﬂV;UZQ* + wTvrl/2V;1/2aT (“ _ l]/) 4 wTV;:l/Q‘/rlﬂaT’r].
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By the Cauchy-Schwarz inequality, we have
[T (6= 0")| < Nl (e mllys + 16l + Nl (= @l )
< Jwlly, s (laTmlly s+ o™ (=@l +1), (3.10)

where the second step follows as [|0*[|y,-1 < \/(1/7min(V2)) - [[67[]2 < 1. We now define three
events &, &5 and & below:

det 1/2
&y = {HaTnHth < \/20210g (#),Vt e{K+1,... ,T}} ,
D aags (pa, = fiagi)

Es = {Nt =
s=K+1 2

E = {Mmin(V2) > 1+ puin(t — K)/2,Vt € {K + 100in (6, T), ..., T}}.

Define the event £” := £, N E N E. By Theorem with V' = I we have, P(&5) < 9, by
Lemma we have P(Ef) < § and Lemma tells us that (P)(&§) < 6. Therefore by a
union bound P(£°) < 3§. For the rest of the proof, we assume the event £”. Hence, we get

1/2\ () d ' 1
lea "y, < \/202 log (%) < \/202 (5 log (1 + E) + log (5>), (3.11)

where () follows by the technical Lemma [3.7.5] For the other term, we have
Ny < Ts (ta T)

t

< Ts(t,T), ¥t € {K+1,...,T}},

o™ (u — o) < < . (3.12)
Y \/’Ymin (‘/t) \/'Vmin (V;f)
Under &, we have
T B T(;(t,T), if Tmin((S) >t— K > 0,
/14 pmin (t—K) /2] AT

Choosing w = Vt(ét — 0*) and plugging in the upper bounds established in Equation (3.11))

and Equation (3.13)) into Equation (3.10), we get

6, — o] {Mg(t) + Y5(t,T), if Toin(0,T) >t — K >0,
e = Ollv < B V(5 VN |
M;(t) + Ty ift — K > min(0, 7).

Recall the definition of M;(¢) in Equation (3.8c). Using the fact that
10 — 0% ]2 < (1/4/Ymin(V2))||0: — 6%||v, along with the event &, we get

b= ] < Ms(t) + T5(t, T), if Toin(8,T) >t — K > 0,
p— 0|2 < Ms(®) Ts(1.T) : .
v s T e g LI K> Tanin (9, T,
= ’Cg(t, T),

where the last equality is by the definition of KCs(¢,T") in Equation ([3.8d)). O
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Now, we establish a couple of concentration inequalities on quantities of interest in the

proof of Lemma [3.3.2} these constitute Lemmas [3.7.1] and [3.7.2]

Lemma 3.7.1. Define the matriz M; as

t
o T
M, =1+ E QAL 5Oy g

s=1
Then, with probability at least (1 — ), we have

pmint

’Ymin(Mt) Z 1 +

for all Tyin(6,T) <t <T.

Proof. Note that by the definition of M;, we have Ypmin(M;) = 14 Ymin (Zizl OZAS,SOC,ZS,S)- By
the assumption on the distribution of the contexts as specified in Equation (3.7]), we have
E, 1 [oz AS,SQLA = ¢ > pmind. Consider the matrix martingale defined by

t

Ly = Z [ozAS,sozX&S — EC] fort=1,2,...

s=1

with Z; = 0 and the corresponding martingale difference sequence Y, := Z, — Z,_; for
s={1,2,...}. As [laa,sllz < 1 and [|[Z[lop = [[Eso1 [ova, ), ] llop < 1, we have

”YSHOP = ||aAS7sa£s,s - E0”010 <2
We also have,

||]E8_1 [}{SY;T] Hop = HES_l [}/;TYS] Hop - HES_l [(aASvsa:|4—578 - EC) (aASvsa:|4—575 B EC)] H

S HEs—l [(QZS,SOZAS,S)OKAS,SO[XS,S - Zz] Hop S 2.

op

By applying the Matrix Freedman inequality (Theorem in Section with R = 2,
w? =2t and u = puint/2, we get that if ¢t > (16/p2:. + 8/(3pmin)) log (2dT/6), then

,Omint
2

P >

<

Nl

t
T
E aA.sasaAs,S - t ) ZC
s=1

op

This implies that

t

Pmint

“Ymin (Z OZAS,sa,ZS,S> 2 m2m
s=1

for a given t € {Tin(6,T), ..., T} with probability at least (1 —¢§/T"). Taking a union bound
over all t € {Tin(6,T), ..., T} yields the desired claim. O
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Lemma 3.7.2. Define the vector N; := ZZ:K-H i, s (i, — fligs—1). For all K <t <T we
have,

[ Nil[2 < Ys(t, T,
with probability at least (1 — 0).

Proof. Consider K < t < T. Note that [, 51 is a function of ¢; 1,...,0i, ,s—1 and
i1,...,%s—1. Also, the simple model estimate i is just a function of g;, 1,...,¢;, ,s—1 and
Ay, ..., A,_1. Therefore, we have

Byt [evi,s(piy — fi,s—1)] = (Hiy — fig,s—1)Es—1 [ai, 5] = 0

forall s € {K +1,...,t}, as a, s is assumed to drawn from a distribution with zero (condi-
tional) mean. Recall that y;, € [—1,1]. By the definition fi;, s_1, we have

Gi LA, =i 1+T;,(s—1) K(1+T;,(s—1))/2
Sy S 1 21 S
fig,s—1 = Z T (s—1) +o T2(s — 1) + 2log 5 ;

r=1 s
iy <2 <1+21og(K (14+T) /)

N\

(. J/

and therefore

K{+T
|, — [y s—1] < 2+0\/2 (1 + 2log (%)) =: Pr, Vs e {l,...,T}.

Define a martingale Z;  := N, and the martingale difference sequence Y, := Z, — Z,_;.
Then we have, for any s € {K +1,...,t},

1Yeekllop = 1Yokl < v, s (i, — figs—1)lly < M sllolms, — ftis—1| < pa, — fti, s—1] < Pr.

We also have

[ Eact [, 0, (i, = fiiyom1)’] Hop < PiZellop < P7,
and

B [of s (i, = figis1)?]|],) < PRIl oll3 < PE-

Invoking Theorem with R = Pr and w? = Pi(t — K), we get

Pr 2dT Pr 2dT 2dT )
> = - - — < —.
IP{HNtHQ 5 log ( 5 ) + 3 \/18(75 K)log< 5 ) log® ( 5 )} <7

From the definition of Ys(¢,T) in Equation (3.8b)) and applying the union bound over all
te{K+1,...,T}, we get

P{3t e {K+1,.... T} [[Nell2 = T5(¢,T)} < 0.

This completes the proof. n
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Concentration inequalities and technical results

In this section we state technical concentration inequalities that are useful in our proofs. We
start by defining notation specific to this section.

Let {F:}2, be a filtration. Let {&}7°, be a real-valued stochastic process such that & is
Fi-measurable and & is conditionally o-sub-Gaussian. Let {Y;}32, be an R%-valued stochastic
process such that Y; is F;_j-measurable. Assume that V' is a d x d positive definite matrix.
For any t > 0 define

t t
Vii=V+Y VY], 5 =) &Y
s=1

s=1

With this setup in place, the following is a re-statement of Theorem 1 of [158|, which is
essentially a self-normalized concentration inequality.

Theorem 3.7.3. For any 6 > 0, we have

det(V;)Y/2 det(V)~1/2
SIS = 1813 < 2021og( M) detV) )

)
with probability at least (1 —9) for all t > 0.

Next we state a version of the Matrix Freedman Inequality [179, Corollary 1.3] that we use
multiple times in our arguments. Define a matrix martingale as a sequence {Z; : s =0,1,...}
such that Z; = 0 and

E[Zs|Fs-1] = Zs and E || Zs|op] < 00, fors=1,....
Also define the martingale difference sequence X, := Z, — Z,_ .

Theorem 3.7.4. Consider a matriz martingale {Zs : s = 0,1, ...} whose values are matrices
with dimension dy X dy, and let {X, : s = 0,1,...} be the martingale difference sequence.
Assume that the difference sequence is almost surely uniformly bounded, that is,

| Xsllop < R a.s. fors=1,2...

Define two predictable quadratic variation processes of the martingale:

t
Weors =Y _E[X,X[|Foi]  and

s=1
t
Wrow,t ::ZE[XJX5|IS—1] fO’f’t: 1,2,...
s=1
Then for allu > 0 and w? > 0, we have
P {Elt Z O : HZtHOP Z u and maX{HWcol,tHop7 HWrow,tHop} S WQ}

u?/2
S (dl -+ dg) exXp (—W/Ru/g) .
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The final technical result we recap characterizes the growth of the determinant of the
matrix V7, and is useful in constructing our confidence sets for the estimate of #*. This
result is a restatement of Lemma 19.1 in the pre-print [180].

Lemma 3.7.5. Let V € R™? be q positive definite matriz and 21, . .., zp € R? be a sequence
of vectors with ||z]ls < L < oo for all t € [T]. Further, let vy := tr(Vy) and Vp :=
Vo + ZST:1 2,21 . Then, we have

det(VT)> < Vo —f- TL2 )
<dlog [ ———— .
& (det(Vo) =408 d det"4(Vy)
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Chapter 4

Learning from strategic, non-adversarial
data

data generator

~ ~ (e.g. defender)
X17 ce 7Xt—1 l

online learner

X1, X (e.g. attacker) . ()?h X))

Figure 4.1: Online learning from competitively generated data. The learner’s actions are
denoted by {X;};>1 and the competitive agent’s actions are denoted by {X;};>;. Note that
both (X;, X;) can depend on all of the past information {X,, X,}'Z!. Figure made using
Keynote.

In Chapter [I, we motivated our study of online learning by setting up the fundamental
goal of being able to design a learning algorithm that distinguishes between three kinds of
data: stochastic, strategic and cooperative. In Part I of this thesis, we discussed methodology
for adapting between stochastic and adversarially strategic data; however, in most interesting
scenarios, the data will be generated with a strategic but non-adversarial incentive in mind.
In both the examples of online marketplaces (Section and dynamic spectrum sharing
(Section , the most commonly encountered agents are selfish and rational; therefore,
learning in the presence of strategic agents necessitates an examination of how to learn from
competitively generated data. Figure provides a depiction of the ensuing repeated game
between learner and competitive “data generator".
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In this chapter, we study this question continuing to work in the online learning frame-
work. As we examined in Section [I.3], the problem of learning from competitively generated
data is unavoidably tied up with understanding explicit mechanisms for how this data will
be generated in response to learning. Thus, we cannot study optimality for either learner
or data generator in isolation—we need to study repeated game equilibria, or approximate
notions of it. To simplify the problem at hand, we assume a specialized setting of one-sided
learning, in which the data generator is assumed to know the learner’s utility function. As
we will see, this helps us connect explicitly to the traditional understanding, developed in
Bayesian repeated game theory, of the eventual outcome of interaction between learner and
data generator. Moreover, the one-sided learning setup, also commonly called information
asymmetry, is well-motivated in several applications such as securityE] games [181], where
the learner is an attacker who wishes to identify a target to attempt to compromise, and
the “data generator" is a defender who decides which target to defend with her protection
resources from possible attack. Information asymmetry is sometimes applicable to model the
interaction in online marketplaces: for e.g. in auctions between a single seller and bidder,
while (as we saw in Section the seller may not know even the bidder’s prior over utility
functions, it is conceivable that bidder knows the seller’s utility function owing to its generic
nature, i.e. to maximize monetary revenue or social welfare.

Thus, the focus of this chapter is to postulate natural and explicit rules that both the
learner and the data-generator will follow in repeated interaction. We do so by taking
a novel frequentist perspective on the ensuing repeated game with (one-sided) incomplete
information. Using these rules, we will address a central question: does the generator of data
want to reveal, or obfuscate, her (private) utility function information?

4.1 Review: One-sided learning and Stackelberg
equilibrium

Classical work on reputation-building in Bayesian repeated game theory [182-186| has shown
that the eventual outcome of repeated interaction between learner and “data generator", in
terms of time-averaged payoffs expected by both agents, corresponds to the outcome of a
special kind of one-shot interaction between a designated leader (here, the data generator)
and a designated follower. The nature of this one-shot interaction is called a Stackelberg
game, and is depicted in Figure 1.2 The critical difference from a traditional one-shot,
simultaneous, non-cooperative game is that in the Stackelberg setup, the leader has the
ability to commit to, and reveal her mized strategy in advance — and the follower has the
ability to observe this commitment and respond to it. Under this framework, we can easily
determine an optimal commitment for the leader, which is commonly called the Stackelberg

Tt is natural to ask why security games typically manifest as non-zero-sum. The reason for this is that
the defender often has a different utility function from the attacker, e.g. she may prefer defending certain
targets over others, while the attacker simply wants to attack which-ever target is most likely to be left open.
We will shortly see concrete examples of these types of games.



CHAPTER 4. LEARNING FROM STRATEGIC, NON-ADVERSARIAL DATA 133

Leader commitment: Follower best response:

mixed strategy pure strategy
-
b'e 77 (%)

ensuing leader payoff:
p(x)

Leader’s optimal (Stackelberg) commitment: x*

Figure 4.2: Extensive form of the one-shot Stackelberg game between leader and follower. x
denotes the leader commitment, and j*(x) denotes the follower best-response to the leader
commitment. Leader Stackelberg commitment is given by x*, and her Stackelberg payoff is
denoted by p*. Figure made using Keynote.

commitment, and the corresponding payoff obtained by the leader, which is commonly called
the Stackelberg payoff. Together, the set of the strategies followed by leader and follower are
called the Stackelberg equilibrium of the one-shot game.

Thus, an informal summary of the classical work on reputation-building is as follows:
The eventual outcome of repeated interaction with one-sided learning from competitively
generated data is the Stackelberg equilibrium of the one-shot non-zero-sum game. Here,
the data generator is designated as the leader and the learner is designated as the follower.
(Accordingly, for the rest of this chapter, we will use the terms leader and follower to refer
to data generator and learner respectively.) Crucially, the leader benefits significantly from
this commitment power, i.e. her ensuing Stackelberg equilibrium payoff is always at least as
much as her simultaneous equilibrium payoff [187]. This can be interpreted as the implicit
advantage that the leader enjoys as a result of the information asymmetry: she is utilizing
the information that she, alone, possesses of her utility function to maximal advantage. Since
it is an outcome of infinitely repeated interaction, the Stackelberg solution concept assumes
a very idealized setting in which the mixed strategy commitment is exactly revealed to the
follower. We could ask what might happen when these assumptions are relaxed, e.g. what if
the leader could only demonstrate her commitment in a finite number of interactions? The
questions arise of how she would modify her strategy to maximize payoff, and how much
commitment power she would continue to enjoy.

At a deeper level, the insightful connection between one-sided learning and Stackelberg
equilibrium explains why a patient leader can eventually achieve the full power of a repu-
tation/commitment — but does not provide an explicit mechanism for how she can achieve
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itf?l There are potentially many ways in which the leader could realize mixed-strategy com-
mitment power. In a paradigmatic example of Bayesian persuasion (Section 1 of [188]),
a prosecutor, who privately knows a defendant’s guilt, convinces a judge to convict some
proportion of innocent defendants by committing to a randomized signaling mechanism. In
this mechanism, she provides a guilty signal with non-zero probability conditioned on the
defendant being actually innocent. Let’s say that the prosecutor’s optimal signaling mecha-
nism has her do this with probability 1/2. The prosecutor’s reputation for signaling in this
manner is actually established through her track record with multiple judges, a track record
that she herself can generate. We know that she will eventually develop a reputation for
signalling optimally — but how she chooses to get there is unclear, and an intriguing question.
Should she signal guilty for every innocent defendant independently, with probability 1/27
Should she signal guilty less often for initial defendants, and more frequently for later ones?
What partial reputation power, if any, does she hold after interacting in this way with, say,
a 100 judges? What if she instead signaled in a deterministic fashion — in such a way that it
looks as though she signals guilty for 1/2 of innocent defendants most of the time? Would
such a strategy be optimal, or brittle?

These are difficult questions to concretely answer, because reasoning about constructive
ways to build a leader reputation critically involves reasoning about how followers will learn
and make inferences from the leader’s history. Since the game is non-cooperative, additional
complexity is introduced by the potential for leader incentive to deceive this learning process,
and potentially go even beyond the power of Stackelberg commitment. In what follows, we
discuss the Bayesian perspectives on repeated games with one-sided learning, and motivate
a novel frequentist perspective to attempt to answer the twin questions of:

1. How a follower should learn from data generated by a leader, and

2. How a leader should shape her data in response to follower learning.

4.2 Classical Bayesian setting: Reputation building and
Stackelberg equilibrium

The one-shot Stackelberg solution concept dates back to von Stackelberg [189] who demon-
strated the power of commitment in a quantity-setting duopoly. Schelling [190] provides
a succinct description for the power of commitment: “In independent decision situations,
weakness can confer strength — power may result from the power to bind oneself." He also
notes that commitment can be beneficial only if the communication channel is sufficiently

2This is because the analysis of the Bayesian repeated game model, while extremely insightful for the
case of pure-strategy reputation, is intractable for the case of a general mixed-strategy reputation. We chose
frequentist learning models for followers for our model instead. We compare these modeling assumptions in

detail in Section
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reliable. In traditional economic market models, such as firm competition [191] and seller-
buyer participation games [192], such commitment is usually to a pure strategy; and the
communication channel involves the relay of a public signal which may or may not be noisy.

The establishment of leader credibility in even a pure-strategy commitment is not trivial.
Credibility is traditionally explained by connecting the pure strategy Stackelberg solution
concept to the asymptotic limit of reputation building through repeated interaction[f]. Repu-
tation effects were first observed in the chain-store paradox, a firm-competition game where
an incumbent firm would often deviate from Nash equilibrium behavior and play its aggres-
sive Stackelberg (pure, in this case) strategy [191]. In seminal work, Kreps, Wilson, Milgrom
and Roberts provide theoretical justification for this particular game [182 [183] by model-
ing a (N + 1)-player interaction between a monopolist and multiple entrants, and studying
the limiting payoff of the sub-game-perfect-Nash equilibrium (SPNE) of an ensuing game
as N — oo. They show that the monopolist would eventually play her pure Stackelberg
strategy in the SPNE of this game endowed with a common (finitely supported) prior either
on the leader’s payoff structure, or on leader behavior either being “rational", or being con-
strained to play with a single pure strategy. The latter case models the possibility of a leader
satisfying a “commitment type"f] Fudenberg and Levine subsequently show positive repu-
tation attainment in two-player games endowed with a common prior on pure “commitment
types" [184], and generalize their results to a continuum of mixed commitment types with
the possibility of imperfectly observed leader actions |185]. The most general theoretical
result for positive reputation is that any leader of “rational type'f] can eventually realize the
payoff of any mixed commitment (including the Stackelberg commitment) in all sub-game
perfect Nash equilibria (SPNE) of the game as the discount factor goes to 1, i.e. an infinitely
patient leader. Gossner [186] provides a recent, insightful analysis through a characteriza-
tion of follower responses to a particular commitment type using relative entropy techniques
from information theory [195]. In the general case, the SPNE is not unique and there are
multiple possible ways in which a rational leader could achieve a mixed reputation. While
the results are asymptotic (i.e. for the infinitely repeated game), it has been suggested that
to realize her ideal Stackelberg payoff, the leader needs to play the game for the longest.
Example games such as the product-choice game (Example 4.1 in the survey [194]) hint at
the potential instability of the mixed commitment under finite observability being at the
heart of the reason for this. Our work formalizes this idea, which turns out to be central
to the issue of how to explicitly construct leader strategies that can plausibly build mixed
reputation.

Related in spirit to the study of mixed commitments under observational uncertainty
are intriguing results for pure strategy commitments under a different noise model. For
pure strategy commitments, the noise model is essentially Selten’s traditional trembling
hand perturbation [196]: there is a positive probability that the intended pure strategy is

3For two excellent surveys, see Sorin |193] and Mailath, Samuelson [194].
4This explicitly models the spirit of commitment power resulting from the power to bind oneself.
®Also called “payoff types" [194].
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distorted to a different one, which is then signaled to the followelﬂ Bagwell [198] shows
that if one restricts to pure strategies, even a minimal amount of observation noise in the
pure Stackelberg commitment (which in this case constitutes a discrete shift to another pure
strategy) can lead to a complete loss of commitment power. Subsequently, Van Damme and
Hurkens [197] show that allowing the leader to use a mixed strategy, while only revealing the
pure strategy realization to the follower[’] admits the existence of “robust" commitments that
approach the pure-strategy-Stackelberg commitment as the noise vanishes. In the repeated
setting, followers update their posterior based on leader observations as well as the common
prior for the game — and how effective reputation can be depends both on observability and
on the nature of the common prior. In particular, the prior has to have sufficient mass on
the “Stackelberg commitment" type. In an extreme situation where the commitment type
is instead a “bad commitment'f| and the leader actions are imperfectly observed, Ely and
Vilimaki [199] show that followers can respond in a way that is sub-optimal for the leader,
and thus reputation can be undesired. The intermediate situation where commitment types
can be either good (e.g. Stackelberg) or bad is more nuanced — here, Ely, Fudenberg and
Levine |192] show that a leader may still choose not to realize her reputation through repeated
interaction with followers.

4.3 Towards a frequentist paradigm for repeated-game
interaction

As we motivated in the introduction to this chapter, our principal aim is to move beyond
an understanding of why agents achieve Stackelberg equilibrium, to how agents achieve
Stackelberg equilibrium through repeated interaction. We take a frequentist perspective
on modeling repeated-game interaction, and here we discuss our reasons for adopting this
perspective.

In the repeated game setting, a frequentist modeling choice is a significant departure
from the traditional frameworks that we have discussed above for understanding reputation
building [182-186]. These are fundamentally Bayesian. In these Bayesian frameworks (as
in our discussion in the statistical learning setup in Section , there is a prior that is
commonly used by leader and all followers, over either leader behavior, or the leader payoff
matriz as we have seen. This follows the “common prior" framework that was pioneered
by Harsanyi [200] for tractability in studying repeated games with incomplete information.
In contrast, we (along with [201]) assume no common prior and consider followers that use
frequentist learning rules to infer about leader behavior.

6A subtle difference is that the trembling hand only affects the follower’s response — the leader still
realizes her payoff according to her original strategy [197]. Our one-shot model is similar.

"This is completely different from a mixed commitment, where the entire mixture is revealed.

8The class of games they define are “participation games", in which follower incentives are structured
such that they do not wish to participate with leaders holding a “bad reputation".
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The primary benefit of using a Bayesian framework with a common prior is that the
Bayes-Nash equilibrium of the stage game in every round is then well-defined, and thus
the sub-game perfect Nash equilibria (SPNE) of the repeated game are well-defined. The
equilibrium payoff of the game for the leader can be analyzed in the asymptotic limit when
the game is repeated infinitely with a discount factor approaching 1.

By eschewing a Bayesian micro-foundation with a common prior, we compromise on the
ability to define and analyze a SPNE. We will see in Section that the modeling choices
in a frequentist framework for leader and follower strategies are conceptually highly non-
trivial; consequently, our results make only partial headway towards defining a frequentist
notion of SPNE. However, we elucidate below that a frequentist paradigm for repeated-
game interaction introduces new promise that make it worth this difficulty in modeling.
This promise is encapsulated in the form of three key desiderata central to modern statistics
and optimal decision-making:

1. Simplicity. While the classic works [185, [186] recover the eventual attainment of leader
power-of-commitment to any mized strategy, extracting natural leader and follower
strategies that form a SPNE is challenging to say the least. The proofs do invoke
Bayesian confidence sets that capture the convergence of follower estimates of leader
commitment to a neighborhood that appropriately shrinks as more rounds are played.
However, this only tells us that mixed-strategy SPNEs ezist that converge to the payoff
afforded by a particular leader commitment in the asymptotic limit. This does not
directly portray explicit strategies that leader and follower use in SPNE, or formalize
the SPNE in a form that is easily computable. The frequentist framework will allow
us to formalize remarkably simple rules for leader and follower that approximate the
SPNE properties. These simple rules constitute a clear-cut distillationﬂ of the ideas
that manifest in the Bayesian setting with far more complex machinery as in [185].

2. Understanding trade-offs. The Bayesian framework does not easily answer certain key
questions, such as whether it is easier for the leader to obtain Stackelberg payoff or some
other commitment payoff through repeated interaction. This is because the paradigm
is predominantly asymptotic, and it turns out that in asymptopia all commitments are
equivalent in their learn-ability. However, this is a critical question when the leader
and follower interact only for a finite number of rounds. Examples such as the product-
choice game (Example 4.1 in the survey [194]) hint that the Stackelberg commitment
might be “tougher" to achieve, in a certain sense, owing to possible instability in its
perception; however, this intuition had not been formalized in prior work. Using the
frequentist paradigm, we effectively uncover a fundamental trade-off that the leader
needs to navigate to achieve commitment power. That is, we show that she chooses
the commitment that she wishes to aspire to by balancing two key criteria: closeness
to the optimal Stackelberg commitment and preservation of follower learn-ability. The

9Much in the same way that the maximum-likelihood-estimation principle is a distillation of the key
ideas in maximum-a-posteriori estimation in classical statistics.
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kernel of this result is derived in a much simpler one-shot setting with uncertainty in
leader commitment perception (Theorem {4.7.4)), but turns out to be pivotal to our
understanding of the more complex repeated game.

3. Robustness. Central to formalizing results in the Bayesian framework is the common
prior assumption as pioneered by Harsanyi [200]. It is not clear whether this assump-
tion is reasonable in modern practice, nor if any of these guarantees are robust in the
absence of this assumption (for a sample of philosophical discussions around these is-
sues, see |202]). We should expect, as in classical statistics, that a sufficient number of
samples of data will “drown out" the effect of a prior; the question is how to formal-
ize this idea in game theory with the additional difficulties posed by multiple agents.
While the study of prior mismatch is of natural interest, a successful frequentist ap-
proach would also make substantial process towards this goal by providing prior-free
guarantees. Moreover, this approach provides tractable guarantees for a finite number
of rounds, helping us formalize the idea of partial reputation.

The desiderata above have justified frequentist modeling choices in statistics theorylﬂ.
They take on heightened relevance in the more challenging setting of repeated game theory
with incomplete information. Taken together, they tell us that a frequentist paradigm for
repeated game theory, while nascent in its conceptual development, forms an important and
needed complement to the traditional Bayesian game theory. This is especially true for
deployment of game-theoretic interaction in settings with automated agents, where critical
understanding of explicit strategies followed by agents in equilibrium interaction is necessary.

While frequentist modeling of game-theoretic interaction remains highly challenging, it
is worth noting that frequentist learning rules, mostly at the heuristic level, have seen classi-
cal precedent in game theory. In simultaneously repeated games with two-sided incomplete

10 Another modern example at the heart of this debate is the multi-armed bandit (MAB) problem, which
we discussed at length in Chapter [8] As a reminder, the MAB problem incorporates aspects of sequen-
tial decision-making with limited information feedback but in a purely statistical paradigm. The classical
Bayesian paradigm formalizes the MAB problem as a partially observed Markov decision process (POMDP),
and allows the formal definition of an exactly Bayes-optimal index policy [142}|143|. The flip-side is that these
policies are complicated and not immediately interpretable. On the other hand, the frequentist paradigm
formalizes optimality in terms of an asymptotic notion of sequential consistency [149}|203], 204] and/or non-
asymptotic pseudo-regret minimization [205, Chapter 2|. While these notions of optimality are more flexible,
they allow for the design of simple and approximately optimal heuristics like upper-confidence bounds [150]
and Thompson sampling [148]. These heuristics highlight an important ezploration-exploitation trade-off
that is present in the index policies as well, but easier to see in the simple updates used by UCB and
Thompson sampling. Accordingly, this exploration-exploitation trade-off has been applied in the far more
challenging setup of reinforcement learning (not necessarily with optimality guarantees), for which the corre-
sponding Bayesian POMDP is less tractable, see e.g. 206}, [207]. Finally, the frequentist paradigm allows for
learning algorithms for the MAB problem that are prior-free, thus robust to prior mis-specification. Much
like in the repeated game setting, it is not immediately clear what the impact of prior mismatch would be
on Gittins index policies. These considerations suggest that the frequentist and Bayesian paradigms have
complemented each other in the MAB problem, and fundamental theoretical advances in both paradigms
continue to be important.
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Result One-shot model  Repeated model

Instability of Stackelberg/determinism Proposition |4.7.1| Theorem |4.9.5|
Robust commitments/leader rules Theorem 4.7.4  Proposition 4.9.2
(Dis)incentive for unpredictability Theorem 4.7.5|  Proposition [4.9.6

Table 4.1: Table of results.

information (which we will discuss at length in Chapter , these learning rules have yielded
considerable success as plausible mechanisms for time-averaged convergence to relevant so-
lution concepts [85, [208, 209]; particularly when they are designed for repeated strategic
interaction with a potential adversary (formally, when they satisfy notions of Blackwell ap-
proachability /Hannan consistency/“no-regret") [80, [210, [211]. Remarkably, these learning
rules are “uncoupled" [87] in the sense that players who use them do not utilize any informa-
tion about their opponents’ utility functions (which can be in a continuum) except through
observed history /payoff. Clearly, we need to utilize the same “uncoupled" principle for fol-
lowers in our learning model. Moreover, we allow followers essential qualitative flexibility in
their choice of frequentist inference — in particular, they can:

1. Attempt exact, pure-action forecasts based on deterministic prediction from memory;
2. Forecast according to a statistical learning rule, or

3. Use the hedging principle in forecasting to avoid worst-case errorﬂ.

We know that each of these inference rules is best-suited for a leader rule that is:

1. Deterministically predictable,

2. Statistically learn-able and

3. Maximally unpredictable.

We will show in the next few sections how a frequentist paradigm with the above (sta-
tistically speaking, composite) skeleton for leader and follower rules helps us move from
understanding why reputation is built to understanding how it is built. As a consequence of
well-known, clean non-asymptotic characterizations of frequentist learning rules, we are also
able to obtain a precise, quantitative understanding of the power of partial reputation.
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Our contributions

Now that we have motivated a frequentist paradigm, we summarize the aggregate of our
resultﬂ constructs a robust leader mechanism for building a mixed strategy reputation,
and characterizes the amount of partial reputation power that a leader thus enjoys after
interacting with a finite number of myopic followers. Our mechanism is both strategy-
proof to follower manipulation, and approximately optimal for the leader subject to sensible
follower rules.

We build to this conclusion by first providing a comprehensive analysis of the one-shot
setting, i.e. a Stackelberg leader-follower game in which a follower obtains a limited number
of observations of the leader commitment. We note that for almost all non-zero-sum games
(Proposition in Section the payoff of the classical, mixed Stackelberg commitment
is not robust to even an infinitesimal amount of observational uncertaintyﬁ. Next, we
propose robust commitment rules (Theorem in Section for leaders and show that
we can approach the Stackelberg payoff as the number of observations increases. The robust
commitment construction involves optimizing a trade-off between robustly preserving the
follower best response and staying close to the ideal Stackelberg commitment, by moving
the commitment a little bit into the interior of an appropriate convex polytope. Finally, we
show that any possible advantage for the leader from limited observability is only related
to follower response mismatch, and show that this advantage is limited (Theorem in
Section4.7]). This implies that a leader cannot gain much by misrepresenting her commitment
and eliciting a sub-optimal response from the follower.

Next, we provide analogs of these results in the more challenging setting of repeated
interaction between one leader and several myopic followers, where both observational un-
certainty and uncertainty in belief are present. In a similar spirit to the conclusion about the
Stackelberg commitment being unstable to observational uncertainty, we show that leader
strategies that maximize payoff against followers that naively use a statistical learning rule
are extremely unstable against more intelligent followers (Theorem in Section .
We show this result for two broad ensembleﬁ of Stackelberg games. We generalize the
idea in the robust commitment rules from Theorem to provide an explicit randomized
leader mechanism that builds reputation through repeated interaction (Proposition in
Section . We note that under this mechanism the follower is not incentivized to de-

" Contrary to intuition in zero-sum-game settings, the no-regret principle by itself may not be the best
follower learning rule under all circumstances. In fact, in a recent study [212] the optimal leader payoff
against a follower who follows certain kinds of no-regret strategies was shown to sometimes be greater than
Stackelberg, suggesting that no-regret by itself is not necessarily a desirable learning rule for the follower.

12Very early preliminary versions of this work were presented at NeurIPS ’17 in the workshop on “Learning
in the presence of strategic behavior” and this chapter constitutes the expanded and extended form of work
that was presented at ACM Economics and Computation ’19.

13 A similar phenomenon has been observed for trembling hand noise in pure strategy commitments [197].
A succinct statement of our result is that all mized strategies tremble by their very nature when finitely
observed.

14These ensembles reflect the reality of security games and persuasion respectively.
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viate from a natural statistical learning rule. Finally, in the spirit of Theorem from
the one-shot model, we show that, no matter how sophisticated her mechanism, the leader
has minimal incentive, and possible disincentive, to deceive followers who use a universally
calibrated learning ruleIT_gl (Proposition in Section . Correspondences between our
results in the one-shot and repeated models are presented in Table [4.1]

As we motivated in Section [1.3] the results for repeated interaction are presented in
the framework of a new model that departs from Bayesian tradition, and instead consider
followers who use frequentist principles for their inference. This modeling choice gave us
tractability into the nature of leader and follower strategies that lead to reputation building,
including at finite stages of interaction.

