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ABSTRACT
We present Quartz, a language and framework for developing and
validating smart contracts. A user writes a Quartz contract as an
extended finite-state machine in a domain-specific language.Quartz
translates this description into a formal specification in TLA+. The
specification captures both the contract’s logic and the execution
semantics of the blockchain. Quartz uses bounded model checking
to automatically determine if a contract adheres to user-defined
properties. Once validated, the contract’s author uses Quartz to
generate a Solidity implementation for deployment on a blockchain.

We used a survey of 16 contract case studies, drawn from a va-
riety of domains, to motivate the design of Quartz’s DSL and to
evaluate its effectiveness. We show that Quartz contracts are con-
sistently more concise than handwritten Solidity equivalents. We
present two in-depth case studies where Quartz identifies multiple
significant contract vulnerabilities and provides useful execution
traces to assist the developer in addressing them. Finally, we demon-
strate that Quartz imposes only modest overhead in terms of gen-
erated code size and execution efficiency over handwritten Solidity.
Quartz is able to automatically verify functional, contract-specific
properties. It is the first tool of this type that detects vulnerabilities
arising from interactions with external code, such as reentrancy.

1 INTRODUCTION
Recent developments in blockchains have generated renewed in-
terest in distributed ledger systems. Originally conceived as an im-
mutable and tamper-proof record of financial transactions, blockchains
have expanded into the role of secure and robust data repositories
for general-purpose applications with the advent of smart contracts.
A smart contract defines a body of data and the logic for a set
of transformations that may be applied to this data. A contract’s
initial state and all subsequent transformations are recorded on a
distributed ledger, allowing any consumer of the ledger to inspect
the current state of the contract and to validate the history of op-
erations that produced this state. Proper operation of the ledger is
ensured by a protocol leveraging cryptographic primitives in which
each participant acts out of self interest.

A smart contract operates under the same assumptions — it
defines a protocol for multiple distrusting, self-interested parties to
execute transactions against a shared body of state. Users rely on
the underlying ledger to enact this protocol by faithfully executing

, ,
2020.

Contract 
Definition
(DSL)

Formal 
Specification 

Generator

Model 
Checker

Implementation
Generator

Distributed
Ledger

TLA+ Spec. Solidity Code

Execution
Trace

1

2 5

3 6

4

Contract Author

Figure 1: Quartz Architecture

the contract’s logic precisely as written. It is therefore up to the
contract’s code to ensure the integrity of its data and to enforce the
application-level guarantees its users expect. The correctness and
security of the contract’s code is therefore a central concern for its
developers and users.

Smart contracts offer powerful capabilities but have proven diffi-
cult to engineer for security and correctness. Serious vulnerabilities
have been discovered in smart contracts deployed in production
systems, even those written by domain experts [44]. The execution
semantics for contract code have significant differences from those
of more traditional software, making it difficult to identity potential
vulnerabilities. A contract’s code is immutable once deployed to a
ledger, meaning issues found only after release cannot be patched.
Moreover, the internals of any deployed smart contract are open to
all of a ledger’s users, who are also free to invoke arbitrary trans-
actions against the contract at any time. Anyone may therefore
inspect a contract for vulnerabilities and then attempt to exploit
them. There is significant incentive to do so because contracts are
often used to manage sensitive data and track valuable assets.

Given these concerns, there is significant value in representing a
contract clearly and concisely. Second, a contract’s authors would
like to understand and verify as much as possible about its potential
behaviors and vulnerabilities before it is deployed to the open
environment of a distributed ledger. Third, the authors need the
ability to generate a working implementation ready for use from
their concise contract description.

This paper presents Quartz, a framework for engineering secure
smart contracts that addresses these three goals. The design of this
framework is shown in Figure 1. Quartz offers a domain-specific
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language in which a developer describes her contract as an extended
finite-state machine. The transitions of this state machine become
the transactions against the contract recorded on the underlying
ledger. The contract author augments her description with a set of
invariants regarding the contract’s behavior. Quartz translates a
state machine and invariants into a formal specification suitable
for model checking, expressed using TLA+ [34]. A model checker
then searches possible contract execution paths for violations of the
stated invariants. If a violation is found, the model checker presents
the contract author with an execution trace that induces it.

Once the contract obeys the checked invariants, possibly after
an iterative process of refining the contract and rerunning the
model checker, the author may use Quartz to generate a Solidity
[18] implementation from the original state machine description.
This allows her to seamlessly deploy the contract to any Ethereum-
backed blockchain, with greater assurance that what is deployed in
production will behave as expected.

Quartz leverages its smart contract description language to make
smart contracts both easier to express, facilitating contract devel-
opment, and easier to analyze, facilitating systematic and robust
contract testing. The design of this DSL is informed by a survey
of 16 case studies based on real contracts or contract standards
spanning a diverse array of domains. These case studies also form
the basis of our evaluation. We measure the costs of using Quartz in
terms of the amount of code needed to express a contract compared
to its Solidity and TLA+ equivalents, measure the execution effi-
ciency of contracts generated by Quartz compared to handwritten
alternatives, and present in-depth studies of applying Quartz and
its model checking to contract development.

While there have beenmany efforts to ease contract development
and to apply techniques from formal methods to contracts, Quartz
is one of the only systems offering fully automated verification
of functional properties, i.e., contract-specific invariants, rather
than a fixed set of vulnerabilities. One important source of security
vulnerabilities is interaction with external code [23]. Quartz is
fully capable of modeling these interactions, distinguishing it from
similar tools. This allows Quartz to flag issues underlying attacks
like the widely-publicized compromise of the DAO contract [13].

The remainder of this paper will motivate, discuss, and evaluate
the design of Quartz in more detail. Section 2 covers background
material and presents the contract case studies used to motivate the
design of Quartz’s language, presented in Section 3. Quartz’s model
checking process is described in Section 4, and Section 5 covers
Solidity generation. We present our evaluation in Section 6. Finally,
Section 7 summarizes related work and Section 8 concludes.

2 BACKGROUND & REQUIREMENTS
In this section, we first summarize the execution semantics of con-
tracts on the Ethereum blockchain. We then present a selection of
case studies used to inform the design and feature set of the Quartz
DSL. We identify common contract design patterns and motivating
use cases for specific language primitives.

2.1 Ethereum Contract Execution
Contracts in Ethereum are expressed as bytecode for the Ethereum
Virtual Machine (EVM), although contracts are mainly written in

Solidity, a higher-level language compiled to bytecode. Ethereum’s
distributed ledger is maintained by a peer-to-peer network of nodes
each running a local instance of the EVM. Each item added to the
ledger triggers an execution of bytecode, which enacts some trans-
formation against a smart contract. All participants stay synchro-
nized to the latest state of the blockchain by reaching consensus
on the sequence of transactions and then locally executing the
corresponding bytecode. Ethereum meters bytecode execution by
associating each EVM operation with a “gas cost.” An upper limit
on the total gas cost of each transaction (ledger item) ensures ter-
mination, and administering a transaction fee based on its total gas
discourages loading the network with spurious computations.

Ethereum treats the exchange of virtual tokens, “Ether,” as a
first-class primitive. Every contract deployed to the ledger has an
associated token balance, and these tokens are used to pay the trans-
action fees described above. End users may also create accounts
that are recorded on the ledger and maintain a balance of tokens
on their behalf but are not associated with any executable code.
Both these accounts and smart contracts are uniquely identified by
a 256-bit public key, known as an address. A contract transforma-
tion may involve sending tokens in its possession to an address,
which could be either a simple user account or another contract.
The latter case is much like a function call, in that control transfers
to the receiving contract, which may execute its own code. Thus,
the execution of contract code is triggered by an end user explicitly
invoking a transaction against that contract or implicitly by the
receipt of tokens.

2.2 Contract Case Studies
Table 1 summarizes the contracts we studied in detail to motivate
and refine Quartz’s language design. Our case studies were drawn
from Ethereum standards, subjects of prior work, and real Solidity
projects. These contracts encompass a diverse range of use cases
such as financial applications (ERC-20, Auction), voting and deci-
sion making (ERC-1202, DAO), and data provenance (Logistics).
Several involve intricate security concerns and rich featuresets.

We identified several common and recurring design patterns in
these contracts, generally in line with prior work [4, 45]:

• Contracts typically go through a multi-phase lifecycle. In
each phase, a different set of transactions are permitted.

• Authorization is a primary concern for contract code. Most
actions are only intended to be performed by a specific set
of principals.

• Timing is also a major concern. Some actions are only valid
within a specific time range.

• Actions may be conditionally enabled, depending on the
contract’s internal state.

In short, contract use cases typically center on maintaining internal
state and restricting when, how, and by whom this state is modified,
in an effort adhere to a known protocol.

