
Game-Theoretic Safety Assurance for Human-Centered
Robotic Systems

Jaime Fernandez-Fisac

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-2
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-2.html

January 6, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Game-Theoretic Safety Assurance for Human-Centered Robotic Systems

by

Jaime Fernández Fisac

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Co-chair
Professor Claire J. Tomlin, Co-chair

Professor Anca D. Dragan
Professor Thomas L. Griffiths

Professor Ruzena Bajcsy

Fall 2019



Game-Theoretic Safety Assurance for Human-Centered Robotic Systems

Copyright 2019
by

Jaime Fernández Fisac



1

Abstract

Game-Theoretic Safety Assurance for Human-Centered Robotic Systems

by

Jaime Fernández Fisac

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Co-chair

Professor Claire J. Tomlin, Co-chair

In order for autonomous systems like robots, drones, and self-driving cars to be reliably intro-
duced into our society, they must have the ability to actively account for safety during their
operation. While safety analysis has traditionally been conducted offline for controlled envi-
ronments like cages on factory floors, the much higher complexity of open, human-populated
spaces like our homes, cities, and roads makes it unviable to rely on common design-time
assumptions, since these may be violated once the system is deployed. Instead, the next
generation of robotic technologies will need to reason about safety online, constructing high-
confidence assurances informed by ongoing observations of the environment and other agents,
in spite of models of them being necessarily fallible.

This dissertation aims to lay down the necessary foundations to enable autonomous systems
to ensure their own safety in complex, changing, and uncertain environments, by explicitly
reasoning about the gap between their models and the real world. It first introduces a suite
of novel robust optimal control formulations and algorithmic tools that permit tractable
safety analysis in time-varying, multi-agent systems, as well as safe real-time robotic naviga-
tion in partially unknown environments; these approaches are demonstrated on large-scale
unmanned air traffic simulation and physical quadrotor platforms. After this, it draws on
Bayesian machine learning methods to translate model-based guarantees into high-confidence
assurances, monitoring the reliability of predictive models in light of changing evidence about
the physical system and surrounding agents. This principle is first applied to a general
safety framework allowing the use of learning-based control (e.g. reinforcement learning)
for safety-critical robotic systems such as drones, and then combined with insights from
cognitive science and dynamic game theory to enable safe human-centered navigation and
interaction; these techniques are showcased on physical quadrotors—flying in unmodeled
wind and among human pedestrians—and simulated highway driving. The dissertation ends
with a discussion of challenges and opportunities ahead, including the bridging of safety
analysis and reinforcement learning and the need to “close the loop” around learning and
adaptation in order to deploy increasingly advanced autonomous systems with confidence.



2

[This page intentionally left blank]



i

To my parents, Concha and Curro, and to my sister Carmeluky.

¡Porque juntos somos geniales!



ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Central Challenges in Robotic Safety Assurance . . . . . . . . . . . . . . . . 2
1.2 Thesis Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Preliminaries 8
2.1 System Dynamics and Model Uncertainty . . . . . . . . . . . . . . . . . . . . 8
2.2 Optimal Control and Dynamic Games . . . . . . . . . . . . . . . . . . . . . 18
2.3 Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Learning-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Cognitive Human Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

I Safety Analysis for Robotic Systems 50

3 Time-Varying Reach-Avoid Games 51
3.1 Time-Varying Reach-Avoid Games . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 The Double-Obstacle Isaacs Equation . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Safe Multi-Robot Trajectory Planning 78
4.1 Safe Multiagent Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Sequential Trajectory Planning Without Disturbances . . . . . . . . . . . . . 85
4.3 Robust Tracking of Committed Trajectories . . . . . . . . . . . . . . . . . . 95
4.4 Least-Restrictive STP: Alternative Performance Objectives . . . . . . . . . . 103
4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



iii

5 Safe Real-Time Robotic Navigation 108
5.1 Fast Planning, Safe Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Recursive Safety and Liveness in Uncertain Environments . . . . . . . . . . . 122
5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

II Safety Across the Reality Gap 137

6 Safe Learning under Uncertainty 138
6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 Safety Analysis with Imperfect Model Error Bounds . . . . . . . . . . . . . . 146
6.3 Bayesian Safety Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Confidence-Aware Planning with Human Models 169
7.1 Safe Robot Trajectories under Uncertain Human Motion . . . . . . . . . . . 172
7.2 Confidence-Aware Human Motion Prediction . . . . . . . . . . . . . . . . . . 176
7.3 Safe Probabilistic Planning and Tracking . . . . . . . . . . . . . . . . . . . . 181
7.4 Demonstration with Real Human Trajectories . . . . . . . . . . . . . . . . . 187
7.5 Safe Multi-Human Multi-Robot Navigation . . . . . . . . . . . . . . . . . . . 189
7.6 Implications on Human Preference Inference and Value Alignment . . . . . . 194
7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8 Game-Theoretic Autonomous Driving 199
8.1 Driving as a Nonzero-Sum Dynamic Game . . . . . . . . . . . . . . . . . . . 203
8.2 Hierarchical Game-Theoretic Planning . . . . . . . . . . . . . . . . . . . . . 204
8.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

III Safe Steps Forward 216

9 Safety Analysis through Reinforcement Learning 217
9.1 The Undiscounted Safety Problem . . . . . . . . . . . . . . . . . . . . . . . . 220
9.2 The Discounted Safety Bellman Equation . . . . . . . . . . . . . . . . . . . . 221
9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10 Towards a Safe Robotic Future 230

Bibliography 234



iv

List of Figures

1.1 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Quadrotor in safe, unsafe, and failure state . . . . . . . . . . . . . . . . . . . . . 38

3.1 Backward-time evolution of the reach-avoid set for a simple control problem . . 69
3.2 Analytic and numerical reach-avoid set . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Convergence of numerical Hamilton-Jacobi scheme with grid resolution . . . . . 72
3.4 Backward-time evolution of the reach-avoid set for a reach-avoid game . . . . . 74
3.5 Reach avoid set via state augmentation and time-varying method . . . . . . . . 76

4.1 Initial configuration of the four-vehicle example. . . . . . . . . . . . . . . . . . 90
4.2 Vehicle reach-avoid sets at departure time . . . . . . . . . . . . . . . . . . . . . 92
4.3 Backward-time evolution of the reach-avoid set for a single vehicle . . . . . . . . 93
4.4 Planned trajectories of all vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5 Initial configuration of the four-vehicle example in the presence of disturbances. 101
4.6 Backward-time evolution of the robust reach-avoid set for a single vehicle . . . . 102
4.7 Robust Sequential Trajectory Planning simulation (4 vehicles) . . . . . . . . . . 103
4.8 Robust Sequential Trajectory Planning simulation (50 vehicles) . . . . . . . . . 104
4.9 Robust Sequential Trajectory Planning simulation (200 vehicles) . . . . . . . . . 105

5.1 Illustration of heuristic-margin motion planning and FaSTrack scheme . . . . . . 110
5.2 Analytic and numerical tracking error bound . . . . . . . . . . . . . . . . . . . . 116
5.3 Simulated autonomous flight in a cluttered environment . . . . . . . . . . . . . 119
5.4 Robust tracking bound size vs. planner speed . . . . . . . . . . . . . . . . . . . 120
5.5 Crazyflie quadrotor during FaSTrack demonstration . . . . . . . . . . . . . . . . 122
5.6 FaSTrack quadrotor trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.7 FaSTrack quadrotor trajectory with meta-planning . . . . . . . . . . . . . . . . 124
5.8 Illustration of unsafe motion plan due to lack of recursive feasibility . . . . . . . 125
5.9 Outbound expansion and inbound consolidation of navigation graph . . . . . . . 129
5.10 Schematic diagram of the heuristic exploration procedure. . . . . . . . . . . . . 131
5.11 Relative states and tracking error between quadrotor and Dubins car . . . . . . 134
5.12 Recursively feasible exploration for a Dubins car model . . . . . . . . . . . . . . 136



v

6.1 Quadrotor learning to fly under an unmodeled disturbance . . . . . . . . . . . . 139
6.2 Evolution of disturbance probability under Gaussian process updates . . . . . . 157
6.3 Quadrotor altitude over time learning to fly with poor initialization . . . . . . . 160
6.4 Quadrotor altitude over time flying with unreliable learned model . . . . . . . . 162
6.5 Safe sets computed online from quadrotor flight data and Gaussian process . . . 163
6.6 Quadrotor altitude over time learning under unmodeled disturbance . . . . . . . 164

7.1 Quadrotor flying near human with unexpected walking behavior . . . . . . . . . 171
7.2 Human trajectory and probabilistic model predictions . . . . . . . . . . . . . . . 179
7.3 Human motion predictions under modeled and unmodeled goals . . . . . . . . . 181
7.4 Robot trajectories with different model confidence . . . . . . . . . . . . . . . . . 184
7.5 Predicted human state distribution and forward-reachable set . . . . . . . . . . 185
7.6 Thresholded human state distributions for different model confidence . . . . . . 186
7.7 Safety and efficiency metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.8 Safety results with an unmodeled human goal . . . . . . . . . . . . . . . . . . . 189
7.9 Efficiency results with an unmodeled human goal . . . . . . . . . . . . . . . . . 190
7.10 Hardware demonstration of safe multi-human, multi-robot navigation. . . . . . . 191
7.11 Trajectories and predictions in multi-human, multi-robot hardware demonstration.194

8.1 Hierarchical game-theoretic planning of an overtaking maneuver . . . . . . . . . 202
8.2 Tactical versus hierarchical trajectory planning in a highway merging maneuver 211
8.3 Tactical versus hierarchical planning in a cut-in scenario while overtaking . . . . 212
8.4 Study of alternative information structures . . . . . . . . . . . . . . . . . . . . . 215

9.1 Neural network output of Safety Q-learning for a double-integrator system. . . . 218
9.2 Predicted vs. achieved minimum safety margin using deep Safety Q-Learning . . 223
9.3 Fraction of safety violations as Safety Q-Learning training proceeds . . . . . . . 224
9.4 Safe sets learned by tabular and deep Safety Q-Learning vs. analytic set . . . . 225
9.5 Slices of the learned lunar lander value function using Safety Q-Learning . . . . 227
9.6 Learned half-cheetah safety policies using deep policy optimization . . . . . . . 228

10.1 A vision of a future with safe robotic systems . . . . . . . . . . . . . . . . . . . 233



vi

List of Tables

2.1 Analogous terms between control theory, artificial intelligence, and game theory. 9
2.2 Dynamic programming principle for classical control problems (continuous time). 21
2.3 Dynamic programming principle for classical control problems (discrete time). . 21
2.4 Failure, constraint, safe, and unsafe sets. . . . . . . . . . . . . . . . . . . . . . 37



vii

Acknowledgments

The time has finally come to put an end to a major phase of my life, one that arguably
started in early 2013 with an admission email that kept me up all night in my bedroom in
Madrid, my mind racing through the adventures that awaited me 10,000 kilometers away in
Berkeley, California. Today, almost seven years later, I am sitting in the same room, looking
back at the journey and the many travel companions without whose support and guidance
it could not possibly have been completed. It is with deep gratitude that I dedicate these
final words to them.

First and foremost, I am grateful to my three wonderful PhD advisors, Shankar, Claire,
and Anca, for their unwavering support, wisdom, and kindness over the years. Any attempt
to do them justice in writing here would be humorously inadequate, so I will instead say
that I hope to be able to help others grow the way they have helped me.

I also owe much gratitude to the other two members of my dissertation committee:
Ruzena, for encouraging me never to lose sight of the bigger picture, and for making all
of us feel like a family; and Tom, for nurturing my fascination with human cognition and
interaction. Both of them have actively shaped how I think about the relationship between
technology and people.

The results and insights reached in my PhD work are the outcome of many close col-
laborations and stimulating discussions with my peers at Berkeley. Many thanks to my
first research companions, Kene Akametalu, Jeremy Gillula, Shahab Kaynama, and Melanie
Zeilinger, who made me feel welcome and valued from my early, inexperienced steps. Thanks
to the fantastic coffee spill gang, Sylvia Herbert, David Fridovich-Keil, and Andrea Bajcsy,
for all the late nights of coding and writing, endless Crazyflie experiments, and surreal
acronym brainstorms; and for making sure I didn’t accidentally skip meals at the peaks of
research excitement. Thanks to Mo Chen and Somil Bansal for the discussions and joint
discoveries around multi-agent systems, safety, real-world robotics, and how they all fit to-
gether; to Margaret Chapman for the thoughtful conversations about risk-sensitive safety;
and to Jess Hamrick, Chang Liu, and Vael Gates for the interdisciplinary adventures bridg-
ing cognitive science and engineering. Thanks to Neil Lugovoy, Vicenç Rubies Royo, and
Shromona Ghosh, for embarking together on a quest to tear down walls between research
communities that should be speaking more to each other. Thanks also to Dexter Scobee
and Andreea Bobu for their patience with my spotty presence during the last year and for
making me feel like I never ceased to be a full-time member of the team. I am also grateful
to my collaborators at the Center for Human-Compatible AI, who informed my thinking
about our long-term responsibilities in the development of intelligent technologies. Finally, a
special thank you to the younger students who put up with my far from infallible guidance:
Ted Xiao, Elis Stefansson, Steven Wang, Eli Bronstein, Neil Lugovoy—I hope the experience
of working together was as thrilling for them as it was for me.

I have been fortunate to have wonderful mentors during my PhD years: Sam Burden,
Lillian Ratliff, Dan Calderone, Roy Dong, Aaron Bestick, Katie Driggs-Campbell, and Dorsa
Sadigh have all held my hand more than once through the uncertainties of graduate school,



viii

and have continued to do so from time to time after they graduated; and I am happy to still
count them all as friends, and relieved to know they will pick up the phone anytime I need
their guidance again.

Few things are as clear in my mind as the impossibility of having made it through
graduate school without the superpowers of Jessica Gamble and Shirley Salanio, generously
put to use in keeping students afloat in the sea of troubles, requirements, scheduling, travel,
and paperwork that we sometimes feel lost in. Thanks for the countless times they have led
my particular ship to safe harbor.

My excitement for the next steps is in conflict with the many great people that I know I
will be missing when I move away—Joe Menke, Dapo Afolabi, David McPherson, Laura Hal-
lock, Eric Mazumdar, Tyler Westenbroek, Ellis Ratner, Forrest Laine, Anusha Nagabandi,
and the rest of the TRUST and SDH7 inhabitants: thanks to all of them for the many great
discussions about research, life, the universe, and everything, the occasional early morning
martial arts, and the never dull conference trips on both hemispheres.

A special mention needs to be made to my fellow control freaks who started the PhD
journey with me and have accompanied me through all of its ups and downs: Cathy Wu, Roel
Dobbe, Eric Kim, and Jason Poon. It has been a privilege learning and growing together
over the last half-decade. May we always find the time to meet up for a late-night Top
Dog. Thank you also to Jon Mather, Jess Lee, and Vinay Ramasesh for unquestionably
making my time at Berkeley more eventful and enjoyable. The same is true of my fellow
Berkeley gang Spaniards, Miquel Crusells Girona, Álvaro Garćıa-Delgado, Eduard Ansaldo
Giné, Julia Gómez Camblor, Alejandro Castillejo Muñoz. . . a continually growing family that
has helped me feel closer to home.

I spent my first year at Berkeley living in the International House, where I was fortunate
to share a corridor and many fascinating impromptu discussions with Daniel Chada, who
first piqued my interest in cognitive science research. My home for the next five years,
a four-person apartment unofficially but solemnly called the Batcave, was also home, over
the years, to Roel, Jon, Fanny, Linus, Ale, and Eduard, who I am happy to call my close
friends and—just as important—my jamming companions. Their company always brought
a pleasant closing note to long days in the lab.

Of all the people Berkeley has brought me close to, Tasneem is one I can never be grateful
enough for. Since she entered my life a little over two years ago she has become essential
to how I think about myself and the world. Her enthusiasm, generosity, and perseverance
inspire me every day, and she can somehow make the most daunting challenges feel doable.
I can only hope she will continue to light my way for many years to come.

The final thank you is to those who guided my steps before I was able to plan them on
my own. To my many great teachers and early mentors. To my four loving grandparents.
To Angelita, who always treated our family like her own. To my sister Carmen, who has
long been my best mirror and knows the inside of my brain better than I do. And most of
all, to our parents, who always encouraged us to follow our passion even if this would lead
us far away from home. Their selfless love is ultimately the reason this dissertation exists.



1

Chapter 1

Introduction

The danger which is least
expected soonest comes to us.

Voltaire (1694–1778)

It is a time of rapid change in humanity’s technological development. Automation
technologies, spurred by the increasing availability of computer hardware, high-bandwidth
telecommunications, and substantial advances in modern artificial intelligence, are becom-
ing increasingly pervasive in human society. Today, the domain of automation transcends
industrial manufacturing, and permeates human activities and infrastructure: homes and
workplaces are becoming widely retrofitted with “smart” appliances, and our utilities, from
electricity to internet connectivity, are supplied through complex self-regulation schemes.
The rapidly growing “tech” industry continues to expand the capabilities of personal com-
puters and mobile devices, which increasingly mediate our interaction with the world and
with each other through a plethora of software “apps”, providing us with a relentless stream
of automatically generated information, recommendations, and services.

A central front in this progress of automation technology is the advancement of robotics.
Once relegated to factory floors, robotic systems—mechanical devices with the ability to
sense their environment, make decisions, and perform actions that modify it—are beginning
to populate the human space. Robotic vacuum cleaners are found in many homes [1]; surgical
robots enable surgeons to perform high-precision operations with minimal invasiveness and
patient recovery time [2]; commercial drones for personal and professional use are sold by
tens of thousands of units worldwide every month, for purposes ranging from photography
and film to construction, agriculture, and even newly emerging drone racing competitions [3];
and crucially, autonomous driving is expected to drastically reduce the rate of accidents and
fatalities on the road, while transforming the morphology of urban spaces by inducing a
widespread shift towards a sharing economy of transportation [4]. These new technologies
are also having a direct impact in the developing world: lightweight unmanned aircraft are
already being used to deliver medicine and blood supplies to hospitals at locations that are



CHAPTER 1. INTRODUCTION 2

hard (and occasionally impossible) to reach by road, requiring minimal human supervision
during their flight [5].

It seems clear that robotic technologies present a vast range of opportunities for empow-
ering human activities and improving our individual and collective welfare. At the same
time, the deployment of these complex automated systems brings important new questions
around safety and reliability. If an autonomous car takes inappropriate actions, it may cause
injury or death not only to its own occupants, but to other road users around it. Many of the
robotic systems that we expect to develop and deploy in the coming years and decades are
safety-critical, that is, their incorrect operation could lead to severe failures that we should
strive to avoid at all costs.

The focus of this dissertation is on how to formally reason about the safe operation of
current and future robotic systems, how—and to what extent—we may provide meaningful
assurances around these technologies, and how these assurances can be actively represented,
and reasoned about, by the systems’ own automated decision-making processes. We will pay
special attention to the challenges arising from the complex, large-scale interactions involved
in multi-agent systems such as unmanned aircraft system (UAS) traffic, the increasing role
of learning-based and data-driven algorithms in the control of robotic systems, and the
need for these systems to coexist and interact with human beings whose behavior may be
extremely difficult to predict accurately. In spite of these challenges, we will show that there
are tractable, rigorous, and effective methods that can enable robotic systems to preserve
safety with high confidence even in the presence of substantial uncertainty about the world.

1.1 Central Challenges in Robotic Safety Assurance

1.1.1 Multi-Agent Systems

As robotic systems step out of their traditional cages on factory floors and into open environ-
ments, they cannot be expected to operate in isolation. Many environments where we expect
to deploy—and are indeed beginning to deploy—modern robotic systems are populated by
humans in different capacities. One of the central challenges faced by the nascent autonomous
driving industry is designing automatic decision-making schemes that can account not only
for the vehicle’s physical evolution, but for the active, often strategic responses of other
road users and how these will condition future decisions in turn. This interaction makes the
problem of safe driving fundamentally game-theoretic, requiring a depth of analysis that has
traditionally been beyond the scope of robotic motion planning and control.

On the other hand, robotic systems will often not be deployed one at a time, but forming
multi-robot teams or networks in which communication and cooperation are not only feasible,
but possibly necessary for successful and safe operation. In the United States, NASA has
been conducting active research over the last decade on a new, highly-automated air traffic
control paradigm for unmanned vehicles, meant to manage routing and ensure separation
for vehicle densities far exceeding the capacity of human air traffic controllers [6]; similar



CHAPTER 1. INTRODUCTION 3

initiatives are underway in the European Union. Even with the assumption of coordination,
the planning space is intrinsically combinatorial, meaning that the necessary computation to
reason about safety and efficiency tends to increase exponentially with the number of vehicles.
Finding scalable schemes to compute safe, conflict-free trajectories for large numbers of
vehicles is crucial to the successful deployment of unmanned aircraft services in the coming
years.

1.1.2 Learning-Based Systems

Much of the recent progress in modern artificial intelligence is linked to advances in machine
learning, which enables software systems to make decisions based on statistical inferences
from data. In particular, machine learning techniques have led to considerable advances in
the processing of high volumes of sensory information, in contexts such as speech recognition
and computer vision, the latter of which is particularly central to robotic perception. In addi-
tion, reinforcement learning provides a data-driven approach to sequential decision problems
such as robotic planning and control. These techniques have seen significant improvement in
roughly the last half-decade through the development of hyperparametric function approxi-
mators commonly known as deep neural networks [7, 8].

The state-of-the-art performance delivered by machine-learning methods in a number of
relevant computational problems, as well as their ability to adapt to observed data, motivates
their use in automation technologies and robotic systems in particular. Unfortunately, in
contrast with traditional logic-based software, the behavior of learning-based software cannot
be determined by examining the program’s source code, but depends heavily on the data that
the software has been trained on. As a result, formal correctness verification of machine-
learning systems is extremely challenging in some cases and infeasible in others. This is
especially true of “black-box” systems such as neural networks, where it has not generally
been possible to determine reliably what it is that the system has learned,1 let alone give
any a priori guarantees about what the system will learn once exposed to certain data.
Indeed, one notorious weakness of many machine-learning methods is their brittleness to
“out of distribution” data, which makes them highly vulnerable to adversarial attacks and
unreliable for deployment in uncertain environments [10].

This lack of functional guarantees has largely prevented the application of learning-based
methods to safety-critical or high-stakes systems, while a number of contexts where they
have been applied have seen serious issues related to unexpected and poorly understood
behavior (from chat bots using offensive and antisocial language to decision-making systems
discriminating against individuals on the basis of race or socioeconomic status). How can
we integrate learning-based components into automation systems and robotic platforms in
a way that allows us to reap the benefits in terms of performance and adaptability while
retaining the ability to provide meaningful assurances about the overall operation?

1Although recent efforts have had some success in providing input-output bounds on trained neural
networks [9].



CHAPTER 1. INTRODUCTION 4

A recurring theme throughout this thesis will be the observation that safety and learning
need not be at odds with each other, and can in fact function in a synergistic and comple-
mentary fashion in an automation system.

1.1.3 Human-Centered Systems

To the extent that robotic systems will be deployed in environments shared with human
beings, their decisions will often need to be informed by predictions of human behavior.
Safety, in particular, may depend not only on the actions taken by the robotic system, but
on those taken by humans around it. How can a system provide safety assurances in the
presence of uncontrolled human agents?

On the one hand, the worst-case analysis techniques that often prove valuable in comput-
ing robust guarantees under physical uncertainty quickly become impractically conservative
in the case of uncertain human behavior: if the robot considers all actions that a human
could physically take, it may conclude that it is impossible to remain safe, even in standard
conditions of operation. Therefore, it is often necessary to reason about what human actions
are likely in a given situation, typically through cognitive models of human decision-making.

On the other hand, given the complexity of human behavior, any predictive model is
bound to be incomplete and therefore inaccurate in certain conditions; in such situations,
human actions that had been deemed unlikely by the robot’s model may in fact compromise
safety when they do take place. In scenarios like autonomous driving or physical human-
robot interaction, it is critical that robotic systems respond promptly and gracefully when
the accuracy of their predictions degrades.

Finally, the future behavior of people interacting with a robotic system is often heavily
dependent on the system’s own upcoming actions. This links directly to the multi-agent as-
pect of robotic system operation: failing to account for the mutual, often strategic, interplay
between the decisions of human beings and robotic systems can lead to incorrect robotic
decisions that potentially result in loss of safety.

Many important lessons about the criticality of human-automation interaction in system
safety can be drawn from the aerospace sector, from the early discovery of “pilot-induced
oscillations”, resulting from the delayed feedback loop between the pilot’s corrections and the
aircraft’s response, to the recent accidents involving the Boeing 737 MAX, where a malfunc-
tioning automated “safety” override meant to correct pilot inputs unexpectedly placed the
aircraft in a fatal nose dive [11, 12]. Even in an industry that enjoys a well-deserved safety
reputation, incidents of this kind have kept resurfacing in different forms over the decades,
showing that incorrect design assumptions about the interaction between the human crew
and the on-board automation can have catastrophic consequences.

Meanwhile, on the ground, autonomous driving technology is similarly finding human be-
havior modeling to be a central challenge. Here, the difficulty in modeling human decisions
compounds with the challenge of accurately reasoning about strategic road interactions. Im-
proving the prediction and planning algorithms in the autonomy stack to more competently



CHAPTER 1. INTRODUCTION 5

handle uncertain interactions with real, model-defying human road users is currently a key
open problem under study by researchers and practitioners in the sector.

The design of safe human-centered robotic systems therefore requires a careful analysis
of the interaction between the automated components and human actors, while at the same
time making the overall operation as robust as possible to misspecified models and inaccurate
assumptions about human behavior.

1.2 Thesis Overview and Contributions

The central contention of this Ph.D. dissertation is that ensuring safe robotic operation
under an inevitably incomplete understanding of the world and other agents requires bridg-
ing model-based and data-driven formulations. Autonomous systems will need to compute
theoretically sound guarantees grounded in available knowledge and data, but also respond
resiliently to unexpected environment changes that could invalidate the computed guaran-
tees.

Our approach to safety assurance will therefore combine robust optimal control theory
with Bayesian machine learning, incorporating insight from cognitive science and dynamic
game theory to understand closed-loop interaction with human beings. Ultimately, providing
reliable assurances requires robotic systems to reason explicitly about the reality gap between
their models and the real world, from unforeseen physical disturbances to unexplained human
actions, and decide which guarantees to rely on in light of current observations.

The work in this thesis complements basic theoretical groundwork with extensive testing
on physical robotic platforms and studies with human participants. The organization and
key contributions are summarized below, and can be visualized in Figure 1.1.

First, Chapter 2 covers some important concepts that will serve as the theoretical foun-
dation for the contributions made in this thesis. In particular, the chapter introduces the
necessary background in dynamical systems theory, optimal control, game theory, machine
learning and human decision modeling, and establishes a consistent technical notation that
will be used throughout the thesis.

Part I: Safety Analysis for Robotic Systems. The first part of the thesis presents
core theoretical approaches and algorithmic machinery used for sound and scalable safety
analysis under uncertainty. Chapter 3 begins with the formulation of time-varying Hamilton-
Jacobi analysis for reach-avoid differential games and introduces the novel double obstacle
Isaacs equation which is a generalization of the existing time-invariant formulation. Cru-
cially, the viscosity solution to the double-obstacle equation—proven to be the value function
of time-varying game—can be obtained in roughly the same amount of computation as in
time-invariant settings. This theoretical result is then applied in Chapter 4 to obtain a
scalable scheme for planning and execution of safe trajectories for cooperative multi-robot
systems. The approach is demonstrated in the context of large-scale unmanned air traffic
management, and made robust to modeling error through further Hamilton-Jacobi analysis.
Chapter 5 addresses safe trajectory planning in real time by combining simplified dynamical



CHAPTER 1. INTRODUCTION 6

 Safe learning 
(Ch. 6)   

 Confidence-aware planning 
(Ch. 7) 

COGNITIVE 
SCIENCE

MACHINE 
LEARNING

Safe real-time 
navigation 

(Ch. 5)

Safe multi-robot 
planning 
(Ch. 4)

 Game-theoretic planning 
(Ch. 8) 

Learning safety 
(Ch. 9)

Time-varying 
safety analysis 

(Ch. 3)

OPTIMAL 
CONTROL AND 

DYNAMIC GAME 
THEORY

Figure 1.1: Thesis overview illustrated on an urban scene.

models for fast online computation with high-fidelity representations for robust pre-computed
tracking guarantees. The resulting robust splanning scheme is additionally endowed with
recursive feasibility under imperfect environment information and finite planning horizons.
The results in this part of the thesis were originally introduced in [13–17].

Part II: Safety Across the Reality Gap. The second part of the thesis engages with
the central engineering challenge of providing safety assurances for real systems in spite of the
inevitable inaccuracies of any theoretical model. These chapters look into the ties between
real-time assurances and online learning and explore the important special case of safe robotic
decision-making in the midst of human beings. Chapter 6 applies the Hamilton-Jacobi
safety machinery to construct a general safe learning framework enabling robotic systems
to execute learning-based control schemes such as reinforcement learning. The framework
additionally leverages online data to refine the safety analysis over time and continually
validate the applicability of theoretical safety guarantees in light of the observed divergence
between modeled and real system behavior, thereby closing a synergistic loop between safety
and learning. Chapter 7 introduces a real-time Bayesian confidence inference scheme for
robotic systems to continually monitor the accuracy of their predictive human models as
they navigate a shared environment with people. Whenever the observed human actions
are not well-explained by the predictive model, predictions of future motion automatically
become more uncertain, causing the robot to increase caution until model accuracy increases.
Chapter 8 then considers the coupling between the prediction and planning problems when



CHAPTER 1. INTRODUCTION 7

a robotic system is interacting with a human in a strategic context, specifically in a driving
scenario. Here we apply a full game-theoretic treatment, and introduce a hierarchical scheme
that enables the use of high-level strategic reasoning over time horizons of a few seconds in
conjunction with low-level tactical trajectory planning over shorter horizons. The results in
this part of the thesis were originally introduced in [18–21].

Part III: Safe Steps Forward. The final part of the thesis discusses some of the key
technical challenges lying ahead on the road towards safe advanced autonomous systems.
Chapter 9 draws a promising connection between safety analysis and modern artificial intel-
ligence techniques, rendering Hamilton-Jacobi safety analysis compatible with the reinforce-
ment learning formulation through a time-discounted modification that induces a required
contraction mapping. This opens the door to the application of the growing plethora of deep
reinforcement learning schemes to safety analysis, enabling the computation of efficient best-
effort safety-preserving control policies for previously intractable high-dimensional systems.
More broadly, the new formulation facilitates incorporating safety requirements into rein-
forcement learning systems beyond robotics. Finally, Chapter 10 presents some concluding
remarks and offers a look at the future of autonomous safety assurance, not only in robotic
systems but in the wider family of intelligent technologies that are increasingly pervading
our society.



8

Chapter 2

Background and Preliminaries

All models are wrong, but some
are useful.

George Box (1919–2013)
Statistician

2.1 System Dynamics and Model Uncertainty

Through much of this dissertation we will be concerned with the operation and evolution
of physical systems. The class of systems that we will consider will be quite broad, en-
compassing a variety of robotic platforms, from drones to autonomous cars, and in some
cases also including human beings. In its most general sense, a system may be any part of
the world whose internal functioning and external interactions are of relevance to us. This
general definition allows us to talk equally meaningfully about a robotic system, a socio-
political system, or a planetary system. The study of any such systems is often involved
with how they function, what are the principles that govern their behavior, and hence what
their evolution over time may be. A unifying framework under which these questions can be
studied is the mathematical theory of dynamical systems. This formal machinery allows us
to describe the evolution of the system through the notion of its state, a minimal collection
of variables that suffices to characterize and predict its future behavior.

In the context of robotics, control theory, and artificial intelligence, we are typically
concerned with systems whose evolution over time is at least in part a function of certain
physical variables whose values or behaviors we can choose, usually termed control inputs.
For example, the evolution of a car driving on a road is affected by the motion of the steering
wheel, transmitted to the steering column and ultimately the wheels; if we are partially or
fully automating the behavior of the car, then it is useful to model the steering wheel angle
(or more often its time derivative) as a control input, that is, a variable that we can arbitrarily
set at any given moment.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 9

In addition, since what is ultimately of interest is the evolution of the real system rather
than our abstract mathematical representation of it, it is often important to explicitly ac-
count for uncertainty in the system model. A useful abstraction that can represent this
uncertainty in a general way is the introduction of a disturbance input, analogous to the con-
trol input with the important difference that we are not able to choose, or even accurately
predict, the values that it will take over time.

The analysis of how a dynamical system evolves can be done in continuous or discrete
time, and the uncertainty can be treated under different modeling frameworks. We will
dedicate this section to an overview of these models, which will serve as a common foundation
for much of the mathematical machinery introduced in this chapter.

A note on terminology. The study of dynamical systems, and how to steer their evolution
towards desirable outcomes, has been undertaken by multiple fields of mathematics, science,
and engineering, often arriving at similar insights from different perspectives. These dis-
ciplines include dynamical systems theory, control theory, optimization theory, probability
theory, decision theory, and game theory. The resulting theories and analytical tools have
found use in application domains as diverse as robotics, machine learning, econometrics,
cognitive science, and biology, among others. This variety of perspectives highlights the cen-
tral importance of the dynamic decision-making problem; it also introduces some amount
of crosstalk in the literature at large. It is not uncommon to find different terminology ap-
plied to equivalent concepts: for example, the inputs in control theory are often referred to
as actions in decision theory, and control laws in the former become policies in the latter.
Table 2.1 presents a summary of some relevant concepts, as denoted in different fields.

Control theory Artificial Intelligence Game theory
System Environment Game
Controller Agent Player
Dynamics Transition Dynamics
State State State
Control input Action Play
Control law Policy Strategy
Cost (minimize) Reward (maximize) Payoff (maximize)

Table 2.1: Analogous terms between control theory, artificial intelligence, and game theory.

While this lexical divide may be inevitable to some extent, it is far from insurmountable.
Indeed, some of the key contributions in this work are built on the rapprochement between
different but closely related formulations such as optimal control and reinforcement learning.
Where possible, this dissertation will seek to use wording that can, on the one hand, be easily
understood by readers familiar with any one of these disciplines and, on the other, remind
us of how closely related these areas of study truly are.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 10

2.1.1 Continuous-Time System Dynamics

Many physical systems can be modeled through differential equations that describe the un-
derlying phenomena (mechanical, electrical, etc.) governing their evolution. Models derived
from first principles such as Newton’s second law have been successfully used to predict and
control the behavior of a wide variety of physical systems.

Consider the dynamical system’s continuous state x ∈ Rn, whose evolution may be
influenced by one or more agents.1 In the simplest case, we may have a single agent, namely
the automated controller we are interested in designing. We can write the evolution of the
system through the dynamics

ẋ = f(x, u, t) , (2.1)

where u ∈ U ⊆ Rnu denotes the control input to the system. We will assume the set U to
be compact, since the amount of physical control effort that our controllers can exert (force,
torque, voltage, etc.) is always bounded in practice. While the dynamics f will often be
time-invariant, allowing us to drop dependence on t, this is not always the case, and we will
explicitly include time dependence where relevant (it will play a particularly important role
in Chapter 4).

In other cases we may have multiple agents simultaneously making decisions that affect
the evolution of the system. These agents may be multiple automated controllers operating
in a decentralized or distributed fashion (as will be the case when we study multi-vehicle
trajectory planning for large-scale unmanned air traffic in Chapter 4), and we may be inter-
ested in designing the decision rules for all of them. On the other hand, some of the agents
may implement decision rules that we are not able to choose or exactly predict at design
time. An important class of such agents are human actors, and human-automation systems
will be the focus of Chapters 7 and 8.

Assigning each agent a unique index2 i ∈ I, and denoting their respective control inputs
ui ∈ Ui ⊆ Rnui , with Ui assumed compact, the evolution of the state can be expressed
through the dynamics

ẋ = f (x, (ui)i∈I , t) . (2.2)

Finally, in most practical cases we cannot assume to know the dynamics exactly, and the
actual evolution of the system may depend on the realization of some uncertainty about the
world. It is often useful to explicitly formalize the effect of this uncertainty on the dynamics,
typically by admitting an additional input source, which we will term the disturbance d ∈
D ⊆ Rnd . This uncontrolled and a priori unknown input can be used to model actual

1For the most part, we will assume that the state space is Rn, while noting that in some relevant cases
we may have different state spaces embedded in Rn (for instance, the angular pose of a robotic joint or rigid
body in 2- or 3-dimensional space evolves in the orthogonal groups SO(2) and SO(3) respectively). In this
dissertation we will mostly eschew the more involved mathematical treatment of differential equations on
manifolds, and direct the interested reader to [22], Ch. 8, for an in-depth exposition.

2It may be convenient to think of the index i as simply taking values 1, 2, . . . , N . More generally, we
can define arbitrary indices such as H for the human agent and A for the autonomous system. We therefore
keep the notation general using index set I.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 11

physical disturbances that we may expect our system to encounter in the environment,
such as wind gusts perturbing the flight of an aerial vehicle. Its use, however, is much
more general: it can also be used to account for the various discrepancies that might occur
between the nominal evolution predicted by the model and the actual observed behavior of
the physical system, whether these are due to unmodeled higher-order dynamics, unexpected
environmental conditions, or unknown agents taking purposeful actions in pursuit of their
own goals. We will assume that D is a compact set, which is not a stringent condition
in itself, since it amounts to requiring that all disturbances are finite in magnitude3. The
uncertain dynamics can then be expressed as

ẋ = f (x, (ui)i∈I , d, t) . (2.3)

If nothing is said about the values taken by d, we are left with an undefined evolution of
our system, even when the state x and every agent’s input ui are known. However, once we
properly quantify our uncertainty over d, this will translate into a well-defined uncertainty
about the evolution of the system. We will see that there are two important formalisms
under which this uncertainty can be characterized, corresponding to two schools of thought
in decision-making theory: probabilistic and robust analysis.

Before that, we need to introduce some technical conditions for continuous-time state
trajectories to be uniquely defined. The flow field f : Rn×∏i∈I Ui×D×R→ Rn is assumed
uniformly continuous and bounded, as well as Lipschitz in x at all times t and for all input
values (ui)i∈I and d.

Letting Ui,t0 and Dt0 denote the collections of measurable4 functions ui : [t0,∞)→ Ui (for
i ∈ I) and d : [t0,∞)→ D respectively, and allowing the agents and disturbance to choose
any such signals, the evolution of the system from any initial state x is determined (see for
example [24], Ch. 2, Theorems 1.1, 2.1) by the unique continuous trajectory x : [t0,∞)→ Rn

solving

ẋ(t) = f
(
x(t), (ui(t))i∈I ,d(t), t

)
, a.e. t ≥ 0 ,

x(t0) = x0 .
(2.4)

3The finite magnitude of disturbances does imply that the physical state of the system is not allowed
to instantaneously jump between values, that is, it involves an epistemic commitment to the continuity of
trajectories. For some systems, it is in fact convenient to model certain events in the evolution of the state as
though discontinuities in the state trajectory do take place: a notable example is legged locomotion, where
the contact between a leg and the terrain is often modeled through an instantaneous change in velocity.
While this is admittedly a simplification of the complex contact dynamics that take place, in such cases
it is beneficial to relax the continuity condition. There has been a rich theoretical development of the
theory of such hybrid systems, which combine continuous flow dynamics with discrete jumps. The theory
presented here is consistent with the flow part and can in fact be used within the more general hybrid system
framework (see [23]). To avoid introducing a heavier mathematical scaffolding than necessary, we will mostly
be obviating the hybrid aspect in this dissertation.

4A function h : X → Y between two measurable spaces (X,ΣX) and (Y,ΣY ) is said to be measurable
if the preimage of a measurable set in Y is a measurable set in X, that is: ∀V ∈ ΣY , h

−1(V ) ∈ ΣX , with
ΣX ,ΣY σ-algebras on X,Y .



CHAPTER 2. BACKGROUND AND PRELIMINARIES 12

This is a solution in what is known as Carathéodory’s extended sense, that is, it satisfies the
differential equation at almost every instant (i.e. except on a subset of Lebesgue measure
zero). It is a relatively general solution concept that will allow us to use different uncertainty
models throughout this dissertation while ensuring that trajectories are mathematically well-
defined.

In certain cases, we may only consider the evolution of the system on a compact time
interval [t0, tf ], in which case we will let Utf

i,t0
and Dtf

t0 denote the collection of measurable
control signals ui : [t0, tf ]→ Ui and d : [t0, tf ]→ D respectively.

Following the standard notation in dynamical systems theory, let x ( · ;x0, t0, (ui)i∈I ,d)
denote the state trajectory starting at state x0 at time t0 and steered by control inputs (ui)i∈I
and disturbance input d over time. For compactness, we will frequently use the alternative
shorthand notation x

(ui),d
x0,t0 (·) to refer to the same trajectory.

Feedback Control Policies

The above trajectory definition requires specifying the control signals that agents will input
over time. However, since the evolution of the state is uncertain, it is rarely appropriate for
agents to commit to a control signal and continue to execute it without accounting for how
the system is actually evolving. Such a control scheme is known as open-loop, in reference
to the perception-action feedback loop not being “closed”, since information about the state
is not informing the control inputs.

Feedback is historically and fundamentally at the heart of automation (cf. [25]), and
its ubiquitous use is motivated by the practical impossibility of exactly predicting how our
control inputs will cause a system to evolve. Consistently, we will usually allow the control
signals to adapt at each moment in time to the current state of the system. This gives rise to
the notion of a feedback control policy (or feedback strategy in dynamic game theory), namely
a function πi : Rn × R → Ui that maps the current state of the system (and possibly the
current time5) to a control input ui = πi(x, t).

This information structure is known as perfect-state closed-loop feedback, or simply state
feedback or feedback. It implies the assumption that agents have the ability to accurately and
instantaneously perceive the current state of the system. This is not a trivial approximation
in general—although it is one that we will be making through most of this dissertation—and
we will revisit its implications towards the end of the section.

A theoretical issue that arises when introducing feedback is whether trajectories continue
to be well defined under arbitrary control policies. The answer is in fact not always in the
affirmative, and pathological cases exist where even seemingly innocuous feedback control
policies may render system trajectories ill-defined, as illustrated by the following example.

5While time-invariant control policies are common, and we will drop time dependence in such cases, time-
varying policies can be appropriate even in time-invariant settings, particularly under finite time horizons.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 13

Example 2.1. Consider a simple 1–dimensional dynamical system with state x ∈ R and
control input u ∈ [−1, 1], whose dynamics are given by

ẋ = f(x, u) = u ,

and choose the time-invariant feedback control policy π : R→ [−1, 1] defined as

π(x) =

{
1 x < 0

−1 x ≥ 0

Even though f is uniformly continuous, Lipschitz (constant) in x, and bounded, no solu-
tions exist starting at, or passing through, x = 0, even “at almost all times” as required
by Carathéodory’s extended solution concept. Indeed, if a trajectory finds itself at exactly
x = 0, its time derivative must be ẋ = −1, which would immediately take it into the neg-
ative half-space, requiring its derivative to be ẋ = 1, and propelling it back to the origin,
where the time derivative would be reversed once again. This would happen infinitely
many times on any bounded time interval, something termed “Zeno behavior” after the
Greek philosopher Zeno of Elea (5th century B.C.), who proposed multiple paradoxes re-
lated to infinitely many events taking place in finite time.a Zeno behavior is a well-known
problematic artifact emerging from overly simplified abstraction of system dynamics [26].
While no physical system is Zeno (with any “instantaneous”switches actually involving
unmodeled dynamics, e.g. voltage changes), Zeno behavior in a dynamical model can
impede accurate analysis of the system of interest.

aThe reader may be familiar with the paradox of Achilles and the tortoise. The fleet-footed Achilles
races against a much slower tortoise, giving it a head start. He presently covers the initial separation,
but by then the tortoise has made additional headway; Achilles quickly covers that new distance only
to find that the tortoise is ahead once again; and so on, argues Zeno, until Achilles gives up and accepts
his defeat.

To avoid such pathological cases, we would generally like to disallow control policies
that result in non-measurable input signals over time. Note that a sufficient condition
is for πi to be Lipschitz in x and measurable in t, so that the resulting closed-loop dy-
namics f(πi)(x, d, t) := f

(
x, (πi(x, t))i∈I , d, t

)
continue to be Lipschitz in x and measur-

able in t. However, this is more restrictive than necessary, since discontinuities are pos-
sible in many cases. In the above example, if we minimally modify the control policy so
that π(0) = 0 it is easy to check that Carathéodory solutions are globally well defined as
xx0,t0 = sgn(x0) max{0, |x0|−(t−t0)}. Later in this chapter, we will see that continuous-time
optimal control and safety analysis can be formulated in the space of measurable signals,
implicitly defining feedback policies that, by construction, result in well-defined system tra-
jectories.

Slightly overloading the previous trajectory notation, we will let x ( · ;x0, t0, (πi)i∈I ,d)



CHAPTER 2. BACKGROUND AND PRELIMINARIES 14

denote the state trajectory starting at state x0 at time t0 and steered by feedback control
inputs ui(t) = πi

(
x(t)

)
and disturbance input d over time. Equivalently, we will use the

compact notation x
(πi),d
x0,t0 (·).

2.1.2 Discrete-Time System Dynamics

In some cases it will be convenient to consider the evolution of the system by quantifying
changes over discrete time steps. These time steps k = 0, 1, 2, . . . are often chosen to be
spaced at regular intervals δ > 0, so that tk+1 − tk = δ for all k. We can then express the
dynamics of the system using a finite difference equation

xk+1 = fk
(
xk, (uki )i∈I , d

k
)
, k = 0, 1, 2, . . . (2.5)

This alternative representation can be seen as a convenient simplification of the continuous-
time analysis that enables us to work with sequences of states and inputs rather than contin-
uous trajectories and signals as functions of time. It is not meant to imply that the system
actually evolves in discrete increments, and proper use of this representation, e.g. in robot
motion planning, is accompanied by an analysis of what may happen in between time steps,
e.g. whether collisions with obstacles may take place.

These dynamical representations constitute useful models that allow us to make informed
predictions and decisions. At the same time, to the extent that all models have limited
accuracy, quantifying their uncertainty is critical to making meaningful statements and as-
surances about the real system’s behavior (and not only about the idealized behavior of the
mathematical abstraction that is the model).

2.1.3 Robust Analysis: Dynamic Inclusion

One of the two central approaches for formalizing and working with uncertainty is robust
analysis. In this framework, one specifies the set of possible realizations of the system’s
evolution, or equivalently, the set D of possible disturbances d that may affect the system’s
dynamics. This leads to the notion of a dynamic inclusion. Rather than a dynamic equation,
in which we specify exactly what the state derivative ẋ or the next state xk+1 will be, we
instead allow a set of possible evolutions through a differential inclusion

ẋ ∈ F (x, (ui)i∈I , t) := {f (x, (ui)i∈I , d, t) , d ∈ D} , (2.6)

or, in the discrete-time formulation,

xk+1 ∈ F (xk, (uki )i∈I , t
k) :=

{
f
(
xk, (uki )i∈I , d

)
, d ∈ D

}
. (2.7)

In the discrete-time case, the inclusion F (xk, (uki )i∈I , t
k) is also called the one-step forward-

reachable set from xk under control inputs (uki )i∈I . Whether in discrete or continuous time,
the robust formulation allows us to reason about what states may be reached from a given



CHAPTER 2. BACKGROUND AND PRELIMINARIES 15

initial configuration (forward-reachable set), as well as what states may evolve into a cer-
tain terminal configuration (backward-reachable set). We will view this in more detail in
Section 2.3.

The design of our autonomous controller should then ensure that the resulting system
behavior is appropriate for all possible realizations of the uncertainty. In particular, we will
want to guarantee that certain properties will hold even for the worst possible realization of
the disturbance. As we will see in Section 2.3, if a feedback controller can be guaranteed to
enforce a property under the worst-case disturbance, then by construction this controller will
also successfully enforce the desired property under all other realizations of the disturbance.
This worst-case analysis, sometimes referred to as tychastic analysis in contrast to stochastic
analysis [27], allows formulating strong guarantees about the system’s performance and safety
for all conditions within a certain class.

In some cases it will be useful to consider disturbance-affine systems, that is, systems in
which the disturbance enters the system dynamics additively. In these cases the disturbance
can be thought of as directly encoding the discrepancy between the nominal behavior of the
model and the one followed by the physical system. The safe learning framework presented
in Chapter 6 will formalize the uncertain system dynamics in the form

ẋ = f (x, (ui)i∈I , d) = fx (x, (ui)i∈I) + fd (d) , (2.8)

with fx and fd satisfying the same boundedness and continuity conditions as f , and fd ad-
ditionally being injective onto its image (to prevent overparametrization of model-system
discrepancy). As we will see, it will be useful to think in terms of a state-dependent un-
certainty, since we may have more confidence in the accuracy of our model under some
operating conditions than we do under others. We will, in those cases, use a state-dependent
uncertainty set through a set-valued map D̂ : Rn → 2D assigning to each state x a corre-
sponding uncertainty set D̂(x) ⊆ D, under mild technical conditions that ensure that system
trajectories remain well-defined.

2.1.4 Probabilistic Analysis: Transition Measure

The other central approach to decision-making under uncertainty is probabilistic analysis.
Rather than only specifying what evolutions of the system are possible, this framework
further quantifies how likely different evolutions are, which can be formalized as drawing the
disturbance d ∈ D from a probability distribution, that is, a measure Pd over D such that
Pd(D) = 1. Therefore, the evolution of the system is modeled as a stochastic process.

In continuous time, certain characterizations of the disturbance’s distribution lead to a
well-defined stochastic differential equation. In this dissertation, we will eschew the math-
ematically cumbersome stochastic differential equation formulation, and instead focus our
attention on discrete-time stochastic dynamics, induced by drawing d in (2.5) from a well-
defined probability distribution Pd over D. This results in a Markov decision process (MDP)
in the one-agent case and a (Markov) stochastic game in the multi-agent case. The discrete-
time stochastic dynamics are sometimes expressed through a transition measure Px over Rn,



CHAPTER 2. BACKGROUND AND PRELIMINARIES 16

giving the probability of the next state xk+1 conditioned on the current state xk and control
inputs (uki )i∈I . For any measurable X k+1 ⊆ Rn:

Px
(
X k+1 | xk, (uki )i∈I

)
=

∫
D

[
fk
(
xk, (uki )i∈I , d

)
∈ X k+1

]
dPd(d) , (2.9)

with [·] the Iverson bracket, which evaluates to 1 if the proposition inside is true and 0 if it
is false.

This Markovian model allows reasoning about state probabilities at arbitrary times in the
future. In particular, for any number of steps l into the future, letting ui := (uki , . . . , u

k+l−1
i ),

we have

Px
(
X k+l | xk, (ui)i∈I

)
=

∫
Rnk+l−1

. . .

∫
Rnk+1

Px
(
X k+l | xk+l−1, (uk+l−1

i )i∈I
)

dPx
(
xk+l−1 | xk+l−2, (uk+l−2

i )i∈I
)
. . .

dPx
(
xk+1 | xk, (uki )i∈I

)
.

(2.10)

Rather than completely marginalizing out the intermediate states, we may want to rea-
son about the probability measure of a particular trajectory “tube” (that is, the Cartesian
product of subsets X k over time). This can be done by changing the integration limits
accordingly:

Px

(
X k+1×. . .×X k+l |xk, (ui)i∈I

)
=

∫
Xk+l−1

. . .

∫
Xk+1

Px
(
X k+l | xk+l−1, (uk+l−1

i )i∈I
)

dPx
(
xk+l−1 | xk+l−2, (uk+l−2

i )i∈I
)
. . .

dPx
(
xk+1 | xk, (uki )i∈I

)
.

(2.11)

This can be a useful probability to quantify: given a concrete sequence of control inputs
(or, a sequence of control policies), how likely is the system state to remain within a certain
“tube” of trajectories? Or how likely is it to satisfy a safety-critical constraint at all times?

Stochastic control policies

Rather than deterministically defining the control action chosen by an agent at each state,
it may be convenient to specify a probability distribution over the set of possible control
inputs. We can define a stochastic control policy as a mapping πi : Rn → ∆Ui that assigns
to each state xk a probability distribution over Ui. Typically we will express such a random
policy as a conditional probability measure πi(u

k
i | xk). In the general case, we can also

encode a time-varying policy as a sequence of control policies πki .
While all Markov decision processes admit at least one optimal deterministic policy,

stochastic control policies can be particularly useful in contexts such as reinforcement learn-
ing, in which some desirable amount of persistent exploration can be achieved through the
injection of randomness. We will see an example of this in Chapter 9. In addition, stochastic



CHAPTER 2. BACKGROUND AND PRELIMINARIES 17

policies are a powerful modeling tool to reason about agents whose actions cannot be pre-
dicted with certainty, such as humans or unknown objects exhibiting goal-driven behavior.
We will cover this case in more detail in Section 2.3, and will be making much use these
policies in Chapters 7 and 8.

Risk-sensitive analysis

Operating with full probability distributions can be computationally intensive, and indeed
becomes quickly intractable for high-dimensional systems. On the other hand, operating
merely with the mean of the distribution would fall short of providing an adequate safety
analysis, potentially overlooking highly pernicious realizations of the uncertainty carrying
substantial probability. On the other hand, worst-case analysis is not always appropriate,
particularly for systems that are not fully safety-critical and where it is acceptable to trade
off some risk for better efficiency. This motivates a compromise between the two forms of
reasoning. Risk-sensitive analysis forgoes operating with the full distribution in favor of a
summary statistic, the risk measure, which is then propagated and used in decision-making.
This risk measure encodes some well-defined function of the probability of undesirable out-
comes and their severity. Although beyond the scope of this dissertation, some promising
recent results [28] show the viability of risk-sensitive safety analysis.

2.1.5 A Note on Uncertain Perception

Finally, we cannot end this section without acknowledging an important additional source of
uncertainty: perception. Throughout this thesis, unless otherwise specified, we will assume
that our controller and all other agents have access to timely and accurate measurements of
the state x ∈ Rn of the system. This is not a trivial assumption: perception is a fundamental
component of robotics, and in particular it is an essential requirement for safety.

Fortunately, recent advances in sensing hardware (e.g. lidar) and software (e.g. deep
learning techniques for computer vision), in no small part spurred by the growing interest
in autonomous driving, are enabling increasingly reliable state estimation even for robotic
systems operating in highly complex and unstructured environments; in other safety-critical
contexts, such as the national and international airspace, next-generation technology stan-
dards, such as ADS-B, are being introduced to substantially improve detection and commu-
nication among vehicles.

The work presented in this dissertation therefore benefits directly from the growing avail-
ability of accurate perception technology for autonomous systems and builds on top of this
foundation with the luxury of a certain separation of concerns. Nonetheless, when state
uncertainty is significant, it directly affects safety-critical decisions and there is no question
that it must be properly accounted for. Even as robotic perception continues to improve, rig-
orous safety analysis under noisy or imperfect measurements is likely to become an extremely
important direction of research in the coming years [29].



CHAPTER 2. BACKGROUND AND PRELIMINARIES 18

2.2 Optimal Control and Dynamic Games

Optimal control studies the problem of optimal decision-making regarding the evolution of
a dynamical system. When there are multiple decision makers with different objectives or
access to information, the problem becomes a dynamic game, with the notion of optimality
becoming more subtle and requiring the notion of an equilibrium.

In this overview, we will primarily focus on continuous-time optimal control and differen-
tial games, although analogous formulations exist in discrete time, and we will in fact be using
them in Chapters 7–9. Important discrete-time solution approaches include model-predictive
control (MPC) methods, which repeatedly plan open-loop trajectories over a finite, receding
time horizon, implicitly closing the loop by frequently replanning from the most recent mea-
sured state (see for example [30] for a survey), and reinforcement learning methods, which
implement different trial-and-error mechanisms to gradually improve the performance of a
control policy (we discuss these methods in Section 2.4).

2.2.1 Optimal control and dynamic programming

Consider a deterministic continuous-time system of the form (2.1), evolving over a compact
time interval [0, T ], and an objective of the form

V : Rn ×
⋃

t∈[0,T ]

(
{t} × UT

t

)
→ R (2.12)

that assigns to every initial condition (x, t) and control signal u ∈ UT
t a scalar value encoding

some quantitative property of the resulting system trajectory that we seek to maximize (or,
alternatively, minimize6). The optimal control problem can then take the form:

V (x, t) := sup
u∈UTt

V(x, t,u) , (2.13)

where V : Rn× [0, T ]→ R is termed the value (sometimes optimal cost-to-go if minimizing)
from initial conditions (x, t). In certain time-invariant settings the limit of this value function
as T → ∞ is well-defined and bounded in at least some set X ⊆ Rn, in which case we can
talk about the infinite-horizon value V (x).

While mathematically well defined, the optimization problem (2.13) is extremely imprac-
tical to solve directly, since this would require optimizing over the infinite-dimensional space
of control signals.7 Instead, we can exploit the central role of time in the structure of these

6Whether we would like to maximize or minimize this quantity is arbitrary and in fact varies depending
on the field and context. For example, in reinforcement learning it is common to seek to maximize a reward,
whereas in control theory the convention is to minimize a cost except in safety problems, where the convention
is to maximize a safety margin. We will therefore be flexible as to how our objective should be treated.

7Even in discrete time, the problem translates into a generally non-convex, high-dimensional optimiza-
tion. Finding globally or even locally optimal control signals (sequences) is a challenging computational
problem, and the subject of active research in the field of nonlinear programming.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 19

decision problems, and obtain the optimal solution without explicitly conducting the stated
optimization.

Two central methods exist for tractably reasoning about the optimality of control inputs
and the resulting state trajectories in nonlinear dynamical systems. The first one is the
calculus of variations, which considers how an outcome V changes under local deformations
of a trajectory. The core optimality result is Pontryagin’s maximum principle, which gives
a necessary condition that must be satisfied by the control input at each point of an op-
timal trajectory [31]. The condition is unfortunately not sufficient, so its satisfaction by a
trajectory does not guarantee optimality, making its use more limited.

The other central method is dynamic programming, which reasons recursively about
the optimality of strategies in backward time. The core optimality result is the Hamilton-
Jacobi-Bellman equation (or simply Bellman equation in discrete time), which provides a
necessary and sufficient condition that must be satisfied by the value function throughout
the state space. This strong result makes Hamilton-Jacobi analysis one of the most powerful
mathematical tools in optimal control and differential games, and indeed in control theory
at large.

In Hamilton-Jacobi analysis, the evolution of any state function over the flow of a dy-
namical system can be expressed through a partial differential equation (or, in some cases
that will be relevant to us, a variational inequality), whose solution will correspond to the
propagated function. While Hamilton-Jacobi analysis can be used to reason about forward
propagation of magnitudes like mass, electric charge or temperature in a moving fluid from
some initial condition (this is known as the advection equation), in optimal control and dif-
ferential games we are primarily interested in backward propagation from a terminal time.
This backward-time reasoning based on one of the most important mathematical results in
decision theory: the dynamic programming principle.

The Dynamic Programming Principle and the Bellman Equation

In the 1950s, Richard Bellman introduced dynamic programming as an approach to solve
sequential decision problems based on what he termed the principle of optimality [32]:

An optimal policy has the property that whatever the initial state and initial
decisions are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decisions.

This had an important implication on the computation of the value of an optimal control
problem: given a controlled dynamical system with no uncertainty (2.1), if the value at every
state x is known at some future time t + δ ∈ (t, T ], then it is possible to obtain the value
V (x, t) by simply considering the trajectory xu

x,t on the interval [t, t+ δ].
For example, consider a typical optimal control problem with an objective of the form

V(x, t,u) =

∫ T

t

L
(
xu
x,t(τ),u(τ), τ

)
dτ +M

(
xu
x,t(T )

)
, (2.14)



CHAPTER 2. BACKGROUND AND PRELIMINARIES 20

for functions L : Rn × U × [0, T ] and M : Rn → R. The value function V : Rn × [0, T ]→ R
for objective maximization is then defined as

V (x, t) := sup
u∈UTt

∫ T

t

L
(
xu
x,t(τ),u(τ), τ

)
dτ +M

(
xu
x,t(T )

)
. (2.15)

The principle of optimality states that the above optimization can be arbitrarily partitioned
in time, that is, for any δ ∈ [0, T − t]:

V (x, t) = sup
u∈Ut+δt

∫ t+δ

t

L
(
xu
x,t(τ),u(τ), τ

)
dτ + sup

ũ∈UTt+δ

∫ T

t+δ

L
(
xũ
x̃,t+δ(τ), ũ(τ), τ

)
dτ , (2.16)

with x̃ := xu
x,t(t + δ). Applying (2.15) to the second term in (2.16) leads to the integral

statement of the dynamic programming principle:

V (x, t) = sup
u∈Ut+δt

∫ t+δ

t

L
(
xu
x,t(τ),u(τ), τ

)
dτ + V

(
xu
x,t(t+ δ), t+ δ

)
. (2.17)

Assume for now that V is everywhere differentiable. Taking the limit of (2.17) as δ → 0,
we may then write the differential statement of the dynamic programming principle, namely
the partial differential equation:

0 = ∂tV + max
u∈U

L(x, u, t) +∇xV · f(x, u, t) , (2.18a)

with ∂t representing the partial derivative with respect to time and ∇x denoting the gra-
dient with respect to the state. This has become known as the Hamilton-Jacobi-Bellman
(HJB) equation, where the term L(x, u, t) + p · f(x, u, t) =: H(x, p, u, t) is the Hamiltonian
and H∗(x, p, t) := maxu∈U H(x, p, u, t) is the optimal Hamiltonian. If the value function is
everywhere differentiable, it is the solution to the terminal-value problem defined by (2.18a)
and the terminal condition

V (x, T ) = M(x), ∀x ∈ Rn . (2.18b)

The above optimal control problem, which has a cumulative (integral) term and a terminal
term, is known as a Bolza problem. Problems with only the cumulative term L are known as
Lagrange problems, and those with only the terminal term M are known as Mayer problems.8

Table 2.2 summarizes the Hamilton-Jacobi dynamic programming equation corresponding
to each of these classical types of optimal control problems.

The dynamic programming principle can also be applied to discrete-time problems. In
this case, it takes the form an algebraic equation simply known as the Bellman equation (or
“Bellman backup”). Table 2.3 summarizes the Bellman equation for Mayer, Lagrange, and
Bolza problems.

8It is not hard to show, however, that any optimal control problem can be transformed into a Mayer
(terminal-cost) problem by introducing an additional state variable that keeps track of the evolution of the
original objective; the new objective can then simply be set to equal this state variable at the final time.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 21

Objective Hamilton-Jacobi-Bellman equation

Mayer M
(
x(T )

) −∂tV = max
u∈U
∇xV · f(x, u, t)

V (x, T ) = M(x)

Lagrange

∫ T

0

L
(
x(τ),u(τ), τ

)
dτ

−∂tV = max
u∈U

L(x, u, t) +∇xV · f(x, u, t)

V (x, T ) = 0

Bolza

∫ T

0

L
(
x(τ),u(τ), τ

)
dτ +M

(
x(T )

) −∂tV = max
u∈U

L(x, u, t) +∇xV · f(x, u, t)

V (x, T ) = M(x)

Table 2.2: Dynamic programming principle for classical control problems in continuous time.

Objective Bellman equation

Mayer M
(
xK
) V k

(
xk
)

= max
u∈U

V k+1
(
xk+1

)
V K(xK) = M(xK)

Lagrange
K∑
k=0

Lk
(
xk, uk

) V k
(
xk
)

= max
u∈U

Lk(xk, uk) + V k+1
(
xk+1

)
V K(xK) = 0

Bolza
K∑
k=0

Lk
(
xk, uk

)
+M

(
xK
) V k

(
xk
)

= max
u∈U

Lk(xk, uk) + V k+1
(
xk+1

)
V K(xK) = M(xK)

Table 2.3: Dynamic programming principle for classical control problems in discrete time.

The differentiability assumption we introduced when intuitively deriving the Hamilton-
Jacobi-Bellman equation constitutes a stringent limitation. Even in the seemingly benign
Bolza case (2.15), there is no reason to suppose that V should be everywhere differentiable
(or even continuous, unless additional assumptions are placed on M : Rn → R). As we will
see later on, safety analysis typically results in value functions whose derivatives are not
well-defined everywhere.

The existence of points of non-differentiability in certain value functions should come as
no surprise, since system trajectories themselves may not be smooth (recall that Carathéodory
solutions, while continuous, only satisfy the dynamical ordinary differential equation at al-
most all times, which allows sharp deflections). Fortunately, there is an extended solution
concept for partial differential equations that can be thought of as analogous to Carathéodory
solutions for ordinary differential equations.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 22

2.2.2 Viscosity Solutions

In the 1980s, mathematicians Crandall and Lions [33] introduced a novel solution concept
for Hamilton-Jacobi partial differential equations, which they named a viscosity solution.
Remarkably their solution concept did not only extend the classical one to allow non-
differentiability, but it could be proved that it in fact provided the desired result for problems
in both physics and optimal control. This immediately captured the attention of many math-
ematicians in the field. In particular, Evans and Souganidis [34] provided a relatively simple
proof that the viscosity solution to (2.18) was in fact the value function (2.15).

The key idea behind a viscosity solution is to relax the global differentiability condition.
A viscosity solution may not be differentiable everywhere9: at all those points where it is
differentiable, the viscosity solution satisfies the partial differential equation in the classical
sense; at points of non-differentiability, it satisfies a relaxed condition that can be seen as a
subdifferential and superdifferential property [35].

Formally, we introduce the following definition.

Definition 2.1 (Viscosity solution). Consider a continuous Hamiltonian H : Rn × Rn ×
[0, T ] → R and a bounded, uniformly continuous terminal value M : Rn → R. A bounded,
uniformly continuous function V : Rn × [0, T ] → R is a viscosity solution of the Hamilton-
Jacobi partial differential equation

∂tV +H(x,∇xV, t) = 0 ∀(x, t) ∈ Rn × (0, T ) (2.19a)

V (x, T ) = M(x) ∀x ∈ Rn (2.19b)

if it satisfies (2.19b) and the following two conditions:

(a) Subsolution. For any continuously differentiable function ψ ∈ C1(Rn × (0, T )), if
V − ψ attains a local maximum at (x0, t0) ∈ Rn × (0, T ), then

∂tψ +H(x0,∇xψ, t0) ≥ 0 . (2.20)

(b) Supersolution. For any continuously differentiable function ψ ∈ C1(Rn × (0, T )), if
V − ψ attains a local minimum at (x0, t0) ∈ Rn × (0, T ), then

∂tψ +H(x0,∇xψ, t0) ≤ 0 . (2.21)

Intuitively, the subsolution and supersolution conditions state that, anywhere we can
locally “touch” V—from above and from below respectively—with continuously differentiable
functions ψ, these functions must locally satisfy the Hamilton-Jacobi equation relaxed as a
one-sided inequality.

9In practice, our solutions will usually be differentiable almost everywhere, i.e. except for on a set of zero
Lebesgue measure. This will typically correspond to hypersurfaces on which the value function presents a
“ridge”.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 23

Note that anywhere where V itself is continuously differentiable, we may always choose ψ
in (2.20) and (2.21) so that locally ψ = V , and therefore it must be that V locally satisfies the
Hamilton-Jacobi inequality in both directions, that is, it must satisfy the Hamilton-Jacobi
equation in the classical sense. This means that the viscosity solution is only “exempt” from
satisfying the Hamilton-Jacobi equation at points where it is not continuously differentiable.

Crandall, Evans, and Lions also showed in 1984 [35] that viscosity solutions can be equiv-
alently characterized through properties of the superdifferential and subdifferential of V , as
defined below. Readers familiar with these concepts, may find that this alternative charac-
terization provides useful additional intuition on viscosity solutions.

Definition 2.2 (Superdifferential and subdifferential). Let V : Rm → R and z0 ∈ Rm. The
superdifferential of V at z0 ∈ Rm, denoted D+V (z0), is the set

D+V (z0) :=
{
p0 ∈ Rm : lim sup

z→z0

(
V (z)− V (z0)− p0 · (z − z0)

)
|z − z0|−1 ≤ 0

}
.

Similarly, the subdifferential of V at z0 ∈ Rm, denoted D−V (z0), is the set

D−V (z0) :=
{
p0 ∈ Rm : lim sup

z→z0

(
V (z)− V (z0)− p0 · (z − z0)

)
|z − z0|−1 ≥ 0

}
.

That is, any element p0 of the superdifferential D+(z0) defines an affine function ψp0(z) :=
V (z0)+p0 · (z−z0) that locally stays above V around z0; conversely, the corresponding affine
function ψp0(z) for any element p0 of the subdifferential D−V (z0) will locally stay below V
around z0.

We then have the following characterization (see [35], Theorem 1.1 for its proof).

Proposition 2.1 (Alternative characterization of viscosity solutions). A bounded, uniformly
continuous function V : Rn × [0, T ] → R is a viscosity subsolution of the Hamilton-Jacobi
partial differential equation (2.19a) if, and only if,

s+H(x, p, t) ≥ 0 , ∀(p, s) ∈ D+(x, t) . (2.22)

Similarly, V is a viscosity supersolution of (2.19a) if, and only if,

s+H(x, p, t) ≤ 0 , ∀(p, s) ∈ D−(x, t) . (2.23)

In this characterization, the superdifferential set can be seen as inducing a family of
continuously differentiable (affine) functions that locally “touch” V form above, determining
whether it meets the subsolution condition. The subdifferential set similarly defines a family
of affine functions “touching” V from below, thus determining whether V is a supersolution.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 24

Example 2.2. Recall the controlled system ẋ = u, x ∈ R, u ∈ [−1, 1] from Example 2.1,
and consider the problem of minimizing the terminal cost M(x) := |x| after a time
interval [0, T ]. Clearly an optimal policy is to drive the system towards the origin as
quickly as possible and, if reached, keep it there. It is straightforward to check that the
corresponding value function V : Rn × [0, T ]→ R is

V (x, t) = max{0, |x| − (T − t)} .

This function is not differentiable along the lines x = ±(T − t). However, it satisfies the
appropriate Hamilton-Jacobi-Bellman partial differential equation

∂tV + min
u∈[−1,1]

∇xV · u = 0

V (x, T ) = |x|

in the viscosity sense (in fact, it is the only continuous function that does [34]). We
can check this by trying any element (p, s) in the subdifferential of V at a point of no
differentiability and verifying that the choice of control u = − sgn(x) satisfies s+p·u ≤ 0.

The viscosity solution concept for partial differential equations (which, as we will see
in Section 2.3 and Chapter 4, can be naturally extended to variational inequalities) can be
seen as a generalization analogous to Carathéodory’s solution concept for ordinary differen-
tial equations, in that it relaxes the global differentiability requirement. In fact, very much
like Carathéodory solutions, viscosity solutions allow us to reason about problems involv-
ing dynamical systems in which control inputs may vary in non-smooth manners leading to
trajectories that may not be differentiable everywhere but are nonetheless uniquely defined.
This will be particularly important for safety analysis, where it is often the case that opti-
mal control signals often switch instantaneously between extreme values, something that is
commonly known as bang-bang control. The zero-measure sets where optimal trajectories
may change direction abruptly are known as singular surfaces, and their study is central to
many problems in optimal control and, especially, differential games.

While optimal control provides us with a solid theoretical foundation on which to build
our analysis, it does not by itself incorporate a way to reason about systems with mul-
tiple inputs, whether representing multiple agents or system uncertainty in the form of
a disturbance. For this we require dynamic game theory and, in the particular case of
continuous-time analysis, differential game theory. As we will see, the existence of multiple
agents introduces important subtleties into the analysis related to the information structure,
namely the variables that agents are able to observe over time as they make decisions.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 25

2.2.3 Robust Optimal Control and Zero-Sum Differential Games

Robust optimal control broadly considers the problem of maximizing or minimizing the
worst-case value of a certain functional V given by the evolution of a dynamical system
under some bounded model uncertainty. Therefore, we find ourselves in the differential
inclusion setting (2.6), with a single controller using its input u to control the system in
the face of an unknown but bounded disturbance d (in this exposition we will assume that
the bound d ∈ D is uniform, and will extend the analysis to state-dependent bounds in
Chapter 6). Since the control strategy must guarantee that a certain outcome (or better)
will be achieved for any disturbance d ∈ D, it is appropriate to reason about the worst-case
outcome resulting from an adversarial realization of the uncertainty. This means that we are
faced with a zero-sum differential game, with the controller and the disturbance as opposing
players.

A pioneer in the field of differential games was Rufus Isaacs, who worked at the RAND
corporation in the 1950s, during the same critical years as Richard Bellman. While Bellman
is generally credited with the invention of dynamic programming for optimal control with
a single decision-maker, Isaacs was independently working on its two-sided counterpart, in
which two opposing decision-makers compete over the evolution of a controllable dynamical
process [36]. Isaacs initial interest was centered around what he referred to as games of
pursuit [37], in which one player is trying to move in such a way as to capture the other in a
given environment, or more generally to drive the state of the system into a certain region,
while the other tries to prevent this. His seminal work on pursuit-evasion games lay down
the foundations of modern control-theoretic safety analysis.

In his work, Isaacs referred to games with a binary outcome (e.g. whether or not the
pursuer captures the evader, or whether or not a safety violation occurs) as games of kind.
The outcome here can only be one of two categories, and victory is a clearly defined concept:
one player wins, the other loses. Conversely, other games may have the players attempting
to make a scalar outcome as high or as low as possible (e.g. what is the closest distance
reached between the pursuer and the evader, or how close does the system come to violating
the constraints). These games of degree can have a continuum of possible outcomes and as a
result do not have a clear definition of winning and losing, since in general both players could
have conceivably done better or worse than they did. Isaacs noted that in general, a game of
kind can be implicitly encoded through a game of degree: for example, the game of whether
or not the pursuer captures the evader can be transformed into one where the pursuer is
trying to make their closest distance over time as small as possible, while the evader is trying
to keep it as large as it can; if the outcome of the game is below a specified capture radius
then the pursuer wins the game of kind, otherwise the evader wins. Importantly, the optimal
player strategies resulting from the game of degree are also optimal for the game of kind:
that is, there is no better way to ensure capture than to minimize the closest distance over
time, and there is no better way to avoid capture than to try to maximize it.

This conversion between the game of kind and the game of degree will be particularly
crucial for us, since it is precisely what will enable us to reason about safety analysis and



CHAPTER 2. BACKGROUND AND PRELIMINARIES 26

reach-avoid problems, as we will see in Section 2.3.

