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Abstract

Scene Representations for View Synthesis with Deep Learning

by

Pratul Srinivasan
Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Ren Ng, Chair

In this dissertation, we investigate the question of how 3D scenes should be rep-
resented, such that the representation can be effectively estimated from standard
photographs and can then be used to synthesize images of the same scene from
novel unobserved viewpoints. Recovering photorealistic scene representations
from images has been a longstanding goal of computer vision and graphics, and has
typically been addressed using representations from standard computer graphics
pipelines, such as triangle meshes, which are not particularly amenable to end-to-
end optimization for maximizing the fidelity of rendered images. Instead, we ad-
vocate for the use of scene representations that are specifically well-suited to being
used in differentiable deep learning pipelines. We explore the efficacy of various
representations for view synthesis tasks including synthesizing local views around
a single input image, extrapolating views around a pair of nearby input images, and
interpolating novel views from a set of unstructured images. We present scene rep-
resentations that succeed at the aforementioned tasks, which share two common
properties: they represent scenes as volumes and that they avoid the poor scal-
ing properties of regularly-sampled voxel grids by using compressed or parameter-
efficient volume representations.

Professor Ren Ng
Dissertation Committee Chair
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Chapter 1

Introduction

Visual storytelling, from art to video games, plays a central part in our lives.
While computer graphics techniques have enabled us to use photorealistic 3D con-
tent to immerse viewers into a visually compelling story, creating these realistic
3D graphics assets typically requires painstaking and expensive work by talented
artists. A promising strategy for democratizing 3D content creation is to develop
algorithms that use observed images to recover a 3D representation with the same
functionalities as hand-designed graphics assets. This task, commonly referred to
as “inverse rendering”, is a longstanding problem in the fields of computer vision
and graphics and a successful solution would enable anyone to use real-world ob-
jects and scenes in photography, filmmaking, and game development.

In this dissertation, we focus on the specific inverse rendering problem of using
observed images to recover a scene representation that is able to render novel pho-
torealistic views of a scene, a task typically called “view synthesis” or “image-based
rendering” (IBR). In particular, we investigate different strategies for representing
3D scenes, with the goal of illuminating the important characteristics shared by
effective scene representations.

Although view synthesis does not capture the full functionality of traditional
graphics assets (a representation for view synthesis does not support relighting or
physical simulation), we argue that view synthesis is a core problem in visual com-
puting with high potential impact. Progress towards effective scene representations
for view synthesis will be useful for the fully general inverse rendering task, and a
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Figure 1.1. A visual sample of outputs and results of the work presented in the fol-
lowing chapters. This dissertation focuses on the problem of novel view synthesis:
using a set of captured input images of a scene to render views of the scene from
novel unobserved viewpoints.

successful solution to view synthesis is crucial for capturing real-world scenes for
virtual and augmented reality (VR and AR).

While the problem of view synthesis has a rich history in computer vision
and graphics, its progress has been limited by prior work’s adhering to 3D ge-
ometry representations that are not amenable to being optimized for the goal of
view synthesis. In scenarios where the input images are not captured densely
enough for simple interpolation-based light field rendering algorithms, the domi-
nant paradigm for view synthesis algorithms was to use the best available off-the-
shelf method to estimate scene geometry from a set of input images, and then con-
struct an algorithm that synthesizes novel views using this provided scene geom-
etry. For example, a common pipeline for view synthesis was to run Structure-
from-Motion (SfM) on the set of input images to estimate camera parameters and
a sparse point cloud, pass these results to a Multi-View Stereo (MVS) algorithm to
estimate dense depth maps for each input image, fuse these depth maps into a trian-
gle mesh using surface reconstruction and meshing algorithms, and finally render
novel views by reprojecting and blending observed images using the reconstructed
mesh. The key issue with this paradigm is that the scene geometry is not estimated
with the specific goal of maximizing the quality of rendered novel views, and each
step in this pipeline optimizes a slightly different set of criteria. The resulting scene
geometry contains inaccuracies (ex. edges that are not quite aligned with image
edges) that are particularly problematic for rendering novel views.
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We argue that we should strive to use scene representations with geometry
that is specifically optimized to maximize the quality of synthesized novel views.
This can be achieved by following the differentiable programming paradigm pop-
ularized by deep learning: if we construct the scene representation estimation and
rendering procedures out of differentiable functions, this would enable us to use
gradient-based optimization to tune the program end-to-end to minimize the error
of rendering example novel views.

Unfortunately, the polygonal mesh scene representations traditionally used for
view synthesis are not amenable to this differentiable programming paradigm. It
is unclear how to use a differentiable parametric function approximator like a deep
neural network to accept observed images as inputs and predict a polygon mesh,
and the procedures for rendering images of mesh representations from novel view-
points contain discontinuities that prevent us from easily optimizing a mesh to
maximize the fidelity of rendered images. Therefore, it is vital for us to rethink the
representations we use for view synthesis and investigate what characteristics are
necessary for representations to be effectively used with differentiable deep learn-
ing pipelines.

Below, we provide an high-level overview of prior approaches to view synthe-
sis, followed by an overview of this dissertation and our contributions towards de-
signing scene representations for view synthesis that work effectively within deep
learning pipelines. Figure 1.1 visualizes example results from the projects pre-
sented in this dissertation.

1.1 Scene Representations for View Synthesis

Our work builds upon decades of progress in view synthesis, and Shum and
Kang [121] provide an excellent review of classic view synthesis algorithms. As
discussed in their review, it is useful to characterize view synthesis algorithms by
the extent to which they make use of explicit scene geometry. Existing view syn-
thesis algorithms can be roughly binned into three categories: methods that use a
global fixed 3D representation, methods that use view-dependent 3D representa-
tions where either the geometry or appearance changes based on viewpoint, and
light field methods that avoid explicit geometry estimation.
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1.1.1 Global Scene Representations

A straightforward approach for view synthesis is to use the observed images
to estimate a global 3D model, similar to standard graphics assets, so novel views
can be rendered by simply projecting this fixed 3D representation into any view-
point. Various scene representations have been used in this context, including
voxel grids [115], height fields [13, 87], and texture-mapped triangle meshes [144].
While using a single fixed 3D representation is a natural approach, estimating ac-
curate geometry can be quite difficult in practice. This motivated the field of view
synthesis to investigate view-dependent 3D representations, which can still render
high-fidelity novel views with inaccurate geometry.

1.1.2 View-Dependent Scene Representations

Many modern algorithms for view synthesis with sparsely-sampled images are
based on the framework of using approximate scene geometry to reproject and
blend a set of nearby sampled views to render an image from the target view-
point. This strategy was used in foundational work on view-dependent texture-
mapping [21] and unstructured lumigraph rendering [7]. Even if the estimated
geometry is incorrect, reprojecting nearby source images into a target viewpoint
can convincingly render occlusion and non-Lambertian effects if the source view-
points are close enough to the target viewpoint. However, it is very difficult to es-
timate high-quality meshes whose geometric boundaries align well with edges in
images, and these methods typically suffer from significant artifacts when render-
ing target viewpoints further away from the observed input views. State-of-the-art
algorithms [47, 48] attempt to remedy this shortcoming with complicated pipelines
that involve both global mesh and local depth map estimation, but they are still lim-
ited by the difficulties inherent to estimating mesh geometry from images.

Other algorithms that use view-dependent scene representations [11, 13, 68, 87,
97, 103] avoid difficult and expensive global mesh estimation. Instead, they com-
pute detailed local geometry for each input image (typically as single or multi layer
depth maps) and render novel views by reprojecting and blending nearby input
images. This strategy can be quite effective, and the work presented in Chapter 4
discusses how to utilize this strategy within a deep learning pipeline.



1.2. DISSERTATION OVERVIEW AND CONTRIBUTIONS 5

1.1.3 Light Field Rendering

Methods based on light field rendering [76] eschew any geometric reasoning,
and simply sample images on a regular grid so that new views can be rendered as
slices of the sampled light field. Light field rendering can be thought of as a view-
dependent 3D representation where the proxy geometry is simply a plane. Due to
the simple proxy geometry, light field rendering techniques require sampling dense
input views, which can quickly become intractable for applications such as virtual
reality where we would like to support large viewer motions.

1.1.4 Deep Learning for View Synthesis

Prior to the work presented in this dissertation, the research community was just
beginning to explore leveraging deep learning for the task of novel view synthesis.
Initial attempts [137, 167] focused on synthesizing far-away views of individual
objects from a single input view, and eschewed any geometry reasoning. More re-
cent approaches improved the quality of synthesized views by learning to model
local geometry from the target viewpoint and using this geometry to reproject and
blend input views. This includes a light field view synthesis algorithm [61] trained
to interpolate between four input corner views sampled on a plane, and the Deep-
Stereo algorithm trained to interpolate views along the path of captured Google
Street View images [31]. A key theme in this dissertation is that using persistent
volumetric scene representations within a deep learning pipeline can substantially
improve upon the results of these prior works, which suffered from artifacts caused
by their separately predicting geometry for each target novel view.

1.2 Dissertation Overview and Contributions

The main contribution of this dissertation is an exploration of different scene
representations for view synthesis, with the goal of illuminating the important
characteristics that make scene representations effective for deep learning based
view synthesis. Figure 1.2 visualizes the general problem formulation we consider,
where the input is a set of images with corresponding camera poses, and our goal is
to recover a scene representation that supports rendering novel views of the scene.

In Chapter 2, we ask the question “Do we need a global 3D scene represen-
tation for effective view synthesis with deep learning?”. We investigate whether
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Figure 1.2. We investigate scene representations within the following view synthe-
sis problem formulation: Given input images of a scene along with the correspond-
ing camera viewpoints, our goal is to recover a scene representation that is able to
render novel unobserved views of the scene. We advocate for optimizing the scene
representation (or a function that predicts the scene representation) by minimizing
the loss of using that scene representation to render novel views.

we can just represent a scene as a light field, a function that simply describes the
distribution of light rays in the scene. Representing a scene as a light field is equiv-
alent to representing a scene as the total distribution of images of that scene. We
explore this idea by training a deep network to map input images of a scene to out-
put images at novel viewpoints without reconstructing a single persistent model
of 3D scene geometry. Our experiments show that this straightforward treatment
of view synthesis as a learned mapping from input images to output images can
produce convincing results for a limited range of novel viewpoints. However, we
show that this approach is not adequate for rendering larger amounts of viewer
motion, because the lack of a persistent 3D representation results in perceptually-
jarring “flickering” artifacts when adjacent rendered views are synthesized using
different predicted geometry. It becomes increasingly difficult to encourage the
separately-predicted geometry from each target viewpoint to be consistent with a
single persistent 3D representation.

To remedy this deficiency, we need to use a persistent 3D scene representation.
By persistent, we mean that the same scene geometry should be used to render a
range of novel viewpoints. Next, we attempt to answer the question “What scene
representations should we be using?”. There is no single answer to this question;
many 3D representations are used in computer graphics for different applications,
each with their own strengths and weaknesses. However, we would like to deter-
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mine the characteristics that make a scene representation successful when used in
a deep learning pipeline for view synthesis.

Chapters 3, 4, and 5 investigate the specific choice of using sampled volumet-
ric representations for view synthesis. Volumetric representations are particu-
larly attractive for view synthesis with deep learning for two reasons. First, grid-
sampled volumes naturally fit within the array-programming paradigms of mod-
ern deep learning frameworks and can easily be used with modern convolutional
network architectures. Second, volumetric representations are much better-suited
for gradient-based optimization than surface representations such as meshes or
signed distance fields. Intuitively, a volumetric representation can arbitrarily add
or remove opacity from anywhere within the volume to best match an image, but
a surface representation has to gradually move the surface from its initial location,
which is prone to local minima. However, the optimization benefits of volumetric
representations come at the expense of increased storage costs. Therefore, it is im-
portant to represent these volumetric representations in a parameter-efficient man-
ner. One effective parameter-efficient strategy for representing volumes is to use
variable-resolution sampling and simply allocate more samples where finer res-
olution is needed for rendering novel views. In Chapters 3 and 4, we discuss a
specific technique to represent large-scale scenes with this strategy for the task of
synthesizing “forwards-facing” novel views of the scene. In Chapter 5, we explore
a slightly different variable-resolution volumetric representation for estimating the
illumination incident at any location within a scene (this task can be thought of
as panoramic view synthesis since we are trying to synthesize a panorama repre-
senting the incoming light at any location within the scene). These three chapters
provide strong evidence for the efficacy of parameter-efficient sampled volumetric
representations for novel view synthesis tasks.

In Chapter 6, we explore a radically different strategy for representing volu-
metric scenes in a parameter-efficient manner. Instead of using a discrete sampled
volume, we represent the scene as a continuous volumetric function, parameterized
by a fully-connected neural network that takes in a 3D coordinate and 2D viewing
direction, and outputs the volume density and view-dependent color at that loca-
tion. Thus, the entire scene is encoded in the weights of this deep network. We
demonstrate that this can be much more efficient than a sampled volumetric repre-
sentation while still enabling us to render photorealistic novel views of the scene.

Finally, in chapter 7, we summarize the lessons we have learned through our
exploration of scene representations for deep learning based view synthesis, and
discuss a vision for the future of 3D scene representations for view synthesis and
inverse rendering in general.
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Chapter 2

Local View Extrapolation with Light

Fields

In this chapter, we investigate whether a fixed 3D scene representation is needed
for effective view synthesis. Instead, we ask whether we can tackle the problem of
novel view synthesis by simply training a deep network to map observed input
views to output views. This overall strategy can be thought of as using the light
field as the scene representation for novel view synthesis. Figure 2.2 illustrates how
the task of synthesizing novel camera views is equivalent to synthesizing novel 2D
slices of the 4D light field from observed 2D slices.

2.1 Introduction

We focus on a problem that we call “local light field synthesis”, which we define
as the promotion of a single photograph to a plenoptic camera light field. One can
think of this as expansion from a single view to a dense 2D patch of views. We
argue that local light field synthesis is a core visual computing problem with high

This chapter is based on joint work published at ICCV 2017 [133].
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potential impact. First, it would bring light field benefits such as synthetic apertures
and refocusing to everyday photography. Furthermore, local light field synthesis
would systematically lower the sampling rate of photographs needed to capture
large baseline light fields, by “filling the gap” between discrete viewpoints. This is
a path towards making light field capture for virtual and augmented reality (VR
and AR) practical. In this work, we hope to convince the community that local light
field synthesis is actually a tractable problem.

From an alternative perspective, the light field synthesis task can be used as
an unsupervised learning framework for estimating scene geometry from a single
image. Without any ground-truth geometry for training, we can learn to estimate
the geometry that minimizes the difference between the light field rendered with
that geometry and the ground-truth light field.

Light field synthesis is a severely ill-posed problem, since the goal is to recon-
struct a 4D light field given just a single image, which can be interpreted as a 2D
slice of the 4D light field. To alleviate this, we use a machine learning approach
that is able to utilize prior knowledge of natural light fields. In this work, we fo-
cus on scenes of flowers and plants, because they contain interesting and complex
occlusions as well as a wide range of relative depths. Our specific contributions
are the introduction of the largest available light field dataset, the prediction of 4D
ray depths with a novel depth consistency regularization to improve unsupervised
depth estimation, and a learning framework to synthesize a light field from a single
image.

Light Field Dataset We collect the largest available light field dataset (Sec. 2.4),
contaning 3343 light fields of flowers and plants, taken with the Lytro Illum camera.
Our dataset limits us to synthesizing light fields with camera-scale baselines, but
we note that our model can generalize to light fields of any scene and baseline given
the appropriate datasets.

Ray Depths and Regularization Current view synthesis methods generate each
view separately. Instead, we propose to concurrently predict the entire 4D light
field by estimating a separate depth map for each viewpoint, which is equivalent
to estimating a depth for each ray in the 4D light field (Sec. 2.5). We introduce
a novel physically-based regularization that encourages the predicted depth maps
to be consistent across viewpoints, alleviating typical problems that arise in depths
created by view synthesis (Fig. 2.5). We demonstrate that our algorithm can predict
depths from a single image that are comparable or better than depths estimated by
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Figure 2.1. We propose a CNN framework that factors the light field synthesis
problem into estimating depths for each ray in the light field, rendering a Lamber-
tian approximation to the light field, and refining this approximation by predicting
occluded rays and non-Lambertian effects (incorrect rays that are refined, in this
case red rays that should be the color of the background instead of the flower, are
marked with blue arrows). We train this network end-to-end by minimizing the
reconstruction errors of the Lambertian and predicted light fields, along with a
novel physically-based depth regularization. We demonstrate that we can predict
convincing 4D light fields and ray depths from a single 2D image. We visualize syn-
thesized light fields as a predicted corner view along with epipolar slices in both
the u and v directions of different spatial segments.

a state-of-the-art physically-based non-learning method that uses the entire light
field [58] (Fig. 2.6).

CNN Framework We create and study an end-to-end convolutional neural net-
work (CNN) framework, visualized in Fig. 2.1, that factorizes the light field synthe-
sis problem into the subproblems of estimating scene depths for every ray (Fig. 2.6,
Sec. 2.5) (we use depth and disparity interchangeably, since they are closely re-
lated in structured light fields), rendering a Lambertian light field (Sec. 2.6.1),
and predicting occluded rays and non-Lambertian effects (Sec. 2.6.2). This makes
the learning process more tractable and allows us to estimate scene depths, even
though our network is trained without any access to the ground truth depths. Fi-
nally, we demonstrate that it is possible to synthesize high-quality ray depths and
light fields of flowers and plants from a single image (Fig. 2.1, Fig. 2.6, Fig. 2.9,
Fig. 2.10, Sec. 2.7).
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2.2 Related Work

Light Fields The 4D light field [82] is the total spatio-angular distribution of
light rays passing through a region of free space. Previous work has demon-
strated exciting applications of light fields, including rendering images from new
viewpoints [76], changing the focus and depth-of-field of photographs after cap-
ture [93], correcting lens aberrations [92], and estimating scene flow [129].

View Synthesis from Light Fields Early work on light field rendering [76] cap-
tures a densely-sampled 4D light field of a scene, and renders images from new
viewpoints as 2D slices of the light field. Closely related work on the Lumi-
graph [42] uses approximate geometry information to refine the rendered slices.
The unstructured Lumigraph rendering framework [7] extends these approaches
to use a set of unstructured (not axis-aligned in the angular dimensions) 2D slices
of the light field. In contrast to these pioneering works which capture many 2D
slices of the light field to render new views, we propose to synthesize a dense sam-
pling of new views from just a single slice of the light field.

View Synthesis without Geometry Estimation Alternative approaches synthe-
size images from new viewpoints without explicitly estimating geometry. The work
of Shi et al. [119] uses the observation that light fields are sparse in the continuous
Fourier domain to reconstruct a full light field from a carefully-constructed 2D col-
lection of views. Didyk et al. [23] and Zhang et al. [164] reconstruct 4D light fields
from pairs of 2D slices using phase-based approaches.

Recent works have trained CNNs to synthesize slices of the light field that have
dramatically different viewpoints than the input slices. Tatarchenko et al. [137] and
Yang et al. [158] train CNNs to regress from a single input 2D view to another 2D
view, given the desired camera rotation. The exciting work of Zhou et al. [167] pre-
dicts a flow field that rearranges pixels from the input views to synthesize novel
views that are sharper than directly regressing to pixel values. These methods are
trained on synthetic images rendered from large databases of 3D models of objects
such as cars and chairs [10], while we train on real light fields. Additionally, they
are not able to explicitly take advantage of geometry because they attempt to syn-
thesize views at arbitrary rotations with potentially no shared geometry between
the input and target views. We instead focus on the problem of synthesizing a dense
sampling of views around the input view, so we can explicitly estimate geometry
to produce higher quality results.
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View Synthesis by Geometry Estimation Other methods perform view interpo-
lation by first estimating geometry from input 2D slices of the light field, and then
warping the input views to reconstruct new views. These include view interpo-
lation algorithms [11, 41] which use wider baseline unstructured stereo pairs to
estimate geometry using multi-view stereo algorithms.

More recently, CNN-based view synthesis methods been proposed, start-
ing with the inspiring DeepStereo method that uses unstructured images from
Google’s Street View [31] to synthesize new views. This idea has been extended to
view interpolation for light fields given 4 corner views [61], and the prediction of
one image from a stereo pair given the other image [35, 40, 154].

We take inspiration from the geometry-based view synthesis algorithms dis-
cussed above, and also predict geometry to warp an input view to novel views.
However, unlike previous methods, we synthesize an entire 4D light field from just
a single image. Furthermore, we synthesize all views and corresponding depths at
once, as opposed to the typical strategy of predicting a single 2D view at a time,
and leverage this to produce better depth estimations.

3D Representation Inference from a Single Image Instead of synthesizing new
imagery, many excellent works address the general inverse rendering problem of
inferring the scene properties that produce an observed 2D image. The influential
algorithm of Barron and Malik [4] solves an optimization problem with priors on
reflectance, shape, and illumination to infer these from a single image. Other in-
teresting works [25, 112] focus on inferring just the 3D structure of the scene, and
train on ground-truth geometry captured with 3D scanners or the Microsoft Kinect.
A number of exciting works extend this idea to infer a 3D voxel [15, 39, 153] or
point set [28] representation from a synthetic 2D image by training CNNs on large
databases of 3D CAD models. Finally, recent methods [111, 142, 156] learn to infer
3D voxel grids from a 2D image without any 3D supervision by using a rendering or
projection layer within the network and minimizing the error of the rendered view.
Our work is closely related to unsupervised 3D representation learning methods,
but we represent geometry as 4D ray depths instead of voxels, and train on real
light fields instead of views from synthetic 3D models of single objects.
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Figure 2.2. Two equivalent interpretations of the local light field synthesis problem.
Left: Given an input image of a scene, with the field-of-view marked in green, our
goal is to synthesize a dense grid of surrounding views, with field-of-views marked
in black. The u dimension represents the center-of-projection of each virtual view-
point, and the x axis represents the optical conjugate of the sensor plane. Right:
Given an input image, which is a 1D slice of the 2D flatland light field (2D slice of
the full 4D light field), our goal is to synthesize the entire light field. In our light
field parameterization, vertical lines correspond to points in focus, and lines at a
slope of 45 degrees correspond to points at the farthest distance that is within the
depth of field of each sub-aperture image.

2.3 Light Field Synthesis

Given an image from a single viewpoint, our goal is to synthesize views from a
densely-sampled grid around the input view. This is equivalent to synthesizing a
4D light field, given a central 2D slice of the light field, and both of these interpre-
tations are visualized in Fig. 2.2. We do this by learning to approximate a function
f :

L̂(x,u) = f(L(x,0)) (2.1)
where L̂ is the predicted light field, x is spatial coordinate (x, y), u is angular co-
ordinate (u, v), and L(x,u) is the ground-truth light field, with input central view
L(x,0).

