
Mobile Robot Learning

Gregory Kahn

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-203
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-203.html

December 16, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Mobile Robot Learning

by

Gregory Kahn

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Sergey Levine, Co-chair
Pieter Abbeel, Co-chair

Ken Goldberg

Fall 2020

Mobile Robot Learning

Copyright 2020
by

Gregory Kahn

1

Abstract

Mobile Robot Learning

by

Gregory Kahn

Doctor of Philosophy in Computer Science

University of California, Berkeley

Sergey Levine, Co-chair

Pieter Abbeel, Co-chair

In order to create mobile robots that can autonomously navigate real-world environments, we
need generalizable perception and control systems that can reason about the outcomes of navi-
gational decisions. Learning-based methods, in which the robot learns to navigate by observing
the outcomes of navigational decisions in the real world, offer considerable promise for obtaining
these intelligent navigation systems. However, there are many challenges impeding mobile robots
from autonomously learning to act in the real-world, in particular (1) sample-efficiency—how to
learn using a limited amount of data? (2) supervision—how to tell the robot what to do? and (3)
safety—how to ensure the robot and environment are not damaged or destroyed during learning?

In this thesis, we will present deep reinforcement learning methods for addressing these real world
mobile robot learning challenges. At the core of these methods is a predictive model, which takes as
input the current robot sensors and predicts future navigational outcomes; this predictive model can
then be used for planning and control. We will show how this framework can address the challenges
of sample-efficiency, supervision, and safety to enable ground and aerial robots to navigate in
complex indoor and outdoor environments.

i

Acknowledgments

The past five years have been some of the most gratifying and arduous times in my life, and I
would not be here without the support of many people.

First and foremost, I would like to thank my advisers Sergey Levine and Pieter Abbeel for
providing continual guidance and mentorship, giving me the freedom to pursue my passions, and
never giving up on me, even when I pushed back. Thank you to my committee members Ken
Goldberg and Claire Tomlin for their support and guidance throughout the years. And thank you to
my undergraduate research mentors Sachin Patil and Ben Kehoe, who were critical in my decision
to pursue a PhD.

I would like to thank all my collaborators, without whom my PhD research would not have been
possible: Adam Villaflor, Anusha Nagabandi, Rowan McAllister, Katie Kang, Suneel Belkhale,
Hayk Martiros, Abraham Bachrach, Rachel Li, Jeff Clune, Ron Fearing, Vitchyr Pong, Roberto
Calandra, Bosen Ding, and Tianhao Zhang. I would also like to thank everyone in my labs
(RAIL and RLL) and the greater BAIR community for creating a scholarly, collaborative, and fun
environment in which to do research. In particular, I’d like to thank Adam Stooke, Alex Lee, Ashvin
Nair, Avi Singh, Aviv Tamar, Carlos Florensa, Chelsea Finn, Dylan Hadfield-Manell, Frederik Ebert,
Ignasi Clavera, Justin Fu, Kate Rakelly, Marvin Zhang, Michael Janner, Nick Rhinehart, Rowan
McAllister, Sandy Huang, Somil Bansal, Tuomas Haarnoja, Vitchyr Pong, and many others. And a
special shout out to Abhishek Gupta, Anusha Nagabandi, and Coline Devin: there were ups and
there were downs, but we made it!

I would like to thank Ben Zipkin, Caitlin Simpson, Connor Davidge, Emi Goldstone, Michael
Thornton, Nicolette Landucci, and Will Brogan for being friends that I can be myself around and
can always count on, and to have a tiny bit of fun with. I would like to thank my family for their
love and support. I would especially like to thank my parents Philip Kahn and Marilyn Elperin:
they nourished my independence and worked tirelessly to enable me to pursue my passions, and
continue to do so to this day. Lastly, thank you Olivia Solomon – to the Death Star and back.

ii

Contents

Contents ii

1 Introduction 1
1.1 Related Work and Contributions . 2

I Sample-efficiency 5

2 Interpolating between Model-Based and Model-Free Reinforcement Learning 6
2.1 Related Work . 7
2.2 Preliminaries . 7
2.3 Generalized Computation Graphs . 9
2.4 Learning Navigation Policies . 11
2.5 Experiments . 13
2.6 Discussion . 18

3 Transfer Learning 19
3.1 Related Work . 20
3.2 Problem Formulation . 21
3.3 Generalization through Simulation . 21
3.4 Experiments . 24
3.5 Discussion . 29

II Supervision 30

4 Self-Supervision 31
4.1 Related Work . 32
4.2 The Berkeley Autonomous Driving Ground Robot 33
4.3 Experiments . 39
4.4 Discussion . 44

5 Model Supervision 45

iii

5.1 Related Work . 46
5.2 Composable Action-Conditioned Predictors . 46
5.3 CAPs for Robot Navigation . 49
5.4 Experiments . 49
5.5 Discussion . 54

6 Human Supervision 55
6.1 Related Work . 57
6.2 Learning to Navigate from Disengagements . 57
6.3 Experiments . 62
6.4 Discussion . 64

III Safety 66

7 Safe Learning using Expert Supervision 67
7.1 Preliminaries and Overview . 68
7.2 Policy Learning using Adaptive Trajectory Optimization 69
7.3 Theoretical Analysis . 72
7.4 Experiments . 74
7.5 Discussion . 79

8 Conservative Reinforcement Learning 80
8.1 Related Work . 81
8.2 Preliminaries . 82
8.3 Uncertainty-aware Collision Prediction . 84
8.4 Experiments . 88
8.5 Discussion . 94

9 Conclusion 95

Bibliography 97

1

Chapter 1

Introduction

The goal of this thesis is to provide technical contributions which enable any person to take a robot,
throw it into any environment, walk away, and have that robot autonomously learn how to perform
desired tasks.

The two main components of this goal are robots and learning. While there are many motivations
for developing autonomous robots, the primary perspective we take is that the purpose of autonomous
robots is to perform tasks that humans do not want to perform, or that humans do want to perform
but are otherwise unable to. These tasks can range from food delivery and warehouse package
fulfillment to office sanitization and search-and-rescue.

But while these use cases for autonomous robots are typically noncontentious, the use of
learning-based methods is currently a common source of tension and debate. One of the primary
arguments made by learning-based advocates is that the robot is able to continually improve as
it acts in the environment, while one of the main arguments against learning-based methods is
their inability to generalize. Rather than attempt to argue for learning-based methods or for hand-
engineered methods, this thesis takes a reconciliatory perspective: learning is a tool which enables
engineers to design algorithms at different layers of abstraction.

But what are the current challenges preventing an autonomous learning-based robot from being
deployed? This thesis examines three main challenges: (1) sample-efficiency—how to learn using a
limited amount of data? (2) supervision—how to tell the robot what to do? and (3) safety—how to
ensure the robot and environment are not damaged or destroyed during the learning process? By
investigating these challenges, this thesis hopes to provide fundamental contributions towards the
goal of enabling robots, such as the mobile robots shown in Fig. 1.1, to autonomously learn to act in
real-world environments.

Figure 1.1: The goal of this thesis is to enable mobile robots to autonomously learn to act in real-world environments.

CHAPTER 1. INTRODUCTION 2

1.1 Related Work and Contributions
In order to create robots that can autonomously navigate complex and unstructured environments,
such as roads, buildings, or forests, we need generalizable perception and control systems that
can reason about the outcomes of navigational decisions. Although methods based on geometric
reconstruction and mapping [1] have proven effective in a range of navigation and collision avoid-
ance domains [2]–[14], these approaches still have limitations, such as performance degradation in
textureless scenes, requiring expensive sensors, and—most importantly—do not get better as the
robot acts in the world [15].

Learning offers considerable promise for mobile robotic systems: by observing the outcomes of
navigational decisions in the real world, mobile robots can continuously improve their proficiency
and adapt to the statistics of natural environments. Not only can learning-based systems lift some
of the assumptions of geometric reconstruction methods, but they offer two major advantages
that are not present in analytic approaches: (1) learning-based methods adapt to the statistics of
the environments in which they are trained and (2) learning-based systems can learn from their
mistakes. The first advantage means that a learning-based navigation system may be able to act
more intelligently even under partial observation by exploiting its knowledge of statistical patterns.
The second advantage means that, when a learning-based system does make a mistake that results
in a failure, the resulting data can be used to improve the system to prevent such a failure from
occurring in the future.

Sample-efficiency
One of the main challenges for deploying robot learning algorithms is sample-efficiency: how to
enable a robot to quickly learn from a limited amount of data. We investigate two main approaches
for addressing sample-efficiency: approaches that require little data in the target domain to effectively
generalize and approaches that leverage other large and easily obtainable sources of data.

Prior work has studied how to learn generalizable control policies from limited data. These
algorithms can generally be categorized as either supervised learning or reinforcement learning. In
supervised learning, a human or computational expert labels the robot data, and a control policy is
trained that maps the robot sensory observations to these expert labels. In reinforcment learning, the
robot autonomously learns a control policy that maximizes reward via trial-and-error. While both
supervised learning [16]–[21] and reinforcement learning [22] have successfully learned real-world
control policies, they both have limitations regarding sample-efficiency. Supervised learning, which
is typically based on human supervision, is inherently limited by the amount of human data available,
which can be prohibitively expensive to collect. Reinforcement learning often requires choosing
between model-free algorithms that can solve complex tasks, but are sample-inefficient [23]–[25]
and model-based algorithms that are sample-efficient, but have difficulty with high-bandwidth
sensors, such as cameras, and complex environments [22], [26]. In Chapter 2, we develop a
sample-efficient reinforcement learning framework based on generalized computation graphs that
subsumes value-based model-free methods and model-based methods.

CHAPTER 1. INTRODUCTION 3

Prior work has also investigated transfer learning for learning robotic control policies [27],
with a particular effort on leveraging simulators due to the ease of data collection. These works
have sought to transfer policies by combining simulated and real-world data [28]–[34], minimizing
the gap between simulation and reality [35]–[44], and more generally investigating how to learn
generalizable models when the training and test distributions differ [45]–[49]. In Chapter 3, we
develop a generalization through simulation transfer learning algorithm that learns about the physical
properties of the robot and its dynamics in the real world, while learning visual invariances and
patterns from simulation.

Supervision
Another key challenge for robot learning is supervision: what signal does the robot use to learn how
to successfully accomplish relevant tasks. We investigate three main methods for providing sources
of supervision: self-supervision, model supervision, and human supervision.

Self-supervision, in which the robot learns directly from its own sensory observations, is perhaps
the most ideal form of supervision due to its cheapness and reliability. In comparison, prior
methods which learn using human labels [50]–[54] or demonstrations [55], [56] can be prohibitively
expensive, while prior methods which leverage existing autonomy systems [18], [21], [57]–[60]
and simulators [39], [61] can be brittle and unreliable. In Chapter 4, we design an end-to-end
reinforcement learning approach that directly learns to predict relevant navigation cues with a
sample-efficient, off-policy algorithm, and can continue to improve with additional experience via a
self-supervised data labelling mechanism that does not depend on humans or SLAM algorithms.

However, certain navigation cues, such as learning to drive on the correct side of the road, are
difficult to learn through pure self-supervision because there is no off-the-shelf sensor that produces
the required training signal. In Chapter 5, we develop a flexible, multi-task reinforcement learning
algorithm which learns directly from real-world events that are detected using learned models, such
as existing modern computer vision systems, and is cheaper [16]–[18], [20], [62]–[64] and more
flexible [56], [65]–[67] than prior approaches.

Nevertheless, leveraging learned models for supervision can be fallible because these models
may be inaccurate. Perhaps the only source of truly accurate supervision is supervision directly
from humans. However, the standard approaches for human supervision, such as labels [16],
[50]–[52], [57], [68] or demonstrations [20], [55], [56], [62], [69]–[71], are prohibitively expensive.
In Chapter 6, we develop a reinforcement learning algorithm that learns from disengagements, a
supervision signal from human safety drivers which is already being collected in many commonly
used real-world robotic testing pipelines.

Safety
The last key challenge for robot learning we investigate is safety: how to enable a robot to learn
from experience without experiencing catastrophic failure. We investigate two main approaches for
achieving safe robot learning: leveraging expert supervision and having the robot act conservatively
in unknown situations.

CHAPTER 1. INTRODUCTION 4

In addition to providing a source of supervision for learning, having an expert collect demonstra-
tion data ensures the robot does not experience catastrophic failures. However, using these purely
expert demonstration datasets for training control policies is challenging due to the distribution
mismatch between the expert training data and the distribution the robot will actually visit at test
time [63]. Prior work has proposed algorithms to address this data distribution mismatch [55], [63],
[72], but are not safe because these algorithms must execute the learned policy during training,
which can lead to catastrophic failures. In Chapter 7, we develop an imitation learning algorithm
which adapts a computational expert to the learned policy, but does not actually execute the learned
policy in the real world until training is completed; this ensures that the training and test distributions
are similar, while ensuring the robot’s safety during training.

Although an expert can ensure the robot does not catastrophically fail during training, requiring
an expert for data collection can be prohibitively expensive. Prior work has investigated how to
enable safe robot learning without assuming access to an expert, in particular by having the robot
act conservatively in scenarios the robot has not seen before. However, these prior methods typically
do not scale to high-bandwidth sensors [73]–[77] or only learn to detect—and not avoid—unsafe
scenarios [78]. In Chapter 8, we develop a model-based reinforcement learning algorithm that
trains an uncertainty-aware collision prediction model; this model enables the robot to plan and
execute actions that avoid catastrophic failures, and act more conservatively in scenarios in which
the model is uncertain.

5

Part I

Sample-efficiency

6

Chapter 2

Interpolating between Model-Based and
Model-Free Reinforcement Learning

Figure 2.1: Our RC car navigating
Cory Hall from raw monocular cam-
era images using our learned navi-
gation policy trained using 4 hours
of fully autonomous reinforcement
learning.

Reinforcement learning methods are typically classified as either
model-free or model-based. Value-based model-free approaches
learn a function that takes as input a state and action, and outputs
the value (i.e., the expected sum of future rewards). Policy extrac-
tion is then performed by selecting the action that maximizes the
value function. Model-based approaches learn a predictive function
that takes as input a state and a sequence of actions, and output
future states. Policy extraction is then performed by selecting the
action sequence that maximizes the future rewards using the pre-
dicted future states. In general, model-free algorithms can learn
complex tasks [24], [25], but are usually sample-inefficient, while
model-based algorithms are typically sample-efficient [22], but have
difficulty scaling to complex, high-dimensional tasks [26].

We explore the intersection between value-based model-free
algorithms and model-based algorithms in the context of learning
robot navigation policies. This chapter has three primary contri-
butions. The first contribution is a generalized computation graph
for reinforcement learning that subsumes value-based model-free
methods and model-based methods. The second contribution is
instantiations of the generalized computation graph for the task of
robot navigation, resulting in a suite of hybrid model-free, model-
based algorithms. The third contribution is an extensive empirical
evaluation in which we: (a) investigate and discover design decisions regarding our robot naviga-
tion computation graph that are important for stable and high performing policies; (b) show our
approach learns better policies than state-of-the-art reinforcement learning methods in a simulated
environment; and (c) show our approach can learn a successful navigation policy on an RC car in a
real-world, indoor environment from scratch using raw monocular images (Fig. 2.1).

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 7

2.1 Related Work
Our generalized computation graph allows for model instantiations that combine model-free and
model-based approaches. Combining model-free and model-based methods has been investigated in
a number of prior works [79]. Prior work has explored value function estimators that take in multiple
actions [80], [81], in the context of simulated tasks such as playing Atari games. In contrast to this
prior work, we examine a variety of multi-action prediction models, trained both with supervised
learning and Q-learning style methods, and demonstrate effective learning in complex real-world
environments. Our empirical results show that the design presented in prior work [80], [81] is often
not the best one for real-world continuous learning tasks, and shed light on the tradeoffs involved
with single- and multi- action Q-learning, as well as purely prediction-based control

2.2 Preliminaries
Our goal is to learn collision avoidance policies for mobile robots. We formalize this task as a
reinforcement learning problem, where the robot is rewarded for collision-free navigation.

In reinforcement learning, the goal is to learn a policy that chooses actions at ∈ A at each
time step t in response to the current state st ∈ S, such that the total expected sum of discounted
rewards is maximized over all time. At each time step, the system transitions from st to st+1 in
response to the chosen action at and the transition probability T (st+1|st, at), collecting a reward
rt according to the reward function R(st, at). The expected sum of discounted rewards is then
defined as Eπ,T [

∑∞
t′=t γ

t′−trt′ |st, at], where γ ∈ [0, 1] is a discount factor that prioritizes near-term
rewards over distant rewards, and the expectation is taken under the transition function T and a
policy π. Algorithms that solve the reinforcement learning problem are typically either model-free
or model-based. The generalized computation graph we introduce subsumes value-based model-free
methods and model-based, therefore we will first provide a brief overview of both these methods.

Value-based model-free reinforcement learning
Value-based model-free algorithms learn a value function in order to select which actions to take.
In this work, we will focus specifically on algorithms that learn state-action value functions, also
called Q-functions. The standard parametric Q-function, Qθ(s, a), is a function of the current state
and a single action, and outputs the expected discounted sum of future rewards that will be received
by the optimal policy after taking action a in state s, where θ denotes the function parameters. If the
Q-function can be learned, then the optimal policy can be recovered simply by taking that action a
that maximizes Vt = Qθ(st, a). A standard method for learning the Q-function is to minimize the
Bellman error, given by

Et(θ) =
1

2
Es∼T,a∼π

[
‖rt + γVt+1 −Qθ(st,at)‖2

]
,

where the actions are sampled from π(·|s) and the Vt+1 term is known as the bootstrap. The policy
π can in principle be any policy, making Q-learning an off-policy algorithm.

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 8

Multi-step returns [82] can be incorporated into Q-learning and other TD-style algorithms by
summing over the rewards over N steps, and then using the current or target Q-function to label
the N+1th step. Multi-step returns can increase sample efficiency, but also make the algorithm
on-policy. Defining the N -step value as V (N)

t =
∑N−1

n=0 γ
nrt+n + γNVt+N , we can augment the

standard Bellman error minimization objective by considering a weighted combination of Bellman
errors from horizon length 1 to N :

Et(θ) =
1

2
Es∼T,a∼π

[
‖

N∑
N ′=1

wN ′V
(N ′)
t −Qθ(st, at)‖2

]
:

N∑
N ′=1

wN ′ = 1, wN ′ ≥ 0.

Model-based reinforcement learning
In contrast to model-free approaches, which avoid modelling the transition dynamics by learning a
Q-value and using bootstrapping, model-based approaches explicitly learn a transition dynamics
T̂θ(st+1|st, at) parameterized by vector θ. At time t in state st, the next action at is selected by
solving the finite-horizon control problem

arg max
AH
t

E

[
H−1∑
h=0

γhR(ŝt+h,at+h)

]
: ŝt′+1 ∼ T̂θ(ŝt′+1|ŝt′ ,at′), ŝt = st,

in which H is the planning horizon and AH
t = (at, at+1, ..., at+H−1) is the planned action sequence.

Note that the reward function R must be known a priori.
Since planning for large H is expensive and often undesirable due to model inaccuracies,

planning is typically done in a model predictive control (MPC) fashion in which the optimization is
solved at each time step, the first action from the optimized action sequence is executed, and the
process is repeated. Standard model-based algorithms then alternate between gathering samples
using MPC and storing transitions (st, at, st+1) into a dataset D, and updating the transition model
parameter vector θ to maximize the likelihood of the transitions stored in D.

Comparing model-free and model-based methods
We now compare the advantages and disadvantages of both model-free and model-based methods
for learning continuous robot navigation policies by evaluating three metrics: sample efficiency,
stability, and final performance.

Model-free methods have empirically demonstrated state-of-the-art performance in many com-
plex tasks [24], [25], including navigation [83]. However, model-free techniques are often sample
inefficient. Specifically, for (N -step) Q-learning, bias from bootstrapping and high variance multi-
step returns can lead to slow convergence [84]. Furthermore, Q-learning often requires experience
replay buffers and target networks for stable learning, which also further decreases sample ef-
ficiency [24]. We empirically demonstrate that these stability issues are further exacerbated in
continuous learning scenarios, such as robot navigation.

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 9

In contrast, model-based methods can be very sample efficient and stable, since learning the
transition model reduces to supervised learning of dense time-series data [22]. However, final
performance can be poor because maximizing the accuracy of the learned transition model is
merely a surrogate objective, that is to say that an accurate transition model does not necessarily
mean the policy will perform well. In addition, all three metrics suffer when the state space is
high-dimensional, such as when learning from raw images [85].

In order to develop a sample efficient, stable, and high performing reinforcement learning
algorithm for training robot navigation policies, we will leverage aspects of both model-free and
model-based methods. Combining model-free and model-based methods has been investigated in a
number of prior works [79]. Prior work has explored value function estimators that take in multiple
actions [80], [81], in the context of simulated tasks such as playing Atari games. In contrast to this
prior work, we examine a variety of multi-action prediction models, trained both with supervised
learning and Q-learning style methods, and demonstrate effective learning in complex real-world
environments. Our empirical results show that the design presented in prior work [80], [81] is often
not the best one for real-world continuous learning tasks, and shed light on the tradeoffs involved
with single- and multi- action Q-learning, as well as purely prediction-based control.

2.3 Generalized Computation Graphs
We will now introduce a generalized computation graph for reinforcement learning that subsumes
both model-free value function-based methods and model-based algorithms. This generalized
computation graph not only encompasses existing model-free and model-based methods, but also
will allow us to formulate a sample-efficient, stable, and high-performing algorithm for training
robot navigation policies.

Fig. 2.2 shows a generalized computation graph for reinforcement learning models. The
computation graph Gθ(st,A

H
t) parameterized by vector θ takes as input the current state st and

a sequence of H actions AH
t = (at, ..., at+H−1) and produces H sequential predicted outputs

Ŷ H
t = (ŷt, ..., ŷt+H−1) and a predicted terminal output b̂t+H . These predicted outputs Ŷ H

t and b̂t+H
are combined and compared with labels Y N

t and bt+N to form an error signal Et(θ) that is minimized
using an optimizer.

We will now show how the generalized computation graph can be instantiated to be standard
model-free value function-based methods and model-based methods. We first instantiate the
computation graph for N -step Q-learning by letting y be reward and b be the future value estimate;
setting the model horizon H = 1 and using N -step returns; and letting the error function be
the Bellman error: Et(θ) = ‖(ŷt + γb̂t+1)− (

∑N−1
n=0 γ

nyt+n + γNbt+N)‖2
2. Next, we instantiate the

computation graph for standard model-based learning by ignoring y and letting b be the state; setting
the model horizon H = 1 and label horizon H = 1; and letting the error function minimize the
difference between the predicted and actual next state: Et(θ) = ‖b̂t+1 − bt+1‖2

2.
In order to use the generalized computation graph in a reinforcement learning algorithm, we

must be able to extract a policy from the generalized computation graph. We define J(st,A
H
t) to

be the generalized policy evaluation function, which is a scalar function such that π(AH |st) =

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 10

Algorithm 1 Reinforcement learning with generalized computation graphs

1: input: computation graph Gθ(st,A
H
t), error function Et(θ), and policy evaluation function

J(st,A
H
t)

2: initialize dataset D ← ∅
3: for t = 1 to T do
4: get current state st
5: AH

t ← arg maxA J(st,A)
6: execute first action at
7: receive labels yt and bt
8: add (st, at, yt, bt) to dataset D
9: update Gθ by θ ← arg minθ Et′(θ) using D

10: end for

arg maxAH J(st,A
H). Similar to before, we now instantiate J for standard model-free value

function-based methods and model-based methods. For N -step Q-learning, J(st, at) = ŷt +
γb̂t+1 is the estimated future value. For standard model-based learning, J(st, at) = R(st, at) +
J(b̂t+1, arg maxa J(b̂t+1, a)) is the reward function evaluated on the single-step dynamics model
propagated from the current state for multiple timesteps.

Using the generalized computation graph Gθ, the graph error function E , and the policy evalua-
tion function J , we outline a general reinforcement learning algorithm in Alg. 1. This framework
for general-purpose predictive learning can subsume both standard model-free value function-based
methods and model-based algorithms.

Figure 2.2: A generalized computation graph for model-free, model-based, and hybrid reinforcement learning algorithms.
These algorithms train models that take as input the current state and a sequence of H actions and produce H outputs
plus a final terminal output. These predicted outputs are then combined and compared with N labels to produce an
error signal that is used by an optimizer in order to train the model. Solid lines indicate computations involving model
parameters θ while dashed lines indicate signal flow.

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 11

2.4 Learning Navigation Policies
The computation graph outlined in the previous section can be instantiated to perform both fully
model-free learning, where the model predicts the expected sum of future rewards, and fully model-
based learning, where the model predicts future states. However, in practical robotic applications,
especially in robotic mobility, we often have prior knowledge about our system. For example, the
dynamics of a car could be identified in advance with considerable accuracy. Other aspects, such as
the relationship between observed images and positions of obstacles, are exceptionally difficult to
specify analytically, and could be learned by a model. The question then arises: which aspects of
the system should we learn to predict, which aspects should we handle with analytic models, and
which aspects should we ignore?

We will now explore the space of possible instantiations of the generalized computation graph
for learning robot navigation policies. While some design decisions will remain constant, other
design choices will have multiple options, which we will describe in detail and empirically evaluate
in our experiments.

Model parameterization. While many function approximators could be used to instantiate
our generalized computation graph, the function approximator needs to be able to cope with high-
dimensional state inputs, such as images, and accurately model sequential data due to the nature
of robot navigation. We therefore parameterize the computation graph as a deep recurrent neural
network (RNN), depicted in Fig. 2.3.

Model outputs. While we have defined what our deep recurrent neural network model takes as
input, namely the current state and a sequence of actions, we need to specify what quantities are the
model outputs ŷ and b̂. We consider two quantities. The first quantity is the standard approach in
the reinforcement literature: Ŷ H

t represent rewards and b̂t+H represents the future value-to-go. For
the task of collision-free navigation, we define the reward as the robot’s speed, which is typically
known using onboard sensors, and therefore the value is approximately the distance the robot travels
before experiencing a collision. The advantage of outputting the value-to-go is that this is precisely
what our agents want to maximize. However, the value representation does not leverage any prior
knowledge about robot navigation.

The second quantity we propose is specific to collision avoidance, in which Ŷ H
t represents the

Figure 2.3: Recurrent neural network computation graph for robot navigation policies. The network takes as input
the past four grayscale images, which are processed by convolutional layers to become the initial hidden state for the
recurrent unit. The recurrent unit is a multiplicative integration LSTM [86]. From h = 0 to H − 1, the recurrent unit
takes as input the processed action and the previous hidden state, and produces the next hidden state and the RNN
output vector. The RNN output vector is passed through final layers to produce the model outputs ŷt+h and b̂t+h+1.

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 12

probability of collision at or before each timestep—that is, ŷt+h is the probability the robot will
collide between time t and t+ h—and b̂t+H represents the best-case future likelihood of collision.
One advantage of outputting collision probabilities is that this binary signal may be easier and faster
to learn.

Policy evaluation function. Given the outputs of the navigation computation graph, we now
need to define how the task of collision-free robot navigation is encoded into the policy evaluation
function J .

If the model output quantities are values, which in our case is the expected distance-to-travel,
then the policy evaluation function is simply the value J(st,A

H
t) =

∑H−1
h=0 γ

hŷt+h + γH b̂t+H .
If the model output quantities are collision probabilities, then the policy evaluation function

needs to somehow encourage the robot to move through the environment. We assume that the robot
will be travelling at some fixed speed, and therefore the policy evaluation function needs to evaluate
which actions are least likely to result in collisions J(st,A

H
t) =

∑H−1
h=0 −ŷt+h − b̂t+H .

Policy evaluation. Using the policy evaluation function, action selection is performed by
solving the finite-horizon planning problem arg maxAH J(st,A

H). Although we can use any
optimal control or planning algorithm to perform the maximization, in our experiments we use a
simple random shooting method, in which the K randomly sampled action sequences are evaluated
with J and the action sequence with the largest value is chosen. We also evaluated action selection
using the cross entropy method [87], but empirically found no difference in performance. However,
exploring other methods could further improve performance.

Model horizon. An important design decision is the model horizon H . The value of the model
horizon in effect determines the degree to which the model is model-free or model-based. For
H = 1, the model is fully model-free because it does not model the dynamics of the output, while
for horizon H that is the full length of a (possibly infinite) episode, the model is fully model-based
in the sense that the model has learned the dynamics of the output. For intermediate values of H ,
the model is a hybrid of model-free and model-based methods. We empirically evaluate different
horizon values in our experiments.

Label horizon. In addition to the model horizon, we must decide the label horizon N . The
label horizon N can either be set to the model horizon H , or to some value N > H . Although
setting the label horizon N to be larger than the model horizon H can increase learning speed,
as N -step Q-learning often demonstrates, the learning algorithm then becomes on-policy. This is
an undesirable property for robot navigation because we would like our policy to be able to be
trained with any kind of data, including data gathered by old policies or by exploration policies. We
therefore set the label horizon N to be the same as the model horizon H .

Bootstrapping. Because we chose the label horizon to be the same as the model horizon, the
only way in which the model can learn about future outcomes is by increasing the model horizon or
by using bootstrapping. An advantage of increasing the model horizon is that the model becomes
more model-based, which has been shown to be sample efficient. However, increasing the model
horizon increases the difficulty of policy evaluation because the search space grows exponentially in
H . Bootstrapping can alleviate the planning problem by allowing for smaller H , but bootstrapping
can cause bias and instability in the learning process. We evaluate the effect of bootstrapping in our
experiments.