Information, Strategies, and Value of the Game

We will consider a compact time interval [0, T ] for the game. Under this finite-horizon
setting, optimal player strategies will typically be time-dependent, as will the outcome of
the game from a given starting state. In Section 2.3, we will extend the horizon letting
T → ∞ to obtain the time-independent solution to our original safety problem. Therefore,
let UT

t and DT
t contain all corresponding measurable input signals on the interval [t, T ] for

any t ∈ [0, T ]. The outcome of the game can be formalized as a functional

V : Rn ×
⋃

t∈[0,T ]

(
{t} × UT

t × DT
t

)
→ R (2.24)

assigning to each initial condition (x, t) ∈ Rn × [0, T ] and input signals u ∈ UT
t ,d ∈ DT

t a
scalar value representing the quantity of interest that our controller is trying to maximize
(or, depending on the problem, minimize).

As we saw in Section 2.1, reasoning directly in terms of feedback strategies can be prob-
lematic regarding the theoretical existence of trajectories. To avoid these issues, our analysis
of solutions will be grounded in the notion of measurable time signals u ∈ UT

t , d ∈ DT
t .

Our first attempt at defining the differential game may be to have the controller and the
disturbance pick their input signals trying to make the outcome as positive or as negative
as possible. We may then write:

sup
u∈UT0

inf
d∈DT0

V(x, 0,u,d) . (2.25)

Upon closer inspection, this formulation is not the most appropriate for most robust optimal
control problems of interest. As discussed in Section 2.1, open-loop control is rarely used in
automation systems, given the central importance (and common availability) of feedback.
The optimization encoded by (2.25) implies that the controller must first commit to an
input signal u : [0, T ] → U , and then the disturbance chooses its own d : [0, T ] → D, fully
accounting for the input u chosen by the controller. This open loop information structure
puts the controller in an overly difficult situation, since it does not have the ability to adapt
its control input once the system begins to evolve. The disturbance has all of the necessary
information when making its decision, whereas the controller has none. This conservative
information pattern is only appropriate in scenarios where a fixed control input signal needs
to be specified in advance of system deployment, or where state feedback information will
be unavailable or intermittent at execution time.

In most practical cases, we would like to allow the controller to use something akin to
a feedback policy, that is, it should be able to choose its input for any given time based
on knowledge of how the system state will have evolved by then. Following [34, 38–40], we
define the following strategy information pattern, which is central to robust optimal control
and safety analysis.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 27

Definition 2.3 (Non-anticipative strategies.). The set of non-anticipative strategies DT
t for

the disturbance is the collection of maps δ : UT
t → DT

t such that the dependence of δ[u] on u
is causal, that is:

DT
t = {δ : UT

t → DT
t | ∀s ∈ [t, T ], ∀u(·), û(·) ∈ UT

t ,(
u(τ) = û(τ) a.e. τ ∈ [t, s]

)
⇒
(
δ[u](τ) = δ[û](τ) a.e. τ ∈ [t, s]

)
} .

The above can be intuitively read as: δ cannot preemptively start adapting to a change
in u until such a change begins. With this information pattern, we can now formulate our
differential game as:

V −(x, t) := inf
δ∈DTt

sup
u∈UTt

V
(
x, t,u, δ[u]

)
, (2.26)

where V − is known as the lower value of the game. At first glance it may seem like we
are now inverting the order of play and letting the controller be the one adapting to the
disturbance. Note, however, that the disturbance is no longer choosing a control signal but
a mapping from controller signals to disturbance signals; therefore, while the disturbance is
choosing δ before the controller chooses u, ultimately d = δ[u] will still depend on u. In
fact, had we not restricted D to only include non-anticipative mappings, the formulations
in (2.25) and (2.26) would be exactly equivalent, with d arbitrarily adapting to u.

Restricting the disturbance’s information about the choices of the controller in this
way has an important interpretation that highlights its connection to feedback control.
The information structure in (2.26) implies that any prefix of the controller’s input signal
u1 : [0, t1)→ U determines (almost everywhere) the disturbance’s response for that interval
d1 : [0, t1)→ D (which cannot depend anticipatively on future values taken by u). Since
there are only two inputs to the system, and given the existence and uniqueness results in
Section 2.1, these two signals uniquely determine the trajectory xu1,d1

x,0 on any interval [0, t]

for t ∈ [0, t1); further, continuity of state trajectories grants xu1,d1

x,0 (t1) = limt→t−1
xu1,d1

x,0 (t).
Thus, because u can be chosen as a function of δ, the controller is effectively allowed to
choose its input u(t1) at each t1 ∈ [0, T ] informed by the current state xu1,d1

x,0 (t1), as well as
the history of previous states and inputs.

This information structure for the controller is denoted closed-loop perfect-state feedback.
As we will see in Section 2.3 and Chapter 3, in the class of problems we are considering,
past history is in fact irrelevant to the decision-making of players provided the current state
is known, and thus optimal solutions using memoryless perfect-state feedback always exist.
While we are ultimately concerned with the design of feedback controllers that robustly
ensure properties like safety and liveness, the mathematical machinery of differential games
built on non-anticipative strategies allows us to ensure that Carathéodory trajectories and
the resulting value functions are well-defined.

By allowing the disturbance to use non-anticipative strategies, we are still giving it the
instantaneous informational advantage in the game, since at each instant it can adapt its
control input to the one declared by the controller. This is consistent with the notion that
even the instantaneous effect of our control input on the system may be uncertain (say, if we



CHAPTER 2. BACKGROUND AND PRELIMINARIES 28

have multiplicative uncertainty affecting the gain of our actuators), and we need to protect
against the worst-case realization.

In principle, we could have given this advantage to our controller instead; this would not
be realistic in most control applications, since the value of the disturbance can usually only
be determined after the fact. Defining the analogous set UTt of non-anticipative strategies
υt : DT

t → UT
t for the controller would result in what is known as the upper value of the

game:
V +(x, t) := sup

υ∈UTt
inf

d∈DTt

V
(
x, t,υ[d],d

)
, (2.27)

From (2.26) and (2.27) it follows that V −(x, t) ≤ V +(x, t) everywhere. In those cases in
which equality holds globally, the game is said to “have value” and V (x, t) := V +(x, t) =
V −(x, t) is simply referred to as the value of the game. This will in fact be the case in a large
class of dynamical systems, in which the effects of the controller and disturbance inputs are
decoupled in the dynamics. The result is that no player gains anything by instantaneously
observing the other’s current input, and as a result, the solution of the game is well-defined
by simply giving both players state feedback information. This is not particularly relevant
in robust optimal control settings, where it is not problematic to assume that in the worst
case the system will happen to evolve in the least beneficial way at each instant; however,
it becomes important in zero-sum differential games where both players are decision-making
agents implemented (or strictly speaking approximated) by physical devices.10

The Tenet of Transition and the Isaacs Equation

With this information structure in place, we can introduce the two-sided version of the
dynamic programming principle and the Hamilton-Jacobi-Bellman equation. In the 1950s,
concurrently with Bellman’s work, Rufus Isaacs identified the fundamental principle linking
optimal player decisions over time, which he named the tenet of transition [37]:

If the play proceeds from one position to a second and V is thought of as
known at the second, then it is determined at the first by demanding that the
players optimize (i.e. make minimax) the increment of V during the transition.

In the above statement, initially formulated for games of pursuit, Isaac’s use of “position”
should more generally be interpreted as “state”. In general Bolza problems, the “increment
of V ” should also be weighed with the accrued Lagrangian term during the transition.
This two-sided principle (which we often subsume today under the umbrella term “dynamic
programming”) enables us to extend the backward-time analysis of optimal control problems
to zero-sum dynamic games (and thus robust optimal control problems). The analogue of the

10In games “without value” the upper and lower values can still be used to bound the outcome of the game
where no player receives instantaneous information about each other. Concretely, each player can secure an
outcome no worse than the value of the game in which the adversary uses non-anticipative strategies, by
playing the protected strategy corresponding to that game.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 29

one-sided dynamic programming principle (2.17) for a typical differential game with Bolza
payoff

V(x, t,u,d) =

∫ T

t

L
(
xu,d
x,t (τ),u(τ),d(τ)τ

)
dτ +M

(
xu,d
x,t (T )

)
, (2.28)

is then given by

V −(x, t) = inf
δ∈Dt+δt

sup
u∈Ut+δt

∫ t+δ

t

L
(
xu
x,t(τ),u(τ), τ

)
dτ + V −

(
x

u,δ[u]
x,t (t+ δ), t+ δ

)
, (2.29a)

V +(x, t) = sup
υ∈Ut+δt

inf
d∈Dt+δt

∫ t+δ

t

L
(
xu
x,t(τ),u(τ), τ

)
dτ + V +

(
x
υ[d],d
x,t (t+ δ), t+ δ

)
. (2.29b)

for the lower and upper values of the game as defined in (2.26) and (2.27) respectively.
Taking the limit of (2.29) as δ → 0, we arrive at the Hamilton-Jacobi-Isaacs partial

differential equation:

0 = ∂tV
− + max

u∈U
min
d∈D

L(x, u, t) +∇xV
− · f(x, u, t) , (2.30a)

0 = ∂tV
+ + min

d∈D
max
u∈U

L(x, u, t) +∇xV
+ · f(x, u, t) , (2.30b)

for the lower and upper values respectively, in both cases with terminal condition

V ±(x, T ) = M(x), ∀x ∈ Rn . (2.30c)

Giving either of the players the ability to use non-anticipative strategies enables that player
to “play second” at each instant, determining the instantaneous optimization of the Hamil-
tonian H(x, p, u, d, t) := L(x, u, d, t)+p·f(x, u, d, t) as being either minimax or maximin. We
thus differentiate between the lower Hamiltonian H−(x, p, t) := maxu∈U mind∈DH(x, p, u, d, t)
and the upper Hamiltonian H+(x, p, t) := mind∈Dmaxu∈U H(x, p, u, d, t).

In the 1980s, the work by Crandall, Lions, Evans, and Souganidis [33, 34] showed that the
upper and lower values, whether or not everywhere differentiable, are the unique viscosity
solutions to the appropriate version of (2.30). An important consequence of the uniqueness
property is that whenever the minimax and the maximin in (2.30) coincide for each (x, t),
or equivalently when the upper and lower Hamiltonians are identical, the upper and lower
values must also be equal, and therefore the game has value (under feedback-only strategies).
This is known as Isaacs’ condition. Importantly, Isaacs’ condition automatically holds in all
problems where the different control inputs are decoupled in the dynamics f and have no
coupling in the Lagrangian payoff L.

The analogous relation holds true in discrete-time dynamic games by giving one of the
players the informational advantage at each discrete time step. Therefore, the dynamic pro-
gramming relations summarized in Tables 2.2 and 2.3 for classical optimal control problems
can be readily extended, both in continuous and discrete time, by replacing the maximization
by a minimax or maximin as appropriate. As we will see in Section 2.3, zero-sum differential
games with a different payoff class are central to safety analysis, as well as other problem
specifications such as reach-avoid conditions.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 30

2.2.4 Nonzero Sum Dynamic Games

We finally turn our attention to problems with multiple players, each with an associated
payoff

Vi : Rn ×
⋃

t∈[0,T ]

(
{t} ×

∏
i∈I

UT
i,t × DT

t

)
→ R , (2.31)

which maps an initial condition (x, t) and input signals (ui ∈ UT
i,t)i∈I ,d ∈ DT

t to a scalar value
encoding the quantity that the player in question is interested in maximizing (minimizing)
as the system evolves under dynamics (2.3).

There are a variety of possible equilibrium solutions that can be defined for this general
class of games (see [41] for a comprehensive reference). Our focus in this dissertation will be
on (closed-loop) feedback Stackelberg (leader-follower) information structures [42, 43], which
assign a well-defined ordering of players (without loss of generality, we assume this ordering
corresponds to the player index i = 1, . . . , N), such that player i has knowledge of the inputs
chosen by each player j < i at the time of choosing input ui.

The nonzero-sum games that we will be working with in Part II of this dissertation will
be formulated in discrete time. We will be interested in finding optimal (equilibrium) player
strategies of the form

γi : Rn ×
∏
j<i

Uj × [0, t]→ Ui . (2.32)

This leads to a nested application of the dynamic programming principle, where each player i
considers the rational response of following players (j > i) to every candidate input ui. In
general this rational response may not be unique, since a follower may be indifferent between
multiple inputs; crucially, however, these inputs may have arbitrarily different consequences
for the leader, which means that the leader will usually need to consider the worst rational
response from each following player or alternatively use a quantal response model to reason
about the probabilities of different follower choices. The complexity of solving these games
generally suffers from combinatorial explosion, making it challenging to compute solutions
for dynamic games with even a modest number of players.

In Chapter 8, we will introduce a two-player game-theoretic analysis using a quantal
response model to reason about human decisions in the strategic context of driving. Other
results in Chapter 7 approach real-time reasoning with multiple agents at the cost of eschew-
ing the full game-theoretic treatment.

2.3 Safety Analysis

Safety-critical systems are those in which certain outcomes are extremely severe and essen-
tially deemed unacceptable by the designers, users, or society at large. An example of this
are civil aircraft, where substantial effort goes into certifying safety (or in the aerospace jar-
gon airworthiness) of all critical components and the aircraft as a whole. This does not mean
that the system will never fail, an impossible standard to uphold. Rather, safety analysis



CHAPTER 2. BACKGROUND AND PRELIMINARIES 31

enforces that the system will not be built in a way that makes failures possible under any
reasonably expectable conditions. Importantly, safety-critical specifications are treated as
hard constraints within the context of the system’s design and operation, and not as merely
desirable features that can be traded off with other objectives like time, efficiency, etc.

Given a mathematical model of a system’s dynamics and a quantification of its associated
uncertainty, safety analysis seeks to provide formal statements about whether—or with what
probability—it is possible to prevent a specified set of critically undesirable outcomes, and
what is the appropriate control strategy to ensure this.

Control-theoretic safety analysis takes in a controlled, possibly uncertain dynamical sys-
tem

ẋ = f(x, u, d, t) , (2.33)

together with a specification of the set of failure states F ⊂ Rn, and attempts to enforce the
safety condition for the evolution x(·) of the state over time:

x(t) 6∈ F ∀t ≥ t0 . (2.34)

Depending on the class of uncertainty, we may also pose the problem probabilistically. Fol-
lowing the discrete-time formulation as in (2.5), we may seek to enforce

P
(
∃k ≥ k0 : xk ∈ F

)
≤ pmax , (2.35)

for some threshold probability pmax ∈ [0, 1].
It is important to stress that both robust and probabilistic guarantees are contingent

on assumptions about the nature and structure of the uncertainty. In the robust case, all
guarantees are built on d being bounded by D (or D̂(x) in the case of state-dependent
uncertainty); in the probabilistic case, all guarantees rest on d being drawn from a dis-
tribution Pd. Whether these bounds or distributions are directly specified by the system
designer or learned automatically from data (through further structural assumptions that
enable generalization from a finite set of observations), the practical assurances provided by
these theoretical guarantees may cease to apply to the real system when its behavior fails to
match the expected structure.

Finally, observe that (2.34) is not a condition about stability. Dynamic stability is neither
a necessary nor a sufficient condition for safety understood as guaranteed avoidance of failure
states.

This section will cover the fundamental concepts in safety analysis primarily from the
point of view of robust optimal control and Hamilton-Jacobi reachability analysis, which will
be used extensively in Chapters 3–6. Most of the key concepts have well-defined probabilistic
counterparts through stochastic reachability. We will not be discussing these in detail, but
direct the interested reader to [44]. A probabilistic safety condition in the form of (2.35)
will be used in Chapter 7 when dealing with probabilistically quantified uncertainty about
human motion.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 32

2.3.1 State Constraints and Reachability Analysis

The central specification in the safety verification problem is the partition of the state space
Rn into the failure set F ⊂ Rn, containing all states that are deemed unacceptable for the
system, and the constraint set K := F c, where the system is therefore required to remain at
all times during its operation. While the constraint and failure set are always (by definition)
complements of each other, it is helpful to refer to both of them explicitly, and we will hence
maintain the notation for both K and F .

In the safety analysis that we will conduct in this dissertation, the constraint set K is
assumed to be topologically closed (and therefore the failure set F is open); we will be
making no further assumptions, e.g. regarding boundedness, connectedness, convexity, etc.
This means that we can define an arbitrary subset of the state space as the constraint set,
with the convention that if a state x is exactly on the boundary ∂K then it is not considered
to be in violation of the constraint. In our exposition here, we will be considering a static
constraint set and time-invariant dynamics. In Chapter 3, we will lift this restriction and
consider safety analysis with time-varying dynamics and constraints.

Let the uncertain dynamics of the system be given by a differential inclusion in the form
of (2.6) with a single control input and no time-variance, that is,

ẋ ∈ F (x, u) := {f(x, u, d), d ∈ D} . (2.36)

The safety condition (2.34) of a dynamical system is closely related to the notion of
reachability. Given a specification of the failure set F , we would like to characterize the set
of all starting conditions x ∈ Rn from which the system state may eventually be driven into
the failure set F in spite of the controller’s efforts to prevent this. This is called the backward-
reachable set11 (BRS) of F (written R(F)), because it contains all initial conditions that
can be reached “in backward time” from states in F .

Defining a backward reachable set for a system with control and disturbance inputs
requires specifying or otherwise characterizing these inputs. We will therefore start with
the simpler case of an autonomous system, in the dynamical systems theory sense, that
is, a time-invariant system with no exogenous control or disturbance inputs (ẋ = f(x)).
This can also be thought of as the result of specifying a particular feedback control policy
and analyzing the resulting closed-loop dynamics, which are now merely state-dependent:
fπ(x) := f(x, π(x)).

Definition 2.4 (Backward-reachable set). The backward-reachable set R(T ) of a set T ⊆ Rn

under the autonomous dynamical system ẋ = f(x) is the set of initial states x ∈ Rn from
which the state trajectory will reach T at some future time.

R(T ) := {x ∈ Rn : ∃t ≥ t0,xx,t0(t) ∈ T } . (2.37)

11Some authors prefer the term backward-reachable tube to distinguish this set from the set of initial
conditions for which the state will be driven to F at an exact time, rather than any future time. In this
dissertation, we will use the backward-reachable set terminology, making any necessary clarifications explicit.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 33

In this general context, T ∈ Rn is often referred to as the target set. When there is a
single input to the dynamics and we seek to find all the states from which the system could
be driven into T , or conversely only the states from which the system cannot be steered clear
of T , it makes sense to speak of maximal and minimal backward-reachable sets respectively.
However, if there are two control inputs with opposite intent, in this case our best-effort
controller accounting for the worst-case disturbance, the notion of maximal and minimal
becomes ambiguous. Instead, we will try to use an intuitive and easy to remember naming
convention by adopting the point of view of the controller guarding against all possible
realizations of the disturbance.

Definition 2.5 (Enforceable backward-reachable set). The enforceable backward-reachable
set R(T ) of a set T ⊆ Rn under the uncertain dynamics (2.36) is the set of initial states
x ∈ Rn from which for every non-anticipative disturbance strategy δ : U → D there exists a
measurable control signal u ∈ U that can steer the system trajectory into T at some future
time.

R(T ) :=
{
x ∈ Rn : ∀δ ∈ D,∃u ∈ U,∃t ≥ t0,x

u,δ[u]
x,t0 (t) ∈ T

}
. (2.38)

The enforceable backward-reachable set is typically useful when studying liveness, that is,
the controller’s ability to complete a desired task; it is not particularly useful in quantifying
the safety condition (2.34), where we are trying to avoid reaching a certain target set, namely
the failure set. For this, the following, converse definition is directly applicable.

Definition 2.6 (Inevitable backward-reachable set). The inevitable backward-reachable set
R(T ) of a set T ⊆ Rn under the uncertain dynamics (2.36) is the set of initial states x ∈ Rn

from which there exists a non-anticipative disturbance strategy δ : U → D such that no
measurable control signal u ∈ U can prevent the system trajectory from reaching T at some
future time.

R(T ) :=
{
x ∈ Rn : ∃δ ∈ D,∀u ∈ U,∃t ≥ t0,x

u,δ[u]
x,t0 (t) ∈ T

}
. (2.39)

The order of quantifiers in the above definitions is important, and may seem unintuitive
at first, since it may appear as though by allowing u to be chosen after δ we are giving the
controller an unrealistic advantage over the disturbance; this is not the case. Analogously
to the treatment with differential games in Section 2.2, the disturbance is not committing
to an input signal but to a mapping that will still allow it to adapt to the controller’s input
signal; the restriction that we impose is that this mapping must be non-anticipative (causal).
Given this, we must force the disturbance to choose its non-anticipative strategy before the
control signal has been declared; failure to do so would allow the disturbance to “cheat” and
choose the mapping u 7→ d already accounting for what u will be at all times, which would
amount to letting it choose its signal d with full prior knowledge of the entire u. Therefore
the order of quantifiers prevents the disturbance from effectively adapting ahead of time to
inputs that the controller has not yet provided.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 34

When applied to the physical systems that we are interested in analyzing, these definitions
effectively mean that from any state x ∈ R(T ) (respectively x 6∈ R(T )) we can construct a
feedback control policy that, for all possible realizations of the dynamic uncertainty, guides the
state to the target T (or, respectively, keeps it away from T ). While the rigorous definitions
and mathematical treatment (cf. [41, 45]) are formulated in terms of measurable signals and
non-anticipative strategies in order to avoid the possibility of mathematical artifacts of the
kind of Example 2.1, it will be useful to keep in mind the connection to robust state feedback,
since ultimately our goal is the implementation of safety-preserving controllers.

The following result sheds some light on this connection by establishing a sufficient con-
dition for the system state to be inside the enforceable backward-reachable set or outside the
inevitable backward-reachable set based on the existence of the appropriate, well-behaved
feedback control policy.

Proposition 2.2 (Sufficient feedback policy condition for backward reachability). Let there
exist a time-invariant feedback control policy π : Rn → U such that, for any measurable dis-
turbance signal d ∈ D, there is a unique (Carathéodory) state trajectory x and an associated
measurable control signal u(·) = π

(
x(·)

)
that satisfy

ẋ(t) = f
(
x(t), π

(
x(t)

)
,d(t), t

)
, a.e. t ≥ 0 ,

x(t0) = x ,

for some x ∈ Rn. Then, the following hold.

(a) If π is such that for every possible realization of the uncertainty d ∈ D, the system
trajectory starting at x eventually reaches T , then x is in the enforceable backward-
reachable set R(T ).

(b) If π is such that for every possible realization of the uncertainty d ∈ D, the system
trajectory starting at x remains outside T , then x is outside of the inevitable backward-
reachable set R(T ).

Proof. Since Carathéodory trajectories are continuous, we have that, for any d ∈ D, the state
reached by the resulting trajectory xπ,dx,t0 at any time t > t0 is xπ,dx,t0(t) = limτ→t− xπ,dx,t0(τ).
Denoting by d[t0,τ ] the restriction of d to the time interval [t0, τ ]), the control signal (by
hypothesis measurable) resulting from policy π under disturbance can be constructed as

u(t) := π
(

lim
τ→t−

x
π,d[t0,τ ]

x,t0 (t)
)
,

which, at each time t > 0 depends only on values taken by the disturbance signal on [t0, t);
at exactly t = t0, we simply have u(t0) := π(x).

Now, for any non-anticipative mapping δ : U→ D, the signal δ[u] on any interval [t0, τ ]
must be determined (almost everywhere) by the values of u on [t0, τ ], and we can therefore



CHAPTER 2. BACKGROUND AND PRELIMINARIES 35

define the corresponding “truncated” mapping δ[t0,τ ] : Uτ
t0
→ Dτ

t0
. Then, given an arbitrary

non-anticipative mapping δ, we can always construct a control signal u of the form:

u(t) := π
(

lim
τ→t−

x
π,δ[t0,τ ][u[t0,τ ]

]

x,t0 (t)
)
,

again with u(t0) := π(x). By hypothesis, the resulting trajectory x
u,δ[u]
x,t0 is well-defined and

identical to the trajectory xπ,dx,t0 for d = δ[u].
If (a) holds, then this trajectory eventually reaches the target T . This implies condi-

tion (2.38) and therefore x ∈ R(T ).
On the other hand, if (b) holds, then the trajectory remains outside of the target T for

all time, which implies condition (2.39) and thus x 6∈ R(T ).

This result falls short of a full characterization of robust reachability purely in terms
of feedback control policies, and the game-theoretic formulation remains the appropriate
analytical approach. While we may not be able to prove that such well-behaved feedback
control strategies must exist in the general case, we can use viscosity solution theory to reason
about how to construct discrete-time feedback policies that arbitrarily approach the optimal
outcome of the differential game as the time step becomes small. In Chapter 3 (specifically
in Lemma 3.3), we will obtain further insight into how appropriately-constructed control
policies of this form can robustly enforce system behavior arbitrarily close to the game-
theoretic one.

This has powerful practical implications: in reality we can never construct an instanta-
neous feedback control policy, and most controllers today are implemented on digital com-
puters, only modifying the value of the control input at a finite rate, once every control cycle.
This results in what is commonly referred to as sampled-data systems. Fortunately, the vis-
cosity solutions to the reachability problems that we are concerned with here have excellent
numerical properties, enabling accurate approximation through numerical methods as well
as near-optimal implementation by sampled-data controllers. As we will see later in this
section, Hamilton-Jacobi analysis allows us to not only compute these reachable sets as the
solution to the corresponding differential games, but also implicitly derive feedback control
policies enforcing the desired property. Throughout this dissertation, we will tend to work
with continuous-time feedback policies for simplicity—however, the corresponding results
can be extended (typically with slightly more conservative bounds) to digitally-implemented
controllers. For the interested reader, an analysis of sampled-data implementations of safety-
preserving control policies can be found in [46, 47].

By construction, then, the inevitable backward-reachable set of the failure set, that
is, R(F), contains all states from which the safety condition cannot be enforced by the
controller, and safety violations may occur under the uncertain dynamics—therefore, we
refer to R(F) as the unsafe set. Note that, by Definition 2.6, F ⊆ R(F), that is, all states
currently in violation of the safety constraints automatically imply a failure of the safety
condition (2.34). Conversely, the complement of R(F) contains all states from which there



CHAPTER 2. BACKGROUND AND PRELIMINARIES 36

exists some course of action for the controller to ensure that the system will remain in K for
all time, and is therefore called the safe set.

Definition 2.7 (Safe set). The safe set Ω of a system governed by the dynamical inclusion
(2.36) with respect to a failure set F ⊆ Rn is the set of initial states x ∈ Rn from which, for
every non-anticipative disturbance strategy δ ∈ D, there exists a control signal u ∈ U that
can keep the system trajectory outside of F for all future time.

Ω :=
{
x ∈ Rn : ∀δ ∈ D,∃u ∈ U,∀t ≥ t0,x

u,δ[u]
x,t0 (t) 6∈ F

}
. (2.40)

It can be readily checked by inspection of Definitions 2.7 and 2.6 that Ω = R(F)c. In
addition, we have that Ω ⊆ K, that is, any states from which the safety condition (2.34) can
be maintained must also necessarily satisfy the safety constraint at the current time.

The safe set Ω also has corresponding definitions in viability theory [27]. For an au-
tonomous dynamical system (i.e. one with no control or disturbance inputs), Ω is the largest
(positively) invariant set contained in K, and is referred to as the invariance kernel of the
constraint set, Inv(K). In a controlled system with no uncertainty, Ω is the largest (posi-
tively) controlled invariant set contained in K, denoted the viability kernel Viab(K). Finally,
in the general case given in (2.40), Ω is the largest (positively) robust controlled invariant
set contained in K, called the discriminating kernel Disc(K).

The positive invariance of the safe set may not be obvious at first glance, but it follows
from its definition. We can formalize this through the following proposition, formulating
robust controlled invariance in analogous game-theoretic terms as reachability and safety.

Proposition 2.3 (Invariance of the safe set). The safe set Ω is a (positively) robust controlled
invariant set under the uncertain dynamics (2.36), that is,

∀x ∈ Ω,∀δ ∈ D,∃u ∈ U,∀t ≥ t0,x
u,δ[u]
x,t0 (t) ∈ Ω, ∀t ≥ t0 .

Proof. We can prove this statement by contradiction. Suppose the safe set Ω is not in
fact a robust controlled invariant set, that is, there is some state x ∈ Ω from which some
non-anticipative disturbance strategy δ ∈ D is able to eventually drive the trajectory out
of Ω for every control signal u. Then, there exist some state x̃[u] 6∈ Ω and τ [u] > t0 for

which x
δ[u],u
x,t0 (τ) = x̃. From this x̃[u], there exists a new non-anticipative strategy δ′[u]

such that, for all subsequent control signals u′, the state will eventually reach the failure
set F . This means that we can construct a new non-anticipative strategy δ′′ such that, for
each u, it produces the disturbance signal δ[u] for all t ∈ [t0, τ [u]) (which will drive the
trajectory from x to x̃[u] 6∈ Ω) and subsequently switches to the non-anticipative strategy
δ′[u] (thereby driving the trajectory into T ). By Definition 2.7, the existence of this non-
anticipative strategy δ′′ ∈ D means that x 6∈ Ω, which is a contradiction.

This invariance property will be of central importance in the design of least-restrictive
supervisory schemes, which can allow arbitrary system behavior while on the interior of the



CHAPTER 2. BACKGROUND AND PRELIMINARIES 37

safe set but will enforce the safety-preserving action at (or near) its boundary to ensure its in-
variance and therefore keep the system from ever violating the constraints. Such supervisory
schemes can be used in combination with data-driven methods to enable safe learning-based
control, which will be the focus of Chapter 6.

It is important to insist early on the distinction between states that are safe and states
that are merely inside the constraint set. As we have seen, Ω ⊆ K, and in most systems of
practical relevance (from power grids to aircraft) the inclusion is strict, that is, there will
usually exist states that are currently violation-free but are nonetheless not safe—therefore,
it is also important to distinguish between states that are unsafe, i.e. states from which the
system may inevitably violate the constraints in the future, and failure states, which are
intrinsically in violation of the constraints. Table 2.4 summarizes the relation between the
four sets.

Failure set F ⊂ Rn All states that must be avoided.
Constraint set K = F c Contains safe and unsafe states.

Safe set Ω ⊆ K System can be robustly kept out of the failure set.
Unsafe set R(F) = Ωc System may reach the failure set despite control efforts.

Table 2.4: Failure, constraint, safe, and unsafe sets.

Consider the quadrotor in Figure 2.1 flying with the safety constraint of not colliding with
the ground. Is it safe? Surely if it is flying above the ground it is not currently in violation of
the constraint. However, what is its current vertical velocity? What is its angular attitude?
If the vehicle is currently in a fast dive, or rotated to a 90° bank angle, it may very well be
that its fate has already been sealed no matter how skillfully the pilot, human or automated,
attempts its recovery.

In many engineering problems, safety constraints such as “do not collide” can be speci-
fied and encoded by system designers without difficulty (say, “altitude must be no less than
1 cm”: K := {x : xh ≥ 0.01 m}). Once this has been done, determining whether a particular
system state satisfies these constraints is a straightforward operation. Conversely, determin-
ing whether a given state is safe is much more involved, since it requires reasoning not only
about whether the current state is violating the constraints, but also about whether future
states might; since these future states will in turn depend on what inputs our controller de-
cides to inject and how the uncertain dynamics respond, this is far from a trivial calculation.
Checking whether a state is safe and finding a suitable control policy to enforce this safety
are intimately coupled problems, as made apparent by Definition 2.7; therefore, the safety
analysis we seek to carry out is not only descriptive, but also prescriptive. Consistently, it
is useful to study the safety problem in the framework of optimal control. Our focus will be
on what has arguably been the most general and broadly applicable methodology for formu-
lating and computing safety analysis: robust optimal control through the level-set method.
We will review alternative methodologies at the end of this section.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 38

Figure 2.1: An Ascending Technologies Hummingbird quadrotor in a safe (left), unsafe
(center), and failure (right) state. From the unsafe state, there is no physically realizable
control input that can prevent a ground collision (failure) from taking place.

2.3.2 The Level-Set Approach

Before formulating our optimal control problem, we need to introduce an important math-
ematical technique that will allow us to translate relations between system trajectories and
regions of the state space into functionals that can be made amenable to optimization.
We can implicitly characterize K as the zero superlevel set of a Lipschitz surface function
g : Rn → R:

x ∈ K ⇐⇒ g(x) ≥ 0 . (2.41)

This function always exists, since we can simply choose g(x) to be the signed distance12 to
the failure set, sF(x), which is Lipschitz continuous by definition, and it is straightforward
to check that it satisfies (2.41). We often refer to g as the safety margin function.

To express whether a given trajectory ever violates the constraints, let the functional
V : Rn ×U×D→ R assign to each initial state x and input signals u, d the lowest value of
g(·) achieved by trajectory xu,d

x over all times t ≥ 0:

V
(
x,u,d

)
:= inf

t≥0
g
(
xu,d
x (t)

)
. (2.42)

This outcome V will be strictly smaller than zero if there exists any t ∈ [t0,∞) at which
the trajectory leaves the constraint set, and will be nonnegative if the system remains in

12For any nonempty setM⊂ Rm, the signed distance function sM : Rm → R is defined as infy∈M |z− y|
for points z ∈Mc and − infy∈Mc |z − y| for points z ∈M, where | · | denotes a norm on Rm.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 39

the constraint set for all of t ≥ t0. Denoting Vu,d(x) := V
(
x,u,d

)
, the following statement

follows from (2.41) and (2.42) by construction.

Proposition 2.4. The set of states x from which the system trajectory xu,d
x under given

inputs u ∈ U,d ∈ D will remain in the constraint set K at all times t ≥ 0 is equal to the
zero superlevel set of Vu,d:

{x ∈ Rn : ∀t ≥ 0, xu,d
x (t) ∈ K} = {x ∈ Rn : Vu,d(x) ≥ 0}.

Note that, while this condition looks somewhat similar to Definition 2.7, the above set is
not generally identical to Ω, since u and d here are an arbitrary pair of signals.

Proposition 2.4 allows us to analyze the safety problem as a robust optimal control prob-
lem where the controller is trying to maximize the outcome under the worst-case disturbance.
By using V we are encoding the safety game of kind through an auxiliary game of degree. Our
original formulation did not involve any preferences about how much margin was maintained
between the state trajectory and the failure set, as long as this margin never became nega-
tive. That is, the safety condition (2.34) specifies a logical property, not a scalar quantity.
In contrast, here the controller will attempt to make the outcome V as positive as possible.
Nevertheless, as we will see, the solution to the auxiliary problem can easily be translated
back into the solution to our original safety problem.

2.3.3 Hamilton-Jacobi Safety Analysis

To compute a safe set and an associated safety policy, we formulate a zero-sum differential
game whose outcome is given by the functional V

(
x,u,d

)
introduced in (2.42), negative for

those trajectories xu,d
x that at some point violate the constraints K.

In the robust safety problem, the controller seeks to maximize the outcome of the game,
while the disturbance tries to minimize it: that is, the disturbance is trying to drive the
system out of the constraint set, and the controller wants to prevent it from succeeding.

As in the differential games of Section 2.2, and consistent with Definition 2.7, we give the
disturbance the instantaneous informational advantage by allowing it to use non-anticipative
strategies δ : U→ D. The safety value of the game is then given by:

V (x) := inf
δ∈D

sup
u∈U
V
(
x,u, δ[u]

)
, (2.43)

which corresponds to the lower value introduced in Section 2.2. The following classical result
follows from Proposition 2.4.

Proposition 2.5. The safe set Ω corresponding to constraints K and dynamics (2.36) is the
zero superlevel set of the value function V :

Ω = {x ∈ Rn : V (x) ≥ 0} .



CHAPTER 2. BACKGROUND AND PRELIMINARIES 40

It has been shown that the value function for games with minimum payoff of the form
of (2.42) can be characterized as the unique viscosity solution to a variational inequality
involving an appropriate Hamiltonian [48]; an alternative formulation involves a modified
partial differential equation [49]. In a finite-horizon setting, with the game taking place
over the compact time interval [0, T ], the lower value function V −(x, t) can be computed by
solving the terminal value problem with the Hamilton-Jacobi-Isaacs variational inequality:

0 = min

{
g(x)− V −(x, t), ∂tV

−(x, t) + max
u∈U

min
d∈D
∇xV

−(x, t)f(x, u, d)

}
(2.44a)

V −(x, T ) = g(x) . (2.44b)

The safety margin g is said to act as an obstacle in the Hamilton-Jacobi-Isaacs equation,
because it inhibits the propagation of the value function through the term g(x)−V −(x, t) in
the minimum. In Chapter 3, we will prove a general double-obstacle Hamilton-Jacobi-Isaacs
equation which directly implies (2.44) as a special case.

As long as there exists a nonempty safe set in the problem, V −(x, t) becomes independent
of t inside of this set as T → ∞. We accordingly drop the dependence on t and recover
V (x) = limt→−∞ V

−(x, t) as defined in (2.43).

Definition 2.8. The optimal safe policy π∗ is the solution to the optimization:13

π∗(x) = arg max
u∈U

min
d∈D
∇xV (x)f(x, u, d) .

Policy π∗(x) attempts to drive the system to the safest possible state always assuming an
adversarial disturbance. Going forward, we will generally not be concerned with potential
existence issues of Carathéodory trajectories under π∗, since in practice (as we will more
formally establish in Chapter 3) we can always obtain well-defined trajectories arbitrarily
close to the robust optimal outcome by using discrete-time approximations of π∗ with a
sufficiently small time step.

2.3.4 Least-Restrictive Supervisory Control

As long as d ∈ D, one can allow the system to execute any desired control while in the
interior of Ω, as long as the safety preserving action π∗(x) is taken whenever the state
reaches a neighborhood of the boundary ∂Ω; the system is then guaranteed to remain inside
Ω for all time. This safety-preserving policy can be used in conjunction with an arbitrary
control policy πg(x) (typically performance-driven), to produce a least-restrictive supervisory
control scheme:

π(x) =

{
πg(x) if V (x) ≥ ε > 0 ,

π∗(x) otherwise ,
(2.45)

13 While in general the solution need not be unique, we can always choose one element of the arg max set
arbitrarily. Therefore we will assume for simplicity a policy π∗ : Rn → U uniquely mapping states to control
inputs.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 41

for some (typically small) ε > 0.

Remark 2.1. Rather than imposing the optimal safe action π∗(x), it is in fact sufficient
to project the desired πg(x) onto the set of control inputs that guarantee nonnegative local
evolution of V for all d ∈ D. However, π∗(x) results in the greatest predicted increase in
value, which is desirable under model uncertainty, as we will discuss in detail in Chapter 6.

2.3.5 Reach-Avoid Problems

Beyond the problem of reaching a target set in the state space or avoiding some failure set of
forbidden states, we may often care about defining more complex requirements by combining
safety and liveness properties. The canonical example of this are reach-avoid problems, in
which the controller is required to drive the system into a desired target set T ⊂ Rn while
avoiding a failure set F ⊂ Rn (or equivalently remaining inside a constraint set K = F c) at
all previous times.

Similarly to the safety condition (2.34), the reach-avoid condition for a state trajectory x
can be formalized as

∃τ ∈ [t, T ] | x(τ) ∈ T ∧ ∀s ∈ [t, τ ],x(τ) ∈ K . (2.46)

For an uncertain dynamical system (2.36), we can define the reach-avoid differential game
as a game of kind in which the controller will try to enforce (3.4) in spite of the worst-case
realization of the disturbance. Adopting the usual convention of equipping the disturbance
with non-anticipative strategies, we can define the controller’s victory domain (or winning
set) of starting states.

Definition 2.9 (Enforceable reach-avoid set). The enforceable reach-avoid set RA(T ,K) of
a set T ⊆ Rn under the uncertain dynamics (2.36) is the set of initial states x ∈ Rn from
which for every non-anticipative disturbance strategy δ : U → D there exists a measurable
control signal u ∈ U that can steer the system trajectory into T at some future time without
leaving K at any previous time.

RA(T ;K) :=
{
x ∈ Rn : ∀δ ∈ D,∃u ∈ U,

∃τ ∈ [t, T ] | x
u,δ[u]
x,t0 (τ) ∈ T ∧ ∀s ∈ [t, τ ],x

u,δ[u]
x,t0 (τ) ∈ K

}
.

(2.47)

Similar to the case with reachability and safety problems, it is possible to encode this
differential game through an auxiliary game of degree. We will address reach-avoid games
in more depth in Chapter 3, where we will also extend the Hamilton-Jacobi machinery to
efficiently solve such problems in time-varying settings.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 42

2.3.6 Computational Methods

The safe set and optimal safety policy (and more generally, the backward-reachable set and
reach-avoid set corresponding to an optimal control problem or differential game) can be
numerically computed through a suite of partial differential equation solvers, which can
approximate the value function to an arbitrary degree of precision, thanks to the desirable
numerical properties presented by viscosity solutions [50].

In particular, a rich suite of numerical methods have specifically been developed for the
solution of Hamilton-Jacobi equations [51–53], based on accurate approximations of spacial
and time derivatives and efficient integration schemes. We directly benefit from these in
safety and reachability computations carried out throughout this dissertation.

In addition to Hamilton-Jacobi analysis, a number of different mathematical approaches
have been proposed to compute reachable sets and perform safety verification. Certain
methods for systems with linear dynamics can be used to compute or over-approximate the
reachable set of interest through parametrized geometric representations like ellipsoids [54–
56] and polytopes [55, 57]. Many methods in this class require additional convexity as-
sumptions on the constraint or target sets—in some cases, representing them through their
support functions [55, 58].

For nonlinear dynamics, the computation of reachable sets must generally be done nu-
merically, often through grid-based methods. Some recent verification approaches based on
simulation [59] or logical solvers [60] can be used in nonlinear systems with no control input
(or with a prescribed control policy) to locally check reachability from specified initial condi-
tions. These local approaches do not compute reachable sets or lend themselves to controller
synthesis, which limits their use as prescriptive tools. Nevertheless these techniques may be-
come particularly powerful in conjunction with approaches based on approximate dynamic
programming and reinforcement learning, which prescribe best-effort control policies without
intrinsically verified properties (we will expand on this idea in Chapter 4 and then revisit it
in Chapter 10).

2.4 Learning-Based Control

Obtaining a highly accurate model of the dynamics of a physical system becomes increasingly
difficult and costly as the complexity of the system increases. Further, high-fidelity models,
even when they are available, are often too computationally intensive to reason with in real
time (an issue that we will explore in detail in Chapter 5). One approach to mitigate this
limitation is to allow the autonomous system to either maintain and improve a model of the
dynamics as it obtains data during its operation or directly adapt its decision-making using
a data-driven control policy without explicitly representing the dynamics.

Methods corresponding to these two alternatives have been widely explored in the fields of
adaptive control and, more recently, reinforcement learning (for a standard reference, see [61]
and [62] respectively). Adaptive control made the distinction between indirect methods,



CHAPTER 2. BACKGROUND AND PRELIMINARIES 43

which conducted some form of system identification to model the dynamics of the system
based on observations and subsequently used this model to make control decisions, and direct
methods, which defined an automatic scheme to adjust the parameters of a control policy
based on the data received, achieving desirable system adaptation. Reinforcement learning
analogously distinguishes between model-based approaches, which seek to refine a statistical
representation of the (discrete-time) transition dynamics to then inform the optimization of
a decision policy, and model-free approaches, which aim to directly learn a value function
or an efficient policy based on ongoing experience. The fundamental connection between
adaptive control and reinforcement learning, often overlooked today, was actually clearly
established by three of the fathers of reinforcement learning, Richard Sutton, Andrew Barto,
and Ronald Williams, during its early days [63].

2.4.1 System Identification

The problem of system identification has generated an extremely rich body of literature that
we cannot hope to cover here. Instead, we focus on a small number of central techniques
that will be used in the upcoming chapters. We stress that the field of system identification
is much broader, and direct interested readers to [64] for a modern reference and [65] for a
historical review.

Bayesian Inference

Bayesian inference is an uncertainty modeling framework that uses probability calculus to
maintain a probability distribution, known as a belief, representing a person’s or a system’s
degree of confidence in the possible values of an unknown variable in the world. What follows
is a superficial exposition of its basic functioning.

Let θ be an uncertain variable living in some measurable space Θ. We begin by specifying
a prior probability distribution P (θ) over the space Θ that captures our initial belief before
observing any evidence. We then consider a separate variable y that we can observe directly,
also in a measurable space Y . Suppose we have a probabilistic model that describes how
likely different values of y are for each possible value of θ, given by the conditional probability
distribution P (y | θ). By observing the value of variable y, we can use this information to
update our belief about the unobserved variable θ of interest by applying a fundamental
identity in probability calculus known as Bayes’ rule:

P (θ | y) =
P (y | θ)P (θ)

P (y)
, (2.48)

with P (y) the marginal probability of observing the given value of y aggregated over all
possible values of θ (this aggregation may be in the form of either a sum or an integral,
depending on the space Θ). The resulting posterior probability distribution can now be
used as a new “prior” belief with respect to additional new evidence that may be obtained
in the future. Through this process, Bayes’ rule can be applied recursively as new information



CHAPTER 2. BACKGROUND AND PRELIMINARIES 44

is acquired, leading to an incrementally refined belief about the unknown variable θ; this
iterative process is generically denoted a Bayesian filter.

Bayesian inference is a highly general method, which underlies a wide range of statistical
learning techniques. It can be used, for example, to infer parameter values of a dynamical
model from one or multiple observed state trajectories; or to maintain a belief on the evolu-
tion of the internal state of a dynamical system based on indirect observations of only some
of its state variables. In the special case of a linear dynamical system with Gaussian uncer-
tainties, this Bayesian state inference takes the form of a Kalman filter [66] (which also has
extensions to non-linear, non-Gaussian systems), and more generally it can be implemented
numerically by a sequential Monte Carlo scheme, also known as a particle filter [67].

Gaussian Process

A Gaussian process is a powerful probabilistic model that enables us to perform nonpara-
metric Bayesian inference over an unknown function. A Gaussian process can be seen as the
extension of the multivariate Gaussian distribution to the infinite-dimensional space of func-
tions. Formally, it is a random field with the special property that the value of the uncertain
function at any finite number of points is distributed as a multivariate normal distribution.
Through this property, it is possible to fully define a Gaussian process by a mean function
µ : Rn → R and a positive semidefinite covariance kernel function k : Rn × Rn → R.

Given a prior Gaussian process distribution f ∼ GP
(
µ(·), k(·, ·)

)
and a set of observations

of the value of the unknown function at finitely many points (possibly affected by Gaussian
measurement noise), Bayes’ rule can be performed implicitly to obtain a posterior Gaussian
distribution on the value of the function at one or multiple query points. In particular,
suppose we have N measurements y = [y1, . . . , yN ], observed with independent Gaussian
noise εi ∼ N (0, (σn)2) at the points X = [x1, . . . , xN ], i.e. yi = f(xi)+ εi. Then the posterior
probability of the function value at the set of query points X∗ is given by as a multivariate
normal with mean and covariance:

E[f(X∗) | y, X] = µ(X∗) +K(X∗, X)(K(X,X) + (σn)2I)−1(y − µ(X)) , (2.49a)

cov[f(X∗) | X] = K(X∗, X∗)−K(X∗, X)(K(X,X) + (σn)2I)−1K(X,X∗) , (2.49b)

where fi(X) = f(xi), µi(X) = µ(xi), and for any X,X ′ the matrix K(X,X ′) is defined
component-wise as Kik(X,X

′) = k(xi, x
′
k).

Since the infinite-dimensional operation takes place implicitly, Gaussian process inference
can be considered a kernel method. Gaussian process inference is an attractive technique due
to its nonparametric nature, which makes it highly flexible and expressive, and its ability
to handle unknown functions in a Bayesian framework, reasoning not only about estimated
values but also the degree of confidence around them. This nonparametric flexibility comes at
the price of heavy computation, since the cost of necessary matrix inversion scales (roughly)
cubically with the number of observed function values. In Chapter 6 we will apply Gaussian
processes to reason about dynamic uncertainty in a Bayesian framework and will look into
efficient computational approaches for online implementation.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 45

2.4.2 Reinforcement Learning

The field of reinforcement learning comprises a wide variety of data-driven methods by which
a system can compute approximations to the optimal value function and/or optimal policy to
an optimal control problem. While we cannot hope to do justice to the rich and burgeoning
literature in the field, we provide here a simple statement of its central formulation, drawing
connections to optimal control theory that will be useful in the coming chapters. We direct
the interested reader to [62] for a standard, recently updated reference.

Reinforcement learning is usually formulated in the discrete-time Markov decision process
framework, considering the problem of maximizing the cumulative sum of rewards of a
trajectory (Lagrange problem), exponentially discounted over time. In the simplest case
of deterministic dynamics (2.3), maintaining notation consistent with other sections, the
dynamic programming principle associated with this control problem takes the form of the
discrete-time time-discounted Bellman equation [32]:

V (x) = max
u∈U

L(x, u) + γV
(
x+ f(x, u)δ

)
, (2.50)

with γ ∈ [0, 1) the discount factor. Introducing uncertainty in the dynamics in the form of
a probabilistic transition measure (2.9), we have the expected-value Bellman equation:

V (x) = max
u∈U

L(x, u) + γ

∫
Rn
V (z) dPx(z | x, u) , (2.51)

which corresponds to the optimal control problem of maximizing the expected discounted
sum of rewards under (2.9).

Importantly, the Bellman update in the right-hand side of the two above equations induces
a contraction mapping in the space of value functions (under the supremum norm), which
implies that its successive application to any initial V will ultimately converge to the unique
solution of (2.50) and (2.51) respectively. This enables key convergence results in a number
of reinforcement learning schemes, most notably temporal-difference learning methods such
as Q-learning [68].

Reinforcement learning methods are discussed in more detail in Chapter 6, where they
are used in conjunction with a safe control framework, and again in Chapter 9, where they
are conversely leveraged to perform safety analysis.

2.4.3 Learning and Safety

It may intuitively seem as though learning-based control and safety-preserving control are
conflicting or even incompatible concepts. Indeed, a recurring concern around otherwise
promising machine-learning approaches to automated decision-making is the difficulty in
providing reliable assurances about their performance. Given that a system learning from
data may behave unpredictably depending on the data it receives, how could such a system
ever be trustworthy?



CHAPTER 2. BACKGROUND AND PRELIMINARIES 46

Our contention is that, while some learning approaches may exhibit brittle properties
when implemented on their own (in what is commonly known as end-to-end learning so-
lutions), it is possible to build intelligent systems that combine the grounding provided by
data-driven reasoning with the intelligibility of model-based analysis, achieving both better
performance and more reliable safety assurances than non-learning systems. At multiple
points in this dissertation we will provide evidence that not only can learning systems be
designed to operate with high-confidence safety assurances analogous to those we can provide
in other classes of automated systems, but the learning itself can increase the robustness and
resilience of model-based analysis, preventing some of the pitfalls that can result from the
use of inevitably fallible models. We will further show encouraging preliminary results that
suggest that the implicit exploitation of underlying structure in high-dimensional spaces may
turn certain learning-based control methods into key enablers for scalable safety analysis in
complex systems beyond the reach of existing computational approaches.

2.5 Cognitive Human Models

Many of the robotic and autonomous systems operating outside of controlled industrial
settings will need to interact with human beings: in some cases actively assisting them
with tasks, in others merely sharing the space safely. Therefore, modeling human behavior,
intent, and preferences for the purpose of predicting or actively planning these interactions
is instrumental for such systems to operate successfully. Over recent decades, the field of
cognitive science has produced substantial advancements in our understanding of human
reasoning and decision-making over. Initially spurred by the cognitive revolution during the
second half of the 20th century [69], psychologists, linguists, neuroscientists, and computer
scientists, have jointly developed and validated quantitative models of a wide range of human
cognitive processes, which robotic systems can leverage to reason about their interactions
with human beings.

In the 1970s, David Marr proposed a distinction between three complementary levels of
analysis at which human cognition and the central nervous system should be studied [70].
At the highest abstraction, the computational level attempts to identify and formalize the
problems that people are trying to mentally solve—for the cognitive process at hand, it can
be thought of as addressing the question “what does the central nervous system do and why”.
The algorithmic-representational level studies the concrete strategies by these computational
problems are tackled, including how the relevant inputs and outputs are represented and
manipulated—it can be seen as attempting to answer the question “how does the central
nervous system do what it does”. Finally, the implementational level (sometimes also referred
to as the physical or biological level) considers h encoding and transmission of information
between neurons in the nervous system—the question it is concerned with is therefore “how
does the central nervous system commit its strategies to physical mechanisms that can realize
them”.

Analysis at the computational level, then, tends to be agnostic to how people solve a



CHAPTER 2. BACKGROUND AND PRELIMINARIES 47

particular problem, a concern that falls within the algorithmic-representational level; instead,
work at this level is often interested in understanding the ideal solution to the identified
computational problem, such as Bayesian inference and expected utility maximization. This
is often a useful starting point, to the extent that evolutionary pressure would have favored
central nervous systems that roughly approximate this solution;14 studying the differences
in output between the ideal solution and actual human performance at the relevant task can
in turn shed light on algorithmic-level questions.

In this dissertation, our modeling of humans can roughly be categorized as belonging
to the computational level. This level is appropriate for robotic systems because it allows
robots to reason about human actions as driven by human preferences or intent, producing
tractable approximate predictions of human behavior in different contexts. Algorithmic-level
approaches, as well as work straddling the algorithmic and the computational [71], are likely
to become increasingly useful to human-centered autonomous systems in the coming years,
allowing more refined and accurate reasoning about human cognition and thereby improving
collaboration and interaction.

2.5.1 The Rationality Approximation

While human beings cannot possibly implement the intractable computations of an ideal
rational agent, it is still useful to model their behavior as being approximately rational, in
the sense of most often making decisions that are likely to result in outcomes that align
well with their preferences. While there is a rich body of literature studying the numerous
aspects in which this assumption is inaccurate (perhaps most notably the work by Tversky
and Kahneman on heuristics and biases in human cognition [72, 73]), rationality-based mod-
els have been widely used in economics and mathematical psychology, enabling us to gain
insights about how people behave in different contexts.

When considering all of these models for their use in robotics and autonomous systems,
it is appropriate to keep in mind George Box’s aphorism stated at the beginning of this
chapter—while the models we consider will necessarily contain simplifying assumptions, what
should ultimately guide our decision to use them is whether they can allow us to design better
systems.

2.5.2 Luce’s Choice Rule and Noisy Rationality

One particularly useful approach to reason about human decisions while acknowledging the
approximate nature of our models is by having the model be probabilistic in nature. In the
late 1950s, Duncan Luce formulated a choice axiom [74], by which the probability that a

14While it is extremely unlikely that any part of the human brain would run an implementation of Bayes
rule and use the output to find the expected utility of each available choice, it is conceivable that those of
our ancestors whose brains produced outputs far off from the “right answer” would have had worse fortune
avoiding lurking predators and poisonous berries.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 48

human would choose a particular option a in a certain pool A can be expressed as

P (a) =
ν(a)∑
ã∈A ν(ã)

, (2.52)

for some function ν : A → R. This suggest that people are likelier to make choices that are
well aligned with a particular utility model than choices that are less so—this property is
often referred to as noisy rationality. This probabilistic uncertainty can be used to subsume
the violations of this rule that we may expect due to human decisions being intrinsically
irrational in some cases; more generally, it can allow us to account for the fact that our
utility model itself will almost certainly be inaccurate, failing to reflect aspects of human
preferences that may be relevant to certain choices.

A special case of Luce’s choice rule is the Boltzman-rational decision model, where the
function ν is exponential in the modeled utility of the given option. For example, we can
model the human as choosing between multiple possible controlled state trajectories under
some utility outcome functional V .

P (u | x) =
eV(x,u)∑

u∈Au
eV(x,ũ)

. (2.53)

Alternatively we can model the human as choosing one of multiple available control actions
at each time step given a discrete-time dynamical system model. Instead of an outcome
functional, we can then use the state-action value function Q to determine the choice prob-
abilities.

P (u | x) =
eQ(x,u)∑
Au e

Q(x,ũ)
. (2.54)

In the above models, it is most common to specify a finite set of choices. Specifying a con-
tinuum of options is also possible; in this case, the model can be used to quantify the prob-
ability density function over human choices. However, evaluating the denominator of (2.53)
and (2.54), called the partition function, is often challenging in practice. We will be making
use of noisy rationality models to reason about human decisions in Chapters 7 and 8, where
we will also delve into how robotic systems may reason about the accuracy of these models
in light of ongoing observations of human behavior.

2.5.3 Inverse Optimal Control

The rationality-based models discussed so far rely on some definition of utility or preferences
that humans seek to realize through their decisions. A natural approach to arrive at such
a representation is by observing human behavior and seeking to find a utility function that
explains it.

This problem was initially posed by Rudolf Kalman in 1960 as inverse optimal control [75]:
if we are presented with the behavior of an agent or controller, can we find the cost function
for which this behavior is optimal? The same problem has received renewed attention in



CHAPTER 2. BACKGROUND AND PRELIMINARIES 49

the last two decades, sometimes “rebranded” as inverse reinforcement learning [76]. This
alternative name is arguably less accurate, since the goal continues to be finding the reward
function for an agent that is already executing its optimal behavior, rather than one that is
in the process of learning an optimal behavior from experience (also an extremely interesting
problem worth of research, which will unfortunately need to find a different name, since the
most natural one is now taken).

The problem is in general ill-defined, since there are typically infinitely many utility
functions that would make any given control policy optimal, and some of the solutions may
be completely uninformative (for example any constant utility function would be indifferent
to the system’s behavior and therefore make all possible policies optimal). Instead, we may
impose additional conditions on the utility function to find a unique, meaningful solution.
Examples of this include maximum-margin inverse optimal control [77], Bayesian inverse
optimal control [78], and maximum-entropy inverse optimal control [79]. The latter two take
similar approaches based on Boltzmann-rational decision-making models to reach a point
estimate or a probability distribution representing the utility function behind the observed
behavior. In Chapter 7 we will build on these techniques and extend their use to explicitly
reason in real time about their ability to accurately explain the observed human behavior.

2.5.4 Theory of Mind

An important consideration when robotic systems operate in close proximity to human beings
is how human beings will reason about the robot’s intent. By actively interacting with their
environment, robots tend to be perceived by people as agents with purpose-driven behavior,
which will in turn affect the way in which they expect to interact with these systems. Human
beings are social in nature and therefore competent at reasoning about the internal goals
and beliefs of others. This ability to represent others’ mental states is what is commonly
referred to in the psychology literature as theory of mind.15 Recent work in robotics and
neighboring fields has shown evidence that people indeed think of robots as being imbued
with agency, goals, and beliefs, and that accounting for this can enable robotic systems
to more effectively collaborate and interact with human beings, for example by generating
legible motion that facilitates human inferences about its goals [83], or by choosing task
plans that make it easy for a human collaborator to unambiguously predict the remaining
sequence of actions [84]. The scientific understanding of human theory of mind and the
existing evidence of its usefulness in robotics will serve as a basis for our proposed use of
dynamic game theory to reason about strategic interactions between robotic systems and
human agents in Chapter 8.

15Although not directly relevant to this dissertation, there is some fascinating research in the field of
developmental psychology about how human beings develop theory of mind during their very early years.
We direct interested readers to the work by Wimmer, Gopnik, Meltzoff, and their collaborators [80–82]



50

Part I

Safety Analysis for Robotic Systems



51

Chapter 3

Time-Varying Reach-Avoid Games

We cannot talk of optimal
pursuit without also speaking
of optimal evasion.

Rufus Isaacs
Differential Games, 1965

This chapter is based on the paper “Reach-Avoid Problems with Time-Varying Dynamics,
Targets and Constraints” [13], written in collaboration with Mo Chen, Claire Tomlin, and
Shankar Sastry.

This chapter introduces some foundational mathematical machinery that will be used
throughout this dissertation. In particular, it extends the existing Hamilton-Jacobi analytical
framework for time-invariant problems to problems in which the system dynamics, target
set, and state constraints may all be dependent on time. The time-dependence allowed
is almost unlimited in flexibility, except for mild technical conditions on the variation of
the dynamics and the target and constraint sets. Crucially, by building the time-varying
analysis into the backward-time propagation of dynamic programming computations, the
newly introduced Hamilton-Jacobi equation for time-varying problems can be solved with
the same computational complexity as the traditional solution to an analogous time-invariant
problem.

Dynamic reach-avoid games, which were briefly introduced in Chapter 2, have received
growing interest in recent years and have many important applications in engineering prob-
lems, especially concerning the control of strategic or safety-critical systems: in many sce-
narios, we may want to compute a control strategy for our autonomous system that will
ensure it reaches a desired region in the state space while respecting a set of constraints,
often under uncertain dynamics or in the presence of an unknown disturbance or adversary.
As we will see in Chapter 4, an important application of this problem is autonomous vehicle



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 52

trajectory planning, especially in large-scale traffic where coordination is possible in principle
but algorithmically challenging in practice.

Finding the optimal solution to the two-player zero-sum reach-avoid differential game
typically involves determining the set of states from which the attacker can successfully
drive the system to a desired target set, while keeping the state inside a specified state
constraint set at all times, in spite of the opposing actions of the defender. This set is
commonly referred to as the reach-avoid set (sometimes the capture basin) of the target
under the constraints, and it also corresponds to the victory domain (or winning set) of the
attacker. In addition to this set, it is useful and desirable to characterize the optimal control
strategies for both players. In the context of this dissertation, the optimal attacker strategies
will inform the design of our autonomous system controller; on the other hand, studying the
optimal disturbance strategies can provide useful insights about weaknesses or liabilities in
the current system design.

The mathematical formulation introduced in this chapter will be instrumental in the
development of decision-making schemes in Chapter 4, and is also highly relevant to the
safety analysis in Chapters 5–7.

Related Work

In the absence of state constraints, reachability problems involving possibly time-varying
target sets can be posed as a maximum (minimum) cost game where the players try to
optimize the pointwise minimum over time of some metric to the target. In this case, the
backwards reachable set can be obtained by finding the viscosity solution to the correspond-
ing Hamilton-Jacobi-Isaacs (HJI) equation in the form of a variational inequality: this value
function captures the minimum distance to the target that will be achieved by the optimal
trajectory starting at each point, so the reach-avoid set is characterized by the region of
the state space where this minimum future distance is equal to or less than zero. Maxi-
mum cost control problems were studied in detail in [85], and extended to the two-player
setting in [48]. While computationally intensive, Hamilton-Jacobi approaches are practically
appealing nowadays due to the availability of modern numerical tools such as [52, 53, 86],
which allow solving the associated equations for problems with low dimensionality.

If the game is played under state constraints, then the value function generally becomes
discontinuous [87], which leads to numerical issues. In the case of systems with time-invariant
dynamics, targets and constraints, the approach in [88] characterizes the reach-avoid set
through an auxiliary value function that solves a modified Hamilton-Jacobi variational in-
equality. Although the new value function no longer captures the minimum distance from
a trajectory to the target, the reach-avoid set is still given by the value function’s subzero
region. This allows to effectively turn a constrained final cost problem into an unconstrained
problem with a maximum cost.

For problems with time-varying dynamics, targets and constraints, the approach proposed
in [89] as an extension of [88] requires augmenting the state space with an additional dimen-
sion accounting for time; one can then transform time-dependence into state-dependence



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 53

and apply the above described methods to solve the fixed problem in the space-time state
space. Unfortunately, this approach presents a significant drawback, since the complexity of
numerical computations is exponential in the problem dimensionality.

Contribution

The main contribution of this chapter is an extension of the Hamilton-Jacobi reach-avoid
formulation to the case where the target set, the state constraints, and dynamics are allowed
to be time-varying, enabling computation of the reach-avoid set at no significant additional
cost relative to the time-invariant case. To this end, we formulate a new double-obstacle
Hamilton-Jacobi-Isaacs variational inequality, and prove that the zero sublevel set of its
viscosity solution characterizes the desired reach-avoid set.

We also provide a numerical scheme based on [51, 52] and implementation based on [53]
to solve the variational inequality and verify the numerical solution using a simple exam-
ple. We finish by showing that our method vastly outperforms techniques requiring state
augmentation.

Other authors have recently studied Hamilton-Jacobi equations with a double obstacle
in the context of games with imperfect information [90] and stochastic games with impulse
controls [91]. To our knowledge, however, the work presented in this chapter constitutes
the first analysis of double-obstacle Hamilton-Jacobi equations in the context of reachability
problems.

3.1 Time-Varying Reach-Avoid Games

Consider a dynamical system controlled over a time horizon [0, T ] by two agents with op-
posing objectives. As in Section 2.3.5, we will adopt the convention that one of them is our
system controller and the other an adversarial disturbance:

ẋ = f(x, u, d, t) , (3.1)

with f being bounded, uniformly continuous, and additionally Lipschitz-continuous in x.
Recall that a reach-avoid game is a game of kind in which the objective of our controller

(otherwise known as the attacker in this context), is to reach a target set T ⊆ Rn while
remaining inside a constraint set K ⊆ Rn; the worst-case disturbance (here in the role of the
defender) will act on the system to prevent the controller from succeeding whenever possible,
either by keeping the state away from the target or by driving it into a constraint violation.

In this chapter, we are interested in the case where the target and the constraint may
not be static subsets of Rn, but may instead evolve over time. In fact, we would like to
make the evolution as general as possible, so that the regions of interest may not only move
over time, but also change shape and size, split into multiple subregions, or even appear
and disappear instantly. Similar to how our formulation of safety problems and reach-avoid
games presented in Chapter 2 considered arbitrary target and constraint sets (with only a



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 54

closedness convention adopted for unambiguous level set interpretation), our aim here is to
develop an analysis that additionally allows arbitrary behavior of these sets over time.

Also similar to time-invariant reach-avoid problems, our formulation assumes that players
have perfect environment information: this implies that players know ahead of time how the
target, constraints, and system dynamics will evolve during the game. This formulation
may seem overly restrictive at first, but as we will see in future sections it enables the
treatment of a variety of interesting engineering problems. It is worth noting that an object
with uncertain motion can always be represented, using worst-case analysis, as a growing
obstacle (through its maximal forward-reachable set at each future time) or a shrinking
target (minimal forward-reachable set).

By a slight abuse of notation, we define the set-valued maps T ,K : [0, T ] ⇒ Rn which
respectively assign a target set T (t) ⊆ Rn and a constraint set K(t) ⊆ Rn to each time t ∈
[0, T ]. As usual we will adopt the convention that T (t) and K(t) are closed for all t ∈ [0, T ].
Our single requirement for these set-valued maps is that they are upper hemicontinuous.1

This requirement is not very restrictive, and allows a wide variety of target and constraint
behaviors including discontinuous changes like intermittently appearing and disappearing.
In fact, the purpose of this assumption is to extend the closedness of the target and the
constraint to the space-time domain. We can construct the space-time sets

T :=
⋃

t∈[0,T ]

T (t)× {t} , K :=
⋃

t∈[0,T ]

K(t)× {t} , (3.2)

which are then closed subsets of Rn × [0, T ] by the following standard result.

Lemma 3.1 (Closed Graph Theorem). Let M : [0, T ] ⇒ X ⊆ Rn be an upper hemi-
continuous set-valued map with Mt = Mt closed in Rn for all t ∈ [0, T ]. Then the set
M =

⋃
t∈[0,T ]Mt × {t} is closed in Rn × [0, T ]. If X is compact, the converse is also true.

The closed sets T and K can then be implicitly characterized as the subzero regions of
two Lipschitz-continuous functions l : Rn× [0, T ]→ R and g : Rn× [0, T ]→ R respectively:

x ∈ T (t) ⇐⇒ (x, t) ∈ T ⇐⇒ l(x, t) ≤ 0 ,

x ∈ K(t) ⇐⇒ (x, t) ∈ K ⇐⇒ g(x, t) ≤ 0 .
(3.3)

These functions always exist, since we can simply choose the signed distance functions
l(x, t) = sT(x, t) and g(x, t) = sK(x, t), which are Lipschitz by construction. Note that,
contrary to the convention in safety problems, reach-avoid problems define g to be negative
inside K; we thus follow the appropriate sign convention in this chapter.

1A set-valued map M : [0, T ] ⇒ Rn is upper hemicontinuous if for any open neighborhood X of Mt

there is an open neighborhood (t1, t2) of t such that Mτ ⊆ X ∀τ ∈ (t1, t2).



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 55

3.1.1 Value of the Game

The property of the state evolution that the controller and the disturbance are contending
over is the reach-avoid condition. For any given initial conditions (x, t) and input signals u,d,
this logical condition is true if the resulting state trajectory finds itself in the target set at
some future time without previously violating the constraints, that is:

∃τ ∈ [t, T ] | xu,d
x,t (τ) ∈ T (τ) ∧ ∀s ∈ [t, τ ],xu,d

x,t (τ) ∈ K(s) . (3.4)

In the reach-avoid differential game, the controller will try to make (3.4) true from each
given (x, t), whereas the disturbance will attempt to make it false. This game of kind can
be encoded by a game of degree with the following real-valued functional:

V
(
x, t,u,d

)
:= min

τ∈[t,T ]
max

{
l
(
xu,d
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
xu,d
x,t (s), s

)}
. (3.5)

The following result follows directly from (3.4) and (3.5) by construction, and is straightfor-
ward to verify by inspection.

Proposition 3.1 (Reach-avoid game of degree encoding). A system trajectory xu,d
x,t satisfies

the reach-avoid condition (3.4) if and only if the associated outcome V(x, t,u,d) is non-
positive.

∃τ ∈ [t, T ] | xu,d
x,t (τ) ∈ T (τ) ∧ ∀s ∈ [t, τ ],xu,d

x,t (τ) ∈ K(s) ⇐⇒ V
(
x, t,u,d

)
≤ 0 . (3.6)

Exploiting Proposition 3.1 through the level set approach introduced in Chapter 2, we can
analyze a problem in which the controller and the disturbance compete over the continuous
value of V , and then use its sign to determine whether or not the controller succeeds in
satisfying the reach-avoid condition.

In order to have a well-defined notion of value, we now need to specify the information
structure of the game. As in Chapter 2, we will be allowing the disturbance to use non-
anticipative strategies δ : U → D (as per Definition 2.3 in Section 2.2), thus giving it the
instantaneous informational advantage relative the controller. As we saw, this effectively
means that the controller has access to state feedback information, whereas the disturbance
can additionally observe the controller’s instantaneous input before introducing its own. This
matches our conceptualization of robust decision-making under model uncertainty: while
feedback information allows accounting for the current state of the system, the imminent
effect of a control input may not be exactly anticipated at each instant, and could happen
to be the worst possible for any given choice.

Since in this case, we have the controller trying to make the outcome of the game V as
low as possible, this information structure leads to the upper value of the game:

V +(x, t) := sup
δ∈Dt

inf
u∈UTt

V
(
x, t,u, δ[u]

)
. (3.7)



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 56

Remark 3.1 (Alternative information structures). The lower value can be defined similarly
by giving the controller the instantaneous informational advantage instead. This would rarely
be meaningful from an engineering standpoint, since disturbances are not generally measur-
able ahead of time. Instead, in some cases we may wish to retain the information structure
but reverse the optimization goals of the controller and the disturbance, namely whenever the
specified goal is to prevent a certain reach-avoid condition from being met. Finally, there will
be cases where the upper and lower values are equal to each other and there is therefore no
instantaneous informational advantage to be exploited. In this chapter, we focus our analysis
on the upper value of the game as defined by (3.7), noting that the analysis for the other
cases is analogous.

Definition 3.1 (Space-time reach-avoid set). We say that initial conditions (x, t) are in
the space-time reach-avoid set RA ⊆ Rn × [0, T ] when the system trajectory xu,d

x,t resulting
from both players acting optimally for a given information pattern reaches T (t) at some time
τ ∈ [t, T ] while remaining in K(s) at all intermediate times s ∈ [t, τ ]. In particular, when the
disturbance uses non-anticipative strategies, we have the robust space-time reach-avoid set

RA := {(x, t) ∈ Rn × [0, T ] : ∃u ∈ UT
t ,∀δ ∈ Dt,

∃τ ∈ [t, T ],x
u,δ[u]
x,t (τ) ∈ T (τ) ∧ ∀s ∈ [t, τ ],x

u,δ[u]
x,t (s) ∈ K(s)},

(3.8)

Combining Definition 3.1 with Proposition 3.1, we have the following important result.

Proposition 3.2. The robust space-time reach-avoid set of the space-time target T under
space-time constraints K is equal to the zero sublevel set of the upper value function V +:

RA = {(x, t) ∈ Rn × [0, T ] : V +(x, t) ≤ 0} . (3.9)

Proof. Let us first show that (x, t) ∈ RA⇒ V +(x, t) ≤ 0. If (x, t) is in the robust space-time
reach-avoid set, this means that for all possible non-anticipative strategies δ ∈ Dt available to
the disturbance there is some control signal u ∈ UT

t for which the state trajectory x
u,δ[u]
x,t will

eventually be in T (τ) for some τ ∈ [t, T ] while having remained in K(s) at all intermediate
times s ∈ [t, τ ]. By Proposition 3.1, this means that the outcome V(x, t,u, δ[u]) can always
be made non-positive by the controller for each choice of δ ∈ Dt made by the disturbance,
which, applying the definition of the upper value in (3.7), implies that V +(x, t) ≤ 0.

For the opposite direction, suppose that V +(x, t) ≤ 0. This means that regardless of
the non-anticipative strategy δ ∈ Dt chosen by the disturbance there will exist some control
signal u ∈ UT

t for which the outcome V(x, t,u, δ[u]) is non-positive. By Proposition 3.1 this

implies that x
u,δ[u]
x,t satisfies the reach-avoid condition. Thus, by Definition 3.1, (x, t) ∈ RA.

This proposition means that the value function encodes the optimal outcome of the reach-
avoid game. Put in Isaacs’ terms, the value of the game of degree at initial conditions (x, t) is
enough to determine which player will win the game of kind from these conditions. Therefore,



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 57

if we are able to compute the value function V +, we can use this to provide robust guarantees
on the controller’s ability to reach the possibly time-varying target T (t) while remaining
in the possibly time-varying constraints K(t), under possibly time-varying dynamics (3.1).
Further, we will see that the optimal feedback control policy implicitly obtained in the
computation of V + has prescriptive value in enforcing the reach-avoid guarantee.

Analogously to the time-varying target and constraint sets, we can define the time-varying
reach-avoid set as a set-valued map RA : [0, T ] ⇒ Rn such that

x ∈ RAt ⇐⇒ (x, t) ∈ RA ⇐⇒ V +(x, t) ≤ 0 . (3.10)

3.2 The Double-Obstacle Isaacs Equation

As we saw in Chapter 2, the value function for minimum-payoff games (which can be used to
encode safety games) can be characterized as the unique viscosity solution to a variational
inequality [92], which has commonly been referred to as a Hamilton-Jacobi equation “with
an obstacle”, due to the presence of a term that effectively saturates the propagation of the
value function. In this section, we extend the results for minimum payoff problems to the
category of problems with an outcome in the form of (3.5) (useful for encoding reach-avoid
problems), and we show that the value function is the viscosity solution to Hamilton-Jacobi
equation with two “obstacles”, one of them saturating its propagation from above and the
other from below.