Light field synthesis is severely ill-posed, but certain redundancies in the light
field as well as prior knowledge of scene statistics enable us to infer other slices of
the light field from just a single 2D slice. Figure 2.2 illustrates that scene points at a
specific depth lie along lines with corresponding slopes in the light field. Further-
more, the colors along these lines are constant for Lambertian reflectance, and only
change due to occlusions or non-Lambertian reflectance effects.

We factorize the problem of light field synthesis into the subproblems of esti-
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mating the depth at each coordinate (x,u) in the light field, rendering a Lambertian
approximation of the light field using the input image and these estimated depths,
and finally predicting occluded rays and non-Lambertian effects. This amounts to
factorizing the function f in Eq. 2.1 into a composition of 3 functions: d to estimate
ray depths, r to render the approximate light field from the depths and central 2D
slice, and o to predict occluded rays and non-Lambertian effects from the approxi-
mate light field and predicted depths:

D(x,u) =d(L(x,0))

Lr(x,u) =r(L(x,0), D(x,u))

L̂(x,u) =o(Lr(x,u), D(x,u))

(2.2)

where D(x,u) represents predicted ray depths, and Lr represents the rendered
Lambertian approximate light field. This factorization lets the network learn to
estimate scene depths from a single image in an unsupervised manner.

The rendering function r (Sec. 2.6.1) is physically-based, while the depth es-
timation function d (Sec. 2.5) and occlusion prediction function o (Sec. 2.6.2) are
both structured as CNNs, due to their state-of-the-art performance across many
function approximation problems in computer vision. The CNN parameters are
learned end-to-end by minimizing the sum of the reconstruction error of the Lam-
bertian approximate light field, the reconstruction error of the predicted light field,
and regularization losses for the predicted depths, for all training tuples:

min
θd,θo

∑
S

[
||Lr − L||1 + ||L̂− L||1

+λcψc(D) + λtvψtv(D)
] (2.3)

where θd and θo are the parameters for the depth estimation and occlusion predic-
tion networks. ψc and ψtv are consistency and total variation regularization losses
for the predicted ray depths, discussed below in Sec. 2.5. S is the set of all training
tuples, each consisting of an input central view L(x,0) and ground truth light field
L(x,u).

We include the reconstruction errors for both the Lambertian light field and the
predicted light field in our loss to prevent the occlusion prediction network from
attempting to learn the full light field prediction function by itself, which would
prevent the depth estimation network from properly learning a depth estimation
function.
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Figure 2.3. We introduce the largest available light field dataset, containing 3343
light fields of scenes of flowers and plants captured with the Lytro Illum camera
in various locations and lighting settings. These light fields contain complex oc-
clusions and wide ranges of relative depths, as visualized in the example epipolar
slices. No ground truth depths are available, so we use our algorithm to predict a
histogram of disparities in the dataset to demonstrate the rich depth complexity in
our dataset. We will make this dataset available upon publication.

2.4 Light Field Dataset

To train our model, we collected 3343 light fields of flowers and plants with the
Lytro Illum camera, randomly split into 3243 for training and 100 for testing. We
captured all light fields using a focal length of 30 mm and f/2 aperture. Other
camera parameters including the shutter speed, ISO, and white balance were set
automatically by the camera. We decoded the sensor data from the Illum camera
using the Lytro Power Tools Beta decoder, which demosaics the color sensor pattern
and calibrates the lenslet locations. Each light field has 376x541 spatial samples,
and 14x14 angular samples. Many of the corner angular samples lie outside the
camera’s aperture, so we used an 8x8 grid of angular samples in our experiments,
corresponding to the angular samples that lie fully within the aperture.

This dataset includes light fields of several varieties of roses, poppies, thistles,
orchids, lillies, irises, and other plants, all of which contain complex occlusions.
Furthermore, these light fields were captured in various locations and times of
day with different natural lighting conditions. Figure 2.3 illustrates the diversity
of our dataset, and the geometric complexity in our dataset can be visualized in the
epipolar slices. To quantify the geometric diversity of our dataset, we compute a
histogram of the disparities across the full aperture using our trained depth esti-
mation network, since we do not have ground truth depths. The left peak of this
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Figure 2.4. Top: In a Lambertian approximation of the light field, the color of a
scene point is constant along the line corresponding to its depth. Given estimated
disparities D(x, u) and a central view L(x, 0), we can render the flatland light field
as L(x, u) = L(x + uD(x, u), 0) (D(x, u) is negative in this example). In white, we
illustrate two prominent problems that arise when estimating depth by minimizing
the reconstruction error of novel views. It is difficult to estimate the correct depth
for points occluded from the input view, because warping the input view using
the correct depth does not properly reconstruct the novel views. Additionally, it is
difficult to estimate the correct depth in texture-less regions, because many possi-
ble depths result in the same synthesized novel views. Bottom: Analogous to the
Lambertian color consistency, rays from the same scene point should have the same
depth. This can be represented as D(x, u) = D(x+ kD(x, u), u− k) for any contin-
uous value of k. We visualize ray depths using a colormap where darker colors
correspond to further objects.

histogram corresponds to background points, which have large negative dispari-
ties, and the right peak of the histogram corresponds to the photograph subjects
(typically flowers) which are in focus and have small disparities.

We hope this dataset will be useful for future investigations into various prob-
lems including light field synthesis, single view synthesis, and unsupervised ge-
ometry learning.
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2.5 Synthesizing 4D Ray Depths

We learn the function d to predict depths by minimizing the reconstruction error
of the rendered Lambertian light field, along with our novel depth regularization.

Two prominent errors arise when learning to predict depth maps by minimizing
the reconstruction error of synthesized views, and we visualize these in Fig. 2.4.
In texture-less regions, the depth can be incorrect and depth-based warping will
still synthesize the correct image. Therefore, the minimization in Eq. 2.3 has no
incentive to predict the correct depth. Second, depths for scene points that are
occluded from the input view are also typically incorrect, because predicting the
correct depth would cause the synthesized view to sample pixels from the occluder.

Incorrect depths are fine if we only care about the synthesized views. However,
the quality of these depths must be improved to consider light field synthesis as
an unsupervised learning algorithm to infer depth from a single 2D image. It is
difficult to capture large datasets of ground-truth depths for real scenes, especially
outdoors, while it is much easier to use capture scenes with a plenoptic camera. We
believe that light field synthesis is a promising way to train algorithms to estimate
depths from a single image, and we present a strategy to address these depth errors.

We predict depths for every ray in the light field, which is equivalent to predict-
ing a depth map for each view. This enables us to introduce a novel regularization
that encourages the predicted depths to be consistent across views and accounts for
occlusions, which is a light field generalization of the left-right consistency used in
methods such as [40, 168]. Essentially, depths should be consistent for rays coming
from the same scene points, which means that the ray depths should be consistent
along lines with the same slope:

D(x,u) = D(x + kD(x,u),u− k) (2.4)
for any continuous value of k, as illustrated in Fig. 2.4.

To regularize the predicted depth maps, we minimize the L1 norm of finite-
difference gradients along these sheared lines by setting k = 1, which both encour-
ages the predicted depths to be consistent across views and encourages occluders
to be sparse:

ψc(D(x,u)) = ||D(x,u)−D(x +D(x,u),u− 1)||1 (2.5)
where ψc is the consistency regularization loss for predicted ray depths D(x,u).

Benefits of this regularization are demonstrated in Fig. 2.5. It encourages con-
sistent depths in texture-less areas as well as for rays occluded from the input view,
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because predicting the incorrect depths would result in higher gradients along
sheared lines as well as new edges in the ray depths.

We additionally use total variation regularization in the spatial dimensions for
the predicted depth maps, to encourage them to be sparse in the spatial gradient
domain:

ψtv(D(x,u)) = ||∇xD(x,u)||1 (2.6)

Depth Estimation Network We model the function d to estimate 4D ray depths
from the input view as a CNN. We use dilated convolutions [160], which allow the
receptive field of the network to increase exponentially as a function of the network
depth. Hence, each of the predicted ray depths has access to the entire input im-
age without the resolution loss caused by spatial downsampling or pooling. Every
convolution layer except for the final layer consists of a 3x3 filter, followed by batch
normalization [56] and an exponential linear unit activation function (ELU) [16].
The last layer is followed by a scaled tanh activation function instead of an ELU to
constrain the possible disparities to [−16, 16] pixels.

2.6 Synthesizing the 4D Light Field

2.6.1 Lambertian Light Field Rendering

We render an approximate Lambertian light field by using the predicted depths
to warp the input view as:

Lr(x,u) = L(x + uD(x,u),0) (2.7)

where D(x,u) is the predicted depth for each ray in the light field. Figure 2.4 illus-
trates this relationship.

This formulation amounts to using the predicted depths for each ray to render
the 4D light field by sampling the input central view image. Since our depth reg-
ularization encourages the ray depths to be consistent across views, this effectively
encourages different views of the same scene point to sample the same pixel in the
input view, resulting in a Lambertian approximation to the light field.



2.6. SYNTHESIZING THE 4D LIGHT FIELD 19

2.6.2 Occlusions and Non-Lambertian Effects

Although predicting a depth for each ray, combined with our depth regulariza-
tion, allows the network to learn to model occlusions, the Lambertian light fields
rendered using these depths are not able to correctly synthesize the values of rays
that are occluded from the input view, as demonstrated in Fig. 2.1. Furthermore,
this depth-based rendering is not able to accurately predict non-Lambertian effects.

We model the function o to predict occluded rays and non-Lambertian effects
as a residual block [44]:

o(Lr(x,u), D(x,u)) = õ(Lr(x,u), D(x,u)) + Lr(x,u) (2.8)

where õ is modeled as a 3D CNN. We stack all sub-aperture images along one di-
mension and use a 3D CNN so each filter has access to every 2D view. This 3D
CNN predicts a residual that, when added to the approximate Lambertian light
field, best predicts the training example true light fields. Structuring this network
as a residual block ensures that decreases in the loss are driven by correctly pre-
dicting occluded rays and non-Lambertian effects. Additionally, by providing the
predicted depths, this network has the information necessary to understand which
rays in the approximate light field are incorrect due to occlusions. Figure 2.8 quan-
titatively demonstrates that this network improves the reconstruction error of the
synthesized light fields.

We simply concatenate the estimated depths to the Lambertian approximate
light field as the input to a 3D CNN that contains 5 layers of 3D convolutions with
3x3x3 filters (height x width x color channels), batch normalization, and ELU acti-
vation functions. The last convolutional layer is followed by a tanh activation func-
tion instead of an ELU, to constrain the values in the predicted light field to [−1, 1].

2.6.3 Training

We generate training examples by randomly selecting 192x192x8x8 crops from
the training light fields, and spatially downsampling them to 96x96x8x8. We use
bilinear interpolation to sample the input view for the Lambertian depth-based ren-
dering, so our network is fully differentiable. We train our network end-to-end
using the first-order Adam optimization algorithm [67] with default parameters
β1 = 0.9, β2 = 0.999, ε = 1e − 08, a learning rate of 0.001, a minibatch size of 4
examples, and depth regularization parameters λc = 0.005 and λtv = 0.01.
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Figure 2.5. Our proposed phyiscally-based depth consistency regularization pro-
duces higher-quality estimated depths. Here, we visualize example sub-aperture
depth maps where our novel regularization improves the estimated depths for
texture-less regions. Blue arrows indicate incorrect depths and depths that are in-
consistent across views, as shown in the epipolar slices.

2.7 Results

We validate our light field synthesis algorithm using our testing dataset, and
demonstrate that we are able to synthesize compelling 4D ray depths and light
fields with complex occlusions and relative depths. No other methods have at-
tempted to synthesize a full 4D light field or 4D ray depths from a single 2D image,
so we separately compare our estimated depths to a state-of-the-art light field depth
estimation algorithm and our synthesized light fields to a state-of-the-art view syn-
thesis method.

Depth Evaluation We compare our predicted depths to Jeon et al. [58], which is
a physically-based non-learning depth estimation technique. Note that their algo-
rithm uses the entire ground-truth light field to estimate a 2D depth map, while our
algorithm estimates 4D ray depths from a single 2D image. Figure 2.6 qualitatively
demonstrates that our unsupervised depth estimation algorithm produces results
that are comprable to Jeon et al., and even more detailed in many cases.

Synthesized Light Field Evaluation We compare our synthesized light fields to
the alternative of using the appearance flow method [167], a state-of-the-art view
synthesis method that predicts a flow field to warp an input image to an image from
a novel viewpoint. Other recent view synthesis methods are designed for predict-
ing a held-out image from a stereo pair, so it is unclear how to adapt them to predict
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Figure 2.6. We validate our ray depths against the state-of-the-art light field depth
estimation. We give Jeon et al. [58] a distinct advantage by providing them a
ground-truth 4D light field to predict 2D depths, while we use a single 2D image
to predict 4D depths. Our estimated depths are comprable, and in some cases su-
perior, to their estimated depths, as shown by the detailed varying depths of the
flower petals, leaves, and fine stem structures.
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Figure 2.7. We compare our synthesized light fields to the appearance flow
method [167]. Qualitatively, appearance flow has difficulties correctly predicting
rays occluded from the input view, resulting in artifacts around the edges of the
flowers. These types of edge artifacts are highly objectionable perceptually, and
the improvement provided by our algorithm subjectively exceeds the quantitative
improvement given in Fig. 2.8.

a 4D light field. On the other hand, it is straightforward to adapt the appearance
flow method to synthesize a full 4D light field by modifying our depth estimation
network to instead predict x and y flow fields to synthesize each sub-aperture image
from the input view. We train this network on our training dataset. While appear-
ance flow can be used to synthesize a light field, it does not produce any explicit
geometry representation, so unlike our method, appearance flow cannot be used
as a strategy for unsupervised geometry learning from light fields.

Figure 2.7 illustrates that appearance flow has trouble synthesizing rays oc-
cluded from the input view, resulting in artifacts around occlusion boundaries.
Our method is able to synthesize plausible occluded rays and generate convinc-
ing light fields. Intuitively, the correct strategy to flow observed rays into occluded
regions will change dramatically for flowers with different colors and shapes, so it
is difficult to learn. Our approach separates the problems of depth prediction and
occluded ray prediction, so the depth prediction network can focus on estimating
depth correctly without needing to correctly predict all occluded rays.

To quantitatively evaluate our method, we display histograms for the mean L1
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error on our test dataset for our predicted light fields, our Lambertian light fields,
and the appearance flow light fields in Fig. 2.8. We calculate this error over the
outermost generated views, since these are the most difficult to synthesize from a
central input view. Our predicted light fields have the lowest mean error, and both
our predicted and Lambertian approximate light fields have a lower mean error
than the appearance flow light fields. We also plot the mean L1 error as a function
of the view position in u, and show that while all methods are best at synthesizing
views close to the input view ((u, v) = 0), both our predicted and Lambertian light
fields consistently outperform the light fields generated by appearance flow. We
also tested a CNN that directly regresses from an input image to an output light
field, and found that our model outperforms this network with a mean L1 error of
0.026 versus 0.031 across all views.

Encouragingly, our single view light field synthesis method performs only
slightly worse than the light field interpolation method of [61] that takes 4 cor-
ner views as input, with a mean L1 error of 0.0176 compared to 0.0145 for a subset
of output views not input to either method.

Figure 2.9 displays example light fields synthesized by our method, and demon-
strates that we can use our synthesized light fields for photographic effects. Our al-
gorithm is able to predict convincing light fields with complex occlusions and depth
ranges, as visualized in the epipolar slices. Furthermore, we can produce realistic
photography effects, including extending the aperture from f/28 (aperture of the
input view) to f/3.5 for synthetic defocus blur, and refocusing the full-aperture
image from the flower to the background.

Finally, we note that inference is fast, and it takes under 1 second to synthesize
a 187x270x8x8 light field and ray depths on a machine with a single Titan X GPU.

Generalization Figure 2.10 demonstrates our method’s ability to generalize to in-
put images from a cell phone camera. We show that we can generate convincing ray
depths, a high-quality synthesized light field, and interesting photography effects
from an image taken with an iPhone 5s.

Finally, we investigate our framework’s ability to generalize to other scene
classes by collecting a second dataset, consisting of 4281 light fields of various types
of toys including cars, figurines, stuffed animals, and puzzles. Figure 2.11 displays
an example result from the test set of toys. Although our performance on toys is
quantitatively similar to our performance on flowers (the mean L1 error on the test
dataset over all views is 0.027 for toys and 0.026 for flowers), we note that the toys
results are perceptually not quite as impressive. The class of toys is much more di-
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Figure 2.8. To quantitatively validate our results, we visualize histograms of the L1

errors on the testing dataset for the outermost views of our predicted light fields L̂,
our Lambertian light fields Lr, and the light fields predicted by appearance flow.
Our predicted light fields and Lambertian light fields both have lower errors than
those of appearance flow. We also compute the meanL1 errors as a function of view
position u, and demonstrate that our algorithm consistently outperforms appear-
ance flow.

verse than that of flowers, and this suggests that a larger and more diverse dataset
would be useful for this scene category.

2.8 Discussion

We have shown that consumer light field cameras enable the practical capture
of datasets large enough for training machine learning algorithms to synthesize lo-
cal light fields of specific scenes from single photographs. It is viable to extend this
approach to other niches, as we demonstrate with toys, but it is an open problem
to generalize this to the full diversity of everyday scenes. We believe that our work
opens up two exciting avenues for future exploration. First, light field synthesis is
an exciting strategy for unsupervised geometry estimation from a single image, and
we hope that our dataset and algorithm enable future progress in this area. In par-
ticular, the notion of enforcing consistent geometry for rays that intersect the same
scene point can be used for geometry representations other than ray depths, includ-
ing voxels, point clouds, and meshes. Second, synthesizing dense light fields is im-
portant for capturing VR/AR content, and we believe that this work enables future
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Figure 2.9. We visualize our synthesized light fields as a corner view crop, along
with several epipolar slice crops. The epipolar slices demonstrate that our synthe-
sized light fields contain complex occlusions and relative depths. We additionally
demonstrate that our light field generated from a single 2D image can be used for
synthetic defocus blur, increasing the aperture from f/28 to f/3.5. Moreover, we
can use our light fields to convincingly refocus the full-aperture image from the
flowers to the background.
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Figure 2.10. Our pipeline applied to cell phone photographs. We demonstrate that
our network can generalize to synthesize light fields from pictures taken with an
iPhone 5s. We synthesize realistic depth variations and occlusions, as shown in
the epipolar slices. Furthermore, we can synthetically increase the iPhone aperture
size and refocus the full-aperture image.
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Figure 2.11. We demonstrate that our approach can generalize to scenes of toys,
and we display an example test set result.
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progress towards generating immersive VR/AR content from sparsely-sampled im-
ages.

In summary, this chapter has demonstrated that simply training a deep network
to map from an input image to output images without enforcing that all rendered
views are related through the same scene geometry is a viable approach for syn-
thesizing local views nearby the input viewpoint. However, this approach strug-
gles as we attempt to synthesize novel views further away from the observed view-
points. Indeed, Figure 2.8 shows how the error in synthesized images increases
as the rendered viewpoints move further away from the observed view. Further-
more, the results presented in Chapter 4 (specifically the results of the “BW Deep”
method in Figure 4.9) directly show that this strategy training a deep network to
separately map from input views to each output view without considering that all
output views should be consistent with a global model of scene geometry results
in perceptually-jarring “flickering” artifacts where scene content pops in and out
of the synthesized rendered views. In the following chapters, we present strategies
that remedy this issue by using fixed 3D scene representations within deep learning
pipelines for view synthesis. Indeed, recent work by Tucker and Snavely [140] has
shown that using the multiplane image volumetric 3D scene representation we dis-
cuss in the following chapters produces state-of-the-art results on the single image
view synthesis task investigated in this chapter.
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Chapter 3

Local View Extrapolation with

Multiplane Images

In this chapter, we focus on a similar problem as we did in the previous chap-
ter: synthesizing novel views in a local neighborhood around an input view, but
we take a completely different approach towards the problem. Instead of synthe-
sizing each novel view by separately mapping a set of input views to the target
output viewpoint, we directly use the fact that all output views are related through
a single 3D representation of the scene’s geometry. We specifically investigate the
use of multiplane images as a volumetric 3D scene representation. As discussed
in Section 3.3.1, multiplane images enjoy the optimization benefits of volumetric
scene representations, and are parameter-efficient in that they allocate samples in
a manner specifically designed for synthesizing novel “forwards-facing” views of
the scene.
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Figure 3.1. Given two input images taken from nearby viewpoints, our algorithm
predicts an MPI scene representation that can render view extrapolations with dis-
occlusions. Our model improves upon prior work in two specific ways: 1) We re-
duce depth discretization artifacts due to insufficient depth sampling, as seen in
the red zoom of the wood table. 2) We mitigate the repeated texture artifacts pro-
duced by prior methods by predicting plausible hidden scene content, as shown in
the blue and green zooms where we predict realistic textures behind the fruit bowl
and lamp.
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3.1 Introduction

View synthesis, the problem of predicting novel views of a scene from a set of
captured images, is a central problem in computer vision and graphics. The ability
to render nearby views from a single image or a stereo pair can enable compelling
photography effects such as 3D parallax and synthetic defocus blur. Furthermore,
given a collection of images of a scene taken from different viewpoints, view syn-
thesis could enable free-viewpoint navigation for virtual and augmented reality.

However, there is still a long way to go. State-of-the-art view synthesis algo-
rithms use their input images to estimate a 3D scene representation, which can
then be reprojected to render novel views. This approach works well for content
visible in the input images, but the quality of novel views degrades rapidly as the
target viewpoint moves further away from the input views, thereby revealing more
previously-occluded scene content. In this work, we study the problem of view
extrapolation where regions of the rendered images observe disoccluded content,
and focus specifically on demonstrating view synthesis from a stereo input.

We build upon a state-of-the-art deep learning approach for view synthe-
sis [166] that predicts a scene representation called a multiplane image (MPI) from
an input narrow-baseline stereo pair. An MPI consists of a set of fronto-parallel
RGBα planes sampled within a reference view camera frustum, as illustrated by
Figure 3.2. Diffuse volumetric scene representations such as the MPI are becoming
increasingly popular for view synthesis for a number of reasons: 1) They can rep-
resent geometric uncertainty in ambiguous regions as a distribution over depths,
thereby trading perceptually-distracting artifacts in those ambiguous regions for a
more visually-pleasing blur [74, 103]. 2) They are able to convincingly simulate
non-Lambertian effects such as specularities [166]. 3) They are straightforward to
represent as the output of a CNN and they allow for differentiable rendering, which
enables us to train networks for MPI prediction using only triplets of frames from
videos for input and supervision [166]. In this work, we extend the MPI prediction
framework to enable rendering high-quality novel views up to 4× further from the
reference view than was possible in prior work. Our specific contributions are:

Theoretical analysis of MPI limits (Section 3.3.2). We present a theoretical frame-
work, inspired by Fourier theory of volumetric rendering and light fields, to ana-
lyze the limits of views that can be rendered from diffuse volumetric representa-
tions such as the MPI. We show that the extent of renderable views is limited by the
MPI’s disparity sampling frequency, even for content visible in both the input and

This chapter is based on joint work published at CVPR 2019 [132].
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rendered views, and that this “renderable range” increases linearly with the MPI’s
disparity sampling frequency.