Additionally, we observed frequent use of certain language fea-
tures in the implementations of these contracts:

• Both signed and unsigned integer arithmetic, the latter fre-
quently to implement blockchain-managed tokens or assets

• Use of structs to simplify management of complex state and
use of maps to track possession of virtual tokens or shares
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Name Description
Auction [21] Simple auction with open participation and

open bids
Crowdfunding [45, 50] Crowdfunding campaignwith deadline and

token refund logic
Logistics Shipment tracking contract

SimpleMultiSig Two-participant multi-signature wallet
StaticMultiSig [43, 44] Multi-signature wallet with fixed set of

signers
DynamicMultiSig Multi-signature wallet with dynamic set of

signers
ERC-20 [43, 58] Ethereum standard token implementation
ERC-721 [16, 43] Ethereum standard non-fungible token im-

plementation
ERC-1202-Simple [59] Ethereum standard voting implementation
ERC-1202-Weighted [59] Voting implementation with voter-specific

weights
ERC-1540 [25, 30] Ethereum standard asset management im-

plementation
ERC-1630 [8, 27] Ethereum standard time-based fund distri-

bution implementation
ERC-1850 [7] Ethereum standard token loan implemen-

tation
ERC-780 [55] Ethereum standard metadata registry

RockPaperScissors [14] Simple rock-paper-scissors game imple-
mentation

DAO [51] Decentralized autonomous organization

Table 1: Contract Case Studies

• Hashing to implement cryptographic commitment schemes
(e.g., in multiplayer games) or to verify possession of some
secret for capability-based access control

Notably, we did not identify the need for complex branching logic.
Transactions in the contracts we surveyed typically begin by assert-
ing a number of conditions, aborting if they aren’t satisfied, and
otherwise executing a simple sequence of statements. We similarly
did not observe frequent use of looping constructs. Finally, all of
the case studies we analyzed can be implemented within a single
contract. While some were implemented using a suite of cooperat-
ing contracts, this design choice was not fundamental to achieving
the desired functionality.

3 LANGUAGE DESIGN
This section presents the design of the Quartz domain-specific
language. We first describe the structure of a Quartz contract de-
scription and then present a running example contract that we will
use throughout the paper. Next, we formalize Quartz’s syntax and
operational semantics.

3.1 Language Structures
A contract definition in Quartz consists of an extended finite-state
machine and an optional set of properties to verify about the ma-
chine’s behavior. A state machine in turn consists of three pieces.
The first is an optional sequence of definitions of any Struct types
to be used within the contract. The second piece is a set of fields,
each given a unique name and annotated with a type. Quartz sup-
ports simple types such as Int and Uint, parameterized types such
as Maps and Sequences, and Struct types. Quartz also includes

types specifically useful for contract development such as Identity
(a unique identifier for a ledger participant) and a Timespan type. A
HashValue type is parameterized by a sequence of types indicating
the structure of its preimage. It only supports equality checks with
instances of the same type. This encourages the use of hashing for
purposes like commitment schemes and capability-based access
control while discouraging the use of hashing as a pseudo-random
number generator, a practice that has introduced vulnerabilities in
past contracts [3].

The last component of a state machine is a set of state transitions.
Each transition is comprised of the following elements:

• A unique name, used to invoke the transition
• A source state and destination state
• A set of parameters, each given a name and type
• A guard, written as a predicate over the machine’s fields and
the transition’s parameters

• An authorization predicate restricts which partiesmay trigger
a transition

• A body, written as a sequence of statements executed for
their side effects

Quartz statemachines are event triggered, and a transition is only
eligible for execution if its guard is satisfied. The statements within a
transition body are kept simple to facilitate model checking, with no
branching constructs. They may either modify a field or transfer to-
kens to an external contract. An authorization predicate determines
who may initiate execution of the associated transition, a particu-
larly important concern for smart contract applications. Quartz’s
authorization clauses allow contract authors to express rich seman-
tics that are cumbersome to express using guards alone. They are
built from three terms of the form 𝑖 , satisfied when Identity 𝑖

approves the transition, and the forms any(𝐼) and all(𝐼), where 𝐼
is of type Sequence[Identity]. These are satisfied when one or all
members of the referenced group approve, respectively. These terms
may be arbitrarily combined with Boolean && and || operators.

The second, optional element of a contract description is a set of
invariants regarding the state machine’s possible execution traces.
These are written as predicates over the state machine’s fields, with
some additional primitives. Predicates may refer to transition pa-
rameter values or to an aggregate sum over a Sequence or Mapping
type. Additionally, a predicate can use min or max to refer to the min-
imum or maximum value that a variable assumes over the lifetime
of the state machine. For example, given a state machine containing
transition 𝑡 with parameter 𝑝 , max(𝑡.p) refers to the maximum
value of 𝑝 ever used in an execution of 𝑡 . This allows Quartz to
check rudimentary temporal properties [41, 49].

3.2 Running Example
We will use the running example of a smart contract for administer-
ing a simple auction on a blockchain. The purpose of this contract
is to accept a sequence of ascending bids, each backed by a token
deposit, from any potential party for an item put up by a specific
seller, who is responsible for deploying the contract. It is up to
the contract’s implementation code, which is executed exactly as
written by the underlying distributed ledger, to properly enforce
the auction’s terms. First, the issuer of the highest bid, regardless of
their identity, is duly recorded as the winner. Bids are accepted up
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Init

duration: Timespan
seller = sender
aucDuration = duration

Open Closed Redeemed

tokens: Uint,
tokens > 0
deadline = now + aucDuration
highestBidder = sender
highestBid = tokens

tokens: Uint,
tokens > highestBid
now ≤ deadline
send highestBid to highestBidder
highestBid = tokens
highestBidder = sender

now > deadline sender = seller
send highestBid to seller

Figure 2: A State Machine for an Auction Contract

until a publicly declared deadline, which cannot be adjusted after
the start of the auction by any party. Any principal who issued a
losing bid is able to recover their tokens, while the seller may only
claim the auction’s proceeds once it is closed.

Our auction features four phases of operation. Its representation
as a state machine is shown in Figure 2. Each transition is annotated
with a guard, written above the horizontal line, and actions shown
below the horizontal line. When the contract is deployed, its creator
is recorded as the seller. The contract begins its life in the Init
phase, awaiting the first bid. As soon as a bid arrives, the bid and its
sender are recorded, and the contract transitions to theOpen phase.
Here, an arbitrary number of subsequent bids may be received and
recorded, as long as each exceeds the previous highest bid. Unlike
in the previous phase, the contract now must also refund the newly-
supplanted highest bidder. Finally, once the auction’s deadline has
passed, any party may move to close the auction. Only once the
Closed phase is reached can the seller claim their earnings, with a
transition into the Redeemed phase.

3.3 Language Syntax
Figure 3 gives the Quartz implementation of the auction state ma-
chine shown above. A formal presentation of Quartz’s syntax is also
given in Appendix A. Quartz supports the standard arithmetic and
Boolean operators, comparisons, and both in and not in operators
to check for membership in an object of Sequence type. Literals of
type Bool, Int, Uint, and Timespan are written as expected, with
the possible exception of a Timespan instance, written as an integer
followed by a unit such as minutes or hours.

Quartz transitions begin with a header of the form source ->
(Parameters) destination. This is followed by an optional requires
block to express a guard and an optional authorized block to ex-
press an authorization predicate. Finally, the body of the transition
is enclosed within braces and consists of a sequence of simple
statements, like assignment to a field.