3.2.1 Dynamic Programming Principle

We begin by stating the particular form of Bellman’s principle of optimality [32] (or strictly
speaking Isaacs’ tenet of transition [36]) for the problem at hand, noting that it is quite
different from the more typical relation in (2.17).

Lemma 3.2 (Dynamic Programming Principle). Let V + be the upper value defined in (3.7).
For any t ∈ [0, T ] and δ ∈ [0, T − t], the following holds.

V +(x, t) = sup
δ∈Dt+δt

inf
u∈Ut+δt

min

{
min

τ∈[t,t+δ]
max

{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}
, (3.11)

max
{
V +
(
x

u,δ[u]
x,t (t+ δ), t+ δ

)
, max
τ∈[t,t+δ]

g
(
x

u,δ[u]
x,t (τ), τ

)}}
.

Proof. By the principle of optimality (tenet of transition), an optimal trajectory x
u,δ[u]
x,t on

[t, T ] must have the property that its restriction to [t+δ, T ] for δ ∈ [0, T−t] is also an optimal
trajectory for the remaining duration of the game. Specifically, if (u, δ) is an optimal pair of



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 58

strategies on [t, T ], their restriction to [t+δ, T ] also forms an optimal pair.2 This allows us to
appropriately decompose the optimization over (u, δ) in the last of the following operations:

V +(x, t) := sup
δ∈Dt

inf
u∈UTt

min
τ∈[t,T ]

max
{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}
= sup

δ∈Dt
inf

u∈UTt
min

{
min

τ∈[t,t+δ]
max

{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}
,

min
τ∈[t+δ,T ]

max
{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}}

= sup
δ∈Dt

inf
u∈UTt

min

{
min

τ∈[t,t+δ]
max

{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}
,

min
τ∈[t+δ,T ]

max
{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,t+δ]

g
(
x

u,δ[u]
x,t (s), s

)
,

max
s∈[t+δ,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}}

= sup
δ∈Dt

inf
u∈UTt

min

{
min

τ∈[t,t+δ]
max

{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}
,

max

[
max

s∈[t,t+δ]
g
(
x

u,δ[u]
x,t (s), s

)
,

min
τ∈[t+δ,T ]

max
{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t+δ,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}]}

= sup
δ∈Dt+δt

inf
u∈Ut+δt

min

{
min

τ∈[t,t+δ]
max

{
l
(
x

u,δ[u]
x,t (τ), τ

)
, max
s∈[t,τ ]

g
(
x

u,δ[u]
x,t (s), s

)}
,

max

[
max

τ∈[t,t+δ]
g
(
x

u,δ[u]
x,t (τ), τ

)
, sup
δ̃∈Dt+δ

inf
ũ∈Ut+δ

min
τ∈[t+δ,T ]

max
{
l
(
x

ũ,δ̃[ũ]
x̃,t+δ (τ), τ

)
, max
s∈[t+δ,τ ]

g
(
x

ũ,δ̃[ũ]
x̃,t+δ (s), s

)}]}
with x̃ := x

u,δ[u]
x,t (t+ δ). Applying the definition of upper value (3.7) to the optimization over

(ũ, δ̃) on [t+ δ, T ] results in the dynamic programming equality stated in the lemma.

2Note that for any non-anticipative map δ : UTt → DTt and measurable prefix signal u1 : [t, t + δ] → U
there always exists a corresponding non-anticipative map δ2 : Ut+δ → Dt+δ such that for each mea-
surable u ∈ UTt | u(τ) = u1(τ),∀τ ∈ [t, t+ δ] it holds that δ2[u2](s) = δ[u](s),∀s ∈ [t + δ, T ], where
u2 : [t+ δ, T ]→ U is the measurable signal defined as u2(s) := u(s),∀τ ∈ [t+ δ, T ]. Therefore the restriction
of a pair of strategies (u, δ) to a time interval [t+ δ, T ] is well-defined.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 59

3.2.2 Hamilton-Jacobi-Isaacs Equation

As in the optimal control and differential game settings presented in Chapter 2, we will make
use of a Hamiltonian to translate the competition between u and δ into an infinite family
of instantaneous zero-sum games between u and d for each (x, t). We introduce the upper
Hamiltonian H+ of the reach-avoid game as

H+(x, p, t) = min
u∈U

max
d∈D

p · f(x, u, d, t) · . (3.12)

Note that the order of optimization in the upper Hamiltonian is such that the controller
“plays first” in each of these games, i.e. the disturbance’s input can be a function of the
controller’s; this is consistent with the instantaneous informational advantage given to the
disturbance. Also note that, given that f is continuous, H+ is a continuous function by the
maximum theorem.

Before stating and proving our main result, we present here a special case of important
lemma from the seminal work by Evans and Souganidis [34], which will allow us to connect
the instantaneous minimax in the Hamiltonian to the non-anticipative strategies extending
over time.

Lemma 3.3 (Hamiltonian bound integration). Let ψ : Rn × [0, T ] → R be continuously
differentiable.

(a) Suppose ψ satisfies
∂tψ(x, t) +H+ (x,∇xψ(x, t), t) ≤ −θ , (3.13)

for some θ > 0. Then there exists a sufficiently small δ > 0 such that for all non-
anticipative strategies δ ∈ Dt there exists an input signal u ∈ Ut for which

ψ
(
x

u,δ[u]
x,t (t+ δ), t+ δ

)
− ψ(x, t) ≤ −θ

2
δ . (3.14)

(b) Suppose ψ satisfies
∂tψ(x, t) +H+ (x,∇xψ(x, t), t) ≥ θ , (3.15)

for some θ > 0. Then there exists a sufficiently small δ > 0 such that there is a non-
anticipative strategy δ ∈ Dt for which, regardless of the input signal u ∈ UT

t ,

ψ
(
x

u,δ[u]
x,t (t+ δ), t+ δ

)
− ψ(x, t) ≥ θ

2
δ . (3.16)

Proof. We give here an adaptation of the proof of Lemma 4.3 in [34] due to the useful
intuition it provides for locally bounding the game outcome of a trajectory based on the
Hamiltonian. Let

Λ(x, u, d, t) := ∂tψ(x, t) +∇xψ(x, t) · f(x, u, d, t) .



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 60

(a) Assumption (3.13) means that

min
u∈U

max
d∈D

Λ(x, u, d, t) ≤ −θ < 0 .

Therefore there exists some u∗ ∈ U for which

max
d∈D

Λ(x, u∗, d, t) ≤ −θ .

Since Λ is continuous by construction, and due to the continuity of state trajectories, we
have that for a sufficiently small δ > 0 and for any signals u,d,

max
d∈D

Λ
(
xu,d
x,t (τ), u∗, d, τ

)
≤ −θ

2
, ∀τ ∈ [t, t+ δ] .

Therefore, choosing the measurable signal u(·) ≡ u∗ and any δ ∈ Dt,

∂tψ
(
xu,d
x,t (τ), τ

)
+∇xψ

(
xu,d
x,t (τ), τ

)
·f
(
xu,d
x,t (τ),u(τ), δ[u](τ), τ

)
≤ −θ

2
, ∀τ ∈ [t, t+δ] .

Noticing that the left-hand side of the inequality is the total particle derivative of ψ along
the flow f , we can integrate on the interval [t, t + δ] to obtain the upper bound (3.14),
enforceable by the controller.

(b) The reasoning here is slightly more involved than in the first part, since we need to specify
a well-defined adaptation U → D, which we will then use to construct a non-anticipative
strategy UT

t → DT
t for the disturbance. Assumption (3.15) means that

min
u∈U

max
d∈D

Λ(x, u, d, t) ≥ θ > 0 .

Therefore for each u ∈ U there exists some d∗ ∈ D for which

max
d∈D

Λ(x, u, d∗, t) ≥ θ .

Since Λ is continuous, there exists an open ball B(u, r) with r > 0 such that

Λ(x, ũ, d∗, t) ≥ 3θ

4
, ∀ũ ∈ B(u, r) .

Since U is compact, we can find a finite cover of open balls defined by centers u1, . . . , um ∈
U and their respective radii r1, . . . , rm > 0, satisfying U ⊂ B(u1, r1) ∪ . . . ∪ B(um, rm)
and chosen in such a way that

Λ(x, ũ, di, t) ≥
3θ

4
, ∀ũ ∈ B(ui, ri) ,



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 61

for d1, . . . , dm ∈ D. We can then construct the mapping φ : U → D so that

φ(u) := di if u ∈ B(ui, ri) \
i−1⋃
j=1

B(uj, rj) (i = 1, . . . ,m) .

With this, we have a well-defined instantaneous strategy φ for the disturbance, with the
property that

max
d∈D

Λ(x, u, φ(u), t) ≥ 3θ

4
,

With this in place, the remainder of the reasoning is similar to the first case. Due to the
continuity of state trajectories, we have that for a sufficiently small δ > 0 and for any
signals u,d,

max
d∈D

Λ
(
xu,d
x,t (τ), u, φ(u), τ

)
≥ θ

2
, ∀τ ∈ [t, t+ δ] .

Therefore, choosing the non-anticipative strategy δ[u](τ) := φ
(
u(τ)

)
and any u ∈ UT

t ,

∂tψ
(
xu,d
x,t (τ), τ

)
+∇xψ

(
xu,d
x,t (τ), τ

)
·f
(
xu,d
x,t (τ),u(τ), δ[u](τ), τ

)
≥ θ

2
, ∀τ ∈ [t, t+ δ] .

As before, the left-hand side of the inequality is the total particle derivative of ψ along
the flow f , so integrating on the interval [t, t+δ] gives the lower bound (3.16), enforceable
by the disturbance.

The above lemma is useful when in proofs related to viscosity solutions, since, as we saw in
Chapter 2, their definition involves Hamilton-Jacobi-type inequalities applied to continuously
differentiable functions. In addition, the constructive structure of the proof is useful for
reasoning about the practical implementation of control systems based on these theoretical
results (since in reality it is not possible to build a physical controller that instantaneously
chooses the optimal control input at every state).

The following theorem constitutes the central theoretical contribution of this chapter: it
shows that the upper value V + is the viscosity solution of a particular variational inequality
that has the form of a Hamilton-Jacobi-Isaacs equation with a double obstacle. The result
is straightforward to extend to the lower value as well, and all the proofs can be analogously
derived by simply assigning non-anticipative strategies to the minimizing player instead [13].

Theorem 3.1 (Double-Obstacle Isaacs Equation). Let f : Rn × U × D × [0, T ] → Rn be
bounded, uniformly continuous, and Lipschitz-continuous in its first variable, and suppose
that l, g : Rn× [0, T ]→ R are Lipschitz continuous functions. Then the upper value function
V + : Rn × [0, T ]→ R of the game with outcome given by (3.5) is the unique viscosity solution
of the variational inequality

0 = max

{
min

{
∂tV +H+ (x,∇xV, t) , l(x, t)− V (x, t)

}
, g(x, t)− V (x, t)

}
, (3.17a)



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 62

with terminal condition

V (x, T ) = max
{
l(x, T ), g(x, T )

}
, x ∈ Rn. (3.17b)

Proof. The structure of the proof follows the classical approach in [34] and draws from
viscosity solution theory. In every case, we start by assuming that V + is not a viscosity
solution of the Hamilton-Jacobi-Isaacs equation (3.17) and derive a contradiction of the
principle of optimality stated in Lemma 3.2.

Recall from Chapter 2 that a continuous function is a viscosity solution of a Hamilton-
Jacobi partial differential equation (or a variational inequality) if it satisfies the appropriate
boundary condition and is both a subsolution and a supersolution. From the definition of V +

in (3.7), considering the terminal case t = T , it is straightforward to check that it satisfies the
boundary condition (3.17b). The subsolution and supersolution conditions require a more
involved analysis.

We will first prove that V + is a viscosity subsolution of (3.17). Let ψ ∈ C1(Rn × (0, T ))
such that V +−ψ attains a local maximum at (x0, t0); without loss of generality, assume that
this maximum is 0 (that is, ψ is “touching” V + from above). Analogous to Definition 2.1,
we say that V + is a subsolution of (3.17a) if, for any such ψ,

max

{
min

{
∂tψ(x0, t0)+H+ (x0,∇xψ, t0) , l(x0, t0)−ψ(x0, t0)

}
, g(x0, t0)−ψ(x0, t0)

}
≥ 0. (3.18)

From the condition of local maximum and the continuity of trajectories, we know

V +
(
xu,d
x0,t0(t0 + δ), t0 + δ

)
≤ ψ

(
xu,d
x0,t0(t0 + δ), t0 + δ

)
,

for sufficiently small δ > 0 and all u ∈ Ut0 ,d ∈ Dt0 . For the sake of contradiction, sup-
pose (3.18) is false. Then it must be that

g(x0, t0) = ψ(x0, t0)− θ1, (3.19)

and, in addition, at least one of the following holds:

l(x0, t0) = ψ(x0, t0)− θ2, (3.20a)

∂tψ(x0, t0) +H+ (x0,∇xψ(x0, t0)(x0, t0), t0) = −θ3, (3.20b)

for some θ1, θ2, θ3 > 0. If (3.19) and (3.20a) are true, then by continuity of g, l and system
trajectories, there exists a sufficiently small δ > 0 such that for all inputs u,d and for all
t0 ≤ τ ≤ t0 + δ,

g
(
xu,d
x0,t0(τ), τ

)
≤ ψ(x0, t0)− θ1

2
= V +(x0, t0)− θ1

2
, (3.21a)

l
(
xu,d
x0,t0(τ), τ

)
≤ ψ(x0, t0)− θ2

2
= V +(x0, t0)− θ2

2
. (3.21b)



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 63

Then, incorporating this into the dynamic programming principle (3.11) we have

V +(x0, t0) ≤ sup
δ∈Dt

inf
u∈UTt

{
min

τ∈[t0,t+δ]
max

[
l
(
x

u,δ[u]
x0,t0

(τ), τ
)
, max
s∈[t0,τ ]

g
(
x

u,δ[u]
x0,t0

(s), s
)]}

≤ V +(x0, t0)−min
{θ1

2
,
θ2

2

}
,

which is a contradiction, since θ1, θ2 > 0.
Similarly, if (3.19) and (3.20b) are true then, there exists a small enough δ > 0 such

that (3.21a) holds and additionally, from Lemma 3.3, for all non-anticipative strategies
δ ∈ Dt0 and some input u ∈ Ut0 ,

ψ
(
x

u,δ[u]
x0,t0 (t0 + δ), t0 + δ

)
− ψ(x0, t0) ≤ −θ3

2
δ.

Recalling that V + − ψ has a local maximum at (x0, t0), we obtain

V +
(
x

u,δ[u]
x0,t0 (t0 + δ), t0 + δ

)
≤ V +(x0, t0)− θ3

2
δ .

Inspecting (3.11) in this case, we obtain

V +(x0, t0) ≤ sup
δ∈Dt

inf
u∈UTt

{
max

[
V +
(
x

u,δ[u]
x0,t0

(t0 + δ), t0 + δ
)
, max
τ∈[t0,t0+δ]

g
(
x

u,δ[u]
x0,t0

(τ), τ
)]}

≤ V +(x0, t0)−min
{θ1

2
,
θ3

2
δ
}
,

which again is a contradiction, since θ1, θ3, δ > 0. Therefore, we conclude that (3.18) must
be true and hence V + is indeed a subsolution of (3.17).

We now proceed to show that V + is also a viscosity supersolution of (3.17), that is, for
all ψ ∈ C1(Rn× (0, T )) such that V +−ψ attains a local minimum at (x0, t0) (again, we can
assume for convenience that this minimum is 0), it holds that

max

{
min

{
∂tψ(x0, t0)+H+ (x0,∇xψ, t0) , l(x0, t0)−ψ(x0, t0)

}
, g(x0, t0)−ψ(x0, t0)

}
≤ 0. (3.22)

If we suppose that (3.22) is false, then either it holds that

g(x0, t0) = ψ(x0, t0) + θ1, (3.23)

or both of the following are true:

l(x0, t0) = ψ(x0, t0) + θ2, (3.24a)

∂tψ(x0, t0) +H+ (x0,∇xψ(x0, t0), t0) = θ3, (3.24b)

for some θ1, θ2, θ3 > 0.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 64

If (3.23) holds, then there is a small enough δ > 0 such that for all trajectories starting
at (x0, t0) and all t0 ≤ τ ≤ t0 + δ

g
(
xu,d
x0,t0(τ), τ

)
≥ ψ(x0, t0) +

θ1

2
= V +(x0, t0) +

θ1

2
.

Then the dynamic programming principle (3.11) yields

V +(x0, t0) ≥ sup
δ∈Dt

inf
u∈UTt

{
min

[
min

τ∈[t0,t0+δ]
max
s∈[t0,τ ]

g
(
x

u,δ[u]
x0,t0

(s), s
)
, max
τ∈[t0,t0+δ]

g
(
x

u,δ[u]
x0,t0

(τ), τ
)]}

≥ V +(x0, t0) +
θ1

2
,

which is a contradiction, as θ1 > 0.
If, on the other hand, (3.24) holds, then there is a small enough δ > 0 such that

l
(
xu,d
x0,t0(τ), τ

)
≤ ψ(x0, t0) +

θ2

2
= V +(x0, t0) +

θ2

2
,

and from Lemma 3.3 we have that, for some non-anticipative strategy δ ∈ Dt0 and all inputs
u ∈ Ut0 ,

θ3

2
δ ≤ ψ

(
x

u,δ[u]
x0,t0 (t0 + δ), t0 + δ

)
− ψ(x0, t0)

≤ V +
(
x

u,δ[u]
x0,t0 (t0 + δ), t0 + δ

)
− V +(x0, t0),

recalling that V + − ψ attains a local minimum at (x0, t0). With this, (3.11) gives

V +(x0, t0) ≥ sup
δ∈Dt

inf
u∈UTt

{
min

[
min

τ∈[t0,t0+δ]
l
(
x

u,δ[u]
x0,t0

(τ), τ
)
, V +

(
x

u,δ[u]
x0,t0

(t0 + δ), t0 + δ
)]}

≥ V +(x0, t0) + min
{θ2

2
,
θ3

2
δ
}
,

resulting in another contradiction, as θ2, θ3, δ > 0. We therefore conclude that it must be
that (3.22) holds and V + is a supersolution of (3.17).

Since we have shown that V + is both a viscosoty subsolution and a viscosity supersolution
of the variational inequality, this completes the proof that V + is a viscosity solution of (3.17)
with Hamiltonian H+. Uniqueness follows from the classical comparison and uniqueness
theorems for viscosity solutions (see Theorem 4.2 in [85]).

Remark 3.2. As in previous work [34, 48, 85], the continuity assumptions we made on l
and g are stronger than strictly necessary (note that we did not make full use of them in the
proof). Using standard results in ordinary differential equations, it can be proven that the
assumption of Lipschitz continuity of l and g leads to Lipschitz continuity of V + (see [48],
Proposition 1.1), which then satisfies (3.17) almost everywhere (Rademacher’s theorem states
that Lipschitz functions are almost-everywhere differentiable). If we only assume uniform
continuity of l and g, V + still satisfies (3.17) in the viscosity sense.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 65

Theorem 3.1 is an important theoretical result, because it establishes that the value
function defined in (3.7), which as we have seen encodes the optimal outcome of the time-
varying reach-avoid game, can be obtained as the viscosity solution to a specific variational
inequality. This enables us to compute the sought value function through a suite of available
numerical methods developed for the computation of viscosity solutions to Hamilton-Jacobi
equations [51–53].

The value function also has prescriptive value, because it also implicitly encodes optimal
strategies for the game. Given V +(x, t), an optimal control for reaching T while remaining
in K can be found almost everywhere (namely at points (x, t) where V + is differentiable),
by choosing an element from the arg min set for (3.12) with p := ∇xV , that is:

π∗u(x, t) ∈ arg min
u∈U

max
d∈D
∇xV · f(x, u, d, t) . (3.25)

At points (x, t) of non-differentiability we can theoretically obtain the controller through
the subdifferential or superdifferential as per Definition 2.2 (depending on which set is non-
empty):

π∗u(x, t) ∈ arg min
u∈U

max
d∈D

sup
(p,s)∈D−V (x,t)

s+ p · f(x, u, d, t) , (3.26a)

π∗u(x, t) ∈ arg min
u∈U

max
d∈D

inf
(p,s)∈D+V (x,t)

s+ p · f(x, u, d, t) . (3.26b)

Analogously, although this is not usually needed, we could obtain an optimally adverse
control-dependent disturbance at each state and time πd(x, u, t) by choosing elements from
the arg max set corresponding to (3.25) and (3.26).

In practice, however, the optimal control policy is approximated numerically from the
numerical approximation of the value function, obtained through computational partial dif-
ferential equation solvers as we will presently see. This implies that derivatives are always
replaced by a numerical approximation based on finite differences, as a result of which the
distinction between (3.25) and (3.26) does not need to be made explicitly. Fortunately, this
does not detract from the validity of the numerical approximation3: rather, the numeri-
cal derivatives can be seen as corresponding to some continuously differentiable function
ψ “touching” V at (x, t). Control signals are thus constructed in a way that mirrors the
constructive argument in the proof of Lemma 3.3.

The value function at each (x, t) encodes the optimal outcome under measurable control
signals subject to non-anticipative disturbances. As discussed in Chapter 2, the purpose
of the measurability requirement is to prevent artifacts in the mathematical machinery. In
practice, all control signals u : [0, T ] → U generated by the recursive application of the
computed arg max will be measurable: this is ensured by the fact that the physical (or
numerically simulated) controller will only change the value of the control input at a limited
rate. Digital controllers have some minimum control cycle time δ > 0, making u piecewise

3 This is in fact one of the most valuable properties of viscosity solutions, central to their amenability
to numerical analysis [50].



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 66

continuous and therefore measurable. Analog controllers are limited by their physical time
constants (which is technically also true of the outputs of digital controllers, which must be
transmitted through electronic circuits), and therefore their outputs are continuous in time.

Finally, applying this discrete-time numerical scheme does not in general result in a con-
trol signal u that achieves the ideal optimal value exactly, nor the numerically approximated
optimal value. Nonetheless, it is possible to provide standard error bounds on the trajec-
tories resulting from the discrete-time implementation of the optimal controller relative to
the continuous-time analysis [47], as well as for the numerical schemes approximating the
viscosity solution [50]. This enables a sound translation of the numerical computation of
V into theoretical guarantees for the continuous-time system as well as the discrete-time
controller implementation.4

3.3 Numerical Implementation

We present in this section a numerical method to compute the value function (3.7) for the
time-varying reach-avoid problem, based on the result in Theorem 3.1. For conciseness, we
drop the distinction between upper and lower values and Hamiltonians, as the method is
equally applicable to either.

Let i ∈ I denote the index of the grid point in a discretized computational domain of a
compact subset X ⊂ Rn and let k ∈ {1, ..., K} denote the index of each discrete time step
in a finite interval [0, T ]. Since our computation will proceed in backward time, we will let
T = t0 > t1 > ... > tK = 0. To numerically solve the variational inequality (3.17), we use
the following procedure, based on a three-step update rule:

The method uses discretized values of the payoff function l̂(xi, tk) and the discriminator
function ĝ(xi, tk); V̂ denotes the numerical approximation to V . The integral in the first
update step (U1) is computed numerically using time derivative approximations. As an
illustrative example, with a first order forward Euler scheme, we would have

V̂ (xi, tk) = V̂ (xi, tk−1) (3.27)

+ (tk−1 − tk)Ĥ
(
xi, D

+
x V̂ (xi, tk−1), D−x V̂ (xi, tk−1)

)
.

The numerical scheme of Algorithm 3.1 is consistent with (3.17). D+
x V̂ , D

−
x V̂ represent the

“right” and “left” approximations of spatial derivatives. For the numerical Hamiltonian Ĥ,
we use the Lax-Friedrichs approximation [51]:

Ĥ(xi, D
+
x V̂ , D

−
x V̂ ) = H

(
xi,

D−x V̂ +D+
x V̂

2

)
− 1

2
α>(D+

x V̂ −D−x V̂ ).

(3.28)

4 We will not be focusing on this translation explicitly, but rather assume that these bounds have been
taken into account when defining safety margins for the theoretical model.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 67

Algorithm 3.1: Numerical Double-Obstacle HJI Solution

Data: l̂(xi, tk), ĝ(xi, tk)
Result: V̂ (xi, tk)

Initialization
for i ∈ I do

Init V̂ (xi, t0)← max{l̂(xi, t0), ĝ(xi, t0)};

Value propagation
for k ← 1 to K do

for i ∈ I do

U1 V̂ (xi, tk)← V̂ (xi, tk−1)

+

∫ tk−1

tk

Ĥ
(
xi, D

+
x V̂ (xi, τ), D−x V̂ (xi, τ)

)
dτ ;

U2 V̂ (xi, tk)← min
{
V̂ (xi, tk), l(xi, tk)

}
;

U3 V̂ (xi, tk)← max
{
V̂ (xi, tk), g(xi, tk)

}
;

The components of α are given by αi = maxp∈I
∣∣∂H
∂pi

∣∣, where I is a hypercube containing
all the values that p takes over the computational domain. With this choice of α for the
Hamiltonian, the numerical scheme is stable [51].

In the numerical examples in Section 3.4, we use a fifth-order accurate weighted essentially
non-oscillatory scheme [51, 52] for the spatial derivatives D+

x V̂ ; for the time derivative ∇tV̂ ,
we use a third-order accurate total variation diminishing Runge-Kutta scheme [52]. These
methods are implemented by means of the computational tools provided in [53]. It should be
noted that lower order spatial and time derivative approximations can also yield a numerically
stable (although less accurate) solution to (3.17) at lower computational expense [51].

It is important to stress the remarkable computational similarity of this new method to
its time-invariant counterpart. Indeed, the only computational overhead is introduced by
step (U3) in Algorithm 3.1, and the need to allow functions l, g and Ĥ to depend on time.
As a result, as will be demonstrated in the following section, our method can compute the
backwards reachable set for time-varying problems at essentially no additional cost compared
to the time-invariant case.

Lastly, the optimal action for each player is implicitly obtained in solving the minimax
to compute the Hamiltonian Ĥ in step (U1). It follows from Algorithm 3.1 that, starting
inside a player’s winning region (the reach-avoid set for the attacker and its complement
for the defender), applying this optimal action at each state as a feedback policy yields a
guaranteed winning strategy for the reach-avoid game.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 68

3.4 Numerical Examples

To illustrate our proposed method for computing reach-avoid sets, we present two numerical
examples. The first shows the computational procedure in a simple optimal control scenario
with a moving target and a moving obstacle, and the obtained reach-avoid set is validated
against the analytic result. The second example presents a two-player reach-avoid game with
moving target and constraint sets; our method is benchmarked against the space-time state
augmentation approach (as proposed in [89]), reaching the same computed set (within one
grid cell of accuracy) at drastically lower computational cost (by two orders of magnitude).

3.4.1 Example 1: Reachability Problem

We begin with a comparatively simple geometric problem that we can use to validate the
accuracy of the numerical results against the analytic ground truth. Consider the optimal
control problem of guiding a massless vehicle that can move in any direction at a bounded
speed (simple motion dynamics) trying to reach a moving target set while avoiding a moving
obstacle. The problem is defined on a finite time interval [0, T ] with T = 0.5. The state
x(t) = (x(t), y(t)) represents the vehicle’s position on the plane, with dynamics

ẋ = vu(t), u(t) ∈ U , (3.29)

where v = 0.5 is the maximum speed of the vehicle and U is the unit disc.
The target set is a square with side length 0.4 that moves downward (i.e. in the negative y

direction) with velocity vT = 1.5. The center of the target set is initially located at (0, 0.75)
at t = 0, and reaches (0, 0) at t = 0.5.

T (t) = {(x, y) : max(|x|, |y− (0.75− vT t)|) ≤ 0.2}. (3.30)

We represent this moving target set using a signed distance function, l(x, y, t) := sT(x, y, t).
The failure set is a square obstacle with side length 0.2 that also moves downward, with

velocity vF = 1. The center of the obstacle is at (0, 0) at t = 0, and (0,−0.5) at t = 0.5.

F(t) = {(x, y) : max(|x|, |y− (−vF t)|) < 0.1}. (3.31)

The constraint set K(t) = F c(t) can then be encoded through the signed distance function
g(x, y, t) := sK(x, y, t).

Figure 3.1 shows the backward-time evolution of the reach-avoid set for the example
problem described above. The lower boundary of the reach-avoid set for t = 0.45 consists of
states from which the vehicle can meet the target set exactly at its final, lowermost position
by constantly moving upward. This lower boundary progresses down in backward time (as
the vehicle is given more time to arrive at this final position), but eventually gets “blocked”
by the obstacle (t = 0.3), excluding any vehicle trajectories violating the constraint on their
way to reaching the target. For earlier times (t = 0.1), the boundary is “pinched inwards”



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 69

t=0.45

-1 0 1
-1

0

1

t=0.10

-1 0 1
-1

0

1

t=0.30

-1 0 1
-1

0

1

t=0.00

-1 0 1
-1

0

1

Reach-avoid set

Obstacle

Target Set

Figure 3.1: Backward-time evolution of the reach-avoid set for an optimal control problem
with a target (large square) moving downward at speed 1.5, and an obstacle (small square)
moving downward at speed 1. The inside of the dashed boundary represents the set of states
that can reach the target set while avoiding the obstacle.

again, including nearby states from which the vehicle can move around the obstacle to safely
reach the target; yet, there remains a triangular region directly below the obstacle, as seen
in the t = 0 plot, that is not part of the reach-avoid set, because starting from those states
the vehicle is unable to avoid the obstacle that is moving down. The diagonal boundaries
of the reach-avoid set at its upper region are formed by those states from which the vehicle
can meet the target set between its initial and final positions. Lastly, the target set is
always part of the reach-avoid set, since a vehicle starting inside the target has immediately
succeeded in reaching it without constraint violations (note that the target and the obstacle
never overlap); conversely, the failure set is always excluded from the reach-avoid set for the
opposite reason.

Analytic Solution

The reach-avoid set boundary for this example problem can be computed analytically, and
thus used as ground truth for the numerically obtained boundary. Because the problem is
symmetric about the y axis, we will consider the reach-avoid set in the region x ≤ 0. We



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 70

now derive the analytic boundary by considering several different segments separately; the
segments are labeled with numbers 1–7 in Figure 3.2.

t = 0

x
-0.5 0 0.5

y

-0.5

0

0.5

1

Numerical reach-avoid set
Target set
Obstacle
Analytic reach-avoid set

1

2

3

4

5
6

7

Figure 3.2: Analytic and numerical reach-avoid set. The analytic boundary is only shown
on the left half of the domain to facilitate visual comparison.

Based on the uniform motion of the target and obstacle and the simple motion dynamics
of the vehicle, we can reason about each of these segments geometrically as follows.

1. Upper diagonal segment: this straight segment contains states from which the vehicle
can reach the top left corner of the target at an intermediate position by optimally
moving in a straight line, perpendicular to the segment, towards the interception point.

{(x, y) : −0.2 + 3−
1
2 (y− 0.95), y ∈ [0.375, 0.95]} (3.32)

2. Upper transition arc: this arc is formed by states from which the vehicle can move
towards the point (−0.1, 0.2) and reach the top left corner of the moving target at
exactly the final time.

{(x, y) : x = −0.2−
√

0.252 − (y− 0.2)2, y ∈ [0.2, 0.375]} (3.33)

3. Side vertical segment: this straight segment contains all states from which the vehicle
can reach the left side of the obstacle at its final position by traveling in a straight



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 71

horizontal line at maximum speed.

{(x, y) : x = −0.45, y ∈ [−0.2, 0.2]} (3.34)

4. Outer lower arc: this arc is formed by states from which the vehicle can move towards
the point (−0.1,−0.2) and reach the bottom left corner of the moving target at exactly
the final time.

{(x, y) : x = −0.2−
√

0.252 − (y + 0.2)2, y ∈ [−0.2,−0.45]} (3.35)

5. Lower horizontal segment: this straight segment contains all states from which the
vehicle can reach the lower side of the obstacle at its final position by traveling in a
straight vertical line at maximum speed.

{(x, y) : x ∈ [−0.2,−0.1], y = −0.45} (3.36)

6. Lower arc below obstacle: this arc contains states from which the vehicle can move in
a straight line to the point (xc, yc) = (−0.1,−0.31) by time tc = 0.28 (barely avoiding
the obstacle’s incoming lower left corner) and subsequently move vertically upwards,
reaching the target at point (−0.1,−0.2) at the final time.

{(x, y) : x ∈ [−0.1, 0], y = −0.31−
√

0.142 − (x + 0.1)2} (3.37)

7. Obstacle’s “shadow”: this straight segment contains states from which the vehicle can
barely avoid collision with the incoming obstacle by moving in a straight line to the
future location of its lower left corner (analogously to Segment 1). A vehicle initially
within the region enclosed by the segment and the obstacle cannot avoid a collision.

{(x, y) : x ∈ [−0.1, 0], y = −0.1−
√

6.25 (x + 0.1)} (3.38)

Numerical Convergence

Using the scheme described in Section 3.3, we numerically solved the double-obstacle Hamilton-
Jacobi variational inequality (3.17) on a computation domain consisting of N×N grid points
for N = 51, 101, 151, 201, 251, 301. We compared each of the numerical solutions to the de-
rived analytic solution by the following procedure:

1. Construct the (non-negative) distance function to the zero level set of the numerically
computed value function encoding the boundary of the computed reach-avoid set (for
instance using [53]).

2. Evaluate the distance function at approximately 20 000 points distributed on the ana-
lytically determined boundary of the reach-avoid set.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 72

Number of grid points
50 100 150 200 250 300 350

E
rr

o
r

10
-4

10
-3

10
-2

10
-1

e
avg

e
max

dx

Figure 3.3: Convergence of the proposed numerical Hamilton-Jacobi solution scheme for
Example 1 as the grid resolution is increased. Average error (distance) is consistently an
order of magnitude smaller than the grid spacing, with the maximum error being roughly
half of the grid size.

The resulting values measure the separation between points on the analytic (ground truth)
reach-avoid set boundary and the numerically computed boundary. These values are used
to construct error metrics for the numerical approximation.

Figure 3.3 shows in logarithmic scale the mean error and maximum error over all an-
alytic points plotted against the number of grid points per dimension. An additional line
is provided to give the scale of error in terms of the size of spatial discretization or grid
spacing. Consistently across the different grid spacings, the mean error is roughly one tenth
of the grid spacing, and the maximum error is approximately half of the grid spacing. The
numerical scheme therefore exhibits desirable convergence both in terms of the mean error
and the maximum error.

3.4.2 Example 2: Reach-Avoid Game

Figure 3.5 allows us to compare the reach-avoid sets computed by two alternative methods:

1. Space-time state augmentation method (4D): an augmented state representation (and
numerical grid) is constructed with time xt ∈ [0, T ] as an auxiliary state, with trivial dy-
namics ẋt = 1. All time-dependence is now reduced to state-dependence and therefore
the traditional Hamilton-Jacobi-Isaacs equation [88, 93] and numerical schemes [53]
for time-invariant problems can be used on this higher-dimensional system.

2. Time-varying double-obstacle method (3D): the problem is solved in the original state
space of the problem (with a numerical grid constructed accordingly), using the formu-



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 73

lation introduced in this chapter and the numerical scheme outlined in Algorithm 3.1
for time-varying problems.

The next example introduces additional complexity with a two-player zero-sum differ-
ential game, and is used to illustrate the substantial computational savings introduced by
our method relative to former approaches that required augmenting the state space with
an auxiliary time variable (cf. [89]). Consider a reach-avoid game played on the finite time
interval [0, T ], T = 1, during which the attacker moves freely in a square domain [−1, 1]2

while the defender moves on the vertical segment {0.05} × [−1, 1]. Let rA = (xA, yA) be the
position of the attacker, and yD be the vertical position of the defender, with the state of
the system x = (xA, yA, yD) governed by dynamics

ṗA = vA a(t), ‖a‖2 ≤ 1 ,

ẏD = vD b(t), b ∈ [−1, 1] .
(3.39)

In this reach-avoid game, the attacker wishes to reach a target set that is moving upwards
at speed vT = 1.5, while the defender tries to prevent the attacker from succeeding by
intercepting or delaying its advance. The attacker is additionally required to avoid a growing
obstacle whose lower edge is expanding downwards at a rate vF = 0.5. The players have
maximum speeds vA = 2 and vD = 3. Interception is defined as the two players coming
within a distance of 0.1 of each other. Figure 3.5 shows the initial configuration of the
moving target and the moving obstacle, as well the interception set centered at four possible
defender positions.

The reach-avoid set that we seek to compute comprises the set of joint player configu-
rations from which the attacker is guaranteed the ability to reach the target while avoiding
both interception by the defender and collision with the obstacle. In game-theoretic terms,
it is the attacker’s victory domain.

To compute the reach-avoid set, we solve (3.17) with the Hamiltonian

H(x,∇xV, t) = min
‖a‖2≤1

max
b∈[−1,1]

∇rAV · vA a(t) +∇yDV · vD b(t) . (3.40)

It is straightforward to see that the decoupling between the motion of both players makes the
order of optimizations irrelevant, that is, the minimax and the maximin are identical to each
other. Therefore, Isaacs’ condition holds and the upper and lower values coincide—we can
simply speak of the value of the game. This implies that neither player needs (nor can benefit
from) instantaneous information on the others’ control input. The optimal Hamiltonian of
the game can be directly expressed as

H(x,∇xV, t) = −vA‖∇rAV ‖2 + vD|∇yDV |. (3.41)

Since the state space of the reach-avoid game is three-dimensional, we visualize two-
dimensional cross-sections of the three-dimensional reach-avoid set at t = 1, taken at various
initial defender positions.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 74

t=0.92

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
t=0.72

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

t=0.25

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
t=0.00

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Reach-avoid set (3D)

Interception set

Target set

Obstacle

Figure 3.4: Backward-time evolution of the reach-avoid set for a reach-avoid differential
game. As t decreases, the attacker has more time to reach the target, so the reach-avoid set
grows. The growth of the reach-avoid set is inhibited by the defender’s interception set and
the obstacle.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 75

Figure 3.4 shows multiple stages of the backward-time evolution of the reach-avoid set,
sliced at the same defender position. At t = 0.92, there is a relatively small region in the
state space from which the attacker can reach the target by the end of the game (T = 1).
At earlier times t, the attacker has more time to reach the target and thus the reach-avoid
set becomes larger; however, its growth is inhibited by the presence of the obstacle and the
presence of the defender, who will actively try to intercept the attacker if it comes within
range.

The shape of the reach-avoid set across the different initial defender positions is presented
in Figure 3.5. If the defender starts the game near the bottom of the domain (top left plot),
it will be able to block the attacker from traversing the narrowing gap below the obstacle.
Thus we see that the reach-avoid set boundary does not extend into the left half quadrant of
the domain. However, in this case, the attacker is free to cross the gap above the top edge of
the obstacle, which leads to a large area of the top left quadrant being inside the reach-avoid
set.

As the defender’s starting position gradually becomes higher, we see a shift towards
the opposite reach-avoid set layout with the bottom gap now becoming less well protected.
However, the reach-avoid set extends into the bottom left quadrant to a lesser extent than in
the top left quadrant. This is due to the fact that the passage under the obstacle is closing
and the target is moving away from it: therefore an attacker not starting close enough to
the opening will either get blocked out or not be able to make it through in time to reach
the target.

Computational Efficiency

Computations for both methods were run in MATLAB using [53] on a computer with a Core
i7-2640M processor. As can be appreciated in the figure, the reach-avoid set boundaries
computed by the two methods are extremely similar (in fact, the computed reach-avoid
boundaries are well within a grid cell of each other throughout the state space); this similarity
contrasts with the very different amounts of computation required to obtain the two solutions.
The space-time state augmentation method took approximately 1 hour and 50 minutes on a
454 state grid. The time-varying double-obstacle method took approximately 3 minutes on
a 513 state grid.

Given that the dynamic programming computation is roughly linear in the number of
state grid cells, it is expected that having about 30 times fewer grid cells would lead to a
comparable speedup in computation, and indeed computation was roughly 36 times faster.
This scaling property is important, since the grid used for this toy problem is of moderate
size. As we will see in Chapter 4, many engineering problems will require much larger grids
and longer time horizons (possibly with hundreds or thousands of time steps), in which case
the difference in computational cost between the two methods can be of multiple orders of
magnitude.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 76

t=0

-1 0 1
-1

-0.5

0

0.5

1

t=0

-1 0 1
-1

-0.5

0

0.5

1
t=0

-1 0 1
-1

-0.5

0

0.5

1

Reach-avoid set (4D)

Reach-avoid set (3D)

Interception set

Target set

Obstacle

t=0

-1 0 1
-1

-0.5

0

0.5

1

Figure 3.5: Reach-avoid set computed through the space-time state augmentation method
(4D) and the time-varying double-obstacle method (3D). 2D cross-sections of the set are
shown at the initial time for four different defender positions.



CHAPTER 3. TIME-VARYING REACH-AVOID GAMES 77

3.5 Chapter Summary

This chapter has introduced an extension of Hamilton-Jacobi theory and computational
methods to reach-avoid problems with time-varying dynamics, targets, and constraints. This
result enables the analysis of a wide range of problems in game theory and optimal control,
including the study of games of pursuit and the computation of safety certificates for dy-
namical systems.

A critical advantage of the formulation presented here is that the numerical methods
derived from it have computational complexity equivalent to that of previously existing
techniques for time-invariant systems. By exploiting the structural role of time in dynamic
programming, this formulation allows us to handle time variability at practically no com-
putational cost. This sets the proposed method apart from previous approaches that work
around time variation by incorporating time as an additional variable in the state.

As we will see in the Chapter 4, the time-varying Hamilton-Jacobi reach-avoid formulation
directly translates into highly scalable schemes for safe planning and control in large multi-
vehicle networks, by having vehicles treat certain trajectories as time-varying obstacles in
their own state space.



78

Chapter 4

Safe Multi-Robot Trajectory Planning

We’ve got a better chance of
survival if we work together.

Maximus Decimus Meridus
Gladiator, 2000

This chapter is based on the papers “Safe Sequential Path Planning of Multi-Vehicle Sys-
tems via Double-Obstacle Hamilton-Jacobi-Isaacs Variational Inequality” [14] and “Robust
Sequential Trajectory Planning Under Disturbances and Adversarial Intruder” [15], written
in collaboration with Mo Chen, Somil Bansal, Shankar Sastry, and Claire Tomlin.

The problem of robot motion planning has traditionally been thought of in the context
of a single robotic system operating in a static environment. This assumption has been
essentially accurate for most industrial robotic applications, such as welding, painting, or
palletizing, and remained mostly acceptable for low-stakes motion planning in small mobile
systems like home cleaning robots [94]. However, as robotic systems begin to populate our
roads and our skies, it becomes clear that they cannot be assumed to operate in isolation.
Each robot’s success in safely completing its task is no longer determined by its own decisions,
but is also contingent on the actions of a potentially large number of other agents present in
its environment.

A central component in safety assurance then becomes what the robotic system can
assume about the behavior of other agents. Assuming no knowledge and attempting to
ensure collision avoidance regardless of the behavior of all other agents is almost always a
hopeless endeavor, since protecting against all their possible behaviors—and therefore against
their worst-case coordinated adversarial behavior—would lead to a zero-sum game with many
pursuers ganging up on a single evader. The solution to such an uneven multiplayer game
(even in the rare cases in which it is computationally tractable, cf. [95]), would lead us to
conclude that capture is ultimately inevitable. Of course, this is an unreasonably conservative
approach under most circumstances, where most other agents do not actively seek to be



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 79

involved in a collision, and therefore opportunities for coordination can be leveraged to
substantially improve safety.

In this chapter we will focus on the cooperative trajectory planning case, in which the mul-
tiple agents navigating the environment have the ability to share information and compute a
coordinated solution. Thus, individual agents (such as autonomous mobile robots or vehicles
under partial human control) may forgo part or all of their decision authority in exchange for
the safety assurances obtained from coordination. For autonomous robotic systems, this co-
ordination can be implemented through modern telecommunication technologies—including
recently developed vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) standards, as
well as the Automatic Dependent Surveillance-Broadcast (ADS-B) system, mandatory for
all commercial passenger aircraft in the United States as of January 2020 [96]. In the case of
human agents, coordination must be carried out through indirect means and inevitably car-
ries greater uncertainties for the autonomous system. Safe robotic navigation in the midst
of human beings will constitute much of the focus of Part II of this thesis, in particular
Chapters 7 and 8.

Even when communication is available and coordination is therefore possible in principle,
the dynamic multi-agent collision avoidance problem is fundamentally challenging. We would
like to find a set of trajectories that are jointly collision-free and ideally optimal or highly
efficient by some performance metric, such as time, energy consumption, etc. Generally, this
requires reasoning in the joint state space of all vehicles involved, which would lead com-
putations to undergo a combinatorial explosion directly tied to the curse of dimensionality.
Instead, we may seek to further exploit coordination to impose useful organizational struc-
ture that can enable us to tractably find efficient solutions while guaranteeing the satisfaction
of safety constraints for each individual robotic system.

The sky is the limit

The last half-decade there has seen a rapid growth in the unmanned aircraft systems (UAS)
industry. As UAS—or drones—continue to become more capable and economical, the num-
ber of these vehicles used for both recreational and commercial purposes continues to surge.
In the United States alone, the Federal Aviation Administration (FAA) estimated a total
of 1.25 million recreational drones by the end of 2018, while the number of registered com-
mercial drones exceeded 277, 000, with an accelerating rate of new registrations per month,
nearing 15, 000 in December 2018 [3]. While drones are already beginning to deliver value
in a wide range of sectors, from construction and agriculture to sports and film, the prolif-
eration of these vehicles comes with serious safety concerns. As of 2019, the FAA receives
more than 100 reports every month concerning UAS being illegally operated in the vicinity of
airplanes, helicopters, and airports, creating a safety liability [97]: “Reports of unmanned air-
craft (UAS) sightings from pilots, citizens and law enforcement have increased dramatically
over the past two years.” Recent efforts to raise safety awareness among professional and
recreational human operators include the Know Before You Fly educational campaign [98]
and the first National Drone Safety Awareness Week scheduled for November 4–10, 2019 [99].



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 80

Both the FAA and the National Aeronautics and Space Administration (NASA) have
repeatedly stressed the important challenge of integrating UAS into the national airspace.
While educating human pilots and operators is a central need for the current generation of
UAS, the rapidly improving autonomous decision-making capabilities on board these vehicles
(with even consumer models beginning to offer fully autonomous flight functionality [100,
101]) strongly supports the search for long-term safety assurance solutions that rely heavily
on automation. Since 2015, the two government agencies have been leading the UAS Traf-
fic Management (UTM) effort [6], partnering with a number of industry players, including
Google and Amazon, both of whom have been looking into autonomous UAS package deliv-
ery [102, 103]. The vision behind the UTM initiative is a scalable traffic control system that
can automatically coordinate the airspace usage of hundreds or thousands of vehicles per-
forming a wide variety of operations in the same region, ensuring that all flight trajectories
are safe with respect to one another. In order for this vision to be realized, however, impor-
tant technical challenges must be addressed, including the timely and reliable computation
of these flight trajectories to meet the needs of large numbers of airspace users.

Related Work

The last two decades have produced a rich body of literature around the problem of safe
navigation for multiple robots or vehicles. The numerous studies can roughly be catego-
rized into two main classes: reactive approaches and planning-based approaches. Each type
comes with its own particular strengths and challenges. While reactive methods tend to pro-
vide computationally cheap feedback-based rules that naturally lend themselves to real-time
decision-making, it is not usually possible to derive safety guarantees from them, at least
without strong assumptions on vehicle dynamics. Planning-based methods, on the other
hand, are better equipped to provide formal safety guarantees, but the associated trajectory
computations (often through optimization or search) scale poorly with the number of agents
involved. We discuss here a few of the most relevant and representative approaches from
each class.

Reactive approaches seek to achieve collision avoidance by implementing real-time deci-
sion rules for the different agents based on their current state (or observations thereof). The
simplest—and earliest—reactive approaches are prescriptive protocols, where simple actions
are “hard-coded” by system designers for different situations. These methods have played
an important role in manned aviation for many years, with two notable examples being the
Ground Proximity Warning System (GPWS), which combines direct measurements and map
information to instruct pilots to pull up when flying dangerously close to terrain [104], and
the Traffic Alert and Collision Avoidance System (TCAS), which monitors surrounding air
traffic through active transponders (including ADS-B) and issues coordinated “resolution
advisories” to pilots of different aircraft that may be at risk of mid-air collision [105]. While
resolution advisories have been useful in most scenarios encountered by manned aviation,
where vehicle density is limited, their use is meant for conflicts involving a small number of
vehicles, and performance can degrade severely when conflicts between multiple aircraft be-



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 81

come coupled. Newer protocol-based approaches proposed for air traffic control applications
have shown promise in scaling to larger vehicle numbers [106]; the associated theoretical
guarantees assume that aircraft can instantaneously change speed and heading, which may
be an acceptable simplification under the large vehicle separation (multiple nautical miles)
that characterizes manned air traffic, but does not translate well to the close-range flight
encountered in small unmanned systems, where vehicle dynamics become more relevant.

Another important family of reactive collision avoidance methods make use of the virtual
force field approach, which modifies vehicle control actions so as to emulate a repulsive force
with respect to other vehicles and obstacles [107–109]. Unfortunately these methods tend
to lack dynamic feasibility guarantees, and can exhibit poor behavior especially in dense
multi-agent environments: for example, the system may evolve into a state from which the
forces required to avoid collisions exceed the vehicles’ control authority. To address this,
many modern force-field-type methods utilize the notion of velocity obstacles or collision
cones [110], induced by the anticipated future positions of objects based on their current
motion, applying a first-order lookahead [111–114]. These methods are no longer purely
reactive, since they introduce a predictive element that can help avoid aggressive (or dy-
namically infeasible) last-second avoidance maneuvers by detecting potential conflicts early
and encouraging vehicles to steer clear of them. However, the relatively simplistic first-order
lookahead can be overly conservative and fail to find a safe course of action even when one
exists (for example, if avoiding a collision with one vehicle requires temporarily entering a
collision course with another).

Instead, planning approaches explicitly reason about the future motion of the different
agents in the environment, and attempt to compute a joint set of trajectories such that, when
executed by the corresponding vehicles, will lead to collision-free navigation. An advantage of
these explicit methods is that it becomes possible to simultaneously encode other desirable
properties, such as liveness (all agents completing their intended tasks without becoming
deadlocked) and efficiency (energy consumption, time, etc.). Many existing methods for
multi-agent motion planning come from the robotics literature, and are based on computing
a geometric path via search or random sampling, implicitly assuming that the robot will
be able to follow this path through simple kinematic motion [115, 116]. This assumption,
typically admissible in the context of robotic manipulation, can become problematic in the
case of vehicles with nontrivial, often uncertain dynamics—we will return to this point
in Chapter 5, where a more detailed review of robotics motion planning methods is also
provided.

The solution proposed in this chapter can be best categorized as a planning-based ap-
proach, since it reasons explicitly about the long-term evolution of agent trajectories; how-
ever, its Hamilton-Jacobi dynamic programming machinery also produces a reactive feedback
control policy that ensures the desirable long-term behavior and ultimately makes safety
guarantees possible even in the face of bounded disturbances and modeling error. Hamilton-
Jacobi analysis has previously been used for pairwise collision avoidance between individual
vehicles and platoons [23, 49], but the scalability limitations of Hamilton-Jacobi compu-
tations have thus far made it challenging to use this methodology to reason about large



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 82

numbers of vehicles.
Computational tractability is a common challenge faced by planning-based approaches

when attempting to reason about the joint motion of multiple agents, since the complex-
ity of solving a search or optimization problem is exponential in the dimensionality of the
problem space, and therefore with the number of agents involved. The decomposition ap-
proach introduced in this chapter is in the spirit of the early robotics work [117], which
proposed assigning priorities to multiple objects and computing their trajectories sequen-
tially, with previous objects as space-time constraints. More recent approaches have also
built on this idea, combining it with more modern motion planning techniques such as
probabilistic roadmaps [118]. Rather than relying on a space-time search assuming simple
kinematic motion, we leverage the time-varying Hamilton-Jacobi machinery introduced in
Chapter 3 to obtain a solution for general nonlinear dynamics, which additionally presents
desirable robustness and time-efficiency properties.

Contribution

The work presented in this chapter, primarily conducted under the UTM effort, eschews
the combinatorial nature of the multi-agent trajectory planning problem and enables the
obtention of safe motion plans whose computation can be tractably and continually carried
out as new requests arrive. First, we formulate a multi-vehicle collision avoidance prob-
lem involving N autonomous vehicles, each of which seeks to reach a specified target set
while avoiding environment obstacles and collision with all other vehicles. Leveraging the
first-come-first-served airspace allocation structure established by the UTM paradigm, we
drastically reduce problem complexity by assigning a priority to each vehicle, treating higher-
priority vehicles as time-varying obstacles of (approximately) known trajectories that need to
be avoided. We then utilize the double-obstacle Hamilton-Jacobi-Isaacs equation introduced
in Chapter 3 to compute reach-avoid sets to plan trajectories for vehicles in order of priority.
Even under modeling inaccuracies and exogenous disturbances such as wind, vehicles can
commit to their flight plans by declaring a conservative nominal trajectory and then using
some reserved control authority for optimal disturbance rejection at tracking time, leading
to a guaranteed tracking error bound. The resulting robust Sequential Trajectory Tracking
scheme enables safe trajectory computation that scales linearly, as opposed to exponen-
tially, with the number of vehicles. We illustrate our approach on a four-vehicle scenario
and include two additional large-scale demonstrations with 50 and 200 simulated vehicles,
conducted by collaborators.

4.1 Safe Multiagent Trajectory Planning

Consider N vehicles that need to navigate an environment Rnr and assign them indices
i = 1, . . . , N . Let vehicle dynamics be given by

ẋi = fi(xi, ui, di) (4.1)



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 83

where xi ∈ Rni represents the state of vehicle i, ui ∈ Ui the control of vehicle i, and
di ∈ Di the disturbance experienced by vehicle i. We make the usual regularity assumptions
on system dynamics and input signals (specified in Chapter 2, Section 2.1) to ensure the
existence and uniqueness of trajectories. For conciseness, we will omit the time range from
signal set notation wherever clear from context, simply writing Ui and D as appropriate.
In addition, we denote by ri ∈ Rnr the position of vehicle i in the environment, which is
implicitly a function of its state, i.e. ri(xi).

Each vehicle i has initial state x0
i , and aims to reach its target Ti by some scheduled time

of arrival Ti. The target represents some set of desirable states, for example the destination
of vehicle i. We may additionally specify an earliest departure time t0−i < Ti for each vehicle,
such that its trajectory from x0

i cannot start before this time. On its way to Ti, vehicle i
must avoid a static set of forbidden states, jointly represented by F0

i ⊂ Rni . This set can
encode physical obstacles and forbidden locations, such as tall buildings or a no-fly zone near
an airport. We may also, for example, restrict the set of velocities allowed in certain regions
of the environment, such as air highways: the vehicle may be allowed to travel along the
highway within a certain speed range, but not transversally across it or against the specified
direction of flow.

In addition to the static failure set F0
i , each vehicle i must also avoid entering forbidden

configurations with respect to every other vehicle j 6= i, such as collisions or possibly other
undesirable conditions (e.g. for a multirotor aircraft, flying closely above another vehicle
may be forbidden, since it could cause dangerous aerodynamic interference). We define the
danger zone between vehicles i and j as the set Zij ⊂ Rni ×Rnj of joint states that must be
avoided. We will commonly specify the joint danger zone between any two vehicles i and j
to be

Zij = {(xi, xj) : ‖ri − rj‖2 ≤ Rc} , (4.2)

that is, no two vehicles should ever come within a distance Rc of each other. This radius
can be defined to include the effective sizes of the vehicles when these are non-negligible,
since ‖ri − rj‖2 only accounts for the distance between their respective frames of reference.
Later on, we will revisit this definition and discuss the use of more general danger zones Zij
and the associated computational implications. Finally, vehicles only need to avoid each
other while in transit: vehicles that have not yet departed or have already arrived at their
destinations are, for formal purposes, not present in the environment (in the UAS context,
these vehicles have not yet entered, or have already exited, the airspace).

Given the set of N vehicles, their targets Ti, static failure sets F0
i , and forbidden joint

configurations Zij, we would like to compute a controller for each vehicle i which guarantees
that it will reach its target Ti at or before the scheduled time of arrival Ti while preserving
safety (i.e. avoiding violations of F0

i or Zij).
In addition, we are interested in obtaining the latest time of departure t0+

i such that
vehicle i can still arrive at Ti on time. Suppose for a moment that vehicle i has no specified
earliest time of departure t0−i . Then, as long as it is feasible for the vehicle to reach its target
in the absence of all other vehicles, finding a safe and timely trajectory is always feasible



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 84

by having it depart early enough. Indeed, if the environment is expected to be crowded,
and given that the total number of vehicles N is finite, vehicle i can simply depart at an
arbitrarily early time (and potentially arrive very early) to “beat the traffic”. In practice,
however, there is always an earliest time the vehicle can possibly leave (if no other restrictions
apply, the time at which the trajectory is computed); if the latest viable time of departure t0+

i

is earlier than the earliest possible time of departure t0−i , then arriving on time is infeasible.
Commuters in the San Francisco Bay Area and other metropolitan areas will no doubt be
acquainted with this fundamental limitation.

4.1.1 Sequential Decomposition through Vehicle Priorities

In general, the above optimal control problem must be solved in the joint space of all N
vehicles. However, due to the high joint dimensionality, a direct dynamic programming-
based solution is intractable. Instead, we propose to assign a priority to each vehicle and
plan vehicle trajectories in sequence given the assigned priorities: we refer to this scheme
as Sequential Trajectory Planning (STP). Without loss of generality, let vehicle j have a
higher priority than vehicle i if and only if j < i. Under the STP scheme, higher-priority
vehicles can ignore the presence of lower-priority vehicles, and perform trajectory planning
without taking into account the corresponding joint danger zones. A lower-priority vehicle i,
on the other hand, must ensure that it does not enter a forbidden joint configuration with
any of the higher-priority vehicles j < i; given some (possibly uncertain) representation of
its future trajectory, each higher-priority vehicle j induces a time-varying obstacle set F ji (t),
which represents the possible states of vehicle i such that a collision between vehicle i and
vehicle j could occur. The time-varying reach-avoid Hamilton-Jacobi formulation introduced
in Chapter 3 is therefore at the heart of Sequential Trajectory Planning.

It is straightforward to see that if each vehicle i is able to plan a timely trajectory that
takes it to Ti while avoiding the static failure set F0

i and the danger zones of higher-priority
vehicles j < i, then this constitutes a solution to the problem of all vehicles i = 1, . . . , N
reaching their targets safely and in a timely manner. With the STP scheme, the additional
structure provided by the vehicle priorities allows us to sidestep the combinatorial complexity
of the joint trajectory planning problem. As we will see, each vehicle in the STP scheme
plans a trajectory in sequence, reasoning solely in its own state space and without the need
to explicitly consider joint configurations.

Thus, STP provides a computational approach whose complexity scales linearly with
the number of vehicles in the presence of disturbances, as opposed to exponentially with a
direct application of dynamic programming approaches. Further, the resulting solution is,
by construction, guaranteed to preserve safety subject to the bounds Di on modeling error,
as well as (robustly) optimal subject to the priority ordering. While the introduction of
a priority ordering may in itself introduce some suboptimality relative to the unstructured
solution, it is worth stressing two important points. First, no currently known methods can
compute the globally (robustly) optimal solution for more than 3-4 vehicles, let alone tens or
hundreds of them. And second, in many of the practical applications that we are interested in,



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 85

the priority structure is already present as a result of other technical constraints: for example,
the UAS Traffic Management (UTM) paradigm led by NASA and the FAA (which this work
was framed within) implements a first-come-first-served priority criterion for handling flight
plan requests [6].

In the remainder of this chapter, we present the details of the STP scheme, starting with
a simplified implementation that ignores modeling error in the dynamics and then presenting
a robust version through optimal disturbance rejection. The robust solution involves the use
of Hamilton-Jacobi safety analysis to precompute a guaranteed tracking error bound, which
will be explored in more depth in Chapter 5.

4.2 Sequential Trajectory Planning Without

Disturbances

In this section, we introduce the basic STP scheme assuming that there is no disturbance
affecting the vehicles, and that each vehicle plans its trajectory with exact knowledge of the
future trajectories of higher-priority vehicles. Although in practice, such assumptions do
not hold, the description of the core STP scheme will help introduce the key concepts and
mathematical machinery used by robust STP. We also show simulation results for the basic
STP scheme.

Recall that vehicle j has a higher priority than vehicle i if and only if j < i. In the
absence of disturbances, we can write the dynamics of the vehicles as

ẋi = fi(xi, ui) . (4.3)

In STP, each vehicle i plans the trajectory to its target set Ti while avoiding static
failure set F0

i and the additional failure sets F ji (t) induced by higher-priority vehicles j < i.
Trajectory planning is done sequentially starting from the first vehicle and proceeding in
descending order of priority (vehicle 1, then vehicle 2, and so on through vehicle N) so that
each of the trajectory planning problems can be done in the state space of only one vehicle.
During its trajectory planning process, vehicle i ignores the presence of lower-priority vehicles
k > i, and induces the obstacles F ik(t) for vehicles k > i.

From the perspective of vehicle i, each higher-priority vehicle j < i induces a time-varying
region that vehicle i needs to keep out of. In the general case, for an arbitrary definition of
the danger zone Zij, we can define this induced failure set F ji (t) ⊂ Rni as:

F ji (t) :=
{
xi ∈ Rni :

(
xi,xj(t)

)
∈ Zij

}
. (4.4)

In the case of the proximity-based danger zone Zij defined by (4.2), the trajectory of
vehicle j can be seen as inducing a time-varying obstacle in position space O(t) ∈ Rnr that
all lower-priority vehicles must stay clear of:

Oj(t) := {r ∈ Rnr : ‖r − rj(t)‖2 ≤ Rc} , (4.5)



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 86

letting rj(t) := rj
(
xj(t)

)
characterize the position trajectory of vehicle j. For each vehicle

i > j, this induced obstacle then defines a time-varying failure set in the corresponding state
space, F ji (t) ⊂ Rni :

F ji (t) = {xi ∈ Rni : ri ∈ Oj(t)} . (4.6)

The theoretical formulation of STP applies to arbitrary danger zones Zij and therefore
any induced failure sets in the form of (4.4). However, we will see that the commonly
used separation criterion (cf. FAA aircraft separation standards) introduces some important
implementation advantages regarding computational complexity, particularly when vehicles
may have arbitrarily different state spaces. We will therefore pay special attention to the
case where induced failure sets can be expressed as (4.6).

Therefore, each vehicle i must plan its trajectory to Ti while avoiding the union of all
the induced obstacles as well as the static failure set. The total (time-varying) failure set
for vehicle i, denoted Fi(t) ⊂ Rn

i, is then defined to be the union of all the failure sets that
vehicle i must avoid on its way to Ti:

Fi(t) = F0
i ∪

i−1⋃
j=1

F ji (t) . (4.7)

We can similarly define the space-time failure set for vehicle i in the usual way, following (3.2).
Each higher priority vehicle j < i plans its trajectory while ignoring vehicle i. Since tra-

jectory planning proceeds sequentially in descending order or priority, the vehicles j < i will
have planned their trajectories before vehicle i does. Thus, in the absence of disturbances,
rj(t) is a priori known, and therefore F ji (t), j < i are known, deterministic moving obstacles,
which means that Fi(t) is also known and deterministic. Therefore, the trajectory planning
problem for vehicle i can be solved by first computing the (time-varying) reach-avoid set
RAi(t) under dynamics (4.3), which, following Chapter 3, Section 3.1.1, is a set-valued map
RA : [t0−i , Ti] ⇒ Rni given by

RAi(t) = {xi : ∃ui ∈ Ui | ∃τ ∈ [t, Ti],x
ui
i,xi,t

(τ) ∈ Ti ∧ ∀s ∈ [t, τ ],xui
i,xi,t

(s) /∈ Fi(s)} . (4.8)

By directly applying the methodology introduced in Chapter 3, the reach-avoid setRAi(t) for
vehicle i can be obtained as the zero sublevel set of the value function Vi : Rn

i× [t0−i , Ti]→ R
that solves (3.17), in the viscosity sense, with l(xi, t) := sTi(xi), g(xi, t) := −sFi(xi, t), and
the optimal1 Hamiltonian

H∗i (xi, p) = min
ui∈Ui

p · fi(xi, ui) . (4.9)

Given Vi(xi, t), an optimal control policy πi : Rni× [t0−i , Ti] for reaching Ti while avoiding
Fi(t) can be computed by choosing an element from the arg min set for (4.9) with p := ∇xiVi,

1Since we are not considering a disturbance input here, our two-player Hamilton-Jacobi-Isaacs equation
simply becomes a one-sided Hamilton-Jacobi-Bellman equation, where the upper Hamiltonian H+ reduces
to the one-sided optimal Hamiltonian H∗ by dropping the disturbance maximization.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 87

that is:
πi(xi, t) ∈ arg min

ui∈Ui
∇xiVi · fi(xi, ui) . (4.10)

As discussed in Chapter 3, Remark 3.2, the value function inherits Lipschitz continuity from
li and gi and is therefore almost-everywhere differentiable. The numerically well-behaved
nature of viscosity solutions allows us to use finite-difference approximations of the gradient
without the need to give points of non-differentiability of Vi a separate treatment [50].

The latest time of departure t0+
i can be obtained from the time-varying reach-avoid

set RAi as2

t0+
i := max{t : x0

i ∈ RAi(t)} . (4.11)

Once a viable time of departure t0i ∈ [t0−i , t0+
i ] is chosen (typically we will choose to depart

as late as possible, t0i := t0+
i ) the vehicle’s planned trajectory xi(·) can then be computed by

numerically integrating the system dynamics (4.3) from the initial conditions (x0
i , t

0
i ), using

such an optimal policy πi. This trajectory is then used to define the time-varying failure
sets F ik that lower priority vehicles k > i must stay clear of. The basic STP scheme is
summarized in Algorithm 4.1.

Algorithm 4.1: Basic STP scheme

Data: Initial conditions x0
i , vehicle dynamics fi, targets Ti, joint danger zones Zij,

static failure sets F0
i , control authorities Ui

Result: Vehicle trajectories xi : [t0i , Ti]→ Rni

for i← 1 to N do
F Determine the total (time-varying) failure set Fi(t) as per (4.7);
R Compute the reach-avoid set RAi(t) in (4.8) by solving (3.17) with

l(xi, t) := sTi(xi), g(xi, t) := −sFi(xi, t), and H∗ as in (4.9);
T Set time of departure t0i := t0+

i as in (4.11);
X Plan the trajectory xi(t) simulating dynamics fi with control πi as per (4.10);
O Given xi(t), compute the induced failure sets F ik(t) for each k > i following (4.4);

4.2.1 Computational Complexity and Efficient Implementations

In the most general case, where vehicles have arbitrarily different state spaces Rni and danger
zones Zij are arbitrarily defined, the complexity of the STP scheme is quadratic in the number
of vehicles, O(N2). This is due to the fact that each vehicle i must compute, in Step F, the
union of the static failure set F0

i with the i− 1 induced failure sets F ji for j = 1, . . . , i− 1,
as dictated by (4.4). Once its trajectory has been determined, we must in addition compute
the N − i failure sets F ik it induces for lower priority vehicles k = i + 1, . . . , N . This leads

2 The set-valued map RAi is upper hemicontinuous by construction and therefore the supremum is
attained; equivalently, we can see that the largest t with V (x0i , t) ≤ 0 is always attained, by continuity of V .



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 88

to O(N) computation for each of the N vehicles, and therefore O(N2) computation overall.
Nonetheless, it is important to observe that Steps F and O involve comparatively inexpensive
operations requiring the characterization of failure sets; the most computationally intensive
operation is the obtention of the reach-avoid setRAi(t) via dynamic programming in Step R,
which is invariably performed in the state space of a single vehicle, and therefore, unlike
Steps F and O, has complexity O(1).

Fortunately, there are important cases in which it is not at all necessary for each vehicle
to reason separately about every preceding and ensuing vehicle. Instead, we are able to
compute induced failure sets recursively with a constant amount of computation per vehicle.

Let us start with the special case in which danger zones are given in terms of separation,
as in (4.2). In this case, the induced failure set F ji can be readily obtained for each vehicle i
from the induced obstacle Oj. Explicitly considering the function ri : Rni → Rnr determining
the position corresponding to every vehicle state xi, we have from (4.6) that F ji is in fact
the preimage of Oj under ri:

F ji = r−1
i

(
Oj
)
. (4.12)

By the properties of preimages, this means that we can compute the union of induced failure
sets directly as the preimage of the union of induced obstacles in position space. Therefore,
we can rewrite (4.7) as

Fi(t) = F0
i ∪ r−1

i

(
i−1⋃
j=1

Oj(t)
)

. (4.13)

Thanks to this observation, it is possible to streamline Steps F and O as follows: Each
vehicle i is given an aggregate (time-varying) induced obstacle in position space encoding
all positions that incur a violation of a danger zone with the declared trajectories of some of
the preceding vehicles (for the highest-priority vehicle i = 1, this corresponds to the empty
set). Let us call this aggregate obstacle Oi, since it will be used to determine Fi:

Fi(t) = F0
i ∪ r−1

i

(
Oi(t)

)
. (4.14)

Thus Step F is now implemented through a constant-time operation, i.e. it does not depend
on the number of vehicles preceding vehicle i on the priority queue.

Now, once vehicle i has computed its trajectory, it need only compute the induced obstacle
in position space as per (4.5) and incorporate it into the aggregate obstacle set that will be
passed on to vehicle i+ 1, that is:

Oi+1(t) = Oi ∪ Oi(t) . (4.15)

Therefore, the new Step O is also a constant-time operation, since it no longer depends on
the number of vehicles following vehicle i on the priority queue.

With this efficient implementation, mediated by the recursively augmented induced ob-
stacle Oi(t), the complexity of the STP scheme becomes linear in the number of vehicles,
O(N), with each of the vehicles performing O(1) computation to plan its trajectory.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 89

4.2.2 Efficient Implementation for Alternative Danger Zone
Definitions

The efficient implementation of computations can be extended to a broader class of scenar-
ios, relaxing the assumption of the simple separation-based danger zones defined in (4.2).
For example, the Federal Aviation Administration and International Civil Aviation Orga-
nization tend to define cylindrical separation rules, with a horizontal radius and a vertical
range. It is straightforward to see that replacing the ball of radius Rc by an arbitrary set
in relative position space preserves the ability to encode F ji through a position obstacle Oj,
and therefore (4.12)–(4.15) apply directly.

Further, we can continue to use the notion of position obstacle even in cases where the
definition of the danger zones depends on the specific shape, size, and non-position states of
each vehicle, provided that these danger zones can ultimately be encoded through some form
of spacial occupancy. For example, we may have large vehicles requiring greater separation,
or for which angular orientation is relevant (say, an elongated fixed-wing aircraft, which
occupies a different amount of space in each direction).

We may then define a set-valued footprint mapHi : Rni ⇒ Rnr that, rather than assigning
a single position ri to each state xi of the vehicle, assigns it a set of occupied positions. The
definition of the danger zone in (4.2) can then be readily generalized to

Zij = {(xi, xj) : min
ri∈Hi

min
rj∈Hj

‖ri − rj‖2 ≤ Rc} , (4.16)

where, as before, the dependence of Hi on xi is kept implicit for conciseness.
We can then define the footprint-based obstacle of a given vehicle j using the signed

distance function to Hi(t)

Oj(t) := {r ∈ Rnr : sHi(t)(r) ≤ Rc} . (4.17)

This footprint-based obstacle Oj captures the set of positions that, if occupied by any vehi-
cle i, would lead to a violation of the danger zone Zij. We can then recursively keep track
of the aggregate footprint-based obstacle Oi induced by all vehicles j = 1, . . . , i − 1 by a
process analogous to (4.15). It only remains to determine, for each vehicle i, the conversion
from the aggregate footprint-based obstacle Oi(t) ∈ Rnr to the failure set Fi(t) ∈ Rni . This
can be done analogously to (4.14) as

Fi(t) = F0
i ∪

{
xi : min

r∈Hi
min
rj∈Hj

‖r − r′‖ ≤ Rc

}
. (4.18)

With this, both Step F and Step O can be implemented in O(1) for each vehicle, maintaining
an overall complexity of O(N) for the STP scheme under a broader and practically relevant
class of danger zone specifications.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 90

Initial Setup

-0.5 0 0.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Obstacle

Target 1

Target 2

Target 3

Target 4

Position/Heading 1

Danger zone 1

Position/Heading 2

Danger zone 2

Position/Heading 3

Danger zone 3

Position/Heading 4

Danger zone 4

Figure 4.1: Initial configuration of the four-vehicle example.

4.2.3 Numerical Simulations

We now illustrate the basic STP scheme using a four-vehicle example. In this example, we
will use the following dynamics for each vehicle:

ẋi = vi cosψi

ẏi = vi sinψi |ωi| ≤ ω̄

ψ̇i = ωi

(4.19)

where xi = (xi, yi, ψi) is the state of vehicle i, ri = (xi, yi) is the position, ψi is the heading,
vi is the speed, and ωi is the turn rate. In this example, we assume that the vehicles have
constant speed vi = 1,∀i, and that the control of each vehicle i is given by ui = ωi with
|ωi| ≤ ω̄ = 1,∀i. We have chosen these dynamics for clarity of illustration; STP can handle
more general systems of the form in which the vehicles have different control bounds and
dynamics.