4.4 Warm-up: One-shot game with partially revealed
commitment

There are several steps involved to get to the eventual frequentist understanding of the
repeated game that we recapped above. We will heavily build on our clear and complete
understanding for the much simpler one-shot setting, which we now describe.

Preliminaries

We represent a two-player leader-follower game in normal form by the pair of d x n matrices
(A, B), where A € R¥" denotes the leader payoff matrix and B € R%*" denotes the follower
payoff matrix. We denote the leader mixed strategy space by Ay (where Ay for any k
represents the k-dimensional probability simplex) and the follower mixed strategy space by
A,,. From now on, we define an effective dimension of a game as a number m < d for which

the effective payoff matrices of leader and follower respectively are A = [al as ... an} €
R™ " B = [bl by ... bn] € R™ " and the effective se of leader strategies is given by

a convex polytope K C A,,.

We consider a setting of asymmetric private information in which the leader knows about
the follower preferences (i.e. she knows the matrix B) while the follower does not know about
the leader preferencesE] (i.e. he possesses no knowledge of the matrix A).

In the traditional setting, the leader has committed to some mixed strategy x € A,,.
The follower believes in leader commitment and can perfectly observe the commitment x.

15Such a learning rule also satisfies the property of no-internal-regret, but the guarantee of calibration is
a strictly stronger one.

16This definition is important for Stackelberg security games, in which the defender strategy space looks
exponential in the number of targets m - but the actual manifestation of all leader strategies is in fact
m-dimensional. In particular, a defender strategy manifests as a distribution over different targets being
covered.

I7This is an important assumption for this chapter, and is critical to the traditional reputation building
framework [182] [183].
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We denote the follower’s set of theoretically best pure-strategy responses to a mixed strategy
commitment x by K*(x) C [m]. We have

K*(x) := arg max ¢, (X, bj).

We make an important assumption that has been used in classical literature to define the
existence of a Stackelberg commitment [213, |214]. This assumption is as follows: when the
set K*(x) has multiple pure strategies, the follower responds with the pure strategy in the
set K*(x) that is most favorable to the leadeﬁ. That is, the follower responds with pure
strategy

J7(x) = arg max; i (x) (X, ;).

We define best-response regions as the set of leader commitments that would elicit the pure
strategy response j from the follower, i.e. R; :={x € K : j*(x) = j}.

With these definitions, we can define the leader’s ideal payoff when her commitment is
fully revealed:

Definition 4.4.1. A leader who commits and credibly reveals mized strategy x € A,, should
expect payoff

foo(X) := (X, ay+).

Therefore, the leader’s Stackelberg payoff is the solution to the program

foo 1= max foo(x).

The argmazx of this program (well-defined because of our tie-breaking assumption) is de-
noted as the Stackelberg commitment x’_. Further, we denote the best response faced in
Stackelberg equilibrium by j* := j*(x%).

The Stackelberg commitment is optimal for the leader under two conditions: the follower
100% believes the leader is committed to a fixed strategy, and the follower knows exactly
the leader’s committed-to strategy. For a finite number of interactions between leader and
followers, neither is true.

18The technical reason for this tie-breaking rule is to be able to define the Stackelberg commitment as an
explicit maximizer (which in itself gives a subtle clue to its fragility). Interestingly, positive results in the
Bayesian repeated-game formulation of reputation [185| [186| assume that the follower breaks ties against the
favor of the leader (thus, they do not explicitly consider Stackelberg commitments, only the ideal Stackelberg
payoff which can be defined as a sup instead of a max). We will present our results throughout with the
assumption of follower tie-breaking in the favor of the leader, but will comment on how they might vary if
the follower instead responded with a mixture among the strategies in K£*(x).
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4.5 One-shot game: Finite observability of commitment

We start with the simpler one-shot Stackelberg game played between one leader and one
follower. In this game, there is a shared belief in commitment, but there is uncertainty in
how the commitment is revealed. In particular, the follower does not know the exact (mixed)
strategy that the leader has committed to — he can only see a finite number of its realizations.

Commitment uncertainty model

Leader strategy, Observations —|Follower response|
X I,... Iyiid ~x (I, In)

Expected leader payoff

Figure 4.3: Illustration of one-shot Stackelberg game between leader and one follower who
observes N noisy samples of leader commitment, instead of the commitment itself. Figure
from [90].

We adopt a model in which the leader plays first, but can only reveal her commitment
x through N pure strategy plays Iy, 15, ..., Iy i.i.d ~ x. The commitment is known (to
both leader and follower) to come from a set of mixed strategies X C K. This model was
first studied empirically for Stackelberg security games [215|, but with a common prior on
the leader payoff matrix A. This model was more recently studied for zero-sum games [201]
without a prior, exactly like our setting.

The follower can respond with a pure strategy jy (1, ls,...,Ix), whose choice we will
specify shortly. Importantly, the follower response function jy(-) can only depend on the
leader realizations: not the true commitment x or the true leader payoff matrix A. After
the follower chooses his response, the leader and follower payoffs are realized in expectation.
The sequential nature of moves by leader and follower, after which payoffs are realized, is
depicted in Figure

We can express the expected™] leader payoff as a function of her chosen commitment for
any follower best response function.

YExpectations over utility have been implicitly taken. All expectations thereof in mathematical notation
are over the additional randomness in the realizations I, ..., Iy unless specified otherwise.
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Definition 4.5.1. A leader that can express N realizations of her hidden commitment X,
faced with a follower using response function jy(-), expects payoff

fN(X) = EKX? ajN(Il,-..JN)>]' (41)

Follower response model

A reasonable follower response will constitute some sort of statistical inference about the
mostly likely identity of the leader commitment from the N samples provided, and an “op-
timal" response based on this inference. We make this precise through frequentist and
Bayesian models for inference.

Frequentist model: In the frequentist model, which was first studied in [201] for zero-
sum security games, we do not assume a prior on the leader commitment. We denote the
maximum likelihood estimate (MLE) of the leader’s mixed strategy, as seen by the follower,
by X ~- It is reasonable to expect, under certainty of leader commitment, that a “rational"
follower would best-respond to Xy, i.e. play the pure strategy

Je(ly, ... In) == 77 (Xn). (4.2)

Thus, the leader should expect payoff
fv(x) = Elfx, az,,)

against a follower that response according to Equation (4.2). The maximal payoff a leader
can expect is

fi = max f(x) (43)
and it acquires this payoff by playing the argmax strategy x3,. Observe that the objective
function fy(x) is not convex in its argument x, and is thus NP-hard to exactly maximize.
Bayesian model: We provide an expected-utility-maximization interpretation for the
follower best response in Equation by considering an equivalent Bayesian model for
follower inference. The latter model was empirically studied in |215]. We assume that the
follower starts with a prior Py(-) over all m-dimensional multinomial distributions for the
identity of the leader commitment (and the leader is aware of this). We denote
Pn(x; (11, I3, ...,1y)) as the posterior probability that the leader chose commitment x after
N observations. We assume that the follower starts with a prior Py(-) on the identity of the
leader commitment (and the leader knows the prior). Then, the follower will respond with

20Rational is in quotes because expected utility theory does not have a concrete meaning in frequentist
inference of an unknown leader commitment. However, the best estimate of this unknown commitment,
given no prior information, is clearly the MLE.
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the pure strategy that maximizes his expected utility under the posterior:

Je(lis ..., Iy) i= argmax;cp, / Py(x's (I, ..., In))(X, b))
x'eAgy

= arg max,e,, (Xn, b;) where

§N<Ila e 7]N) = EX’NPN(';(Il,---JN))X/‘

Notice that the special case of Py(+) being the Dirichlet prior with hyper-parameter o« — 0
corresponds to Xy ([, ..., Iy) = XN, and in this case j§(I1, ..., In) = ji(l1,...,In), i.e. the
follower best response under the frequentist and Bayesian models is the samd?] This gives
a post-hoc justification for using the frequentist model through expected utility theory for a
specific prior on the commitmentsF_?]. Having established this equivalence, we henceforth use
the frequentist model, which will prove to be much more tractable in our forthcoming model
of repeated interaction.

Under the model of observational uncertainty, we are interested in characterizing the
optimal leader commitment as well as optimal leader performance. That is, we want to
understand how close f3 is to f%, and also how close x7}; is to x%_ . An answer to the former
question would tell us how observational uncertainty impacts the first-player advantage. An
answer to the latter question would shed light on whether the best course of action deviates
significantly from Stackelberg commitment. We are also interested in algorithmic techniques
for approximately computing the quantity f3,, as doing so exactly would involve solving a
non-convex optimization problem.

4.6 Related work in the one-shot setting

The mixed-strategy Stackelberg solution concept has seen contemporary application in en-
gineering [181], 216] and persuasion mechanisms [188]. Here, the entire mixture has to be
credibly revealed to the follower for the Stackelberg solution concept to be realized. Von
Stengel and Zamir [187] show that in all general sum games, mixed strategy Stackelberg
equilibrium is beneficial over simultaneous (Nash) equilibrium when the commitment can be
fully revealed, and often strictly so. We explore two examples where the mixed nature of
the Stackelberg commitment is critical. First, the Stackelberg security game |181] is played
between a defender, who deploys a randomized protection strategy on her targets; and an
attacker, who observes the defender mized strategy and responds (at a high level) by attack-
ing the target(s) that are most likely to be left open. Second, Kamenica and Gentzkow’s

2IMore precisely, the leader payoff in the Bayes-Nash equilibrium of the Bayesian game is exactly equal
to fx = maxxea,, [n(x).

22While all our results are derived for the Dirichlet prior which is maximally uninformative, we expect
the same scaling to hold under any informative prior, although the nature of the constants will change to
reflect the informativity of the prior. This will be the case for any prior that is positively supported on all
leader mixed strategies (also assumed by Fudenberg and Levine [185]).
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Bayesian persuasion game [188], in which the sender has the ability to persuade a receiver
to act in a manner that is beneficial to the sender. She does this by committing to a ran-
domized signaling mechanism conditioned on information that is private to heIF_EI. In general,
this persuasion power is effective only when the commitment is mixed.

For both these cases, a mixed commitment will not be fully revealed or believed. In secu-
rity games, the attacker will usually observe a finite number of deployments of the defender’s
resource, as opposed to the allocation strategy itself (which is often mixed). Persuasion power
could be credibly built up through a sender’s repeated interaction with multiple receivers —
what will actually be observed is her history, and thus realizations of the signal, not the dis-
tribution itself. In addition, the receivers have no a-priori reason to believe that the sender
is indeed committed to a fixed signaling mechanism. Thus, we should expect that the sender
realizes her persuasion power only partially.

It is useful to review algorithmic perspectives on mixed-strategy Stackelberg computa-
tion@. Conitzer and Sandholm [214] show that computing the optimal mixed commitment
under perfect observability corresponds to a linear program. In contrast, the problem of
computing the optimal commitment under finitely limited observability corresponds to a
robust optimization problem that is, in fact, NP-hard [215] 220]; so reasoning about the op-
timal commitment in the presence of noise is algorithmically non-trivial. An et al and Shieh
et al [215, 220] consider a model of observational uncertainty with a Bayesian prior and
posterior update based on samples of behavior, and propose heuristic algorithmic techniques
to compute the optimum. They show empirically that there could be a positive return over
and above the Stackelberg payoff. We will show that such positive return is indeed possible,
but the amount of gain is limited and dissipates rapidly as more observations are available.
Blum, Haghtalab and Procaccia [201] prove that the Stackelberg commitment itself approxi-
mates the optimal payoff in the special case of zero-sum games. We show that this reasoning
does not extend to the general sum case and that the Stackelberg commitment is generically
unstable.

The problem of communication constraints in the commitment has also received a lot
of interest in the recent algorithmic persuasion literature with different models for the un-
certainty. Such noise models include compression in the mechanism [221} [222|, and binary
uncertainty in the mixed commitment either being fully observed or fully hidden [223].
Uncertainty from the point of view of bounded follower rationality [224] has also been con-
sidered. The primary distinction in our work (as well as the settings of An et al, Shieh et
al and Blum et al), is that the manifestation of the uncertainty is itself random. Thus, a
unique component of our results involves directly reasoning about the stochasticity of the
follower response.

23 Kamenica and Gentzkow study persuasion in the most general form to date. The precursor to these
persuasion mechanisms was signaling games [217], and in fact, one of the examples of mixed strategy repu-
tation as studied by Fudenberg and Levine [185| bears similarity to the prosecutor-judge example. Recently,
Ely |218| has considered an extension to dynamic persuasion mechanisms, where the private information can
evolve in a stochastic manner.

2For an excellent survey, see |219).
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Finally, limited observability in leader commitment necessitates follower inference. The
flipped problem, in which a leader does not know the follower’s utility function and needs
to learn her optimal commitment, is also interesting and has seen a lot of recent activity.
Approaches on how a leader should do this range from learning adversary models from
historical data in security games [225] 226] to no-regret online learning approaches [227]. The
former approach can get closer to optimal commitment power if the samples from followers
are stochastic [225], but could be sub-optimal against followers who attempt to exploit the
learning process. No-regret learning approaches are robust to such follower exploitation, but
cannot use historical data. Other paradigms with an incumbent and myopic agents that
involve a learning problem for all parties have also been explored. One prominent example is
the setting of Bayesian exploration [228], in which there is private information unknown to
all players. In this setting, an incumbent commits to a mechanism that incentivizes myopic
agents to carry out partial exploration to learn about the private information, as opposed to
only exploit their current knowledge.

4.7 Results for the one-shot model with limited
observability

We now analyze the one-shot model that was defined in Section [£.5] The salient features
of this model are as follows: the leader fixes a commitment x in advance, reveals N iid
realizations of this commitment, and the follower best responds according to a maximum-
likelihood inference rule. We wish to understand the leader’s optimal payoff in the limited-
observation model as well as how she can approximately achieve it.

Instability of traditional Stackelberg commitment to observational
uncertainty

A natural first question is whether the traditional Stackelberg commitment, which is clearly
optimal if the game were being played infinitely (or equivalently, if the leader had infinite
commitment power and perfect public commitment), is also suitable for finite play. We
show through a few paradigmatic examples that the answer can vary. Figure depicts the
standard normal form representation of the leader-follower Stackelberg game [214] for these
illustrations, as well as illustrates the structure of the ideal leader payoff function fi(-). We
will see that practically all insight into the limited-observation payoff function fy(-) can be
characterized by the structure of the ideal leader payoff function f.(-), and we made these
illustrations to convey intuition about the nature of the results.

Example 2. We consider a 2 x 3 zero-sum game, represented in normal form in Figure[{.4d,
We can express the leader strategy according to the probability p with which she will pick
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(c) 2 x 3 non-zero-sum game.

Figure 4.4: Illustration of examples of zero-sum game and non-zero-sum games in the form
of normal form tables and ideal leader payoff function f..(-). We denote the probability that
the leader will play strategy 1 by p € [0, 1], and fully describes leader mixed commitment
for 2 x n games. Observe that the ideal leader payoff function f(p) is piece-wise-affine in p,
and for the non-zero-sum games discontinuous at the Stackelberg commitment p7 . Figures

from .
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Figure 4.5: Semi-log plot of extent of advantage over Stackelberg payoff as a function of N
in the 2 x 3 zero-sum game depicted in Figure Figure from [90].

strategy 1, and the leader payoff fo(p) is as follows:

f(p; 1) := p if follower best responds with strategy 1
f(p;2) :==1— p if follower best responds with strategy 2
f(p;3) := 3 — 4p if follower best responds with strategy 3

Since the game is zero-sum, the follower responds in a way that is worst-case for the
leader. This means that we can express the leader payoff as

foo(p) = min{ f(p; 1), f(p;2), f(p:3)}. (4.4)

This leader payoff structure is depicted in Figure[{.]d. Notice that for this example, the
ideal leader payoff function fs(p) is continuous in p — this is because it is the minimum of
three affine functions in p given by f(p; 1), f(p;2) and f(p;3). We can express the Stackelberg
payoff as

= max fo(p) =1/2,
o = max fulp) =1/
attained at pl, = 1/2. We wish to evaluate fx(pk,). It was noted [201] that fn(pk) > [ (pi)
by von Neumann’s minimax theorem, but not always clear whether strict inequality would hold

(that is, if observational uncertainty gives a strict advantage). The semi-log plot in F z'gure
shows that the extent of improvement decreases exponentially with N. A simple calculation
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Figure 4.6: Example of the 2 x 2 non-zero-sum game depicted in Figure [4.4b, for which
observational uncertainty is always undesirable. Figures from [90].

yields
fv(1/2) = Pr[Py < 2/3)f5 + Pr[Py > 2/3]£(1/2;3)
= fn(1/2) = fi = Pr[Px > 2/3] (£(1/2;3) — f2)
= %Pr[ﬁN > 2/3]

- %Pr[ﬁN —1/2 > 1/6]
<exp{—ND(2/3 1/2)}

where D(. || .) denotes the Kullback-Leibler divergence, and the last inequality is due to
Sanov’s theorem [229]. The reason that the advantage decreases exponentially with N is
because as N increases, we see a decrease in the effective stochasticity that sometimes elicits
the more favorable follower response, i.e. action 3.

Example [2] showed us how the traditional Stackelberg commitment power could be in-
creased, albeit by a small amount, by occasionally eliciting more favorable responses. We
now provide an example illustrating that the commitment power can disappear completely.

Example 3. We consider a 2 x 2 non-zero-sum game, represented in normal form and leader
payoff structure in Figure[{.4V. Here, the ideal leader payoff function is

Jpip<1)2
Joo(p) = {1—3p ifp>1/2.
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Figure 4.7: Example of the 2 x 3 non-zero-sum game depicted in Figure , in which
observational uncertainty could either help or hurt the leader. Figures from [90].

This is very close to the example provided by [201)], which we repeat for storytelling value.
Notice that fX = 1/2,p% = 1/2, but the advantage evaporates with observational uncertainty.
For any finite (odd) N, we have

fn(1/2) = Pr[Py < 1/2](1/2) + Pr[Py > 1/2](~1/2)
=1/2x1/2-1/2x1/2=0.

This implies that f5 — fn(ph) = 1/2 and so imy_eo f2 — fn(pl) # 0. This is clearly
a very negative result for the robustness of Stackelberg commitment, and tells us that the
traditional mived Stackelberg commitment pi_ is far from ideal under limited observability.
In this example, stochasticity in follower response is not desired, principally because of the
discontinuity in the leader payoff function at pl,, which can be clearly seen in Figure[4.4Y

Example [3| displayed the possibility of a significant disadvantage of observational un-
certainty — this disadvantage arose from the sizable probability of a mismatched response
(follower response 2 instead of follower response 1). The game considered was special in that
there was no potential for gain from a mismatched response, while in a zero-sum game like
Example 2] a mismatched response is always favorable to the leader. Our next example gen-
eralizes these cases and provides insight into what could happen for a general non-zero-sum
game.
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Example 4. Our final example considers a 2 x 3 non-zero-sum game, whose normal form
and leader payoff structure are depicted in Figure[{.4d. The ideal leader payoff function is

pifp<1/2
foP)=1/2=pif1/2 <p<5/7
3—dpifp>5/T7.

As in the other examples, fX = 1/2,p*, = 1/2. Notice that this example captures both
positive and negative effects of stochasticity in response. On one hand, follower response
2 is highly undesirable (a la Example @ but follower response 3 is highly desirable (a la
Ezxample @) The net effect is

1 [~ 1 1 -~ 5 5
1 1 ~ 5)

—_ .z > 2

22+MPW_JQ)

1 1 5,1

< —+ = — = || = .

_4+2exp{ ND(7 | 2)}

A quick calculation thus tells us that fy(pl) <= fX if N > 8, showing that Stackel-
berg in fact has poor robustness for this example. Intuitively, the probability of the “bad”
stochastic event remains constant while the probability of the “good” stochastic event de-
creases exponentially with N. Even more damningly, we see that limy_,o X — fn(pl) >
limy_ o0 1 — 5 exp{—=ND(5/7 || 1/2) = 1/4, again showing that the traditional Stackelberg
commatment s far from ideal.

While the three examples detailed above provide differing conclusions, there are some
common threads. For one, in all the examples, committing to the Stackelberg mixture x%_
can result in the follower being agnostic between more than one response. For both the non-
zero-sum game examples, a very slight mis-perception in the estimation of the true strategy
x5, led to a different, worse-than-expected response and this mis-perception happened with
a sizeable, non-vanishing probabilityﬁ. On the flip-side, a different response could also
lead to better-than-expected payoff, raising the potential for a gain over and above f*.
However, these better-than-expected responses cannot share a boundary with the Stackelberg
commitment, and we will see that the probability of eliciting them decreases exponentially

25Note that this mis-perception is not detrimental to the follower when the leader is in fact playing
traditional Stackelberg commitment, because the follower is actually agnostic between all of these responses.
The leader, on the other hand, very much cares how the follower chooses his response — which manifests in
the discontinuity of foo(x) at x = x,. This discontinuity is fundamental to the fact that the leader and
follower’s utilities are neither exactly aligned or anti-aligned (as they would be in a zero-sum game [201]).
Since there are a finite number of neighboring follower responses, the gap between the leader’s utility from
each of them will be a non-zero number — leading to a jump discontinuity.
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with V. The net effect is that the Stackelberg commitment is, most often, not robust — and
this is even the case for small amounts of uncertainty.

Our first result is a formal statement of the instability of traditional, mized Stackelberg
commitments for a general 2 x n game. We denote the leader probability of playing strategy
1 by p € [0,1], and the Stackelberg commitment’s probability of playing strategy 1 by p_.
Furthermore, let ¢(¢) denote the CDF of the standard normal distribution A/(0,1). We are
now ready to state the result.

Proposition 4.7.1. For any 2 x n leader-follower game in which p’, € (0,1) and fy(p)
discontinuous at p = pk,, we have

C/
VN

where C,C",C",C" are strictly positive constants depending on the parameters of the
game. This directly implies the following:

P < fo = (9VFC) - 5 = ) s Ceml-NCY

1. For some Ny > 0, we have fn(pi,) < f% for all N > Ny.
2. We have limy o fn(ps) < fX.

The proof of Proposition is contained in Appendix .11} The technical ingredients
in the proof are the Berry-Esseen theorem [230, [231], used to show that the detrimental
alternate responses on the Stackelberg boundary are non-vanishingly likely — and the Ho-
effding bound, used to tail bound the probability of potentially beneficial alternate responses
not on the boundary?|

As we noted earlier, Proposition represents a mized-commitment analog of the
known instability of pure strategy Stackelberg equilibria to “trembling hand" noise [197, |198].
A succinct description of this result is that “all strictly mized commitments tremble by their
nature”. The necessary and sufficient conditions that we characterize for this property to
hold are remarkably general: one, that there is a discontinuity at the Stackelberg boundary,
and two, that the Stackelberg commitment is mixed. Games for which one of these conditions
does not hold fall into one of two special classes, each of which we remark on below.

Remark 4.7.2. For games in which the mized-strategy Stackelberg equilibrium coincides with
a pure strateqy, the follower’s best response is always as expected regardless of the number of
observations. There is no trade-off and it is simply optimal to play Stackelberg even under
observational uncertainty.

26Tt is worth noting that a similar argument as presented here could be extended to a general m x n game,
using iid random vectors instead of random variables and considering a demarcation into best-response
regions as illustrated in Figure We only restrict attention to the 2 x n case for ease of exposition. Note
that our explicit constructions in Theorem @ are defined for a general m x n game.
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Remark 4.7.3. For the zero-sum case (as in Ezample [9), it was observed [201] that a
Stackelberg commitment is made assuming that the follower will respond in the worst case.
If there is observational uncertainty, the follower can only respond in a way that yields payoff
for the leader that is better than expected. This results in an expected payoff greater than or
equal to the Stackelberg payoff fZ ., and it simply makes sense to stick with the Stackelberg
commitment X% . As we have seen, this logic does not hold up for non-zero-sum games
because different responses can lead to worse-than-expected payoff. One way of thinking of
this is that the function f(.) can generally be discontinuous in X for a non-zero-sum game,
but is always continuous for the special case of zero-sum.

For a zero-sum game, the first condition does not hold (as can clearly be seen in Fig-
ure ; and for a game where the Stackelberg commitment happens to be pure, the second
condition does not hold.

Proposition directly implies that the ideal Stackelberg payoff is only obtained for the
exact case of N = oo (when the commitment is perfectly observed), and that for any value
of N < oo there is a non-vanishing reduction in payoff. In the simulations in Section [4.7], we
will see that this gap is empirically significant.

Robust commitments achieving close-to-Stackelberg performance

The message of Proposition is that, in general, the traditional Stackelberg commitment

*

x5 is undesirable. The mixed commitment x?_ is pushed to an extreme point of the best-
response-region R ;- to ensure optimality under idealized conditions; and this is precisely
what makes it sub-optimal under uncertainty. What if we could move our commitment a
little bit into the interior of the region R ;- instead, such that we can get a high-probability-
guarantee on eliciting the expected response, while staying sufficiently close to the idealized
optimum? Our next result quantifies the ensuing trade-off and shows that we can explicitly
construct the commitment to approximate Stackelberg performance. The approximation

gets better and better as N increases.

Theorem 4.7.4. Let the best-response polytope R+ be non-empty in R™~'. Then, provided

that the number of samples N > O(m), we can construct commitment Xy, for every 0 <
n < 1/2 such that

fro = In(xy) = 5( (%)n + e‘C'NH’") (4.6)

for some constant C' > 0. Furthermore, these constructions are computable in polynomial
in (m,n) time from the Stackelberg commitment x5 . (The O(-) contains constant factors
that depend on both the local and global geometry of the best-response-region R;-. For a
formal statement that includes these factors, see Lemma )

The full proof of Theorem [4.7.4] deferred to Appendix [£.11] involves some technical
steps to achieve as good as possible a scaling in N. The caveat of Theorem [£.7.4] is that



CHAPTER 4. LEARNING FROM STRATEGIC, NON-ADVERSARIAL DATA 155

commitment power can be robustly exploited in this way only if there are enough observations
of the commitment. One obvious requirement is that the best-response-region R ;- needs to
be non-empty in R™~!. Second, the number of observations N needs to be greater than the
effective dimension of the game for the leader, m. This is a natural requirement to ensure
that the follower has learned at least a meaningful estimate of the commitment. Third,
the “constant" factors in Theorem [£.7.4] actually reflect properties about both the local and
global geometry of the polytope; see the proof in Appendix for more details. Geometric
properties that intuitively lead to undesirable scaling in the constant factors of the robustness
guarantee are listed below:

1. The Stackelberg commitment being a “pointy" vertex: this can lead to a commitment
being far away from the boundary in certain directions, but closer in others, making it
more likely for a different response to be elicited.

2. Local constraints being very different from global constraints, which implies that com-
mitments too far in the interior of the local feasibility set will no longer satisfy all the
constraints of the best-response-region.

Even with these caveats, Theorem [4.7.4] provides a general analytical framework for
constructing robust commitments by making a natural connection to interior-point methods
in optimization?’|

The extent to which these robust commitments approximate the ideal Stackelberg pay-
off can be observed through simulation on the non-zero-sum games in Examples [3] and [4]
(remember that the Stackelberg commitment was non-robust for both games). Figures m
and compare the expected payoff obtained by our robust commitment constructions
{xn}n>1 for different numbers of samples N, and for the games described in Examples
and [ respectively. The benchmark with respect to which we measure this expected payoff
is the Stackelberg payoff f* (obtained by Stackelberg commitment under infinite observabil-
ity and tie-break-ability in favor of the leader). We also observe a significant gap between
the payoffs obtained by these robust commitment constructions and the payoff obtained if
we used the Stackelberg commitment x7 . Section contains more extensive empirical
evaluation on random ensembles of security games.

Approximating the maximum possible payoff

Theorem |4.7.4] shows that not only can we compute robust commitments in polynomial
time, but also that these commitments have an intuitive analytical interpretation. They are
designed to simultaneously stay close to the Stackelberg commitment as well as maximize the
probability of preserving the expected follower response, i.e. preserve follower learn-ability of

2"Noting that interior point methods are provably polynomial-time algorithms to solve LPs, it is plausible
to think that in fact, stopping the interior point method appropriately early would also give us a robustness
guarantee - which would imply that finding optimal robust commitments is even easier than finding optimal
commitments!
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commatment. Thus, the performance of commitments approximates the idealized Stackelberg
payoft f% as a function of the number of observations. There is, however, no reason why
the leader should always be incentivized to preserve follower learn-ability of her commitment
— after all, as we saw in Example [2J not all response mismatches are sub-optimal. It is
thus possible that she could realize a payoff over and above the ideal Stackelberg payoff.
We now investigate how much this additional payoff can be for any commitment choice, by
upper bounding the value of f} which is the leader’s optimal payoff under observational
uncertainty. Since the leader payoff function in Equation (4.1)) is in general non-convex in x,
it is NP-hard to exactly compute; but empirical evaluations [215, 220] have noted that the
leader could yield a payoff greater than traditional Stackelberg.

Rather than the complexity-theoretic approach of constructing a polynomial-time approx-
imation algorithm, our approach is approximation-theoretid®] We show that in the large-
sample case, we cannot do much better than the actual Stackelberg payoff fZ ; informally
speaking, our ability to deceive the follower into responding strictly-better-than-expected is
limited. Combining this with the robust commitment construction of Theorem [£.7.4] we
obtain an approximation to the optimum payoff.

The main result of this section is stated below.

Theorem 4.7.5. For any m X n leader-follower game, we have

m
* < * C —
fN—foo+ n N

for some constant C > 0 depending on the parameters of the game (A, B).

As a corollary the commitment construction defined in Theorem [4.7.4] provides a

N
in Appendix

Theorem tells us that the robust commitments are essentially optimal in that a
leader could engineer her commitment to elicit favorable response mismatches — but any
additional gain in payoff over ideal Stackelberg payoff would be minimal. The practical
benefit that Theorem affords us is that we now have an approximation to the optimum
payoff the leader could possibly obtain, which can be computed in polynomial time after
computing the Stackelberg equilibrium, which itself is polynomial time [214]. This is because
the robust commitment is obtained by first computing Stackelberg equilibrium x7_, and then
deviating away from x’_ in the magnitude and direction specified, the latter of which is a
linear-time operation.

We can see the approximate optimality of our robust commitment constructions for the
non-zero-sum games in Examples [3] and [4] For the case of 2 leader actions we compute

O (\/I> -additive-approximation algorithm to f3. The proof of Theorem [4.7.5|is provided

28Tn other words, the extent of approximation is measured by the number of samples as opposed to the
run-time of an algorithm. This is very much the flavor of previously-obtained results on Stackelberg zero-sum
security games [201].
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the maximum possible obtainable payoff fi through brute force, and compare the value
to the robust commitment payoff. As shown in Figures [4.6b| and [£.75] this comparison is
particularly valuable for smaller values of N. We notice that the values are much closer even
than our theory would have predicted, even for small values of N. For these examples, we
also do not see a gain over traditional Stackelberg payoff.

Additional simulations on random ensembles of games

Defender (if

protected) Unif[0,1]

Unif[0,1] | Unif[0,1]

Unif[0,1] | Unif[0,1]

Defender (if
unprotected)

Unif[-1,0] | Unif[-1,0] | Unif[-1,0] | Unif[-1,0] | Unif[-1,0]

(el Unif[-1,0] | Unif[-1,0] | Unif[-1,0] | Unif[-1,0] | Unif[-1,0]

protected)

Attacker (if
unprotected)

Unif[0,1] Uniff0,1] Uniff0,1] Uniff0,1] Uniff0,1]

Figure 4.8: Illustration of random ensemble of 5 x 5 security game. Figure from .

We close this section with additional simulation on random ensembles of games to broadly
evaluate our robust commitment constructions. We create a random ensemble of 5 x 5 games,
inspired by the security framework, in which the defender can defend one of 5 targets, and
the attacker can attack one of these 5 targets. The defender and attacker rewards are chosen
to be uniformly at random between [0, 1], and their penalties are uniform at random between
[—1,0]. This is essentially the random ensemble that was used in previous empirical work
on security games [215]. Figure [4.8)shows the construction of this ensemble.

The purpose of a random ensemble is to show that the properties we observed above —
unstable traditional Stackelberg commitments, robust commitment payoffs approximating
the optimum — are the norm rather than the exception. Figure [4.9| illustrates the results.
The average performance of the sequence of robust commitments {Xy }x>1 on the ensemble,
as well as the traditional Stackelberg commitment x7 is plotted in Figure [{.9a] against the
benchmark of ideal Stackelberg payoff f% . Figure depicts the rate of convergence of
the gap in robust commitment performance to the idealized Stackelberg payoff — we can

VN
the percentage gap between robust commitment payoff and idealized Stackelberg payoff as a

function of N.
We can make the following conclusions from these plots:

clearly see the O <L> rate of convergence in this log-log plot. Finally, Figure |4.9¢| plots

1. The Stackelberg commitment is extremely non-robust on average. In fact, we noticed
that this was the case with high probability.
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Figure 4.9: Performance of robust commitments and traditional Stackelberg commitments
in random 5 x 5 Stackelberg security games for a finite number of observations of defender
commitment. Figures from [90].
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2. The robust commitments are doing much better on average than the original Stack-
elberg commitment even for very large values of N. The stark difference in payoff
between the two motivates the construction of the robust commitment, which is essen-
tially as easy to compute as the Stackelberg commitment.