The Quartz language contains several contract-specific features.
Many distributed ledgers, most notably Ethereum, have first-class
support for virtual currency that may be bound to contracts and
exchanged among them. State machines in Quartz use keywords to
check their balance or disburse tokens to an external contract. If
we wish to produce contracts for a ledger without first-class tokens,
we can emulate this functionality by adding an extra field and the

1 contract Auction {

2 data {

3 Seller: Identity

4 HighestBid: Uint

5 HighestBidder: Identity

6 Duration: Timespan

7 Deadline: Timestamp

8 }

9

10 initialize: ->(duration: Timespan) init {

11 Seller = sender
12 Duration = duration

13 HighestBid = 0

14 }

15

16 initialBid: init ->(tokens: Uint) open {

17 Deadline = now + Duration

18 HighestBid = tokens
19 HighestBidder = sender
20 }

21

22 submitBid: open ->(tokens: Uint) open

23 requires [ tokens > HighestBid && now <= Deadline ] {

24 send HighestBid to HigestBidder

25 HighestBid = tokens
26 HighestBidder = sender
27 }

28

29 close: open -> closed requires [ now > Deadline ]

30

31 redeem: closed -> redeemed authorized [ Seller ] {

32 send HighestBid to Seller

33 }

34 }

Figure 3: An Auction Contract Written in Quartz

necessary operations to the generated implementations. Transition
authorization is treated as a first-class primitive in Quartz, unlike
in Solidity and other contract languages. Quartz allows contract
authors to express rich authorization constraints such as restricting
an operation to any member of a particular group or requiring
approval from all members of a group before it is executed. Finally,
Quartz restricts communication between state machines. A state
machine may send tokens to another state machine, but it cannot
invoke another machine’s transitions directly. This simplifies the ex-
pression and verification of contract logic. Note that Quartz makes
no assumptions about the behavior of the recipient, which may or
may not be another Quartz state machine, for model checking.
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3.4 Language Semantics
Here, we formally define a subset of the operational semantics of the
Quartz DSL. Evaluation rules for expressions, which are generally
routine, are omitted for brevity. A Quartz state machine is formally
defined as a 4-tuple ⟨𝑄, 𝑞0, 𝑇 , 𝐹 ⟩ where 𝑄 is a set of states, 𝑞0 is
the initial state,𝑇 is a set of transitions, and 𝐹 is a set of fields, each
with a specific name and type. A transition 𝑡 ∈ 𝑇 is defined as a
7-tuple ⟨name, src, dst, 𝑔, 𝑎, 𝑃, 𝐵⟩ where:

• name is the transition’s unique name.
• src and dst are the transition’s source and destination states.
• 𝑔 is a boolean-valued guard expression.
• 𝑎 is an authorization predicate.
• 𝑃 is a set of transition-specific parameter values, each with
a name and type.

• 𝐵 is the transition’s body: a sequence of statements executed
when the transition fires.

A Quartz state machine is event triggered. An external, addressable
entity (either an end user or another contract) invokes a transition
by submitting a message𝑚 = ⟨𝑖, 𝑡, 𝑉 ⟩ to the state machine specify-
ing its identity 𝑖 , a transition 𝑡 to execute, and a (possibly empty)
set 𝑉 of values for 𝑡 ’s parameters.

The current status 𝑆 of a state machine is defined as a 7-tuple
⟨𝑞, 𝜎, 𝛼, 𝑀, 𝑠, 𝛾, 𝐶⟩ where:

• 𝑞 is the machine’s current state
• 𝜎 is a mapping from names to values representing the current
context. It always includes the state machine’s fields as well
as built-in values sender, balance, and now.

• 𝛼 is a mapping from transitions and transition parameter
values to the set of identities that have authorized invoca-
tion of that transition with that particular set of parameter
assignments.

• 𝑀 is a queue of transition invocation messages. The machine
may only read the head of the queue or remove the head of
the queue. It may not inspect any other queue elements or
the queue’s length.

• 𝑠 indicates which statement within a transition to execute.
The special statement form ⊤ indicates that the machine has
not yet started execution of any transition, while ⊥ indicates
that a transition has just completed. Thus when executing
some transition with body 𝐵 = [𝑏1, . . . , 𝑏𝑛], 𝑠 will assume
the sequence of values [⊤, 𝑏1, . . . , 𝑏𝑛, ⊥].

• 𝛾 is an authorization clause that must be evaluated to deter-
mine if the invoked transition may proceed, or □ if no such
determination is in progress.

• 𝐶 is a stack of transitions currently in progress.
A machine’s initial status, before it executes its initial transition,
is therefore ⟨𝑞0, {𝑓 .name ↦→ 0𝑓 .type : 𝑓 ∈ 𝐹 }, ∅, 𝜀, ⊤, □, 𝜀⟩, where
𝜀 denotes an empty sequence and 0𝑇 denotes the zero element of
type 𝑇 .

3.4.1 Transition Authorization. A subset of Quartz’s operational
semantics for transition authorization is presented in Figure 4. In
all rules,→ indicates small-step evaluation and ⇓ indicates big-step
evaluation. ⇓𝜎 more specifically denotes big-step evaluation with
𝜎 as the initial environment. The ◦ symbol denotes concatenation,
e.g.,𝑚 ◦ 𝑀 signifies the element𝑚 prepended to the sequence𝑀 .

When a new message 𝑚 is dequeued, the machine’s status is
updated to reflect that the message’s sender, 𝑖 , approves of the tran-
sition’s execution, and Quartz begins evaluation of the relevant
transition’s authorization clause, 𝑡 .𝑎, as shown in UpdateAuth.
Terms in the authorization clause are of the forms 𝑖 , any(𝐼), and
all(𝐼). These terms are evaluated as expected, shown in AuthSin-
gleTrue, AuthAnyTrue, and AuthAllTrue. Each of these rules
has a complement, e.g., AuthSingleFalse, omitted for brevity. Au-
thorization clauses may also use Boolean && and || as connectives,
with the expected evaluation rules.

If we have 𝑡 .𝑎 ⇓ true, then evaluation proceeds to the transi-
tion’s body. As shown in AuthSuccess, the current statement in
the machine’s status advances from ⊤ to 𝑏1, the first element of 𝑡 .𝑏.
Otherwise, Quartz discards message𝑚, removes the transition’s
parameter assignments from the current context 𝜎 , and awaits the
next incoming message. However, the sender’s approval of the
transition persists in 𝛼 and affects future evaluations of 𝑡 .𝑎.

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, □, 𝐶 ⟩ 𝑚 = ⟨𝑖, 𝑡, 𝑉 ⟩
𝑞 = 𝑡 .src 𝜎′ = 𝜎 ∪𝑉

𝑡 .𝑔 ⇓𝜎′ true 𝛼𝑡,𝑉 = 𝛼 [ ⟨𝑡, 𝑉 ⟩]
𝑆 → ⟨𝑞, 𝜎′, [ ⟨𝑡, 𝑉 ⟩ ↦→ 𝛼𝑡,𝑉 ∪ {𝑖 }]𝛼, 𝑚 ◦𝑀, ⊤, 𝑡 .𝑎, 𝐶 ⟩

(UpdateAuth)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, 𝑖, 𝐶 ⟩
𝑚 = ⟨𝑗, 𝑡, 𝑉 ⟩ 𝑖 ∈ 𝛼 [ ⟨𝑡, 𝑉 ⟩]
𝑆 → ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, true, 𝐶 ⟩

(AuthSingleTrue)

𝑆 ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, any(𝐼 ), 𝐶 ⟩
𝑚 = ⟨𝑗, 𝑡, 𝑉 ⟩ ∃ 𝑖 ∈ 𝐼 : 𝑖 ∈ 𝛼 [ ⟨𝑡, 𝑉 ⟩]

𝑆 → ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, true, 𝐶 ⟩
(AuthAnyTrue)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, all(𝐼 ), 𝐶 ⟩
𝑚 = ⟨𝑗, 𝑡, 𝑉 ⟩ ∀ 𝑖 ∈ 𝐼 : 𝑖 ∈ 𝛼 [ ⟨𝑡, 𝑉 ⟩]

𝑆 → ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, true, 𝐶 ⟩
(AuthAllTrue)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, true, 𝐶 ⟩
𝑚 = ⟨𝑖, 𝑡, 𝑉 ⟩ 𝑡 .𝐵 = [𝑏1, . . . , 𝑏𝑛 ]

𝑆 → ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, 𝑏1, □, 𝐶 ⟩
(AuthSuccess)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊤, false, 𝐶 ⟩
𝑚 = ⟨𝑖, 𝑡, 𝑉 ⟩ 𝜎′ = 𝜎 −𝑉

𝑆 → ⟨𝑞, 𝜎′, 𝛼, 𝑀, ⊤, □, 𝐶 ⟩
(AuthFailure)

Figure 4: Quartz Operational Semantics: Authorization

3.4.2 Transition Execution. A transition’s body consists of a se-
quence of statements, evaluated in order when the transition exe-
cutes. Evaluation rules for Quartz’s small set of statement types are
presented in Figure 5 and are relatively straightforward. When the
end of the transition’s body, ⊥, is reached, Quartz consults the state
machine’s stack for a record of an in-progress parent transition,
consisting of its environment 𝜎 and the next statement to execute 𝑠 .
If such a record exists, control returns to the parent transition. Oth-
erwise, the state machine moves to the implicit⊤ statement. In both
cases, the message at the head of the queue𝑀 is finally removed,
the current environment 𝜎 is stripped of the transition’s parameter
assignments, and prior approvals of the transition’s execution in 𝛼

are cleared.
Quartz’s send statement has slightly more complex evaluation

rules. Because a send involves ceding control to the recipient, its
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𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑀, 𝑠, □, 𝐶 ⟩
𝑠 = “𝑥 = 𝑣” x ⇓𝜎 𝑥′ v ⇓𝜎 𝑣′