Improved view extrapolation for visible content (Section 3.3.3). View extrapo-
lation in previous work on MPIs is limited in part by a network architecture that
fixes the number of disparity planes during training and testing. Increasing the
renderable range of an MPI by simply increasing its fixed number of planes dur-
ing training is not computationally feasible due to the memory limits of current
GPUs. We present a simple solution that increases disparity sampling frequency at
test time by replacing the previously used 2D convolutional neural network (CNN)
with a 3D CNN architecture and a randomized-resolution training procedure. We
demonstrate that this change reduces the depth discretization artifacts found in
distant views rendered by prior work, as shown in Figure 3.1.

Predicting disoccluded content for view extrapolation (Section 3.4). We observe
and explain why MPIs predicted by prior work [166] contain approximately the
same RGB content at each plane, and differ only in α. This behavior results in un-
realistic disocclusions with repeated texture artifacts, as illustrated in Figure 3.1. In
general, the appearance of hidden scene content is inherently ambiguous, so train-
ing a network to simply minimize the distance between rendered and ground truth
target views tends to result in unrealistic hallucinations of this occluded content.
We propose to improve the realism of predicted disocclusions by constraining the
appearance of occluded scene content at every depth to be drawn from visible scene
points at or beyond that depth, and present a two-step MPI prediction procedure
that enforces this constraint. We demonstrate that this strategy forces predicted dis-
occlusions to contain plausible textures, alleviates the artifacts found in prior work,
and produces more compelling extrapolated views than alternative approaches, as
illustrated in Figures 3.1 and 3.5.

3.2 Related Work

Traditional approaches for view synthesis. View synthesis is an image-based ren-
dering (IBR) task, with the goal of rendering novel views of scenes given only a set
of sampled views. It is useful to organize view synthesis algorithms by the extent
to which they use explicit scene geometry [121]. At one extreme are light field ren-
dering [42, 76] techniques, which require many densely sampled input images so
that they can render new views by simply slicing the sampled light field without re-
lying on accurate geometry estimation. At the other extreme are techniques such as
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view dependent texture mapping that rely entirely on an accurate estimated global
mesh and then reproject and blend the texture from nearby input views to render
new views [21].

Many successful modern approaches to view synthesis [11, 47, 103, 168] fol-
low a strategy of computing detailed local geometry for each input view followed
by forward projecting and blending the local texture from multiple input views to
render a novel viewpoint. This research has traditionally focused on interpolating
between input views and therefore does not attempt to predict content that is oc-
cluded in all input images. In contrast, we focus on the case of view extrapolation,
where predicting hidden scene content is crucial for rendering compelling images.

Deep learning approaches for view synthesis. Recently, a promising line of work
has focused on training deep learning pipelines end-to-end to render novel views.
One class of methods focuses on the challenging problem of training networks to
learn about geometry and rendering from scratch and synthesize arbitrarily-distant
views from such limited input as a single view [27, 99, 167]. However, the lack of
built-in geometry and rendering knowledge limits these methods to synthetic non-
photorealistic scenarios.

Other end-to-end approaches have focused on photorealistic view synthesis by
learning to model local geometry from a target viewpoint and using this geometry
to backwards warp and blend input views. This includes algorithms for interpolat-
ing between views along a 1D camera path [31], interpolating between four input
corner views sampled on a plane [61], and expanding a single image into a local
light field of nearby views (Chapter 2). These methods separately predict local
geometry for every novel viewpoint and are not able to guarantee consistency be-
tween these predictions, resulting in temporal artifacts when rendering a sequence
of novel views. Furthermore, the use of backward projection means that disoc-
cluded regions must be filled in with replicas of visible pixels, so these techniques
are limited in their ability to render convincing extrapolated views.

The most relevant methods to our work are algorithms that predict a 3D scene
representation from a source image viewpoint and render novel views by differ-
entiably forward projecting this representation into each target viewpoint. This
approach ensures consistency between rendered views and allows for the predic-
tion of hidden content. Tulsiani et al. and Dhamo et al. predict a layered depth
image (LDI) representation [22, 141], but this approach is unable to approximate
non-Lambertian reflectance effects. Furthermore, training networks to predict LDIs
using view synthesis as supervision has proven to be difficult, and the training pro-
cedure requires a regularization term that encourages hidden content to resemble
occluding content [141], limiting the quality of rendered disocclusions. Zhou et
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al. proposed the MPI scene representation [166], where novel views are rendered by
forward projecting and alpha compositing MPI layers, and a deep learning pipeline
is used to train an MPI prediction network using held-out views as supervision.
They demonstrated that the MPI scene representation can convincingly render par-
allax and non-Lambertian effects for a small range of rendered views. We build
upon this work and present a theoretical analysis of limits on views rendered from
MPIs as well as a new MPI prediction framework that is able to render more com-
pelling view extrapolations with disocclusions.

Inpainting occluded content. Predicting the appearance of content hidden behind
visible surfaces can be thought of as 3D scene inpainting. The problem of inpaint-
ing in 2D images has an extensive history [43], ranging from early propagation
techniques [6] to modern CNN-based inpainting [161]. However, such algorithms
must be applied separately to each rendering and therefore do not ensure consis-
tency between different views of the same occluded content.

A few recent works [3, 54, 104, 138] focus on multi-view inpainting, i.e. remov-
ing objects and inpainting the resulting empty pixels in a collection of multiple
input images. This strategy operates on input image collections instead of scene
representations, so it cannot be used to predict occluded content that only appears
during view extrapolation.

Finally, a recent line of work [29, 128, 157] focuses on scene shape completion.
These methods require an input depth image and only focus on inpainting the
shape and semantics of hidden content and not its appearance, so the predicted
scenes cannot be used for rendering novel views. In contrast to prior methods, our
work addresses the problem of jointly inpainting the geometry, color, and opacity
of hidden content in scenes to render convincing disocclusions.

3.3 View Extrapolation for Visible Content

3.3.1 MPI scene representation

The multiplane image (MPI) scene representation, introduced by Zhou et
al. [166] and illustrated in Figure 3.2, consists of a set of fronto-parallel RGBα planes
within a reference camera’s view frustum, sampled linearly in disparity (inverse
depth). An MPI can be thought of as a frustum-shaped volumetric scene repre-
sentation where each “voxel” consists of a diffuse RGB color and opacity α. Novel
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Input Image 1 (Reference Viewpoint)

Input Image 2

3D MPI Scene Representation

MPI Prediction

Figure 3.2. MPI scene representation. Our work builds on the MPI scene repre-
sentation and prediction procedure introduced in [166]. We train a deep network
that takes two narrow-baseline images of a scene as input (captured at the blue
and green camera poses shown above), and predicts an MPI scene representation,
consisting of a set of fronto-parallel RGBα planes within a reference camera frus-
tum (signified by the green camera above). Novel views are rendered by alpha
compositing along rays from the MPI voxels into the novel viewpoint.
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views are rendered from an MPI by alpha compositing the color along rays into
the novel view using the “over” operator [74, 105], which is easily implemented as
homography-warping each MPI plane onto the sensor plane of the novel view (see
Equation 2 in Zhou et al. [166]), and alpha compositing the resulting images from
back to front.

The MPI scene representation is particularly well-suited for rendering
“forwards-facing” views nearby the reference view that face in the same direc-
tion. The perspective projection of a scene point onto the image plane moves at a
rate relative to the scene point’s disparity as the camera translates. Therefore, to
support rendering views for a translating camera, the representation’s geometry
should sample the scene’s disparities at the Nyquist rate. The MPI representa-
tion fits nicely into this model, as it represents geometry as fronto-parallel planes
sampled linearly in disparity. The MPI representation can be considered as a
parameter-efficient volumetric representation, since it allocates its discrete vol-
ume samples to best support rendering forwards-facing novel views and does not
attempt to represent the entire volume at the same level of detail.

3.3.2 Theoretical signal processing limits for rendering visible

content

Perhaps surprisingly, there is a limit on views that can be rendered with high
fidelity from an MPI, even if we just consider mutually-visible content, i.e., content
visible from all input and target viewpoints. Rendering views beyond this limit
results in depth discretization artifacts similar to aliasing artifacts seen in volume
rendering [74].

We formalize this effect in the context of MPI renderings, and make use of
Fourier theory to derive a bound on viewpoints that can be rendered from an
MPI with high fidelity. Our model of rendering mutually-visible content from an
MPI is conceptually similar to Frequency domain volume rendering [139] using a
shear-warp factorization [70]. Additionally, our derivation of an MPI’s “render-
able range” is inspired by derivations for a 3D display’s depth-of-field [169] and
light field photography’s “refocusable range” [93]. Our main insight is that the
2D Fourier Transform of a view rendered from an MPI can be considered as a 2D
slice through the 3D Fourier Transform of the MPI. An MPI is bandlimited by its
fixed sampling frequency, so there exists a range of viewpoints outside of which
rendered views will have a smaller spatial frequency bandwidth than the input
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(a) MPI Spatial Domain (b) MPI Fourier Domain (c) Renderable Range

Δd = a Δd = b Δd = c1
2Δx

1
2Δd

Figure 3.3. Viewpoint limits for rendering visible content from an MPI. Views
rendered from an MPI without occlusions can be expressed as sheared integral
projections of that MPI. (a) Here, we visualize a 2D slice from an MPI, where the
y dimension is constant and only the x and z dimensions vary. This MPI is in the
reference viewpoint v0. (b) In the frequency domain, rendered views are equiva-
lent to 1D slices of the 2D MPI spectrum, where views further from the reference
viewpoint correspond to Fourier slices at steeper slopes. The MPI spectrum is ban-
dlimited due to its spatial and disparity sampling frequencies, so there is a range
of viewpoints outside which rendered views will have a lower spatial bandwidth
than the original MPI plane images. Viewpoint v1 represents the maximum extent
of this “renderable range”, and v2 represents a viewpoint outside this range. (c)
The renderable range of views is shaped like a truncated cone, and we visualize
how the range of renderable views shrinks linearly as we increase the disparity
sampling interval ∆d from a < b < c.
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images, potentially resulting in aliasing artifacts. We cover the main steps of this
derivation below.

Let us consider rendering views from an MPI in the simplified case where (a)
the camera is translated but not rotated, and (b) there is no occlusion, so all con-
tent is equally visible from every viewpoint. The rendered view ru,s(x) at a lateral
translation u and axial translation s relative to the reference camera center can then
be expressed as:

ru,s(x) =
∑
d∈D

c(x′, d) =
∑
d∈D

c ((1− sd)x + ud, d) (3.1)

where c(x, d) is the pre-multiplied RGBα at each pixel coordinate x and disparity
plane d within the set of MPI disparity planes D. Note that u and s are in units
of pixels (such that the camera focal length f = 1), and we limit s to the range
−∞ < s < 1/dmax because renderings are not defined for viewpoints within the MPI
volume. Additionally, note that the disparity d is in units 1/pixel.

To study the limits of views rendered from an MPI, let us consider a worst-case
MPI with content in the subset of closest planes, for which we make a locally linear
approximation to the coordinate transformation (x, d)→ (x′, d):

ru,s(x) =
∑
d∈D

c ((1− sdmax )x + ud, d) (3.2)

where dmax is a constant. Now, we have expressed the rendering of mutually-visible
content as a sheared and dilated integral projection of the MPI. We apply the gener-
alized Fourier slice theorem [93] to interpret the Fourier transform of this integral
projection as a 2D slice through the 3D MPI’s Fourier transform. The resulting ren-
dered view is the slice’s inverse Fourier transform:

ru,s(x) = F−1

{
C

(
kx

1− sdmax

,
−ukx

1− sdmax

)}
(3.3)

where F−1 is the inverse Fourier transform and C(kx, kd) is the Fourier transform
of c(x, d).

An MPI is a discretized function, so the frequency support ofC lies within a box
bounded by +−1/2∆x and +−1/2∆d, where ∆x is the spatial sampling interval (set by the
number of pixels in each RGBαMPI plane image) and ∆d is the disparity sampling
interval (set by the number of MPI planes within the MPI disparity range).

Figures 3.3a and 3.3b illustrate Fourier slices through the MPI’s Fourier trans-
form that correspond to rendered views from different lateral positions. Rendered
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views further from the reference view correspond to slices at steeper slopes. There
is a range of slice slopes within which the spatial bandwidth of the rendered views
is equal to that of the MPI, and outside of which the spatial bandwidth of the ren-
dered views decreases linearly with the slice slope.

We can solve for the worst-case “renderable range” by determining the set of
slopes whose slices intersect the box in Figure 3.3b at the spatial frequency bound-
ary +−1/2∆x. This provides constraints on camera positions (u, s), within which ren-
dered views enjoy the full image bandwidth:

s ≤ 0, |u| ≤ ∆x (1− sdmax )

∆d

(3.4)

Figure 3.3c plots the renderable ranges with varying disparity intervals ∆d, for
an MPI with disparities up to dmax . The allowed lateral motion extent increases
linearly as the target viewpoint moves further axially from the MPI, starting at the
reference viewpoint. Decreasing ∆d linearly increases the amount of allowed lateral
camera movement. Intuitively, when rendering views at lateral translations from
the reference viewpoint, the renderable range boundary corresponds to views in
which adjacent MPI planes are shifted by a single pixel relative to each other before
compositing.

3.3.3 Increasing disparity sampling frequency with 3D CNN and

randomized-resolution training

Section 3.3.2 establishes that additional MPI planes increases the view extrapo-
lation ability, and that this relationship is linear. Accordingly, the range of extrapo-
lated views rendered by the original MPI method [166] is limited because it uses a
2D CNN to predict a small fixed number of planes (32 planes at a spatial resolution
of 1024×576). Simply increasing this fixed number of planes in the network is com-
putationally infeasible during training due to GPU memory constraints. Addition-
ally, training on smaller spatial patches to allow for increased disparity sampling
frequency prevents the network from utilizing larger spatial receptive fields, which
is important for resolving depth in ambiguous untextured regions.

We propose a simple solution to predict MPIs at full resolution with up to 128
planes at test time by using a 3D CNN architecture, theoretically increasing the
view extrapolation ability by 4×. The key idea is that because our network is fully
3D convolutional along the height, width, and depth planes dimensions, it can be
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Flow-Based GatherInput PSVs p(x,y,d,j)
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Renderings rvis(x,y,d)
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Figure 3.4. Two-step MPI prediction pipeline. We propose a two-step proce-
dure to predict convincing hidden content in an MPI for view extrapolation. In
the first step, a 3D CNN predicts an initial MPI from the input images’ plane-
sweep-volumes. Next, occluded content in this MPI is softly removed, resulting
in a “first-visible-surface” MPI. In the second step, another 3D CNN predicts final
MPI opacities and a 2D flow vector for each MPI voxel. The final MPI RGB colors
are computed by using these predicted flows to gather RGB colors from back-to-
front cumulative renderings of the visible content. This encourages hidden content
at any depth to be synthesized by copying textures of visible content at or behind
the same depth, which reduces the output space uncertainty for hidden content
and thereby enables convincing view extrapolation with realistic disocclusions.

trained on inputs with varying height, width, and number of depth planes. We use
training examples across a spectrum of MPI spatial and disparity sampling frequen-
cies that fit in GPU memory, ranging from MPIs with low spatial and high disparity
sampling frequency (128 planes) to MPIs with high spatial and low disparity sam-
pling frequency (32 planes). Perhaps surprisingly, we find that the trained network
learns to utilize a receptive field equal to the maximum number of spatial and dis-
parity samples it sees during training, even though no individual training example
is of that size.

Our MPI prediction network takes as input a plane-sweep-volume tensor of size
[H,W,D, 3N ], where H and W are the image height and width, D = |D| is the
number of disparity planes, and N is the number of input images (N = 2 in our
experiments). This tensor is created by reprojecting each input image to disparity
planes D in a reference view frustum. We use a 3D encoder-decoder network with
skip connections and dilated convolutions [160] in the network bottleneck, so that
the network’s receptive field can encompass the maximum spatial and disparity
sampling frequencies used during training.
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3.4 View Extrapolation for Hidden Content

In the previous section, we described how view extrapolation is limited by the
disparity sampling frequency, which is a fundamental property of the MPI scene
representation. View extrapolation is also limited by the quality of hidden con-
tent, which is instead a property of the MPI prediction model. Models that train
a CNN to directly predict an MPI from an input plane-sweep-volume (which con-
tains homography-warped versions of the same RGB content at each plane) learn
the undesirable behavior of predicting approximately the same RGB content at each
MPI plane with variation only in α (see Figure 5 in Zhou et al. [166]). We observe
that this behavior is consistent for models that use either the original 2D CNN ar-
chitecture or our 3D CNN architecture (Section 3.3.3). Copies of the same RGB
content at different MPI layers lead to “repeated texture” artifacts in extrapolated
views, where disoccluded content contains repeated copies of the occluder, as vi-
sualized in Figure 3.1.

We believe that this undesirable learned behavior is due to both the induc-
tive bias of CNNs that directly predict an MPI from a plane-sweep-volume and
the output uncertainty for disocclusions. The probability distribution over hidden
scene content, conditioned on observed content, is highly multimodal—there may
be many highly plausible versions of the hidden content. As a result, training a
network to minimize the distance between rendered and ground truth views pro-
duces unrealistic predictions of disocclusions that are some mixture over the space
of possible outputs.

We propose to reduce the output uncertainty by constraining the predicted hid-
den content at any depth, such that its appearance is limited to re-using visible
scene content at or behind that depth. This effectively forces the network to predict
occluded scene content by copying textures and colors from nearby visible back-
ground content. One possible limitation is that this constraint will have difficulty
predicting the appearance of self-occlusions where an object extends backwards
perpendicular to the viewing direction. However, as argued by the generic view-
point assumption [32], it is unlikely that our reference viewpoint happens to view
an object exactly at the angle at which it extends backwards along the viewing di-
rection. In general, the majority of disoccluded pixels view background content
instead of self-occlusions.

We enforce our constraint on the appearance of occluded content with a two-
step MPI prediction procedure. The first step provides an initial estimate of the
geometry and appearance of scene content visible from the reference viewpoint.
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The second step uses this to predict a final MPI where the color at each voxel is
parameterized by a flow vector that points to a visible surface’s color to copy.

In the first step, an input plane-sweep volume p is constructed by reprojecting
j input images ivj

, each captured at a viewpoint vj , to disparity planes d ∈ D. The
3D CNN Φ1 of Section 3.3.3 takes this plane-sweep volume and predicts an initial
MPI’s RGB and α values, cinit and αinit :

cinit(x, y, d), αinit(x, y, d) = Φ1

(
p(x, y, d, j)

)
. (3.5)

This initial MPI typically contains repeated foreground textures in occluded re-
gions of the scene. In the second step of our procedure, we aim to preserve the
predicted geometry and appearance of the first visible surface from the initial MPI
while re-predicting the appearance and geometry of hidden content and enforcing
our flow-based appearance constraint. We softly remove hidden RGB content from
this initial MPI by multiplying each MPI RGB value by its transmittance t relative
to the reference viewpoint v0:

tv0(x, y, d) = αinit(x, y, d)
∏
d′>d

[1− αinit(x, y, d
′)] (3.6)

cvis(x, y, d) = cinit(x, y, d)tv0(x, y, d)

αvis(x, y, d) = tv0(x, y, d) (3.7)
where cvis and αvis are the MPI RGBα planes from which content that is occluded
from the reference view has been softly removed. Intuitively, a voxel’s transmit-
tance (Equation 3.6) describes the extent to which an MPI voxel’s color contributes
to the rendered reference view.

A second CNN Φ2 takes this reference-visible MPI, consisting of cvis and αvis ,
as input and predicts opacities αfin(x, y, d) and a 2D flow vector for each MPI voxel
f(x, y, d) = [fx(x, y, d), fy(x, y, d)]:

αfin(x, y, d), f(x, y, d) = Φ2

(
cvis(x, y, d), αvis(x, y, d)

)
. (3.8)

The final MPI’s colors cfin(x, y, d) are computed by using these predicted flows
to gather colors from renderings of the visible content at or behind each plane
rvis(x, y, d):

rvis(x, y, d) =
∑
d′≤d

[
cvis(x, y, d′)

] (3.9)

cfin(x, y, d) = rvis (x+ fx(x, y, d), y + fy(x, y, d), d) .

We gather the color from rvis using bilinear interpolation for differentiability. This
constraint restricts the appearance of hidden content at each depth to be drawn
from visible scene points at or beyond that depth.
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Algorithm SSIMfov SSIMocc NATocc

Original MPI [166] 0.838 0.803 0.805
Our rinit 0.858 0.811 0.904
rinit + Adversarial Disocclusion 0.853 0.791 0.849
Disocclusion Inpainting [161] 0.808 0.691 0.227
Our rfin 0.853 0.814 0.931

Table 3.1. Quantitative evaluation. Images rendered from our predicted MPIs
are quantitatively superior to those rendered from the original MPI model [166].
Furthermore, our method predicts disocclusions that are both closer to the ground
truth hidden content and more perceptually plausible than alternative methods.

3.5 Training Loss

As in Zhou et al. [166], we train our MPI prediction pipeline using view syn-
thesis as supervision. Our training loss is simply the sum of reconstruction losses
for rendering a held-out novel view rgt at target camera pose vt, using both our
initial and final predicted MPIs. These MPIs are predicted from input images iv0

and iv1 . We use a deep feature matching loss LVGG for layers from the VGG-19 net-
work [123], using the implementation of Chen and Koltun [12]. The total loss L for
each training example is:

L =LVGG(rinit(iv0 , iv1 ,vt), rgt)+

LVGG(rfin(iv0 , iv1 ,vt), rgt)
(3.10)

where rinit and rfin are rendered views from the initial and final predicted MPIs.

3.6 Results

The following section presents quantitative and qualitative evidence to validate
the benefits of our method.
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Truth Orig. MPI [38]

Inpaint [36] Adversarial

Our rfinOur rinit

Our Rendered Novel View rfinInput View 1

Input View 2
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Our Rendered Novel View rfinInput View 1

Input View 2

Figure 3.5. Qualitative comparison of rendered novel views. Our method predicts
MPIs with convincing hidden content, as demonstrated by the disoccluded foliage
textures to the left of the wooden pole in the top example, and the disoccluded
region to the left of the grey pillow in the bottom example. Renderings from al-
ternative methods contain depth discretization artifacts, implausible colors, blurry
textures, and repeated textures in disoccluded regions.

3.6.1 Experiment details

We train and evaluate on the open-source YouTube Real Estate 10K
dataset [166], which contains approximately 10,000 YouTube videos of indoor
and outdoor real estate scenes along with computed camera poses for each video
frame. We generate training examples on the fly by sampling two source frames
and a target frame from a randomly chosen video, so that the target image is not
in between the source images (and therefore requires view extrapolation, not view
interpolation) for ∼87% of the training examples.

https://google.github.io/realestate10k/

https://google.github.io/realestate10k/
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The dataset is split into 9,000 videos for training and 1,000 for testing, where
the test set videos do not overlap with those in the training dataset. From these test
videos, we randomly sample 6,800 test triplets, each consisting of two input frames
and a single target frame.