4.8 Model for repeated interaction

History,
Hior = (I, 1), (T2, J2), - . (It—1,Ji-1))
Leader strategy Follower t strategy,
I ~x¢(He-1) ]f(Hf 1)

N

Expected leader payoff
at round t

Figure 4.10: Ilustration of the stage game at round ¢ between leader and follower ¢, both
of whom observe history of play H;_1. The dotted line indicates that leader and follower ¢
play simultaneously. Figure from [90].

The limited observation model with a shared belief in leader commitment is realistic for
engineering applications of the Stackelberg solution concept, like Stackelberg security games
(and indeed, empirical solutions to the limited-observability objective in Equation (4.3
have been proposed and evaluated [215, 220]). However, it is unrealistic for modeling the
manifestation of commitment in paradigms like Bayesian persuasion where the reputation
of the persuader is key. Consider Kamenica and Genztkow’s introductory example of the
power of Bayesian persuasion, in which a prosecutor persuades a judge to convict defendants
even when they may be innocent. The prosecutor does this through a particular randomized
signalling scheme conditioned on the outcome of the prosecutor’s private investigation (for
e.g. she knows the true identity of the defendant). This signalling scheme, and especially its
randomization, can only be credibly revealed by creating a history of persuasion. Creating
this history involves signalling publicly to other judges in other cases.

Informally, we are interested in approximately optimal signalling schemes for leader over
a finite number of rounds. There are two important distinctions from the one-shot model:

1. The leader is repeatedly interacting: she is still revealing N signals, but sequentially.
Every time she reveals a signal, she plays against a new follower (identical to the
previous followers in his payoff function) and realizes a payoff herself.
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2. The leader is not obliged to commit to a fized signalling scheme, e.g. iid realizations
of an a-priori fixed mixed strategy. She can update her signalling strategy sequentially
based on the current history of follower responses. Thus, follower(s) will not play the
game with established belief in a leader commitment.

Leader model

Like the seminal Bayesian models for asymptotic reputation building, we consider a repeated
game played over multiple rounds between the leader and multiple followers. In round ¢, the
leader faces follower ¢, and executes move I; € [m] (which may be randomized). In response,
the follower executes move J; € [n] (which may also be randomized). We define history

Hior = {1, Jo) Yoo (4.7)

and require the leader and follower moves to be functions of this history, parameterized
by their respective payoff matrices. In other words, we consider functions (that we allow to
be randomized)

-[t = It<Ht_1; A)
Jt = Jt(Htfl; B)

for the leader and (") follower moves at round ¢, and define leader and follower rules by
{I;(:)}E | and {J;(-)} L, respectively. Critically, the followers are myopic, and do not know
the value of T, i.e. how long the leader will be playing the game for?”} Thus, our leader
and follower are using anytime rules and we can analyze T — oo as well as what happens
at finite T'. We define payoffs for the repeated game as equal to the time-averaged reward,
as in stochastic dynamic programming [232]. Here, stochasticity comes from the random
realizations of the leader and follower rules.

Definition 4.8.1. For a fized follower rule J;(H:_1; B), we define the time-averaged leader
payoff function by:

T
1
fT<{It}?:1) =K ? ; Aft('Ht—UA)Jt(Ht—l%B) (48)

where the expectation is taken over any randomization used in the leader and follower
rules Ii(+), J(+).

We have not defined a common prior for the repeated game, which means that we cannot
define a SPNH| Nevertheless, it is both sensible and interesting to study the evolution of

29Tf followers knew this, any repeated analysis would unravel.

30At a high level, this choice enables us to construct explicit leader and follower mechanisms that can be
thought of as an approximate equilibrium, or at least approximately achieving the equilibrium payoff. We
provide a detailed comparison between Bayesian and frequentist models in Section
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the leader objective in Equation (4.8]) against follower rules that utilize principled frequentist
inference principles in their decision-making. We now describe the building blocks of these
principled follower rules.

Follower(s) response model(s)

Note that follower ¢ is participating in the game only at round ¢, and it is thus reasonable
to think of him as myopic. Since Follower ¢ is also rational, he will play to maximize what
he believes to be his expected payoff in round t. To formalize this, we appeal to the notion
of a forecast.

Definition 4.8.2. We define an optimal response model for Follower t conditioned on a
forecast as one that uses, as a sufficient statistic, a forecast function

vy ([m] x n])"™t — A, (4.9)

for how Follower t believes the leader is going to play at round t. In particular, for this
forecast function and history H;_1, the follower responds with pure strategy

Ji(re) = j* (re(He-1)), (4.10)
where we continue to assume the follower to break ties in favor of the leader.

In this way, we can define any response model for the aggregate of followers 1 to oo
through the sequence of forecast functions {ry(-)};2,. In the absence of a common prior,
it remains to be seen what a sensible forecasting rule for the aggregate of followers is, and
in fact the choice of forecasting rule critically determines how well the leader can do (or
conversely, how poorly she can do) for her own choice of rule. We specify some explicit
choices, and briefly describe them, below.

Definition 4.8.3 (Empirical averages forecast). Follower t uses an empirical averages fore-
cast if she uses forecasting rule

Ty ave(He1) = Xy_1. (4.11)

Through the Bayesian interpretation as discussed in Section [4.5 using the empirical
averages forecast would be optimal by expected utility theory if the leader had committed to
an id rule I i.i.d. ~ x. There is, of course, no reason why the leader should do this a-priori
in the repeated setting, and in fact the leader might be incentivized to deviate considerably
from such a rule if she observes followers naively responding in this wayf’'] This would make

31Tnterestingly, empirical averages forecasts together with myopic best responses have been widely used
in experimentation for learning in simultaneous games played repeatedly |78|, even though players may have
incentive to deviate from such protocols. As Fudenberg and Kreps say in their work on experimentation for
learning in simultaneous repeated games [233|, “We do not imagine that players would maintain their belief
i an asymptotic environment of stationary and independently chosen behavior strategies if the evidence that
players accumulate manifestedly discomfirms this hypothesis.”
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the empirical averages forecasting rule by itself an unsatisfactory choice for the aggregate
of followers. Later, we will affirm this concretely — but in the meantime, we suggest two
natural alternatives.

Definition 4.8.4 (Predictive modelling forecast). Consider an unknown parameter 8* € Q,
where ) can be a discrete or continuous space. Consider a predictive model for the
sequence

Yt = Pt((ﬂ,...,Yt,l),Wt;H*) (412)

where Wy is stochastic noise independent of the sequence (Y1, ...,Y;_1). We denote the
collection of (vector-valued) prediction functions & = {Py(-;0*)}_,. Then, we define the
predictive modelling forecast for follower t corresponding to model & :

r.p(Heot) = Bi((I1,...,I,_1),0), (4.13)

where ﬁt('Ht_l) constitutes the maximum likelihood estimate of the predictive model from
history H,—1 (and could involve the plug-in estimate of 0* or something more sophisticated).

Equation appears very complicated — but already encapsulates the empirical av-
erages forecast as a specific example: the iid case. (Here, we would have §* =x € A, = Q
and predictive model Py((I1,...,I; 1), W;x) = x + W;.) What Definition addition-
ally affords us is a significantly broader framework for temporally predictable sequences,
parameterized by prediction functions &2 and parameter space €2, beyond the iid case: some
simple examples are Markov processes, periodic sequences, and even sequences generated by
pseudo-random number generators. It is even more starkly clear here that the followers using
such a forecast only makes sense if a) the leader is indeed generating her sequence from such
a predictive model, b) the a-priori unknown parameters of the model are learn-able from
much fewer than ¢ samples. Such predictive forecasts can be extremely poor in the absence
of these assumptions. Nevertheless, as we will see, considering such forecasts will become
extremely valuable if the leader indeed chooses such a predictive model, especially if the
generated sequence s deterministic or close to deterministic in its realization.

Both the above forecasting rules assumed predictability of the leader rule. We consider,
as our final forecasting rule, a pessimistic point of view on leader predictability round to
round. We do this through the concept of calibration. Before defining a universally calibrated
forecast, we define some additional notation. For an arbitrary forecasting rule r,(-), executed
leader rule (/y, ..., Ir) and fixed forecast r, define

Np(r) =) T[ry(Hio1) =1]

as the number of times forecast r was used (this can itself be a random quantity as it
depends on the history and potential randomization in the forecast). Also define

)A(T(l“) = Do | [rZi[?E;;) =r|ey,
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as the empirical mean of the leader generated sequence whenever forecast r was used.
Here ey, is the standard basis vector corresponding to action I;. Now we can define a
universally calibrated forecast.

Definition 4.8.5 (Universally calibrated forecast [208|). The sequence of followers follows
a universally calibrated forecast, which we denote by

I.t,univ(/}'[t—l) (414)

if for any leader rule {I;(-)}L_, (potentially randomized) and sufficiently large T', we have

o(T)
T

almost surely, (4.15)

—ZNT )X (r) x| =

relA,,

where almost surely is over the randomness in a) execution of the leader sequence, b)
execution of the follower forecasting rule.

The now-classical link between calibrated learning rules and convergence to correlated
equilibrium has been established in repeated simultaneous games with two long-term players
who do not know each other’s utility functions [208]. The idea of calibration is intricately
connected to the notion of “no-worst-case-regret" in repeated, zero-sum games and sequential
prediction in the worst case. The way we will consider calibration is slightly different here:
we are only using a universally calibrated rule for the followers, and not for the leader. This
is because under our model of asymmetric private information, the leader actually knows the
follower utility function and, more importantly, is not trying to forecast follower responses.
That is, the leader cannot, in general, infer anything about the actions of new followers from
the observation of previous followers — as we have assumed that they are acting independently.
Under this assumption of independent action, one can conversely ask whether it is plausible
for the aggregate of followers to implement a universally calibrated forecasting rule. While
acknowledging the implausibility, we believe this is still an interesting and important case
to study for the following reasons:

1. A certificate of universal calibration ensures that the aggregate of followers is respond-
ing optimally in the asymptotic sense regardless of the leader’s chosen rule.

2. We may not actually expect the aggregate of followers to follow a universally calibrated
sequence of forecasts; but this represents the worst case for a leader who is attempting
to systemically mislead followers for additional personal gain.

4.9 Results for repeated interaction

A qualitative summary of results that we obtained in the one-shot model of Section [4.5|is as
follows:
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1. Mized Stackelberg commitments are generically unstable to even an infinitesimal
amount of observational uncertainty (Proposition 4.7.1)).

2. Robust, mized commitments can be explicitly constructed by trading off the power of
mixture in commitment with preservation of follower learn-ability (Theorem [4.7.4)).

3. The leader has minimal incentive (Theorem {4.7.5)), and can have dis-incentive (Propo-
sition 4.7.1)), to deceive the follower into responding sub-optimally in a feasible way.

While the repeated interaction model of Section 4.§8| is conceptually more complex, we
will recover similar guiding principles to the above.

Two illustrative examples for leader behavior

In the repeated interaction model, we want to understand how leaders should optimally
behave and build their reputation (the optimization problem in Definition[4.8.1]) when playing
against followers who are responding optimally as well (i.e. playing one of the rules from
Definition 4.8.3} 14.8.4} and [4.8.5|depending on which would maximize their aggregate payoff).
Before stating our main results formally, let us view the main ideas through two simple
examples. As in Section [4.7, we use Figure to depict the stage games in normal form
as well as ideal leader payoff function. The first example is a reproduction of Example [3] as
a repeated security game.

Repeated security game

Example 4: In this example, the leader is a defender facing a sequence of attackers (fol-
lowers). The pure strategies for defender and attackers are indexed by targets {1,2} — the
defender can choose to defend target 1 or 2, and the attacker can choose to attack target 1
or 2. Payoff matriced””] {{A;;},{B;;}} for both players as well as the ideal defender payoff
function are represented in Figure [£.110]

We denote the realized strategies at round ¢ for defender and attacker respectively by
I € {1,2} and J; € {1,2}. At round ¢, defender and attacker observe common history
Hi1 = {(Is,J5)'Zt}, and can play according to rules I, := i,(H,_1) and J; := j,(H;_1)
respectively.

Recall the definition of the ideal defender payoff function as depicted in Figure [£.11D]
and that the optimal mixed commitment for the defender, expressed in terms of probability
of protecting target 1, is p% = 0.5. Her ideal Stackelberg payoft is fZ = 0.5. We have seen
how she can achieve this payoff through robust commitments when there is shared belief in
commitment but limited observability. We will now use this example to understand how she

32The intuition for the payoffs is: the defender gets a unit payoff for neither target being compromised,
but more negative payoff from target 2 being compromised than target 1. On the other hand, the attacker
gets unit payoff from compromising either of the targets.
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Figure 4.11: Examples of non-zero-sum repeated security and persuasion games. In the
security game, p denotes the probability with which the defender will defend target 1. In the
persuasion game, p,o denotes the probability with which the prosecutor will signal guilty
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could achieve this payoff by additionally establishing belief through repeated interaction with
attackers.

Persuasion through repeated interaction

Our next example is a persuasion game where the signalling mechanism is not a-priori known
or believed, with the additional complication of there being private information that is known
to the leader but unknown to the follower.

Example 5 (Example from [188], one-shot): = We reproduce the example from Ka-
menica and Gentzkow’s seminal work on Bayesian persuasion in which a prosecutor is trying
to convince a judge that a defendant is guilty. We denote the true culpability of the de-
fendant by the {0, 1}-valued random variable, IT = I[defendant is guilty] ~ Ber(7) for some
m € (0,0.5). The game proceeds in a sequence of steps:

1. The prosecutor commits to a signalling mechanism, uniquely determined by

This mechanism is exactly revealed to the judge.
2. The true state of the defendant, II, is exactly revealed to the prosecutor.
3. The prosecutor draws a signal Y ~ p, 1 and reveals it to the judge.

4. The judge decides to make a conviction or acquit based on expected utility theory
under her posterior belief about the identity of the defendant.

Viewed as a one-shot, Bayesian Stackelberg game (with the identity of the defendant
being asymmetric private information), the leader is the prosecutor and the follower is the
judge. The leader and follower payoff matrices are depicted in normal form in Figure [4.1Ta]
where the private information II is only visible to the leader (prosecutor). The leader (pros-
ecutor) has 4 pure strategies to choose from, corresponding to signaling either 'g’ or i’
conditioned on the private information II. Any mixed strategy over these 4 pure strategies
can be expressed as a randomized signalling mechanism {p,1,p,0}. The follower (judge) has
2 pure strategies to choose from, convict (Z = ¢) or acquit (Z = a).

We constrain the prosecutor strategy space to py1 = 1, i.e. the prosecutor will truthfully
signal guilty (’g’) if the defendant is truly guiltyl?] and consider the choice of p, € [0, 1].
Thus, if the judge sees signal ’i’, he knows with certainty that the defendant was innocent

33A routine calculation, which we omit, shows that this is optimal for the prosecutor — the intuition is
that the prosecutor has no incentive to lie about the identity of a truly guilty defendant, because she always
wants to maximize her number of convictions.
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and will respond with pure strategy ’a’, yielding payoff 0 for the prosecutor. On the other
hand, if the judge sees signal 'g’, he will infer that the defendant was guilty with probability

T
T+ (1 —7m)pgo’

Prill =1|Y =g| = (4.16)

and based on the expressions above for his payoff function, he will respond with pure
strategy "¢’ if and only if we have Pr[Il = 1]Y = g] > 3. Thus, the leader (prosecutor)
payoff function is given by:

Flpan) = PilY = gt [PrlIT = 1Y =] > (a.17)

A simple calculation yields that the optimal mechanism, i.e. the value of p, o that maxi-
mizes foo(+), is given by
. T
Po0 =17
and the optimal payoff is given by fi = 2.
Having described the one-shot setting, we describe a natural repeated-game formulation
that could explain how the prosecutor is able to reveal her mixed signalling mechanism.

Example 5 (repeated version) Consider a prosecutor interacting with 7" judges over T’
rounds. In each round, the prosecutor works with a different judge on the case of a different
defendant. That is, at round ¢, prosecutor receives private information II; i.i.d ~ Ber(m)
about the culpability of defendant t. Then, she reveals signal I, € {’g’’i'} to the judge.
The judge has access to history constituting the prosecutor’s previous signals, judges’ prior
decisions {J, € {’c’,’a’}}._} and the corresponding true culpability of previous defendants,
i.e. we have

Ht—l = {(Isa Jsa Hs)z;ﬁ . (418)

Based on these, he makes a decision J; := j;(H;_1;7) according to a learning rulﬁ that
only has access to history H; 1, knows the common prior on defendants 7 but not the
actual culpability of the current defendant. We are interested in identifying prosecutor rules
Iy == iy(Hs—1; 7, 11;) that would maximize her expected payoff for sensible judge response
rules, based on forecasts as defined in Definition [4.8.1]

The persuasion model introduces additional bells and whistles in the information struc-
ture, primarily due to the presence of external private information. Strictly speaking, it is a

344Ipncomplete information" for the judge represents both the unknown identity of the defendant, and the
utility function of the prosecutor.
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slightly more complex framework than the 2-player leader followers repeated game described
in Section and there are several possible variants one could consider to the information
structure[ﬂ Nevertheless, persuasion models provide one of the most compelling contempo-
rary examples of a non-trivially established reputation, and so we chose a simple persuasion
model as a motivating example.

We will consider the special case where 7 = 1/3 and Pyo =1 /2 for ease of exposition.
In this case, the optimal payoff is given by f% = 2/3, which means that the prosecutor can
successfully get 2/3 of the defendants convicted even though only 1/3 of them are truly guilty.
In reality, there is no reason for judges to believe that a prosecutor would commit to a fixed
signalling mechanism, nor would they know the mechanism exactly. We wish to understand
how, then, a prosecutor can realize this persuasive power through repeated interaction with
judges.

Robust, randomized leader schedules

We start by describing a mechanism by which the leader can establish belief in mixed com-
mitment while eventually approaching her mixed Stackelberg payoff. We first describe this
mechanism for the security game example.

Example 4: The mechanism involves a defender rule and an attacker response, both of
which we describe below.
Defender rule: For n < 1/2, we fix

1_ 1
I~ 1 w.p. méx {12 _11;,770} ' (4.19)
2 w.p. m1n{§ + o 1}

We denote as shorthand p; := max {% — tin,()}, the probability that defender defends
target 1 in round ¢; and P, ~ Ber(p;) as the indicator that she actually defended target 1 in
round t. Observe that we are simply using the robust commitment construction corresponding
to t unknown samples at round t, constructed according to Theorem[4.7.4 This constitutes
a randomized rule with independent, but not identically distributed deployments across
rounds.

Attacker rule: We consider attackers who respond using the empirical averages forecast
as in Definition [4.8.3; that is, attacker ¢ uses empirical estimate P;,_; := ﬁ Zz;ll P, for his

forecast in round ¢, and responds with:

Lt if Py <1/2
e 2 otherwise.

(4.20)

35In particular, we do not mean to suggest that the setting in Example 5 is the only way persuasion could
be realized. For example, the assumption that past realizations of private information are revealed in history
seems particularly strong for practical use. The nature of theoretical results will be heavily dependent on
the information structure used in modeling.
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We will analyze the time-averaged payoff that the defender should expect from using the
rule in Equation (4.19) against attackers who respond according to Equation . Recall
that we use E[-] to denote the expectation over the randomization in defender rule (and thus
randomization in attacker responses). For a general randomized defender rule (py,...,pr),
the expected time-averaged payoff against such attackers is denoted by

fT,avg((pb o e 7PT)>

T

1

T Z PAy j, + (1= P)Ayy,
=1

T
1 N
_ E[T ;:1 Pl [Pt_l < 1/2] Ais

+PI [ﬁt_l > 1/2] Ais+ (1 - P)I [1375_1 < 1/2} Ags

+ Pr |:ﬁt,1 > 1/2:| A272i|,

where we have simply substituted attacker t’s response J; according to the learning rule
in Equation (4.20). The outcomes marked in red (([; = 1,.J; = 2) and (I; = 2, J; = 1)) are
undesired by the defender. Outcome (I; = 1, .J; = 2) is particularly poor, yielding a payoff
of —2 for the defender.

Denote E;[-] := E[-|H;-1] as shorthand for the conditional expectation of a quantity given
history H;_;. Substituting A;; =1, 420 =1, 4,5 = —2 and Ay; = 0, and using the tower
property of conditional expectation, we evaluate the above expression for the randomized
defender rule to get

fT,avg((pb v :pT))

—E TZT: 0P, I[Py > 1/2] + (1 — P,) - 1[P,_y > 1/2] + P, - I[[P,_, < 1/2]

T
—E fZ 1—4P) I[Py > 1/2] + P,

—E % S E [(1 —4P) I[P, > 1/2] + Pt]

= Z E [(1 — Ap I[Py > 1/2] —I—pt} (using independence across rounds)

T T
1 1 ~
> T ;:1 P ;:1 3-Pr |:Pt—1 > 1/2] (using linearity of expectation, and 1 — 4p, > —3).

——— P
A B
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Here, term A represents the remaining time-averaged power of mixed commitment (in
particular, we want to know how much less this term is than ideal Stackelberg), and term
B represents the probability that the undesired resonse J; = 2 is elicited, which happens
whenever Pt 1 > 1/2. It turns out that we can sho 6 that

1 2

A>-_ 2
=2 Tm

BS%forsomeC>0,

VT
optimality of this leader rule and eventual convergence to the defender’s ideal Stackelberg

payoff 1/2. Recall that the Stackelberg commitment is p5, = 1/2, and the randomized
defender rule is in fact converging to this as more rounds of the game are played.

Figure provides intuition for how the randomized rule works. In initial rounds, the
defender plays very conservatively and is much more likely to defend target 2 than target
1 to ensure a very low probability of undesired attacker response (i.e. attack of target 2).
Later, the defender can afford to mix up her defense more and move closer to the boundary of
eliciting different attacker responses, which is p = 1/2. Figure shows that the effective
commitment power realized at round ¢, denoted by p, := %23:1 ps, is slightly less than
the effective commitment power in the one-shot model with ¢ limited observations, which
would be simply p;. This represents a small additional price of establishment of belief in
commitment, and manifests in a slight difference in the overall payoffs under the one-shot and
repeated models as seen in Figure [£.12D] Nevertheless, the difference is small, on the order

L - for a round ¢, and is exactly characterized in Proposition [4.9.21 Moreover, observe that
un er this defender rule, the attackers are not only asymptotlcally best responding according
to Equation ({4.20)) (thls is because we can show that P, —® S pi, = 1/2), but also they are
doing so at the best possible rate, in accordance with information-theoretic lower bounds
on estimation [195]. This lends additional robustness to this defender rule as a constructive
way to achieve mixed-strategy Stackelberg equilibrium through repeated interaction.

This intuition also guides us to a randomized prosecutor rule to achieve persuasion power.

and thus E [frag((Pr,...,Pr))] > 35— 0O <L> (taking n ~ 1/2), showing approximate

Example 5. Prosecutor rule: At round ¢, let N, ; := S} [IT, = 0] represent the
number of innocent defendants seen so far. Furthermore, we denote si,sz,...,5;,... to
be the epochs of arrivals of innocent defendant numbers 1,2,...,j,... (For convention, we
denote so =0 and sy, =1T1".)

Then, we will consider the prosecutor to use rule

1 1
pg70(t> = max {5 — W_l’ 0} (421)
Pga(t) =1, (4.22)

36This is a special case of Proposition which is proved in Section m
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and denote as shorthand I[/; = 'g’| = P, ~ Ber(py,(t)), i.e. the unconditional probabil-
ity that the prosecutor signals 'g’ on any round.

Judge rule: We consider judges that use an empirical averages forecast of the probability
with which the prosecutor signals ’g’ for an innocent defendant. We denote this forecast at
round (t — 1) by P,o(t — 1) := W. Based on this forecast, we define the judge
response model to be

IR s 1
J, = o if T+ (1—7m) Pg0(t—1) = (4.23)
’a’ otherwise.

For any sequence of defendants {IIy,Ily,...,II7}, we define the expected prosecutor
payoff, averaged over time, against a sequence of judges that respond according to Equa-
tion (4.23):

T
frave((p1;...,pr)) =E % Z Py 1y = 7C’]]

L7 =1
r. T
1 T 1
=E|5 > P-1I = >
_T; T+ (1 —m)Pyo(t — 1) 2”

where E[-] denotes expectation only over the realizations of the prosecutor rule. Recalling
that we specified 7 = 1/3, we have (in an argument similar to the preceding example),

%t_ipt i
Zpt {got—l) ;H
:%ZE{M[Pt—Pt-HFgﬂ@-”%m

E [frae((Pr,..., P

1 1
= > -
14+2P,0(t—1) 2

_ %ix& []I[Ht ] T[T, = 0]y o) — pyo(t) - T lﬁgp(t s %} }
z%g(ﬂ[m:u + T[T, = O]pgo(f) Xi: { t—1)>%]

Here, A represents the time-averaged power of mixed-strategy persuasion, and B repre-
sents the cumulative negative effect that can arise from a mis-perceived persuasion, which
would result in judges ignoring the signal and acquitting. Because these terms also depend
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on the realizations of the external private information (IIy,...,II7), bounding them is a
slightly more intricate procedure — but the same intuition holds, and we can still do it. We
refer an interested reader to the full calculation in Appendix and simply present the
final result here: taking a further expectation over the realizations of the private information
(ITy, ..., TI7), one gets

2 _0.0172 C

5Ty ¢ T T

E(H17-"7HT) [E [fT,avg((Pl, e PT))]] > g —

for some constant C' > 0, and thus the prosecutor approaches her ideal Stackelberg payoft,
equal to 2/3, at a rate of O ( ) (taking n ~ 1/2).

The natural indexing for time in build-up of persuasion power actually involves the
number of innocent defendants seen so far (which is close to %T when T is large). The
prosecutor starts off very conservative and is much more likely to recommend an acquittal
for innocent defendants to ensure credibility. After many more innocent defendants have
been encountered, she can afford to mix up her signals more and more, and move closer to
the boundary of maximal persuasion power.

These examples outline one way in which leaders can build up reputation credibly. Is it
essentially the only way?

Deception and accelerated establishment of commitment against naive followers

To answer the above question, it is instructive to consider the optimal leader rule relative to
naive followers that always use the empirical averages forecast from Definition in our
two examples. While we do not expect intelligent followers to blindly behave in this way,
the results are surprisingly insightful.

Example 4. Recall, from Section[4.9] that the defender objective function against attackers
who always respond according to Equation (4.20)) (i.e. naive attackers who use the empirical
averages forecast), is given by

1
fT,avg(pl:--pr f

T
> (1—4P) 1Py >1/2 + P,
t=1

For convenience, we slightly rewrite this expression to get

fT,avg(pla ] 7pT

i 1-3P)-1[P_ >1/2] + P,-1[P,_; < 1/2]] L (4.24)

We already saw that the randomized defender rule from Equation (4.19)) approximately
achieves the defender’s ideal Stackelberg payoff, equal to 1/2. However, if faced with such
naive attackers, the defender can do much better. It is easy to verify that frawe(P, ..., P) <
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1 for any deterministic leader rule (Py,..., Pr) € {0,1}7 (because the maximal expected
payoff the defender can get at any round is 1, when all targets are successfully defended).
This payoftf can be achieved if the defender can incentivize the naive attacker to attack
precisely the target that she is planning to defend on every round. Consider the following
deterministic defender rule, which does precisely this:

1if ti
t:{ if ¢ is odd (4.25)

0if ¢t is even .

Round 1 2 3 4 5 6 7 8 9 10
Defender strategy | 1 2 1 2 1 2 1 2 1 2
P 1 05 0667 05 06 0.5 0571 0.5 0.555 0.5
Attacker response | 1 2 1 2 1 2 1 2 1 2

Table 4.2: Table to show the evolution of I/D\t with t. Notice that the defender strategy
engineers her strategy to ensure that P,_; = 1/2 on odd rounds, eliciting an attacker response
of 1; and P,_; > 1/2 on even rounds, eliciting an attacker response of 2.

Table 4.2 shows the evolution of the empirical averages P, as a function of ¢ for the first
10 rounds (up-to 3 decimal points). Observe that when ¢ is even, P,_; > 1/2, so the attacker
attacks target 2. Similarly, when ¢ is odd, ﬁt_l = 1/2, so the attacker attack target
1. This is a highly desired outcome for the defender — note from Equation that the
defender is in fact defending target 2 on even rounds, and target 1 on odd rounds — so this
rule results in successful defense on every round. Explicitly, we substitute these properties
into Equation to get the following defender payoff for the deterministic rule:

Z]I[t even] - (1 —3-0)+ 1t odd] -1 = 1.

t=1

1
fT,avg(Pla Ce ,PT) = ?
By using the deterministic rule in Equation , the defender is doing something
very simple: she is baiting an attacker into responding with attacking alternate targets in
odd and even rounds. Since she is able to predict which target will be attacked next, she
can defend that target in that round and achieve the maximal payoff of 1 in every round.
Figure [4.13| shows that the defender effectively straddles the boundary between eliciting
attacker responses 1 and 2, in clear contrast to the randomized defender rule from Section[4.9]
which aimed to (almost) always elicit attacker response 1.
We have shown that the optimal payoff against naive attackers (equal to 1) is strictly
better than even the ideal Stackelberg payoff (equal to 0.5). This additional payoff is arising,

37As with the Stackelberg solution concept, this follows critically from the tie-breaking assumption in
favor of the defender. Even if the attacker broke ties randomly, the defender would be able to defend her
target on half of the even rounds and achieve a time-averaged payoff of 3/4.
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Figure 4.13: Evolution of naive leader rule, i.e. effective commitment power %22:1 Ds as a
function of ¢. Figure from .

fundamentally, from deception. This is a general property for games in which deceiving
followers is a dominant strategy over achieving ideal Stackelberg payoff. We characterize a
general ensemble of games that satisfies this property, which we denote a strictly-deception-
dominant ensemble, in Section [4.9]

We will see that the leader is not always incentivized to deceive followers — the case of
persuasion tells quite a different story.

Example 5. Consider the time-averaged payoff function that we defined earlier for the
prosecutor against judges who always use an empirical averages forecast, i.e. respond ac-
cording to Equation (4.23)):

fT,avg((pla .. 7]0T

Zpt { P,o(t—1) < ;”

We considered randomized rules for the prosecutor that approximated her ideal Stackel-
berg payoff. We now ask whether the prosecutor can do better if she assumes judges who
naively respond according to Equation (4.23]). For any rule (p1,...,pr), we will see that

T— N N
nyan((ph cee 7pT)) S d _T7 (426>
T 2
implying that
1 1 2 2
E av < —4-.Z=Z,

and thus the optimal payoff corresponds to the ideal Stackelberg payoff of the prosecutor.
It turns out that this exact payoff can only achieved by deterministic rules. A full proof
of the necessity of determinism is carried out for a more general ensemble of games that
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includes persuasion games in Section [£.12] and we do not reproduce the argument here. We
do, however, show here that the ideal Stackelberg payoff is achievable.
We consider prosecutor strategies that truthfully signal a guilty defendant, i.e. P, =1

whenever II; = 1. Recalling our notation for the epochs of innocent defendant arrivals
S1,...38j,..., SNy, we have for any deterministic strategy (P, ..., Pr):
1 1
Jraw((Prs-, Pr)) = — > @M, = 1]+ 1[I, = 0]R,) - I {Pg,oa -1)< 51

t=1

The prosecutor rule P, has a non-trivial specification only on innocent defendant epochs

S1,...,8n,. Here is an example of a prosecutor rule that maximizes the above objective:
0 if 7 odd
po=4 " (4.27)
! 1 if 5 even.
One can verify that this rule has the attractive property that P wo(s; — 1) < for all

J € [Nr], thus ]3970(15) < % for all ¢ € [T]. Thus, judges respond by always conv1ct1ng when
they see a guilty signal; resulting in overall payoff

T
1 ~ 1
fT,avg((Pla"'7 Tz +]I[Ht—0].Pt) I |:Pg70(t—1) S §:|
t=1
T
+ ZPSJ
T - Ny NT
T 27"’

which, in expectation over the defendant sequence becomes exactly equal to %—i— % . % = %

There are also other deterministic rules that can satisfy this condition and help the
prosecutor achieve exactly her ideal Stackelberg payoff. We have not shown it explicitly here
(a formal argument is in Theorem — but it turns out that ideal Stackelberg payoff is the
best she can do, and moreover it is achievable only by a deterministic rule. At a high level, this
is because eliciting convictions from the judges when they see a guilty signal is an obviously
dominant strategy for the prosecutor — she always strongly prefers to do it, however few
guilty signals she actually sendﬁ. In the proof of Theorem , we characterize a general
ensemble of 2 x 2 games for which this property holds and show that in such games, the
leader cannot realize more than her ideal Stackelberg payoff even against naive followers.

Moreover, this exact payoff can only be realized through deterministic rules.

38 As long as the number is non-zero, which it will be since the prosecutor always signals guilty for truly
guilty defendants.
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Vanishing credibility against intelligent followers

One should be naturally suspicious of the leader rules we just outlined. First off, we do
not expect the followers (attackers and judges respectively) to continue to forecast using
empirical averages (as in Definition when they are aware that the leader (defender and
prosecutor respectively) has deviated from a randomized rule with independent deployments.
Such a forecast would be extremely sub-optimalﬁ for them (and indeed, in the security game
example, leads to the attackers always getting payoff 0).