𝑆 → ⟨𝑞, [𝑥′ ↦→ 𝑣′]𝜎, 𝛼, 𝑀, next(𝑠), □, 𝐶 ⟩
(EvalAssign)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑀, 𝑠, □, 𝐶 ⟩ 𝑠 = “append 𝑣 to 𝑥”
v ⇓𝜎 𝑣′ x ⇓𝜎 𝑥′ 𝜎 [𝑥′] = [𝑥1, . . . , 𝑥𝑛 ]

𝑆 → ⟨𝑞, [𝑥′ ↦→ [𝑥1, . . . , 𝑥𝑛, 𝑣′]𝜎, 𝛼, 𝑀, next(𝑠), □, 𝐶 ⟩
(EvalAppend)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑀, 𝑠, □, 𝐶 ⟩
𝑠 = “clear 𝑥” x ⇓𝜎 𝑥′

𝑆 → ⟨𝑞, [𝑥′ ↦→ 𝜀 ]𝜎, 𝛼, 𝑀, next(𝑠), □, 𝐶 ⟩
(EvalClear)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚′ ◦𝑚 ◦𝑀, ⊥, □, 𝑐 ◦𝐶 ⟩
𝑐 = ⟨𝜎′, 𝑠 ⟩ 𝑚′ = ⟨𝑖, 𝑡, 𝑉 ⟩

𝑆 → ⟨𝑡 .dst, 𝜎′, [ ⟨𝑡, 𝑉 ⟩ ↦→ ∅]𝛼, 𝑚 ◦𝑀, 𝑠, □, 𝐶 ⟩
(FinishTransition1)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, ⊥, □, 𝜀 ⟩ 𝑚 = ⟨𝑖, 𝑡, 𝑉 ⟩
𝑆 → ⟨𝑡 .dst, 𝜎, [ ⟨𝑡, 𝑉 ⟩ ↦→ ∅]𝛼, 𝑀, ⊤, □, 𝜀 ⟩

(FinishTransition2)

where

𝑡 .𝑏 = [𝑏1, 𝑏2, . . . , 𝑏𝑛 ]

next(𝑏𝑖 ) =
{
𝑏𝑖+1 if 𝑖 < 𝑛

⊥ otherwise

Figure 5: Quartz Operational Semantics: Statements

evaluation non-deterministically produces one of several possible
outcomes, each shown in Figure 6. In the first case, SendSuccess,
the send completes without any disruption to control flow. Execu-
tion proceeds to the next statement. Otherwise, the recipient may
either throw an exception, halting progress as denoted in SendEr-
ror, or it may reenter the state machine by invoking an arbitrary
transition, expressed in SendReenter. This final evaluation rule is
the only means by which the machine’s stack 𝐶 may grow.

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑀, 𝑠, □, 𝐶 ⟩ 𝑠 = “send 𝑎 to 𝑖”
a ⇓𝜎 𝑎′ 𝑎′ ≤ 𝜎 [balance] 𝑏 = 𝜎 [balance] − 𝑎′

𝑆 → ⟨𝑞, [balance ↦→ 𝑏 ]𝜎, 𝛼, 𝑀, next(𝑠), □, 𝐶 ⟩
(SendSuccess)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑀, 𝑠, □, 𝐶 ⟩ 𝑠 = “send 𝑎 to 𝑖”
𝑆 → Error

(SendError)

𝑆 = ⟨𝑞, 𝜎, 𝛼, 𝑚 ◦𝑀, 𝑠, □, 𝐶 ⟩ 𝑚 = ⟨𝑖, 𝑡, 𝑉 ⟩
𝑠 = “send 𝑎 to 𝑗” a ⇓𝜎 𝑎′ j ⇓𝜎 𝑗 ′

𝜎′ = [balance ↦→ balance − 𝑎′]𝜎
𝑐 = ⟨𝜎′, next(𝑠) ⟩ 𝑚′ = ⟨𝑗 ′, 𝑡 ′ ∈ 𝑇, 𝑉 ′⟩
𝑆 → ⟨𝑞, 𝜎′ −𝑉 , 𝛼, 𝑚′ ◦𝑚 ◦𝑀, ⊤, □, 𝑐 ◦𝐶 ⟩

(SendReenter)

Figure 6: Quartz Operational Semantics: send

3.5 Semantic Analysis
The Quartz compiler performs a variety of checks on a contract
description before it attempts to generate TLA+ or Solidity code.
A well-formed state machine has a unique initial transition with
no guard or authorization predicate. Any state mentioned in the
description must be reachable from the initial state following some
sequence of naive transitions (i.e., neglecting guards and autho-
rization predicates). Quartz ensures that no parameter shadows
a field due to a name collision and that all guards, authorization
predicates, and statements refer to well-defined variables. Quartz

also performs simple type checking to avoid errors in subsequent
code generation phases. Much of this is as expected, for example
checking that arithmetic and logical operators are only performed
to compatible types. Guards must be Boolean-valued, the target
of the in and not in operators must be a Sequence, token sends
only target expressions of Identity type, and so on.

4 CONTRACT VERIFICATION
This section describes how Quartz verifies contracts. Quartz trans-
lates a contract definition to a specification expressed in TLA+ [34].
The automatically generated specification captures both the con-
tract state machine’s logic as well as the semantics of its execution
environment, namely an Ethereum-based distributed ledger. Quartz
feeds this specification into TLC, an explicit-state model checker
for TLA+ that enumerates and searches execution traces for viola-
tions of user-provided properties, in this case the invariants written
by the contract author in her description. This approach has the
advantage of being fully automated, with no intervention needed
from the contract author, but does raise the challenge of bounding
the execution search space so that model checking terminates.

4.1 Why Model Checking and TLA+?
We chose bounded model checking as Quartz’s core verification
technique because it does not require significant intervention from
the end user, i.e., the contract author. Although a contract author
must write the invariants she would like to have verified, Quartz
fully automates the more difficult task of writing a formal speci-
fication of the contract’s behavior and its execution environment
that is suitable as input to a model checker. Model checking also
offers immediately useful feedback to the user as output — an exe-
cution trace that produces a violation of one or more of the desired
properties. This feedback helps guide a contract author in making
refinements to her state machine.

TLA+ serves as Quartz’s target specification language and its
verification backend. TLA+ and its model checker, TLC, are rela-
tively mature, well-documented, and have been successfully applied
in developing and testing significant systems [40]. More modern
model checkers have since emerged, but they tend to be inherently
tied to the semantics of particular implementation languages such
as C [26] or operate at the low level of bytecode [24]. The flexi-
bility of TLA+’s specification language simplifies Quartz’s task of
generating a formal contract specification. This becomes especially
important when describing the execution semantics of Solidity,
which have important differences from the semantics of traditional
programming languages. Moreover, there are ongoing efforts to
modernize verification in TLA+, such as symbolic model checking
with SMT solvers [32], that Quartz may be able to use in the future.

4.2 Specification Generation
Quartz’s specification generator targets PlusCal, an intermediate
language built on top of the original TLA+ specification language.
PlusCal for pieces of the Auction case study is provided in Appen-
dix B. PlusCal offers several features that make it a more natural
target than TLA+ itself, such as procedures to model state tran-
sitions and conditionals to model transition guards. Translating
Quartz data types and transitions into PlusCal is straightforward,
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but modeling Quartz’s authorization semantics and the blockchain
execution environment is more challenging. The PlusCal generated
by Quartz is translated into TLA+ with off-the-shelf tools.

Data Types. Every data type in Quartz maps to a counterpart
in PlusCal. Many have direct equivalents such as Ints and Maps.
Quartz defines the domain of the Identity type as a fixed set of
symbolic constants, with a user-configurable size. The translation
of a HashValue is more subtle. Quartz has no need to model hash
functions in detail aside from the fact that they are assumed to be
injective, nor does it require that HashValue instances are ordered.
The output of hash(𝑥1, . . . , 𝑥𝑛) is simply modeled as a PlusCal tu-
ple (𝑥1, . . . , 𝑥𝑛), preserving injectivity and enabling equality checks
among HashValue instances.

Transitions. Each transition defined in a Quartz contract’s state
machine is generated as a PlusCal procedure, with transition pa-
rameters naturally mapping to procedure parameters. An extra
parameter is added to the PlusCal procedure to track the tran-
sition’s sender. An auxiliary field is used to track the machine’s
current state. The procedure body begins with three conditional
checks: one to ensure that the state machine is currently in the
transition’s designated starting state, a second to ensure that the
transition’s guard, if defined, is satisfied, and a third to ensure that
the transition’s authorization predicate, if defined, is also satisfied.
Finally, the statements forming the transition body are converted
to PlusCal in the expected way, as PlusCal supports a standard
collection of arithmetic and logical operators.