3.6.2 Evaluation metrics

We use three metrics for our quantitative comparisons:
SSIMfov: To evaluate the overall quality of rendered images, we use the standard
SSIM [146] metric computed over the region of the target image that views all MPI
planes.
SSIMocc: To specifically assess the accuracy of predicted disocclusions, we evaluate
SSIM over the subset of pixels that were not visible from the input reference view-
point. We determine whether a pixel in a rendered target image is disoccluded by
examining the MPI voxels that contribute to the rendered pixel’s value, and thresh-
olding the maximum change in transmittance of these contributing voxels between
the reference and target viewpoint. Similarly to Equation 3.6, we can compute the
transmittance of each MPI voxel from a target viewpoint vt as:

tvt(x, y, d) = αvt(x, y, d)
∏
d′>d

[1− αvt(x, y, d
′)] (3.11)

where αvt is an MPI α plane homography-warped onto the sensor plane of view-
point vt. We consider a pixel (x, y) in the target rendered view as a member of
the disoccluded pixels setH if the transmittance t of any contributing MPI voxel is
some threshold value greater than the same voxel’s transmittance when rendering
the reference viewpoint:

H =
{

(x, y) : max
d

(
tvt(x, y, d)− tv0→vt(x, y, d)

)
≥ ε
}

(3.12)

where tv0→vt is the transmittance relative to the reference viewpoint, warped into
the target viewpoint so that both transmittances are in the same reference frame.
We compute disoccluded pixels using αinit for all models, to ensure that each model
is evaluated on the same set of pixels. We set ε = 0.075 in our experiments.
NATocc: To quantify the perceptual plausibility of predicted disoccluded content,
we evaluate a simple image prior over disoccluded pixels. We use the negative log
of the Earth Mover’s (Wasserstein-1) distance between gradient magnitude his-
tograms of the rendered disoccluded pixels and the ground-truth pixels in each
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target image. Intuitively, realistic rendered image content should have a distribu-
tion of gradients that is similar to that of the true natural image [122, 147], and
therefore a higher NATocc score.

3.6.3 Comparison to baseline MPI prediction

We first show that renderings from both our initial and final predicted MPIs
(rinit and rfin) are superior to those from the original MPI method [166], which
was demonstrated to significantly outperform other recent view synthesis meth-
ods [61, 164]. The increase in SSIMfov from “Original MPI” (Table 3.1 row 2) to
“Our rinit” (row 3) demonstrates the improvement from our method’s increased
disparity sampling frequency. Furthermore, the increase in SSIMocc and NATocc
from “Original MPI” (row 2) to “Our rfin” (row 6) demonstrates that our method
predicts disoccluded content that is both closer to the ground truth and more
plausible. Figure 3.5 qualitatively demonstrates that renderings from our method
contain fewer depth discretization artifacts than renderings from the original MPI
work, and that renderings from our final MPI contain more realistic disocclusions
without “repeated texture” artifacts.

3.6.4 Evaluation of hidden content prediction

We compare occluded content predicted by our model to the following alterna-
tive disocclusion prediction strategies:
Our rinit: We first compare renderings “Our rfin” from our full method to the abla-
tion “Our rinit”, which does not enforce our flow-based occluded content appear-
ance constraint. The improvement in SSIMocc and NATocc from Table 3.1 row 3 to
row 6 and the qualitative results in Figure 3.5 demonstrate that our full method ren-
ders disocclusions that are both closer to the ground truth and more perceptually
plausible with fewer “repeated texture” artifacts.
“rinit + Adversarial Disocclusions”: Next, we compare to an alternative two-step
MPI prediction strategy. We use an identical Φ1 to predict the initial MPI, but Φ2

directly predicts RGBα planes instead of α and flow planes. We apply an adversar-
ial loss to the resulting rendered target image to encourage realistic disocclusions.
Table 3.1 row 4 demonstrates that this strategy renders disocclusions that are less
accurate but more perceptually plausible than the original MPI method, due to
the adversarial loss. However, Figure 3.5 demonstrates that the renderings from
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our full method contain sharper content and more accurate colors than those of
the “rinit + Adversarial Disocclusions” strategy. We hypothesize that this is due to
the difficulty of training a discriminator network when the number and location of
“fake” disoccluded pixels varies drastically between training examples.
“Disocclusion Inpainting”: Finally, we compare to an image-based disocclusion
prediction strategy. We remove the disoccluded pixels from our final MPI render-
ings and re-predict them using a state-of-the-art deep learning image inpainting
model [161]. Table 3.1 row 5 shows that this strategy results in an overall quality
reduction, especially for the accuracy and plausibility of disoccluded regions. Fig-
ure 3.5 visualizes the unrealistic inpainting results. Furthermore, as shown in our
video, predicting disocclusions separately for each rendered image creates distract-
ing temporal artifacts in rendered camera paths because the appearance of disoc-
cluded content changes with the viewpoint.

3.7 Discussion

We have presented a theoretical signal processing analysis of limits for views
that can be rendered from an MPI scene representation, and a practical deep learn-
ing method to predict MPIs that theoretically allow for 4×more lateral movement
in rendered views than prior work. This improvement is due to our method’s ability
to predict MPIs with increased disparity sampling frequency and our flow-based
hidden content appearance constraint to predict MPIs that render convincing dis-
occlusion effects. However, there is still a lot of room for improvement in predicting
scene representations for photorealistic view synthesis that contain convincing oc-
cluded 3D content and are amenable to deep learning pipelines, and we hope that
this work inspires future progress along this exciting research direction.

In this chapter, we have demonstrated how a parameter-efficient volumetric rep-
resentation such as a multiplane image can be effective for local view extrapola-
tion. Although this representation can synthesize photorealistic novel views, we
have shown that it is only able to do so within a range limited by the number of
planes. In the next chapter, we discuss a strategy to extend this range by represent-
ing a scene as multiple overlapping multiplane images and intelligently blending
between them to render novel views.
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Chapter 4

View Interpolation with Multiplane

Images

In this chapter, we demonstrate that multiplane images are a compelling vol-
umetric 3D scene representation for synthesizing novel views that interpolate be-
tween images captured on an irregular grid-like pattern. This use case is particu-
larly relevant for enabling users to casually capture the appearance of a scene for
virtual reality experiences.

4.1 Introduction

The most compelling virtual experiences completely immerse the viewer in a
scene, and a hallmark of such experiences is the ability to view the scene from a
close interactive distance. This is currently possible with synthetically rendered
scenes, but this level of intimacy has been very difficult to achieve for virtual expe-
riences of real world scenes.

Ideally, we could simply sample the scene’s light field and interpolate the rel-
This chapter is based on joint work published at SIGGRAPH 2019 [89].
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Fast and easy handheld capture with guideline:
closest object moves at most D pixels between views

Promote sampled views to local light field
via layered scene representation

Blend neighboring local light fields 
to render novel views

Figure 4.1. We present a simple and reliable method for view synthesis from a
set of input images captured by a handheld camera in an irregular grid pattern.
We theoretically and empirically demonstrate that our method enjoys a prescrip-
tive sampling rate that requires 4000× fewer input views than Nyquist for high-
fidelity view synthesis of natural scenes. Specifically, we show that this rate can
be interpreted as a requirement on the pixel-space disparity of the closest object
to the camera between captured views (Section 4.3). After capture, we expand all
sampled views into layered representations that can render high-quality local light
fields. We then blend together renderings from adjacent local light fields to synthe-
size dense paths of new views (Section 4.4). Our rendering consists of simple and
fast computations (homography warping and alpha compositing) that can gener-
ate new views in real-time.
evant captured images to render new views. Such light field sampling strategies
are particularly appealing because they pose the problem of image-based render-
ing (IBR) in a signal processing framework where we can directly reason about
the density and pattern of sampled views required for any given scene. However,
Nyquist rate view sampling is intractable for scenes with content at interactive dis-
tances, as the required view sampling rate increases linearly with the reciprocal of
the closest scene depth. For example, for a scene with a subject at a depth of 0.5
meters captured by a mobile phone camera with a 64◦ field of view and rendered
at 1 megapixel resolution, the required sampling rate is an intractable 2.5 million
images per square meter. Since it is not feasible to capture all the required images,
the IBR community has moved towards view synthesis algorithms that leverage
geometry estimation to predict the missing views.

State-of-the-art algorithms pose the view synthesis problem as the prediction
of novel views from an unstructured set or arbitrarily sparse grid of input camera
views. While the generality of this problem statement is appealing, abandoning
a plenoptic sampling framework sacrifices the crucial ability to rigorously reason
about the view sampling requirements of these methods and predict how their per-
formance will be affected by the input view sampling pattern. When faced with
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a new scene, users of these methods are limited to trial-and-error to figure out
whether a set of sampled views will produce acceptable results for a virtual ex-
perience.

Instead, we propose a view synthesis approach that is grounded within a
plenoptic sampling framework and can precisely prescribe how densely a user must
capture a given scene for reliable rendering performance. Our method is conceptu-
ally simple and consists of two main stages. We first use a deep network to promote
each source view to a layered representation of the scene that can render a limited
range of views, advancing recent work on the multiplane image (MPI) representa-
tion [166]. We then synthesize novel views by blending renderings from adjacent
layered representations.

Our theoretical analysis shows that the number of input views required by our
method decreases quadratically with the number of planes we predict for each lay-
ered scene representation, up to limits set by the camera field of view. We empir-
ically validate our analysis and apply it in practice to render novel views with the
same perceptual quality as Nyquist view sampling while using up to 642 ≈ 4000×
fewer images.

It is impossible to break the Nyquist limit with full generality, but we show that
it is possible to achieve Nyquist level performance with greatly reduced view sam-
pling by specializing to the subset of natural scenes. This capability is primarily due
to our deep learning pipeline, which is trained on renderings of natural scenes to
estimate high quality layered scene representations that produce locally consistent
light fields.

In summary, our key contributions are:

1. An extension of plenoptic sampling theory that directly specifies how users
should sample input images for reliable high quality view synthesis with our
method.

2. A practical and robust solution for capturing and rendering complex real
world scenes for virtual exploration.

3. A demonstration that carefully crafted deep learning pipelines using local
layered scene representations achieve state-of-the-art view synthesis results.

We extensively validate our derived prescriptive view sampling requirements
and demonstrate that our algorithm quantitatively outperforms traditional light
field reconstruction methods as well as state-of-the-art view interpolation algo-
rithms across a range of sub-Nyquist view sampling rates. We highlight the practi-
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cality of our method by developing an augmented reality app that implements our
derived sampling guidelines to help users capture input images that produce reli-
ably high-quality renderings with our algorithm. Additionally, we develop mobile
and desktop viewer apps that render novel views from our predicted layered rep-
resentations in real-time. Finally, we qualitatively demonstrate that our algorithm
reliably produces state-of-the-art results across a diverse set of complex real-world
scenes.

4.2 Related Work

Image-based rendering (IBR) is the fundamental computer graphics problem
of rendering novel views of objects and scenes from sampled views. We find that it
is useful to categorize IBR algorithms by the extent to which they use explicit scene
geometry, as done by Shum and Kang [121].

4.2.1 Plenoptic Sampling and Reconstruction

Light field rendering [76] eschews any geometric reasoning and simply samples
images on a regular grid so that new views can be rendered as slices of the sampled
light field. Lumigraph rendering [42] showed that using approximate scene geom-
etry can ameliorate artifacts due to undersampled or irregularly sampled views.

The plenoptic sampling framework [9] analyzes light field rendering using sig-
nal processing techniques and shows that the Nyquist view sampling rate for light
fields depends on the minimum and maximum scene depths. Furthermore, they
discuss how the Nyquist view sampling rate can be lowered with more knowledge
of scene geometry. Zhang and Chen [162] extend this analysis to show how non-
Lambertian and occlusion effects increase the spectral support of a light field, and
also propose more general view sampling lattice patterns.

Rendering algorithms based on plenoptic sampling enjoy the significant bene-
fit of prescriptive sampling; given a new scene, it is easy to compute the required
view sampling density to enable high-quality renderings. Many modern light field
acquisition systems have been designed based on these principles, including large-
scale camera systems [150, 98] and a mobile phone app [19].

We posit that prescriptive sampling is necessary for practical and useful IBR
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algorithms, and we extend prior theory on plenoptic sampling to show that our
deep-learning-based view synthesis strategy can significantly decrease the dense
sampling requirements of traditional light field rendering. Our novel view synthe-
sis pipeline can also be used in future light field acquisition hardware systems to
reduce the number of required cameras.

4.2.2 Geometry-Based View Synthesis

Many IBR algorithms attempt to leverage explicit scene geometry to synthesize
new views from arbitrary unstructured sets of input views. These approaches can
be meaningfully categorized as either using global or local geometry.

Techniques that use global geometry generally compute a single global mesh
from a set of unstructured input images. Simply texture mapping this global mesh
can be effective for constrained situations such as panoramic viewing with mostly
rotational and little translational viewer movement [45, 46], but this strategy can
only simulate Lambertian materials. Surface light fields [151] are able to render
convincing view-dependent effects, but they require accurate geometry from dense
range scans and hundreds of captured images to sample the outgoing radiance at
points on an object’s surface.

Many free-viewpoint IBR algorithms are based upon a strategy of locally tex-
ture mapping a global mesh. The influential view-dependent texture mapping
algorithm [21] proposed an approach to render novel views by blending nearby
captured views that have been reprojected using a global mesh. Work on Unstruc-
tured Lumigraph Rendering [7] focused on computing per-pixel blending weights
for reprojected images and proposed a heuristic algorithm that satisfied key prop-
erties for high-quality rendering. Unfortunately, it is very difficult to estimate high-
quality meshes whose geometric boundaries align well with edges in images, and
IBR algorithms based on global geometry typically suffer from significant arti-
facts. State-of-the-art algorithms [47, 48] attempt to remedy this shortcoming with
complicated pipelines that involve both global mesh and local depth map estima-
tion. However, it is difficult to precisely define view sampling requirements for
robust mesh estimation, and the mesh estimation procedure typically takes multi-
ple hours, making this strategy impractical for casual content capture scenarios.

IBR algorithms that use local geometry [11, 13, 68, 87, 97] avoid difficult and
expensive global mesh estimation. Instead, they typically compute detailed local
geometry for each input image and render novel views by reprojecting and blend-
ing nearby input images. This strategy has also been extended to simulate non-



4.2. RELATED WORK 53

Lambertian reflectance by using a second depth layer [124]. The state-of-the-art
Soft3D algorithm [103] blends between reprojected local layered representations to
render novel views, which is conceptually similar to our strategy. However, Soft3D
computes each local layered representation by aggregating heuristic measures of
depth uncertainty over a large neighborhood of views. We instead train a deep
learning pipeline end-to-end to optimize novel view quality by predicting each of
our local layered representations from a much smaller neighborhood of views. Fur-
thermore, we directly pose our algorithm within a plenoptic sampling framework,
and our analysis directly applies to the Soft3D algorithm as well. We demonstrate
that the high quality of our deep learning predicted local scene representations
allows us to synthesize superior renderings without requiring the aggregation of
geometry estimates over large view neighborhoods, as done in Soft3D. This is es-
pecially advantageous for rendering non-Lambertian effects because the apparent
depth of specularities generally varies with the observation viewpoint, so smooth-
ing the estimated geometry over large viewpoint neighborhoods prevents accurate
rendering of these effects.

Other IBR algorithms [2] have attempted to be more robust to incorrect cam-
era poses or scene motion by interpolating views using more general 2D optical
flow instead of 1D depth. Local pixel shifts are also encoded in the phase informa-
tion, and algorithms have exploited this to extrapolate views from micro-baseline
stereo pairs [23, 65, 164] without explicit flow computation. However, these meth-
ods require extremely close input views and are not suited for large baseline view
interpolation.

4.2.3 Deep Learning for View Synthesis

Other recent methods have trained deep learning pipelines end-to-end for view
synthesis. This includes recent angular superresolution methods [152, 159] that
interpolate dense views within a light field camera’s aperture but cannot han-
dle sparser input view sampling since they do not model scene geometry. The
DeepStereo algorithm [31], deep learning based light field camera view interpola-
tion [61], and single view local light field synthesis (Chapter 2) each use a deep
network to predict depth separately for every novel view. However, predicting
local geometry separately for each view results in inconsistent renderings across
smoothly-varying viewpoints.

Finally, Zhou et al. [166] introduce a deep learning pipeline to predict an MPI
from a narrow baseline stereo pair for the task of stereo magnification. As opposed
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to previous deep learning strategies for view synthesis, this approach enforces con-
sistency by using the same predicted scene representation to render all novel views.
We adopt MPIs as our local light field representation and introduce specific tech-
nical improvements to enable larger-baseline view interpolation from many input
views, in contrast to local view extrapolation from a stereo pair using a single MPI.
We predict multiple MPIs, one for each input view, and train our system end-to-end
through a blending procedure to optimize the resulting MPIs to be used in con-
cert for rendering output views. We propose a 3D convolutional neural network
(CNN) architecture that dynamically adjusts the number of depth planes based on
the input view sampling rate, rather than a 2D CNN with a fixed number of output
planes. Additionally, we show that state-of-the-art performance requires only an
easily-generated synthetic dataset and a small real fine-tuning dataset, rather than
a large real dataset. This allows us to generate training data captured on 2D irreg-
ular grids similar to handheld view sampling patterns, while the YouTube dataset
in Zhou et al. [166] is restricted to 1D camera paths.

4.3 Theoretical Sampling Analysis

The overall strategy of our method is to use a deep learning pipeline to promote
each sampled view to a layered scene representation with D depth layers, and ren-
der novel views by blending between renderings from neighboring scene represen-
tations. In this section, we show that the full set of scene representations predicted
by our deep network can be interpreted as a specific form of light field sampling.
We extend prior work on plenoptic sampling to show that our strategy can theoret-
ically reduce the number of required sampled views by a factor of D2 compared to
the number required by traditional Nyquist view sampling. Section 4.6.1 empiri-
cally shows that we are able to take advantage of this bound to reduce the number
of required views by up to 642 ≈ 4000×.

In the following analysis, we consider a “flatland” light field with a single spatial
dimension x and view dimension u for notational clarity, but note that all findings
apply to general light fields with two spatial and two view dimensions.
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Table 4.1. Reference for symbols used in Section 4.3.
Symbol Definition

D Number of depth planes
W Camera image width (pixels)
f Camera focal length (meters)

∆x Pixel size (meters)
∆u Baseline between cameras (meters)
Kx Highest spatial frequency in sampled light field
Bx Highest spatial frequency in continuous light field
zmin Closest scene depth (meters)
zmax Farthest scene depth (meters)
dmax Maximum disparity between views (pixels)

4.3.1 Nyquist Rate View Sampling

Initial work on plenoptic sampling [9] derived that the Fourier support of a light
field, ignoring occlusion and non-Lambertian effects, lies within a double-wedge
shape whose bounds are set by the minimum and maximum scene depths zmin and
zmax, as visualized in Figure 4.2. Zhang and Chen [162] showed that occlusions
expand the light field’s Fourier support because an occluder convolves the spec-
trum of the light field due to farther scene content with a kernel that lies on the line
corresponding to the occluder’s depth. The light field’s Fourier support consider-
ing occlusions is limited by the effect of the closest occluder convolving the line
corresponding to the furthest scene content, resulting in the parallelogram shape
illustrated in Figure 4.3a, which can only be packed half as densely as the double-
wedge. The required maximum camera sampling interval ∆u for a light field with
occlusions is:

∆u ≤
1

2Kxf (1/zmin − 1/zmax)
. (4.1)

Kx is the highest spatial frequency represented in the sampled light field, deter-
mined by the highest spatial frequency in the continuous light field Bx and the
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Figure 4.2. Traditional plenoptic sampling without occlusions, as derived in [9].
(a) The Fourier support of a light field without occlusions lies within a double-
wedge, shown in blue. Nyquist rate view sampling is set by the double-
wedge width, which is determined by the minimum and maximum scene depths
[zmin, zmax] and the maximum spatial frequency Kx. The ideal reconstruction fil-
ter is shown in orange. (b) Splitting the light field into D non-overlapping layers
with equal disparity width decreases the Nyquist rate by a factor of D. (c) Without
occlusions, the full light field spectrum is the sum of the spectra from each layer.

camera spatial resolution ∆x:

Kx = min

(
Bx,

1

2∆x

)
. (4.2)

4.3.2 MPI Scene Representation and Rendering

The MPI scene representation [166] consists of a set of fronto-parallel RGBα
planes, evenly sampled in disparity within a reference camera’s view frustum (see
Figure 4.4). We can render novel views from an MPI at continuously-valued camera
poses within a local neighborhood by alpha compositing the color along rays into
the novel view camera using the “over” operator [105]. This rendering procedure
is equivalent to reprojecting each MPI plane onto the sensor plane of the novel view
camera and alpha compositing the MPI planes from back to front, as observed in
early work on volume rendering [70]. An MPI can be considered as an encoding
of a local light field, similar to layered light field displays [148, 149].
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Figure 4.3. We extend traditional plenoptic sampling to consider occlusions when
reconstructing a continuous light field from MPIs. (a) Considering occlusions ex-
pands the Fourier support to a parallelogram (the Fourier support without occlu-
sions is shown in blue and occlusions expand the Fourier support to additionally in-
clude the purple region) and doubles the Nyquist view sampling rate. (b) As in the
no-occlusions case, separately reconstructing the light field for D layers decreases
the Nyquist rate by a factor of D. (c) With occlusions, the full light field spec-
trum cannot be reconstructed by summing the individual layer spectra because the
union of their supports is smaller than the support of the full light field spectrum
(a). Instead, we compute the full light field by alpha compositing the individual
light field layers from back to front in the primal domain.
4.3.3 View Sampling Rate Reduction

Plenoptic sampling theory [9] additionally shows that decomposing a scene
into D depth ranges and separately sampling the light field within each range al-
lows the camera sampling interval to be increased by a factor of D. This is because
the spectrum of the light field emitted by scene content within each depth range
lies within a tighter double-wedge that can be packed D times more tightly than
the full scene’s double-wedge spectrum. Therefore, a tighter reconstruction filter
with a different shear can be used for each depth range, as illustrated in Figure 4.2b.
The reconstructed light field, ignoring occlusion effects, is simply the sum of the re-
constructions of all layers, as shown in Figure 4.2c.

However, it is not straightforward to extend this analysis to handle occlusions,
because the union of the Fourier spectra for all depth ranges has a smaller support
than the original light field with occlusions, as visualized in Figure 4.3c. Instead,
we observe that reconstructing a full scene light field from these depth range light
fields while respecting occlusions would be much easier given corresponding per-
view opacities, or shield fields [72], for each layer. We could then easily alpha
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composite the depth range light fields from back to front to compute the full scene
light field.