For this example, the target sets Ti of the vehicles are circles of radius r in the position
space; each vehicle is trying to reach some desired set of positions. In terms of the state
space xi, the target sets are defined as Ti = {xi : ‖ri − ci‖2 ≤ r}, where ci are centers of the
target circles. For the simulation of the basic STP scheme, we used r = 0.1. The vehicles
have target centers ci, initial conditions x0

i , and scheduled times of arrivals Ti as follows:

c1 = (0.7, 0.2), x0
1 = (−0.5, 0, 0), T1 = 0

c2 = (−0.7, 0.2), x0
2 = (0.5, 0, π), T2 = 0.2

c3 = (0.7,−0.7), x0
3 = (−0.6, 0.6, 7π/4) , T3 = 0.4

c4 = (−0.7,−0.7), x0
4 = (0.6, 0.6, 5π/4) , T4 = 0.6

(4.20)

The setup for this example is shown in Figure 4.1, which also shows the static obstacles
as the black rectangles around the center of the domain. The joint state space of this



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 91

four-vehicle system is twelve-dimensional (12D), making the joint trajectory planning and
collision avoidance problem intractable for direct analysis using Hamilton-Jacobi reachabil-
ity. Therefore, we apply the STP scheme described in Algorithm 4.1 and repeatedly solve
the double-obstacle Hamilton-Jacobi equation (3.17) to obtain the optimal control for each
vehicle to reach its target while avoiding higher-priority vehicles.

The simulation results can be seen in Figures 4.2, 4.3, and 4.4. Since the state space
of each vehicle is 3-dimensional, each of the reach-avoid sets RAi(t) is also a 3-dimensional
object. For visualization purposes, we represent a 2-dimensional slice of reach-avoid sets
at the initial heading angles ψ0

i . Figure 4.2 shows the 2-dimensional backward-reachable
set slices for each vehicle at its latest time of departure t0+

1 = −1.12, t0+
2 = −0.94, t0+

3 =
−1.48, t0+

4 = −1.44, as determined by the STP scheme. The obstacles in the domain,
encoded through a static failure set F0

i = F0 ⊂ R3 common to all vehicles, and the time-
varying failure sets F ji (t) induced by the trajectories of higher-priority vehicles inhibit the
evolution of the backward-reachable sets, carving out “channels” that separate the backward-
reachable sets into different “islands”. One can see how these “channels” and “islands” form
by examining the time evolution of the backward-reachable set, shown in Figure 4.3 for
vehicle 3.

Finally, Figure 4.4 shows the resulting trajectories of the four vehicles. Of particu-
lar interest is the plot corresponding to time t = −0.55, which shows all four vehicles in
close proximity without collision, i.e. with no vehicle entering another’s danger zone (note,
however, that danger zones themselves are allowed to overlap). This close proximity is an in-
dication of the optimality of the basic STP scheme subject to the assigned priority ordering.
Since no disturbances are present, the optimization for shortest transit time often results,
as is the case here, in vehicles getting as close to others’ danger zones as possible without
entering them (in optimization terminology, the separation constraints are active).

The actual arrival times of vehicles i for i = 1, 2, 3, 4 are 0, 0.19, 0.34, 0.31, respectively.
It is interesting to note that for some vehicles, the actual arrival times are earlier than the
scheduled times of arrivals Ti. This is because in order to arrive at the target by Ti, these
vehicles must depart early enough to avoid major delays resulting from the induced obstacles
of other vehicles; these delays would have led to a late arrival if vehicle i departed after t0+

i .
Computations were done on a desktop computer with a Core i7 5820K processor and

two GeForce GTX Titan X graphics processing units. The average computation time per
vehicle is approximately 1 second using CUDA and GPU parallelization. Note that for the
simulations in this and subsequent sections, almost all of the computation can be performed
offline, i.e. at planning time. The only online computation needed at trajectory execution
time is a look-up table query to determine the optimal control to be applied. For control-
affine systems, the table can store the corresponding value function, whose (numerical)
gradient is then used in the evaluation of the optimal control in (4.10), which amounts
to an algebraic operation. For general dynamical systems, it may be preferable to directly
store the optimal control in a look-up table, as determined during the offline numerical
Hamilton-Jacobi computation, thereby eliminating the need to solve a possibly non-convex
optimization problem online.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 92

Vehicle Q
1
, t=tLDT

1
=-1.12

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Vehicle Q
2
, t=tLDT

2
=-0.94

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Vehicle Q
3
, t=tLDT

3
=-1.48

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Vehicle Q
4
, t=tLDT

4
=-1.44

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Obstacle

Targets

Initial pos. and heading

Reach-avoid set

Danger zones

Figure 4.2: Reach-avoid sets at t = t0+
i for vehicles 1, 2, 3, 4. Since each vehicle’s state space

is 3-dimensional, the plots present 2-dimensional slices at their respective initial headings
ψ0
i . Black arrows indicate direction of obstacle motion. Due to the turn rate constraint,

the presence of static obstacles (encoded by the failure set F0
i ) and the introduction of

time-varying failure sets F ji (t) induced by higher-priority vehicles carve “channels” in the
backward-reachable set, dividing it up into multiple “islands”.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 93

t=0.40

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
t=-0.27

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

t=-0.88

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
t=-1.48

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Obstacle

Targets

Initial pos. and heading

Reach-avoid set

Danger zones

Figure 4.3: Backward-time evolution of the reach-avoid set for vehicle 3. Since the vehicle’s
state space is 3-dimensional, the plots present a 2-dimensional slice at its initial heading
ψ0

3 = 7π
4

. Black arrows indicate direction of obstacle motion. Top row: the reach-avoid set
grows unobstructed by obstacles (time-varying and static). Bottom row: the static failure
set F0

i and the induced failure set F1
3 (t) ∪ F2

3 (t) carve into the backward-time propagation
the reach-avoid set.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 94

t=-1.15

-0.5 0 0.5

-0.5

0

0.5

t=-0.55

-0.5 0 0.5

-0.5

0

0.5

t=0

-0.5 0 0.5

-0.5

0

0.5

t=0.34

-0.5 0 0.5

-0.5

0

0.5

Obstacle

Targets

Positions, Headings

Trajectories

Danger Zones

Figure 4.4: The planned trajectories of the four vehicles. Top left: only vehicles 3 (green)
and 4 (purple) have started moving, showing t0+

i is not common across the vehicles. Top
right: all vehicles have come within very close proximity, but none is in the danger zone of
another. Bottom left: vehicle 1 (blue) arrives at T1 at t = 0. Bottom right: all vehicles have
reached their destination, some ahead of Ti.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 95

4.3 Robust Tracking of Committed Trajectories

We now turn our attention to a robust STP scheme that enables us to provide assurances on
the ability of real vehicles to reach their targets in a safe and timely manner, in spite of using
dynamical models of limited accuracy and the vehicles potentially being subject to exogenous
disturbances such as wind. This robust analysis, which can be naturally performed in the
Hamilton-Jacobi-Isaacs framework, is key to the practical utility of the STP scheme.

Although it is generally impossible to perfectly track an exact trajectory under uncertain
system dynamics, it may still be possible to robustly track a nominal trajectory, keeping
the error between the nominal and actual state within a bounded set at all times. The
resulting tracking error bound can then be used to ensure safety and success of the planned
trajectory, as well as to determine the induced failure sets for lower-priority vehicles. While
in this section we will assume no structural knowledge of model inaccuracies, and therefore
only model the possible mismatch through a disturbance input, we will see in Section 5.1
that the central robust tracking notions introduced here extend naturally to systems with
structural differences between the nominal planning model and the model used for robust
tracking.

Consider the uncertain vehicle dynamics fi as given in (4.1). The robust STP scheme
carries out computation in two phases. The trajectory planning phase follows an analogous
process to the basic STP scheme to calculate a nominal trajectory xpi in the absence of
disturbances, but assuming a reduced control set Upi ⊂ Ui, effectively reserving some control
authority to reject unexpected disturbances when tracking the nominal trajectory online.
Prior to this phase, each vehicle independently executes the disturbance rejection phase to
compute a worst-case bound on the tracking error under bounded disturbances di ∈ Di,
which is then used to inform the planning. The tracking error bound is constructed so as to
be enforceable by the vehicle’s controller at execution time, independently from the nominal
trajectory generated in the planning phase.

4.3.1 Tracking Error Dynamics

In the following, we will drop the vehicle index i when doing so does not cause ambiguity,
in order to keep notation succinct. Let x and xp denote the states taken by a vehicle
and its nominal planned trajectory, respectively. Rather than directly defining the tracking
error e ∈ Rn as the difference between the two, it will often be convenient to use a transformed
representation

x− xp = φ(e;xp) , (4.21)

where the transformation φ(·;xp) is a bijection between e and x − xp for all xp. As we will
see momentarily, having the error representation “attached” to the frame of reference of the
nominal state through φ can allow us to formulate error dynamics that are independent of
the absolute state, which will be instrumental in precomputing a trajectory-agnostic tracking
error bound ahead of time.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 96

To this end, we also introduce transformed inputs through analogous mappings

u = φu(ue;x
p) , up = φpu(u

p
e;x

p) , d = φd(de;x
p) , (4.22)

which are also bijective for each fixed xp. Finally, the input sets Ue,Upe ,De, defined as the
appropriate transformations of U ,Up,D, must be independent of xp, so that the tracking
error bound and tracking control policy will be valid for any absolute tracking state.

Whenever it is possible to find a transformation of this form such that the resulting error
dynamics are independent of the absolute states, we will write

ė = f e(e, ue, u
p
e, de) , (4.23)

with ue ∈ Ue, upe ∈ Upe ⊂ Ue, and de ∈ De. Importantly, the error dynamics should account
for the uncertain disturbances that may affect the vehicle’s trajectory x at tracking time,
but not the ideal nominal trajectory xp computed at planning time.

In fact, such a transformation exists for a broad class of vehicle dynamics, which are
commonly pose-invariant in the vehicle’s body frame. The following example will be useful
in grounding the abstract concepts introduced so far.

Example 4.1. For the dynamics (4.19), we can represent the tracking error state by
transforming the relative (x, y) into the nominal state’s frame of reference, that is, with
the planning reference always represented at the origin and facing forward.

ex := (x− xp) cosψ + (y− yp) sinψ

ey := −(x− xp) sinψ + (y− yp) cosψ

eψ := ψ − ψp
(4.24)

Under this representation, we see that the error dynamics take the form

ėx = v cos eψ + ωpey − vp + dex
ėy = v sin eψ − ωpex + dey
ėψ = ω − ωp + dψ

(4.25)

with no dependence on x or xp. In addition, note that the input transformations φu
and φpu are simply the identity (for all xp), whereas the disturbance transformation is

dex := dx cosψ + dy sinψ

dey := −dx sinψ + dy cosψ

deψ := dψ

(4.26)

which, for a cylindrical disturbance set D := {d : ‖(dx, dy)‖2 ≤ d̄r, |dψ| ≤ d̄ψ}, satisfies
the property that the transformed disturbance set De ≡ D is independent of xp.

Under this formulation of the error dynamics we would like to determine whether it is
possible, and if so under what control strategy, for vehicle i to keep this error within a
specified set at tracking time.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 97

4.3.2 Bounding the Tracking Error: a Safety Problem

To obtain enforceable bounds on the tracking error, we may choose a conservative radius RE

to represent the maximum acceptable deviation between vehicle i and its nominal position
throughout its trajectory. This induces an associated tracking error bound, defined as the
constraint set

E := {e : ‖er‖2 ≤ RE} , (4.27)

where er denotes the position component of e.
We can then solve a safety problem in which the controller will attempt to track the

planning reference keeping the error inside the set E in spite of the worst-case disturbance
inputs d ∈ D and, crucially, for all possible control inputs up ∈ Up prescribed by the nominal
trajectory. Since the tracking error bound needs to be guaranteed before determining a
concrete nominal trajectory, it must hold for every potential trajectory plan, and we must
therefore include this unknown tracking reference in our worst-case analysis of uncertainty.

Defining the safety margin function as the implicit surface function

lE(e) := RE − ‖er‖2 , (4.28)

our safety value function, following Chapter 2, Section 2.3, is defined as

V E(e) := inf
δe∈De

inf
υpe∈Upe

sup
ue∈Ue

inf
t≥0

lEe (e(t)) , (4.29)

with Upe,De the corresponding sets of non-anticipative strategies. Using Hamilton-Jacobi-
Isaacs reachability analysis, we can numerically compute the value function as the infinite-
horizon limit (i.e. as T → ∞ or equivalently t → −∞) of the viscosity solution V (e, t) to
the variational inequality

0 = min
{
∂tV +H− (e,∇eV, t) , l

E(e, t)− V (e, t)
}
, (4.30a)

with lower Hamiltonian

H− (e, p, t) = max
ue∈Ue

min
upe∈Upe

min
de∈De

p · f e(e, ue, upe, de) (4.30b)

and terminal condition
V (e, T ) = lE(e) . (4.30c)

If the infinite-horizon value function converges in some neighborhood of the origin, then
the zero superlevel set of V E(e) := limt→−∞ V (e, t) is the maximal (infinite-horizon) con-
trolled invariant set contained in E , in other words, the sought safe set ΩE :

ΩE := {e ∈ Rn : ∃ue ∈ Ue,∀υpe ∈ Upe,∀δe ∈ De,
∥∥eue,υ

p
e [ue],δe[ue](t)

∥∥ ≤ RE , ∀t ≥ 0} . (4.31)



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 98

If ΩE is nonempty, then the tracking error e during the flight of vehicle i is guaranteed to
remain within ΩE ⊆ E provided that the vehicle starts inside ΩE and subsequently applies
the feedback control law

πE(e) = φu
(
πEe (e);xp

)
, πEe (e) ∈ arg max

ue∈Ue
min
upe∈Upe

min
de∈De

∇eV
E(e) · f e(e, u, up, d) . (4.32)

This means that the safe set ΩE is in itself an enforceable tracking error bound, typically one
tighter than the originally postulated E . Consequently, it will be desirable to subsequently
use ΩE rather than E for planning whenever this is computationally feasible.

If the infinite-horizon value function converges but ΩE is empty, this will often mean that
the radius RE was not chosen conservatively enough. Fortunately, in this case there is no
need to repeat the Hamilton-Jacobi computation. Since the difference V E − lE is invariant
to additive constants, it suffices to find a nonempty level set of V E , for some level α < 0,
and increase the value of RE to RE + |α|. With this adjustment to RE (and thus to lE), the
nonempty level set becomes the new zero level set of V E , leading to a nonempty ΩE .

If, on the other hand, the infinite-horizon value function diverges to −∞ everywhere,
then it is not in fact possible for vehicle i to robustly track planned trajectories under these
conditions, and arbitrarily large tracking errors may take place. This indicates that we did
not reserve sufficient control authority for successful disturbance rejection, and must repeat
the computation after appropriately reducing Up.

4.3.3 Trajectory Planning with the Tracking Error Bound

Once an enforceable tracking error bound has been determined, the STP scheme can proceed
with some adjustments to account for this information. The robust tracking set of all possible
states that vehicle i might find itself in when attempting to track a planning state xpi is

X̃i(xpi ) := {xpi + φ(ei;x
p
i ), ei ∈ ΩEi } , (4.33)

with φ(·;xpi ) the transformation map in (4.21). In cases where the tracking error state
representation does not depend on xpi , we trivially have φ(ei;x

p
i ) ≡ ei, and therefore can

simply write X̃i(xpi ) = xpi + ΩEi , with “+” denoting the Minkowski sum.
Based on this robust tracking set, we can guarantee that vehicle i will reach its target Ti

at flight time provided that we can plan a nominal trajectory that reaches the (reduced)
robust target set

T̃i := {xpi ∈ Rni : X̃i(xpi ) ⊆ Ti} . (4.34)

In the special case where φ(ei;x
p
i ) ≡ ei, we can directly write T̃i = Ti−ΩEi , with “−” denoting

the Minkowski difference. Note that there may be cases where T̃ is empty, implying that no
nominal planning state can guarantee that the actual state of vehicle i will be in the target Ti
at flight time (e.g. if the target set is small relative to the guaranteed tracking error).

Regarding static failure sets and time-varying failures sets induced by higher-priority
vehicles, the opposite operation needs to be carried out: since the actual vehicle state xi can



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 99

be anywhere in the set X̃ (xpi ), we must restrict xpi to stay clear of any states where any part
of this set is in violation of a constraint. We therefore have the (augmented) robust failure
set for vehicle i,

F̃i(t) := {xpi ∈ Rni : X̃i(xpi ) ∩ Fi(t) 6= ∅} , (4.35)

which contains all the states that the planned trajectory xpi of vehicle i must not enter at
time t. In the special case where φ(ei;x

p
i ) ≡ ei, this becomes F̃i(t) = Fi(t) + (−ΩEi ), where

−ΩEi := {−xi : xi ∈ ΩEi }).
With these robust sets, we can define the corresponding reach-avoid set for vehicle i

RAi(t) = {xi : ∃ui ∈ Up
i | ∃τ ∈ [t, Ti],x

ui
i,xi,t

(τ) ∈ T̃i ∧ ∀s ∈ [t, τ ],xui
i,xi,t

(s) /∈ F̃i(s)} , (4.36)

which is computed during the planning phase, analogously to the basic STP scheme, by
solving the corresponding double-obstacle Hamilton-Jacobi-Isaacs equation (3.1), with the
surface functions l(xi, t) := sT̃i(xi), g(xi, t) := −sF̃i(xi, t), and the optimal Hamiltonian

H∗i (xi, p) = min
ui∈Upi

p · fpi (xi, ui) , (4.37)

with fpi (xi, ui) := fi(xi, ui, 0) denoting the nominal dynamical model used for planning.
Finally, once a nominal planned trajectory is determined for vehicle i by simulating the

dynamics fpi under an optimal control obtained analogously to (4.10), we wish to compute
the induced failure sets F ik for all lower priority vehicles k resulting from the uncertain (but
robust) tracking of vehicle i. In the general case, for arbitrary danger zones Zki, we can
extend (4.4) to

F̃ ik(t) :=
{
xk ∈ Rnk : ∃xi ∈ X̃i

(
xpi (t)

)
| (xk, xi) ∈ Zki

}
. (4.38)

With this, the robust STP scheme can proceed for all vehicles as summarized in Algo-
rithm 4.2.

As discussed in Section 4.1, we are often interested in danger zones defined in terms of
vehicle proximity, as in (4.2). Since by definition ΩEi ⊆ Ei := {ei : ‖er,i‖2 ≤ REi }, we have
that all states xi ∈ X̃ (xpi ) satisfy ‖ri − rpi ‖2 ≤ REi . Therefore, under this robust trajectory
planning scheme, we can directly extend (4.5) as

Õi(t) := {r ∈ Rnr : ‖r − ri(t)‖2 ≤ Rc +REi } , (4.39)

and, as in (4.6), the induced failure set is then obtained as

F̃ ik(t) = {xk ∈ Rnk : rk ∈ Õi(t)} . (4.40)

A similar treatment to (4.40) is also possible for defining T̃i and F̃i whenever targets and
constraints are specified in terms of vehicle position. In general, such an approach is slightly
more conservative, since we are effectively augmenting and reducing these sets by Ei instead
of its maximal controlled invariant set ΩEi ⊆ Ei.

We will next demonstrate the functioning of the robust STP scheme and its practical
usability for dense vehicle routing in the airspace under unknown disturbances and modeling
error.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 100

Algorithm 4.2: Robust STP scheme

Data: Initial conditions x0
i , vehicle dynamics fi, targets Ti, joint danger zones Zij,

static failure sets F0
i , control authorities Ui, uncertainties Di

Result: Nominal vehicle trajectories xi : [t0i , Ti]→ Rni ,
Robust tracking control policies πEi : Rni → Ui

Disturbance rejection phase
for i← 1 to N do

E Set a reduced nominal control set Upi ⊂ Ui and an error bound radius REi ;
Ω Compute the controlled invariant set ΩEi (t) in (4.31) by solving (4.30) with

lEi (ei) := REi − ‖er,i‖2;
U Determine the robust tracking control policy πEi as per (4.32) to use online;

Trajectory planning phase
for i← 1 to N do

F Determine the robust target set T̃i from (4.34) and the robust total (time-varying)

failure set F̃i(t) as per (4.7) and (4.35);
R Compute the reach-avoid set RAi(t) in (4.36) by solving (3.17) with

l(xi, t) := sT̃i(xi), g(xi, t) := −sF̃i(xi, t), and H∗ as in (4.37);

T Set time of departure t0i := t0+
i as in (4.11);

X Plan nominal trajectory xpi (t) simulating fi under πi, as per (4.10) with ui ∈ Upi ;

O Given xpi (t), compute robust induced failure sets F̃ ik(t) for k > i following (4.38);

4.3.4 Numerical Simulations

We begin with a four-vehicle example similar to the one in Section 4.2. Each vehicle has
the simple kinematics model in (4.19) but with disturbances added to the evolution of each
state component:

ẋi = vi cosψi + dx,i v ≤ vi ≤ v̄

ẏi = vi sinψi + dy,i ‖(dx,i, dy,i)‖2 ≤ dr

ψ̇i = ωi + dψ,i, |ωi| ≤ ω̄, |dψ,i| ≤ d̄ψ

(4.41)

where d = (dx,i, dy,i, dψ,i) represents the disturbances affecting the three state components of
vehicle i. The control of vehicle i is ui = (vi, ωi), where vi is the speed of vehicle i and ωi
is the turn rate; both controls have a lower and upper bound. For illustration purposes, we
choose v = 0.5, v̄ = 1, ω̄ = 1 for all vehicles; however, the method easily handles different
input bounds and even dynamical models across vehicles. The disturbance bounds are chosen
as dr = 0.1, d̄ψ = 0.2, which correspond to a 10% uncertainty in the dynamics.

For this example, we have chosen equal scheduled times of arrival Ti = 0 ∀i. Each
vehicle aims to reach a target set of radius r = 0.1. The vehicles’ target centers ci and initial



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 101

-0.5 0 0.5

-0.5

0

0.5

Initial Setup

Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4

Figure 4.5: Initial configuration of the four-vehicle example in the presence of disturbances.

conditions x0
i are the same ones specified in (4.20). Unlike the example in Section 4.2 here we

will consider no static obstacles. The problem setup for this example is shown in Figure 4.5.
After the appropriate computation, all vehicles are able to avoid each other’s danger

zones (colored dashed circles) and reach their target sets by their scheduled time of arrival.
Offline computations were done on a desktop computer with a Core i7 5820K processor and
two GeForce GTX Titan X graphics processing units. The average computation time per
vehicle is approximately 2 seconds using CUDA and GPU parallelization.

Following Algorithm 4.2, we first establish a reduced control set to be used in the planning
phase (which will compute trajectories assuming no disturbances): the maximum turn rate
during trajectory planning is reduced from 1 to 0.6, and the speed is restricted from its
default [0.5, 1] range to exactly 0.75 (constant speed). The remaining control authority is
not exploited in planning, and therefore saved for disturbance rejection online. Under these
conditions, the disturbance rejection precomputation (Step Ω) verified that any nominal
trajectory generated in the planning phase can be robustly tracked within a distance of
RE = 0.075.

The planning phase is then carried out with reduced robust targets and augmented robust
failure sets (as per Step F). Figure 4.6 shows 2-dimensional slices of the evolution of reach-
avoid set and induced failure sets for vehicle 3. The smaller effective size of the robust target
set T̃3 translates into a narrower reach-avoid set in the vicinity of the target: the planned
trajectory needs to aim near the center of the original target T3 to ensure that vehicle 3 will
successfully reach it in spite of modeling error and a priori unknown disturbances. Further,
the obstacles induced by the nominal trajectories of vehicles 1 and 2 can be seen to be larger
than in the basic STP example, and their orientation changes with the nominal bearing
angle.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 102

-0.5 0 0.5

-0.5

0

0.5

t = -0.50

-0.5 0 0.5

-0.5

0

0.5

t = -2.09

-0.5 0 0.5

-0.5

0

0.5

t = -2.59

-0.5 0 0.5

-0.5

0

0.5

t = -3.57

Targets
Initial pos. and heading
Reachable set
Obstacle

Figure 4.6: Backward-time evolution of the reach-avoid set for vehicle 3 in the robust trajec-
tory tracking method. The larger channels carved out by the robust failure sets induced by
the uncertain trajectories of higher-priority vehicles make it unsafe for vehicle 3 to depart
at t = −2.59, and it must instead leave early (t0+

3 = −3.57) to avoid a potential collision. In
addition, a smaller, robust target set is used to compute the reach-avoid set to ensure that
the vehicle reaches the target set by t = 0 in spite of the allowed tracking error.

Figure 4.7 shows a snapshot of vehicles’ trajectory execution, in addition to the entire
nominal trajectories. In this case, the latest times of departure t0+

i obtained for the four
vehicles are −1.61,−3.16,−3.57 and −2.47 respectively. Vehicles leave a greater separation
margin as a result of the larger robust failure sets; under certain realizations of the distur-
bances, they may come close to one another, but stopping short of violating the specified
danger zones, as guaranteed by the Hamilton-Jacobi analysis.



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 103

-0.5 0 0.5

-0.5

0

0.5

t = -1.1

Targets
Positions, Headings
Danger Zones
Trajectories

Figure 4.7: Simulated trajectories for the robust Sequential Trajectory Planning scheme in
the 4-vehicle scenario.

Finally, the robust STP scheme presented here has been tested in follow-up work [119] on
a larger-scale simulation considering up to N = 200 vehicles flying over the San Francisco Bay
Area. We briefly reproduce some illustrative results here for their relevance, and point the
interested reader to an in-depth evaluation in [119]. Figure 4.8 shows the trajectories planned
for and tracked by 50 vehicles with dynamics (4.41) under moderate and strong breeze
conditions (corresponding to forces 4 and 6 on the Beaufort wind scale). Wind disturbances
affecting each vehicle were sampled uniformly at random from Di at each simulation time
step. The effects of maximum wind speed dr and scheduled arrival times Ti (simultaneous vs
staggered) on vehicle trajectories are demonstrated. Figure 4.9 shows the trajectories of 200
vehicles in the larger San Francisco Bay Area. Computations in these larger environments
took an average of 4 minutes per vehicle using a CUDA implementation of [53] on a computer
with a Core i7 5820K processor and two GeForce GTX Titan X graphics processing units.

4.4 Least-Restrictive STP: Alternative Performance

Objectives

As we have seen, the Hamilton-Jacobi reach-avoid solution readily yields minimum-time
trajectories by choosing to initiate trajectories at the latest possible departure time t0+

i .
However, as is often the case with Hamilton-Jacobi reachability solutions, the structure of
the reach-avoid set and value function can be exploited to enable more flexible uses. In
particular, we can use it to derive a least-restrictive supervisory control scheme (in the sense
of [120]) that enables optimizing vehicle trajectories for an arbitrary objective of interest



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 104

Figure 4.8: Simulated trajectories for the robust Sequential Trajectory Planning scheme in a
50-vehicle scenario over the city of San Francisco. Vehicles are assigned a common departure
location and one of four different targets. Three static failure sets (no-fly zones) are indicated
as black polygons on the map. The plots correspond to different wind conditions and arrival
schedules: simultaneous arrival deadlines lead to the emergence of parallel “lanes” (with
lower-priority vehicles departing and arriving early), whereas vehicles tend to fly along the
same (time-optimal) paths when scheduled to arrive in sequence. Stronger winds increase
spatial separation between vehicle trajectories. Source: [119] (reproduced with permission).



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 105

Figure 4.9: Simulated trajectories for the robust Sequential Trajectory Planning scheme in
a 200-vehicle scenario over the San Francisco Bay Area. Vehicles are assigned trajectories
between four different regions of interest. Vehicles are subject to independent random wind
disturbances of up to dr = 11 m/s and have sequential arrival schedules Ti = 5(i − 1).
Right: zoomed-in snapshot. A high density of vehicles is achieved near the center, where
many vehicle trajectories intersect in space. The robust STP scheme ensures separation even
in spite of tracking errors. The planned nominal position rpi of each vehicle is shown with
an asterisk; its actual position ri, marked with a disc of the same color, is always inside the
computed robust tracking set X̃i(rpi ). Source: [119] (reproduced with permission).

(e.g. control effort, energy consumption, or sensor coverage) while enforcing that it never
leaves the (time-varying) reach-avoid set.

In the standard implementation of STP (for both Algorithms 4.1 and 4.2), we have been
choosing to initiate the trajectory at the latest viable departure time, in order to ensure
minimum travel time. This means that the vehicle will start on the boundary of the reach-
avoid set (as can be seen for vehicle 3 in the last plot of Figures 4.3 and 4.6). We then
need to plan an optimal, minimum-time nominal trajectory as dictated by the Hamilton-
Jacobi analysis, which will “ride” this time-varying boundary until it reaches the target set
at exactly the scheduled time of arrival. If we were to deviate from such an optimal plan,
our nominal trajectory would fall out of the reach-avoid set and by definition no longer be
able to safely reach the target on time.

This restriction is relaxed if we initiate the nominal trajectory earlier than the latest
viable departure time, allowing the backward-time propagation of the reach-avoid set to



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 106

continue, engulfing the starting state in its interior. Rather than needing to stay on the
boundary of the reach-avoid set, then, the planned trajectory will have some flexibility to
navigate its interior and still reach the target at (or possibly before) the scheduled time. A
variety of different trajectory optimization tools can be used to plan an efficient trajectory,
under the desirable metric, that remains inside the reach-avoid set. Crucially, while optimal-
ity of the solution will generally depend on the optimization algorithm of choice, feasibility
is always guaranteed: any trajectory that attempts to exit the reach-avoid set can readily be
converted into one that, upon reaching its boundary, switches to the minimum-time strategy
dictated by the Hamilton-Jacobi analysis and safely reaches the target at the final time.

The Hamilton-Jacobi solution therefore acts as a last-resort enforcement of the safety
and timeliness requirement: it will only intervene to the extent required to ensure that
the nominal trajectory planned by each vehicle satisfies the problem specifications. Least-
restrictive supervisory control schemes will be discussed extensively in Chapter 6, since they
are a central component of the proposed framework for incorporating learning mechanisms
into robotic systems’ behavior while reliably ensuring safety.

4.5 Chapter Summary

This chapter has built on the time-varying reach-avoid game formulation introduced in Chap-
ter 3 to propose a multi-agent trajectory planning framework that combines rigorous safety
guarantees, minimum flight time properties, and highly scalable computation. The proposed
Sequential Trajectory Planning (STP) scheme is motivated by the first-come-first-served
flight plan allocation criterion adopted by NASA and the FAA in their Unmanned Aircraft
System Traffic Management effort [6]. Thanks to the ability to handle time-varying state
constraints, STP progresses through the set of vehicles in descending order of priority, rep-
resenting the declared trajectories of all higher-priority vehicles as moving obstacles in the
state space of each new vehicle. The resulting trajectory is not only collision-free, but is
also guaranteed to reach the vehicle’s goal set by the scheduled arrival time with the latest
possible departure time subject to the already allocated higher-priority trajectories. In this
sense, the STP scheme produces trajectories that are both safe and time-optimal subject to
the priority ordering.

Notably, while the the general multi-agent trajectory planning problem is intrinsically
combinatorial, the priority structure and the novel time-varying Hamilton-Jacobi reach-
avoid analysis enable this sequential computation to overall scale linearly with the number
of vehicles. The chapter discusses how the constraints induced by higher-priority vehicles
should be recursively computed as the scheme progresses down the priority queue to ensure
that each vehicle only requires a constant amount of computation.

Since runtime execution of the planned trajectories by the physical system will not gener-
ally be feasible without some amount of tracking error, the chapter also introduces a robust
variant of the STP scheme, which reserves some amount of control authority at planning
time for disturbance rejection at tracking time. Through an additional Hamilton-Jacobi



CHAPTER 4. SAFE MULTI-ROBOT TRAJECTORY PLANNING 107

computation, which can be run ahead of time, it is then possible to ensure robust tracking
of any trajectory produced by the STP scheme: provided that the dynamic disturbance
term (capturing exogenous perturbations and modeling inaccuracies) remains within certain
conservative bounds, the trajectory tracking error will also be bounded. Since this tracking
error bound is independent of the actual trajectory plan, STP can easily account for it in its
trajectory computations.

The simulation results presented in the chapter showcase the standard and robust variants
of the STP scheme, demonstrating its correctness and scalability, in addition to the efficiency
of the emerging trajectory patterns between large numbers of vehicles.

Finally, in some cases it may be desirable to replace the minimum-time criterion with
a different efficiency objective, while still ensuring that all vehicles will safely reach their
destinations by their scheduled times of arrival. The STP scheme can easily be converted into
a least-restrictive supervisory law, which allows a different trajectory optimization algorithm
to propose an efficient trajectory under more general criteria (energy, comfort, etc.), while
ensuring safety and timeliness, preventing any proposed trajectory from abandoning the
reach-avoid set. More details on using Hamilton-Jacobi analysis in a least-restrictive scheme
will be discussed in Chapters 5 and 6.



108

Chapter 5

Safe Real-Time Robotic Navigation

A good solution applied with
vigor now is better than a
perfect solution applied ten
minutes later.

George S. Patton (1885–1945)
U.S. Army general

This chapter is based on the papers “Planning, Fast and Slow: A Framework for Adaptive
Real-Time Safe Trajectory Planning” [16] and “Safely Probabilistically Complete Real-Time
Planning and Exploration in Unknown Environments” [17], written in collaboration with
David Fridovich-Keil, Sylvia Herbert, Sampada Deglurkar, and Claire Tomlin.

The ability to plan trajectories quickly and effectively is at the core of a robotic system’s
ability to successfully perform tasks in complex or uncertain environments. As we have seen
in Chapter 4, it is possible to decouple the problem of tracking a nominal trajectory with
a bounded error and planning a safe trajectory given this tracking error bound. In many
practical cases, rather than plan nominal trajectories ahead of time, as in the UAS traffic
management context, we may want to be able to generate real-time nominal trajectories
through a given environment. Real-time planning (and replanning) is particularly impor-
tant in cases where the environment is only partially known in advance, requiring adaptive
exploratory behavior, or if there are dynamic obstacles or unknown agents whose future
motion is not certain.1

In order to achieve real-time planning, it is common to use simplified dynamic models
(in some cases purely kinematic models) enabling more tractable search or optimization.

1 We will defer the treatment of uncertain moving obstacles until Chapter 7. For now, we note that
uncertain moving objects can be handled under a worst-case analysis by considering their maximal (time-
varying) forward-reachable set as a moving (typically growing) obstacle. Results are often overly conservative,
motivating the need to replan in real time as the uncertainty gradually resolves itself.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 109

Some of the most common approaches in this space are sampling-based planners such as
rapidly-exploring random trees (RRTs) [121, 122], graph search planners such as A∗ [115],
and combined approaches such as probabilistic roadmaps (PRMs) [123]. Since these ap-
proaches typically produce trajectories for a simplified model of the system, a key challenge
lies in ensuring exact or more often approximate dynamic feasibility of the resulting plans
when tracked by the actual physical system, in particular regarding satisfaction of safety con-
straints. The problem that we focus on in this section is that of providing robust tracking
guarantees around such “fast” trajectory plans.

A common practice in robotics, illustrated in Figure 5.1 is to use a feedback controller
based on a higher-order dynamical model (unsuitable for planning full trajectories in real
time) to have the physical system locally and approximately track the low-order motion plan;
this plan will in turn leave some “margin” around obstacles, in the hopes that the physical
system will also avoid collisions in spite of tracking error. Without a bound on tracking
error, however, the margin needs to be chosen heuristically: in some cases it may be overly
conservative, unnecessarily restricting motion; in others, it may be insufficient, leading to
constraint violations.

This chapter introduces a generalization of the tracking error bound concept from Chap-
ter 4, Section 4.3 that enables the use of a simplified dynamical model for real-time planning,
while retaining robust guarantees on the trajectory executed by the physical system. Sec-
tion 5.1 lays down the mathematical formulation and presents a demonstration both in
simulation and on a physical quadrotor platform. Section 5.2 then considers the problem of
recursive feasibility, which is nontrivial under many important types of dynamics—in par-
ticular, if the robot or vehicle at hand is not able to quickly come to a stop or backtrack
its previous trajectory, then careful additional analysis is needed to ensure that it will not
collide or “get stuck” during exploration. Most commonly used motion planning schemes in
robotics are meant for computational (rather than physical) environment exploration under
static environment information, and as a result do not attempt to provide recursive feasibil-
ity guarantees. Nonetheless, we show in Section 5.2 that many of them can be augmented
through the proposed scheme to retain safety and liveness properties through physical ex-
ploration with dynamically acquired environment information.

Related Work

There is an extensive body of literature in robot navigation and motion planning, which we
cannot hope to fully summarize here. Rather, we focus on two main categories of closely
related work and discuss several of the most relevant approaches.

Safe motion planning

Some modern motion planning approaches developed concurrently with the work presented
in this chapter [124, 125] leverage a similar notion of a robust envelope around planned tra-
jectories, which the physical system is guaranteed to remain within. Rather than Hamilton-



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 110

f

Start

Goal

Start

Goal

Figure 5.1: Illustration of heuristic-margin motion planning and the FaSTrack scheme.
Left: A dynamical system may not be able to accurately track the output of a motion
planner that assumes simplified dynamics. To mitigate this, planning algorithms often aug-
ment obstacles by a heuristic margin (light gray); however, the system trajectory may still
deviate from the motion plan by more than this margin, leading to collision with an obstacle.
Right: The FaSTrack scheme uses offline Hamilton-Jacobi analysis to compute a robust track-
ing error bound for a high-fidelity dynamical model, and a control policy that enforces it.
Provided that discrepancies between the high-fidelity dynamics and the physical system’s
evolution are bounded by the specified disturbance set, the physical vehicle will track the
motion plan safely.

Jacobi analysis, these other techniques rely on libraries of motion primitives and contraction
theory respectively. A rigorous comparison between all of these methods is pending; since
their structure introduces conservativeness in different forms, their relative advantages will
likely be specific to the problem at hand.

Importantly, robust planning does not in itself guarantee recursive feasibility: a trajec-
tory that is initially deemed to be robustly safe for a finite time horizon, or with limited
environment information, may later become unsafe once the horizon is extended or new ob-
stacles are detected. Richards and How [126] and Rosolia and Borrelli [127] directly address
this problem within a model predictive control framework. The major differences between
these works and our own are that [126] assumes linear time-invariant system dynamics,
while [127] addresses an iterative task. Moreover, both assume a priori knowledge of all
obstacles. Schouwenaars et. al. [128] also plan in a receding horizon, but as in our work,



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 111

recursive safety (though not liveness) is guaranteed by ensuring that all planned trajectories
terminate in a safe loiter pattern.

The work in Section 5.2 may also be viewed as an extension of graph-based kinodynamic
planners, e.g. the probabilistic roadmap [123], by enforcing that all edges in the graph are
part of safely executable trajectories. Importantly, the framework introduced in this section
guarantees recursive feasibility in an a priori unknown environment, with potentially high-
order system dynamics, and in the presence of environmental disturbances.

Safe exploration

There is a rich body of work in robotic exploration methods, which tackle the problem
of finding viable trajectories to a specified goal in an initially unknown environment. The
majority of proposed methods, such as frontier-exploration [129–131] and D* [132, 133], have
traditionally operated in configuration space, assuming a kinematic model of the robot’s
motion. Our method, in contrast, focuses on robotic systems for which a dynamic model
is necessary, such as autonomous cars and aircraft. A sampling-based strategy is presented
in [134] which reasons about inevitable collision sets [135], but is restricted to work with
drift-less dynamics. More recent work [136] also addresses the dynamic exploration problem,
but assumes that the vehicle is able to come to a stop in a short time.

Exploration has also been studied within the context of Markov Decision Processes
(MDPs) and Reinforcement Learning (RL). Moldovan and Abbeel [137] propose an approach
for generating a sequence of actions which preserve ergodicity with high probability. Other
similar approaches, e.g. [138], also design risk-aware control policies that satisfy approxi-
mate constraints. Berkenkamp et. al. [139] and Chow et. al. [140] define safety in terms of
Lyapunov stability. Though generally desirable, stability is insufficient to guarantee collision
avoidance. The formulation of safe exploration in Section 5.2 is closely related to reachable
sets and therefore provides a natural segue to the general safe learning framework introduced
in Chapter 6.

5.1 Fast Planning, Safe Tracking

5.1.1 The FaSTrack Framework

The FaSTrack framework, initially introduced in [141], generalizes the tracking error bound
and robust tracking set used in robust STP to the setting where planning and tracking are
carried out under different dynamical models. Therefore, rather than a fully unstructured
model error fully captured by the additive disturbance term, here we have a known structured
discrepancy between the simplified model used for planning and the higher-fidelity model
used for tracking. Since even the higher-fidelity model will not perfectly capture the evolution
of the physical system, we continue to consider a bounded disturbance term to account for
unmodeled dynamics.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 112

Like robust STP, FaSTrack has an offline precomputation phase and an online planning
phase. First, the offline precomputation phase determines the robust tracking error bound,
together with a control policy to enforce it. Crucially, however, in addition to the disturbance
rejection considered in robust STP, FaSTrack handles model discrepancy between planning
and tracking. That is, the goal of the FaSTrack precomputation phase is to ensure that the
high-fidelity system dynamics can robustly track any trajectory generated by a different,
typically lower-order, dynamical model.

Once this robust tracking certificate is computed, the planning phase can be executed
one or multiple times, in this case through a real-time motion planning algorithm. While in
STP we considered trajectory plans obtained from Hamilton-Jacobi reach-avoid analysis, the
FaSTrack framework does not assume a concrete trajectory planning method, provided that
the class of trajectories it produces can be interpreted as (Carathéodory) solutions to some
dynamical equation. For example, a geometric planner produces continuous (not necessarily
smooth) paths in some space Rnr , which can be interpreted as constant-speed trajectories
of a massless point with simple motion dynamics ẋ = u.

In this section, we assume that the environment can contain static a priori unknown
obstacles provided they can be observed by the system within a certain sensing range. As-
suming that the dynamical model used by the planner can instantaneously come to a full
stop (as is the case for all geometric planners by setting u = 0), the minimum allowable
sensing range from any state is equal to the circumscribed diameter of the robust tracking
set. The stopping assumption is too restrictive in many cases, and we will consider more
general recursive feasibility properties in Section 5.2.

The FaSTrack framework explicitly exposes a tradeoff between planning cost and conser-
vativeness of plans. The higher the fidelity of the planning model, and thus the greater its
similarity to the high-fidelity tracking model, the smaller the bound on the tracking error
and therefore the less conservative motion plans will need to be to ensure safety at tracking
time. On the other hand, higher-fidelity models are more challenging to plan with in real
time (motivating the need for the FaSTrack scheme in the first place). As motion planning
algorithms and on-board computation continue to improve in the coming years, the modeling
gap may become reduced, leading to less conservative and more efficient motion plans, while
still ensuring their safe execution by the physical system.

Finally, we recall the relation between the theoretical guarantee (for the high-fidelity
dynamical model) and the practical assurance (for the physical system). The mathematical
properties of the FaSTrack scheme guarantee that the high-fidelity model, including any
dynamical system whose evolution can be expressed by some realization of the bounded dis-
turbance input, will track the planned trajectory with a bounded error and without violating
the specified constraints. This translates into an assurance about the physical system: to
the extent that the evolution of the physical system is captured by the robust model, the
properties asserted about the model also apply to the physical system. The contrapositive is
also important: if the physical system violates any of the theoretical properties of the robust
model, it must be because its behavior was not captured by the model.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 113

5.1.2 Tracking and Planning Models

The tracking model should be a high-fidelity representation of the physical system’s dynam-
ics, and in general may present nonlinear, high-order dynamical equations. Let x represent
the state variables of the tracking model, governed by dynamics

ẋ = f(x, u, d) , (5.1)

with x ∈ Rn, u ∈ U , and d ∈ D. Under the usual technical assumptions (Chapter 2,
Section 2.1), trajectories (in Carathéodory’s extended sense) are well-defined.

Example 5.1. As a running example, we will consider a tracking model of a point mass
(double-integrator) system with state x = (r, v) ∈ R2nr , control input u = a ∈ U ⊂ Rnr ,
and disturbance input d = (dv, da) ∈ D ⊂ R2nr :[

ṙ
v̇

]
=

[
v − dv
a− da

]
(5.2)

The planning model defines the class of trajectories generated by the motion planner.
Let xp represent the state variables of the planning model. FaSTrack is agnostic to the type
of planner, as long as its trajectories can be represented as (Carathéodory) solutions of a
dynamical equation of the form

ẋp = fp(xp, up) , (5.3)

with xp ∈ Rnp and up ∈ Up.

Example 5.2. Our example planning dynamics will correspond to a geometric planner
in Rnr , which can be interpreted as a massless point with state xp = rp ∈ Rnr moving
under a direct velocity control input up = vp ∈ UpRnr :

ṙp = vp . (5.4)

Note that the planning model does not need a disturbance input. The trajectory resulting
from the planning dynamics is the ideal, nominal reference that the physical vehicle will
attempt to track, and as such, it is not affected by disturbances. Conversely, the tracking
dynamics are meant to approximately represent the behavior of the physical system (which
is what we are truly concerned with); since even a carefully crafted high-fidelity model is
ultimately a mathematical abstraction, it can never fully capture the behavior of the physical
system, and therefore we account for discrepancies with a bounded disturbance term.

In practice, it will typically be the case that np ≤ n, and oftentimes the planning state
variables will be a subset of the tracking state variables (i.e. the planning dynamics are
a reduced-order version of the tracking dynamics). More generally, however, we need only
assume that the target and obstacles are specified in terms of some shared state property



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 114

r ∈ Rnr between the representations xp and x, with n, np ≥ nr. This common property
typically encodes the location or the pose of the system in the environment, so we will
generally refer to Rnr as the configuration space. We then have

T := {x ∈ Rn : r ∈ T r} , T p := {xp ∈ Rnp : rp ∈ T r} ,
F := {x ∈ Rn : r ∈ F r} , Fp := {xp ∈ Rnp : rp ∈ F r} ,

(5.5)

for some T r,F r ⊂ Rnr . As usual the dependence r(x) and rp(xp) is left implicit.

5.1.3 Error Dynamics

Similar to the robust STP analysis in Chapter 4, we want to study the error dynamics
between the tracking and planning models, and seek to make this analysis independent of
the absolute state of either system. We will assume the existence of a (possibly nonlinear)
algebraic transformation φ : Rn × Rnp → Rn such that the tracking state x can always be
obtained from the planning state xp as a function of an additionalerror variable e ∈ Rn,

x = φ(e;xp) , (5.6)

such that φ(·;xp) is a bijection between e and x, and e dynamics are independent of x, xp:

ė = f e(e, ue, u
p
e, de) , (5.7)

with transformed inputs ue ∈ Ue, upe ∈ Upe , de ∈ De characterized through analogous mappings

u = φu(ue;x
p) , up = φup(u

p
e;x

p) , d = φd(de;x
p) , (5.8)

which are also bijective for each fixed xp. The corresponding input sets Ue,i,Upe,i,De,i (ob-
tained by appropriately transforming U ,Up,D) are assumed independent of xp. Such an error
representation often exists in practice, since the planning and tracking models are different
abstractions of the same dynamical system, and a broad class of vehicle dynamics present
desirable pose-invariance properties when expressed in the vehicle’s body frame.

Example 5.3. In our simple running example, the desired error representation can be
obtained by subtracting the planning position states from the tracker’s:

x = φ(e;xp) =

[
rp + er
ev

]
. (5.9)

The error dynamics are then given by

ė =

[
ṙ − ṙp
v̇

]
=

[
ev + dv − vp
a+ da

]
, (5.10)

which, as we can see, depend solely on the error state e and inputs a, vp, dv, da.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 115

5.1.4 Offline Hamilton-Jacobi Analysis

Analogously to robust STP, we can now solve a safety problem to determine a robust con-
trolled invariant set ΩE ⊂ Rn that the error e can be made to remain in for any nominal
trajectory generated by the planner and for any realization of the uncertain tracking dynam-
ics. In particular, we seek a robust controlled invariant set that will minimize the amount of
tracking error in the dimensions that are relevant to the safety and completion specifications,
in this case the configuration space Rnr . Setting the implicit surface function lE(e) := −‖er‖2,
our safety value function has the form of (4.29) and is the infinite-horizon limit of the unique
viscosity solution to (4.30).

In principle, rather than choosing an arbitrary error radius RE and verifying that the
corresponding safe set is non-empty, we could directly determine the smallest non-empty su-
perlevel set of the value function, which gives the tightest enforceable error bound. In prac-
tice, such a procedure suffers from numerical issues due to limited precision of the computed
value function, so we usually choose a slightly larger radius RE and use its corresponding
safe set ΩE , obtained as

ΩE = {e ∈ Rn : V E(e) ≥ −RE} . (5.11)

Example 5.4. In our simple running example, letting the input sets U ,Up,D be de-
coupled in each of the nr dimensions, the safety problem also becomes decoupled into
nr 2-dimensional subsystems. Figure 5.2 shows the tracking error bound ΩE for one
subsystem.

In this special case, an analytic solution can also be determined from the equations of
motion, since the optimal error trajectories always correspond to constant (maximum)
acceleration. Letting U = [−ā, ā], Up = [−v̄p, v̄p], D = [−d̄v, d̄v] × [−d̄a, d̄a] for this
particular subsystem, the safe set is delimited by the two parabolas

er =
1
2

(
ev − (v̄p + d̄v)

)2 − (v̄p + d̄v)
2

ā− d̄a
,

er =
−1

2

(
ev + (v̄p + d̄v)

)2
+ (v̄p + d̄v)

2

ā− d̄a
,

(5.12)

corresponding to the maximum-acceleration characteristics (optimal trajectories) followed
by the error state when the planning system switches abruptly between ±v̄p and d acts
against the tracker’s efforts to match velocity as quickly as possible to stop the drift in
relative position. The analytic controlled invariant set is superimposed in Figure 5.2.

The Hamilton-Jacobi reachability precomputation is done in in free space, in other words,
the error dynamics are constructed under the assumption that both the planning state and
tracking state remain clear of their respective failure sets as given by F ,Fp. This assumption



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 116

-0.8 -0.4 0 0.4 0.8
-0.8

-0.4

0

0.4

0.8
analytic
numerical

0

0er
<latexit sha1_base64="Pblm/z4uEJ0tr532r4Jj7nZgpa8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF09S0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8NJME/YgOJQ85o8ZKD9hX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVup3eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFWLI3e</latexit>

ev
<latexit sha1_base64="ibQTdr/bKOTEklnHyvXDCL7cxTw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4kkq2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/NUaleSyfzCRBP6IDyUPOqLHSI/bGvVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeONnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWv3eRwFOIUzuAAPrqEGd1CHBjAYwDO8wpsjnBfn3flYtK45+cwJ/IHz+QNcPI3i</latexit>

0.8

0.8

Figure 5.2: Analytically and numerically determined tracking error bound ΩE , where the
error e can be robustly kept despite worst-case disturbance and motion plan.

is not problematic, and will always hold when executing any planned trajectory output by
the FaSTrack online planning phase.

5.1.5 Online Robust Trajectory Planning and Tracking

In the online phase, a motion planning algorithm is used to generate robustly safe nominal
trajectories, which are then tracked by through a robust control policy derived from the
Hamilton-Jacobi analysis.

Robust Real-Time Planning

The planning step, executed once at the start of the motion and again whenever new infor-
mation about the environment is obtained through exploration, uses an off-the-shelf motion
planning algorithm to generate a new nominal trajectory. The planning algorithm will im-
plement a collision-checking routine, which in the FaSTrack scheme will be equipped with
the precomputed tracking error bound.

The collision-checking operation requires translating the precomputed tracking error
bound ΩE ⊂ Rn into a space relevant to the planning problem. Through the transfor-
mation φ, we can determine the robust tracking set for any candidate planning state xp,
that is, the set of all possible states x in which the tracking system may find itself when
attempting to track x:

X̃ (xp) := {φ(e;xp), e ∈ ΩE} . (5.13)



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 117

However, since the state spaces of the tracking and planning systems are different, the
set X̃ (xp) contains “spurious” dimensions that are not needed by the planning algorithm.
Instead, we only need the projection of X̃ (xp) onto the configuration space Rnr , leading to
the projected robust tracking set

X̃ r(xp) := {r ∈ Rnr : r = r(x), x = φ(e;xp), e ∈ ΩE} . (5.14)

For each candidate tracking statexp, the projected robust tracking set X̃ r(xp) is deter-
mined and checked for collisions. The specific collision-checking implementation depends on
the environment representation used by the off-the-shelf planning algorithm. Since X̃ r(xp) is
typically encoded numerically on a discrete grid, collision checking may proceed by checking
whether each cell in X̃ r(xp) is occupied by an obstacle. This approach can often be made
efficient by standard collision checking techniques, such as bounding X̃ r(xp) by the sphere
of radius RE centered around rp and discarding obstacles that do not intersect it, since by
construction

X̃ r(xp) ⊆ B̄(rp, RE)} , (5.15)

with B̄ representing the closed ball. A faster collision-checking can also be implemented, at
the cost of increased conservativeness, by replacing X̃ r(xp) by this sphere altogether.

Example 5.5. In our running example, noting that the configuration space is identical to
the planning space, and substituting (5.9) and (5.12) into (5.13), we obtain the projected
robust tracking set

X̃ r(rp) = {r ∈ Rnr : r = r(x), x = (rp + er, ev), (er, ev) ∈ ΩE}

=
nr∏
j=1

[
rpj −

(v̄pj + d̄v,j)
2

āj − d̄a,j
, rpj +

(v̄pj + d̄v,j)
2

āj − d̄a,j

]
,

(5.16)

which is a Cartesian product of intervals in each dimension j = 1, . . . , nr defining a
box centered around rp in Rm. This is a substantially simplified form thanks to the
fact that (a) the planning model is a lower-order abstraction of the tracking model, with
the common relevant properties r being identical to the planning states xp, and (b) the
transformation φ between error and tracking state is independent of the planning state.
Note that while (a) was trivially met in Section 4.3, (b) was not satisfied by the vehicle
dynamics in (4.41). For many relevant systems we will need to use the more general
form in (5.13).

Robust Tracking Policy

The tracking system may then apply the precomputed safety controller to track this planned
trajectory in real time. The offline precomputation can be used to define a least-restrictive



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 118

control law, since the optimal tracking control enforcing the tracking error bound ΩE need
only be applied on (or in practice in the vicinity of) the boundary ∂ΩE .

Analogous to STP, the optimal tracking control can be determined in a straightforward
manner through a look-up operation in real time. At any given time t, the controller first
computes the current error e = φ−1

(
x(t); xp(t)

)
. The transformed optimal control πEe (e)

can be obtained by applying (4.32), either through an online computation of the numerical
gradient ∇eV

E or by looking up πEe (e) in a previously stored table. The optimal tracking
control πE(e) = φu

(
πEe (e); xp(t)

)
can then be applied to enforce the tracking error bound.

Continually doing this over time is guaranteed to keep the tracking trajectory x(τ) within
the tracking error set X̃ (xp(τ) throughout the motion plan.

Whenever replanning takes place, the new nominal trajectory xpk+1 is set to start at a
future planned state along the current nominal trajectory xpk, that is: xpk+1(t+δ) := xpk(t+δ).
The time margin δ > 0 ensures that the planning algorithm has enough time to compute
the new plan and update the nominal trajectory for the vehicle to track.

5.1.6 Meta-Planning: Motion Plans with Multiple Models

As we have seen, the FaSTrack framework presents system designers with a tradeoff in the
choice of planning model: simpler planning models can be used to quickly compute nominal
trajectories, but they will typically be harder to track accurately, leading to larger tracking
error bounds and forcing these nominal trajectories to be more conservative. Similarly,
planning models allowing more aggressive maneuvers (e.g. kinematic models assuming faster
motion) will seem to allow the robot to cover more space in less time, but may also lead to
larger tracking errors, due to the limited maneuverability of the high-fidelity tracking model.

It is possible to at least partly automate this tradeoff by allowing designers to specify a
suite of planning models, each of them possibly associated with a different motion planning
algorithm; we refer to each model-algorithm pair as a planner. As with the tracking and
planning model, the suite of planning models must share a configuration space of state
variables relevant to trajectory safety and completion. The planning phase can then explore
the space through a meta-planning scheme that selects different planners as it constructs
candidate trajectories. The resulting nominal trajectory output by this scheme may then
consist of multiple sub-trajectories “stitched” together in the configuration space Rnr .

Through this process, trajectory planning can make use of the simplest or most maneu-
verable planners in relatively unconstrained of the environment where large tracking errors
are not problematic, and automatically switch to higher-fidelity models or more conserva-
tive maneuverability constraints in more cluttered regions where tighter tracking guarantees
may be necessary to ensure safety. These switches are mediated automatically by the meta-
planning scheme, which can be given a preference for using more efficient models where
possible.

A planner switch involves a change from one tracking error set to another. Ensuring
that this transition is done safely, and providing a bound on possible tracking errors reached
during the transition, requires an additional Hamilton-Jacobi precomputation for every al-



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 119

(a) Standard LQR controller. (b) Safety controller.

Figure 5.3: Simulated autonomous flight in a cluttered environment. Using a standard
feedback controller for real-time trajectory tracking, such as LQR, the quadrotor may leave
the projected robust tracking set in the vicinity of obstacles. In contrast, the optimal safety
controller enforces the bound. Video: https://youtu.be/lPdXtR8Ar-E

lowable planner-to-planner transition. We direct the interested reader to [16] for a detailed
description of one possible sample-based meta-planning implementation for a suite of geo-
metric motion planners with different velocities.

5.1.7 FaSTrack Implementation Demonstration

We implemented the FaSTrack framework within the robot operating system (ROS) [142]
framework. Code is written in C++ and is available as an open source ROS package.2

We additionally implemented a meta-planning extension of FaSTrack, which automatically
chooses among a finite collection of planning models as it constructs the nominal trajectory,
adjusting the chosen model to the local environment constraints.3 The code can be used in
conjunction with the Open Motion Planning Library (OMPL) [143].

Here, we demonstrate the FaSTrack framework on a 6D near-hover quadrotor model
tracking a 3D geometric planning model in the cluttered environment depicted in Figure 5.3.
Planned trajectories are determined running the BIT* algorithm [144]. The dynamics for
the tracking model are given by

ẋ
ẏ
ż
v̇x

v̇y

v̇z

 =


vx − dvx
vy − dvy
vz − dvz

g tan θ − dax
−g tanφ− day
T − g − daz

 , (5.17)

2https://github.com/HJReachability/fastrack
3https://github.com/HJReachability/meta_fastrack

https://youtu.be/lPdXtR8Ar-E
https://github.com/HJReachability/fastrack
https://github.com/HJReachability/meta_fastrack


CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 120

0.2 0.4 0.6 0.8 1

Speed of planner (m/s)

0

1

2

3

E
rr

o
r 

B
o

u
n

d
 (

m
) TEB in horizontal dims

TEB in vertical dim

Figure 5.4: Robust tracking bound size vs. speed assumed by the planner in each subsystem.

where the tracking control u = (θ, φ, τ) corresponds to roll, pitch, and thrust. In all exper-
iments, we set θ, φ ∈ [−0.15 rad, 0.15 rad] and τ ∈ [7.81 m/s2, 11.81 m/s2]. Note that we
have assumed a zero yaw angle for the quadrotor. This is enforced in practice by using a
feedback controller on yaw rate to regulate yaw to zero.

The simple motion dynamics for the planning model areẋp

ẏp

żp

 =

vpxvpy
vpz

 (5.18)

where up = [vpx, v
p
y, v

p
z ] represent the planning model’s velocity control in each dimension. We

will be considering a suite of such planners with different maximum speeds in each dimension:
1.0 m/s, 0.7 m/s, 0.4 m/s and 0.1 m/s.

Choosing the error representation e = (er, ev), er = (r − rp), ev = v, the error dynamics
between the tracking and planning models are:

ėx

ėy

ėz

ėvx
ėvy
ėvz

 =


vx − dvx − vpx
vy − dvy − vpy
vz − dvz − vpz
g tan θ − dax
−g tanφ− day
T − g − daz

 (5.19)

Equation (5.19) can be split into three 2D subsystems with states (x, vx), (y, vy), and
(z, vz). Note that the dynamics of the (x, vx) and (y, vy) subsystems are identical, and
thus can be solved once and applied to each subsystem. Decomposing the Hamilton-Jacobi
reachability analysis as in [145], we compute the (x, vx) set in 2 min 15 s and the (z, vz) set
in 2 min, for a total of a 4 min 15 s precomputation time. Since the tracker dynamics of
each subsystem can be transformed into the double-integrator form in Example 5.1, and the
planner dynamics are already in the simple motion form of Example 5.2, we can equivalently



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 121

compute the tracking error bound and optimal bound-enforcing controller in closed form,
following the analysis in Examples 5.3, 5.4, and 5.5. Figure 5.4 shows the growth of the
projected robust tracking set X̃ r in each subsystem’s position state as the planner speed in
that dimension increases.

Due to the form of (5.17), the optimal safety controller will be bang-bang, that is, control
variables will always be assigned extreme values within the allowed ranges, possibly alter-
nating between maximum and minimum; however, recall that it is only critical to apply the
safety control near the boundary of the tracking error bound ΩE . A smooth linear controller
may be used in the interior, following a least-restrictive supervisory control scheme.

Simulation

Figure 5.3 shows a snapshot of a simulated autonomous quadrotor flight in an artificial
environment with spherical obstacles using trajectories generated by our algorithm. Initially,
the obstacle locations and sizes are unknown to the quadrotor, but as soon as they come
within the sensing radius (which in the case of a geometric planner must be no less than
the circumscribed diameter of the robust tracking set) they are added to the meta-planner’s
internal environment model and used during re-planning.

Figure 5.3a demonstrates an undesirable outcome obtained when tracking a nominal
trajectory with a standard LQR controller; in Figure 5.3b everything remains the same
except that we apply the optimal controller derived from the offline analysis in Section 5.1.4.
Note that the LQR controller makes no guarantee regarding the robust tracking set, and
indeed leaves the set in the vicinity of the obstacle. The optimal controller, conversely, is
guaranteed to keep the system in the robust tracking set.

Hardware Demonstration

We replicated the simulation on a hardware testbed using the Crazyflie 2.0 open source
quadrotor platform, shown in Figure 5.5. We obtained position and orientation measure-
ments at∼ 235 Hz from an OptiTrack infrared motion capture system. Given state estimates,
we send control signals over a radio to the quadrotor at 100 Hz. As shown in the summary
video available online, the quadrotor successfully avoids the obstacles while remaining inside
the robust tracking set for each planner the meta-plan. Trajectory planning (including meta-
planning) typically runs in well under one second in a moderately cluttered environment.

Figure 5.6 shows the quadrotor’s position over time recorded during a hardware demon-
stration. Note that the quadrotor stays well within the projected robust tracking set through-
out the flight. As seen in Figure 5.7, the meta-planning scheme ensures this even as the robust
tracking bound changes size during planner switches.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 122

Figure 5.5: A Crazyflie 2.0 flying during our hardware demonstration. Three OptiTrack
motion capture cameras are visible in the background. Obstacles, marked by lanterns, are
revealed to the planner based on proximity (simulating a sensor).

5.2 Recursive Safety and Liveness in Uncertain

Environments

The analysis introduced in Chapter 4 and Section 5.1 allows us to compute trajectories
for one or multiple robots or autonomous vehicles while providing assurances about the
physical system’s ability to safely track the planned trajectories in spite of discrepancies
between the system’s dynamics and the model used for motion planning. In Section 5.1, we
demonstrated the functioning of this framework for real-time planning (and replanning) as
the system explores an a priori unknown environment. Provided that a feasible motion plan
could always be found when executing the online planning step, the higher-fidelity tracking
dynamics were then guaranteed to robustly track the associated trajectory while avoiding
constraint violations. In the examples and demonstrations considered, it was always possible
to find such a feasible plan, since a geometric planner always has the trivial option to stop
in place and avoid collisions for all future times.

More generally however, this condition is nontrivial, and can pose a central challenge
to safe exploration of a priori unknown environments. In many cases of interest, especially
involving vehicles and mobile robots, it is not realistic to assume that the dynamical system
(or any reasonably descriptive approximation) can instantaneously come to a stop; if obsta-



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 123

Figure 5.6: Quadrotor trajectory in FaSTrack hardware demonstration. The physical vehicle
remains within the tracking bound around the nominal trajectory plan at all times.

cles need to be sensed online, it can be difficult to guarantee recursive feasibility. Informally,
a planning algorithm is recursively feasible if it explores the environment without losing
its ability to maintain safety or to reach the goal. The dangers of non-recursively feasible
exploration are illustrated in Figure 5.8: given a limited sensing range or planning horizon,
a planning scheme that only ensures constraint satisfaction for a finite time window may
unwittingly lead the system into states from which satisfying the constraints is no longer
possible, i.e. unsafe states, or from which the Many commonly-used motion planning formu-
lations bypass these issues, for example by assuming full prior knowledge of the environment
or by assuming, as we did in Section 5.1, that it is safe to stop and possible to do so either
instantaneously or within a short range. While such assumptions are acceptable in many
scenarios, there are important applications and systems for which ensuring safe dynamic
exploration and navigation becomes crucial. This is particularly true for a wide range of ve-
hicles, such as motorcycles, automobiles, and fixed-wing aircraft, which may operate at high
speeds and cannot easily (if at all) come to a stop. These issues are especially pronounced
for non-holonomic systems.

In this section, we consider the process of incrementally building a graph of forward-
reachable states (for a given planning model) within known free space, while simultaneously
identifying those states from which the initial state is safely reachable. This latter graph



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 124

0 2 4 6 8

-1

1
Planner

Tracker

TEB

0 2 4 6 8

Time (s)

0

1

0 2 4 6 8

0

2

Figure 5.7: Quadrotor trajectory in FaSTrack hardware demonstration with meta-planning.
Even though the tracking bound varies in size as the aggressiveness of the nominal trajectory
plan changes, the physical vehicle always remains within the bound.

implicitly represents a discrete under-approximation of the backward-reachable set of the
initial state. Restricting the physical exploration of the system to only consider nominal
trajectories from which either the initial state or the target are safely reachable then allows us
to provide all-time assurances for the physical system, through the same analysis introduced
in this chapter. More specifically, this procedure ensures:

• Safety: all trajectories initiated by the physical system will be robustly collision-free.

• Liveness: if the target is safely reachable from the initial state, it will always be safely
reachable.

• Safe Probabilistic Completeness: if a target was originally reachable by a plan that
preserves the ability to return home, the proposed exploration process guarantees that
it will eventually be found with probability 1.

5.2.1 Recursive Feasibility: Safety and Liveness

We consider a bounded environment W ⊂ Rnr , where Rnr is the configuration space of state
properties relevant to the specification of targets and constraints (recall that this typically
includes position or pose configuration, although it may generally comprise any state vari-
ables). We denote by P the set of planning states whose corresponding configuration lies
in W .

There is an initially unknown (or possibly partially known) set F r containing all config-
urations that, when adopted by the system, result in a failure state (for example, a physical



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 125

!

Figure 5.8: Schematic illustration of an unsafe motion plan due to the lack of recursive
feasibility. The planner initially guides the vehicle into an opening between two obstacles,
following a trajectory that is temporarily safe given the finite sensing field of view (here
depicted by the green rays). Upon following the trajectory, the vehicle’s sensors detect a
dead end; at this point, the planning algorithm is unable to find a new trajectory that would
avoid a collision.

collision), as per (5.5). In addition, the goal of the navigation problem is to eventually guide
the system’s state into a target state, also defined, following (5.5), in terms of the config-
uration space, T r ⊂ Rnr . The motion planning formulation in Chapter 4 and Section 5.1,
we had assumed that targets are known a priori. Since we are presently interested in ex-
ploratory navigation problems, we relax this assumption here. As with F r, then, the system
may have full, partial, or no initial knowledge of T r.

We assume that for each configuration r ∈ W , the environment representation can assign
a label {OCCUPIED,FREE,GOAL,UNKNOWN}. The system’s knowledge of the environ-
ment will be updated online according to measurements from a well-characterized sensor,
with field of view given by a set-valued map V : Rn ⇒W . We will restrict our attention to
deterministic sensing models, i.e. if a previously UNKNOWN configuration r ∈ W comes
within the sensor’s field of view V(x), it will be immediately identified as OCCUPIED if
r ∈ F r, and otherwise labeled as GOAL if r ∈ T r and FREE otherwise. Probabilistic
extensions are possible, though beyond the scope of our analysis here.

After completing the offline Hamilton-Jacobi analysis introduced in Section 5.1.4, the
projected robust tracking set X̃ r(xp) ⊂ Rnr can be determined for any candidate planning
state xp ∈ P , following (5.14). Using this set, a candidate planning state xp can be collision-
checked against any known OCCUPIED configurations as well as all (potentially occupied)
UNKNOWN configurations.

We will require that the system is at all times guaranteed to only take configurations
known to be FREE (and, eventually, GOAL). For convenience, we will denote by Wfree(t0)
the set of configurations r ∈ W that are labeled as FREE or GOAL at any particular time
t0. By construction, Wfree(t0) ⊆ Kr, where the constraint set Kr is the complement of the
failure set F r in W .

Definition 5.1 (Robustly Collision-Free State). A nominal planning state xp ∈ P is robustly



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 126

collision-free given the environment information if all configurations in its corresponding
projected robust tracking set are labeled FREE or GOAL:

X̃ r(xp) ⊆ Wfree(t0) . (5.20)

We denote by Pfree(t0) the set of known robustly collision-free planning states at time t0.

In addition, a planning state xp will be deemed a goal state if every configuration in its
projected robust tracking set X̃ r(xp) is labeled as GOAL (in which case it is guaranteed that
the tracking system’s state will reach T given a viable planning trajectory to xp). We will
denote by Wgoal(t0) the set of configurations r ∈ W that are labeled as GOAL at time t0.
By construction, Wgoal(t0) ⊆ Wfree(t0) and in addition Wgoal(t0) ⊆ T r.

Definition 5.2 (Known Goal State). A nominal planning state xp ∈ P is a known goal state
if all configurations in its corresponding projected robust tracking set are labeled GOAL:

X̃ r(xp) ⊆ Wgoal(t0) . (5.21)

We denote by Pgoal(t0) the set of known goal states at time t0.

By Definitions 5.1, and 5.2, all known goal states at time t0 are also known to be robustly
collision-free: Pgoal(t0) ⊆ Pfree(t0). In addition, as in Section 4.3, we let the robust target
set T̃ p (4.34) be given by all nominal planning states for which the robust tracking set is
contained in the target set, or, in the configuration space,

T̃ p := {xp ∈ Rnp : X̃ r(xp) ⊆ T r} . (5.22)

We then have that Pgoal(t0) ⊆ T̃ p for all times t0, that is, all known goal states belong to
the robust target set for the planning system. In fact, the two sets become equal whenever
the system has full knowledge of the target: with all configurations in T r labeled GOAL, we
have Wgoal(t0) = T r and therefore the definitions of Pgoal(t0) and T̃ p become equivalent.

Definition 5.3 (Known Safe Trajectory). A planned trajectory xp
(
·; t0, xp0,up

)
is known at

time t0 to be safe if its states are robustly collision-free for all time based on the environment
information available at t0:

∀t ≥ t0, X̃ r
(
xp
(
t; t0, x

p
0,u

p
))
⊆ Wfree(t0) . (5.23)

Definition 5.4 (Known Safe Reachable Set). The known safe forward-reachable set RF of
a set of states P ′ ⊆ P at time t0 is the set of states xp ∈ P that can be reached from P ′ by
a trajectory xp known at t0 to be safe:

RF (P ′; t0) :=
{
xp | ∃xp′ ∈ P ′,∃t ≥ t0,∃up, ∀τ ∈ [t0, t] :

X̃ r
(
xp
(
τ ; t0, x

p′,up
))
⊆ Wfree(t0), xp = xp

(
t; t0, x

p′,up
)}

.
(5.24)



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 127

Analogously, the known safe backward-reachable set RB of P ′ at t0 is the set of states xp ∈ P
from which P ′ can be reached by a trajectory xp known at t0 to be safe:

RB(P ′; t0) :=
{
xp | ∃xp′ ∈ P ′,∃t ≥ t0,∃up, ∀τ ∈ [t0, t] :

X̃ r
(
xp
(
τ ; t0, x

p,up
))
⊆ Wfree(t0), xp′ = xp

(
t; t0, x

p,up
)}

.
(5.25)

We will often consider reachable sets of individual states; for conciseness, we will write
RB(xp; t0) rather than RB({xp}, t0).

Definition 5.5 (Viability). A state xp is viable at time t0 given a home state xphome if at
t0 it is known to be possible to safely reach either some known goal state xpgoal ∈ Pgoal(t0)

or xphome from xp, i.e. xp ∈ RB

(
Pgoal(t0) ∪ {xphome}; t0

)
. A trajectory xp is viable at t0 if all

states along xp are viable at t0.

Note that a viable trajectory at time t0 is necessarily a known safe trajectory at time
t0; the converse, however, is not generally true, that is, a trajectory can be known safe
(Def. 5.3) but not viable. Consider for example a trajectory that enters an enclosed FREE
region within which it is possible to maintain a collision-free loiter pattern indefinitely, but
the region cannot be left without colliding. Such a trajectory is not viable, since it will
render the system unable to continue its exploration. This leads us to ask what states may
be explored without losing viability.

Definition 5.6 (Safely Explorable Set). Given an initial planning state xphome, the safely
explorable set PSE ⊂ P is the collection of states that can eventually be visited by the system
through a trajectory starting at state xphome with no prior knowledge of W whose states are,
at each time t ≥ 0, viable according to the known free space Wfree(t).

Based on the idea of the safely explorable set we can finally introduce the important
notion of liveness for the purposes of our work.

Definition 5.7 (Liveness). Given a set T r ⊂ Rr of target configurations, a planning state
xp is live if it is possible to reach some xpgoal ∈ T̃ p from xp while preserving viability at all

times, i.e if T̃ p ∩ PSE 6= ∅. A trajectory xp is live if all states in xp are live.

Note that, unlike the previous definitions, Definitions 5.6 and 5.7 are not tied to the
available knowledge of the environment at a given time t0: rather, safe explorability and
liveness are ground-truth properties, which can only be determined by the system after
sufficient exploration of the environment. Typically, the system may start at a state that is
live but not be initially able to determine this; liveness of a state or a trajectory can usually
only be determined retrospectively once a safe trajectory to a goal state is computed.

Finally, we will refer to a planning algorithm as recursively feasible if, given that the
initial state xp0 =: xphome is live, all future states xp output by the planner (and therefore
tracked by the system) are both live and viable. We will show that the navigation scheme



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 128

presented here is recursively feasible; crucially, this means that it preserves liveness of the
system’s planning state even when the property cannot yet be determined based on existing
environment information. Moreover, we will also show that the scheme is safely probabilis-
tically complete, in the sense that, if xp0 is live, then with probability 1 the planning state
will eventually reach T̃ p (and therefore the tracking system will robustly reach T ) through
continued guaranteed safe exploration.

