
Multiplicative Coding and Factorization in Vector Symbolic
Models of Cognition

Spencer Kent

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-215
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-215.html

December 18, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Multiplicative coding and factorization in vector symbolic models of cognition

by

Spencer Kent

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Bruno A. Olshausen, Co-chair
Professor Alexei A. Efros, Co-chair

Assistant Professor Steven T. Piantadosi

Fall 2020

Multiplicative coding and factorization in vector symbolic models of cognition

Copyright 2020
by

Spencer Kent

1

Abstract

Multiplicative coding and factorization in vector symbolic models of cognition

by

Spencer Kent

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Bruno A. Olshausen, Co-chair

Professor Alexei A. Efros, Co-chair

This dissertation covers my attempts to confront the challenge and promise of multiplicative
representations, and their attendant factorization problems, in the brain. This is grounded
in a paradigm for modeling cognition that defines an algebra over high-dimensional vectors
and presents a compelling factorization problem. The proposed solution to this problem,
a recurrent neural network architecture called Resonator Networks, has several interesting
properties that make it uniquely effective on this problem and may provide some principles
for designing a new class of neural network models. I show some applications of multiplicative
distributed codes for representing visual scenes and suggest how such representations may
be a useful tool for unifying symbolic and connectionist theories of intelligence.

i

To Edie.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Levels of intelligence . 2
1.2 The primacy of factorization . 3
1.3 Vector Symbolic Architectures (VSAs) . 6
1.4 Previous approaches to factorization . 13

2 Resonator Networks 16
2.1 Statement of the problem . 17
2.2 Factoring by search in superposition . 18
2.3 Resonator Networks . 19
2.4 The optimization approach . 21
2.5 Results . 26
2.6 Discussion . 43

3 Applications of VSAs and Resonator Networks 46
3.1 Tree search . 46
3.2 Visual scene analysis . 48
3.3 Vector symbolic scene transformation . 63
3.4 Sub-symbolic superposition . 68
3.5 Analogical Reasoning . 69
3.6 Summary . 75

A Appendix to chapter 2 77
A.1 Implementation details . 77
A.2 Operational Capacity . 78
A.3 Table of benchmark algorithms . 80
A.4 Tensor Decompositions and Alternating Least Squares 82

iii

A.5 General notes on gradient-based algorithms 85
A.6 Iterative Soft Thresholding (ISTA) and Fast Iterative Soft Thresholding (FISTA) 86
A.7 Projected Gradient Descent . 88
A.8 Multiplicative Weights . 89
A.9 Map Seeking Circuits . 91
A.10 Percolated noise in Outer Product Resonator Networks 92

Bibliography 97

iv

List of Figures

1.1 Luminance factorization (from Adelson and Pentland (1996)) 4
1.2 Example of a binary tree . 11
1.3 Adelson and Pentland’s alternating minimization 14

2.1 Percolated noise in Resonator Networks . 30
2.2 Total accuracy for Resonator factorization . 31
2.3 Operational capacity, Resonator Networks vs. benchmarks 32
2.4 Operational capacity scaling of Resonator Networks with OP weights 34
2.5 Iterations until convergence . 36
2.6 Factorization speed benchmark . 37
2.7 Regimes of convergence . 38
2.8 Factoring a corrupted composite . 39
2.9 Trajectories in the hypercube interior . 42

3.1 Tree search with a Resonator Network . 47
3.2 Generating a vector symbolic encoding of a visual scene 49
3.3 Scene decomposition with a Resonator Network 51
3.4 Resonator Networks correct encoding errors . 52
3.5 Multi-factor MNIST scenes for pixel superposition experiments 53
3.6 Pixel superposition encoding of shape templates 55
3.7 Bipolar encoding makes shapes more orthogonal 55
3.8 Example scenes from pixel superposition experiments 58
3.9 Normalized sinc function . 61
3.10 Tiling a domain with the phase-scaling encoding 62
3.11 Expected bandwidth of phase-scaling encoding 62
3.12 Variance of phase-scaling encoding . 63
3.13 Image transformation geometry diagram . 64
3.14 Vector Symbolic Scene Transformer . 65
3.15 VSST results on MNIST scenes . 66
3.16 VSST results on 3D scenes . 67
3.17 Sub-symbolic superposition encoder . 69
3.18 Multi-object generalization from Sub-symbolic superposition 70
3.19 Similarity-preservation of binding for real-valued HRRs 74

v

3.20 Analogy arithmetic matched to encoding . 75
3.21 End-to-end analogical reasoning performance . 76

A.1 Operational capacity comparison, 4 factors . 79
A.2 Capacity scaling quadratic fit coefficient . 80
A.3 Tucker decomposition with 3 factors . 85
A.4 Effect of self-connections on Hopfield Networks 93
A.5 Verification of percolated noise theory . 96

vi

List of Tables

3.1 Factorization accuracies for multi-factor digit scenes 58
3.2 Reported factorizations for scenes in Figure 3.8 58
3.3 Vector encodings in analogy example . 71

A.1 Resonator Network operational capacity fit parameters 80
A.2 Dynamics of benchmark algorithms from Chapter 2 81

vii

Acknowledgments

The ideas in this thesis have been shaped most of all by my advisor Bruno Olshausen, whose
sustained patience and support has made this work possible. Almost without exception over
the course of 5 years, I left meetings with Bruno more excited about my own research than I
had been the day before. This is a standard of mentorship that I hope to live up to in my own
professional life. Among Bruno’s many talents, he is a great communicator of science, and I
have been consistently inspired to improve my own writing and speaking by the example he
sets for his students.

The Redwood Center for Theoretical Neuroscience is a strange and wonderful collection
of misfits who I’ve been lucky to share ideas and Friday morning pastries with over the
last 5 years. It’s free-wheeling style is not for everyone. Sometimes I wondered whether
it was even for me. In the end, I come back around to the reason I joined in early 2016:
the intellectual freedom offered to researchers, from top to bottom, is extraordinary. This,
coupled with a certain rejection of conventional wisdom and a scrappy ethos, has made the
Redwood Center a wonderful place to spend my PhD. Among my many colleagues there I
want to especially thank Pentti Kanerva, whose work on Sparse Distributed Memory and then
Vector Symbolic Architectures set me on a fun and unusual path when I read about it early
on in my time here. The way Pentti approaches science, and people, makes me want to keep
doing research. Thanks also to my officemates Michael Fang and Connor Bybee who shared
countless hours–mostly of quiet focus but a few of needed distraction–in Evans 563. Yubei
Chen, Vasha DuTell, and Mayur Mudigonda provided intellectual and emotional stimulation
in ways that made things more meaningful. My longtime collaboration with Paxon Frady
taught me a great deal about the culture of academia, and about myself. Thanks also to
Navneedh Maudgalya, with whom I started a short but productive collaboration in the final
year of my program.

Lifelong friendships built outside of my working life are what I cherish most about the
last 5 years. Anusha, Matt, Brian, Chris, and Gideon are among those who have made it
all so interesting. Thanks to them for indulging my eccentricities and sharing their many
talents.

Lastly, thanks are due to my family. With the aunts, uncles, and cousins of my Albu-
querque tribe I’ve been set up with a springboard for life that not every young person is
lucky enough to get. My brother Carson is my biggest inspiration, closest confidant, and
strongest ally. Thanks most of all to Mom and Dad, whose unconditional love has always
supplied me with the strength to keep going.

1

Chapter 1

Introduction

Intelligence research today is faced with the eighty-year-old challenge of explaining how rich
and flexible cognitive data structures can arise from the wetware of the brain. Theories
that build bottom-up from highly simplified models of neural networks enjoy widespread
popularity and some impressive capabilities. Theories that build top down have more to say
about what actually makes a system intelligent. Where they will ultimately meet, no one
knows. This dissertation is about a computation which I believe to be fundamental for both
perspectives and perhaps a key to moving between the two.

A brief note on the notation to be used: bolded lower-case letters (x) are vectors, bolded
upper-case letters (X) are matrices, and words or letters in typewriter font are cognitive
concepts. A cognitive concept is a concept for which I am making no particular choice
of representation. Denmark, bicycle, noun, red, and 42 are all perfectly valid cognitive
concepts. What this thesis (and indeed much of intelligence research) is concerned with
is how to best represent these concepts. Throughout this work, concepts are represented
with high-dimensional vectors. What is meant by high dimensional is ≥ 1000. I write
Denmark ∼ d to indicate that the cognitive concept Denmark gets represented by vector d, a
mapping referred to as encoding. Inferring the concept associated to d is then decoding.

Reasoning requires methods for combining cognitive concepts. One of the the most
important is conjunction. Conjunction allows us to represent a red bicycle, using the more
fundamental concepts red and bicycle. We will notate the conjunction of two concepts
A and B as A ∧ B or (A, B). It is critical that we are able to form conjunctions–this is the
gateway to building more complex concepts out of simple parts. In our space of vector
representations a conjunction can be produced via an operation that “multiplies” vectors in
a particular way. Multiplication in this context shares essentially all of the properties of
multiplication applied to real numbers. In the case that the cognitive concepts obey some
multiplicative group structure, this may be part of a literal isomorphism between the space
of cognitive concepts and the space of their vector representations.

What is meant by “multiplicative codes”–in the title of and throughout this dissertation–
is simply vector representations formed by a multiplicative combination of other vectors. We
might have called these “conjunctive codes” were it not for the fact that this has historically

CHAPTER 1. INTRODUCTION 2

had a rather specific meaning as tensor representations formed via a generic outer product.
Vectors produced by a multiplicative operation are composite while the vectors that were
combined multiplicatively are its factors. When a representation has been generated via a
multiplicative operation, we can call the inverse of this–the task of decomposing a composite
into its constituent atoms–factorization. I will argue that the brain needs to generate and
factor multiplicative codes.

1.1 Levels of intelligence
For as long as researchers have been studying intelligence, they have been confronted by the
enormous variety of ways in which a system can be said to behave intelligently. How is it
that sensory processing, which seems “analog” and largely statistical, can be reconciled with
the decidely structured and rule-based properties of languague and other forms of cognition?
The apparent span between different levels of intelligence can be captured by analogy to the
research of Walter Pitts, arguably the first modern theoretical neuroscientist.

In a landmark paper with Warren McCulloch published in 1943 (when he was merely 20
years old), Pitts and McCulloch developed a theory of neural network computation based
on a calculus of logical propositions (McCulloch & Pitts, 1943). In their model, neurons
came to represent individual propositions, and the connections between neurons captured
conjunction, union, negation, and other operations one might find defined in the Principia
Mathematica (Whitehead & Russell, 1925). Never mind that this theory turned out to
be largely wrong (as far as we know, individual neurons are not primarily responsible for
encoding propositions in a logical calculus, and most neurons do not simply sum up, but
rather compute more complex nonlinear functions of, their presynaptic inputs); it set in
motion the whole field of cybernetics. In the act of trying to model somewhat high-level
cogntive concepts, McCulloch and Pitts put forth a simplified model of the neuron that
dominates bottom-up connectionism to this day.

The demands of perception, namely a robustness to changes in viewpoint or lighting, make
such a model hard to reconcile with biological brains. In a second paper, Pitts’ focus shifted
to more graded and statistical computations, namely the issue of how to build invariant
representations of physical stimuli (Pitts & McCulloch, 1947). Finally in 1959, and now
fully contending with the messy details of neurobiology, Lettvin et al. (1959) reported the
computations performed in Frog retinas, which are fundamentally analog and probabilistic.
Pitts’ later results seemed to rule out his 1943 theory of neural networks, and yet this paper
had already set in motion, to some extent, both the dominant perspectives in intelligence
research.

The rules-and-symbols perspective, which came to be called the Language of Thought
Hypothesis (Fodor, 1975; Fodor & Pylyshyn, 1988), and now is often simply referred to as
classical cognitive science, held that cognitive computation was best modeled at a symbolic
and mathematically abstract level. It was not so much that Language of Thought (LOT)
proponents proposed constructive theories for how cognition could arise from neurons as it

CHAPTER 1. INTRODUCTION 3

was their claim that whatever the physical basis for intelligence, it ultimately required some
amount of rule and symbol manipulation. On the other hand, neural network modeling–
which was first called cybernetics, then connectionism, and these days deep learning–stressed
that large parallel networks of simple processing units could perform surprisingly complicated
computations and were ultimately a better explanation for the physical basis of intelligence.
In this article we will refer to these as the symbolic and connectionist approaches to modeling
intelligence. Both of these terms, especially connectionism, are somewhat old-fashioned. We
use them simply because they are compact and descriptive.

Current intelligence research enjoys a healthy contribution from both symbolic and con-
nectionist theories. However, there has been a tendency to treat neural networks as self-
contained modules which can be cobbled together in a larger system that uses symbolic
structures (Mnih et al., 2015). It has been far less common to consider how symbolic com-
putation, namely the use of rich data structures, can be built in to neural network repre-
sentations. This article suggests how and why we should want to do this. While the basic
building blocks have been around for some time, the computational hurdle of efficient factor-
ization methods have kept some of these ideas from finding wider application. In proposing
a new method for factorization in Chapter 2, we make connectionist symbol processing more
practical.

1.2 The primacy of factorization
This section will argue that factorization arises everywhere in perception and cognition
and that in order to build intelligent systems one must model it explicitly. Factorization
problems may be found at every level of the conceptual hierarchy, but we will start with
visual perception.

The signal measured by an optical sensor includes the conjunction of many physical
factors interacting in the world. For instance, luminance at a point on the sensor is a
function of physical properties in the scene, such as the reflectance and orientation of object
surfaces, as well as the direction and intensity of incident illumination. An early idea in
computer vision was the theory of “intrinsic images,” which suggested that these factors
might be effectively represented by a series of more basic images, one each for object range,
surface reflectance, surface orientation, and incident illumination (Barrow & Tenenbaum,
1978). The physics of light interacting with object surfaces can be fairly complex, but
under certain simplifying assumptions it is fundamentally multiplicative, and computer vision
researchers have often abstracted this with an intrinsic image called “shading.” In Barrow
and Tenenbaum (1978) and most subsequent work, the apparent luminance of a point on an
object’s surface is a literal product of its reflectance and shading images.

From among the many follow-on works, we highlight Adelson and Pentland (1996), which
took this idea, specifically the factorization of measured luminance into reflectance and
shading, and put it on the firmer conceptual footing of Bayesian statistical inference. Their
examples also help to illustrate just how fundamental and unconscious this type of perceptual

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Luminance factorization (from Adelson and Pentland (1996))

factorization is for humans. See Figure (1.1), which shows a simple three-dimensional shape
rendered as if it is illuminated from above and to its left. The main point of this figure is
that two prominent edges in the scene are interpeted to the be the result of very different
physical properties of the object–edge 1 is the result of a change in object shape whereas edge
2 is the result of a change in object reflectance. The richness of this interpretation comes in
spite of the fact that each edge has precisely the same luminance levels on either side–the
reader should verify this for themselves. This difference in interpretation of the low-level
luminance properties can be explained by the shown factorization into intrinsic images for
reflectance and shading. The fact that luminance above edge 1 is perceived to be darker
than luminance above edge 2 might be explained by a preference for extracting reflectance
information from a visual scene. This fits with the longstanding idea that brains have learned
to capture, and prefer, certain regularites in visual scenes. Adelson and Pentland modeled
this as probabilistic “priors” over certain configurations of lighting, shape, and reflectance.

This general idea, of modeling certain scenes using a decomposable (i.e factored) model
in which specific regularities are enforced, has been very influential in the field of computer
vision, where intrinsic images are often referred to as a “2.5-D sketch” Marr (1982). See
Blanz and Vetter (1999) or Barron and Malik (2015) for particularly interesting applications
and methods. We do feel that the intrinsic images formalism places a misplaced emphasis on
two-dimensional projections of a fundamentally three-dimensional scene, but it can still be
a stepping stone to a full three-dimensional description. In general, uncovering an accurate
set of intrinsic images from a single input image is a challenging and unsolved problem. We
will outline in Section (1.4) how others have attempted to solve it so far.

CHAPTER 1. INTRODUCTION 5

At another level of abstraction, one must consider the separation of visual object fea-
tures defined in some canonical object-based reference frame from the pose of objects in a
larger scene. Robust object recognition depends on the ability to separate these two fac-
tors. Pitts and McCulloch (1947) examined the related problem of building invariance into
a system, which they called representation of “universals.” One should not, however, ignore
the transformations that define a particular observation of the universal, but rather model
this seprately in support of novel inferences. This fuller picture was first sketched by Hinton
(1981b) and later fleshed out by Olshausen et al. (1993) in a model that is known as “dynamic
routing.” The dynamic routing model contains a set of control neurons which multiplica-
tively gate the transmission of feature activations between successive layers in a multi-layer
neural network. This is used to build into the final layer a scale-and-translation-invariant
representation of whole objects, while the control neurons maintain a representation of the
transformation necessary to bring the original input into a canonical frame of reference. It
was hypothesized that the pulvinar nucleus of the thalamus is involved in such a represen-
tation of transformations (Olshausen et al., 1993).

Another important notion of factorization is that, in dynamic scenes, humans compute
a natural factorization of object features (also called object ‘form’) and object motion. This
allows one to understand dynamic scenes in terms of discrete objects which roughly re-
tain a particular physical form as they undergo coherent transformations, rather than as a
soup of moving and unrelated features. A simple demonstration of this factorization can
be found in the striking psychophysical percepts induced by random dot stereograms and
kinematograms (Julesz, 1971; Milne et al., 2002). One example of how this factorization has
been modelled is Cadieu and Olshausen (2012), which proposes a hierarchical, probabilistic
generative model in which motion interacts multiplicatively with form in a high-dimensional
polar representation.

One longstanding challenge problem in theoretical neuroscience has been the so-called
“neural binding problem” (Treisman & Gelade, 1980; Von der Malsburg, 1995; Wolfe & Cave,
1999), which is often meant to loosely capture the above problems of feature grouping–to
which objects do particular features belong? Interestingly, this has been posed as almost the
inverse of a factorization problem. It is said to be one of binding together (read: multiply-
ing) features so as to maintain their association in support of further inference. It almost
assumes that atomic features are available at the outset, but this is not quite right. Due to
the underlying physics, the signal comes in as a multplicative combination, and the job of
perception is to factor it first. The perceptual system has to effectively do both. It is more
about recoding the data–first making the factorization explicit, but then generating a new
(and presumably better in some way) multiplicative representation that supports higher-level
inferences.

Somewhere above the conceptual level of perception is the uniquely human facility for
language. So powerful are the structures of language that many cognitive scientists have
suggested that, to some extent, cognition is language. This is what came to be known as
the Language of Thought Hypothesis (Fodor, 1975). We will illustate how multiplicative
combinations arise at every turn in a Language of Thought.