Each alpha compositing step increases the Fourier support by convolving the
previously-accumulated light field’s spectrum with the spectrum of the occluding
depth layer. As is well known in signal processing, the convolution of two spectra
has a Fourier bandwidth equal to the sum of the original spectra’s bandwidths.
Figure 4.3b illustrates that the width of the Fourier support parallelogram for each
depth range light field, considering occlusions, is:

2Kxf (1/zmin − 1/zmax) /D, (4.3)

so the resulting reconstructed light field of the full scene will enjoy the full Fourier
support width.

We apply this analysis to our algorithm by interpreting the predicted MPI lay-
ers at each camera sampling location as view samples of scene content within non-
overlapping depth ranges, and noting that applying the optimal reconstruction fil-
ter [9] for each depth range is equivalent to reprojecting and then blending pre-
multiplied RGBα planes from neighboring MPIs. Our MPI layers differ from lay-
ered renderings considered in traditional plenoptic sampling because we predict
opacities in addition to color for each layer, which allows us to correctly respect
occlusions while compositing the depth layer light fields.

In summary, we extend the layered plenoptic sampling framework to correctly
handle occlusions by taking advantage of our predicted opacities, and show that
this still allows us to increase the required camera sampling interval by a factor of
D:

∆u ≤
D

2Kxf (1/zmin − 1/zmax)
. (4.4)

Our framework further differs from classic layered plenoptic sampling in that
each MPI is sampled within a reference camera view frustum with a finite field of
view, instead of the infinite field of view assumed in prior analyses [9, 162]. In order
for the MPI prediction procedure to succeed, every point within the scene’s bound-
ing volume should fall within the frustums of at least two neighboring sampled
views. The required camera sampling interval ∆u is then additionally bounded by:

∆u ≤
W∆xzmin

2f
(4.5)
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Promote to MPI

Input Sampled View

Figure 4.4. We promote each input view sample to an MPI scene representa-
tion [166], consisting of D RGBα planes at regularly sampled disparities within
the input view’s camera frustum. Each MPI can render continuously-valued novel
views within a local neighborhood by alpha compositing color along rays into the
novel view’s camera.

where W is the image width in pixels of each sampled view. The overall camera
sampling interval must satisfy both constraints:

∆u ≤ min

(
D

2Kxf (1/zmin − 1/zmax)
,
W∆xzmin

2f

)
. (4.6)

4.3.4 Image Space Interpretation of View Sampling

It is useful to interpret the required camera sampling rate in terms of the max-
imum pixel disparity dmax of any scene point between adjacent input views. If we
set zmax = ∞ to allow scenes with content up to an infinite depth and addition-
ally set Kx = 1/2∆x to allow spatial frequencies up to the maximum representable
frequency:

∆uf

∆xzmin

= dmax ≤ min

(
D,

W

2

)
. (4.7)

Simply put, the maximum disparity of the closest scene point between adjacent
views must be less than min(D,W/2) pixels. When D = 1, this inequality reduces
to the Nyquist bound: a maximum of 1 pixel of disparity between views.
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Figure 4.5. We render novel views as a weighted combination of renderings from
neighboring MPIs, modulated by the corresponding accumulated alphas.

In summary, promoting each view sample to an MPI scene representation with
D depth layers allows us to decrease the required view sampling rate by a factor of
D, up to the required field of view overlap for stereo geometry estimation. Light
fields for real 3D scenes must be sampled in two viewing directions, so this benefit
is compounded into a sampling reduction of D2. Section 4.6.1 empirically validates
that our algorithm’s performance matches this theoretical analysis. Section 4.7.1
describes how we apply the above theory along with the empirical performance of
our deep learning pipeline to prescribe practical sampling guidelines for users.

4.4 Practical View Synthesis Pipeline

We present a practical and robust method for synthesizing new views from a set
of input images and their camera poses. Our method first uses a CNN to promote
each captured input image to an MPI, then reconstructs novel views by blending
renderings from nearby MPIs. Figures 4.1 and 4.5 visualize this pipeline. We dis-
cuss the practical image capture process enabled by our method in Section 4.7.
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4.4.1 MPI Prediction for Local Light Field Expansion

The first step in our pipeline is expanding each sampled view to a local light field
using an MPI scene representation. Our MPI prediction pipeline takes five views
as input: the reference view to be expanded and its four nearest neighbors in 3D
space. Each image is reprojected to D depth planes, sampled linearly in disparity
within the reference view frustum, to form 5 plane sweep volumes (PSVs) of size
H ×W ×D × 3.

Our 3D CNN takes these 5 PSVs as input, concatenated along the channel di-
mension. This CNN outputs an opacity α for each MPI coordinate (x, y, d) as well
as a set of 5 color selection weights that sum to 1 at each MPI coordinate. These
weights parameterize the RGB values in the output MPI as a weighted combina-
tion of the input PSVs. Intuitively, each predicted MPI softly “selects” its color
values at each MPI coordinate from the pixel colors at that coordinate in each of
the input PSVs. We specifically use this RGB parameterization instead of the fore-
ground+background parameterization proposed by Zhou et al. [166] because their
method does not allow an MPI to directly incorporate content occluded from the
reference view but visible in other input views.

Furthermore, we enhance the MPI prediction CNN architecture from the origi-
nal version to use 3D convolutional layers instead of the original 2D convolutional
layers so that our architecture is fully convolutional along the height, width, and
depth dimensions. This enables us to predict MPIs with a variable number of
planesD so that we can jointly choose the view and disparity sampling densities to
satisfy Equation 4.7. Table 4.2 validates the benefit of being able to change the num-
ber of MPI planes to correctly match our derived sampling requirements, enabled
by our use of 3D convolutions.

4.4.2 Continuous View Reconstruction by Blending

As discussed in Section 4.3, we reconstruct interpolated views as a weighted
combination of renderings from multiple nearby MPIs. This effectively combines
our local light field approximations into a light field with a near plane spanning
the extent of the captured input views and a far plane determined by the field-of-
view of the input views. As in standard light field rendering, this allows for a new
view path with unconstrained 3D translation and rotation within the range of views
made up of rays in the light field.

One important detail in our rendering process is that we consider the accumu-
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Figure 4.6. An example illustrating the benefits of using accumulated alpha to
blend MPI renderings. We render two MPIs at the same new camera pose. In the
top row, we display the RGB outputs Ct,i from each MPI as well as the accumulated
alphas αt,i, normalized so that they sum to one at each pixel. In the bottom row,
we see that a simple average of the RGB images Ct,i retains the stretching artifacts
from both MPI renderings, whereas the alpha weighted blending combines only
the non-occluded pixels from each input to produce a clean output Ct.
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lated alpha values from each MPI rendering when blending. This allows each MPI
rendering to “fill in” content that is occluded from other camera views.

Our MPI prediction network uses a set of RGB images Ck along with their cam-
era poses pk to produce a set of MPIsMk (one corresponding to each input image).
To render a novel view with pose pt using the predicted MPI Mk, we homography
warp each RGBα MPI plane into the frame of reference of the target pose pt then
alpha composite the warped planes together from back to front. This produces an
RGB image and an alpha image, which we denote Ct,k and αt,k respectively (sub-
script t, k indicating that the output is rendered at pose pt using the MPI at pose
pk).

Since a single MPI alone will not necessarily contain all the content visible from
the new camera pose due to occlusions and field of view issues, we generate the
final RGB output Ct by blending rendered RGB images Ct,k from multiple MPIs, as
depicted in Figure 4.5. We use scalar blending weights wt,k, each modulated by the
corresponding accumulated alpha images αt,k and normalized so that the resulting
rendered image is fully opaque (α = 1):

Ct =

∑
k wt,kαt,kCt,k∑
k wt,kαt,k

. (4.8)

For an example where modulating the blending weights by the accumulated alpha
values prevents artifacts in Ct, see Figure 4.6. Table 4.2 demonstrates that blending
with alpha gives quantitatively superior results over both using a single MPI and
blending multiple MPI renderings without using the accumulated alpha.

The blending weights wt,k can be any sufficiently smooth filter. In the case of
data sampled on a regular grid, we use bilinear interpolation from the four nearest
MPIs rather than the ideal sinc function interpolation for effiency and due to the
limited number of sampled views. For irregularly sampled data, we use the five
nearest MPIs and take wt,k ∝ exp (−γ`(pt, pk)). Here `(pt, pk) is the L2 distance
between the translation vectors of poses pt and pk, and the constant γ is defined
as f

Dzmin
given focal length f , minimum distance to the scene zmin, and number of

planes D. (Note that the quantity f`
zmin

represents ` converted into units of pixel
disparity.)

Our strategy of blending between neighboring MPIs is particularly effective for
rendering non-Lambertian effects. For general curved surfaces, the virtual appar-
ent depth of a specularity changes with the viewpoint [135]. As a result, speculari-
ties appear as curves in epipolar slices of the light field, while diffuse points appear
as lines. Each of our predicted MPIs can represent a specularity for a local range of
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Figure 4.7. We demonstrate that a collection of MPIs can approximate a highly
non-Lambertian light field. In this synthetic scene, the curved plate reflects the
paintings on the wall, leading to quickly-varying specularities as the camera moves
horizontally. This effect can be observed in the ground truth epipolar plot (bottom
right). A single MPI (top right) can only place a specular reflection at a single vir-
tual depth, but blending renderings from multiple MPIs (middle right) provides
a much better approximation to the true light field. In this example, we blend be-
tween MPIs evenly distributed at every 32 pixels of disparity along a horizontal
path, indicated by the dashed lines in the epipolar plot.
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views by placing the specularity at a single virtual depth. Figure 4.7 illustrates how
our rendering procedure effectively models a specularity’s curve in the light field
by blending locally linear approximations, as opposed to the limited extrapolation
provided by a single MPI.

4.5 Training Our View Synthesis Pipeline

4.5.1 Training Dataset

We train our view synthesis pipeline using both renderings and real images of
natural scenes. Using synthetic training data crucially enables us to easily generate
a large dataset with input view and scene depth distributions similar to those we
expect at test time, while using real data helps us generalize to real-world lighting
and reflectance effects as well as small errors in pose estimation.

Our synthetic training set consists of images rendered from the SUNCG [128]
and UnrealCV [106] datasets. SUNCG contains 45,000 simplistic house and room
environments with texture mapped surfaces and low geometric complexity. Un-
realCV contains only a few large scale environments, but they are modeled and
rendered with extreme detail, providing geometric complexity, texture variety, and
non-Lambertian reflectance effects. We generate views for each synthetic training
instance by first randomly sampling a target baseline for the inputs (up to 128 pixels
of disparity), then randomly perturbing the camera pose in 3D to approximately
match this baseline.

Our real training dataset consists of 24 scenes from our handheld cellphone cap-
tures, with 20-30 images each. We use the COLMAP structure from motion [113]
implementation to compute poses for our real images.

4.5.2 Training Procedure

For each training step, we sample two sets of 5 views each to use as inputs, and
a single held-out target view for supervision. We first use the MPI prediction net-
work to predict two MPIs, one from each set of 5 inputs. Next, we render the target
novel view from both MPIs and blend these renderings using the accumulated al-
pha values, as described in Equation 4.8.
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The training loss is simply the image reconstruction loss for the rendered novel
view. We follow the original work on MPI prediction [166] and use a VGG network
activation perceptual loss as implemented by Chen and Koltun [12], which has
been consistently shown to outperform standard image reconstruction losses [55,
163]. We are able to supervise only the final blended rendering because both our
fixed rendering and blending functions are differentiable. Learning through this
blending step trains our MPI prediction network to leave alpha “holes” in uncertain
regions for each MPI, in the expectation that this content will be correctly rendered
by another neighboring MPI, as illustrated by Figure 4.6.

In practice, training through blending is slower than training a single MPI, so
we first train the network to render a new view from only one MPI for 500k iter-
ations, then train the full pipeline (blending views from two different MPIs) for
100k iterations. To fine tune the network to process real data, we train on our small
real dataset for an additional 10k iterations. We use 320× 240 resolution and up to
128 planes for SUNCG training data, and 640× 480 resolution and up to 32 planes
for UnrealCV training data, due to GPU memory limitations. We implement our
full pipeline in Tensorflow [1] and optimize the MPI prediction network parame-
ters using Adam [67] with a learning rate of 2 × 10−4 and a batch size of one. We
split the training pipeline across two Nvidia RTX 2080Ti GPUs, using one GPU to
generate each MPI.

4.6 Experimental Evaluation

We quantitatively and qualitatively validate our method’s prescriptive sampling
benefits and ability to render high fidelity novel views of light fields that have been
undersampled by up to 4000×, as well as demonstrate that our algorithm outper-
forms state-of-the-art methods for regular view interpolation. Figure 4.9 showcases
these qualitative comparisons on scenes with complex geometry (Fern and T-Rex)
and highly non-Lambertian scenes (Air Plants and Pond) that are not handled well
by most view synthesis algorithms.

For all quantitative comparisons (Table 4.2), we use a synthetic test set rendered
from an UnrealCV [106] environment that was not used to generate any training
data. Our test set contains 8 scenes, each rendered at 640 × 480 resolution and
at 8 different view sampling densities such that the maximum disparity between
adjacent input views ranges from 1 to 256 pixels (a maximum disparity of 1 pixel
between input views corresponds to Nyquist rate view sampling). We restrict our
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Figure 4.8. We plot the performance of our method (with varying number of planes
D = 8, 16, 32, 64, and 128) compared to light field interpolation for different in-
put view sampling rates (denoted by maximum scene disparity dmax between ad-
jacent input views). Our method can achieve the same perceptual quality as LFI
with Nyquist rate sampling (black dotted line) as long as the number of predicted
planes matches or exceeds the undersampling rate, up to an undersampling rate of
128. At D = 64, this means we achieve the same quality as LFI with 642 ≈ 4000×
fewer views. We use the LPIPS [163] metric (lower is better) because we primarily
value perceptual quality. The colored dots indicate the point on each line where the
number of planes equals the maximum scene disparity, where equality is achieved
in our sampling bound (Equation 4.7). The shaded region indicates ±1 standard
deviation over all 8 test scenes.
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quantitative comparisons to rendered images because a Nyquist rate grid-sampled
light field would require at least 3842 camera views to generate a similar test set, and
no such densely-sampled real light field dataset exists to the best of our knowledge.
We report quantitative performance using the standard PSNR and SSIM metrics,
as well as the state-of-the-art LPIPS [163] perceptual metric, which is based on a
weighted combination of neural network activations tuned to match human judge-
ments of image similarity.

Finally, our accompanying video shows results on over 60 additional real-world
scenes. These renderings were created completely automatically by a script that
takes only the set of captured images and desired output view path as inputs, high-
lighting the practicality and robustness of our method.

4.6.1 Sampling Theory Validation

Our method is able to render high-quality novel views while significantly de-
creasing the required input view sampling density compared to standard light field
interpolation. Figure 4.8 shows that our method is able to render novel views with
Nyquist level perceptual quality with up to dmax = 64 pixels of disparity between
input view samples, as long as we match the number of planes in each MPI to the
maximum pixel disparity between input views. We postulate that our inability to
match Nyquist quality from input images with a maximum of 128 pixels of dis-
parity is due to the effect of occlusions. It becomes increasingly likely that any
non-foreground scene point will be sampled by fewer input views as the maxi-
mum disparity between adjacent views increases. This increases the difficulty of
depth estimation and requires the CNN to hallucinate the appearance and depth
of occluded points in extreme cases where they are sampled by none of the input
views.

Figure 4.8 also shows that once our sampling bound is satisfied, adding addi-
tional planes does not increase performance. For example, at 32 pixels of disparity,
increasing from 8 to 16 to 32 planes decreases the LPIPS error, but performance
stays constant from 32 to 128 planes. This verifies that for scenes up to 64 pixels
of disparity, adding additional planes past the maximum pixel disparity between
input views is of limited value, in accordance with our theoretical claim that parti-
tioning a scene with disparity variation ofD pixels intoD depth ranges is sufficient
for continuous reconstruction.
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Table 4.2. We quantitatively show that our method outperforms state-of-the-art
baselines and specific ablations of our method, across a wide range of input sam-
pling rates (measured by the maximum pixel disparity dmax between adjacent input
views), on a synthetic test set. We display results using the standard PSNR and
SSIM metrics (higher is better) as well as the LPIPS perceptual metric [163] (lower
is better). The best measurement in each column is bolded. See Sections 4.6.2
and 4.6.3 for details on each comparison.

Maximum disparity dmax (pixels)
16 32 64 128

Algorithm PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Baselines

LFI 26.21 0.7776 0.2541 23.35 0.6982 0.3198 20.60 0.6243 0.3971 18.32 0.5560 0.4665
ULR 28.17 0.8320 0.1510 26.43 0.7987 0.1820 24.34 0.7679 0.2311 21.24 0.7062 0.3215
Soft3D 34.48 0.9430 0.1345 32.33 0.9216 0.1795 27.97 0.8588 0.2652 23.11 0.7382 0.3979
BW Deep 34.18 0.9433 0.1074 34.00 0.9476 0.1128 31.88 0.9192 0.1573 27.59 0.8363 0.2591

Ablations
Single MPI 31.11 0.9482 0.1007 29.38 0.9424 0.1111 26.88 0.9250 0.1363 24.20 0.8734 0.1980
Avg. MPIs 32.67 0.9560 0.1140 31.34 0.9532 0.1248 29.31 0.9400 0.1423 27.02 0.8999 0.1961
Ours 34.57 0.9568 0.0942 34.48 0.9569 0.0954 33.58 0.9530 0.1012 31.96 0.9323 0.1374

4.6.2 Comparisons to Baseline Methods

We quantitatively (Table 4.2) and qualitatively (Figure 4.9) demonstrate that
our algorithm produces superior renderings, particularly for non-Lambertian ef-
fects, without the artifacts seen in renderings from competing methods. We urge
readers to view our accompanying video for convincing rendered camera paths
that highlight the benefits of our approach.

We compare our method to state-of-the-art view synthesis techniques as well as
view-dependent texture mapping using a global mesh as proxy geometry.

Light Field Interpolation (LFI) [9] This baseline is representative of continuous
view reconstruction based on classic signal processing. Following the method of
plenoptic sampling [9], we render novel views using a bilinear interpolation re-
construction filter sheared to the mean scene disparity. Figure 4.9 demonstrates
that increasing the camera spacing beyond the Nyquist rate results in aliasing and
ghosting artifacts when using this method.
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Unstructured Lumigraph Rendering (ULR) [7] This baseline is representative
of view dependent texture mapping with an estimated global mesh as a geometry
proxy. We reconstruct a global mesh from all inputs using the screened Poisson sur-
face reconstruction algorithm [64], and use the heuristic Unstructured Lumigraph
blending weights [7] to blend input images after reprojecting them into the novel
viewpoint using the global mesh. We use a plane at the mean scene disparity as a
proxy geometry to fill in holes in the mesh.

It is particularly difficult to reconstruct a global mesh with geometry edges that
are well-aligned with image edges, which causes perceptually jarring artifacts. Fur-
thermore, mesh reconstruction often fails to fill in large portions of the scene, re-
sulting in ghosting artifacts similar to those seen in light field interpolation.

Soft3D [103] Soft3D is a state-of-the-art view synthesis algorithm that is simi-
lar to our approach in that it also computes a local layered scene representation
for each input view and projects and blends these volumes to render each novel
view. However, it uses a hand-crafted pipeline based on classic local stereo and
guided filtering to compute each layered representation. Furthermore, since clas-
sic stereo methods are unreliable for smooth or repetitive image textures and non-
Lambertian materials, Soft3D relies on smoothing their geometry estimation across
many (up to 25) input views.

Table 4.2 quantitatively demonstrates that our approach outperforms Soft3D
overall. In particular, Soft3D’s performance degrades much more rapidly as the
input view sampling rate decreases since their aggregation is less effective when
fewer input images view the same scene content. Our method is able to predict
high-quality geometry in scenarios where Soft3D suffers from noisy and erroneous
results of local stereo because we leverage deep learning to learn implicit priors on
natural scene geometry. This is in line with recent work that has shown the benefits
of deep learning over traditional stereo for depth estimation [66, 55].

Figure 4.9 qualitatively demonstrates that Soft3D generally contains blurred
geometry artifacts due to errors in local depth estimation, and that Soft3D’s ap-
proach fails for rendering non-Lambertian effects because their aggregation pro-
cedure blurs the specularity geometry, which changes with the input image view-
point.

Backwards warping deep network (BW Deep) This baseline subsumes recent
deep learning view synthesis techniques [61, 31], which use a CNN to estimate
geometry for each novel view and then backwards warp and blend nearby input
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images to render the target view. We train a network that uses the same 3D CNN
architecture as our MPI prediction network but instead outputs a single depth map
at the pose of the new target view. We then backwards warp the five input images
into the new view using this depth map and use a second 2D CNN to composite
these warped input images into a single rendered output view. As shown in Ta-
ble 4.2, performance for this method degrades quickly as the maximum disparity
increases. Although this approach produces comparable images to our method for
scenes with small disparities (dmax = 16, 32), the renderings suffer from extreme
inconsistency when rendering video sequences.

BW Deep methods use a CNN to estimate depth separately for each output
viewpoint, so artifacts appear and disappear over only a few frames, resulting in
rapid flickers and pops in the rendered camera path. This inconsistency is visible as
corruption in the epipolar plots in Figure 4.9. Furthermore, backwards warping in-
centivizes incorrect depth predictions to fill in disocclusions, so BW Deep methods
also produce errors around thin structures and occlusion edges.

4.6.3 Ablation Studies

We validate our overall strategy of blending between multiple MPIs as well as
our specific blending procedure using accumulated alphas with the following ab-
lation studies:

Single MPI The fifth row of Table 4.2 shows that using only one MPI to produce
new views results in significantly decreased performance due to the limited field
of view represented in a single MPI as well as depth discretization artifacts as the
target view moves far from the MPI reference viewpoint. Additionally, Figure 4.7
shows an example of complex non-Lambertian reflectance that cannot be repre-
sented by a single MPI. This ablation can be considered an upper bound on the
performance of Zhou et al. [166], since we use one MPI generated by a higher ca-
pacity 3D CNN.