5.2.2 The Recursively Feasible Navigation Framework

The framework introduced here is comprised of two concurrent, asynchronous operations:
building a graph of states which discretely under-approximate the forward and backward-
reachable sets of the initial “home” state, and traversing this graph to find recursively feasible
trajectories. Namely, we define the graph GF := {V,E} of vertices V and edges E. Vertices
are individual states in P , and directed edges are trajectories xp between pairs of vertices.
GF will be a discrete under-approximation of the currently known safe forward-reachable set
of the initial state xphome. We also define the graph GB ⊆ GF to contain only those vertices
in GF which are in the known safe backward-reachable set of {xphome} ∪ Pgoal(t0), and the
corresponding edges. We use the notation xp ∈ GF to mean that state xp is a vertex in GF ,
and likewise for GB.

We use following two facts extensively. They follow directly from the definitions above
and our assumptions on deterministic sensing and a static environment.

Lemma 5.1 (Permanence of Known Safety). A trajectory xp that is known to be safe at
time t0 will continue to be known safe at all t ≥ t0.

Proof. Since sensing is assumed to be deterministic, configurations r ∈ W that have been
labeled as FREE will not be re-labeled. Therefore, for all t0, t with t0 ≤ t,Wfree(t0) ⊆ Wfree(t)
and by Definition 5.3, known safety of xp at time t0 implies known safety of xp at all future
times t.

Lemma 5.2 (Permanence of Known Safe Reachability). A state xp that is in the known safe
forward– or backward-reachable set of some P0 ⊂ P at time t0 will continue to belong to this
set for all t ≥ t0, i.e. RF (P0; t0) ⊆ RF (P0; t) and RB(P0; t0) ⊆ RB(P0; t).

Proof. By assumption, we have a known safe forward (backward) trajectory connecting some
xp0 ∈ P0 and xp that is safe at t0. From Lemma 5.1 this trajectory is also safe for all times
t ≥ t0, which implies that xp belongs to the known safe forward– (backward–) reachable set
of xp0, and thereby of P0, at time t.

Corollary 5.1 (Permanence of Known Safe Reachability of Non-Decreasing Set). If a state
xp is in the known safe forward– (backward–) reachable set of a set P0 ⊂ P at time t0, it is
also in the known safe forward– (backward–) reachable set of any set P1 ⊇ P0 for all t ≥ t0.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 129

(a) Outbound expansion. (b) Inbound consolidation.

Figure 5.9: In outbound expansion (a), a new state is sampled from P and added to GF if
safely reachable from GF . In inbound consolidation (b) a state in GF is added to GB if it can
safely reach a (viable) state in GB.

Corollary 5.1 implies that any set in the known safe backward-reachable set of the known
goal set Pgoal(t0) at time t0 will also be in the known safe backward-reachable set of the
updated known goal set Pgoal(t) ⊇ Pgoal(t0) at any future time t ≥ t0.

5.2.3 Building the Graph

We incrementally build the graph by alternating between outbound expansion and inbound
consolidation steps. In the outbound expansion step, new candidate states are sampled,
and if possible, connected to GF . This marks them as part of the forward-reachable set of
xphome. In the inbound consolidation step, we attempt to find a safe trajectory from forward-
reachable states in GF back to a state in GB, which is known to be viable. Successful inbound
consolidation marks a state as either able to reach Pgoal(t) (and therefore T̃ p) or safely return
to xphome.

Outbound expansion

This process incrementally expands a discrete under-approximation GF of the forward-
reachable set of the home state, RF (xphome; t). Note that, by Lemma 5.2, RF (xphome; t) can
only grow as the environment W is gradually explored over time and therefore any state xp

added to GF at a given time t is guaranteed to belong to RF (xphome; t
′) for all t′ ≥ t.

We add states to GF via a Monte Carlo sampling strategy inspired by existing graph-
based kinodynamic planners [116], illustrated in Figure 5.9a. We present a relatively simple
strategy here, although more sophisticated options for sampling new states are possible,
e.g. [144, 146].

Let xpnew be sampled uniformly at random from Pfree at time t. We wish to establish
whether or not xpnew is in the known safe forward-reachable set of home at t, i.e. xpnew ∈
RF (xphome; t). This is accomplished by invoking a third-party motion planner, which will
attempt to find a safe trajectory to xpnew from any of the points already known to be in
RF (xphome; t). In Section 5.2.6, we use a standard kinodynamic planner from the OMPL [143]
for this purpose.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 130

We observe that repeatedly executing this procedure will, in the limit, result in a dense
discrete under-approximation of RF (xphome; t). Formally, assuming that the low-level planner
will find a valid trajectory to a sampled state xp if one exists, then for any ε > 0, we have
that the probability that a new sampled state xp′ ∈ RF (xphome, t) will lie within a distance
of ε from the nearest state xp ∈ GF goes to 1 in the limit of infinite samples. We formalize
this observation below:

Lemma 5.3 (Dense Sampling). For all ε > 0, assuming we sample candidate states xp

uniformly and independently from P and P is compact, then letting xpk be the k-th sampled
state from P we have that ∀t:

lim
k→∞

P
(

min
xp∈GF

‖xpk − xp‖ < ε | xpk ∈ RF (xphome; t)
)

= 1 .

Proof. This follows directly from the properties of uniform sampling from compact sets.

This will be useful in proving the safe probabilistic completeness of the recursive feasibility
scheme.

Inbound consolidation

This process incrementally adds states in GF to a discrete under-approximation GB of the
known safe backward -reachable set of Pgoal(t) ∪ {xphome}. By Definition 5.5, any state added
to this set is viable. As granted by Lemma 5.1 and Corollary 5.1, this also means that a
trajectory will always exist from such a state to either xphome or some xpgoal ∈ Pgoal(t) ⊆ T̃ p.
This is a crucial element of our overall guarantee of recursive feasibility. We recall that
GB ⊆ GF by construction.

Suppose that, at time t, xp ∈ GF \ GB. We will attempt to add xp to GB by finding a
safe trajectory from xp to any of the states currently in GB by invoking the low-level motion
planner. If we succeed in finding such a trajectory, then by construction there exists a
trajectory all the way to xphome or some xpgoal ∈ Pgoal(t), so we add xp to GB. If xp is added to
GB, we also add all of its ancestors in GF to GB, since there now exists a trajectory from each
ancestor through xp to either xphome or xpgoal. This procedure is illustrated in Figure 5.9b.

5.2.4 Exploring the Graph

When requested, we must be able to supply a safe trajectory beginning at the current state
reference xp(t) tracked by the system. Recall from Section 5.1 that under the FaSTrack
framework the physical system’s state x(t) ∈ Rn is guaranteed to remain within a robust
tracking set X̃ (xp). This property allows us to make guarantees in terms of planning model
states xp rather than full physical system states x.

Trajectories xp output by the recursive feasibility scheme must guarantee future safety
for all time; that is, as the system follows xp we must always be able to find a safe trajectory
starting from any future state. In addition, we require that xphome remains safely reachable



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 131

Figure 5.10: Schematic diagram of the heuristic exploration procedure.

throughout the trajectory; this ensures that liveness is preserved (if it was possible from
xphome to safely explore W and reach T r then this possibility will not be lost by embarking
on xp). Liveness in this context is thus a critical property, complementary to safety.

By construction, any cycle in GB will be known to be safe at all future times (Lemma 5.1).
Readily, this suggests that we could guarantee perpetual recursive feasibility by always re-
turning the same cycle. However, this naive strategy, while safety-preserving, would never
reach the goal. Moreover, it would not incrementally explore the environment. In order to
force the system to explore unknown regions ofW , we modify this naive strategy by routing
the system through a randomly selected unvisited viable state xpnew ∈ GB, and then back
to xphome, as illustrated in Figure 5.10. The trajectory always ends in a periodic safe orbit
between xpnew and xphome. Note that this random selection does not need to be done naively
(e.g. by uniform sampling of unvisited states in GB), and efficient exploration strategies are
certainly possible. In our examples we will use an ε-greedy sampling heuristic by which, with
probability 1− ε, we select the unvisited xp ∈ GB closest to Pgoal(t) (if non-empty, otherwise
we can select the unvisited xp ∈ GB farthest from xphome), and otherwise, with probability ε,
we uniformly sample an unvisited state in GB. Other strategies are certainly possible, and
there is room to make exploration efficient using metrics like expected exploration time and
sensor coverage.

As soon a state xpgoal ∈ Pgoal(t) is added to GB for the first time, we may simply return
a trajectory from the current state xp(t) to xpgoal. This will always be possible because, by
construction of output trajectory plans, xp(t) belongs to an edge of the graph GB and can
therefore safely reach some node xp ∈ GB. From xp, a known safe trajectory exists that will
guide the system to xpgoal (if necessary, looping through xphome).

5.2.5 Algorithm Summary and Theoretical Guarantees

To summarize, the proposed navigation scheme maintains, at each time t, graph represen-
tations of the forward-reachable set of xphome and the backward-reachable set of Pgoal(t) ∪
{xphome}. Over time, these graphs become increasingly dense (Lemma 5.3). Additionally,
all output trajectories terminate at some xpgoal ∈ T̃ p or in a cycle that includes xphome. This
implies our main theoretical result:



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 132

Theorem 5.1 (Recursive Feasibility). Assuming that we are able to generate an initial
viable trajectory (e.g. a loop through xphome), all subsequently generated trajectories will be
viable and preserve the liveness of xphome. Thus, the proposed navigation scheme guarantees
recursive feasibility.

Proof. By assumption, the initial trajectory xp0 output at t0 is safe (Definition 5.3). We
now proceed by induction: assume that the i-th reference trajectory xpi is viable for the
knowledge of free space at the time ti at which it was generated, i.e. ∀t ≥ ti,x

p
i (t) ∈

RB(Pgoal(ti) ∪ {xphome}; ti). Assuming xpgoal has not been reached yet at the time of the next
planning request, ti+1, a new trajectory is generated from initial state xpi (ti+1), after possibly
updating the environment information, with Pfree(ti+1) ⊇ Pfree(ti) and Pgoal(ti+1) ⊇ Pgoal(ti).
The new trajectory xpi+1 is constructed by concatenating safe trajectories between states in
GB ⊆ RB(Pgoal(ti+1)∪{xphome}; ti) and therefore is a viable trajectory. Such a trajectory can
always be found, because it is always possible to choose xpi+1 ≡ xpi , which, by the inductive
hypothesis was a viable trajectory at time ti and, by Lemma 5.2 and Corollary 5.1, continues
to be viable at ti+1. This means that from every state visited by xpi+1 there is a known safe
trajectory to either reach Pgoal(ti) or return to xphome. In the former case, xpi+1 is in fact live
(and, since ∀t ≥ 0,xpi+1(t) ∈ RF (xphome; ti+1), xphome is retrospectively determined to be live
as well); in the latter case, xpi will also inherit the (possibly not yet known) liveness of xphome,
by observing that ∀t ≥ 0,xpi+1(t) ∈ RB(xphome; ti+1).

Corollary 5.2 (Dynamical System Exploration). Given that the safety and viability of trajec-
tories is evaluated using the projected robust tracking set X̃ r(xp), and the dynamical system’s
configuration r(x) is guaranteed to remain within this set by the Hamilton-Jacobi analysis in
Section 5.1, Theorem 5.1 implies that the dynamical system can continually execute safe tra-
jectories in the environment and, if a nominal trajectory to the target is found, is guaranteed
to safely reach the target by robustly tracking this trajectory.

Moreover, we ensure that each output trajectory visits an unexplored state in GB, which
implies that GB approaches the safely explorable set PSE from Definition 5.6. Together with
Theorem 5.1, this implies the following completeness result:

Theorem 5.2 (Safe Probabilistic Completeness). In the limit of infinite runtime, the re-
cursive feasibility scheme eventually finds a viable trajectory to the robust target set T̃ p with
probability 1 if it is not disjoint from the safely explorable set.

Proof. By Theorem 5.1, all trajectories output will be viable; hence, the autonomous system
will remain safe for all time (Corollary 5.2). Further, since each generated trajectory visits
a previously unvisited state in GB with nonzero probability, by Lemma 5.3 it will eventually
observe (and appropriately label) new regions in the safely explorable set PSE if any exist.
Moreover, those regions will eventually be sampled, added to GB, and visited by subsequent
trajectories. Because we have assumed all sets of interest to be bounded, this implies that
we will almost surely eventually identify and add a state xpgoal ∈ T̃ p ∩PSEx

p
home to GB if such

a state exists (that is, if T̃ p and PSEx
p
home are not disjoint).



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 133

We conclude this section with several brief remarks regarding implementation.
In Section 5.2.3, we specify that calls to the planning algorithm should seek to connect

states to existing states in GF and GB. In practice, we find that connecting to one of the k
nearest neighbors (measured in the Euclidean norm over P) in the appropriate graph suffices.

In Section 5.2.4, we describe traversing GB to find safe trajectories between vertices.
For efficiency, we recommend keeping track of the following variables at each vertex: cost-
from-home, cost-to-home, and cost-to-goal, where cost may be any consistent metric on
trajectories (e.g. duration). If these quantities are maintained, then care must be taken to
update them appropriately for descendants and ancestors of states that are added to GF and
GB in Section 5.2.3.

Finally, we observe that outbound expansion, inbound consolidation, and graph explo-
ration may all be performed in parallel and asynchronously.

5.2.6 Numerical Example

We demonstrate the recursive feasibility scheme in a real-time simulation, implemented
within the Robot Operating System (ROS) software environment [142].

Let the high-order system dynamics be given by the following 6D model:

ẋ =


ẋ
v̇x
ẏ
v̇y
ż
v̇z

 =


vx

g cosu1

vy
−g sinu2

vz
u3 − g

 (5.26)

where g is acceleration due to gravity, the states are position and velocity in (x, y, z), and
the controls are u1 = pitch, u2 = roll, and u3 = thrust acceleration. These dynamics are a
reasonably accurate model for a lightweight quadrotor operating near a hover and at zero
yaw.

We consider the following lower-order 3D dynamical model for planning:

ẋp =

ẋẏ
θ̇

 =

v cos θ
v sin θ
up

 (5.27)

where v is a constant tangential speed in the Frenet frame, states are absolute heading θ,
and (x, y) position in fixed frame, and control up is the turning rate. We interpret these
dynamics as a Dubins car operating at a fixed z height z.

We take controls to be bounded in all dimensions independently by known constants:
u ∈ [u1, u1]× [u2, u2]× [u3, u3] and up ∈ [up, up]. In order to compute the FaSTrack tracking
error bound ΩE , we solve the Hamilton-Jacobi safety problem (4.30) for the error dynamics



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 134

(a) Relative states. (b) Maximum-future-error function.

Figure 5.11: (a) Relative states for 6D near-hover quadrotor tracking 3D Dubins car.
(b) Projected future error (min over evT , evN ) for each (eT , eN) in the planner’s frame.

defined by (5.26) and (5.27). In this case, the error dynamics are given by:

ė =


ρ̇

ψ̇
v̇T
v̇N

 =


vT cosψ + vN sinψ

−up − vT sinψ + vN cosψ
u1 cos θ − u2 sin θ + upvT
−u1 sin θ − u2 cos θ − upvT

 (5.28)

with the error states ρ (distance), ψ (relative bearing), vT (tangential velocity), and vN
(normal velocity) illustrated in Figure 5.11a.

Figure 5.11b is a projection of the robust tracking value function computed using nu-
merical Hamilton-Jacobi analysis tools [53]. For better visualization, the plot shows the
negative of the value function, which encodes the maximum future tracking error metric
−lE(e) := eρ from each initial error state. We use the over-approximation (5.15) for rapid
collision-checking during each call to the low-level motion planner. Since the high-order
dynamics (5.26) do allow for variation in z, we also incorporate a z dimension for ΩE which
may be obtained by solving a similar differential game in the (z, vz) subsystem of (5.26), as
in [16].

We use the KPIECE1 kinodynamic planner [147] within the Open Motion Planning
Library (OMPL) [143] to plan all trajectories for the low-level dynamics while building the
graphs GF and GB. We model static obstacles as spheres in R3 and use an omnidirectional
sensing model in which all obstacles within a fixed range of the vehicle are sensed exactly.
These choices of environment and sensing models are deliberately simplified in order to more



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 135

clearly showcase the recursive feasibility scheme. The framework itself is compatible with
arbitrary representations of static obstacles and deterministic sensing models. Extensions to
dynamic obstacles and probabilistic sensing are promising directions for future research.

We demonstrate the recursive feasibility scheme in the simulated environment shown
in Figure 5.12, designed to illustrate the importance of maintaining recursive feasibility.
This simulation is intended as a proof of concept; the central contribution of this section is
theoretical and applies to a range of planning problems.

Observe in Figure 5.12 that the proposed navigation scheme avoids collision where a
non-recursively-feasible exploration approach would often fail. Here, the target is directly
in front of the home position, beyond what appears to be a potential passage between two
obstacles. However, just beyond the sensor’s field of view V , there is a narrow dead end.
Many standard planning techniques would either optimistically assume the unknown regions
of the environment are free space, or plan in a receding horizon within known free space
Wfree(t). In both cases, the planner would tend to guide the system into the narrow dead
end—especially if the target’s location or general direction is known a priori—leading to a
crash (recall that the planner’s speed v is fixed).

By contrast, the recursive feasibility scheme takes a more circuitous—but recursively
feasible—route to the target. The evolution of planned viable trajectories is shown on the
right in Figure 5.12. Initially, it plans tight loops near xphome, but over time it visits a
larger region of the safely explorable space PSE, and eventually finds (and executes) a viable
trajectory to xpgoal ∈ T̃ p.

5.3 Chapter Summary

This chapter has extended the notion of robust tracking through a guaranteed tracking
error bound to enable the computation of real-time plans with a simplified dynamical model
different from the higher-fidelity model used for dynamical tracking analysis. In addition,
an adaptive scheme is proposed that switches between multiple available motion planners,
constructing a safely executable motion plan out of locally collision-free trajectories. The
robustly safe real-time planning framework is demonstrated in simulation and on a physical
quadrotor platform.

Building on the robust tracking guarantees, the chapter additionally introduces a scheme
for recursively feasible motion planning and environment exploration. The approach com-
bines the notions of forward and backward reachability to construct sample-based graphs
in the planning state space that enable guaranteeing safety for all time, even for planning
dynamics that cannot come to a stop, as demonstrated through a fixed-speed Dubins car
numerical example. Moreover, the scheme guarantees that if the initial state is live, i.e. the
goal is safely explorable from it, then the resulting motion plans will preserve liveness, and
eventually (with probability 1) find a safe trajectory to the goal. To our knowledge, this
is the first motion planning scheme to provide such a robust recursive feasibility guarantee
regarding safety and liveness of exploration for a dynamical system.



CHAPTER 5. SAFE REAL-TIME ROBOTIC NAVIGATION 136

Figure 5.12: Recursively feasible exploration scheme using a Dubins car model with a fixed
minimum turning radius and constant speed. Left: Schematic diagram of an environment in
which a non-recursively feasible planning algorithm could enter a narrow dead end and fail
to recover. Right: Snapshots of the recursive feasibility scheme over time. We build a search
graph in known free space, identifying robustly viable trajectories that can safely return to
the initial state or directly reach the goal. The robotic system incrementally explores the
environment along these recursively feasible plans and is guaranteed, with probability 1, to
eventually identify and traverse a viable trajectory to the goal, if one exists (bottom right).
Video: https://youtu.be/GKQwFxdJWSA

https://youtu.be/GKQwFxdJWSA


137

Part II

Safety Across the Reality Gap



138

Chapter 6

Safe Learning under Uncertainty

One never seeks to avoid one
trouble without running into
another; but prudence consists
in knowing how to distinguish
the character of troubles, and
for choice to take the lesser evil.

Niccolò Machiavelli,
The Prince, 1513

This chapter is based on the paper “A General Safety Framework for Learning-Based
Control in Uncertain Robotic Systems” [18], written in collaboration with Kene Akametalu,
Melanie Zeilinger, Shahab Kaynama, Jeremy Gillula, and Claire Tomlin.

Learning-based methods in control and artificial intelligence are generating a considerable
amount of excitement in the research community. The auspicious results of deep reinforce-
ment learning schemes in virtual environments such as arcade videogames [148] and physics
simulators [149], make these techniques extremely attractive for robotics applications, in
which complex dynamics and hard-to-model environments limit the effectiveness of purely
model-based approaches. However, the difficulty of interpreting the inner workings of many
machine learning algorithms (notably in the case of deep neural networks), makes it chal-
lenging to make meaningful statements about the behavior of a system during the learning
process, especially while the system has not yet converged to a suitable control policy. While
this may not be a critical issue in a simulated reality, it can quickly become a limiting factor
when attempting to put such an algorithm in control of a system in the physical world,
where certain failures, such as collisions, can result in damage that would severely hinder or
even terminate the learning process, in addition to material loss or human injury. We refer
to systems in which certain failure states are unacceptable as safety-critical.

In the last decade, learning-based control schemes have been successfully demonstrated



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 139

(a) With online guarantee validation (b) Without online guarantee validation

Figure 6.1: Hummingbird quadrotor learning a vertical flight policy under the requirement of
not colliding. When the fan is turned on, the system experiences an unmodeled disturbance
that it has not previously encountered. This can lead to a ground collision even under robust
safety policies (right). The proposed Bayesian validation method detects the inconsistency
and prevents the vehicle from entering the region of the state space where the robust model
is inaccurate (left). Video: https://youtu.be/WAAxyeSk2bw

in robotics applications in which the safety-critical aspects were effectively removed or miti-
gated, typically by providing a manual fallback mechanism or retrofitting the environment to
allow safe failure. In [150, 151] a trained pilot was able to remotely take over control of the
autonomous helicopter at any time; the power slide car maneuvers in [152] were performed
on an empty test track; and the aerobatic quadrotor in [153] was enclosed in a safety net.
While mostly effective, these ad hoc methods tend to come with their own issues (pilot hand-
offs, for instance, are notoriously prone to result in accidents [154]) and do not generalize
well beyond the context of the particular demonstration. It therefore seems imperative to
develop principled and provably correct approaches to safety, attuned to the exploration-
intense needs of learning-based algorithms, that can be built into the autonomous operation
of learning robotic systems.

Current efforts in policy transfer learning propose training an initial control policy in
simulation and then carrying it over to the physical system [155]. While progress in this di-
rection is likely to reduce overall training time, it does not eliminate the risk of catastrophic
system misbehavior. State-of-the-art neural network policies have been shown to be vulner-
able to small changes between training and testing conditions [156], which inevitably arise

https://youtu.be/WAAxyeSk2bw


CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 140

between simulated and real systems. Guaranteeing correct behavior of simulation-trained
schemes in the real world thus remains an important unsolved problem.

Providing guarantees about a system’s evolution inevitably requires some form of knowl-
edge about the causal mechanisms that govern it. Fortunately, in practice it is never the
case that the designer of a robotic system has no knowledge whatsoever of its dynamics:
making use of approximate knowledge is both possible and, we argue, advantageous for
safety. Yet, perfect knowledge of the dynamics can hardly if ever be safely assumed either.
This motivates searching for points of rapprochement between data-driven and model-based
techniques.

We identify three key properties that we believe any general safe learning framework
should satisfy:

• High confidence . The framework should be able to keep the system safe with high
probability given the available knowledge about the system and the environment.

• Modularity . The framework should work in conjunction with an arbitrary learning-
based control algorithm, without requiring modifications to said algorithm.

• Minimal intervention . The framework should not interfere with the learning pro-
cess unless deemed strictly necessary to ensure safety, and should return control to the
learning algorithm as soon as possible.

We can use these criteria to evaluate the strengths and shortcomings of existing ap-
proaches to safety in intelligent systems, and place our work in the context of prior research.

Related Work

Early proposals of safe learning date back to the turn of the century. Lyapunov-based
reinforcement learning [157] allowed a learning agent to switch between a number of pre-
computed “base-level” controllers with desirable safety and performance properties; this
enabled solid theoretical guarantees at the expense of substantially constraining the agent’s
behavior; in a similar spirit, later work has considered constraining policy search to the space
of stabilizing controllers [158].

In risk-sensitive reinforcement learning [159], the expected return was heuristically weighted
with the probability (risk) of reaching an “error state”; while this allowed for more general
learning strategies, no guarantees could be derived from the heuristic effort. Nonetheless,
the ideal problem formulation proposed in the paper, to maximize performance subject to
some maximum allowable risk, inspired later work (see [160] for a survey) and is very much
aligned with our own goals.

More recently, [137] proposed an ergodicity-based safe exploration policy for Markov
decision processes (MDPs) with uncertain transition measures, which imposed a constraint
on the probability, under the current belief, of being able to return to the starting state.
While practical online methods for updating the system’s belief on the transition dynamics



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 141

are not discussed, and the toy grid-world demonstrations fall short of capturing the criticality
of dynamics in many real-world safety problems, the probabilistic safety analysis is extremely
powerful, and our work certainly takes inspiration from it. Recent safe exploration efforts in
robotics use Gaussian processes to model uncertain dynamics, but restrict safety analysis to
local stability (i.e. region of attraction) and do not consider state constraints [139, 161].

The learning-based model-predictive control approach proposed in [162] adaptively learns
a model of the system dynamics to improve the performance of a receding-horizon control
scheme, and uses a fixed a priori linear model to robustly enforce state constraints. The
technique was successfully demonstrated on problems with nonlinear dynamics, including
quadrotor flight. The work presented here can be seen as a generalization of these ideas to
nonlinear safety analysis and arbitrary learning-based control schemes.

As we saw in Chapter 2 and have been exploring throughout Part I, one powerful ap-
proach to explicitly account for model uncertainty is to cast the safety problem as a dif-
ferential game [49], in which the controller must keep the system within the specified state
constraints in spite of the actions of an adversarial disturbance. The optimal solution to
this reachability game can then be obtained through Hamilton-Jacobi methods [52, 53] and
used to robustly enforce safety, as long as the dynamical model approximates the evolution
of the physical system with some bounded error. In the interior of the computed safe set,
then, the controller can execute any desired action, as long as the safe control is applied as
the system reaches the set’s boundary. Similar controlled invariance properties can also be
obtained through alternative methods such as “barrier functions” [163–165]. The particular
advantage of the Hamilton-Jacobi game-theoretic approach is that its associated safe set
is maximal (it contains all states that can be robustly kept safe), and therefore enforcing
the safety-preserving control action at the safe set boundary constitutes a least-restrictive
control law, that is, one that only restricts the allowable control inputs at states where this
is required to robustly guarantee safety given the model uncertainty. This scheme therefore
naturally lends itself to minimally constrained learning-based control. Initial work exploring
this approach was presented in [166, 167].

The above methods are subject to the fundamental limitation of any model-based safety
analysis, namely, the contingency of guarantees on the validity of the model. This forces
designers to make early assumptions about the future operating conditions of the system,
facing them with a difficult tradeoff. On the one hand, if they assume overly conservative
bounds on model error, this will reduce the computed safe set and unnecessarily hinder the
progress of the learning algorithm. If, on the other hand, the assumed bounds fail to capture
the evolution of the physical state, the theoretical guarantees derived from the model may
no longer apply to the system’s operation.

Contribution

In this chapter we introduce a general safety framework that combines model-based control-
theoretical analysis with data-driven Bayesian inference to construct and maintain high-
probability guarantees around an arbitrary learning-based control algorithm. Drawing on



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 142

Hamilton-Jacobi robust optimal control techniques, it defines a least-restrictive supervisory
control law, which allows the system to freely execute its learning-based policy almost ev-
erywhere, but imposes a computed action at states where it is deemed critical for safety.
The safety analysis is refined through Bayesian inference in light of newly gathered evidence,
both avoiding excessive conservativeness and improving reliability by rapidly imposing the
computed safe actions if confidence in model-based guarantees decreases due to unexpected
observations. To our knowledge this is the first work in the area of reachability analysis that
reasons online about the validity of computed guarantees and uses a resilient mechanism to
continue exploiting them under inaccurate prior assumptions on model error.

Our framework relies on reachability analysis for the model-based safety guarantees, and
on Gaussian processes for the online Bayesian analysis. It is important to acknowledge that
both of these techniques are computationally intensive and scale poorly with the dimension-
ality of the underlying continuous spaces, which can generally limit their applicability to
complex dynamical systems. However, recent compositional approaches have dramatically
increased the tractability of lightly coupled high-dimensional systems [14, 56, 168, 169], while
new analytic solutions entirely overcome the “curse of dimensionality” in some relevant cases
[95, 170]. The key contribution of this work is in the principled methodology for incorpo-
rating safety into learning-based systems: we thus focus our examples on problems of low
dimensionality, implicitly bypassing the computational issues, and note that our method can
readily be used in conjunction with these decomposition techniques to extend its application
to more complex systems.

We demonstrate our method on a quadrotor vehicle learning to track a vertical trajectory
close to the ground (Figure 6.1), using a policy gradient algorithm [171]. The reliability of our
method is evidenced under uninformative policy initializations, inaccurate safe set estimation
and strong unmodeled disturbances.

The chapter is organized as follows: In Section 6.1 we introduce the modeling framework
and formally state the safe learning problem. Section 6.2 discusses the differential game
analysis and derives some important invariance properties. The proposed methodology is
described in Section 6.3 with the proofs of its fundamental guarantees, as well as a com-
putationally tractable alternative with weaker but practically useful properties. Lastly, in
Section 6.4 we present the experimental results.

6.1 Problem Formulation

6.1.1 System Model and State-Dependent Uncertainty

This chapter combines the robust safety analysis followed throughout Part I with Bayesian
analysis to reason about the reliability of the robust guarantees in view of the observed
system behavior. From the robust standpoint, we will treat the evolution of the state non-
deterministically and carry out the usual worst-case analysis; from the Bayesian perspective,



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 143

we will assume that the underlying dynamics are in fact deterministic but unknown to the
controller, and thus use probabilistic calculus to reason about the associated uncertainty.

We can formalize this with our usual dynamical system with control and disturbance
inputs.

ẋ = f(x, u, d) . (6.1)

In this context, d is thought of as a deterministic state-dependentdisturbance capturing
unmodeled dynamics, given by an unknown Lipschitz function d : Rn → D. The flow field
f : Rn×U×D → Rn is assumed uniformly continuous and bounded, as well as Lipschitz in x
and d for all u: this ensures that the unknown underlying dynamics f ∗(x, u) := f

(
x, u, d(x)

)
are Lipschitz in x. With this, state trajectories under the unknown dynamics f ∗ are always
well defined (in the Carathéodory sense) for any measurable control input signal u (and as
usual, in the case of f , for any measurable disturbance signal d).

Since d(x) is unknown, we attempt to bound it at each state by a compact set, allowing
this bound to vary in the state space. We define the set-valued map D̂ : Rn ⇒ D, assigning
a compact set D̂(x) ⊆ D to each state x ∈ Rn. We will use the notation xu,d

x,D̂ to denote

the state trajectory t 7→ x corresponding to the initial condition x ∈ Rn, the control signal
u ∈ U and the disturbance signal d ∈ D, subjecting the latter to satisfy d(t) ∈ D̂

(
xu,d

x,D̂(t)
)

for all t ≥ 0. For the interested reader, sufficient conditions on the map D̂ to ensure that
the resulting Carathéodory trajectories remain well defined are discussed in the Appendix
at the end of this chapter.

In Section 6.2, we present a robust, least-restrictive safety control law that enforces con-
straint satisfaction when the unknown underlying system dynamics satisfy d(x) ∈ D̂(x)
globally, and further prove stronger results in which this condition can be relaxed. In Sec-
tion 6.3, we present a Bayesian approach to find a high-confidence bound D̂(x) based on a
Gaussian process model of d(x). Our overall approach therefore combines robust (worst-case)
guarantees with Bayesian (probabilistic) analysis, by constructing the disturbance bound to
reflect the local uncertainty around the inferred disturbance function.1

Any model-based safety guarantees for the system will require that the bound D̂ correctly
captures the unknown part of the dynamics given by d(x), at least at some critical set of
states x (discussed in Section 6.2). One key insight in this work is that the system should take
action to ensure safety not only when the model predicts that this action may be necessary,
but also when the system detects that the model itself may become unreliable in the near
future.

We state here a preliminary result that will be useful later on in the chapter, and introduce
the notion of local model reliability.

1Alternative methods to providing the disturbance bound D̂ are possible (for example, a conservative a
priori estimate, or a different system identification procedure), provided they satisfy the sufficient trajectory
existence conditions in the Appendix.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 144

Proposition 6.1. If d(x) ∈ int D̂(x) and the set-valued map D̂ : Rn → 2D is Lipschitz-
continuous under the Hausdorff metric2, then there exists δ > 0 such that all possible trajec-
tories followed by the system starting at x will satisfy d

(
x(τ)

)
∈ D̂

(
x(τ)

)
for all τ ∈ [t, t+δ].

Proof. Let LD̂ be the Lipschitz (Hausdorff) constant of D̂, Ld the Lipschitz constant of
d, and Cf a norm bound on the dynamics f . We then have that over an arbitrary time
interval [t, t + δ], regardless of the control and disturbance signals u, d, any system tra-
jectory starting at x(t) = x satisfies |x(τ)− x| ≤ Cfδ, ∀τ ∈ [t, t+ δ]. This implies both

|d(x(τ))− d(x)| ≤ LdCfδ and dH
(
D̂(x(τ)), D̂(x)

)
≤ LD̂Cfδ. Requiring that the open ball

B
(
d(x), (Ld + LD̂)Cfδ

)
be contained in D̂(x) ensures d(x(τ)) ∈ D̂(x(τ)). Since d(x) ∈

int D̂(x), there must exist a small enough δ > 0 for which this condition is met.

We can further quantify this δ through the signed distanceto D̂(x) at the current d(x),
denoted sD̂(x)

(
d(x)

)
.

Corollary 6.1. If the Lipschitz constants are known, then d(x) ∈ int D̂(x) implies d(x(τ)) ∈ D̂(x(τ))
for all times τ ∈ [t, t+ δ], with

δ =
−sD̂(x)

(
d(x)

)
(Ld + LD̂)Cf

.

The disturbance bounds D̂ derived in this chapter satisfy the hypothesis of Proposition 6.1
(see Appendix for details), and we thus refer to the condition d(x) ∈ int D̂(x) as the model
being locally reliable at x.

For the remainder of the chapter, we will assume that the effect of the disturbance on
the dynamics is independent of the action applied by the controller.

ẋ = f
(
x, u, d(x)

)
= fx

(
x, u
)

+ fd
(
d(x)

)
. (6.2)

with fx : Rn × U → Rn, fd : D → Rn, where fx, and fd inherit Lipschitz continuity in their
first argument from f and fd is injective onto its image. This decoupling assumption, made
for ease of exposition, is not strictly necessary, and the theoretical results in this chapter can
be easily adapted to the coupled case.

6.1.2 State Constraints

A central element in our problem is the constraint set, which defines a region K ⊆ Rn of the
state space where the system is required to remain throughout the learning process. This
set is assumed closed and time-invariant; no further assumptions (boundedness, connected-
ness, convexity, etc.) are made. As in previous chapters, we can equivalently refer to the
complement of the constraint set as the failure set F = Kc.

2The Hausdorff metric (or Hausdorff distance) between any two sets A and B in a metric space (M,dM )
is defined as dH(A,B) = max{ supa∈A infb∈B dM (a, b), supb∈B infa∈A dM (a, b) }.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 145

Following Chapter 2, Section 2.3, we can encode the safety game of kind through an aux-
iliary game of degree by implicitly characterizing K as the zero superlevel set of a bounded,
Lipschitz surface function g : Rn → R:

x ∈ K ⇐⇒ g(x) ≥ 0 , (6.3)

and using the functional
Vu,d

D̂ (x) := inf
t≥0

g
(
xu,d

x,D̂(t)
)

(6.4)

to encode whether a given trajectory ever violates the constraints. Indeed, by Proposi-
tion 2.4, the set of states from which the trajectory stays clear of the failure set F under
input signals u,d is exactly the zero superlevel set of Vu,d

D̂ .

6.1.3 Objective: Safe Learning

Learning-based control aims to achieve desirable system behavior by autonomously improv-
ing a control policy πg : Rn → U , typically seeking to optimize an objective function. Safe
learning additionally requires that certain constraints K remain satisfied while searching for
such a policy. With full knowledge of the system dynamics f ∗(x, u) = f

(
x, u, d(x)

)
, we would

like to find a safe control policy π∗ : Rn → U producing trajectories x(t) ∈ K, ∀t ≥ 0, for the
largest set of initial states x = x(0), then restrict any learned policy so that πg(x) = π∗(x)
wherever required to ensure safety. When d(x) is not known exactly, however, this version
of the problem cannot be solved.

Instead, given an estimated disturbance set D̂(x) that bounds our modeling error with
high confidence, we can find an inner approximation of the set of safe states by considering all
the possible trajectories that can be produced under the bounded uncertainty d(x) ∈ D̂(x).
Our goal, then, is to find the set of robustly safe states x for which there exists a control
policy π∗ that can keep the closed-loop system evolution in K, and consistently limit πg to
ensure that π∗ is applied when necessary.

To formally state this, we introduce an important notion from robust control theory using
the machinery from differential games established in Chapter 2.

Definition 6.1. A subset M ⊂ Rn is a robust controlled invariant set under uncertain
dynamics ẋ = f(x, u, d), d ∈ D̂(x), if the controller can keep all trajectories originating inM
from ever leaving M regardless of the realization of the disturbance. That is, from any
state x ∈ M and for any non-anticipative disturbance strategy δ ∈ D, there is a control
signal u such that for all future t,x

u,δ[u]

x,D̂ (t) ∈M.

As discussed in Chapter 2 and further formalized Chapter 3, Hamilton-Jacobi analy-
sis allows us to construct a feedback policy π∗ : Rn → U that, when implemented as a
digital (sampled-data) controller, arbitrarily approaches the game-theoretic outcome for a
sufficiently fast control cycle while always leading to well-defined Carathéodory trajectories.3

3A more detailed analysis for sampled-data systems can be found in [46, 47].



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 146

We will therefore discuss the design of our safe learning scheme in terms of feedback policies
while keeping in mind that the underlying mathematical results rest on the game-theoretic
analysis with measurable control signals and non-anticipative disturbance strategies.

Given that trajectories are continuous, the system state can only leaveM by crossing its
boundary ∂M. Hence if M is closed, applying the safety-preserving feedback policy π(x)
for x ∈ ∂M is enough to renderM robust controlled invariant, allowing an arbitrary control
action to be applied in the interior of M.

Definition 6.2. The safe set ΩD̂ is the maximal robust controlled invariant set under un-

certain dynamics ẋ = f(x, u, d), d ∈ D̂(x), that is contained in the constraint set K.

Success in safe learning therefore seems closely linked to model uncertainty: a tighter
bound D̂(x) on d(x) yields a less conservative safe set ΩD̂, which in turn reduces the re-
strictions on the learning process. However, an estimated bound that fails to fully capture
d(x) may allow the system to execute control actions resulting in a constraint violation. The
disturbance bound should thus be as tight as possible, to allow the system greater freedom in
learning, yet wide enough to confidently capture the unknown dynamics, in order to ensure
safety.

In the following two sections, we formalize this tradeoff and propose a framework to
reason about safety guarantees under uncertainty. Section 6.2 poses the safety problem
as a differential game between the controller and an adversarial disturbance, presenting a
stronger result than commonly used in the reachability safety literature, which exploits the
entire value function of the game rather than only its zero level set. Section 6.3 leverages
this result to provide a principled approach to global safety under model uncertainty, as well
as a fast local alternative that may often be useful in practice.

6.2 Safety Analysis with Imperfect Model Error

Bounds

As we saw in Chapter 2, Section 2.3, the safety problem can be posed as a two-player zero-
sum differential game between the system controller and the disturbance. The safety value
function

VD̂(x) := inf
δ∈D

sup
u∈U
Vu,δ[u]

D̂ (x) (6.5)

can be obtained through the viscosity solution to (2.44), appropriately modified to incorpo-
rate the state-dependent disturbance bound:

0 = min

{
g(x)− V −(x, t), ∂tV

−(x, t) + max
u∈U

min
d∈D̂(x)

∇xV
−(x, t)f(x, u, d)

}
(6.6a)

V −(x, T ) = g(x) . (6.6b)



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 147

The viscosity solution to this Hamilton-Jacobi variational inequality is well-defined as
long as some technical conditions on the bound D̂ (specified in the Appendix) hold. Since
the safety margin function g is bounded, the time-dependent value function converges as
t→ −∞ and our sought infinite-horizon safety value function can be obtained as

VD̂ = lim
t→−∞

V −(x, t) . (6.7)

The Hamilton-Jacobi computation induces an optimal safety policy π∗ that can be used
in a least-restrictive supervisory control framework. In particular, we can apply an arbitrary
learning-based control policy πg(x) (which may be repeatedly updated by the corresponding
learning algorithm) throughout the interior of the safe set ΩD̂ = {x : VD̂(x) ≥ 0}, transition-
ing to the optimally safe control as the system approaches the boundary, as in (2.45).

The worst-case analysis effectively requires the controller to enforce the safety condition
for all possible realizations of the disturbance input, implicitly protecting the system against
all “suboptimal” disturbances as well.

6.2.1 Invariance Properties of Level Sets

Traditionally, the implicit hypothesis made to guarantee safety using a least-restrictive law
in the form of (2.45) has been correctness of the estimated disturbance bound D̂ everywhere
in the state space, (i.e. d(x) ∈ D̂(x) ∀x ∈ Rn), or at least everywhere in the constraint
set K [49], [167]. We will now argue that the necessary hypothesis for safety is in fact
much less stringent, by proving an important result that we will use in the following section
to strengthen the proposed safety framework and retain safety guarantees under partially
incorrect models.

We begin by establishing that invariance can be robustly enforced by the controller not
only on the zero superlevel set of the safety value function, but on any nonnegative superlevel
set.

Proposition 6.2. Any nonnegative superlevel set of VD̂(x) is a robust controlled invariant

set with respect to D̂.

Proof. This result is analogous to the ones we used in Chapters 4 and 5 to find a nonempty
tracking error bound ΩE . We can prove this by contradiction by initially assuming that there
is some α ≥ 0 such that the associated superlevel set {x ∈ Rn : VD̂(x) ≥ α} is not a robust
controlled invariant set. From Definition 6.1, there must then exist some state x, VD̂(x) ≥ α,
in this set such that for some non-anticipative strategy δ there is no control signal u that
can prevent the state trajectory x

u,δ[u]

x,D̂ from eventually leaving the set. This means that

for each possible u, there is a future time τ at which VD̂
(
x

u,δ[u]

x,D̂ (τ)
)
< α. From this new

state, by (6.5), there must exist a non-anticipative strategy δ′ such that, regardless of the
subsequent inputs of u the trajectory eventually reaches a state x′ with g(x′) < α. We can
then construct a new non-anticipative strategy δ′′ that, maps each possible u to the original



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 148

δ[u] for all t < τ [u] and subsequently applies the corresponding δ′[u] (which as we have seen
exists for every u). Under δ′′, then, there is no control signal u that can prevent the system
trajectory from eventually reaching a state from which the safety margin g is strictly less
than α. However, since VD̂(x) ≥ α, from (6.4) and (6.5) it must be that for all δ ∈ D there
must be some u ∈ U for which the state trajectory never reaches a state with safety margin
less than VD̂(x) ≥ α, which is a contradiction.

This result will enable us to establish a safety scheme that relies on a family of enforceable
layers of safety, namely each level set of VD̂, rather than a single last-resort layer at the
boundary of the safe set ∂ΩD̂.

We can further prove a stronger result that makes it possible to ensure the invariance of
any superlevel set of VD̂ provided that the disturbance bound D̂ is locally reliable throughout

its boundary, even if there are other states at which d(x) 6∈ D̂(x).

Proposition 6.3. Let Qα := {x ∈ Rn : VD̂(x) = α} with α ≥ 0 be any nonnegative level

set of the safety function VD̂, computed for some robust disturbance bound D̂ : Rn ⇒ D.
Suppose that, under this disturbance bound, the feedback control policy π∗D̂ robustly keeps the

system trajectory x
π∗
D̂
,d

x,D̂(x)
from all initial states x ∈ Qα. If d(x) ∈ int D̂(x), ∀x ∈ Qα, then the

superlevel set {x ∈ Rn : VD̂(x) ≥ α} is rendered invariant, under the underlying dynamics
f ∗(x) = f

(
x, u, d(x)

)
, by the control policy π∗D̂.

Proof. Since Carathéodory trajectories are continuous, any trajectory leaving the α-superlevel
set {x ∈ Rn : VD̂(x) ≥ α} must traverse its boundary Qα. However, for all x ∈ Qα,

d(x) ∈ int D̂(x) and thus by Proposition 6.1 this means that there exists some time inter-
val [t, t + δ] (with δ > 0) during which the trajectory x resulting from applying π∗D̂ under

the underlying dynamics f ∗ satisfies d
(
x(τ)

)
∈ D̂

(
x(τ)

)
and therefore by hypothesis, π∗D̂

keeps x(τ) in the α-superlevel set throughout this non-degenerate time interval. Since this δ
will continue to apply any time the system trajectory reaches a state in Qα, it is impossible
for the state trajectory to ever leave the α-superlevel set of VD̂ under control policy π∗D̂.

This proposition, which follows from Propositions 6.2 and 2.3 by considering the singleton
{d(x)}, is an important result that will be at the core of our data-driven safety enhancement.
It provides a sufficient condition for safety, but unlike the standard HJI solution, it does not
readily prescribe a least-restrictive control law to exploit it: how should one determine
what candidate α ≥ 0 to choose, or whether a valid Qα exists at all? Deciding when the
safe controller should intervene and what guarantees are possible is nontrivial and requires
additional analysis.

The next section proposes a Bayesian approach enabling the safety controller to reason
about its confidence in the model-based guarantees described in this section. If this confi-
dence reaches a prescribed minimum value in light of the observed data, the controller can
intervene early to ensure that safety will be maintained with high probability.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 149

6.3 Bayesian Safety Assurance

6.3.1 Safety-Learning Synergy

As we have seen, robust optimal control and dynamic game theory provide powerful analyt-
ical tools to study the safety of a dynamical model. However, it is important to realize that
the applicability of any theoretically derived guarantee to the real system is contingent upon
the validity of the underlying modeling assumptions; in the formulation considered here,
this amounts to the state disturbance function d(x) being captured by the bound D̂(x) on at
least a certain subset of the state space. The system designer therefore faces an inevitable
tradeoff between risk and conservativeness, due to the impossibility of accounting for every
aspect of the real system in a tractable model.

In many cases, choosing a parametric model a priori forces one to become overly conser-
vative in order to ensure that the system behavior will be adequately captured: this results
in a large bound D̂(x) on the disturbance, which typically leads to a small safe set ΩD̂, lim-
iting the learning agent’s ability to explore and perform the assigned tasks. In other cases,
insufficient caution in the definition of the model can lead to an estimated disturbance set
D̂(x) that fails to contain the actual model error d(x), and therefore the computed safe set
ΩD̂ may not in fact be controlled invariant in practice, which can end all safety guarantees.

In order to avoid excessive conservativeness and keep theoretical guarantees valid, it is
imperative to have both a principled method to refine the system model based on acquired
measurements and a reliable mechanism to detect and react to model discrepancies with the
real system’s behavior; both of these elements are necessarily data-driven. We thus arrive
at what is perhaps the most important insight in this work: the relation between safety
and learning is reciprocal. Not only is safety a key requirement for learning in autonomous
systems: learning about the real system’s behavior is itself indispensable to provide practical
safety guarantees.

In the remainder of this section we propose a method for reasoning about the uncertain
system dynamics, using Gaussian processes to regularly update the model used for safety
analysis, and introduce a Bayesian approach for online validation of model-based guarantees
in between updates. We then define an adaptive safety control strategy based on this real-
time validation, which leverages the theoretical results from Hamilton-Jacobi analysis to
provide stronger guarantees for safe learning under possible model inaccuracies.

6.3.2 Gaussian Process

To estimate the disturbance function d(x) over the state space, we model it as being drawn
from a Gaussian process. Gaussian processes are a powerful abstraction that extends multi-
variate Gaussian inference to the infinite-dimensional space of functions, allowing Bayesian
inference based on (possibly noisy) observations of a function’s value at finitely many points.
We give here an overview of Gaussian process inference and direct the interested reader to
[172] for a more comprehensive introduction.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 150

A Gaussian process is a random process or field defined by a mean function µ : Rn → R
and a positive semidefinite covariance kernel function k : Rn × Rn → R. We will treat each
component dj, j ∈ {1, ..., nd}, of the disturbance function as an independent Gaussian pro-
cess:

dj(x) ∼ GP(µj(x), kj(x, x′)) . (6.8)

A defining characteristic of a Gaussian process is that the marginal probability distribution
of the function value at any finite number of points is a multivariate Gaussian. This will
allow us to obtain the disturbance bound D̂(x) as a Cartesian product of confidence intervals
for the components of d(x) at each state x, choosing the bound to capture a desired degree of
confidence.A less conservative analysis could compute D̂(x) using a vector-valued Gaussian
process model, at the expense of heavier computation.

Gaussian processes allow incorporating new observations in a nonparametric Bayesian
setting. First, assume a prior Gaussian process distribution over the j-th component of d(·),
with mean µj(·) and covariance kernel kj(·, ·). The class of the prior mean function and
covariance kernel function is chosen to capture the characteristics of the model (linearity,
periodicity, etc), and is associated to a set of hyperparameters θp. These are typically set to
maximize the marginal likelihood of an available set of training data, or possibly to reflect
some prior belief about the system.

Next, consider N measurements Dj = [d̂j1, . . . , d̂
j
N ], observed with independent Gaussian

noise εji ∼ N (0, (σjn)2) at the points X = [x1, . . . , xN ], i.e. d̂ji = dj(xi) + εji . Combined
with the prior distribution (6.8), this new evidence induces a Gaussian process posterior; in
particular, the value of dj at finitely many points X∗ is distributed as a multivariate normal:

E[dj(X∗) | Dj, X] = µj(X∗) +Kj(X∗, X)(Kj(X,X) + (σjn)2I)−1(d̂j − µj(X)) , (6.9a)

cov[dj(X∗) | X] = Kj(X∗, X∗)−Kj(X∗, X)(Kj(X,X) + (σjn)2I)−1Kj(X,X∗) , (6.9b)

where dji (X) = dj(xi), µ
j
i (X) = µj(xi), and for any X,X ′ the matrix Kj(X,X ′) is defined

component-wise as Kj
ik(X,X

′) = kj(xi, x
′
k). Note that whenever a new batch of data X is

obtained the hyperparameters of the kernel function are refitted, so the variance implicitly
depends on the measurements dj. If a single query point is considered, i.e. X∗ = {x∗}, the
marginalized Gaussian process posterior becomes a univariate normal distribution quantify-
ing both the expected value of the disturbance function, d̄j(x∗), and the uncertainty of this

estimate,
(
σj(x∗)

)2
,

d̄j(x∗) = E[dj(x∗) | Dj, X] (6.10a)(
σj(x∗)

)2
= cov[dj(x∗) | X] . (6.10b)

We can use the Bayesian machinery of Gaussian process inference to compute a likely
bound D̂(x) on the disturbance function d(x) based on the history of commanded inputs
ui and state measurements xi, i ∈ {1, ..., N}. To this effect, we assume that a method for
approximately measuring the state derivatives is available (e.g. by numerical differentiation),



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 151

and denote each of these measurements by f̂i. Based on (6.2), we can obtain measurements
of d(xi) from the residuals between the observed dynamics and the model’s prediction:

d̂(xi) = fd
−1
(
f̂i − fx

(
xi, ui

))
. (6.11)

The residuals D = [d̂(x1), . . . , d̂(xN)] are processed through (6.9) to infer the marginal dis-
tribution of d(x∗) for an arbitrary point x∗, specified by the expected value d̄j(x∗) and the
standard deviation σj(x∗) of each component of the disturbance. This distribution can be
used to construct a disturbance set D̂(x∗) ⊆ D at any point x∗; in practice, this will be done
at finitely many points xi on a grid, and used in the numerical reachability computation to
obtain the safety function and the safe control policy.

We now introduce the design parameter p as the desired marginal probability that the
disturbance d(x) will belong to the bound D̂(x) at each point x; typically, p should be chosen
to be close to 1. The set D̂(x) is then chosen for each x as follows. Let z =

√
2 erf−1(p1/nd),

where erf(·) denotes the Gauss error function; that is, define z so that the probability that a
sample from a standard normal distribution N (0, 1) lies within [−z, z] is p1/nd . We construct
D̂(x) by taking a Cartesian product of confidence intervals:

D̂(x) =

nd∏
j=1

[
d̄j(x)− zσj(x), d̄j(x) + zσj(x)

]
. (6.12)

Since each component dj(x) is given by an independent Gaussian N
(
d̄j(x), σj(x)

)
, the prob-

ability of d(x) lying within the above hyperrectangle is by construction
(
p1/nd

)nd = p.

Remark 6.1. It is commonplace to use Gaussian distributions to capture beliefs on variables
that are otherwise known to be bounded. While one might object that the unbounded support
of (6.10) contradicts our problem formulation (in which the disturbance d took values from
some compact set D ⊂ Rnd), the hyperrectangle D̂(x) in (6.12) is always a compact set. Note
that the theoretical input set D is never needed in practice, so it can always be assumed to
contain D̂(x) for all x.

Under Lipschitz continuous prior means µj and covariance kernels kj, the disturbance
bound (6.12) varies (Hausdorff) Lipschitz-continuously in x, satisfying the hypotheses of
Proposition 6.1. This is formalized and proved in the Appendix.

The safety analysis described in Section 6.2 can be carried out by solving the Hamilton-
Jacobi equation (6.6) for D̂(x) given by (6.12), which—based on the information available
at the time of computation—will be a correct disturbance bound at any single state x with
probability p. As the system goes on to gather new information, however, the posterior
probability for d(x) ∈ D̂(x) will change at each x (and will typically no longer equal p).
More generally, we have the following result.

Proposition 6.4. Let q be the probability that d(x) ∈ D̂(x) for some state x with VD̂(x) ≥ 0.
Then with probability at least q there exists some non-degenerate time interval [t, t + δ]



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 152

(with δ > 0) during which the system trajectory x under the underlying dynamics f ∗ and the
optimal safety-preserving control policy π∗D̂ maintains or increases its computed safety value,

that is, ∀τ ∈ [t, t+ δ], VD̂
(
x(τ)

)
≥ VD̂

(
x(t)

)
.

Proof. From Proposition 6.1, if d(x) ∈ int D̂(x) then the specified δ > 0 necessarily exists
(this follows directly by an analogous argument to the proof of Proposition 6.3); since the
boundary of D̂(x) has Lebesgue measure zero, the probability of d(x) ∈ int D̂(x) is exactly q.
In addition, in the case where, with probability 1 − q, d(x) 6∈ D̂(x), the probability that
the postulated δ > 0 exists if is non-negative, and typically strictly positive, since usually
not all disturbance values d(x) 6∈ D̂(x) will be unfavorable for safety. Therefore, the total
probability that δ > 0 exists is greater or equal to q.

Based on this probabilistic local invariance result, we can begin to reason about high-
confidence safety assurances for the underlying system dynamics in a Bayesian framework,
inherited from the Gaussian process model.

6.3.3 Online Safety Guarantee Validation

In order to ensure safety under the possibility of model mismatch with the real system, it
may become necessary to intervene not only on the boundary of the computed safe set, but
also whenever the observed evolution of the system indicates that the model-based safety
guarantees may lose validity. Indeed, failure to take a safe action in time may lead to
complete loss of guarantees if the system enters a region of the state space where the model
is consistently incorrect.

While the estimated bound D̂ (Section 6.3.2) and the associated safety guarantees (Sec-
tion 6.2) should be recomputed as frequently as possible in light of new evidence, this process
can typically take seconds or minutes, and in some cases may even require offline computa-
tion. This motivates the need to augment model-based guarantees through an online data-
driven mechanism to quickly adapt to new incoming information even as new, improved
guarantees are computed.

Bayesian analysis allows us to update our belief on the disturbance function as new
observations are obtained. This in turn can be used to provide a probabilistic guarantee
on the validity of the safety results obtained from the robust dynamical model generated
from the older observations. In the remainder of this section, we will discuss how to update
the belief on the disturbance function, and then provide two different theoretical criteria
for safety intervention. The first criterion provides global probabilistic guarantees, but has
computational challenges associated to its practical implementation. The alternative method
only provides a local guarantee, but can more easily be applied in real time.

Let us denote Xold and d̂j
old as the evidence used in computing the disturbance set D̂(x),

and Xnew and d̂j
new as the evidence acquired online after the disturbance set is computed.

Conditioned on the old evidence, the function dj(x) is normally distributed with mean and
variance given by (6.9) with X = Xold and d̂j = d̂j

old, and the disturbance set is given



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 153

by (6.12). If we also condition on the new evidence and keep the hyperparameters fixed,
then the mean and variance are updated by modifying (6.9) with X = [Xold, Xnew] and
d̂j = [d̂j

old, d̂
j
new].

Remark 6.2. Performing the update requires inverting Kj([Xold, Xnew], [Xold, Xnew]). This
can be done efficiently employing standard techniques: since Kj(Xold, Xold) has already been
inverted (in order to compute the disturbance bound D̂), all that is needed is inverting the
Schur Complement of Kj(Xold, Xold) in Kj([Xold, Xnew], [Xold, Xnew]), which has the same
size as Kj(Xnew, Xnew).

Ideally we would incorporate Xnew and d̂j
new to relearn the Gaussian process hyperparam-

eters as quickly as new measurements come in: otherwise new measured disturbance values
d̂j

new will only affect the posterior mean, with the variance depending exclusively on where
the measurements were made (Xnew). However, performing this update online is computa-
tionally prohibitive. Instead, we update the hyperparameters every time a new estimated
bound D̂ is produced for safety analysis, keeping them fixed in between. In practice the set
Xold will be much larger than Xnew, so the estimated hyperparameters would not be expected
to change significantly.

Remark 6.3. In settings where conditions are slowly time-varying, it may be desirable to give
recently observed data more weight than older observations. This can naturally be encoded
by the Gaussian process by appending time as an additional dimension in X: points that are
distant in time would then be more weakly correlated, analogous to space.

Based on the new Gaussian distribution, we can reason about the posterior confidence
in the safety guarantees produced by our original safety analysis, which relied on the prior
Gaussian distribution resulting from measurements d̂j

old at states Xold.

Global Bayesian safety analysis

The strongest result available for guaranteeing safety under the present framework is Propo-
sition 6.3, which allows the system to exploit any superzero level set Qα (α ≥ 0) of the safety
function VD̂ throughout which the model is locally correct; all that is needed is for such a
Qα to exist for α ∈ [0, VD̂(x)] given the current state x.

It is possible to devise a safety policy to fully exploit the sufficient condition in Proposi-
tion 6.3 in a Bayesian setting: if the posterior probability that the corollary’s hypotheses will
hold drops to some arbitrary global confidence threshold γ0, the safe controller can override
the learning agent. With probability γ0, the corollary will still apply, in which case the sys-
tem is guaranteed to remain safe for all time; even if Proposition 6.3 does not apply at this
time (which could happen with probability 1 − γ0), it is still possible that the disturbance
d(x) will not consistently take adversarial values that force the computed safety function
VD̂(x) to decrease, in which case the system may still evolve safely. Therefore, this policy
guarantees a lower bound on the probability of maintaining safety for all time.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 154

In order to apply this safety criterion, the system needs to maintain a Bayesian posterior
of the sufficient condition d(x) ∈ int D̂(x) in Proposition 6.3. We refer to this posterior
probability as the global safety confidence γ(x;X,Dj), or γ(x) for conciseness:

γ(x;X,Dj) := P
(
∃α ∈ [0, VD̂(x)], ∀x ∈ Qα : d(x) ∈ D̂(x) | X,Dj

)
. (6.13)

Based on this, we propose the least-restrictive control law:

π(x) =

{
πg(x) if

(
γ(x) > γ0

)
∧
(
VD̂(x) > 0

)
,

π∗(x) otherwise ,
(6.14)

so the system applies any action it desires if the global safety confidence is above the thresh-
old, but applies the safe controller once this is no longer the case.

Note that if confidence in the safety guarantees is restored after applying the safety
action the learning algorithm will be allowed to resume control of the system. This can
happen by multiple mechanisms: moving to a region with higher VD̂(x) will tend to increase
the probability that some lower level set may satisfy the hypotheses of Proposition 6.3;
moving to a region with less inconsistency between expected and observed dynamics will
typically lead to higher posterior belief that nearby level sets will satisfy the hypotheses of
Proposition 6.3; and generally acquiring new data may, in some cases, increase the posterior
confidence that Proposition 6.3 may apply.

Computing the joint probability that the bound D̂(x) captures the Gaussian process
d(x) everywhere on a level set Qα is not possible, since the set of functions d(x) satisfying
this condition is bounded on uncountably many dimensions, and thus not measurable in
function space. Similarly, evaluating the joint probability for a continuum of level sets Qα
for α ∈ [0, VD̂(x)] is not feasible. Instead, exploiting the Lipschitz assumption on d(x), we
can obtain the sought probability γ(x) from a marginal distribution over a sufficiently dense
set of sample points on each Qα and a sufficiently dense collection of level sets between 0
and VD̂(x).

We can then use numerical methods [173] to compute the multivariate normal cumulative
distribution function and estimate the marginal probability (using compact logic notation):

γ(x) ≈ P

( S∨
s=1

I∧
i=1

d(xs,i) ∈ D̂(xs,i)

)
, (6.15)

over S level sets 0 = α0 < ... < αS = VD̂(x) and I sample points from each level set
Qαs . As the density of samples increases with larger S and I, the marginal probability
(6.15) asymptotically approaches the Gaussian process probability (6.13). Unfortunately,
however, current numerical methods can only efficiently approximate these probabilities for
multivariate Gaussians of about 25 dimensions [173], which drastically limits the number of
sample points (S × I ≈ 25) that the marginal probability can be evaluated over, making it
difficult to obtain a useful estimate. In view of this, a viable approach may be to bound



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 155

(6.13) below as follows:

γ(x) ≥ γ(x) := max
α∈[0,VD̂(x)]

P
(
∀x ∈ Qα : d(x) ∈ D̂(x)

)
, (6.16)

and approximately compute this as

γ(x) ≈ max
s∈{1,...,S}

P

( I∧
i=1

d(xs,i) ∈ D̂(xs,i)

)
, (6.17)

with the advantage that a separate multivariate Gaussian evaluation can be done now for
each level set (I ≈ 25). Computing this approximate probability as the system explores its
state space provides a decision mechanism to guarantee safe operation of the system with a
desired degree of confidence, which the system designer or operator can adjust through the
γ0 parameter.

Local Bayesian safety analysis

Evaluating the expression in (6.17) is still computationally intensive, which can limit the
practicality of this method for real-time validation of safety guarantees in some applications,
such as mobile robots relying on on-board processing. An alternative is to replace the global
safety analysis with a local criterion that offers much faster computation traded off with a
weaker safety guarantee.

Instead of relying on Proposition 6.3, this lighter method exploits Propositions 6.1
and 6.4. The system is allowed to explore the computed safe set freely as long as the
probability of the estimated model D̂ being locally reliable remains above a certain threshold
λ0; if this threshold is reached, the safe controller intervenes, and the system is guaranteed
to locally maintain or increase the computed safety value VD̂(x) with probability no less than
λ0. While this local guarantee does not ensure safety globally, it does constitute a useful
heuristic effort to prevent the system from entering unexplored and potentially unsafe regions
of the state space. Further, although the method is not explicitly tracking the hypotheses
of Proposition 6.3, the local result becomes a global guarantee if these hypotheses do indeed
hold.

We define the local safety confidence λ(x;X,Dj), more concisely λ(x), as the posterior
probability that d(x) will be contained in D̂(x) at the current state x, given all observations
made until now:

λ(x;X,Dj) := P
(
d(x) ∈ D̂(x) | X,Dj

)
. (6.18)

We then have the following local safety certificate.

Proposition 6.5. Let the disturbance d(·) be distributed component-wise as nd independent
Gaussian processes (6.8). The safety policy π∗ is guaranteed to locally maintain or increase
the system’s computed safety VD̂ with probability greater than or equal to the local safety
confidence λ(x).



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 156

Proof. The proof follows directly from Propositions 6.1 and 6.4, and the definition of λ(x),
noting that the boundary of D̂(x) has zero Lebesgue measure and thus under any Gaussian
distribution P (d ∈ int D̂(x) | d ∈ D̂(x)) = 1.

A local confidence threshold λ0 ∈ (0, p) can be established such that whenever λ(x) < λ0

the model is considered insufficiently reliable (reachability guarantees may fail locally with
probability greater than 1 − λ0), and the safety control is applied. The proposed safety
control strategy is therefore as follows:

π(x) =

{
πg(x) if

(
VD̂(x) > 0

)
∧
(
λ(x) > λ0

)
,

π∗(x) otherwise ,
(6.19)

Similarly to (6.14), under this control law, if confidence on the local reliability of the model
is restored after applying the safe action and making new observations, the system will be
allowed to resume its learning process, as long as it is in the interior of the computed safe
set.

After generating a new Gaussian process model and defining D̂(x) as described in Sec-
tion 6.3.2, the prior probability with which the disturbance function d(x) belongs to the set
D̂(x) is by design p everywhere in the state space. As the system evolves, more evidence
is gathered in the form of measurements of the disturbance along the system trajectory,
so that the belief that d(x) ∈ D̂(x) is updated for each x. In particular, in the Gaussian
process model, this additional evidence amounts to augmenting the covariance matrix Kj in
(6.9) with additional data points and reevaluating the mean and variance of the posterior
distribution of d(x). Based on the new Gaussian distribution, λ(x;X,Dj) can readily be
evaluated for each x as

λ(x) =

nd∏
j=1

1

2

[
erf

(
dj+(x)−mj(x)

sj(x)
√

2

)
− erf

(
dj−(x)−mj(x)

sj(x)
√

2

)]
, (6.20)

with dj+(x) = d̄j(x) + zσj(x), dj−(x) = d̄j(x) − zσj(x), mj(x) = E[dj(x) | X,Dj], sj(x) =√
var(dj(x) | X); recall that z was defined to yield the desired probability mass p in D̂(x)

at the time of safety computation, as per (6.12).
Parameters p and λ0 (or, in its case, γ0) allow the system designer to choose the degree of

conservativeness in the system: while p regulates the amount of uncertainty accounted for by
the robust model-based safety computation, λ0 (γ0) determines the acceptable degradation
in the resulting certificate’s posterior confidence before a safety intervention is initiated. A
value of p close to 1 will lead to a large, high-confidence D̂(x) throughout the state space,
but this analysis may result in a small or even empty safe set; on the other hand, if p is low,
D̂(x) will be smaller and the computed safe set will be larger, but guarantees are more likely
to be deemed unreliable (as per λ0 or γ0) in light of later observations.

In the case of local safety analysis, immediately after computing a new model D̂, λ(x) is by
construction equal to p everywhere in the state space. As more measurements are obtained,



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 157

Figure 6.2: Evolution of the probability distribution of the disturbance d(x) at a particular
state x under Bayesian updates of the underlying Gaussian process. The prior distribution is
used to compute the bound D̂(x) using confidence intervals, such that it contains a specified
probability mass p. As more data are obtained, the distribution may shift, leading to a
different posterior probability mass contained within D̂(x).

the posterior distribution over the disturbance changes, as illustrated in Figure 6.2, which
can result in λ(x) locally increasing or decreasing. If λ0 is chosen to be close to p, it is likely
that the safety override will take place under minor deviations with respect to the model’s
prediction; as λ0 becomes lower, however, the probability that the disturbance will violate
the modeling assumptions before the safety controller intervenes increases. This reflects the
fundamental tradeoff between risk and conservativeness in safety-critical decision making
under uncertainty. The proposed framework therefore allows the system designer to adjust
the degree of conservativeness according to the needs and characteristics of the system at
hand.

6.4 Experimental Results

We demonstrate our framework on a practical application with an autonomous quadro-
tor helicopter learning a flight controller in different scenarios. Our method is tested on
the Stanford-Berkeley Testbed of Autonomous Rotorcraft for Multi-Agent Control (STAR-
MAC), using Ascending Technologies Pelican and Hummingbird quadrotors (Figure 6.1).
The system receives full state feedback from a VICON motion capture system. For the
purpose of this series of experiments, the vehicle’s dynamics are approximately decoupled
through an on-board controller responsible for providing lateral stability around hover and
vertical flight; our framework is then used to learn the feedback gains for a hybrid verti-



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 158

cal flight controller. The learning and safety controllers were implemented and executed in
MATLAB, on a Lenovo Thinkpad with an Intel i7 processor that communicated wirelessly
with the vehicle’s 1.99 GHz Quadcore Intel Atom processor. This was all done using the In-
digo version of the Robot Operating System (ROS) framework. Reachability computations
are executed using the Level Set Toolbox [53], employing the Lax-Friedrichs approxima-
tion for the numerical Hamiltonian; a weighted essentially nonoscillatory scheme for spatial
derivatives; and a third-order total variation diminishing Runge-Kutta scheme for the time
derivative [52]. Once the safety function and safety policy have been computed, they are
stored as look-up tables that can be quickly consulted in constant time.

The purpose of the results presented here is not to advance the state of the art of quadro-
tor flight control or reinforcement learning techniques, but to illustrate how the proposed
method can allow safe execution of an arbitrary learning-based controller without requiring
any particular convergence rate guarantees. To fully demonstrate the reliability of our safe
learning framework, in our first setup we let the vehicle begin its online learning in mid-air
starting with a completely untrained controller. The general functioning of the framework
can be observed in the second flight experiment, in which the vehicle starts with a con-
servative model and iteratively computes empirical estimates of the disturbance, gradually
expanding its computed safe set while avoiding overreliance on poor predictions. Finally, we
include an experiment in which an unexpected disturbance is introduced into the system.
The vehicle reacts by immediately applying the safe action dictated by its local safety pol-
icy and retracting from the perturbed region, successfully maintaining safety throughout its
trajectory. We show how the absence of online guarantee validation in the same scenario
can result in loss of safety.

We use an affine dynamical model of quadrotor vertical flight, with state equations:

ẋ1 = x2 ,

ẋ2 = kg + k0 + kTu+ d(x) ,
(6.21)

where x1 is the vehicle’s altitude, x2 is its vertical velocity, and u ∈ [0, 1] is the normal-
ized motor thrust command. The gravitational acceleration is kg = −9.8 m/s2. The
parameters of the affine model kT and k0 are determined for the Pelican and the Hum-
mingbird vehicles through a simple on-the-ground experimental procedure—a scale is used
to measure the normal force reduction for different values of u. The state constraint
K = {x : 0 m ≤ x1 ≤ 2.8 m} encodes the position of the floor and the ceiling, which must
be avoided. Finally, d is an unknown, state-dependent scalar disturbance term representing
unmodeled forces in the system. We learn d(x) using a Gaussian process model, and gener-
ate D̂(x) as the marginal 95% confidence interval at each x. We implement local Bayesian
guarantee validation, conservatively approximating (6.20) by assuming

sj(x) :=
√

var(dj(x) | X) ≈
√

var(dj(x) | Xold) ,

that is, neglecting the (favorable but often small) reduction in uncertainty due to Xnew. This
was done for ease of prototyping.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 159

As the learning-based controller, we choose an easily implementable policy gradient rein-
forcement learning algorithm [171], which learns the weights for a linear mapping from state
features to control commands. Following [167], we define different features for positive and
negative velocities and position errors, since the (unmodeled) rotor dynamics may be differ-
ent in ascending and descending flight. This can be seen as the policy gradient algorithm
learning the feedback gains for a hybrid proportional-integral-derivative (PID) controller.

6.4.1 From Fall to Flight

To demonstrate the strength of Hamilton-Jacobi-based guarantees for safely performing
learning-based control on a physical system, we first require a Pelican quadrotor to learn
an effective vertical trajectory tracking controller with an arbitrarily poor initialization. To
do this, the policy gradient algorithm is initialized with all feature weights set to 0. The
pre-computed safety controller (numerically obtained using [53]) is based on a conservative
uncertainty bound of ±1.5 m/s2 everywhere in the state space; no new bounds are learned
during this experiment. The reference trajectory requires the quadrotor to aggressively al-
ternate between hovering at two altitudes, one of them (1.5 m) near the center of the room,
the other (0.1 m) close to the floor.

This first experiment illustrates the interplay between the learning controller and the
safety policy. The iterative safety re-computation and Bayesian guarantee validation com-
ponents of the framework are not active here. Consistently, this demonstration uses (2.45)
as the least-restrictive safe policy.

The experiment, shown in Figure 6.3, is initialized with the vehicle in mid-air. Since
all feature weights are initially set to zero, the vehicle’s initial action is to enter free fall.
However, as the quadrotor is accelerated by gravity towards the floor, the boundary of
the computed safe set is reached, triggering the intervention of the safety controller, which
automatically overrides the learning controller and commands the maximum available thrust
to the motors (u = 1), causing the vehicle to decelerate and hover at a small distance from
the ground. For the next few seconds, there is some chattering near the boundary of the safe
set, and the policy gradient algorithm has some occasions to attempt to control the vehicle
when it is momentarily pushed into the interior of the safe set. Initially it has little success,
which leads the safety controller to continually intervene to prevent the quadrotor from
colliding with the floor; this has the undesirable effect of slowing down the learning process,
since observations under this interference are uninformative about the behavior of the vehicle
when actually executing the commands produced by the learning controller (which is an “on-
policy” algorithm). However, at approximately t = 40 s, the learning controller is able to
make the vehicle ascend towards its tracking reference, retaining control of the vehicle for
a longer span of time and accelerating the learning process. By t = 60 s, the quadrotor is
approximately tracking the reference, with the safety controller only intervening during the
aggressive descent phase of the repeated trajectory, to ensure (under its conservative model)
that there is no risk of a ground collision. The controller continues to learn in subsequent
iterations, overall improving its tracking accuracy.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 160

Time (s)
0 20 40 60 80 100 120 140

A
lt
it
u
d
e
 (

m
)

0

0.5

1

1.5

2

2.5
Al

tit
ud

e 
(m

)

0

1

2

0 20 60 8040 100 120 140
Time (s)

Reference Learning Override: max

Figure 6.3: Quadrotor altitude and reference trajectory over time. Initial feedback gains are
set to zero. When the learning controller (green) lets the vehicle drop, the safety control (red)
takes over preventing a collision. Within a few seconds, the learned feedback gains allow
rough trajectory tracking and are subsequently tuned as the vehicle attempts to minimize
error.

The remarkable result in this experiment is not in the quality of the learned tracking
controller after only a few seconds of active exploration (a merit that corresponds to the
reinforcement learning method [171]), but the system’s ability to achieve competent perfor-
mance at its task from an extremely poor initial policy while remaining safe at all times.