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 13

Training the model. Finally, to train our model using a dataset D, we need to define the
loss function between the model outputs and the labels. Using samples (sHt ,A

H
t , y

H
t) ∈ D from

the dataset, if the model outputs and labels are values, the loss function is the standard Bellman
error Et(θ) = ‖

∑N−1
n=0 γ

nyt+n + γNbt+H − J(st,A
H
t)‖22, in which bt+H = maxAH J(st+H ,A

H). If
the model outputs are collision probabilities, the loss function is the cross entropy loss

Et(θ) = −
[H−1∑
h=0

yt+h log(ŷt+h) + (1− yt+h) log(1− ŷt+h)+

bt+H log(b̂t+H) + (1− bt+H) log(1− b̂t+H)
]
,

in which bt+H = minAH
1
H

∑H
h=0 ŷt+H+h represents the lowest average probability of collision the

robot can achieve at time t+H . We note that these probabilities can also be learned using a mean
squared error loss, and we examine the effect of the loss function choice in our experiments.

2.5 Experiments
The navigation computation graphs discussed in the previous section can be instantiated in various
ways, such as predicting full reward or only collision, and predicting with different horizons.
In our experiments, we aim to evaluate the various design choices exposed by the generalized
computation graph framework, including the special cases that correspond to standard algorithms
such as Q-learning, and study their impact on both simulated and real-world robotic navigation. In
our evaluations, we aim to answer the following questions:

Q1 How do the different design choices for our navigation computation graph affect performance?

Q2 Given the best design choices, how does our approach compare to prior methods?

Q3 Is our approach able to successfully learn a navigation policy on a real robot in a complex
environment?

Experiment videos and code are provided on our website github.com/gkahn13/gcg.

Figure 2.4: First-person view images from a simulated RC car learning to navigate in a cluttered hallway.

github.com/gkahn13/gcg

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 14

Simulation results
We first present results on a simulated RC car in a cluttered, indoor environment (Fig. 2.4). The RC
car was created using the Bullet physics simulator and images were rendered using the Panda3d
graphics engine [88]. The robot state S ∈ R2304 is a 64 × 36 grayscale image taken from an
onboard forward-facing camera. The car navigates at a fixed speed of 2m/s, therefore the action
space A ∈ R1 consists solely of the steering angle. The car observes the current image and selects
an action every dt = 0.25 seconds. We note that 1 hour of simulator time will result in 14, 400
datapoints. We define an episode as the car acting in the environment until it either crashes or travels
1000 meters. Because we are considering the setting of continuous learning, each episode continues
from where the previous episode ended; if the previous episode ended in a collision, the car first
executes a hard-coded backup maneuver before starting the next episode. All experiments were
evaluated three times with different random seeds.

Evaluating design decisions for robot navigation learning. We will now explore and empiri-
cally evaluate the four design decisions (Sec. 2.4) of our navigation computation graph: the model
output, loss function, model horizon, and bootstrapping. These decisions will be evaluated in terms
of their effect on sample efficiency, stability, and final performance.

Model outputs and loss function

Fig. 2.5 shows learning curves for different model outputs and loss functions. “Value” corresponds
to outputs that represent the expected sum of future rewards, while “collision” corresponds to
outputs that represent probabilities of collision. Regression corresponds to using a mean squared
error loss function, while classification corresponds to using a cross entropy loss function. For
consistency, these models all use a long horizon (H = 16) and do not use bootstrapping.

Figure 2.5: Evaluation of our approach with different model
outputs (values or collision probabilities) and training meth-
ods (regression or classification).

These results show that, given the same
mean squared error loss function, outputting col-
lision probabilities leads to substantially more
sample-efficient and higher-performing policies
than outputting predicted values. Although one
might be tempted to say that the improved per-
formance is due to different policy evaluation
functions J , we note that, because the car is
always moving at a fixed speed of 2m/s and the
reward function is the car’s speed, the only re-
wards the value model trains on are either 2 (if
no collision) or 0 (if collision), which is a binary
signal. The major difference lies in the form of
the mean squared error loss function: the value
model loss is a single loss on the sum of the
outputs, while the collision model is the sum of
H separate losses on each of the outputs. The

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 15

collision model therefore has additional supervision about when the collision labels occur in time.
Additionally, training with a cross entropy loss is significantly better than training with a mean
squared error loss in terms of both sample efficiency and final performance.

This comparison shows that predicting discrete future events can lead to faster and more stable
learning than predicting continuous sums of discounted rewards. While we have only shown this
finding in the context of robot navigation, this insight could lead to a new class of sample-efficient,
stable, and high-performing reinforcement learning algorithms [89].

Model horizon

We next examine the effect of using short model horizons (H = 1, corresponding to a 1
2
m lookahead)

versus long model horizons (H = 16, corresponding to an 8m lookahead). For consistency, and so
that the model with the short horizon can learn about events beyond its planning horizon, all models
use bootstrapping. Fig. 2.6 shows these results for models that output values and models that output
collision probabilities. The models use regression for outputs that are values and classification for
outputs that are collision probabilities.

Figure 2.6: Evaluation of our approach with different model horizons.
(Collision with long horizon was terminated early due to computational
constraints.)

For models that output values,
training with a longer horizon is more
stable and leads to a higher perform-
ing final policy. While the short hori-
zon model initially has the same learn-
ing speed, its performance peaks early
on and declines thereafter. While one
might be inclined to attribute this de-
crease in performance to overfitting,
we note that the long horizon model
should be even more prone to overfit-
ting, yet it performs much better. We
therefore conclude the longer horizon
model learns better because the long
horizon mitigates the bias of the boot-
strap due to the exponential weighting factor γH in front of the bootstrap term.

However, for models that output collision probabilities, we do not notice any change in per-
formance when comparing short and long horizon models. This could be due to the fact that the
probabilities are necessarily bounded between 0 and 1, which minimizes the bias from bootstrapping.
Future work investigating the relationship between classification and bootstrapping could yield
more stable and sample-efficient reinforcement learning algorithms.

Bootstrapping

Finally, we investigate the effect of bootstrapping. Fig. 2.7 shows these results for models that
output values and models that output collision probabilities. The models all use long horizon

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 16

prediction (H = 16) because short horizon models (e.g., H = 1) fail to learn anything when not
using bootstrapping. For consistency, these models all use regression for outputs that are values and
classification for outputs that are collision probabilities.

Figure 2.7: Evaluation of our approach with and without bootstrapping.

When not using bootstrapping,
models that output values fail to learn,
while models that output collision
probabilities are extremely sample
efficient, stable, and result in high-
performing final policies. This di-
chotomy indicates that learning the
dynamics of event probabilities, such
as collisions, is easier than learn-
ing general, unbounded values. Fu-
ture work investigating model-based
reinforcement learning of domain-
specific, discrete events could lead to a new class of sample-efficient model-based algorithms.

When using bootstrapping, models that output values perform worse than models that output
collision probabilities. However, models that output values do benefit from using bootstrapping. In
contrast, collision prediction models are not strongly affected by using or not using bootstrapping.
These results indicate that if the task can be accomplished by looking H steps ahead, then not using
bootstrapping can be advantageous.

Comparisons with prior work. Given the empirical evaluations of our design decisions,
we choose the instantiation of our generalized computation graph for robot navigation to output
collision probabilities, train with a classification loss, use a long model horizon (H = 16), and
not use bootstrapping. To ensure a fair comparison with the prior methods (double Q-learning
and N -step double Q-learning), we found the best settings for double Q-learning by performing a
hyperparameter sweep over relevant parameters, such as exploration rates, learning rates, and target
network update rates, and evaluating each set of hyperparameters on a simpler navigation task in an
empty hallway. We used these best-performing hyperparameters for all methods in the cluttered
hallway environment.

Figure 2.8: Comparison of our robot navigation learning approach to
prior methods in a simulated cluttered hallway environment.

Fig. 2.8 shows results comparing
our approach with double Q-learning
and N -step double Q-learning; note
that we do not compare with model-
based approaches because they either
assume knowledge of the ground truth
state, or the model would have to
learn to predict future images, which
is sample-inefficient. Our approach is
more stable and learns a final policy
that is 50% better than the closest prior method. We believe this highlights that by viewing the
problem through the generalized computation graph (Sec. 2.3) and incorporating domain knowledge

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 17

Figure 2.9: Real-world RC car experiments on the 5th floor of Cory hall. The path the robot can follow is drawn on the
floor plan (left), however, this path is not provided to the RC car. Three example trajectories of the RC car navigating
with our learned policy are shown.

for robot navigation (Sec. 2.4), we can achieve a sample-efficient, stable, and high performing
learning algorithm.

Real-world results
We demonstrated the efficacy of our approach on a 1

10
th scale RC car in a real-world environment

(Fig. 2.1). The task was to navigate the 5th floor of Cory Hall at 1.2m/s, which is challenging as
these hallways contain tight turns, changing illumination, and glass walls (Fig. 2.9).

The RC car learning system was set up to maximize time spent gathering data, minimize
computational burden for the car, and be fully autonomous. The computer onboard the RC car is an
NVIDIA Jetson TX1, which is intended for embedded deep learning applications. However, all
model training is performed offboard on a laptop for computational efficiency, while model inference
is performed onboard. We therefore made the system fully asynchronous: the car continuously runs
the reinforcement learning algorithm and sends data to the laptop, while the laptop continuously
trains the model and periodically sends updated model parameters to the car. For full autonomy, the
car automatically detects collisions using the onboard IMU and wheel encoder, and automatically
backs up if a collision occurs. The only human intervention required is if the car flips over, which
occurred approximately every 30 minutes.

In evaluating our approach, we chose the best design decisions from our simulation experiments:
the model outputs are collision probabilities trained using classification, a large model horizon
(H = 12, corresponding to 3.6m lookahead), and no bootstrapping. All other settings were the
exact same as the simulation experiments.

Figure 2.10: Example failure cases in which our approach
turns too early (left) and turns too late (right).

Fig. 2.9 shows that, from training with only
4 hours of data in a complex, real-world environ-
ment using only raw camera images and no prior
knowledge, the car could navigate significant
portions of the environment. For example, the
best trajectory travelled 197m, corresponding to
nearly 2 loops (and 8 hallway lengths). How-
ever, sometimes the policy fails (Fig. 2.10); ad-
ditional training should correct these mistakes.

CHAPTER 2. INTERPOLATING BETWEEN MODEL-BASED AND MODEL-FREE
REINFORCEMENT LEARNING 18

Distance until
crash (m)

Random policy
Double Q-learning
with off-policy data

Our approach

Mean 3.4 7.2 52.4
Median 2.8 6.1 29.3
Max 8.0 21.5 197.0

Table 2.1: Evaluation of our learned policy navigating at 1.2m/s using only monocular images in a real-world indoor
environment after 4 hours of self-supervised training, compared to a random policy and double Q-learning trained with
the same data gathered by our approach.

Table 2.1 compares our method with a random policy and double Q-learning trained using the
data gathered during our approach’s learning. We trained double Q-learning in this way in order
to compare the performance of the algorithms given the same state distribution. Our approach
travels 17× farther than the random policy and 7× farther than double Q-learning. Qualitatively,
our approach was smoothly driving straight when possible, while double Q-learning was exhibiting
bang-bang control in that its steering angle is always at the limits.

2.6 Discussion
In this chapter, we presented a sample-efficient, stable, and high-performing reinforcement learning
algorithm for learning robot navigation policies. By formalizing a generalized computation graph
that subsumes value-based model-free and model-based learning, we subsequently instantiated this
graph to form a suite of hybrid algorithms for robot navigation. Our simulated experiments evaluate
which design decisions were important for sample-efficient and stable learning of robot navigation
policies, and show our approach outperforms prior Q-learning based methods. Our real-world
experiments on an RC car in a complex real-world environment show that our approach can learn to
navigate significant portions of the environment using only monocular images with only 4 hours of
training in a completely self-supervised manner.

19

Chapter 3

Transfer Learning

Figure 3.1: Our autonomous
quadrotor navigating a building
from raw monocular images using
a learned collision avoidance pol-
icy trained with a simulator and one
hour of real-world data.

In the previous chapter, we demonstrated our reinforcement learning
algorithm based on generalized computation graphs can successfully
learn from purely real-world data. However, as with all learning-
based systems, the capacity of learned policies to generalize to new
situations is determined in large part by the quantity and variety of
the data that is available for training. While in principle autonomous
robots could gather their own data directly in the real world, general-
ization is so strongly dependent on dataset size and diversity that it
can almost always be improved simply by adding more experience,
especially for fragile and safety-critical systems such as quadrotors,
for which large datasets may be difficult to collect. It is therefore
highly advantageous to integrate other, more plentiful sources of
data into the training process. In this chapter, we investigate how
a combination of simulated and real-world data can enable effective
generalization for collision avoidance on a real-world nano aerial
vehicle (NAV), shown in Fig. 3.1, using only an onboard monocular camera.

While transferring simulated experience into the real world has received considerable attention
in recent years [38], [39], [90], [91], deployment of policies trained in simulation onto real-world
robots poses a major challenge: complex real-world physical and visual phenomena are difficult
to simulate accurately, and the systematic differences between simulation and reality are typically
impossible to eliminate. Many of the prior works in this area have focused on differences that
are irrelevant to the task; nuisance factors, such as variations in visual appearance, to which the
optimal policy should be invariant. Such nuisance factors can be eliminated by regularizing for
invariance. However, some aspects of the simulation, particularly in terms of the dynamics of the
robot, differ from reality in systematic ways that cannot be ignored. This is especially important
for small-scale aerial vehicles, where air currents, drift, and turbulence are significant. In principle,
this mismatch can be addressed by fine-tuning models trained in simulation on real-world data.
However, as we will show in our experiments, naïve fine-tuning with small, real-world datasets can
result in catastrophic overfitting.

CHAPTER 3. TRANSFER LEARNING 20

In this chapter, we instead aim to devise a transfer learning algorithm where the physical behavior
of the vehicle is learned mostly from real-world data, while simulated experience provides for a
visual perception system that generalizes to new environments. In essence, real-world experience
is used to learn how to fly, while simulated experience is used to learn how to generalize. Rather
than simply fine-tuning a deep neural network policy using real-world data, we separate our model
into a perception and control subsystem. The perception subsystem transfers visual features from
simulation, while the control subsystem is trained with real-world data. This enables our approach to
transfer knowledge from simulation and generalize to new real-world environments more effectively
than alternative techniques. We further evaluate several choices for training the visual system in
simulation, and observe that visual features that are task-oriented, such as models trained with
reinforcement learning specifically for navigation and collision avoidance, transfer substantially
better than task-agnostic feature learners trained with unsupervised learning [92] or standard
supervised pre-training techniques, such as pre-training on large image recognition datasets [93].

The main contribution of this chapter is a method for combining large amounts of simulated
data with small amounts of real-world experience to train real-world collision avoidance policies
for autonomous flight with deep reinforcement learning. The principle underlying our method is to
learn about the physical properties of the vehicle and its dynamics in the real world, while learning
visual invariances and patterns from simulation. We compare a variety of methods for learning the
visual features, and find that reinforcement learning in simulation leads to the most transferable
representations when compared to unsupervised and supervised alternatives. On a real-world nano
aerial vehicle (NAV) collision avoidance task, our method can fly 4× further compared to alternative
methods, and can navigate through hallways with various lighting conditions and geometry.

3.1 Related Work
There has been much work on transfer learning for control policies [27], including from simulation
to reality. Prior works have sought to transfer policies by combining simulated and real-world data,
including techniques such as domain adaptation [28], [29] and feature space learning [30], [31].
These methods learn task-agnostic perception models, primarily in order to avoid requiring labels
in the real-world. In contrast, our approach uses a task-specific perception model—specifically,
the perceptual neural network layers from a policy learned in simulation—for transfer, which we
demonstrate in our experiments is crucial for success.

Other approaches have sought to improve transfer by minimizing the gap between simulation
and reality, either by bringing the simulator closer to reality [35], [36], making reality closer
to the simulator [37], [38], or randomizing visual [39], [40] or physical [41]–[44] properties of
the simulator. These approaches seek to reduce the policy overfitting to systemic or irrelevant
differences between simulation and reality, while our approach is complementary in that it seeks
to adapt models learned in simulation to the real-world using a limited amount of real-world
data. Some prior works also acknowledge the existence of the reality gap and learn to adapt these
imperfect models using real-world data [32]–[34]. In contrast to these methods, which are either
evaluated on either low-dimensional or simple dynamical systems, our approach scales to raw image

CHAPTER 3. TRANSFER LEARNING 21

inputs and can cope with the highly nonlinear dynamics of a nano aerial vehicle by learning a
scalable, sample-efficient, end-to-end latent dynamics model.

The general problem of addressing differences between training and test distributions has been
extensively studied in the machine learning community [45]. With the recent advent of large
datasets, prior work has shown that deep neural networks trained on these large datasets can enable
easy transfer to new tasks via fine-tuning [46]–[49]. In our experiments, we attempted a similar
transfer by using the perception layers from a neural network model trained on Imagenet [93] and
fine-tuning; however, we found that this approach performed poorly compared to our method for
the task of NAV collision avoidance.

There is extensive prior work on autonomous aerial flight, including approaches that use
geometric mapping and path planning [13], [14], imitate an expert pilot or leverage expert labelled
data [55], [70], [94], and learn from experience using large real-world datasets [60], [71]. In contrast
to these works, our work focuses on developing a method for adapting to the real-world using a
limited amount of real-world data, which is particularly important for the SWaP-constrained NAV
platform used in this work.

3.2 Problem Formulation
Our goal is to learn a real-world control policy by leveraging data gathered in simulation in
conjunction with a limited amount of real-world data. At each time step t, the robot selects an
action at ∈ A in state st ∈ S, proceeds to the next state st+1 according to an unknown transition
distribution T (st+1|st, at), and receives a task-specific reward rt. The objective of the robot is
to learn the parameter vector θ of a policy distribution πθ(at|st) such that the expected sum of
discounted future rewards Eπθ,T [

∑∞
t′=t γ

t′−trt′] is maximized, in which the discount factor γ ∈ [0, 1)
determines to what degree the robot cares about rewards in the distant future.

In order to train this policy πθ, we assume we have access to both a simulator and a small dataset
collected by the robot acting in the real world. The goal is therefore to learn a real-world policy πθ
using a real-world dataset (st, at, rt) ∈ DRW, in combination with a simulated dataset DSIM, such
that πθ generalizes well in the real world.

3.3 Generalization through Simulation
We will now describe our approach for real-world robot learning using generalization through
simulation. Our key insight is that the real world and simulation can serve complementary functions
for robot learning: data gathered in the real world provides accurate signals about the dynamics of
the robot, but suffers from a lack of visual diversity due to the difficulty of gathering experience in
the real-world, while simulation provides an easy way to gather large amounts of visually diverse
data, but suffers from unrealistic dynamics. Our approach therefore uses the real world data for
learning the dynamics of the robot, while leveraging the simulation data to learn a generalizable
visual perception system. We will first describe our real-world control policy learning approach,

CHAPTER 3. TRANSFER LEARNING 22

Figure 3.2: Our approach for leveraging both a simulator and real-world data. In simulation, we run reinforcement
learning in order to learn a task-specific deep neural network Q-function model. Using real-world data from running the
robot, we learn a deep neural network model that predicts future rewards given the current state and a future sequence
of actions; this model can be used to form a control policy by selecting actions that maximize future rewards. In order
to learn a generalizable reward prediction model with only an hours worth of real-world data, we transfer the perception
neural network layers from the Q-function trained in simulation to be the perception module for the reward predictor.
Our experiments demonstrate that (1) fine-tuning the Q-function on real-world data does not lead to good performance,
(2) the reward predictor is better suited for real-world learning due to the limited amount of real-world data, and (3)
learning a task-specific model in simulation improves transfer of the perception module.

and then discuss how to transfer a visual perception system learned in simulation to enable the
real-world policy to generalize.

Real-World Policy Learning
Given that we will only have access to a small amount of real-world data, we require a policy
learning algorithm that is sample-efficient. We therefore build off of the generalized computation
graph from Chapter 2. In this chapter, we will instantiate the graph as an action-conditioned reward
predictor Gθ(st,A

H
t) that takes as input the current state st and a sequence of H future planned

actions AH
t = (at, ..., at+H−1), and outputs the predicted rewards R̂H

t = (r̂t, ..., r̂t+H−1) at each
time step in the future.

At training time, the model parameters are updated using the real-world dataset to minimize the
reward prediction error

θ∗ = arg min
θ

∑
(st,AH

t ,R
H
t)∈DRW

‖Gθ(st,A
H
t)−RH

t ‖2, (3.1)

while at test time, the learned action-conditioned reward predictor is used by a finite-horizon optimal

CHAPTER 3. TRANSFER LEARNING 23

controller to select an action sequence that maximizes the predicted future rewards

A∗ = arg max
A

H−1∑
h=0

γhr̂t+h. (3.2)

At each time step, the controller solves for the optimal action sequence by solving Eqn. 3.2,
executing the first action of the resulting action sequence, proceeding to the subsequent state, and
then repeating this process in a receding horizon model predictive control (MPC) fashion. In order
to actually find the optimal action sequence in Eqn. 3.2, we resort to approximate optimization
methods. In particular, we use the cross entropy method (CEM) [87], which is a zeroth order
stochastic optimization procedure.

We now instantiate the action-conditioned reward predictor as a deep neural network. Fig. 3.2
depicts the neural network architecture. The image state st is provided as input to a convolutional
neural network, which outputs a latent representation of the state. This latent state then serves as
the initial state of a latent dynamical system module, implemented as a recurrent neural network,
which updates the latent state H times using the action sequence AH

t . Each of the H latent states is
then passed through fully connected layers to produce the final reward predictions R̂H

t .

Transferring Visual Perception Systems from Simulation
Although the action-conditioned reward predictor is a sample-efficient policy learning algorithm,
the policy is still prone to overfitting to the training data and may therefore fail to generalize to
novel real-world environments due to the immense visual diversity of the real-world. We therefore
seek to leverage simulation data in order to enable better real-world policy generalization.

In deciding how to leverage our simulator, we make two key observations: (1) current state-of-
the-art simulators are good at providing realistic and diverse visual scenes [37], but do not accurately
model the complex, real-world dynamics of NAVs and (2) the model learned in simulation should
be task-specific and align with the real-world robot task in order for the model to learn to distill
task-relevant features. Our approach will therefore learn a task-specific model in simulation, and
then transfer the visual perception system part of the model to the real-world policy.

Learning a task-specific model. The task-specific model we learn is a deep neural network
Q-function Qθ(st, at) that is trained using Q-learning [95]; this Q-function represents the expected
sum of future rewards an agent would achieve in state st, executing action at, and acting optimally
thereafter. We use the Q-learning algorithm, as opposed to the action-conditioned reward predictor
used for real-world policy learning, because (1) we have access to large amounts of data in
simulation, which is a requirement for deep Q-learning, and (2) Q-learning can learn long-horizon
tasks, which may improve the visual features that it learns.

Q-learning updates the parameters of the Q-function by minimizing the Bellman error for all
state, action, reward, next state tuples in the (simulation-gathered) dataset:

θ∗ = arg min
θ

∑
DSIM

‖Qθ(st, at)− [rt + γmax
a′

Qθ(st+1, a
′)]‖2.

CHAPTER 3. TRANSFER LEARNING 24

Using the Q-function, optimal actions can then be selected by finding the action that maximizes the
Q-function:

a∗ = arg max
a

Qθ(st, a).

In deep Q-learning algorithms with discrete action spaces, this maximization can be performed
optimally. However, for deep Q-functions that take as input continuous actions, this maximization
can be approximated using stochastic optimization techniques [96], [97].

The Q-function neural network model is shown in Fig. 3.2. The model consists of three distinct
neural network modules: a perception module consisting of a convolutional neural network for
processing the input image state, an action module consisting of a fully connected neural network
for processing the action, and a value module consisting of a fully connected neural network for
combining the processed state and action to produce the resulting Q-value. We note that Q-function
and action-conditioned reward predictor have a very similar structure, which illustrates the purpose
of the generalized computation graph: both approaches have the same underlying mechanisms, but
are trained slightly differently [96].

Visual perception system transfer. We will use the visual perception neural network layers
trained when learning the task-specific Q-function in order to transfer the visual perception system
from simulation to the real-world. Concretely, we will initialize the weights of the real-world
policy’s visual perception layers (Fig. 3.2 top) to the values of the visual perception layers from the
Q-function learned in simulation (Fig. 3.2 bottom), and hold these perception layers fixed during
real-world policy training. Although these layers could be further fine-tuned using the real-world
data, we decided to hold these layers fixed to prevent the real-world policy from overfitting to the
training data.

Algorithm Overview
We now provide a brief summarizing overview of our approach. First, we train a deep neural network
Q-function using deep reinforcement learning in a visually diverse set of simulated environments.
Then, we create the deep neural network action-conditioned reward prediction model, in which we
use the perception layers from the simulation-trained Q-function to process the input image state.
Next, we train the action-conditioned reward prediction model using real-world data gathered by
the robot; however, when training the model, we do not update the parameters of the perception
layers. Using this action-conditioned prediction model trained on real-world data, but leveraging a
task-specific visual perception system trained in simulation, our real-world policy will be better
able to generalize to novel environments.

3.4 Experiments
We evaluate our approach on a collision avoidance task with a nano aerial vehicle (NAV). This
platform is well-suited for testing our transfer learning approach because it is SWaP constrained.
The NAV we use is the Crazyflie 2.0 nano quadcopter [98], shown in Fig. 3.1. The Crazyflie has

CHAPTER 3. TRANSFER LEARNING 25

Si
m

ul
at

io
n

M
od

el

Pe
rc

ep
tio

n
Sy

st
em

T r
an

sf
er

re
d

R
ea

l-
W

or
ld

L
ea

rn
ed

M
od

el
U

se
s

R
ea

l-
W

or
ld

D
at

a

Pe
rc

ep
tio

n
L

ay
er

s
Tr

ai
ne

d
w

ith
R

ea
l-

W
or

ld
D

at
a

Ti
m

e
U

nt
il

C
ol

lis
io

n
(s

ec
on

ds
,m

ax
86

)

Pe
rc

en
ta

ge
H

al
lw

ay
Tr

av
er

se
d

si
m

on
ly

Ta
sk

-s
pe

ci
fic

N
/A

N
/A

7
N

/A
16

.5
(0

.5
)

19
si

m
fin

e-
tu

ne
d

Ta
sk

-s
pe

ci
fic

7
Q

-f
un

ct
io

n
3

3
6.

0
(2

8.
5)

7
si

m
fin

e-
tu

ne
d

pe
rc

ep
tio

n
fix

ed
Ta

sk
-s

pe
ci

fic
7

Q
-f

un
ct

io
n

3
7

6.
5

(6
6.

5)
8

re
al

-w
or

ld
on

ly
N

/A
7

A
C

R
P

3
3

7.
8

(3
0.

0)
9

su
pe

rv
is

ed
(I

m
ag

eN
et

)t
ra

ns
fe

r
N

/A
3

A
C

R
P

3
7

9.
5

(4
.5

)
11

un
su

pe
rv

is
ed

(V
A

E
)t

ra
ns

fe
r

Ta
sk

-a
gn

os
tic

3
A

C
R

P
3

7
21

.0
(1

9.
3)

24
G

tS
(o

ur
s)

Ta
sk

-s
pe

ci
fic

3
A

C
R

P
3

7
85

.8
(2

.5
)

10
0

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

ou
rg

en
er

al
iz

at
io

n
th

ro
ug

h
si

m
ul

at
io

n
(G

tS
)a

pp
ro

ac
h

w
ith

pr
io

rm
et

ho
ds

fo
rt

he
ta

sk
of

fly
in

g
do

w
n

a
st

ra
ig

ht
ha

llw
ay

.N
ot

e
th

at
th

is
ha

llw
ay

w
as

no
ti

n
th

e
re

al
-w

or
ld

tra
in

in
g

da
ta

.E
ac

h
ap

pr
oa

ch
an

d
ba

se
lin

e
ca

n
be

ch
ar

ac
te

riz
ed

w
ith

fiv
e

pr
op

er
tie

s:
(1

)i
s

th
e

si
m

ul
at

io
n

m
od

el
us

ed
fo

rt
ra

ns
fe

rt
as

k-
sp

ec
ifi

c
or

ta
sk

-a
gn

os
tic

?
(2

)i
s

th
e

re
al

-w
or

ld
pe

rc
ep

tio
n

m
od

ul
e

tr
an

sf
er

re
d

fr
om

an
ot

he
rm

od
el

?
(3

)i
s

th
e

m
od

el
tr

ai
ne

d
in

th
e

re
al

w
or

ld
a

ne
ur

al
ne

tw
or

k
Q

-f
un

ct
io

n
or

a
ne

ur
al

ne
tw

or
k

ac
tio

n-
co

nd
iti

on
ed

re
w

ar
d

pr
ed

ic
to

r?
(4

)i
s

re
al

-w
or

ld
da

ta
us

ed
fo

rt
ra

in
in

g?
an

d
(5

)a
re

th
e

pe
rc

ep
tio

n
la

ye
rs

tr
ai

ne
d

w
ith

th
e

re
al

-w
or

ld
da

ta
or

he
ld

fix
ed

?
E

ac
h

ap
pr

oa
ch

at
te

m
pt

ed
th

e
ta

sk
5

tim
es

,a
nd

th
e

tim
e

to
co

lli
si

on
(m

ed
ia

n
an

d
in

te
rq

ua
rt

ile
ra

ng
e)

w
as

re
co

rd
ed

.O
ur

ap
pr

oa
ch

w
as

ab
le

to
re

lia
bl

y
fly

do
w

n
th

e
en

tir
e

ha
llw

ay
w

ith
ou

tc
ol

lid
in

g,
co

ns
is

te
nt

ly
re

ac
hi

ng
th

e
m

ax
im

um
fli

gh
tt

im
e.

CHAPTER 3. TRANSFER LEARNING 26

dimensions 92x92x29mm and weighs 27 grams. The action space consists of forward speed, yaw
rate, and height, which is enabled by a downward-facing optical flow and height sensor. To allow
for perceptual navigation, we added a 3.4 gram monocular camera to the Crazyflie. With the added
weight, the maximum flight duration is approximately four minutes. Communication with the
Crazyflie is done via a radio-to-USB dongle connected to a nearby laptop. All action selection
using the learned policies is performed on this laptop, but could be deployed on the NAV in future
work [99].