Average MPIs The sixth row of Table 4.2 shows that blending multiple MPI out-
puts for each novel view without using the accumulated alpha channels results in
decreased performance. Figure 4.6 visualizes that this simple blending leads to
ghosting in regions that are occluded from the poses of any of the MPIs used for
rendering, because they will contain incorrect content in disoccluded regions.
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Figure 4.9. Results on real cellphone datasets. We render a sequence of new views and
show both a crop from a single rendered output and an epipolar slice of the sequence. We
show 2D projections of the input camera poses (blue dots) and new view path (red line)
along the z and y axes of the new view camera in the lower left of each row. LFI fails to
cleanly represent objects at different depths because it only uses a single depth plane for
reprojection, leading to ghosting (leaves in Fern, lily pads in Pond) and depth inconsis-
tency visible in all epipolar images. Mesh reconstruction failures cause artifacts visible in
both the crops and epipolar images for ULR. Soft3D’s depth uncertainty leads to blur, and
geometry aggregation across large view neighborhoods results in incorrect specularity ge-
ometry (brown and blue reflections in Pond). BW Deep’s use of a CNN to render every
novel view causes depth inconsistency, visible as choppiness across the rows of the epipo-
lar images in all examples. Additionally, BW Deep selects a single depth per pixel, leading
to errors for transparencies (glass rim in Air Plants) and reflections (Pond). BW Deep also
uses backwards warping, which causes errors around occlusion boundaries (thin ribs in
T-Rex).
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4.7 Practical Usage

We present guidelines to assist users in sampling views that enable high-quality
view interpolation with our algorithm, and showcase our method’s practicality
with a smartphone camera app that guides users to easily capture such input im-
ages. Furthermore, we implement a mobile viewer that renders novel views from
our predicted MPIs in real-time. Figure 4.9 showcases examples of rendered results
from handheld smartphone captures. Our accompanying video contains a screen
capture of our app in use, as well as results on over 60 real-world scenes generated
by an automated script.

4.7.1 Prescriptive Scene Sampling Guidelines

In a typical capture scenario, a user will have a camera with a field of view θ
and a world space plane with side length S that bounds the viewpoints they wish
to render. Based on this, we prescribe the design space of image resolution W and
number of images to sample N that users can select from to reliably render novel
views at Nyquist-level perceptual quality.

Section 4.6.1 shows that the empirical limit on the maximum disparity dmax be-
tween adjacent input views for our deep learning pipeline is 64 pixels. Substituting
Equation 4.7:

∆uf

∆xzmin

≤ 64. (4.9)

We translate this into user-friendly quantities by noting that ∆u = S/
√
N and

that the ratio of sensor width to focal length W∆x/f = 2 tan θ/2:

W√
N
≤ 128zmin tan(θ/2)

S
. (4.10)

Using a smartphone camera with a 64◦ field of view, this is simply:

W√
N
≤ 80zmin

S
. (4.11)
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Intuitively, once a user has determined the extent of viewpoints they wish to
render and the depth of the closest scene point, they can choose any target render-
ing resolution W and number of images to capture N such that the ratio W/

√
N

satisfies the above expression.

4.7.2 Asymptotic Rendering Time and Space Complexity

Within the possible choices of rendering resolution W and number of sampled
views N that satisfy the above guideline, different users may value capture time,
rendering time, and storage costs differently. We derive the asymptotic complex-
ities of these quantities to further assist users in choosing correct parameters for
their application.

First, the capture time is simply O(N). The render time of each MPI generated
is proportional to the number of planes times the pixels per plane:

W 2D =
W 3S

2
√
Nzmin tan(θ/2)

= O(W 3N−1/2). (4.12)

Note that the rendering time for each MPI decreases as the number of sampled
images N increases, because this allows us to use fewer planes per MPI. The total
MPI storage cost is proportional to:

W 2D ·N =
W 3S

√
N

2zmin tan(θ/2)
= O(W 3N1/2). (4.13)

Practically, this means that users should determine their specific rendering
time and storage constraints, and then maximize the image resolution and num-
ber of sampled views that satisfy their constraints as well as the guideline in Equa-
tion 4.10. Figure 4.10 visualizes these constraints for an example user.

4.7.3 Smartphone Capture App

We develop an app for iOS smartphones, based on the ARKit framework, that
guides users to capture input views for our view synthesis algorithm. The user
first taps the screen to mark the closest object, and the app uses the corresponding
scene depth computed by ARKit as zmin. Next, the user selects the size of the view



4.7. PRACTICAL USAGE 75

T
im

e to render 
from

 one M
PI (m

s)
Storage space

for all M
PIs (G

B
)

Figure 4.10. Time and storage cost tradeoff within the space of rendering resolution
and number of sampled views that result in Nyquist level perceptual quality (space
above the thick blue curve signifying D = dmax ≤ 64, as in Equation 4.11). We
plot isocontours of rendering time and storage space for an example scene with
close depth zmin = 1.0m and target view plane with side length 0.5m, captured
with a camera with a 64◦ field of view. We use the average rendering speed from
our desktop viewer and the storage requirement from uncompressed 8-bit MPIs.
Users can select the point where their desired rendering speed and storage space
isocontours intersect to determine the minimum required number of views and
maximum affordable rendering resolution.

Figure 4.11. Equation 4.7 prescribes a simple sampling bound related only to the
maximum scene disparity. We take advantage of the augmented reality toolkits
available in modern smartphones to create an app that helps the user sample a real
scene for rendering with our method. (a) We use built-in software to track the
phone’s position and orientation, providing sampling guides that allow the user
to space photos evenly at the target disparity. (b) Once the user has centered the
phone so that the RGB axes align with one of the guides, the app automatically
captures a photo.
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plane S within which our algorithm will render novel views. We fix the rendering
resolution for the smartphone app toW = 500 which therefore fixes the prescribed
number and spacing of required images based on Equation 4.11 and the definition
∆u = S/

√
N . Our app then guides the user to capture these views using the intu-

itive augmented reality overlay shown in Figure 4.11. When the phone detects that
the camera has been moved to a new sample location, it automatically records an
image and highlights the next sampling point.

4.7.4 Preprocessing

After capturing the required input images, the only preprocessing required be-
fore being able to render novel views is estimating the input camera poses and using
our trained network to predict an MPI for each input view. Unfortunately, camera
poses from ARKit are currently not accurate enough for acceptable results, so we
use the open source COLMAP software package [113, 114], which takes about 2-6
minutes for sets of 20-30 input images.

We use the deep learning pipeline described in Section 4.4.1 to predict an MPI
for each input sampled view. On an Nvidia GTX 1080Ti GPU, This takes approxi-
mately 0.5 seconds for a small MPI (500× 350× 32 ≈ 6 megavoxels) or 12 seconds
for a larger MPI that must be output in overlapping patches (1000× 700× 64 ≈ 45
megavoxels). In total, our method only requires about 10 minutes of preprocessing
to estimate poses and predict MPIs before being able to render novel views at a 1
megapixel image resolution.

With the increasing investment in smartphone AR and on-device deep learn-
ing accelerators, we expect that smartphone pose estimation will soon be accurate
enough and on-device network inference will be powerful enough for users to go
from capturing images to rendering novel views within a few seconds.

4.7.5 Real-Time Viewers

We implement novel view rendering from a single MPI by rasterizing each plane
from back to front using texture mapped rectangles in 3D space, invoking a stan-
dard shader API to correctly handle the alpha compositing, perspective projection,
and texture resampling. For each new view, we determine the MPIs to be blended,
as discussed in Section 4.4.2, and render them into separate framebuffers. We then
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use a simple fragment shader to perform the alpha-weighted blending described
in Section 4.4.2. We implement this rendering pipeline as desktop viewer using
OpenGL which renders views with 1000× 700 resolution at 60 frames per second,
as well as an iOS mobile viewer using the Metal API which renders views with
500 × 350 resolution at 30 frames per second. Please see our video for demonstra-
tions of these real-time rendering implementations.

4.7.6 Limitations

A main limitation of our algorithm is that the MPI network sometimes assigns
high opacity to incorrect layers in regions of ambiguous or repetitive texture and
regions where scene content moves between input images. This can cause floating
or blurred patches in the rendered output sequence (see the far right side of the
fern in our video), which is a common failure mode in methods that rely on texture
matching cues to infer depth. These artifacts could potentially be ameliorated by
using more input views to disambiguate stereo matching and by encouraging the
network to learn stronger global priors on 3D geometry.

Another limitation is the difficulty of scaling to higher image resolutions. As ev-
ident in Equations 4.12 and 4.13, layered approaches such as our method are limited
by complexities that scale cubically with the image width in pixels. Furthermore,
increasing the image resolution requires a CNN with a larger receptive field. This
could be addressed by exploring multiresolution CNN architectures and hierarchi-
cal volume representations such as octrees, or by predicting a more compact local
scene representation such as layered depth images [117] with opacity.

4.8 Discussion

We have presented a simple and practical method for view synthesis that works
reliably for complex real-world scenes, including non-Lambertian materials. Our
algorithm first promotes each input image into a layered local light field representa-
tion, then renders novel views in real time by blending outputs generated by nearby
representations. We extend traditional layered plenoptic sampling analysis to han-
dle occlusions and provide a theoretical sampling bound on how many views are
needed for our method to render high-fidelity views of a given scene. We quantita-
tively validate this bound and demonstrate that we match the perceptual quality of
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dense Nyquist rate view sampling while using ≈ 4000× fewer input images. Our
accompanying video demonstrates that we thoroughly outperform prior work, and
showcases results on over 60 diverse and complex real-world scenes, where our
novel views are rendered with a fully automated capture-to-render pipeline. We
believe that our work paves the way for future advances in image-based rendering
that combine the empirical performance benefits of data-driven machine learning
methods with the robust reliability guarantees of traditional geometric and signal
processing based analysis.

In this chapter and the previous chapter, we have shown how multiplane images
are an effective and parameter-efficient 3D volumetric representation of scenes for
view synthesis. However, it is important to note that the multiplane image repre-
sentation is specifically designed for rendering “forward-facing” novel views with-
out significant camera rotation or zoom. In the next chapter, we present a different
parameter-efficient volumetric scene representation for a view synthesis task where
we are specifically interested in synthesizing novel views from locations within the
scene and far away from the input viewpoints.
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Chapter 5

Panoramic View Synthesis with

Multiscale Volumes

In this chapter, we present a volumetric 3D scene representation for the task
of estimating the global illumination seen at any point within a scene given im-
ages of the scene. Although illumination estimation is not typically treated as
a view synthesis problem, it is indeed a special case of view synthesis with the
goal of rendering a panoramic image, representing the incoming light, at any point
within the scene. However, the relative positions of input and output viewpoints is
quite different than the typical view synthesis setup: in illumination estimation, we
typically have standard perspective view(s) of the scene from an “outside” view-
point, and we would like to render a panoramic image within the “interior” of the
scene (Figure 5.2) for the purpose of relighting an object inserted into the scene at
that location. The multiplane image representation discussed earlier is not an ade-
quate representation for synthesizing views within the scene, so in this chapter we
present a multiscale volumetric representation that is particularly well-suited for
the task of illumination estimation.

This chapter is based on joint work published at CVPR 2020 [131].
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Figure 5.1. Our method predicts environment map lighting at any location in a 3D
scene from a narrow-baseline stereo pair of images. We use this to convincingly
insert specular objects into real photographs with spatially-coherent lighting that
varies smoothly in 3D. Below, we isolate the relit objects to better visualize our
estimated illumination. Notice how each inserted object contains different specular
highlights and reflected colors corresponding to its 3D location, such as the light
reflected on the cow’s head and the corner of the table visible on the teapot.
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5.1 Introduction

Rendering virtual objects into photographs of real scenes is a common task in
mixed reality and image editing. Convincingly inserting such objects requires es-
timating both the geometry of the scene (so that inserted objects are correctly oc-
cluded by real scene content) as well as the incident illumination at points on each
object’s surface (so that inserted objects appear to be lit by the surrounding envi-
ronment). The difficulty of this task is exacerbated by the fact that incident illu-
mination can vary significantly across different locations within a scene, especially
indoors, due to lights close to the inserted objects, shadows cast by scene geometry,
and global illumination effects from nearby scene content. Additionally, composit-
ing large objects, multiple objects, or objects that move within the scene is even
more difficult as doing so requires estimating a spatially-varying model of illumi-
nation that is spatially-coherent (we (ab)use this term to mean that it varies smoothly
as a function of position in accordance with a plausible 3D scene).

Current state-of-the-art algorithms for estimating global illumination either
predict a single illumination for the entire scene [8, 34, 51, 71, 73, 116] or esti-
mate spatially-varying illumination by separately predicting the lighting at individ-
ual 3D locations within the scene [36, 80, 127]. The single-illumination approach
can only be used to illuminate small objects at a predefined location, while the
separately-predicted spatially-varying approach can produce compelling results,
but does not guarantee that the predicted illumination will vary smoothly as a
function of position. In this work, we propose an algorithm that predicts a vol-
umetric representation of the scene from a narrow-baseline stereo pair of images,
and then uses that volumetric representation to produce a spatially-varying model
of illumination by simply rendering that predicted volume from the set of required
object insertion locations. Because our approach computes each environment map
from a single predicted underlying volumetric scene representation using standard
volume rendering, all estimated lighting is naturally consistent with the same 3D
scene, and lighting locations can be queried at 100 frames per second allowing for
real-time object insertion.

We specifically use a narrow-baseline stereo pair as input because: 1) multi-
camera systems are ubiquitous in modern smartphones, 2) stereo enables us to
estimate the high fidelity geometry required for simulating spatially-varying light-
ing effects due to observed scene content, and 3) we can leverage recent progress in
using narrow-baseline stereo images to predict 3D scene representations for view
synthesis [132, 166], enabling us to render novel views of the scene with relit objects
for virtual reality object insertion.
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Input: stereo 
pair of images

(a) Predict visible 
scene geometry (§3.1)

(b) Resample onto 
multiscale volume (§3.2)

(c) Predict unobserved 
scene content (§3.3)

(d) Spherical volume
rendering (§4)

Output: spherical 
environment map

rendering (§4)

Resample lighting 
volume onto spheres (§5)

Figure 5.2. Our method takes a narrow-baseline stereo pair of images as input,
uses a 3D CNN to predict an intermediate representation of visible scene geometry
(a), resamples this onto a multiscale volume that encompasses unobserved regions
of the scene (b), completes this volume with another 3D CNN (c), and renders
spatially-coherent environment maps at any 3D location from this same volume
using standard volume tracing (d).

To summarize, our primary technical contributions are:

1. A multiscale volumetric scene lighting representation that is specifically de-
signed for estimating realistic spatially-varying lighting (Sec. 5.3.2) and a
deep learning–based approach for predicting this representation using only
a narrow-baseline stereo pair as input (Sec. 5.3.3). We design this representa-
tion to support rendering spatially-varying illumination without any network
inference (Sec. 5.4), so lighting prediction is very fast and guaranteed to be
spatially-coherent.

2. A training procedure that only needs perspective and panoramic views of
scenes for supervision, instead of any ground-truth 3D scene representation
(Sec. 5.5).

We demonstrate that estimating spatially-varying global illumination as a persis-
tent 3D function quantitatively and qualitatively outperforms prior approaches.
Our spatially-coherent estimated lighting can simulate convincing global illumi-
nation effects for rendering specular virtual objects moving within scenes.
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5.2 Related Work

5.2.1 Estimating lighting from images

Inferring the intrinsic properties of lighting, materials, and geometry that to-
gether form an image is a fundamental problem that has been studied in various
forms throughout the history of computer vision [5, 52]. Below, we review relevant
prior works that use images to estimate representations of lighting for relighting
virtual objects.

Seminal work by Debevec [20] showed that virtual objects can be convincingly
inserted into real photographs by rendering virtual object models with high dy-
namic range (HDR) environment maps captured with bracketed exposures of a
chrome ball. Many subsequent methods [8, 34, 51, 71, 73, 116] have demonstrated
that machine learning techniques can be used to estimate an HDR environment
map from a single low dynamic range (LDR) photograph.

However, a single environment map is insufficient for compositing multiple,
large, or moving virtual objects into a captured scene, especially in indoor settings
where light sources and other scene content may be close to the object insertion lo-
cations. To address this shortcoming, many works predict spatially-varying light-
ing from images by estimating a separate environment map for each pixel in the in-
put image. Such approaches include algorithms designed specifically for spatially-
varying lighting estimation [36] as well as methods that address the more general
inverse rendering problem of jointly estimating the spatially-varying lighting, scene
materials, and geometry that together produce an observed image [80, 118]. How-
ever, these approaches do not ensure that the illuminations predicted at different
spatial locations correspond to a single 3D scene, and their approach of indexing
lighting by image pixel coordinates cannot estimate lighting at locations other than
points lying directly on visible scene surfaces. Karsch et al. [63] also address a sim-
ilar inverse rendering problem, but instead estimate area lights in 3D by detecting
visible light source locations and retrieving unobserved light sources from an an-
notated panorama database.

Our work is closely related to prior deep learning methods that estimate a por-
tion of lighting in 3D. Neural Illumination [127] predicts the incident illumination
at a location by first estimating per-pixel 3D geometry for the input image, repro-
jecting input image pixels into an environment map at the queried location, and
finally using a 2D CNN to predict unobserved content in the resulting environ-
ment map. This strategy ensures spatial consistency for light emitted from scene
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points that are visible in the input image (for which a single persistent geometry
estimate is used), but because the environment map is separately completed for
each lighting location using a 2D CNN, the lighting from unobserved scene points
is not spatially-coherent. Recent work by Gardner et al. [33] trains a deep network
to estimate the positions, intensities, and colors of a fixed number of light sources
in 3D, along with an ambient light color. This ensures spatially-coherent lighting,
but is unable to simulate realistic global illumination effects or light source occlu-
sions, which can be very significant in indoor scenes, and therefore has difficulty
rendering realistic specular objects. Furthermore, both of these methods require
ground truth scene depths for training while our method only requires perspective
and spherical panorama images.

5.2.2 Predicting 3D scene representations

Our strategy of estimating consistent spatially-varying lighting by predicting
and rendering from a 3D scene representation is inspired by recent successes in us-
ing 3D representations for the image-based rendering problem of predicting novel
views of a scene. Shum and Kang [120] provide an excellent review of classic ap-
proaches, ranging from light field rendering methods [76] that do not use any scene
geometry, to texture mapping methods [21, 117] that use a global scene mesh. A
key lesson from early work on image-based rendering is that more knowledge of
scene geometry reduces the number of sampled images required for rendering new
views [7, 9]. Modern approaches to view synthesis follow this lesson, rendering
novel views by predicting representations of 3D scene geometry from sparsely-
sampled collections of images. In particular, many recent methods predict layered
or volumetric 3D scene representations, which have a regular grid structure that
is well-suited to CNN pipelines. This includes algorithms for synthesizing novel
outwards-facing views of large scenes [31, 89, 132, 166] and inwards-facing views
of objects [84, 125, 155].

We adopt the approach of Zhou et al. [166] for learning to predict a layered rep-
resentation of observed scene content. Their algorithm trains a CNN to predict a
set of fronto-parallel RGBα planes sampled evenly in disparity within the camera
frustum. Training proceeds by minimizing the difference between renderings of
their model and held-out novel views, thereby obviating the need for ground truth
3D supervision. This representation, which they call a multiplane image (MPI), is
closely related to representations used in volume rendering [24, 70, 74] and stereo
matching [136]. Though this approach works well for view synthesis, it cannot be
directly used for estimating spatially-varying lighting, as the majority of the illu-
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mination needed for relighting and compositing virtual objects often resides out-
side of the input image’s field of view. We address this shortcoming by extending
these models to predict a multiscale volumetric representation that includes scene
content outside the input image’s camera frustum, thereby allowing us to estimate
incident illumination at any 3D location in the scene.

5.3 Multiscale Lighting Volume Prediction

Our goal is to take in a narrow-baseline pair of RGB images and associated cam-
era poses, and output the incident illumination (represented as a spherical environ-
ment map) at any queried 3D location within the scene. Due to dataset limitations
(see Sec. 5.5.2), we do not address LDR-to-HDR conversion and assume that the
inputs are either HDR captures or that they can be converted to HDR by invert-
ing a known tone mapping curve or by applying existing LDR-to-HDR conversion
techniques [26].

We train a deep learning pipeline, visualized in Fig. 5.2, that regresses from the
input image pair to a volumetric RGBα representation of the entire scene that in-
cludes areas outside of the reference camera frustum (we choose one of the two
input images as the “reference” to be the center of our coordinate system), thereby
allowing the illumination at any 3D location to be estimated by simply rendering
the scene volume at that location. This representation enables us to reproduce ef-
fects such as: shadowing due to the occlusion of light sources by other scene con-
tent, realistic reflections on glossy and specular virtual objects, and color bleeding
from the scene onto relit objects.

Naı̈vely representing an entire indoor scene as a dense high-resolution voxel
grid is intractable due to memory constraints. Instead, we propose a multiscale
volume representation designed to adequately sample the varying depth resolu-
tion provided by stereo matching, allocate sufficient resolution to areas where vir-
tual objects would be inserted, and allocate lower resolution outside the observed
field-of-view where scene content must be hallucinated. As shown in Fig. 5.2 our
procedure for predicting this volume is: 1) A deep network predicts a layered rep-
resentation of observed scene content from the input narrow-baseline stereo pair
(Fig. 5.2a). 2) This layered representation is resampled onto a multiscale lighting
volume that preserves the observed content representation’s resolution (Fig. 5.2b).
3) Another deep network completes the multiscale lighting volume by hallucinat-
ing scene geometry and appearance outside the observed field of view (Fig. 5.2c).
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(a) MPI sampling of visible 
scene content

(b) Multiscale volume sampling 
of entire scene

Input stereo pair
(left is reference)

Figure 5.3. A 2D visualization of our 3D multiscale volume resampling. (a) First,
given an input stereo pair of images, we predict scene content within the reference
camera frustum as a set of RGBα planes spaced linearly in inverse depth. (b) Next,
we resample the frustum geometry onto a set of nested cubes with increasingly
finer sampling, centered around the input camera.

Once we generate a lighting volume for a scene, we can use classic volume render-
ing to estimate the incident illumination at any 3D location without requiring any
network inference (Fig. 5.2d).

5.3.1 Observed content intermediate representation

We construct an intermediate representation of observed scene content as an
MPI M , which consists of a set of fronto-parallel RGBα planes within the frustum
of a reference camera, as visualized in Fig. 5.3a. As in Zhou et al. [166], we select
one of the input images as a reference view and construct a plane sweep volume
(PSV) in this frame for both input images. We concatenate these two PSVs along
the channel dimension, forming an input tensor for a 3D encoder-decoder CNN
that outputs an MPI, as suggested by follow-up works on MPI prediction [89, 132].
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Figure 5.4. A visualization of our multiscale volume completion network. After
resampling the visible scene geometry onto a series of nested cubes, we apply a
volume completion network to hallucinate the unseen geometry at each level. The
prediction is done in a coarse-to-fine manner, where the coarse prediction at level �
is cropped and upsampled then fed into the CNN along with the resampled visible
volume to predict level �+ 1.
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5.3.2 Multiscale volume resampling

This MPI provides an estimation of geometry for regions of the scene observed
in the two input images. However, inserting a relit virtual object into the scene also
requires estimating geometry and appearance for unobserved areas behind and to
the sides of the input cameras’ frustums, as visualized in Fig. 5.3, so our lighting
representation must encompass this area. Furthermore, our volumetric lighting
representation should allocate higher resolution to regions where we would insert
objects in order to correctly render the larger movement of nearby content within
environment maps as the queried location changes.