Authorization. Quartz adds auxiliary fields to a contract’s Plus-
Cal specification to accurately model the authorization semantics
detailed in Figure 4. Note that an entity approves of the execu-
tion of a transition for a particular set of parameter values. For
example, consider a transition 𝑇 with input parameters of types
𝑡1, . . . , 𝑡𝑛 that includes a term of the form all(𝐼) in its authoriza-
tion predicate. Quartz generates a PlusCal function (associative
array) 𝐹 of type 𝑡1 × · · · × 𝑡𝑛 × Identity → Boolean. Then, all(𝐼)
is evaluated in PlusCal, which has native support for quantifiers,
as ∀𝑖 ∈ 𝐼 : 𝐹 (𝑝1, . . . , 𝑝𝑛, 𝑖), where 𝑝𝑖 is the 𝑖th transition argu-
ment. Similar translations are performed as needed for the other
authorization term forms. Quartz generates the minimum number
of auxiliary fields, only when authorization predicates cannot be
satisfied by just a single transition approval.

Modeling the Environment. Once an Ethereum contract is de-
ployed to a blockchain, any of its transformations may be invoked
at any time, by any user. For aQuartz contract, this means any of the
state machine’s transitions may be invoked at any time. The PlusCal
model generated by Quartz is organized around a main invocation
loop that simulates this environment. Each time through the loop, a
transition 𝑡 is non-deterministically selected for execution. Values
for its input parameters 𝑣1, . . . , 𝑣𝑛 are similarly selected from their
respective domains, including an identity 𝑖 as sender.

The second major challenge in modeling the Ethereum execution
environment is capturing the behavior of sending tokens from one
contract to another, i.e., the semantics of Figure 6. As explained
above, there are two primary means of exchanging tokens between
one Ethereum contract and another: using Solidity’s transfer
primitive or using the call primitive. Both yield control to the

destination contract. call is more flexible in that it allows the re-
cipient to execute arbitrary code, but this may include a reentrant
invocation of the sending contract. transfer restricts execution
but propagates any exceptions thrown by the receiver back to the
sender, which may block forward progress.

The user may specify the use of transfer or call as a configu-
ration parameter. Quartz is capable of modeling either primitive’s
behavior. The generated PlusCal model deducts from the balance
field and then makes a non-deterministic choice to model the recipi-
ent’s response. When modeling transfer, the recipient either does
nothing, indicating a routine token transfer, or throws an exception.
When modeling call, the recipient either does nothing, meaning
any code executed by the recipient had no consequence for the
sender, or it non-deterministically selects some transition 𝑡 of the
sender’s to invoke, modeling possible re-entrant execution.

The behavior of Ethereum’s exceptions cannot be expressed in
PlusCal. Instead, Quartz generates an initial PlusCal specification,
invokes the PlusCal translator to produce TLA+, and modifies this
code directly. The final TLA+ generated by Quartz for model check-
ing formalizes unwinding of the stack upon an exception: reverting
the contract’s fields to their state before the current call chain and
jumping to the main invocation loop to begin a fresh transition.

4.3 Bounding the Search Space
The TLA+ specifications generated by Quartz, as described so far,
have an infinite execution space. We must apply bounds to this
search space to ensure that model checking terminates. Quartz
exposes a set of parameters that the user may set at verification time.
All of these parameters convey aspects of the contract’s execution
or the domain of data types:

• Minimum and maximum integer values
• Number of distinct Identity instances to model
• Themaximum call depth reached during transition execution
• The maximum number of iterations of the main transition
invocation loop

The model checker is essentially exploring all possible sequences
of state machine transitions. The first two parameters above limit
the branching factor of the search space, while the third and fourth
limit the depth to which it is explored.

5 SOLIDITY GENERATION
Quartz is able to translate state machine descriptions to Solidity
implementations, enabling seamless deployment once a contract
has been sufficiently validated by its developer. Quartz targets
Solidity rather than EVM bytecode for several reasons. Solidity is
more human readable than EVM bytecode, which means a contract
author may easily inspect and audit a generated implementation if
necessary. Moreover, there is an ongoing effort within the Ethereum
community to replace the original EVMwith a new virtual machine
based on WebAssembly [20]. By targeting Solidity, Quartz remains
agnostic to this potential change.

Data Types. The data types for state machine fields and transi-
tion parameters in Quartz each have a natural analogue in Solidity.
For example, an Identity corresponds to a Solidity address. More
recent versions of Solidity require address variables that are the
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target of a send to be explicitly annotated with the payable key-
word. When Quartz generates Solidity, it infers all necessary uses
of the payable designation.

State Transitions. A state transition maps to a Solidity function,
where transition parameters have the expected correspondence
to function parameters. An auxiliary field represents the Quartz
machine’s current state, and a requires statement at the beginning
of the function ensures that the machine is in the proper starting
state, otherwise the function (transition) does not proceed. If the
transition defines a guard, it is evaluated within a second requires
statement. Translation of the transition’s body is straightforward, as
Solidity features all of the usual operators and assignment semantics.
Finally, the machine’s current state is updated to the designated
destination state of the transition.

Transition Authorization. As with PlusCal, Quartz augments a
Solidity contract with additional fields for tracking prior authoriza-
tions when needed, modifies these fields when a transition with an
authorization predicate is invoked, and checks these fields within a
conditional to ensure that the authorization predicate is satisfied
before a transition is executed. Unlike for guards, authorization
predicates are not checked within a requires as this would revert
the action of recording the sender’s approval for the transition.
Solidity does not have the same flexibility as TLA+, and generating
fields to track prior authorizations is more involved in this setting,
particularly in recording authorization for each possible combina-
tion of input parameters. Given a transition with parameters of
type 𝑝1, . . . , 𝑝𝑛 , Quartz generates Solidity that hashes the concate-
nation of the parameter values and uses the result to look up prior
authorizations.

Quartz-generated Solidity uses mapping instances to efficiently
record and look up prior transition authorizations. However, groups
of entities referred to by a Quartz any or all authorization term are
represented as arrays, which means we must use loops for certain
operations on these groups. This is because Solidity mappings do
not permit iteration over their members and therefore cannot be
used to emulate something like a set data structure. In addition,
the Quartz generation logic must produce code that is as flexible
as possible, with no assumptions or domain knowledge about how
identity groups are used or modified over time. A Quartz Sequence
of Identity values could be modified by a clear statement at any
time, and there is no efficient way to empty a Solidity mapping.

Loops can be problematic in Solidity because of termination
and gas cost issues. However, loops generated by Quartz are only
used for simple scans of finite data structures, and as we show
in our evaluation below, simple Quartz-generated Solidity with
loops often actually has lower gas costs for practical workloads
than handwritten code that uses more complex data structures
to avoid them. If warranted, we could extend Quartz to generate
code following Solidity’s iterable mapping pattern1 or to perform
additional optimizations when an identity group is never cleared.

6 EVALUATION
This section presents our evaluation of Quartz. We begin by mea-
suring the amount of code required to express various contracts in

1https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol

Quartz versus in Solidity and the amount of code generated from a
Quartz description. Next, we discuss results from the model check-
ing process in depth for two case studies. Finally, we compare the
execution costs of Quartz-generated and handwritten contracts.

6.1 Contract Size
We use lines of code as a proxy for code complexity and required
developer effort. Here, we are interested in the extent to which
Quartz enables concise expression of rich contract logic, particu-
larly when compared to Solidity, the de facto standard programming
language for smart contracts. We also seek to determine if Quartz
introduces overhead by generating significantly more verbose So-
lidity code than would be produced by a Solidity programmer. This
is particularly relevant in the blockchain setting, where the size
of a contract’s compiled bytecode directly impacts the gas costs of
deploying the contract to the ledger. Finally, we quantify developer
effort saved when using Quartz for model checking by measuring
the size of a contract’s TLA+ representation.

Table 2 shows the lines of code needed to express all of our
case studies in Quartz and in Solidity. It also shows the lines of
Solidity and TLA+ generated from the Quartz implementation of
each contract. Each row in the table corresponds to one of the
case studies presented in Table 1. When writing Solidity for each
case study, we modified an existing code base (cited in Table 1)
whenever possible rather than starting from scratch to ensure we
produced idiomatic Solidity code. We were also careful to remove
any comments or extraneous lines of code, like redundant getter
functions that have no Quartz equivalent, to make the comparison
as fair as possible.

As shown in the table, every case study’s implementation in
Quartz involved fewer lines of code than the handwritten Solid-
ity equivalent, with the exception of the DAO, where the two are
equal. The ratio of lines of Quartz to lines of handwritten Solidity
is 0.68 on average and as small as 0.34, for the StaticMultiSig
case sutdy. Quartz was particularly concise for the multi-sig wallets
and RockPaperScissors because of its state machine structure
and authorization predicates. These allow a Quartz developer to
avoid writing tedious and repetitive assertions at the beginning of
contract transactions to verify that the contract is in the expected
state before proceeding.