6.4.2 When in Doubt

In the second experiment, we demonstrate the iterative updating of the safe set and safety
policy using observations of the system dynamics gathered over time, as well as the online
validation of the resulting guarantees. All components of the framework are active during the
test, namely learning controller, safety policy, iterative safety re-computation, and Bayesian
guarantee validation, with the main focus being on the latter two.

Here, the Pelican quadrotor attempts to safely track the same reference trajectory, while
using the gathered information about the system’s evolution to refine its notion of safety.
In this case, the policy gradient learning algorithm is initialized to a hand-tuned set of
parameter values. The initial dynamic model available to the safety algorithm is identical
to the one used in the previous experiment, with a uniform uncertainty bound of ±1.5m/s2.
However, the system is now allowed to update this bound, throughout the state space, based
on the disturbance posterior computed by a Gaussian process model.

To learn the disturbance function, the system starts with a Gaussian process prior over
d(·) defined by a zero mean function and a squared exponential covariance function:

k(x, x′) = σ2
f exp

(
(x− x′)TL−1(x− x′)

2

)
, (6.22)



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 161

where L is a diagonal matrix, with Li as the ith diagonal element, and θp =
[
σ2
f , σ

2
n,L1,L2

]
are the hyperparameters, σ2

f being the signal variance, σ2
n the measurement noise variance,

and the Li the squared exponential’s characteristic length for position and velocity respec-
tively. The hyperparameters are chosen to maximize the marginal likelihood of the training
data set, and are recomputed for each new batch of data when a new disturbance model
D̂(x) is generated for safety analysis. Finally, the chosen prior mean and covariance kernel
classes are both Lipschitz continuous, ensuring that all required technical conditions for the
theoretical results hold (proofs are presented in the Appendix).

The expressions (6.9), (6.10) give the marginal Gaussian process posterior on d(x∗) for
a query point x∗. To numerically compute the safe set, the system first evaluates (6.12)
to obtain the disturbance bound D̂(xi) at every point xi on a state-space grid, as the 95%
confidence interval (p = 0.95) of the Gaussian process posterior over d(x); next, it performs
the robust safety analysis by numerically solving the HJI equation (6.6) on this grid (using
[53]) and obtaining the safety function VD̂(x).

The trajectory followed by the quadrotor in this experiment is shown in Figure 6.4.
The vehicle starts off with an a priori conservative global bound on d(x) and computes an
initial conservative safe set Ω1 (Figure 6.5). It then attempts to track the reference trajectory
avoiding the unsafe regions by transitioning to the safe control u∗(x) on ∂Ω1. The disturbance
is measured and monitored online during this test, under the local safety confidence criterion,
and found to be locally consistent with the initial conservative bound. After collecting 10 s
of data, a new disturbance bound D̂(x) is constructed using the corresponding Gaussian
process posterior, from which a second safety function VD̂,2(x) and safe set Ω2 are computed
via Hamilton-Jacobi reachability analysis. This process takes roughly 2 seconds, and at
approximately t = 12 s the new safety guarantees and policy are substituted in.

The Pelican continues its flight under the results of this new safety analysis: however,
shortly after, the vehicle measures values of d that consistently approach the boundary of
D̂(x), and reacts by applying the safe control policy and locally climbing the computed safety
function. This confidence-based intervention takes place several times during the test run,
as the vehicle measures disturbances that lower its confidence in the local model bounds,
effectively preventing the vehicle from approaching the ground.

After a few seconds, a new Gaussian process posterior is computed based on the first 20 s
of flight data, resulting in an estimated safe set Ω3, an intermediate result between the initial
conservative Ω1 and the overly permissive Ω2 (Figure 6.5). The learning algorithm is then
allowed to resume tracking under this new safety analysis, and no further safety overrides
take place due to loss of safety confidence.

This experiment demonstrates the algorithm’s ability to safely refine its notion of safety
as more data become available, without requiring the process to consist in a series of strictly
conservative under-approximations.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 162

Time (s)
0 5 10 15 20 25 30 35 40

A
lti

tu
de

 (
m

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Learning Safety: max Safety: min

0

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

0 5 10 15 25 30 35 40
Time (s)

20

Al
tit

ud
e 

(m
)

Reference

Figure 6.4: Quadrotor altitude and reference trajectory over time. After flying with an initial
conservative model, the vehicle computes a first Gaussian process model of the disturbance
with only a few data points, resulting in an insufficiently accurate bound. The safety policy
detects the low confidence and refuses to follow the reference to low altitudes. Once a more
accurate disturbance bound is computed, tracking is resumed, with a less restrictive safe set
than the original one.

6.4.3 Gone with the Wind

In this last experimental result, we display the efficacy of online safety guarantee validation
in handling alterations in operating conditions unforeseen by the system designer. All com-
ponents of the framework are active, except for the iterative safety re-computation, which is
not used in this case.

This experiment is performed using the lighter Hummingbird quadrotor, which is more
agile than the Pelican but also more susceptible to wind. We initialize the disturbance set
to a conservative range of ±2 m/s2, which amply captures the error in the double-integrator
model for vertical flight. The vehicle tracks a slow sinusoidal trajectory using policy gradient
[171] to improve upon the manually initialized controller parameters. At approximately
t = 45 s an unmodeled disturbance is introduced by activating a fan aimed laterally at the
quadrotor. The fan is positioned on the ground and angled slightly upward, so that its effect



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 163

Altitude (m)
-0.5 0 0.5 1 1.5 2 2.5 3

V
el

oc
ity

 (
m

/s
)

-3

-2

-1

0

1

2

3

4

1

2

3

4

⌦4

⌦3

⌦2

⌦1

Reference

Executed
Ve

lo
ci

ty
 (m

/s
)

4

Altitude (m)

3

2

1

0

-1

-2

-3
-0.5 0 0.5 1 1.5 2 2.5 3

Figure 6.5: Safe sets computed online by the safety algorithm as it gathers data and succes-
sively updates its Gaussian process disturbance model. The vehicle’s trajectory eventually
leaves the initial, conservative Ω1, but remains in the converged safe set (Ω4) at all times,
even before this set is computed. While the intermediate set Ω2 would have been overly
permissive, this is remedied by the intervention of the safety controller as soon as the model
is observed to behave poorly.

increases as the quadrotor flies closer to the ground. The presence of the airflow causes the
attitude and lateral position controllers to use additional control authority to stabilize the
quadrotor, which couples into the vertical dynamics as an unmodeled force.

The experiment is performed with and without the Bayesian guarantee validation com-
ponent, with resulting trajectories shown in Figure 6.6. Without validation, the quadrotor
violates the constraints, repeatedly striking the ground. With validation, the fan’s airflow
is quickly detected as a discrepancy with the model near the floor, and the safety controller
override is triggered. The vehicle avoids entering the affected region for the remainder of the
flight. Although only the local confidence method is used, providing a strictly local safety
guarantee, the safe controller succeeds in maintaining safety throughout the experiment.
This provides strong evidence suggesting that, beyond its theoretical guarantees, the local
Bayesian analysis also constitutes an effective best-effort approach to safety in more general



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 164

0 30 60 90 120
Time (s)

0

0.5

1

1.5
Al

tit
ud

e 
(m

)
With model validation

0 30 60 90 120
Time (s)

0

0.5

1

1.5

Al
tit

ud
e 

(m
)

Without model validation
Fan Off Fan On 

Fan Off Fan On 

Time (s)
0 60 12030 90

Time (s)
0 60 12030 90

Al
tit

ud
e 

(m
)

0

1

1.5

0.5

Al
tit

ud
e 

(m
)

0

1

1.5

0.5

Without online guarantee validation

With online guarantee validation

Figure 6.6: Quadrotor altitude and reference trajectory over time, shown with and without
online model validation. After the fan is turned on, the vehicle checking local model reliability
detects the inconsistency and overrides the learning controller, avoiding the region with
unmodeled dynamics; the vehicle without model validation enters this region and collides
with the ground multiple times. The behavior is repeated when the reference trajectory
enters the perturbed region a second time.

conditions, given limited computational resources and available knowledge about the system.

6.5 Chapter Summary

We have introduced a safe learning framework that combines the robust reachability guaran-
tees explored in Part I with Bayesian analysis based on empirical observations. This results
in a minimally restrictive supervisory controller that can allow an arbitrary learning algo-
rithm to safely explore its state and strategy spaces. As more data are gathered online,
the framework allows the system to reason probabilistically about the validity of its robust
model-based safety guarantees in light of the latest empirical evidence.

We have demonstrated the merits of this framework on a physical quadrotor system
running a simple policy gradient reinforcement learning algorithm; the vehicle was able to



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 165

autonomously learn an efficient altitude controller from a poor initialization that would have
otherwise led it to crash. In addition, the Gaussian process learning mechanism allowed
the quadrotor to gradually refine its dynamical model over time, while the online safety
validation scheme prevented overreliance on the learned model when it failed to accurately
capture the observed dynamics—including a strong unmodeled disturbance introduced by
turning on a fan—and enabled the quadrotor to preserve its safety assurances in spite of
these inaccuracies.

A central tenet throughout Part II is that providing high-confidence safety assurances for
systems that operate in uncertain environments requires a rapprochement between model-
based and data-driven techniques, often regarded as a dichotomy by both theoreticians and
practitioners. The work in this and the following chapters aims to provide mathematical
arguments and empirical evidence of the superior potential that the two approaches hold
when used in conjunction.

Scaling up safety assurances as intelligent systems achieve increasing complexity poses an
important open research problem. In particular, as autonomous systems interact increasingly
closely with human beings, we expect that the graceful interplay of safety and learning,
combining theoretical guarantees with empirical grounding, will become central to their
success. The remainder of Part II is dedicated to exploring such human-centric challenges,
further developing some of the key ideas introduced in this chapter.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 166

Appendix

Restricting one of the control inputs d to a state-dependent bound D̂(x) introduces questions
as to whether a unique Carathéodory solution to (6.1) continues to exist. The standard
existence and uniqueness theorems [24] assume fixed control sets. If the variation in the
control sets can instead be expressed through the dynamic equation itself without breaking
the continuity conditions, then it is easy to extend the standard result to at least a class of
space-dependent control sets. We introduce two technical assumptions, which give sufficient
conditions for the existence and uniqueness of a solution to the dynamical equations, and
prove that any disturbance set D̂(x) obtained from a Gaussian process model with Lipschitz
prior mean and covariance kernel satisfies these assumptions.

Assumption 6.1. For all x ∈ Rn, D̂(x) is a closed deformation retract of D, that is, there
exists a continuous map Hx : D × [0, 1] → D̂(x) such that for every d ∈ D and d̂ ∈ D̂(x),
Hx(d, 0) = d, Hx(d, 1) ∈ D̂(x), Hx(d̂, 1) = d̂.

Assumption 6.2. Let r : Rn × D → D be such that r(x, d) = Hx(d, 1) as defined above.
Then r is Lipschitz continuous in x, and uniformly continuous in d.

Intuitively, the first assumption means that D can be continuously deformed into D̂(x)
for any x, while the second prevents the disturbance bound D̂(x) from changing abruptly as
one moves in the state space. The retraction map r allows us to absorb the state-dependence
of the disturbance bound into the system dynamics, enabling us to use the standard analysis
for differential games, which considers measurable time signals drawn from fixed input sets.
This is formalized in the following result.

Proposition 6.6. The saturated system dynamics f̃D̂(x, u, d) := f
(
x, u, r(x, d)

)
are bounded

and uniformly continuous in all variables, and Lipschitz in x.

Proof. Boundedness and uniform continuity of f̃D̂ in u are trivially inherited from f ; we
therefore focus on d and x.

First, since r is uniformly continuous in d, and f is Lipschitz (hence uniformly continuous)
in its third argument, we have by composition that f̃D̂ is uniformly continuous in d.

Lipschitz continuity in x is less immediate due to its appearance in both the first and
third arguments of f . Again by composition, Lipschitz continuity of r in x implies that
f
(
y, u, r(·, d)

)
is also Lipschitz for all y ∈ Rn, u ∈ U and d ∈ D. Letting Lr be the Lipschitz

constant of r and Lx be the Lipschitz constant of f in its first argument, we have, for any
x, x̃ ∈ Rn:

|f(x, u, r(x, d))− f(x̃, u, r(x̃, d))|
≤ |f(x, u, r(x, d))− f(x̃, u, r(x, d))|+ |f(x̃, u, r(x, d))− f(x̃, u, r(x̃, d))|
≤ (Lx + LdLr)|x− x̃| .

Thus f̃D̂(·, u, d) = f(·, u, r(·, d)) is indeed Lipschitz in x.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 167

Corollary 6.2. The dynamical system given by (6.1) with d constrained to lie in a state-
dependent set D̂(x) satisfying Assumptions 6.1 and 6.2 has a unique continuous (Carathéodory)
solution.

The above result guarantees existence and uniqueness of system trajectories for any state-
dependent disturbance bound D̂(·) that satisfies Assumptions 6.1 and 6.2. Moreover, the
above construction allows us to transform the system dynamics f(x, u, d) with d ∈ D̂(x) into
the standard form with fixed input sets (i.e. f̃D̂(x, u, d) with u ∈ U , d ∈ D), so that all
results from the differential games literature can readily be applied to our formulation.

Let us now see that the posterior mean and standard deviation of the components of d(x)
are Lipschitz continuous functions of the state x under our Gaussian process framework.

Proposition 6.7. Let the prior mean function µj be Lipschitz continuous, and the covariance
kernel kj be jointly Lipschitz continuous, for the jth component of the disturbance function
d(x). Then the posterior mean d̄j(x) and standard deviation σj(x), as given by (6.9), (6.10)
are Lipschitz continuous in x.

Proof. The result follows from applying the hypotheses to (6.9), (6.10). Note that the
standard deviation σj(x) is the square root of the variance in (6.10); the square root function
is Lipschitz everywhere except at 0, and Bayesian inference under nondegenerate prior and
likelihood never results in 0 posterior variance. Thus σj(·) is also Lipschitz.

The following proposition relates the state-dependent bound D̂(x) obtained from Gaus-
sian process regression to Assumptions 6.1 and 6.2, ensuring that the dynamical system (6.1)
is well-defined, and therefore the associated dynamic game be solved using the methods pre-
sented in Section 6.2.

Proposition 6.8. Let the prior mean function µj be Lipschitz continuous, and the covariance
kernel kj be jointly Lipschitz continuous in its two variables, for all components j of the
disturbance function d(x). Then the disturbance bound D̂(x), as defined in (6.12), satisfies
Assumptions 6.1 and 6.2.

Proof. Assumption 6.1 holds independently of the Lipschitz condition. The bound D̂(x)
given by (6.12) is a compact convex set in D. As a result, the retraction map πx : D → D̂(x)
assigning every d ∈ D its (unique) nearest point in D̂(x) is a Lipschitz continuous function
(with Lipschitz constant equal to 1); of course with πx(d̂) = d̂ for all d̂ ∈ D̂(x). Then,
the function Hx(d, t) := (1− t)d+ tπx(d) is continuous by composition and further satisfies
Hx(d, 0) = d,Hx(d, 1) ∈ D̂(x), Hx(d̂, 1) = d̂ for all d ∈ D and d̂ ∈ D̂(x).

Assumption 6.2 can be shown to hold by noting that the extrema of each of the intervals in
(6.12) are affine in d̄j(x) and σj(x), which are Lipschitz continuous in x by Proposition 6.7.
This implies that the position of all vertices of the hyperrectangle in (6.12) varies as a
Lipschitz continuous function of x, and so does, as a result, the nearest point in D̂(x) to any
fixed d ∈ D. The map r(x, d) = πx(d) is hence Lipschitz continuous in x. Finally, since πx
is Lipschitz continuous in d, r is also uniformly continuous in d.



CHAPTER 6. SAFE LEARNING UNDER UNCERTAINTY 168

Finally, we can show that, under the same Lipschitz assumptions on the Gaussian process
prior, the disturbance bound D̂(x) is Lipschitz continuous under the Hausdorff distance,
which we required in Proposition 6.1.

Proposition 6.9. Let the prior mean function µj be Lipschitz continuous, and the covariance
kernel kj be jointly Lipschitz continuous in its two variables, for all components j of the
disturbance function d(x). Then the set-valued map D̂ is Lipschitz continuous under the
Hausdorff distance.

Proof. Since the disturbance set D̂(x) given by (6.12) is a hyperrectangle, the Hausdorff
distance between the disturbance sets D̂(x1) and D̂(x2) is upper-bounded by the maximum
distance between any pair of corners:

δ(x1, x2) := dH
(
D̂(x1), D̂(x2)

)
≤ max

i
max
k
|ci − ck| ,

with ci,ck used to enumerate all corners of each of the two hyperrectangles. For simplicity of
exposition, we use the equivalence of all norms in Rdn to upper-bound the above, arbitrary
norm in Rnd , by the infinity norm, up to a constant factor m, which in combination with
(6.12) gives:

δ(x1, x2) ≤ m ·max
j

(
|d̄j(x1)− d̄j(x2)|+ |zσj(x1)− zσj(x2)|

)
.

Now, by Proposition 6.7, d̄j(x) and σj(x) are Lipschitz continuous in x; let their respective
constants be Ljµ and Ljσ. We then have

dH
(
D̂(x1), D̂(x2)

)
≤ m ·max

j

(
Ljµ + zLjσ

)
|x1 − x2| ,

which proves Hausdorff Lipschitz continuity of the set-valued map D̂, with a Lipschitz con-
stant LD̂ upper bounded by m ·maxj L

j
µ + zLjσ.



169

Chapter 7

Confidence-Aware Planning with
Human Models

It’s not who I am underneath,
but what I do, that defines me.

Bruce Wayne
Batman Begins, 2005

This chapter is based on the papers “Probabilistically Safe Robot Planning with Confidence-
Based Human Predictions” [19], “Confidence-Aware Motion Prediction for Real-Time Colli-
sion Avoidance” [174], and “A Scalable Framework for Real-Time Multi-Robot, Multi-Human
Collision Avoidance” [20], written in collaboration with Andrea Bajcsy, David Fridovich-Keil,
Sylvia Herbert, Steven Wang, Claire Tomlin, and Anca Dragan.

One of the fundamental challenges facing modern robotic technologies as their reach con-
tinues to expand beyond controlled factory environments is correct and safe operation in
the midst of human beings. While “robot accidents” involving humans do occasionally take
place in industrial settings [175], most of them are due to either malfunctioning equipment
or human operator error, often by unwittingly entering the restricted workspace of an op-
erational robot. In contrast, many of the potential and already-emerging new applications
of robotics require them to operate in an unrestricted space shared with people. For exam-
ple, it is possible today to find mobile robotic systems providing security and surveillance
services in public spaces like office buildings and malls, not without incidents [176, 177]. As
discussed in Chapter 4, consumer drones are being increasingly equipped with autonomous
functionalities [100, 101], including the ability to follow their users while taking pictures or
video footage of them.

In all of these scenarios, the safety of the robotic system will typically include require-
ments like avoiding physical collisions with nearby humans, and as a result will not depend
exclusively on the decisions of the robotic system, but also on the actions taken by the



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 170

humans in question. Therefore, in order to competently ensure safety, the system needs
to reason predictively about the relevant human behavior. Unfortunately, much like the
physical dynamics that were the focus of Chapter 6, the behavior of human agents can be
extremely difficult to predict accurately.

While it would in principle be possible to apply the machinery in Chapter 6 to the
“uncertain dynamics” of human agents, the particular complexity of human decision-making
grants a separate treatment. On the one hand, the degree of uncertainty that a robot may
have about the future behavior of a human may often be much larger than, say, about its
own physical motion. This means that attempting a bounded worst-case analysis may prove
impractical, essentially leading us to the conclusion that the human “might do anything” and
therefore almost every course of action is potentially unsafe—even if safe solutions are found,
the resulting robotic operation may be exceedingly conservative, to the point of preventing
it from executing its task altogether. On the other hand, human behavior differs from most
physical processes in that it tends to be highly purpose-driven. As a result of this, it presents
a considerable degree structure that lends itself to teleological analysis more easily than to
mechanistic analysis.

This chapter therefore focuses on safe decision-making for robotic systems in environ-
ments shared with human beings. It considers the reality gap problem in the specific case
of attempting to model and predict the uncertain behavior of people, and it introduces a
method for the robotic system to adapt its decisions in response to the reliability of its
human model in light of ongoing observations.

One popular predictive approach to anticipate human motion is to model humans as
approximately rational with respect to an objective function learned from prior data [178,
179]. When a person is moving in accordance with the learned objective (e.g. to a known
goal location), these models often make accurate predictions and the robot can easily find a
safe path around the person. Unfortunately, in practice all such models of human intent are
inevitably limited in their expressive power, and the robot’s model of the human will not
be able to capture all possible movements that it might eventually observe. For example,
the human might walk toward another goal location that the robot does not know about, or
move to avoid an obstacle of which the robot is unaware. In these cases where the human’s
motion diverges from the model’s predictions, safety might be compromised. In Figure 7.1
(left), the robot fails to reason about the human avoiding the unobserved obstacle and gets
dangerously close to the human.

One method to mitigate the effects of model inaccuracy is for the robot to re-compute its
human model over time. However, restrictions in sensing and in the availability of human
data limit how much a model can be refined online without overfitting. Alternatively, the
robot can reason about its confidence in its current model’s predictions. This chapter intro-
duces a method in which the robot continually estimates its confidence in its human model
in real time and adapts its motion plan according to this confidence (Figure 7.1, right).
In particular, our approach leverages the so-called “rationality” coefficient in the commonly
used Boltzmann model of approximately rational human behavior [79, 180] as a time-varying
indicator of the model’s predictive performance. This is a single scalar parameter that can be



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 171

Fixed confidence Bayesian confidence

Figure 7.1: When planning around humans, predictive models can enable robots to reason
about future motions the human might take. These predictions rely on human motion
models, but such models will often be incomplete and lead to inaccurate predictions and
even collisions (left). Our method addresses this by updating its human model confidence in
real time (right). Video: https://youtu.be/2ZRGxWknENg

tractably inferred at deployment time. We couple the resulting confidence-aware human mo-
tion predictions with a provably safe motion planner to obtain probabilistically safe robotic
motion plans that are conservative when appropriate but efficient when possible.

This chapter makes two key contributions: (1) a real-time Bayesian framework for rea-
soning about the uncertainty inherent in a model’s prediction of human movement, and
(2) extending a state-of-the-art, provably safe, real-time robotic motion planner to incorpo-
rate our time-varying, probabilistic human predictions. Together, these two contributions
facilitate the real-time generation of robot trajectories through human-occupied spaces. Fur-
ther, they guarantee that when the robot tracks these trajectories at run-time they will be
collision-free with arbitrarily high probability.

Related Work

One common approach for predicting human actions is supervised learning, where the current
state and the history of the human’s actions are used directly to predict future actions.
Such approaches have enabled inference and planning around human arm motion [181–185],

https://youtu.be/2ZRGxWknENg


CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 172

navigation [182], plans for multi-step tasks like assembly [185], and driving [186].
Rather than predicting actions directly, an alternative is for the robot to model the human

as a rational agent seeking to maximize an unknown objective function. The human’s actions
up to a particular time may be viewed as evidence about this objective from which the robot
may infer the parameters of that objective. Assuming that the human seeks to maximize
this objective in the future, the robot can predict her future movements [76, 180]. In this
chapter, we build on in this work by introducing a principled online technique for estimating
confidence in such a learned model of human motion.

Once armed with a predictive model of the human motion, the robot needs to generate
real-time trajectory plans that will both be dynamically feasible and safely avoid future
collisions. A more detailed overview of the robotic motion planning literature can be found
in Chapter 5, and multi-agent planning methods are discussed in Chapter 4. While some of
the geometric motion planning methods in the robotics literature have been combined with
probabilistically moving obstacles [178, 187], they do not consider the endogenous dynamics
of the robot or exogenous disturbances such as wind. As a result, the robot may deviate
from the planned path and potentially collide with obstacles, as we have seen in detail in
Chapter 5. The approach presented in this chapter builds upon the robust motion planning
framework from Chapter 5 to safely and dynamically navigate around uncertain moving
obstacles in real time.

7.1 Safe Robot Trajectories under Uncertain Human

Motion

We consider a single robot moving to a preset goal location in a space shared with a single
human, and assume that the human expects the robot to avoid her. Therefore, it is the
robot’s responsibility to maintain a safe distance from the human at all times. We present
our theory for a general single human and single robot setting, and use the running example
of quadrotor navigating around a walking human to illustrate the proposed approach and
demonstrate the utility of our method.

7.1.1 Motion Model

Let the state of the human be xH ∈ RnH , where nH is the dimension of the human state
space. We similarly define the robot’s state, for planning purposes, as xR ∈ RnR . These
states could represent the positions and velocities of a mobile robot and a human in a shared
environment or the kinematic configurations of a human and a robotic manipulator in a
common workspace. The human and robot are each modeled by their dynamics:

ẋH = fH(xH , uH) ẋR = fR(xR, uR) (7.1)

where uH ∈ RmH and uR ∈ RmR are the control actions of the human and robot, respectively.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 173

The robot ultimately needs to plan and execute a trajectory to a goal state according to
some notion of efficiency, while avoiding collisions with the environment (encoded through
static failure states F0

R ⊂ RnR) or the human. We define the danger zone ZH,R ⊂ RnH ×RnR

as the set of joint robot-human states to be avoided, e.g. because they imply physical
collisions. To avoid reaching this set, the robot must reason about the human’s future
motion when constructing its own motion plan.

Example 7.1. We introduce a running example for illustration throughout the chapter.
In this example we consider a small quadrotor vehicle that needs to fly to targets TR ⊂ R3

in a room where a human is walking. For the purposes of planning, the quadrotor’s state
is given by its position in space rR = [rxR, yR, zR], evolving asṙxRẏR

żR

 =

vx,R

vy,R

vz,R

 , (7.2)

with velocity controls assumed decoupled in each spatial direction: vx,R, vy,R, vz,R ∈ [−v̄R, v̄R],
where v̄R = 0.25 m/s. The human can only move by walking and therefore her state is
given by planar coordinates rH = [rxH , yH ] evolving through simple motion dynamics[

ṙxH
ẏH

]
= vH

[
cosψH
sinψH

]
. (7.3)

At any given time, the human is assumed to either move at a leisurely walking speed
(vH ≈ 1 m/s) or remain still (vH ≈ 0).

In this example, ZH,R consists of joint robot-human states in which the quadrotor is
flying within a square of side length Lc = 0.3 m centered around the human’s location,
while at any altitude:

ZH,R :=

{
(rR, rH) ∈ R5 : ‖(rxR, yR)− (rxH , yH)‖∞ <

Lc
2

}
(7.4)

The robot is must also avoid a static failure set F0
R ⊂ R3 comprised by all positions

outside of a box with a square base of side L = 3.66 m and height H = 2 m, representing
the physical dimensions of the room. The human is modeled as being similarly constrained
to remain in a square of the same dimensions.

7.1.2 Robot Dynamics

Ideally, robots should plan their motion based on a high-fidelity model of their dynamics,
accounting for inertia, actuator limits, and environment disturbances. Unfortunately, rea-
soning with such complex models is computationally prohibitive in most practical cases.As



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 174

a result, the models used for planning typically constitute a simplified representation of the
physical dynamics of the real robot, and are therefore subject to some error that can have
critical implications for safety. In particular, let sR ∈ RnS denote the state of the robot in the
higher-fidelity dynamical model, and let π : RnS → RnR be a known function that projects
this higher-fidelity state onto a corresponding planning state, i.e xR = φ(sR). 1 A planner
which operates on xR may generate a trajectory which is difficult to track or even infeasible
under the more accurate dynamical model. Thus reasoning with the planning model alone
is not sufficient to guarantee safety for the real robot.

Example 7.2. We model our quadrotor with the following flight dynamics (in near-
hover regime): ẋ

ẏ
ż

 =

vx

vy

vz

 ,

v̇x

v̇y

v̇z

 =

 g tan θ
−g tanφ
τ − g

 , (7.5)

where [x, y, z] is the quadrotor’s position in space and [vx, vy, vz] is its velocity expressed
in the fixed world frame, with thrust τ and attitude angles (roll φ and pitch θ) as controls.
The quadrotor’s motion planner generates nominal kinematic trajectories in the lower-
dimensional [x, y, z] position state space. Therefore we have a linear projection map
φ(sR) = [I3, 03]sR, that is, xR retains the position variables in sR and discards the
velocities.

7.1.3 Predictive Human Model

The robot has a predictive model of the human’s motion, based on a set of parameters
whose values may be inferred under a Bayesian framework or otherwise estimated over time.
Extensive work in econometrics and cognitive science has shown that human behavior can be
well modeled by utility-driven optimization [74, 180, 188]. Thus, the robot models the human
as optimizing a reward2 function, LH(xH , uH ; θ), that depends on the human’s state and
action, as well as a set of parameters θ. This reward function could be a linear combination of
features as in many inverse optimal control implementations (where the weighting θ between
the features needs to be learned), or more generally learned through function approximators
such as deep neural networks (with θ as the trained network weights) [189].

We assume that the robot has a suitable human reward function, either learned offline
from prior human demonstrations or otherwise encoded by the system designers. With
this, the robot can compute the human’s policy as a probability distribution over actions
conditioned on the state. Using maximum-entropy assumptions [79] and inspiration from

1Note that this is a special case of the more general relative relation between the planning and tracking
dynamics in Chapter 5.

2 In the optimal control terminology introduced in Chapter 2, Section 2.2, this reward corresponds to a
Lagrangian objective.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 175

noisy-rationality models used in cognitive science [180], the robot models the human as
more likely to choose actions with high expected utility, in this case the state-action value
(or Q-value):

P (utH | xtH ; β, θ) =
eβQH(xtH ,u

t
H ;θ)∑

ũ e
βQH(xtH ,ũ;θ)

. (7.6)

Example 7.3. The quadrotor’s model of the human assumes that she intends to reach
some target location g ∈ R2 in the most direct way possible. The human’s reward function
is given by the distance traveled LH(xH , uH ; g) = −||uH ||2 and human trajectories are
constrained to terminate at g. The state-action value, parametrized by θ = g, captures
the optimal cost of reaching g from xH when initially applying uH : QH(xH , uH ; g) =
−||uH ||2 − ||xH + uH − g||2.

The coefficient β is traditionally called the rationality coefficient and it determines the
degree to which the robot expects to observe human actions aligned with its model of utility.
A common interpretation of β = 0 is a human who appears “irrational,” choosing actions
uniformly at random and completely ignoring the modeled utility, while β →∞ corresponds
a “perfectly rational” human. Instead, we believe that β can be given a more pragmatic
interpretation related to the accuracy with which the robot’s model of the human is able to
explain her motion. Consistently, in this chapter, we refer to β as model confidence.

Note that we assume the human does not react to the robot. This assumption can
realistically capture plausible shared-space settings in which lightweight robots (e.g. micro-
drones) may be expected to carry out services such as indoor surveillance in a building
while minimizing interference with human activity. Additionally, to the extent that a more
compliant human will tend to avoid collisions with the robot, the robot may still benefit in
such scenarios—it is merely not assuming any cooperation a priori in its planning.

7.1.4 Probabilistic Safe Motion Planning Problem

The problem that the robot needs to solve is to plan a trajectory that, when tracked by
the physical system, will reach a goal state as efficiently as possible while avoiding collisions
with high confidence, based on an informed prediction of the human’s future motion.

Since any theoretical guarantee is tied to the model it is based on, safety guarantees will
inherit the probabilistic nature of human predictions. This induces a fundamental tradeoff
between safety and liveness : predictions of human motion may assign non-zero probability
to a wide range of states at a future time, which may severely impede the robot’s ability to
operate in the shared space with “absolute safety” (only absolute according to the model).
Therefore, depending on the context, the designers or operators of the system will need to
determine what is an acceptable probability that a robot’s plan will conflict with the human’s
future motion. Based on this, the robot’s online planning algorithm will determine when a



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 176

motion plan is predicted to be sufficiently safe. In our demonstrated system, we use a 1%
collision probability threshold for planning.

Our goal now is to find efficient robot motion plans that will keep collisions with a human
below an acceptable probability. Formally, given a current state xnow

R ∈ RnR , a cumulative
cost c : RnR × RmR → R, a probability threshold Pth ∈ [0, 1] and a final time T , we define
the constrained planning problem:

min
ut:TR

T∑
τ=t

c(xτR, u
τ
R) (7.7a)

s.t. xtR = xnow
R (7.7b)

xτ+1
R = f̃R(xτR, u

τ
R), τ ∈ t, ..., T − 1 (7.7c)

xτ+1
R 6∈ F0

R τ ∈ t, ..., T − 1 (7.7d)

P t:T
coll := P

(
∃τ ∈ {t, ..., T} : coll(xτR, x

τ
H)
)
≤ Pth (7.7e)

with f̃R a discrete-time approximation of the dynamics fR. The term coll(xtR, x
t
H) is a

Boolean variable indicating whether the human and the robot are in collision.
The safety analysis necessary to solve this online motion planning problem therefore has

two main components, the robot’s state and the human’s state, both of which are affected by
uncertainty in their evolution over time. We tackle these two sources of uncertainty through
a combined method that draws simultaneously on the two main approaches to uncertain
systems: probabilistic and worst-case analysis.

Example 7.4. The quadrotor’s cost can be a weighted combination of distance traversed
and time elapsed on its way to a specified goal: c(xR, uR) = ||uR||2 + c0.

The proposed approach in this chapter follows two central steps to provide a quantifiable,
high-confidence collision avoidance guarantee for the robot’s motion around the human. In
Section 7.2 we present our proposed Bayesian framework for reasoning about the uncertainty
inherent in a model’s prediction of human behavior. Based on this inference, we demonstrate
how to generate a real-time probabilistic prediction of the human’s motion over time. Next,
in Section 7.3 we introduce a theoretical extension to a state-of-the-art, provably safe, real-
time robotic motion planner to incorporate our time-varying probabilistic human predictions
yielding a quantitative probabilistic safety certificate.

7.2 Confidence-Aware Human Motion Prediction

Predictions of human motion, even when based on well-informed models, may eventually
perform poorly when the human’s behavior outstrips the model’s predictive power. Such
situations can have a negative impact on safety if the robot fails to appropriately, and
quickly, notice the degradation of its predictions.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 177

It will often be the case in practice that the same model will perform variably well
over time in different situations and for different people. In some cases this model might be
perfectly representative, in others the robot might not have access to some important feature
that explains the human’s behavior, and therefore the robot’s conservativeness should vary
accordingly.

Given a utility-based human model in the form of (7.6), the inverse temperature param-
eter β can be leveraged as an indicator of the model’s predictive ability. In particular, the
entropy of the human control distribution in (7.6) is a decreasing function of β: high values
of β place more probability mass on high-utility control actions uH , whereas low values of
β spread the probability mass more evenly between different control inputs, regardless of
the modeled utility QH . Therefore, β naturally quantifies how well the human’s motion is
expected to agree with the notion of optimality encoded in QH . While the commonly used
term “rationality coefficient” seems to imply that discrepancies between the two indicate a
failure on the human’s part to make the “correct” decisions, we argue that these inevitable
disagreements are primarily a result of the model’s inability to fully capture the human’s
behavior, and therefore refer to β as model confidence. By reasoning about this parameter
over time, the robot can dynamically adapt its predictions (and therefore its motion plan) to
the current reliability of its human model, resulting in more “introspective” confidence-aware
autonomous behavior.

7.2.1 Real-time Inference of Model Confidence

Since the predictive performance of the model might change over time as the human’s be-
havior evolves, we treat β as a hidden state in a hidden Markov model (HMM) framework,
rather than a static parameter. We can maintain a Bayesian belief about the possible values
of β, starting with a prior probability distribution b0

− over the initial value of β and updating
it at each new time t = 1, 2, · · · given measurements of the human’s state and actions.

The hidden state may evolve between subsequent time steps, accounting for the important
fact that the predictive accuracy of the human model may change over time as unmodeled
factors in the human’s behavior become more or less relevant (for example, the human may
change her mind unexpectedly, or react suddenly to some aspect of the environment that the
robot is unaware of). Since by definition we do not have access to a model of these factors,
we use a naive “ε-static” transition model: at each time t, β may, with some probability ε,
be re-sampled from the initial distribution b0

−, and otherwise retains its previous value. We
define the belief over the next value of β (denoted by β′) as the expectation of the conditional
probability P (β′ | β), i.e. bt−(β′) := Eβ∼bt−1 [P (β′ | β)]. Concretely, this expectation may be
computed as

bt−(β′) = (1− ε)bt−1(β′) + εb0
−(β′) , (7.8)

where bt−1(β) = P (β|x0:t−1
H , u0:t−1

H ) for t ∈ {1, 2, ...} is the belief over β at time t − 1 based
on all observations made up until this time.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 178

At every time step t, the robot obtains a new measurement of the human’s action, utH .3

This measurement can be used as evidence to update the robot’s belief bt(·) about β over
time via a Bayesian update, starting from the predicted distribution bt−(·):

bt(β) =
P (utH | xtH ; β, θ)bt−(β)∑
β̂ P (utH | xtH ; β̂, θ)bt−(β̂)

, (7.9)

with P (utH |xtH ; β, θ) given by (7.6). It is critical to be able to perform this update extremely
fast, which would be difficult to do in the original continuous hypothesis space β ∈ [0,∞) or
even a large discrete set. Fortunately, as we will see in Section 7.4, maintaining a real-time
Bayesian belief over a relatively small set of β values (Nβ ≈ 10 on a log-scale) achieves
significant improvement relative to maintaining a fixed precomputed value.

On the other hand, the “ε-static” transition model (7.8) leads to the desirable consequence
that old observations of the human’s actions have a smaller influence on the current model
confidence distribution than recent observations. In fact, if no new observations are made,
successively applying time updates asymptotically contracts the belief towards the initial
distribution, that is, bt−(·)→ b0

−(·). The choice of parameter ε effectively controls the rate of
this contraction, with higher ε leading to more rapid contraction.

7.2.2 Human motion prediction

We can now use the belief over β to recursively propagate the human’s motion over time and
obtain a probabilistic prediction of her state at any number of time steps into the future.
In particular, suppose that we know the probability that the human is in each state xτH at
some future time step τ . We know that (according to our utility model) the probability
of the human choosing control uτH if she is in state xτH is given by (7.6). Accounting for
the otherwise deterministic dynamics model f̃H , we obtain the following expression for the
human’s state distribution at the following time step τ + 1:

P (xτ+1
H ; β, θ) =

∑
xτH ,u

τ
H

P (xτ+1
H | xτH , uτH ; β, θ) · (7.10)

P (uτH | xτH ; β, θ)P (xτH ; β, θ) ,

for a particular choice of β; for the deterministic dynamics in our case, P (xτ+1
H | xτH , uτH ; β, θ) =

1{xτ+1
H = f̃H(xτH , u

τ
H)}.

Taking the posterior expectation over β according to our belief at the current step time
t, we obtain the overall occupancy probability distribution at each future time step τ :

P (xτH ; θ) = Eβ∼btP (xτH ; β, θ) . (7.11)

3In practice, the robot measures the evolution of the human state and computes the associated action
by inverting the motion model.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 179

Figure 7.2: Snapshots of human trajectory and probabilistic model predictions in the un-
modeled obstacle scenario. Top row: Human moves from the bottom right to a goal marked
as a red circle. Bottom row: Human changes course to avoid a spill on the floor. The first
two columns show the predictions for low and high model confidence; the third column shows
the predictions for Bayesian model confidence. Video: https://youtu.be/lh_E9rW-MJo

Example 7.5. The simplest scenario in our running example involves a human moving
towards a known goal. In Figure 7.2(a-c), the human acts predictably, moving directly to
the goal. Each subfigure shows the robot’s human prediction under different confidence
conditions. Predictions for the second scenario, where the human deviates from her path
to avoid a coffee spill on the ground, are shown in Figure 7.2(d-f).

7.2.3 Integrating Model Confidence into Online Model Updates

When a robot is faced with human behavior that is not well explained by its current model,
it can attempt to update some of its elements to better fit the observed human actions.
These elements can include parameters, hyperparameters, or potentially even the structure
of the model itself. Assuming that the parameters can be tractably adjusted online, this
update may result in better prediction performance.

Even under online model updates, it continues to be necessary for the robot to reason
about model confidence. In this section we demonstrate how reasoning about model confi-
dence can be done compatibly (and in some cases jointly) with model parameter updates.

https://youtu.be/lh_E9rW-MJo


CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 180

Recall that θ denotes the set of parameters in the human’s utility model. The ideal ap-
proach is to perform inference over both the model confidence, β, and the model parameters,
θ by maintaining a joint Bayesian belief, bt(β, θ). The joint Bayesian belief update rule takes
the form

bt(β, θ) =
P (utH | xtH ; β, θ)bt−(β, θ)∑
β̂,θ̂ P (utH | xtH ; β̂, θ̂)bt−(β̂, θ̂)

, (7.12)

with bt(β, θ) = P (β, θ | x0:t
H , u

0:t
H ).4 This approach can be practical for parameters taking

finitely many values from a discrete set, for example, possible distinct modes for a human
driver (distracted, cautious, aggressive).

Example 7.6. The quadrotor’s model of the human considers a number of known
frequently-visited locations θ ∈ {g1, ..., gN} that she might intend to walk to next. How-
ever, there may be additional unmodeled destinations, or more complex objectives driving
the human’s motion in the room (for example, she could be searching for a misplaced
object, or pacing while on the phone). Figure 7.3 shows how reasoning about model
confidence as well as the human’s destination enables the robot to navigate confidently
while the human’s motion is well explained by the model, and automatically become more
cautious when it departs from its predictions. More detailed results are presented in
Section 7.4.

For certain scenarios or approaches it may not be practical to maintain a full Bayesian
belief on the parameters, and these are instead estimated over time (for example, through
a maximum likelihood estimator (MLE), or by shallow re-training of a pre-trained neural
network). In these cases, a practical approach can be to maintain a “bootstrapped” belief
on β by running the Bayesian update on the running parameter estimate θ̄:

b̄t(β) =
P (utH | xtH ; β, θ̄t)b̄t−(β)∑
β̂ P (utH | xtH ; β̂, θ̄t)b̄t−(β̂)

. (7.13)

Example 7.7. The quadrotor’s predictions of human motion are parameterized by her
walking speed vH ; the quadrotor maintains a simple running average based on recent
motion-capture measurements, and incorporates the current estimate into inference and
prediction.

When it is not desirable or computationally feasible to update the parameter estimate
θ̄t continually, model confidence can also be used as an indicator of when re-estimating
these parameters may be most useful—namely as confidence in the model under the current
parameter estimates degrades.

4 Analogously to the case with β-only inference, the parameters θ can be allowed to evolve as a hidden
state.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 181

Figure 7.3: Human motion predictions under modeled and unmodeled goals. The human
is moving in a counter-clockwise motion to two modeled goals (marked in red), and then
to a third unmodeled goal (located at the same position as the start). Subfigures (a) and
(b) show the predictions for a low and high confidence, respectively. Subfigure (c) shows
the predictions using our inferred model confidence, where the robot is confident when the
human is moving “rationally”, and uncertain when the human behavior does not match the
robot’s model.

7.3 Safe Probabilistic Planning and Tracking

Once it can generate real-time probabilistic predictions of the human’s motion, the robot
needs to plan a trajectory that will, with high probability, avoid collisions with her. On the
one hand, any rigorous safety analysis for a robotic system needs to account for deviations of
the actual dynamic trajectory from the ideal motion plan. On the other hand, since human
motion predictions are by nature uncertain, the safety analysis will necessarily be quanti-
fied in probabilistic terms. To this end, we build on the FaSTrack framework introduced in
Chapter 5, which provided us with control-theoretic robust safety certificates in the presence
of deterministic obstacles, and extend the theoretical analysis to provide probabilistic certifi-
cates allowing uncertain dynamic obstacles, in order to handle the uncertain future motion
of human agents.

7.3.1 Robust Tracking, Probabilistic Safety

Recall that xR and uR are the robot’s state and control input, for the purposes of motion
planning. The FaSTrack framework uses Hamilton-Jacobi analysis to provide a simple real-
time motion planner with a worst-case tracking error bound for the dynamic robot (and a
tracking control policy to enforce the bound). This bound E is a trajectory tracking certificate
that can be passed to the online planning algorithm for real-time safety verification: the
dynamical robot is guaranteed to always be somewhere within the associated robust tracking
set given by the Minkowski sum X̃ (xR) = X̃ (xR) + E . Therefore the planner can generate
safe plans by ensuring that the entire robust tracking set remains collision-free throughout
the trajectory. Note that the planner only needs to know E and otherwise requires no explicit



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 182

understanding of the high-fidelity model.

Example 7.8. Since dynamics (7.5) are decoupled in the three spatial directions, the
bound E computed by FaSTrack is an axis-aligned box of dimensions Ex × Ey × Ez.

Unfortunately, planning algorithms for collision checking against deterministic obstacles
cannot be readily applied to our problem. Instead, a trajectory’s collision check should
return the probability that it might lead to a collision. Based on this probability, the
planning algorithm can discriminate between trajectories that are sufficiently safe and those
that are not.

As discussed in Section 7.1, a safe online motion planner should continually check the
probability that, at any future time τ , (π(sτR), xτH) ∈ ZH,R. The tracking error bound guar-
antee from FaSTrack allows us to conduct worst-case analysis on collisions given a human
state xH : if no point in the robust tracking set X̃ (xR) is in the collision set with xH , we can
guarantee that the robot is not in collision with the human.

The probability of a collision event for any point xτR in a candidate trajectory plan,
assuming worst-case tracking error, can be computed as the total probability that xτH will
be in collision with any of the possible robot states x̃R ∈ {xτR + E}. For each robot planning
state xR ∈ RnR we can define the set of human states in potential collision with the robot:

HH(xR) := {x̃H ∈ RnH : ∃x̃R ∈ X̃ (xR), (x̃R, x̃H) ∈ ZH,R} . (7.14)

The following result is then true by construction.
Proposition 1: The probability of a robot with worst-case tracking error E being in

collision with the human at any trajectory point xτR is bounded above by the probability mass
of xτH contained within HH(xτR).

Therefore, the left-hand side of the inequality in our problem’s safety constraint (7.7e)
can be rewritten as

P t:T
coll = 1−

T∏
τ=t

P
(
xτH 6∈ HH(xτR) | xτH 6∈ HH(xsR), t ≤ s < τ

)
. (7.15)

Evaluating the above probability exactly would require reasoning jointly about the dis-
tribution of human states over all time steps, or equivalently over all time trajectories x0:T

H

that the human might follow. Due to the need to plan in real time, we must in practice
approximate this distribution.

Since assuming independence of collision probabilities over time is both unrealistic and
overly conservative, we instead seek to find a tight lower bound on a trajectory’s overall col-
lision probability based on the marginal probabilities at each moment in time. In particular,
based on the positive correlation over time resulting from human motion continuity, we first
consider replacing each conditional probability P

(
xτH 6∈ HH(xτR) | xsH 6∈ HH(xsR), t ≤ s < τ

)
by 1 for all t > 0. This would then give the lower bound

P t:T
coll ≥ 1− P

(
xtH 6∈ HH(xtR)

)
= P

(
xtH ∈ HH(xtR)

)
, (7.16)



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 183

which would seem like an unreasonably optimistic approximation. However, note that prob-
abilities can be conditioned in any particular order (not necessarily chronological) and we
can therefore generate T − t + 1 lower bounds of the form P t:T

coll ≥ P
(
xτH ∈ HH(xτR)

)
for

τ ∈ {t, . . . , T}, again by replacing all successive conditional non-collision probabilities by 1.
Taking the tightest of all of these bounds, we can obtain an informative, yet quickly com-
putable, approximator for the sought probability:

P t:T
coll ≈ max

τ∈{t:T}
P
(
xτH ∈ HH(xτR)

)
. (7.17)

In other words, we are replacing the probability of collision of an entire trajectory with the
highest marginal collision probability at each point in the trajectory. While this approxima-
tion will err on the side of optimism, we note that the robot’s ability to continually replan as
updated human predictions become available mitigates any potentially underestimated risks,
since in reality the robot does not need to commit to a plan that was initially deemed safe,
and will readily rectify as the estimated collision risk increases prior to an actual collision.

Example 7.9. Given ZH,R and E, HH(xτR) is the set of human positions within the
rectangle of dimensions (l + Ex)× (l + Ey) centered on [pτx, p

τ
y ]. A human anywhere in

this rectangle could be in collision with the quadrotor.

7.3.2 Safe Online Planning under Uncertain Human Predictions

We can now use this real-time evaluation of collision probabilities to discriminate between
valid and invalid trajectory candidates in the robot’s online motion planning. Using the for-
mulation in Section 7.2, we can quickly generate, at every time t, the marginal probabilities
in (7.17) at each future time τ ∈ {t, . . . , T}, based on past observations at times 0, . . . , t.
Specifically, for any candidate trajectory point xτR, we first calculate the set HH(xτR); this set
can often be obtained analytically from (7.14), and can otherwise be numerically approxi-
mated from a discretization of E . The planner then computes the instantaneous probability
of collision P

(
xτH ∈ HH(xτR)

)
by integrating P

(
xτH | x0:t

H

)
over HH(xτR), and rejects the

candidate point xτR if this probability exceeds Pth.
Note that for search-based planners that consider candidate trajectories by generating a

tree of timestamped states, rejecting a candidate node from this tree is equivalent to rejecting
all further trajectories that would contain the node. This early rejection rule is consistent
with the proposed approximation (7.17) of P t:T

coll while preventing unnecessary exploration of
candidate trajecories that would ultimately be deemed unsafe.

As the robot is continuously regenerating its motion plan online as the human’s predicted
motion is updated, we simultaneously track the planned trajectory using our error feedback
controller, which ensures that we deviate by no more than the tracking error bound E . This
planning and tracking procedure continues until the robot’s goal has been achieved.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 184

Figure 7.4: Scenario from Figure 7.2 visualized with robot’s trajectory based on its current
β. When β is low and the robot is not confident, it makes large deviations from its path to
accommodate the human. When β is high, the robot refuses to change course and comes
dangerously close to the human. With inferred model confidence, the robot balances safety
and efficiency with a slight deviation around the human.

Example 7.10. Our quadrotor is now required to navigate to a target position shown
in Figure 7.2 without colliding with the human. Our proposed algorithm successfully
avoids collisions at all times, replanning to leave greater separation from the human
whenever her motion departs from the model. In contrast, robot planning with fixed
model confidence is either overly conservative at the expense of time and performance or
overly aggressive at the expense of safety.

7.3.3 Connection to Reachability Analysis

We could conceivably require the robot’s motion plans to avoid the set of all states the
human would be physically capable of reaching at some time τ in the future, i.e. her forward-
reachable set at time τ under the dynamical model fH :

RF (xtH ; τ) = {x : ∃utH , . . . , uτ−1
H : xτH = x} . (7.18)

This criterion can be attractive in that would come with a robust safety guarantee only
contingent on the physical limits assumed on the humans motion (e.g. maximum speed) and
not on our ability to anticipate her decision-making. Unfortunately, of course, generating a
single open-loop motion plan that will stay clear of all physically realizable future human
configurations is impractically conservative, if not altogether impossible, in most realistic
scenarios.

The probabilistic predictions used in this chapter provide a less conservative approach by
effectively allowing the robot to discard certain candidate future human states that, while



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 185

physically possible, are deemed extremely unlikely. Note that, by definition, the forward-
reachable set always contains the support of any probability distribution over the human’s
future state at time τ ; in the case of Boltzmann decision models, where all human actions
have nonzero probability for finite QH and β, we in fact have that RF (xtH ; τ) is always equal
to the support of the probability distribution over xtH regardless of the Boltzmann model
used. This is illustrated by Figure 7.5 for an example with a human pedestrian.

Figure 7.5: Comparison between the predicted human state distribution and the forward-
reachable set. The human pedestrian (black dot) is moving in the negative x direction
towards a modeled goal. Visualized are the predicted state distributions for 1 second into
the future when using low, high, and Bayesian model confidence. Higher-saturation indi-
cates higher likelihood of occupancy. The dashed circle represents the pedestrian’s 1-second
forward-reachable set.

Given this basic relation, a desirable property for the confidence-aware planning scheme
would be that, as confidence in the predictive human behavior model degrades, the high-
confidence safety constraints approach, in some meaningful sense, the forward-reachable
set avoidance criterion. Indeed, we can see that this is the case: while high-confidence
human state predictions will tend to concentrate around near-optimal trajectories according
to the utility model encoded by QH , low-confidence predictions will spread probability mass
more evenly throughout the forward-reachable set. Therefore, when planning its motion to
maintain low collision probabilities, the robot will need to keep its robust tracking set X̃ (xtR)
clear of a larger portion of the human’s forward-reachable set RF (xtH ; τ) when its confidence
in its human behavior predictions is low.

For any grid discretization used to represent the human’s state probabilities, we can
always find a sufficiently low Pth such that, as β → 0, the set of states that the robot must
avoid equals RF (xtH ; τ) (up to discretization error): it suffices to choose Pth lower than the
smallest nonzero probability P (xτH) in any grid cell for β = 0. On the other hand, if Pth is
made much lower than this value, then it may be that, even for some high confidence β > 0,
the very low (yet always nonzero) probabilities in the lowest-utility regions of the forward-
reachable set will still be above the threshold, resulting in the entirety of RF (xtH ; τ) being



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 186

Figure 7.6: Visualization of thresholded human state distributions for different model con-
fidence values. The plot shows discretized states with probability greater than or equal to
the collision threshold Pth = 0.01, for the probability distributions resulting from fixed low
confidence (β = 0.05) and high confidence (β = 10), as well as for the posterior marginal
state distribution resulting from the Bayesian β inference scheme. By definition, the human’s
forward-reachable set always includes the set of states assigned probability greater than 0.

avoided. If chosen in the appropriate range, then, the threshold Pth can lead to robot planning
that mimics worst-case forward-reachable set avoidance only when model confidence decays
below a certain level, taking a less conservative approach when the predictive model appears
to be accurately capturing the human’s behavior.

Figure 7.6 depicts the set of states with predicted probability mass greater than Pth = 0.01
overlaid on the human’s forward reachable set at time τ , which is a circle of radius vH(τ − t)
centered on xtH for the dynamics in the running example. When model confidence is high
(β = 10), we observe that virtually all of the probability mass is concentrated in a small
number of states in the direction of motion predicted by the utility model. When model
confidence is low (β = 0.05) we observe that the set of states assigned probability above the
collision threshold Pth occupies a much larger fraction of the reachable set. A typical belief
b(β) recorded at a moment when the human was roughly moving according to QH yields an
intermediate set of states.

Therefore, we see that the confidence-aware prediction method generally trades lower
conservativeness for a probabilistic relaxation of the robust collision avoidance guarantees.
The probability threshold Pth allows system designers to regulate the degree of conservative-
ness in the resulting robot motion plan, which can be made to automatically approach the
more conservative forward-reachable set avoidance criterion when confidence in the predictive
model degrades severely.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 187

7.4 Demonstration with Real Human Trajectories

We implemented real-time human motion prediction with β inference and safe probabilistic
motion planning via FaSTrack within the Robot Operating System (ROS) framework [142].
To demonstrate the characteristic behavior of our approach, we created three different envi-
ronment setups and collected a total of 48 human walking trajectories (walked by 16 different
people). The trajectories are measured as (x, y) positions on the ground plane at roughly
235 Hz by an OptiTrack infrared motion capture system.5 We also demonstrated our system
in hardware on a Crazyflie 2.0 platform navigating around a person in a physical space.

Environments. In the first environment there are no obstacles and the robot is aware
of the human’s goal. The second environment is identical to the first, except that the human
must avoid a coffee spill that the robot is unaware of. In the third environment, the human
walks in a triangular pattern from her start position to two known goals and back.

Evaluated Methods. For each human trajectory, we compare the performance of our
adaptive β inference method with two baselines using fixed β ∈ {0.05, 10}. When β = 0.05,
the robot is unsure of its model of the human’s motion. This low-confidence method cannot
trust its own predictions about the human’s future trajectory. On the other hand, the
β = 10 high-confidence method remains confident in its predictions even when the human
deviates from them. These two baselines exist at opposite ends of a spectrum. Comparing
our adaptive inference method to these baselines provides useful intuition for the relative
performance of all three methods in common failure modes (see Figure 7.4).

Metrics. We measure the performance of our adaptive β inference approach in both of
these cases by simulating a quadrotor moving through the environment to a pre-specified goal
position while replaying the recorded human trajectory. We simulate near-hover quadrotor
dynamics with the FaSTrack optimal controller applied at 100 Hz. For each simulation, we
record the minimum distance in the ground plane between the human and the quadrotor as
a proxy for the overall safety of the system. The quadrotor’s travel time serves to measure
its overall efficiency.

In each environment, we compute the safety metric for all 16 human trajectories when
applying each of the three human motion prediction methods and display the corresponding
box and whisker plots side by side. To compare the efficiency of our approach to the baselines
we compute the difference between the trajectory completion time of our approach, Tinfer, and
that of the low and high confidence baselines, {Tlo, Thi}. If the resulting boxplots are below
zero, then β inference results in faster robot trajectories than the baselines on a per-human
trajectory basis.6

Complete Model. First, we designed an example environment where the robot’s model
is complete and the human motion appears to be rational. In this scenario, humans would

5We note that in a more realistic setting, we would need to utilize alternative methods for state estimation
such as lidar measurements.

6The upper and lower bounds of the box in each boxplot are the 75th and 25th percentiles. The horizontal
red line is the median, and the notches show the bootstrapped 95% confidence interval for the population
mean.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 188

� inference � high confidence � low confidence
0.0

0.5

1.0

1.5

m
in

t
kx

t H
�x

t R
k 2

(m
)

Safety Comparison for Co↵ee-Avoiding Human

Tinfer � Tlo Tinfer � Thi

�20

�15

�10

�5

0

Ro
bo

t’s
tim

et
o

re
ac

h
go

al
(s)

E�ciency Comparison for Co↵ee-Avoiding Human
� inference � high confidence � low confidence

0.0

0.5

1.0

1.5

m
in

t
kx

t H
�

x
t R
k 2

(m
)

Safety Comparison for Co↵ee-Avoiding Human

Complete Model Unmodeled Obstacle

Sa
fe

ty
Ef

fic
ie

nc
y

� inference � high confidence � low confidence
0.0

0.5

1.0

1.5

m
in

t
kx

t H
�

x
t R
k 2

(m
)

Safety Comparison for Co↵ee-Avoiding Human

� inference � high confidence � low confidence
0.0

0.5

1.0

1.5

m
in

t
kx

t H
�

x
t R
k 2

(m
)

Safety Comparison for Co↵ee-Avoiding Human

Figure 7.7: Safety and efficiency metrics in a correctly modeled environment and one with
an unmodeled obstacle.

walk in a straight line from their start location to their goal which was known by the robot
a priori.

When the robot has high confidence in its model, the human’s direct motion towards the
goal appears highly rational and results in both safe (Figure 7.7, top left) and efficient plans
(Figure 7.7, bottom left). We see a similar behavior for the robot that adapts its confidence:
although initially the robot is uncertain about how well the human’s motion matches its
model, the direct behavior of the human leads to the robot to believe that it has high model
confidence. Thus, the β inference robot produces overall safe and efficient plans. Although
we expect that the low-confidence model would lead to less efficient plans but comparably
safe plans, we see that the low-confidence robot performs comparably in terms of both safety
and efficiency.

Ultimately, this example demonstrates that when the robot’s model is rich enough to
capture the environment and behavior of the human, inferring model confidence does not
hinder the robot from producing safe and efficient plans.

Unmodeled Obstacle. Often, robots do not have fully specified models of the environ-
ment. In this scenario, the human has the same start and goal as in the complete model case
except that there is a coffee spill in her path. This coffee spill on the ground is unmodeled
by the robot, making the human’s motion appear less rational.

When the human is navigating around the unmodeled coffee spill, the robot that con-
tinuously updates its model confidence and replans with the updated predictions almost
always maintains a safe distance (Figure 7.7, top right). In comparison, the fixed-β models
that have either high-confidence or low-confidence approach the human more closely. This
increase in the minimum distance between the human and the robot during execution time
indicates that continuous β inference can lead to safer robot plans.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 189

For the efficiency metric, a robot that uses β inference is able to get to the goal faster
than a robot that assumes a high or a low confidence in its human model (Figure 7.7, bottom
right). This is particularly interesting as overall we see that enabling the robot to reason
about its model confidence can lead to safer and more efficient plans.

Unmodeled Goal. In most realistic human-robot encounters, even if the robot does
have an accurate environment map and observes all obstacles, it is unlikely for it to be
aware of all human goals. We test our approach’s resilience to unknown human goals by
constructing a scenario in which the human moves between both known and unknown goals.
The human first moves to two known goal positions, then back to the start. The first two legs
of this trajectory are consistent with the robot’s model of goal-oriented motion. However,
when the human returns to the start, she appears irrational to the robot. Figure 7.8 and 7.9

Figure 7.8: Safety results for the unmodeled human goal scenario.

summarize the performance of the inferred-β, high-confidence, and low-confidence methods
in this scenario. All three methods perform similarly with respect to the minimum distance
safety metric in Figure 7.8. However, Figure 7.9 suggests that the inferred-β method is
several seconds faster than both fixed-β approaches. This indicates that, without sacrificing
safety, our inferred-β approach allows the safe motion planner to find more efficient robot
trajectories.

7.5 Safe Multi-Human Multi-Robot Navigation

We now consider the use of confidence-aware predictions for trajectory planning in the midst
of multiple humans, as well as in coordination among multiple robots. A representative



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 190

Figure 7.9: Efficiency results for the unmodeled human goal scenario.

hardware demonstration is depicted in Figure 7.10. As we saw in Chapter 4, providing safety
assurances for complex systems with multiple agents is an important technical problem,
often one with intrinsic scalability challenges due to combinatorial explosion and the curse
of dimensionality.

Two main difficulties emerge when considering the multi-human prediction problem.
On the one hand, there is a fundamental modeling challenge: while low-dimensional state
and utility representations (such as the ones used in this chapter) have been seen to yield
reasonably accurate predictions for a single human [79, 178], this observation does not easily
translate to scenarios including relevant multi-human interactions. For example, two humans
currently walking towards each other may sidestep to avoid colliding and continue on their
paths, but they may also stop to greet or converse with each other; or they may come into
an embrace, effectively colliding. Forming accurate predictions in such scenarios therefore
tends to require considerably richer and more subtle model representations.

On the other hand, there is a computational challenge: even if a sufficiently accurate
human interaction model is available, it is then necessary to use this model to generate
predictions about the joint future actions of multiple humans. The existence of interactions
implies that predictions for different humans will in general be coupled with each other.
Reasoning over possible joint trajectories therefore carries a combinatorial computational
cost, making real-time implementation a difficult problem.

There is a wealth of literature in multi-human prediction, with methods that seek to
balance the two challenges in different ways.7 Simple characterizations of interaction such

7 We direct the interested reader to [190] for a comprehensive overview of multi-human prediction in the



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 191

Figure 7.10: Hardware demonstration of real-time multi-agent planning while maintaining
safety with respect to internal dynamics, external disturbances, and humans. The quadro-
tor’s trajectories are visualized, and the robust tracking set is shown as a box around each
quadrotor. The predictions of future human motion is shown in pink in front of each human.
Video: https://youtu.be/lJGRHNJ1_Wk

as social force models [191] encode explicit assumptions about interaction dynamics in the
interest of forming tractable simulation-based predictions. Models of this class are commonly
used due to real-time tractability, yet their predictive accuracy degrades substantially when
the underlying assumptions are not met. More recent work has focused on incorporating se-
mantic scene information into the prediction of more complex human behavior; some of these
models focus on individual human agents, explicitly neglecting interactions [192], whereas
others seek use the semantic structure to inform interaction predictions [193].

Whatever the model used, the inevitable occurrence of unmodeled or poorly modeled in-
teractions exacerbates the difficulty in predicting human motion, while computational limits
tend to impose decoupling simplifications when forming real-time predictions. Such simpli-
fications, made at computation time, can induce additional inaccuracies. The confidence-
aware framework can be applied to multi-human predictions by adjusting the uncertainty
around the motion of each human based on the observed accuracy of the chosen model
in describing her motion: when the interaction model becomes inaccurate, prediction con-
fidence will automatically be lowered, leading to more conservative planning as with the

specific context of pedestrian motion.

https://youtu.be/lJGRHNJ1_Wk


CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 192

single-human case. We observe that this automatic uncertainty adjustment allows us to
simplify and even neglect interaction effects between human individuals in the predictive
models while retaining safe and desirable robot behavior.

We will next discuss the reasoning of a single robot about the probability of future
collisions with a set of NH humans. Aggregating such analysis to compute coordinated
trajectories for a set of NR robots is then straightforward under the STP scheme.

7.5.1 Multi-Human Prediction Formulation

Let the dynamics of each human i = 1, . . . , NH be generally given by

ẋi = fi(xi, ui) . (7.19)

In addition let x denote the joint state of all agents (humans and robots) for planning
purposes; we assume x is observable to all agents.

As before, the robot needs to plan a trajectory that, when tracked by the physical sys-
tem, will reach a goal state as efficiently as possible while avoiding, with high probability,
the joint danger zones Zi,R with respect to all humans i, based on an informed prediction of
their future motion (in addition to staying clear of static obstacles and other robots). Fol-
lowing the analysis for the single-human case, we can write the robot’s probabilistic safety
condition (7.7e) as:

P t:T
coll := P

(
∃τ ∈ {t, ..., T} : xτ1 ∈ H1(xτR) ∨ . . . ∨ xτNH ∈ HNH (xτR)

)
≤ Pth (7.20)

with each Hi defined analogously to (7.14).
The robot may model each human through a noisily rational probabilistic policy similar

to (7.6). However, in the general case, the human’s objective (and therefore her state-action
value function) may now depend on the overall state of the system xτ , including all other
agents (human and robotic), and not only her own individual state xτi .

P (uti | xt; βi, θi) ∝ eβiQi(x
t,uti;θi) . (7.21)

Depending on the interaction model used, determining this Q-value for each human is a
nontrivial problem. For example, if the humans are assumed to behave in a strategic way
accounting for each other’s future decisions, the full solution to {Qi}Ni=1 is game-theoretic
and, if at all tractable, may need to be numerically precomputed offline [41]. The choice
of an appropriate interaction model that will allow tractable but informative computation
of player values and strategies is an open area of research that we will explore further in
Chapter 8. Our interest here, however, is not in the choice of a certain interaction model,
but rather the ability to mitigate the impact of model inaccuracies through confidence-aware
predictions.

Given a state-action value function for each human, we have a well-defined probabilistic
policy model for their behavior. As in the single-human case, generating informed prob-
abilistic predictions at each instant will require keeping an updated Bayesian belief over



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 193

the appropriate model confidence βi for each human based on the observed behavior. This
Bayesian update step, under the confidence-aware prediction framework introduced in this
chapter, scales remarkably well with the number of humans NH . In fact, the Bayesian up-
date (7.9) can be performed independently for each i-th human given the observed state x,
which means that the total amount of computation is linear in NH and, if parallel compu-
tation is available, computation time can be made constant in NH .

With this in place, the last central step is to compute the probability distribution over the
NH humans’ joint state at each future time step τ , which is needed in order to evaluate (7.20).
These operations can become extremely computationally intensive when explicitly using a
joint probability distribution, which would in general have to be discretized and represented
numerically as a grid of n1 + . . . + nNH dimensions. Operating with (or even storing) such
a grid becomes rapidly impractical as NH grows beyond trivial numbers. Instead, tractable
approximations can be computed by only storing the marginal predicted distribution of each
human at every future time step τ . This way, the robot need only operate with NH grids,
each of ni dimensions. Treating humans’ state distributions as independent of each other at
each instant leads to a computationally simple noisy-OR operation for the marginal collision
probability at each future τ :

P τ
coll ≈ 1−

NH∏
i=1

(
1− P

(
xτi ∈ Hi(x

τ
R)
))

. (7.22)

The approximation in (7.22) becomes exact for models in which the probabilities are in fact
independent, and in particular for any of the large class of human models in the literature
that altogether neglect interaction.

7.5.2 Hardware Demonstration

In the following demonstration, we consider a simple model where human pedestrians follow
the dynamics in (7.3). We use a simple human motion model that assumes no interaction,
and let the confidence-aware scheme treat any relevant interaction effects as inconsistencies
between the model and reality, appropriately lowering prediction confidence.

We implemented our framework in C++ and Python, using Robot Operating System
(ROS) [142]. As shown in Figure 7.10, we used Crazyflie 2.0 quadrotors as our robots, and
two human volunteers. All computations for our hardware demonstration were done on a
single laptop computer (specs: 31.3 GB of memory, 216.4 GB disk, Intel Core i7 @ 2.70GHz x
8), due to the limited onboard computational capability of the Crazyflie robots.8 The position
and orientation of robots and humans were measured at roughly 235 Hz by an OptiTrack
infrared motion capture system. The humans were instructed to move towards different
places in the lab, while the quadrotors planned collision-free trajectories in three dimensions
(x, y, z) using a space-time implementation of A∗. The quadrotors tracked these trajectories

8Despite running on a single computer, our implementation is decentralized within the ROS ecosystem.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 194

using the precomputed FaSTrack controller designed for a 6D near-hover quadrotor model
tracking a 3D point [16]. This corresponds to a robust STP scheme (as introduced in
Chapter 4) replacing the Hamilton-Jacobi-based minimum-time planning in Steps R–X of
Algorithm 4.2 with space-time A∗ search. Human motion was predicted 2 s into the future.
Figure 7.11 shows several snapshots of this scene over time. The scenario layout requires the
humans to move around each other to reach their goals, causing an unmodeled interaction
effect. The predictions become less certain during this interaction, and the quadrotors plan
more conservatively, giving the humans a wider berth.

Figure 7.11: Trajectory and prediction visualization of multi-human, multi-robot hardware
demonstration. (a) Two humans (red and blue) start moving towards their respective goals
(also red and blue). Robot in lower right-hand corner has first priority, and robot in upper
left-hand corner has second. The time-varying predictions of each human’s future motion
are visualized. (b) Robots plan trajectories to their goals based on the predictions, prior-
ity order, and are guaranteed to stay within the robust tracking set (shown in blue). (c)
When the humans begin to interact in an unmodeled way by moving around each other,
the future predictions become more uncertain. (d) The robots adjust their plans to be more
conservative–note the upper-left robot waiting as the blue human moves past. (c) When the
humans pass each other and the uncertainty decreases, the robots complete their trajectories.

7.6 Implications on Human Preference Inference and

Value Alignment

The inability to perfectly model human behavior and reason about human intentions has
wider implications beyond the operation of robots around humans. Many of the automation
systems we build are intended to assist people in a variety of settings, and as such need
to make inferences about what people’s goals and preferences are. From current intelligent
assistants on smartphones to future robotic caregivers, the success of these systems hinges not
only on their effectiveness at accomplishing any given task, but on their ability to correctly
determine what task needs to be accomplished in order to help their users. Insofar as human
behavior and the structure of human preferences are impossible to capture with full accuracy,
all of these systems—especially when taking on high-stakes or safety-critical tasks—will need



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 195

to competently reason about their own uncertainty as to what their users want. Further,
as in the case of the unmodeled goal in Figure 7.3, these systems must acknowledge the
possibility that the correct answer may lie outside of their hypothesis space.

Competently reasoning about human preferences is likely to become a major challenge
as the capabilities of automation and artificial intelligence technologies continue to increase.
This problem was already noted by Norbert Wiener as early as 1960 [194]:

If we use, to achieve our purposes, a mechanical agency with whose operation
we cannot efficiently interfere once we have started it, because the action is so
fast and irrevocable that we have not the data to intervene before the action is
complete, then we had better be quite sure that the purpose put into the machine
is the purpose which we really desire and not merely a colorful imitation of it.

The work in this chapter therefore has deep connections with the problem of value align-
ment in intelligent systems, that is, how to ensure that a system pursues objectives that
are truly those of the relevant stakeholders. While traditional formulations across artificial
intelligence, control theory, machine learning, and operations research have assumed that a
system can be directly given a “ground-truth” objective function to optimize, resulting in
desirable behavior, there is growing evidence that designing such an objective function to
reliably encode the desired behavior of the system in a wide range of conditions is extremely
challenging if not infeasible [195]. This has sparked renewed interest in formulations based
on inverse optimal control, seeking to design intelligent systems that actively infer human
preferences rather than assuming full knowledge of them from the start [196, 197].

As we have argued in this chapter, while often preferable to assuming a fixed “true” ob-
jective, performing inference over a fixed hypothesis space is not necessarily enough either.
When no hypothesis in the predefined space accurately captures the observed human behav-
ior, the system is likely to make inappropriate inferences that ultimately result in undesirable
behavior.

In a recent study published in [198], we asked human participants to provide demonstra-
tions and real-time corrections to a robot’s motion through physical interaction. We observed
that when the robot ran inverse optimal control on a fixed hypothesis space it would often
reach confident yet incorrect inferences about participants’ preferences, which were not al-
ways consistent with the assumed model. Instead, the robot could make confidence-aware
inferences, in an analogous fashion to (7.9), by simultaneously reasoning about the prefer-
ence parameters (θ) and the confidence parameter (β). The latter approach was successful at
mitigating spurious inferences by quantifying the degree to which the different human inputs
could be explained within the robot’s hypothesis space. However, the question remains as to
what the best course of action should be for the robot when it loses confidence in its ability
to represent the human’s preferences. Should it default to non-committal behavior? Actively
ask the human for guidance? Attempt to bootstrap an augmented hypothesis space? How
context-specific is the answer, and should it be hard-coded as a design choice or emerge
automatically from first-principles decision-making?



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 196

Even as we continue to improve the ability of robotic and intelligent systems to accu-
rately model human preferences in the coming years and decades, much of the success of
the resulting technologies may hinge on scientific and technical progress on enabling these
systems to quantify and respond to the reality gap between their mathematical represen-
tations and the unobservable internal states of the people they interact with. Ultimately,
few technologies can be as potentially catastrophic as a powerful automation system that
erroneously assumes complete knowledge of the goal it is supposed to pursue.

7.7 Chapter Summary

This chapter revisits the problem of safety assurance under imperfect characterization of
reality, focusing on the important case of human behavior. While impossible to model with
full accuracy, human actions tend to be purpose-driven and as such present a great deal
of structure, which has been richly studied in the past few decades by cognitive science,
econometrics, and related fields. We would therefore like to leverage this structural under-
standing to inform the decision-making of robotic systems coexisting with human agents,
while remaining vigilant of the inevitable limitations of any cognitive model when predicting
complex human behavior.