CHAPTER 1. INTRODUCTION 6

Among the most commonly studied objects in classical cognitive science are propositional
phrases like “Mary is the mother of John”, or the following:

“Spot bit Jane”
“Jane bit Spot”
“Fido bit John”
“John bit Fido”

Propositions like these contain a predicate bite which has two arguments–the agent of the
bite and the object of the bite. To capture any of these particular instances, we make
a conceptual distinction between what are called “roles” and “fillers.” Fillers are instance-
specific cognitive concepts, whereas roles indicate the function of these fillers in a larger data
structure. A role concept is used to label the conceptual role of a filler. In the four phrases
above, Spot, Fido, Jane, and John are filler concepts, while agent and object roles serve to
specify which role any of these fillers play in a particular instance of these propositions. By
associating the agent role to Spot, which we notate (agent, Spot), we have a representation
of the first phrase, {bite, (agent, Spot), (object, Jane)} which is distinguishable from the
the second phrase {bite, (agent, Jane), (object, Spot)}. The third and fourth phrases have
the same structure as the first two, but different fillers. This separation of roles from fillers
allows us to model the concept of a standalone bite predicate bite(agent, object) for which
values can be filled in for any particular instance of this concept. This is precisely the
separation of variables from specific values that one finds in mathematics or programming
languages and has come to be known in cognitive science as “systematicity” (Fodor, 1975;
Fodor & Pylyshyn, 1988).

The association of filler concepts to role concepts is a logical conjunction. Moreover, we
can build arbitrarily complex cognitive concepts via further conjunction, union, and compo-
sition. The result is a set of composite concepts that are formed by two or more–sometimes
many more–primitive concepts. Cognition in this framework amounts to constructing and
decomposing (multiplying and factoring) these data structures. We will see how these ideas
can be represented with an algebra over high-dimensional vectors and how this involves
vector multiplication and factorization.

1.3 Vector Symbolic Architectures (VSAs)
This section introduces a framework for cognitive representation, called Vector Symbolic
Architectures, that motivates the factorization problem we study in Chapter 2. More than
that, it orients much of our past and ongoing work on how to build data structures into neural
network representations. We will demonstrate the application of these ideas to modeling
visual scenes in Chapter 3.

CHAPTER 1. INTRODUCTION 7

1.3.1 Building up to VSAs

While connectionists of the 1980s extolled certain properties of neural networks (namely
parallel processing with many simple computational units and an ability to learn patterns
from data), they did not completely jettison what had been previously developed from the
Language of Thought perspective. Particularly, Hinton notes in a 1981 paper the importance
of role-filler distinctions and sketches how one might represent these with separate groups
of neurons (Hinton, 1981a). A more fully-formed idea comes in 1986, where he advocates
capturing role-filler binding via the outer product of two vectors: (xy>)ij = xiyj. In connec-
tionist circles this came to be called conjunctive coding (Hinton et al., 1986; McClelland &
Kawamoto, 1986).

In addition to conjunctive coding, connectionists wrestled throughout the 1980’s with
mathematical structures such as hierachy and sequence, as this was thought to be among
the elements of a Language of Thought which should be explained by connectionism. In
some ways, this work culiminated in a special issue on “Connectionist Symbol Processing”
in the journal Artificial Intelligence. Three papers from this issue set the stage for Vector
Symbolic Architectures (VSAs).

In a theory he called Tensor Product Representations, Paul Smolensky fleshed out a con-
nectionist theory of conjunctive coding that was based on the generalized outer product, also
called the tensor product (Smolensky, 1990). Notable about this work was its ambition for
specifying a full symbolic system as well as its mathematical rigor relative to most connec-
tionist works of the time. It focused on representing two fundamental data structures, strings
and trees, and showed that this allowed one to represent operations from the LISP program-
ming language with superpositions of tensor products. A physicist by training, Smolensky
also made an interesting analogy between connectionist representation of symbolic struc-
tures and the study of group representation theory, particularly as it is applied to modeling
quantum physics. The terminology and intuition used by Smolensky, ourselves, and other
researchers in this area when talking about connectionist symbol systems maintains a kind
of loose correspondence to quantum physics to this day. Tensor Product Representations are
still being used by Smolensky and collaborators; see, for example, McCoy et al. (2019) and
Moradshahi et al. (2019) for more modern applications. However, tensor products applied
to vectors have a conceptual and practical limitation, namely that of closure. This mani-
fests in the difficulty of superimposing tensor representations of different orders–a remedy
for this is to use a kind of placeholder vector to expand the tensor order artificially, but
this solution is fairly kludgy (Smolensky, 1992). A more practical issue with the lack of
closure for outer products is that the number of elements in a tensor product representation
scales exponentially in the order of the tensor. Because the tensor order corresponds to the
number of simultaneous conjunctions, this places a real limitation on simply being able to
represent complex structures in neurons or on a computer. For instance, the representation
of a binary tree with depth k ultimately is represented by a tensor of order k. Smolensky has
argued for using specialized low-dimensional vector representations for certain role vectors
in these types of data structures, but this removes the robustness and modeling power of

CHAPTER 1. INTRODUCTION 8

high-dimensional distributed representations, among other isssues.
The second and third in this series of papers were written by Geoff Hinton and Jordan

Pollack, respectively. Hinton (1990) outlined desiderata for what he called “reduced de-
scriptions,” which, roughly speaking, was meant to suggest a representation of hierarchical
structures in which partial information about each layer of the hierachy was immediately
decodable, but where full descriptions were compressed and required further sequential pro-
cessing to uncover. This involves some notion of superposition and composition of concepts.
A system that can recursively encode these concepts in fixed-width vectors, like we will in-
troduce in the next section, is one realization of reduced descriptions. Pollack (1990) dealt
with the representation of binary trees, but where the encodings of nodes in the tree are
learned via the backpropagation algorithm. These networks were reportedly hard to train,
used local, rather than distributed, representations, and were relatively hard to interpet.
However, they did to some extent satisfy the properties of Hinton’s reduced descriptions.

1.3.2 Vector Symbolic Architectures

In the 1990’s, a family of connectionist models that has come to be called Vector Symbolic
Architectures (VSAs) materialized. First proposed in 1991 and then more fully elaborated
in his PhD thesis, Tony Plate’s Holographic Reduced Representations was the first of model
of Vector Symbolic Architecture (Plate, 1991, 1994). In addition to the aforementioned
connectionists, Plate was influenced by models that used convolution as a mechanism of
association, namely those of Willshaw, Murdock, and Metcalf (Willshaw, 1981; Metcalf Eich,
1982; Murdock, 1982, 1983; Metcalf Eich, 1985). With Holographic Reduced Representations
(HRRs) Plate elaborated a framework for building data structures with high-dimensional
vectors. In contrast to prior works, HRR data structures are represented simply with vectors,
making them a kind of “reduced” description. One of Plate’s many insights in this work
was that by embracing high-dimensionality, one could use a set of representations which
remained closed under the operations of conjunction and union. Plate’s work, which was also
published in 1995 and later made into a book (Plate, 1995, 2003), characterized the capacity
properties of such reduced representations and also emphasized the Fourier-domain duality
of convolution and elementwise multiplication, which suggests an even simpler operation for
representing conjunctions.

The vectors in HRRs are either real or complex-valued, but it turns out that vectors
whose components assume just two states ({0, 1} or {−1, 1}) can also be used in a VSA. This
fact was explored by both Pentti Kanerva (Kanerva, 1996, 2009) and Ross Gayler (Gayler,
1998, 2004) under various names, including “Binary Spatter Codes” and the “Multiply, Add,
Permute” architecture. N -dimensional vectors which are in {0, 1}N are said to be “binary”,
while those that are in {−1, 1}N are “bipolar.” Among the reasons one might prefer these
types of vectors over HRRs (particularly the real-valued variant) is that they more closely
align with the discreteness of representation in biological neural networks and lend themselves
to scalable and low-power implementation in hardware. For examples of how these types

CHAPTER 1. INTRODUCTION 9

of VSAs may be a good fit for implementation with emerging device nanotechnologies, see
Rahimi et al. (2017), Gupta et al. (2018), and Wu et al. (2018).

There is a qualitative equivalence among all VSAs, allowing our own work to somewhat
fluidly cross between the formalisms of each, depending on the application. Therefore we
will distill the essential characteristics of a VSA into the following definition:

Definition. A Vector Symbolic Architecture is defined by a set of vectors V which encode a
set of cognitive concepts C, coupled with a similarity metric for comparing any two vectors,
and three algebraic structures on this set.

• Cognitive concepts have a corresponding vector representation given by the mapping
∼: C → V , which is called encoding. This mapping can be deterministic, random,
or some combination of both. Going from the space of vectors to cognitive concepts
(inverting this mapping) is called decoding. Most cognitive concepts are “compound” in
that they can be decomposed into a set of more fundamental concepts, while a smaller
number are “atomic” in that they are irreducible. Vector representations of compound
concepts can be constructed by applying the VSA operations to representations of the
atomic concepts.

• A similarity metric sim(x,y) defines how similar two concepts are in the encoded space
of vectors. It has the following properties:

– For atomic concepts that are unrelated, the similarity is close to 0. When the set
of concepts is large and diverse, the distribution of vectors chosen randomly from
V is expected to be highly peaked at 0. It may be, however, that the encoding
of some atomic concepts is designed to capture an underlying structure such that
this structure is reflected by vector similarity.

– For a given vector dimensionality N one typically defines a threshold γ and says
that any two vectors whose similarity is > γ are similar (notated x ≈ y). This
threshold can vary depending on the application. In some applications one may
just care about identifying the vector which is most similar to a given vector
without explicit reference to a threshold.

• The algebraic structures on the set of vectors V have the follow properties:

1. Superposition (addition) ⊕: V × V → V
This is a binary structure on the set V producing a vector that is similar to
each of its inputs (x ≈ x ⊕ y, y ≈ x ⊕ y). Superposition is associative and
commutative.

2. Binding (multiplication) ⊗: V × V → V
This is a binary structure on the set V producing a vector that is dissimilar to
each of its inputs (x ��≈ x⊗y, y ��≈ x⊗y) Binding is associative, commutative, and

CHAPTER 1. INTRODUCTION 10

distributes over superpositions. It is either exactly or approximately invertible.
Approximate invertibility means that

∀x,y ∈ V , x−1 ⊗ x⊗ y ≈ y ∧ y−1 ⊗ x⊗ y ≈ x

While the output x ⊗ y is dissimilar to either x or y, the binding operation
preserves similarity in a different sense: x ≈ z ⇐⇒ x⊗ y ≈ z⊗ y, which we
comment on in Chapter 3.

3. Permutation ρ(·): V → V
This is a unary structure on the set V that permutes the elements of a vector. It
is often chosen randomly from the symmetric group Sn. Permutation distributes
over binding and superposition.

Superposition is used to store sets of concepts. For concepts in which an ordering doesn’t
have any particular meaning, we often store them in superposition. Binding is used to
store conjunctions of concepts. This might be labeling fillers with specific roles, or it might
be binding fillers together directly. Permutation is used typically to assign an ordering to
bound or superimposed elements. When we use a combination of all three operations to build
symbolic vectors, we are encoding structure as a “sum of products of permutations” (of
vectors).

The specific operations used in each Vector Symbolic Architecture differ slightly, and the
notations ⊕, ⊗, and ρ(·) are meant as placeholders. All the operations, however, share the
properties specified above. It is the complementary nature of these properties that confers
surprising representational richness to every Vector Symbolic Architecture. Superposition
in all VSAs involves pointwise addition:

(
x + y

)
i

= xiyi, but some VSAs follow this with
an additional thresholding operation. Binding gets slightly fancier for HRRs, which come
in two variants. The variant with real-valued vectors uses circular convolution ~ to bind
vectors:

(
x ~ y

)
i

=
∑N

k=1 xky(i−k+1)%N , where %N means “modulo-N ”. The variant of
HRRs with complex-valued vectors uses the Hadamard product

(
x � y

)
i

= xiyi, as does
Gayler’s Multiply-Add-Permute (MAP) architecture. The MAP and complex-valued HRR
architectures will feature most prominently in the rest of this dissertation.

We may refer to VSA representations as living in a vector space–after all they are just
high-dimensional vectors–but the binding operation induces a nonlinear structure that is
quite a bit richer than what comes from the narrow technical definition of a vector space.
Certainly we can add vectors and multiply them by scalars (which we did not mention above
but sometimes comes up in applications). However, the fact that we can multiply the vectors
themselves is an entirely different beast. In addition, permutation adds a complement to
both addition and multiplication that is not present for a generic algebraic field.

The VSA framework depends on relatively high dimensionality, roughly speaking N ≥
1000, where N is the number of elements in each vector. In an N -dimensional vector space
the number of exactly-orthogonal vectors is always N , but the number of approximately
orthogonal vectors is exponential in N . This is sometimes refered to as the quasi-orthogonal

CHAPTER 1. INTRODUCTION 11

Figure 1.2: A binary tree

dimension of the space (Kainen & Kurkova, 1993); it can be explained by the Johnson-
Lindenstrauss lemma and is ultimately a result of concentration of measure phenomena
(Boucheron et al., 2013). Plate addresses this analytically and through simulation in the
appendix of his thesis (Plate, 1994). The similarity metric of a VSA is in every case related
to angles, and therefore quasi-orthogonality, between vectors. One can say that there is
plenty of “room” to place vectors which are dissimilar. The effect is that vectors–even those
in RN and CN–start to behave in an almost symbolic or discrete way.

1.3.3 A VSA factorization problem

We now explain how a tree data structure can be encoded into a single high-dimensional
vector using VSAs. Consider the tree depicted in Figure 1.2. First, each leaf in the tree is
assigned a random vector a,b, . . . ,g ∈ V . We also assign random vectors qleft and qright

that are used to describe position in the tree. Moving from the root of the tree to a particular
leaf involves a sequence of left and right turns. The order of these turns is represented by
permutation ρ(·). The number of times permutation is applied indicates depth within the
tree: qleft is a left turn at depth 0, ρ(qleft) is a left turn at depth 1, ρ2(qleft) is a left
turn at depth 2, and so on. A sequence of turns is represented by the binding of these vectors,
e.g., qleft⊗ ρ(qleft)⊗ ρ2(qleft) corresponds to three left turns. We can then attach to each
leaf its position in the tree, again with binding, e.g., a⊗qleft⊗ ρ(qleft)⊗ ρ2(qleft). Finally,

CHAPTER 1. INTRODUCTION 12

the representation for the whole tree is collapsed into a single vector, t, via superposition:

t = a⊗ qleft ⊗ ρ(qleft)⊗ ρ2(qleft)

⊕ b⊗ qleft ⊗ ρ(qright)⊗ ρ2(qleft)

⊕ c⊗ qright ⊗ ρ(qright)⊗ ρ2(qleft)

⊕ d⊗ qright ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qleft)

⊕ e⊗ qright ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qright)

⊕ f ⊗ qleft ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qleft)⊗ ρ4(qleft)

⊕ g ⊗ qleft ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qleft)⊗ ρ4(qright)

(1.1)

The vector t encodes the information of this entire tree so that we can flexibly query
the data structure using VSA operations. For instance, we can find the identity of the leaf
located at position left, right, left by “unbinding” the representation of this location from
t. When we unbind with this vector (call it a query), it distributes through the superposition
and cancels out with itself, leaving the atomic vector attached to that location “exposed”:(

qleft ⊗ ρ(qright)⊗ ρ2(qleft)
)−1 ⊗ tree = b⊕ noise (1.2)

The noise term arises because the query distributes through the sum. The other terms
combine with the query, but remain quasi-orthogonal to the atomic vectors we’re looking for
(a,b, . . . ,g). The vector b⊕noise will have high similarity with atom b and will be decoded
with high probability by nearest neighbor or associative memory lookup among the atoms.
According to the normal VSA setup, the scaling of how many terms can be in superposition
while still decoding b correctly scales linearly in N (Plate, 1994). Increasing the storage
capacity of such structures is an ongoing topic of research (Frady, Kleyko, et al., 2018), and
various encoding techniques such as “chunking” help as well. Under the set of normal VSA
assumptions it is typical that several hundred nodes could be stored in superposition this
way.

The above encoding of the tree data structure is flexible in the following sense: instead
of asking for the label at a specific position, we can ask for the position of a specific label
(essentially the problem of tree search). For instance, the query that exposes the position of
leaf c is simply:

c−1 ⊗ t = qright ⊗ ρ(qright)⊗ ρ2(qleft)⊕ noise (1.3)

This presents a new challenge, however, because we still need to decode the composite vector
qright⊗ρ(qright)⊗ρ2(qleft)⊕noise into its atomic parts. Ignoring the permutation for now
(we will show later how to deal with it), it is hopefully clear that this is a factorization
problem. More generally, this is a structure (a bound combination of three or more atomic
vectors) that shows up throughout Vector Symbolic Architectures. Let us call this the VSA
Factorization Problem, which we will formalize in Chapter 2.

Until recently, there has been no good solution to this factorization problem. Past ap-
plications of VSAs have tried to sidestep this issue by limiting the hierarchical depth of the

CHAPTER 1. INTRODUCTION 13

data structures or by using a brute force approach to consider all possible combinations when
necessary (Plate, 2000; Cox et al., 2011). In the tree example above this is tantamount to
exhaustively enumerating all possible traversals of the tree. We will demonstrate a much
better solution in Chapters 2 and 3.

1.4 Previous approaches to factorization
We return to some of the other factorization problems covered in the previous section. Most
approaches to solving these problems have had essentially one thing in common–they have
treated factorization as an optimization problem. There is nothing wrong with this per se,
but it contrasts with how we will approach factorization in Chapter 2.

Adelson and Pentland (1996) considered an intrinsic images factorization problem which
we illustrated in Figure 1.1. Their solution estimates lighting, shading, and reflectance in an
iterative algorithm which is essentially computing maximum a posteriori estimates for each
factor in turn. Without any constraints on the factors–the “priors” they enforce–this setup
would be fundamentally ill-posed. However, by heavily constraining valid solutions for light-
ing, shape and reflectance, their algorithm can generate estimates which seem to align with
subjective percepts of these factors–consider Figure 1.3. The algorithm decomposes shading
into a representation of 3D shape and an incident light source. Following an initialization
in which reflectance is made to completely explain the input image, each factor is updated
in turn (first shape, then lighting, then reflectance) and this continues until a convergence
criterion is met. See in Figure 1.3 two equally-valid factorizations of the scene. It is good
to remember that this kind of symmetry often pops up in factorization problems (in what
amounts to essentially a sign-ambiguity).

This is a bit of a toy problem, and Adelson and Pentland specifically note that their cost
function has no local minima and only two global minima (the ones shown). But take note
of the fact that they have a cost function at all. While they do not give detail sufficient to
reimplement their algorithm, it is still clear that the updates to each factor are determined
by trying to minimize a cost. It is this carefully-designed cost and the fact that updates
descend this cost that gives a guarantee of convergence to reasonable solutions.