Furthermore, the prevalence of determinism in the “optimal" rules means that not only
will the followers deviate from the empirical averages forecasting rule, they can use a much,
much better forecasting rule that completely compromises the leader’s reputation. Let us
see how this happens through our two examples.
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Figure 4.14: A comparison of the ensuing defender payoff from a) the randomized rule, b)
the deterministic rule against naive attackers, ¢) the deterministic rule against intelligent
attackers. Figure from [90].

Example 4. Recall that for the security game the uniquely optimal defender rule against
naive attackers was in Equation (4.25]), reproduced below:

P {1iftisodd

0if ¢t is even .

Consider attackers who, instead of using the empirical averages rule, use a predictive
forecasting rule according to Definition [£.8.4 with the predictive model comprising the space

39In a hypothetical Bayesian interpretation of our framework, this would be because such followers con-
tradict “expected" utility theory.
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of all K-periodic sequences for some finite K > 0. Note that the leader sequence, which is
2-periodic, is deterministically predictable under this parameterization.

Recall that P, = [[I; = 1], i.e. indicator that defender defended target 1 in round ¢. With
the above predictive forecast, the attacker will be able to exactly predict the value of I; in
round ¢ given history H;_1, and will always respond with the opposite target, i.e.

L:{Qﬁtmmm

1if ¢t is even .

This obviously maximizes the attacker’s payoff because it always succeeds in compromis-
ing a target. We denote the defender’s expected payoff from a (randomized) rule (py, ..., pr)
against attackers who use the predictive model Q by fr pred(p1, - .., pr). For the deterministic
leader rule in Equation , observe that

frored(Pr,..., Pr) = %Z]I[t even|(0) + It odd](—2) = %(O —2) = —1,

which is strictly sub-optimal compared to the ideal Stackelberg payoff of 1/2 (or the payoff
achieved by the randomized leader rule, which is % -0 (\/LT)) Thus, the uniquely optimal

solution to the dynamic program against naive attackers, in Equation 18 extremely
unstable to a smarter attacker response. This is a generic property of the strictly-deception-
dominant ensemble, which we characterize in Theorem [£.9.5 Figure shows the stark
contrast in the expected defender payoff from the periodic defender rule against naive fol-
lowers (the black line) and intelligent followers (the red line), conveying the brittleness of
this rule. In contrast to this brittleness, the randomized defender rule (the blue line) is not
deterministically predictable, and thus robust to such attacker exploitation.

The brittleness of the optimal rule against naive followers is also a property in the per-
suasion example, as we see below.

Example 5. Recall that in the persuasion game, the only non-trivial signalling decisions
are made at epochs of innocent defender arrivals, si,...,sn,. All optimal solutions are
deterministic and satisfy the properties

~

1
Po(t—1) < 5 for all ¢.
We considered a periodic (over innocent epochs) prosecutor rule that satisfied this prop-

erty:

) 1if j even.

_{Oﬁjmm
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While such rules are extremely effective against judges who naively use an empirical
averages forecast, they are also extremely non-robust to smart judges that use a predictive
forecast. Intelligent judges will quickly recognize the existence of a periodic prosecutor rule,
for example; and be able to anticipate at every round ezactly how the prosecutor would
signal if the defendant were actually innocent. To see this, consider every round ¢ in which
the prosecutor deterministically signals 'g’ for guilty. There are two possibilities:

1. At round ¢, we have 13970(75 —1)=1> 1. In this case, there have been an odd number
of innocent defendants so far. So the judge expects the prosecutor to next signal g’
even if the defendant were innocent, and will always acquit regardless of which signal

is sentf™]

2. At round ¢, we have ﬁgvo(t -1)=0< % In this case, there have been an even
number of innocent defendants so far. So the judge expects the prosecutor to next

signal truthfully, and will acquit if II; = 0, i.e. if the defendant is truly innocent.

The result of this is that intelligent judges never convict innocent defendants when faced
with a periodic prosecutor. The prosecutor’s persuasion power can also be compromised on
several guilty defendants.

Formally, the optimal judge response for every round t € (s;_1, s;] is as follows:

a’if Py =1
Jt: ’a’ifPS,j:O,HtZO
¢ if P, = 0,11, = 1.

and because the prosecutor can never expect payoff on innocent defendants, her expected
payoff over time is at most %, the fraction of guilty defendants. In fact, one can show that
she also loses her persuasion power on half of the guilty defendants on average, yielding
expected payoff only %. This is sub-optimal compared to the optimal persuasion power of
2/3 commitments on average, and represents a situation in which the prosecutor overplays
her hand in attempting to persuade — by resorting to deterministic rules, her incremental
persuasion power on innocent defendants vanishes completely, and she even loses the power
to facilitate conviction of half the guilty defendants. We see through this example that the
brittleness of deterministic rules that was observed in security also manifests concretely in
Bayesian persuasion.

Lessons learned

The examples of security and persuasion are an instructive exercise in understanding how
reputation could be credibly built up. Before we turn to formal statements of our results,
some broad takeaways are summarized below:

40Because the prior tells him that innocence was more likely, and the prosecutor’s signal is uninformative.
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1. The robust commitment constructions that were used for the limited-observability
can be also be leveraged to establish belief in leader commitment through repeated
interaction by choosing different mixed strategies in every round. These strategies
gradually approach the best-response-boundary — thus realizing the ideal Stackelberg

payoff at a rate of O (\/LT) We show that this is generally possible for m x n games
in Proposition which builds on Theorem from the limited-observation case.

2. Leader rules that are “optimal" against naive followers that respond to the empirical
averages no matter what can achieve exactly the Stackelberg performance, or even
higher performance through follower deception. However, they are extremely sub-
optimal against intelligent followers.

3. This is because, in the examples considered, staying arbitrary close to the boundary
in finitely repeated interaction requires determinism in the leader strategy, which can
then be exploited by intelligent followers that use a predictive model. This statement

is formalized in Theorem

4. This suggests that leaders likely need to incorporate some randomization in their rules
to truly build credibility.

While we saw that naive leader rules to induce follower deception are a bad idea, one
can ask whether the leader is incentivized to deceive the follower in a more sophisticated
manneﬂ. In Proposition , we show that there is some potential for a benefit over and
above ideal Stackelberg performance through the abstract ability to deceive — but this benefit
is limited.

Robust, randomized leader rules

First, we generalize the definition of the leader’s expected payoff, averaged over time, when
the followers respond using an empirical averages forecast according to Definition [4.8.3]

Definition 4.9.1. Let the leader choose, as her rule, randomized strategies xq,...,Xr
with tndependent deployments. Then, against followers who respond using an empirical
averages forecast, she will expect time-averaged payoff

T

1
T Z Aftyj*(f(tﬂ] ) (4'28)

t=1

fT,avg(Xla cee aXT) = E(Il,...,IT)N(xl,..‘,xT)

where the expectation is only taken over the realizations of the randomized strategies (and
ensuing follower responses).

4“1For e.g., deceive without the follower being aware that he is being deceived.
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As we saw in Examples 4 and 5, the robust commitment constructions in Theorem [4.7.4]
can be naturally applied to help the leader approach her ideal Stackelberg performance at a
specific rate. We provide a formal statement below.

Proposition 4.9.2. Let the number of rounds T = O(m), and fix 0 < n < 1/2. Then, any
leader rule that uses the robust commaiatment x,, meant for round t satisfies

fo = frae(x1, ..., x7) = O ((?)6 ; (4.29)

where the (5() contains constant factors that depend on both the local and global geometry
of the best-response-region R;-. For a formal statement that includes these factors, see

Equation (4.62]).

The proof of Proposition [£.9.2]is a fairly simple consequence of the properties of Theo-
rem [£.7.4] together with assured independence in deployment, and is deferred to
Appendix [£.12]

The implication of this result is that we have progressed from robust commitment con-
structions meant for a one-shot game with limited observability to a robust randomized leader
rule meant for repeated interaction, during which both observability and belief have to be
built up. In the limited-observability setting, the requirement for robustness was only that
the expected follower response should be preserved under limited observability. Now, the
randomized leader rule enjoys robustness in a much broader sense to strategic manipulation
by followers. We justify this through two observations:

1. When the randomized leader rule is used, it is asymptotically good for rational follower
t to use the empirical averages forecast, and respond with j*(X;_;) in the sense of
asymptotic Consistency@, i.e. for the given rule we have

tlim (X;_1 — x;) = 0 almost surely. (4.30)
—00

Equation (4.30]) is justified through a non-asymptotic concentration bound on the total
variation of (X;_; — x;), which follows from a generalized version of Devroye’s lemma

(Lemma [4.12.2)).

2. Because of the independence of randomness of deployments across rounds, follower ¢’s
estimate of the mixed strategy at time ¢, X;_1, is minimax-optimal in the traditional
information-theoretic/statistical sense [195, Fano’s inequality|. Thus, follower ¢ does
not even benefit in a non-asymptotic sense from deviating from the empirical averages
forecast as in Definition 8.3

42A similar condition is invoked by Fudenberg and Kreps |233| to justify the use of experimentation by
agents; there it is called asymptotic myopic Bayes.
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Because of this, not only does the leader expect favorable performance provided that the
followers use an empirical averages forecast, the leader has no reason to believe that rational
followers would deviate from using an empirical averages forecast when she is known to be
using this randomized rule.

Dis-incentives for determinism and exploitation of naivete

We saw in Examples 4 and 5 that the leader may have a temptation to exploit naive followers
who always use the empirical averages forecasting rule, i.e. always play J; = j*(X;_1)
regardless of the leader rule. More precisely, the leader could maximize her payoff by solving
the ensuing dynamic objective fraug(X1, ..., Xr) as defined in Equation ([£.28)).

In both examples, the leader rules that maximized this objective were deterministic,
and they thus lost their credibility. Even for general 2 x 2 games, the dynamic program
in Equation does not have a closed form solution, nor is the optimal payoff easily
evaluatable. However, we are able to show, for two broad ensembles of 2 x 2 games, that
all leader rules that maximize the time-averaged payoff are indeed deterministic. We briefly
describe these ensembles below. As before, the leader strategy is expressed as her probability
of playing strategy 1, denoted by p € [0,1]. We denote the leader payoff as a function
of strategy p when follower responds with pure strategy j by f(p;j) and, without loss of
generality, choose the best-response-function

“(p) = 1itp <pi
S = 2 otherwise.

We also assume that the Stackelberg commitment is equal to p%, € (0, 1), i.e. it is mixed.
The ideal Stackelberg payoft is denoted by fX .

Our first ensemble is called a strictly-deception-dominant ensemble.

Definition 4.9.3 (Strictly-deception-dominant ensemble.). A 2 x 2 leader-follower game,
as defined above, is strictly-deception-dominant if we have

maxpe(o,1) f(p; 1) = maxyeo1) f(p;2) > £

The strictly-deception-dominant ensemble is paradigmatic of the security game in Ex-
ample 4. As the name suggests, for any game in this ensemble the leader is incentivized
to systematically deceive naive followers into responding sub-optimally. This is to try and
realize the payoff max,cp1 f(p;1) = maxyecp1 f(p;2), which is strictly greater than the
ideal Stackelberg payoff. A more detailed description of this ensemble, and an intuitive
illustration, is contained in Appendix

Our second ensemble is called a one-response-obviously-dominant ensemble.

Definition 4.9.4 (One-response-obviously-dominant ensemble.). A 2 x 2 leader-follower
game is one-response-obviously-dominant if we have

miny,e(o,1] fp;1) > maxXpe[o,1] f(p:2).
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The one-response-obviously-dominant ensemble is paradigmatic of the persuasion game
in Example 5. In this ensemble, the leader has zero incentive to deceive the follower into
responding sub-optimally, and simply wants to realize her maximal power of mixed commit-
ment. A more detailed description of this ensemble, and an intuitive illustration, is contained
in Appendix

It turns out that in both of these ensembles, not only are followers no longer incentivized
to use the empirical averages forecast; but also they can use a particular class of predictive
forecasts to exploit the leader rule and make it highly sub-optimal.

Theorem 4.9.5. For two continuous ensembles of 2 x 2 leader-follower games in which
i € (0,1) and fo(p) is discontinuous at p’,, we have the following characterization of the
naive dynamic program:

1. Any strategy (p3,...,p5) that mazimizes frawg(p1,-...pr) is a deterministic strategy,
i.e. (pi,.-.,pp) €{0,1}".

2. There exists a predictive forecast parameterized by §2, such that the expected leader
payoff, averaged over time, against a follower using this predictive forecast is given by

frpred(DY, - D7) < nax fooli) < f2

Informally, Theorem says that for these classes of games, any leader rule that
is optimal against naive followers, who use the empirical averages forecast regardless of
the leader rule, is strictly sub-optimal against intelligent followers, who use a predictable
forecast on a class of deterministic sequences. Because of this strong predictability, the
leader is restricted to attaining at most her pure strategy Stackelberg payoff, which is always
strictly sub-optimal when the Stackelberg commitment is mixed.

Theorem is proved for both the strictly-deception-dominant and the one-response-
obviously-dominant ensembles. The proofs are contained in Appendix For the strictly-
deception-dominant ensemble, the leader’s optimal strategy does deceive naive followers, but
in an extremely brittle way — not only is the optimal strategy unique and deterministic, it
turns out to be finitely periodic, making it extremely sub-optimal against smarter followers
who use predictive forecasts. Here, Theorem tells us that while there may be an
incentive to deceive followers in their learning attempt, any attempt to realize this deception
naively can be catastrophic for the leade@.

For the one-response-obviously-dominant ensemble, the optimal payoff even against naive
followers is exactly the ideal Stackelberg payoff. For these games (and only these games),
Theorem gives a formal framework to show the impossibility of credibly achieving the

43Tn fact, such naive attempts to deceive a follower are reminiscent of the “bad reputations” encountered
by Ely, Valimaki, Fudenberg and Levine [192,|199] for the pure strategy model: in the SPNE of their repeated
game(s), the followers opt out of participating with leaders who resemble a “bad type" too closely; and the
leader plays in a manner to avoid resemblance to the bad type.
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ideal Stackelberg payoff even against naive followers, and shows the necessity of some amount
of independent randomization in the leader rulelﬂ. This impossibility result parallels the very
first result in this chapter showing non-robustness of the traditional Stackelberg commitment
to observational uncertainty (Proposition [4.7.1)).

Limited benefit of deception

We saw that for the one-response-obviously-dominant games, such as the persuasion game in
Example 5, there is no incentive for the leader to elicit a follower mismatch through deception
— and we have already seen that the leader incurs some sub-optimality from establishing a
credible partial reputation. For others (like the security game in Example 4 and the 2 x 3
non-zero-sum game in Example , the leader could be incentivized to deceive naive followers.
While strategies that deceive a naive follower may be deterministic and highly sub-optimal
(like the ones that we saw in Example 4, more sophisticated attempts at deception need not
have this brittle property. The more general test for whether deception can ever be a good
idea for the leader would be to test an arbitrary leader rule against pessimistic followers,
who do not expect predictability from the leader and follow a rule in the spirit of Hannan
consistent /“no-regret" learning. Since we have defined all follower rules through sequential
forecasts, the natural case to consider is an aggregate of followers who follow universally
calibrated forecastsﬁ as in Definition We show that against such followers, the leader
could obtain a benefit over and above the ideal Stackelberg payoff, but this benefit will
necessarily be minimal.

Proposition 4.9.6. For any leader rule Iy := i;,(Hi—1) played against a sequence of follow-
ers using a universally calibrated forecast {r;}1_,, we denote the realized, time-averaged
leader payoff by frcaiv(l1,...,Ir). Also let Np(r) := Zthl I[r;, = r| denote the number of
times the followers used forecast r. Then, we have

1 o(T
Jreain(l1, ... Ir) < T Z Np(r)(r, a«r) + fmaz% almost surely (4.31)

I'EAm

44This is similar in spirit to how we think of Hannan-consistent rules needing to be randomized [80].
Whether the randomization truly needs to be independent from round to round, necessitating a 5) (ﬁ)

rate of approaching the ideal Stackelberg payoff, remains open and is an interesting question for future
work. In the context of the rich literature on de-randomization through pseudo-random number generators,
the answer to this question may depend on the nature of computational limitations imposed on leader and
followers.

45Foster and Vohra |208] establish a general link between the ideas of (asymptotic) no-regret and cali-
bration. It is interesting to note the necessity of the stronger condition of calibrated forecasts, as opposed
to no-regret payoffs, on followers, to prove our forthcoming result — we were not able to get a result for the
latter.
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for all realizations of randomness in the leader rule and follower forecasts. This can be
upper bounded by

freaw(l1, ..., Ir) < f:o—i_fmam@' (4.32)
Proposition follows quite directly from the fundamental definition of calibration and
is deferred to Section Equation tells us what the best case for a leader could be
against a universally calibrated forecast — not much more than ideal Stackelberg. The first
term in the expression in Equation , which preserves the dependence of leader payoff
on the follower forecasts, suggests that leader payoff could be sub-optimal if she incentivizes
follower forecasts to deviate significantly from the Stackelberg payoff — indeed, she could gain
a small amount from inducing more calibration error — but this small amount decreases as
T increases. This suggests that the leader has limited incentive, and possibly dis-incentive,
to deceive even in a sophisticated manner, if she is facing pessimistic followers who use a
universally calibrated rule. One can think of this result as the repeated-game analog of
Theorem [.7.5] which reached a similar conclusion for the much simpler one-shot model with
observational uncertainty:.
Taken in conjunction with Propositions and Theorem [4.9.5] the overall flavor of our
results for repeated interaction can be summed up in a few qualitative sentences:

1. For games in which the best possible “naive" payoff is ideal Stackelberg (i.e. there is no
incentive to deceive followers), there is a fundamental, non-zero price of establishing

partial reputation. Randomized leader rules achieve reputation at the rate of O (\%)

in a manner that is strategy-proof to follower manipulation, and are thus approximately
optimal.

2. There is no trivial way of achieving an additional deception benefit, even if it exists —
naive attempts, tailored to naive followers, can lead to strict sub-optimality. Maximally
sophisticated approaches yield only a minimal benefit against universally calibrated
followers, and could also be sub-optimal depending on the nature of the forecasts
elicited.

4.10 Conclusions and future work

In this chapter, we have used the fact that repeated-game interaction with one-sided learning
can be intricately connected to models of reputation building in the Bayesian setup. We then
introduced a novel frequentist framework to posit explicit strategies for the designated leader
and follower. While we uncovered a number of desirable properties in these strategies —
namely, that adaptive followers are approximately optimal against a host of leader strategies,
and simple randomized leader rules are approximately optimal against adaptive followers
— this constitutes as yet partial progress towards the formal definition of a frequentist
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SPNE. This is an important immediate goal for future work. Moreover, the reputation
games constitute some of the simplest manifestations of repeated games with incomplete
information. It is of obvious interest to develop a frequentist theory for repeated games
with incomplete information at large, and for far more complex scenarios that might arise
in modern online marketplaces. These scenarios could include two-sided learning, which we
will discuss at a preliminary level in Chapter

4.11 Proofs for limited observability

Before moving into the proofs themselves, we define some additional notation.

Definition 4.11.1. The set of alternate follower best response to the mized commitment
X is denoted by

are(x) := K7 (x) = {77},

We will be particularly interested in this set for the Stackelberg commitment, that is,
fe(x5). In general, the set will be non-empty as the follower could be agnostic between
more than one pure strategy in response — it is only responding with the pure strategy j*
to break ties in the leader’s favor. Figure shows this demarcation of follower responses
into the expected response j*, and alternate responses to the Stackelberg commitment x_.

Further, we denote maximum and minimum obtainable leader payoffs respectively by

fmaa? = max AZ]
1€[m],j€[n]

min -— min Az

/ icml,jeln]

Proof of Proposition 4.7.1

We consider a general 2 x n game and denote the Stackelberg probability of leader playing
pure strategy 1 by p% . Recall that p% € (0,1) (since we have assumed for the proof that
the Stackelberg commitment is mixed). Let j,;: be the alternate response to the Stackelberg
commitment, i.e. we have K*(p%,) = {jX, jar }. Without loss of generality, the best-response
regions can be described as

Rijs, = [P~ Pa]
Rjalt = (ptooap_‘_]'
Finally, we define f® := lim._,q fo(pZ, + €). Since we are considering leader-follower

games for which the function f.(.) is discontinuous at p’_, by the tie-breaking assumption
on Stackelberg commitment we will have ) < f* .
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Ay,

- Expected response ({]* })
- Stackelberg tie-break K* (x;o)
D Far from Stackelberg

Figure 4.15: Illustration of partition of the set of follower responses, [n], into sets {k*}
(red region), alternate best responses (purple regions) and everything else (orange regions).

Figure from .

Now, we consider the quantity fy(p%,). Denoting ﬁN as the empirical estimate of the
quantity pZ_, we have

Iw(p) < Pr|Py € Ry | fo +Pr | Py € Ry, | 1@
+ (1 — Pr [ﬁN € Rj;o] —Pr [ﬁN € RjaltD fmao
= Pr [Py € (5 o] £+ Pr [Py € (7] £©
+Pr [ﬁN e 0,p U (p*, 1]] finae

= fo = Pr[ Py € (i pM1] (F = /@) + Pr [P € 0,510 (0% 1] (faw — 2.

(. / (. J
-~ -~

T1(N) T>(N)
We will now proceed to bound the probabilities T} (N) and T5(N).
First, we deal with the quantity 75(N), which reflects the probability of a mismatched
response that is neither Stackelberg nor the alternate response on the boundary. By the
Hoeffding bound, we have

Ty(N) := Pr [ﬁN € [0,p7]U (p+, 1]]
= Pr [13]\/ c [O,p_]} + Pr [ﬁN e (p*, 1]]
< exp{—2N(ps, —p )} +exp{ 2N (p" — p)*}.

Denoting C” := 2 (min{p* — p*_, p’, — p‘})2, we then have
Ty(N) < 2exp{—NC"} (4.33)
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and as expected, this probability decays exponentially with V.

Next, we deal with the quantity 77(N), which reflects the probability of eliciting the
alternate response on the Stackelberg boundary. We show that this event is non-vanishingly
probable.

We define the following quantities

Sy := NPy (4.34)
Iy e 2N = NP (4.35)

VNP1 —p5)

Recall that Zy is a real-valued random variable. We denote its cumulative distribution
function by Fy(.).
By a simple change of variables, we then have

Ty(N) = Pr [ﬁN € (p&>p+]]

=Pr|Zy € (O, \/N(pJF _pZO)”

Pi(1—pi)
_ FN(\/N*W )y (o).
pi(1—pk)

Now, recall that Sy = Z;V:1 I; for iid random variables I; ~ Ber(p% ). Also note that
since we have considered games with mixed Stackelberg commitment, we have 0 < pi < 1.
We now invoke the first half of the classical Berry-Esseen theorem [230, [231] stated here as
a lemma.

Lemma 4.11.2. There exists a positive constant C' such that if I, I, ... are wid random
variables with B[] = p < oo, var(l;) = 0> > 0 and E[|I; — pl’] = p < oo, we have

Cp
o3V N
for all x € R, where ¢(.) denotes the CDF of the standard normal distribution N(0,1).

[Fn(2) = ¢()] <

It is easy to verify that the distribution I; ~ Ber(p}, ) satisfies the above conditions.
Therefore, we can directly apply Lemma [4.11.2| and get

Fy (\/N(]ﬁ _pr)) > ¢(O\/N) _ i, and

VN
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for positive constant C' > 0, thus giving
Cf/
VN’

Substituting for the expressions for 7} (N) and T5(N), we now have

T(N) > (¢<0'm - %) - (4.36)

1 c’
= ) > C'VN)— =) — C-2C -NC”
o= i) = ((CVR) - 5) = S5 ) € - 2cemn-ne,
which corresponds exactly to Equation (4.5]). Clearly, the right hand side of this equation
is decreasing in N and so the first corollary — that fy(p%) < f% for N > Ny — holds.
Precisely, we have

lim ¢(VNC') =1
N—o0
!
Ry
lim 2C exp{—NC"} =0,
N—oo

and so we have

_ >Jo J
This is the second corollary from Proposition [4.7.1| and completes the proof. O
Proof of Theorem [4.7.4
Notation

For this proof, it will be convenient to consider the (m — 1)-dimensional representation of
the probability simplex, i.e.

A, :={y>=0and (y, 1) <1}.

Then, we can represent a commitment x € A,, by its (m — 1)-dimensional representation
y = [xl Ty ... xm,l], and the leader payoff if the follower were to respond with pure
strategy j € [n] by

(y, cj) +d;
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where we have

aj1 — Ajm
j2 — Ajm
C; = .
Ajm—1 — Ajm
dj = aj,m.

Similarly, we can represent the corresponding follower payoff by

(v, b)) +d;
where we have
bji — bjm
bio —b;
! 7 2,m
bj = _

bjm—1—bjm

d; - bj,m-

We can also represent this representation of the empirical estimate of y from N samples
by Yy, and this representation Stackelberg commitment by ¥ .

Now, we can consider all the functions introduced in Section 4.5]in terms of the commit-
ment x and equivalently define them in terms of the (m — 1)-dimensional representation of
the commitment, y.

We also denote the pth operator norm of a matrix by |.|,-

The commitment construction

We consider the (m—1)-dimensional representation of the best-response-region corresponding
to the Stackelberg commitment, R;«. There are many things to consider while constructing
a robust commitment. The first, and obvious, one would be that the follower should respond
the same way as it would to Stackelberg when it observes the full mixture. That is, we would
have j*(yn) = j* or alternatively stated, yn € Rj-.

Intuitively, the expected payoff of a leader commitment under observational uncertainty,
particularly in terms of gap to the optimal Stackelberg payoff, will depend on two factors:
one, how likely the follower is to respond the same as it would if it observed the full commit-
ment; and two, how “far" the leader commitment mixture is from the optimal Stackelberg
commitment mixture. We qualitatively show this dependence in the following lemma.

Lemma 4.11.3. Consider a commitment yxn for which we can provide the following guar-
antee:

PI‘[?N ¢ Rj*] S EN.
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We then have

f _fN<YN) <2<1_GN)fmaxHYN_yooHl"_EN(f fmm)

Proof. We have

Inlyn) =D Pr[Yy € RJ((yn, ¢;) + d;)

j=1
> Pr[Yy € Ry |({yn, ¢j¢) + dje) + (1 — Pr[Yy € Rj+)) frnin
Z (1 - GN) (<YN, Cj*> + dj* - fmzn) + fmzn
= (1 - eN) (<yN> Cj*> + d]*) + 6mein'

Recall that we have fX = (y%,, ¢;«) +d;+. Therefore, the gap from Stackelberg is bounded

as
fo = fn(yn) < (1 —en)(ys — ¥, €+) + en(fog — fmin)
< (1_61\7) yoo||1+€N(f fmm)
< 2<1_GN)fma:Jcl”yN_yoo||1+€N(f fmm)

where the second inequality follows from Holder’s inequality. This proves the lemma. []

This lemma implies that we want a commitment construction yy with the following
two-fold guaranted™|

1. |lyn — i |l1 is bounded (and ideally vanishes with N).

2. Y ~ € Rj- with high probability.

Commitment construction using localized geometry

We will leverage the special structure of the Dikin ellipsoid [234] used in interior-point
methods to make our commitment constructions. Observe that 3% is always going to be on an
extreme point (vertex) of the best—response—polytop@ Rj+. We now collect the k = [K* (x|
constraints that are satisfied with equality at x7

(y, b)) +dj < (y, bl.) +dj. for all j € K*(x7,).

46Interestingly, the fact that y* is on an extreme point of R ;= will imply that the two conditions are at
odds with one another, and we will need to trade them off. For instance, choosing yx = y%, would satisfy
the second condition perfectly by being as close as possible to the Stackelberg commitment, but there would
be no guarantee on the best-response as it lies on the boundary of the best-response region.

4TRecall that the Stackelberg equilibrium is the solution to the LP defined on the best-response-
polytope [214].
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This is simply the constraint set for commitments such that the follower prefers to respond
with pure strategy j* over any pure strategy j € K*(y%) (i.e. any pure strategy whose
corresponding best-response-polytope shares a boundary with the Stackelberg best-response-
polytope at point 3*), and can be thought of as the set of local constraints to the Stackelberg
vertez in the best-response polytope R;«. We also collect the other constraints that describe
R

(v, b)) +dj < (y, bj) +dj. for all j ¢ K*(x5,) U{j"}
y =0
(1, y) <1,

and together with the local constraints at the Stackelberg vertex, these describe the global
constraints for the polytope.

We represent the system of inequalities in matrix form as: By =< c¢ for some B €
R¥*(m=1) and some ¢ € R*. We leverage the following useful fact about a general set of
linear constraints.

Fact 4.11.4. For any parameterization of linear constraints (B,c), there exists an affine
transformation y' = Tyy + Ty (where Ty € Rm=D*m=1) s inyertible and Ty, € R™') and a
matriz B € RF*m=1 sych that

By <c¢c < By <X1.

We denote the transformation function by T() and its inverse by T~(-). In particular, we
note the relationship B = B'T).

The above fact is useful® because it is most convenient to define our class of commitments
in the transformed space y’ = T'(y).

Definition 4.11.5. For a particular value of § € (0,1), Stackelberg commitment y’_, and
local constraints modeled by (B, c), we define a §-deviation commitment by

y(6;y5) =T (y'(5; (")) where
Y (65 (¥)) = (1 = 0)(y") -

Our robust commitments {yy}n>1 are going to be taken out of the set of d-deviation
commitments, with appropriately chosen values of {dn}n>1. Clearly, the computational
complezity of constructing any Jd-deviation commitment is equivalent to the complexity of
computing the Stackelberg equilibrium itself.

48 A subtle point is that there do exist special cases of polytope constraints for which Fact is true
only with an augmentation of the variable space from m to 2m dimensions. Then, defining the invertible
map becomes trickier. Nevertheless, for ease of exposition and clarity in the proof, we assume that we can
indeed carry out the affine transformation without augmenting the dimension.
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To understand how to set these values, we will turn to the question of how to satisfy the
three conditions above.

First, we observe that y(d;yZ% ) satisfies the local constraints By =< c¢ for any ¢ € (0,1).
Because of Fact it suffices to show that its affine transformation y’(d; (y*), ) satisfies
the local constraints By’ < 1. Recall that (y*),, satisfies all the local constraints with

o0
equality, i.e. we have B'(y*). = 1. From the definition of the commitment, we thus have

B'y'(6; (y")) = (1 = 0)B'(y")%
(1-01=1.

Next, we turn to the question of how close such a defined commitment would be from
the Stackelberg commitment y7 , in terms of the ¢; norm. For this, we have

Iy (8: 92) = waoll = 1771 (Y'(65 (7)) — (¥7)5) I
=T (")l
= 0llysolly < 0.

Therefore, we have
1¥(6:95) =yl < 6. (4.37)

In lieu of Lemma [4.11.3) we wish to choose values {dnx}n>1 (to create commitments
{yn~n}n>1) such that dy decreases with N sufficiently fast, while maintaining a high proba-
bility of staying in the best-response polytope R;-. To understand the rate at which we can
decrease 0y, we need to prove a high-probability best-response guarantee.

Using the local Dikin ellipsoid as a confidence ball

For a (affine-transformed) commitment y’(4; (y*). ), we make use of the local Dikin ellipsoid
centered at y'(9; (y*)..), defined below for an arbitrary point y’.

Definition 4.11.6 ( [234]). For constraint set B'y’ < 1, the Dikin ellipsoid of radius r
centered at'y' is given by

Bp 1y(r) :={2": (2 — Y)YV H(y)Z —y') <r}, (4.38)

where we define

H(y) =) 1 S s (4.39)

The Dikin ellipsoid has two special properties [234):
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1. Affine invariance: (using the notation from Fact|f.11.4) For transformation y' =
T(y), the Dikin ellipsoid of radius r centered at the point 'y for the polytope By < c is

Bpey(r) =T (Bray(r)).

2. Interior guarantee: For any interior point'y’ (according to the constraint set B'y' <
1), the Dikin ellipsoid of radius 1 centered at'y’ is contained in the feasibility set, that
18,

7z € BB’,I,y’(l) — B'7 < 1.
We center our Dikin ellipsoid at y'(d; (y*).. ), and observe that the constraint takes on a
particularly nice form, as stated by the following simple lemma.

Lemma 4.11.7. For any 0 € (0,1), the Dikin ellipsoid can be expressed as

Bp 1y i) (1) = {2 1B (2 = ¥'(6; (")) 2 < 6} (4.40)

Furthermore, in the original space we can write

Bp ey (1) = {2 [[B(z = y(d;92.))][2 < 0} (4.41)
Proof. From Definition 4.11.5] we observe that B'y’(d; (yv*)..) = (1 — 0)B'(y*), = (1 — J)1.
This implies that

L—((b)s, ¥ (0;(¥))) =1 — (1 =6) =4,
and thus we have

EDOCONCN
52
(B/)TB/
52

where in the last equality step, we have used (B')" B’ = Zle(b')i(b’);, noting that (b’);
denotes the i row of B’
Thus, the ellipsoid constraint in Equation (4.38)) can be rewritten as

(e - Y5 ) (B) B — ¥ (6 (7)) < 1
— B~y ) <
— 1B~y ()l <

thus completing the first part of the proof (Equation (4.40))).
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For the second part of the proof, we use the affine invariance property of the Dikin
ellipsoid, which tells us that

Z < BB,c,y<1) — 7' = Tvz+T, € BB’,Ly’(l)
= [|B'(z' = ¥'(6; (y" ) )2 < 0.