We design a multiscale volume lighting representation that encompasses both
observed and unobserved regions, allocates finer resolution within the input field-
of-view, and increases in resolution towards the front of the MPI frustum (which
contains increasingly higher resolution estimated geometry from stereo matching).
We initialize this multiscale volume by resampling the RGBα values from the MPI
frustum onto a series of nested cubes V o = {V o

1 , . . . , V
o
L} encompassing the whole

scene, using trilinear interpolation. From the coarsest to finest level, each cube V o
`

is half the spatial width of the previous level V o
`−1 while maintaining the same grid

resolution of 643. The largest, outermost cubeV o
1 is centered at the first input camera

pose and is wide enough to contain the whole MPI volume. Each smaller nested
cube is offset such that the input camera pose lies at the back face of the cube. See
Fig. 5.3 for a visualization of the MPI sampling pattern and how we resample it
onto the multiscale volume structure. We find that this multiscale sampling pattern
works well in practice for rendering convincing near-field lighting effects caused by
scene geometry at our chosen environment map resolution of 120× 240.

5.3.3 Multiscale volume completion

Now that we have a volumetric representation V o = {V o
1 , . . . , V

o
L} of the entire

scene that has been populated with observed content, we use a deep network to
hallucinate the geometry and appearance of the unobserved content. We denote
this “completed” multiscale volume by V c = {V c

1 , . . . , V
c
L}. We design a 3D CNN

architecture that sequentially processes this multiscale volume from the coarsest to
the finest resolution, predicting a completed volume V c

` at each resolution level. For
each level, we first nearest-neighbor upsample the region of the previous coarser
completed volume V c

`−1 that overlaps the current level V o
` to 643 resolution. Then,

we concatenate this to the current level’s resampled volume V o
` along the channel

dimension and use a 3D encoder-decoder CNN to predict the current level’s com-
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(a) Spherical volume tracing (b) Spherical environment map

Illumination rendering
Figure 5.5. Given our predicted multiscale lighting volume and a 3D location in
the scene (shown as a black circle), we render the environment map by (a) tracing
spherical rays through the volumes and alpha compositing from the outermost to
the innermost RGBα value, producing a single spherical environment map (b).

pleted volume V c
� , with separate weights for each level. Figure 5.4 visualizes our

coarse-to-fine network architecture.

5.4 Illumination Rendering

Given our multiscale lighting volume V c, we estimate the illumination incident
at any 3D location by using standard RGBα volume rendering [74] to generate a
spherical environment map at that point (visualized in Fig. 5.5). In order to get the
value at a pixel p for an environment map located at location x, we must:

1. Generate the ray r (in world coordinates) that originates at x and intersects
pixel p on the sphere, and

2. Trace r through the volume V c, using alpha compositing to matte in the
RGBα values as it intersects voxels from farthest to nearest.

As we trace r through V c, we query the finest level defined at that location in space
to ensure that predicted RGBα values at coarser levels never override predictions at
finer levels. This rendering procedure is very fast since it does not involve network
inference and is trivially parallelizable on GPUs, allowing us to render environment
maps from a predicted multiscale volume at 100 frames per second.



5.5. TRAINING AND DATASET 90

5.5 Training and Dataset

Our model is trained end-to-end: a stereo pair is provided as input, the model
renders a held-out novel view (sampled close to the reference view) from the inter-
mediate MPI and a held-out environment map (sampled within the scene in front
of the reference camera) from the completed multiscale lighting volume, and we
update the model parameters only using the gradient of losses based on these two
supervision images. This is possible since all steps in our pipeline are differentiable,
including the multiscale volume resampling and the environment map rendering.
Therefore, we do not require ground-truth geometry or other labels, in contrast
to prior works in spatially-varying lighting estimation which either require scene
geometry as supervision [36, 80, 116, 127] or for creating training data [33].

5.5.1 Training loss

The loss we minimize during training is the sum of an image reconstruction
loss for rendering a held-out perspective view from our predicted MPI, an image
reconstruction loss for rendering an environment map from our completed multi-
scale lighting volume, and an adversarial loss on the rendered environment map
to encourage plausible high frequency content. For our reconstruction loss, we use
a perceptual loss Lvgg based on features from a pre-trained VGG-19 network [123],
as done by Chen and Koltun [12]. For our adversarial loss, we follow recent work
in conditional image generation [102, 145] and use a PatchGAN [57] discrimina-
tor D with spectral normalization [91] and a hinge adversarial loss [81]. We train
all networks in our pipeline by alternating between minimizing the reconstruction
and adversarial losses with respect to the MPI prediction and volume completion
networks’ parameters:

Ltrain = Lvgg(ir, igt) + Lvgg(er, egt)−D(er), (5.1)

and minimizing the discriminator loss with respect to the discriminator network’s
parameters:

Ldis = max (0, 1−D (egt)) + max (0, 1 +D (er)) , (5.2)
where ir, igt, er, egt are the rendered and ground truth perspective image and envi-
ronment maps, respectively.
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5.5.2 Dataset details

We train our model with photorealistic renderings of indoor scenes from the
InteriorNet dataset [78]. We use 1634 of the provided camera sequences, each con-
taining 1000 perspective projection images and 1000 spherical panorama images
rendered along the same camera path. We reserve 10% of these sequences for our
test set, and sample training examples from the remaining 90% of the sequences.

The images included in InteriorNet are not HDR, and unfortunately no equiv-
alent dataset with HDR radiance values currently exists. In our experiments, we
assume that the InteriorNet images can be treated as linear radiance values by ap-
plying an inverse gamma curve xγ , with γ = 2.2.

To generate training examples from a sequence, we randomly sample three per-
spective projection images, evenly separated with a gap between 1 and 8 frames
along the sequence’s camera path, and a single spherical panorama image within
40 frames of the central perspective projection frame. Two of the perspective pro-
jection images are randomly selected to be the input to our model, while the third
perspective image and the spherical panorama image are used as supervision. We
reject training examples where the camera is closer than 0.1m from the scene, ex-
amples where adjacent perspective cameras are separated by less than 0.05m, and
examples where the average pixel brightness is lower than 0.1. Additionally, we
reject examples where the spherical panorama camera does not move more than
the median scene depth into the scene, relative to the central perspective projection
camera, so that the environment map locations we use for supervision are repre-
sentative of realistic object insertion locations.

5.5.3 Additional details

We implement our full training pipeline in TensorFlow [1] and train our model
on a single NVIDIA Tesla V100 GPU using the Adam optimizer [67] with a batch
size of 1. For more stable training, we first pre-train the MPI prediction network for
240k iterations, then train both the MPI prediction network and volume completion
networks with just image reconstruction losses for 450k iterations, and finally add
the adversarial losses and train both networks along with a discriminator for an
additional 30k iterations. We use an Adam step size of 10−4 for the first two stages
and 10−5 for the third stage.
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Method PSNR (dB) ↑ Angular Error (◦) ↓

all
co

nt
en

t

DeepLight [73] 13.36± 1.29 7.15± 3.24

Garon et al. [36] 13.21± 1.80 12.73± 7.17

Neural Illumination [127] 16.59± 1.91 5.26± 2.84

Ours (MPI only) 15.26± 2.11 6.41± 3.42

Ours (no Ladv) 17.54± 1.97 4.74± 2.70

Ours 17.29± 1.97 4.71± 2.68

ob
se

rv
ed

co
nt

en
t

DeepLight [73] 13.94± 1.96 7.21± 4.05

Garon et al. [36] 14.52± 2.30 12.33± 9.03

Neural Illumination [127] 18.58± 3.55 4.97± 3.42

Ours (MPI only) 17.97± 3.86 4.45± 4.46

Ours (no Ladv) 19.74± 3.64 4.18± 3.29

Ours 19.79± 3.99 3.76± 3.09

Table 5.1. Quantitative results for rendered environment maps. We separately re-
port performance on all content (the complete environment map) and on only ob-
served content (the portion of each environment map that was observed in the
input image). We report the PSNR and RGB angular error (following [73]) for the
predictions for each method versus ground truth spherical environment maps.
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5.6 Results

We validate the benefits of our algorithm by comparing our estimated environ-
ment maps to those of current state-of-the-art algorithms and ablated versions of
our model.

For quantitative comparisons (Table 5.1), we sample a test set of 4950 examples
(using the same training example rejection criteria described above in Sec. 5.5.2)
from our InteriorNet test set, which consists of 163 camera sequences that were held
out during training. Each example consists of two input images and one ground
truth environment map that represents the lighting at a random 3D location within
the reference camera frustum. We select a subset of these examples to show com-
parisons of virtual object insertion results in Fig. 5.6 and show additional insertion
results for our method on real photographs in Fig. 5.7.

5.6.1 Comparisons to baseline methods

We compare our method to trained models of DeepLight [73] and Garon et
al. [36] (which both take a single image as input) provided by the authors, and
to a generous re-implementation of Neural Illumination [127] that has access to
ground-truth geometry, in order to provide a fair comparison against our method
which requires stereo input. Note that all quantitative metrics are computed on
LDR images, due to the limitations of the InteriorNet dataset.

DeepLight [73] takes in a single image and outputs one HDR lighting map for
the entire scene. The training data used for supervision is a set of three light probes
placed 60cm in front of the camera; thus, this location is where the predicted light-
ing should be most accurate. The lighting is output in the form of a 32×32 HDR im-
age of a mirror ball light probe. In order to compare these results with our method,
we resample the mirror ball onto a higher resolution 120 × 240 spherical environ-
ment map, rotated to match the orientation of the target environment map. Be-
cause DeepLight does not predict spatially varying lighting, it underperforms our
method on our test set of environment maps at various locations within the scene
(see Table 5.1). Qualitatively, the limitations of a single environment map are ap-
parent in relighting results since inserted objects cannot be correctly relit as they
are moved around the scene.

Garon et al. [36] predicts spatially-varying lighting from a single image. Given a
particular pixel on an object surface, the method is supervised to match the lighting
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Figure 5.6. Estimated environment maps and images with inserted relit virtual ob-
jects for scenes from our synthetic InteriorNet test set. The leftmost column displays
the input reference image (our method also takes a second input image) and the
portion of the environment map that is visible in this reference image (used to vi-
sualize the portion of the environment map which must be hallucinated in black).
We display quantitative metrics (PSNR and RGB Angular Error) for the predicted
environment maps below each method’s results. Our method outperforms all com-
peting methods, both qualitatively and quantitatively, producing realistic environ-
ment maps with plausible unobserved regions. Inserted specular virtual objects re-
lit with our environment maps have highlights and reflected colors that are closer
to ground truth than those relit by baseline methods.
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Figure 5.7. Real images from the RealEstate10K dataset [166] with inserted virtual
objects relit with spatially-varying lighting estimated by our method. As in Fig. 5.1,
we render perfectly specular objects by querying our multiscale lighting volume for
spatially varying lighting values. The reflected colors are consistent with the scene
content in the original image.
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Figure 5.8. Our estimated illumination is more spatially-coherent than that of Neu-
ral Illumination [127]. Each row in the right two images is a row from environment
maps rendered along the camera ray marked in orange (depth increases with lower
rows). Our estimated illumination varies much more smoothly as a function of 3D
position.

10cm away from that surface in the normal direction. This allows for some spatially-
varying effects but heavily restricts the supported lighting locations. Additionally,
this method predicts a low-dimensional representation of the environment map as
36 spherical harmonic coefficients for efficiency. Since our test set consists of higher
resolution 120× 240 environment maps sampled at locations that are not restricted
to be near surfaces, this method performs significantly worse in our quantitative
comparisons (see Table 5.1). Qualitatively, this lighting representation is sufficient
for relighting diffuse objects, but its low resolution prevents it from plausibly re-
lighting glossy and specular objects (see Fig. 5.6).

Neural Illumination [127] estimates lighting at any 3D scene point by first pre-
dicting a per-pixel geometry for a single input image, warping the input image
with this geometry to render an incomplete environment map, using a 2D CNN to
inpaint unobserved content, and finally using another 2D CNN to convert the en-
vironment map to HDR. We did not have access to the authors’ original implemen-
tation, so we implemented a generous baseline that uses the ground truth depth to
warp the visible scene content into an incomplete spherical environment map, then
uses a 2D CNN to complete the lighting map. Despite having access to the ground
truth geometry for the observed portion of the scene, this method is not guaranteed
to produce spatially-coherent lighting predictions for the unobserved regions of a
given scene, because the 2D completion CNN is run independently at each queried
location. In contrast, our single multiscale 3D representation of the entire scene
guarantees consistency across different 3D lighting locations. Figure 5.8 demon-
strates how our method produces spatially-coherent lighting estimations that vary
much more smoothly with 3D position than lighting estimated by Neural Illumi-
nation. Furthermore, Neural Illumination contains less realistic hallucinations of
unobserved scene content, as shown in Fig. 5.6. This is because it is much harder
for their 2D completion CNN to learn meaningful implicit priors on environment
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maps since they can be observed with arbitrary rotations. In contrast, our strat-
egy predicts lighting in a canonical 3D frame instead of in a 2D environment map
pixel space, so it is much easier for our network to learn meaningful priors on the
distribution of 3D lighting.

5.6.2 Comparisons to ablations of our method

We also present quantitative results from two ablations of our method in Ta-
ble 5.1. Our “MPI only” ablation only uses our prediction of observed scene geom-
etry to render the spherical environment map (and fills unobserved regions with
grey). In this case, the network cannot add light values to the unseen parts of the
scene, so the resulting environment maps are largely incomplete. Since these miss-
ing regions are the most important for relighting objects inserted into the scene,
we see a significant decrease in quality. Interestingly, our full method even out-
performs the “MPI only” ablation for the observed content, which shows that our
multiscale volume completion network learns to correct errors in MPI prediction.
Our “No Ladv” ablation omits the adversarial loss when training the volume com-
pletion network. The resulting environment maps are slightly better quantitatively,
but contain less high frequency detail, resulting in less realistic appearance when
rendering glossy inserted objects.

5.7 Discussion

This chapter demonstrates that using a fixed volumetric 3D lighting model of
the scene is a compelling strategy for estimating spatially-coherent illumination
from images. We have chosen a multiscale volumetric lighting representation to
make this approach tractable and proposed a deep learning pipeline to predict this
lighting representation using only images as supervision. Our results demonstrate
that this strategy produces plausible spatially-coherent lighting and outperforms
prior state-of-the-art work.

However, we have just touched the surface of possible 3D lighting representa-
tions for this task. An exciting direction would be to develop models that adap-
tively allocate 3D samples as needed to represent a scene, rather than being limited
to a fixed multiresolution sampling pattern. We hope that this work enables future
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progress in predicting 3D scene representations for lighting estimation and other
inverse rendering tasks.

In the next chapter, we present a volumetric 3D scene representation that is
parameter-efficient and also adaptive in that the way it uses its parameters to rep-
resent scene content that is optimized in order to maximize the quality of rendered
novel views.
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Chapter 6

View Synthesis with Neural Radiance

Fields

While the volumetric scene representations presented in the previous chapters
have been effective for their respective view synthesis tasks, they are fundamentally
constrained by their fixed sampling pattern. Consequentially, their ability to ren-
der novel views is restricted to the subset of views that their fixed sampling pattern
was designed for. For example, the multiplane image representation is effective at
synthesizing novel “forwards-facing” views, but is insufficient for rendering novel
views that move closer to scene content or rotate with respect to the multiplane
image frustum. Essentially, by fixing the sampling pattern before optimizing scene
geometry, we have decided the maximum resolution of content in any portion of the
scene. In this chapter, we present a radically different strategy for representing vol-
umes in a paramter-efficient manner. Instead of representing scenes as discretized
sampled volumes, we fit a continuous function approximator (in this case a deep
neural network) to represent the scene’s global volumetric function.

This chapter is based on joint work published at ECCV 2020 [90].
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6.1 Introduction

In this work, we address the long-standing problem of view synthesis in a new
way by directly optimizing parameters of a continuous 5D scene representation to
minimize the error of rendering a set of captured images.

We represent a static scene as a continuous 5D function that outputs the radi-
ance emitted in each direction (θ, φ) at each point (x, y, z) in space, and a density
at each point which acts like a differential opacity controlling how much radiance
is accumulated by a ray passing through (x, y, z). Our method optimizes a deep
fully-connected neural network without any convolutional layers (often referred to
as a multilayer perceptron or MLP) to represent this function by regressing from a
single 5D coordinate (x, y, z, θ, φ) to a single volume density and view-dependent
RGB color. To render this neural radiance field (NeRF) from a particular viewpoint
we: 1) march camera rays through the scene to generate a sampled set of 3D points,
2) use those points and their corresponding 2D viewing directions as input to the
neural network to produce an output set of colors and densities, and 3) use clas-
sical volume rendering techniques to accumulate those colors and densities into a
2D image. Because this process is naturally differentiable, we can use gradient de-
scent to optimize this model by minimizing the error between each observed image
and the corresponding views rendered from our representation. Minimizing this
error across multiple views encourages the network to predict a coherent model of
the scene by assigning high volume densities and accurate colors to the locations
that contain the true underlying scene content. Figure 6.2 visualizes this overall
pipeline.

We find that the basic implementation of optimizing a neural radiance field rep-
resentation for a complex scene does not converge to a sufficiently high-resolution
representation and is inefficient in the required number of samples per camera ray.
We address these issues by transforming input 5D coordinates with a positional en-
coding that enables the MLP to represent higher frequency functions, and we pro-
pose a hierarchical sampling procedure to reduce the number of queries required
to adequately sample this high-frequency scene representation.

Our approach inherits the benefits of volumetric representations: both can
represent complex real-world geometry and appearance and are well suited for
gradient-based optimization using projected images. Crucially, our method over-
comes the prohibitive storage costs of discretized voxel grids when modeling com-
plex scenes at high-resolutions. In summary, our technical contributions are:
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Input Images Optimize NeRF Render new views

Figure 6.1. We present a method that optimizes a continuous 5D neural radiance
field representation (volume density and view-dependent color at any continuous
location) of a scene from a set of input images. We use techniques from volume
rendering to accumulate samples of this scene representation along rays to render
the scene from any viewpoint. Here, we visualize the set of 100 input views of the
synthetic Drums scene randomly captured on a surrounding hemisphere, and we
show two novel views rendered from our optimized NeRF representation.

1. An approach for representing continuous scenes with complex geometry and
materials as 5D neural radiance fields, parameterized as basic MLP networks.

2. A differentiable rendering procedure based on classical volume rendering
techniques, which we use to optimize these representations from standard
RGB images. This includes a hierarchical sampling strategy to allocate the
MLP’s capacity towards space with visible scene content.

3. A positional encoding to map each input 5D coordinate into a higher dimen-
sional space, which enables us to successfully optimize neural radiance fields
to represent high-frequency scene content.

We demonstrate that our resulting neural radiance field method quantitatively and
qualitatively outperforms state-of-the-art view synthesis methods, including works
that fit neural 3D representations to scenes as well as works that train deep convolu-
tional networks to predict sampled volumetric representations. As far as we know,
the work in this chapter presents the first continuous neural scene representation
that is able to render high-resolution photorealistic novel views of real objects and
scenes from RGB images captured in natural settings.
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6.2 Related Work

A promising recent direction in computer vision is encoding objects and scenes
in the weights of an MLP that directly maps from a 3D spatial location to an im-
plicit representation of the shape, such as the signed distance [18] at that location.
However, these methods have so far been unable to reproduce realistic scenes with
complex geometry with the same fidelity as techniques that represent scenes using
discrete representations such as triangle meshes or voxel grids. In this section, we
review these two lines of work and contrast them with our approach, which en-
hances the capabilities of neural scene representations to produce state-of-the-art
results for rendering complex realistic scenes.

A similar approach of using MLPs to map from low-dimensional coordinates
to colors has also been used for representing other graphics functions such as
images [134], textured materials [49, 96, 108, 109], and indirect illumination val-
ues [110].

Neural 3D shape representations Recent work has investigated the implicit rep-
resentation of continuous 3D shapes as level sets by optimizing deep networks
that map xyz coordinates to signed distance functions [59, 100] or occupancy
fields [38, 88]. However, these models are limited by their requirement of access
to ground truth 3D geometry, typically obtained from synthetic 3D shape datasets
such as ShapeNet [128]. Subsequent work has relaxed this requirement of ground
truth 3D shapes by formulating differentiable rendering functions that allow neu-
ral implicit shape representations to be optimized using only 2D images. Niemeyer
et al. [94] represent surfaces as 3D occupancy fields and use a numerical method
to find the surface intersection for each ray, then calculate an exact derivative us-
ing implicit differentiation. Each ray intersection location is provided as the input
to a neural 3D texture field that predicts a diffuse color for that point. Sitzmann et
al. [126] use a less direct neural 3D representation that simply outputs a feature vec-
tor and RGB color at each continuous 3D coordinate, and propose a differentiable
rendering function consisting of a recurrent neural network that marches along
each ray to decide where the surface is located.

Though these techniques can potentially represent complicated and high-
resolution geometry, they have so far been limited to simple shapes with low ge-
ometric complexity, resulting in oversmoothed renderings. We show that an al-
ternate strategy of optimizing networks to encode 5D radiance fields (3D volumes
with 2D view-dependent appearance) can represent higher-resolution geometry
and appearance to render photorealistic novel views of complex scenes.
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View synthesis and image-based rendering Given a dense sampling of views,
photorealistic novel views can be reconstructed by simple light field sample in-
terpolation techniques [76, 17, 19]. For novel view synthesis with sparser view
sampling, the computer vision and graphics communities have made significant
progress by predicting traditional geometry and appearance representations from
observed images. One popular class of approaches uses mesh-based representa-
tions of scenes with either diffuse [144] or view-dependent [7, 21, 151] appear-
ance. Differentiable rasterizers [14, 37, 83, 85] or pathtracers [77, 95] can directly
optimize mesh representations to reproduce a set of input images using gradient
descent. However, gradient-based mesh optimization based on image reprojection
is often difficult, likely because of local minima or poor conditioning of the loss
landscape. Furthermore, this strategy requires a template mesh with fixed topol-
ogy to be provided as an initialization before optimization [77], which is typically
unavailable for unconstrained real-world scenes.

Another class of methods use volumetric representations to address the task of
high-quality photorealistic view synthesis from a set of input RGB images. Volu-
metric approaches are able to realistically represent complex shapes and materials,
are well-suited for gradient-based optimization, and tend to produce less visually
distracting artifacts than mesh-based methods. Early volumetric approaches used
observed images to directly color voxel grids [69, 115, 136]. More recently, sev-
eral methods [30, 50, 62, 89, 103, 132, 142, 166] have used large datasets of multi-
ple scenes to train deep networks that predict a sampled volumetric representation
from a set of input images, and then use either alpha-compositing [105] or learned
compositing along rays to render novel views at test time. Other works have opti-
mized a combination of convolutional networks (CNNs) and sampled voxel grids
for each specific scene, such that the CNN can compensate for discretization ar-
tifacts from low resolution voxel grids [125] or allow the predicted voxel grids
to vary based on input time or animation controls [84]. While these volumetric
techniques have achieved impressive results for novel view synthesis, their ability
to scale to higher resolution imagery is fundamentally limited by poor time and
space complexity due to their discrete sampling — rendering higher resolution im-
ages requires a finer sampling of 3D space. We circumvent this problem by instead
encoding a continuous volume within the parameters of a deep fully-connected neu-
ral network, which not only produces significantly higher quality renderings than
prior volumetric approaches, but also requires just a fraction of the storage cost of
those sampled volumetric representations.
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Figure 6.2. An overview of our neural radiance field scene representation and
differentiable rendering procedure. We synthesize images by sampling 5D coordi-
nates (location and viewing direction) along camera rays (a), feeding those loca-
tions into an MLP to produce a color and volume density (b), and using volume
rendering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by minimiz-
ing the residual between synthesized and ground truth observed images (d).