Quartz typically, but not always, generates Solidity code that
is more verbose than the handwritten equivalent. There are cases
where the generated code is shorter than the handwritten code. This
is often the case when the handwritten Solidity leverages domain
knowledge to use more verbose but arguably more efficient data
structures, particularly to track authorization, than the general code
produced by Quartz.

Finally, significantly more TLA+ code is needed to express each
contract than Solidity or Quartz code. This is mainly because a
contract’s TLA+ specification expresses both the contract’s logic
and its execution semantics. In particular, the TLA+ representation
of any contract must describe the main invocation loop in which
any user may invoke any of the contract’s transitions with arbitrary
parameter values. It must also express the potential for reentrant
execution after a send and exception handling. Therefore, even a
short contract generates a relatively lengthy TLA+ specification.
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Case Study Quartz Handwrt.
Solidity

Gen.
Solidity

TLA+

Auction 33 40 53 205
Crowdfunding 31 39 50 193

RockPaperScissors 39 76 75 261
Shipping 20 35 46 172

SimpleMultiSig 12 34 30 137
StaticMultiSig 13 38 44 125
DynamicMultiSig 15 39 50 141

ERC-20 43 49 50 209
ERC-721 48 59 86 227

ERC-1202-Simple 24 50 49 197
ERC-1202-Weighted 42 57 73 261

ERC-1540 114 143 181 464
ERC-1630 22 23 37 161
ERC-1850 110 182 242 588
ERC-780 16 17 24 140
DAO 126 126 150 390

Table 2: Lines of Code to Express Case Studies

6.2 Model Checking
Here, we describe experiences model checking two contracts using
Quartz. For both contracts, Quartz helps to surface non-obvious
bugs that could easily be overlooked during contract development.
Below, we report the time required for model checking to find
invariant violations. These times were obtained on a workstation
with an Intel i7-6700 CPU and 32 GiB of RAM running version 2.13
of the TLC model checker with 8 worker threads.

6.2.1 Model Checking an Auction Implementation. We introduced
the Auction case study in detail in Section 3.2. Its state machine ap-
pears in Figure 2 and Quartz code appears in Figure 3. While it may
appear perfectly logical, the contract as presented above features
multiple security vulnerabilities, related to it distribution of repay-
ments back to surpassed bidders and to the seller. These vulnerabil-
ities are particularly insidious because they emerge from code that
appears innocuous. They are good examples of how Ethereum’s
execution semantics differ from those of traditional software and
can trip up contract authors.

To begin, consider the following invariant for the auction:

𝑝1 : Closed ⇒ HighestBid ≥ max(submitBid.tokens)
This property takes advantage of a number of Quartz’s features for
writing invariants. It states that if the auction reaches the Closed
state, then the value of HighestBid should be greater than or equal
to the maximum value ever assigned to the tokens parameter for
the submitBid transition.

Recall that Quartz may generate a contract that uses either
Ethereum’s transfer construct or the call construct for dispens-
ing currency. The choice is configurable by the user, and Quartz is
fully capable of generating TLA+ to model either. If transfer is
used, the model checker finds the following violation of 𝑝1. This
required only 2 seconds to complete on our test system.

(1) Identity 𝐼1 deploys a new auction contract. The auction en-
ters the Init state.

(2) 𝐼2 submits an initial bid of 2 tokens and is recorded as the
highest bidder. The auction enters the Open state.

(3) 𝐼3 submits a new bid of 4 tokens. The auction sends 2 tokens
back to 𝐼2 as a refund, since they are no longer the highest
bidder.

(4) 𝐼2 reacts by throwing an exception. This propagates back to
the auction contract (due to the use of transfer) and the
current transition is aborted. 𝐼3’s bid is lost.

(5) No additional bids are submitted before 𝐼1 moves to close
the auction and 𝐼2 is declared the winner.

Here, 𝐼2 is able to hijack the auction and prevent itself from being
supplanted as the highest bidder, rigging the results of the auction.

𝑝1 is also violated if we use call rather than transfer, again
because of an issue in refunding a previous bidder. TLC found the
following trace in 6 seconds on our test system.

(1) Identity 𝐼1 deploys a new auction contract. The auction en-
ters the Init state.

(2) 𝐼2 submits an initial bid of 2 tokens and is recorded as the
highest bidder. The auction enters the Open state.

(3) 𝐼3 submits a new bid of 3 tokens. The auction sends 2 tokens
to 𝐼2 as a refund.

(4) 𝐼2 responds to the receipt of tokens by submitting a new bid
of its own, with a value of 4 tokens, creating a reentrant
invocation of the submitBid transition.

(5) The auction accepts 𝐼2’s bid, sets HighestBidder to 𝐼2 and
HighestBid to 4.

(6) Control returns to the parent transition, which has just
completed its send. It updates HighestBidder to 𝐼3 and
HighestBid to 3, accounting for 𝐼3’s bid but overwriting
𝐼2’s bid.

(7) No further bids arrive. The auction reaches the Closed state.

Here, we see that contract re-entrancy, an issue best known for
its exploitation by malicious actors, can also lead to undesirable
outcomes for well-intentioned actors. One could easily imagine a
developer seeking to create a contract that submits a bid on her
behalf in reaction to having just been displaced as an auction’s
winner, possibly to implement some bidding strategy, yet that would
go awry in this implementation.

To address either of these bugs, the contract author could instead
store a Quartz Map[Identity, Uint] tracking pending refunds
that is updated when a newly winning bid is submitted. A previous
bidder must invoke a separate transition to ask the contract to
send her a refund, decoupling this from bidding. This is a well-
known design pattern in Solidity [17], although it is prone to its
own re-entrancy issues, which Quartz can also identify through
its verification. Say we modify submitBid accordingly and add the
following transition to allow bidders to claim refunds once the
seller has redeemed their winnings:

refund: redeemed -> redeemed

requires [ Balances[sender] > 0 ] {

send Balances[sender] to sender

Balances[sender] = 0

}

Consider the following new invariant for the auction:

𝑝2 : balance ≥ 0
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This states that the contract’s balance cannot go negative, i.e., it
cannot dispense more tokens than it receives. While this is impos-
sible for a contract running on the Ethereum blockchain, negative
contract balances are within the search space defined by Quartz
for model checking because they can usefully indicate a contract’s
vulnerability to unbounded token withdrawals. Indeed, if Quartz
is configured to model behavior of token sends using call, model
checking finds the following violation in 15 seconds:

(1) Identity 𝐼1 deploys a new auction contract.
(2) 𝐼2 submits an initial bid of 1 token. The auction enters the

Open state with balance = 1.
(3) 𝐼3 submits a new bid of 4 tokens, hence balance = 5.
(4) No subsequent bids are submitted before the deadline, and 𝐼1

moves to close the auction. The auction enters the Closed
state.

(5) 𝐼1 invokes the redeem transition, receiving its winnings. Now,
balance = 1 and the auction enters the Redeemed state.

(6) 𝐼2 invokes the refund transition and is sent the 1 token
recorded in Balances[𝐼2]. Now, balance = 0.

(7) In reaction to this receipt of tokens, 𝐼2 makes a reentrant
invocation of refund. Balances[sender] has not yet been
updated in the parent transition, so the child transition’s
guard is satisfied.

(8) Another send of 1 token to 𝐼2 is attempted, and balance =
-1, violating the invariant.

This execution trace illustrates the fundamental vulnerability
behind the famous compromise of the DAO contract [13]. The usual
advice to Solidity developers is to set a temporary variable to the
amount of tokens to send, then subtract from the appropriate con-
tract field before executing a send referencing the temporary vari-
able. Quartz offers an alternative sendAndConsume construct that
will generate such code.

6.2.2 Model Checking ERC-1540. Quartz is useful not just for iden-
tifying subtle consequences of a contract’s execution semantics,
but also for identifying more routine logic errors that occur during
the development process. Unlike our auction contract, which we
initially developed as a litmus test for Quartz’s ability to surface
reentrancy and exception issues, we drafted an initial implementa-
tion of ERC-1540 after Quartz was fairly mature, chose an invariant
to verify, and used Quartz to refine the contract.

ERC-1540 is a proposed Ethereum standard interface for an asset
management contract. Among other capabilities, it allows an owner
to sell shares, issue dividends, or transfer control of the asset, all
of which is tracked on the blockchain. Investors issue transactions
against the contract to buy and sell shares. The Quartz implemen-
tation of ERC-1540 is considerably more complex than the auction
seen previously. It uses five states and 16 transitions. The portion
of the state machine relevant for the following discussion is shown
in Figure 7.