Now, observe that

Bz —y'(6; (")) = B'(Thvz + Tp — Thy(6;y%,) — T2)
= (B'Th)(z — y(d;v5,))
= B(z —y(0;4%))

where in the last step we have used the relationship B = B'T} from Fact [4.11.4] Putting
these observations together, we have

z € Bpeyoys) (1) = [B(z—y(d:y5.))ll2 <6,
completing the second part of the proof. n

At this stage, it is worth remembering that the commitment is mized, and the payoff from
using a d-deviation commitment y(J;y% ) € A,,—1 under a finite number of observations N
depends on the guarantee that its observed empirical distribution Y ~ (typically) stays inside
the best-response region. As a starting point we need to guarantee that at least the local
vertex constraints are not violated.

Note that y(d;y%) € A,,_1 is an interior point for any 6 > 0, and thus the interior
guarantee property of the Dikin ellipsoid can be applied. We thus know that if the empir-
ical distribution of the commitment stays inside the Dikin ellipsoid centered at the actual
commitment, it will stay inside the local constraint feasibility set. Thus, it makes sense to
use the Dikin ellipsoid as a confidence ball and tail bound the probability that the empirical
estimate lies outside this ball. Because of the weighted ¢5-ball structure on the particular
ellipsoid corresponding to a d-deviation commitment that we proved in Lemma [4.11.7] this
is not difficult to do. We state this formally in the following lemma.

Lemma 4.11.8. For a given § > 0, let \?N be the empirical distribution of N samples drawn
from the 0-deviation commitment y(0;y%.). Then, we have

N§?

Pr(Yy ¢ BB,qy(é;y;o)(l)] <3exp{— =55
25]| B3,

}

20m|| BJj3,
5.

provided that N > —

Proof. The proof is a simple consequence of Devroye’s lemma [235], which tail bounds the
total variation between the empirical estimate of a discrete distribution and the true distri-
bution.
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Lemma 4.11.9 ([235]). Let Y be the empirical distribution of N samples drawn from any

distribution ' y € A,,_1. Then, as long as § >

PrH?N—owlza}g3emﬂ

We note from Lemma that

?N ¢ Bp ey (1) =

and thus, we have

Pr [/Y\vN ¢ BB,c,y(é;y;)(l)} =Pr

where inequality (i) uses the definition of

20m

N we have

N§?
25

3
IB(Yx — v 5 ))2 >,

1By =y )z > 4]
1B llopll ¥ = y(6:55) 2 > 4]

[1Bllop ¥ = (62l > 0]

1Y% = Y8 52Dl > 8/11Bllo]

the operator norm and inequality (ii) uses the

fact that ||v|ls < ||v||; for any finite-dimensional vector v. Applying Lemma 4.11.9| directly

then gives us

Pr(Yy ¢ BB,qy(&;yzs@)(l)] < 3exp{—

20m
>/
N

as long as

5
IBllop —

N>

This completes the proof.

N§?

CET=TER
25]1B113,

20m|| Bllg,
02 '

Completing proof of Theorem |4.7.4: Ensuring global constraint satisfiability

Let us recap what we have proved so far about a d-deviation commitment y(d;y% ) for any

J € (0,1).

1. For N samples from y(0;y% ), we have Pr [SA(N ¢ IB%B7C7y(5;y;O)(1)] < 3exp{—

(from Lemma [4.11.8).

N§2 }
25[|BJI2,



CHAPTER 4. LEARNING FROM STRATEGIC, NON-ADVERSARIAL DATA 197

2. ly(0;95) — vill < 6.

Thus, from Lemma [4.11.3| we have for any d-deviation commitment,

Foo = (Y (5:020)) < 26 Fa + Pr [V € Ry ] (F2 — froin)
Thus, if we had Bp ¢y (52 (1) C R+, we would have

2
Pr [?N ¢ Rj*} < Pr [?N ¢ ]]333707),(5%0)(1)} < Bexp{——0_y
25(| B3,

However, the set R« includes global constraints in addition to the local constraints By <
c, and all points in the local Dikin ellipsoid need not satisfy these constraints. This is
the final technicality in the proof that we now deal with. We will see that for a small
enough value of ¢ (that depends on how the local geometry of the polytope relates to the
global geometry), we can guarantee global satisfiability. Let the constraints corresponding
to the convex polytope R ;- be represented by C'y < d, and the corresponding constraints
after the affine transformation (77,7,) be represented as C'y’ < d’ (where the values of d’
corresponding the local constraints are 1). Thus, for the vertex (y*).,, we can define the
quantity

Z(Rj*; (y*):)o) = Sup{6 >0:72 € BB’,I,y’((s;(y*){x))(l) — (C'7 = d/} (442)
Because R is non-empty and convez, we have Z(R;«; (y*).,) > 0.
From this definition, under the condition § < Z(R;+; (y*).,) we have

Bp 1,y 5572 (1) € T(R;+)
= ]B%B,Ly(&yéo(l) - Rj*?

where the last implication is because of the affine-invariance property of the Dikin ellip-
soid.

m 2
On the other hand, we used the condition N > % to prove Lemma [4.11.8, Com-

2
bining these inequalities tells us that we require N > % = O(m) to prove our
g%

oo

result.
Then, we formally define our robust commitment for a particular value of N below, and
prove this final lemma which is essentially a formal statement of Theorem [4.7.4]

m 2
Lemma 4.11.10. For every N > %, and every n < 1/2, we define the n-robust
3% oo

commitment as a dn ,-deviation commitment yYn , = yY(Onn; Ys,), where

o= 2Ry (1)) () (4.43)
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We then have

It < 2 2R, () - ()
+ 3eXp{_m2n : Z(R]*’ (y*)LO)Q : Nl_Qn}(f:o - fmzn)

25]| BII3,
=0 ((%)77 + exp{—C - NI_Z”}) .

Proof. This is a simple consequence of everything put together. Since N > m, we have
Ong < Z(Rj; (¥*)5,) and thus we have Bp 1 sy, 5z (1) C Ry« This tells us that

. Noy.,
op

and thus from Lemma we get the following expression:

Noy, .
f:o - fN(yN) < 25N,77fmam + 3exp{——7}(foo - fmm)

25)1 Bl3,

Directly substituting the expression for dy, in Equation (4.43) into the above expression
completes the proof. O
Proof of Theorem 4.7.5]

Ap

- Expected response ({]* })

- Adjacent to expected (K:ug)
|:| Far from expected (/Cfar)

Figure 4.16: Illustration of partition of the set of follower responses, [n], into sets {j*} (red
region), K3, (blue regions) and K, (yellow regions). Figure from [90].

aug
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Recall that f% := maxyen,, fn(x). To prove an upper bound on f5;, we will upper bound
fn(x) for every x € A,,.
Without loss of generality the same proof method will extend to all x € A,,. Denoting

as shorthand p;(x) := Pr [)A(N € Rj} , we have
In(x) =) pi(x){ay, x) (4.44)
j=1

=) 1) (4.45)

where we denote T;(x) := p;(x)(aj, x). We will proceed to upper bound the quantity
T;(x) for every x € A,, and every j € [n].

To do this, we will see that it is natural to divide all the pure strategy responses to a
commitment x into three categories. The first is the expected response j*(x). The second is
the set of responses whose regions are adjacent to the expected response as defined below.

Definition 4.11.11. For a particular commitment x € A,,, the set of adjacent to expected
responses K7, (x) is the set of all best-responses whose corresponding best-response-regions
share a boundary with the best-response-region corresponding to the best response to x. For-

mally, we have

Krug(X) :={j € [n] 1 j # j(x) and cl(Rj+x)) N cl(R;) # 0}.

We also define Key := [n] — ({7*(x)} U K%, (X)) as the set of all follower responses that

aug
are “far” from the expected response in this sense.

The illustration in Figure [4.16] shows this division.

For the rest of the proof, we will drop the term x from the notation and denote K, :=
Kiug(x) as well as j* := j*(x). This is done for notational simplicity.

It is first easy to show a bound on T}«(x). In particular, we can directly use the definition

of the function f,(.) to obtain

Tj«(x) = pj= (x){a;«, x) (4.46)
= pj=(X) foo (X) (4.47)
< pj-(x) - (4.48)

This inequality is also intuitive because the leader would only hope to gain from eliciting
a different-than-expected response. Next, we deal with this cases.
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“Far"-from-expected responses

We collect the set of commitments that (if observed fully) would elicit a response far away
from the actual expected response. Formally, we denote Ry 1= Ujek,, Rj. Now, we wish to
bound the term

Tfqr := Sup Z T;(x).

XEAy,, .
" ]elcfar

By definition, we have cl(R;+) N cl(R ) = 0. Because we are considering finite games, i.e.
n < oo, there exists a constant C' > 0 that depends solely on the parameters of the game
such that

inf D' || x)>C. (4.49)
XER ;X' ER far
Geometrically, Figure [4.17] shows this separation between the expected-response-region
and any far-from-expected-response-region.
To understand the probability of eliciting such responses, we invoke a classical result
from large-deviations theory, Sanov’s theorem [229]. The upper bound part of the theorem
is restated here as a lemma and with appropriate notation.

Lemma 4.11.12. Let I1,15,..., Iy be i.i.d ~ x for any x € A,, and )A(N denote the
empirical estimate. Then, for any region R C A,,, we have

Pr [)A(N c R} < (N + 1)mo~Ninfwer DOl %), (4.50)

Combining equations (4.50) and (4.49)), we therefore get

Tfm“ < lsup Z pj(X)] fmaz (451)

XCAm ke,
S |:(N ‘|— 1)m2_NianERj*’xl€Rf” D(x’ H X) fmax (452>
<N+ 1)"27YC frn (4.53)
— C(N 4+ 1) exp{—NC} frae- (4.54)

The rationale for calling these responses far-from-expected is now clear: there is a min-
imum constant separation in terms of the KL-divergence from the expected best response,
and so the probability of realizing these responses decreases exponentially with V.

Dealing with the adjacent-to-expected responses is more delicate. We turn to this case
next.
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Adjacent-to-expected responses

Consider the set of adjacent-to-expected response K3 ,. We wish to bound the term

> ez T;(x). It turns out that we can no longer control the probability that one of these
responses is elicited for all choices of x € R;« — this is because the commitment x could
be chosen arbitrarily close to a boundary of its expected-response-region. However, we can
bound the ensuing payoff as a function of how close the commitment is to a boundary. This

notion of closeness is defined in terms of the /;-norm below.

Definition 4.11.13. For a commitment x € R;- and a particular adjacent response j €
Kiug: we define its minimum distance to the boundary by

Bi(xig) = dnffx =X
X C 3

First, we use this notion to bound the maximum possible payoff that could be elicited.

Lemma 4.11.14. For any commitment x € Rj«, we have

T;(x) < pj(x) [fa + frmaz01(x;7)] -

Proof. Let X € argmin, cqg,)l[x—x'[1. (Note that the minimum exists because we’ve taken
the closure of the region.) Using Holder’s inequality, we have

(aj, x = x) < lajflelx — x[|1
S fmax(sl(x;j>‘

*

aug W€ have

For every j € K

(aj, X> < <aj, §> + fmaxél(x;j)
S foo(i) + fmaxél(x;j>
S f;o + fma:r:51<x;j)'

where we are crucially using the fact that x lies on the boundary and the tie-breaking
assumption, to tie its payoff to the function f,(.). Substituting the above bound into the
definition of Tj(x) completes the proof. O

Lemma is important because it limits the potential of leader gain from eliciting
an adjacent follower response, even if she is able to do this with high probability, i.e. by
committing very close to a boundary. Figure [4.17] clearly illustrates this for a 2 x 2 game:
here, the leader might wish to elicit different-than-expected response 2 with high probabil-
ity. However, to do this she would have to commit close to the boundary between regions
expecting responses 1 and 2, resulting in her payoff being close to an objective function value
of foo(.) (in the figure, depicted as the optimum payoff fZ ). For a general m x n game, the
picture stays the same.
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foo (%)

051 (XN){

0 Sxy) 1

Figure 4.17: TIllustration showing the potential gain in payoff obtainable by eliciting a
different-than-expected response for a 2 x 2 game. Figure from [90].

Since the quantity 6;(x) can take values anywhere in the interval [0,2] (by the triangle
inequality), we will still want to control the quantity p;(x) for large enough values of §. We
will again use Devroye’s lemma (Lemma for tail bounding the total variation between
the empirical estimate of a distribution and a true distribution. Recall that the condition

required for it to be applied was § > QOT’”.
It is natural to further divide the set K}, into two subsets, defined by the commitment

Kaug,l(x> = {] € ]Caug : 51(X) < T}

% . . 20m
ICaug,Q(X> = {] S Kaug : 51(X) > T}

Let’s consider these subsets one-by-one. First, we use Lemma and the definition
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of the subset K, 1 (%) to get
Yo T = > pila)ay, x)
jelc;ug,l(x) je’C:ug,l(x)

< Z p](ZL’) [f:o + fmaxél(x;j)]

jelc:ug,l (X)

< > piw)

jeK:ug,l (x)

> pi) f§o+fmax\/20Tm. (4.55)

jeK*ug,l (%)

a

. 20m
foo + fmaw T]

IN

Next, we consider the term » ... T;(x). We state and prove the following lemma.
]GICaugz(x) J

Lemma 4.11.15. For any commitment x € A,,, we have

Ym0 | Y n| g e o (456)

jeK:ug,Q(x) je’C;ug,2(x)

Proof. Consider any j € K}, 5(x). Now note that by the definition of 6, (x; j), we can denote

the open ¢; ball with center x and radius ;(x) by Bj(x;01(x)). By the definition of §;(x; j),
it follows that B;(x;0d;(x;)) N R; = 0. Therefore, we have

pi(x) =Pr Xy € Rj:|

< Pr :)A(N ¢ Bi(x; 51(X;j))]

= Pr || Xy = x| = d1(x:)|
N51 (X)Z}

25
where we used Lemma [4.11.9] in the last inequality since we have K}, ,(x), we have

(51(X) Z QOTm

Combining this with Lemma [4.11.14] we then have

< 3exp{-

N6y (x; 5)?

25 b

E(X) < Dj (X)f:o + fmam351 (X7]) exp{—
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Next, it is easy to verify that the function g5(6) = 5exp{—]\£—?)2 is decreasing in § over

the domain § > me for all m > 1. This tells us that
, N6y (x;7)? 20m 4m
. _I) Y g, /220 A

20m
<3N —
- N

and so we have

N [20m
CTJ(X) < pj (X)foo + Sfmam T (457)
Summing over all j € K}, »(x) and substituting Equation (4.57) then proves the lemma.
0

Putting it all together
Combining Equations (4.46)), (4.51)), (4.55) and (4.56) into Equation (4.44)), we have

() = 3o T3(00)

< () f% + C(N + )" exp{=NC} fra + | > pi(x)| f5

JEK g
" 20m
+ (3“Caug,2<x)| + 1>fma:r N
. m 20m
< fE 4+ C(N+1)"exp{—NC} finaz + 41 frnae ~
20m
< f* -

for some constant C' > 0. This inequality holds for any x € A,,. This implies that
v < fs+ Cn\/% , thus completing the proof of Theorem m O

4.12 Proofs for repeated interaction

Proof of Proposition [4.9.2

This proof builds off the proof of Theorem [1.7.4]in Section [4.T1] so the reader is recommended
to read this section concurrently with that one. All notation from Section carries over.
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To refresh, we will consider the (m — 1)-dimensional representation of the best-response-
region corresponding to the Stackelberg commitment, R;«. For shorthand, we will denote
Z = Z(Rj~; (y*).,) as defined in Equation (4.42)).

For 0 < n < 1/2, we propose the randomized leader rule

y(0g;y%) for all t > ¢y := max {%ful?,p’ m}
" (4.58)
Y(0gy; Y ) otherwise,
where 0, = Z (2)", and y(6;yz,) is a d-deviation commitment as defined in Defini-

tion 4. 11.5
We state and prove the following elementary lemma characterizing the ezpected gap to
the ideal Stackelberg payoff. The steps are similar to those in Lemma [4.11.3]

Lemma 4.12.1. Consider the robust leader rule (y1,...,yr) as defined in Equation (4.58)).
We have

T

T
f;ko - favg(yb oo 7yT) < 2fmax% Z Hyt - y:;oul + (f;o - fmln) (% ZPI’ |:?t ¢ RJ*]> :
- - (4.59)

Proof. We re-parameterize Equation (4.28)) according to the (m — 1)-dimensional represen-
tation of the randomized strategies to get

T
1
fT7an(y17 cee vyT) = E(h ~~~~~ Ir)~(y1,....,yT) ? Z AIt,j*(?tl)]
t=1
_ . T
-2 |32 E [
L t=1

1 . . .
= ZE [(yt, Cj*(?t_1)> + dj*(?t_l)} (by linearity of expectation)



CHAPTER 4. LEARNING FROM STRATEGIC, NON-ADVERSARIAL DATA 206

and in an argument almost identical to the proof of Lemma [4.11.3] we have, for every t,
ZPI [?tfl € 'R,ji| ((yt, Cj> + d]) Z Pr [?tfl c 'R,j*i| (<yt7 Cj*> + dj*)
j=1

(1 — Pr[?t_l S R]*])fmm
= (g1, ¢j+) + dje = Pr[Yio1 & Rj] (e, €5) + dje — frnin)
> <yt7 Cj*> + dj* - Pr[?t—l ¢ R]*] (f;o - fmm)

_|_

where in the last step we have used that y; € R;«, implying that (y;, c;=) + dj= < fX.
Recall that we have f = (yi,, ¢j+) + dj~. Therefore, the time-averaged gap is bounded as

1 T

f;o - fan(yb cee 7yT) < ? Z<y;o - Y, Cj*> + Pr[?t—l ¢ RJ*](f:o - fmm)

t=1

1 T
<= ey

t=1

T
1 . . )
< 70 2l = wil + PriY s & Ryl (S — fun)
t=1

ol = vell + PrY oot & RyJ(f — fonin)

T
1 ~
< 7 22l = il + PriYocs ¢ Ry I = o)

T T
1 * * 1 v
= 2fmaxf Z ||yt - yooHl + (foo - fmzn) (T Zpr[Yt—l ¢ R]*]) )
t=1 t=1
where the second inequality follows from Holder’s inequality. This completes the proof.

]

With Lemma [£.12.1] proved, it suffices to bound two quantities to complete the proof:

1. The quantity %Zthl llys — v |1, 1.e. the time-averaged gap of the randomized leader
rule to Stackelberg commitment.

2. The quantity %Z; Pr[Y, ¢ R ], i.e. the time-average of the (marginal) probabil-
ities that a different-than-expected response is elicited.

We bound these quantities one-by-one.

Bounding the time-averaged gap to Stackelberg
Recall that, from Equation (4.37)), we have for every t > t,

lye — vl = ly(0n y5) — il < 6y,
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and similarly for every t < ¢, we have
19— w2l = ly(0e; y2) — Wil < 6t

Thus, we get

T T
1 * _ t05to Zt:to—i—l 51&
t=1 N N——
A B

Pick 6; := d;,, according to Equation (4.43) (recall that n < 1/2). Note that

to m K
A=2.7. (=
T <t0)

_ Zmity "

On the other hand, we have

where our last inequality follows from Fact [4.14.1] applied to n < 1/2. Putting these
together gives us

T 1—
1 N Zmity " m\" ~ /1
fZHyt—ymHlﬁToJFQZ- (T) zo(ﬁ). (4.60)
t=1

Bounding the time-averaged probability of mismatched response

Next, we turn to bounding the quantity %Zle Pr [?t,l ¢ Rj*]. To do this, we consider
for every t > 0 the quantity

1 t
Yy 1= ; Z Ys-
s=1
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Observe that, by the definition of y, := y(ds; y% ) we have

t
— * 1 * *
17 = valh =I5 > 6 v5) — vilh
s=1

t
1 *
= H; > sl
s=1
= iyl

where we note that 6, := % Zizl 85 and observe that 6, < §, < 0y, for t > ty, and 0y = O,
for t < tg. We define the Dikin ellipsoid as defined in Equation (4.41)) with the choice of
§ = 4y, i.e. the ellipsoid Bg .y (1)-

Observe that for all values of ¢ > 1, under the above condition, we have By ., ... (1) C
Rj-. Thus, for any t > t; we have

Pr |:/Y\vt,1 ¢ R]*] S Pr [?t,1 ¢ ]BBS,y(St;yéo)(l)] y

and it suffices to bound the right hand side. Recall that we have samples I; ~ y; and
these are drawn independently. To this end, we state a more general form of Devroye’s
lemma that uses independent, but not identically distributed samples.

Lemma 4.12.2 ( [235]). Let Y, be the empirical distribution of t samples drawn indepen-
dently according to Is ~ ys and distributions ys € Ap,_q for all s =1,2,...,t. Then, as long

as 6 > ”20ij we have

S t0?
Pr||Y: =7,/ > 5} <3expq ——— -
25
We apply this argument for all ¢ > t;. We note from Lemma [£.11.7 that
Yo ¢ By eyl = IBY: = y(0595%))ll2 > .
and thus, we have
Pr (Y € By e (D] = Pr 1BV = 53 2)) 2 > 31
< Pr [IBllopl e — 9B 52)) 2 > 5]
(ii) ~ — _
< Pr[[|Bllop ¥ = 5@y )l > 3]

= Pr [[¥n = 9@ i)l > /1By
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where inequality (i) uses the definition of the operator norm and inequality (ii) uses the
fact that ||v]|s < ||v||y for any finite-dimensional vector v. Applying Lemma 4.12.2| directly
then gives us

=2
) t5
Pr|Y: ¢ By oo, 1] <3exp —oeprn
T t¢ B,c,y(5t,yoo)( ) - eXp{ 25|HB|”gp}

<o to; }
<3expq ————
2B,
e d M E Ry )
2151, |

where inequality (i) follows from &, > 6;, and in the last equality we have simply substi-
tuted the definition of ¢;.
Note that Lemma can be applied as long as

0 20m
>
Il Bllop t

This last statement is true because §; > &, for all ¢t > t, and we know from the proof of
Theorem that the statement is satisfied for 9, for all ¢ > ¢,.
Putting it all together, and observing that Pr [Yt ¢ Rj*] <1 for t < ty, we have

T m21-Z(R ;5 (y* ) )2 4127
! XT:P Vo¢R ] <2y St Sexp {0 }
p— r % —
ro T T
T M2 Z (R (y*), )2 172n
to i1 3€xp {_ 2FIBTE, }
<=4+
=7 T

Denote C = m%'ZQ(;ﬁgH;‘(Qy*)QO)Q. Then, by Fact 4.14.2, we can show that
op

o0
rgl—2
236 G < O < 0,

t=1

i.e. is a convergent series for any n < 1/2. Thus, for some constant C’ that depends on
C, we get
to+ C’

T
%ZPr [?t ¢ Rj*] < (4.61)
t=1
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Completing the proof

Combining Equations (4.60) and (4.61) into Lemma [4.12.1} we have

1-n !
fT,avg(yh cee 7yT) - f:o < 2fmax ’ (Zm;to +2Z- <%>n) * (f;ko B fmm) (to T )

_5 (%) , (4.63)

which completes the proof of Proposition [4.9.2]

Proof of Theorem [4.9.5]

For this proof, it is convenient to work with the following special representation of a 2 x 2
game.

Definition 4.12.3. We represent a 2 X 2 game with the following notation:

1. Leader strategy is denoted by p € [0,1], the probability with which she chooses pure
strategy 1.

2. The expected leader payoff as a function of p if follower responds with strategies 1 and
2 respectively, 1s given by:

f(p;1) = aip+ b
f(p;2) = agp + bo.

We assume that —1 < aq,by,a9,by < 1 and (without loss of genemlitﬁ) that a1 > 0,
i.e. the function f(p;1) is strictly increasing in p.

3. The follower has utility function such that his best-response function of p is given by:

i*(p) = {1 ifp <Pk

2 otherwise.

The assumption of breaking ties in favor of the leader implies that f(pi;1) > f(pk.;2).

4. We assume f(pt ;1) > f(p;2) for all p > p*,. Thus, the mized Stackelberg commitment
of the game is pi, € (0,1) with follower best response equal to 1. We denote fX =

f(p5;1).

49Gimilar results will hold for the case where a; < 0 as well.
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The strictly-deception-dominant ensemble

We first consider the strictly-deception-dominant ensemble of 2 x 2 games that we defined
in Definition 4.9.3] Recall that this game, as described by the notation in Definition [4.12.3]
has the following properties:

(127&0
f(0;2) = f(1;1) > fX

fo(p)
A
_______ f (0’2):f(1’1)>f°°_ Follower response = 1
‘ Follower response = 2
8 A
v

Figure 4.18: A depiction of the leader payoff function f.(p) for the strictly deception dom-
inant ensemble for 2 x 2 leader-follower games. Figure from [90)].

It is worth discussing in more detail the extra assumptions that we have made for this
ensemble of 2 x 2 games. We assumed f(p;1) to be strictly increasing in p without loss
of generality, so f(1;1) > f* by itself is not a new assumption. However, the further
assumption that f(0;2) > f* together with ay # 0 is new and provides a strict incentive
for deception by the leader. A depiction of this ensemble, which is provided in Figure [£.18§]
shows that the Stackelberg payoff is strictly dominated by the payoff the leader could expect
if she elicited a sub-optimal response; i.e. if she was able to simultaneously play p = 0 with
follower responding with strategy 2, or vice-versa. This property is emblematic of situations
in security games, like Example 4, where the leader (defender) has a natural incentive to
be unpredictable in her defense strategy — note that the leader payoff function depicted in
Figure is an example of the leader payoff function structure in Figure [1.18|

Note that the situation of a sub-optimal response, that the leader strictly desires in this
ensemble, can ensue with a rational follower only if the leader is able to deceive the follower’s
learning process — hence the name “strictly-deception-dominant" for this ensemble.
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As a technicality, we have additionally assumed equality of f(0;2) = f(1;1) for ease of
expositionm in the analysis of the dynamic program of Equation (4.28]). Observe that, for
this ensemble, f.q.. = f(0;2) = f(1;1). We state the following lemma.

Lemma 4.12.4. For all games in the strictly-deception-dominant 2 x 2 ensemble, and for
any T':

1. The strategy (pj,...,pr) that mazimizes the objective fravg(p1,...,pr) is unique, de-
terministic, and exactly achieves payoff fmaz-

2. If the Stackelberg commitment is a rational number, i.e. p5 = % for positive integers
q,7 >0, and q does not divide r, this strateqy is periodic with period equal to r.

We remark that Lemma illuminates two important features specific to the strictly-
deception-dominant 2 x 2 ensemble:

1. The optimal strategy of the naive dynamic program defined in Definition [4.9.1] is
unique, and deterministic. The realized payoff can be much greater than Stackelberg
due to the additional power of deception (encapsulated mathematically by fra. > fX).
However, this very property makes the payoff brittle as any deterministic strategy could
be exploited by a follower using some predictive forecast according to Definition [4.8.4]

2. The optimal strategy is particularly brittle when the Stackelberg commitment p_ is a
rational fraction. In this case, it turns out to be periodic with finite period, and as we
saw in Example 4 in Section [1.9] it is not only possible, but also extremely plausible
that a follower using a very simple predictive forecast of all finitely periodic forecasts
would be able to easily exploit this strategy.

Taking Lemma to be true for the moment, we now concretely show that when the
Stackelberg commitment p, = ¢ is rational the optimal leader strategy (p7, ..., p7) is strictly
sub-optimal against a follower using a predictive forecasting rule according to Definition 4.8.4
with the following specifications:

1. The set of predictors Q = Uj:2{07 1}/, i.e. the space of all K-periodic sequences for
some finite K > 0.

2. A “predictable" leader sequence with parameter 6 = (iy,...,4;) € {0,1}},1 < j would
be generated as follows:

I, =i, for t € [l]
I, =1, forall t > [.

50More generally, if we had f(0;2) > £, the analysis would then require backward induction and become
more involved. We conjecture that our results hold more generally for this case, as we have observed these
properties in examples.
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Observe that under the conditions of Lemma , the optimal leader sequence (pi, ..., ph)
is generated by this predictive model with 0* = (pj,...,p}) as the true parameter. Thus, a
predictive forecast will make at most 2r errors, and for any ¢t > 2r the follower will respond
with J; = j*(p;). Therefore, we have

T
* * 1
fT,pred(pp s 7pT> < f <2rfmaz + Z AP;J%P?))

t=2r+1
T —2r .
T max foo(4)
T—2r
T Jo

2r
<_max
_Tf +

2r
< = Jmaz
Tf +

where the last strict inequality is a consequence of the fact that any pure strategy is
strictly sub-optimal in the one-shot Stackelberg game. In Section [1.9] we saw the strong
extent of this sub-optimality through the 2 x 2 security game example where p% = 1/2.
We complete this section by proving Lemma [4.12.4]

Proof. We specify the dynamic program for leader payoff optimization resulting from follow-
ers responding to empirical averages, as defined formally in Definition [4.9.1] in terms of the
2 X 2 ensemble below:

T
1 D * D >k
max  frag(py,...,pr) = max - > Pr [PH < poo] f(pe; 1) +Pr [PH > poo} f(pi;2),
t=1

pTel0,1]T pTe[0,1]T

(4.64)

where we assume that the follower breaks tie’!] in favor of response 1 in the first round,
iLe. ¢ = 1. Remember that we have also assumed tie-breaks in favor of the leader, in the
sense that P,_; =pl, = J,=1.

Observe that for any p € [0,1], f(p;1) < fiae and f(p;2) < firae, and thus the max-
imum payoff the leader can expect on any round is f,,... This means that in general,
Jrave(D1, -, p1r) < finae. For the special case of the deception-dominant ensemble, we can
construct a greedy strategy that achieves this upper bound with equality, and this is the
unique optimal strategy. We describe this construction below: For ¢ = 1, we have p; =1,
and for every t > 2, we have

(4.65)

by =

) {o i S g > (e — 1),

1 otherwise.

Note that because p; € {0,1} for every ¢t > 1, this is a deterministic strategy. We need
to prove that this strategy is the unique optimal strategy. First, to prove optimality, observe
that for every round ¢, we have two cases:

51Thus, a unique optimum subject to tie-breaking on the first round.
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1. We have Zi;ll ps > (t—1)p%,, in which case the follower responds with strategy 2 and,
according to Equation (4.65), the leader will play p; = 0. The leader payoff in these
rounds is equal to f(0;2) = fiaz-

2. We have S/~ p, < (t — 1)p%, (vecall that ties are broken in favor of leader), in which
case the follower responds with strategy 1 and, according to Equation (4.65)), the leader
will play p; = 1. The leader payoff in these rounds is equal to f(1;1) = fraa-

Thus, this strategy achieves exactly fravg(pi, ..., Pr) = fmaz-

Second, to prove uniqueness, recall that our ensemble has aq,as # 0. For any distinct
strategy (pi,...,pr), consider the first round ¢y at which p;, # p; . There would again be
two cases corresponding to the follower response:

1. We have 220;11 pt > (to — 1)pl,, in which case the follower responds with strategy 2.

Note that the optimal strategy would then be p; = 0. The payoff of the alternative
strategy in this round will be f(py;2) < f(0;2) = fiaa-

2. We have Zi;ll ps < (t — 1)pk,, in which case the follower responds with strategy 1.
Note that the optimal strategy would then be p; = 1. The payoff of the alternative
strategy in this round will be f(ps,;1) < f(1;1) = finae-

In both cases, the payoff in round ¢ is strictly less than f,,., and thus we would have

1 D * D *
fT,avg(ph s 7pT) = T(Pr |:Pto—1 S poo} f(pto; 1) + Pr |:Pto—1 > poo} f(pto; 2)

+ 3P [Py < pi] S )+ Pr [Py > wi | £(0s2))
t£to

< % <Pr [Eofl < pio] f(pro; 1) + Pr [1315071 > piio} f(po;2) + (T — 1)fmax>

< % (fmax + (T - 1)fmax) = fmaam

showing that the payoff of any alternate strategy is strictly sub-optimal. This proves
uniqueness of the greedy construction in Equation (4.65)).

Finally, we need to prove the second statement, i.e. when the Stackelberg commitment
is equal to pj, = %, the greedy construction is periodic with period r. To do this, we unravel
the expression in Equation to provide explicit expressions for the optimal strategy.
To do this, we characterize the optimal strategy for the first r steps. In particular, we have
the following lemma, whose proof we defer to Section

Lemma 4.12.5. For the greedy construction in Equation (4.65), we have ﬁr =1

We use this lemma to prove periodicity with period k. This is equivalent to showing that
for every k € [r] and for all integers h > 1, we have

Drrsr = Py for all k € [r] and h € N. (4.66)
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We prove this by a two-step induction argument. First, we prove Equation (4.66|) for
h=1,ie.