6.3 Neural Radiance Field Scene Representation

We represent a continuous scene as a 5D vector-valued function whose input is
a 3D location x = (x, y, z) and 2D viewing direction (θ, φ), and whose output is an
emitted color c = (r, g, b) and volume density σ. In practice, we express direction as
a 3D Cartesian unit vector d. We approximate this continuous 5D scene represen-
tation with an MLP network FΘ : (x,d) → (c, σ) and optimize its weights Θ to map
from each input 5D coordinate to its corresponding volume density and directional
emitted color.

We encourage the representation to be multiview consistent by restricting the
network to predict the volume density σ as a function of only the location x, while
allowing the RGB color c to be predicted as a function of both location and viewing
direction. To accomplish this, the MLP FΘ first processes the input 3D coordinate x
with 8 fully-connected layers (using ReLU activations and 256 channels per layer),
and outputs σ and a 256-dimensional feature vector. This feature vector is then
concatenated with the camera ray’s viewing direction and passed to one additional
fully-connected layer (using a ReLU activation and 128 channels) that output the
view-dependent RGB color.

See Fig. 6.3 for an example of how our method uses the input viewing direction
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(a) View 1 (b) View 2 (c) Radiance Distributions

Figure 6.3. A visualization of view-dependent emitted radiance. Our neural radi-
ance field representation outputs RGB color as a 5D function of both spatial position
x and viewing direction d. Here, we visualize example directional color distribu-
tions for two spatial locations in our neural representation of the Ship scene. In (a)
and (b), we show the appearance of two fixed 3D points from two different cam-
era positions: one on the side of the ship (orange insets) and one on the surface
of the water (blue insets). Our method predicts the changing specular appearance
of these two 3D points, and in (c) we show how this behavior generalizes continu-
ously across the whole hemisphere of viewing directions.

to represent non-Lambertian effects. As shown in Fig. 6.4, a model trained without
view dependence (only x as input) has difficulty representing specularities.

6.4 Volume Rendering with Radiance Fields

Our 5D neural radiance field represents a scene as the volume density and di-
rectional emitted radiance at any point in space. We render the color of any ray
passing through the scene using principles from classical volume rendering [60].
The volume density σ(x) can be interpreted as the differential probability of a ray
terminating at an infinitesimal particle at location x. The expected color C(r) of
camera ray r(t) = o + td with near and far bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt , where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (6.1)

The function T (t) denotes the accumulated transmittance along the ray from tn to t,
i.e., the probability that the ray travels from tn to twithout hitting any other particle.
Rendering a view from our continuous neural radiance field requires estimating
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this integral C(r) for a camera ray traced through each pixel of the desired virtual
camera.

We numerically estimate this continuous integral using quadrature. Deter-
ministic quadrature, which is typically used for rendering discretized voxel grids,
would effectively limit our representation’s resolution because the MLP would only
be queried at a fixed discrete set of locations. Instead, we use a stratified sampling
approach where we partition [tn, tf ] into N evenly-spaced bins and then draw one
sample uniformly at random from within each bin:

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
. (6.2)

Although we use a discrete set of samples to estimate the integral, stratified sam-
pling enables us to represent a continuous scene representation because it results in
the MLP being evaluated at continuous positions over the course of optimization.
We use these samples to estimate C(r) with the quadrature rule discussed in the
volume rendering review by Max [86]:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci , where Ti = exp

(
−

i−1∑
j=1

σjδj

)
, (6.3)

where δi = ti+1 − ti is the distance between adjacent samples. This function for
calculating Ĉ(r) from the set of (ci, σi) values is trivially differentiable and reduces
to traditional alpha compositing with alpha values αi = 1− exp(−σiδi).

6.5 Optimizing a Neural Radiance Field

In the previous section we have described the core components necessary for
modeling a scene as a neural radiance field and rendering novel views from this
representation. However, we observe that these components are not sufficient for
achieving state-of-the-art quality, as demonstrated in Section 6.6.4). We introduce
two improvements to enable representing high-resolution complex scenes. The first
is a positional encoding of the input coordinates that assists the MLP in represent-
ing high-frequency functions, and the second is a hierarchical sampling procedure
that allows us to efficiently sample this high-frequency representation.
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Ground Truth Complete Model No View Dependence No Positional Encoding

Figure 6.4. Here we visualize how our full model benefits from representing view-
dependent emitted radiance and from passing our input coordinates through a
high-frequency positional encoding. Removing view dependence prevents the
model from recreating the specular reflection on the bulldozer tread. Removing
the positional encoding drastically decreases the model’s ability to represent high
frequency geometry and texture, resulting in an oversmoothed appearance.

6.5.1 Positional encoding

Despite the fact that neural networks are universal function approximators [53],
we found that having the network FΘ directly operate on xyzθφ input coordinates
results in renderings that perform poorly at representing high-frequency variation
in color and geometry. This is consistent with recent work by Rahaman et al. [107],
which shows that deep networks are biased towards learning lower frequency func-
tions. They additionally show that mapping the inputs to a higher dimensional
space using high frequency functions before passing them to the network enables
better fitting of data that contains high frequency variation.

We leverage these findings in the context of neural scene representations, and
show that reformulating FΘ as a composition of two functions FΘ = F ′Θ ◦ γ, one
learned and one not, significantly improves performance (see Fig. 6.4 and Ta-
ble 6.2). Here γ is a mapping from R into a higher dimensional space R2L, and
F ′Θ is still simply a regular MLP. Formally, the encoding function we use is:

γ(p) =
(

sin(20πp), cos(20πp), · · · , sin
(
2L−1πp

)
, cos

(
2L−1πp

) )
. (6.4)

This function γ(·) is applied separately to each of the three coordinate values in x
(which are normalized to lie in [−1, 1]) and to the three components of the Carte-
sian viewing direction unit vector d (which by construction lie in [−1, 1]). In our
experiments, we set L = 10 for γ(x) and L = 4 for γ(d).

A similar mapping is used in the popular Transformer architecture [143], where
it is referred to as a positional encoding. However, Transformers use it for a different
goal of providing the discrete positions of tokens in a sequence as input to an archi-
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tecture that does not contain any notion of order. In contrast, we use these functions
to map continuous input coordinates into a higher dimensional space to enable our
MLP to more easily approximate a higher frequency function. Concurrent work
on a related problem of modeling 3D protein structure from projections [165] also
utilizes a similar input coordinate mapping.

6.5.2 Hierarchical volume sampling

Our rendering strategy of densely evaluating the neural radiance field network
at N query points along each camera ray is inefficient: free space and occluded
regions that do not contribute to the rendered image are still sampled repeatedly.
We draw inspiration from early work in volume rendering [75] and propose a hi-
erarchical representation that increases rendering efficiency by allocating samples
proportionally to their expected effect on the final rendering.

Instead of just using a single network to represent the scene, we simultaneously
optimize two networks: one “coarse” and one “fine”. We first sample a set of Nc

locations using stratified sampling, and evaluate the “coarse” network at these lo-
cations as described in Eqns. 6.2 and 6.3. Given the output of this “coarse” network,
we then produce a more informed sampling of points along each ray where sam-
ples are biased towards the relevant parts of the volume. To do this, we first rewrite
the alpha composited color from the coarse network Ĉc(r) in Eqn. 6.3 as a weighted
sum of all sampled colors ci along the ray:

Ĉc(r) =
Nc∑
i=1

wici , wi = Ti(1− exp(−σiδi)) . (6.5)

Normalizing these weights as ŵi = wi/
∑Nc

j=1 wj produces a piecewise-constant PDF
along the ray. We sample a second set of Nf locations from this distribution us-
ing inverse transform sampling, evaluate our “fine” network at the union of the
first and second set of samples, and compute the final rendered color of the ray
Ĉf (r) using Eqn. 6.3 but using all Nc +Nf samples. This procedure allocates more
samples to regions we expect to contain visible content. This addresses a similar
goal as importance sampling, but we use the sampled values as a nonuniform dis-
cretization of the whole integration domain rather than treating each sample as an
independent probabilistic estimate of the entire integral.
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6.5.3 Implementation details

We optimize a separate neural continuous volume representation network for
each scene. This requires only a dataset of captured RGB images of the scene, the
corresponding camera poses and intrinsic parameters, and scene bounds (we use
ground truth camera poses, intrinsics, and bounds for synthetic data, and use the
COLMAP structure-from-motion package [113] to estimate these parameters for
real data). At each optimization iteration, we randomly sample a batch of cam-
era rays from the set of all pixels in the dataset, and then follow the hierarchical
sampling described in Sec. 6.5.2 to query Nc samples from the coarse network and
Nc +Nf samples from the fine network. We then use the volume rendering proce-
dure described in Sec. 6.4 to render the color of each ray from both sets of samples.
Our loss is simply the total squared error between the rendered and true pixel col-
ors for both the coarse and fine renderings:

L =
∑
r∈R

[∥∥∥Ĉc(r)− C(r)
∥∥∥2

2
+
∥∥∥Ĉf (r)− C(r)

∥∥∥2

2

]
(6.6)

where R is the set of rays in each batch, and C(r), Ĉc(r), and Ĉf (r) are the ground
truth, coarse volume predicted, and fine volume predicted RGB colors for ray r

respectively. Note that even though the final rendering comes from Ĉf (r), we also
minimize the loss of Ĉc(r) so that the weight distribution from the coarse network
can be used to allocate samples in the fine network.

In our experiments, we use a batch size of 4096 rays, each sampled at Nc = 64
coordinates in the coarse volume and Nf = 128 additional coordinates in the fine
volume. We use the Adam optimizer [67] with a learning rate that begins at 5×10−4

and decays exponentially to 5× 10−5 over the course of optimization (other Adam
hyperparameters are left at default values of β1 = 0.9, β2 = 0.999, and ε = 10−7).
The optimization for a single scene typically take around 100–300k iterations to
converge on a single NVIDIA V100 GPU (about 1–2 days).

6.6 Results

We quantitatively (Tables 6.1) and qualitatively (Figs. 6.5 and 6.6) show that our
method outperforms prior work, and provide extensive ablation studies to validate
our design choices (Table 6.2).
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Diffuse Synthetic 360◦ [125] Realistic Synthetic 360◦ Real Forward-Facing [89]
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SRN [126] 33.20 0.963 0.073 22.26 0.846 0.170 22.84 0.668 0.378

NV [84] 29.62 0.929 0.099 26.05 0.893 0.160 - - -
LLFF [89] 34.38 0.985 0.048 24.88 0.911 0.114 24.13 0.798 0.212

Ours 40.15 0.991 0.023 31.01 0.947 0.081 26.50 0.811 0.250

Table 6.1. Our method quantitatively outperforms prior work on datasets of
both synthetic and real images. We report PSNR/SSIM (higher is better) and
LPIPS [163] (lower is better). The DeepVoxels [125] dataset consists of 4 diffuse
objects with simple geometry. Our realistic synthetic dataset consists of pathtraced
renderings of 8 geometrically complex objects with complex non-Lambertian mate-
rials. The real dataset consists of handheld forward-facing captures of 8 real-world
scenes (NV cannot be evaluated on this data because it only reconstructs objects
inside a bounded volume). Though LLFF achieves slightly better LPIPS, we urge
readers to view our supplementary video where our method achieves better mul-
tiview consistency and produces fewer artifacts than all baselines.

6.6.1 Datasets

Synthetic renderings of objects We first show experimental results on two
datasets of synthetic renderings of objects (Table 6.1, “Diffuse Synthetic 360◦” and
“Realistic Synthetic 360◦”). The DeepVoxels [125] dataset contains four Lamber-
tian objects with simple geometry. Each object is rendered at 512× 512 pixels from
viewpoints sampled on the upper hemisphere (479 as input and 1000 for testing).
We additionally generate our own dataset containing pathtraced images of eight
objects that exhibit complicated geometry and realistic non-Lambertian materials.
Six are rendered from viewpoints sampled on the upper hemisphere, and two are
rendered from viewpoints sampled on a full sphere. We render 100 views of each
scene as input and 200 for testing, all at 800× 800 pixels.

Real images of complex scenes We show results on complex real-world scenes
captured with roughly forward-facing images (Table 6.1, “Real Forward-Facing”).
This dataset consists of 8 scenes captured with a handheld cellphone (5 taken from
the LLFF paper and 3 that we capture), captured with 20 to 62 images, and hold
out 1/8 of these for the test set. All images are 1008× 756 pixels.
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Figure 6.5. Comparisons on test-set views for scenes from our new synthetic dataset
generated with a physically-based renderer. Our method is able to recover fine
details in both geometry and appearance, such as Ship’s rigging, Lego’s gear and
treads, Microphone’s shiny stand and mesh grille, and Material’s non-Lambertian
reflectance. LLFF exhibits banding artifacts on the Microphone stand and Material’s
object edges and ghosting artifacts in Ship’s mast and inside the Lego object. SRN
produces blurry and distorted renderings in every case. Neural Volumes cannot
capture the details on the Microphone’s grille or Lego’s gears, and it completely fails
to recover the geometry of Ship’s rigging.
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Figure 6.6. Comparisons on test-set views of real world scenes. LLFF is specifically
designed for this use case (forward-facing captures of real scenes). Our method is
able to represent fine geometry more consistently across rendered views than LLFF,
as shown in Fern’s leaves and the skeleton ribs and railing in T-rex. Our method
also correctly reconstructs partially occluded regions that LLFF struggles to render
cleanly, such as the yellow shelves behind the leaves in the bottom Fern crop and
green leaves in the background of the bottom Orchid crop. Blending between mul-
tiples renderings can also cause repeated edges in LLFF, as seen in the top Orchid
crop. SRN captures the low-frequency geometry and color variation in each scene
but is unable to reproduce any fine detail.
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6.6.2 Comparisons

To evaluate our model we compare against current top-performing techniques
for view synthesis, detailed below. All methods use the same set of input views to
train a separate network for each scene except Local Light Field Fusion [89], which
trains a single 3D convolutional network on a large dataset, then uses the same
trained network to process input images of new scenes at test time.

Neural Volumes (NV) [84] synthesizes novel views of objects that lie entirely
within a bounded volume in front of a distinct background (which must be sepa-
rately captured without the object of interest). It optimizes a deep 3D convolutional
network to predict a discretized RGBα voxel grid with 1283 samples as well as a 3D
warp grid with 323 samples. The algorithm renders novel views by marching cam-
era rays through the warped voxel grid.

Scene Representation Networks (SRN) [126] represent a continuous scene as
an opaque surface, implicitly defined by a MLP that maps each (x, y, z) coordinate
to a feature vector. They train a recurrent neural network to march along a ray
through the scene representation by using the feature vector at any 3D coordinate
to predict the next step size along the ray. The feature vector from the final step is
decoded into a single color for that point on the surface. Note that SRN is a better-
performing followup to DeepVoxels [125] by the same authors, which is why we
do not include comparisons to DeepVoxels.

Local Light Field Fusion (LLFF) [89] LLFF is designed for producing photoreal-
istic novel views for well-sampled forward facing scenes. It uses a trained 3D con-
volutional network to directly predict a discretized frustum-sampled RGBα grid
(multiplane image or MPI [166]) for each input view, then renders novel views by
alpha compositing and blending nearby MPIs into the novel viewpoint.

6.6.3 Analysis

We thoroughly outperform both baselines that also optimize a separate network
per scene (NV and SRN) in all scenarios. Furthermore, we produce qualitatively
and quantitatively superior renderings compared to LLFF (across all except one
metric) while using only their input images as our entire training set.



6.6. RESULTS 114

The SRN method produces heavily smoothed geometry and texture, and its rep-
resentational power for view synthesis is limited by selecting only a single depth
and color per camera ray. The NV baseline is able to capture reasonably detailed
volumetric geometry and appearance, but its use of an underlying explicit 1283

voxel grid prevents it from scaling to represent fine details at high resolutions. LLFF
specifically provides a “sampling guideline” to not exceed 64 pixels of disparity be-
tween input views, so it frequently fails to estimate correct geometry in the synthetic
datasets which contain up to 400-500 pixels of disparity between views. Addition-
ally, LLFF blends between different scene representations for rendering different
views, resulting in perceptually-distracting inconsistency.

The biggest practical tradeoffs between these methods are time versus space.
All compared single scene methods take at least 12 hours to train per scene. In
contrast, LLFF can process a small input dataset in under 10 minutes. However,
LLFF produces a large 3D voxel grid for every input image, resulting in enormous
storage requirements (over 15GB for one “Realistic Synthetic” scene). Our method
requires only 5 MB for the network weights (a relative compression of 3000× com-
pared to LLFF), which is even less memory than the input images alone for a single
scene from any of our datasets.

6.6.4 Ablation studies

We validate our algorithm’s design choices and parameters with an exten-
sive ablation study in Table 6.2. We present results on our “Realistic Synthetic
360◦” scenes. Row 9 shows our complete model as a point of reference. Row 1
shows a minimalist version of our model without positional encoding (PE), view-
dependence (VD), or hierarchical sampling (H). In rows 2–4 we remove these three
components one at a time from the full model, observing that positional encoding
(row 2) and view-dependence (row 3) provide the largest quantitative benefit fol-
lowed by hierarchical sampling (row 4). Rows 5–6 show how our performance
decreases as the number of input images is reduced. Note that our method’s per-
formance using only 25 input images still exceeds NV, SRN, and LLFF across all
metrics when they are provided with 100 images. In rows 7–8 we validate our
choice of the maximum frequency L used in our positional encoding for x (the
maximum frequency used for d is scaled proportionally). Only using 5 frequencies
reduces performance, but increasing the number of frequencies from 10 to 15 does
not improve performance. We believe the benefit of increasing L is limited once
2L exceeds the maximum frequency present in the sampled input images (roughly
1024 in our data).



6.7. DISCUSSION 115

Input #Im. L (Nc , Nf ) PSNR↑ SSIM↑ LPIPS↓

1) No PE, VD, H xyz 100 - (256, - ) 26.67 0.906 0.136

2) No Pos. Encoding xyzθφ 100 - (64, 128) 28.77 0.924 0.108

3) No View Dependence xyz 100 10 (64, 128) 27.66 0.925 0.117

4) No Hierarchical xyzθφ 100 10 (256, - ) 30.06 0.938 0.109

5) Far Fewer Images xyzθφ 25 10 (64, 128) 27.78 0.925 0.107

6) Fewer Images xyzθφ 50 10 (64, 128) 29.79 0.940 0.096

7) Fewer Frequencies xyzθφ 100 5 (64, 128) 30.59 0.944 0.088

8) More Frequencies xyzθφ 100 15 (64, 128) 30.81 0.946 0.096

9) Complete Model xyzθφ 100 10 (64, 128) 31.01 0.947 0.081

Table 6.2. An ablation study of our model. Metrics are averaged over the 8 scenes
from our realistic synthetic dataset. See Sec. 6.6.4 for detailed descriptions.

6.7 Discussion

Our work directly addresses deficiencies of prior work that uses MLPs to repre-
sent objects and scenes as continuous functions. We demonstrate that representing
scenes as 5D neural radiance fields (an MLP that outputs volume density and view-
dependent emitted radiance as a function of 3D location and 2D viewing direc-
tion) produces better renderings than the previously-dominant approach of train-
ing deep convolutional networks to output discretized voxel representations.

Although we have proposed a hierarchical sampling strategy to make render-
ing more sample-efficient (for both training and testing), there is still much more
progress to be made in investigating techniques to efficiently optimize and render
neural radiance fields. Another direction for future work is interpretability: sam-
pled representations such as voxel grids and meshes admit reasoning about the
expected quality of rendered views and failure modes, but it is unclear how to an-
alyze these issues when we encode scenes in the weights of a deep neural network.
We believe that this work makes progress towards a graphics pipeline based on real
world imagery, where complex scenes could be composed of neural radiance fields
optimized from images of actual objects and scenes.
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Chapter 7

Conclusion

In this dissertation, we have shown that using observed images to recover a
persistent volumetric 3D model of the scene is a compelling strategy for creating a
digital representation of real-world objects and scenes that can be rendered from
novel unobserved viewpoints, just like hand-crafted 3D graphics models. Two key
contributions that enabled our success were designing volumetric scene representa-
tions that are parameter-efficient, and optimizing these representations end-to-end
to maximize the fidelity of the rendered novel views.

An important lesson I have learned in my work on view synthesis is the extent to
which our tools shape our thinking. This has been a prevalent theme throughout
the history of view synthesis. In the pre-deep-learning era, view synthesis algo-
rithms for sparsely-captured images were largely designed to overcome the flaws
in geometry estimated by off-the-shelf structure-from-motion, multiview stereo,
and meshing algorithms. Similarly, early works applying deep learning to view
synthesis were largely designed to use regularly-sampled grid representations in
order to fit into the array programming paradigm popularized by deep learning
software frameworks. I hope that the overall theme of this dissertation, rethinking
the scene representations we use for the task of view synthesis, helps emphasize the
importance of realizing the limitations of our current tools and frameworks and en-
courages the research community to pursue solutions based on their fundamental
attributes.

While the work presented in this dissertation has substantially increased the ca-
pability of novel view synthesis algorithms, this functionality alone does not fully
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capture everything we desire from 3D graphics assets. However, our work has
made important progress to this goal, and we are excited to see how future work
builds upon the representations we have developed to realize this grand goal. In-
deed, the neural radiance field representation discussed in Chapter 6 has already
inspired follow-up works that extend the representation to enable relighting [130]
and dynamic scenes [79, 101]. It would be interesting to further extend this repre-
sentation to enable physical simulation and rigging for user-controlled animation.

While this dissertation has shown that volumetric representations provide com-
pelling benefits for view synthesis, these benefits primarily enable efficient and ef-
fective recovery of scene geometry from images, at the cost of efficient rendering
after the scene representation has been recovered. Put another way, the volumetric
scene representations presented in this paper are most effective for the computer vi-
sion goal of estimating a scene representation, as opposed to the computer graphics
goal of rendering a given scene representation. Furthermore, the modern computer
graphics pipeline has been largely developed around triangle meshes, and there
are many tools and techniques built for editing mesh-based geometry that are not
easily applied to volumetric geometry. I think that a potentially fruitful direction
for future work would be to explore hybrid representations that combine the opti-
mization benefits of volumes with the efficient rendering, editing, and simulation
benefits of surfaces.

Finally, I look forward to the day when anyone can easily create convincing digi-
tal 3D content from photos of scenes and objects, and seamlessly use this real world
content in digital art, video games, photographs, and films.
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