A scaled-up realization of Adelson and Pentland’s idea comes in the form of Barron and
Malik (2015). This highly-impressive paper seeks to generate intrinsic images for a much
more challenging dataset of images by using significantly more complicated representation
of, and priors imposed on, each factor. Ultimately however, the authors are solving an
optimization problem. They go to great lengths to condition the problem (representing
shape in a multiscale Gaussian pyramid, “whitening” the reflectance representation, and
numerous other tricks) because otherwise it is so poorly behaved. It is also relatively slow–
the algorithm takes between 2 and 10 minutes on a color 1 Megapixel image, according to
the authors. This should suggest the inherent difficulty of the intrinsic images factorization
problem. We also suggest, however, that casting this as an intricate optimization is partially
to blame.

CHAPTER 1. INTRODUCTION 14

Figure 1.3: Adelson and Pentland’s alternating minimization

The modern deep learning approach to intrinsic image factorization dispenses with it-
erative solutions altogether. A single “feedforward” computation generates images from a
set of shared convolutional features (see, e.g. Janner et al. (2017)). These models pro-
duce impressive results on artificial data and in fact we adopt elements of this approach for
some of our own applications in Chapter 3. However, our feeling is that iterative solutions,
i.e. networks that have an element of recurrence, will ultimately be important in factoring
real-world scenes.

Dynamic routing networks and neural models of form-and-motion factorization (Ol-
shausen et al., 1993; Cadieu & Olshausen, 2012) are closer to being neurobiologically plausi-
ble, but they ultimately also tie themselves to optimization–the dynamics specified by each
follow the gradient of a cost function. The second of these two models has an additional
goal, the pursuit of sparse solutions, which likely aids in finding a factorization of form and
motion. The study of so-called tensor decomposition methods offers a whole family of al-
gorithms for factoring Smolensky’s Tensor Product Representations. We cover this topic at
some length in Appendix A.4. In Chapter 2, we apply an algorithm from this family to
the VSA factorization problem as a benchmark against Resonator Networks, our proposed
solution.

CHAPTER 1. INTRODUCTION 15

Summary

This chapter has argued that multiplicative codes and their attendant factorization problems
are fundamental to both perception and cognition. We have additionally argued that what
is missing from main-stream connectionist models is a facility for building and manipulating
data structures and that Vector Symbolic Architectures offer a way forward. The use of
VSAs comes up against a factorization problem, like many other levels of intelligence. On
this particular problem (but we would argue more generally throughout intelligence research)
neither the symbolic nor connectionist perspectives offers a good solution. A search for such
a solution is our topic in Chapter 2.

Previously published work in Chapters 2 and 3

Our work on Resonator Networks has been published previously in Frady et al. (2020) and
Kent et al. (2020). Early abstracts and posters on this work were given in Frady, Kent,
and Olshausen (2018) and Frady, Kent, Kanerva, et al. (2018). The Vector Symbolic Scene
Transformer was proposed in Kent and Olshausen (2017). Our preliminary results on visual
scene analogies were presented in Maudgalya et al. (2020). All other analysis and results are
previously unpublished.

16

Chapter 2

Resonator Networks

We limit our analysis of Resonator Networks to a particular definition of the factorization
problem, which may seem somewhat abstract, but in fact applies to practical usage of Vector
Symbolic Architectures (VSAs). We consider “bipolar” vectors, whose elements are ±1, used
in the popular “Multiply, Add, Permute (MAP)” VSA (Gayler, 1998, 2004). These ideas
extend to other VSAs, although we leave a detailed analysis to future work.

The core challenge of factorization is that inferring the factors of a composite object
amounts to searching through an enormous space of possible solutions. Resonator Networks
do this, in part, by “searching in superposition,” a notion that we make precise in Section
2.2. There are in fact many ways to search in superposition, and we introduce a number
of them in Section 2.4 as a benchmark for our model and to understand what makes our
approach different. A Resonator Network is simply a nonlinear dynamical system designed
to solve a particular factorization problem. It is defined by equations (2.7) and (2.8), each
representing two separate variants of the network. The system is named for the way in
which correct factorizations seemingly ‘resonate’ out of what is initially an uninformative
network state. The size of the factorization problem that can be reliably solved, as well as
the speed with which solutions are found, characterizes the performance of all the approaches
we introduce–in these terms, Resonator Networks are by far the most effective.

The main results are as follows:

1. We characterize stability at the correct solution, showing that one variant of Resonator
Networks is always stable, while the other has stability properties related to classical
Hopfield Networks. We show that Resonator Networks are less stable than Hopfield
Networks because of a phenomenon we refer to as percolated noise (Section 2.5.1).

2. We define “operational capacity” as a metric of factorization performance and use
it to compare Resonator Networks against six benchmark algorithms. We find that
Resonator Networks have dramatically higher operational capacity (Section 2.5.2).

3. Through simulation, we determine that operational capacity scales as a quadratic func-
tion of vector dimensionality. This quantity is proportional to the number of idealized

CHAPTER 2. RESONATOR NETWORKS 17

neurons in a Resonator Network (also Section 2.5.2).

4. We propose a theory for why Resonator Networks perform well on this problem (Section
2.5.6).

2.1 Statement of the problem
We formalize the factorization problem in the following way: X1, X2, . . . ,XF are sets of
vectors called ‘codebooks’. The fth codebook contains Df ‘codevectors’ x

(f)
1 ,x

(f)
2 , . . . ,x

(f)
Df

Xf := {x(f)
1 ,x

(f)
2 , . . . ,x

(f)
Df
} ∀f = 1, 2, . . . , F

and these vectors all live in {−1, 1}N . A composite vector c is generated by computing the
Hadamard product � of F vectors, one drawn from each of the codebooks X1, X2, . . . ,XF .

c = x(1)
? � x(2)

? � . . .� x(F)
?

x(1)
? ∈ X1, x(2)

? ∈ X2, . . . , x(F)
? ∈ XF

The factorization problem we wish to study is

given c, X1, X2, . . . ,XF

find x
(1)
? ∈ X1, x

(2)
? ∈ X2, . . . x

(F)
? ∈ XF

such that c = x
(1)
? � x

(2)
? � . . .� x

(F)
?

(2.1)

Our assumption in this chapter is that the factorization of c into F codevectors, one from
each codebook, is unique. Then, the total number of composite vectors that can be generated
by the codebooks is M :

M :=
F∏
f=1

Df

The problem involves searching among M possible factorizations to find the one that gener-
ates c. We will refer toM as the search space size, and at some level it captures the difficulty
of the problem. The problem size is also influenced by N , the dimensionality of each vector.

Suppose we were to solve (2.1) using a brute force strategy. We might form all possible
composite vectors from the sets X1, X2, . . . ,XF , one at a time, until we generate the vector
c, which would indicate the appropriate factorization. Assuming no additional information
is available, the number of trials taken to find the correct factorization is a uniform random
variable K ∼ U{1,M} and thus E[K] = M+1

2
. If instead we could easily store all of the

composite vectors ahead of time, we could compare them to any new composite vector via
a single matrix-vector inner product, which, given our uniqueness assumption, will yield a
value of N for the correct factorization and values strictly less than N for all other factor-
izations. The matrix containing all possible composite vectors requires MN bits to store.

CHAPTER 2. RESONATOR NETWORKS 18

The core issue is that M scales very poorly with the number of factors and number of pos-
sible codevectors to be entertained. If F = 4 (4 factors) and Df = 100 ∀f (100 possible
codevectors for each factor), then M = 100,000,000. In the context of Vector Symbolic
Architectures, it is common to have N = 10,000. Therefore, the matrix with all possible
composite vectors would require ≈ 125GB to store. We aspire to solve problems of this size
(and much larger), which are clearly out of reach for brute-force approaches. Fortunately,
they are solvable using Resonator Networks.

2.2 Factoring by search in superposition
In our problem formulation (2.1) the factors interact multiplicatively to form c, and this lies
at the heart of what makes it hard to solve. One way to attempt a solution is to produce an
estimate for each factor in turn, alternating between updates to a single factor on its own,
with the others held fixed. In addition, it may make sense to simulatenously entertain all
of the vectors in each Xf , in some proportion that reflects our current confidence in each
one being part of the correct solution. We call this searching in superposition and it is the
general approach we take throughout the paper. What we mean by ‘superposition’ is that
the estimate for the fth factor, x̂(f), is given by x̂(f) = g(Xfaf) where Xf is a matrix with
each column a vector from Xf . The vector af contains the coefficients that define a linear
combination of the elements of Xf , and g(·) is a function from RN to RN , which we will call
the activation function. In this work we consider the identity g : x 7→ x, the sign function
g : x 7→ sgn(x), and nothing else. Other activation functions are appropriate for the other
variants of Resonator Networks (for instance where the vectors are complex-valued), but we
leave a discussion of this to future work. ‘Search’ refers to the method by which we adapt
af over time. The estimate for each factor leads to an estimate for c denoted by ĉ:

ĉ := x̂(1) � x̂(2) � . . .� x̂(F) = g(X1a1)� g(X2a2)� . . .� g(XFaF) (2.2)

Suppose g(·) is the identity. Then ĉ becomes a multilinear function of the coefficients
a1, a2, . . . aF .

ĉ = x̂(1) � x̂(2) � . . .� x̂(F) = X1a1 �X2a2 � . . .�XFaF (2.3)

While this is a ‘nice’ relationship in the sense that it is linear in each of the coefficients af
separately (with the others held fixed), it is unfortunately not convex with respect to the
coefficients taken all at once. We can rewrite it as a sum of M different terms, one for each
of the possible factorizations of c:

ĉ =
∑

d1,d2,...,dF

(
(a1)d1(a2)d2 . . . (aF)dF

)
x

(1)
d1
� x

(2)
d2
� . . .� x

(F)
dF

(2.4)

Where d1 ranges from 1 to D1, d2 ranges from 1 to D2, and so on. The term in parentheses is
a scalar that weights each of the possible Hadamard products. Our estimate ĉ is, at any given

CHAPTER 2. RESONATOR NETWORKS 19

time, purely a superposition of all the possible factorizations. Moreover, the superposition
weights

(
(a1)d1(a2)d2 . . . (aF)dF

)
can be approximately recovered from ĉ alone by computing

the cosine similarity between ĉ and the vector x
(1)
d1
�x

(2)
d2
� . . .�x

(F)
dF

. The source of ‘noise’ in
this approximation is the fact that x

(1)
d1
�x

(2)
d2
�. . .�x

(F)
dF

will have a nonzero inner product with
the other vectors in the sum. When the codevectors are uncorrelated and high-dimensional,
this noise is quite small: ĉ transparently reflects the proportion with which it contains each
of the possible factorizations. When g(·) is the sign function, this property is retained. The
vector ĉ is no longer an exact superposition, but the scalar

(
(a1)d1(a2)d2 . . . (aF)dF

)
can still

be decoded from ĉ in the same way–the vector ĉ is still an approximate superposition of all
the possible factorizations, with the weight for each of these determined by the coefficients
af . This property, that thresholded superpositions retain relative similarity to each of their
superimposed components, is heavily relied on throughout Kanerva’s and Gayler’s work on
Vector Symbolic Architectures (Kanerva, 1996; Gayler, 1998).

One last point of notation before introducing our solution to the factorization problem–we
define the vector ô(f) to be the product of the estimates for the other factors:

ô(f) := x̂(1) � . . .� x̂(f−1) � x̂(f+1) � . . .� x̂(F) (2.5)

This will come up in each of the algorithms under consideration and simplify our notation.
The notation will often include an explicit dependence on time t like so: x̂f [t] = g(Xfaf [t]).
Each of the algorithms considered in this chapter updates one factor at a time, with the
others held fixed so, at a given time t, we will update the factors in order 1 to F , although
this is a somewhat arbitrary choice. Including time dependence with ô(f), we have

ô(f)[t] := x̂(1)[t+ 1]� . . .� x̂(f−1)[t+ 1]� x̂(f+1)[t]� . . .� x̂(F)[t] (2.6)

which makes explicit that at the time of updating x̂f , the factors 1 to (f − 1) have already
been updated for this ‘iteration’ t while the factors (f + 1) to F have yet to be updated.

2.3 Resonator Networks
A Resonator Network is a nonlinear dynamical system designed to solve the factorization
problem (2.1), and it can be interpreted as a neural network in which idealized neurons are
connected in a very particular way. We define two separate variants of this system, which
differ in terms of this pattern of connectivity. A Resonator Network with outer product
(OP) weights is defined by

x̂(f)[t+ 1] = sgn
(
XfX

>
f

(
ô(f)[t]� c

))
(2.7)

Suppose x̂(f)[t+ 1] indicates the state of a population of neurons at time t+ 1. Each neuron
receives an input ô(f)[t] � c, modified by synapses modeled as a row of a “weight matrix”

CHAPTER 2. RESONATOR NETWORKS 20

XfX
>
f . This “synaptic current” is passed through the activation function sgn(·) in order to

determine the output, which is either +1 or −1. Most readers will be familiar with the weight
matrix XfX

>
f as the so-called “outer product” learning rule of classical Hopfield Networks

(Hopfield, 1982). This has the nice interpretation of Hebbian learning (Hebb, 1949) in
which the strength of synapses between any two neurons (represented by this weight matrix)
depends solely on their pairwise statistics over some dataset, in this case the codevectors.

Prior to thresholding in (2.7), the matrix-vector product X>
(
ô(f)[t] � c

)
produces co-

efficients af [t] which, when premultiplied by Xf , generate a vector in the linear subspace
spanned by the codevectors (the columns of Xf). This projection does not minimize the
squared distance between

(
ô(f)[t]�c

)
and the resultant vector. Instead, the matrix

(
X>f Xf

)−1
X>f

produces such a projection, the so-called Ordinary Least Squares projection onto R(Xf).
This motivates the second variant of our model, Resonator Networks with Ordinary Least
Squares (OLS) weights:

x̂(f)[t+ 1] = sgn
(
Xf

(
X>f Xf

)−1
X>f
(
ô(f)[t]� c

))
:= sgn

(
XfX

†
f

(
ô(f)[t]� c

))
(2.8)

where we have used the notation X†f to indicate the Moore-Penrose psuedoinverse of the
matrix Xf . Hopfield Networks with this type of synapse were first proposed by Personnaz,
Guyon, and Dreyfus (Personnaz et al., 1986), who called this the “projection” rule.

If, contrary to what we have defined in (2.7) and (2.8), the input to each sub-population of
neurons was x̂(f)[t], its own previous state, then one would in fact have a (“Bipolar”) Hopfield
Network. In our case however, rather than being autoassociative, in which x̂(f)[t + 1] is a
direct function of x̂(f)[t], our dynamics are heteroassociative, basing updates on the states of
the other factors. This change has a dramatic effect on the network’s convergence properties
and is also in some sense what makes Resonator Networks useful in solving the factorization
problem, a fact that we will elaborate on in the following sections. We imagine F separate
subpopulations of neurons which evolve together in time, each one responsible for estimating
a different factor of c. For now we have just specified this as a discrete-time network in which
updates are made one-at-a-time, but it can be extended as a continuous-valued, continuous-
time dynamical system along the same lines as was done for Hopfield Networks (Hopfield,
1984). In that case, we can think about these F subpopulations of neurons evolving in a truly
parallel way. In discrete-time, one has the choice of making ‘asynchronous’ or ‘synchronous’
updates to the factors, in a sense analogous to Hopfield Networks. Our formulation of ô(f)[t]
in (2.6) follows the asynchronous convention, which we find to converge faster.

In practice, we will have to choose an initial state x̂(f)[0] using no knowledge of the correct
codevector x

(f)
? other than the fact it is one of the elements of the codebook Xf . Therefore,

we set x̂(f)[0] = sgn
(∑

j x
(f)
j

)
, which, as we have said above, has approximately equal cosine

similarity to each term in the sum.

CHAPTER 2. RESONATOR NETWORKS 21

2.3.1 Difference between OP weights and OLS weights

The difference between outer product weights and Ordinary Least Squares weights is via(
X>f Xf

)−1, the inverse of the so-called Gram matrix for Xf , which contains inner products
between each codevector. If the codevectors are orthogonal, the Gram matrix is N I, with
I the identity matrix. When N is large (roughly speaking > 5,000), and the codevectors
are chosen randomly i.i.d. from {−1, 1}N , then they will be very nearly orthogonal, making
N I a close approximation. Clearly, in this setting, the two variants of Resonator Networks
produce nearly the same dynamics. In section 2.5.2, we define and measure a performance
metric called operational capacity in such a way that does not particularly highlight the
difference between the dynamics, i.e. it is the setting where codevectors are nearly orthogo-
nal. In general, however, the dynamics are clearly different. In our experience, applications
that contain correlations between codevectors may enjoy higher operational capacity under
Ordinary Least Squares weights, but it is hard to say whether this applies in every setting.

One application-relevant consideration is that, because Xf consists of entries that are
+1 and −1, the outer product variant of a Resonator Network has an integer-valued weight
matrix and can be implemented without any floating-point computation–hardware with large
binary and integer arithmetic circuits can simulate this model very quickly. Coupled with
noise tolerance properties we will establish in Section 2.5.5, this makes Resonator Networks
(and more generally, VSAs) a good fit for emerging device nanotechnologies (Rahimi et al.,
2017).

2.4 The optimization approach
An alternative strategy for solving the factorization problem is to define a loss function which
compares the current estimate ĉ := x̂(1) � x̂(2) � . . .� x̂(F) with the composite that is to be
factored, c, choosing the loss function and a corresponding constraint set so that the global
minimizer of this loss over the constraints yields the correct solution to (2.1). One can then
design an algorithm that finds the solution by minimizing this loss. This is the approach
taken by optimization theory. Here we consider algorithms that search in superposition,
setting x̂(f) = g(Xfaf) just as Resonator Networks, but that instead take the optimization
approach.

Let the loss function be L(c, ĉ) and the feasible set for each af be Cf . We write this as
a fairly generic optimization problem:

minimize
a1,a2,...,aF

L
(
c, g(X1a1)� g(X2a2)� . . .� g(XFaF)

)
subject to a1 ∈ C1, a2 ∈ C2, . . . , aF ∈ CF

(2.9)

What makes a particular instance of this problem remarkable depends on our choices for
L(·, ·), g(·), C1, C2, . . . , CF , and the structure of the vectors in each codebook. Different
algorithms may be appropriate for this problem, depending on these details, and we propose
six candidate algorithms in this chapter, which we refer to as the “benchmarks”. It is in

CHAPTER 2. RESONATOR NETWORKS 22

contrast to the benchmark algorithms that we can more fully understand the performance
of Resonator Networks–our argument, which we will develop in the Results section, is that
Resonator Networks strike a more natural balance between exploring the high-dimensional
state space and using local information to move towards the solution. The benchmark
algorithms are briefly introduced in Section 2.4.1, but they are each discussed at some length
in the Appendix, including Table A.2, which compiles the dynamics specified by each. We
provide implementations of each algorithm in the small software library that accompanies
this work1.