When the contract is initialized, its creator is recognized as the
asset’s owner. It begins in theUnissued state, meaning there are no
outstanding shares. If this is the case, the owner is free to transfer
possession of the asset to another party, as shown in the transition
at the top of Figure 7. The owner may choose to move the asset to
the Issued state by enacting the release of a fixed number of shares.
The contract features additional transitions to exchange shares not

Unissuedowner = sender

Issued

numShares: Uint,
numShares > 0
sender = owner
Shares[owner] = numShares
TotalShares = numShares

Shares[sender] = TotalShares
owner = sender

newOwner: Identity
sender = owner
owner = newOwner

Figure 7: Part of a State Machine for ERC-1540

shown in the figure. If any single party accumulates all outstanding
shares, they are allowed to declare themselves as the new owner
and convert the asset back to the Unissued state.

We tested our initial version of the contract by verifying the
following invariant.

𝑝3 : sum(Shares) = TotalShares (1)

That is, we wanted to verify that all of the asset’s shares are properly
conserved as they change hands.

After generating a TLA+ specification and running it through
TLC, we were informed that many of the contract’s states, Including
Issued were not reachable. This was because we failed to properly
initialize the contract’s owner field in the state machine’s initial
transition. We were also able to uncover an error in our arithmetic
when transferring shares.

More interestingly, we initially forgot to update the asset’s shares
when an entity converts it from Issued to Unissued. Initially,
we simply reassigned the owner field to the transition’s sender
as shown in the figure, forgetting to zero out TotalShares and
Shares[Sender]. This enables the following trace, identified by
TLC when given a Quartz-generated contract spec and simplified
for brevity:

(1) 𝐼1 deploys a new ERC-1540 contract and is recorded as the
owner.

(2) 𝐼1 issues 2 shares for the asset, initially owning both of them.
The asset enters the Issued state, and we have TotalShares
= 2 and Shares[𝐼1] = 2.

(3) 𝐼1 converts the asset back Unissued.
(4) 𝐼1 transfers ownership to 𝐼2.
(5) 𝐼2 decides to issue 3 shares for the asset, all initially assigned

to itself. In the transition body, we set Shares[𝐼2] = 3 and
TotalShares = 3. However, we still have Shares[𝐼1] = 2.
Thus, sum(Shares) ≠ TotalShares.

The solution is to add two lines to the transition from Issued
to Unissued, Shares[sender] = 0 and TotalShares = 0, to
properly reflect the fact that the asset no longer has shares. Because
ERC-1540 is more complex than the auction above, model checking
takes longer. This trace was produced after TLC ran for 4 minutes
on our test workstation, while the arithmetic error in share transfers
required 27 minutes to find. Running times of this mangitude are
not atypical for model checking.
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6.3 Execution Overhead
Finally, we measured the execution efficiency of Solidity contracts
generated from Quartz descriptions and those of equivalent hand-
written Solidity contracts. The handwritten contracts are the same
as those described in Section 6.1, meaning they are adapted from
existing codebases when available and simplified if necessary, e.g.,
by removing extra getter functions, to form a fair comparison.

Execution of Ethereum contracts is metered by gas, a cost as-
signed to each virtual machine operation, to ensure termination and
discourage unnecessarily expensive contract code. It is therefore
natural to measure a contract’s execution efficiency by the gas it
consumes. To accomplish this, we deployed both generated and
handwritten versions of all case study contracts to a small private
blockchain backed by nodes hosted on Amazon EC2 virtual ma-
chines. All members of the network ran Geth version 1.8.26 and
used Geth’s Clique proof-of-authority consensus mechanism. This
allowed us to configure the network to use a fixed gasPrice. As
a result, the gas cost of a particular workload is deterministic and
reproducible. It does not fluctuate with network load as it would in
a proof-of-work Ethereum network.

We wrote a contract client script for each case study using
Python’s Web3 library. Each script deploys the generated and hand-
written versions of Solidity code, invokes an equivalent sequence
of transactions against both versions, and tallies all gas costs. For
example, the script for the Auction case study initializes each con-
tract and submits the same sequence of bids to both. The results
of these measurements are shown in Figure 8. Each case study is
represented along the 𝑥 axis by a pair of bars. The number above
each pair is the ratio of total gas costs for the generated Solidity
code to total gas costs for the handwritten equivalent.

Gas costs forQuartz-generated Solidity contracts are competitive
with those of handwritten contracts. While the overhead is 53%
for the simple ERC-1630 contract, for more substantial contracts
it never exceeds 20%. Interestingly, there are some case studies
where the generated contract actually has lower gas costs than
the handwritten equivalent. Upon further investigation, we found
that this was usually due to Quartz’s use of fewer, simpler data
structures in its generated code. This typically gave the generated
contract a cheaper constructor and, for some case studies, cheaper
transactions when operating on a smaller body of state.

Themulti-signaturewallets are a good example. The handwritten
wallets are based on a design used in production by Parity [44]
and OpenZeppelin [43] where approvals by designated signers are
tracked with both a Solidity mapping instance, to emulate a set and
thus enable fast membership checks, and a Solidity array to allow
iteration over all signers. This design avoids loops in the critical
path but also requires bookkeeping to manage both the mapping
and array. Quartz takes the simpler approach of using an array
of signers and loops to check if enough signers have approved a
transaction. This makes the Quartz wallets’ constructors cheaper
(there are fewer fields and less bytecode) and makes transactions
cheaper when the total number of signers is small. The advantage
of the Quartz wallets decreases under workloads with more signers.

The disadvantage of the Quartz approach is its use of loops,
whichmeans gas costs for wallet transactions growwith the number
of signers. The advantage, however, is that the code generated by

Quartz is flexible, because it must accommodate any valid sequence
of Quartz operations against the group of signers and authorization
checks against it, i.e., it cannot exploit domain knowledge and
optimize based on assumptions of how authorized signers are added
or removed over time.

7 RELATEDWORK
Smart contracts have attracted immense interest in both industry
and academia, making them a popular target for language design
and formal methods. Additionally, software development and ver-
ification based on state machines has a long history with many
interesting applications.We summarize some of themost significant
related works below.

7.1 State Machine-Based Development
Quartz is most directly inspired by prior works that similarly lever-
age a programming abstraction based on state machines to facilitate
development and systematic testing of critical software. Teapot [10]
is a domain-specific language used towrite statemachine implemen-
tations of the cache coherence protocol. It allows the programmer
to translate their state machine into a specification for the Murphi
model checker and into an implementation in C. Transit [57] takes
this a step further, allowing the programmer to partially implement
a distributed protocol as a state machine, then synthesizing the rest
of the implementation using a counter-example guided inductive
synthesis (CEGIS) loop. One could imagine extending Quartz to
synthesize contract code using TLC in a similar approach.

Quartz is also similar to P [15], a domain-specific language for
event-driven programming. Programs in P are written as state
machines which can then be model checked and converted into
implementations expressed in C. However, P expects the developer
to formalize the state machine’s environment by writing a second
“ghost” state machine. Quartz has no similar expectation. It gener-
ates TLA+ code that formalizes blockchain execution semantics.

There are also works that apply state machines to smart con-
tract development. In FSolidM [36], a user builds a contract state
machine in a graphical editor, but there is no effort at verification,
and the user must manually write Solidity to complete the contract.
VeriSolid [37] extended FSolidMwith verification, but the user must
still manually write Solidity, and VeriSolid can only reason about
limited properties. Finally, Obsidian [11, 12] is a contract program-
ming language that also features state machines as the primary
abstraction. It does not involve any verification, but rather uses
language features like linear types to guarantee certain properties.

7.2 Contract Programming Languages
Smart contracts have become a very popular domain for new pro-
gramming languages, particularly as shortcomings to Solidity [18]
have emerged. Most of these are fully-featured programming lan-
guages [1, 9, 19, 28, 47, 48], without associated tools to validate
contract properties. Tezos has introduced a high-level program-
ming language [53] that compiles to a stack-based language [52]
designed to be amenable to formal analysis. However, this analy-
sis would not be automated, but rather requires manual use of a
theorem prover like Coq.
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Figure 8: Gas costs when executing equivalent generated and handwritten Solidity code

There are also some examples ofmore simplified, domain-specific
contract languages. Frantz and Nowostawski [22] built a tool in
which developers express the operations and rules for use of a
contract in a human-readable DSL. This contract description is then
translated into a Solidity template that the developer must manually
complete. Findel [6] is a DSL specifically for expressing financial
derivative contracts, heavily inspired by prior work on similar DSLs
[46]. Finally, Cardano has built Marlowe [29], a Haskell-embedded
DSL for financial contracts.