For training the simulation policy, we used the Gibson simulator [37], which contains a large
variety of 3D scanned environments (Fig. 3.3). We modelled the quadrotor as a camera with
simple point mass dynamics, meaning that the actions directly control the pose of the robot camera.
Although these dynamics are a severe oversimplification of real-world NAV dynamics, the goal of
the simulator is not to accurately simulate the NAV, but rather to enable the collection of a visually
diverse set of data that can then be used to train a task-specific model for the purpose of visual
transfer. We will show in our experiments that even with this oversimplified dynamics model, we are
still able to successfully transfer the visual perception system from our simulation-trained model.

Figure 3.3: A subset of the environments used for simulation
training.

Simulation data was gathered by running
separate instances of Q-learning in 16 differ-
ent environments. The reward function for Q-
learning was 0 for no collision, and -1 for col-
lision. After all the instances of Q-learning fin-
ished training, we trained a single Q-function
on all of the 17 million simulation-gathered data
points. Real-world data was gathered by run-
ning the simulation-trained policy in a single
hallway on the 5th floor of Cory Hall at UC Berkeley for one hour, resulting in 14,000 data points.

For both simulation and the real world, the state consisted of the four most recent camera
image converted to grayscale and downsized to a resolution of 72× 96, resulting in the state space
S ∈ R4×72×96. The action consisted solely of the yaw angular velocity A ∈ R1 because the height
and speed were held constant at 0.4 meters and 0.3 m/s, respectively. Data was gathered at 4 Hz, the
discount factor γ was set to 1, and the action-conditioned reward prediction model had a horizon of
H = 12, which corresponds to predicting 3 seconds into the future.

In our experimental evaluation, we seek to answer the following questions:

Q1 Does including real-world data improve performance?

Q2 Does the action-conditioned reward predictor lead to better real-world policies compared to
Q-learning?

Q3 Is a task-specific or task-agnostic simulation-trained model better for real-world transfer?

Q4 Does transferring the perception module from the simulation-trained model improve real-
world performance?

We compare our approach to the following methods:

CHAPTER 3. TRANSFER LEARNING 27

- Sim only: The Q-function policy trained on all of the simulated data.

- Sim fine-tuned: The Q-function policy trained on all of the simulated data, and then fine-tuned
solely on the real-world data.

- Sim fine-tuned perception fixed: The Q-function policy trained on all of the simulated data,
and then fine-tune only the non-perception layers on the real-world data.

- Real-world only: The action-conditioned reward predictor trained solely on the real-world
data.

- Supervised (ImageNet) transfer: Using pre-trained convolutional features from a model [100]
trained on Imagenet [93] for the perception module, and training the action-conditioned
reward predictor using the real-world data with the perception layers held fixed.

- Unsupervised (VAE) transfer: A variational autoencoder [92] generative model is trained on
the simulated image data. The encoder, which maps input images to a concise latent state,
is then used as the perception module for the action-conditioned reward predictor, which is
trained on the real-world data.

In order to evaluate the generalization capabilities of our approach, we present results in
hallways not present in the real-world training dataset. Table 3.1 compares our generalization
through simulation approach with all of the considered prior methods in a novel straight hallway,
and Fig. 3.4a shows first- and third-person images of the NAV flying using our approach. Our
method consistently flew the full length of the hallway without colliding, while the best prior
method could only fly down a quarter of the hallway before colliding. Although flying down a
straight hallway appears to be an easy task, the NAV drifts substantially due to imprecise sensors
and environmental disturbances, and therefore avoiding collisions is non-trivial.

The sim only approach did not perform well and typically collided at doors. The sim fine-tuned
and sim fine-tuned perception fixed models had trials that were indeed better than the sim only
model, however their performances were inconsistent, indicating that Q-learning methods have
difficulty fine-tuning on a limited amount of real-world data. Meanwhile, the policy trained solely
on real-world data made some progress, but likely did not perform well due to overfitting.

% Successful Trials
(out of 5)

Straight Hallway
with Tilted Camera

Curved
Hallway

Zig-zag
Hallway

Sim only 0 0 0
Unsupervised (VAE) transfer 0 0 0

GtS (ours) 80 60 80

Table 3.2: Comparison of our generalization through simulation approach with the best two prior methods from Table 3.1
on three more difficult tasks. Our approach succeeds in the majority of the trials, while the prior methods fail.

CHAPTER 3. TRANSFER LEARNING 28

(a) Straight Hallway

(b) Curved Hallway

(c) Zig-zag Hallway

Figure 3.4: Our learning-based approach, using only the onboard, grayscale, 72× 96 resolution camera images, flying
through a straight, curved, and zig-zag hallway.

CHAPTER 3. TRANSFER LEARNING 29

In contrast, our approach, which combines learning with real-world data with simulation model
pre-training, results in improved real-world performance (Q1 and Q4). Additionally, compared to
the sim fine-tuned and sim fine-tuned perception fixed approaches, our method is able to leverage
both a simulation-trained model and real-world data, indicating that the action-conditioned reward
predictor is crucial for sample-efficient and stable learning (Q2). Lastly, our approach outperforms
methods that transfer perception modules from task-agnostic models, showing that training task-
specific models in simulation is beneficial for transfer (Q3).

Figure 3.5: Example failure: colli-
sion with a glass door.

We also ran three additional experiments comparing our ap-
proach to the two best approaches in the straight hallway—sim only
and VAE transfer—in the same straight hallway, but with the cam-
era angle tilted down by 20 degrees, a curved hallway with varying
lighting, and a zig-zag hallway. Table 3.2 summarizes the results,
and Fig. 3.4 shows first- and third-person images of our approach
flying. Our approach was able to fly through these difficult environ-
ments the majority of the trials, while the best prior methods were
entirely unsuccessful. When our approach did fail, it was oftentimes reasonable; for example, in
the curved hallways, in 30% of the trials the NAV collided with a glass door (Fig. 3.5). This is not
surprising: the real-world data never included glass doors, and furthermore, many glass doors in
simulation were actually traversable in simulation. However, with additional real-world data, the
NAV would hopefully learn from these errors, which is the foundation of learning-based approaches.

3.5 Discussion
In this chapter, we presented an approach for learning generalizable real-world control policies
using a simulator and a limited amount of real-world data. Our generalization through simulation
approach uses the simulator to learn a task-specific model, and then transfers the perception layers
to a sample-efficient, action-conditioned reward predictor that is trained on real-world data. Our
experiments evaluate the design decisions of our method and show that our approach enables a nano
aerial vehicle to fly through novel, complex hallway environments.

30

Part II

Supervision

31

Chapter 4

Self-Supervision

Figure 4.1: BADGR is an end-to-end learning-based mobile robot navigation system that can be trained with self-
supervised off-policy data gathered in real-world environments, without any simulation or human supervision. Using
only RGB images and GPS, BADGR can follow sparse GPS waypoints without colliding while (top row) preferring
smooth concrete paths and (bottom row) ignoring geometrically distracting obstacles such as tall grass.

In part I, we developed reinforcement algorithms that quickly learned from a limited amount of
data. However, these algorithms assumed the learning signal was known. While this assumption
was valid for the given task—collision avoidance—we will need to develop new algorithms that
do not assume the learning signal is given in order to enable mobile robot navigation beyond pure
collision avoidance. In this chapter, we study how autonomous, self-supervised learning from
experience can enable a robot to learn about the physical attributes—also known as affordances—of
its environment using raw visual perception and without human-provided labels or geometric maps.

We investigate how the robot’s own past experience can provide retrospective self-supervision:
for many physically salient navigational objectives, such as avoiding collisions or preferring smooth
over bumpy terrains, the robot can autonomously measure how well it has fulfilled its objective,
and then retrospectively label the preceding experience so as to learn a predictive model for these
objectives. For example, by experiencing collisions and bumpy terrain, the robot can learn, given an
observation and a candidate plan of future actions, which actions might lead to bumpy or smooth

CHAPTER 4. SELF-SUPERVISION 32

to terrain, and which actions may lead to collision. This in effect constitutes a self-supervised
multi-task reinforcement learning problem.

Based on this idea, we present a fully autonomous, self-improving, end-to-end learning-based
system for mobile robot navigation, which we call BADGR—the Berkeley Autonomous Driving
Ground Robot. BADGR works by gathering off-policy data—such as from a random control
policy—in real-world environments, and uses this data to train a model that predicts future relevant
events—such as collision, position, or terrain properties—given the current sensor readings and
the recorded executed future actions. Using this model, BADGR can then plan into the future and
execute actions that avoid certain events, such as collision, and actively seek out other events, such
as smooth terrain. BADGR constitutes a fully autonomous self-improving system because it gathers
data, labels the data in a self-supervised fashion, trains the predictive model in order to plan and act,
and can autonomously gather additional data to further improve itself.

The primary contribution of this chapter is an end-to-end learning-based mobile robot navigation
system that can be trained entirely with self-supervised off-policy data gathered in real-world
environments, without any simulation or human supervision. Our results demonstrate that our
BADGR system can learn to navigate in real-world environments with geometrically distracting
obstacles, such as tall grass, and can readily incorporate terrain preferences, such as avoiding bumpy
terrain, using only 42 hours of autonomously collected data. Our experiments show that our method
can outperform a LIDAR policy in complex real-world settings, generalize to novel environments,
and can improve as it gathers more data.

4.1 Related Work
Learning-based methods have shown promise in addressing these limitations by learning from
data. One approach to improve upon SLAM methods is to directly estimate the geometry of
the scene [50]–[52]. However, these methods are limited in that the geometry is only a partial
description of the environment. Only learning about geometry can lead to unintended consequences,
such as believing that a field of tall grass is untraversable. Semantic-based learning approaches
attempt to address the limitations of purely geometric methods by associating the input sensory data
with semantically meaningful labels, such as which pixels in an image correspond to traversable or
bumpy terrain. However, these methods typically depend on existing SLAM approaches [18], [21],
[57]–[59] or humans [53], [54] in order to provide the semantic labels, which consequently means
these approaches either inherit the limitations of geometric approaches or are not autonomously self-
improving. Methods based on imitation learning have been demonstrated on real-world robots [20],
[55], [56], but again depend on humans for expert demonstrations, which does not constitute a
continuously self-improving system. End-to-end reinforcement learning approaches have shown
promise in automating the entire navigation pipeline. However, these methods have typically
focused on pure geometric reasoning, require on-policy data, and often utilize simulation due to
constraints such as sample efficiency [39], [96], [101]–[104]. Prior works have investigated learning
navigation policies directly from real-world experience, but typically require a person [71], [102],
[105] or SLAM algorithm [60] to gather the data, assume access to the ground-truth robot state [106],

CHAPTER 4. SELF-SUPERVISION 33

learn using low-bandwidth sensors [107], or only perform collision avoidance [96], [108]. Our
approach overcomes the limitations of these prior works by designing an end-to-end reinforcement
learning approach that directly learns to predict relevant navigation cues with a sample-efficient,
off-policy algorithm, and can continue to improve with additional experience via a self-supervised
data labelling mechanism that does not depend on humans or SLAM algorithms.

4.2 The Berkeley Autonomous Driving Ground Robot
Our goal is to enable a mobile robot to navigate in real-world environments. Our method, BADGR, is
an end-to-end learning-based navigation system that can be trained entirely with self-supervised data
gathered autonomously in real-world environments, without any simulation or human supervision,
and can improve as it gathers more data.

BADGR autonomously gathers large amounts of off-policy data in real-world environments.
Using this data, BADGR labels relevant events—such as collisions or bumpy terrain—in a self-
supervised manner, and adds these labelled events back into the dataset. BADGR then trains a
predictive model that takes as input the current camera images and a future sequence of actions,
which correspond to linear and angular velocity commands, and predicts the relevant future events.
When deploying the trained BADGR system, the user specifies a reward function that encodes
the task they want the robot to accomplish in terms of these relevant events—such as to reach a
goal while avoiding collisions and bumpy terrain—and the robot autonomously plans and executes
actions that maximize this reward.

In order to build a self-supervised learning-based navigational system, BADGR uses retrospec-
tive self-supervision. This means that the robot must be able to experience events, such as collisions,
and then learn to avoid (or seek out) such events in the future. In order to learn using retrospective
self-supervision, the robot can only learn about events it has experienced and that can be measured
using the onboard sensors, and that experiencing these events, even undesirable events such as
colliding, is acceptable. We believe this approach to autonomous self-supervised robot learning is
realistic for many real-world autonomous mobile robot applications.

In the following sections, we will describe the robot, data collection and labelling, model
training, and planning components, followed by a summarizing overview of the entire system.

Mobile Robot Platform

Figure 4.2: The mobile robot.

The specific design considerations for the robotic platform focus on
enabling long-term autonomy with minimal human intervention. The
robot we use is the Clearpath Jackal, shown in Fig. 4.2. The Jackal
measures 508mm× 430mm× 250mm and weighs 17kg, making it ideal
for navigating in both urban and off-road environments. The Jackal is
controlled by specifying the desired linear and angular velocity, which
are used as setpoints for the low-level differential drive controllers. The
default sensor suite consists of a 6-DOF IMU, which measures linear

CHAPTER 4. SELF-SUPERVISION 34

acceleration and angular velocity, a GPS unit for approximate global
position estimates, and encoders to measure the wheel velocity. In addition, we added the following
sensors on top of the Jackal: two forward-facing 170◦ field-of-view 640 × 480 cameras, a 2D
LIDAR, and a compass.

Inside the Jackal is an NVIDIA Jetson TX2 computer, which is ideal for running deep learning
applications, in addition to interfacing with the sensors and low-level microcontrollers. Data is
saved to an external SSD, which must be large and fast enough to store 1.3GB per minute streaming
in from the sensors. Experiments were monitored remotely via a 4G smartphone mounted on top of
the Jackal, which allowed for video streaming and, if needed, teleoperation.

The robot was designed primarily for robustness, with a relatively minimal and robust sensor
suite, in order to enable long-term autonomous operation for large-scale data collection.

Data Collection
We design the data collection methodology to enable gathering large amounts of diverse data for
training with minimal human intervention. The first consideration is the mobile robot platform
(Fig. 4.2), which was designed primarily for robustness, with a relatively minimal and robust sensor
suite, in order to enable long-term autonomous operation for large-scale data collection.

The first consideration when designing the data collection policy is whether the learning
algorithm requires on-policy data. On-policy data collection entails alternating between gathering
data using the current policy, and retraining the policy using the most recently gathered data. On-
policy data collection is highly undesirable because only the most recently gathered data can be
used for training; all previously gathered data must be thrown out. In contrast, off-policy learning
algorithms can train policies using data gathered by any control policy. Due to the high cost of
gathering data with real-world robotic systems, we choose to use an off-policy learning algorithm
in order to be able to gather data using any control policy and train on all of the gathered data.

Figure 4.3: An example plot of the commanded angular and
linear velocities from our time-correlated random control
policy that is used to gather data.

The second consideration when designing
the data collection policy is to ensure the en-
vironment is sufficiently explored, while also
ensuring that the robot execute action sequences
it will realistically wish to execute at test time.
A naïve uniform random control policy is inad-
equate because the robot will primarily drive
straight due to the linear and angular velocity
action interface of the robot, which will result
in both insufficient exploration and unrealistic
test time action sequences. We therefore use a
time-correlated random walk control policy to
gather data, which is visualized in Fig. 4.3.

As the robot is gathering data using the random control policy, it will require a mechanism to de-
tect if it is in collision or stuck, and an automated controller to reset itself in order to continue gather-
ing data.

CHAPTER 4. SELF-SUPERVISION 35

Figure 4.4: While collecting data,
the robot will periodically require
a manual intervention to reset from
catastrophic failures, though recov-
ery is usually automatic.

We detect collisions in one of two ways, either using the LIDAR
to detect when an obstacle is near or the IMU to detect when the
robot is stuck due to an obstacle. We used the LIDAR collision
detector in urban environments in order to avoid damaging property,
and the IMU collision detector in off-road environments because
the LIDAR detector was overly pessimistic, such as detecting grass
as an obstacle. Once a collision is detected, a simple reset policy
commands the robot to back up and rotate. However, sometimes
the reset policy is insufficient, for example if the robot flips over
(Fig. 4.4), and a person must manually reset the robot.

As the robot collects data, all the raw sensory data is saved
onboard. After data collection for the day is complete, the data is
copied to a desktop machine and subsampled down to 4Hz.

Self-Supervised Data Labelling
BADGR then goes through the raw, subsampled data and calculates labels for specific navigational
events. These events consist of anything pertinent to navigation that can be extracted from the data
in a self-supervised fashion.

In our experiments, we consider three different events: collision, bumpiness, and position. A
collision event is calculated as occurring when, in urban environments, the LIDAR measures an
obstacle to be close or, in off-road environments, when the IMU detects a sudden drop in linear
acceleration and angular velocity magnitudes. A bumpiness event is calculated as occurring when
the angular velocity magnitudes measured by the IMU are above a certain threshold. The position is
determined by an onboard state estimator that fuses wheel odometry and the IMU to form a local
position estimate.

Importantly, while these events are calculated using human-engineered functions, we still call
this labelling scheme self-supervised because, once these simple labelling functions are created, all
current and future data can be labelled with zero additional human effort. The labeling is automatic,
and does not require any complex models, only simple evaluation with on-board sensors. Our
approach stands in contrast to more standard methods for off-road navigation, which might require
manual labeling of images to, for example, segment out traversable and impassable areas in an
image [53].

After BADGR has iterated through the data, calculated the event labels at each time step, and
added these event labels back into the dataset, BADGR can then train a model to predict which
actions lead to which navigational events.

Predictive Model
The model at the core of BADGR is based on the generalized computation graph from Chapter 2.
The learned predictive model takes as input the current sensor observations and a sequence of
future intended actions, and predicts the future navigational events. We denote this model as

CHAPTER 4. SELF-SUPERVISION 36

fθ(ot, at:t+H)→ ê0:K
t:t+H , which defines a function f parameterized by vector θ that takes as input

the current observation ot and a sequence of H future actions at:t+H = (at, at+1, ..., at+H−1), and
predicts K different future events êkt:t+H = (êkt , ê

k
t+1, ..., ê

k
t+H−1) ∀k ∈ {0, ..., K − 1}.

The model we learn is an image-based, action-conditioned predictive deep neural network,
shown in Fig. 4.5. The network first processes the input image observations using convolutional and
fully connected layers. The final output of the these layers serves as the initialization for a recurrent
neural network, which sequentially processes each of the H future actions at+h and outputs the
corresponding predicted future events ê0:K

t+h.
The model is trained—using the observations, actions, and event labels from the collected

dataset—to minimize a loss function that penalizes the distance between the predicted and ground
truth events

L(θ,D) =
∑

(ot,at:t+H)∈D

K−1∑
k=0

Lk(êkt:t+H , ekt:t+H) : ê0:K
t:t+H = fθ(ot, at:t+H). (4.1)

The individual losses Lk for each event are either cross entropy if the event is discrete, or mean
squared error if the event is continuous. The neural network parameter vector θ is trained by
performing minibatch gradient descent on the loss in Eqn. 4.1.

Planning
Given the trained neural network predictive model, this model can then be used at test time to plan
and execute desirable actions.

We first define a reward function R(ê0:K
t:t+H) that encodes what we want the robot to do in terms

of the model’s predicted future events. For example, the reward function could encourage driving
towards a goal while discouraging collisions or driving over bumpy terrain. The specific reward
function we use is specified in the experiments section.

Figure 4.5: Illustration of the deep neural network predictive model at the core of our learning-based navigation policy.
The neural network takes as input the current RGB image and processes it with convolutional and fully connected
layers to form the initial hidden state of a recurrent LSTM unit [109]. This recurrent unit takes as input H actions in a
sequential fashion, and produces H outputs. These outputs of the recurrent unit are then passed through additional fully
connected layers to predict all K events for all H future time steps. These predicted future events, such as position, if
the robot collided, and if the robot drove over bumpy terrain, enable a planner to select actions that achieve desirable
events, such reaching a goal, and avoid undesirable events, such as collisions and bumpy terrain.

CHAPTER 4. SELF-SUPERVISION 37

Using this reward function and the learned predictive model, we solve the following planning
problem at each time step

a∗t:t+H = arg max
at:t+H

R(fθ(ot, at:t+H)), (4.2)

execute the first action, and continue to plan and execute following the framework of model
predictive control.

We solve Eqn. 6.3 using the zeroth order stochastic optimizer from [110]. This optimizer works
by maintaining a running estimate â0:H of the optimal action sequence. Each time the planner
is called, N action sequences ã0:N

0:H are sampled that are time-correlated and centered around this
running action sequence estimate

εnh ∼ N (0, σ · I) ∀n ∈ {0...N − 1}, h ∈ {0...H − 1} (4.3)
ãnh = β · (âh+1 + εnh) + (1− β) · ãnh−1 where ãh<0 = 0,

in which the parameter σ determines how close the sampled action sequences should be to the
running action sequence estimate, and the parameter β ∈ [0, 1] determines the degree to which the
sampled action sequences are correlated in time.

Each action sequence is then propagated through the predictive model in order to calculate the
reward R̃n = R(fθ(ot, ã

n
0:H)). Given each action sequence and its corresponding reward, we update

the running estimate of the optimal action sequence via a reward-weighted average

â0:H =

∑N
n=0 exp(γ ·Rn) · ãn0:H∑N

n′=0 exp(γ ·Rn′)
, (4.4)

in which γ ∈ R+ is a parameter that determines how much weight should be given to high-reward
action sequences.

Each time the planner is called, new action sequences are sampled according to Eqn. 4.3, these
action sequences are propagated through the learned predictive model in order to calculate the
reward of each sequence, the running estimate of the optimal action sequence is updated using
Eqn. 4.4, and the robot executes the first action â0.

This optimizer is more powerful than other zeroth order stochastic optimizers, such as random
shooting or the cross-entropy method [111], because it warm-starts the optimization using the
solution from the previous time step, uses a soft update rule for the new sampling distribution in
order to leverage all of the sampled action sequences, and considers the correlations between time
steps. In our experiments, we found this more powerful optimizer was necessary to achieve good
planning.

Algorithm Summary
We now provide a brief summary of how our BADGR system operates during training (Alg. 2) and
deployment (Alg. 3).

CHAPTER 4. SELF-SUPERVISION 38

During training, BADGR gathers data by executing actions according to the data collection
policy and records the onboard sensory observations and executed actions. Next, BADGR uses
the gathered dataset to self-supervise the event labels, which are added back into the dataset. This
dataset is then used to train the learned predictive model.

When deploying BADGR, the user first defines a reward function that encodes the specific
task they want the robot to accomplish. BADGR then uses the trained predictive model, current
observation, and reward function to plan a sequence of actions that maximize the reward function.
The robot executes the first action in this plan, and BADGR continues to alternate between planning
and executing until the task is complete.

Algorithm 2 Training BADGR

1: initialize dataset D ← ∅
2: while not done collecting data do
3: get current observation ot from sensors
4: get action at from data collection policy
5: add (ot, at) to D
6: execute at
7: if in collision then
8: execute reset maneuver
9: end if

10: end while
11: for each (ot, at) ∈ D do
12: calculate event labels e0:K

t using self-supervision
13: add e0:K

t to D
14: end for
15: use D to train predictive model fθ by minimizing Eqn. 4.1

Algorithm 3 Deploying BADGR
1: input: trained predictive model fθ, reward function R
2: while task is not complete do
3: get current observation ot from sensors
4: solve Eqn. 6.3 using fθ,ot, and R

to get the planned action sequence a∗t:t+H
5: execute the first action a∗t
6: end while

CHAPTER 4. SELF-SUPERVISION 39

4.3 Experiments
In our experimental evaluation, we study how BADGR can autonomously learn successful navigation
strategies in real-world environments, improve as it gathers more data, and generalize to unseen
environments. We also compare BADGR to purely geometric approaches. Videos, code, and
additional material are available on our website1.

We performed our evaluation in a real-world outdoor environment consisting of both urban
and off-road terrain. BADGR autonomously gathered 34 hours of data in the urban terrain and 8
hours in the off-road terrain. Although the amount of data gathered may seem significant, the total
dataset consisted of 720,000 off-policy datapoints, which is smaller than currently used datasets
in computer vision [112] and significantly smaller than the number of samples often used by deep
reinforcement learning algorithms [113].

Our evaluations consist of tasks that involve reaching a goal GPS location, avoiding collisions,
and preferring smooth over bumpy terrain. In order for BADGR to accomplish these tasks, we
design the reward function that BADGR uses for planning as such

R(ê0:K
t:t+H) = −

t+H−1∑
t′=t

RCOLL(ê0:K
t′)+ (4.5)

αPOS ·RPOS(ê0:K
t′) + αBUM ·RBUM(ê0:K

t′)

RCOLL(ê0:K
t′) = êCOLL

t′

RPOS(ê0:K
t′) = (1− êcollt′) · 1

π
∠(êPOS

t′ ,p
GOAL) + êcollt′

RBUM(ê0:K
t′) = (1− êcollt′) · êBUM

t′ + êcollt′ ,

where αPOS and αBUM are user-defined scalars that weight how much the robot should care about
reaching the goal and avoiding bumpy terrain. An important design consideration for the reward
function was how to encode this multi-objective task. First, we ensured each of the individual
rewards were in the range of [0, 1], which made it easier to weight the individual rewards. Second,
we ensured the collision reward always dominated the other rewards: if the robot predicted it was
going to collide, all of the individual rewards were assigned to their maximum value of 1; conversely,
if the robot predicted it was not going to collide, all of the individual rewards were assigned to their
respective values.

We evaluated BADGR against two other methods: a hand-designed navigation strategy that uses
LIDAR to detect obstacles, and a naïve policy that simply drives straight towards the specified goal.
We compared against the LIDAR-based strategy, which is a common geometric-based approach
for designing navigation policies, in order to demonstrate the advantages of our learning-based
approach, while the purpose of the naïve policy is to provide a lower bound baseline and calibrate
the difficulty of the task. To our knowledge, there are no other end-to-end learning-based methods
that we could compare to that do not require either access to a simulator, a map of the environment,

1https://sites.google.com/view/badgr

https://sites.google.com/view/badgr

CHAPTER 4. SELF-SUPERVISION 40

Method
Successfully

Reached Goal

BADGR (ours) 23/25 (92%)
LIDAR 15/25 (60%)
Naïve 15/25 (60%)

Figure 4.6: Experimental evaluation in an off-road environment for the task of reaching a specified goal location while
avoiding collisions. Each approach was evaluated from 5 different start locations—each color corresponding to a
different start location—with 5 runs per each start location. Each run terminated when the robot collided, failed to
make progress and was trapped, or successfully reached the goal. Our BADGR policy is the only approach which can
consistently reach the goal without colliding or getting trapped.

(a)

(b)

Figure 4.7: Comparison of LIDAR (top) versus our BADGR approach (bottom) in a tall grass portion of the off-road
environment. The LIDAR policy incorrectly labels the grass as untraversable, and therefore rotates in-place in an
attempt to find a traversable path; after completing a full rotation and failing to detect any traversable path, the LIDAR
policy determines the robot is trapped. In contrast, our BADGR approach has learned from experience that some tall
grass is indeed traversable, and is therefore able to successfully navigate the robot towards the goal.

demonstration data, or hand-labelled data. We therefore include comparisons to these hand-designed
navigation strategies to provide a point of reference for our results.

Note that for all tasks, only a single GPS coordinate—the location of the goal—is given to the
robot. However, this GPS coordinate alone does not tell the robot the locations of obstacles or
impassable terrain, and therefore a successful navigation strategy must use the onboard sensors.

Off-road environment. We first evaluated all the approaches for the task of reaching a goal
location while avoiding collisions and avoiding getting stuck in an off-road environment. Fig. 4.6
shows the resulting paths that BADGR, LIDAR, and the naïve policies followed. The naïve policy
sometimes succeeded, but oftentimes collided with obstacles such as trees and became stuck on
thick patches of grass. The LIDAR policy nearly never crashed or became stuck on grass, but
sometimes refused to move because it was surrounded by grass which it incorrectly labelled as

CHAPTER 4. SELF-SUPERVISION 41

Figure 4.8: Comparison of our BADGR policy (left) versus the LIDAR policy (right). Each image shows the candidate
paths each policy considered during planning, and the color of each path indicates if the policy predicts the path will
result in a collision. The LIDAR policy falsely predicts the paths driving left or straight will result in a collision with
the few strands of tall grass. In contrast, our BADGR policy correctly predicts that the grass is traversable and will
therefore drive over the grass, which will result in BADGR reaching the goal 1.5× faster.

untraversable obstacles (Fig. 4.7a). BADGR almost always succeeded in reaching the goal by
avoiding collisions and getting stuck, while not falsely predicting that all grass was an obstacle
(Fig. 4.7b).

Additionally, even when the LIDAR-based strategy succeeded in reaching the goal, the path it
took was sometimes suboptimal. Fig. 4.8 shows an example where the LIDAR-based model labelled
a few strands of grass as untraversable obstacles, and therefore decided to take a roundabout path to
the goal; in contrast, BADGR accurately predicted these few strands of grass were traversable, and
therefore took a more optimal path. BADGR reached the goal 1.2× faster on average compared to
the LIDAR policy.

Urban environment. Next, we evaluated all the approaches for the task of reaching a goal GPS
location while avoiding collisions and bumpy terrain in an urban environment. Fig. 4.9 shows the
resulting paths that BADGR, LIDAR, and the naïve strategies followed. The naïve policy almost
always crashed, which illustrates the urban environment contains many obstacles. The LIDAR
policy always succeeded in reaching the goal, but failed to avoid the bumpy grass terrain. BADGR

Method
Successfully

Reached Goal
Average

Bumpiness (|rad/s|)
BADGR
(ours)

25/25 (100%) 8.7± 4.4

BADGR w/o
bumpy cost

25/25 (100%) 15.0± 3.4

LIDAR 25/25 (100%) 13.3± 2.9

Naïve 5/25 (20%) N/A

Figure 4.9: Experimental evaluation in an urban environment for the task of reaching a specified goal position while
avoiding collisions and bumpy terrain. Each approach was evaluated from 5 different start locations—each color
corresponding to a different start location—with 5 runs per each start location. The figures show the paths of each run,
and whether the run successfully reached the goal or ended in a collision. The table shows the success rate and average
bumpiness for each method. Our BADGR approach is better able to reach the goal and avoid bumpy terrain compared
to the other methods.