2.4.1 Benchmark algorithms

A common thread among the benchmark algorithms is that they take the activation function
g(·) to be the identity g : x 7→ x, making ĉ a multilinear function of the coefficients, as we
discussed in section 2.2. We experimented with other activation functions, but found none
for which the optimization approach performed better. We consider two straightforward loss
functions for comparing c and ĉ. The first is one half the squared Euclidean norm of the error,
L : x,y 7→ 1

2
||x − y||22, which we will call the squared error for short, and the second is the

negative inner product L : x,y 7→ −〈x ,y〉. The squared error is minimized by ĉ = c, which
is also true for the negative inner product when ĉ is constrained to [−1, 1]N . Both of these loss
functions are convex, meaning that L(c, ĉ) is a convex function of each af separately2. Some
of the benchmark algorithms constrain af directly, and when that is the case, our focus is
on three different convex sets, namely the simplex ∆Df := {x ∈ RDf |

∑
i xi = 1, xi ≥ 0 ∀i},

the unit `1 ball B||·||1 [1] := {x ∈ RDf | ||x||1 ≤ 1}, and the closed zero-one hypercube [0, 1]Df .
Therefore, solving (2.9) with respect to each af separately is a convex optimization problem.
In the case of the negative inner product loss L : x,y 7→ −〈x ,y〉 and simplex constraints
Cf = ∆Df , it is a bonafide linear program. The correct factorization is given by a?1, a

?
2, . . . , a

?
F

such that x̂(f) = Xfa
?
f = x

(f)
? ∀f , which we know to be vectors with a single entry 1 and

the rest 0–these are the standard basis vectors ei (where (ei)j = 1 if j = i and 0 otherwise).
The initial states a1[0], a2[0], . . . aF [0] must be set with no prior knowledge of the correct
factorization so, similar to how we do for Resonator Networks, we set each element of af [0]
to the same value (which in general depends on the constraint set).

2.4.1.1 Alternating Least Squares

Alternating Least Squares (ALS) locally minimizes the squared error loss in a fairly straight-
forward way: for each factor, one at a time, it solves a least squares problem for af and
updates the current state of the estimate ĉ to reflect this new value, then moves onto the

1https://github.com/spencerkent/resonator-networks
2through the composition of an affine function with a convex function

https://github.com/spencerkent/resonator-networks

CHAPTER 2. RESONATOR NETWORKS 23

next factor and repeats. Formally, the updates given by Alternating Least Squares are:

af [t+ 1] = arg min
af

1
2

∣∣∣∣ c− ô(f)[t]�Xfaf [t]
∣∣∣∣2

2

=
(
ξ>ξ

)−1
ξ>c | ξ := diag

(
ô(f)[t]

)
Xf (2.10)

Alternating Least Squares is an algorithm that features prominently in the tensor decompo-
sition literature (Kolda & Bader, 2009), but while ALS has been successful for a particular
type of tensor decomposition, there are a few details which make our problem different from
what is normally studied (see Appendix A.4). The updates in ALS are quite greedy–they
exactly solve each least squares subproblem. It may make sense to more gradually modify
the coefficients, a strategy that we turn to next.

2.4.1.2 Gradient-following algorithms

Another natural strategy for solving (2.9) is to make updates that incorporate the gradient of
L with respect to the coefficients–each of the next 5 algorithms does this in a particular way
(we write out the gradients for both loss functions in Appendix A.5). The squared error loss
is globally minimized by ĉ = c, so one might be tempted to start from some initial values for
the coefficients and make gradient updates af [t+ 1] = af [t]− η∇afL. In Appendix A.5.1 we
discuss why this does not work well–the difficulty is in being able to guarantee that the loss
function is smooth enough that gradient descent iterates with a fixed stepsize will converge.
Instead, the algorithms we apply to the squared error loss utilize a dynamic stepsize.

Iterative Soft Thresholding: The global minimizers of (2.9) are maximally sparse, ||a?f ||0 =
1. If one aims to minimize the squared error loss while loosely constrained to sparse
solutions, it may make sense to solve the problem with Iterative Soft Thesholding
(ISTA). The dynamics for ISTA are given by equation (A.3) in Table A.2.

Fast Iterative Soft Thresholding: We also considered Fast Iterative Soft Thesholding
(FISTA), an enhancement due to Beck and Teboulle (2009), which utilizes Nesterov’s
momentum for accelerating first-order methods in order to alleviate the sometimes
slow convergence of ISTA (Bredies & Lorenz, 2008). Dynamics for FISTA are given in
equation (A.4).

Projected Gradient Descent: Another benchmark algorithm we considered was Projected
Gradient Descent on the negative inner product loss, where updates were projected onto
either the simplex or unit `1 ball (A.5). A detailed discussion of this approach can be
found in Appendix A.7.

Multiplicative Weights: This is an algorithm that can be applied to either loss function,
although we found it worked best on the negative inner product. It very elegantly
enforces a simplex constraint on af by maintaining a set of auxilliary variables, the
‘weights’, which are used to set af at each iteration. See equation (A.6) for the dy-
namics of Multiplicative Weights, as well as Appendix A.8.

CHAPTER 2. RESONATOR NETWORKS 24

Map Seeking Circuits: The final algorithm that we considered is called Map Seeking
Circuits. Map Seeking Circuits are neural networks designed to solve invariant pattern
recognition problems using the principle of superposition. Their dynamics are based
on the gradient, but are different from what we have introduced so far–see equation
(A.7) and Appendix A.9.

2.4.2 Contrasting Resonator Networks with the benchmarks

Convergence of the benchmarks

A remarkable fact about the benchmark algorithms is that each one converges for all ini-
tial conditions, which we directly prove, or refer to results proving, in the Appendix. That
is, given any starting coefficients af [0], their dynamics reach fixed points which are local
minimizers of the loss function. In some sense, this property is an immediate consequence
of treating factorization as an optimization problem–the algorithms we chose as the bench-
marks were designed this way. Convergence to a local minimizer is a desirable property, but
unfortunately the fundamental non-convexity of the optimization problem implies that this
may not guarantee good local minima in practice. In Section 2.5 we establish a standardized
setting where we measure how likely it is that these local minima are actually global min-
ima. We find that as long as M–the size of the search space–is small enough, each of these
algorithms can find the global minimizers reliably. The point at which the problem becomes
too large to reliably solve is what we call the operational capacity of the algorithm, and is a
main point of comparison with Resonator Networks.

An algorithmic interpretation of Resonator Networks

The benchmark algorithms generate estimates for the factors, x̂(f)[t], that move through
the interior of the [−1, 1] hypercube. Resonator Networks, on the other hand, do not. The
sgn(·) function ‘bipolarizes’ inputs to the nearest vertex of the hypercube, and this highly
nonlinear function, which not only changes the length but also the angle of an input vector,
is key. We know the solutions x

(f)
? exist at vertices of the hypercube and these points are

very special geometrically in the sense that in high dimensions, most of the mass of [−1, 1]N

is concentrated relatively far from the vertices–a fact we will not prove here but that is based
on standard results from the study of concentration inequalities (Boucheron et al., 2013).
Our motivation for using the sgn(·) activation function is that moving through the interior
of the hypercube while searching for a factorization is unwise, a conjecture for which we will
provide some empirical support in the Results section.

One useful interpretation of OLS Resonator Network dynamics is that the network is
computing a bipolarized version of Alternating Least Squares. Suppose we were to take the
dynamics specified in (2.10) for making ALS updates to af [t+ 1], but we also bipolarize the
vector x̂(f)[t+ 1] at the end of each step. When each x̂(f)[t+ 1] is bipolar, the vector ô(f)[t]

CHAPTER 2. RESONATOR NETWORKS 25

is bipolar and we can simplify
(
ξ>ξ

)−1
ξ>:

ô(f)[t] ∈ {−1, 1}N ⇐⇒
(
ξ>ξ

)−1
ξ> =

(
X>f diag

(
ô(f)[t]

)2
Xf

)−1
X>f diag

(
ô(f)[t]

)
=
(
X>f Xf

)−1
X>f diag

(
ô(f)[t]

)
= X†f diag

(
ô(f)[t]

)
(2.11)

Now af [t + 1] = X†f
(
ô(f)[t] � c

)
, which one can see from equation (2.8) is precisely the

update used by Resonator Networks with OLS weights. An important word of caution on
this observation: it is somewhat of a misnomer to call this algorithm Bipolarized Alternating
Least Squares, because at each iteration it is not solving a least squares problem, and this
conceals a profound difference. To set af [t+1] = X†f

(
ô(f)[t]�c

)
is to take the term g(Xfaf [t])

present in the loss function and treat the activation function g(·) as if it were linear, which
it clearly is not. These updates are not computing a Least Squares solution at each step. We
actually lose the guarantee of global convergence that comes with Alternating Least Squares,
but this is an exchange well worth making, as we will show in the Results section.

Unlike Hopfield Networks, which have a Lyapunov function certifying their global asymp-
totic stability, no such function (that we know of) exists for a Resonator Network. While
ĉ = c is always a fixed point of the OLS dynamics, a network initialized to a random state
is not guaranteed to converge. We have observed trajectories that collapse to limit cycles
and seemingly-chaotic trajectories that do not converge in any reasonable time. One a pri-
ori indication that this is the case comes from a simple rewriting of two-factor Resonator
Network dynamics that concatenates the states for each factor into a single statespace. To
make the transformation exact, we appeal to the continuous-time version of Resonator Net-
works, which, just like Hopfield networks, define dynamics in terms of time derivatives of the
pre-activation state u̇(f)(t) = XfX

†
f

(
ô(f)[t] � c

)
, with x̂(f)(t) = g(u(f)(t)). We write down

the continuous-time dynamics à la autoassociative Hopfield Networks:(
u̇(1)(t)

u̇(2)(t)

)
=

(
0 X1X

†
1 diag(c)

X2X
†
2 diag(c) 0

)(
x̂(1)(t)

x̂(2)(t)

)

One can see that the weight matrix is non-symmetric, which has a simple but important
consequence: autoassociative networks with non-symmetric weights cannot be guaranteed
to converge in general. This result, first established by Cohen and Grossberg (Cohen &
Grossberg, 1983) and then studied throughout the Hopfield Network literature, is not quite
as strong as it may sound, in the sense that symmetry is a sufficient, but not necessary,
condition for convergence. One can design a globally-convergent autoassociative network
with asymmetric weights (Xu et al., 1996), and moreover, adding a degree of asymmetry has
been advocated as a technique to reduce the influence of spurious fixed points (Hertz et al.,
1986; Singh et al., 1995; Chengxiang et al., 2000).

Resonator Networks have a large and practical regime of operation, whereM (the problem
size) is small enough, in which non-converging trajectories are extremely rare. It is simple

CHAPTER 2. RESONATOR NETWORKS 26

to deal with these events, making the model still useful in practice despite the lack of a
convergence guarantee. It has also been argued in several places (see Van Vreeswijk and
Sompolinsky (1996), for example) that cyclic or chaotic trajectories may be useful to a
neural system, including in cases where there are multiple plausible states to entertain. This
is just to say that we feel the lack of a convergence guarantee is not a critical weakness of
our model, but rather an interesting and potentially useful characteristic. We attempted
many different modifications to the model’s dynamics which would provably cause it to
converge, but these changes always hindered its ability to solve the factorization problem.
We emphasize that unlike all of the models in Section 2.4.1, a Resonator Network is not
descending a loss function. Rather, it makes use of the fact that:

• Each iteration is a bipolarized ALS update–it approximately moves the state towards
the Least Squares solution for each factor.

• The correct solution is a fixed point (guaranteed for OLS weights, highly likely for OP
weights).

• There may be a sizeable ‘basin of attraction’ around this fixed point, which the iterates
help us descend.

• The number of spurious fixed points (which do not give the correct factorization) is
relatively small.

This last point is really what distinguishes Resonator Networks from the benchmarks, which
we will establish in Section 2.5.6.

2.5 Results
We present a characterization of Resonator Networks along three main directions. The first
direction is the stability of the solutions x

(f)
? , which we relate to the stability of classical

Hopfield networks. The second is a fundamental measure of factorization capability we
call the “operational capacity”. The third is the speed with which factorizations are found.
We argue that the marked difference in factorization performance between our model and
the benchmark algorithms lies in the relative scarcity of spurious fixed points enjoyed by
Resonator Network dynamics. We summarize the main results in bold throughout this
section.

In each of the simulations we choose codevectors randomly i.i.d. from the discrete uni-
form distribution over the vertices of the hypercube–each element of each codevector is a
Rademacher random variable (assuming the value −1 with probability 0.5 and +1 with prob-
ability 0.5). We generate c by choosing one vector at random from each of the F codebooks
and then computing the Hadamard product among these vectors. The reason we choose
vectors randomly is because it makes the analysis of performance somewhat easier and more

CHAPTER 2. RESONATOR NETWORKS 27

standardized, and it is the setting in which most of the well-known results on Hopfield Net-
work capacity apply–we will make a few connections to these results. It is also the setting
in which we typically use the Multiply, Add, Permute VSA architecture (Gayler, 2004) and
therefore these results on random vectors are immediately applicable to a variety of existing
works.

2.5.1 Stable-solution capacity with outer product weights

Suppose x̂(f)[0] = x
(f)
? for all f (we initialize it to the correct factorization; this will also

apply to any t at which the algorithm comes upon x
(f)
? on its own). What is the probability

that the state stays there–i.e. that the correct factorization is a fixed point of the dynamics?
This is the basis of what researchers have called the “capacity” of Hopfield Networks, where
x

(f)
? are patterns that the network has been trained to store. We choose to call it the “stable-

solution capacity” in order to distinguish it from operational capacity, which we define in
Section 2.5.2.

We first note that this analysis is necessary only for Resonator Networks with outer
product weights–Ordinary Least Squares weights guarantee that the solutions are stable,
and this is one of the variant’s desirable properties. If x̂(f)[0] = x

(f)
? for all f , then factor

1 in a Resonator Network “sees” an input x
(1)
? at time t = 1. For OLS weights, the vector

X1X
†
1x

(1)
? is exactly x

(1)
? by the definition of orthogonal projection. True for all subsequent

factors, this means that for OLS weights, x
(f)
? is always a fixed point.

For a Resonator Network with outer product weights, we must examine the vector Γ :=
XfX

>
f

(
ô(f)[0]� c

)
at each f , and changing from the psuedoinverse X†f to the transpose X>f

makes the situation significantly more complicated. At issue is the probability that Γi has
a sign different from

(
x

(f)
?

)
i
, i.e. that there is a bitflip in any particular component of the

updated state. In general one may not care whether the state is completely stable–it may
be tolerable that the dynamics flip some small fraction of the bits of x

(f)
? as long as it does

not move the state too far away from x
(f)
? . Amit, Gutfreund, and Sompolinsky (Amit et al.,

1985, 1987) established that in Hopfield Networks, an avalanche phenomenon occurs where
bitflips accumulate and the network becomes essentially useless for values of Df > 0.138N ,
at which point the approximate bitflip probability is 0.0036. While we don’t attempt any of
this complicated analysis on Resonator Networks, we do derive an expression for the bitflip
probability of any particular factor that accounts for bitflips which “percolate” from factor
to factor through the vector ô(f)[0]� c.

We start by noting that for factor 1, this bitflip probability is the same as a Hopfield
network. Readers familiar with the literature on Hopfield Networks will know that with
N and Df reasonably large (approximately N ≥ 1,000 and Df ≥ 50) Γi can be well-
approximated by a Gaussian with mean

(
x

(f)
?

)
i
(N +Df − 1) and variance (N − 1)(Df − 1);

CHAPTER 2. RESONATOR NETWORKS 28

see appendix A.10 for a simple derivation. This is the Hopfield bitflip probability hf :

hf := Pr
[(

x̂(f)[1]
)
i
6=
(
x(f)
?

)
i

]
= Φ

(−N −Df + 1√
(N − 1)(Df − 1)

)
(2.12)

Where Φ is the cumulative density function of the Normal distribution. Hopfield Networks
are often specified with the diagonal of XfX

>
f set to all zeros (having “no self-connections”),

in which case the bitflip probability is Φ
(

−N√
(N−1)(Df−1)

)
. For large N and Df this is often

simplified to Φ(−
√
N/Df), which may be the expression most familiar to readers. Keeping

the diagonal of XfX
>
f makes the codevectors more stable (see appendix A.10) and while

there are some arguments in favor of eliminating it, we have found Resonator Networks to
exhibit better performance by keeping these terms.

In Appendix A.10 we derive the bitflip probability for an arbitrary factor in a Resonator
Network with outer product weights. This probability depends on whether a component
of the state has already been flipped by the previous f − 1 factors, which is what we call
percolated noise passed between the factors, and which increases the bitflip probability. The
four relevant probabilities are:

rf := Pr
[(

x̂(f)[1]
)
i
6=
(
x(f)
?

)
i

]
(2.13)

nf := Pr
[(

ô(f+1)[0]� c
)
i
6=
(
x(f+1)
?

)
i

]
(2.14)

rf ′ := Pr
[(

x̂(f)[1]
)
i
6=
(
x(f)
?

)
i

∣∣ (ô(f)[0]� c
)
i

=
(
x(f)
?

)
i

]
(2.15)

rf ′′ := Pr
[(

x̂(f)[1]
)
i
6=
(
x(f)
?

)
i

∣∣ (ô(f)[0]� c
)
i
6=
(
x(f)
?

)
i

]
(2.16)

Equation (2.13) is the probability of a bitflip compared to the correct value, the Resonator
bitflip probability. Equation (2.14) gives the probability that the next factor will see a net
bitflip, a bitflip which has percolated through the previous factors. Equations (2.15) and
(2.16) give the probability of a bitflip conditioned on whether or not this factor sees a net
bitflip, and they are different. It should be obvious that

rf = rf ′(1− nf−1) + rf ′′nf−1 (2.17)

and also that
nf = rf ′(1− nf−1) + (1− rf ′′)nf−1 (2.18)

We show via straightforward algebra in Appendix A.10 that the conditional probabilities rf ′
and rf ′′ can be written recursively in terms of nf :

rf ′ = Φ
(−N(1− 2nf−1)− (Df − 1)√

(N − 1)(Df − 1)

)
(2.19)

CHAPTER 2. RESONATOR NETWORKS 29

rf ′′ = Φ
(−N(1− 2nf−1) + (Df − 1)√

(N − 1)(Df − 1)

)
(2.20)

The Resonator bitflip probability rf has to be computed recursively using these expressions.
The base case is n0 = 0 and this is sufficient to compute all the other probabilities–in
particular, it implies that r1 = h1 = Φ

(−N−D1+1√
(N−1)(D1−1)

)
, which we have previously indicated.

We can verify these equations in simulation, and the agreement is very good–see Figure A.5
in the Appendix, which measures rf .

The main analytical result in this section is the sequence of equations (2.17) -
(2.20), which allow one to compute the bitflip probabilities for each factor in an
outer product Resonator Network. The fact that rf in general must be split between
the two conditional probabilities and that there is a dependence on nf−1 is what makes
it different, for all but the first factor, from the bitflip probability for a Hopfield Network
(compare eqs. (2.19) and (2.20) against eq. (2.12)). But how much different? We are
interested in the quantity rf − hf .