In particular, the work introduced in this chapter builds on the well-established inverse
optimal control formulations based on the Boltzmann or maximum entropy model of noisily-
rational human decision-making. The inverse temperature parameter in these models regu-
lates the entropy of the action distribution for any given intent, and therefore quantifies how
confidently a human individual is predicted to choose actions that yield high utility towards
said intent. Rather than keeping this parameter fixed during inference, as has been tradition-
ally done, the framework introduced here treats it as a hidden dynamic state encoding the
ability of the underlying utility model to accurately capture the ongoing human behavior.
By maintaining a real-time Bayesian belief on this model confidence parameter, the robot
can quickly adapt its forecasts to effectively reflect the predictability of the human’s motion
in real time.

The resulting confidence-aware predictions are then combined with the robust trajec-
tory tracking guarantees introduced in Chapter 5. This requires extending the theoretical
analysis the FaSTrack motion planning scheme to handle dynamic probabilistic obstacles
such as the ones induced by the uncertain human motion prediction. The result is a novel
probabilistic safety certificate that combines worst-case and probabilistic analysis, leading
to nominal trajectory plans that robustly keep the physical system clear of collisions with
an arbitrarily high probability. We further observe that as this probability threshold ap-
proaches 1, trajectory plans avoid the entire forward-reachable set of the human (that is, all
states that the human could physically be in at a certain future time). For any probability
threshold less than 1, the role of confidence-aware prediction can be seen as determining
what if any regions of the forward-reachable set the human is unlikely enough to visit that
trajectory plans can traverse them with acceptable risk.



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 197

Using both recorded human motion and live demonstrations with lightweight quadro-
tors navigating around human experimenters, we compare the performance of the proposed
Bayesian confidence-aware technique to two fixed-confidence approaches, all used in conjunc-
tion with the proposed probabilistically safe motion planning scheme. Our results indicate
that, even though the three methods perform similarly when the human’s motion is well-
explained by the robot’s model, Bayesian confidence yields safer and more efficient robot
trajectories whenever the human’s behavior is determined by obstacles or goals that are not
part of the robot’s model.

We additionally consider scenarios with multiple humans or multiple robots, and seek
to exploit structure in the joint planning and prediction space to avoid a combinatorial
explosion as the number of agents increases. While the Sequential Trajectory Planning
scheme introduced in Chapter 4 allows us to impose this structure among the controlled
robotic platforms through a prescriptive priority-based planning approach, we cannot make
use of such techniques when comes to human individuals. Instead, we use a descriptive
approach, making structural assumptions about future human trajectories and then allowing
the confidence-aware prediction framework to automatically increase uncertainty about the
imminent motion of any humans whose actions are not currently well described by the
assumed structure. The scheme is demonstrated on a simple scenario with two human
pedestrians and two quadrotors: the quadrotors use a simplified predictive model assuming
independent human motions, yet successfully maintain safety by increasing separation when
the two humans interact substantially to avoid each other.

Something that we have not addressed in this chapter is the complex coupling that
may arise between the decisions of robotic systems and human agents. This coupling can
play a determining role in interaction-rich settings, such as, for example, in the context of
autonomous driving on public roads. We will study these interactions, and the important
class of problems they give rise to, in the upcoming Chapter 8. Conversely, whenever robots
are executing tasks that require them to remain clear of any humans in their space—such as
a robot cleaner vacuuming a room, or a recreational autonomous drone filming its user—it
is appropriate to assume that humans will for the most part remain oblivious or indifferent
to the presence of the robot. Thus, the robot can follow a “pipeline” approach: first, make
predictions about the human’s actions as being independent of its own future plans; next,
incorporate these predictions into the computation of such plans. Any adjustments that
humans might occasionally make in practice to accommodate the robot’s motion will simply
tend to reduce the amount of maneuvering required on its part. While the independence
assumption does mean that the robot will not be counting on such helpful behavior ahead
of time, it can nonetheless take advantage of it, through replanning, once it takes place.
In cases where interaction progresses in a potentially dangerous way—say, if the human is
maliciously attempting to get in the robot’s way—the confidence-aware machinery will still
recognize this as a departure from model-consistent behavior, automatically increasing the
robot’s conservativeness and leading it to increase separation.9

9 In fact, the “coffee spill” example depicted in Figure 7.4 could well have been motivated by the human



CHAPTER 7. CONFIDENCE-AWARE PLANNING WITH HUMAN MODELS 198

In the larger context of human-aware robotic motion planning, the confidence-aware pre-
diction framework should be viewed as complementary to the choice of a human model, and
not as an alternative choice in itself. In general, it will be desirable to use the most accurate
real-time prediction method available: the smaller the discrepancies between the model’s
predictions and the observed behavior, the smaller the drop in confidence and therefore the
less conservative the resulting robot behavior. On the other hand, given that every human
model will make some inaccurate predictions, detecting these promptly and increasing con-
servativeness accordingly is a much preferable alternative to accidentally violating separation
constraints due to overconfidence.

Finally, beyond the avoidance of physical collisions between robots and humans, confidence-
aware analysis of human behavior can offer useful insights in the problem of preference in-
ference and value alignment, for broader automation and artificial intelligence systems. As
these systems become increasingly capable, it becomes paramount that they competently
reason about the needs and intentions of human stakeholders, as well as their own ability to
accurately model them.

actively attempting to intercept the quadrotor rather than avoiding a spill on the floor: the confidence-aware
scheme is by definition agnostic to the causes behind unmodeled human behavior.



199

Chapter 8

Game-Theoretic Autonomous Driving

Patience is something you
admire in the driver behind you
and scorn in the one ahead.

Mac McCleary

This chapter is based on the paper “Hierarchical Game-Theoretic Planning for Autonomous
Vehicles” [21], written in collaboration with Eli Bronstein, Elis Stefansson, Dorsa Sadigh,
Shankar Sastry, and Anca Dragan.

Reasoning about safe robotic operation in spaces shared with human beings poses a major
challenge as these technologies become widely deployed. In Chapter 7, we looked into how
robots may reason at runtime about the accuracy and reliability of their predictive models
of human behavior. However, we explicitly eschewed the treatment of coupled interactions
between robots and humans, and instead assumed that human decisions were approximately
indifferent to the presence of robots. While this assumption is a useful one in certain ap-
plications, there exist important settings in which human behavior cannot be accurately
explained (or predicted) without explicitly accounting for interaction—not only to the ex-
tent that robot actions may influence human decisions, but also due to the expectations that
humans themselves may have about how their own actions will affect the decisions of robotic
systems around them. This coupling between the decisions of the autonomous system and
those of other agents transcends the “unilateral” formulations in classical robotic motion
planning and optimal control theory, and necessarily places us in the realm of dynamic game
theory.

Perhaps no modern robotic application highlights the criticality of strategic interaction as
clearly as autonomous driving: the actions of a self-driving vehicle on the road permanently
affect and are affected by those of other drivers, whether overtaking, negotiating a merge,
or avoiding an accident. This creates a strong coupling between the vehicle’s planning



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 200

and its predictions of other drivers’ behavior, and constitutes an open problem with direct
implications on the safety and viability of autonomous driving technology.

Dynamic game formulations have by and large been deemed too computationally de-
manding to meet the real-time constraints of autonomous driving in its continuous state
and action space. In this chapter, we introduce a novel game-theoretic trajectory plan-
ning algorithm for autonomous driving, that enables real-time performance by hierarchically
decomposing the underlying dynamic game into a long-horizon “strategic” game with sim-
plified dynamics and full information structure, and a short-horizon “tactical” game with
full dynamics and a simplified information structure. The value of the strategic game is used
to guide the tactical planning, implicitly extending the planning horizon, pushing the lo-
cal trajectory optimization closer to global solutions, and, most importantly, quantitatively
accounting for the autonomous vehicle and the human driver’s ability and incentives to in-
fluence each other. In addition, our approach admits non-deterministic models of human
decision-making, rather than relying on perfectly rational predictions. Our results showcase
richer, safer, and more effective autonomous behavior in comparison to existing techniques.

The Promise and Challenge of Autonomous Driving

Imagine you are driving your car on the highway and, just as you are about to pass a large
truck on the other lane, you spot another car quickly approaching in the wing mirror. Your
driver’s gut immediately gets the picture: the other driver is trying to squeeze past and cut
in front of you at the very last second, barely missing the truck. Your mind races forward
to produce an alarming conclusion: it is too tight—yet the other driver seems determined
to attempt the risky maneuver anyway. If you brake immediately, you could give the other
car enough room to complete the maneuver without risking an accident; if you accelerate,
you might close the gap fast enough to dissuade the other driver altogether. What do you
decide?

Driving is fundamentally a game-theoretic problem, in which road users’ decisions contin-
ually couple with each other over time. Gracefully negotiating these continual interactions
is central to preserving safety on the road, a task that human beings are—for the most
part—highly successful at. In 2018, the rate of motor vehicle crash deaths in the United
States was 1.13 per 100 million miles traveled [199], a remarkably small number considering
the wide range of visibility, weather, and traffic conditions aggregated by this statistic. Un-
fortunately, while the rate may seem small, absolute numbers paint a more somber picture:
2018 closed with a computed death toll of 36,560 in the United States alone, with an esti-
mated worldwide total of 1.35 million a year—or 3700 deaths every day—having become the
leading cause of death for people between 5 and 29 years of age [200]. In studies conducted
by the U.S. National Highway Traffic Safety Administration (NHTSA) 94% of car crashes
had driver error as the critical cause [201].

Autonomous driving technology therefore holds an immense potential to drastically re-
duce road fatalities, yet in order to do this, it must reliably surpass, or at the very least match,



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 201

the high safety competence of unimpaired human drivers, something that will inescapably
require accurately planning through road interactions.

Related Work

Most approaches in the literature follow a “pipeline” approach that generates predictions
of the trajectories of human-driven vehicles and then feeds them to the planning module as
unalterable moving obstacles [202–205]. This can lead to both excessively conservative and in
some cases unsafe behavior, a well-studied issue in the robotic navigation literature known
as the “frozen robot” problem [206]. Indeed, some of the prototype self-driving vehicles
undergoing testing on public roads in recent years have been repeatedly reported to struggle
to merge onto highways even under moderate traffic conditions [207, 208].

Recent work has addressed this by modeling human drivers as utility-driven agents who
will plan their trajectory in response to the autonomous vehicle’s internal plan. The au-
tonomous vehicle can then select a plan that will elicit the best human trajectory in re-
sponse [209, 210]. Unfortunately, this treats the human as a pure follower in the game-
theoretic sense, effectively inverting the roles in previous approaches. That is, the human
is assumed to take the autonomous vehicle’s future trajectory as immutable and plan her
own fully accommodating to it, rather than try to influence it. Further, the human driver
must be able to observe, or exactly predict, the future trajectory planned by the autonomous
vehicle, which is unrealistic beyond very short planning horizons.

Ultimately, incorrectly predicting the behavior of human road users can lead to tragic
consequences when deploying autonomous vehicles—or even when testing them. In 2018,
a prototype self-driving vehicle struck a pedestrian who was crossing a street outside a
crosswalk in Tempe, Arizona; after a lengthy investigation, the U.S. National Transportation
Safety Board (NTSB) recently published an accident report in which the automated driving
system’s consistent failure to correctly predict the pedestrian’s motion is listed as one of the
causes that led to the collision [211].1

Contribution

In this work, we introduce a hierarchical game-theoretic framework to address the mutual
influence between the human and the autonomous vehicle while maintaining computational
tractability. In contrast with recent game-theoretic planning schemes that assume open-loop
information structures [212–214], the proposed framework hinges on the use of a fully coupled
interaction model in order to plan for horizons of multiple seconds, during which drivers can
affect each other’s behavior through their actions over time. We do this by computing the

1However, the determining cause identified by the report was the human safety operator’s failure to
monitor the vehicle and its environment because “she was visually distracted throughout the trip by her
personal cell phone”. Automation complacency and overreliance are serious concerns in human-automation
systems, and while we do not address them here directly, they are likely to become increasingly critical as
the complexity and penetration of robotic technologies continues to progress.



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 202

Figure 8.1: Demonstration of the proposed hierarchical game-theoretic planning framework
on a simulated overtaking scenario. The heatmap displays the hierarchical planner’s strategic
value, ranging from red (low value) to blue (high value), which accounts for the outcome
of possible interactions between the two vehicles. Left: Using a short-horizon trajectory
planner, the autonomous vehicle slows down and is unable to overtake the human. Center:
Using the hierarchical game-theoretic planner, the autonomous vehicle approaches the human
from behind, incentivizing her to change lanes and let it pass (note the growth of a high-value
region directly behind the human in the left lane). Right: If the human does not maneuver,
the autonomous vehicle executes a lane change and overtakes, following the higher values in
the right lane.

optimal value and strategies for a dynamic nonzero-sum game with a long horizon (typically
a few seconds) and a full closed-loop feedback information structure [42, 43]. In order to
maintain tractability, we propose solving this long-horizon game using simplified dynamics,
which will approximately capture the vehicles’ ability to execute different trajectories. The
resulting long-term value, which captures the expected outcome of the strategic interaction
from every state, can then be used as an informative terminal component in the objective
function used in a receding-horizon planning and control scheme. This low-level planner can
use a higher-fidelity representation of the dynamics, while only planning for a shorter time
horizon (typically less than one second) during which simplifications in the interaction have
a less critical effect; this is supported by a substantial body of work in the human-factors
engineering literature, where preview models, based on simple predictive control schemes,
have been observed to describe human driver responses over short horizons (typically in the
order of one second) [215–217].

The proposed framework therefore hierarchically combines:

• A strategic (high-level) planner that determines the outcome of long-term interactions



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 203

using simplified dynamics and fully coupled interaction.

• A tactical (low-level) planner that computes short-term vehicle trajectories using high-
fidelity dynamics and simplified interaction, informed by the long-term value computed
by the strategic planner.

Thanks to the more accurate interaction model and the more tractable dynamical model,
the hierarchical framework makes it possible to reason farther into the future than most
receding-horizon trajectory planners. The high-level game value informs the trajectory opti-
mization as a terminal cost, implicitly giving it an approximate insight into the longer time
scale (in a similar spirit to a variety of planning schemes, e.g. [8]). In addition, since this
strategic value is computed globally via dynamic programming, it can help mitigate the local
nature of most trajectory optimization schemes, biasing them towards better solutions.

An important strength of the proposed framework is that the strategic planner does
not require using a deterministic model of the human, such as an ideal rational agent, but
instead allows a variety of models including probabilistic models such as noisy rationality,
commonly used in inverse optimal control (also inverse reinforcement learning) [79, 189].
In addition, the framework is agnostic to the concrete planner used at the tactical level:
while this chapter demonstrates the approach with a trajectory optimizer based on [209],
this could be replaced with other methods, including deep closed-loop prediction models,
such as [186], by introducing the strategic value as a terminal cost term in their objective
function. Therefore, the method proposed here should not be seen as competing with such
planning schemes, but rather as complementing them.

Importantly, solving the underlying dynamic game does not imply that the autonomous
vehicle will be more selfish or aggressive—its driving behavior will ultimately depend on the
optimization objective specified by the system designer, which may include terms encod-
ing comfort and safety of other road users. With adequate objective design, the proposed
framework can enable safer and more efficient autonomous driving by planning with a more
accurate model of interactions.

The formulation presented here can in principle be extended to N players and equilibrium
solutions are well-defined in theory given an information structure, in practice solving the full
multiplayer game requires exponential computation in the number of interacting vehicles or
agents, which constitutes a fundamental open problem. We thus limit the scope of this work
to pairwise interactions, and note that tractable extensions may be achieved through decom-
position strategies in the lines of those introduced in Chapter 4 and prediction approaches
that degrade gracefully with inaccurately modeled interactions, such as those discussed in
Chapter 7.

8.1 Driving as a Nonzero-Sum Dynamic Game

We consider a single human driver H and a single autonomous system A in control of their
respective vehicles. The dynamics of the joint state xt ∈ Rn of the vehicles in the world,



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 204

which we assume to be fully observable, are

xt+1 = f(xt, utA, u
t
H) , (8.1)

where uti ∈ Ui ⊂ Rnui is the driving control action for each i ∈ {A,H} at time step t; we
assume Ui is compact.

The autonomous system is attempting to maximize an objective that depends on the
evolution of the two vehicles over some finite time horizon, namely a cumulative return:

RA(x0:N , u0:N
A , u0:N

H ) =
N∑
t=0

LA(xt, utA, u
t
H) . (8.2)

The reward function LA captures the designer’s specifications of the vehicle’s behavior and
may encode aspects like fuel consumption, passenger comfort, courteousness, time efficiency,
and safety . Some of these aspects (crucially safety) may depend on the joint state of the
two vehicles; the reward function may also explicitly depend on the human driver’s actions
(the designer may, for instance, decide to penalize it for causing other vehicles to maneuver
abruptly). The autonomous vehicle therefore needs to reason about not only its own future
actions, but also those of the human driver.

We assume that the autonomous vehicle has some predictive model of the human’s ac-
tions as a function of the currently available information (the joint state, and possibly the
autonomous vehicle’s current action). The coupling in the planning problem is then explicit.
If the system models the human as exactly or approximately attempting to maximize her own
objective function, the coupling takes the form of a dynamic game, in which each player acts
strategically as per her own objective function accounting for the other’s possible actions.
Since both players observe the current state at each time, this dynamic game has closed-loop
feedback information structure, and optimal values and strategies can be computed using
dynamic programming [42, 43].

Unfortunately, deriving these strategies can be computationally prohibitive due to the
exponential scaling of computation with the dimensionality of the joint state space (which
will be high for the dynamical models used in vehicle trajectory planning). However, we argue
that successfully reasoning about traffic interactions over a horizon of a few seconds does
not require a full-fidelity model of vehicle dynamics, and that highly informative insights can
be tractably obtained through approximate models. We further argue that it is both useful
and reasonable to model human drivers as similarly reasoning about vehicle interactions over
the next few seconds without needing to account for fully detailed vehicle dynamics. This
insight is at the core of our solution approach.

8.2 Hierarchical Game-Theoretic Planning

We propose a hierarchical decomposition of the interaction between the autonomous vehicle
and the human driver. At the high level, we solve a dynamic game representing the long-
horizon interaction between the two vehicles through approximate dynamics. At the low



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 205

level, we use the players’ computed value functions as an approximation of the best long-
horizon outcome achievable by both vehicles from each joint state, and incorporate it in the
form of a guiding terminal term in the short-horizon trajectory optimization, which is solved
in a receding-horizon fashion with a high-fidelity model of the vehicles’ dynamics.

8.2.1 Strategic planner: Closed-loop dynamic game

Let the approximate dynamics be given by

sk+1 = φ(sk, akA, a
k
H) , (8.3)

where st ∈ Rñ and ati ∈ Ai ⊂ Rñui are the state and action in the simplified dynamics
φ. The index k is associated to a discrete time step that may be equal to the low-level
time step or possibly different (typically coarser). We generically assume that there exists
a function g : Rn → Rñ assigning a simplified state s ∈ Rñ to every full state x ∈ Rn. The
approximation is usually made seeking ñ < n to improve tractability. This can typically
be achieved by ignoring dynamic modes in fi with comparatively small time constants. For
example, we may assume that vehicles can achieve any lateral velocity within a bounded
range in one time step, and treat it as an input instead of a state.2

We model the dynamic game under feedback closed-loop information (both players’ ac-
tions can depend on the current state s but not on the state history), allowing the human
driver to condition her choice of akH on the autonomous vehicle’s current action akA at ev-
ery time step k, resulting in a Stackelberg (or leader-follower) dynamic game [43]. As in
Chapter 7, we need not assume that the human is an ideal rational player, but can instead
allow her action to be drawn from a probability distribution. Typically, we may have used
inverse optimal control methods [79, 218] to learn a set of driver preferences, which would
then inform our predictions of future actions. As we saw in Chapter 7, these probabilistic
predictions can also be modulated to account for modeling inaccuracies, to the extent that
the human driver’s behavior will inevitably depart from the modeling assumptions.

We generalize the well-defined feedback Stackelberg dynamic programming solution [42]
to the case in which one of the players, in this case the follower, has a noisy decision rule
(often referred to as a quantal response): p(akH |sk, akA). The autonomous vehicle, here in the
role of the leader, faces at each time step k the nested optimization problem of selecting the
action with the highest state-action Q value, which depends on the human’s decision rule p,
in turn affected by the human’s own Q values:

max
akA

Qk
A(sk, akA) (8.4a)

s.t. p(akH | sk, akA) = πH
[
Qk
H(sk, akA, ·)

]
(akH) (8.4b)

2These simplified dynamics can be seen as analogous to the planning dynamics we utilized in Chapter 5;
however, rather than focusing on tracking nominal trajectories, here we will use the approximate dynamics
to inform the high-fidelity planner by augmenting its objective function.



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 206

where Qk
A and Qk

H are the state-action value functions at time step k, and πH : L∞ → ∆(AH)
maps every utility function q : AH → R to a probability distribution over AH . A common
choice of πH , as discussed in Chapters 2 and 7, is the Boltzmann-rational policy, for which:

P (aH | s, aA) ∝ eβQH(s,aA,aH) . (8.5)

The values Qk
A and Qk

H are recursively obtained in backward time through successive
application of the dynamic programming equations for k = K,K − 1, . . . , 0:

π∗A(s) := arg max
a
Qk+1
A (s, a) , ∀s ∈ Rñ (8.6a)

aiH ∼ πH
[
Qi
H(si, aiA, ·)

]
, i ∈ {k, k + 1} (8.6b)

Qk
H(sk, akA, a

k
H) = L̃H(sk, akA, a

k
H)+

Eak+1
H
Qk+1
H (sk+1, π∗A(sk+1), ak+1

H ) (8.6c)

Qk
A(sk, akA) = EakH L̃A(sk, akA, a

k
H)+Qk+1

A (sk+1, π∗A(sk+1)) (8.6d)

with sk+1 from (8.3) and letting QK+1
A ≡ 0, QK+1

H ≡ 0.
The solution approach is presented in Algorithm 8.1 for a discretized state and action grid

Ŝ×ÂA×ÂH . This computation is typically intensive, with complexity O
(
|Ŝ|·|ÂA|·|ÂH |·K

)
,

but is also extremely parallelizable, since each grid element is independent of the rest and
the entire grid can be updated simultaneously, in theory permitting a time complexity of
O(K). Although we precomputed the game-theoretic solution, our proposed computational
method for the strategic planner can directly benefit from the ongoing advances in computer
hardware for autonomous driving [219], so we expect that it will be feasible to compute the
strategic value in an online setting.

Once the solution to the game has been computed, rather than attempting to execute
any of the actions in this simplified dynamic representation, the autonomous vehicle can
use the resulting value V (s) := maxaQ

0(s, a) as a guiding terminal reward term for the
short-horizon trajectory planner.

8.2.2 Tactical planner: Open-loop trajectory optimization

In this section we demonstrate how to incorporate the strategic value into a low-level tra-
jectory planner. We assume that the planner is performing a receding-horizon trajectory
optimization scheme, as is commonly the case in state-of-the-art methods [220]. These
methods tend to plan over relatively short time horizons (on the order of 1 s), continually
generating updated “open-loop” plans from the current state—in most cases the optimiza-
tion is local, and simplifying assumptions regarding the interaction are made in the interest
of real-time computability.

While, arguably, strategic interactions can be expected to have a smaller effect over
very short time-scales, the vehicle’s planning should be geared towards efficiency and safety
beyond the reach of a single planning window. The purpose of incorporating the computed



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 207

Algorithm 8.1: Feedback Stackelberg Dynamic Program

Data: L̂A(ŝ, âA, âH), L̂H(ŝ, âA, âH)
Result: V̂A(ŝ, k), V̂H(ŝ, k), â∗A(ŝ, k), â∗H(ŝ, k)

Initialization

for ŝ ∈ Ŝ do

A0 V̂A(ŝ, K + 1)← 0;

H0 V̂H(ŝ, K + 1)← 0;

Backward recursion
for k ← K to 0 do

for ŝ ∈ Ŝ do

for âA ∈ ÂA do

for âH ∈ ÂH do

H1 qH(âH)← L̂H(ŝ, âA, âH)

+ V̂H(φ(ŝ, âA, âH), k + 1);

H2 P (âH | âA)← πH [qH ](âH);
H3 q∗H(âA)←∑

âH
P (âH | âA)× qH(âH);

A1 qA(âA)←∑
âH
P (âH | âA)×(

L̂A(ŝ, âA, â
∗
H(âA))

+ V̂A(φ(ŝ, âA, a
∗
H(âA)), k + 1)

)
;

A2 â∗A(ŝ, k)← arg maxâA qA(âA);

A3 V̂A(ŝ, k)← qA(â∗A(ŝ, k));
H4 â∗H(ŝ, k)← a∗H(â∗A(ŝ, k));

H5 V̂H(ŝ, k)← q∗H(â∗A(ŝ, k));

strategic value is to guide the trajectory planner towards states from which desirable long-
term performance can be achieved.

We therefore formalize the tactical trajectory planning problem as an optimization with
an analogous objective to (8.2) with a shorter horizon M << N and instead introduce
the strategic value as a terminal term representing an estimate of the optimal reward-to-go
between t = M and t = N :

RA(x0:M , u0:M
A , u0:M

H ) =
M∑
t=0

LA(xt, utA, u
t
H) + VA

(
g(xt)

)
. (8.7)

The only modification with respect to a standard receding-horizon trajectory optimization
problem is the addition of the strategic value term. Using the numerical grid computation



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 208

presented earlier, this can be implemented as an efficient look-up table, allowing fast access
to values and gradients (numerically approximated directly from the grid).

The low-level optimization of (8.7) can thus be performed online by a trajectory opti-
mization engine, based on some short-term predictive model of human decisions conditioned
on the state and actions of the autonomous vehicle. In our results we implement trajectory
optimization similar to [209] through a quasi-Newton scheme [221], in which the autonomous
vehicle iteratively solves a nested optimization problem by estimating the human’s best tra-
jectory response to each candidate plan for the next M steps. We assume that the human
has an analogous objective to the autonomous system, and can also estimate her strategic
long-term value. We stress, however, that our framework is more general, and in essence
agnostic to the concrete low-level trajectory optimizer used, and other options are possible
(e.g. [19, 186]).

8.3 Simulation Results

We analyze the benefit of solving the dynamic game by comparing the proposed hierarchical
approach to using a tactical planner only, as in the state of the art [186, 209]. We then
compare against extended-horizon trajectory planning with an assumed open-loop informa-
tion structure, showcasing the importance of reasoning with the fully coupled closed-loop
feedback information of the dynamic game.

8.3.1 Implementation Details

Environment and Objective

We use a simulated two-lane highway environment with an autonomous car and a human-
driven vehicle. Similar to [209], both vehicles’ rewards encode safety and performance fea-
tures through a number of additive terms. In particular, for the purposes of these case
studies:

• Both players have a preference for driving along the center of a lane (squared-exponential
reward terms).

• Both players prefer the left lane over the right lane (larger reward coefficient).

• Both players receive strong penalties for leaving the road (sigmoid cost).

• Both players receive strong penalties for colliding or coming to very close distance
(squared-exponential cost).

• The autonomous car is given a target speed slightly faster than the human’s (quadratic
cost) and a preference for being ahead of her (sigmoid reward).



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 209

Tactical Level

The dynamics of each vehicle are given by a dynamic bicycle model with states [xi, yi, vi, θi]
(position, speed, and heading). The planner uses a discrete time step ∆t = 0.1 s and M = 5
time steps. For the tactical trajectory planning, we compute the partial derivative ∂Ri

∂ui
for

each player and allow the optimization to proceed by iterated local best response between
candidate autonomous vehicle plans and predicted human trajectories. If convergence is
reached, the result is a local (open-loop) Nash equilibrium between the short-horizon trajec-
tories [212, 214, 222].

Strategic Level

The full joint human-autonomous state space is 8-dimensional, making dynamic program-
ming challenging. Our strategic level simplifies the state and dynamics using an approxi-
mate, lower-order representation. We consider a larger time step of ∆k = 0.5 s and a horizon
K = 10 corresponding to 5 s. We consider one of two high-level models, depending on the
setup.
Two-vehicle setup. If the environment is a straight empty highway, it is enough to consider
the longitudinal position of the two vehicles relative to each other: xrel = xA−xH . We assume
the human-driven vehicle’s average velocity is close to the nominal highway speed 30 m/s,
and the vehicles’ headings are approximately aligned with the road at all times. Finally,
given the large longitudinal velocity compared to any expected lateral velocity, we assume
that vehicles can achieve any desired lateral velocity up to ±2.5 m/s within one time step
(consistent with a typical 1.5 s lane change). The approximate dynamics are then

[ẋrel, ẏA, ẏH , v̇rel] = [vrel, wA, wH , aA − aH − α̃vrel] , (8.8)

with the control inputs being the vehicles’ lateral velocities wA, wH and accelerations aA,
aH , and where α̃ is the linearized friction parameter. This allows us to implement Algorithm
8.1 on a 75×12×12×21 grid and compute the feedback Stackelberg solution of the strategic
game.
Additional-vehicle setup. If there are additional vehicles or obstacles present in the
environment, it becomes necessary to explicitly consider absolute positions and velocities
of the two players’ vehicles (or at least relative to these other objects). In this scenario,
we consider a truck driving in the right lane at a constant speed vT , and assume that the
human remains in her lane. Letting xAT , xHT denote the longitudinal position of each vehicle
relative to the truck and α be the friction coefficient, the high-level dynamics are

[ẋAT , ẋHT , ẏA, v̇A, v̇H ] =

[vA − vT , vH − vT , wA, aA − αv2
A, aH − αv2

H ] . (8.9)

We implement Algorithm 8.1 on a 35× 35× 6× 8× 8 grid.



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 210

Human simulation.

For consistency across our case studies, we simulated the human driver’s behavior using the
same model throughout. We assume that the human driver makes accurate predictions of the
autonomous vehicle’s imminent trajectory for 0.5 s. While we found that for the maneuvers
considered a low-level trajectory optimizer produced sufficiently realistic driving behavior,
the results presented here should be taken as a preliminary proof of concept, and proper
validation with human drivers would be a necessary next step to more reliably determine
the advantages of the hierarchical game-theoretic planning scheme.

8.3.2 Interaction Case Studies

We compare the tactical-only trajectory planner (baseline) against the proposed hierarchical
tactical-strategic planning scheme for 3 different driving scenarios.

Merge maneuvers

We begin with a simple merge maneuver where the autonomous vehicle’s objective rewards
it for driving on the left lane and its target speed is faster than the human’s.

starts ahead of the human in the adjacent lane. The tactical planner leads the au-
tonomous car to successfully merge in front of the human. The hierarchical planner also
succeeds, with the strategic value guiding the vehicle to merge more swiftly, improving per-
formance.

Next, we consider the case where the autonomous car starts behind the human, as de-
picted in Figure 8.2. The tactical autonomous car accelerates ahead of the human but does
not merge into her lane (likely due to a local optimum in the trajectory optimization). The
hierarchical autonomous car overtakes and merges in front of the human.

Overtaking

We now study a complete overtaking maneuver in which the autonomous car starts behind
the human in the same lane. The tactical autonomous car does not successfully complete
the maneuver: it first accelerates but then brakes to remain behind the human, oblivious to
the higher long-term performance achievable through overtaking. The hierarchical planner
produces a policy that, depending on the human’s behavior, can evolve into two alternative
strategies, shown in Figure 8.1. First, the autonomous vehicle approaches the human from
behind, expecting her to have an incentive (based on her strategic value) to change lanes and
let it pass. If this initial strategy is successful and the human changes lanes, the autonomous
vehicle overtakes without leaving the left lane. Conversely, if the human does not begin a
lane change, the strategic value guides the autonomous vehicle to merge into the right lane,
accelerate to overtake the human, reaching a maximum speed of 37.83 m/s (2.83 m/s above
its target speed), and merge back into the original lane.



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 211

Figure 8.2: Tactical versus hierarchical trajectory planning in a highway merging maneuver.
The tactical (low-level) trajectory planner gets ahead of the human-driven vehicle but does
not merge into the left lane. The game-theoretic hierarchical planner merges in front of
the human, guided by the strategic value.

Truck Cut-In

Finally we consider a scenario in which the two vehicles are approaching a truck, assumed
to drive at a lower constant speed of 26.82 m/s. As shown in Figure 8.3, the tactical-
only planner may attempt merges with little safety margin. The hierarchical game-theoretic
analysis allows us to reason through the leverages players may have on each other. If the
autonomous vehicle has a sufficient initial speed, the human is incentivized to slow down to
allow it to merge safely in front of her before reaching the truck. Otherwise, she will instead
accelerate, incentivizing the autonomous car to slow down, abort the overtaking maneuver,
and merge behind her instead to pass the truck safely.

Note that we are not proposing that autonomous vehicles should in fact carry out this
type of overtaking maneuver. The remarkable result here is in the planner’s ability to reason
about the different possible strategies given the scenario and objectives. Also note that in
this and the other example scenarios, the roles of the human and the autonomous vehicle can
easily be interchanged, allowing the autonomous vehicle to e.g. discourage others’ potentially
unsafe maneuvers.

8.3.3 Additional Analysis

We now seek to shed light on why hierarchical planning obtains better performance than
tactical alone. Is the strategic value merely lengthening the effective horizon, avoiding local
or myopic optima, or is information structure important?



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 212

Figure 8.3: Tactical versus hierarchical planning in a cut-in scenario while overtaking a truck.
(a) The tactical-only planner executes an unsafe last-second merge. (b) With enough speed
difference, the hierarchical planner first accelerates to incentivize the human to slow down
and then safely merges in front. (c) If there is little margin, the human has an incentive to
accelerate preventing the maneuver.

Hierarchical vs. long-horizon tactical planning

The hierarchical planning method provides the autonomous car with more information about
the future via the strategic value of the long-term game, which guides the optimization to
escape local optima. If those were the only benefits, extending the horizon of the tactical
planner and re-initializing in different basins of attraction ought to perform similarly. We
thus extend the horizon to 2 s (20 time steps) and perform multiple independent optimiza-
tions at each planning cycle, initialized from diverse trajectories for each car: full-left steer,
full-right steer, and straight steer (with acceleration input to maintain speed). This stronger
tactical planner is unable to optimize in real time, unlike our other demonstrations, but is a
good tool for analysis. Extension beyond 2 s was not tractable.

We tested this planner in the overtaking scenario alongside a human-driven car that is
aware of the autonomous car’s plan, which is this planner’s assumed information structure.
The planner still fails to complete the maneuver regardless of the initialization scheme and
whether the influence term in [209] is used, resulting in the autonomous car remaining behind
the human, as shown in Figure 8.4. Moreover, we tested this planner against a human driver
who maintains a constant slow speed of 24 m/s. In this case, the autonomous car brakes
abruptly to avoid a collision and remains behind the human, at each time step expecting
her to maximally accelerate for the next 1 s. Despite the longer horizon and more global



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 213

optimization, this new tactical planner still assumes the wrong information structure, i.e.
that the human knows the autonomous car’s trajectory multiple seconds into the future.
This causes poor performance when the human does not in fact adapt to the autonomous
vehicle’s plan ahead of time.

Information structure at the tactical level

When optimizing the autonomous car’s trajectory at the tactical level, we used iterated
local best response seeking a local open-loop Nash equilibrium between the vehicles’ short-
horizon trajectories. Conversely, the implicit differentiation proposed in [209], by which the
autonomous planner estimates the influence of each local trajectory change on human’s best
response, is consistent with the local open-loop Stackelberg equilibrium concept, with the
human as the follower. We observed that this latter approach resulted in more aggressive
behavior in some situations, even when augmenting this tactical planner with the long-
term strategic value. For example, in the hard merge scenario shown in Figure 8.4, the
hierarchical car attempted to merge into the left lane before fully overtaking the human,
placing the burden on her to avoid an imminent collision. On the other hand, the traditional
“pipeline” approach, in which the human’s trajectory is predicted and fed to the planner as
a moving obstacle, failed to overtake when used by itself, but succeeded in changing lanes
and overtaking (comparably to the iterated best response scheme) when given the strategic
value term.

The results suggest that, even in short horizons, assuming that the human can accu-
rately anticipate and adapt to the autonomous vehicle’s planned trajectory may lead to
unsafe situations when the actual human driver fails to preemptively make way as expected.
Running iterated local best response between trajectories or even assuming no short-term
human adaptation at the tactical level seem to perform better as tactical schemes within our
proposed hierarchical framework.

Confidence in Strategic Human Model

Finally, we discuss the effects of varying the autonomous planner’s confidence in its high-level
model of the human. Following the approach in Chapter 7, it is possible for the autonomous
vehicle to reason online about the reliability of its model of the human based on its ability
to accurately describe her ongoing behavior.

Modeling the human as a Boltzmann noisily rational agent, we can readily combine the
probabilistic policy (quantal response) model (8.5) with the Bayesian confidence update (7.9)
proposed in Chapter 7. Given a prior b0 on the inverse temperature coefficient β (conceivably
obtained from the increasingly available driving datasets [223, 224]), the system can maintain
an updated belief on a particular human agent by recurrently applying the update:

bt+1(β) =
P (aH | s, aA; β, θ)bt(β)∑
β̂ P (aH | s, aA; β̂, θ)bt(β̂)

. (8.10)



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 214

This enables the autonomous vehicle to reason in real time about how accurately its game-
theoretic model of the human predicts her interactions, and adapt its game-theoretic planning
accordingly.

As in Chapter 7, it is in principle possible to simultaneously update a belief on model
confidence and other model parameters, which could encode the human’s internal state; some
work in this direction has shown promising results (cf. [210]). Here, we focus on investigating
the effect of varying the vehicle’s confidence in a given human model, which should be seen
as complementary to any possible parameter updates.

We compute different strategic values corresponding to varying levels of confidence in the
human model. In the overtaking scenario, we observe that inverse temperature parameters
below a certain threshold lead to the autonomous vehicle choosing to remain behind the
human-driven car instead of attempting to overtake. A lower level of confidence in the
human model discourages the autonomous car from overtaking because the human driver
is seen as less likely to respond to the autonomous vehicle’s actions consistently with the
modeled strategic incentives and more likely to act in a poorly understood fashion that may
result in a collision.

8.4 Chapter Summary

We have introduced a hierarchical trajectory planning formulation for an autonomous vehicle
interacting with a human-driven vehicle on the road. To tractably reason about the mutual
influence between the human and the autonomous system, our framework uses a lower-
order approximate dynamical model solve a nonzero sum game with closed-loop feedback
information. The value of this game is then used to inform the planning and predictions of
the autonomous vehicle’s low-level trajectory planner.

Even with a simplified dynamical model, solving the dynamic game will generally be
computationally intensive. We note, however, that our high-level computation presents two
key favorable characteristics for online usability. First, it is “massively parallel” in the
sense that all states on the discretized grid may be updated simultaneously. The need for
reliable real-time perception in autonomous driving has spurred the development of high-
performance parallel computing hardware, which will directly benefit our method. Second,
once computed, the strategic value can be readily stored as a look-up table, enabling fast
access by the low-level trajectory planner. Of course, strategic values would then need to be
pre-computed for a number of scenarios that autonomous vehicles might encounter.

Overall, hierarchical game-theoretic reasoning schemes like the one investigated here may
work in conjunction with and significantly enhance existing autonomous driving planners,
and may play a significant role in allowing autonomous vehicles to safely and efficiently
interact with human road users.



CHAPTER 8. GAME-THEORETIC AUTONOMOUS DRIVING 215

Figure 8.4: Study of alternative information structures. (a) In the overtaking scenario, the
long-horizon tactical-only car accelerates, expecting the human to match its higher speed to
avoid a collision. After the human speeds up, the autonomous car remains behind her. (b)
Under the influence estimate [209] in the low-level trajectory gradient, the hierarchical car
drives more aggressively in the merging scenario. (c) When augmented with the strategic
value, the “pipeline” (predict-then-plan) low-level scheme is able to overtake.



216

Part III

Safe Steps Forward



217

Chapter 9

Safety Analysis through
Reinforcement Learning

The greatest teacher failure is.

Master Yoda
The Last Jedi, 2017

This chapter is based on the paper “Bridging Hamilton-Jacobi Safety Analysis and Rein-
forcement Learning” [225], written in collaboration with Neil Lugovoy, Vicenç Rubies Royo,
Shromona Ghosh, and Claire Tomlin.

In this final technical chapter, we offer a look forward by revisiting the idea of synergy
between safety and learning, which we first introduced in Chapter 6, in the context of the
increasingly powerful data-driven methods developed within the artificial intelligence com-
munity. By establishing a theoretical and algorithmic connection between control-theoretic
safety analysis and modern reinforcement learning formulations, we explore a potentially
fruitful avenue for future research, which has the potential to enable scalable safety analysis
for complex, high-dimensional systems.

In recent years, reinforcement learning techniques have proven their usefulness in comput-
ing data-driven approximate solutions to optimal control problems seeking the maximization
of a discounted additive payoff in complex and high-dimensional systems [148, 149, 226, 227].
Unfortunately, objective functions representing a sum of rewards over time are not well suited
to capture the safety objective, since, as we have seen extensively throughout this disserta-
tion, safety is not determined by how much a system fails on average, but by whether it fails
at all. Partly for this reason, reinforcement learning techniques have not seen widespread
use for safety analysis.

Another consequence of this disconnect between formulations is that controllers computed
through reinforcement learning are typically not inherently safety-preserving, a limitation
that, as we discussed in Chapter 6, has hindered their applicability to physical autonomous



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 218

�
<latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit>

= 0.85 �
<latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit>

= 0.96 �
<latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit>

= 0.99

�
<latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit>

= 0.998 �
<latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit>

= 0.99997 �
<latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit><latexit sha1_base64="LTGM2VFoxCLeC7zT8IXFho1T/rc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJfROZpMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqEwT2iCKK92O0VDOJG1YZjltp5qiiDltxaPbmd96otowJR/sOKWRwIFkCSNondTsDlAI7JUrQTWYw18lYU4qkKPeK391+4pkgkpLOBrTCYPURhPUlhFOp6VuZmiKZIQD2nFUoqAmmsyvnfpnTun7idKupPXn6u+JCQpjxiJ2nQLt0Cx7M/E/r5PZ5DqaMJlmlkqyWJRk3LfKn73u95mmxPKxI0g0c7f6ZIgaiXUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDgEZ7hFd485b14797HorXg5TPH8Afe5w+G648V</latexit>

= 0.999990 100 200 300 400 500
0

100

200

300

400

500

00

Figure 9.1: Multiple snapshots of the neural network output of the Safety Q-learning al-
gorithm for a double-integrator system. As we anneal the discount factor γ → 1 dur-
ing Q-learning, the learned discounted safety value function asymptotically approaches the
undiscounted value, allowing us to recover the safe set and optimal safety policy with very
high accuracy.

systems. Recent years have seen a growing interest in “safe learning” schemes. While some
recent approaches have proposed approximating safety by stability [140, 161] or bounded
rates of constraint violation [137, 138], Hamilton-Jacobi analysis stands out as a powerful
approach to rigorously ensure robust constraint satisfaction during learning. As we have seen
throughout Parts I and II of this thesis, however, this family of methods inherits the scala-
bility challenges of numerical dynamic programming computations beyond low-dimensional
systems.

The work in this chapter seeks to unlock a new family of tools for safety analysis by
rendering a wide range of state-of-the-art methods in the reinforcement learning literature
readily usable for safety analysis in high-dimensional systems. By introducing a time discount
into the dynamic programming equation of Hamilton-Jacobi safety analysis, we can obtain
a contraction Bellman operator that lends itself to the use of temporal difference learning
techniques. We prove the key properties of this discounted Safety Bellman Equation and
show that it can be readily used with value-learning approaches from the reinforcement
learning literature: in particular, we prove that the resulting Safety Q-learning scheme
converges to the safety state-action value function in finite Markov decision processes.

The Safety Q-learning scheme allows us to recover the globally optimal solution to
the corresponding Hamilton-Jacobi analysis (to resolution completeness [228, 229]) in low-
dimensional problems where dense computation is viable: we validate the results using tab-



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 219

ular Q-learning against a double integrator system, achieving high accuracy relative to the
analytic solution. Crucially, we further observe comparable performance when replacing
the state-space grid with a neural network function approximator, which is key in order to
scale to higher dimensions. Finally, annealing the discount factor during learning allows
asymptotic recovery of the solution to the undiscounted safety problem (Figure 9.1).

We evaluate deep Safety Q-learning on a variety of simulated robotics tasks, and observe
consistently accurate results against numerical dynamic programming solutions. In high-
dimensional systems beyond the reach of traditional numerical methods, predicted safety
accurately matches the empirical performance of the learned safety controller.

We finally implement policy optimization through an adaptation of the basic REIN-
FORCE algorithm [230] to the discounted safety formulation, and explore the potential of
using sate-of-the-art methods by similarly adapting the soft actor-critic (SAC) scheme [231].
The promising results on an 18-dimensional problem suggest the usability of this family of
reinforcement learning methods for learning policies with the ability to preserve safety in
high-dimensional systems.

It is important to clarify that, while the formulation in this chapter yields a promising
new tool for safety analysis, it is not—by itself—a safe learning framework, since it requires
experiencing failures in order to learn about safety. Therefore, the approach introduced here
should primarily be thought of as a computational tool, alternative to other methods like
the numerical Hamilton-Jacobi calculations [51, 52] used throughout this thesis. That is, the
safety-learning method presented in this chapter will typically be used in conjunction with
a model (simulation) of the system dynamics, as is commonly done with most “model-free”
reinforcement learning methods. In principle, it would be possible to instead implement
the scheme in a truly model-free fashion, learning to ensure constraint satisfaction directly
on the physical system, as long as the training is limited to conditions that are not truly
safety-critical, such as a vehicle test track with only virtual obstacles.

Once the safety analysis has been computed (learned), whether in simulation or under
non-critical training conditions, the resulting control policy can be applied to the physical
system in similar conditions to other safety controllers. This means that we can certainly
utilize this method as part of a safe learning framework: the reinforcement learning scheme
in this chapter can be used in lieu of the numerical safety computation in Chapter 6, comple-
mented with some additional decision logic that can translate the learned best-effort safety
policy into high-confidence recursive feasibility guarantees in the vein of the safe exploration
scheme in Chapter 5, Section 5.2. Thus, we predict that further investigation of the questions
opened by this chapter will be fruitful in obtaining scalable least-restrictive supervisory con-
trol schemes for learning-based controllers to improve their performance while maintaining
safety.

Finally, we note that while the analysis throughout the chapter is presented for determin-
istic dynamics, robust and stochastic extensions are possible (and have been explored to some
extent in [232]). Such extensions will be important for implementation of the formulation
on physical systems, which is of course its ultimate intended application.



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 220

9.1 The Undiscounted Safety Problem

As in previous chapters, we consider a dynamical system with state x ∈ Rn, control input
u ∈ U ⊂ Rnu , and continuous-time dynamics

ẋ = f(x, u) . (9.1)

with the usual technical assumptions ensuring existence of Carathéodory solutions.
We consider a closed constraint set K ⊂ Rn, and define a bounded function g : Rn → R

that is satisfies g(x) ≥ 0 ⇐⇒ x ∈ K. Then, the value function

V (x) := sup
u(·)

inf
t≥0

g
(
xu
x

)
(9.2)

captures the minimum safety margin g achieved over time by a trajectory starting at each
state x ∈ Rn if the best possible control input is applied at every instant. Recall that this
can intuitively be thought of as the closest the system will get to violating the constraints,
as measured by the “signed distance” g.

As we know, this minimum-payoff optimal control problem can be approached via dy-
namic programming. Considering a finite time horizon t ∈ [0, T ], it is possible to compute the
optimal safety value function as the solution to a time-dependent terminal-value Hamilton-
Jacobi-Bellman variational inequality of the same form as (6.6):

0 = min

{
g(x)− V (x, t),

∂V

∂t
+ max

u∈U
∇xV

>f(x, u)

}
,

V (x, T ) = g(x) , ∀x ∈ Rn . (9.3)

The discrete-time counterpart, following Algorithm 3.1 in Chapter 3, will be the starting
point for our discounted formulation. Given a discrete time step δ, the value at time t can
be recursively computed from the value at time t+ δ as:

V (x, t) = min

{
g(x),max

u∈U
V
(
x+ f(x, u)δ, t+ δ

)}
. (9.4)

In the infinite-horizon case, the value function no longer changes in finite time, and so
V (x) must satisfy the fixed-point Bellman equation:

V (x) = min

{
g(x),max

u∈U
V
(
x+ f(x, u)δ

)}
. (9.5)

An important observation about (9.5) is that, unlike the discounted Bellman equa-
tion (2.50) commonly used in reinforcement learning, it does not induce a contraction map-
ping on V and therefore it is not generally possible to converge to the correct value function
by application of value iteration or temporal difference learning.

In the next section we introduce a modification of (9.5) that yields a contraction mapping
for our problem of interest, and extend the convergence results of temporal difference learning
to safety control problems.



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 221

9.2 The Discounted Safety Bellman Equation

The central contribution of this chapter is a modified form of the dynamic programming
safety backup (9.5) which induces a contraction mapping in the space of value functions
and is therefore amenable to reinforcement learning methods based on temporal difference
learning [68, 148, 233].

The key observation stems from an intuitive interpretation of time-discounting in the
problem of cumulative rewards: at every instant, there is a small probability 1− γ of tran-
sitioning to an absorbing state from which no more rewards will be accrued. Thus, in the
corresponding trajectory outcome

V(xu
x) =

K∑
k=0

γkL
(
xk, uk

)
, (9.6)

the discount factor γ ∈ [0, 1) can be seen as the probability of the episode continuing, with
1− γ conversely representing the probability of transitioning to a terminal state.

An analogous interpretation in the problem of minimum payoff over time can be achieved
by modifying (9.5) to account for such a transition. Here if, with probability 1−γ, an episode
were to end after the current time step, the minimum future g(·) would be equal to the current
g(x). This induces the discrete-time discounted dynamic programming equation

V (x) = (1− γ)g(x) + γmin
{
g(x),max

u∈U
V
(
x+ f(x, u)∆t

)}
. (9.7)

Letting gi be the value of g achieved by a discrete-time state trajectory xu
x at the i-th time

step, the explicit form of the objective maximized in (9.7) is a “time-discounted” minimum:

V(xu
x) = (1− γ)g0 + γ

[
min

{
g0, (1− γ)g1+ (9.8)

γ(min{g1, (1− γ)g2 + γ . . .)
}]

.

We prove two key properties of the proposed equation.

Theorem 9.1. (Contraction mapping) The discounted Safety Bellman Equation (9.7) in-
duces a contraction mapping under the supremum norm. That is, let V, Ṽ : Rn → R, then
there exists a constant κ ∈ [0, 1) such that ‖B[V ]−B[Ṽ ]‖∞ ≤ κ‖V − Ṽ ‖∞.

Proof. It will suffice to show that for all states x ∈ Rn, |B[V ](x)−B[Ṽ ](x)| < κ‖V − Ṽ ‖∞.
We have:

|B[V ](x)−B[Ṽ ](x)|
=γ|min{g(x),max

u∈U
V
(
x+ f(x, u)∆t

)
}

−min{g(x),max
ũ∈U

Ṽ
(
x+ f(x, ũ)∆t

)
}|

≤γ|max
u∈U

V
(
x+ f(x, u)∆t

)
−max

ũ∈U
Ṽ
(
x+ f(x, ũ)∆t

)
| .



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 222

Now, without loss of generality suppose the first maximum is the larger one, and let u∗ ∈ U
achieve it. We continue:

|B[V ](x)−B[Ṽ ](x)|
≤γ|V

(
x+ f(x, u∗)∆t

)
− Ṽ

(
x+ f(x, u∗)∆t

)
|

≤γmax
u∈U
|V
(
x+ f(x, u)∆t

)
− Ṽ

(
x+ f(x, u)∆t

)
|

≤γ sup
x̃
|V (x̃)− Ṽ (x̃)| = γ‖V − Ṽ ‖∞ .

Thus the sought contraction constant is in fact γ ∈ [0, 1).

Proposition 9.1. (Value approximation) In the limit of no discounting, the fixed-point solu-
tion to the Safety Bellman Equation (9.7) converges to the undiscounted safety value function.

Proof. Taking the limit of the optimization of (9.8) as γ goes to 1 we recover:

lim
γ→1

V (x) = max
u0:T

min
{
g0, g1, g2, . . .

}
,

which solves (9.5) and is the discrete-time approximation to (9.2).

The above two theoretical results enable the use of reinforcement learning techniques for
safety analysis. We end this section with an important consequence of Theorem 9.1.

Theorem 9.2. (Convergence of Safety Q-learning) Let X ⊆ Rn and U ⊆ U be finite dis-
cretizations of the state and action spaces, and let f : X ×U → X be a discrete transition
function approximating the system dynamics. The Q-learning scheme applied to the dis-
counted safety problem and executed on the above discretization converges, with probability
1, to the optimal state-action safety value function

Q(xi, uj) := (1− γ)g(xi) + γmin
{
g(xi), max

uj′∈U
Q
(
f(xi, uj), uj

′)} ,

in the limit of infinite exploration time and given partly-random episode initialization and
learning policy with full support over X and U respectively. Concretely, learning is carried
out by the update rule:

Qk+1(xi, uj)← Qk(xi, uj) + αk

[
(1− γ)g(xi)+

γmin
{
g(xi), max

uj′∈U
Q
(
f(xi, uj), uj

′)}−Qk(xi, uj)
]
,

for learning rate αk(xi, uj) satisfying∑
k

αk(xi, uj) =∞
∑
k

α2
k(xi, uj) <∞ ,

for all xi ∈ X, uj ∈ U.



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 223

Proof. The proof follows from the general proof of Q-learning convergence for finite-state,
finite-action Markov decision processes presented in [234]. The transition dynamics f , ini-
tialization and policy randomization, and learning rate αk satisfy Assumptions 1, 2, and 3 in
[234] in the standard way. The only critical difference in the proof is the contraction map-
ping, which we obtain under the supremum norm by Theorem 9.1: with this, Assumption 5
in [234] is met, granting convergence of Q-learning by Theorem 3 in [234].

We stress that, beyond Q-learning, the contraction-mapping property of the discounted
safety backup opens the door to straightforward application of a wide variety of reinforcement
learning schemes to safety analysis. We dedicate the following section to a first demonstration
in which we explore the application of canonical reinforcement learning algorithms in the
two main families: value learning and policy optimization.

9.3 Results

We present the results of implementing the proposed discounted Safety Bellman Equation
in multiple reinforcement learning schemes: tabular Q-learning [68], deep Q-learning (DQN)
[148], REINFORCE [230], and soft actor-critic (SAC) [231], and four different dynamical
systems. We first validate the computed safety value function and safe set against analytically
and numerically obtained ground-truth references in traditionally tractable systems. We
consider two dynamical systems commonly used as benchmarks in control theory, namely a 2-
D double-integrator system and a 4-D cart-pole system. We then demonstrate the scalability
and usefulness of the formulation in higher-dimensional nonlinear systems, for which exact
safety analysis is generally considered intractable. We use simulation environments common
in reinforcement learning [235], namely a 6-D lunar lander system and an 18-D “half-cheetah”
system.

Pr
ed

ic
te

d 
sa

fe
ty

 (Q
-v

al
ue

)

True value (rollout)

Lunar landerCart-pole

0

0

0

0 0

0

Double integrator

Figure 9.2: Predicted vs. achieved minimum safety margin to violations for 106 simulated
rollouts with 100 trained Safety Q networks. Red line indicates identity.



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 224

1

0
2×1060 0 0106 3×106

Gradient updates

0.33 0.34

Fr
ac

tio
n 

of
 v

io
la

tio
ns

Lunar landerDouble integrator Cart-pole

Figure 9.3: Fraction of initial conditions resulting in safety violations as Safety Q-Learning
training proceeds. Each data point is a sample average from 1000 episodes; statistics are
taken over 100 independent training runs. As learning progresses, the fraction of violations
reliably decreases, approaching the ground-truth fraction of unsafe states (from which vio-
lation is inevitable) for the double integrator and cart-pole. Lunar lander ground truth is
unknown.

9.3.1 Validation: comparison to ground truth

Analytic validation: double integrator

The double integrator is a classic reachability example where the control policy seeks to keep
the system in the set {[x, v] ∈ R2 : x ∈ [xmin, xmax]} with the dynamics characterized by:

ẋ = v , v̇ = u , (9.9)

with |u| ≤ umax, where x can be seen as position, v as velocity, and u as an acceleration
input. Analytically, the safe set is characterized by the interior of the boundary defined by
the parabolic segments {

xlow + v2

2umax
v ≤ 0

xhigh − v2

2umax
v ≥ 0

(9.10)

and the boundaries x = xlow, x = xhigh. Although simple, this example proves a useful
context for visualizing the effect of γ, since the entire value function can be represented in
two dimensions.

It can be seen in Figure 9.1 how as γ is annealed the time horizon of safety is effectively
extended: for lower values the value function resembles g(·), and for higher values it ap-
proaches the undiscounted value function. Final accuracy and in-training performance are
shown in Figure 9.2 and Figure 9.3.

Using tabular Q-learning with g(·) as the signed Euclidean distance to the boundary
of the constraint set and annealing γ to 1 similar to [236], we observe convergence to the
safe set up to the resolution of the grid. Independently training 100 deep Q-networks [148]



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 225

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

v
<latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

v
<latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit>

Tabular Q-learning Deep Q-learning

Figure 9.4: Safe sets learned by tabular (left) and deep Safety Q-Learning (right) with the
discounted Safety Bellman Equation compared to the analytic set (black).

with fully-connected layers using the discounted Safety Bellman Equation we find near-
convergence to the safe set with an average 2.26× 10−5 (minimum 0, maximum 1.27× 10−4)
fraction of points incorrectly characterized as safe and an average 1.76 × 10−4 (minimum
3.26× 10−5, maximum 3.31× 10−4) of points falsely characterized as unsafe. Classification
is visualized in Figure 9.4.

Numerical validation: cart-pole

The cart-pole system (inverted pendulum) is a classic control problem and one ripe for safety
analysis. A cart moving on a one-dimensional track is attached by a pivot to a pole. The
control policy seeks to keep the pole from falling and to keep the cart from the edge of the
track by applying accelerations to the cart. For this system, the ground truth safe set must
be computed numerically on a grid using dynamic programming [49]. Over 100 random
seeds we find that an average 5.16 × 10−5 (minimum 4.90 × 10−6, maximum 2.56 × 10−4)
fraction of points are misclassified as safe and an average fraction 5.80 × 10−4 (minimum
4.24 × 10−4, maximum 8.4 × 10−4) fraction of points are misclassified as unsafe, relative to
the numerically approximated ground truth. In reality, the precision of the numerical ground
truth is limited by the grid resolution; thus, if we consider any points less than one full grid
cell away from a safe grid point to be safe, we find that only an average 1.47×10−6 (minimum
0, maximum 4.54× 10−5) fraction of points are misclassified as safe by the proposed method
(Figures 9.2 and 9.3).

9.3.2 Scalability: safety for high dimensional systems

The two examples we have shown thus far help us validate the proposed approach against
well-established safety analysis tools. However, a motivating factor of this work is to enable
safety analysis for systems that are too high-dimensional for traditional approaches. In this



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 226

section we will explore how the proposed method fares in two high-dimensional systems from
the OpenAI Gym environment collection [235].

Temporal difference: lunar lander

We first consider a lunar lander system with 6 states x = [x, y, θ, ẋ, ẏ, θ̇] (vehicle pose and
velocities). The signed distance safety function is defined as

g(x) = max{gfly(x), gland(x)} ,

gfly(x) = min{x− xwmin, x
w
max − x, y− ywmin, y

w
max − y} ,

gland(x) = min{x− xpmin, x
p
max − x, θ − θmin, θmax − θ, ẏ− ẏmin} ,

(9.11)

Terms marked with superscript w indicate viewing window limits, and terms marked with
superscript p indicate landing pad limits. The margin g(·) is thus constructed to allow either
flying in free space or landing on the pad; this example illustrates the ability to encode
arbitrary state constraints through a signed distance function.

We train 100 Safety DQNs with different random seeds and compare learned values
against the observed safety by performing on-policy rollouts in simulation (Figure 9.2). Since
computing the safety value function through dynamic programming is intractable on 6-
dimensional systems, there is no known ground truth to compare against (Figure 9.3). While
the learned Q-value function may be suboptimal, it does give accurate safety predictions for
its induced best-effort policy. We present x-y slices of a sample trained value function in
Figure 9.5, where the learned safety structure can be seen.

Policy optimization: half-cheetah

Many successful modern reinforcement learning methods use neural networks to directly
represent control policies and search for efficient strategies. A number of policy gradient
algorithms derive their policy update from the REINFORCE rule [230]:

∇θEx∼πθ [V(x)] = Ex∼πθ [∇θ log(pπθ(x))V(x)] , (9.12)

with pπθ(·) denoting the probability of taking a trajectory x under the stochastic policy πθ
parametrized by θ, and V(·) denoting the outcome of x. Taking V(·) to represent the time-
discounted minimum payoff g(·) of the trajectory as in (9.8), we can directly optimize a
policy for discounted safety.

We consider an 18-dimensional half-cheetah system within the MuJoCo physics simula-
tor [237], and define g(·) to be the minimum height of the head and the front leg, so that
a failure occurs if either touches the ground (Figure 9.6). Note that we must (at least in
part) initialize trajectories at configurations from which the system could in principle main-
tain safety. Running policy gradient using REINFORCE, all policies trained for discounted
safety attempt to balance, though not always successfully, and some learn to sit. In con-
trast, policies trained with the standard reinforcement learning formulation using g(·) as an



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 227

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

vx = �1
<latexit sha1_base64="6nAIcRSCQVlDCvdCw8BfIuLDgE0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnoRil48VrAf0C4lm2bb2GyyJNliWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKFlogitE8mlagVYU84ErRtmOG3FiuIo4LQZDG+nfnNElWZSPJhxTP0I9wULGcHGSo1R9+n6zOsWS27ZnQEtEy8jJchQ6xa/Oj1JkogKQzjWuu25sfFTrAwjnE4KnUTTGJMh7tO2pQJHVPvp7NoJOrFKD4VS2RIGzdTfEymOtB5Hge2MsBnoRW8q/ue1ExNe+SkTcWKoIPNFYcKRkWj6OuoxRYnhY0swUczeisgAK0yMDahgQ/AWX14mjUrZOy9X7i9K1ZssjjwcwTGcggeXUIU7qEEdCDzCM7zCmyOdF+fd+Zi35pxs5hD+wPn8AdPVjqI=</latexit>

vx = 1
<latexit sha1_base64="ZvpCaCPDWGpgymcSZYXBYykTK6U=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgl6EohePFdy20C4lm2bb0GyyJNliWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqgj1ieRStUOsKWeC+oYZTtuJojgOOW2Fo7uZ3xpTpZkUj2aS0CDGA8EiRrCxkj/uPd14vXLFrbpzoFXi5aQCORq98le3L0kaU2EIx1p3PDcxQYaVYYTTaambappgMsID2rFU4JjqIJsfO0VnVumjSCpbwqC5+nsiw7HWkzi0nTE2Q73szcT/vE5qousgYyJJDRVksShKOTISzT5HfaYoMXxiCSaK2VsRGWKFibH5lGwI3vLLq6RZq3oX1drDZaV+m8dRhBM4hXPw4ArqcA8N8IEAg2d4hTdHOC/Ou/OxaC04+cwx/IHz+QNo/o5r</latexit>

vy = 1
<latexit sha1_base64="BQf1X1zcGE3P4mcTaB/LCqNvpaI=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYNpCG8pmu2mXbnbD7qYQQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyacaeO6387a+sbm1nZpp7y7t39wWDk6bmmZKkJ9IrlUnRBrypmgvmGG006iKI5DTtvh+H7mtydUaSbFk8kSGsR4KFjECDZW8if97NbrV6puzZ0DrRKvIFUo0OxXvnoDSdKYCkM41rrruYkJcqwMI5xOy71U0wSTMR7SrqUCx1QH+fzYKTq3ygBFUtkSBs3V3xM5jrXO4tB2xtiM9LI3E//zuqmJboKciSQ1VJDFoijlyEg0+xwNmKLE8MwSTBSztyIywgoTY/Mp2xC85ZdXSate8y5r9cerauOuiKMEp3AGF+DBNTTgAZrgAwEGz/AKb45wXpx352PRuuYUMyfwB87nD2qEjmw=</latexit>

vy = �1
<latexit sha1_base64="tijsQsQu7QNxtk6BK2SJeHQwy1Q=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXBb0IRS8eK9gPaJeSTbNtbDZZkmxhWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjO6mfmtMlWZSPJo0pn6EB4KFjGBjpea4l96ceb1yxa26M6Bl4uWkAjnqvfJXty9JElFhCMdadzw3Nn6GlWGE00mpm2gaYzLCA9qxVOCIaj+bXTtBJ1bpo1AqW8Kgmfp7IsOR1mkU2M4Im6Fe9Kbif14nMeG1nzERJ4YKMl8UJhwZiaavoz5TlBieWoKJYvZWRIZYYWJsQCUbgrf48jJpnle9i+r5w2WldpvHUYQjOIZT8OAKanAPdWgAgSd4hld4c6Tz4rw7H/PWgpPPHMIfOJ8/1VyOow==</latexit>

Figure 9.5: Slices of the learned lunar lander value function under Safety Q-Learning, overlaid
on the image of the viewing window for θ = 0 and θ̇ = 0. Computed safe set boundary in
black. At low speeds, the values near the ground are higher close to the landing pad, revealing
the effect of gland. For large downward velocities, ground collision is inevitable from the lower
half of the screen.

additive reward tend to raise the front leg and sometimes jump, and invariably fall over.
Defining an alternative reward that purely penalizes forbidden contacts similarly failed to
yield safe learned behaviors.

Using the more sophisticated soft actor-critic (SAC) algorithm [231] we find that after
hyper-parameter optimization, all policies trained across 20 random seeds using a discounted
sum of g(·) launch the cheetah into the air and always fall over. Using a discounted sum
of contact penalties, 65% of policies do learn to sit; however, the remaining 35% produce
unsafe jumping behavior. We speculate that the sparsity of the reward signal makes learning
challenging. Across the 20 random seeds, all policies trained with discounted safety visibly
attempt to stand: 80% of them succeed in doing so reliably, with an additional 5% reliably
sitting if standing fails. The different emergent policies are depicted in Figure 9.6.

9.4 Chapter Summary

This chapter has introduced a time-discounted Safety Bellman Equation whose unique fixed-
point solution converges to the undiscounted Hamilton-Jacobi safety value function as the
time discounting is asymptotically relaxed. Our new formulation can readily be used with a
wide variety of state-of-the-art reinforcement learning algorithms by a simple modification



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 228

Safe sittingUnsafe jumping Safe standingInitial conditions

Figure 9.6: Learned half-cheetah safety policies, aimed to keep the head and front leg off the
ground, using deep policy optimization methods. Left to right: typical starting configuration;
an unsafe jumping policy learned using a sum of discounted heights; a safe sitting policy
learned using discounted safety or (less reliably) discounted sum of contact penalties; a safe
standing policy learned using discounted safety.

of their Bellman update step. We prove the convergence of the resulting Safety Q-learning
scheme in finite Markov decision processes, which to our knowledge is the first model-free
method for computing the safety value function beyond naive Monte Carlo trajectory shoot-
ing. Adopting function approximation techniques from modern reinforcement learning, we
demonstrate scalability for higher dimensional systems and find that our DQN-based ap-
proach is accurate compared to analytic solutions and existing numerical methods. Finally,
by directly optimizing the control policy for discounted safety in a system with 18 continuous
state dimensions, leading to Safety REINFORCE and Safety SAC, we find that it is possi-
ble to learn control policies that preserve safety with significantly more success than those
obtained from the standard reinforcement learning formulation using a sum of discounted
rewards.

9.4.1 Implications for Hamilton-Jacobi safety analysis

The contribution of this chapter can be seen as unlocking a family of tools for safety analysis
that can be successfully applied to systems intractable for traditional techniques. Once
computed, the learned safety analysis can have practical applications in safe robot control
and safe reinforcement learning, analogous to existing safety analysis tools. To this end, we
expect that robust formulations, as well as research in transfer learning will facilitate the use
of simulation-based safety analysis in physical systems; we also note that, subject to model
fidelity, conservative approximations of the safety value can always be guaranteed through
forward simulation of the computed safety policy [238]. While our focus in this chapter is on



CHAPTER 9. SAFETY ANALYSIS THROUGH REINFORCEMENT LEARNING 229

model-free reinforcement learning algorithms, model-based methods such as value and policy
iteration can also be employed for safety analysis under the discounted safety formulation.
Some preliminary exploration of such methods is done in [232].

9.4.2 Implications for reinforcement learning

By introducing a Safety Bellman Equation that is readily compatible with the reinforcement
learning framework, we hope to enable and inspire researchers and practitioners in the field
of reinforcement learning to explicitly include safety in their learning algorithms. Ultimately,
we hope that, by enabling learning systems to reason about constraint satisfaction, future
advances in the field will bring about highly capable intelligent systems that can be deployed
safely [195].

9.4.3 Limitations and future work

To reach convergence under model-free learning schemes, the system must repeatedly violate
the constraints. Thus model-free algorithms using discounted safety must be used in simula-
tion or an environment where leaving the constraint set does not result in catastrophic failure.
It is also important to note that policies obtained with the formulation introduced here will
seek to maintain safety but not accomplish another task while staying safe. Effectively
combining the discounted safety approach with performance-driven learning is therefore a
natural research direction. For example, this can be done by using the learned safety policy
in the supervisory control framework introduced in Chapter 6. Since the Safety Q-learning
scheme is off-policy, safety analysis can be continually updated in the background even while
a system is controlled by a different policy, yielding a natural method for updating safety
analysis without the explicit need for other mechanisms such as a Gaussian process. Finally,
while deep neural networks are expressive function approximators, their training methods do
not in general have convergence guarantees. It may prove fruitful to investigate combining
the line of work introduced in this chapter with recent research in neural network verifi-
cation [9] to provide eventual formal guarantees about learned value functions and control
policies.



230

Chapter 10

Towards a Safe Robotic Future

Prediction is very difficult,
especially about the future.

Niels Bohr (1885–1962)
Physicist

Even as our analytic and computational tools for safety assurance continue to scale
and improve in future years, maintaining safety in complex environments will remain a
fundamental challenge, because unexpected changes in the world, or the unexpected actions
of human agents, may always invalidate design-time guarantees. Our future autonomous
systems will need to actively reason about safety assurance online, incorporating observations
about the environment and other agents through state-of-the-art statistical learning and
intelligently adapting their behavior to ensure safety beyond the reach of offline analysis.

Intractability: Completeness vs. Soundness

As we have seen, the exact computation of optimal safety policies becomes intractable for
complex dynamical system models. However, it is often the case that we can compute
tractable control policies that can ensure the safety of our system in a wide range of condi-
tions. These are generally suboptimal best-effort solutions based on function approximation
(as in Chapter 9) or imposed structure (as in Chapter 4), yet they can be used in conjunction
with robust optimal control to provide rigorous and sound safety guarantees. This is an im-
portant consideration: while completeness may not be possible in complex systems (that is,
there may be conditions in which a safe control strategy is possible but cannot be tractably
computed), soundness is enough to ensure the preservation of safety, since the system can
limit its actions to those for which it can guarantee safety (following a recursive feasibility
criterion along the lines of Chapter 5). This means that, under the appropriate schemes, the
price of intractability may be conservativeness, but not loss of safety.



CHAPTER 10. TOWARDS A SAFE ROBOTIC FUTURE 231

Extracting the Structure

Machine learning enables us to automatically identify problem structure through data analy-
sis. Rather than used in isolation, this capability can be viewed as a useful piece of machinery
in the design of autonomous systems, making it possible to perform computational analysis
more tractably, as exemplified in Chapter 9. This can be done with the desirable assurances
as long as we bear in mind the reality gap between model and system, both during the design
process and in the decision-making of our autonomous systems (as in Chapters 6 and 7).

Closing the Learning Loop

The long-term objective of control theory should be to provide strong theoretical guarantees
around systems that learn and adapt to observed data, in a way analogous to the guarantees
that exist today around feedback control mapping sensor data to actuation decisions.

The challenge of “closing the loop” around sophisticated learning-enabled components
to prove correctness properties in advanced automation systems is a pressing priority, as
has been recognized by DARPAs new Assured Autonomy project. It also poses a major
opportunity for advancing the fields of robotics and control theory. The difficulty in guar-
anteeing deployment-time safety through offline analysis mirrors the inadequacies of early
open-loop analysis for designing stable control systems. Much like the need for stability
assurance fueled the development of closed-loop analysis and modern control theory in the
20th century, our understanding of the interplay between system resilience and learning may
well be propelled forward this century by the need to ensure the safe autonomous operation
of robotic systems in uncertain and changing environments. This understanding will require
research at the intersection of control theory, robotics, and machine learning, with the goal of
establishing provable properties for learning loops akin to those existing for feedback loops.

Closing the Human-Robot Loop

The other safety-critical loop that will demand close study in the coming decades is the
interplay between these increasingly complex automation systems and the human beings they
will interact with. In most current instances of safety-critical autonomous robotic systems,
from industrial manipulators to autonomous car prototypes, interaction with humans is
primarily viewed as a source of risk. Given the limited understanding of human-machine
interaction over time, predictions tend to be based on highly simplified models, and safety
assurance requires leaving large error margins. Recent advances in machine learning and the
growing availability of computational resources present an opportunity to “close the loop”
around human-machine interaction, developing more accurate models and using them to
reason about the coupled decisions of the human and the automation. If successful, this
effort can turn interaction from liability to asset, establishing humans as valuable allies in
the quest for safety. This will require fusing robotics expertise with research in cognitive
science, human factors engineering, and game theory.



CHAPTER 10. TOWARDS A SAFE ROBOTIC FUTURE 232

Safe Advanced AI Systems

Beyond the domain of robotics, the growing capabilities of AI technologies are opening a
wide range of new applications for automation, often in the purely digital domain. From
personal services to critical infrastructure, correct operation of these systems is extremely
important, as is the study of the full human-automation system. The recent social concern
surrounding privacy violations, emergent algorithmic bias, and uncontrolled propagation of
fake news highlights the urgency of ensuring that digitally deployed AI and machine learning
systems operate in a well-understood and reliable manner. Extending the previous results for
physical safety to a more general constraint satisfaction problem may enable these systems
to explicitly reason about whether their decisions may lead to undesirable outcomes when
interfacing with human beings. There are additional important challenges in this domain,
ranging from the difficulty of reasoning about highly complex human-automation systems
to the evasiveness of well-defined constraints that these systems must satisfy. The latter
issue links directly to the problem of value alignment, and requires investigating whether
the boundaries of acceptable operation can be correctly inferred by an AI system through
interaction with its human users.