CHAPTER 4. SELF-SUPERVISION 42

Figure 4.10: Visualization of BADGR’s predictive model in the urban environment. Each image shows the candidate
paths that BADGR considers during planning. These paths are color coded according to either their probability of
collision (top row) or probability of experiencing bumpy terrain (bottom row) according to BADGR’s learned predictive
model. These visualizations show the learned model can accurately predict that action sequences which would drive
into buildings or bushes will result in a collision, and that action sequences which drive on concrete paths are smoother
than driving on grass.

also always succeeded in reaching the goal, and—as also shown by Fig. 4.9—succeeded in avoiding
bumpy terrain by driving on the paved paths. Note that we never told the robot to drive on paths;
BADGR automatically learned from the onboard camera images that driving on concrete paths is
smoother than driving on the grass.

While a sufficiently high-resolution 3D LIDAR could in principle identify the bumpiness of
the terrain and detect the paved paths automatically, 3D geometry is not a perfect indicator of the
terrain properties. For example, let us compare tall grass versus gravel terrain. Geometrically, the
tall grass is bumpier than the gravel, but when actually driving over these terrains, the tall grass
will result in a smoother ride. This example underscores the idea that there is not a clear mapping
between geometry and physically salient properties such as whether terrain is smooth or bumpy.

BADGR overcomes this limitation by directly learning about physically salient properties of the
environment using the raw onboard observations—in this case, the IMU readings—to determine
if the terrain is bumpy. Our approach does not make assumptions about geometry, but rather lets
the predictive model learn correlations from the onboard sensors; Fig. 4.10 shows our predictive
model successfully learns which image and action sequences lead to collisions and bumpy terrain
and which do not.

Self-supervised improvement. A practical deployment of BADGR would be able to continually
self-supervise and improve the model as the robot gathers more data. To provide an evaluation of
how additional data enables adaptation to new circumstances, we conducted a controlled study—

CHAPTER 4. SELF-SUPERVISION 43

Method Zero-shot Target Domain Only Finetuned (ours)
Successfully
reached goal

0/5 1/5 5/5

Figure 4.11: The robot’s task was to reach a goal in the new target area without colliding. The zero-shot policy trained
with only the initial training data always failed. The finetuned policy trained only using data from the target domain
travelled farther before colliding, but still predominantly failed. The policy trained using both the initial training data
and three hours of autonomously gathered, self-supervised-supervised data in the target domain always succeeded in
reaching the goal. This result demonstrates that BADGR improves as it gathers more data, and also that previously
gathered data from other areas can actually accelerate learning.

using a small subset of the collected data—in which BADGR gathers and trains on data from one
area, moves to a new target area, fails at navigating in this area, but then eventually succeeds in the
target area after gathering and training on additional data from that area.

In this experiment, we first evaluate the performance of the original model trained only in the
initial training domain, labeled as ‘zero-shot’ in Figure 4.11. The zero-shot policy fails on every
trial due to a collision. We then evaluate the performance of a policy that is finetuned after collecting
three more hours of data with autonomous self-supervision in the target domain, which we label
as ‘finetuned.’ This model succeeds at reaching the goal on every trial. For completeness, we also
evaluate a model trained only on the data from the target domain, without using the data from the
original training domain, which we label as ‘target domain only.’ This model is better than the
zero-shot model, but still fails much more frequently than the finetuned model that uses both sources
of experience.

This experiment not only demonstrates that BADGR can improve as it gathers more data, but
also that previously gathered experience can actually accelerate policy learning when BADGR
encounters a new environment. From these results, we might reasonably extrapolate that as BADGR
gathers data in more and more environments, it should take less and less time to successfully learn
to navigate in each new environment; we hope that future work will evaluate these truly continual
and lifelong learning capabilities.

Generalization. We also evaluated how well BADGR—when trained on the full 42 hours of
collected data—navigates in novel environments not seen in the training data. Fig. 4.12 shows
our BADGR policy successfully navigating 230 meters total in three novel environments, ranging
from a forest to urban buildings. This result demonstrates that BADGR can generalize to novel
environments if it gathers and trains on a sufficiently large and diverse dataset.

CHAPTER 4. SELF-SUPERVISION 44

Figure 4.12: Our BADGR policy can generalize to novel environments not seen in the training data. Each row shows
the BADGR policy executing in a different novel environment. The first column shows the approximate path followed
by the BADGR policy. The remaining columns show sampled images from the onboard camera while the robot is
navigating, with the future path of the robot overlaid onto the image.

4.4 Discussion
We presented BADGR, an end-to-end learning-based mobile robot navigation system that can be
trained entirely with self-supervised, off-policy data gathered in real-world environments, without
any simulation or human supervision, and can improve as it gathers more data. We demonstrated
that our approach can learn to navigate in real-world environments with geometrically distracting
obstacles, such as tall grass, and can readily incorporate terrain preferences, such as avoiding
bumpy terrain, using 42 hours of autonomously collected and self-supervised training data. Our
experiments show that BADGR can outperform a LIDAR-based strategy in complex real-world
settings, generalize to novel environments, and can improve as it gathers more data. Our experiments
suggest that self-supervised end-to-end learning methods can provide a promising alternative to hand-
designed, geometric navigation strategies, due to their ability to discover navigational affordances
(e.g., traversable or impassable grass) and improve from data.

45

Chapter 5

Model Supervision

Figure 5.1: Our method can learn flexible mo-
bility skills off-policy for a real-world RC car.

In the previous chapter, we showed how a mobile robot
can learn to navigate using self-supervised training signals.
However, certain navigation cues, such as learning to
drive on the correct side of the road, are difficult to learn
through pure self-supervision because there is no off-the-
shelf sensor that produces the required training signal.

In this chapter, we propose a generalization of the
reinforcement learning framework that combines flexible
multi-task learning, off-policy training, and the ability to
learn directly from real-world events that can be detected
automatically, for example with modern computer vision
systems. The main idea behind our approach is to “back
up” a set of event cues such that future values of those
cues can be predicted based on the current observation (e.g., camera image) and actions. At test
time, these predictors can be recombined to achieve user-specified goals. The user can flexibly
specify the desired combination of events, such as what speed to move and which lane to drive in,
and the robot evaluates candidate actions to determine which actions will maximize the likelihood of
those events occurring in the future. We call our models composable action-conditioned predictors
(CAPs). From the standpoint of reinforcement learning, our method generalizes value function
methods to predict multiple events, and then uses these event predictors to flexibly solve various
tasks at test time. From the standpoint of robotic perception, our method can be viewed as a way to
turn a vision system into a prediction system: the output of a vision system that detects an event can
be used to train a model that predicts that event, allowing the robot to plan how to cause (or avoid)
this event.

The main contribution of this chapter is CAPs, a general framework for multi-objective learning-
based control that scales to large datasets, deep neural network function approximators, and
off-policy training. We demonstrate that this framework can be used to train a robot to accomplish a
variety of user-specified goals at test time. The individual event cues we consider include those that
can be trivially labeled by the robot itself—such as collisions, speed, and heading—as well as event

CHAPTER 5. MODEL SUPERVISION 46

cues labelled by a learned detection system, such as road lanes and doorways. The framework is
general and can accommodate any event cue. Our experimental evaluation consists of training these
predictors for both a simulated car and real-world RC car (Fig. 5.1) using data collected entirely
autonomously, without any human-provided labels beyond those needed to train the object detector.
At test-time, we illustrate behaviors such as collision avoidance; path, road, and heading following;
and speed control.

5.1 Related Work
Our composable reinforcement learning framework makes a conceptual contribution in how com-
puter vision systems can be used within a learning-based control framework: we propose that, for
commonly attainable visual recognition signals (such as object detections), reinforcement learning
can effectively convert these detections into predictions by using them in place of reward signals
in a multi-event prediction framework. Prior work has incorporated detectors into reinforcement
learning-based settings [67], but for training a model-free policy that is only designed to generalize
to new instances of the same event cues. Prediction has been an active area of research in com-
puter vision, including prediction of future images [114]–[116], motion [117], and even physical
events [96], [118], [119]. We study action-conditioned prediction, which enables us to control a
robot to bring about desired combinations of predicted events at test-time.

Much of the prior work on learning-based robot navigation has focused on imitation learn-
ing [16], [20], [62]–[64], which requires demonstrations. Our method does not assume access
to demonstrations, and can learn from off-policy data. Supervised learning for navigation using
off-policy data has been investigated, including learning drivable routes [17] and near-to-far obstacle
detectors [18]. Our approach is similar in that we also predict future events, but prior works typically
rely on a hand-engineered control policy, while our control policy using CAPs can improve with
more data because it is conditioned on the robot’s intended actions. RL approaches [82] are designed
to learn and improve control policies from data, including from off-policy data [95]. Much of the
reinforcement learning work for robot navigation has focused on collision avoidance [21], [96],
[120], while our work addresses goal-directed, multi-objective navigation. RL-based approaches
for learning goal-directed navigation have been proposed [39], [121], but typically learn using
hand-crafted reward signals that are difficult to calculate in the real-world. In contrast, our approach
directly addresses the issue of defining the reward signals in the real-world by turning deployable
vision-based detectors into predictors using our CAPs.

5.2 Composable Action-Conditioned Predictors
We now present our composable action-conditioned predictors (CAPs) framework. CAPs learns to
“back up” a set of event cues into the past using a predictive model. This model takes as input the
state and a sequence of planned future actions, and outputs predictions of these event cues, which
can consist of anything relevant to the robot’s task, such as collision, speed, and road lane positions.

CHAPTER 5. MODEL SUPERVISION 47

Using this model, the user can then specify the reward function they wish the robot to maximize in
terms of the event cues.

The CAPs Model
Formally, CAPs is an instantiation of the generalized computation graph from Chapter 2, corre-
sponding to a model fθ(st,AH

t)→ Ê
(H,I)
t , which is a function parameterized by parameters θ that

maps the state st at time t and a sequence of H intended actions AH
t = (at, ..., at+H−1) to predicted

future event cues Ê(H,I)
t . The event cues Ê(H,I)

t consist of events ê(i)
t+h, where h ∈ {0, ..., H − 1}

indexes the prediction time length and i ∈ {0, ..., I − 1} indexes the ith event cue. This model
can be viewed as an extension of [96] to multiple event cues. The model is trained on a dataset of
state-action-event tuples D := {st,AH

t , E
(H,I)
t } such that

θ∗ = arg min
θ

∑
(st,AH

t ,E
(H,I)
t)∈D

∑
h

∑
i

‖ê(i)
t+h − e

(i)
t+h‖. (5.1)

An important distinction between our approach and that of [66] is that our model is conditioned
on a sequence of actions, which is critical for off-policy training. [66] predicts events far in the
future conditioned on the single current action, which implicitly makes the predictor conditional
on a policy, necessitating on-policy data collection. Training the CAPs is completely off-policy:
all data collected by the robot can be used for training, which is advantageous for real-world robot
learning in which gathering data is laborious and expensive.

Autonomous Labeling of Event Cues
Although the training dataset could be generated by letting the robot act in the environment and
hand-labeling the event cues E(H,I)

t , the amount of human supervision needed would become
prohibitively expensive. We instead opt for automated labeling by leveraging existing detection
systems to label these event cues. These detection systems, including modern computer vision
systems, enable our approach to predict cues about the environment that would have otherwise
remained unknown. Consequently, by having access to these labeled event cues and training our
CAPs to predict these event cues, CAPs can be used to achieve tasks that would have otherwise
required a priori knowledge of the environment. In short, the detection system provides “what” the
robot wants to learn about by labelling the event cues, while CAPs provide “how” the robot can
take actions to achieve these events. We discuss specific event cues and their respective learned
detection systems used for labeling in the context of autonomous robot navigation in Section 5.3.

In addition to leveraging existing detection systems, we also can label a subset of the cues using
self-supervision. For example, if we want the robot to move at a desired speed, and its state includes
speed, it can self-label. Although few event cues can be self-supervised, these self-supervised
signals are robust.

CHAPTER 5. MODEL SUPERVISION 48

Action Selection
Using the trained CAPs model fθ and following the approach of [96], the user can encode a task
that the robot must accomplish by defining a reward function R(Ê

(H,I)
t) on the predicted future

event cues. The robot can then calculate the action sequence that maximizes this reward function by
solving the following optimization:

A∗t = arg max
AH

R(Ê
(H,I)
t) : Ê

(H,I)
t = fθ(st,A

H). (5.2)

We use stochastic optimization based on the cross entropy method [122] to solve this maximization,
although in principle any optimizer could be used.

Although the procedure in Eqn. 5.2 enables the robot to plan H time steps into the future, we
would like our robot to be able to accomplish tasks beyond this horizon. We therefore adopt a
model predictive control (MPC) approach, in which the robot solves for the optimal action sequence
at each time step using Eqn. 5.2, executes the first action, proceeds to the next state, and repeats
the planning procedure. Although this MPC approach is not equivalent to planning for the entire
horizon of the task, it has been shown to be an effective and robust method for robot control [123].

Off-Policy Learning and Policy Deployment
We now describe the full off-policy learning algorithm using CAPs. A dataset of state-action pairs
(st, at) is gathered by having the robot act in the environment according to some policy, such as a
random exploration policy or the latest trained CAPs policy (Eqn. 5.2). The robot does not need
data gathered for the tasks it will need to accomplish at test time, but it does require data in which
the relevant event cues are present. The dataset is then used by the detection systems to label the
event cues (e

(0)
t , ..., e

(I−1)
t), which are then added back into the dataset. Finally, the CAPs model is

trained using this dataset (Eqn. 5.1). After running off-policy learning, the user can encode a desired
task for the robot to accomplish (Sec. 5.2). Importantly, the user can change the task without having
to re-train CAPs, so long as the task is expressed in terms of the event cues that CAPs has learned
to predict.

Figure 5.2: The composable action-conditioned predictions (CAPs) network architecture. The network first processes
the past four RGB images with convolutional layers, concatenates the result with the past four vector states, and then
passes the concatenation through fully connected layers to form the initial hidden state of the recurrent neural newtork
(RNN). The RNN, which is a multiplicative integration LSTM [86], sequentially processes each action, and the resulting
hidden layer is used to predict each event cue.

CHAPTER 5. MODEL SUPERVISION 49

5.3 CAPs for Robot Navigation
We now instantiate our CAPs algorithm for robot navigation. Robot navigation is an ideal testbed
for CAPs because navigation is a multi-objective task in which many of the event cues—such as
road lane and object locations—are unknown a priori. To instantiate CAPs, we must instantiate the
CAPs model (Sec. 5.2), event cue labellers (Sec. 5.2), and the task reward function (Sec. 5.2).

The CAPs model. We instantiate the CAPs model by defining its inputs, outputs, and parameter-
ization. The inputs to the CAPs model are state observations s and actions a. The state observations
include all readings from sensors on board the robot, such as cameras, wheel encoders, collision
bumpers, and inertial measurements. For a ground robot, the actions consist of the desired steering
angle and speed. The outputs of the predictive model consist of event cues relevant to goal-oriented
navigation, such as road lanes, collisions, speeds, and headings.

We parameterize the model using a deep neural network in order to make it feasible to input
high-dimensional observations, such as images. This model is depicted in Fig. 5.2. The network
first passes the input images through convolutional layers, concatenating the result with the input
state vectors, and processes the concatenation through additional fully connected layers. The final
layer serves as the initial hidden state for a recurrent network, which sequentially processes each
planned action. The event cues at each time step are then predicted by processing the RNN hidden
state with separate fully connected layers.

Event cue labeling. For the vision-based event cues, such as road lanes and doorways, we use
modern computer vision models. Specifically, we train FCNs [124] to segment relevant event cues
from the onboard camera images. The data used to train these models is a subset of the data used to
train the CAPs model, and was either labeled by the simulator for simulation experiments, or by a
human for real-world experiments. The non-vision-based event cues are simple functions of the
robot state, such as if the robot collided or not, and are extracted automatically.

Task reward function. We encode desired tasks as linear combinations of reward functions
of each individual event cue: R(Ê

(H,I)
t) =

∑t+H−1
t′=t

∑
i α

(i) · R(i)(ê
(i)
t′), where α(i) indicates the

relative importance of each reward function. For example, the collision reward function will be
highly weighted to ensure the robot does not collide. With this formulation, the task we want the
robot to accomplish can be specified and altered by setting the weights α(i).

5.4 Experiments
We now present results evaluating our approach on simulated and real-world ground robot navigation
tasks. In our evaluation, we aim to answer the following questions:

Q1 Does our event cue prediction approach enable flexible behavior at test time?

Q2 Is our approach able to learn from off-policy data?

Q3 Are we able to learn event predictors using learned detection models, such as modern computer
vision systems?

CHAPTER 5. MODEL SUPERVISION 50

GC-DQL GC-DQL-sep CAPs (ours)

Avg %

Success

Avg Dist.

From Path

GC-DQL 0.0% 5.01 ± 3.76

GC-DQL-sep 8.3% 6.03 ± 3.35

CAPs (ours) 75.0% 2.02 ± 1.60

(a) Evaluation on novel sinusoidal paths.

Figure 5.3: Comparison of our CAPs approach against goal-conditioned deep Q-learning (GC-DQL) and separated
goal-conditioned deep Q-learning (GC-DQL-sep) on the task of path following. Each approach was trained via
reinforcement learning to following a circular path and avoid collisions (top row images), which shows a birds-eye
view of the desired trajectory in red hues and actual trajectory in blue hues. Each approach was then evaluated on
a sinusoidal path (bottom row images). Although all approaches successfully learned on the training task, only our
approach (Table 5.3a) was able to generalize to a different task at test-time.

In evaluating CAPs, we compare with prior methods that can scale to image observations, learn
from off-policy data, accomplish various tasks at test time, and are sample-efficient. We therefore
compare with goal-conditioned deep Q-learning (GC-DQL) [65], [125], [126], in which a neural
network Q-function is learned that also takes as input the desired goal. We also compared with
goal-conditioned deep Q-learning in which each subreward is learned separately (GC-DQL-sep),
which is similar to [127], but without entropy maximization. We do not compare with model-based
methods because they either assume access to the ground-truth robot and environment state, or
require large amounts of data to learn the dynamics of raw image observations.

We consider three experiments: a simulated path following task in a forest, a simulated goal-
directed navigation task in a city environment, and a real-world indoor navigation task with an RC
car. For each task, in order to instantiate CAPs, we must define which event cues ê(i) the model will
be predicting, how the event cue labels e(i) will be generated, and what is the task reward function
R(Ê

(H,I)
t). Code, videos, and additional details are available at github.com/gkahn13/CAPs.

Simulated forest. The first task is a path following task in a forest-like environment (Fig. 5.3)
built on the Bullet physics engine [128] with Panda3d [88] for rendering. The goal is to stay close
to the path while avoiding collisions.

We define two event cues: the probability of collision and heading. The labels come from
self-supervision, because collision and heading can be labelled directly from the robot’s sensor
observations. The reward function at test-time is:

R(Ê
(H,I)
t) =

t+H−1∑
t′=t

500 · (1− ê(coll)
t′) + (cos(ê

(heading)
t′ − GOAL_HEADING)− 1).

In order to gather data, we let our approach and the prior works each run RL on the task of following
a circular path. Fig. 5.3 shows that all approaches successfully learn to follow the circular path

http://github.com/gkahn13/CAPs

CHAPTER 5. MODEL SUPERVISION 51

without colliding. We chose to gather data in this way because Q-learning approaches, while
technically off-policy, are still sensitive to the data distributions when using neural networks. We
therefore wanted to give the prior methods the best chance of success by giving them access to data
that was partially on-policy.

After training, we evaluated each approach on following sinusoidal paths in different parts of
the forest environment. Note that these paths never occurred in the training data. Fig. 5.3 shows
qualitative results for each method, while Table 5.3a provides a quantitative comparison. Our
approach avoids collisions and closely follows the sinusoidal path, only deviating when obstacles
are on the path itself, while the prior methods crash often and do not closely follow the path. This
result shows that even though the prior methods were successful on the circular path they trained
on during reinforcement learning, they fail to generalize at test time to different tasks. In contrast,
CAPs can flexibly accomplish different tasks at test time (Q1).

Simulated city. The second task we evaluate our approach on is goal-directed navigation in a
city environment using CARLA [129], a driving simulator with realistic renderings and physics.
The objective is to reach the goal while avoiding collisions, driving at a desired speed, and staying
in the lane. We train CAPs with five event cues: probability of a collision, heading, speed, is the
right lane visible, and the pixel distance of the center of the right lane to the center of the camera
image. The labels for the collision, heading, and speed event cues come from self-supervision
because these values come directly from the robot’s sensor observations. However, we use a learned
computer vision system—specifically, a segmentation model [124]—to label the lane event cues;
Fig. 5.4c shows an example input image, the ground truth segmentation label, and the model’s
predicted segmentation and resulting prediction of the center of the right lane. The reward function
at test-time is:

R(Ê
(H,I)
t) =

t+H−1∑
t′=t

50 · (1− ê(coll)
t′)− 3 ·

|ê(speed)
t′ − GOAL_SPEED|

GOAL_SPEED
+ 5 · ê(lane_seen)

t′ (1− |ê(lane_diff)
t′ |)

− 5

π
· |ê(heading)

t′ − GOAL_HEADING| − 0.15 · ‖a(steer)
t′ ‖22.

For training data, we ran DQL for the task of collision avoidance, resulting in 800,000 points
(2.3 days worth) of data. We chose to gather data using DQL to give the prior Q-learning-based
methods the best chance at success, and to demonstrate that CAPs can learn from off-policy data
(Q2). We then trained all methods on this data for the combined task of collision avoidance, driving
at a desired speed, and staying in the right lane.

We evaluated all approaches on driving at 7 m/s and trying to reach one of three destination
locations. Fig. 5.4a shows a birds-eye view of the city map and the resulting trajectories of each
method’s policy, while Table 5.4b provides the corresponding quantitative results. Our CAPs policy
is able to successfully reach each goal the majority of the time while driving in the right lane at the
desired speed, while the prior methods are never able to reach the goal.

The key aspect of CAPs that enables its success is its flexibility at test time (Q1): we can
train the CAPs model once using off-policy data, and then define reward function at test time to
achieve the desired robot behavior for the considered task. Although defining this reward function is
non-trivial, it is significantly easier and less time consuming than designing the reward function for

CHAPTER 5. MODEL SUPERVISION 52

standard RL algorithms. For example, we spent only two hours tuning the CAPs reward function
for this task, while running GC-DQL or GC-DQL-sep just once takes 12 hours; considering that
we tried dozens of reward functions during the two hours of tuning with CAPs, attempting to do
this amount of tuning with a standard RL algorithm could take days or weeks, and possibly still not
result in a successful policy.

Another key aspect of our approach is using learned detection models to autonomously label
the event cues (Q3). Although using a learned segmentation model (Fig. 5.4c) in simulation is not
strictly necessary because we have access to the ground truth labels, learned event cue labellers
will be crucial in real-world experiments in which ground truth labels from humans is prohibitively
expensive to obtain. We further demonstrate the importance of autonomous labelling in the following
real-world experiments.

GC-DQL GC-DQL-sep CAPs (ours)

(a) Birds-eye view for each approach of the resulting trajectories when attempting to go to either the red, green, or blue
goal location (five attempts per goal location). Our CAPs approach is able to reach the goal the majority of the time,
while the prior methods crash before reaching the goal.

GC-DQL GC-DQL-sep CAPs (ours)

% did

not crash
7 0 73

% reached

goal
0 0 67

speed

(m/s)
3.6 (1.3) 5.6 (0.2) 6.7 (0.2)

% in

right lane
98 (3) 100 (6) 74 (8)

(b) Corresponding quantitative results for (a).

(c) To enable our CAPs approach to learn to stay in
the right lane, we trained a model to take as input the
onboard RGB image (left) and predict where the road
is (right) using labels (center). Once trained the learned
segmentation model autonomously labels where the
center of the right lane is (green vertical line), the CAPs
model can learn to keep the center of the right lane in
the middle of its camera view.

Figure 5.4: Comparison of our CAPs approach against prior methods on the task of reaching a target goal position
while avoiding collisions, driving at 7m/s, and staying in the right lane in the CARLA simulator [129].

CHAPTER 5. MODEL SUPERVISION 53

Figure 5.5: Third-person images (top row) and first-person images from the onboard camera (bottom row) from the RC
car navigating through the 5th floor of Cory Hall at UC Berkeley for the task of avoiding collisions, following desired
goal headings, and going towards doors using our CAPs approach.

Real-world indoor navigation. The third task we evaluate our approach on is a real-world
goal-directed indoor navigation task with an RC car (Fig. 5.1). The task objective is to avoid
collisions, follow the desired goal headings, and go near doors, which simulates a package delivery
application. We therefore define three event cues: probability of a collision, heading, and the
fraction of the image that is a door. The labels for the collision and heading come directly from the
robot’s sensor observations, while we use a learned computer vision segmentation model to label
the door fraction. We trained the segmentation model by labelling 345 (0.2%) of the images from
the RL-gathered dataset. The reward function is:

R(Ê
(H,I)
t) =

t+H−1∑
t′=t

(1− ê(coll)t′) ·
[
1− 0.1

π
· |ê(heading)t′ − GOAL_HEADING|+ 0.05 · ê(door_frac)

t′

]
− 0.01 · ‖at′‖22.

For training data, we ran RL with CAPs on the 5th floor of Cory Hall at UC Berkeley for 11
hours, gathering 158,400 data points. The RL objective for gathering this data was purely collision
avoidance, and therefore the data is off-policy (Q2). We then evaluated all approaches in this same
environment. Although this evaluation does not test our learned policy’s ability to generalize to
new environments, our approach does not need to rely on policy generalization; instead, we rely
on our sample-efficient and flexible real-world CAPs learning algorithm to quickly learn in new
environments.

We evaluated our approach on navigating a 75m loop in the environment, which contained five
intersections. Two seconds before each intersection, a heading command was given to indicate
which way to turn at the intersection. Fig. 5.5 shows images of our approach navigating the loop,
while Table 5.1 provides the corresponding quantitative results, with five trials per experiment. Our
CAPs policy is able to successfully navigate this loop, while GC-DQL consistently crashes early
on. However, DQL is able to successfully perform collision avoidance down a straight hallway
(Table 5.1), indicating that its failure at the full task is due to its difficulty in learning from a
multi-objective, goal-conditioned reward function.

In addition, we evaluated CAPs without the door subreward to determine if our approach could
learn to predict and act on visual event cues. Note that we used the same CAPs model, but simply

CHAPTER 5. MODEL SUPERVISION 54

Experiment Method
% of Route

Traversed

% Did

Not Crash

% Successful

Turns

Avg. Door

% Seen

Collision
DQL 100 (0) 100 N/A N/A

CAPs (ours) 100 (0) 100 N/A N/A

Collision, Heading
GC-DQL 4.5 (7.5) 0 0 6.9 (1.0)

CAPs (ours) 98 (0) 80 80 6.9 (0.3)

Collision, Heading, Door
GC-DQL 5.5 (3.1) 0 0 7.0 (2.0)

CAPs (ours) 98 (0) 80 80 8.1 (0.2)
Table 5.1: Comparison of our CAPs approach on a real-world RC car for the task of navigating a 75m loop and going
near doors, which simulates a package delivery application. Our approach is able to successfully accomplish the task
(bottom row), while the prior method does not succeed and can only accomplish a simple collision-avoidance task (top
row). Note that only one model was trained with CAPs, and each experiment merely required changing the reward
function at test time; in contrast, the prior method had to be retrained for each task. Additionally, our approach tasked
with going towards doors (bottom row), compared to our approach not tasked with going towards doors (middle row), is
indeed able to navigate while moving towards doors, showing our approach can learn from visual detection systems.

changed the reward function at test time. Table 5.1 shows that the car sees 17% more doors when
the door subreward is included, which is a significant increase considering that the majority of the
floor does not contain doors. This evaluation highlights the flexibility (Q1) of our approach: using
the same CAPs model, we can perform different tasks at test time.

5.5 Discussion
We presented CAPs, a general framework for flexible learning-based control. CAPs predicts event
cues, which can be trained from off-policy data and flexibly combined at test time to accomplish
various tasks. These event cues are automatically labeled using learned detection models, such as
computer vision systems, which enable CAPs to be learned fully autonomously. We demonstrated
CAPs on simulated and real-world robot navigation tasks, showing that it was indeed able to learn
from these automatically labelled event cues and could flexibly accomplish various tasks at test
time.

55

Chapter 6

Human Supervision

Figure 6.1: LaND is a learning-based approach for autonomous mobile robot navigation that directly learns from
disengagements—any time a human monitor disengages the robot’s autonomy. These disengagement datasets are
ubiquitous because they are naturally collected during the process of testing these autonomous systems. LaND is able
to navigate in a diverse set of sidewalk environments, including parked bicycles, dense foliage, parked cars, sun glare,
sharp turns, and unexpected obstacles.

In the previous chapter, we developed an algorithm that can learn using signals from learned
models. However, training using signals from learned models can be expensive—because these
models must be trained in the first place—and fallible—because these models may be inaccurate.
In this chapter, we investigate how already-existing signals from humans can enable a robot to learn
to navigate.

One of the primary metrics for measuring progress has been the notion of average distance
travelled before disengagement: how far can the robot travel before the robot fails and a human

CHAPTER 6. HUMAN SUPERVISION 56

must intervene? Although using these disengagement numbers as a metric for comparing progress
is contentious [130], the general consensus is clear: the better the autonomous system, the less
disengagements. However, we believe a shift in perspective is needed. Not only do these disen-
gagements show where the existing system fails, which is useful for troubleshooting, but also that
these disengagements provide a direct learning signal by which the robot can learn how to navigate.
With this perspective, we believe disengagement data is severely underutilized, and in this work we
investigate how to learn to navigate using disengagements as a reinforcement signal.