Here is a simple intuition for what this is capturing: suppose there are F Hopfield
Networks all evolving under their own dynamics–they are running simultaneously but not
interacting in any way. At time t = 0, the bitflip probabilities h1, h2, . . . , hF for the networks
are all the same; there is nothing special about any particular one. A Resonator Network,
however, is like a set of F Hopfield networks that have been wired up to receive input ô(f)[t]�
c, which reflects the state of the other factors. The networks are no longer independent. In
particular, a bitflip in factor f gets passed onto factors f + 1, f + 2, and so on. This affects
the bitflip probability of these other factors, and the magnitude of this effect, which we call
percolated noise, is measured by rf − hf .

Let us first note that for a Hopfield network with self connections the maximum bitflip
probability is 0.02275, which occurs at Df = N . The ratio Df/N is what determines
the bitflip probability. Please see Appendix A.10 for an explanation. Percolated noise is
measured by the difference rf − hf , which we plot in Figure 2.1. Part (a) shows just five
factors, illustrating that r1 = h1, but that rf ≥ hf in general. To see if there is some limiting
behavior, we simulated 100 and 10,000 factors; the differences rf − hf are also shown in
Figure 2.1. In the limit of large F there appears to be a phase change in residual bitflip
probability that occurs at Df/N = 0.056. In the Hopfield Network literature this is a very
important number. It gives the point at which the codevectors transition away from being
global minimizers of the Hopfield Network energy function. When Df/N falls in between
0.056 and 0.138, the codevectors are only local minimizers, and there exist spin-glass states
that have lower energy. We do not further explore this phase-change phenomenon, but leave
the (in all likelihood, highly technical) analysis to future work.

In conclusion, the second major result of the section is that we have shown, via simulation,
that for Df/N ≤ 0.056, the stability of a Resonator Network with outer product
weights is the same as the stability of a Hopfield Network. For Df/N > 0.056,
percolated noise between the factors causes the Resonator Network to be strictly
less stable than a Hopfield Network.

CHAPTER 2. RESONATOR NETWORKS 30

Figure 2.1: Extra bitflip probability rf − hf due to percolated noise. In the limit of large F ,
there appears to be a phase change at Df/N = 0.056. Below this value Resonator Networks
are just as stable as Hopfield Networks, but above this value they are strictly less stable (by
the amount rf − hf).

2.5.2 Operational capacity

We now define a new notion of capacity that is more appropriate to the factorization prob-
lem. This performance measure, called the operational capacity, gives an expression for the
maximum size of factorization problem that can be solved with high probability. This maxi-
mum problem size, which we denote byMmax, varies as a function of the number of elements
in each vector N and the number of factors F . It gives a very practical characterization of
performance, and will form the basis of our comparison between Resonator Networks and the
benchmark algorithms we introduced in Section 2.4.1. When the problem size M is below
the operational capacity of the algorithm, one can be quite sure that the correct factorization
will be efficiently found.

Definition. The {p, k} operational capacity of a factorization algorithm that solves (2.1)
is the largest search space size Mmax such that the algorithm, when limited to a maximum
number of iterations k, gives a total accuracy ≥ p.

We now define what we mean by total accuracy. Each algorithm we have introduced
attempts to solve the factorization problem (2.1) by initializing the state x̂(f)[0] and letting
the dynamics evolve until some termination criterion is met. It is possible that the final
state x̂(f)[∞] may not equal the correct factors x

(f)
? at each and every component, but we

can ‘decode’ each x̂(f)[∞] by looking for its nearest neighbor (with respect to Hamming
distance or cosine similarity) among the vectors in its respective codebook Xf . This distance
computation involves only Df vectors, rather thanM , which was what we encountered in one
of the brute-force strategies of Section 2.1. Compared to the other computations involved in
finding the correct factorization out of M total possibilities, this last step of decoding has a
very small cost, and we always ‘clean up’ the final state x̂(f)[∞] using its nearest neighbor
in the codebook. We define the total accuracy to be the sum of accuracies for inferring each
factor, which is 1/F if the nearest neighbor to x̂(f) is x

(f)
? and 0 otherwise. For instance,

CHAPTER 2. RESONATOR NETWORKS 31

Figure 2.2: Accuracy as a function of M for Resonator Network with outer product weights.
Three factors (F = 3), average over 5,000 random trials.

correctly inferring one of three total factors gives a total accuracy of 1/3, two of three is 2/3,
and three of three is 1.

Analytically deriving the expected total accuracy appears to be quite challenging, es-
pecially for a Resonator Network, because it requires that we essentially predict how the
nonlinear dynamics will evolve over time. There may be a region around each x

(f)
? such that

states in this region rapidly converge to x
(f)
? , the so-called basin of attraction, but our initial

estimate x̂(f)[0] is likely not in the basin of attraction, and it is hard to predict when, if ever,
the dynamics will enter this region. Even for Hopfield Networks, which obey much simpler
dynamics than a Resonator Network, it is known that so-called “frozen noise” is built up in
the network state, making the shapes of the basins highly anisotropic and difficult to ana-
lyze (Amari & Maginu, 1988). Essentially all of the analytical results on Hopfield Networks
consider only the stability of x

(f)
? as a (very poor) proxy for how the model behaves when it

is initialized to other states. This less useful notion of capacity, the stable-solution capacity,
was what we examined in the previous section.

We can, however, estimate the total accuracy by simulating many factorization problems,
recording the fraction of factors that were correctly inferred over many, many trials. We
remind the reader that our results in this chapter pertain to factorization of randomly-
drawn vectors which bear no particular correlational structure, but that notions of total
accuracy and operational capacity would be relevant, and specific, to factorization of non-
random vectors. We first note that for fixed vector dimensionality N , the empirical mean of
the total accuracy depends strongly on M , the search space size. We can see this clearly in
Figure 2.2. We show this phenomenon for a Resonator Network with outer product weights,
but this general behavior is true for all of the algorithms under consideration–one can always
make the search space large enough that expected total accuracy goes to zero.

Our notion of operational capacity is concerned with the M that causes expected total
accuracy to drop below some value p. We see here that there are a range of values M
for which the expected total accuracy is 1.0, beyond which this ceases to be the case. For

CHAPTER 2. RESONATOR NETWORKS 32

Figure 2.3: Operational capacity is dramatically higher for Resonator Networks (blue and
red above) than for any of the benchmark algorithms. These points represent the size of
factorization problem that can be solved reliably. Shown is operational capacity for F = 3
factors. The gap is similarly large for other F , see plot for F = 4 in the Appendix.

all values of M within this range, the algorithm essentially always solves the factorization
problem.

In this chapter we estimate operational capacity when p = 0.99 (≥ 99% of factors were
inferred correctly) and k = 0.001M (the model can search over at most 1/1,000 of the entire
search space). These choices are largely practical: ≥ 99% accuracy makes the model very
reliable in practice, and this operating point can be estimated from a reasonable number
(3,000 to 5,000) of random trials. Setting k = 0.001M allows the number of iterations to
scale with the size of the problem, but restricts the algorithm to only consider a small fraction
of the possible factorizations. While a Resonator Network has no guarantee of convergence,
it almost always converges in far less than 0.001M iterations, so long as we stay in this
high-accuracy regime. Operational capacity is in general a function of N and F , which we
will discuss shortly.

2.5.2.1 Resonator Networks have superior operational capacity

We estimated the operational capacity of the benchmark algorithms in addition to the two
variants Resonator Networks. Figure 2.3 shows the operational capacity estimated on sev-
eral thousand random trials, where we display Mmax as a function of N for problems with
three factors. One can see that the operational capacity of Resonator Networks is
roughly two orders of magnitude greater than the operational capacity of the
other algorithms. Each of the benchmark algorithms has a slightly different operational
capacity (due to the fact that they each have different dynamics and will, in general, find
different solutions) but they are all similarly poor compared to the two variants of Resonator
Networks. See a similar plot for F = 4 in Appendix A.2.

CHAPTER 2. RESONATOR NETWORKS 33

As N increases, the performance difference between the two variants of Resonator Net-
works starts to disappear, ostensibly due to the fact that XfX

†
f ≈ XfX

>
f . The two variants

are different in general, but the simulations in this chapter do not particularly highlight the
difference between them. Except for Alternating Least Squares, each of the benchmark algo-
rithms has at least one hyperperparameter that must be chosen–we simulated many thousand
random trials with a variety of hyperparameter settings for each algorithm and chose the
hyperparameter values that performed best on average. We list these values for each of the
algorithms in the Appendix. All of the benchmark algorithms converge on their own and the
tunable stepsizes make a comparison of the number of iterations non-standardized, so we did
not impose a maximum number of iterations on these algorithms–the points shown represent
the best the benchmark algorithms can do, even when not restricted to a maximum number
of iterations.

2.5.2.2 Operational capacity scales quadratically in N

We carefully measured the operational capacity of Resonator Networks in search of a re-
lationship between Mmax and N . We focused on Resonator Networks with outer product
weights–for N ≈ 5000 and larger, randomly-chosen codevectors are nearly orthogonal and
capacity is approximately the same for OLS weights. We reiterate that operational capacity
is specific to parameters p and k: p is the threshold for total accuracy and k is the maximum
number of iterations the algorithm is allowed to take (refer to Definition 2.5.2). Here we
report operational capacity for p = 0.99 and k = 0.001M on randomly-sampled codevectors.
The operational capacity is specific to these choices, which are practical for Vector Symbolic
Architectures.

Our simulations revealed that, empirically,Resonator Network operational capacity
Mmax scales as a quadratic function of N, which we illustrate in Figure 2.4. The points
in this figure are estimated from many thousands of random trials, over a range of values for
F and N . In part (a) we show operational capacity separately for each F from 2 to 7, with
the drawn curves indicating the least-squares quadratic fit to the measured points. In part
(b) we put these points on the same plot, following a logarithmic transformation to each axis,
in order to illustrate that capacity also varies as a function of F . Appendix A.2 provides
some additional commentary on this topic, including some speculation on a scaling law that
combines F and N . The parameters of this particular combined scaling are estimated from
simulation and not derived analytically–therefore they may deserve additional scrutiny and
we do not focus on them here. The main message of this section is that capacity scales
quadratically in N , regardless of how many factors are used.

The curves in Figure 2.4 are constructive in the following sense: given a fixed N , they
indicate the largest factorization problem that can be solved reliably. Conversely, and this is
often the case in VSAs, the problem sizeM is predetermined, while N is variable–in this case
we know how large one must make N . We include in the official software implementation

CHAPTER 2. RESONATOR NETWORKS 34

(a) Mmax scales quadratically in N . Red points are measured from simulation; black curves are the
least-squares quadratic fits. Parameters of these fits included in Appendix A.2.

(b) Mmax varies as a function of both F and N . Over the measured range for N , capacity is highest
for F = 3 and F = 4. Data for F = 2 was omitted to better convey the trend for F=3 and higher,
but see Appendix A.2 for the full picture.

Figure 2.4: Operational capacity of Resonator Networks with OP weights.

CHAPTER 2. RESONATOR NETWORKS 35

that accompanies this work3 a text file with all of the measured operational capacities.
Quadratic scaling means that one can aspire to solve very large factorization problems,

so long as he or she can build a Resonator Network with big enough N . We attempted
to estimate capacity for even larger values of N than we report in Figure 2.4, but this
was beyond the capability of our current computational resources. A useful contribution of
follow-on work would be to leverage high-performance computing to measure some of these
values. Applications of Vector Symbolic Architectures typically use N ≤ 10,000, but there
are other reasons one might attempt to push Resonator Networks further. Early work on
Hopfield Networks proposed a technique for storing solutions to the Travelling Salesman
Problem as fixed points of the model’s dynamics (Hopfield & Tank, 1985), and this became
part of a larger approach using nonlinear dynamical systems to solve hard search problems.
We do not claim that any particular search problem, other than the factorization we have
defined (2.1), can be solved by Resonator Networks. Supposing, however, that some other
hard problem can be cast in the form of (2.1), the quadratic scaling of operational capacity
makes this a potentially power tool.

Capacity is highest when the codebooks Xf each have the same number of codevectors
(D1 = D2 = . . . = DF = F

√
M), and this was the case for the operational capacity results we

have shown so far. We chose this in order to have a simple standard for comparison among
the different algorithms, but in general it is possible that the codebooks are unbalanced, so
that we have the same M =

∏
f Df but D1 6= D2 6= . . . 6= Df . In this case, capacity is

lower than for balanced codebooks. We found that the most meaningful way to measure
the degree of balance between codebooks was by the ratio of the smallest codebook to the
largest codebook:

ξ :=
(
min
f
Df

)
/
(
max
f

Df

)
(2.21)

For ξ ≥ 0.2 we found that the effect on Mmax was simply an additive factor which can be
absorbed into a (slightly smaller) y-intercept a for the quadratic fit. For extreme values of ξ,
where there is one codebook that is for instance 10 or 20 times larger than another, then all
three parameters a, b, and c are affected, sometimes significantly. Scaling is still quadratic,
but the actual capacity values may be significantly reduced.

Our result–measured operational capacity which indicates an approximately quadratic
relationship between Mmax and N–is an important characterization of Resonator Networks.
It suggests that our framework scales to very large factorization problems and serves as a
guideline for implementation. Our attempts to analytically derive this result were stymied
by the toolbox of nonlinear dynamical systems theory. Operational capacity involves the
probability that this system, when initialized to an effectively random state, converges to
a particular set of fixed points. No results from the study of nonlinear dynamical systems,
that we are aware of, allow us to derive such a strong statement about Resonator Networks.
Still, the scaling of Figure 2.4 is fairly suggestive of some underlying law, and we are hopeful
that a theoretical explanation exists, waiting to be discovered.

3https://github.com/spencerkent/resonator-networks

https://github.com/spencerkent/resonator-networks

CHAPTER 2. RESONATOR NETWORKS 36

Figure 2.5: Iterations until convergence, Resonator Network with outer product weights and
F = 3. The number of iterations is a very small compared to the size of the search space

2.5.3 Search speed

If a Resonator Network is not consistently descending an energy function, is it just aimlessly
wandering around the space, trying every possible factorization until it finds the correct one?
Figure 2.5 shows that it is not. We plot the mean number of iterations over 5,000 random
trials, as a fraction of M , the search space size. This particular plot is based on a Resonator
Network with outer product weights and F = 3. In the high-performance regime where M
is below operation capacity, the number of iterations is far less than the 0.001M cutoff we
used in the simulations of Section 2.5.2–the algorithm is only ever considering a tiny fraction
of the possible factorizations before it finds the solution.

Section 2.5.2.1 compared the operational capacity of different algorithms and showed
that compared to the benchmarks, Resonator Networks can solve much larger factorization
problems. This is in the sense that the dynamics eventually converge (with high probability)
on the correct factorization while, the dynamics of the other algorithms converge on spurious
factorizations. This result, however, does not directly demonstrate the relative speed with
which factorization are found in terms of either the number of iterations or the amount of
time to convergence. We set up a benchmark to determine the relative speed of Resonator
Networks and our main finding is depicted in Figure 2.6.

Measured in number of iterations, Resonator Networks are comparable to
the benchmark algorithms. We noted that Alternating Least Squares is the most greedy
of the benchmarks, and one can see from Figure 2.6 that it is the fastest in this sense.
We are considering only trials that ultimately found the correct factorization, which in this
simulation was roughly 70% for each of the benchmarks. In contrast, Resonator Networks
always eventually found the correct factorization. Measured in terms of wall-clock
time, Resonator Networks are significantly faster than the benchmarks. This can
be attributed to their nearly 5× lower per-iteration cost. Resonator Networks with outer
product weights utilize very simple arithmetic operations and this explains the difference
between Figures 2.6b and 2.6c.

CHAPTER 2. RESONATOR NETWORKS 37

(a) Convergence traces for 100 randomly-drawn factorization problems–each line is the cosine sim-
ilarity between c and ĉ over iterations of the algorithm. Each of the four algorithms is run on the
same 100 factorization problems. All of the instances are solved by the Resonator Network, whereas
a sizeable fraction (around 30%) of the instances are not solved by the benchmark algorithms, at
least within 100 iterations.

(b) Avg. cosine similarity vs. iteration
number (only trials with accuracy 1.0)

(c) Avg. cosine similarity vs. wall-clock
time (only trials with accuracy 1.0)

Figure 2.6: Our benchmark of factorization speed. Implementation in Python with NumPy.
Run on machine with Intel Core i7-6850k processor and 32GB RAM. We generated 5, 000
random instantiations of the factorization problem with N = 1500, F = 3, and Df = 40,
running each of the four algorithms in turn. Figure 2.6a gives a snapshot of 100 randomly
selected trials. Figures 2.6b and 2.6c show average performance conditioned on the algorithms
finding the correct factorization.

2.5.4 Dynamics that do not converge

One must be prepared for the possibility that the dynamics of a Resonator Network will
not converge. Fortunately, for M below the p = 0.99 operational capacity, these will be
exceedingly rare. From simulation, we identified three major regimes of different convergence
behavior, which are depicted in Figure 2.7:

• For M small enough, almost all trajectories converge, and moreover they converge
to a state that yields the correct factorization. Limit cycles are possible but rare,
and often still yield the correct factorization. There appear to be few if any spurious

CHAPTER 2. RESONATOR NETWORKS 38

Figure 2.7: Regimes of different convergence behavior. Curves show measurement from
simulation of an outer product Resonator Network with 3 factors and N = 400. This
is also meant as a diagram of convergence behavior for Resonator Networks in general.
Shown in black is the average decoding accuracy and shown in gray is the median number
of iterations taken by the network. For low enough M , the network always finds a fixed
point yielding 100% accuracy. The network will not converge to spurious fixed points in
this regime (green). As M is increased, more trajectories wander, not converging in any
reasonable time (red). Those that are forcibly terminated yield incorrect factorizations.
For large enough M , the network is completely saturated and most states are fixed points,
regardless of whether they yield the correct factorization (blue). Resonator Networks with
OLS weights are always stable when Df = N , but OP weights give a bitflip probability that
is zero only asymptotically in M (see Section 2.5.1 and Appendix A.10).

fixed points (those yielding an incorrect factorization)–if the trajectory converges to
a point attractor or limit cycle, one can be confident this state indicates the correct
factorization.

• As M increases, non-converging trajectories appear in greater proportion and yield
incorrect factorizations. Any trajectories which converge on their own continue to
yield the correct factorization, but these become less common.

• Beyond some saturation value Msat (roughly depicted as the transition from red to
blue in the figure), both limit cycles and point attractors re-emerge, and they yield the
incorrect factorization.

CHAPTER 2. RESONATOR NETWORKS 39

Figure 2.8: Factoring a corrupted c. For M well below capacity (lighter curves above) one
can sustain heavy corruption to c and still find the correct factorization.