Py, = py forall k € [r]. (4.67)

The base case, i.e. kK = 1 is true because by Lemma [4.12.5, we have 137« = 4 and thus
by Equation (4.65) we get pr., =1 = pj. Let Equation (4.67)) be true for all k € [I], where

—~ l * l * ~ l *
l Z 2. Then, for k=1 + 1’ we have PT_H — g+ -1 Pry1t qt> 1P . Recall that Pl — Zk:ll Py ’

. r+l 4+l
and so P, = qj—fr]ljl. Then, a simple calculation yields

o)

= q q+1
P, <= <
= r+1
< qr+riP, < qr+ql

— p<?
T

l

<

= IR

Thus, we have proved that ﬁﬂrl <? = b < 4, which implies by Equation that
Pryii1 = Piy1- This completes the first induction argument and shows that Equation (|4.66)
is true for h = 1.

A second induction argument over h > 1, which we omit for brevity, completes the proof
of periodicity. O]

One-response-obviously-dominant ensemble

We now consider the one-response-obviously-dominant ensemble which was defined in Def-
inition Recall that this game, as described by the notation in Definition £.12.3] has
the following property:

f(0;1) > f(p;2) for all p € [0, 1]. (4.68)

Essentially, this property means that eliciting the follower response 1 is an obviously
dominant strategy for the leader: her expected payoff is strictly higher in the worst case
over her mixed strategy if the follower responds 1 (corresponding to p = 0), than the best
case over her mixed strategy (over all p) if the follower responds 2. This is clearly seen in
the depiction of the leader payoff function for this ensemble, in Figure [£.19

This situation is emblematic of building up persuasion power, as in Example 5 — note
that the leader payoff function depicted in Figure is an example of the leader payoff
function structure in Figure [£.19] In this example, the leader is wholly incentivized to elicit
the followers to respond with the desired pure strategy 1. In the following lemma, we show
that all optimal strategies for the leader for the dynamic program over naive followers involve
eliciting the response 1 on all rounds deterministically.



CHAPTER 4. LEARNING FROM STRATEGIC, NON-ADVERSARIAL DATA 216

Follower response =1
Follower response = 2

;2) < mi it
prél[gﬁ]f(p ) pg}é{ll]f(p )

A

T >p

v

Figure 4.19: A depiction of the leader payoff function f(p) for the one-response-obviously-
dominant ensemble for 2 x 2 leader-follower games. Figure from [90].

Lemma 4.12.6. Assume that p5, = % for positive integers ¢ < r, and q does not divide
r. Let T = Lr for some positive integer L > 0. Then, for all games in the one-response-
obviously-dominant 2 x 2 ensemble, all strategies (pj,...,py) that maximize the objective
frave(D1,-..,pr) satisfy the following two properties:

13300 = Pr=1pk.

2. ]375 < pi, with probability equal to 1 for allt =1,2,...,T — 1.

We make two conclusions from this lemma:

1. The optimal payoff is f% , i.e. precisely the ideal Stackelberg payoft.

2. All strategies that achieve the optimal payoff are deterministic, i.e. randomization is
strictly sub-optimal.

Proof. We starting by noting that if a strategy that satisfies the two properties exists, then it
achieves payoff equal to fZ . This is because under property 2, the follower always responds
with pure strategy 1, yielding

T
fraept, .. p7) = %Zf(pi; 1)
= foo( Pr) = Jo (%) = f%.
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To show that this payoff is achievable, we construct an explicit strategy that satisfies
properties 1 and 2. We can write any ¢t € [T as t = lr +m for | € {0,1,...,L — 1} and
m € [r]. Then, we pick

» Oifm<r—gq
by = .
1 otherwise.

It is easy to verify from this that for any (¢ — 1) = Ir + m, we have

(I+1)g ¢

fio = e =, T T

and so the follower will always respond with pure strategy 1. Recalling that T = Lr, it
is also easy to verify the first property, i.e. that %Zthl p; =1 =pi.

To show that this is the optimum payoff, it suffices to show that any other strategy expects
payoff strictly less than f. Note that any other strategy will violate one of properties 1
and 2, so it suffices to show that any strategy violating at least one of the properties is
sub-optimal. We do this in two steps.

First, we consider strategies (pi,...,pr) for which property 1 holds, but property 2 does

not. Because of the obviously dominant property, observe that for any round ¢, we have
fe(pe) = Pr [ISH < p?;o} flps 1) + (1= Pr [JSH < piio] )f(p:2) < flpe 1), (4.69)

with strict inequality unless Pr [ﬁt,l < pgo} =1
Now, if property 2 does not hold, there exists some ¢y, € [T], and some ¢ > 0, for which
Pr [ﬁto,l > p’;o} = ¢. Under this condition, we have

T
frae(pi, ..., pr) = % > pr [ﬁt—l < p;} fp;1) +(1—Pr [ﬁt—l < p;} ) (p; 2))
t=1
1
<7 ; fos 1) + (1 = @) f(pro3 1) + af (pro; 2))
< % > i) + (i 1))
t=£tg

= f(Pr;1) = f(pisi 1) = fL,

where the strict inequality follows from Equation (4.69) and because ¢ > 0, and the last
inequality follows because we are considering strategies for which property 1 holds. This
tells us that strategies that satisfy property 1 but not property 2 are strictly sub-optimal.

Second, we show that any strategy (that could be randomized) that does not satisfy
property 1 almost surely is also strictly sub-optimal as well. Proving this statement suffices
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to prove the statement of the lemma, because it implies that any optimal strategy needs to
satisfy both properties 1 and 2.
We consider a realization of a strategy (pi,...,pr) € {0,1}7 that violates property 1,
ie. let
T
Zpt = Tp., + K for some integer K > 1.
t=1

We also note the following recursion on the quantity ﬁt:
~ (t—1)P_
P = ( )Py +Pt.
t
Unravelling this recursion backwards, we get

5 th—p

P_,= 4.
t—1 t_la (70)

Let lp = min{l > 1 : Pr, < pi}. Applying this repeatedly and noting that p, < 1 for
all £, we observe that

> o0
Fri T-1
K
>pioifl <
1 —pZ
Thus, we need [y > L_I;* -‘ This implies that
T T
Z fi(pe) = Z f(pe;2)
t=T—lg t=T-lg
T
< ) Fphs ) = lof (i 1)

t=T—lg

where the last strict inequality follows by the obvious dominance property.
Further, by definition of |y we have Pr_;, < p% . Thus, by Equation (4.69)), we have

T—lo T—lo

> flp) <) Flos 1)

= (T —10)Pri, < (T —lo) f(p%: 1).

Combining the two equations, we have

Froes(pr,- - -pr) < 2 (= ) F(0ias )+l f (02 1) = F

showing that any strategy that violates property 1 is strictly sub-optimal.
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Proofs of auxiliary lemmas

Proof of Lemma 4.12.5; Here, we prove Lemma [4.12.5] From Equation (4.65]), we note

the following recursion for the quantity F;:

P =1 (4.71)

ﬁ B (t—l)ljt,1+1 if f)t—l < g 7
) t=DPy 'fﬁ q ( . )
— Ul >,
and we claim that for all t > 2, we have
{(t—l)q-‘
P, = t . (4.73)
Note that, under this claim, we can write
{(T’—l)q—‘
p=1"
r
1]
- r
_ 4
r

as we know that ¢ < 1.
It thus suffices to prove the claim in Equation (4.73)). We prove this claim by induction.
Note that Equation (4.73)) is trivially true for the base case t = 2. This is because we have

[(2*1%1—‘
P=1> g, and so P, = %Pl = % Further, we have ~—5— = %, and so the two quantities
are equal.

(kfl)q-‘
Now, let Equation (4.73]) be true for ¢t = k, i.e. P, = [ ; . We need to show that

:
Equation (4.73) be true for t = k+ 1, i.e. Py = # To evaluate Py,q, we have two

cases:

1. P, < 1, which implies that

{MW < ke (4.74)

r or

In this case, by Equation (4.71]), we have ﬁk_i_l = kff{l. We note that

kP, +1= {(k_r—l)(qul
_{@]

r
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where the last step follows as a consequence of Equation (4.74)) and noting that ¢ < 1.
Substituting this into the expression for Py, completes the argument.

2. P, > 4 which implies that

e 0

In this case, by Equation (4.71]), we have ﬁkﬂ = ]]j—f’i. We note that

1B, — (M1

,
=[]
oy

where the last step follows as a consequence of Equation (4.75)) and noting that £ < 1.

Substituting this into the expression for I3k+1 completes the argument, and the proof
of the claim.

]

Proof of Proposition [4.9.6

We start with the condition for a universally calibrated follower forecast in Equation (4.15)).
For any leader rule I; :=i,(H;_1), we have

1 S T
T Z | X7 (r) — ||y = O(T) almost surely.

I'eAm

Let the realization of follower forecasts be rq,...,ry. Then, the average leader payoff is
given by

T
. . 1
fT,caIib(Zla cee 7ZT> - T Z AItJ*(rt)

=7 Z ), &) - Nr(r)

rEA
1 ~
== Z NT I' Ajx r)>+? Z NT(r)<XT(r) - aj*(r)>’
reA relA,,

B
w4
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and we now proceed to bounding both terms. Note that B is the term that arises from
calibration error. To see this, we apply Holder’s inequality to get

1 ~
Bs7 > Nr()llaj @ llool X (r) = xfly
rcAn,

1 AN
< T Z NT(I') : fmax ’ ||XT(r) - I‘||1
reAm,

_ . o)
- fmawT7

where the last step follows from the definition of a universally calibrated forecast. Thus,
we have

o(T)

fT,caIib(Z.la---,iT) < l Z NT(I')<I' a] >+fmaa: T

and this completes the proof of Proposition [4.9.6] O

4.13 Miscellaneous calculation for persuasion example

In this section, we collect detailed calculations that were used in the Bayesian persuasion
game in Example 5.

First, we consider the time-averaged payoff expected by a prosecutor who uses the ran-
domized rule in Equation against judges who respond according to the rule in Equa-
tion (4.23). We observed in Section that for any defendant sequence (IIy, ..., II7) this
was given by

T T
1 1 ~ 1
B raa((Puoo P 2 7 30 (1 = 1] 4 10T = Olpyo(t) = 7 3P | Pralt = 1) > 5]
t=1 t=1
A B

To lower bound A, we substitute the definition of the prosecutor rule from
Equation (4.21), and recall our notation for number of innocent defendants as well as their
arrival epochs sq,...,s;,... We get

T
T—N 1 1
A= 3 (U = 1) + 1[I, = 0y o(t)) < TT+Z(§—J-7)
t=1 =1
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where the last inequality is a consequence of Fact [£.14.1, To upper bound B, noting
that Pg O(t — 1) only changes at epochs s;, together Wlth a Speaal case of Lemma 4.12.2 (in

Section gives us

Nt
3]’172"

ZPr{got—l) ﬂ ;Z(Sj—sj—l)e_ 2

Finally, we take further expectations of the terms A and B over the defendant sequence
(I, ..., II7). We first lower bound the expectation of A. Noting that Eq,, . ) [Nr] = 3,
we get

.....

The number of innocent defendants is close to %T with high probability. Formally, the

T(0.67—0.5)2 0.01T

Hoeffding bound gives us Pr [NT < 0. 5] < e 8 <e s, we get Eq, .y (%) <
T
7 +2P1”[NT < 05]

+2e 5. Substituting this above, we get

05Ty 5T) 0.5T)7 5T)

[\)

P ~ogr
—3 (0.5

To upper bound the expectation of B, note that the unconditional distribution of s;—s;_4
is Geom(2), and we get

where the last step follows from Fact [4.14.2l Thus we have E
constant C' > 0. Putting these together, we get

.....

V
|
|

E(l_h ..... Ir) [E [fT@vg((Pla .. 7PT>)H =3 (051—1)77 —e 5 — T

4.14 Mathematical facts

In this appendix, we collect miscellaneous mathematical facts that were useful for various
proofs.
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Fact 4.14.1. For any T > 2 and any 0 <n < 1/2, we have

Proof. The LHS inequality is trivial as for any n > 0, we have Zthl tin > Zthl % =7 =
T, For the RHS inequality, we use the Euler-Maclaurin summation. Let f(z) = - and
let f()(-) denote the r** derivative of f with respect to . Then, for any integer m > 0 we
have

1 T d m -1 r—&-lBT
Sa- [ gy (<2+—1>'+l (FT) = FO1)) + Ry , where
t=1 r=0 ’

fin = %/1 By () f1" ) () da.

Here, B,, is the mth Bernoulli number and B,,(x) is a periodic function of period 1 that
coincides with the m! Bernoulli polynomial on [0, 1).

We apply this equality for m = 0. Note that By = —1/2 and B;(z) = {2} — 1/2, where
{z} denotes the fractional part of x. Then, we observe that

T dx DAt/ R AL S B |
1 E_[l_TIL_ L—n .

We also have

Z 1) B,yy (f(r)(T) _ f(r)(1)> — _B, <i _ 1)

p— T + 1 Tn
1,1
2 ™)’
and finally, noting that B;(z) = {z} — 4 <1—1 = I, we have
T
Ry / Bi(2) f () dz
11 g
<< [ fO(z)de
2.4
1 s 17177
=5 lf@h =3 [E:|1
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Therefore, we get

1 7t 1 1
Yol Lo
— 1" l—m 1-—1n¢ AL

1—77 1— +T77

< =" 9y 1

“1-n n
T

<

1 —1lforallT'>1andn>0.
—-n

Noting that Tl:: —-1< 7;:7" < 2T for all < 1/2 completes the proof.

Fact 4.14.2. For any C > 0 and any q > 0, the series > o, e~ is convergent.

Proof. 1t suffices to show that there exists some C’' < oo such that Y 2, e " < C". We
use the Euler-Maclaurin summation to get

o0

oo
Ze—c.tq S/ —Cut
t=1 u=1

1
Substituting v = Cu?, we get dv = Cq - u9*du. Noting that u = (%) we have

q—1
oo oo -
—Cul —v C < dv
€ = € =
u=1 v=C

Cq-va
C// o 7_1
= — e v dv
q Jy=c
1" [ee]
—v. 1
< — e “va “dv
q v=0

:C_FG)
¢ \q

where the last step follows from the standard definition of the gamma function. Denoting
C' = CT"T (%) < oo for ¢ > 0 completes the proof. O
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Chapter 5

Two-sided, no-regret learning

In Chapter [ we studied candidates for natural rules for a two-player repeated game with
one-sided learning, i.e. only one of the players was learning from the other. We saw that the
designated follower (the player doing the learning) would follow an adaptive online learning
strategy, and the designated leader (the player who was responding to the learning) would
follow a remarkably simple randomized rule (details in Proposition [4.9.2)), according to which
she would choose her strategies independently across rounds. A direct consequence is that
the leader and follower’s day-to-day behavior approaches Stackelberg equilibrium at the rate
O(1/v/number of rounds).

In this chapter, we ask what the corresponding natural rules might look like for situations
in which both agents are learning from one another. We uncover some surprising properties
that arise when the ubiquitous no-regret learning strategies are used. While the time-average
of the strategies is classically known to converge to various equilibrium concepts in simul-
taneous game theory (the Nash equilibrium for zero-sum games, and the set of correlated
equilibria for non-zero-sum games), the day-to-day behavior is starting to be investigated
in more recent research. In what follows, we will show that no-regret learning strategies
could result in chaotic day-to-day behavior when deployed against one another. This is in
sharp contrast to the one-sided setting and raises several interesting questions for what may
constitute natural two-sided learning dynamics.

5.1 Introduction

The mixed strategy Nash equilibrium (NE) is one of the oldest solution concepts central to
game theory. A finer understanding of how the NE arises as an outcome of learning behavior
in a repeated game setting remains a somewhat elusive goal as well as an active area of
research. Classical research in economics 236, 237| (see also [238]) as well as some recent work
in computer science [211] has taught us that when both the players in a two-player zero-sum
game use strategies based on no-regret learning dynamics |80, [239], then the time-average of
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their strategies will convergeE] (almost surely) to a Nash equilibrium [132} 211]. However, the
convergence of the time-averaged mixed actions to a NE does not necessarily imply that the
day-to-day behavior of these players converges. That is, the sequence of the mixed strategies
used by the players need not converge. In the asymptotic sense, the quantity that is of
interest is the tuple of the limiting mixed strategies of both players, also referred to as the
last-iterate in recent literature [242|. The following surprising property of the last-iterate
was discovered recently by Bailey and Piliouras [243|: When the players in a two-player zero-
sum game compete against each other with the popular multiplicative weights update with
certain learning rates, which constitutes a popular no-regret algorithm, then their resulting
mixed strategies drift away from any interior NE — in fact, they drift towards the boundary
of the strategy spacd’] This intriguing result is derived in an environment where players can
play what we call telepathic strategies, i.e. player 1 can observe the exact mixed strategies
used by player 2, and vice versa.

The natural question that arises is whether this last-iterate divergence is a specific prop-
erty of this family of algorithms in particular or a fundamental consequence of the property
of the no-regret property itself. This chapter provides substantial evidence that it is the
latter, by proving lack of last-iterate convergence for a broad class of generic, asymptoti-
cally optimal no-regret algorithms. Here, we study the traditional repeated game setting
in which players can only observe the realizations of the opponent’s mixed strategies; thus,
the strategies cannot be telepathic. In this non-telepathic scenario, we show that the en-
suing stochasticity in realizations is one of the critical ingredients (in addition to others)
underlying the last-iterate divergence. Our results suggest that no-regret learning strategies
possess certain intrinsic properties by which the two notions—no-regret and convergence of
the limiting mixed strategies—could inherently conflict with one another.

Our contributions: We consider the setup of a repeated 2 X 2 zero-sum game, i.e. a two
player, zero-sum game repeatedly played infinitely many times at steps t = 1,2,..., where
both the players can play one of two pure strategies. The repeated game strategy for a
player outlines the rule by which she picks her mixed action at step t based on the history
up to and including step (¢ — 1). We will make three natural assumptions on each player’s
repeated game strategy, that are ubiquitous to several popular learning dynamics:

1. We assume that a player’s strategy is self-agnostic, i.e. it does not use the actual
realizations of her own mixed actions to update her strategy. In other words, the
player picks her mixed action at step t only based on the action realizations of the
other player up to, and including, step (t — 1).

1 A related line of research considers strategies based on internal no-regret [240] or calibrated forecast-
ing [241] and show that the sub-sequential limits of the empirical average of the action play converge to a
correlated equilibrium [85] 208, [209].

2 Bailey and Piliouras [243| consider a deterministic dynamic system comprised of the pair of mixed
actions evolving according to the multiplicative weights updates on the time-average of the opponents mixed
actions. In contrast, we are interested in the stochastic dynamic system of the pair of mixed actions whose
evolution depends on the past realizations of the mixed actions.



CHAPTER 5. TWO-SIDED, NO-REGRET LEARNING 227

2. We assume the player’s strategy to be an optimal no-regret strategy, that is, she has an
expected average regret of O(t'/?) irrespective of the strategy employed by the other
playelﬂ. See Definition for formal definitions of no-regret algorithms, optimal or
otherwise. Note that no-regret is purely a property of the strategy of each individual
player, unlike the solution concept of Nash equilibrium which intrinsically depends on
the behavior of all the players.

3. Finally, we assume the player’s strategy to be mean-based, i.e. the player uses only
the empirical average of the actions of the other player at step (¢ — 1) as a sufficient
statistic to decide her mixed action at step t. In general, the player is aware of the step
t, and we accordingly allow her rule that maps empirical averages to mixed strategies
to dependﬁ on the step t.

Observe that the most popular learning dynamics, such as Online-Mirror-Descent and
Follow-the-Regqularized Leader strategies, satisfy all three of these assumptions. The natural
question arises whether the resulting game play would be stable, that is, would the mixed
actions of the players to converge to an equilibrium? We answer this question in the negative
for the set of the games which only have purely mixed NE, designated as competitive games
by Calvo [244]. Recently, Phade and Anantharam [245] showed that all competitive games
have a unique strictly mixed NE which is also the unique correlated equilibrium of the game.
We denote this unique NE by the tuple (p*, ¢*), where 0 < p*, ¢* < 1 denote the equilibrium
strategies of playing action 1 by players 1 and 2 respectively. In Theorem we prove
the following statement for any competitive game (described here informally):

If player 1 uses a self-agnostic, mean-based repeated game strategy that satisfies no-regret
with the optimal regret rate, and player 2 plays the mixed action q* at all steps, then with a
constant positive probability the mixed actions of player 1 do not converge to p*.

Theorem [5.3.3] suggests that the mixed strategies will also diverge when both players
are using self-agnostic, mean-based, optimal no-regret strategies. We conjecture this last-
iterate divergence in Conjecture [5.3.4. The intuition for this conjecture holding is a proof-
by-contradiction: if the pair of mixed strategies for both players were to converge almost
surely, then, player 2’s mixed strategies would converge almost surely. Thus, the mixed
strategies of player 2 would remain arbitrarily close to his NE strategy ¢* with arbitrarily
high probability after enough steps. As per Theorem[5.3.3] the ensuing stochasticity in player
2’s realizations would then necessitate player 1 to diverge. For technical reasons related to
possible implicit dependencies across the realizations of both players, this intuition is difficult
to formalize in the stochastic dynamical system ensuing from both players making updates
on their strategies. However, we do show that player 1’s mixed strategies will necessarily
diverge when she is facing any fixed-convergent player 2, i.e. player 2 uses any fixed sequence

3 A self-agnostic repeated game strategy has the following useful property: if it is a no-regret strategy with
respect to an oblivious opponent, then it is a no-regret strategy with respect to a non-oblivious opponent.
See Chapter 4, |81] for definitions of oblivious and non-oblivious opponents.

4In fact, this flexibility is in a certain sense required to design a mean-based, no-regret strategy.
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Figure 5.1: Depiction of sensitivity of the no-regret strategy multiplicative weights, ft(@t),
as a function of Q; for t = 10%. Observe that a deviation of 1/v/t from 1/2 causes a constant
deviation in the function value. Figure from [92].

of mixed strategies {¢:}:>1 that converges to the NE ¢*. The precise statement for this
divergence is contained in Theorem [5.3.7 Moreover, Section provides ample evidence
for even stronger forms of divergence than we have conjectured in the stochastic dynamical
system where both players update their strategies as a function of the past.

Our techniques in a nutshell: Consider a self-agnostic repeated game strategy for a
player. Such a strategy is completely characterized by the mappings {f;} at each step from
the opponents action history up to that step to the mixed action played by the player in the
next step. Our first observation is concerning a fundamental fluctuation-sensitivity of the
mappings of any self-agnostic, no-regret algorithm. We show (in Proposition that any
self-agnostic, optimal no-regret repeated game strategy used by player luses mappings at
certain rounds, f;(+), that deviate by at least a constant value, say d, from the NE strategy
p* when player 2 deviates from his NE strategy on-average by an infinitesimal factor on the
order of t~/2. Moreover, this deviation property is shown to be present infinitely often, i.e.
for a sub-sequence {t;}r>1. A depiction of this strong sensitivity is in Figure for the
example of the multiplicative weights algorithm in the matching pennies; we show that it is
fundamental to any no-regret strategy for any competitive game.

Now, our second observation is that if player 2 is playing the mixed NE ¢* at all his steps,
then the time-averages of his realized actions will fluctuate on the order of ¢~!/2 infinitely
often as well. In fact, this happens with a fixed positive probability. Figure depictsﬂ the

5This figure was inspired by Dean P. Foster’s illustration of the law of the iterated logarithm: https:
//en.wikipedia.org/wiki/Law_of_the_iterated_logarithm
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Figure 5.2: Depiction of constant fluctuations of player 2’s time-averages, i.e. Qt, as a
function of ¢, when player 2 plays Qg i.i.d ~ ¢*. Figure from [92|, inspired by Dean P.
Foster’s illustration of the law of the iterated logarithm.

recurring fluctuations on the order of ¢t~/ of player 2’s time-averages for a typical realization

of player 2’s strategies ¢* = 1/2 in the matching pennies game, and should remind the reader
of the fluctuations of a symmetric random walk.

Putting these observations together, we see that optimal no-regret strategies need to be
sensitive to the fluctuations of player 2 infinitely often. Moreover, these fluctuations happen
infinitely often as well, as a consequence of the stochasticity in player 2’s realizations. These
constitute the key phenomena that underlie last-iterate divergence for such a broad class of
optimal no-regret strategies.

Related work: Wohile the evolution of the time-averages of players’ strategies as a conse-
quence of multiple players using no-regret dynamics has been an active topic of study for sev-
eral decades |85 [132, 208, 209, 211|, 236/-238|, the properties of the limiting mixed strategies,
or the last-iterates, have only been examined more recently. This topic has also seen sub-
stantial attention in the related setup of min-maz optimization [246-250|, where the primary
goal is to attain a pure-strategy NE of a game with a continuous-pure-strategy set through
the use of first-order optimization algorithms, e.g. gradient descent-ascent. This problem has
been primarily studied in the deterministic setting, corresponding to the aforementioned tele-
pathic dynamics in the game-theoretic setup. Recently, Daskalakis and Panageas [242] show
that a modification on the mean-based strategy of multiplicative weights that incorporates
recency bias succeeds in last-iterate convergence in the game-theoretic setup with telepathic
dynamics. This type of recency bias, commonly called optimism, has also been shown to
successfully converge in min-max optimization when applied to the gradient descent/ascent
algorithms [246-250]. Moreover, optimistic algorithms have other notable properties, such as
leading to faster convergence rates of the time-average in zero-sum as well as non-zero-sum
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games [251}, [252]. However, we show in Section that when stochastic, realization-based
feedback is considered, optimistic variants on mean-based strategies do not resolve the last-
iterate divergence issue. In other words, the phenomena we outlined above, that lead to last-
iterate divergence in the traditional repeated game setting, manifest in recency-bias-based
strategies as well. This illustrates that the issues of last-iterate divergence run deeper in the
traditional repeated-game setting. We briefly discuss alternative (non-constructive) strate-
gies that could satisfy the last-iterate-convergent property in Section — these strategies
are not no-regret, but satisfy a weaker property of “smoothly calibrated forecasting".

5.2 Setup

We consider a simple setting of a 2 x 2 zero-sum game in which both the players have two
pure strategies, namely, action 0 and action 1. The payoffs for player 1 are given by the
following matrix:

Thus for 7,5 € {0, 1}, if player 1 plays action i and player 2 plays action j, then the payoff
to player 1 is given by G(i, j), the (¢, 7)-th element of the matrix GG, and the payoff of player
2 is given by its negation, viz. —G(1, j).

We consider all entries of the payoff matrix to be finite and bounded, i.e. |G(7,7)| < B
for some finite B > 0. We denote by the indicator random variables I and J, the mixed
strategies of player 1 and player 2, respectively. We follow the convention of denoting random
variables by the bold versions of their corresponding deterministic variables. Let p := E[I]
and ¢ := E[J] be the probabilities with which the two players play action 1, respectively. In
general, since we will be considering uncoupled dynamics, the randomness in the strategies
I and J will be independent. Therefore, the expected payoff for player 1 corresponding to
the choice of mixed strategies (p, q) is given by:

G(p,q) == (1 —p)(1 —q)G(0,0) + (1 — p)gG(0,1) + p(1 — q)G(1,0) + pgG(1, 1),

and the expected payoff for player 2 is given by —G(p, q).

We now consider a repeated game setting where {I;};>1 and {J;};>; are the action se-
quences of the two players. Let (I)* := {Is}'_, and (J)* := {Js}._,. Let the empirical
averages of the actions of the two players be given by 131: = % 22:1 I;, and Qt = % ZZ=1 Jy
respectively. General repeated game strategies for player 1 and player 2 are given by se-
quences of functions {f; };>1 and {g; };>1, where f;, g; : {0, 1}2¢=1 — [0, 1], V# map the history
up to step ¢, i.e. ((I)*~1 (J)*1) to mixed strategies given by P; = f,((I)*~*, (J)*™!) and
Qi = (1)1, (J)*1) for players 1 and 2 respectively. We will refer to these functions f;
and g; as the strategy functions for players 1 and 2 respectively at step ¢. Critically, observe
that we are not allowing for telepathy in the updates, i.e. the history used by player 1 at
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step t does not include {Q,}.~}, and the history used by player 2 at step ¢ does not include
{P,}!}. This is in agreement with the information structure of the traditional repeated
game environment. Over and above this traditional information structure, we will make
some further assumptions on the repeated game strategies as detailed below.

We first assume that player 1’s repeated game strategy is self-agnostic, as defined below.

Definition 5.2.1. We say that a repeated game strateqgy for player 1 is self-agnostic if player
1 uses only the action sequence of player 2 to decide her mixed strategy P; at step t. With an
abuse of notation, the strategy function can be replaced by a function f; : {0,131 — [0,1],
such that the mized strategy for player 1 at step t is given by Py = f;((J)*™1).

Note that player 1 is actually aware of her mixed strategies Py, Ps,..., P;_1 at step t
since she is aware of her strategy functions fi, fo,..., fi—1 and, for 1 < s <t —1, P, can
be determined from f; and (J)*~!. Thus, by self-agnostic, we only mean that player 1 is
agnostic to the actual realizations of her actions up to that step in order to chose the next
mixed strategy.

From the point of view of player 1, we now define no-regret strategies, as well as uniformly
no-regret strategies against an oblivious opponent. The former is precisely Hannan’s classical
definition of consistency [80], while the latter is a strictly stronger condition, requiring an
effective non-asymptotic guarantee on regret. We will use the stronger uniform-no-regret
condition to derive our results. Also note that, in accordance with the self-agnostic assump-
tion we made on strategies, both definitions of no-regret are the weaker notion of externaff]

Definition 5.2.2. A self-agnostic repeated game strategy strategy {fi}i>1 is said to be no-

regret if
T

1
lim sup — | max G (1, J;) — ZG f(()H, )| <0,

Tooo 1 16{01}

for all opponent sequences {Jt}t21-

Note that we have defined the no-regret property in expectation over all the randomiza-
tion in the strategy (only of player 1). Sometimes, even stronger definitions of no-regret are
used [| that require the no-regret property to hold almost surely for all realizations of player
1’s strategy. However, this definition will suffice for our purposes.

Definition 5.2.3. A self-agnostic repeated game strategy {fi}i>1 is said to be uniformly
no-regret if
T

T
1
limsup max — | max GZJ G NEH, T <o.
maw s | s D260 0) = 3G )| <

5The stronger notion of internal no—regret can be derived from a given external no-regret algorithm, but
the self-agnostic property is then violated. Moreover, internal no-regret algorithms are primarily of interest
in non-zero-sum game environments, and a full study of their dynamics is of substantial interest, but outside
the scope of this chapter.
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In particular, such a strategy is said to satisfy a no-regret rate of (r,c) if

T T
1
limsup max — | max G(i, Jy) G(f, ), J;
T—>oop{Jt} T |ie{on} = 2 ; %

Observe that all uniformly no-regret strategies are also no-regret. The converse need not
hold — however, algorithms that are no-regret but not uniformly no-regret are necessarily
contrived examples, and unlikely to be practically used.

The following properties of uniformly no-regret strategies {f;} can easily be verified:

1. If a strategy {f;} satisfies a no-regret rate of (r,c), then it satisfies a no-regret rate of
(r,c) for all ¢ > c.

2. If a strategy {f;} satisfies a no-regret rate of (r,c), then it satisfies a no-regret rate of
(r',0) for all " > r.

3. Since the payoff matrix entries G(-,-) are bounded, any uniformly-no-regret strategy
{fi} satisfies a no-regret rate of (r,0) with r > 1.

4. Conversely, if a strategy {f;} satisfies a no-regret rate of (r,c¢) where r < 1 or r = 1
and ¢ = 0, then it is a uniformly no-regret strategy.

It is well-known (e.g. see [81, Chapter 3|) that, for any finite constant 0 < ¢ < oo, the
best possible no-regret rate is r = 1/2. Moreover, several commonly used algorithms, like
multiplicative/exponential weights/Follow-the-Perturbed-Leader, typically match the opti-
mal no-regret rate for appropriately chosen constant c.

Finally, we define the mean-based property of any repeated game strategy as below.

Definition 5.2.4. A repeated game strategy for player 1 is mean-based if player 1 uses only
the empirical averages of player 2 as a sufficient statistic to determine her mized strateqy Py
at round t. In this case, with an abuse of notation, the strateqy function can be replaced by
a functz’o/r\L fi :[0,1] — [0,1], such that the mized strategy for player 1 at step t is given by

P, = f(Q¢—1).

For example, all algorithms in the popular Online-Mirror-Descent framework satisfy the
mean-based property while also being self-agnostic and uniformly no-regret. We also discuss
variants on the mean-based property that incorporate a recency bias in Section [5.3

In addition to the above assumptions on the repeated game strategy used by player 1,
we need to make a few further assumptions on the payoff structure of the 2 x 2 game, which
are detailed below:

Assumption 5.2.5. We assume that the game matriz G is chosen such that the unique
Nash equilibrium (p*, q*) is strictly in the interior, i.e. 0 < p*,¢* < 1; G(0,7) # G(1,7) for
at least one j € {0,1}, and G(i,0) # G(i, 1) for at least one i € {0,1}. The reasons for each
of these assumptions are detailed below:
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1. The assumption of 0 < p* < 1 implies that player 1 is agnostic between choosing
between action 0 and 1 when player 2 is playing his Nash equilibrium strategy, q*. This
1s useful for establishing the existence of a randomized opponent sequence against which
all choices of strategy would result in the same expected payoff for player 1.