Quartz has similarities to Scilla [50], a functional style intermedi-
ate language for smart contracts. A Scilla contract is also written as
a state machine. Unlike Quartz, Scilla is a fully-featured program-
ming language rather than a DSL, and therefore tends to be less
concise. Its authors report that ERC-20 and ERC-721 respectively
require 158 and 270 lines of code, where Quartz requires 43 and 48
lines, respectively. Finally, Scilla does support automated contract
analysis, but only through a library of pre-written static analyzers
that must generalize to any contract. Unlike in Quartz, checking
functional properties specific to a contract remains manual.

7.3 Contract Analysis Tools
While there have been several one-off efforts to verify the prop-
erties of a single contract [5, 39], many reusable tools have been
built to analyze the behavior and identify vulnerabilities of existing
contracts, most commonly by applying symbolic execution tech-
niques to their EVM bytecode representations [33, 35, 38, 42] or
static analysis of the contract’s AST [54]. These tools offer fully
automated analysis, but they are largely restricted to identifying
a fixed collection of generic vulnerabilities. Zeus [31] is a tool to
convert a Solidity contract into LLVM bytecode for model check-
ing. Securify [56] analyzes EVM bytecode to extract control flow
and data flow graphs. It then verifies contract properties written
in a datalog-based DSL, although these properties are intended to
be generalized across many contracts rather than customized to a
specific contract as in Quartz.

VerX [45] is a verification tool for Ethereum contracts that uses
predicate abstraction and symbolic execution of EVMbytecode. Like
Quartz, it offers automated verification of contract-specific proper-
ties, written in a variant of linear temporal logic. This makes VerX
arguably the most comparable analysis tool to Quartz. However,
VerX makes the assumption that all of the contracts it analyzes
are effectively callback free [23], meaning it cannot model how
something like a token sendmay disrupt a contract, either through
reentrancy or exceptions. Quartz does not have this restriction,
meaning it could find violations to properties 𝑝1 and 𝑝2 discussed
in Section 6.2 that VerX cannot.

8 CONCLUSION
This paper presented Quartz, a tool for implementing and testing
secure smart contracts, using state machines as its fundamental
organizing principle. Quartz offers developers a small, specialized
language for writing contract logic with features motivated by real
smart contract applications, such as transition authorization as a
first-class primitive. Quartz also supports validation of a contract’s
properties through translation into a TLA+ representation suitable
for model checking. Once validated, a developer may seamlessly
deploy her contract to a blockchain by using Quartz to generate So-
lidity. Our evaluation demonstrates that Quartz contracts are more
concise than their handwritten Solidity counterparts. We presented
two in-depth case studies of contract validation in which Quartz
surfaces significant contract vulnerabilities and offers helpful execu-
tion traces that assist the developer in patching these vulnerabilities.
Finally, we have shown that Quartz imposes only modest overhead
in terms of both the size and execution efficiency of its generated
contract implementations.

We believe Quartz can serve as a platform for true smart contract
engineering, replacing the more ad-hoc development and testing
processes currently in use. Even well-crafted unit test suites may
overlook critical contract vulnerabilities that only arise as the result
of specific, unanticipated sequences of events. Through Quartz-
facilitated model checking, such execution traces are revealed and
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used to inform refinements to the contract’s code that harden it
against attack. An implementation is then generated and deployed
for production use against real users and potential adversaries only
once the contract is validated with respect to the desired properties.

There are a number of potential directions for future work. First,
while Quartz state machines may currently only communicate by
sending tokens, we plan to extend the DSL to support invocation of
transitions in external state machines. This would require changes
to TLA+ specification generation, but would allow developers to
create blockchain applications from compositions of Quartz state
machines. Additionally, we are considering targeting additional
smart contract platforms, such as Hyperledger Fabric [2], for the
deployment of Quartz contracts. This would involve both targeting
a new contract implementation language, such as Go, and properly
formalizing the execution semantics of the new platform in TLA+.
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A LANGUAGE SYNTAX
The syntax for Quartz is formally defined below. Syntax for literals
as well as for arithmetic and logical operators is as expected and
omitted for brevity.
⟨specification⟩ ::= contract name ‘{’ ⟨structDecl⟩* ⟨fields⟩ ⟨transition⟩* ‘}’

⟨property-spec⟩
⟨fields⟩ ::= data ‘{’ ⟨field ⟩* ‘}’
⟨field ⟩ ::= name ‘:’ ⟨type⟩
⟨structDecl⟩ ::= struct structName ‘{’ ⟨field ⟩* ‘}’
⟨transition⟩ ::= name ‘:’ ⟨sourceSt ⟩ ‘->’ ⟨params⟩ dest ⟨authPred ⟩ ⟨guard ⟩

⟨transBody⟩
⟨sourceSt ⟩ ::= 𝜀 | source
⟨params⟩ ::= 𝜀 | ‘(’ ⟨param-list ⟩ ‘)’
⟨paramList ⟩ ::= ⟨param⟩ ‘,’ ⟨paramList ⟩ | ⟨param⟩
⟨param⟩ ::= name ‘:’ ⟨type⟩
⟨guard ⟩ ::= 𝜀 | requires ‘[’ ⟨expr ⟩ ‘]’
⟨authPred ⟩ ::= 𝜀 | authorized ‘[’ ⟨authExpr ⟩ ‘]’
⟨transBody⟩ ::= ‘{’ ⟨stmt ⟩* ‘}’
⟨type⟩ ::= Int Uint | Timestamp | Timespan | Bool
| Map ‘[’ ⟨type⟩ ‘]’
| Sequence ‘[’ ⟨type⟩ ‘]’
| HashValue ‘[’ ⟨typeList ⟩ ‘]’

⟨typeList ⟩ ::= ⟨type⟩ ‘,’ ⟨typeList ⟩ | ⟨type⟩
⟨lValue⟩ ::= 𝑥 | ⟨mapRef ⟩ | ⟨structRef ⟩

⟨mapRef ⟩ ::= ⟨lValue⟩ ‘[’ ⟨expr ⟩ ‘]’
⟨structRef ⟩ ::= ⟨lValue⟩ ‘.’ ⟨expr ⟩
⟨expr ⟩ ::= balance | sender | now | 𝑏 | 𝑖 | 𝑢 | 𝑡 | ⟨lValue⟩
| min ‘(’ ⟨expr ⟩ ‘)’ | max ‘(’ ⟨expr ⟩ ‘)’
| size ‘(’ ⟨expr ⟩ ‘)’ | hash ‘(’ ⟨expr ⟩ ‘)’
| ⟨expr ⟩ ⟨binOp⟩ ⟨expr ⟩

⟨authExpr ⟩ ::= 𝑥 | ‘any’ 𝑥 | ‘all’ 𝑥
| ⟨authExpr ⟩ ‘||’ ⟨authExpr ⟩
| ⟨authExpr ⟩ ‘&&’ ⟨authExpr ⟩

⟨stmt ⟩ ::= ⟨lValue⟩ ‘=’ ⟨expr ⟩
| send ⟨expr ⟩ ‘to’ ⟨expr ⟩
| sendAndConsume ⟨expr ⟩ ‘to’ ⟨expr ⟩
| append ⟨expr ⟩ ‘to’ ⟨expr ⟩
| clearSeq ⟨expr ⟩

⟨propertySpec⟩ ::= properties ‘{’ ⟨expr ⟩* ‘}’

𝑏 ∈ bool 𝑖 ∈ Int 𝑢 ∈ Uint
𝑠 ∈ String 𝑡 ∈ Timespan
𝑥 , name, structName, source, dest ∈ ⟨identifier ⟩

B PLUSCAL EXAMPLE
Below we provide two snippets of the PlusCal specification pro-
duced by Quartz for the Auction case study, with small simplifi-
cations for clarity. The original Quartz code was listed above in
Figure 3. First, the main invocation loop is below, where any of the
contract’s transitions may be invoked in any order by any entity.
begin Main:

with sender ∈ IDENTITIES , duration ∈ 0.. MAX_INT do
call initialize(sender , duration);

end with;

Loop:

either
with sender ∈ IDENTITIES , bid ∈ 0.. MAX_INT do

call initialBid(sender , bid);

end with;
or

with sender ∈ IDENTITIES , bid ∈ 0.. MAX_INT do
call submitBid(sender , bid);

or

.

.

.

or
with sender ∈ IDENTITIES do

call redeem(sender);

end with;
end either;

PlusCal for the submtBid transition is given below, featuring
checks against the current state and the transition’s guard before
the transition’s body.
procedure submitBid(sender , bid)

begin submitBid:

if currentState ≠ OPEN then
return;

end if;
if bid ≤ HighestBid ∨ currentTime > Deadline then

return;
end if;

balance := balance + bid;

call send(HighestBidder , HighestBid);

HighestBid := bid;
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HighestBidder := sender;

return;
end procedure;
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