In theory, limit cycles of any length may appear, although in practice they tend to be skewed
towards small cycle lengths. Networks with two factors are the most likely to find limit cycles,
and this likelihood appears to decrease with increasing numbers of factors. Our intuition
about what happens in the middle section of Figure 2.7 is that the basins of attraction
become very narrow and hard to find for the Resonator Network dynamics. The algorithm
will wander, since it has so few spurious fixed points (see Section 2.5.6), but not be able to
find any basin of attraction.

2.5.5 Factoring a ‘noisy’ composite vector

Our assumption has been that one combination of codevectors from our codebooks Xf gener-
ates c exactly. What if this is not the case? Perhaps the vector we are given for factorization
has had some proportion ζ of its components flipped, that is, we are given c̃ where c̃ differs
from c in exactly bζNc places. The vector c has a factorization based on our codebooks
but c̃ does not. We should hope that a Resonator Network will return the factors of c so
long as the corruption is not too severe. This is an especially important capability in the
context of Vector Symbolic Architectures, where c̃ will often be the result of some algebraic
manipulations that generate noise and corrupt the original c to some degree. We show in
Figure 2.8 that a Resonator Network can still produce the correct factorization even after a
significant number of bits have been flipped. This robustness is more pronounced when the
number of factorizations is well below operational capacity, at which point the model can
often still recover the correct factorization even when 30% of the bits have been flipped.

2.5.6 A theory for differences in operational capacity

The failure mode of each benchmark algorithm is getting stuck at a spurious fixed point
of the dynamics. This section develops a simple comparison between the spurious fixed

CHAPTER 2. RESONATOR NETWORKS 40

points of Resonator Networks and the benchmarks as an explanation for why Resonator
Networks enjoy relatively higher operational capacity. From among the benchmarks we
focus on Projected Gradient Descent (applied to the negative inner product with the simplex
constraint) to illustrate this point. We will show that the correct factorization is always stable
under Projected Gradient Descent (as it is with the OLS variant of Resonator Networks),
but that incorrect factorizations are much more likely to be fixed points under Projected
Gradient Descent. The definition of Projected Gradient Descent can be found in Table A.2,
with some comments in Appendix A.7.

Stability of the correct factorization

The vector of coefficients af is a fixed point of Projected Gradient Descent dynamics when
the gradient at this point is exactly 0 or when it is in the nullspace of the projection operator.
We write

N
(
PCf [x]

)
:= {z | PCf

[
x + z

]
= PCf

[
x
]
} (2.22)

to denote this set of points. The nullspace of the projection operator is relatively small on
the faces and edges of the simplex, but it becomes somewhat large at the vertices. We denote
a vertex by ei (where (ei)j = 1 if j = i and 0 otherwise). The nullspace of the projection
operator at a vertex of the simplex is an intersection of halfspaces (each halfspace given by
an edge of the simplex). We can compactly represent it with the following expression:

N
(
P∆Df

[ei]
)

=
{
z |

⋂
j 6=i

(ei − ej)
>z ≥ 1

}
(2.23)

An equivalent way to express the nullspace is

N
(
P∆Df

[ei]
)

=
{
z | zj ≤ zi − 1 ∀j 6= i

}
(2.24)

In other words, for a vector to be in the nullspace at ei, the ith element of the vector must
be the largest by a margin of 1 or more. This condition is met for the vector −∇afL at the
correct factorization, since −∇afL = X>f

(
ô(f)[0] � c

)
= X>f x

(f)
? . This vector has a value

N for the component corresponding to x
(f)
? and values that are ≤ N − 1 for all the other

components. Thus, the correct factorization (the solution to (2.1) and global minimizer of
(2.9)) is always a fixed point under the dynamics of Projected Gradient Descent (PGD).

This matches the stability of OLS Resonator Networks which are, by construction, always
stable at the correct factorization. We showed in Section 2.5.1 that OP weights induce
instability and that percolated noise makes the model marginally less stable than Hopfield
Networks, but there is still a large range of factorization problem sizes where the network is
stable with overwhelming probability. What distinguishes the benchmarks from Resonator
Networks is what we cover next, the stability of incorrect factorizations.

CHAPTER 2. RESONATOR NETWORKS 41

Stability of incorrect factorizations

Suppose initialization is done with a random combination of codevectors that do not produce
c. The vector ô(f)[0] � c will be a completely random bipolar vector. So long as Df is
significantly smaller than N , which it always is in our applications, ô(f)[0]� c will be nearly
orthogonal to every vector in Xf and its projection onto R(Xf) will be small, with each
component equally likely to be positive or negative. Therefore, under the dynamics of a
Resonator Network with OLS weights, each component will flip its sign compared to the
initial state with probability 1/2, and the state for this factor will remain unchanged with
the minuscule probability 1/2N . The total probability of this incorrect factorization being
stable, accounting for each factor, is therefore (1/2N)

F . Suboptimal factorizations are very
unlikely to be a fixed points. The same is true for a Resonator Network with OP weights
because each element of the vector XfX

>
f

(
ô(f)[0]� c

)
is approximately Gaussian with mean

zero (see Section 2.5.1 and Appendix A.10).
Contrast this against Projected Gradient Descent. We recall from (2.24) that the re-

quirement for ei to be a fixed point is that the ith component of the gradient at this point
be largest by a margin of 1 or more. This is a much looser stability condition than we had
for Resonator Networks–such a scenario will actually occur with probability 1/Df for each
factor, and the total probability is 1/M . While still a relatively small probability, in typi-
cal VSA settings 1/M is much larger than (1/2N)

F , meaning that compared to Resonator
Networks, Projected Gradient Descent is much more stable at incorrect factorizations. Em-
pirically, the failure mode of Projected Gradient Descent involves it settling on one of these
spurious fixed points.

Stability in general

The cases of correct and incorrect factorizations drawn from the codebooks are two extremes
along a continuum of possible states the algorithm can be in. For Projected Gradient Descent
any state will be stable with probability in the interval [1

M
, 1], while for Resonator Networks

(with OLS weights) the interval is [1
2FN

, 1]. In practical settings for VSAs, the interval
[1
2FN

, 1] is, in a relative sense, much larger than [1
M
, 1]. Vectors drawn uniformly from either

{−1,−1}N or [−1,−1]N concentrate near the lower end of these intervals, suggesting that
on average, Projected Gradient Descent has many more spurious fixed points.

This statement is not fully complete in the sense that dynamics steer the state along
specific trajectories, visiting states in a potentially non-uniform way, but it does suggest
that Projected Gradient Descent is much more susceptible to spurious fixed points. The
next section shows that these trajectories do in fact converge on spurious fixed points as the
factorization problem size grows.

CHAPTER 2. RESONATOR NETWORKS 42

Figure 2.9: States in hypercube interior get pulled into spurious basins of attraction. Pro-
jected Gradient Descent is in green and Multiplicative Weights is in orange. Network is
initialized at a distance θ from the center of the simplex (see equation (2.25)), and allowed
to converge. The y-axis is the accuracy of the factorization implied by the converged state.
Triangles indicate initialization slightly away from a?f toward any of the other simplex ver-
tices, which is most directions in the space. These initial states get quickly pulled into a
spurious basin of attraction.

Basins of attraction for benchmark algorithms

It may be that while there are sizable basins of attraction around the correct factorization,
moving through the interior of the hypercube causes state trajectories to fall into the basin
corresponding to a spurious fixed point. In a normal setting for several of the optimization-
based approaches, we initialize af to be at the center of the simplex, indicating that each of
the factorizations is equally likely. Suppose we were to initialize af so that it is just slightly
nudged toward one of the simplex vertices. We might nudge it toward the correct vertex
(the one given by a?f) or we might nudge it toward any of the other vertices, away from a?f .
We can parameterize this with a single scalar θ and ei chosen uniformly among the possible
vertices:

af [0] = θei + (1− θ) 1

Df

1 | θ ∈ [0, 1] , i ∼ U{1, Df} (2.25)

We ran a simulation with N = 1500 and D1 = D2 = D3 = 50, at which Projected
Gradient Descent and Multiplicative Weights have a total accuracy of 0.625 and 0.525,
respectively. We created 5,000 random factorization problems, initializing the state according
to (2.25) and allowing the dynamics to run until convergence. We did this first with a nudge
toward the correct factorization a?f (squares in Figure 2.9) and then with a nudge away from
a?f , toward a randomly-chosen spurious factorization (triangles in Figure 2.9).

What Figure 2.9 shows is that by moving just a small distance toward the correct vertex,
we very quickly fall into its basin of attraction. However, moving toward any of the other
vertices is actually somewhat likely to take us into a spurious basin of attraction (where the

CHAPTER 2. RESONATOR NETWORKS 43

converged state is decoded into an incorrect factorization). The space is full of these bad
directions. It would be very lucky indeed to start from the center of the simplex and move
immediately toward the solution–it is far more likely that initial updates take us somewhere
else in the space, toward one of the other vertices, and this plot shows that these trajectories
often get pulled towards a spurious fixed point. What we are demonstrating here is that
empirically, the interior of the hypercube is somewhat treacherous from an optimization
perspective, and this lies at the heart of why the benchmark algorithms fail.

From among the benchmarks, we restricted our analysis of spurious fixed points to Pro-
jected Gradient Descent and, in Figure 2.9, Multiplicative Weights. This choice was made
for clarity, and similar arguments apply for all of the benchmarks. While the details may
differ slightly (for instance, spurious fixed points of ALS appear near the simplex center, not
at a vertex), the failure mode of the benchmarks is strikingly consistent. They all become
overwhelmed by spurious fixed points, long before this affect is felt by Resonator Networks.
We have shown that in expectation, Projected Gradient Descent has many more
spurious fixed points than Resonator Networks. We have also show that trajecto-
ries moving through the interior of the hypercube are easily pulled into these
spurious basins of attraction.

2.6 Discussion
We studied a vector factorization problem which arises in the use of Vector Symbolic Archi-
tectures (as introduced in Chapter 1), showing that Resonator Networks solve this problem
remarkably well. Their performance comes from a particular form of nonlinear dynamics,
coupled with the idea of searching in superposition. Solutions to the factorization problem
lie in a small sliver of RN–i.e., the corners of the bipolar hypercube {−1, 1}N–and the highly
nonlinear activation function of Resonator Networks serves to constrain the search to this
subspace. We drew connections between Resonator Networks and a number of benchmark
algorithms which cast factorization as a problem of optimization. This intuitively-satisfying
formulation appears to come at a steep cost. None of the benchmarks were competitive with
Resonator Networks in terms of key metrics that characterize factorization performance.
One explanation for this is that the benchmarks have comparatively many more spurious
fixed points of their dynamics, and that the loss function landscape in the interior of the
hypercube induces trajectories that approach these spurious fixed points.

Unlike the benchmarks, Resonator Networks do not have a global convergence guaran-
tee, and in some respects we see this as beneficial characteristic of the model. Requiring
global convergence appears to unnecessarily constrain the search for factorizations, leading
to lower capacity. Besides, operational capacity (defined in this chapter) specifies a regime
where the lack of a convergence guarantee can be practically ignored. Resonator Networks
almost always converge in this setting, and the fixed points yield the correct solution. The
benchmarks are, by steadfastly descending a loss function, in some sense more greedy than
Resonator Networks. It appears that Resonator Networks strike a more natural balance

CHAPTER 2. RESONATOR NETWORKS 44

between 1) making updates based on the best-available local information and 2) still explor-
ing the solution space while not getting stuck. Our approach follows a kind of “Goldilocks
principle” on this trade off–not too much, not too little, but just right.

We are not the first to consider eschewing convergence guarantees to better solve hard
search problems. For instance, randomized search algorithms utilize some explicit form of
randomness to find better solutions, typically only converging if this randomness is reduced
over time (Spall, 2005). In contrast, our model is completely deterministic, and the searching
behavior comes from nonlinear heteroassociative dynamics. Another example is the proposal
to add small amounts of random asymmetry to the (symmetric) weight matrix of Hopfield
Networks (Hertz et al., 1986). This modification removes the guaranteed absence of cyclic
and chaotic trajectories that holds for the traditional Hopfield model. But, at the same
time, and without significantly harming the attraction of memory states, adding asymmetry
to the weights can improve associative memory recall by shrinking the basins of attraction
associated with spurious fixed points (Singh et al., 1995; Chengxiang et al., 2000).

We emphasize that, while Resonator Networks appear to be better than alternatives for
the particular vector factorization problem (2.1), this is not a claim they are appropriate
for other hard search problems. Rather, Resonator Networks are specifically designed for
the vector factorization problem at hand. There exist several prior works involving some
aspect of factorization that we would like to mention here, but we emphasize that each one
of them deals with a problem or approach that is distinct from what we have introduced in
this chapter.

Tensor decomposition is a family of problems that bear some resemblance to the factor-
ization problem we have introduced (2.1). Key differences include the object to be factored,
which is a higher-order tensor, not a vector, and constraints on the allowable factors. We
explain in Appendix A.4 how our factorization problem is different from traditional ten-
sor decompositions. Our benchmarks actually included the standard tensor decomposition
algorithm, Alternating Least Squares, re-expressed for (2.1), and we found that it is not
well-matched for this factorization problem. Bidirectional Associative Memory, proposed by
Kosko (1988), is an extension of Hopfield Networks that stores pairs of factors in a matrix
using the outer product learning rule. The composite object is a matrix, rather than a vector,
and is much closer to a particular type of tensor decomposition called the ‘CP decomposi-
tion’, which we elaborate on in Appendix A.4. Besides the fact that this model applies only
to two factor problems, its dynamics are different from ours and its capacity is relatively
low (Kobayashi et al., 2002). Subsequent efforts to extend this model to factorizations with
3 or more factors (Huang & Hagiwara, 1999; Kobayashi et al., 2002) have had very limited
success and still rely on matrices that connect pairs of factors rather than a single multilinear
product, which we have in our model. Bilinear Models of Style and Content (Tenenbaum
& Freeman, 2000) was an inspiration for us in deciding to work on factorization problems.
This paper applies a different type of tensor decomposition, a ‘Tucker decomposition’ (again
see Appendix A.4), to a variety of different real-valued datasets using what appears to be
in one case a closed-form solution based on the Singular Value Decomposition, and in the
other case a variant of Alternating Least Squares. In that sense, their method is different

CHAPTER 2. RESONATOR NETWORKS 45

from ours, the factorization problem is itself different, and they consider only pairs of fac-
tors. Memisevic and Hinton (2010) revisits the Tucker decomposition problem, but factors
the ‘core’ tensor representing interactions between factors in order to make estimation more
tractable. They propose a Boltzmann Machine that computes the factorization and show
some results on modeling image transformations. Finally, there is a large body of work
on matrix factorization of the form V ≈ WH, the most well-known of which is probably
Non-negative Matrix Factorization (Lee & Seung, 2001). The matrix V can be thought of
a sum of outer products, so this is really a type of CP decomposition with an additional
constraint on the sign of the factors. Different still is the fact that W is often interpreted as
a basis for the columns of V, with H containing the coefficients of each column with respect
to this basis. In this sense, vectors are being added to explain V, rather than combined
multiplicatively–Non-negative Matrix Factorization is much closer to Sparse Coding (Hoyer,
2004).

Chapter 3 illustrates how distributed representations of data structures can be built
with the algebra of Vector Symbolic Architectures, as well as how Resonator Networks can
decompose these data structures. VSAs are a powerful way to think about structured connec-
tionist representations, and Resonator Networks make the framework much more scalable.
Extending the examples found in Chapter 3 to more realistic data (for example, complex
3-dimensional visual scenes) could be a useful application of Resonator Networks. This will
likely require learning a transform from pixels into the space of high-dimensional symbolic
vectors, and this learning should ideally occur in the context of the factorization dynamics–
we feel that this is an exciting avenue for future study but something we have not pursued
ourselves. Here we have not shown Resonator Circuits for anything other than bipolar vec-
tors. However, a version of the model wherein vector elements are unit-magnitude complex
phasors is a natural next extension, and relevant to Holographic Reduced Representations
(Plate, 2003). A recent theory of sparse phasor associative memories (Frady & Sommer,
2019) may allow one to perform this factorization with a network of spiking neurons.

Resonator Networks are an abstract neural model of factorization. We believe that as
the theory and applications of Resonator Networks are further developed, they may help us
understand factorization in the brain, which still remains an important mystery.

46

Chapter 3

Applications of VSAs and Resonator
Networks

So far, we have argued that:

• Multiplicative codes arise throughout perception and cognition, going hand-in-hand
with the need to factor these codes efficiently.

• Vector Symbolic Architectures provide a framework for modeling cognitive data struc-
tures and they present a clear factorization problem.

• Resonator Networks are an effective way of solving this factorization problem.

We now present applications of this argument. Our main emphasis will be on how to represent
and manipulate visual scenes, but first we revisit the tree search problem first introduced in
Chapter 1.

3.1 Tree search
Shown in Figure 3.1 is a binary tree that admits VSA representation with the vector t:

t = a⊗ qleft ⊗ ρ(qleft)⊗ ρ2(qleft)

⊕ b⊗ qleft ⊗ ρ(qright)⊗ ρ2(qleft)

⊕ c⊗ qright ⊗ ρ(qright)⊗ ρ2(qleft)

⊕ d⊗ qright ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qleft)

⊕ e⊗ qright ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qright)

⊕ f ⊗ qleft ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qleft)⊗ ρ4(qleft)

⊕ g ⊗ qleft ⊗ ρ(qright)⊗ ρ2(qright)⊗ ρ3(qleft)⊗ ρ4(qright)

(3.1)

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 47

Figure 3.1: Tree search with a Resonator Network. The query of the vector t produces an
encoding of position which the Resonator Network can factor. The colored plots indicate
the time evolution of x̂(0) . . . x̂(4) (from left to right), showing the cosine similarity of each
estimate to each of the three possible vectors ρd(qleft), ρ

d(qright),1. Purple indicates low
similarity, and yellow indicates high similarity. Initially the similarity changes significantly,
until the three estimators find a coherent factorization and quickly converge. Red letters
indicate the converged result for each x̂(0) . . . x̂(4).

The factorization problem arises when we try to decode the position of leaf c (or any
other leaf) in the tree:

c−1 ⊗ t = qright ⊗ ρ(qright)⊗ ρ2(qleft)⊕ noise (3.2)

We have left our notation in the generic VSA operations ⊕, ⊗, and ρ(·) to communicate
that our approach works for any choice of architecture. Do note, however, that the rigorous
results we have shown in Chapter 2 hold specifically for the Multiply, Add, Permute archi-
tecture (Gayler, 1998, 2004) and the simulation we show in Figure 3.1 was done with these
bipolar vectors.

To set up a Resonator Network for this problem, we first establish a maximum depth
to search through–the maximum depth determines the number of factors that need to be
estimated. For the tree shown in Figure 3.1, we need five estimators, because this is the
depth of the deepest leaves, f and g.