Robotic technologies have the potential to improve the quality of human life throughout
the globe and have a long-lasting positive impact for many generations to come. In order for
these benefits to be reaped, we must equip robotic systems with the ability to actively reason
about their own safety and continually monitor the validity of their modeling assumptions
to provide meaningful assurances. As our understanding of safe robotics and automation
becomes solidified and translated into the development of increasingly competent and reliable
systems, we can look forward to a future in which we can trust our technology with the future
of our children.



CHAPTER 10. TOWARDS A SAFE ROBOTIC FUTURE 233

Figure 10.1: A vision of a future with safe robotic systems.



234

Bibliography

[1] F. Vaussard, J. Fink, V. Bauwens, et al. “Lessons Learned from Robotic Vacuum
Cleaners Entering the Home Ecosystem”. Robotics and Autonomous Systems. Ad-
vances in Autonomous Robotics — Selected Extended Papers of the Joint 2012
TAROS Conference and the FIRA RoboWorld Congress, Bristol, UK 62.3 (2014),
pp. 376–391.

[2] B. S. Peters, P. R. Armijo, C. Krause, et al. “Review of Emerging Surgical Robotic
Technology”. Surgical Endoscopy 32.4 (2018), pp. 1636–1655.

[3] Federal Aviation Administration. Unmanned Aircraft Systems . Tech. rep. (Accessed
on 2019/10/16.) 2018.

[4] F. Duarte and C. Ratti. “The Impact of Autonomous Vehicles on Cities: A Review”.
Journal of Urban Technology 25.4 (2018), pp. 3–18.

[5] E. Ackerman and M. Koziol. “In the Air with Zipline’s Medical Delivery Drones”.
IEEE Spectrum: Technology, Engineering, and Science News (2019). (Accessed on
2019/11/22.)

[6] T. Prevot, J. Rios, P. Kopardekar, et al. “UAS Traffic Management (UTM) Concept
of Operations to Safely Enable Low Altitude Flight Operations”. AIAA Aviation
Technology, Integration, and Operations Conference. Washington, D.C.: American
Institute of Aeronautics and Astronautics, 2016.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. Advances in Neural Information Processing Sys-
tems. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger. Curran
Associates, 2012, pp. 1097–1105.

[8] D. Silver, A. Huang, C. J. Maddison, et al. “Mastering the Game of Go with Deep
Neural Networks and Tree Search”. Nature 529.7587 (2016), pp. 484–489.

[9] C. Liu, T. Arnon, C. Lazarus, et al. “Algorithms for Verifying Deep Neural Networks”
(2019). arXiv: 1903.06758 [cs, stat].

[10] A. Kurakin, I. Goodfellow, and S. Bengio. “Adversarial Examples in the Physical
World”. Artificial Intelligence Safety and Security. Ed. by R. V. Yampolskiy. 1 edition.
Boca Raton: Chapman and Hall/CRC, 2018.

https://dx.doi.org/10.1016/j.robot.2013.09.014
https://dx.doi.org/10.1016/j.robot.2013.09.014
https://dx.doi.org/10.1007/s00464-018-6079-2
https://dx.doi.org/10.1007/s00464-018-6079-2
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/unmanned_aircraft_systems.pdf
https://dx.doi.org/10.1080/10630732.2018.1493883
https://spectrum.ieee.org/robotics/drones/in-the-air-with-ziplines-medical-delivery-drones
https://dx.doi.org/10.2514/6.2016-3292
https://dx.doi.org/10.2514/6.2016-3292
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1038/nature16961
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
https://www.taylorfrancis.com/books/e/9781351251389/chapters/10.1201/9781351251389-8
https://www.taylorfrancis.com/books/e/9781351251389/chapters/10.1201/9781351251389-8


BIBLIOGRAPHY 235

[11] S. Tjahjono. Aircraft Accident Investigation Report, PT. Lion Mentari Airlines,
Boeing 737-8 (MAX); PK-LQP, Tanjung Karawang, West Java. Aircraft Accident
Investigation Report KNKT.18.10.35.04. Republic of Indonesia, Komite Nasional Ke-
selamatan Transportasi, 2018.

[12] Aircraft Accident Investigation Bureau. Aircraft Accident Investigation Preliminary
Report: Ethiopian Airlines Group, B737-8 (MAX) Registered ET-AVJ 28 NM South
East of Addis Ababa, Bole International Airport . Tech. rep. AI-01/19. Ethiopian Min-
istry of Transport, 2019.

[13] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. “Reach-avoid Problems with
Time-varying Dynamics, Targets and Constraints”. ACM International Conference
on Hybrid Systems: Computation and Control. 2015, pp. 11–20.

[14] M. Chen, J. F. Fisac, S. Sastry, and C. J. Tomlin. “Safe Sequential Path Planning
of Multi-Vehicle Systems via Double-Obstacle Hamilton-Jacobi-Isaacs Variational In-
equality”. IEEE European Control Conference (ECC). Linz, Austria, 2015, pp. 3304–
3309.

[15] M. Chen, S. Bansal, J. F. Fisac, and C. J. Tomlin. “Robust Sequential Trajectory
Planning under Disturbances and Adversarial Intruder”. IEEE Transactions on Con-
trol Systems Technology 27.4 (2019), pp. 1566–1582.

[16] D. Fridovich-Keil*, S. L. Herbert*, J. F. Fisac*, et al. “Planning, Fast and Slow: A
Framework for Adaptive Real-Time Safe Trajectory Planning.” IEEE International
Conference on Robotics and Automation (ICRA). 2018.

[17] D. Fridovich-Keil, J. F. Fisac, and C. J. Tomlin. “Safely Probabilistically Complete
Real-Time Planning and Exploration in Unknown Environments”. IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2019, pp. 7470–7476.

[18] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, et al. “A General Safety Framework
for Learning-Based Control in Uncertain Robotic Systems”. IEEE Transactions on
Automatic Control 64.7 (2019), pp. 2737–2752.

[19] J. Fisac, A. Bajcsy, S. Herbert, et al. “Probabilistically Safe Robot Planning with
Confidence-Based Human Predictions”. Robotics: Science and Systems XIV. Vol. 14.
2018.

[20] A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, et al. “A Scalable Framework for Real-
Time Multi-Robot, Multi-Human Collision Avoidance”. IEEE International Confer-
ence on Robotics and Automation (ICRA). 2019, pp. 936–943.

[21] J. F. Fisac, E. Bronstein, E. Stefansson, et al. “Hierarchical Game-Theoretic Planning
for Autonomous Vehicles”. IEEE International Conference on Robotics and Automa-
tion (ICRA). 2019, pp. 9590–9596.

[22] S. Sastry. “Nonlinear Systems: Analysis, Stability and Control”. Vol. 10. 1999.

https://reports.aviation-safety.net/2018/20181029-0_B38M_PK-LQP_PRELIMINARY.pdf
https://reports.aviation-safety.net/2018/20181029-0_B38M_PK-LQP_PRELIMINARY.pdf
https://games-cdn.washingtonpost.com/notes/prod/default/documents/6375a995-4d9f-4543-bc1e-12666dfe2869/note/4cb6f748-a0c0-45c2-bf0b-f672ba3cfebe.pdf
https://games-cdn.washingtonpost.com/notes/prod/default/documents/6375a995-4d9f-4543-bc1e-12666dfe2869/note/4cb6f748-a0c0-45c2-bf0b-f672ba3cfebe.pdf
https://games-cdn.washingtonpost.com/notes/prod/default/documents/6375a995-4d9f-4543-bc1e-12666dfe2869/note/4cb6f748-a0c0-45c2-bf0b-f672ba3cfebe.pdf
https://dx.doi.org/10.1145/2728606.2728612
https://dx.doi.org/10.1145/2728606.2728612
https://dx.doi.org/10.1109/ECC.2015.7331044
https://dx.doi.org/10.1109/ECC.2015.7331044
https://dx.doi.org/10.1109/ECC.2015.7331044
https://dx.doi.org/10.1109/TCST.2018.2828380
https://dx.doi.org/10.1109/TCST.2018.2828380
https://dx.doi.org/10.1109/ICRA.2018.8460863
https://dx.doi.org/10.1109/ICRA.2018.8460863
https://dx.doi.org/10.1109/ICRA.2019.8793905
https://dx.doi.org/10.1109/ICRA.2019.8793905
https://dx.doi.org/10.1109/TAC.2018.2876389
https://dx.doi.org/10.1109/TAC.2018.2876389
http://www.roboticsproceedings.org/rss14/p69.html
http://www.roboticsproceedings.org/rss14/p69.html
https://dx.doi.org/10.1109/ICRA.2019.8794457
https://dx.doi.org/10.1109/ICRA.2019.8794457
https://dx.doi.org/10.1109/ICRA.2019.8794007
https://dx.doi.org/10.1109/ICRA.2019.8794007
https://dx.doi.org/10.1007/978-1-4757-3108-8


BIBLIOGRAPHY 236

[23] C. Tomlin, J. Lygeros, and S. S. Sastry. “A game theoretic approach to controller
design for hybrid systems”. Proceedings of the IEEE 88.7 (2000).

[24] E. A. Coddington and N. Levinson. “Theory of Ordinary Differential Equations”.
International Series in Pure and Applied Mathematics. New York: McGraw-Hill, 1955.

[25] N. Wiener. “Cybernetics: or control and communication in the animal and the
machine.” John Wiley, 1948.

[26] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry. “Zeno Hybrid Systems”.
International Journal of Robust and Nonlinear Control 11.5 (2001), pp. 435–451.

[27] J.-P. Aubin, A. Bayen, and P. Saint-Pierre. “Viability Theory: New Directions”.
Springer, 2011.

[28] M. P. Chapman, J. Lacotte, A. Tamar, et al. “A Risk-Sensitive Finite-Time Reach-
ability Approach for Safety of Stochastic Dynamic Systems”. European Control Con-
ference (ECC). 2019.

[29] A. Bajcsy, S. Bansal, E. Bronstein, et al. “An Efficient Reachability-Based Frame-
work for Provably Safe Autonomous Navigation in Unknown Environments”. IEEE
Conference on Decision and Control (CDC). 2019. arXiv: 1905.00532.

[30] C. E. Garćıa, D. M. Prett, and M. Morari. “Model predictive control: Theory and
practice—A survey”. Automatica 25.3 (1989), pp. 335–348.

[31] L. S. Pontryagin, E. Mishchenko, V. Boltyanskii, and R. Gamkrelidze. “The mathe-
matical theory of optimal processes”. Wiley, 1962.

[32] R. Bellman. “The theory of dynamic programming”. Bulletin of the American Math-
ematical Society 60.6 (1954), pp. 503–515.

[33] M. G. Crandall and P.-L. Lions. “Viscosity solutions of Hamilton-Jacobi equations”.
Transactions of the American Mathematical Society 277.1 (1983).

[34] L. C. Evans and P. E. Souganidis. “Differential games and representation formulas
for solutions of Hamilton-Jacobi-Isaacs equations”. Indiana University mathematics
journal 33.5 (1984), pp. 773–797.

[35] M. G. Crandall, L. C. Evans, and P. L. Lions. “Some Properties of Viscosity Solutions
of Hamilton-Jacobi Equations”. Transactions of the American Mathematical Society
282.2 (1984).

[36] R. Isaacs. Differential Games . Tech. rep. Santa Monica, California: RAND Corpo-
ration, 1954.

[37] R. Isaacs. Games of Pursuit . Tech. rep. Santa Monica, California: RAND Corpora-
tion, 1951.

[38] P. Varaiya. “On the existence of solutions to a differential game”. SIAM Journal on
Control 5.1 (1967), pp. 153–162.

https://dx.doi.org/10.1109/5.871303
https://dx.doi.org/10.1109/5.871303
https://lccn.loc.gov/54011260
https://mitpress.mit.edu/books/cybernetics-second-edition
https://mitpress.mit.edu/books/cybernetics-second-edition
https://dx.doi.org/10.1002/rnc.592
https://dx.doi.org/10.23919/ACC.2019.8815169
https://dx.doi.org/10.23919/ACC.2019.8815169
http://arxiv.org/abs/1905.00532
http://arxiv.org/abs/1905.00532
http://arxiv.org/abs/1905.00532
https://dx.doi.org/https://doi.org/10.1016/0005-1098(89)90002-2
https://dx.doi.org/https://doi.org/10.1016/0005-1098(89)90002-2
https://dx.doi.org/10.1002/zamm.19630431023
https://dx.doi.org/10.1002/zamm.19630431023
https://dx.doi.org/10.1090/S0002-9904-1954-09848-8
https://dx.doi.org/10.1090/S0002-9947-1983-0690039-8
http://oai.dtic.mil/oai/oai?verb=getRecord%7B%5C&%7DmetadataPrefix=html%7B%5C&%7Didentifier=ADA127758
http://oai.dtic.mil/oai/oai?verb=getRecord%7B%5C&%7DmetadataPrefix=html%7B%5C&%7Didentifier=ADA127758
https://dx.doi.org/10.2307/1999247
https://dx.doi.org/10.2307/1999247
https://www.rand.org/pubs/research_memoranda/RM1391.html
http://www.rand.org/pubs/papers/P257.html
https://dx.doi.org/10.1137/0305009


BIBLIOGRAPHY 237

[39] E. Roxin. “Axiomatic approach in differential games”. Journal of Optimization The-
ory and Applications 3.3 (1969), pp. 153–163.

[40] R. J. Elliott and N. J. Kalton. “The Existence of Value in Differential Games of
Pursuit and Evasion”. Journal of Differential Equations 12.3 (1972), pp. 504–523.

[41] T. Basar and G. Olsder. “Dynamic Noncooperative Game Theory”. 2nd ed. Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics, 1998.

[42] T. Basar and A. Haurie. “Feedback Equilibria in Differential Games with Structural
and Modal Uncertainties”. Advances in Large Scale Systems. JAI Press, 1984, pp. 163–
201.

[43] M. Simaan and J. B. Cruz. “On the Stackelberg Strategy in Nonzero-Sum Games”.
Journal of Optimization Theory and Applications 11.5 (1973), pp. 533–555.

[44] A. Abate, M. Prandini, J. Lygeros, and S. Sastry. “Probabilistic Reachability and
Safety for Controlled Discrete Time Stochastic Hybrid Systems”. Automatica March
(2008).

[45] M. Bardi and I. C. Dolcetta. “Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations”. Modern Birkhäuser Classics. Birkhäuser Basel, 1997.

[46] I. M. Mitchell, S. Kaynama, M. Chen, and M. Oishi. “Safety Preserving Control
Synthesis for Sampled Data Systems”. Nonlinear Analysis: Hybrid Systems. Special
Issue Related to IFAC Conference on Analysis and Design of Hybrid Systems (ADHS
12) 10 (2013), pp. 63–82.

[47] I. M. Mitchell and S. Kaynama. “An Improved Algorithm for Robust Safety Analysis
of Sampled Data Systems”. Hybrid Systems: Computation and Control (HSCC). 1.
2015, pp. 21–30.

[48] E. Barron. “Differential Games with Maximum Cost”. Nonlinear Analysis: Theory,
Methods & Applications (1990), pp. 971–989.

[49] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-Jacobi
formulation of reachable sets for continuous dynamic games”. IEEE Transactions on
Automatic Control 50.7 (2005), pp. 947–957.

[50] M. G. Crandall and P.-L. Lions. “Two Approximations of Solutions of Hamilton-
Jacobi Equations”. Mathematics of Computation 43.167 (1984).

[51] S. Osher and C.-W. Shu. “High-Order Essentially Nonoscillatory Schemes for Hamilton-
Jacobi Equations”. SIAM Journal on Numerical Analysis 28.4 (1991), pp. 907–922.

[52] S. Osher and R. Fedkiw. “Level Set Methods and Dynamic Implicit Surfaces”.
Vol. 153. Applied Mathematical Sciences. New York, NY: Springer New York, 2003.

[53] I. Mitchell and J. Templeton. “A Toolbox of Hamilton-Jacobi Solvers for Analysis
of Nondeterministic Continuous and Hybrid Systems”. Hybrid Systems: Computation
and Control (2005), pp. 480–494.

https://dx.doi.org/10.1007/BF00929440
https://dx.doi.org/10.1016/0022-0396(72)90022-8
https://dx.doi.org/10.1016/0022-0396(72)90022-8
https://dx.doi.org/10.1137/1.9781611971132
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.5685&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.5685&rep=rep1&type=pdf
https://dx.doi.org/10.1007/BF00935665
http://www.sciencedirect.com/science/article/pii/S0005109808002677
http://www.sciencedirect.com/science/article/pii/S0005109808002677
https://dx.doi.org/10.1007/978-0-8176-4755-1
https://dx.doi.org/10.1007/978-0-8176-4755-1
https://dx.doi.org/10.1016/j.nahs.2013.04.003
https://dx.doi.org/10.1016/j.nahs.2013.04.003
https://dx.doi.org/10.1145/2728606.2728619
https://dx.doi.org/10.1145/2728606.2728619
http://www.sciencedirect.com/science/article/pii/0362546X9090113U
https://dx.doi.org/10.1109/TAC.2005.851439
https://dx.doi.org/10.1109/TAC.2005.851439
https://dx.doi.org/10.1090/S0025-5718-1984-0744921-8
https://dx.doi.org/10.1090/S0025-5718-1984-0744921-8
https://dx.doi.org/10.1137/0728049
https://dx.doi.org/10.1137/0728049
https://dx.doi.org/10.1007/b98879
https://dx.doi.org/10.1007/978-3-540-31954-2_31
https://dx.doi.org/10.1007/978-3-540-31954-2_31


BIBLIOGRAPHY 238

[54] A. B. Kurzhanski and P. Varaiya. “Ellipsoidal Techniques for Reachability Analysis”.
Hybrid Systems: Computation and Control. Ed. by N. Lynch and B. H. Krogh. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, pp. 202–214.

[55] J. N. Maidens, S. Kaynama, I. M. Mitchell, et al. “Lagrangian methods for approx-
imating the viability kernel in high-dimensional systems”. Automatica 49.7 (2013),
pp. 2017–2029.

[56] S. Kaynama, I. M. Mitchell, M. Oishi, and G. A. Dumont. “Scalable safety-preserving
robust control synthesis for continuous-time linear systems”. IEEE Transactions on
Automatic Control 60.11 (2015), pp. 3065–3070. eprint: 1312.3399.

[57] E. Asarin, T. Dang, and O. Maler. “The d/Dt Tool for Verification of Hybrid Sys-
tems”. Computer Aided Verification. Ed. by E. Brinksma and K. G. Larsen. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2002, pp. 365–370.

[58] C. Le Guernic and A. Girard. “Reachability Analysis of Linear Systems Using Sup-
port Functions”. Nonlinear Analysis: Hybrid Systems. IFAC World Congress 2008 4.2
(2010), pp. 250–262.

[59] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. “C2E2: A Verification
Tool for Stateflow Models”. Tools and Algorithms for the Construction and Analysis
of Systems. Ed. by C. Baier and C. Tinelli. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2015, pp. 68–82.

[60] S. Kong, S. Gao, W. Chen, and E. Clarke. “dReach: δ-Reachability Analysis for
Hybrid Systems”. Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by C. Baier and C. Tinelli. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2015, pp. 200–205.

[61] S. Sastry and M. Bodson. “Adaptive Control: Stability, Convergence and Robust-
ness”. Mineola, N.Y: Dover Publications, 2011.

[62] R. S. Sutton and A. G. Barto. “Reinforcement Learning: An Introduction”. 2nd ed.
MIT Press, 2018.

[63] R. Sutton, A. Barto, and R. Williams. “Reinforcement Learning Is Direct Adaptive
Optimal Control”. IEEE Control Systems Magazine 12.2 (1992), pp. 19–22.

[64] S. A. Billings. “Nonlinear System Identification : NARMAX Methods in the Time,
Frequency, and Spatio-Temporal Domains”. Wiley, 2013.

[65] M. Gevers. “Identification for Control: From the Early Achievements to the Revival
of Experiment Design*”. European Journal of Control 11.4 (2005), pp. 335–352.

[66] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”.
Journal of Basic Engineering 82.1 (1960), pp. 35–45.

[67] N. Gordon, D. Salmond, and A. Smith. “Novel Approach to Nonlinear/Non-Gaussian
Bayesian State Estimation”. IEE Proceedings F - Radar and Signal Processing 140.2
(1993), pp. 107–113.

https://dx.doi.org/10.1007/3-540-46430-1_19
https://dx.doi.org/10.1016/j.automatica.2013.03.020
https://dx.doi.org/10.1016/j.automatica.2013.03.020
https://dx.doi.org/10.1109/TAC.2015.2411872
https://dx.doi.org/10.1109/TAC.2015.2411872
1312.3399
https://dx.doi.org/10.1007/3-540-45657-0_30
https://dx.doi.org/10.1007/3-540-45657-0_30
https://dx.doi.org/10.1016/j.nahs.2009.03.002
https://dx.doi.org/10.1016/j.nahs.2009.03.002
https://dx.doi.org/10.1007/978-3-662-46681-0_5
https://dx.doi.org/10.1007/978-3-662-46681-0_5
https://dx.doi.org/10.1007/978-3-662-46681-0_15
https://dx.doi.org/10.1007/978-3-662-46681-0_15
https://my.ece.utah.edu/~bodson/acscr/index.html
https://my.ece.utah.edu/~bodson/acscr/index.html
http://incompleteideas.net/book/the-book.html
https://dx.doi.org/10.1109/37.126844
https://dx.doi.org/10.1109/37.126844
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118535561
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118535561
https://dx.doi.org/10.3166/ejc.11.335-352
https://dx.doi.org/10.3166/ejc.11.335-352
https://dx.doi.org/10.1115/1.3662552
https://dx.doi.org/10.1049/ip-f-2.1993.0015
https://dx.doi.org/10.1049/ip-f-2.1993.0015


BIBLIOGRAPHY 239

[68] C. J. C. H. Watkins and P. Dayan. “Q-Learning”. Machine Learning 8.3 (1992),
pp. 279–292.

[69] G. A. Miller. “The Cognitive Revolution: A Historical Perspective”. Trends in Cog-
nitive Sciences 7.3 (2003), pp. 141–144.

[70] D. Marr and T. Poggio. From Understanding Computation to Understanding Neural
Circuitry . Artificial Intelligence Laboratory. A.I. Memo. Massachusetts Institute of
Technology, 1976.

[71] T. L. Griffiths, F. Lieder, and N. D. Goodman. “Rational Use of Cognitive Re-
sources: Levels of Analysis between the Computational and the Algorithmic”. Topics
in Cognitive Science 7.2 (2015), pp. 217–229.

[72] A. Tversky and D. Kahneman. “Availability: A Heuristic for Judging Frequency and
Probability”. Cognitive Psychology 5.2 (1973), pp. 207–232.

[73] A. Tversky and D. Kahneman. “Judgment under Uncertainty: Heuristics and Biases”.
Science 185.4157 (1974), pp. 1124–1131.

[74] R. D. Luce. “Individual choice behavior: A theoretical analysis”. Wiley, 1959.

[75] R. E. Kalman. “When Is a Linear Control System Optimal?” Journal of Basic En-
gineering 86.1 (1964), pp. 51–60.

[76] A. Y. Ng and S. J. Russell. “Algorithms for Inverse Reinforcement Learning”. ACM
International Conference on Machine Learning (ICML). San Francisco, CA, USA:
Morgan Kaufmann Publishers, 2000, pp. 663–670.

[77] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. “Maximum Margin Planning”.
ACM International Conference on Machine Learning (ICML). New York, NY, USA,
2006, pp. 729–736.

[78] D. Ramachandran and E. Amir. “Bayesian Inverse Reinforcement Learning”. In-
ternational Joint Conference on Artificial Intelligence (IJCAI). San Francisco, CA,
USA: Morgan Kaufmann Publishers, 2007, pp. 2586–2591.

[79] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. “Maximum Entropy Inverse
Reinforcement Learning”. AAAI Conference on Artificial Intelligence. 2008.

[80] H. Wimmer and J. Perner. “Beliefs about Beliefs: Representation and Constraining
Function of Wrong Beliefs in Young Children’s Understanding of Deception”. Cogni-
tion 13.1 (1983), pp. 103–128.

[81] A. Gopnik and H. M. Wellman. “Why the Child’s Theory of Mind Really Is a
Theory”. Mind & Language 7.1-2 (1992), pp. 145–171.

[82] A. N. Meltzoff. “Understanding the Intentions of Others: Re-Enactment of Intended
Acts by 18-Month-Old Children”. Developmental psychology 31.5 (1995), pp. 838–
850.

https://dx.doi.org/10.1007/BF00992698
https://dx.doi.org/10.1016/S1364-6613(03)00029-9
https://dspace.mit.edu/handle/1721.1/5782
https://dspace.mit.edu/handle/1721.1/5782
https://dx.doi.org/10.1111/tops.12142
https://dx.doi.org/10.1111/tops.12142
https://dx.doi.org/10.1016/0010-0285(73)90033-9
https://dx.doi.org/10.1016/0010-0285(73)90033-9
https://dx.doi.org/10.1126/science.185.4157.1124
https://dx.doi.org/10.1037/14396-000
https://dx.doi.org/10.1115/1.3653115
http://dl.acm.org/citation.cfm?id=645529.657801
https://dx.doi.org/10.1145/1143844.1143936
http://dl.acm.org/citation.cfm?id=1625275.1625692
https://www.aaai.org/Library/AAAI/2008/aaai08-227.php
https://www.aaai.org/Library/AAAI/2008/aaai08-227.php
https://dx.doi.org/10.1016/0010-0277(83)90004-5
https://dx.doi.org/10.1016/0010-0277(83)90004-5
https://dx.doi.org/10.1111/j.1468-0017.1992.tb00202.x
https://dx.doi.org/10.1111/j.1468-0017.1992.tb00202.x
https://dx.doi.org/10.1037/0012-1649.31.5.838
https://dx.doi.org/10.1037/0012-1649.31.5.838


BIBLIOGRAPHY 240

[83] A. Dragan and S. Srinivasa. “Generating Legible Motion”. Robotics: Science and
Systems. Vol. 09. 2013.

[84] J. F. Fisac, C. Liu, J. B. Hamrick, et al. “Generating Plans That Predict Them-
selves”. Workshop on the Algorithmic Foundations of Robotics (WAFR). 2016.

[85] E. Barron and H. Ishii. “The Bellman equation for minimizing the maximum cost”.
Nonlinear Analysis: Theory, Methods & Applications (1989).

[86] J. A. Sethian. “A Fast Marching Level Set Method for Monotonically Advancing
Fronts”. Proceedings of the National Academy of Sciences 93.4 (1996), pp. 1591–
1595.

[87] A. E. Rapaport. “Characterization of Barriers of Differential Games”. Journal of
optimization theory and applications 97.I (1998), pp. 151–179.

[88] O. Bokanowski, N. Forcadel, and H. Zidani. “Reachability and Minimal Times for
State Constrained Nonlinear Problems without Any Controllability Assumption”.
SIAM Journal on Control and Optimization 48.7 (2010), pp. 4292–4316.

[89] O. Bokanowski and H. Zidani. “Minimal time problems with moving targets and
obstacles”. 18th IFAC World Congress (2011).

[90] P. Cardaliaguet. “A double obstacle problem arising in differential game theory”.
Journal of Mathematical Analysis and Applications 360.1 (2009), pp. 95–107.

[91] A. Cosso. “Stochastic Differential Games Involving Impulse Controls and Double-
Obstacle Quasi-Variational Inequalities”. SIAM Journal on Control and Optimization
51.3 (2013), pp. 2102–2131.

[92] I. J. Fialho and T. T. Georgiou. “Worst case analysis of nonlinear systems”. IEEE
Transactions on Automatic Control 44.6 (1999), pp. 1180–1196.

[93] K. Margellos and J. Lygeros. “Hamilton-Jacobi Formulation for Reach-Avoid Dif-
ferential Games”. IEEE Transactions on Automatic Control 56.8 (2011), pp. 1849–
1861.

[94] E. Prassler, A. Ritter, C. Schaeffer, and P. Fiorini. “A Short History of Cleaning
Robots”. Autonomous Robots 9.3 (2000), pp. 211–226.

[95] M. R. Kirchner, R. Mar, G. Hewer, et al. “Time-Optimal Collaborative Guidance
Using the Generalized Hopf Formula”. IEEE Control Systems Letters 2.2 (2018),
pp. 201–206.

[96] Federal Aviation Administration. “Automatic Dependent Surveillance-Broadcast
(ADS-B) out Performance Requirements to Support Air Traffic Control (ATC) Ser-
vice; Final Rule”. Federal Register—Rules and Regulations. 14 CFR Part 91 75.103
(2010), pp. 30159–30195.

[97] Federal Aviation Administration. “UAS Sightings Report”. (Accessed on 2019/10/16.)
2019.

http://www.roboticsproceedings.org/rss09/p24.html
https://arxiv.org/abs/1802.05250
https://arxiv.org/abs/1802.05250
http://www.sciencedirect.com/science/article/pii/0362546X89900965
https://dx.doi.org/10.1073/pnas.93.4.1591
https://dx.doi.org/10.1073/pnas.93.4.1591
http://link.springer.com/article/10.1023/A:1022631318424
https://dx.doi.org/10.1137/090762075
https://dx.doi.org/10.1137/090762075
http://hal.inria.fr/inria-00629166/
http://hal.inria.fr/inria-00629166/
https://dx.doi.org/10.1016/j.jmaa.2009.06.041
http://epubs.siam.org/doi/abs/10.1137/120880094
http://epubs.siam.org/doi/abs/10.1137/120880094
https://dx.doi.org/10.1109/9.769372
https://dx.doi.org/10.1109/TAC.2011.2105730
https://dx.doi.org/10.1109/TAC.2011.2105730
https://dx.doi.org/10.1023/A:1008974515925
https://dx.doi.org/10.1023/A:1008974515925
https://dx.doi.org/10.1109/LCSYS.2017.2785357
https://dx.doi.org/10.1109/LCSYS.2017.2785357
https://www.govinfo.gov/content/pkg/FR-2010-05-28/pdf/2010-12645.pdf
https://www.govinfo.gov/content/pkg/FR-2010-05-28/pdf/2010-12645.pdf
https://www.govinfo.gov/content/pkg/FR-2010-05-28/pdf/2010-12645.pdf
https://www.faa.gov/uas/resources/public_records/uas_sightings_report/


BIBLIOGRAPHY 241

[98] Unmanned Vehicle Systems International, Academy of Model Aeronautics, and Fed-
eral Aviation Administration. “Know before You Fly”. (Accessed on 2019/10/16.)
2019.

[99] Federal Aviation Administration. “National Drone Safety Awareness Week”. (Ac-
cessed on 2019/10/16.) 2019.

[100] F. Manjoo. “The Autonomous Selfie Drone Is Here. Is Society Ready for It?” The
New York Times (2018). (Accessed on 2019/10/16.)

[101] S. Hollister. “Skydio 2: The Self-Flying Future of Drones Starts at $999”. (Accessed
on 2019/10/16.) 2019.

[102] Google Inc. Google UAS Airspace System Overview . Tech. rep. 2015.

[103] Amazon.com Inc. Revising the Airspace Model for the Safe Integration of Small
Unmanned Aircraft Systems Airspace Design. Tech. rep. 2015.

[104] B. Breen. “Controlled Flight Into Terrain and the Enhanced Ground Proximity
Warning System”. IEEE Aerospace and Electronic Systems Magazine 14.1 (1999),
pp. 19–24.

[105] Federal Aviation Administration. “Introduction to TCAS II (Version 7.1)”. United
States Department of Transportation, 2011.

[106] I. Hwang and C. J. Tomlin. “Protocol-Based Conflict Resolution for Finite Informa-
tion Horizon”. American Control Conference (ACC). Vol. 1. 2002, pp. 748–753.

[107] E. Rimon and D. Koditschek. “Exact Robot Navigation Using Artificial Potential
Functions”. IEEE Transactions on Robotics and Automation 8.5 (1992), pp. 501–518.

[108] R. Olfati-Saber and R. M. Murray. “Distributed Cooperative Control of Multiple Ve-
hicle Formations Using Structural Potential Functions”. IFAC Proceedings Volumes.
15th IFAC World Congress 35.1 (2002), pp. 495–500.

[109] D. E. Chang, S. C. Shadden, J. E. Marsden, and R. Olfati-Saber. “Collision Avoid-
ance for Multiple Agent Systems”. IEEE Conference on Decision and Control (CDC).
2003, pp. 539–543.

[110] P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments Using Velocity
Obstacles”. The International Journal of Robotics Research 17.7 (1998), pp. 760–772.

[111] E. Frazzoli, Z.-H. Mao, J.-H. Oh, and E. Feron. “Resolution of Conflicts Involving
Many Aircraft via Semidefinite Programming”. Journal of Guidance, Control, and
Dynamics 24.1 (2001), pp. 79–86.

[112] J. van den Berg, M. Lin, and D. Manocha. “Reciprocal Velocity Obstacles for Real-
Time Multi-Agent Navigation”. IEEE International Conference on Robotics and Au-
tomation (ICRA). 2008, pp. 1928–1935.

[113] E. Lalish and K. A. Morgansen. “Distributed Reactive Collision Avoidance”. Au-
tonomous Robots 32.3 (2012), pp. 207–226.

http://knowbeforeyoufly.org/
https://www.faa.gov/uas/resources/events_calendar/drone_safety_awareness/
https://www.nytimes.com/interactive/2018/02/13/technology/skydio-autonomous-drones.html,%20https://www.nytimes.com/interactive/2018/02/13/technology/skydio-autonomous-drones.html
https://www.theverge.com/2019/10/1/20892377/skydio-2-drone-autonomous-self-flying-camera-controller-price-release-date-announcement
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1].pdf
https://assets.documentcloud.org/documents/2182311/amazon-revising-the-airspace-model-for-the-safe.pdf
https://assets.documentcloud.org/documents/2182311/amazon-revising-the-airspace-model-for-the-safe.pdf
https://dx.doi.org/10.1109/62.738350
https://dx.doi.org/10.1109/62.738350
https://www.faa.gov/documentLibrary/media/Advisory_Circular/TCAS%5C%20II%5C%20V7.1%5C%20Intro%5C%20booklet.pdf
https://dx.doi.org/10.1109/ACC.2002.1024903
https://dx.doi.org/10.1109/ACC.2002.1024903
https://dx.doi.org/10.1109/70.163777
https://dx.doi.org/10.1109/70.163777
https://dx.doi.org/10.3182/20020721-6-ES-1901.00244
https://dx.doi.org/10.3182/20020721-6-ES-1901.00244
https://resolver.caltech.edu/CaltechAUTHORS:CHAcdc03
https://resolver.caltech.edu/CaltechAUTHORS:CHAcdc03
https://dx.doi.org/10.1177/027836499801700706
https://dx.doi.org/10.1177/027836499801700706
https://dx.doi.org/10.2514/2.4678
https://dx.doi.org/10.2514/2.4678
https://dx.doi.org/10.1109/ROBOT.2008.4543489
https://dx.doi.org/10.1109/ROBOT.2008.4543489
https://dx.doi.org/10.1007/s10514-011-9267-7


BIBLIOGRAPHY 242

[114] A. Giese, D. Latypov, and N. M. Amato. “Reciprocally-Rotating Velocity Obstacles”.
IEEE International Conference on Robotics and Automation (ICRA). 2014, pp. 3234–
3241.

[115] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths”. IEEE Transactions on Systems Science and
Cybernetics 4.2 (1968), pp. 100–107.

[116] S. Karaman and E. Frazzoli. “Sampling-Based Algorithms for Optimal Motion Plan-
ning”. The International Journal of Robotics Research 30.7 (2011), pp. 846–894.

[117] M. Erdmann and T. Lozano-Pérez. “On Multiple Moving Objects”. Algorithmica 2.1
(1987).

[118] J. van den Berg and M. Overmars. “Prioritized Motion Planning for Multiple Robots”.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2005,
pp. 430–435.

[119] M. Chen, S. Bansal, K. Tanabe, and C. J. Tomlin. “Provably Safe and Robust Drone
Routing via Sequential Path Planning: A Case Study in San Francisco and the Bay
Area” (2017). arXiv: 1705.04585 [cs].

[120] J. Lygeros, C. Tomlin, and S. Sastry. “Multiobjective Hybrid Controller Synthesis”.
Hybrid and Real-Time Systems. Ed. by O. Maler. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1997, pp. 109–123.

[121] S. M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning .
Tech. rep. TR 98–11. Iowa State University, 1998.

[122] S. M. LaValle and J. J. Kuffner. “Randomized Kinodynamic Planning”. The Inter-
national Journal of Robotics Research 20.5 (2001), pp. 378–400.

[123] L. E. Kavraki, P. Svestka, J.-. Latombe, and M. H. Overmars. “Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces”. IEEE Transactions on
Robotics and Automation 12.4 (1996), pp. 566–580.

[124] A. Majumdar and R. Tedrake. “Funnel Libraries for Real-Time Robust Feedback Mo-
tion Planning”. The International Journal of Robotics Research 36.8 (2017), pp. 947–
982.

[125] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone. “Robust Online Motion Plan-
ning via Contraction Theory and Convex Optimization”. 2017 IEEE International
Conference on Robotics and Automation (ICRA). 2017, pp. 5883–5890.

[126] A. Richards and J. How. “Model Predictive Control of Vehicle Maneuvers with Guar-
anteed Completion Time and Robust Feasibility”. Proceedings of the 2003 American
Control Conference, 2003. Vol. 5. 2003, pp. 4034–4040.

[127] U. Rosolia and F. Borrelli. “Learning Model Predictive Control for Iterative Tasks.
a Data-Driven Control Framework”. IEEE Transactions on Automatic Control 63.7
(2018), pp. 1883–1896.

https://dx.doi.org/10.1109/ICRA.2014.6907324
https://dx.doi.org/10.1109/TSSC.1968.300136
https://dx.doi.org/10.1109/TSSC.1968.300136
https://dx.doi.org/10.1177/0278364911406761
https://dx.doi.org/10.1177/0278364911406761
https://dx.doi.org/10.1007/BF01840371
https://dx.doi.org/10.1109/IROS.2005.1545306
http://arxiv.org/abs/1705.04585
http://arxiv.org/abs/1705.04585
http://arxiv.org/abs/1705.04585
http://arxiv.org/abs/1705.04585
https://dx.doi.org/10.1007/BFb0014720
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
https://dx.doi.org/10.1177/02783640122067453
https://dx.doi.org/10.1109/70.508439
https://dx.doi.org/10.1109/70.508439
https://dx.doi.org/10.1177/0278364917712421
https://dx.doi.org/10.1177/0278364917712421
https://dx.doi.org/10.1109/ICRA.2017.7989693
https://dx.doi.org/10.1109/ICRA.2017.7989693
https://dx.doi.org/10.1109/ACC.2003.1240467
https://dx.doi.org/10.1109/ACC.2003.1240467
https://dx.doi.org/10.1109/TAC.2017.2753460
https://dx.doi.org/10.1109/TAC.2017.2753460


BIBLIOGRAPHY 243

[128] T. Schouwenaars, J. How, and E. Feron. “Decentralized Cooperative Trajectory Plan-
ning of Multiple Aircraft with Hard Safety Guarantees”. AIAA Guidance, Navigation,
and Control Conference and Exhibit. Providence, Rhode Island, 2004.

[129] B. Yamauchi. “A Frontier-Based Approach for Autonomous Exploration”. IEEE
International Symposium on Computational Intelligence in Robotics and Automation
(CIRA). 1997, pp. 146–151.

[130] B. Yamauchi. “Frontier-Based Exploration Using Multiple Robots”. ACM Interna-
tional Conference on Autonomous Agents. New York, NY, USA, 1998, pp. 47–53.

[131] L. Yoder and S. Scherer. “Autonomous Exploration for Infrastructure Modeling with
a Micro Aerial Vehicle”. Field and Service Robotics: Results of the 10th International
Conference. Ed. by D. S. Wettergreen and T. D. Barfoot. Springer Tracts in Advanced
Robotics. Cham: Springer, 2016, pp. 427–440.

[132] A. Stentz. “Optimal and Efficient Path Planning for Partially-Known Environments”.
Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
1994, pp. 3310–3317.

[133] S. Koenig and M. Likhachev. “Fast Replanning for Navigation in Unknown Terrain”.
IEEE Transactions on Robotics 21.3 (2005), pp. 354–363.

[134] K. E. Bekris and L. E. Kavraki. “Greedy but Safe Replanning under Kinodynamic
Constraints”. IEEE International Conference on Robotics and Automation (ICRA).
2007, pp. 704–710.

[135] T. Fraichard and H. Asama. “Inevitable Collision States — a Step towards Safer
Robots?” Advanced Robotics 18.10 (2004), pp. 1001–1024.

[136] L. Janson, T. Hu, and M. Pavone. “Safe Motion Planning in Unknown Environ-
ments: Optimality Benchmarks and Tractable Policies”. Robotics: Science and Sys-
tems. Vol. 14. 2018.

[137] T. M. Moldovan and P. Abbeel. “Safe Exploration in Markov Decision Processes”.
ACM International Conference on Machine Learning (ICML). USA: Omnipress, 2012,
pp. 1451–1458.

[138] J. Achiam, D. Held, A. Tamar, and P. Abbeel. “Constrained Policy Optimization”.
ACM International Conference on Machine Learning (ICML). 2017, pp. 22–31.

[139] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. “Safe Model-Based
Reinforcement Learning with Stability Guarantees”. Advances in Neural Information
Processing Systems. USA: Curran Associates, 2017, pp. 908–919.

[140] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. “A Lyapunov-
Based Approach to Safe Reinforcement Learning”. Advances in Neural Information
Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, et al. Curran
Associates, 2018, pp. 8092–8101.

https://dx.doi.org/10.2514/6.2004-5141
https://dx.doi.org/10.2514/6.2004-5141
https://dx.doi.org/10.1109/CIRA.1997.613851
https://dx.doi.org/10.1145/280765.280773
https://dx.doi.org/10.1007/978-3-319-27702-8_28
https://dx.doi.org/10.1007/978-3-319-27702-8_28
https://dx.doi.org/10.1109/ROBOT.1994.351061
https://dx.doi.org/10.1109/TRO.2004.838026
https://dx.doi.org/10.1109/ROBOT.2007.363069
https://dx.doi.org/10.1109/ROBOT.2007.363069
https://dx.doi.org/10.1163/1568553042674662
https://dx.doi.org/10.1163/1568553042674662
http://www.roboticsproceedings.org/rss14/p61.html
http://www.roboticsproceedings.org/rss14/p61.html
http://dl.acm.org/citation.cfm?id=3042573.3042759
http://proceedings.mlr.press/v70/achiam17a.html
http://dl.acm.org/citation.cfm?id=3294771.3294858
http://dl.acm.org/citation.cfm?id=3294771.3294858
http://papers.nips.cc/paper/8032-a-lyapunov-based-approach-to-safe-reinforcement-learning.pdf
http://papers.nips.cc/paper/8032-a-lyapunov-based-approach-to-safe-reinforcement-learning.pdf


BIBLIOGRAPHY 244

[141] S. L. Herbert, M. Chen, S. Han, et al. “FaSTrack: A Modular Framework for Fast
and Guaranteed Safe Motion Planning”. IEEE Conference on Decision and Control
(CDC). 2017, pp. 1517–1522.

[142] M. Quigley, B. Gerkey, K. Conley, et al. “ROS: An Open-Source Robot Operating
System”. ICRA Workshop on Open Source Software. 2009.

[143] I. A. Sucan, M. Moll, and L. E. Kavraki. “The Open Motion Planning Library”.
IEEE Robotics Automation Magazine 19.4 (2012), pp. 72–82.

[144] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. “Batch Informed Trees (BIT*):
Sampling-Based Optimal Planning via the Heuristically Guided Search of Implicit
Random Geometric Graphs”. IEEE International Conference on Robotics and Au-
tomation (ICRA). 2015, pp. 3067–3074.

[145] M. Chen, S. L. Herbert, M. S. Vashishtha, et al. “Decomposition of Reachable Sets
and Tubes for a Class of Nonlinear Systems”. IEEE Transactions on Automatic Con-
trol 63.11 (2018), pp. 3675–3688.

[146] S. Karaman and E. Frazzoli. “Sampling-Based Optimal Motion Planning for Non-
Holonomic Dynamical Systems”. IEEE International Conference on Robotics and Au-
tomation (ICRA). 2013, pp. 5041–5047.

[147] I. A. Şucan and L. E. Kavraki. “Kinodynamic Motion Planning by Interior-Exterior
Cell Exploration”. Algorithmic Foundation of Robotics VIII: Selected Contributions
of the Eight International Workshop on the Algorithmic Foundations of Robotics. Ed.
by G. S. Chirikjian, H. Choset, M. Morales, and T. Murphey. Springer Tracts in
Advanced Robotics. Berlin, Heidelberg: Springer, 2010, pp. 449–464.

[148] V. Mnih, K. Kavukcuoglu, D. Silver, et al. “Human-Level Control through Deep
Reinforcement Learning”. Nature 518.7540 (2015), pp. 529–533.

[149] J. Schulman, S. Levine, P. Abbeel, et al. “Trust Region Policy Optimization”. ACM
International Conference on Machine Learning (ICML). 2015, pp. 1889–1897.

[150] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. “An Application of Reinforcement
Learning to Aerobatic Helicopter Flight”. Advances in Neural Information Processing
Systems 19. Ed. by B. Schölkopf, J. C. Platt, and T. Hoffman. MIT Press, 2007.

[151] A. Coates, P. Abbeel, and A. Y. Ng. “Learning for Control from Multiple Demon-
strations”. ACM International Conference on Machine Learning (ICML). New York,
NY, USA, 2008, pp. 144–151.

[152] J. Z. Kolter, C. Plagemann, D. T. Jackson, et al. “A Probabilistic Approach to Mixed
Open-Loop and Closed-Loop Control, with Application to Extreme Autonomous
Driving”. IEEE International Conference on Robotics and Automation (ICRA). 2010,
pp. 839–845.

https://dx.doi.org/10.1109/CDC.2017.8263867
https://dx.doi.org/10.1109/CDC.2017.8263867
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://dx.doi.org/10.1109/MRA.2012.2205651
https://dx.doi.org/10.1109/ICRA.2015.7139620
https://dx.doi.org/10.1109/ICRA.2015.7139620
https://dx.doi.org/10.1109/ICRA.2015.7139620
https://dx.doi.org/10.1109/TAC.2018.2797194
https://dx.doi.org/10.1109/TAC.2018.2797194
https://dx.doi.org/10.1109/ICRA.2013.6631297
https://dx.doi.org/10.1109/ICRA.2013.6631297
https://dx.doi.org/10.1007/978-3-642-00312-7_28
https://dx.doi.org/10.1007/978-3-642-00312-7_28
https://dx.doi.org/10.1038/nature14236
https://dx.doi.org/10.1038/nature14236
http://proceedings.mlr.press/v37/schulman15.html
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
https://dx.doi.org/10.1145/1390156.1390175
https://dx.doi.org/10.1145/1390156.1390175
https://dx.doi.org/10.1109/ROBOT.2010.5509562
https://dx.doi.org/10.1109/ROBOT.2010.5509562
https://dx.doi.org/10.1109/ROBOT.2010.5509562


BIBLIOGRAPHY 245

[153] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea. “A Simple Learning Strat-
egy for High-Speed Quadrocopter Multi-Flips”. IEEE International Conference on
Robotics and Automation (ICRA). 2010, pp. 1642–1648.

[154] A. Hobbs. “Unmanned Aircraft Systems”. Human Factors in Aviation (Second Edi-
tion). Ed. by E. Salas and D. Maurino. San Diego: Academic Press, 2010, pp. 505–
531.

[155] P. Christiano, Z. Shah, I. Mordatch, et al. “Transfer from Simulation to Real World
through Learning Deep Inverse Dynamics Model” (2016). arXiv: 1610.03518 [cs].

[156] S. Huang, N. Papernot, I. Goodfellow, et al. “Adversarial Attacks on Neural Network
Policies” (2017). arXiv: 1702.02284 [cs, stat].

[157] T. J. Perkins and A. G. Barto. “Lyapunov Design for Safe Reinforcement Learning”.
Journal of Machine Learning Research 3.Dec (2002), pp. 803–832.

[158] J. W. Roberts, I. R. Manchester, and R. Tedrake. “Feedback Controller Param-
eterizations for Reinforcement Learning”. IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL). 2011, pp. 310–317.

[159] P. Geibel and F. Wysotzki. “Risk-Sensitive Reinforcement Learning Applied to
Control under Constraints”. Journal of Artificial Intelligence Research 24.1 (2005),
pp. 81–108.

[160] J. Garćıa and F. Fernández. “A Comprehensive Survey on Safe Reinforcement
Learning”. Journal of Machine Learning Research 16.42 (2015), pp. 1437–1480.

[161] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. “Safe Learning of
Regions of Attraction for Uncertain, Nonlinear Systems with Gaussian Processes”.
IEEE Conference on Decision and Control (CDC). 2016, pp. 4661–4666.

[162] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin. “Provably Safe and Ro-
bust Learning-Based Model Predictive Control”. Automatica (Journal of IFAC) 49.5
(2013), pp. 1216–1226.

[163] S. Prajna and A. Jadbabaie. “Safety Verification of Hybrid Systems Using Bar-
rier Certificates”. Hybrid Systems: Computation and Control. Ed. by R. Alur and
G. J. Pappas. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2004,
pp. 477–492.

[164] C. Sloth, G. J. Pappas, and R. Wisniewski. “Compositional Safety Analysis Using
Barrier Certificates”. ACM International Conference on Hybrid Systems: Computa-
tion and Control. New York, NY, USA, 2012, pp. 15–24.

[165] A. D. Ames, J. W. Grizzle, and P. Tabuada. “Control Barrier Function Based
Quadratic Programs with Application to Adaptive Cruise Control”. IEEE Confer-
ence on Decision and Control (CDC). 2014, pp. 6271–6278.

https://dx.doi.org/10.1109/ROBOT.2010.5509452
https://dx.doi.org/10.1109/ROBOT.2010.5509452
https://dx.doi.org/10.1016/B978-0-12-374518-7.00016-X
http://arxiv.org/abs/1610.03518
http://arxiv.org/abs/1610.03518
http://arxiv.org/abs/1610.03518
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1702.02284
http://www.jmlr.org/papers/v3/perkins02a.html
https://dx.doi.org/10.1109/ADPRL.2011.5967370
https://dx.doi.org/10.1109/ADPRL.2011.5967370
http://dl.acm.org/citation.cfm?id=1622519.1622522
http://dl.acm.org/citation.cfm?id=1622519.1622522
http://jmlr.org/papers/v16/garcia15a.html
http://jmlr.org/papers/v16/garcia15a.html
https://dx.doi.org/10.1109/CDC.2016.7798979
https://dx.doi.org/10.1109/CDC.2016.7798979
https://dx.doi.org/10.1016/j.automatica.2013.02.003
https://dx.doi.org/10.1016/j.automatica.2013.02.003
https://dx.doi.org/10.1007/978-3-540-24743-2_32
https://dx.doi.org/10.1007/978-3-540-24743-2_32
https://dx.doi.org/10.1145/2185632.2185639
https://dx.doi.org/10.1145/2185632.2185639
https://dx.doi.org/10.1109/CDC.2014.7040372
https://dx.doi.org/10.1109/CDC.2014.7040372


BIBLIOGRAPHY 246

[166] J. H. Gillula and C. J. Tomlin. “Guaranteed Safe Online Learning via Reachability:
Tracking a Ground Target Using a Quadrotor”. IEEE International Conference on
Robotics and Automation (ICRA). 2012, pp. 2723–2730.

[167] J. Gillula and C. Tomlin. “Reducing Conservativeness in Safety Guarantees by
Learning Disturbances Online: Iterated Guaranteed Safe Online Learning”. Robotics:
Science and Systems. Vol. 08. 2012.

[168] S. Kaynama and M. Oishi. “A Modified Riccati Transformation for Decentralized
Computation of the Viability Kernel under LTI Dynamics”. IEEE Transactions on
Automatic Control 58.11 (2013), pp. 2878–2892.

[169] M. Chen, S. Herbert, and C. J. Tomlin. “Fast Reachable Set Approximations via
State Decoupling Disturbances”. IEEE Conference on Decision and Control (CDC).
2016, pp. 191–196.

[170] J. Darbon and S. Osher. “Algorithms for overcoming the curse of dimensionality for
certain Hamilton-Jacobi equations arising in control theory and elsewhere”. Research
in the Mathematical Sciences 3.1 (2016).

[171] J. Z. Kolter and A. Y. Ng. “Policy Search via the Signed Derivative”. Robotics:
Science and Systems. Vol. 05. 2009.

[172] C. E. Rasmussen and C. K. I. Williams. “Gaussian Processes for Machine Learning”.
Adaptive Computation and Machine Learning. OCLC: ocm61285753. Cambridge,
Mass: MIT Press, 2006.

[173] A. Genz. “Numerical Computation of Multivariate Normal Probabilities”. Journal
of Computational and Graphical Statistics 1.2 (1992), pp. 141–149.

[174] D. Fridovich-Keil, A. Bajcsy, J. F. Fisac, et al. “Confidence-Aware Motion Prediction
for Real-Time Collision Avoidance”. The International Journal of Robotics Research
(2019).

[175] B. S. Dhillon. “Robot System Reliability and Safety: A Modern Approach”. CRC
Press, 2015.

[176] J. Vincent. “Mall Security Bot Knocks down Toddler, Breaks Asimov’s First Law
of Robotics”. The Verge (2016). (Accessed on 2019/10/20.)

[177] N. Garun. “DC Security Robot Quits Job by Drowning Itself in a Fountain”. The
Verge (2017). (Accessed on 2019/10/20.)

[178] B. D. Ziebart, N. Ratliff, G. Gallagher, et al. “Planning-Based Prediction for Pedestri-
ans”. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2009, pp. 3931–3936.

[179] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard. “Socially Compliant Mobile
Robot Navigation via Inverse Reinforcement Learning”. The International Journal of
Robotics Research 35.11 (2016), pp. 1289–1307.

https://dx.doi.org/10.1109/ICRA.2012.6225136
https://dx.doi.org/10.1109/ICRA.2012.6225136
http://www.roboticsproceedings.org/rss08/p11.html
http://www.roboticsproceedings.org/rss08/p11.html
https://dx.doi.org/10.1109/TAC.2013.2272152
https://dx.doi.org/10.1109/TAC.2013.2272152
https://dx.doi.org/10.1109/CDC.2016.7798268
https://dx.doi.org/10.1109/CDC.2016.7798268
https://dx.doi.org/10.1186/s40687-016-0068-7
https://dx.doi.org/10.1186/s40687-016-0068-7
http://www.roboticsproceedings.org/rss05/p27.html
http://www.gaussianprocess.org/gpml/
https://dx.doi.org/10.1080/10618600.1992.10477010
https://dx.doi.org/10.1177/0278364919859436
https://dx.doi.org/10.1177/0278364919859436
https://dx.doi.org/10.1201/b18388
https://www.theverge.com/2016/7/13/12170640/mall-security-robot-k5-knocks-down-toddler
https://www.theverge.com/2016/7/13/12170640/mall-security-robot-k5-knocks-down-toddler
https://www.theverge.com/tldr/2017/7/17/15986042/dc-security-robot-k5-falls-into-water
https://dx.doi.org/10.1109/IROS.2009.5354147
https://dx.doi.org/10.1109/IROS.2009.5354147
https://dx.doi.org/10.1177/0278364915619772
https://dx.doi.org/10.1177/0278364915619772


BIBLIOGRAPHY 247

[180] C. L. Baker, R. Saxe, and J. B. Tenenbaum. “Action Understanding as Inverse
Planning”. Cognition 113.3 (2009), pp. 329–349.

[181] H. Ben Amor, G. Neumann, S. Kamthe, et al. “Interaction Primitives for Human-
Robot Cooperation Tasks”. IEEE International Conference on Robotics and Automa-
tion (ICRA). 2014, pp. 2831–2837.

[182] H. Ding, G. Reißig, K. Wijaya, et al. “Human Arm Motion Modeling and Long-
Term Prediction for Safe and Efficient Human-Robot-Interaction”. IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2011, pp. 5875–5880.

[183] H. S. Koppula and A. Saxena. “Anticipating human activities for reactive robotic
response.” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2013, p. 2071.

[184] P. A. Lasota and J. A. Shah. “Analyzing the effects of human-aware motion planning
on close-proximity human–robot collaboration”. Human factors 57.1 (2015), pp. 21–
33.

[185] K. P. Hawkins, N. Vo, S. Bansal, and A. F. Bobick. “Probabilistic Human Ac-
tion Prediction and Wait-Sensitive Planning for Responsive Human-Robot Collab-
oration”. International Conference on Humanoid Robots (Humanoids). IEEE-RAS,
2013, pp. 499–506.

[186] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone. “Multimodal Probabilistic
Model-Based Planning for Human-Robot Interaction”. IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2018.

[187] G. S. Aoude, B. D. Luders, J. M. Joseph, et al. “Probabilistically Safe Motion Plan-
ning to Avoid Dynamic Obstacles with Uncertain Motion Patterns”. Auton. Robots
35.1 (2013), pp. 51–76.

[188] J. Von Neumann and O. Morgenstern. “Theory of games and economic behavior”.
Princeton University Press, 1945.

[189] C. Finn, S. Levine, and P. Abbeel. “Guided cost learning: Deep inverse optimal
control via policy optimization”. ACM International Conference on Machine Learning
(ICML). 2016, pp. 49–58.

[190] D. Ridel, E. Rehder, M. Lauer, et al. “A Literature Review on the Prediction of
Pedestrian Behavior in Urban Scenarios”. IEEE International Conference on Intelli-
gent Transportation Systems (ITSC). 2018, pp. 3105–3112.

[191] D. Helbing and P. Molnár. “Social Force Model for Pedestrian Dynamics”. Physical
Review E 51.5 (1995), pp. 4282–4286.

[192] V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto. “Intent-Aware Long-Term Pre-
diction of Pedestrian Motion”. IEEE International Conference on Robotics and Au-
tomation (ICRA). 2016, pp. 2543–2549.

https://dx.doi.org/10.1016/j.cognition.2009.07.005
https://dx.doi.org/10.1016/j.cognition.2009.07.005
https://dx.doi.org/10.1109/ICRA.2014.6907265
https://dx.doi.org/10.1109/ICRA.2014.6907265
https://dx.doi.org/10.1109/ICRA.2011.5980248
https://dx.doi.org/10.1109/ICRA.2011.5980248
https://dx.doi.org/10.1109/IROS.2013.6696634
https://dx.doi.org/10.1109/IROS.2013.6696634
https://dx.doi.org/10.1177/0018720814565188
https://dx.doi.org/10.1177/0018720814565188
https://dx.doi.org/10.1109/HUMANOIDS.2013.7030020
https://dx.doi.org/10.1109/HUMANOIDS.2013.7030020
https://dx.doi.org/10.1109/HUMANOIDS.2013.7030020
https://dx.doi.org/10.1109/ICRA.2018.8460766
https://dx.doi.org/10.1109/ICRA.2018.8460766
https://dx.doi.org/10.1007/s10514-013-9334-3
https://dx.doi.org/10.1007/s10514-013-9334-3
https://press.princeton.edu/books/paperback/9780691130613/theory-of-games-and-economic-behavior
https://dl.acm.org/citation.cfm?id=3045397
https://dl.acm.org/citation.cfm?id=3045397
https://dx.doi.org/10.1109/ITSC.2018.8569415
https://dx.doi.org/10.1109/ITSC.2018.8569415
https://dx.doi.org/10.1103/PhysRevE.51.4282
https://dx.doi.org/10.1109/ICRA.2016.7487409
https://dx.doi.org/10.1109/ICRA.2016.7487409


BIBLIOGRAPHY 248

[193] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani. “Forecasting Interactive Dy-
namics of Pedestrians with Fictitious Play”. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017, pp. 774–782.

[194] N. Wiener. “Some Moral and Technical Consequences of Automation”. Science
131.3410 (1960), pp. 1355–1358.

[195] D. Amodei, C. Olah, J. Steinhardt, et al. “Concrete Problems in Ai Safety” (2016).
arXiv: 1606.06565 [cs].

[196] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan. “Cooperative Inverse
Reinforcement Learning”. Advances in Neural Information Processing Systems. Ed.
by D. D. Lee, M. Sugiyama, U. V. Luxburg, et al. Curran Associates, 2016.

[197] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan. “Learning Robot
Objectives from Physical Human Interaction”. Conference on Robot Learning. 2017,
pp. 217–226.

[198] A. Bobu, A. Bajcsy, J. F. Fisac, and A. D. Dragan. “Learning under Misspecified
Objective Spaces”. Conference on Robot Learning. 2018, pp. 796–805.

[199] Federal Highway Administration. Highway Statistics, 2018 . Tech. rep. United States
Department of Transportation, 2019.

[200] World Health Organization. Global Status Report on Road Safety 2018 . Tech. rep.
Geneva, 2018.

[201] National Highway Traffic Safety Administration. Critical Reasons for Crashes In-
vestigated in the National Motor Vehicle Crash Causation Survey . Tech. rep. DOT
HS 812 506. United States Department of Transportation, 2018.

[202] A. Carvalho, G. Palmieri, H. E. Tseng, et al. “Robust Vehicle Stability Control with
an Uncertain Driver Model”. European Control Conference (ECC). 2013.

[203] M. P. Vitus and C. J. Tomlin. “A Probabilistic Approach to Planning and Control
in Autonomous Urban Driving”. IEEE Conference on Decision and Control (CDC).
2013, pp. 2459–2464.

[204] B. Luders, M. Kothari, and J. How. “Chance Constrained RRT for Probabilistic
Robustness to Environmental Uncertainty”. AIAA Guidance, Navigation, and Control
Conference. 2010.

[205] C. Hermes, C. Wohler, K. Schenk, and F. Kummert. “Long-Term Vehicle Motion
Prediction”. IEEE Intelligent Vehicles Symposium. 2009, pp. 652–657.

[206] P. Trautman and A. Krause. “Unfreezing the Robot: Navigation in Dense, Interact-
ing Crowds”. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2010, pp. 797–803.

[207] Reuters. “Waymo’s Self Driving Minivans Struggles to Merge in Left Lane”. Daily
Mail (2018).

http://openaccess.thecvf.com/content_cvpr_2017/html/Ma_Forecasting_Interactive_Dynamics_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Ma_Forecasting_Interactive_Dynamics_CVPR_2017_paper.html
https://dx.doi.org/10.1126/science.131.3410.1355
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://papers.nips.cc/paper/6420-cooperative-inverse-reinforcement-learning.pdf
http://papers.nips.cc/paper/6420-cooperative-inverse-reinforcement-learning.pdf
http://proceedings.mlr.press/v78/bajcsy17a.html
http://proceedings.mlr.press/v78/bajcsy17a.html
http://proceedings.mlr.press/v87/bobu18a.html
http://proceedings.mlr.press/v87/bobu18a.html
https://www.fhwa.dot.gov/policyinformation/statistics/2018/
http://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812506
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812506
https://dx.doi.org/10.23919/ECC.2013.6669718
https://dx.doi.org/10.23919/ECC.2013.6669718
https://dx.doi.org/10.1109/CDC.2013.6760249
https://dx.doi.org/10.1109/CDC.2013.6760249
https://dx.doi.org/10.2514/6.2010-8160
https://dx.doi.org/10.2514/6.2010-8160
https://dx.doi.org/10.1109/IVS.2009.5164354
https://dx.doi.org/10.1109/IVS.2009.5164354
https://dx.doi.org/10.1109/IROS.2010.5654369
https://dx.doi.org/10.1109/IROS.2010.5654369
http://www.dailymail.co.uk/video/sciencetech/video-1752896/Video-Waymos-self-driving-minivans-struggles-merge-left-lane.html


BIBLIOGRAPHY 249

[208] T. B. Lee. “Even Self-Driving Leader Waymo Is Struggling to Reach Full Autonomy”.
Ars Technica (2018).

[209] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan. “Planning for Autonomous
Cars That Leverage Effects on Human Actions”. Robotics: Science and Systems. 2016.

[210] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan. “Information Gathering Ac-
tions over Human Internal State”. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE/RSJ, 2016, pp. 66–73.

[211] National Transportation Safety Board. Collison between Vehicle Controlled by Devel-
opmental Automated Driving System and Pedestrian. Tech. rep. NTSB/HAR-19/03.
Washington, D.C., 2019.

[212] A. Liniger and J. Lygeros. “A Noncooperative Game Approach to Autonomous
Racing”. IEEE Transactions on Control Systems Technology (2019), pp. 1–14.

[213] A. Dreves and M. Gerdts. “A Generalized Nash Equilibrium Approach for Optimal
Control Problems of Autonomous Cars”. Optimal Control Applications and Methods
39.1 (2018), pp. 326–342.

[214] R. Spica, D. Falanga, E. Cristofalo, et al. “A Real-Time Game Theoretic Planner
for Autonomous Two-Player Drone Racing”. Robotics: Science and Systems. Vol. 14.
2018.

[215] T. B. Sheridan. “Three Models of Preview Control”. IEEE Transactions on Human
Factors in Electronics HFE-7.2 (1966), pp. 91–102.

[216] H. Peng and M. Tomizuka. “Preview Control for Vehicle Lateral Guidance in Highway
Automation”. Journal of Dynamic Systems, Measurement, and Control 115.4 (1993),
pp. 679–686.

[217] C. C. Macadam. “Understanding and Modeling the Human Driver”. Vehicle System
Dynamics 40.1-3 (2003), pp. 101–134.

[218] K. Waugh, B. Ziebart, and D. Bagnell. “Computational Rationalization: The Inverse
Equilibrium Problem”. ACM International Conference on Machine Learning (ICML).
Ed. by L. Getoor and T. Scheffer. 2011, pp. 1169–1176.

[219] S. Abuelsamid. “Nvidia Opens up a Lead in Compute System for Automated Driv-
ing”. Forbes (2018). (Accessed on 2019/11/27.)

[220] S. D. Pendleton, H. Andersen, X. Du, et al. “Perception, Planning, Control, and
Coordination for Autonomous Vehicles”. Machines 5.1 (2017).

[221] G. Andrew and J. Gao. “Scalable Training of L1-Regularized Log-Linear Models”.
ACM International Conference on Machine Learning (ICML). New York, NY, USA,
2007, pp. 33–40.

[222] L. J. Ratliff, S. A. Burden, and S. S. Sastry. “On the Characterization of Local
Nash Equilibria in Continuous Games”. IEEE Transactions on Automatic Control
61.8 (2016), pp. 2301–2307.

https://arstechnica.com/cars/2018/12/waymos-lame-public-driverless-launch-not-driverless-and-barely-public/
https://dx.doi.org/10.15607/RSS.2016.XII.029
https://dx.doi.org/10.15607/RSS.2016.XII.029
https://dx.doi.org/10.1109/IROS.2016.7759036
https://dx.doi.org/10.1109/IROS.2016.7759036
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://dx.doi.org/10.1109/TCST.2019.2895282
https://dx.doi.org/10.1109/TCST.2019.2895282
https://dx.doi.org/10.1002/oca.2348
https://dx.doi.org/10.1002/oca.2348
http://roboticsproceedings.org/rss14/p40.html
http://roboticsproceedings.org/rss14/p40.html
https://dx.doi.org/10.1109/THFE.1966.232329
https://dx.doi.org/10.1115/1.2899196
https://dx.doi.org/10.1115/1.2899196
https://dx.doi.org/10.1076/vesd.40.1.101.15875
https://dl.acm.org/citation.cfm?id=3104629
https://dl.acm.org/citation.cfm?id=3104629
https://www.forbes.com/sites/samabuelsamid/2018/10/10/nvidia-opens-its-lead-in-automated-driving-compute-and-works-on-standard-validation-tests/
https://www.forbes.com/sites/samabuelsamid/2018/10/10/nvidia-opens-its-lead-in-automated-driving-compute-and-works-on-standard-validation-tests/
https://dx.doi.org/10.3390/machines5010006
https://dx.doi.org/10.3390/machines5010006
https://dx.doi.org/10.1145/1273496.1273501
https://dx.doi.org/10.1109/TAC.2016.2583518
https://dx.doi.org/10.1109/TAC.2016.2583518


BIBLIOGRAPHY 250

[223] W. LLC. “Waymo Open Dataset: An Autonomous Driving Dataset”. 2019.

[224] R. Kesten, M. Usman, J. Houston, et al. “Lyft Level 5 AV Dataset 2019”. 2019.

[225] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, et al. “Bridging Hamilton-Jacobi Safety
Analysis and Reinforcement Learning”. IEEE International Conference on Robotics
and Automation (ICRA). 2019, pp. 8550–8556.

[226] N. Heess, D. TB, S. Sriram, et al. “Emergence of Locomotion Behaviours in Rich
Environments” (2017). arXiv: 1707.02286 [cs].

[227] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-End Training of Deep Vi-
suomotor Policies”. Journal of Machine Learning Research 17.39 (2016), pp. 1–40.

[228] J. Barraquand and J. .-.-C. Latombe. “Nonholonomic Multibody Mobile Robots:
Controllability and Motion Planning in the Presence of Obstacles”. Algorithmica 10.2
(1993).

[229] D. S. Yershov and S. M. LaValle. “Sufficient Conditions for the Existence of Resolu-
tion Complete Planning Algorithms”. Workshop on the Algorithmic Foundations of
Robotics (WAFR). Ed. by D. Hsu, V. Isler, J.-C. Latombe, and M. C. Lin. Springer
Tracts in Advanced Robotics. Berlin, Heidelberg: Springer, 2011, pp. 303–320.

[230] R. J. Williams. “Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning”. Machine Learning 8.3 (1992), pp. 229–256.

[231] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor”. ACM
International Conference on Machine Learning (ICML). 2018, pp. 1861–1870.

[232] A. K. Akametalu, S. Ghosh, J. F. Fisac, and C. J. Tomlin. “A Minimum Discounted
Reward Hamilton-Jacobi Formulation for Computing Reachable Sets”. Under review
in IEEE Transactions on Automatic Control. (2018).

[233] R. S. Sutton. “Learning to Predict by the Methods of Temporal Differences”. Machine
Learning 3.1 (1988), pp. 9–44.

[234] J. N. Tsitsiklis. “Asynchronous Stochastic Approximation and Q-Learning”. Machine
Learning 16.3 (1994), pp. 185–202.

[235] G. Brockman, V. Cheung, L. Pettersson, et al. “OpenAI Gym” (2016). arXiv:
1606.01540 [cs].

[236] Q. Fischer, C. Hesse, S. Hashme, et al. “OpenAI Five”. 2018.

[237] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A Physics Engine for Model-Based
Control”. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2012, pp. 5026–5033.

[238] V. Rubies-Royo, D. Fridovich-Keil, S. Herbert, and C. J. Tomlin. “A Classification-
Based Approach for Approximate Reachability”. International Conference on Robotics
and Automation (ICRA). 2019, pp. 7697–7704.

https://www.waymo.com/open
https://level5.lyft.com/dataset/
https://dx.doi.org/10.1109/ICRA.2019.8794107
https://dx.doi.org/10.1109/ICRA.2019.8794107
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
https://dx.doi.org/10.1007/BF01891837
https://dx.doi.org/10.1007/BF01891837
https://dx.doi.org/10.1007/978-3-642-17452-0_18
https://dx.doi.org/10.1007/978-3-642-17452-0_18
https://dx.doi.org/10.1007/BF00992696
https://dx.doi.org/10.1007/BF00992696
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/1809.00706v1
https://arxiv.org/abs/1809.00706v1
https://dx.doi.org/10.1007/BF00115009
https://dx.doi.org/10.1007/BF00993306
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://openai.com/blog/openai-five/
https://dx.doi.org/10.1109/IROS.2012.6386109
https://dx.doi.org/10.1109/IROS.2012.6386109
https://dx.doi.org/10.1109/ICRA.2019.8793919
https://dx.doi.org/10.1109/ICRA.2019.8793919

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Central Challenges in Robotic Safety Assurance
	1.2 Thesis Overview and Contributions

	2 Background and Preliminaries
	2.1 System Dynamics and Model Uncertainty
	2.2 Optimal Control and Dynamic Games
	2.3 Safety Analysis
	2.4 Learning-Based Control
	2.5 Cognitive Human Models

	I Safety Analysis for Robotic Systems
	3 Time-Varying Reach-Avoid Games
	3.1 Time-Varying Reach-Avoid Games
	3.2 The Double-Obstacle Isaacs Equation
	3.3 Numerical Implementation
	3.4 Numerical Examples 
	3.5 Chapter Summary

	4 Safe Multi-Robot Trajectory Planning
	4.1 Safe Multiagent Trajectory Planning
	4.2 Sequential Trajectory Planning Without Disturbances
	4.3 Robust Tracking of Committed Trajectories
	4.4 Least-Restrictive STP: Alternative Performance Objectives
	4.5 Chapter Summary

	5 Safe Real-Time Robotic Navigation
	5.1 Fast Planning, Safe Tracking
	5.2 Recursive Safety and Liveness in Uncertain Environments
	5.3 Chapter Summary


	II Safety Across the Reality Gap
	6 Safe Learning under Uncertainty
	6.1 Problem Formulation 
	6.2 Safety Analysis with Imperfect Model Error Bounds
	6.3 Bayesian Safety Assurance
	6.4 Experimental Results
	6.5 Chapter Summary

	7 Confidence-Aware Planning with Human Models
	7.1 Safe Robot Trajectories under Uncertain Human Motion
	7.2 Confidence-Aware Human Motion Prediction
	7.3 Safe Probabilistic Planning and Tracking
	7.4 Demonstration with Real Human Trajectories
	7.5 Safe Multi-Human Multi-Robot Navigation
	7.6 Implications on Human Preference Inference and Value Alignment
	7.7 Chapter Summary

	8 Game-Theoretic Autonomous Driving
	8.1 Driving as a Nonzero-Sum Dynamic Game
	8.2 Hierarchical Game-Theoretic Planning
	8.3 Simulation Results
	8.4 Chapter Summary


	III  Safe Steps Forward
	9 Safety Analysis through Reinforcement Learning
	9.1 The Undiscounted Safety Problem
	9.2 The Discounted Safety Bellman Equation
	9.3 Results
	9.4 Chapter Summary

	10 Towards a Safe Robotic Future
	Bibliography