2. The assumption of G(0,7) # G(1,7) for at least one value of j € {0,1} and G(i,0) #
G(i, 1) for at least one value of i € {0, 1} is necessary to make the definition of no-regret
non-trivial for both players — for example, if G(0,0) = G(1,0) and G(0,1) = G(1,1),
any strateqy deployed by player 1 would trivially satisfy no-regret as she is always
agnostic between actions 0 and 1, regardless of what player 2 chooses to do.

3. Finally, the assumption of 0 < ¢* < 1 means that player 2 actually has stochasticity
i his realizations, which is fundamentally important to show the lack of last-iterate
convergence for all no-regret algorithms.

Observe that a consequence of having 0 < ¢* < 1 be the unique NE strategy for player 2
is as follows: if G(0,0) > G(0,1), we need G(1,0) < G(1,1). In particular, the inequalities
between pure strategies 0 and 1 need to be in opposite directions for player 2, as otherwise
one of the strategies would be strictly dominated and ¢* € (0, 1) could not be an equilibrium
strategy. Similarly, we will use the convention that G(0,1) < G(1,1) and G(0,0) > G(1,0)
with the same reasoning applied to player 1. Note that the direction of these inequalities is
without loss of generality (as we can just re-index the pure strategies); the relative direction
of the inequalities is what is crucial.

Under the above assumptions, we can define R* := G(p*, ¢*) = G(1,q¢*) = G(0, ¢*) (where
the chain of equalities follows because p* is in the interior and by the definition of a Nash
equilibrium).

In the next section, we use the above assumptions to prove, in a series of steps, that
the limiting mixed strategies diverge when arising as an outcome of both players using self-
agnostic, mean-based, optimal no regret learning. Before stating and proving our theoretical
results, we provide compelling empirical evidence for the phenomenon of last-iterate diver-
gence.

Empirical evidence for last-iterate divergence

To illustrate the last-iterate divergence that arises, we evaluate three commonly used no-
regret algorithms:

1. The standard multiplicative weights update, which is known to lead to last-iterate
divergence even in the deterministic setting [243].

2. The optimistic multiplicative weights update, which converges in the last-iterate in the
deterministic setting [242).
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Figure 5.3: Evolution of the iterates of multiplicative weights in the matching pennies game
(for player 1) when the optimal-no-regret rate r = 1/2 is used. Figures from [92].

3. The online mirror descent algorithm with the log function as regularizer, often called
“log barrier" [253|. This regularizer has been successfully used to establish robust-
ness of fast time-average convergence guarantees in limited-information feedback set-
tings [166], and is thus naturally interesting to evaluate.

Note that all of the above algorithms fall under the online-mirror-descent framework,
and employ fixed learning rates {n; }+>1. The (asymptotic) rate of decay of 1, with ¢ dictates
the no-regret rate in all three cases: if 1, = 1/t", the no-regret rate is equal to (r,¢) for a
suitable positive constant c. We will evaluate these algorithms with two learning rate choices:
n, = 1/+/t (optimal), and 1, = 1/t°7 (sub-optimal rate r = 0.7).

Furthermore, we will consider the simplest 2 x 2 game: the matching pennies game, for
which G(0,0) = G(1,1) = 1 and G(0,1) = G(1,0) = 0 (without loss of generality, player 1 is
the player who wants the coins to match). Note that the unique mixed-strategy equilibrium
of this game is p* = ¢* = 1/2. We will plot the evolution of the mixed strategies of player 1
with time — since the matching pennies game is symmetric, player 2 has similar behavior.

Figure [5.3| studies the optimal-no-regret case, and shows the striking difference between
the evolution of the mixed strategies when the players use opponents’ mixtures (the deter-
ministic case) as opposed to their realizations (the stochastic case, studied in this chapter).
Notably, in Figure [5.3a] we see that while multiplicative weights converges to a limit cycle,
optimistic multiplicative weights converges quite quickly. The third algorithm, log-barrier
online mirror descent, also diverges in the last iterate, but the amplitude of the cycles is
much smallefl’| than for multiplicative weights. On the other hand, we see in Figure [5.3b]
that all three of these algorithms diverge in the last iterate. In fact, they are very rarely
close to the equilibrium strategy p* = 0.5! All in all, Figure [5.3b] provides strong empirical

"This likely reflects the increased entropy of the strategies used in the log-barrier algorithm.
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Figure 5.4: Evolution of the iterates of multiplicative weights in the matching pennies game
(for player 1) when the optimal-no-regret rate » = 1/2 is used, and player 2 is already at
NE. Figure from [92].

evidence for last-iterate-divergence for optimal-no-regret algorithms (Conjecture , and
also corroborates our evidence (Theorem that introducing optimism into no-regret
strategies does not fix the last-iterate divergence issue.

It is also worth examining the differential impact on player 1 as a result of player 2
using an optimal no-regret strategy, as opposed to player 2 playing his fixed NE strategy.
In the case of the matching pennies game, the latter case corresponds to player 2 playing
q* = 0.5 at every round. Figure depicts the evolution of the mixed strategies of player
1 in this latter case. Comparing the evolution to Figure [5.3b] it is evident that the mixed
strategies continue to diverge. While the “period" of limiting cycles, if any, seems to be
larger in the fixed-strategy case, the amplitude of divergence is similar in both cases. Thus,
the simplifying case that we studied in Theorem [5.3.3| successfully identifies at least some of
the phenomena underlying last-iterate divergence.

Finally, while our forthcoming theory only hold for optimal-no-regret algorithms, Fig-
ure [5.5] provides preliminary empirical evidence even using sub-optimal no-regret algorithms
may not resolve the last-iterate divergence issue. The smaller amplitude of the limit cycles
makes them less visible, but Figure shows that in the scenario of telepathic dynamics,
multiplicative weights and log-barrier online-mirror-descent with sub-optimal learning rates
continue to result in divergence of the last iterate, and optimistic multiplicative weights
continues to result in convergence. More importantly, Figure [5.5b] shows that all three algo-
rithms continue to lead to last-iterate divergence under realization-based feedback, although
the amplitude of the divergence does appear to be reduced.

In sum, the above simulations provide compelling evidence for a fundamental tension
between the property of no-regret and the property of last-iterate convergence. We now
proceed to show mathematically that self-agnostic, mean-based, no-regret strategies imply
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Figure 5.5: Evolution of the iterates of multiplicative weights in the matching pennies game
(for player 1) when the sub-optimal-no-regret rate r = 0.7 is used. Figures from [92].

last-iterate divergence through a series of steps.

5.3 Main results

We start by proving a condition that any self-agnostic, optimal no-regret strategy necessarily
satisfies (regardless of whether it is mean-based or not).

A necessary condition for optimal no-regret algorithms

Figure highlights, on linear scale, an interesting sensitivity of a popular no-regret algo-
rithm to a deviation away from NE in the matching pennies game. The algorithm that is
considered is multiplicative weights with learning rate n, = 1/y/s for s = 1,...,t, played
over t = 10° rounds against a “matching pennies" opponent whose time-averages deviate
from his NE strategy, 1/2 by a factor on the order of 1/4/¢. This tiny deviation (so small
that it is not even visible in the figure!) causes the iterates of player 1, i.e. Py, to deviate
all the way from 0.5 to 0.9. The details of this experiment are as follows:

1. Player 1 uses the multiplicative weights algorithm with learning rate 7, = 1/4/s. This
is a mean-based strategy, and for this particular choice of learning rate the strategy
oV5Qs
e\/g'és-l,-e\/g'(S—Qs) '

functions are given by P, = fs(és) =
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Figure 5.6: Response of player 1, who is using the multiplicative weights algorithm with
learning rate n = 1/+/t, against player 2 who is playing the sequence of alternating 0’s and
1’s up-to round number s, :=t — v/t, and 1 there-after until round ¢. Here, we set ¢ = 106.
The blue line plots the time-averages of player 2, and the red line plots the iterates of player
1. Note that the y-axis of the figure is on linear scale, so the fluctuation in the time-averages
of player 2 is not visible. Figure from .

2. Player 2 plays the fized sequence for ¢ rounds,

1if s <t —+/t and s odd.
Js=<0if s <t—+/t and s even.
lift—vt<s<t.

This leads to the following evolution of the time-averages of player 2:

%ifsgt—\/z_fandseven.
Q.= 1+1ifs<t—+/tandsodd

Lyl py ics <t

Note in particular that Q; = 1/2+1/2v/t.

Putting these details together, we see that Figure [5.6]illustrates the strong sensitivity of
the multiplicative weights algorithm to the O(1/+/t) fluctuation that is caused by player 2
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deviating from his sequence of alternating 0’s and 1’s close to the final round ¢. Remarkably,
we can generalize the above idea and show that, in a certain sense, this strong sensitivity to a
deviation away from NE is a property of any no-regret algorithm! The following proposition
describes precisely the nature of this fluctuation-sensitivity.

Proposition 5.3.1. Assume that the 2 x 2 game satisfies all the conditions in Assump-
tion m Then, for any self-agnostic repeated game strateqy {fi}i>1 that is uniformly
no-regret with a rate of (r,c) (where 1/2 <r <1), and any 0 < § < (1 —p*)/3, there exists
a positive constant o and an infinite sequence of integer tuples {(tg, sk)}x>1 such that

0<sp<a(ty)", foralk>1, (5.1)
and
E [fo, (J'(k))™)] = p* + 26, for all k > 1, (5.2)

where the expectation is over the random sequence (J'(k))t = {J/(k)}*, defined as below:

(k) - {J: Liid. ~ Bernoulli(g), if 1 < s < tx — s,

1 otherwise.

In particular, if the self-agnostic repeated game strategy {fi}i>1 is optimally uniformly
no-regret i.e. r = 1/2, then condition [5.1] would be

0 < s, < av/ty, forall k> 1.

This case is important because, even if player 2 constantly plays her equilibrium mixed
strategy ¢*, there is a non-trivial probability of player 2’s empirical average deviating from
¢* by a number on the order of 1/4/t at step t. The sensitivity in an optimal no-regret
strategy to pick deviations of this order will allow us to show the non-convergence of player
1I’s mixed strategies in the subsequent Sections [5.3] [5.3] and [5.3]

Proof. Recall our convention in Assumption was G(0,1) < G(1,1), and so we will
denote R} := G(1,1) as shorthand. Observe that for any 0 < p < 1, we have G(p,1) < Rj.
Consider {f;}:+>1 to be any self-agnostic uniformly no-regret strategy with a no-regret rate
of (r,c). We note that for any ¢, and any sequence {Js}._;, we have

max > G(i, J,) =t - max{G(0,Q,), G(1,Q,)}.

1€{0,1} et

Thus, for ¢ > ¢, there exists a sufficiently large to such that for all ¢ > ¢y, we have

tlr t-max{G(0,Qr), G(1,Q)} = Y G(f(()), J))| < ¢, (5-3)
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for any sequence {Js}._;.

Now let 0 < § < U2 = U0 and let &' := 3(G(1,1) — G(0,1)). Note that

0<d < (ng;R*). Let o := Wl_%,) > 0. For any ¢ > t; := max{ty,a'/", (ad’/R¥)~1/"},
let t*(t) := t — |at"|, where |-| is the floor function. Note that since t > a!/", we have
t*(t) > 1. Let {JZ} be an ii.d. sequence of Bernoulli(¢*) random variables for 1 < s < ¢.
Let @: = %Zz,zl J}, denote the empirical average of this sequence at round s. We state
the following useful lemma. Recall that R* denotes the Nash equilibrium payoff of player 1.

Lemma 5.3.2. For the sequence {J}}>1 defined above, and any t > 1, we have

E > G(f((I*)71),J7) | =tR" and (5.4a)
E i];" = tq". (5.4b)

See Appendix for the proof of this lemma. We define the sequence {J.}._, as specified
in the statement of Proposition |[5.3.1} In other words, we define J. = JX for 1 < s < t*(t),
and J, =1 for t*(t) < s <t. Then, we can denote the empirical average of this sequence as

Q’ '_12, 1J for 1 < s <t. We denote

. lat" |

R DI N (COR A FI B (5.5)

From the definition of uniform no-regret, i.e. Equation (5.3)), we have

1 r R R t
¢ 2 5B\ Tmax{G(0,Q), G(1,Q1)} — ZG(fs((J')S_l); J2)
1 i s—1 ’
> B G(LQ)) - ZGfs(J) ), J2))
1 ) * r * * * r
= [0 R+ Lot ] By~ °(0)- R~ |at] - M]
> (R} — M)a— Rit™".
, N —1/r
Using the fact that o := (RT*I(’E’/—**W and ¢t > (%) , we get
/ * 4T % —r
]\4>R’{—C——R1 ! = R+ 3¢ i > R* 420’
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Now, using linearity of expectation, and linearity of the payoff function G(p, 1) in the argu-
ment p, we get

M = G(f,1) where
Lat")

7= 1oy 22 Elfewss (()7OFT)].

—_

Now, since G(1,1) > G(0,1), we note that G(p,1) = G(0,1) + (G(1,1) — G(0,1))p is an
increasing function in p and so we get

20
G(1,1) — G(0,1)

f>p + =p* + 29,

from the above inequality on M. Thus, there exists s(t) such that 1 < s(t) < |at"] and
E [fo@s ((J)OTO)] > p* 425, (5.6)
To write this in the language of Equation ([5.2)), we observe that

s(t) - lat”| < at”

O v+ S P+ o] = 4

=at" ' <a(t*(t)+st)

and therefore we get
s(t) < a(t*(t) + s(t))". (5.7)

We note that t*(t) — oo as t — o0, and hence we can define an infinite sequence of
integer tuples {tx, si}r>1 (Where we have defined ¢, = t*(t1 + k) + s and s = s(t1 + k) as
above) such that 0 < s, < «(tg)" and

E[fo, (J'(k))™)] =p*+20 forall k=1,2,... (5.8)

This is precisely the statement in Equation (5.2)), and completes the proof of Proposi-
tion B.3.11 ]

Warm-up: Last-iterate divergence when opponent is already at
equilibrium

Equation highlights a critical property of any self-agnostic uniformly no-regret algo-
rithm with a regret rate of (r,¢): it needs to be sufficiently sensitive to small perturbations
on the order of ¢t" in the opponent’s strategy. We can concretize this property to show
last-iterate divergence when both players use self-agnostic, optimal no-regret strategies, i.e.
r = 1/2, and use mean-based repeated game strategies as detailed in Definition . Recall
that under the mean-based assumption, player 1’s strategy functions are



CHAPTER 5. TWO-SIDED, NO-REGRET LEARNING 241

L)) = fi(Qe—1) for all t > 1. (5.9)

The mean-based assumption underlies the broad family of Online-Mirror-Descent algo-
rithms that satisfy the external-no-regret property. More generally, strategies that use an
appropriate mean of the past history of outcomes are among the earliest algorithms sat-
isfying related properties like Blackwell approachability [82], internal-no-regret [240] and
calibration [241]. Moreover, in reality, for our techniques to work we only need strategies
to be mean-based in an approximate sense. In Section [5.3] we will show that essentially
the same results hold when the players use variants of the above class of strategies that
incorporate a recency bias.

The way we will show last-iterate-divergence for player 1 is in the style of proof-by-
contradiction: we show that if player 2 were able to converge in the last-iterate, player 1
must diverge. The central idea is that the stochasticity in the realizations of player 2, itself,
cause player 1 to diverge. This result in its full generality is in Section [5.3] and its proof
is contained in Appendix [5.3] Here, we state and prove a warm-up result that contains all
of the key ideas underlying last-iterate divergence. This considers the special case where
player 2 is playing his equilibrium strategy at all steps, i.e. {J;}>1 1.i.d ~ Bernoulli(g*).
Remarkably, we show that even this simple case necessitates the limiting mixed strategy
of player 1 to diverge! (This is in stark contrast to the setting of telepathic dynamics, in
which a simple algorithm like multiplicative weights would lead player 1 to converge to the
equilibrium strategy p* in games like matching pennies.)

Theorem 5.3.3. Assume that player 2’s strategy {Ji}i>1 is an i.i.d. sequence of
Bernoulli(q*) random variables. Then, any mean-based repeated game strategy { fi}i>1 that
has a regret rate of (1/2,¢) and satisfies the empirical averages condition in Equation
causes player 1’s last iterate to diverge, i.e. there exist positive constants (9, €) such that

limsup, , P[|P — p*| > d] > €. (5.10)

The proof of Theorem [5.3.3| constitutes an elementary application of Markov’s inequality;,
and a change-of-measure argument on the probability mass functions of two binomial random
variables.

Proof. We start by defining some notation pertinent to mean-based strategies. Let Z; ~
Binomial(t, ¢*), for t > 1. Let Z{/, ~ Z;_s + s and QY , = Z{',/t, for 0 < s <t,t > 1. Let
{(tk, sk) }x>1 be an infinite sequence and 0 < § < (1 — p*)/3 as in Proposition [5.3.1] Thus,
for every k > 1, we have

t
a1l
Qilk,sk = ; Z ']t/(k)7
s=1
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where < denotes that the two random variables are identical in distribution, and J{(k) are
random variables as defined in Proposition [5.3.1, We thus have

0< s, < a(tk)l/z, for all k > 1, (5.11)

and
E[fi, (Qf s.)] =p" 426, forall k > 1, (5.12)
Consider the random variable Y’ ftk(th s.)- Since the range of f; is always [0, 1],

we have Y > 0. Thus, we have E[Y] S 1 —(p*+20) = (1 —p*)—26. By Markov’s inequality,
we have

P(Y > (1—-p") 5)§—(1—p*)—5'
Thus, we get
(ftk (th k) >+ 5) > ¢, (5.13)

where we define ¢y := §/((1 —p*) —§). Note that 0 < ¢y < 1/2 (because we had defined
0 <6< (1—p*)/3). By the central limit theorem, we know that

. ~ 5 v
hmIP’(Q >q*—|——):1—(I> —_— |,
t—00 ' Vit 7 (1—q*)

where ®(-) is the cumulative distribution function of the standard normal distribution.
Since the function ®(-) : R — (0,1) in continuous, strictly 1ncreasmg, 0) = 1 / 2, and

lim, ,,, ®(z) = 1, we know that there exists vy > 0 such that 1 — ®(y9/1/q*(1 — ¢*)) = /4
(note that €y/4 < 1/2). Hence there exists T](ey) > 1 such that

™

P(Q> 0+ ) <a-ot+ <,

for all t > T} (eg).
Now, observe that

thtk,Sk (tk — Sk)étk—sk + sy.

Since t;, — s, — 00 as k — oo, there exists a k; > 1 such that

€
(thtk o > O (tk — sk) + sk + 0V — Sk) <

<
2 )
for all k > k;. Using the bound s;, < ay/ty, we get

€
P (Zy,0 > " i+ V) < 3, (5.14)
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for all k > ki, where 8 := a + 7. From the union bound and Equations (5.13) and (5.14),

we get

ZII
(ftk (t—k) >p"+0, 24, < q tww_) 50 (5.15)

Recall that we defined the opponent sequence {J;¢};>1 to be an i.i.d. sequence of

Bernoulli(¢*) random variables. Note that Z, 4 t@t, and by definition Z{’, > s point-wise.
We denote f3 := 3/q*. Note that ¢*t + v/t = ¢*(t + By\/t) for any t. Now, we show that

. ]P(Zt == Z) _
min T T > (14 By) 7, 5.16
s<a<qr (t+60vE) P(ZY, = 2) (1+ fo) (5.16)

for all 0 < s < av/t, t > 1. Indeed, we have,

P(Zi=2) _ (@)y(-a)" _t t=1 t-s+l ..
P(Z,=2) (@) 0—g¢): z -1 z-s+1

zZ—Ss

()= (i)™
S\ 7 T \t+ BVt

> (1+5) >0,

t—£

—— is increasing in /, and the last

where the first inequality follows from z < ¢ and therefore
inequality follows from the fact that

N

(Note that the function (1 + fy/z)** is decreasing in z for z > 1.)

We are now ready to complete our proof via a simple “change-of-measure" argument and
the above lower bound on the ratio of the probability mass functions. From Equations
and and the law of total probability, we get

P (ftk (Ztl:k

q" te+BVi
o () o

Z=5k

)Zp*w,ztks(z*-tkmm)

v

v

Tt +BVI; 5
(1+ Bo)~ - Z Pz, =z2)-1 {ftk (E) Zp*—i—é}

Z=S5k

le
— B (5 (5) 2 vz <00 o)

S+ By,

v
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and hence

P (s (Z) 20+ 0) = Fae s

for kK > k;. Since Py, < ftk(@tk), taking € := (e9/2)(1 4 5o)~*, we get
P[Ptk Zp*+5] Z €,

for all k > k;. This implies Equation ([5.10) and completes the proof of Theorem [5.3.3] O

Last-iterate divergence when both players use optimal no-regret

Now, we use the intuition from the proof of Theorem to conjecture last-iterate diver-
gence when player 2 is, himself, using a no-regret algorithm.

Conjecture 5.3.4. Assume that both players 1 and 2 use self-agnostic, mean-based repeated
game strategies { fi }+>1 and {g: }+>1, respectively, that are uniformly no-regret and each have a
regret rate of (1/2,¢). Then, the pair of mized strategies of both the players (Py, Q) diverges
with a positive probability.

Observe that it is sufficient to show divergence of the pair (P, Q¢) from only the equi-
librium (p*, ¢*) with a positive probabilityﬂ In particular, it suffices to show that there exist
positive constants (d, €) such that

limsup, , P[|P; — p*| > 6] > eor (5.17a)
limsup, , P[|Q: — ¢*| > ] > e. (5.17b)

While we do not prove this conjecture, we provide strong evidence for it. We show that
if player 2 used any a-priori fized sequence of mixed strategies {¢: }+>1 satisfying last-iterate
convergent properties, player 1’s mixed strategies would necessarily diverge. The idea is
that the realizations of player 2 arising from any such convergent sub-sequence are quite
“similar" (in a sense we will shortly define) to the realizations that would arise if player 2
had already converged to equilibrium. We define fixed-convergent sequences that player 2
can follow below.

Definition 5.3.5. An fixed-convergent strategy for player 2, parameterized by positive con-
stants (9,to, C), is any sub-sequence {Q¢ := qi}+>1 satisfying the following two properties:

8This is because if a sequence (P, Q¢):>1 did converge to some other point (p,q) # (p*,q*), then the
time-averages (Ist, ét)t21 would have to converge to (p, q) as well. However, we know that the time-averages
have to converge to the equilibrium (p*, ¢*) almost surely; thus the event that the sequence (P, Qt)i>1
converges to some point other than the equilibrium has zero probability.
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g — q"| <0/2 for all t >t (5.18a)
C
7, — q"| < 7 for all t > 1, where (5.18Db)

1 t
qt = ; Zl qs-
S=

We also denote the set of such fized-convergent strategies by Qs+, ¢ and denote their trunca-
tion to round t by Qs .c(t).

Note that a fixed-convergent player 2 would not be adapting her repeated-game strategy
in response to feedback from player 1; nevertheless, the properties of her repeated-game
strategy resemble the properties of a last-iterate convergent no-regret strategy in a marginal
sense. To see this, we first note that Equation ([5.18al) is a necessary condition for convergence
of the mixed strategies of player 2. Next, the stronger time-averaged convergence property of
Equation ([5.18b) arises from the following classical lemma, which uses the optimal-no-regret
property of player 2s strategy to establish the evolution of @, (which is a random variable)
as a function of ¢. This lemma was first proved by Freund and Schapire [211] for the case of
multiplicative weights, but can be easily shown to hold for all optimal no-regret strategies.
We provide the proof in Appendix for completeness.

Lemma 5.3.6. If player 1 and 2 are both playing optimal no-regret strategies each with rate
(1/2,¢), the time-average of player 2’s mized strategies evolves as

Ca
\/Z7
where C, 1s some positive constant that depends on the parameters of the game.

Now that we have justified Equations ({5.18a}) and ({5.18b)) as central to the definition of a
fixed-convergent sequence of player 2, we state our result on player 1’s last-iterate divergence
against such a sequence below.

Q. — ¢ < (5.19)

Theorem 5.3.7. Assume, as before, that player 1 uses a mean-based repeated game strategy
{fi}i>1 that is uniformly no-regret and has a regret rate of (1/2,¢). Then, for any fized-
convergent choice of strategies of player 2, player 1’s limiting mized strategy diverges with
a positive probability. In other words, there exist positive constants (9, €) such that for any
{@}i>1 € Qspo.05 we have

limsup, , P[Py —p*| > d] > € (5.20a)

The proof of Theorem builds on the ideas in the proof of Theorem [5.3.3] but is more
technical, primarily owing to the need to study the probability mass function of the Poisson-
binomial random variable from the sum of independent Bernoulli(g;) random variables, and
is therefore contained in Appendix
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A comment on adaptive strategies

Note that Theorem does not, strictly speaking, tell us exactly what happens when
player 2 is using his own no-regret strategy. The difficulties that arise when studying this
case are primarily technical. While the iterates {Q¢}:>1 do marginally satisfy the conditions
in Equations and (5.18D)), the actual realizations {J*},>; are not necessarily mutually
independent due to the adaptivity of player 2. This causes especial technical difficulty in
the steps of the proof that relate various probability mass functions of the sums of player 2’s
realizations to one another. In fact, we considered the case of fixed-convergent sequences to
ensure that the realizations of player 2’s strategies are mutually independent across rounds.
More generally, dependencies across realizations are allowed as long as the probability
mass function of player 2’s sum of realizations at any step sufficiently resembles the prob-
ability mass function of a sum of mutually independent coin tosses. Thus, we do believe
that Theorem implies last-iterate divergence for the full stochastic dynamical system.
However, the generality of our algorithmic framework will necessitate new mathematical
techniques to formally prove this result. This is an intriguing question for future work.

Last-iterate divergence beyond mean-based strategies

In this section, we examine the fidelity of our results on last-iterate divergence beyond the
exact mean-based assumption in Definition While the mean-based assumption is fairly
strong, it is worth noting that mean-based strategies underlie the design of almost all no-
regret algorithms in practice. Moreover, as we will now show, the essence of our results
continues to hold even for algorithmic variants of mean-based strategies that are ubiquitous
in the online learning and games literature.

One of the most common such variants incorporates a form of recency bias, colloquially
called “optimism". We define the broad class of recency-bias strategies below.

Definition 5.3.8. The class of k-recency bias strategies is defined as below:

ft(Jt_l) = ft(Af_l) where
-, A ¢
Qt 122 ZJ5+ZTjJt_j+1 s
s=1 j=1

and {r; }§:1 are positive integers taking values in {1,...,(}.

Note that the class of O-recency bias strategies essentially constitutes mean-based strate-
gies, and 1-recency bias strategies with r; = 1 constitutes the class of optimistic mean-based
strategies, since they are using 22:1 Js + J; as the summary statistic.

As mentioned in the introduction, the study of the last iterate of optimism-based strate-
gies has generated a lot of interest in the optimization literature [246/-250|; more-over, these
strategies are known to cause faster time-averaged convergence [251} 252]. Most recently,
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it was shown that the last iterate of the players’ strategies in the setting of telepathic dy-
namics (that arises when players use each others’ mixtures to update their strategies) will
converge |242|. In the more realistic realization model, the following result shows that the
ensuing stochasticity alone causes recency-bias-based strategies to diverge.

Theorem 5.3.9. Assume that player 2’s strategy {Ji}1>1 is an i.i.d. sequence of
Bernoulli(q*) random wvariables. Then, any (-recency-bias strategy {f:}i>1, as defined in
Deﬁm'tion that has a regret rate of (1/2,¢) causes player 1’s last iterate to diverge, i.e.
there exist positive constants (9, €) such that

limsup, , P[| P —p*| > 6] > e (5.21)

The proof of Theorem is essentially a relatively simple variant of the proof of
Theorem with slightly more involved algebraic calculations of the involved probability
mass functions owing to the recency bias. The full proof is contained in Appendix [5.3] It is
worth noting that the bounded memory of the recency bias, as well as bounded increments
{r; }§:1 are critical to the essence of the argument. It is plausible that stronger recency biases
that grow with the number of rounds ¢ could lead to different last-iterate behavior; however,
stronger recency biases would also conceivably break the no-regret property.

5.4 Conclusion and future work

In this chapter, we have shown partial but compelling evidence for a fundamental tension
between the guarantees of no-regret and last-iterate convergence on uncoupled dynamics that
use the opponents’ realizations alone as feedback. Perhaps the most important immediate
question to address is whether Conjecture formally holds — while the techniques intro-
duced in this chapter provide strong evidence, non-trivial technical work remains to prove
the conjecture. Additionally, we can ask whether the mean-based nature of the strategies
is truly needed for our impossibility result. While we did show robustness of our results
to this assumption (through Theorem for recency-bias-based strategies), whether the
same properties hold for strategies that are very different from mean-based strategies is an
intriguing question. Owing to the mean-based nature of the offline benchmark in regret-
minimization, it may even be that all no-regret strategies are in a certain approximate sense
mean-based.

Section provided some preliminary empirical evidence that in practice, last-iterate
divergence can occur even when no-regret strategies with sub-optimal rates are used. Our
techniques break down in the face of sub-optimal no-regret rates, so it is interesting to
ponder whether last-iterate divergence happens even for sub-optimal no-regret algorithms
more generally, or if it is just a property of the particular algorithms that were simulated.

Overall, the results presented in this chapter, while preliminary, merit a possible re-
examination of choices of dynamics players should use to learn from one another. An alter-
nate choice of dynamics that is of possible interest is the recently proposed (non-constructive)
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smoothly calibrated strategies [254], which have been shown to converge in the last-iterate
to NE even for non-zero-sum games! These strategies constitute randomized responses to
deterministic forecasting, and are conceptually quite different from strategies satisfying the
no-regret property. Whether these strategies can be studied more constructively, and from a
behavioral game theory standpoint, is an important and intriguing question for future work.

5.5 Technical portions of proofs

Notation conventions for proofs

Before proving the full proofs of statements, we state our convention for notation. We
designate constants that take a value in (0,1) by ¢, and strictly positive, finite constants
by C € (0,00). Moreover, we will designate ¢, as a lower bound on ¢ above which all our
statements apply.

In general, these constants can depend on the parameters of the game, either directly, or
just on the equilibrium strategies (p*, ¢*).

For ease of exposition, we will also sub-script these constants by alphabets {a,b,...},
corresponding to the lemmas in which they appear and are used. Thus, for example, in
the first lemma the constants will be denoted as {¢,,C,} and the lower bound on ¢ will be
denoted as ty,. While in general we will overload notation within a lemma for our choice of
constants, we will be explicit about manipulations when possible.

Proof of Lemma [5.3.2

We consider the distribution of mutually independent coin tosses,
Ji iid. ~ Bernoulli(g"), (5.22)

and denote the expectation of quantities under this probability distribution by E[]. Recall
that ¢* is the Nash equilibrium strategy of player 2. By linearity of expectation, it is trivial
to show the second statement, i.e.

E =Tq".

T
>
t=1
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To show the first statement, recall that Jy L (J)*~* for all ¢t € {1,...

independence. Thus, we use the law of iterated expectations to get

ZG F((I)H), T)

= TR",

where the last statement follows by statement 1 in Assumption [5.2.5, noting that G(0, ¢*)

G(1,q") = G(p*,q*) = R*. This completes the proof.

S ()T G + (1= f(() TG0, )

=E () LD G(La) + (1= () - G047

Proving Lemma completes the proof of Proposition [5.3.1]

Proof of Lemma [5.3.6

249

,T} due to mutual

<J>H]]

]

The argument resembles the statement presented in Section 6.1 of [211] for which, if both

players are using the multiplicative weights update, we have

2%
max G(p,Q,) < g* + —=

p€[0,1] \/E

where ¢ is the no-regret parameter corresponding to the multiplicative weights algorithm.

Here, we show this argument for all no-regret strategies of rate (1/2,c).

player 1’s strategy is no-regret, we have

1 t
2 Z; G(Ps,Q.) > max G(p, Q,) —

pef0,1]

— max G(p, Q) < ZG P, Q.) +

p€[0,1]

Vi

\[

Note that, since

On the other hand, since player 2 is also using a no-regret strategy of rate (1/2,¢), we

have

—ZG P,,Q,) < min G(Py,q) +

q€[0,1]

< G
5?[%% Jé“[é‘h )

\/%

Sle

+
<
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Putting the two inequalities together, we get

— 2c

max G(p, <g'+—.

max G(p, Q) < g N
Recall that we chose the convention that G(0,1) < G(1,1) and G(1,0) < G(1,1). Further,
to satisfy the requirement that neither player has a strictly dominated strategy, we then
require G(0,0) > G(0,1). We will use this last fact. Also, recall that G(0,¢*) = G(1,q¢*) =

G(p*,q*). Now, we observe that max,co G(p,Q,) = max{G(0,Q,),G(1,Q,)} and, thus,
there are two cases:

1. Case 1: Q, > ¢*, in which case we get

G(1.Q,) < G(Lq) + %

— (G(1,1) = G(1,0))(Q — ¢7)

IN

IN

HAGR

— (¢ —Q,)

where C! = 2¢/(G(1,1) — G(1,0)).

2. Case 2: Q, < ¢*, in which case we get

where C := 2¢/(G(0,0) — G(0,1)).

Taking C, := max{C’,C”} and combining the cases above completes the proof.