Each factor estimate will determine whether to go left, right or to stop, for each level
down the tree. To indicate stop a special vector is used, the multiplicative identity vector,
which in the MAP VSA is 1 (a vector of all ones). By using the appropriate number of

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 48

these identity vectors, each location in the tree can be thought of as a composition with the
same depth (the maximum depth), even if the location is only partially down the tree. For
instance, if we consider leaf c in the Figure 3.1, then its position qright⊗ρ(qright)⊗ρ2(qleft)
is also qright ⊗ ρ(qright)⊗ ρ2(qleft)⊗ 1⊗ 1. This way, we can set up a Resonator Network
for five factors and have it decode locations anywhere in the tree.

Following our established convention, we denote each factor estimate in the Resonator
Network as x̂(0), x̂(1), x̂(2), x̂(3), x̂(4) and the codebook matrices as X0,X1,X2,X3,X4. Each
codebook matrix contains permuted versions of qleft and qright, and 1:

Xd =
[
ρd(qleft), ρ

d(qright),1
]

where d indicates the depth in the tree. The input to the network is c−1⊗t, which we expect
to be a composite vector plus noise (refer to eq. (3.2) and also see Section 2.5.5)

The process is demonstrated in Figure 3.1. Different leaves in the tree can be found by
unbinding the leaf representation from the tree vector and using this result as the input to
the Resonator Network. We visualize the network dynamics by displaying the similarity of
each factor estimate x̂(d)[t] to the atoms stored in its corresponding codebook matrix Xd.
The evolution of these similarity weights over time is shown as a heat map (Figure 3.1, right).
The heat maps show that the system initially jumps around chaotically, with the weighting of
each estimate changing drastically each iteration. But then there is a quite sudden transition
to a stable equilibrium, where each estimate converges nearly simultaneously, and at this
point the output for each factor is essentially the codebook element with highest weight.

This toy example of tree search asks the Resonator Network to search among 35 = 243
possible locations in the tree. Clearly, it does so in a much more intelligent way than brute
force. The point is not that VSAs and Resonator Networks are the most efficient way to
represent or search a tree compared to non-connectionist approaches from computer science.
However, if one wanted to do so in a connectionist framework, this would seem a good way
to go.

3.2 Visual scene analysis
This section will outline some of our attempts to encode images with VSA representations
that capture certain generic structures found in visual scenes. Most of the past work on VSAs
has focused on more fundamentally abstract and discrete domains (e.g. language). We are
also more concerned with learning transformations from raw signals (such as images) into
an abstract space of symbolic vectors. We will utilize several different VSAs in this section,
so we will try to make our notation specific in each case: � is the Hadamard product, ~ is
circular convolution, and + is pointwise addition.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 49

Figure 3.2: Generating a vector symbolic encoding of a visual scene

3.2.1 Black box learning for simple scenes

Consider the scene in Figure 3.2 containing colored MNIST digits (LeCun, 1998) in different
positions. Position in the scene is indexed by vertical and horizontal coordinates, each
quantized into three possible values, (top, middle, bottom) and (left, center, right),
respectively. Each digit can take on one of seven possible colors (blue, green, cyan, red,
pink, yellow, white). The digits are labelled by their semantic class (0, 1, . . . , 9), but the
exact shape will differ, as the stimuli are sampled from the 50,000 exemplars in the MNIST
training set.

Any given scene can have between one and three of these objects, which are allowed to
partially occlude one another. We generate symbolic vectors cblue, cgreen, . . . , cwhite to encode
color, d0,d1, . . . ,d9 to encode shape, vtop, vmiddle, vbottom to encode vertical position, and
hleft,hcenter,hright to encode horizontal position, which are stored in the codebook matrices
C, D, V, and H.

The example scene in Figure 3.2 contains a cyan 7 at position top, left, a pink 3
at position top, right, and a red 8 at position middle, left. While this is a highly
simplified type of visual scene, it illustrates the combinatorial challenge of representing and
interpreting visual scenes. There are only 23 distinct atomic parameters (10 for digit identity,
7 for color, 3 each for vertical and horizontal position) and yet these combine to describe
10× 7× 3× 3 = 630 individual objects, and 630 + 6302 + 6303 = 250,444,530 possible scenes
with 1, 2, or 3 objects. This number of combinations still does not include the variability
among exemplars for each shape, of which there are 50, 000 in the MNIST training dataset.

To encode this scene, one could generate role vectors for color, shape, vertical position,
and horizontal position. The idea would then be to form role-filler bindings to encode an
object:

{(color, red), (shape, 8), (v_pos, middle), (h_pos, left)}
∼

rcolor � cred + rshape � d8 + rv_pos � vmiddle + rh_pos � hleft

This is an encoding we’ve come to call a sum of role-filler pairs. In certain contexts this
encoding might be desirable.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 50

However, we have chosen a slightly different approach. We dispense with role vectors
altogether and simply bind the fillers themselves:

{(color, red), (shape, 8), (v_pos, middle), (h_pos, left)}
∼

cred � d8 � vmiddle � hleft

We have come to call this encoding a product of fillers. Assuming we have control over
generating the filler vectors, we can make them all quasi-orthogonal and there is no ambiguity
between, for instance, shape and color fillers or the position fillers, and therefore no ambiguity
about what role they fill in parameterizing the object. Composite vectors encoded this way
will all be distinct. Not only does the product of fillers encoding present a more obvious
factorization problem, but there are additional reasons to prefer it over a sum of role-filler
pairs, which we address in Section 3.5.

The way we encode scenes like the one shown in Figure 3.2 is to superimpose product of
filler encodings for each object. Call this the scene vector, s. Such an encoding still provides
a flexible data structure such that aspects of the scene can be individually queried. One
attractive property of this representation is that its dimensionality does not grow with the
number of objects in the scene, nor does it impose any particular ordering on the objects.
This in stark contrast to typical approaches in deep learning. These use localist, rather than
distributed, representations of the object at the output layer and therefore do not support
direct superposition. Also, deep learning practitioners use attentional windows to sidestep
the issue of processing multiple objects simultaneously. While foveation is a strategy of active
perception that benefits both biological and artificial vision systems (Land & Nilsson, 2012;
Cheung et al., 2017) , it seems unrealistic to expect that multiple objects will never occupy
the same window of attention. This type of encoding allows us to represent the whole scene
on the same set of units. It solves the “neural binding problem” (Von der Malsburg, 1995).

An issue that remains is how to go from images to symbolic vectors. This being the
year 2020, of course one can train a feed-forward neural network to do it. A simple multi-
layer peceptron with two fully-connected hidden layers is powerful enough to be trained,
with supervision, to output a product of fillers vector like we depict in Figure 3.2. The
feed-forward network was trained on a (uniformly) random sample of these scenes, with
the MNIST digits chosen from an exclusive training set. Once the feed-forward network has
recoded the image into a VSA representation, a Resonator Network can go to work parsing it.
The vectors ĉ[t], d̂[t], ĥ[t] and v̂[t] denote the guesses for each factor: color, digit, horizontal-
and vertical-location, respectively. The scene can then be decoded by iterating through the

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 51

Figure 3.3: Scene vector s is fed into a Resonator Network which decodes each object in
the scene. The model hones in on one object at a time, which is then explained away by
subtracting the Resonator Network’s converged state from the scene vector. The network is
reset and provided with this new input vector. It then converges to another solution, which
describes a different object in the scene.

Resonator Network:

ĉ[t+ 1] = g
(
CC>

(
s� d̂[t]� v̂[t]� ĥ[t]

))
d̂[t+ 1] = g

(
DD>

(
s� ĉ[t+ 1]� v̂[t]� ĥ[t]

))
v̂[t+ 1] = g

(
VV>

(
s� ĉ[t+ 1]� d̂[t+ 1]� ĥ[t]

))
ĥ[t+ 1] = g

(
HH>

(
s� ĉ[t+ 1]� d̂[t+ 1]� v̂[t+ 1]

))
(3.3)

Our encoding of visual scenes superposes a composite vector for each object, each of
which individually is a valid solution to the factorization of the scene. When we present
the scene vector s to a Resonator Network, it automatically hones in on a particular one of
these composites, finding its factors. For instance, in Figure 3.3 the Resonator Network first
identifies the pink three in the top right. Once the factorization has been found, this object
is then “explained away” by subtracting it from s. What remains are the other composites,
still in superposition. The Resonator Network is then reset (each resonator is reinitialized
to the superposition of all possible codevectors) and presented with the new explained-away
scene vector. It will then hone in on one of the remaining objects, in this case the red 8. This
sequence may be repeated until all the objects have been decoded. This technique is similar

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 52

Figure 3.4: Resonator Networks correct encoding errors. Visual scenes with one, two, and
three objects are separated into separate columns. Top row gives encoding quality, in terms
of cosine similarity between the feed-forward network output and the ground-truth scene
vector, across the test-set. We define correct factorization as the case where the Resonator
Network correctly infers all the factors of all objects. The bottom row shows the empirical
probability of a correct factorization as a function of similarity to the ground truth scene
vector. Lines are logistic function fits to the data.

to what is known as “deflation” in the context of tensor decomposition methods (da Silva
et al., 2015).

After training on 100,000 images, we used the network to produce symbolic vectors for a
held-out test set of 10,000 images. The vector dimensionality N is a free parameter, which
we chose to be 500. If the exact ground truth vector is provided to a Resonator Network, it
will infer the factors with 100% accuracy provided N is large enough, a fact we established
in Chapter 2. For this small visual scene example it turns out N = 500 more than suffices
for the number of possible factorizations to be searched. Note that N = 500 is less than the
total number of combinations of all the factors, which is 630.

The encoder network generates VSA scene vectors that are close to the ground-truth
encoding, but there is some error. The error gets larger with more digits in the scene, perhaps
partially due to occlusion of the digits. Figure 3.4 shows that the Resonator Network can
tolerate significant error in the scene vector produced by the feed-forward encoding network,
correcting for ambiguity not resolved in the encoding step.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 53

Figure 3.5: Simple 2D scenes with 4 factors

One may be concerned that using a generic neural network in the way we have shown is
fairly opaque and brittle. We share this concern. We do see a role for learned neural network
encodings as a front-end for perception, but as it stands this particular network is essentially
a black box. While perhaps it should be no surprise that a network can be trained for such
a simple dataset, it is a starting point for making further improvements, which we develop
over the next few sections.

3.2.2 Removing the black box completely

In this section we demonstrate a mapping from images to bipolar vectors which does not
involve a neural network. The dataset is simpler, in that it uses only one exemplar for each
digit shape, but the method requires no learning. A Resonator Network can consume the
bipolar vector produced by this mapping, factoring it into each digits’ constituent parameters
by employing the “explaining away” technique we have previously introduced. What is
remarkable about this encoding is that it uses the principle of superposition to go from low
level features–individual pixels–to high-level discrete concepts.

In Figure 3.5 we show the parameters for a set of artificial scenes. The parameters of
these scenes are similar, but not the same as what we used in the previous section. The
reason is simply that we conducted these experiments six months apart and had a slightly
different variation of the data we had been using in other applications. Each object in this
world can be decomposed into 4 factors: shape, color, vertical translation, and horizontal
translation. What one measures is a conjunction of the 4 factors (an image of the object)
and the task is to infer these components. A scene may contain more than one object, in
which case the task is to infer the factors for each object separately. There are 10 shapes,
6 colors, 8 discrete values for both vertical and horizontal translation (each separated by 4
pixels), and the images themselves are 56 by 56 pixels.

The Resonator Network we use to compute the factorization has 4 codebooks: S for shape,
R for color, Tv for vertical translation, and Th for horizontal translation. The following
sections detail how these codebooks are set.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 54

Encoding shape templates

There are ten shapes, one for each of the digits 0 to 9, and they are shown in Figure 3.5. We
express the pixel values for each shape as pi(y, x) where i goes from 1 to 10 and y indexes
vertical position while x indexes horizontal position. Shapes are taken from the MNIST
dataset, but we choose a single template shape for each digit–in this demonstration we are
not generalizing across different styles in the MNIST dataset.

The pixel values are in the interval [0, 1]. We generate a random codebook V for vertical
pixel position as well as a random codebook H for horizontal pixel position (the shape images
are 28× 28 pixels):

V := {v0,v1, . . . ,v27} H := {h0,h1, . . . ,h27}

The codebook matrices V and H stack these vectors into their respective columns, following
our usual convention. The bipolar vector si, which encodes the ith shape, is generated in
the following way:

si := sgn
(∑
y,x

pi(y, x) vy � hx
)

(3.4)

The properties of this encoding are fairly interesting. For high enough N , it would be
virtually impossible to discern the digit to which si corresponds unless one were given the
label a priori, or had access to the codebooks V and H. Yet, si still contains almost all
of the information present in the image in the sense that we can approximately generate
the image from si. The cosine similarity between the vector vy � hx and si can be used to
approximately recover pixel value pi(y, x):

sim(vy � hx, si) :=
1

||vy � hx||2 ||si||2
(vy � hx)

T si =
1

N

N∑
j=1

(
vy � hx � si

)
j

= αpi(y, x) + γ

where α represents a scaling indeterminancy due to the bipolarizing function g(·) and γ is
a noise term due to the (hopefully small) overlaps between vy � hx and the other terms in
the sum defining si. If we know pixels values are bounded (we do in this case, they are in
the interval [0, 1]), then we can estimate α from sim(vy � hx, si). Our estimate for pixel
pi(y, x) we denote by p̂i(y, x) = 1

α
sim(vy �hx, si). The variance of the noise γ is reduced by

increasing N–this fact is illustrated in Figure 3.6. The information in the image is contained
in si, but is in some sense encrypted by the codebooks, and the invertibility of this encoding
improves with increasing N .

Another interesting property of our mapping is that si is distributed in the sense that
information is spread evenly across the elements of the vector. This is in contrast to the
localist representations of many modern deep learning approaches, in which the burden of
representing a scene parameter may fall on an individual component of the (usually low-
dimensional) vector representation at the final layer of these networks. The benefits of a
distributed representation have been argued in Hinton et al. (1986), Kanerva (2009), and

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 55

(a) Original images, pi(y, x) (b) p̂i(y, x) for N = 1,000

(c) p̂i(y, x) for N = 10,000 (d) p̂i(y, x) for N = 100,000

Figure 3.6: Bipolar vector si noisily encodes the original image

(a) Cosine similarity matrix, images (b) Cosine similarity matrix, si

Figure 3.7: Bipolar encoding makes shapes more orthogonal

many other places. They include the fact that distributed representations are highly robust
to pertubations and give a natural way to superpose the representation of multiple objects
without having to add any additional units. Besides these properties, encoding shapes ac-
cording to (3.4) also makes them slightly more orthogonal. We plot in Figure 3.7a the cosine
similarity matrix between all of the shape images and in Figure 3.7b the cosine similarity
matrix between all of the vectors si. There is an increase in orthogonality between different
shapes when we encode them in this way, which may aid in the determination of which shape
is present in an image. We stack each si into the columns of matrix S, which we call the
shape codebook matrix.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 56

Encoding color

Color can be encoded the same way we encoded shape, where the sum in (3.4) is instead
over color channels, but the issue with this is that the encodings for some colors overlap
significantly–cyan is blue plus green (the encoding for cyan will be similar to both blue and
green), pink is red plus blue, and yellow is red plus green. We want the bipolar vector
representation for each color to be as orthogonal to the others as possible, so we just draw
a random codebook R with 6 vectors, one for each color:

R := {r0, r1, . . . , r5}

with R the associated codebook matrix. When we encounter a color image, we can decode
the RGB pixel color, represented by the 3-element vector p, with a simple winner-take-all
perceptron

σ(p) := WTA(Wp + b)

where we just set W and b manually so that this outputs the correct index for each of the
6 colors.

Encoding translation

The two remaining factors in the dataset (Figure 3.5) are the 8 vertical and horizontal
positions of the shape within a larger scene. We’ll refer to these as translations of the
template so as to distinguish them from position within a shape template. Translation of
the template is encoded by the random codebooks Tv and Th:

Tv := {tv0 , tv1 , . . . , tv7} Th := {th0 , th1 , . . . , th7}

and again following our convention, Tv and Th are the associated codebook matrices. The
last thing we must address is how to encode pixel position in the larger scene (which po-
tentially contains several different shapes with initially unknown factors). We have already
defined V and H for pixel position within a shape template and Tv and Th for translation of
this shape template–we combine them in order to encode pixel positions in the full scene.
Suppose that in some scene we have a nonzero pixel at location (8, 9). This could come
from the (8, 9) pixel of a shape template that is not at all translated, or it could come from
the (4, 3) pixel of a shape template that has been been translated by 4 pixels vertically and
6 pixels horizontally (or many other possible combinations of template pixel position and
template translation). One can see that there is an ambiguity here due to the need to simul-
taneously estimate shape and translation from only the pixel information. Our strategy is
to superimpose all the relevant combinations of template pixel position and template trans-
lation. We define f as the encoding of a position within the full scene in terms of codebooks
for the template pixel position and template translation:

f(y ; V,Tv) :=
∑

y′, y
′′∈Qy

vy′ � tvy′′ (3.5)

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 57

f(x ; H,Th) :=
∑

x′, x
′′∈Qx

hx′ � thx′′ (3.6)

The sets Qy and Qx contain all of the combinations for pixel position within a template and
template translation that would generate y and x, respectively. The reason this approach
makes some sense is that given the correct translation, a full shape vector si should pop
out of an image encoded using f , albeit with some “noise” due to the extra terms in the
sum. The coincidence of the same translation applied to every pixel in a shape template
is one of the ideas underpinning Hinton’s Capsules theory (Hinton, 1981b; Sabour et al.,
2017) and Olshausen’s theory of Dynamic Routing in biological vision (Olshausen et al.,
1993). If our definition of f seems to be an inelegant way to deal with the translation
ambiguity, it is because bipolar vectors are not the natural choice for encoding translation
via multiplication–complex-valued vectors are much more appropriate, which we will cover
in the next section.

Performance

Putting all the pieces together, we set up a Resonator Network with the codebook matrices
S (shape), R (color), Tv (vertical translation), and Th (horizontal translation). In our RGB
scenes, pixels are p(y, x) and the greyscale pixel luminance we write p(y, x) (taken as the
average of p(y, x)). The encoding for each image is:

s = sgn
(∑

y,x

p(y, x) f(y ; V,Tv)� f(x ; H,Th)� rσ(p(y,x))

)
(3.7)

This generates a single bipolar vector of size N which represents everything in the scene,
and this was done purely through superposition over a simple encoding of each pixel, not
with a neural network.

Our results show that this vector contains all the information necessary to factor the
scene into its components. If a scene contains more than one digit, we can use the explaining
away procedure to factor each digit one at a time. When generating the images, we layer
the digits on top of one another, so there can be significant occlusion due to those that are
in the foreground. We place the digits in the scene in the order 3, 2, 1, so Object 1 is always
guaranteed to be in the foreground, unobscured.