Disengagements are typically used as a tool to debug and improve autonomous mobile robots:
run the robot, discover the failure modes, and then rectify the system such that those failure modes
are removed. While the first two steps are fairly similar for most developers, the last step—figuring
out how to fix the autonomy failure modes—is highly nontrivial and system dependent. This is
especially true for the learning-based modules, which are a key component of modern autonomous
mobile robots. Improving these learning-based components is a complex process, which could
involve designing neural network architectures, hyperparameter tuning, and data collection and
labelling; this is a time-consuming, expensive, and technically challenging endeavor that has to be
done largely through trial and error.

In this chapter, we propose a method for learning to navigate from disengagements, or LaND,
which sidesteps this laborious process by directly learning from disengagements. Our key insight
is that if the robot can successfully learn to execute actions that avoid disengagement, then the
robot will successfully perform the desired task. Crucially, unlike conventional reinforcement
learning algorithms, which use task-specific reward functions, our approach does not even need to
know the task – the task is specified implicitly through the disengagement signal. However, similar
to standard reinforcement learning algorithms, our approach continuously improves because our
learning algorithm reinforces actions that avoid disengagements.

Our approach works by leveraging a ubiquitous dataset: the robot’s sensory observations (e.g.,
camera images), commanded actions (e.g., steering angle), and whether the robot autonomy mode
was engaged or disengaged. Using this dataset, we then learn a predictive model that takes as input
the current observation and a sequence of future commanded actions, and predicts whether the robot
will be engaged or disengaged in the future. At test time, we can then use this predictive model to
plan and execute actions that avoid disengagement while navigating towards a desired goal location.

This chapter has three primary contributions. First, we propose that disengagements provide a
strong, direct supervision signal for autonomous mobile robots, which is already being collected in
many commonly used real-world pipelines. Second, we introduce our learning to navigate from
disengagements algorithm, or LaND, which is a simple, effective, and scalable framework for
creating autonomous mobile robots. Third, we demonstrate our approach on a real world ground
robot in diverse and complex sidewalk navigation environments (Fig. 6.1), and show our method
outperforms state-of-the-art imitation learning and reinforcement learning approaches.

CHAPTER 6. HUMAN SUPERVISION 57

6.1 Related Work
Learning-based methods are a promising approach for robot navigation. One common class of these
learning-based methods aims to directly learn to predict navigational cues about the environment
— such as depth, object detection, and road segmentation—directly from the robot’s onboard
sensors[16], [50]–[52], [57], [68]. Although these approaches have been successfully demonstrated,
they are exceedingly expensive to train due to the labelling cost, and additional labels do not
necessarily lead to improved performance. In contrast, our LaND approach has zero additional
cost beyond the already-required human safety driver, and our experiments show LaND directly
improves as more data is gathered.

Another class of learning-based methods is imitation learning, in which a policy is trained
to mimic an expert. These approaches have been successfully demonstrated for both ground
robots [20], [56], [62], [69] and aerial robots [55], [70], [71]. However, these demonstrations are
typically in visually simplistic environments—such as lane following [20], [56], [71], hallways [71],
and race courses [69], require injecting noise into the expert’s policy [55], [56], [69]—which can be
dangerous, and ignore disengagement data [20], [55], [62], [69], [70]. In contrast, our approach is
able to navigate on visually diverse sidewalks, does not require injecting noise during data collection,
and can directly leverage disengagement data. Additionally, our experiments demonstrate that our
LaND method outperforms behavioral cloning, a standard approach for imitation learning.

In broader terms, learning from disengagements can be viewed as reinforcement learning [131],
in which a robot learns from trial and error. One class of reinforcement learning methods for robot
learning is sim-to-real, in which a control policy is learned in simulation and then executed in
the real world [39], [105], [132]. These sim-to-real approaches are complementary to our LaND
approach; the simulation policy can be used to initalize the real-world policy, while our method
continues to finetune by learning from disengagements. Other reinforcement learning methods,
including ours, learn directly from the robot’s experiences [21], [60], [106], [108], [133]–[136].
However, these methods typically assume catastrophic failures are acceptable [60], [136] or access
to a safe controller [21], [134], the robot gathers data in a single area over multiple traversals [60],
[106], [108], on-policy data collection [108], access to a reward signal beyond disengagement [106],
perform their evaluations in the training environment [106], [108], or are only demonstrated in
simulation [133], [135]. In contrast, our LaND method is safe because it leverages the existing
human-safety driver, learns from off-policy data, does not require retraversing an area multiple
times, learns directly from whether the robot is engaged or disengaged, and evaluate in novel,
never-before-seen real-world environments. Additionally, we show in our experiments that LaND
outperforms [108], a state-of-the-art real world reinforcement learning method for autonomous
driving.

6.2 Learning to Navigate from Disengagements
Our goal is to develop an algorithm, which we call LaND, that enables a mobile robot to au-
tonomously navigate in diverse, real-world environments. An overview of LaND is shown in

CHAPTER 6. HUMAN SUPERVISION 58

Fig. 6.2. LaND leverages datasets that are naturally collected while testing autonomous mobile
robot systems: the robot’s sensor observations—such as camera images, commanded actions—such
as the steering angle, and whether the robot autonomy mode was engaged or disengaged. Using
this dataset, we then train a convolutional recurrent neural network that takes as input the current
observation and a sequence of future commanded actions, and predicts the probability that the robot
will be engaged or disengaged in the future. At test time, we can then use this model to plan and
execute actions that minimize the probability of disengagement while navigating towards a desired
goal location.

LaND has several desirable properties. First, our method does not require any additional data
beyond what is already collected from testing the autonomous system with a human safety overseer.
Second, LaND learns directly from the disengagement data, as opposed to prior methods that use
disengagements as an indirect debugging tool. Third, we make minimal assumptions about the
robot—just access to the robot’s onboard sensors, commanded actions, and whether the autonomy
mode was engaged or disengaged; we do not require access to nontrivial information, such as
high-definition maps. And lastly, our method continuously improves as the robot is tested, which
we demonstrate in our experiments.

In the following sections, we will describe the data collection process, model training, and
planning and control, and conclude with a summarizing overview of LaND.

Figure 6.2: System diagram of our LaND algorithm. In the testing phase, the robot produces sensory observations, such
as camera images. Based on these observations, the human monitor determines whether to disengage or engage the
robot’s autonomy system. If the robot is engaged, our LaND control policy determines which action to execute using
the current observation; if the robot is disengaged, the human determines which actions the robot should execute in
order to reset. This action is then executed by the robot. While testing, the observations, actions, and disengagements
are added to a dataset. In the training phase, this dataset is used to train the disengagement prediction model at the core
of the LaND control policy. LaND alternates between training and testing until the control policy reaches satisfactory
performance.

Data Collection

Figure 6.3: The
mobile robot.

We start by describing the robot platform used to both collect data and for au-
tonomous navigation. The robot is defined by observation ot gathered by its onboard
sensors, action at which commands the robot, and a binary signal dt indicating if
the autonomy mode is disengaged. In our experiments, we use a Clearpath Jackal
robot, as shown in Fig. 6.3. The observation o is a 96 × 192 RGB image from

CHAPTER 6. HUMAN SUPERVISION 59

a front-facing 170◦ field-of-view monocular camera, the action a is the desired
heading change, and the disengagement signal d is conveyed by a human following nearby with a
remote control.

Figure 6.4:
Person
monitor-
ing data
collection.

Data collection proceeds by having the robot execute an autonomous control policy,
such as the LaND planning-based controller described in Sec. 6.2. A person monitors
the robot, and if the robot is in a failure mode or approaching a failure mode, the person
disengages autonomy mode. The person then repositions the robot back into a valid
state and then re-engages autonomy mode.

An example of the data collection process for our sidewalk experiment evaluations
is shown in Fig. 6.5. The robot proceeds by autonomously driving on the sidewalk.
However, if the robot enters one of the three possible failure modes—colliding with
an obstacle, driving into the street, or driving into a house’s driveway—the person
disengages autonomy mode, uses the remote control to reposition the robot onto the
sidewalk, and then re-enables autonomy mode.

As the robot collects data, the observations, actions, and disengagements (ot, at,dt) at each
time step t are saved every ∆x meters into the dataset D.

Autonomous (robot) Disengagement
(human)

Course Correction
(human)

Autonomous (robot)

Ty
pe

s
of

D
is

en
ga

ge
m

en
ts

C
ol

lis
io

n
St

re
et

D
ri v

ew
ay

Figure 6.5: Our LaND approach learns to navigate from disengagements. For the sidewalk navigation task studied in
our experiments, there are three types of scenarios that will cause the human overseer to disengage the robot’s autonomy
mode: colliding with an obstacle, driving into the street, and driving into a driveway. After the robot is disengaged, the
human repositions the robot onto the sidewalk and then re-engages autonomy.

Predictive Model
The model at the core of LaND is an instantation of the generalized computation graph from Chap-
ter 2. The learned predictive model takes as input the current observation and a sequence of future
actions, and outputs a sequence of future disengagement probabilities. We define this model as

CHAPTER 6. HUMAN SUPERVISION 60

Figure 6.6: Illustration of the image-based, action-conditioned convolutional recurrent deep neural network at the core
of LaND. The network first processes the input image observation using the MobileNetV2 [137] convolutional neural
network, followed by a series of fully connected layers. The output of these image layers serves as the initial hidden
state for an LSTM recurrent neural network [109], which sequentially processes each of the H future actions at+h and
outputs the corresponding predicted probability of disengagement d̂t+h. When this model is deployed, these predicted
disengagement probabilities enable a planner to plan and execute actions that avoid disengagements.

fθ(ot, at:t+H)→ d̂t:t+H , which is a function f parameterized by vector θ that takes as input the cur-
rent observation ot and a sequence of H future actions at:t+H = (at, at+1, ..., at+H−1), and outputs
a sequence of H future predicted disengagement probabilities d̂t:t+H = (d̂t, d̂t+1, ..., d̂t+H−1).

We instantiate the model as an image-based, action-conditioned convolutional recurrent neural
network, as shown in Fig. 6.6. The network first processes the input image observation using the
MobileNetV2 [137] convolutional neural network, followed by a series of fully connected layers.
The output of these image layers serves as the initial hidden state for an LSTM recurrent neural
network [109], which sequentially processes each of the H future actions at+h and outputs the
corresponding predicted probability of disengagement d̂t+h.

The model is trained using the collected dataset to minimize the cross entropy loss between the
predicted and ground truth disengagement probabilities

L(θ,D) =
∑

(ot,at:t+H ,dt:t+H)

H−1∑
h=0

LCE(d̂t+h,dt+h) : d̂t:t+H = fθ(ot, at:t+H), (6.1)

in which LCE is the cross-entropy loss.
The neural network parameters θ are trained by performing minibatch gradient descent on

Eqn. 6.1. However, we modify the standard minibatch training procedure in two important ways.
First, we ensure that half the minibatch contain sequences ending in a disengagement and the other
half contain sequences with no disengagements. This rebalancing ensures that disengagement
data—which is often a small proportion of the total dataset—is seen often during training. Second,
if the sampled time step t is less than H steps from a disengagement, we still sample a full
sequence of actions at:t+H and disengagements dt:t+H of length H by padding the sequence with (a)
actions randomly sampled from the dataset and (b) additional disengagement signals. This artificial
disengagement extension scheme assumes that once the robot is disengaged, any action it takes
will cause the robot to remain in a disengaged state. This extension scheme is important because it

CHAPTER 6. HUMAN SUPERVISION 61

ensures that (a) the model is trained on observations close to disengagements and (b) the training
procedure matches the planning procedure—which always plans over a sequence of H actions.

Planning and Control
Using the trained neural network disengagement prediction model, the robot can plan and execute
actions at test time that avoid disengagements while navigating towards a desired goal location. We
encode this planning objective with the following cost function

C(d̂t:t+H , at:t+H) =
H−1∑
h=0

d̂t+h + α · ‖at+h − g‖2
2. (6.2)

The first term encourages the robot to avoid disengagements, while the second term encourages the
robot to navigate towards a desired goal location; the scalar α is a user-defined weighting between
these two terms. The goal location is conveyed through the desired heading vector g; for example,
in our experiments the action is the steering angle, and the goal heading vector is either to turn
left, right, or continue straight when the robot encounters a junction. Note that this goal heading
does not tell the robot how to navigate, and only provides high-level guidance at junctures; this
level of supervision is similar to smartphone driving directions. In our experiments, because there
were no junctures, we set α = 0, but we maintain this general formulation to show our approach is
goal-conditioned.

Using this cost function, the robot solves solves the following planning problem at each time
step

a∗t:t+H = arg min
at:t+H

C(d̂t:t+H , at:t+H) : d̂t:t+H = fθ(ot, at:t+H), (6.3)

executes the first action, and continues to plan and execute following the framework of model
predictive control [123]. We use the same optimizer as in Chapter 4, with hyperparameters
N = 8192, σ = 1, β = 0.5, γ = 50.

Algorithm Summary
We now provide a brief summary of our LaND algorithm (Alg. 4). LaND alternates between two
phases: collecting data and training the predictive model.

In the data collection phase, the robot executes actions according to the planning procedure
from Eqn. 6.3. A person monitors the robot, and disengages the robot if it enters a failure mode;
if the person does disengage the robot, they then reposition the robot and subsequently re-engage
autonomous execution. While collecting data, the current observation, action, and disengagement
are saved into the training dataset. In the training phase, the collected dataset is used to train the
predicted model by minimizing Eqn. 6.3.

Although Alg. 4 uses our LaND control policy to collect data, we note that any control policy
can be used to gather data; in fact, in our experiments we used both LaND and the imitation learning

CHAPTER 6. HUMAN SUPERVISION 62

Algorithm 4 Learning to Navigate from Disengagements

1: initialize dataset D ← ∅
2: randomly initialize learned parameter θ
3: while not done do
4: while collecting data do
5: get current observation ot from sensors
6: solve Eqn. 6.3 using fθ and ot to get the

planned action sequence a∗t:t+H
7: execute the first action a∗t
8: get current disengagement dt
9: add (ot, a

∗
t ,dt) to D

10: if dt is disengaged then
11: let human execute reset maneuver and re-engage autonomy
12: end if
13: end while
14: use D to train predictive model fθ

by minimizing Eqn. 6.1
15: end while

and reinforcement learning comparison methods to gather data. However, we note that the ideal
policy for data collection is the LaND policy because this ensures that the collected disengagements
are from the failure modes of the LaND policy.

6.3 Experiments
In our experimental evaluation, we study how LaND can learn to navigate from disengagement data
in the context of a sidewalk navigation task, and compare our approach to state-of-the-art imitation
learning and reinforcement learning approaches. Videos, code, and other supplemental material are
available on our website 1

Our dataset consists of 17.4 km of sidewalks gathered over 6 hours. Data was saved every ∆x =
0.5 meters, and therefore the dataset has 34,800 data points, and contains 1,926 disengagements.
Although the amount of data gathered may seem significant, (1) this data is already being collected
while testing the robot, (2) the robot requires less human disengagements as it gathers more data and
trains, and (3) this dataset is significantly smaller than those typically used in computer vision [112]
and reinforcement learning [113] algorithms.

We evaluated LaND in comparison to two other methods:

1. Behavioral cloning: a common imitation learning approach used by many state-of-the-art
navigation methods [20], [56], [71].

1https://sites.google.com/view/sidewalk-learning

https://sites.google.com/view/sidewalk-learning

CHAPTER 6. HUMAN SUPERVISION 63

2. Kendall et. al. [108]: a reinforcement learning algorithm which first learns a compressed
representation of the training images using a VAE [92], and learns a control policy from this
compressed representation using the DDPG reinforcement learning algorithm [25]. Kendall
et al. [108] did not provide source code, so we therefore used existing VAE 2 and DDPG 3

implementations.

All methods, including ours, were trained on the same dataset. For behavioral cloning, data within 2
meters of a disengagement was not used for training. For Kendall et. al. [108], the reward was -1
for a disengagement, and 0 otherwise.

We compare against these methods because, to the best of our knowledge, they are representative
of state-of-the-art methods in imitation learning and reinforcement learning for such tasks. We
note, however, that we were unable to perfectly replicate these algorithms because they contained
assumptions that violated our problem statement; for example, many of the algorithms injected
exploration noise into the data collection policy. Nevertheless, we believe our evaluation accurately
reflects current work in the context of our realistic problem statement and real world experimental
evaluation.

2www.tensorflow.org/tutorials/generative/cvae
3www.github.com/rail-berkeley/d4rl_evaluations

Method
Avg. distance until

disengagement (meters)
Behavioral cloning (e.g., [20], [56], [71]) 13.4
Kendall et. al. [108] 2.0
LaND (ours) 87.5

Table 6.1: Experimental evaluation on 2.3 km of never-before-seen sidewalks (Fig. 6.1). Our LaND approach is better
able to navigate these sidewalks, travelling 6.5× further before disengagement compared to the next best method.

Figure 6.7: Experimental evaluation on 2.3 km of never-before-seen sidewalks (Fig. 6.1). The plot shows the fraction
of trajectories—defined as a continuous episode of engaged autonomy—which travelled a certain distance before a
disengagement. Methods closer to the top right are better because this indicates a longer distance travelled before
disengagement. Our LaND approach is able to travel farther before disengagement: 33% of the trajectories travelled
further than 50 meters, including a trajectory of over 400 meters. In contrast, none of the prior methods were able to
travel more than 50 meters before disengagement.

www.tensorflow.org/tutorials/generative/cvae
www.github.com/rail-berkeley/d4rl_evaluations

CHAPTER 6. HUMAN SUPERVISION 64
B

eh
av

io
ra

lc
lo

ni
ng

L
aN

D
(o

ur
s)

Figure 6.8: Qualitative comparison of our LaND method versus the best performing prior approach (behavioral cloning)
in scenarios containing parked bicycles, dense foliage, sun glare, and sharp turns. Our approach successfully navigates
these scenarios, while imitation learning is unable to and crashes.

We evaluated all approaches on 2.3 km of sidewalks not present in the training data, as shown
in Fig. 6.1. Table 6.1 shows that LaND is better able to navigate sidewalks compared to the other
approaches, traveling 6.5× further on average before disengagement compared to the next best
approach. Fig. 6.7 shows a more detailed per-trajectory analysis. None of the methods besides
LaND were able to travel further than 50 meters before disengagement. LaND was able to travel
further than 50 meters before disengagement for 33% of the trajectories, and could sometimes
travel up to 400 meters. Fig. 6.8 shows example challenge scenarios—including a parked bicycle,
dense foliage, sun glare, and sharp turns—in which LaND successfully navigated, while the best
performing comparative approach (imitation learning) failed.

To demonstrate that our approach is able to learn which action sequences lead to disengagements
and which do not, we visualized the planner in Fig. 6.9. This visualization shows the model has
learned that actions which lead to collisions, driving into the street, or driving into a driveway will
lead to a disengagement.

We also investigated the ability of LaND to continuously improve as more data is gathered. In this
controlled experiment, we first ran our method on 1.3 km of sidewalk. We then trained our method
on this additional data—which included mostly engagements, but also a few disengagements—and
evaluated this finetuned model on the same 1.3 km of sidewalk. Table 6.2 shows that our method
improves by over 2× when finetuned on the collected data, showing that our approach is able to
continue to improve as more data is collected.

6.4 Discussion
We presented LaND, a method for learning navigation policies from disengagements. LaND
directly leverages disengagement data by learning a model that predicts which actions lead to
disengagements given the current sensory observation. This predictive disengagement model can
then be used for planning and control to avoid disengagements. Our results demonstrate LaND

CHAPTER 6. HUMAN SUPERVISION 65

Figure 6.9: Visualization of planning with the disengagement predictive model. Each image shows the candidate paths
considered during planning, and are color coded according to their predicted probability of disengagement. These
visualizations show the learned model can accurately predict which action sequences would lead to disengagements,
including driving into obstacles (left) or streets or driveways (right).

Method
Avg. distance until

disengagement (meters)
LaND 101.2
LaND with finetuning 218.3

Table 6.2: Experimental demonstration of our LaND improving as more data is gathered. We first collected data using
our LaND control policy on 1.3 km of never-before-seen sidewalk. We then finetuned our method on this additional
data, and evaluated this finetuned model on the same 1.3 km of sidewalk. Our method improves by over 2× when
finetuned on the collected data, showing that our approach is able to continue to improve as more data is gathered.

can successfully learn to navigate in diverse, real world sidewalk environments, demonstrating that
disengagements are not only useful as a tool for testing, but also directly for learning to navigate.

66

Part III

Safety

67

Chapter 7

Safe Learning using Expert Supervision

Figure 7.1: Policy Learning using Adap-
tive Trajectory Optimization: A neural
network control policy trained by PLATO
navigates through a forest using camera
images. During training, the adaptive
MPC teacher policy chooses actions to
achieve good long-horizon task perfor-
mance while matching the learner pol-
icy distribution. The policy learned by
PLATO converges with bounded cost.

In Part II, we studied different sources of supervision that a
robot can learn from. However, some of these learning signals—
such as collision—require the robot to experience catastrophic
failure. This requirement is unacceptable for safety-critical
mobile robot applications.

In this chapter, we study how to leverage computational ex-
perts to enable safe robot learning. We propose PLATO (Policy
Learning using Adaptive Trajectory Optimization), a reset-free
method for training complex policies that combine percep-
tion and control by using a trajectory optimization teacher in
the form of model-predictive control (MPC). At training time,
MPC chooses actions that make a tradeoff between succeeding
at the task and matching the behavior of the current policy. By
gradually adapting to the policy, MPC ensures that the states
visited during training will allow the policy to learn good long-
horizon performance. MPC makes use of full state information,
which could be obtained, for example, by instrumenting the
environment at training time. The final policy, however, is
trained to mimic the MPC actions using only the observations
available to the robot, which makes it possible to run the re-
sulting policy at test time without any instrumentation. The algorithm requires access to at least
a rough model of the system dynamics in order to run MPC during training, but does not require
any knowledge of the observation model, making it feasible to use with complex, raw observation
signals, such as images and depth scans. Since MPC is used to select all actions at training time, the
algorithm never requires running a partially trained and potentially unsafe policy.

We prove that the policy learned by PLATO converges to a policy with bounded cost. Our
empirical results further demonstrate that PLATO can learn complex policies for simulated quadrotor
flight with laser rangefinder observations and camera observations in cluttered environments and
at high speeds. We show that PLATO outperforms a number of previous approaches in terms of

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 68

both the performance of the final neural network policy and the robustness to catastrophic failure
during training. In comparisons with MPC-guided policy search [138], the DAgger algorithm [63],
DAgger with coaching [139] and supervised learning, our approach experiences substantially fewer
catastrophic failures both during training time and at test time.

7.1 Preliminaries and Overview
We address the problem of learning control policies for dynamical systems, such as robots and
autonomous vehicles. The system is defined by states x and actions u. The policy must control the
system from observations o, which are in general insufficient for determining the full state x. The
policy is a conditional distribution over actions πθ(u|ot), parametrized by θ. At test time, the agent
chooses actions according to πθ(u|ot) at each time step t, and experiences a loss c(xt,ut). We
assume without loss of generality that c(xt,ut) is in the interval [0, 1]. The next state is distributed
according to the dynamics p(xt+1|xt,ut). The goal is to learn a policy πθ(u|ot) that minimizes
the total cost J(π) = Eπ

[∑T
t=1 c(xt,ut)

]
. We will use Jt(π|xt) = Eπ

[∑T
t′=t c(xt′ ,ut′)|xt

]
as

shorthand for the expected cost from state xt at time t, such that J(π) = Ex1∼p(x1)

[
J1(π|x1)

]
.

In this work, we further assume that during training, our algorithm has access to the true
underlying states x. This additional assumption allows us to use simple and efficient model-
predictive control (MPC) methods to generate training actions. We do not require knowing the true
states x at test time, since the learned policy πθ(u|ot) only requires observations. This training setup
could be implemented in various ways in practice, including instrumenting the training environment
(e.g. using motion capture to track a mobile robot) or using more effective hardware at training
time (such as a more accurate GPS system), while only having access to cheaper and more practical
hardware at test time. While this assumption does introduce some restrictions, we will show that it
enables very efficient and relatively safe training, making it an appealing option for safety-critical
systems.

We will train the policy πθ(u|ot) by mimicking a computational “teacher,” rather than attempting
to learn the policy directly with reinforcement learning. There are three key advantages to this
approach: first, the teacher can exploit the true state x, while the final policy πθ is only trained
on the observations o; second, we can choose a teacher that will remain safe and stable, avoiding
dangerous actions during training; third, we can train the final policy πθ using standard, robust
supervised learning algorithms, which will allow us to construct a simple and highly data-efficient
algorithm that scales easily to complex, high-dimensional policy parametrization. Specifically, we
will use MPC as the teacher. MPC uses the true state x and a model of the system dynamics (which
we assume to be known in advance, but which in general could also be learned from experience).
MPC plans locally optimal trajectories with respect to the dynamics, and by replanning every time
step, is able to achieve considerable robustness to unexpected perturbations and model errors [140],
making it an excellent choice for sample-efficient learning.

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 69

7.2 Policy Learning using Adaptive Trajectory Optimization
One naïve approach to learn a policy from a computational teacher such as MPC would be to
generate a training set with MPC, and then train the policy with supervised learning to maximize
the log-likelihood of this dataset. The teacher can safely choose robust, near-optimal trajectories.
However, this type of supervision ignores the fact that the state distribution for the teacher and that
of the learner are different [63]. Formally, the distribution of states at test time will not match the
distribution at training time, and we therefore cannot expect good long-horizon performance from
the learned policy.

In order to overcome this challenge, PLATO uses an adaptive MPC teacher that modifies its
actions in order to bring the state distribution in the training data closer to that of the learned policy,
while still producing robust trajectories and reacting intelligently to unexpected perturbations that
cannot be handled by a partially trained policy. To that end, the teacher generates actions at each
time step t from a controller obtained by optimizing the following objective:

πtλ(u|xt, θ)← arg min
π
Jt(π|xt) + λDKL

(
π(u|xt)||πθ(u|ot)

)
, (7.1)

where λ determines the relative importance of matching the learner πθ versus optimizing the
expected return J(·). Since the teacher uses an MPC algorithm, this objective is reoptimized at each
time step to obtain a locally optimal controller for the current state. The only difference from a
standard MPC algorithm is the inclusion of the KL-divergence term. The particular MPC algorithm
we use is based on iterative LQG (iLQG) [141], using a maximum entropy variant that produces
linear-Gaussian stochastic controllers of the form πλ(u|xt) = N (Ktxt + kt,Σt) [142]. The details
of this maximum entropy variant of iLQG may be found in prior work [141], [143], [144]. We
describe the details of PLATO and its relation to prior methods in Sec. 7.2 and show that PLATO
produces a good learned policy in Sec. 7.3.

Algorithm 5 PLATO algorithm

1: Initialize data D ← ∅
2: for i = 1 to N do
3: for t = 1 to T do
4: Optimize πtλ with respect to Equation (7.1)
5: Sample ut ∼ πtλ(u|xt, θ)
6: Optimize π∗ with respect to Equation (7.2)
7: Sample u∗t ∼ π∗(u|xt)
8: Append

(
ot,u

∗
t

)
to the dataset D

9: State evolves xt+1 ∼ p(xt+1|xt,ut)
10: end for
11: Train πθi+1

on D
12: end for

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 70

Algorithm Description
Algorithm 5 outlines PLATO. We collect training trajectories by choosing actions ut according to
an adaptive teacher policy πtλ(u|xt, θ), which is generated by optimizing the objective in Equation
7.1 at each time step via iLQG. We then update the learner policy πθ(u|ot) with supervised learning
at the observations ot corresponding to the visited states xt to minimize the difference between
πθ(u|ot) and the locally optimal policy

π∗(u|xt)← arg min
π
J(π), (7.2)

which is also obtained via MPC, but without considering the KL-divergence term. This approach
ensures the teacher visits states that are similar to those that would be visited by the learner policy
πθ, while still providing supervision from a near-optimal policy. Note that the MPC policy is
conditioned on the state of the system xt, while the learned policy πθ(u|ot) is only conditioned on
the observations. MPC requires access to at least a rough model of the system dynamics, as well as
the system state, in order to robustly choose near-optimal actions. However, by training πθ on the
corresponding observations, instead of the true states, πθ can learn to process raw sensory inputs
without requiring true state observations, making it possible to run the learned policy with only
the raw observations at test time. In the rest of this section, we describe the MPC teacher and the
supervised learning procedure in detail.

Adaptive MPC teacher: The teacher’s policy πtλ must take reasonable, robust actions while
visiting states that are similar to those that would be seen by the learner policy πθ. However, we
do not know the state distribution of πθ in advance, since although we have some approximate
knowledge of the system dynamics, we do not assume a model of the observation function that
produces observations ot from states xt, making it impossible to simulate the policy πθ into the
future. Instead, we choose the actions at each time step according to an MPC policy πtλ that
minimizes the expected long-term sum of costs Jt(πtλ|xt), but only greedily minimizes the KL-
divergence against πθ at the current time step t, where the observation ot is already available,
resulting in the objective in Equation 7.1. Since MPC reoptimizes the local policy at each time step,
this method produces a sequence of policies π1:T

λ , each of which is optimized with respect to its
long-horizon cost and immediate disagreement with πθ.

As discussed previously, our iLQG-based MPC algorithm produces linear-Gaussian local
controllers πtλ(u|xt) = N (µλ(xt),Σt) where µλ(xt) = Ktxt + kt. We will further assume that our
learner policy is conditionally Gaussian (but nonlinear), though other parametric distributions are
also possible. The policy therefore has the form πθ(u|ot) = N (µθ(ot),Σπθ) where µθ(ot) is the
output of a nonlinear function, such as a neural network, and covariance Σπθ can be either learned
or deterministic. Then the MPC objective can be expressed in closed form:

min
π

Jt(π|xt)+
1

2
λ
[

ln

(
|Σπθ |
|Σt|

)
+tr
(
Σ−1
πθ

Σt

)
+
(
µθ(ot)−µλ(xt)

)ᵀ
Σ−1
πθ

(
µθ(ot)−µλ(xt)

)
+const

]
.