Proof of Theorem [5.3.7]

Recall that we had earlier defined random variables Z; ~ Binomial(t, ¢*), for ¢ > 1, and
Zy', ~ Zi_s + 5. Our main proof strategy is to show that the ensuing random variables
from any fixed-convergent sub-sequence highly resemble the ensuing random variables from
a sequence that is already exactly at equilibrium.

We consider the sequence {J:};>1 generated by independent random draws from the
fixed-convergent strategy of player 2, i.e. we have Jp ~ Bernoulli(g;) for all t > 1. Define a
new random variable, Z, = 22:1 J,.
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To be able to prove last iterate divergence when the opponent’s sequence is independent
and Bernoulli(g;) at round ¢, we need to lower bound the ratio of pmfs of the random
variables Z; and Z! for all z € [tq*,tq* + B/t]. First, note that by Equation (6-16), it
suffices to show that the ratio of the pmfs of random variables Zt and Z; is lower bounded
by a universal positive constant. This constitutes the main technical effort of our proof,
which we do through a series of key lemmas.

First, we show that the pmf of Z; is very close to the pmf of a Binomial(¢, ¢*) for any fixed-

convergent sequence {q; };>1 satisfying Equations (5.18a) and (5.18b)). This is encapsulated
in the following technical lemma.

Lemma 5.5.1. Consider any fized-convergent sequence {q }+>1, i.e. such that

FEquations (5.18a)) and (5.18b|) both hold. Let Z] := Binomial(t,q,). Then, there exists

positive constant €, and integer to, such that for allt > ty,, we have

P(Zt:Z)
2 2 > ¢, for all z € [tg*, tq" + V1.
S el zc | |

Proof. We consider the constant round index to; := max{ty,4C?/§?}, and note that by the
triangle inequality, we have

e — @ <o — |+ |¢" — G

L. C
6 0
<42 =
_2+2 0,

where the last inequality holds for all t > ¢;,. Thus, we have |¢: — ;| < 0, which is useful
for comparing the pmfs of the random variables Z, and Z{ .

Consider a fixed ¢ > #p;. In general, relating the probability mass function of Zt, which
is the Poisson binomial random variable, directly to the binomial distribution, is challeng-
ing. The following technical lemma characterizes the sequence {qs}._; that minimizes the
probability mass function IP’(Zt = z) for a fixed choice of z. This minimizing sequence takes
values ¢s € {q, — 9,G,,q, + 0}, which turns out to be a much simpler form to analyze.

Lemma 5.5.2. Consider any round indext > 1. Then, for every z € {1,...,t}, there exists
an even integer 0 < ny(z) <t such that

P(Z,=2) >P(Z;, = 2),

where Z; := Binomial (ntT(z), q+ (5> + Binomial <n‘T(z), q — 5) + Binomial (t — ny(2), q%).

Proof. Let ns := qs —q,, for 1 < s <, denote the deviation of g5 from the average at time
t, g,. Thus we have 3"t 0, =0, and 5, € [-4,6] for all s € {1,...,t}.
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Let €' := {ej,e,...,e;} where e, € {—1,+1} for all 1 < s < ¢ represent the unique
encoding of the output sequence J' € {0,1}'. Let |e!| := |{es = +1:1 < s < t}| denote the
number of positive ones in the vector ef. Now, we consider 1 < z < t. We have,

Zt - Z Z HQS {65 +1} + (1 - QS)(i){es = _1})

Jet|]= s=1

=> H 0 +ns)(D{es = +1} + (1 =g, — ns) (i){es = —1}).

et == s=1

On the other hand, we have

PZ ==Y [[@0e = +1} + (1 - 2)0 e = 1)

Jet]=2 s=1

- (H@ra-a)e

Thus,
]P)(Zt = 2) <t) q; + 7]5 L—q,—ns,.
—_—— = = +1 + —(1)1€s = —1
o= |ZH b ST e = 1)
t s s .
- ( ) 2. H(H”) {es—+1}+(1— ”_)m{es:—l}»
o let|=z s=1 @
Let e, = %-_1 if e,=+1 and €, = 1_’,: if e, = —1. Let € = {éy,...,¢e} and let |¢'] := |{e, =
+1/q, : 1 < s <t}|. Then, we get
P(Z, = z) (t)_l ! R
il Sl Ao 1+e,ms). 5.23
PZ = \z qug( s) (5.23)
We will now try to lower bound the ratio Egﬁiz; over ' := {m,...,n;} such that n, €

[~0,6] for all 1 < s <t and Y'_ 1, = 0. Let F denote the set of all such vectors 1. Let

= > [Ia+an).

[et|=z s=1

for n € F, and let

P
0 € arg min (n)-
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Note that P(n) is a multinomial in 7, ...,n;. We now show that 7" satisfies:

ns € {—0,0,0},V1 < s <t. First note that if ), € {—6,0} for all 1 < s <t then we are done.
If this does not hold, then without loss of generality let 7j; € (=4, d). Since 3¢, 7, = 0, let
us substitute 7, = — 22;11 ns. We now argue that 7; € {—4,6}. We have

t—1
S TI0+ 80 = X 0+ Al -+ + i [0 +em)

jet|=z s=1 let|=z 5=
= > (L+&i — & — &lip+ - + 1) — G — @16a(fp + -+ ) H (@, ... Ea),
[ét|=2

where

t—1
H(@, ..., 01) = [ [(1 + &)
s=2

Note that the above is a quadratic expression in 77;. We now observe that the coefficient of
71 in this expression is zero. Indeed, the coefficient of 7; is given by

Y H(@,....6-1) @ — &) =0,

because of the symmetry in e; and e; in the above expression. A quadratic of the form
azx? + b attains its minimum on an interval [l, k] either at x = I, h or z = 0.

This establishes that 7; € {—9,0,d}, and indeed the same argument works for all ¢ €
{1,...,(T" = 1)}. Moreover, we get 7, € {—0,0,d}, as these are the only choices that can
allow >>'_ 77, = 0.

Thus, we have established that 75 € {—6,0,d} for all s € {1,...,t}.

Thus, there must be exact ny(z)/2 values of s corresponding to 77, = d, n,(z)/2 values of
s corresponding to 7y = —d, and (¢ — n4(2)) values of s corresponding to 77, = 0. Thus, we
have shown that

P(Z, = 2) > P(Z, = 2),

where Z . := Binomial (

g+ 5) + Binomial ( Lq" — 5) + Binomial (t — ny(2),¢*). O

We now state and prove a final technical lemma relating the random variables Zt and
Y; = Binomial(t,q,).
Lemma 5.5.3. Let Z;(n) := Binomial (g, q + (5) + Binomial (g,@ — 5) + Binomial (t — n, q)
for any evenn € {1,...,t}. Then, there exists universal constant e. > 0 such that for every
€ [q*t, ¢*t + BV/1], we have

> €. > 0.

P(Zi(n) = 2)
P(Y, = 2)

Here, Y; = Binomial(t,q,).
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Note that Lemma [5.5.3] immediately implies that

P(Zy=z2) _ P(Z(m(2))

= Z)
PY,=2)  P(Y;=2)

> €. >0,

and we have thus related the original random variable Z to the Binomial random variable
Y, through the constant €, := €., which completes our proof argument. Thus, it only remains
to prove Lemma [5.5.3 which we do below.

Proof. Our proof will critically use the classical de-Moivre-Laplace theorem, stated below.

Theorem 5.5.4 (de-Moivre and Laplace, statement from [255|). We denote the pdf of the
normal distribution N (1, 0?) by p(x;p,0?). Further, let X ~ Binomial(t,q) for any 0 <
q < 1, and consider any sequence {ki}i>1 such that k}/t* — 0 as t — oco. Then, for every
0 < e <1, there exists a ty sufficiently large such that for allt > ty, we have

P(X = z)
p(ztq, tq(1 — q))

Theorem [5.5.4] is a much sharper form of asymptotic normality than the typically stated
Central Limit Theorem, as it obtains direct control on the probability mass function itself.
To see how we can apply the de-Moivre-Laplace theorem to the denominator P(Y; = z), we
fix ¢ := g,. Then, note that since z € [t¢*,tq* + $v/t] and (from Lemma , we have
g, € {¢* — C/Vt,q* + C/\/t}, we have z € [tg, — CV/1,tq, + (C + B)v/1]. Thus, designating
C.:= (B + C), we consider the choice of sequence {k; = Cc\/f}tzl. This sequence clearly
satisfies k3 /t> — 0, and so we can directly apply the statement of the DeMoivre-Laplace
theorem to get

l—e< < 1+c¢€, for all integers qt — ky < z < qt + k.

(1 =€) p(ztq,tq(1 —q) <PV, =2) < (1 +e) - p(zq,1q(1 —q)) fort>to.

Further, we will adjust o . such that ¢t > to . := to./q"

There are two cases to study depending on the value that n takes. The first one considers
n < ty.. Noting that ;. is a constant, in this case we can directly bound the ratio of pmfs.
First, we very crudely lower bound the numerator to get

= n/2\ (n/2\ [t —n
P2 =7) = Z (kl)(/@)(’%)
0<k1,k2<n/2,0<k3<(t—n),k1+ka+ksz=z

@G+ - (L—gG—0)"* ™ (F—0)F L—g+& P @1 -g) """

- (L2 @ o — o -,

zZ—nN

where in the last inequality we considered only the point ky = ko = n/2, k3 = z—n in the
sum. (Note that this is a valid point as z < t and z—n > ¢*t —to . > 0. The latter inequality
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follows because we assumed that ¢*T" > ;..) On the other hand, for the denominator we
have

P =) = () @ra-m-,

z

and so we get, after some algebraic simplification,

= t—n 52 \"/?
P(Zt = Z) > (Z—n) (1 B @_2>
PO, = 0
> €. >0,

where the constant €. will depend on @, 9, ¢y, but not on ¢. Here, we have critically used
n <ty to lower bound the term (1 _ &

%—2) by such a constant, as well as noting that

for some constant €. that is close to ¢*.

Notice that the above crude argument does not work for the case where n > t;., in
particular, if it can grow indefinitely as a function of ¢, is less trivial. For this case, we make
the following claim using the de-Moivre-Laplace theorem, under which it suffices to prove
the lemma.

Claim 5.5.5. There exists a constant €. € (0,1) that can depend on C., but is independent
of (t,n), such that for to. <n <t, we have

B(Y; = 2) < (14 <) p (2 7 t(1 — @) (5.242)
P(Zi(n) = z) > (1 —¢€.) - p (2; tq, to* (G, n, t)) norm where (5.24b)

P n )= 1 (5@~ DT+ )+ 5@+ 01 -T-0) + (t— w1~ 7))

for any z € [tq* — CoV/t, tq" + C\/1).
First, notice that Claim directly gives us our proof for the case where n > ¢y .. To
see this, consider the second case where q; > 1/2. This gives us
P(Zi(n) =2) _ (1—e) p(zta,t0" (G, n, 1))
P, =2) — (I+e) plziq gl —q))
(-
(1+€)

n
2

(z—tqp)?

V2r - t@)(1 — @) e =D
\/27'(' to?(G,m,t) - ﬁ%}ﬁ% .

1—e,

1+e.
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First, we note that o%(g;, n,t) <
we have

}1. Moreover, we know that @ € [¢* — §, ¢* + J], and so

V2 tg (1 — )
\/277 - to?(q,n,t)

where €. is a constant that depends only on §. Thus, we get

> €. >0,

__G—tap?

_ _(z—tgp?
e 2tq(1—a)

Finally, we note that z € [tg* — C.\/t,tq* + C.\/t]. Thus, to lower bound the numerator
we get

_ (z—tgp)? _ac2y
e 2t2(@nt) > e 2t02(qgnt)

402

Z 6_2‘72(W’"’t) 2 €c > 07

where we now use the fact that (g, n,t) > (g + 6)(1 — @ — ) (this is a consequence
of g > 1/2). ﬂ Thus, we get ¢; + 6 < ¢* + 20 < 1. Note that this constant ¢, will depend on
(¢*,9,C.), but is independent of ¢.

_ ot _
For the denominator, we trivially have e 2T ap) < 1. Putting all of these together, we
get

P(Zy(n) = 2)
RIUEDRE

where €. is the product of all the above constants and thus depends on (¢, ¢*, C., d), but
is independent of . Thus, given Claim , we have proved Lemma m (A symmetric
argument, which we omit, also works for the case gz < 1/2.)

It only remains to prove this claim, which we do below using the DeMoivre-Laplace
theorem.

Proof of Claim [5.5.5 As we noted above, Equation (5.24a)) follows immediately from the
statement of Theorem m To prove Equation ([5.24bf), we need to do a little more work,
but essentially we can exploit the mixture-of-binomials structure in the random variable
Zy(n) := Binomial (%, + §) + Binomial (£, — 0) + Binomial (¢ — n, ) for any even n €
{1,...,t}.

First, we consider the extreme case where the distribution is “most different" from Y,
i.e. n =t. In this case, note that Z;(t) := Z;1 + Z;» where Z;; ~ Binomial (%,@ + (5) and

9Tt seems to me that this would hold more generally and we do not need the assumption g > 1/2.
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Z;9 ~ Binomial (%,@ — 5), and the random variables Z;; and Z;, are independent. Thus,
we get

th_Ccﬁ
P(Z(t)=2)= >,  PZia=yP(Z2=(2—y))
y:Z_ta"l'(jc\/IF
L(@+0)+Cct>/?
> > P(Ziy = y)P(Zi2 = (2 —y)).
y="1-(qr+0)—Cct5/9

Now, observe that y € [t/2- (g +6) — Cot>°,t/2 - (G + 0) + C.t°/?], and because we have
assumed that z € [g; — Cev/t, G + Ce\/t], we also have (z —y) € [t/2- (G — 0) — Ct7/°,t/2 -
(@ — 0) + C.°/9] for slightly adjusted constant C,. Moreover, it is easy to verify that the
sequence {k;, := C,t°/?};>, satisfies the conditions required for application of de-Moivre-
Laplace theorem.

Therefore, for large enough ¢ > ¢y, (where ty . will depend on (e, 9, ¢*, C.), and appro-
priately chosen constant €, € (0,1), and the specified ranges of (y, z), we get

@+ o) f@+ -7 -0))

Bz =)= (=)o (ui

P(Zia = (=) = (1= ) -p (= 1) 5@ - 0. 5@ - 91~ +)).

and so we get

P(Z:(t) = 2)
5(@+0)+Cet®/? , ;
2o Y p(ws@ras@ean-a-9).
y==%-(qi+6)—Cct5/?
t,__ t,__ _
(=@ -0 5@ - o1 -7 +)

21— p (@0 5@+ 0 -7 0) ) w5 5@ - 0 (- 17+ 0))

"2
—2(1 —e€.)*- g Cet!/?
= (1 - 60>2 4 (Z;t%

. 2(1 o 60)2 . e*CCtl/Q

t

00— 0)+ @~ ), 5@~ )1~ +9) )

t

L@+ =T 0) + @6 @)1 -T+5))

(if)
> 66(1 - 50)p (2§ 1qt,
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Here, inequality (ii) follows for large enough ¢ > ¢, . noting that for the specified range
of z, we have p (z;t@, @+l -g—-0)+i@—0),5@—0)1—g+ 5)) > ¢, > 0; and
also that e %" goes to 0 as t — co. Inequality (i) follows by noting that

t t
> p(ng@eo @meon-m-9) <P co)
y> 5 (@ +0)+Cet5/9

1/9
< e Gt /

— I

where W denotes the standard normal random variable, and we have overloaded notation
in choices of C,. Similarly, we have

t t 1/9
> r(ng@-ons@-nu-gen) <o

y<L-(qr—6)—Cct5/9
From this, we get

L(@+0)+Cet5/? ; ;
> s(ws@ras@raa-a-0).
y=35(@+0)—Ccto/®

t

p(-wig@- o s@-on-m+9)

2

> (5154 0) 5@+ 1= 6) )« (5 5@ - 0 @~ DL~ +9))

_ 1/9
— 2eCet

Y

and plugging this in above gives inequality (i).

Clearly, we have proved Equation for this extreme case. Let us now extend this
extreme case more generally. Recall that we assumed n > t;.. In this case, by an identical
argument to the above, we get

P(Zp1+ Zna=2") > e.(1 — €.)?-
p (5@ 5@+ )1 —T = 0) + 5@ —0). 5@ — (1 —T +9)).

Thus, we can utilize a similar convolution argument as before to study Z;(n) := Z,1 +
Zno + Zi—ny3, where Z;_ny 3 ~ Binomial((t — n), ) and is independent from {Z,1, Z,2}.
Thus, we get

P(Zi(n) = 2) = P(Zng + Zna + Zp—n)3 = 2)
nﬁ—f—Ccnwg

> Y P(Zugt Zup =2 P(Zgnys = (2 — ).

2!/ =ng—Cenb/9

There are two cases depending on the value of (t — n):
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1. (t —n) < to.. In this case, because Z;_n)3 € {0,... %}, we have

P(Z—nys = (2 — 2')) > (min{g, 1 — @}

>
> (min{g, 1 —q})"°.

Similarly, it is easy to verify that the normal pdf p((z — 2/); (t — n)@, (t —n)@(1 — @)
is also bounded above by a constant ¢ as (z — 2’) < to.. Thus, the ratio of the two is
bounded by a universal constant €. for all (z —2") € {0,...,to.}.

2. The second case is (t —n) > to.. Now, we note that (z — 2') € [(t — n)gz — Cer/n —
C/L, (t — n)G + O/t + CA/1), therefore, (z — 2') € [(t — n)G — Cern/(t —n), (t —
n)q + Cer/ (t — n)] for slightly adjusted constant C.. Then, since (t —n) > ty . as well,
we can apply the de-Moivre-Laplace theorem on the Binomial random variable Z;_) 3
and show that

P(Zymys = (2= )
p((z = 2); (t =n)g, (t — n)@(l — @)

for the specified range on (z — 2/).

> (1 _EC)

Thus, in both cases, for appropriately chosen €. > 0 we get

ngg+Cen®/?

Pz =2 ze Y p(5n@ @+ 01 -G —0)+ 5@ —0)(1-G+9))-
2 =ng—Cen®/9

p((z = ) (t =), (t = W)L — @)

> - p (20, 5 @+ )1~ T — 0) + 5 (@ — 0)(1~ G +9)) *

p (& (t =) (t = )T~ )

Iﬁi'p(Z;t%g(@vL@(l—@—5)+%(@—5)(1—@+5)+(t—n)@(1—@)),

where the second inequality uses an identical argument as earlier again noting that n > ¢y ..
This completes the statement of the claim, and thus completes the proof. n

Now that we have proved Claim [5.5.5] we have completed the proof of Lemma[5.5.3] [

Finally, we show that the pmfs of ¥; = Binomial(t,q,) and Z; = Binomial(¢,¢*) are
sufficiently close. This follows from the time-averaged convergence property in Lemma [5.3.6
and the argument is detailed below.

Lemma 5.5.6. There exists a positive constant eq > 0 and a sufficiently large to 4 such that
for allt >ty 4, we have

> * * .
B(Z, =2 > €4, Vz € [¢"t, "t + CVT]
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Proof. Again, from the DeMoivre-Laplace theorem, there exists positive constant ¢, € (0, 1)
and a sufficiently large ¢ 4, such that for all ¢ > ¢, 4, we have

PY,=2)>(1—e) pzta ta(l —q@)),
P(Z; = 2) < (1+ea) p(2tqd tg" (1 —q%)).

Hence, we have

PYi(n) = 2)
P(Z, = 2)

( ) p(Z'@,th—@))

( ) p(zitq* tq (1 —q))
(- Vom M@ @) e W
T (lte)

2—tg*)2
+ €4 \/27T tqt 1—q* ) e’2iq*(t1q—37*>

1—€d
1—|—€d

Now, we have
V2 - tqt)(l—qt V27 - ( 1—q +0) 2m- (¢ +0)(1—q* —9)
> ) > 0,
Noar i \/27T ¢(1—q") V2r g (1= ¢)

for all ¢. This is because @ € [¢* — 9, ¢* + 6] and (1 — G) being concave over this interval
attains its minimum on the boundary. Further, we get

__(z—tgp)? _ 203 _ 203
e 2a(l-7) > max< e 2@ —)0-c+9) e 20¢"+5){1-¢"=9) > (.

Note that we have obtained bounds that do not depend on t. Thus there exists a positive
constant €; such that the statement in the lemma holds. O

Putting all the equations together, we get

P(Z{ = 2)
————~= >¢forall z € [t¢*, tq" + CV1].
B(Z, =) > e for all z € [t¢*, tq* + CV1
for universal constant ¢ > 0. Thereafter, an identical argument to the proof of Theo-
rem [5.3.3| completes the proof. O
Proof of Theorem [5.3.9

Proof. We will essentially mimic the proof of Theorem [5.3.3] - We first define notation per-
tinent to f-recency-bias strategies. We denote Zf : Zt, Jv + Z] 1 7iJt—j+1, where

Jsiid. ~ Bernoulli(¢*). Note that Q! = Zf/t. More conveniently, we can also write

t

Z.f = Z(l + Tz/)Jt/,

t'=1
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where we designate 7}, = 0 for ¢’

<
we can then write, for any 0 < s <

(t —¢), and r}, = r;_p 41 thereafter. Using this notation,
t,

t—s t

(Z")e, =D (L+r)Je+ > (1+7)
t'=1 t'=t—s+1
( "\ £

Q") =

From Proposition |5.3.1] we know that there exists a sequence {tx, sy }r>1 such that 0 <
sp < afty)'/? for all k > 1, and

B[/, ((@")f,.0)| = 7" +26 for all k > 1.
As in the proof of Theorem we can use Markov’s inequality to get
P (£ (@")fpn) > 7 +0) 2 0

where ¢y := J/((1 — p*) — J). Note that 0 < ¢y < 1/2, as in the proof of Theorem m

Next, we apply the central limit theorem on the recency-biased random variable Q¢ =
Zf/t. Observe that Zf is a sum of bounded random variables (asr; < {forall j € {1,...,¢}).
In fact, we have

Moreover, we have

, 4’ 4

J

var [Zﬂ = ((t—€)+ (1+7“j)2) .ie F (t+¢ (€+2))]

Thus, by the central limit theorem, we have
¢
Zi—(t+ Zj:l rj)/2

(=0 ane)

where recall that ¢ is the CDF of the standard normal distribution. As before, substi-
~— and considering large enough t > Tj(ep) and suitable choice of v := 7q

tuting v := ok

lim P >l =1-0¢(Y),

t—o00




CHAPTER 5. TWO-SIDED, NO-REGRET LEARNING 262

(just as in the proof of Theorem although the exact choices could be slightly different
here), we get

Z{ — (t+35..75)/2

J(e=0+sany)

P >

Thus, we have shown that
¢
Z{—(t+32,,75)/2

J(e=0+sa+ny)

with probability at least (1 —€g/2). Observe that this implies that

> Y%

4 0
ZE<(t+) 1)/2+ 7% ((t—é) +) +rj)2> <t/2+ Vi

J=1 J=1

for large enough ¢, where 7(, can depend on ¢. Thus, since ¢, — s, — 0o as k — oo, there
exists a k; > 1 such that

oy €
P (thfk,sk > 1/2(tx — si) + sk + YV — 3k> < 50

for all k£ > ky. Using the bound s, < ay/tx, and the union bound we get
(Z” fk Sk * 17AV4 €0
P fi. — : >p +9,(Z )tk,Sk <1/2-t 4+ BVt | > 5 (5.25)
k

Observe that (Z”)f, > §'(() := Z?:iri{s’z}(l—l—rs)—I—max{(s—ﬁ), 0}. We will now show that
the pmfs of the random variables are within a constant fraction of each other. The argument

resembles the one in the proof of Theorem [5.3.3| with slightly more involved calculations.

Lemma 5.5.7. Denote By := 28. Then, for any value of 0 < s < av/t, and for all t > 1,
we have:

min

s (O<=<1/2t460v8) P((Z")5 s =2) —

P(Zf = 2) S (;

-)ZQ (1 +2B0) "

Using this lemma, we can complete the proof of Theorem [5.3.9| using an exactly identical
argument to the proof of Theorem Since the argument is identical, we omit the details
here.

To complete our proof, it thus suffices to prove Lemma [5.5.7, which we now do.
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Proof. We will split the argument into two cases: s > ¢ and s < ¢. First, we note that for
s > {, we have

P((Z")i,=2)=P (Zt_s =z—85— er)

It is important to note that when s > ¢, we have s'(¢) = Z§=1 r; + s, and so (z — s —

S r;) =z — s'(¢) > 0. This ensures that the ensuing pmf is valid. Thus, we get

P((Z"),=2) = ( . S<t_ —2> m) @ -

For the numerator, we get

P(Z{ =>)

¢
= > PJi=a,Jia=a2.. Jepr =) P (Zt_g =z-> (1+ rj)a;j)

j=1
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Note that since z > s'(¢) and z < t/2 4 $/t, we have for large enough ¢,

¢ ¢
Zl—i—rjxj >z—€—2r3>z—s(€)>0, and
7=1

7j=1
¢
(147j)x;) <z < (t—1),

J=1

since for large enough ¢ we know that t/2 + 51/t < t — £. Thus, the binomial coefficients
above are valid for all values of @ := (z1,...,x).
(Clearly, it suffices to bound the term

l
(z Zf(t (?Jrrj) )) (%)t
(t—

( =1
s)
()6

uniformly for every @ := (z1,...,2,) € {0,1}*. We will now do this. Note that

R(x) =

(t—0)
(<zfz§:1<1+rj>xj>) 1

(t—s) ' 2s—1’
(<z—s—z§:1 r]-))

Ale)
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and we will now aim to lower bound the term A(zx). Since the binomial coefficient is
uni-modal, we know that

A(x) > min{A;(x), A2(x)} where
(“.")
Ai(z) = — g
((z—s—2§:1 r]-))
(t—0)
Aofa) = —((z‘ﬁff;””)
(<z—s—z§:1 )

Thus, we only have to lower bound each of the two terms A;(x), As(x). Denoting 2’ :=
z— Z§:1 r; as shorthand, a simple calculation shows that

=0 (t—s+1)
AQ(a:)_(z’—ﬁ)...(z’—s—l—l)

(=)
>
—\zZ -/

s—1
t—/
2 K Y
t/2+60\/¥—zj:17’j—£
t—1i

where the first inequality used the property that for any ¢ > 2/, the function 7= is
increasing in 1.
Moreover, we can show that

A) ()
As(x) (zfﬁfti_:i):l Tj)
B (t—z+ Zﬁ:l ri)t (2 —0— Zﬁ:l rj)!
t—z—01 2

(t—z+3 ). (t—z—C+1)
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v

where the second-to-last inequality holds for large enough ¢ noting that » < ¢/2 4+ /1.
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Putting all of this together, we get

iz (75 - 6)/2 S
R(z) > (0.8) <t/2 + B/t — Zﬁzl i~ £>

(t g) a/t
£2. — —_

> (08) <t+2@0 b e)

> (0.8)" - (1+28) "

for large enough t.
This completes the proof of the ratios for the case s > ¢. For the case s < ¢, we can use
an even simpler argument. First, we note that

]P((Z”)f,s_ (ZJtl+ Z 1+TJ Jt_ Z_S)> >0>
j=t—¢

as we know that (z —s) < (t —1).
Next, we note that we can very crudely lower bound

P(Zi==2)=P ZJt,+ Z 1+ 75)d; = ( z—s))-P(Jt_sH:l,...,Jt:l)

]tﬁ

1 S
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1 l
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where the last step follows because we are in the case where s < ¢. and so we get

2
, P(Zﬂ—z) (1)£ <1>f _
min e B~ = I~ 1+25)"
s(<=<1/20180vh) P((Z")5 s =2) — \2 5) 0)
where the last step follows because ¢ > 1. Putting the two cases together completes the
proof of Lemma O

]
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Chapter 6

Future Directions

This thesis presented a fundamental perspective on intersecting learning and strategic be-
havior, by posing two key questions: how should we learn from data provided by an unknown,
possibly strategic agent? And how should a strategic agent generate her data in response to
learning? We partially answered these questions for three types of agents: stochastic, ad-
versarial, and competitive; and with the simplest possible ML models like binary sequence
prediction, 2 x 2 games and linear models. Listed below are key conclusions from each
chapter.

1. In Chapters [2] and [3, we designed explicit learning algorithms that successfully adapt
not only between stochastic and adversarial environments, but also between different
mintmum-description-length model orders that could describe the environment. The
model selection problem highlighted the need to measure guarantees on adaptivity by
the metric of overall reward rather than regret.

2. In Chapter [ we showed that when only one agent is doing the learning, the data
generator is incentivized to generate in her data in order to build up a commitmen-
t /reputation; thus achieving Stackelberg equilibrium. Implicitly, the data generator is
incentivized to reveal her private information to the learner even though the game is
non-cooperative!

3. In Chapter 5 we saw that the ubiquitous no-regret learning dynamics can lead to
surprisingly divergent day-to-day behavior when deployed against one another, even in
the simplest 2 x 2 games.

As we saw in each of the chapters, each of these results gives rise to several future
questions that need to be addressed in order for a more complete understanding of learning
intersected with strategic behavior, even in simple ML models and under purely stochastic,
adversarial or competitive environments. To conclude, we briefly discuss two important
topics that we did not address in this dissertation: a) intersecting the ideas developed here
with the practice of modern machine learning, b) understanding and detecting cooperative
environments.
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Figure 6.1: Experiments by Belkin, Hsu, Ma and Mandal [125| showing the “double descent"
behavior of the test error as a function of model complexity in two popular modern machine
learning models. Note that the second descent happens after the model complexity exceeds
the sample size and models interpolate the training data.

6.1 Adaptivity in modern ML

In Chapters [2] and [B], we saw that data-driven model selection in online learning was a
critically important problem. However, our perspective and approach was driven by classical
statistical learning perspectives (see, for e.g. |2|), which state that the estimation error
incurred by using a certain model class will increase, monotonically, with the complexity
of the model clasﬂ. However, in today’s practice of modern machine learning, the most
successful model classes appear to be the most complex, and are in fact over-parameterized
with respect to the number of training data points. Figure[6.I] attributed to Belkin, Hsu, Ma
and Mandal [125|, shows that the test error decreases as a function of the model complexity.

This phenomenon has more recently been called the “double descent" behavior, and hints
of it were observed earlier in neural networks as well as simpler models [124] 256, 257]. The
double descent experiments were unique in that they allowed for tractable theoretical models
to study the impact of using over-parameterized models that interpolate noisy training data,
at least for linear models. Several recent papers provide a fundamental theoretical under-
standing of this behavior for linear least-squares regression [133-136, 258, |259] as well as
classification [260-263|, including corroborating the double-descent behavior under special
data generating mechanisms.

It is clear that for online model selection methodology, as we described in Chapters
and [3] to be practically applicable to modern ML, it needs to directly engage with this
non-standard behavior of over-parameterized models. Clearly, the SRM-based approaches
in their current form, i.e. penalizing model complexity, would not have the desired effect:

n fact, this was our reason for designating these classes as model orders.
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they would rule out precisely the models that we wish to select! In fact, the recent efforts
to characterize the generalization behavior of over-parameterized models can be viewed as
a modern remaking of the principles of SRM, and it would be fascinating to see whether a
SRM-based approach could be adapted to work in this regime. In particular, test error could
increase or decrease along axes that are a function of the model class that are significantly
different from complexity, or number of parameters of the model. On the other hand, partly
owing to the surprising success of overly complex models, the primary empirical methodology
for data-driven model selection in machine learning is validation on a hold-out set. While we
did analyze online validation using traditional complexity hierarchies, the algorithm itself
did not explicitly penalize complex models in any way. As we remarked in Chapter [2], it
would also be fascinating to investigate whether online validation automatically gives us
model selection guarantees in this modern regime as well.

6.2 Understanding cooperation

In Section of this thesis, we stipulated a goal of Alice, the learner, as learning the strategic
nature of Bob, which could be stochastic, adversarial, competitive or cooperative. While we
examined the first three categories of strategic behavior, we did not at all consider the case
of cooperatively generated data. This is a possibility that is essential to detect to be able to
successfully “learn-to-cooperate" as desired in DARPA’s recent Spectrum Challenge, version
2.

Understanding cooperative behavior poses several challenges even when we consider the
components of learning and game theory separately. On the side of game theory, the primary
model for cooperation involves competition between teams of players, where cooperative
behavior could be either externally enforced (as in contract law) or a-priori known. The
framework of cooperative game theory then involves analyzing which coalitions will form
and how groups of players will collectively act in some non-cooperative form of equilibrium.
How these principles of cooperative game theory might manifest in an automated engineering
setting is a question as yet under-explored.

On the side of learning, even assuming a known cooperative nature of all agents, chal-
lenges continue to remain in deploying decentralized schemes in both stochastic and adver-
sarial multi-armed bandit environments [139-141|, although promising recent progress has
been made [264, [265]. To learn to cooperate, we will, at the very least, need to know how to
distinguish between multiple possible types of cooperative agents. The seminal work of Gol-
dreich, Juba and Sudan [266| takes a goal-oriented perspective on learning to communicate
with an unknown agent; these ideas have been leveraged in modern wireless communication
settings [70]. More generally, learning to cooperate will require distinguishing a cooperative
agent from the other three categories, a problem that is wide open both theoretically and
practically. Therefore, several open directions remain in better understanding cooperative
(and not just decentralized) strategic behavior in the paradigm of learning and decision-
making by automated agents.
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