The KL-divergence term in this objective is quadratic in ut and linear in the covariance Σt, with
an entropy maximization term − ln |Σt|. This is precisely the objective that is optimized by the

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 71

maximum entropy variant of iLQG [144], and optimization requires us only to expand the cost-to-go
Jt to second order, which is a standard procedure in iLQG.

Training the learner’s policy: We want the learner’s policy πθ to approach the optimal policy
π∗(u|xt). We can estimate a (locally) optimal policy π∗ at each state xt with iLQG, simply
by repeating the optimization at each time step but excluding the KL-divergence term. During
the supervised learning phase, we minimize the KL-divergence between the learner πθ and the
precomputed near-optimal policies π∗ at the observations stored in the dataset D:

θ ← arg min
θ

∑
(xt,ot)∈D

DKL

(
πθ(u|ot)||π∗(u|xt)

)
. (7.3)

Since both πθ and π∗ are conditionally Gaussian, the KL-divergence can be expressed in
closed-form:

min
θ

1

2

∑
(xt,ot)∈D

(
µ∗(xt) − µθ(ot)

)ᵀ
Σ−1
π∗
(
µ∗(xt) − µθ(ot)

)
+ tr

(
Σ−1
π∗Σπθ

)
+ ln

(
|Σπ∗ |
|Σπθ |

)
+ const.

Ignoring the terms that do not involve the learner policy mean µθ(ot), the objective function can be
rewritten in the form of a weighted Euclidean loss:

min
θ

∑
(xt,ot)∈D

||µ∗(xt)− µθ(ot)||2
Σ
−1/2
π∗

.

This optimization can then be solved using standard regression methods. In our experiments, µθ
is represented by a neural network, and the above optimization problem corresponds to standard
neural network regression, solvable by stochastic gradient descent. The covariance of πθ can be
solved for in closed form, and corresponds to the inverse of the average precisions of π∗ at the
training points [142].

Relationship to previous work
The motivation behind PLATO is most similar to the MPC variant of guided policy search (MPC-
GPS) [138]. However, PLATO lifts a major limitation of MPC-GPS. MPC-GPS requires the ability

approach
teacher
policy

supervision
policy

supervised learning π∗ π∗

DAgger πMIX π∗

DAgger + coaching πMIX πCOACH

PLATO πλ π∗

Table 7.1: Overview of teacher-based policy optimization methods: For PLATO and each prior approach, we list
which teacher policy is used for sampling trajectories and which supervision policy is used for generating training
actions from the sampled trajectories. Note that the prior methods execute the mixture policy πMIX, which requires
running the learned policy πθ, potentially executing dangerous actions when πθ is not fully trained.

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 72

to deterministically reset the environment into one of a small set of initial states. MPC-GPS requires
deterministic resets because the KL-divergence term is evaluated using a linearization around each
rollout. Deterministic episodic resets can be complex, time-consuming, or even impossible in the
real world. For example, imagine a robot learning to navigate a human crowd; deterministic resets
would require having the crowd walk through the same paths in each episode. Not requiring such
resets is a major advantage. Furthermore, even when deterministic resets are feasible, PLATO
empirically outperforms MPC-GPS (Section 8.4).

Formally, PLATO can also be viewed as a generalization of the Dataset Aggregation (DAgger)
algorithm [63], which samples trajectories according to the mixture policy πMIXi = βiπ

∗+(1−βi)πθi.
The training data is generated from the observations sampled by executing πMIXi but labelled with
actions from π∗. DAgger converges if 1

N

∑N
i=1 βi → 0 as N → ∞. Coaching [139], a related

extension to DAgger, modifies the supervision policy π∗ to adapt to the learned policy πθ by
labelling the training data with a coach policy πCOACH that encourages the action training labels to be
similar to the actions πθi would choose. Our empirical evaluation shows that PLATO outperforms
coaching.

Another distinction of PLATO is the use of an adaptive MPC policy π1:T
λ to select the actions

at each time step, rather than the mixture policy πMIX used in the prior methods. As demonstrated
in our evaluation, this adaptive MPC policy allows PLATO to robustly avoid catastrophic failure
during training, which is particularly important in safety-critical domains. Our experiments also
demonstrate that policies trained using PLATO empirically outperform policies trained by either
DAgger or coaching. Table 7.1 summarizes the teacher and supervision policies used by PLATO
and prior work.

7.3 Theoretical Analysis
In this section, we present a proof that the policy πθ learned by PLATO converges to a policy with
bounded cost. This proof extends the result by Ross et al. [63], which only admits mixture policies,
to our adaptive MPC policy π1:T

λ .
Given a policy π, we denote dtπ as the state distribution at time t when executing policy π from

time 1 to t − 1. Define the cost function c(xt,ut) as a function of state xt and control ut, with
c(xt,ut) ∈ [0, 1] without loss of generality. We wish to learn a policy πθ(u|ot) that minimizes the
total expected cost over time horizon T :

J(π) =
T∑
t=1

Ext∼dtπθ
[Eut∼πθ(u|ot)[c(xt,ut)|xt]].

Let Jt(π, π̃) denote the expected cost of executing π for t time steps, and then executing π̃ for
the remaining T − t time steps, and let Qt(x, π, π̃) denote the cost of executing π for one time
step starting from initial state x, and then executing π̃ for the remaining t − 1 time steps. We
assume the cost-to-go difference between the learned policy and the optimal policy is bounded:

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 73

Qt(x, πθ, π
∗) − Qt(x, π

∗, π∗) ≤ δ. In the worst case, δ is O(T) and PLATO (as well as similar
methods such as DAgger) will not outperform supervised learning. However, if π∗ is able to quickly
recover from mistakes made by πθ, δ will be O(1) [63].

When optimizing Equation 7.1 to obtain the teacher policy πλ, we choose λ such that
DKL(πλ(u|x)||πθ(u|o)) ≤ ελθ for all state-observation pairs (x,o). We can always guarantee
this bound when optimizing Equation 7.1 because DKL(πλ(u|x)||πθ(u|o))→ 0 as λ→∞.

When optimizing the supervised learning objective in Equation 7.3 to obtain the learner pol-
icy πθ, we assume the supervised learning objective function error is bounded by a constant
DKL(πθ(u|o)||π∗(u|x)) ≤ εθ∗ for all states x (and corresponding observations o) in the dataset,
which were sampled from the teacher policy distribution dπλ . Since the policy πθ is trained with
supervised learning precisely on these states x ∼ dπλ , this bound εθ∗ corresponds to assuming that
the learner policy πθ attains bounded training error.

Let l(x, πθ, π∗) denote the expected 0-1 loss of πθ with respect to π∗ in state x:
Euθ∼πθ(u|o),u∗∼π∗(u|x)[1[uθ 6= u∗]]. We note that the total variation divergence is an upper bound
on the 0-1 loss [145] and the KL-divergence is an upper bound on the total variation divergence
[146]. Therefore for all states x ∼ dπλ in the dataset used for supervised learning, the 0-1 loss can
be upper bounded:

l(x, πθ, π
∗) = Euθ∼πθ(u|o),u∗∼π∗(u|x)[1[uθ 6= u∗]]

≤ DTV(πθ(u|o)||π∗(u|x))

≤
√
DKL(πθ(u|o)||π∗(u|x))

≤
√
εθ∗.

We also note the state distribution bound ||dtπ − dtπ̃||1 ≤ 2t
√
Dmax

KL (π, π̃) proven in [147]. This
lemma implies that for an arbitrary function f(x),Ex∼dtπ [f(x)] ≤ Ex∼dtπ̃ [f(x)]+2fmaxt

√
Dmax

KL (π, π̃)
We can then prove the following theorem:

Theorem 7.3.1 Let the cost-to-go Qt(x, πθ, π
∗)−Qt(x, π

∗, π∗) ≤ δ for all t ∈ {1, ..., T} . Then
for PLATO, J(πθ) ≤ J(π∗) + δ

√
εθ∗O(T) +O(1).

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 74

Proof :

J(πθ) = J(π∗) +
T−1∑
t=0

Jt+1(πθ, π
∗)− Jt(πθ, π∗)

= J(π∗) +
T∑
t=1

Ex∼dtπθ
[Qt(x, πθ, π

∗)−Qt(x, π∗, π∗)]

≤ J(π∗) + δ
T∑
t=1

Ex∼dtπθ
[l(x, πθ, π

∗)] (7.4a)

≤ J(π∗) + δ
T∑
t=1

Ex∼dtπλ
[l(x, πθ, π

∗)]+2lmaxt
√
ελθ (7.4b)

≤ J(π∗) + δ
T∑
t=1

√
εθ∗ + 2t

√
εθ∗
√
ελθ (7.4c)

= J(π∗) + δT
√
εθ∗ + δT (T + 1)

√
εθ∗
√
ελθ

Equation 7.4a follows from the fact that the expected 0-1 loss of πθ with respect to π∗ is the
probability that πθ and π∗ pick different actions in x; when they choose different actions, the
cost-to-go increases by ≤ δ. Equation 7.4b follows from the state distribution bound proven in
[147]. Equation 7.4c follows from the upper bound on the 0-1 loss.

Although we do not get to choose εθ∗ because that is a property of the supervised learning
algorithm and the data, we are able to choose ελθ by varying parameter λ. If we choose λ such that
ελθ = O(1

T 2). We therefore have

J(πθ) ≤ J(π∗) + δ
√
εθ∗O(T) +O(1) . �

As with DAgger, in the worst case δ = O(T). However, in many cases δ = O(1) or is sub-linear
in T , for instance if π∗ is able to quickly recover from mistakes made by πθ. We also note that this
bound, O(T), is the same as the bound obtained by DAgger, but without actually needing to directly
execute πθ at training time. Compared to supervised learning with bound O(T 2) [63], PLATO trains
the policy at states closer to those induced under its own distribution.

7.4 Experiments
We evaluate PLATO on a series of simulated quadrotor navigation tasks. MPC is a standard choice
for quadrotor control [148] because approximate models are typically known in advance from
standard rigid body physics and the vehicle specifications. However, effective use of MPC requires
explicit state estimation and can be computationally intensive. It is therefore very appealing to be
able to train an entirely feedforward, reactive policy to control a quadrotor performing navigation in
obstacle-rich environments, directly in response to raw sensor inputs. During training, the vehicle
might be placed in a known, instrumented training environment to collect data using MPC, while at

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 75

test time, the learned feedforward policy could control the aircraft directly from raw observations.
This makes simulated quadrotor navigation an ideal domain in which to compare PLATO to prior
work.

Prior methods and baselines: We compare PLATO to four methods. The first method is
DAgger, which, as discussed in Section 7.2, executes a mixture of the learned policy and teacher
policy, which in this case is MPC (without a KL-divergence term). DAgger has previously been used
for learning quadrotor control policies from human demonstrations [55]. While DAgger carries the
same convergence guarantees as PLATO, successful use of DAgger requires the learned policy to be
executed at training time, before the policy has converged to a near-optimal behavior. The second
method is the coaching algorithm of [139] which, like DAgger, executes a mixture of the learned
and teacher policies, but supervises the learner using the adapted policy. In these experiments, we
chose the coaching policy πCOACH to be the teacher policy πλ from PLATO. For both DAgger and
coaching, we must choose the mixing parameter βi at each iteration i. Since the performance of
these algorithms is quite sensitive to the schedule of the βi parameter, we include four schedules
for comparison: three linear schedules that interpolate βi from 1 at the first iteration to 0 at the last
iteration (“linear full”), the halfway iteration (“linear half”), and the quarter-way iteration (“linear
quarter”), as well as the more standard “1-0” schedule that sets βi = 1[i = 1]. The third method
is MPC-GPS [138], which, unlike PLATO, DAgger and coaching, requires deterministic resets
during training (Figure 7.4b). In addition to these prior methods, we also compare our approach
to a standard supervised learning baseline, which always executes the MPC policy without any
adaptation. For all experiments, we assume additive Gaussian noise is applied to both controls and
observations.

Policy representation: For all of the methods, we represent πθ as a conditional Gaussian policy,
with a constant covariance and a mean given by a neural network function of the observation ot.
The network has two fully connected hidden layers of size 40 with ReLU activations [149]. The
loss function is the weighted euclidean loss (see Section 7.2). We used the Caffe [150] framework
and the ADAM solver [151]. Each iteration was trained using the final weights from the previous
iteration.

Experimental domains: The comparisons are conducted on two test environments: a winding
canyon with randomized turns, and a dense forest of cylindrical trees with randomized positions.
An example environment is shown in Figure 7.1. The canyon changes direction up to π

4
radians

every 0.5m. The forest is composed of 0.5m radius cylinders with an average spacing of 2.5m. The
target velocity is 6m/s in the canyon and 2m/s in the forest.

The dynamical system is a quadrotor with dynamics described by [152]. The state of the vehicle
x ∈ R13 consists of the position and orientation, as well as their time derivatives, and the control
u ∈ R4 consists of motor velocities. The observations o consist of orientation, linear velocity,
angular velocity and either (i) a set of 30 equally spaced 1-d laser depth scanners arranged in 180
degree fan in front of the vehicle (o ∈ R40) or (ii) a 5 × 20 grayscale camera image (o ∈ R110).
Learning neural network policies with these observations forces the policies to perform both
perception and control, since success on each of the domains requires avoiding obstacles using only
raw sensory input.

The cost function for the MPC teacher encourages the quadrotor to fly at a specific linear velocity

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 76

(a) canyon (laser) (b) canyon (camera) (c) canyon/forest switching (camera)

(d) forest (laser) (e) forest (camera) (f) velocity commands in forest (laser)
Figure 7.2: Experiments: We compare PLATO to baseline methods in a winding canyon, a dense forest, and an
alternating canyon/forest. For each scenario and learning method, we trained 10 different policies using different
random seeds. Each iteration required 2 minutes of flight time. Then for each policy, we evaluated the neural network
policy trained at each iteration by flying through the scenario 20 times. Therefore each datapoint corresponds to 200
samples.

and orientation while minimizing control effort and avoiding collisions:

L(x,u) =103||xLINVEL − x∗LINVEL||22 + 103||xHEIGHT − x∗HEIGHT||22+

104||xQUAT − x∗QUAT||22 + 250||xANGVEL||22+

5−3||u− uHOVER||22+

103 max(dSAFE − signed-distance(x), 0),

where xLINVEL,xHEIGHT,xQUAT,xANGVEL are the linear velocity, height, orientation, and angular ve-
locity of the state x, respectively; x∗LINVEL,x

∗
HEIGHT,x

∗
QUAT are the target linear velocity, height, and

orientation, respectively; and uHOVER is the rotor velocity when the quadrotor is hovering. The final
term is a hinge loss on the distance of the quadrotor to the nearest obstacle; there is no penalty if the
nearest obstacle is further than dSAFE.

Performance of learned policies: In Figures 7.2a, 7.2b, 7.2d, and 7.2e, we present the mean
time to failure (MTTF) of the learned policy πθ on the canyon and forest environments using the
laser or camera sensors. The graphs show the MTTF of each policy at each iteration of the learning
process, averaged over 10 training runs of each method with 20 repetitions each. Failure occurs

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 77

when the quadrotor crashes into an obstacle, with the maximum flight time for each domain listed
on the graphs. The results indicate that the PLATO algorithm is able to learn effective policies
faster, and converges to a solution that is better than or comparable to the baseline methods. For
some choices of β schedule and supervision scheme, some DAgger variants achieve similar final
MTTFs, but always at a slower rate and, as discussed next, with significantly more training crashes.

Robustness during training: In Figures 7.2a, 7.2b, 7.2d, and 7.2e, we show the number of
crashes experienced during training at each iteration. PLATO on average experiences less than one
crash per iteration, comparable in performance to the baseline MPC method (supervised learning),
indicating that mimicking the learner with a KL-divergence penalty does not substantially degrade
the robustness of MPC. In contrast, both DAgger and coaching begin to experience a substantial
number of failures when the mixing constant β drops. By carefully selecting the schedule for β, the
number of crashes can be reduced.

However, even with a carefully chosen schedule, the prior methods are vulnerable to non-
stationary training environments, as illustrated in Figure 7.2c. In this experiment, the vehicle
switches from the canyon to the forest halfway through training, and then switches back to the
forest. Prior methods that directly execute πθ during training experience many crashes because
a policy trained only on the canyon cannot succeed on the forest without additional training.
However, PLATO experiences on average less than one crash per episode because PLATO is able
to automatically switch to more off-policy behavior when encountering novel scenarios. While
this example might appear pathological, it is in fact a plausible training setup for a real quadrotor
exploring a varied environment, such as different floors of a building. If the walls on one floor are
painted, e.g., a different color than the rest, the learned policy could easily experience a catastrophic
failure when entering the floor for the first time, even if it was consistently successful on preceding
floors.

Policies with user velocity commands: Figure 7.2f shows the performance of PLATO when
learning policies that take an additional input to simulate high-level user control in the form of the
desired velocity of the quadrotor. These policies are useful because instead of training multiple
policies for different target velocities, we can train one generalizable policy. This input modifies the
cost function used by MPC, producing command-aware supervision. During training, the commands
vary in the range of ±1 m/s sideways and 1 to 2.5 m/s forward. At test time, we sample velocity
commands uniformly at random; the velocity commands are re-sampled whenever the quadrotor
reaches the current sampled velocity. The results indicate that PLATO can successfully learn such
policies, outperforming prior methods and again minimizing the number of crashes during training.

Sensitivity to KL-divergence weight: Recall that λ determines the degree to which MPC
prioritizes following the learner πθ versus performing the desired task. As λ → 0, PLATO
approaches standard supervised learning and is thus safe, while as λ → ∞, PLATO approaches
DAgger 0-1. In practice, to choose lambda, we start with λ = 0, and then increase λ until the cost
of the behavior starts to increase. Figure 7.3 compares different non-limiting settings of λ, while we
refer to Figure 7.2 for limiting cases for λ = 0 and λ = ∞. The results suggest that a relatively
broad range of λ values produces successful policies.

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 78

Figure 7.3: Effect of KL-divergence weight λ.

Comparison with training on full
state: Figure 7.4a shows a comparison
where the policy maps state to action us-
ing an oracle SLAM algorithm that pro-
vides perfect state information and a lo-
cal 2D distance map of the obstacles. The
observation-based policy substantially out-
performs the policy that learns to map the
state to action, even with an oracle SLAM
algorithm. Although the state and obsta-
cle map are sufficient to choose good ac-
tions, this mapping is much harder to learn.
Of course, alternative full state representa-
tions that are carefully engineered to the
task may perform better, but this experi-
ment demonstrates that, at least in some cases, mapping observations directly to actions without
going through full state estimation can lead to better performance.

Comparison with MPC-GPS: MPC-GPS [138] cannot directly be evaluated on the domains
described above, because training must occur in episodes with deterministic resets (see Section
7.2). We constructed a fixed-length episodic variant of the forest task where MPC-GPS was allowed
to use deterministic resets. Besides not requiring an episodic formulation or deterministic resets,
the comparison in Figure 7.4b shows that PLATO substantially outperforms the policy learned by
MPC-GPS in terms of MTTF.

Supplementary material, including a video, can be viewed online: sites.google.com/
site/platopolicy.

(a) (b)
Figure 7.4: Comparisons with (a) training on full state and (b) MPC-GPS.

sites.google.com/site/platopolicy
sites.google.com/site/platopolicy

CHAPTER 7. SAFE LEARNING USING EXPERT SUPERVISION 79

7.5 Discussion
In this chapter, we presented PLATO, a continuous, reset-free algorithm for learning complex,
high-dimensional policies that combine perception and control into a single expressive function
approximator, such as a deep neural network. PLATO uses a trajectory optimization teacher to
provide supervision to a standard supervised learning algorithm, allowing for a simple and data-
efficient learning method. The teacher adapts to the behavior of the neural network policy to ensure
that the distribution over states and observations is sufficiently close to the learned policy, allowing
for a bound on the long-term performance of the learned policy. Our empirical evaluation on a
simulated quadrotor demonstrates that PLATO outperforms a number of previous methods, both
in terms of the robustness and effectiveness of the final policy, and in terms of the safety of the
training procedure.

PLATO has two key advantages that make it well-suited for learning control policies for real-
world robotic systems. First, since the learned neural network policy does not need to be executed
at training time, the method benefits from the robustness of model-predictive control (MPC),
minimizing catastrophic failures at training time. This is particularly important when the training
state distribution is non-stationary. Methods that execute the learned policy, such as DAgger, can
suffer a catastrophic failure when the agent encounters novel observations. Mitigating these issues
typically requires hand-designed safety mechanisms, while PLATO automatically switches to a
more off-policy behavior.

The second advantage of PLATO is that the learned policy can use a different set of observations
than MPC. Effective use of MPC requires observing or inferring the full state of the system, which
might be accomplished, for instance, by instrumenting the environment with motion capture, or
using a known map with relocalization [153]. The policy, however, can be trained directly on raw
input from onboard sensors, forcing it to perform both perception and control. Once trained, such a
policy can be used in uninstrumented natural environments.

80

Chapter 8

Conservative Reinforcement Learning

In the previous chapter, we demonstrated how a robot can safely learn to navigate by leveraging a
computational expert. However, the computational expert requires complete state and environment
knowledge at training time, which severely restricts the feasibility of real-world deployment. In this
chapter, we investigate reinforcement learning algorithms for safety-critical systems that reason
about perception and control in unknown environments, understand uncertainty, and explore safely.

One of the central challenges in reinforcement learning is that a robot can only learn the
outcome of an action by executing the action itself. Consider a robot learning to navigate an
unknown environment while avoiding collisions. This scenario seemingly presents a quandary: the
robot needs to learn how to avoid collisions in order to achieve the desired task, but to learn how to
avoid collisions, the robot must experience (possibly catastrophic) collisions during training. The
robot can overcome this quandary by first experiencing gentle collisions in order to learn about the
environment; once the robot is confident about the environment, the robot can avoid catastrophic
failures in the future. Central to this approach is that the robot must be able to reason about its own
uncertainty because these catastrophic failures are likely to occur in novel scenarios.

Consider an example scenario in which an autonomous drone is learning to fly in an obstacle-rich
building. If the drone encounters a novel scenario, the drone will likely crash because the novel
scenario is not contained within the training distribution of the reinforcement learning algorithm
policy. However, by reasoning about its own policy’s uncertainty, the drone can safely interact with
the environment and avoid catastrophic failures while also increasing the diversity of its training
distribution.

To realize this kind of safe, uncertainty-aware navigation in unknown environments, we propose
a model-based learning approach in which the robot learns a collision prediction model and uses
estimates of the model’s uncertainty to adjust its navigation strategy. By using a speed-dependent
collision cost together with uncertainty-aware collision estimates, our navigation strategy naturally
chooses to move cautiously when uncertainty is high so as to experience only harmless low-speed
collisions, and increases speed only in regions where the confidence of the prediction model is high.

Our main contribution is an uncertainty-aware collision prediction model that enables a robot
to learn how to accomplish a desired task in an unknown environment while only experiencing
gentle collisions. The collision prediction model takes as input the current robot observation and a

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 81

Figure 8.1: Uncertainty-aware collision prediction model for collision avoidance: A quadrotor and an RC car are
tasked with navigating in an unknown environment. How should the robots navigate while avoiding collisions? We
propose a model-based reinforcement learning approach in which the robot learns a collision prediction model by
experiencing collisions at low speed, which is unlikely to damage the vehicle. We formulate a velocity-dependent
collision cost that uses collision prediction estimates and their associated uncertainties to enable the robot to only
experience safe collisions during training while still approaching the desired task performance.

sequence of controls, computes the probability of a collision occurring along with an estimate of its
uncertainty, and outputs a speed-dependent collision cost. The speed-dependent collision cost is a
function of the model and its uncertainty, which enables the robot to automatically avoid catastrophic
high-speed collisions by acting cautiously in novel situations. We use a deep neural network for the
collision prediction model, which allows the model to cope with raw, high-dimensional sensory
inputs. To obtain uncertainty estimates from the neural network, we leverage uncertainty estimation
methods for discriminatively trained neural networks based on a combination of bootstrapping [154]
and dropout [155], [156]. A model-based reinforcement learning algorithm then gathers samples
using the neural network collision prediction model, which are aggregated and used to further
improve the collision prediction model. Our empirical results demonstrate that a robot equipped
with our uncertainty-aware neural network collision prediction model experiences substantially
fewer dangerous collisions during training while still learning to achieve the desired task. We
present an evaluation of our method with various parameter settings for both a simulated and
real-world quadrotor, and a real-world RC car (Fig. 8.1), and demonstrate that our method offers a
favorable tradeoff between training-time collisions and final task performance compared to baseline
approaches that do not explicitly reason about uncertainty.

8.1 Related Work
In this chapter, we investigate how model-based reinforcement learning for robot collision avoid-
ance can be made safe and reliable at both training and test time. Reinforcement learning has
been applied to a wide range of robotic problems, ranging from locomotion and manipulation to
autonomous helicopter flight [157], [158]. Model-free methods have been particularly popular due
to their simplicity and favorable computational properties [23]. However, model-based methods are
generally known to be more sample-efficient [22]. In this chapter, we adopt a model-based approach
and learn an uncertainty-aware collision avoidance model; however, similar uncertainty estimation
techniques could be extended also to model-free methods.

Several model-based robotic learning algorithms have been proposed that explicitly reason
about uncertainty [22], [159]. Uncertainty estimates have been used to perform both risk-averse

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 82

and risk-seeking, optimistic exploration [160]. The role of uncertainty estimation in this chapter is
to avoid unsafe actions at training time until the model has gained sufficient confidence, which is
largely orthogonal and complementary to prior work that seeks to improve exploration in order to
accelerate learning. Combining these two directions is a promising direction for future work.

Uncertainty-aware model-based reinforcement learning has been explored in previous work
using Bayesian models [73], [74]. While our work is similar in the overall aim, one of the central
goals of our method is to directly process raw inputs from high-bandwidth sensors such as cameras,
which necessitates the use of rich and expressive models, such as deep neural networks. Uncertainty
estimation for deep neural networks is substantially more challenging, since these models are
inherently discriminative. Recent work has proposed to use a Bayesian formulation of neural
networks based on dropout [161], as well as to use the bootstrap for exploration [162] (but not, to
the best of our knowledge, for uncertainty estimation for the purpose of safety). In this chapter, we
demonstrate that combining both dropout and bootstrap can yield substantially improved uncertainty
estimates for reinforcement learning tasks.

There is much prior work on safe robot control for safety-critical systems such as autonomous
cars [6], legged robots [163], and quadrotors [164]–[166]. A number of recent works have sought to
address the question of safety for learning-based robotic systems. Methods based on reachability
provide appealing theoretical guarantees, but cannot cope with rich sensory input and are often
difficult to scale to high-dimensional systems [75]–[77]. Several works have suggested using
discriminative models, including neural networks, to learn safety predictors [78]. These methods
generally take the approach of training a model to predict whether an unsafe action will occur, and
reverting to a hand-designed safety controller if such a potential failure is detected. Our method
offers two advantages over this approach. First, by directly estimating model uncertainty, we do
not rely on a discriminative safety estimator. This approach is preferred in environments where the
model might encounter previously unseen inputs because a discriminative safety estimator cannot
provide meaningful predictions for completely novel inputs; in short, the discriminative safety
estimator may erroneously conclude that an unsafe environment is safe. In contrast, a statistical
uncertainty prediction such as bootstrapping is more likely to estimate high uncertainty in novel
environments. Secondly, our approach does not assume the existence of a manually designed
safety control, but instead naturally reverts to more cautious exploratory behavior in the presence of
uncertainty. This makes the approach more automated, and does not require a safety mechanism
that can recover from arbitrary unsafe situations.

8.2 Preliminaries
Our goal is to control a mobile robot, such as a quadrotor or a car, attempting to navigate an
unknown environment. The task may be formally defined in terms of states x, actions u, dynamics
xt+1 = f(xt,ut), and observations o. We use M to represent the environment, including any
potential obstacles. We assume the robot’s objective is encoded as a scalar cost function of the form

C(xt,ut,M) = CTASK(xt,ut) + 1COLL(xt,M)CCOLL(xt).

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 83

That is, the cost consists of an obstacle-independent task term CTASK(xt,ut), which might include,
for instance, flying to a desired position or in a desired direction, as well as an obstacle-dependent
collision cost, which is given by the product of an indicator for collision 1COLL(xt,M), which is the
only term that depends on the environment, and a collision cost CCOLL(xt) that may, for instance,
penalize high-speed collisions more than relatively harmless low-speed collisions.

In a fully observable environment whereM is known, the collision indicator can be evaluated
exactly, and the problem can be solved by a standard optimal control method, such as the receding-
horizon model-predictive control (MPC) approach we use in this work. In receding-horizon MPC,
the robot solves an optimal control problem of the form

min
ut,...,ut+H

H∑
h=0

C(xt+h,ut+h,M) s.t. xt+h+1 = f(xt+h,ut+h)

at each time step, it executes the action ut, advances to time step t+ 1, and repeats the optimization,
effectively performing replanning at each time step. In this work, we assume that the dynamics,
which might correspond, for instance, to the equations of motion of a quadrotor, are known at
least approximately in advance. We instead focus on estimation of the cost, which depends on the
unknown environmentM. If the environment is unknown and the indicator 1COLL(xt,M) cannot be
estimated exactly, we can attempt instead to evaluate the probability of a collision using sensor
observations, such as LIDAR or camera images. In this case, we can approximate the collision
indicator according to

1COLL(xt+h,M) ≈ P (COLLt+h|xt,ut:t+hot).

That is, we can estimate the probability of collision at a future time step t+ h based on the current
state xt, the sequence of actions ut:t+h that we intend to take, and the current observation ot, which
might be used to deduce where the obstacles are located and thereby estimate the probability of
collision, without prior knowledge about the environment.

In practice, we will slightly simplify the problem by predicting the probability of a collision
at any time step h within the MPC horizon H . This approximation is not required, but yields a
somewhat simpler model that we found performed equally well in practice, especially for relatively
short-horizon MPC problems where CCOLL(xt+H) doesn’t change much over the MPC horizon. In
this case, the full approximate cost at time t+ h evaluated using observation at time step t is given
by

C(xt+h,ut+h) ≈ CTASK(xt+h,ut+h) + Pθ(COLL|xt,ut:t+H ,ot)CCOLL(xt+H),

where we parameterize the probability of collision by model parameters θ, which corresponds to
a class of parameteric conditional models. In our case, we present Pθ(COLL|xt,ut:t+H ,ot) with a
neural network that outputs the parameter of a Bernoulli random variable, as we will discuss in
Section 8.3. Our goal now is to learn the probability of collision model Pθ in such a way that avoids
catastrophic failures (i.e., high-speed collisions) at both training and test time. However, for the
robot to be able to act appropriately in novel situations, the robot must be able to reason about the
uncertainty of the collision prediction model Pθ, as we will discuss in the next section.

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 84

8.3 Uncertainty-aware Collision Prediction
The core component of our approach is an uncertainty-aware collision prediction model Pθ. Training
this collision prediction model from experience presents a dilemma: the robot must first experience
collisions in order to learn how to avoid collisions. We formulate a speed-dependent collision cost
that uses uncertainty-aware collision estimates, resulting in the robot exploring cautiously when un-
certainty is high and moving faster when uncertainty is low. This naturally arising behavior enables
the robot to learn about collisions without experiencing catastrophic failures, and subsequently use
these safe collision experiences to act more aggressively in the future.

An example application domain and desired application of the uncertainty-aware collision
prediction model is the following: consider a quadrotor navigation task in which the objective is to
fly fast and avoid collisions in an unknown environment. The quadrotor seeks to learn a collision
prediction model that takes as input an image and a sequence of velocity commands and outputs the
probability of collision. Initially, the quadrotor flies conservatively because the speed-dependent
collision cost favors low-speed actions due to high uncertainty estimates of the collision prediction
model. While flying conservatively, the quadrotor experiences safe collisions. These safe collisions,
coupled with the associated images, are used to train the collision prediction model; the collision
prediction model then learns how to associate images and velocity commands with the likelihood of
colliding. As the algorithm continues and the collision prediction model uncertainty becomes low
enough, the speed-dependent collision cost will favor high-speed flight.

Collision Prediction with Uncertainty
The collision prediction model Pθ takes as input the current state xt and observation ot, a sequence
ofH controls ut:t+H , and outputs the probability the robot experiences a collision within the horizon.
We formulate Pθ as a discriminative model using the logistic function L(y) = 1/(1 + exp(−y)), so
that

Pθ(COLL|xt,ut:t+H ,ot) = L
(
E[fθ(xt,ut:t+H ,ot)]).

Here, fθ(xt,ut:t+H ,ot) is a random variable that corresponds to the real-valued output of our
stochastic discriminatively trained model, which in our case corresponds to a modified neural
network model that can produce uncertainty estimates. In general a variety of alternative models,
including stochastic Bayesian models, could be used. Under this model, we can also define a
risk-averse collision estimator P̃θ(COLL|xt,ut:t+H ,ot), given by

P̃θ(COLL|xt,ut:t+H ,ot) = L
(
E[fθ(xt,ut:t+H ,ot)] + λSTD

√
Var[fθ(xt,ut:t+H ,ot)]

)
, (8.1)

where λSTD is a non-negative user-defined scalar and fθ is scalar-valued function of the current state,
observation, and a sequence of controls.

The risk-averse collision prediction model P̃θ accounts for uncertainty using the variance of the
function fθ: the larger the variance of fθ, the less certain the underlying stochastic model is about
the probability of collision. The standard model Pθ ignores this uncertainty, while the risk-averse
model P̃θ uses the uncertainty to produce a conservative guess about the collision probability. Note

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 85

that we use the variance of the sigmoid pre-activation value fθ, since sigmoid probabilities are
always in the range [0, 1]. Our goal is to increase the conservative estimate of collision if the model
fθ is uncertain (has high variance). However, if we use the sigmoid values, we might systematically
underestimate the uncertainty. For example, imagine that the expected value of fθ is a large negative
number. Then, even if the variance is very large, the sigmoid expectation will be zero, which means
that the sigmoid variance will be low. This is because the tails of the sigmoid flatten any variance
in the model, making it invisible in situations where the mean prediction is close to 0 or 1. The
hyperparameter λSTD allows us to set how conservative the risk-averse model P̃θ should be, which
allows the user to make intuitive tradeoffs between safety and task completion.

Velocity-Dependent Collision Cost
Based on the previously defined risk-averse model, we can now formulate a collision cost that will
naturally favor slow, cautious exploration in regions of high uncertainty. The particular cost that we
use has the form

CCOLL(xt) = λCOLL‖VELt‖2, (8.2)

where VELt is the robot velocity at time t and λCOLL is a non-negative user-defined scalar that
weights the relative importance of CCOLL versus CTASK. The full cost is then approximated using the
risk-averse collision prediction model, according to

C(xt+H ,ut+H) ≈CTASK(xt+H ,ut+H) + P̃θ(COLL|xt,ut:t+H ,ot)CCOLL(xt+H), (8.3)

With P̃θ and CCOLL defined, let us now confirm that Eqn. 8.3 will naturally favor cautious behavior
when the collision prediction model is uncertain, and favor more aggressive behavior when the
collision prediction model is confident. If the risk-averse collision prediction probability P̃θ is
large, the robot is encouraged to move slowly in order to minimize CCOLL. The collision prediction
probability Pθ is large when E[fθ] +

√
Var[fθ] is large, which occurs whenever the model predicts

a collision (i.e., E[fθ]� 0) or when the model is uncertain (i.e., Var[fθ]� 0). On the other hand,
if the risk-averse collision prediction probability is small, corresponding to a confident no-collision
prediction, the robot can focus on minimizing CTASK and move at fast speeds. The collision prediction
probability P̃θ is small when E[fθ] +

√
Var[fθ] is small, which occurs when the model predicts no

collision (i.e., E[fθ]� 0) and the model is certain (i.e., Var[fθ] ≈ 0).

Neural Network Collision Prediction Model
In order to be able to predict collisions from rich, high-dimensional sensory inputs, such as cameras
or LIDAR measurements, we will use deep neural networks to estimate the probability of a collision.
In the case of a standard deterministic, discriminatively trained neural network, fθ would represent
the pre-activation values in the network at the last layer, while Pθ is obtained by applying a sigmoidal
nonlinearity to the pre-activations. Such a network can be trained on prior trajectories experienced
by the robot simply by slicing all prior data into subsequences of length H , and inputting the
states xt, observations ot, and the concatenated sequence of controls ut:t+H into the model. The

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 86

probability of collision labels are binary values recorded by the robot indicating whether a collision
occurred, and we can obtain the label for each subsequence simply by checking whether a collision
occurred between time steps t and t+H . The network can then be trained using standard stochastic
gradient descent (SGD) with a cross-entropy loss on the final sigmoid output.

While such a model can provide accurate predictions about collision probability in regions of
the environment close to the training data, it is inherently discriminative and deterministic. Such
a deterministic model does not provide an estimate of its variance, and therefore is not by itself
suitable for risk-averse collision prediction.

Estimating Uncertainty with Neural Networks
Standard predictive neural network models are trained discriminatively, which means that, even
though the network might achieve a high accuracy on samples drawn from the same distribution as
the training data, it is very difficult to predict how the network would behave on data drawn from a
different distribution. While it is possible to train a neural network model that outputs a mean and
a variance as its prediction [78], this model is not in general guaranteed to output high variances
for unfamiliar inputs because the network is by definition trained only on the datapoints that are in
the training set. Indeed, such a method for estimating variance is only effective at estimating the
inherent noise in the data, and the variance estimates are not a meaningful indication of the model’s
own uncertainty about its predictions. To produce accurate uncertainty estimates for data that is
outside of the training distribution, we must explore techniques that go beyond direct discriminative
training. In order to obtain accurate uncertainty estimates from our model, we use two techniques:
bootstrapping and dropout.

Bootstrapping: Bootstrapping [154], [167] is a simple and effective method of estimating
model uncertainty using resampling that can be used with any discriminatively trained model. Given
a dataset D, B new datasets D(b) are sampled with replacement from D such that |D(b)| = |D|.
Then, instead of training a single modelM on the entire dataset D, B different modelsM(b) are
trained on the datasets D(b). The output prediction and uncertainty estimates are the sample mean
and standard deviation of the outputs from the population of models.

The intuition behind bootstrapping is that, by generating multiple populations (using sampling
with replacement) and training one model per population, the models will agree in high-density areas
of the population (i.e., low uncertainty regions) and disagree in low-density areas of the population
(i.e., high uncertainty regions). This intuition is backed with theoretical guarantees [168]. However,
for time- and resource-constrained applications such as robotics, usually only a limited number of
bootstraps can be used, which often leads to inaccurate estimates of the model uncertainty.

Dropout: Dropout [156] is, by comparison, a computationally cheap method to improve
uncertainty estimates. Dropout is commonly used to reduce overfitting in neural networks by
randomly dropping units from the neural network during training [155]. Specifically, a given unit
with dropout is set to 0 with probability p and left as its original value with probability 1− p during
training. Dropout prevents units from co-adapting (and thus overfitting) too much because different
units are sampled for each forward pass, which effectively samples a new, but related, network
during each step of training. Given a neural network NN(b), dropout in effect constructs a new

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 87

Algorithm 6 Neural net training with bootstrapping and dropout

1: input: dataset D = {x(i)
t ,u

(i)
t:t+H ,o

(i)
t }, neural network model NN

2: for b = 1 to B do
3: Sample a dataset of subsequences D(b) from the full dataset D with replacement
4: Initialize neural network NN(b) with random weights
5: for number of SGD iterations do
6: Sample datapoint (xt,ut:t+H ,ot) from D(b)

7: Sample NN(b)
d by masking the units in NN(b) using dropout

8: Run forward pass on NN(b)
d using (xt,ut:t+H ,ot)

9: Run backward pass on NN(b)
d to get gradient g(b)

d

10: Update model NN(b) parameters using g(b)
d

11: end for
12: end for

randomized version of this network NN(b)
d by sampling independent Bernoulli random variables to

act as masks on each neuron.
When dropout is used to reduce overfitting, it is only applied during training in order to force

the units in the network to cope with stochastic removal of other units. In order to achieve high
accuracy at test time, the dropout regularization is removed and all network weights are scaled by p
to compensate for the increased level of activation. However, Gal and Ghahramani [156] showed
that dropout can be used to obtain uncertainty estimates at test time by calculating the sample mean
and standard deviation of multiple stochastic forward passes of the neural network using dropout.
In this way, dropout can be viewed as an economical approximation to an ensemble method (such
as bootstrapping) in which each sampled dropout mask corresponds to a different model. However,
dropout underestimates the uncertainy because it acts roughly as a variational lower bound [156].

Neural Networks with Bootstrapping and Dropout: Alg. 6 provides an overview of training
neural networks with bootstrapping and dropout. From an initial dataset, multiple datasets are
resampled with replacement, along with corresponding neural network model instantiations. While
performing stochastic gradient descent on each bootstrap, different units are dropped each time a
forward pass occurs; the gradient calculated by backpropagation is then used to update that specific
bootstrap model’s parameters.

At test time, we can evaluate the mean and variance of the ensemble by performing multi-
ple forward passes on each network NN(b) using multiple instantiations of the dropout process,
corresponding to NN(b)

d . The random function fθ(xt,ut:t+H ,ot) then corresponds to sampling a
network, sampling a dropout process, and evaluating the output. Thus, using neural networks with
bootstrapping and dropout, we can estimate E[fθ(xt,ut:t+H ,ot)] and Var[fθ(xt,ut:t+H ,ot)] for use
in the risk-averse model P̃θ(COLL|xt,ut:t+H ,ot).

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 88

Algorithm 7 RL with Risk-Averse Collision Estimates
1: Initialize empty dataset D
2: Initialize collision prediction model P̃θ
3: for iter=1 to max_iter do
4: Sample trajectories {τi} using MPC with cost C
5: Add samples {τi} to D
6: Train P̃θ using D (Alg. 6)
7: end for

Reinforcement Learning with Risk-Averse Collision Estimation
Alg. 7 provides an overview of how the uncertainty-aware collision prediction model is used in a
model-based reinforcement learning algorithm. Each iteration of the algorithm, the cost function C
is formed using the current uncertainty-aware collision prediction model P̃θ. The model predictive
controller then samples trajectories using cost C. These sample trajectories are aggregated into a
dataset containing all previous sampled trajectories. Then P̃θ is trained on the dataset according to
Alg. 6 and the next iteration begins.

8.4 Experiments
We present simulated and real-world experiments to evaluate our uncertainty-aware collision
prediction model, as well as our proposed model-based RL algorithm. We compare different
settings for the parameters in our model, as well as evaluate its performance against a model-
based approach that directly estimates the probability of collision, without explicitly accounting
for uncertainty. Videos of the experiments can be found at https://sites.google.com/
site/probcoll/.

Our collision prediction model P̃θ(COLL|xt,ut:t+H ,ot) is a fully connected neural network with
two layers with 40 ReLU [149] hidden units each. The activation of the last layer, which outputs
the collision probability, is a sigmoid (see Eqn. 8.1). The model inputs are the concatenation of
xt,ut:t+H and ot. We trained the network using ADAM [151] and a standard cross-entropy loss.
For uncertainty estimation, the simulation experiments used 50 bootstraps and a dropout ratio of
0.2, while the real-world experiments used 5 bootstraps (due to real-time constraints) and a dropout
ratio of 0.05.

At each time step, the receding-horizon MPC planner chooses among a set of fixed action
sequences of horizon length H by evaluating cost C on each action sequence, and executes the first
action of the minimal cost action sequence.

Quadrotor experiments

https://sites.google.com/site/probcoll/
https://sites.google.com/site/probcoll/

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 89

Figure 8.2: Simulation

The simulated and real-world quadrotors have the same states, controls, and
observations. We use a high-level representation of the quadrotor in which
the control u ∈ R2 is the commanded planar linear velocity, and therefore
we assume the state x is estimated such that this level of control is feasible.
However, we do not provide the state x as input to the collision prediction
model. The observation o ∈ R256 is a 16 by 16 grayscale image. The set of
action sequences considered by the MPC planner at each time step consists of
190 straight-line, constant-velocity trajectories at various angles and speeds.

Simulated quadrotor: We first evaluate our uncertainty-aware collision prediction model in a
simulated environment consisting of a cylindrical obstacle of radius 0.2m (Fig. 8.2). The objective
CTASK is to fly forward at 0.5 m/s, which is encoded as an `2 norm. The time horizon is H = 6
and each discrete time step corresponds to δ = 0.2 seconds, therefore the planning horizon is δH
seconds. At each time step, the quadrotor must decide on the sequence of actions using only the
observation from a simulated monocular camera.

Fig. 8.3 compares safety versus task performance for different variants of Alg. 7. All experi-
ments consist of 20 training iterations, with each iteration consisting of 20 on-policy rollouts from
start states drawn from the same distribution. Each experiment was run 5 times with different
random seeds.

First, we investigate the benefits of incorporating uncertainty into the cost by evaluating different
values for λSTD (Eqn. 8.1). Fig. 8.3a shows that, when not accounting for uncertainty (i.e., λSTD = 0),
the final task performance approaches the desired speed of 0.5 m/s. However, the quadrotor
experiences high-speed collisions during training, as shown by the vertical axis. By accounting
for uncertainty (i.e., λSTD > 0), the quadrotor experiences lower speed collisions during training.
The final task performance decreases if λSTD is increased too much, which is expected: the more
conservative the vehicle behaves during training, the longer it takes to learn the task. These results

Figure 8.3: Comparison of safety versus task performance in simulation: We investigated the effect of changing
parameters in Eqn. 8.1 on crash speeds experienced during all training iterations (y-axis) versus the desired objective of
flying forward at 0.5 m/s (x-axis). (a) shows the effect of changing λSTD for our uncertainty-aware approach. (b) shows
the effect of changing λCONST for a conservative baseline, in which the uncertainty in Eqn. 8.1 is replaced by a constant.
Compared to the conservative baseline approach in (b), (a) shows our uncertainty-aware approach and its parameters
can effectively trade off between safety and performance.

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 90

Figure 8.4: Safety comparison for different values of λCOLL and λSTD: Each plot shows the number of training
crashes at a given speed or above for a specific setting of λCOLL and λSTD averaged over 5 experiments. Each row
corresponds to a fixed value for λCOLL and each column corresponds to a fixed value for λSTD. Examining the rows show
that increasing λSTD leads to fewer collisions, and of the collisions that do occur they are at lower speed. Examining the
first column shows that increasing λCOLL and not accounting for uncertainty does not lead to fewer collisions.

show that λSTD allows the user to control their desired degree of risk during training and trade off
safety against learning efficiency.

One reasonable question is whether accounting for uncertainty improves safety due to good

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 91

uncertainty estimates, or simply because adding uncertainty to the collision probability simply
makes the vehicle more cautious by penalizing high speeds. To answer this question, we compare
our uncertainty-aware approach against a conservative baseline that replaces the uncertainty in
Eqn. 8.1 with a constant λCONST (Fig. 8.3b). The experiments for λCONST = 0.1, 1, and 10 show
no safety improvement, and also show decreased task performance compared to the baseline
λCONST = 0 ≡ λSTD = 0. The experiment for λCONST = 100 shows substantial safety improvement,
but task performance is also substantially diminished. Compared to our uncertainty-aware approach
with different settings of λSTD, the baseline constant penalty approach with λCONST is ineffective at
trading off between safety and performance, and always produces overly conservative motions. This
indicates that uncertainty estimation is in fact reasoning about the vehicle’s surroundings, rather
than uniformly encouraging slower flight.

Another reasonable question to ask is whether simply increasing the collision cost λCOLL induces
safer training behavior. Fig. 8.4 shows that increasing λCOLL does not lead to safer training behavior,
while increasing λSTD does lead to safer training behavior.

Real-world quadrotor: We evaluated our approach in a real-world environment consisting of a
single obstacle, in which the objective is to fly around the obstacle (Fig. 8.1). Although the task of
avoiding a single static obstacle is relatively simple, it is worth noting that the vehicle must perform
this task entirely using real-world training data and only monocular images, while minimizing the
number of collisions experienced during training. As such, the task is in fact quite challenging.

We ran our experiments using a Parrot Bebop 2 quadrotor. We used the ROS bebop_autonomy
package, which allows the laptop to send linear velocity commands and receive the onboard images
in real-time. The quadrotor’s objective CTASK is to fly forward at 1.6 m/s, which is encoded as an `2

It
er

at
io

n
0

It
er

at
io

n
1

It
er

at
io

n
2

Figure 8.5: Real-world quadrotor experiments: A Parrot Bebop 2 quadrotor learns to fly while avoiding obstacles
using our uncertainty-aware reinforcement learning for collision avoidance algorithm (Alg. 7). Sample trajectories from
the RL algorithm are shown above. On iteration 0, the quadrotor does not collide with the obstacle, but flies slowly. On
iteration 1, the quadrotor flies faster, but collides with the obstacle. On iteration 2, the quadrotor avoids the obstacle
while flying at high speed.

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 92

Figure 8.6: Comparison of safety versus task performance on a real-world quadrotor: We investigated the effect
of changing λSTD in Eqn. 8.1 on crash speeds experienced during all training iterations (left) versus the desired objective
of flying forward at 1.6 m/s (right) on a Bebop 2 quadrotor. For each value of λSTD, results are combined from 5
complete experiments with the left plot displaying the mean and std and the right plot displaying the mean, std, and
max/min. Increasing λSTD leads to fewer crashes (left), but suboptimal performance (right).

norm. The time horizon H = 3 and each time step corresponds to δ = 0.5 seconds.
All experiments consist of 5 training iterations, with each iteration consisting of 5 rollouts

from 4 different initial positions. This experimental setup can be viewed in the online video. After
each rollout, the quadrotor was manually reset to the next initial state. Note that this reset was
solely done for minimizing experimental confounds for the purpose of evaluation, and is not a
requirement of our approach. In principle, the vehicle could simply continue flying around the room
and collecting data until good performance is achieved. Each experiment was initialized with 6
flight demonstrations provided by a human pilot. These demonstrations were the exact same for
all experiments and consisted of 2 crashes and 4 successful flights around the obstacle. To prevent
damage to the quadrotor, particularly for the baselines, a human pilot intervened if a crash was
imminent; the algorithm therefore treated each intervention as a collision. Each experiment was run
5 times.

Fig. 8.5 shows images of our approach during the training process for an example experiment.
In the beginning iterations, the quadrotor makes little progress and experiences collisions. As the
RL algorithm progresses, the quadrotor is eventually able to fly around the obstacle at high speed.

Fig. 8.6 compares safety versus task performance when running our model-based RL algorithm
(Alg. 7) without uncertainty (λSTD = 0) and with uncertainty (λSTD = 2). When accounting for
uncertainty, the quadrotor experiences substantially fewer collisions, especially at higher speeds,
but takes longer to approach the desired task performance.

Real-world RC car experiments

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 93

Figure 8.7: 1/10th scale RC car
with a Logitech C920 Webcam and
limit switch collision detectors.

We evaluated our approach on an RC car (Fig. 8.7) in a simple
obstacle avoidance task (Fig. 8.1). The car is parameterized by
control u ∈ R2 consisting of speed and steering angle and observa-
tion o ∈ R576 consisting of a 32 by 18 grayscale image. We do not
assume access to any underlying state x.

The car’s objective CTASK is to drive at 1.2 m/s in any direction,
which is encoded as an `2-norm. The time horizon was set to H = 4
and each discrete time step corresponds to δ = 0.5 seconds. The set
of action sequences considered by the MPC planner at each time
step consists of 49 curving, constant-velocity trajectories at various
steering angles and speeds.

All experiments consist of 10 training iterations, with each iteration consisting of 5 on-policy
rollouts from 4 different initial states. Each rollout ended after either a collision or 10 time steps,
therefore each experiment consists of approximately 15 minutes of real-world experience. After
each rollout, the car was manually reset to the next initial state. No human demonstrations were
used for initialization and each experiment was ran twice. Unlike in the quadrotor experiments, the
car was allowed to collide at full speed and automatically registered collisions using limit switches
mounted on the front of the car.

Fig. 8.8 shows images of our approach during the training process for an example experiment.
Initially, the car is unable to avoid the obstacle and side walls, but eventually learns to avoid
collisions.

Fig. 8.9 compares safety versus task performance when running our model-based RL algorithm
(Alg. 7) without uncertainty (λSTD = 0) and with uncertainty (λSTD = 1). The final model-based
planner for both approaches succeeds in navigating without colliding for almost 70% of the rollouts,
which is a significant improvement over the initial policy. When accounting for uncertainty, the car
experiences fewer high-speed collisions and achieves comparable speeds compared to when not
accounting for uncertainty.

Figure 8.8: Real-world RC car experiments: An RC car learns to drive while avoiding obstacles using our uncertainty-
aware reinforcement learning for collision avoidance algorithm (Alg. 7). A successful rollout is shown above.

CHAPTER 8. CONSERVATIVE REINFORCEMENT LEARNING 94

Figure 8.9: Comparison of safety versus task performance on a real-world RC car: We investigated the effect of
changing λSTD in Eqn. 8.1 on crash speeds experienced during all training iterations (left) versus the task objective of
driving at 1.2 m/s (middle) and the percentage of rollouts in which the RC car reached the end of the track (right). For
each value of λSTD, results are combined from 2 complete experiments. Our uncertainty-aware approach (λSTD = 1)
experiences 13% fewer crashes at speeds above 0.6 m/s (left) and comparable task performance (middle/right) compared
to the baseline approach which does not account for uncertainty.

8.5 Discussion
We presented a model-based combined perception and control method for learning obstacle avoid-
ance strategies that uses uncertainty estimates to automatically generate safe strategies. Our method
is based on predicting the probability of collision conditioned on raw sensory inputs and a sequence
of actions, using deep neural networks. This predictor can be used within a model-predictive
control pipeline to choose actions that avoid collisions with high probability. In regions of high
uncertainty, our risk-averse cost function naturally causes the robot to revert to a cautious low-speed
strategy, without any explicit manual engineering of safety controllers or fail-safe mechanisms. We
demonstrate our approach is safer compared to methods without uncertainty estimates in both a
simulated and real-world quadrotor obstacle avoidance task, as well as a real-world RC car task.

95

Chapter 9

Conclusion

In this thesis, we developed learning algorithms for mobile robots to address three main challenges:
sample-efficiency, supervision, and safety. To address sample-efficiency, we designed a flexible
framework for interpolating between model-based and model-free methods (Chapter 2) and investi-
gated how to leverage simulation in order to accelerate real world learning (Chapter 3). To address
supervision, we developed algorithms that provide supervision using self-supervision (Chapter 4),
other learned models (Chapter 5), and weak human supervision (Chapter 6). To address safety, we
investigated methods that leveraged experts (Chapter 7) and uncertainty (Chapter 8).

Although we believe the work in this thesis and other ongoing work has led to much progress
on real-world mobile robot learning, there is still much more work to be done. We discuss some
open questions and future directions below.

Sample-efficiency. While developing future algorithms that require even less data to success-
fully learn is a relevant and fruitful endeavor, the notion of sample-efficiency itself depends on the
specific task. This is perhaps one of the most challenging aspects of robot learning: not knowing
ahead of time how much data the robot will need to gather in order to succeed at a specific task.
For robot learning practitioners, knowing how much and what type of data the robot will need to
gather in order to succeed would drastically change how robot learning algorithms are developed
and deployed.

A related challenge for future work is how to learn from long-tailed distributions. These
long-tail distributions are particularly relevant for mobile robots due to the diversity of the open
world. However, by the very nature of the rarity of these long-tail events, it is challenging to study
and develop methods to address the long tail. This challenge is further exacerbated for academic
researchers, who have limited resources. Creating a unified definition, framework, and benchmark
for addressing the long tail could significantly advance mobile robot learning.

Supervision. Although we showed that self-supervision (Chapter 4), learned models (Chapter 5),
and weak human supervision (Chapter 6) can all provide supervision for mobile robot learning, the
methods presented in this thesis were all offline methods—the robot paused data collection in order
to train a new model on the collected data. Online methods, which adapt the model during data
collection, can be advantageous for many reasons, including for sample-efficiency and for safety,
but also introduce additional challenges, such as instability and catastrophic forgetting.

CHAPTER 9. CONCLUSION 96

While self-supervision (Chapter 4) and weak human supervision (Chapter 6) are powerful
approaches for learning core mobile robot navigation policies, we believe that model supervision
(Chapter 5) is the best path forward for learning more complex navigation strategies. However, the
main challenge with leveraging learned models for supervision is that these models are fallible, and
therefore the source of supervision is imperfect. We believe that investigating how to learn from
imperfect models is an important avenue for future work.

Safety. Although we believe expert supervision (Chapter 7) is appropriate for some mobile robot
learning, we believe leveraging uncertainty (Chapter 8) is typically a more general and viable option.
However, conservative reinforcement learning methods are critically dependent on the accuracy
of the uncertainty estimates, and while there has been much progress on improving uncertainty
estimation for high-dimensional models such as neural networks, there is still much progress to be
made.

One of the main challenges to achieve accurate uncertainty estimation is that not all sources of
uncertainty are equivalent. For example, while a robot may be equally uncertain if placed near a
never-before-seen field or cliff, the uncertainty estimate should encourage exploration in the field
but discourage exploration near the cliff. We believe it is important to develop safe robot learning
algorithms that can disambiguate these various forms of uncertainty.

* * *

We hope the work presented in this thesis serves as a stepping stone for continuing work on
enabling mobile robots to learn and navigate in complex, real-world environments.

97

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2008.

[2] C Rosen and N Nilsson, “Application of intelligent automata to reconnaissance,” SRI, Tech.
Rep., 1968.

[3] R. S. Wallace, A. Stentz, C. E. Thorpe, H. P. Moravec, W. Whittaker, and T. Kanade, “First
Results in Robot Road-Following,” in IJCAI, 1985.

[4] C. Thorpe, M. H. Hebert, T. Kanade, and S. A. Shafer, “Vision and navigation for the
Carnegie-Mellon Navlab,” TPAMI, 1988.

[5] J. Leonard and H. F Durrant-Whyte, “Simultaneous Map Building and Localization for an
Autonomous Mobile Robot,” in IROS, 1991, pp. 1442–1447.

[6] C. Urmson and et. al., “Autonomous driving in urban environments: Boss and the urban
challenge,” Journal of Field Robotics, 2008.

[7] J. P. How, B. Behihke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous
vehicle test environment,” IEEE Control Systems Magazine, 2008.

[8] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel, T.
Hilden, G. Hoffmann, B. Huhnke, et al., “Junior: The stanford entry in the urban challenge,”
JFR, 2008.

[9] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range rover autonomy,”
Journal of Field Robotics, 2010.

[10] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor navigation with a
computationally constrained MAV,” in ICRA, 2011.

[11] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F. Chen, C. Choi, J. Dusek,
Y. Fang, et al., “Duckietown: an open, inexpensive and flexible platform for autonomy
education and research,” in ICRA, 2017.

[12] T. Ort, L. Paull, and D. Rus, “Autonomous vehicle navigation in rural environments without
detailed prior maps,” in ICRA, 2018.

[13] K. Mohta, K. Sun, S. Liu, M. Watterson, B. Pfrommer, J. Svacha, Y. Mulgaonkar, C. J.
Taylor, and V. Kumar, “Experiments in fast, autonomous, gps-denied quadrotor flight,” in
ICRA, 2018.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.8908&rep=rep1&type=pdf
https://www.ijcai.org/Proceedings/85-2/Papers/086.pdf
https://www.ijcai.org/Proceedings/85-2/Papers/086.pdf
http://www.ri.cmu.edu/pub_files/pub2/thorpe_charles_1988_1/thorpe_charles_1988_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/thorpe_charles_1988_1/thorpe_charles_1988_1.pdf
http://ieeexplore.ieee.org/document/174711/
http://ieeexplore.ieee.org/document/174711/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.451.8563&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.451.8563&rep=rep1&type=pdf
https://s3.amazonaws.com/academia.edu.documents/40510157/Real-time_indoor_autonomous_vehicle_test20151130-1329-1jp7t28.pdf?response-content-disposition=inline%3B%20filename%3DReal-time_indoor_autonomous_vehicle_test.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20200105T231851Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=a1b368099d614bc7e5fb9952ebcba4178cff804f13b21c107dd7be59634718c0
https://s3.amazonaws.com/academia.edu.documents/40510157/Real-time_indoor_autonomous_vehicle_test20151130-1329-1jp7t28.pdf?response-content-disposition=inline%3B%20filename%3DReal-time_indoor_autonomous_vehicle_test.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20200105T231851Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=a1b368099d614bc7e5fb9952ebcba4178cff804f13b21c107dd7be59634718c0
http://robots.stanford.edu/papers/junior08.pdf
https://furgalep.github.io/sbib/furgale_jfr10.pdf
http://ieeexplore.ieee.org/document/5980357/
http://ieeexplore.ieee.org/document/5980357/
http://michalcap.net/wp-content/papercite-data/pdf/paull_2017.pdf
http://michalcap.net/wp-content/papercite-data/pdf/paull_2017.pdf
https://toyota.csail.mit.edu/sites/default/files/documents/papers/ICRA2018_AutonomousVehicleNavigationRuralEnvironment.pdf
https://toyota.csail.mit.edu/sites/default/files/documents/papers/ICRA2018_AutonomousVehicleNavigationRuralEnvironment.pdf

BIBLIOGRAPHY 98

[14] A. J. Barry, P. R. Florence, and R. Tedrake, “High-speed autonomous obstacle avoidance
with pushbroom stereo,” in Journal of Field Robotics, 2018.

[15] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendon-Mancha, “Visual simultaneous
localization and mapping: a survey,” Artificial Intelligence Review, 2015.

[16] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in NIPS,
1989.

[17] D. Barnes, W. Maddern, and I. Posner, “Find your own way: Weakly-supervised segmenta-
tion of path proposals for urban autonomy,” in ICRA, 2017.

[18] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller, and
Y. LeCun, “Learning long-range vision for autonomous off-road driving,” Journal of Field
Robotics, 2009.

[19] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for direct
perception in autonomous driving,” in ICCV, 2015.

[20] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” in
ArXiv:1604.07316, 2016.

[21] C. Richter and N. Roy, “Safe Visual Navigation via Deep Learning and Novelty Detection,”
in RSS, 2017.

[22] M. Deisenroth and C. Rasmussen, “A Model-Based and Data-Efficient Approach to Policy
Search,” in ICML, 2011.

[23] J. Peters and S. Schaal, “Policy Gradient Methods for Robotics,” in IROS, 2006.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and R. M.,
“Playing Atari with Deep Reinforcement Learning,” in Workshop on Deep Learning, NIPS,
2013.

[25] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous Control with Deep Reinforcement Learning,” in ICRL, 2016.

[26] M. P. Deisenroth, R. Calandra, A. Seyfarth, and J. Peters, “Toward fast policy search for
learning legged locomotion,” in IROS, 2012.

[27] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains: A survey,”
JMLR, 2009.

[28] S. Daftry, J. A. Bagnell, and M. Hebert, “Learning transferable policies for monocular
reactive mav control,” in ISER, 2016.

[29] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J.
Ibarz, P. Pastor, K. Konolige, et al., “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” ArXiv preprint arXiv:1709.07857, 2017.

[30] F. Zhang, J. Leitner, M. Milford, and P. Corke, “Modular deep q networks for sim-to-real
transfer of visuo-motor policies,” in ACRA, 2017.

https://link.springer.com/article/10.1007/s10462-012-9365-8
https://link.springer.com/article/10.1007/s10462-012-9365-8
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2874&context=compsci
https://arxiv.org/abs/1610.01238
https://arxiv.org/abs/1610.01238
http://yann.lecun.com/exdb/publis/pdf/hadsell-jfr-09.pdf
http://deepdriving.cs.princeton.edu/paper.pdf
http://deepdriving.cs.princeton.edu/paper.pdf
https://arxiv.org/abs/1604.07316
http://www.roboticsconference.org/static/papers/63.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4058714
https://www.cs.toronto.edu/\protect \unhbox \voidb@x \penalty \@M \ {}vmnih/docs/dqn.pdf
https://arxiv.org/pdf/1509.02971.pdf
http://ieeexplore.ieee.org/document/6385955/
http://ieeexplore.ieee.org/document/6385955/

BIBLIOGRAPHY 99

[31] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman, “Deep predictive policy training
using reinforcement learning,” in IROS, 2017.

[32] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors,” in IROS, 2016.

[33] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell, “Sim-to-real
robot learning from pixels with progressive nets,” in CoRL, 2017.

[34] D. Rastogi, I. Koryakovskiy, and J. Kober, “Sample-efficient reinforcement learning via dif-
ference models,” in Machine Learning in Planning and Control of Robot Motion Workshop
at ICRA, 2018.

[35] J. P. Hanna and P. Stone, “Grounded action transformation for robot learning in simulation.,”
in AAAI, 2017.

[36] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and E. Todorov, “Reinforcement learning for
non-prehensile manipulation: Transfer from simulation to physical system,” in SIMPAR,
2018.

[37] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson env: Real-world
perception for embodied agents,” in CVPR, 2018.

[38] J. Zhang, L. Tai, Y. Xiong, M. Liu, J. Boedecker, and W. Burgard, “Vr-goggles for robots:
Real-to-sim domain adaptation for visual control,” ArXiv preprint arXiv:1802.00265, 2018.

[39] F. Sadeghi and S. Levine, “(CAD)2 RL: Real Single-Image Flight without a Single Real
Image,” RSS, 2017.

[40] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, “Asymmetric actor
critic for image-based robot learning,” in RSS, 2018.

[41] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body dynamic motion plan-
ning that transfers to physical humanoids,” in IROS, 2015.

[42] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt: Learning robust neural
network policies using model ensembles,” in ICLR, 2017.

[43] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown: Learning a universal
policy with online system identification,” in RSS, 2017.

[44] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic
control with dynamics randomization,” in ICRA, 2018.

[45] S. J. Pan, Q. Yang, et al., “A survey on transfer learning,” IEEE Transactions on knowledge
and data engineering, 2010.

[46] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf: A
deep convolutional activation feature for generic visual recognition,” in ICML, 2014.

[47] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-shelf:
An astounding baseline for recognition,” in CVPR, 2014.

https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1611.04201

BIBLIOGRAPHY 100

[48] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep
neural networks?” In NIPS, 2014.

[49] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige, “On pre-trained image features
and synthetic images for deep learning,” ArXiv preprint arXiv:1710.10710, 2017.

[50] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal regression network
for monocular depth estimation,” in CVPR, 2018.

[51] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in CVPR, 2018.

[52] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger, “Pseudo-
lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous
driving,” in CVPR, 2019.

[53] A. Valada, J. Vertens, A. Dhall, and W. Burgard, “Adapnet: Adaptive semantic segmentation
in adverse environmental conditions,” in ICRA, 2017.

[54] N. Hirose, A. Sadeghian, M. Vázquez, P. Goebel, and S. Savarese, “Gonet: A semi-
supervised deep learning approach for traversability estimation,” in IROS, 2018.

[55] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and
M. Hebert, “Learning monocular reactive uav control in cluttered natural environments,” in
ICRA, 2013.

[56] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end Driving via
Conditional Imitation Learning,” in ICRA, 2018.

[57] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocular
vision and reinforcement learning,” in ICML, 2005.

[58] G. Kahn, A. Villaflor, P. Abbeel, and S. Levine, “Composable Action-Conditioned Predic-
tors: Flexible Off-Policy Learning for Robot Navigation,” in CoRL, 2018.

[59] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and M. Hutter, “Where
should I walk? Predicting terrain properties from images via self-supervised learning,” RA-L,
2019.

[60] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in IROS, 2017.

[61] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From perception to
decision: A data-driven approach to end-to-end motion planning for autonomous ground
robots,” in ICRA, 2017.

[62] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle avoidance through
end-to-end learning,” in NIPS, 2006.

[63] S. Ross, G. J. Gordon, and J. A. Bagnell, “A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning,” in Proceedings of the 14th AISTATS, 2011.

[64] M. Wulfmeier, D. Z. Wang, and I. Posner, “Watch this: Scalable cost-function learning for
path planning in urban environments,” in IROS, 2016.

https://arxiv.org/pdf/1806.02446.pdf
https://arxiv.org/pdf/1806.02446.pdf
https://arxiv.org/pdf/1803.08669.pdf
https://arxiv.org/pdf/1812.07179.pdf
https://arxiv.org/pdf/1812.07179.pdf
https://arxiv.org/pdf/1812.07179.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/valada17icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/valada17icra.pdf
https://arxiv.org/pdf/1803.03254.pdf
https://arxiv.org/pdf/1803.03254.pdf
https://arxiv.org/pdf/1211.1690.pdf
https://arxiv.org/pdf/1710.02410.pdf
https://arxiv.org/pdf/1710.02410.pdf
http://ai.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ {}asaxena/rccar/ICML_ObstacleAvoidance.pdf
http://ai.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ {}asaxena/rccar/ICML_ObstacleAvoidance.pdf
https://arxiv.org/pdf/1810.07167.pdf
https://arxiv.org/pdf/1810.07167.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/323783/Self_Supervised_Learning_V2%286%29.pdf?sequence=1&isAllowed=y
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/323783/Self_Supervised_Learning_V2%286%29.pdf?sequence=1&isAllowed=y
https://arxiv.org/pdf/1704.05588.pdf
https://arxiv.org/pdf/1609.07910.pdf
https://arxiv.org/pdf/1609.07910.pdf
https://arxiv.org/pdf/1609.07910.pdf
http://www.jmlr.org/proceedings/papers/v15/ross11a/ross11a.pdf
http://www.jmlr.org/proceedings/papers/v15/ross11a/ross11a.pdf
https://ieeexplore.ieee.org/abstract/document/7759328
https://ieeexplore.ieee.org/abstract/document/7759328

BIBLIOGRAPHY 101

[65] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function approximators,”
in ICML, 2015.

[66] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” in ICLR, 2017.

[67] C. Devin, P. Abbeel, T. Darrell, and S. Levine, “Deep Object-Centric Representations for
Generalizable Robot Learning,” in ICRA, 2018.

[68] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, “Multinet: Real-time
joint semantic reasoning for autonomous driving,” in IV, 2018.

[69] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots, “Agile
autonomous driving using end-to-end deep imitation learning,” in RSS, 2018.

[70] A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. P. Rodríguez, F. Fontana, M. Faessler,
C. Forster, J. Schmidhuber, G. Di Caro, et al., “A machine learning approach to visual
perception of forest trails for mobile robots.,” in RAL, 2016.

[71] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to
fly by driving,” in RA-L, 2018.

[72] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for real-time Atari
game play using offline Monte-Carlo tree search planning,” in NIPS, 2014.

[73] C. Richter, W. Vega-Brown, and N. Roy, “Bayesian Learning for Safe High-Speed Naviga-
tion in Unknown Environments,” in ISRR, 2015.

[74] F. Berkenkamp, A. Krause, and A. Schoellig, “Bayesian Optimization with Safety Con-
straints: Safe and Automatic Parameter Tuning in Robotics,” in ArXiv:1602.04450, 2016.

[75] T. Perkins and A. Barto, “Lyapunov Design for Safe Reinforcement Learning,” in JMLR,
2002.

[76] A. Majumdar and R. Tedrake, “Funnel Libraries for Real-Time Robust Feedback Motion
Planning,” in ArXiv:1601.04037, 2016.

[77] J. Gillula and C. Tomlin, “Reducing Conservativeness in Safety Guarantees by Learning
Disturbances Online: Iterated Guaranteed Safe Online Learning,” in RSS, 2012.

[78] S. Daftry, S. Zeng, J. A. Bagnell, and M. Hebert, “Introspective Perception: Learning to
Predict Failures in Vision Systems,” in IROS, 2016.

[79] R. Sutton, “Dyna, an Integrated Architecture for Learning, Planning, and Reacting,” in
AAAI, 1991.

[80] A. Mujika, “Multi-task learning with deep model based reinforcement learning,” ArXiv:1611.01457,
2016.

[81] J. Oh, S. Singh, and H. Lee, “Value Prediction Network,” in NIPS, 2017.

[82] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.

[83] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping and
planning for visual navigation,” 2017.

http://proceedings.mlr.press/v37/schaul15.pdf
https://arxiv.org/pdf/1611.01779.pdf
https://arxiv.org/pdf/1708.04225.pdf
https://arxiv.org/pdf/1708.04225.pdf
https://ieeexplore.ieee.org/abstract/document/8500504?casa_token=Y2O-CE_gtrEAAAAA:OKFwIRYVurGYBjmXmO-nU25rjNQ3xq1gs41pAJBNx0VTkqChHCzdokV35d9h4EqZ-0PJXBsXoMYo
https://ieeexplore.ieee.org/abstract/document/8500504?casa_token=Y2O-CE_gtrEAAAAA:OKFwIRYVurGYBjmXmO-nU25rjNQ3xq1gs41pAJBNx0VTkqChHCzdokV35d9h4EqZ-0PJXBsXoMYo
https://arxiv.org/pdf/1709.07174.pdf
https://arxiv.org/pdf/1709.07174.pdf
http://rpg.ifi.uzh.ch/docs/RAL18_Loquercio.pdf
http://rpg.ifi.uzh.ch/docs/RAL18_Loquercio.pdf
https://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf
https://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf
http://groups.csail.mit.edu/rrg/papers/richter_isrr15.pdf
http://groups.csail.mit.edu/rrg/papers/richter_isrr15.pdf
https://arxiv.org/pdf/1602.04450v1.pdf
https://arxiv.org/pdf/1602.04450v1.pdf
http://www.jmlr.org/papers/volume3/perkins02a/perkins02a.pdf
https://arxiv.org/pdf/1601.04037v2.pdf
https://arxiv.org/pdf/1601.04037v2.pdf
http://www.roboticsproceedings.org/rss08/p11.pdf
http://www.roboticsproceedings.org/rss08/p11.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7759279
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7759279
https://dl.acm.org/citation.cfm?id=122377
https://arxiv.org/abs/1611.01457
https://arxiv.org/abs/1707.03497
https://webdocs.cs.ualberta.ca/\protect \unhbox \voidb@x \penalty \@M \ {}sutton/book/the-book.html
https://arxiv.org/abs/1702.03920
https://arxiv.org/abs/1702.03920

BIBLIOGRAPHY 102

[84] S. Thrun and A. Schwartz, “Issues in Using Function Approximation for Reinforcement
Learning,” in Proceedings of the Fourth Connectionist Models Summer School, 1993.

[85] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional video prediction
using deep networks in atari games,” in NIPS, 2015.

[86] Y. Wu, S. Zhang, Y. Zhang, Y. Bengio, and R. R. Salakhutdinov, “On multiplicative
integration with recurrent neural networks,” in NIPS, 2016.

[87] L.-Y. Deng, The cross-entropy method: a unified approach to combinatorial optimization,
Monte-Carlo simulation, and machine learning, 2006.

[88] M. Goslin and M. R. Mine, “The Panda3D graphics engine,” Computer, 2004.

[89] M. Bellemare, W. Dabney, and R. Munos, “A Distributional Perspective on Reinforcement
Learning,” in ICML, 2017.

[90] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer across
domains and tasks,” in ICCV, 2015.

[91] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,
and V. Lempitsky, “Domain-adversarial training of neural networks,” JMLR, 2016.

[92] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in ICLR, 2014.

[93] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” in IJCV,
2015.

[94] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza, “Deep
drone racing: Learning agile flight in dynamic environments,” ArXiv preprint arXiv:1806.08548,
2018.

[95] C. Watkins and P. Dayan, “Q-Learning,” in Machine Learning, 1992.

[96] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-supervised deep reinforce-
ment learning with generalized computation graphs for robot navigation,” in ICRA, 2018.

[97] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine, “Deep reinforcement
learning for vision-based robotic grasping: A simulated comparative evaluation of off-policy
methods,” in ICRA, 2018.

[98] A. Bitcraze, Crazyflie 2.0, 2016.

[99] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and L. Benini, “Ultra low
power deep-learning-powered autonomous nano drones,” ArXiv preprint arXiv:1805.01831,
2018.

[100] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” ArXiv preprint arXiv:1704.04861, 2017.

[101] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topological memory for
navigation,” in ICLR, 2018.

https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf
https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf
https://arxiv.org/abs/1507.08750
https://arxiv.org/abs/1507.08750
https://arxiv.org/abs/1606.06630
https://arxiv.org/abs/1606.06630
http://www.tandfonline.com/doi/abs/10.1198/tech.2006.s353?journalCode=utch20
http://www.tandfonline.com/doi/abs/10.1198/tech.2006.s353?journalCode=utch20
http://ieeexplore.ieee.org/abstract/document/1350741/
https://arxiv.org/pdf/1707.06887.pdf
https://arxiv.org/pdf/1707.06887.pdf
http://download.springer.com/static/pdf/35/art%253A10.1007%252FBF00992698.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2FBF00992698&token2=exp=1493363610\protect \unhbox \voidb@x \penalty \@M \ {}acl=%2Fstatic%2Fpdf%2F35%2Fart%25253A10.1007%25252FBF00992698.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252FBF00992698*\protect \unhbox \voidb@x \penalty \@M \ {}hmac=b28ec542ed62aebc1af344eb23653da9fb9466fe59c114281505ac083946eddd
https://arxiv.org/pdf/1709.10489.pdf
https://arxiv.org/pdf/1709.10489.pdf
https://arxiv.org/pdf/1803.00653.pdf
https://arxiv.org/pdf/1803.00653.pdf

BIBLIOGRAPHY 103

[102] J. Bruce, N. Sünderhauf, P. Mirowski, R. Hadsell, and M. Milford, “Learning deployable
navigation policies at kilometer scale from a single traversal,” in CoRL, 2018.

[103] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Neural Autonomous Navigation with Rieman-
nian Motion Policy,” in ICRA, 2019.

[104] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation behaviors end-to-
end with autorl,” RA-L, 2019.

[105] N. Hirose, F. Xia, R. Martín-Martín, A. Sadeghian, and S. Savarese, “Deep Visual MPC-
Policy Learning for Navigation,” in RA-L, 2019.

[106] M. Riedmiller, M. Montemerlo, and H. Dahlkamp, “Learning to drive a real car in 20
minutes,” in FBIT, 2007.

[107] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra, “Benchmarking
reinforcement learning algorithms on real-world robots,” in CoRL, 2018.

[108] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and
A. Shah, “Learning to drive in a day,” in ICRA, 2019.

[109] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, 1997.

[110] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar, “Deep Dynamics Models for Learning
Dexterous Manipulation,” in CoRL, 2019.

[111] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combi-
natorial optimization, Monte-Carlo simulation and machine learning. Springer Science &
Business Media, 2013.

[112] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR, 2009.

[113] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement
learning,” in AAAI, 2018.

[114] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond mean
square error,” 2016.

[115] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for physical interaction
through video prediction,” in NIPS, 2016.

[116] E. Denton and V. Birodkar, “Unsupervised learning of disentangled representations from
video,” in NIPS, 2017.

[117] C. Vondrick, H. Pirsiavash, and A. Torralba, “Anticipating the future by watching unlabeled
video,” 2016.

[118] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi, ““What happens if...” Learning to
Predict the Effect of Forces in Images,” in ECCV, 2016.

[119] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours,” in ICRA, 2016.

https://arxiv.org/pdf/1807.05211.pdf
https://arxiv.org/pdf/1807.05211.pdf
https://arxiv.org/pdf/1903.02749.pdf
https://arxiv.org/pdf/1903.02749.pdf
https://arxiv.org/pdf/1809.10124.pdf
https://arxiv.org/pdf/1809.10124.pdf
https://arxiv.org/pdf/1903.02749.pdf
https://arxiv.org/pdf/1903.02749.pdf
https://ieeexplore.ieee.org/document/4524181
https://ieeexplore.ieee.org/document/4524181
http://proceedings.mlr.press/v87/mahmood18a/mahmood18a.pdf
http://proceedings.mlr.press/v87/mahmood18a/mahmood18a.pdf
https://arxiv.org/pdf/1807.00412.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/pdf/1909.11652.pdf
https://arxiv.org/pdf/1909.11652.pdf
https://www.springer.com/gp/book/9780387212401
https://www.springer.com/gp/book/9780387212401
http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://www.image-net.org/papers/imagenet_cvpr09.pdf
https://arxiv.org/pdf/1710.02298.pdf
https://arxiv.org/pdf/1710.02298.pdf
https://arxiv.org/pdf/1511.05440.pdf
https://arxiv.org/pdf/1511.05440.pdf
http://papers.nips.cc/paper/6161-unsupervised-learning-for-physical-interaction-through-video-prediction.pdf
http://papers.nips.cc/paper/6161-unsupervised-learning-for-physical-interaction-through-video-prediction.pdf
http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf
http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf
http://www.cs.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}vondrick/prediction/paper.pdf
http://www.cs.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}vondrick/prediction/paper.pdf
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_17
https://arxiv.org/pdf/1509.06825.pdf
https://arxiv.org/pdf/1509.06825.pdf

BIBLIOGRAPHY 104

[120] Y. F. Chen, M. Everett, M. Liu, and J. How, “Socially Aware Motion Planning with Deep
Reinforcement Learning,” in IROS, 2017.

[121] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell, “Learning to navigate in complex
environments,” in ICLR, 2017.

[122] R. Rubinstein, “The cross-entropy method for combinatorial and continuous optimization,”
Methodology and computing in applied probability, 1999.

[123] E. F. Camacho and C. B. Alba, Model predictive control. Springer Science & Business
Media, 2013.

[124] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” in CVPR, 2015.

[125] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup, “Horde:
A scalable real-time architecture for learning knowledge from unsupervised sensorimotor
interaction,” in AAMAS, 2011.

[126] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience replay,” in NIPS, 2017.

[127] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine, “Composable Deep
Reinforcement Learning for Robotic Manipulation,” in ICRA, 2018.

[128] E. Coumans et al., “Bullet physics library,” Open source: Bulletphysics. org, 2013.

[129] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open Urban
Driving Simulator,” in CoRL, 2017.

[130] T. Verge. (2020). Everyone hates california’s self-driving car reports, [Online]. Available:
https://www.theverge.com/2020/2/26/21142685/california-dmv-
self-driving-car-disengagement-report-data (visited on 02/26/2020).

[131] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning. 1998.

[132] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving policy transfer via modu-
larity and abstraction,” in CoRL, 2018.

[133] Z. C. Lipton, J. Gao, L. Li, J. Chen, and L. Deng, “Combating reinforcement learning’s
sisyphean curse with intrinsic fear,” ArXiv:1611.01211, 2016.

[134] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-aware reinforcement
learning for collision avoidance,” in ArXiv:1702.01182, 2017.

[135] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans, “Trial without error: Towards safe
reinforcement learning via human intervention,” in AAMAS, 2018.

[136] G. Kahn, P. Abbeel, and S. Levine, “BADGR: An autonomous self-supervised learning-
based navigation system,” ArXiv preprint arXiv:2002.05700, 2020.

[137] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted
residuals and linear bottlenecks,” in CVPR, 2018.

https://ieeexplore.ieee.org/abstract/document/8202312
https://ieeexplore.ieee.org/abstract/document/8202312
https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf
https://link.springer.com/article/10.1023/A:1010091220143
https://arxiv.org/pdf/1411.4038.pdf
https://arxiv.org/pdf/1411.4038.pdf
https://dl.acm.org/citation.cfm?id=2031726
https://dl.acm.org/citation.cfm?id=2031726
https://dl.acm.org/citation.cfm?id=2031726
https://papers.nips.cc/paper/7090-hindsight-experience-replay.pdf
https://arxiv.org/pdf/1803.06773.pdf
https://arxiv.org/pdf/1803.06773.pdf
https://arxiv.org/pdf/1711.03938.pdf
https://arxiv.org/pdf/1711.03938.pdf
https://www.theverge.com/2020/2/26/21142685/california-dmv-self-driving-car-disengagement-report-data
https://www.theverge.com/2020/2/26/21142685/california-dmv-self-driving-car-disengagement-report-data
http://www.incompleteideas.net/book/the-book-2nd.html
http://vladlen.info/papers/driving-policy-transfer.pdf
http://vladlen.info/papers/driving-policy-transfer.pdf
https://arxiv.org/abs/1702.01182
https://arxiv.org/abs/1702.01182
https://arxiv.org/pdf/1707.05173.pdf
https://arxiv.org/pdf/1707.05173.pdf
https://arxiv.org/abs/2002.05700
https://arxiv.org/abs/2002.05700
https://arxiv.org/pdf/1801.04381.pdf
https://arxiv.org/pdf/1801.04381.pdf

BIBLIOGRAPHY 105

[138] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning Deep Control Policies for Au-
tonomous Aerial Vehicles with MPC-Guided Policy Search,” in ICRA, 2016.

[139] H. He, J. Eisner, and H. Daume, “Imitation Learning by Coaching,” in NIPS, 2012.

[140] D. Mayne, M. M. Seron, and S. V. Rakovic, “Robust model predictive control of constrained
linear systems with bounded disturbances,” in Automatica, 2005.

[141] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal feedback
control of constrained nonlinear stochastic systems,” in American Control Conference,
2005.

[142] S. Levine and V. Koltun, “Guided policy search,” in ICML, 2013.

[143] H. Kappen, V. Gomez, and M. Opper, “Optimal control as a graphical model inference
problem,” in Machine Learning, 2012.

[144] S. Levine and P. Abbeel, “Learning neural network policies with guided policy search under
unknown dynamics,” in NIPS, 2014.

[145] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Divergences, surrogate loss functions and
experimental design,” in NIPS, 2005.

[146] D. Pollard, “Asymptopia: An exposition of statistical asymptotic theory,” 2000. [Online].
Available: stat.yale.edu/~pollard/Books/Asymptopia/.

[147] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust Region Policy Opti-
mization,” in ICML, 2015.

[148] M. Mueller and R. D’Andrea, “A model predictive controller for quadrotor state interception,”
in ECC, 2013.

[149] V. Nair and G. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,”
in ICML, 2010.

[150] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” ArXiv preprint
arXiv:1408.5093, 2014.

[151] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in ICLR, 2015.

[152] P. Martin and E. Salaun, “The true role of accelerometer feedback in quadrotor control,” in
ICRA, 2010.

[153] B. Williams, G. Klein, and I. Reid, “Real-time slam relocalisation,” in ICCV, 2007.

[154] B. Efron and R. Tibshirani, “The Jackknife, the Bootstrap and Other Resampling Plans,” in
SIAM, 1982.

[155] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutidnov, “Dropout: A
Simple Way to Prevent Neural Networks from Overfitting,” in JMLR, 2014.

[156] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning,” in ICML, 2016.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7487175
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7487175
http://papers.nips.cc/paper/4545-imitation-learning-by-coaching.pdf
stat.yale.edu/~pollard/Books/Asymptopia/
https://people.eecs.berkeley.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pabbeel/papers/2015-ICML-TRPO.pdf
https://people.eecs.berkeley.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pabbeel/papers/2015-ICML-TRPO.pdf
https://www.cs.toronto.edu/\protect \unhbox \voidb@x \penalty \@M \ {}hinton/absps/reluICML.pdf
https://arxiv.org/pdf/1412.6980v8.pdf
http://epubs.siam.org/doi/book/10.1137/1.9781611970319
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://jmlr.org/proceedings/papers/v48/gal16.pdf
http://jmlr.org/proceedings/papers/v48/gal16.pdf

BIBLIOGRAPHY 106

[157] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” IJRR,
2013.

[158] M. P. Deisenroth, G. Neumann, and J. Peters, “A Survey on Policy Search for Robotics,” in
Foundations and Trends in Robotics, 2013.

[159] J. Schneider, “Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning,”
in NIPS, 1997.

[160] T. Moldovan, S. Levine, M. Jordan, and P. Abbeel, “Optimism-Driven Exploration for
Nonlinear Systems,” in ICRA, 2015.

[161] Y. Gal, R. Mcallister, and C. Rasmussen, “Improving PILCO with Bayesian Neural Network
Dynamics Models,” in Data-Efficient Machine Learning workshop, ICML, 2016.

[162] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep Exploration via Bootstrapped
DQN,” in NIPS, 2016.

[163] P. Wieber, “Viability and Predictive Control for Safe Locomotion,” in IROS, 2008.

[164] M. Mueller and R. D’Andrea, “Relaxed hover solutions for multicopters: Application to
algorithmic redundancy and novel vehicles,” The International Journal of Robotics Research,
p. 0 278 364 915 596 233, 2015.

[165] M. Watterson and V. Kumar, “Safe receding horizon control for aggressive MAV flight with
limited range sensing,” in IROS, 2015.

[166] J. Gillula and C. Tomlin, “Guaranteed Safe Online Learning via Reachability: Tracking a
Ground Target using a Quadrotor,” in ICRA, 2012.

[167] B. Efron and R. Tibshirani, An introduction to the bootstrap. CRC press, 1994.

[168] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, “The Big Data Bootstrap,” in ICML,
2012.

https://spiral.imperial.ac.uk/bitstream/10044/1/12051/4/2300000021-Deisenroth-Vol2-ROB-021_published.pdf
https://papers.nips.cc/paper/1317-exploiting-model-uncertainty-estimates-for-safe-dynamic-control-learning.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139645
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139645
http://mlg.eng.cam.ac.uk/yarin/PDFs/DeepPILCO.pdf
http://mlg.eng.cam.ac.uk/yarin/PDFs/DeepPILCO.pdf
https://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn.pdf
https://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4651022
http://journals.sagepub.com/doi/pdf/10.1177/0278364915596233
http://journals.sagepub.com/doi/pdf/10.1177/0278364915596233
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7353826
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7353826
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6225136
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6225136
https://people.eecs.berkeley.edu/\protect \unhbox \voidb@x \penalty \@M \ {}jordan/papers/blb_icml2012.pdf