The results we report in Table 3.1 were generated with bipolar vectors of size N = 10,000
and a Resonator Network with OLS weights. There are 3840 possible scenes with a single
digit and we applied the Resonator Network to factoring each one of them–the accuracy
was 0.932 in our experiment. There are 38402 possible two-object scenes, so we randomly
subsample 5000 of them. We also randomly subsample 5000 of the three-digit scenes. The
object in the foreground is always easiest to factor, and this is often the one chosen first
by the Resonator Network. We ran our model on the three scenes shown in Figure 3.8; the
reported factorizations are shown Table 3.2.

Notice that the object in the foreground is the most salient–it has a proportionally larger
representation in s than do the other digits, so it makes sense that it would be factored first.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 58

Obj 1 Obj 2 Obj 3
One object 0.932
Two objects 0.864 0.824
Three objects 0.826 0.762 0.688

Table 3.1: Factorization accuracies for multi-factor digit scenes

(a) One object (b) Two objects (c) Three objects

Figure 3.8: Example multi-factor digit scenes

Scene Reported factorization Accuracy
3.8a { shape: 8, color: cyan, vertical trans: 2, horizontal trans: 4 } 1.0
3.8b { shape: 2, color: pink, vertical trans: 5, horizontal trans: 3 } 1.0

{ shape: 2, color: yellow, vertical trans: 7, horizontal trans: 3 } 1.0
3.8c { shape: 6, color: blue, vertical trans: 0, horizontal trans: 2 } 1.0

{ shape: 5, color: yellow, vertical trans: 0, horizontal trans: 0 } 1.0
{ shape: 5, color: red, vertical trans: 1, horizontal trans: 0 } 1.0

Table 3.2: Reported factorizations for scenes in Figure 3.8

Once the Resonator Network factors this object, it can be subtracted from the scene and
what is left are fragments of the digit(s) that had been occluded–this information is enough,
at least in these examples, to factor the remaining digits as well.

3.2.3 A continuous, complex vector encoding

The representation of position in the previous section left several things to be desired. Posi-
tion in one dimension is a continuously-varying scalar variable, yet we were encoding in the
non-continuous domain of bipolar vectors. Worse still, the assignment of vectors to discrete
positions was random, not reflecting the underlying geometry of the real number line. One
partial solution to this problem is a so-called “thermometer code” which flips bits sequentially
to encode nearby positions, but this still enforces a fundamental discreteness (and therefore
a minimum resolution) on the encoding of what is ultimately a continuous quantity.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 59

We prose a remedy that relies on complex-valued vectors. This is an encoding that several
of us at the Redwood Center for Theoretical Neuroscience have been using over the last 4
years to encode continuous quantities whenever they arise in VSA applications. I have come
to call it “phase-scaling.”

We use complex-valued vectors, particularly the subset Plate calls “unitary” vectors,
which are those in which each element has complex magnitude 1 (Plate, 1994). These vectors,
which are the most direct generalization of bipolar vectors, have many desirable properties
like the exactness and numerical stability of inversion as well as exact similarity-preservation
under the binding operator (the Hadamard product).

The phase-scaling mapping is not completely deterministic in that randomness is gener-
ated in an initial setup phase. Ultimately the mapping moves along a one-dimensional sub-
space of the N-dimension space of unitary vectors–this initial randomness determines which
one-dimensional subspace gets traversed. We start by drawing a base vector of phases:

θ :=

θ1

θ1
...
θN

Where each θi is drawn i.i.d. from the uniform distribution on the interval [−π, π). There
is a parameter of the phase-scaling encoding that I call the “bandwidth,” denoted in this
section by b.

Then, the phase-scaling encoding of x with a bandwidth of b and base phases θ is:

V (x; θ, b) :=

ej

θ1
b
x

ej
θ2
b
x

...
ej

θN
b
x

 (3.8)

Hopefully it is clear why I am calling this a phase-scaling. We take a vector of assorted
complex phases and scale these phases by x, wrapping them around the unit circle at a rate
determined by θi/b, which one can think of more like a frequency.

The first thing to notice is that this mapping is continuous. The smoothness of this
continuous mapping is something we will come to next. Assuming N is of the size nor-
mally used in VSAs (≥ 1000), it is bijective over a large range of x. The mapping does
eventually go through a cycle, whose length is related to the least common multiple of
{θ1/b, θ2/b, . . . , θN/b}, modulo π. I have not made this statement completely concrete, but
hopefully the gist is clear. This mapping is briefly mentioned in Plate’s thesis (in Sec-
tion 3.6.5), where he refers to it as the “convolutive power” and he uses this encoding in
trajectory-association experiments in Section 5 (Plate, 1994). He mainly uses it, however,
with integer “powers,” which effectively generate random trajectory-association labels, and
does not particularly stress the continuity or bandwidth of this encoding.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 60

It has not been lost on us that this encoding bears more than a passing resemblance to
a grid-cell code (Hafting et al., 2005; Fiete et al., 2008). While we have not pursued this
in depth, it may be that the next section suggests a nice interpretation of high-dimensional
grid-cell codes.

3.2.3.1 Properties of the cosine similarity

Suppose we have two complex-valued vectors v1 and v2:

v1 :=

m1e

jφ1

m2e
jφ2

...
mNe

jφN

 v2 :=

p1e

jγ1

p2e
jγ2

...
pNe

jγN

The cosine similarity is defined as

sim(v1,v2) := <
[vH1 v2

||v1|| ||v2||

]
=
<
[∑N

i mipie
j(γi−φi)

]
||v1|| ||v2||

=

∑N
i mipi cos(γi − φi)
||v1|| ||v2||

where vH1 is the conjugate-transpose of v1. When the vectors are “unitary,” their Euclidean
norms (|| · ||) are

√
N , and this expression simplifies to

1

N

N∑
i

cos(γi − φi) (3.9)

Let us leave this expressed as a complex number and simply examine the properties of cosine
similarity between the encoding of two distinct values x1 and x2:

sim(V (x1; θ, b), V (x2; θ, b)) =
1

N
<
[N∑

i

ej
θi
b

(x2−x1)
]

:=
1

N
<
[N∑

i

ej
θi
b

∆x
]

(3.10)

This expression is obviously shift-invariant and maximized at ∆x = 0. Recall that the
random variables θi are uniformly distributed on the interval [−π, π), so the term θi

b
is

uniform on [−π
b
, π
b
). What happens in the limit of large N is quite nice:

lim
N→∞

1

N
<
[N∑

i

ej
θi
b

∆x
]

= <
[∫ ∞
−∞

rect(bf) ej2πf∆x df
]

(3.11)

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 61

Figure 3.9: Normalized sinc function

Where rect(t) is the rectangle function:

rect(t) =

1 −1

2
< t < 1

2
1
2
|t| = 1

2

0 otherwise

(3.12)

Let us just assume b is 1 for a moment. What we have in (3.11) is the real part of the inverse
Fourier transform of the rectangle function. Therefore, it is equal to the normalized sinc
function:

sinc(∆x) :=
sin(π∆x)

π∆x
(3.13)

which I plot in Figure 3.9. Note that the zero-crossings of the normalized sinc are on the
integers. Also note that it is real-valued. For a general bandwidth b, the signal rect(bf)
is non-zero on the interval (− 1

2b
, 1

2b
) and the inverse Fourier transform of this signal has

zero-crossings at integer multiples of b.
What the combination of (3.10) and (3.11) shows is that, when we encode x1 and x2

with the phase-scaling encoding, the cosine similarity between the resulting vectors is a sinc
function applied to their difference ∆x, and that we can tune the bandwidth of this sinc
function with the parameter b.

We use Figures 3.10-3.12 to illustrate that the preceeding analysis is borne out in simu-
lation, and how this type of encoding can be used. First, in Figure 3.10 we tile the interval
[−10, 10] with vectors representing the values {−10,−5, 0, 5, 10}. The bandwidth b can be
adjusted to tune the degree of specifity for the encoding. This is how we might imagine
controlling the amount of interpolation that comes from taking simple linear combinations
of adjacent vectors. Figure 3.11 fixes x1 to 0 and demonstrates how the bandwidth is exactly
b in expectation. For small N , deviation from a sinc function occurs on a trial-by-trial basis
(for different random samples of the base vector θ), but this “noise” is mean-zero and its
variance is small. This is shown by Figure 3.12.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 62

Figure 3.10: Phase-scaling encoding can be used to tile a domain with varying degrees of
specificity. In these simulations N = 1000.

Figure 3.11: Expected bandwidth of cosine similarity is exactly b. Plot shows empirical mean
of cosine similarity estimated from 100 random trials, and exact bandwidth calculated from
linear interpolation between measured points.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 63

Figure 3.12: Variance of the cosine similarity is small and depends on N

Notice also that the phase-scaling encoding induces an isomorphism between addition
with real numbers and the Hadamard product applied to these unitary complex vectors.
Due to the 2π-symmetry of phase variables, this mapping is not technically invertible over
the entire real number line (there will eventually be a cycle that makes the original x am-
biguous), but it will be invertible over a very large interval. As a consequence of the fact
that multiplication in the vector space produces translation in the input space, translation
of multiple features stored in superposition becomes quite elegant. We can reimplement the
scene encoding scheme covered in Section 3.2.2, this time with complex vectors, and simplify
the encoding of position dramatically. We won’t devote more space to a discussion here, as
this has been previously published in Frady, Kent, Kanerva, et al. (2018).

3.3 Vector symbolic scene transformation
This section is about some of our early attempts to generate transformations of visual scenes
by using VSA algebra to manipulate representations of those scenes. This involves an en-
coding of the image, followed by a transformation, and then a rendering of the transformed
scene (depicted in Figure 3.14 and explained below).

Physically-realistic transformations of visual scenes provide strong cues for underlying
structure. In particular, naturalistic movements of objects, smooth changes in lighting, or
changes in camera viewpoint can help a vision system better model the three-dimensional
configuration of things in the scene. The idea of modeling transformations in a latent space
(i.e. not the space of images) is depicted in Figure 3.13. Transformations of the underlying

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 64

Figure 3.13: The objective of modeling transformation in a new space S

three-dimensional scene produce transfomations in the image space I which are convoluted
and difficult to model. One should seek a mapping from I into a new latent space S that
simplifies the geometry of these transformations.

At some level this always simplifies to 1) finding a mapping f(·) : I → S and 2) finding
operators on S that capture the desired transformations. In some prior work, the mapping is
learned based on a task largely unrelated to transformation, but then it is observed after the
fact that simple operations, including vector sums and differences, approximately capture
meaningful transformations (Cheung et al., 2015; Radford et al., 2015). The more interesting
results have been where transformation is explicitly incorporated into the learning objective.
In some cases the mappings are selected from a large and hard to interpret family of neural
network mappings (Reed et al., 2014; Reed et al., 2015; Tulsiani et al., 2018), while in others,
simpler and more easily analyzed mappings have been learned (Culpepper & Olshausen,
2009; Sohl-Dickstein et al., 2010; Cadieu & Olshausen, 2012). It is often an objective, either
implicit or explicit, that the mapping linearize the manifold of scene representations (Chen
et al., 2018).

We take a slightly different approach here. On the one hand, we allow the mapping to
be a neural network (specifically a multi-layer perceptron with two hidden layers). However
we aim to impose structure on the learned mapping by applying VSA transformations to the
output of the encoder. Moreover, instead of being based on simple scalings and translations
of vectors, our transformations are based on binding.

Suppose the encoded representation of our scene is vector s. We notate a generic trans-
formation of the scene as

snew = Tα(s, {v0,v1, . . . ,vk}α)

where {v0,v1, . . . ,vk}α are some VSA vectors that are used to encode a particular transfor-
mation labeled α, and snew is the VSA representation of the transformed scene. We can set
up an autoencoder-like architecture where error is calculated on a rendered image of snew,
and this is backpropagated through the entire model. The actual vectors {v0,v1, . . . ,vk}α
may be selected based on a provided label for the transformation, or in some cases it may
be possible to infer them. This makes model training unsupervised, in a loose sense. See
Figure 3.14 for a diagram of the model. We call it a Vector Symbolic Scene Transformer

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 65

Figure 3.14: Vector Symbolic Scene Transformer

(not to be confused with transformers in the sense of Vaswani et al. (2017) and Devlin et al.
(2018), which became popular after we introduced this (Kent & Olshausen, 2017)).

One objective of this work was to show that one can coerce s to have certain VSA
structures simply by the operations applied to it. Figure 3.14 shows data that has three
factors–shape, position, and rotation. There are two digits in a scene, each occupying one
of four quandrants for position. The task is to selectively rotate individual objects–induce
rotations which are local and not applied over the entire image (despite the fact that s
encodes the entire image). This demonstrates an encoding which captures the conjunction
of position with rotation. Suppose position is encoded with vectors q0,q1,q2,q3. Rotation
is encoded with rθ, where this takes the continuous phase-scaling encoding we introduced in
the previous section.

The transformation shown in Figure 3.14 is a π/4 rotation applied to the digit in quadrant
1 and a 7π/4 rotation applied to the digit in quadrant 3. We capture such a transformation
in the following way:

snew = ρ(q1)� rπ/4 � q−1
1 � s + ρ(q3)� r7π/4 � q−1

3 � s (3.14)

The motivation for this is that if s has a product of fillers representation for each digit (like
we have used in previous sections, see 3.2.1, for example), then such a transformation will
result in precisely what we are after:

s = d0 � rθ′ � q1 + d9 � rθ′′ � q3

=⇒ snew ≈ ρ(q1)� rπ/4 � d0 � rθ′ + ρ(q3)� r7π/4 � d9 � rθ′′

= d0 � (rπ/4 � rθ′)� ρ(q1) + d9 � (r7π/4 � rθ′′)� ρ(q3) (3.15)

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 66

What we are left with at the end of 3.15 is an encoding of the same shapes in the same
positions, but modified by a relative rotation of π/4 and 7π/4, respectively. We have added
parentheses in (3.15) simply to make it easier to visually parse. The reason we must use
ρ(q1) in addition to q1 to specify position is because otherwise the commutativity of � would
cause q1 to nullify the effect of q−1

1 . Also note that we never explicitly encode digit shape;
it is assumed that this information is present in the form of some vector d produced by the
encoder, but it is not explicitly part of the transformation imposed in 3.14.

This idea can be scaled up significantly and generalized to other types of physical proper-
ties. We show in Figure 3.15 scenes that have 6 digits in one of nine different grid positions,
each rotated independently from one another. In Figure 3.16 we challenge the model with
scenes from a dataset of rendered 3D scenes that we developed specifically for this project.
A new model is trained for each of the different datasets and transformation tasks. The
quality of the rendered images could be improved by any number of changes to our very
simple decoder (a multi-layer perceptron), but hopefully it is clear that the scene encodings
are at some level capturing the conjunction of position with other object features.

Figure 3.15: Results on local rotation for a held-out test set containing MNIST digits

We had difficulty training the model in an unsupervised way on the more complex 3D
scenes shown in Figure 3.16. This is the setup that requires making alternating updates to

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 67

Figure 3.16: Random sample of outputs from VSST model applied to 3D rendered scenes

the model parameters ("learning"), and regressing the rotations and positions ("inference").
The results shown are for when the model is given what the transformations are as a label.
It encodes these into VSA vectors and then applies VSA arithmetic as we have shown above
in (3.14). We are not sure specifically why unsupervised learning was difficult here, but it
might have to do simply with collapsing many degrees of freedom (the rotation vectors are
N -dimensional) onto a single scalar, and the general difficulty of bad local minima in this
1D subspace.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 68

3.4 Sub-symbolic superposition
The best way to map from images to a rich symbolic vector space is unknown, but in the pre-
vious sections we have outlined several different approaches. On the one hand, the mapping
can be learned with essentially a “black box” encoder, provided strict enough supervision of
the vector outputs is used. This can either be with the desired ground truth representations
(Section 3.2.1) or by transforming the vector outputs using VSA algebra while supervising
the reconstructions in the image domain (Section 3.3). On the other hand, one can explicitly
generate a VSA encoding of every single pixel and directly superimpose these (Section 3.2.2).
This has some interesting properties–it effectively asks each pixel to “vote” for higher-level
object features, and in a high dimensional space this superposition collects these votes into
what tend to act like discrete categories. One very nice consequence of allowing each pixel a
vote is that it deals automatically with multiple objects in a scene. The superposition ends
up congealing into k clusters of votes–one for each of the k objects. Therefore the output
encodes a superposition of objects without having to do any extra work.

The next logical evolution of this idea applies superposition to higher-level feature con-
junctions. I call it an sub-symbolic superposition encoder. A diagram of a sub-symbolic
superposition encoder is given in Figure 3.17, showing that it has 4 simple stages: feature
extraction, factor inference, factor combination, and superposition.

Feature extraction

The feature extraction stage could be any variety of differentiable layers–we have used stan-
dard convolutions with rectified linear unit activations. In most convolutional networks,
significant spatial downsampling of the image would occur here, but one should consider
whether this is appropriate for tasks that require positional encoding and/or fine spatial res-
olution. In our experiments we have discretely sampled position in the dataset so as to allow
a 4x downsampling (of an originally 160x160 pixels image) simply to reduce the number of
trainable features and the size of the activation layers.

Factor inference

Factor inference branches into F factors. In each of these branches it selects, at every position
(y, x) in the feature map, a linear combination of the codevectors for this factor. The factors
can be provided ahead of time or they can be learned online. In most of our experiments
we provide the vectors, which are often drawn randomly. Most of our experience training
this model so far has been with unitary complex vectors (Plate, 2003). More concretely, the
computation of factor inference is:

Xfaf [y, x] = x̂f [y, x] ∀f = 1, 2, . . . , F (3.16)

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 69

Figure 3.17: Sub-symbolic superposition encoder

Factor combination

Factor combination is either a product of fillers or a sum of role-filler pairs encoding at each
position (y, x) position:

ĉ[y, x] = x̂1[y, x]� x̂2[y, x]�, . . . ,� x̂F [y, x] (3.17)

ĉ[y, x] = r1 � x̂1[y, x] + r2 � x̂2[y, x] +, . . . ,+ rF � x̂F [y, x] (3.18)

Superposition

Superposition is the sum over each position of the (ostensibly sub-symbolic) prod_f or
sum_rfp vectors:

ŝ =
∑
y,x

ĉ[y, x] (3.19)

This encoder is fairly easy to train, although the memory requirements of representing
the tensors in the factor inference step can be a challenge. We have trained this mostly on
a custom variant of the CLEVR images dataset (Johnson et al., 2017). The main point of
emphasis we would like to make about this encoder is that it naturally handles multiple ob-
jects in superposition. We trained the model on images containing one object, while keeping
track of its performance on images with two objects. Compared to a baseline we refer to as
“black-box” (it generates HD vector encodings via an MLP mapping from the convolutional
features down to a vector output), our encoder shows much better generalization. We show
this in Figure 3.18.

3.5 Analogical Reasoning
Psychologists have studied analogy for decades because, at some level, it captures what is
most powerful about human cognition. From among the many definitions given for analogy,

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 70

Figure 3.18: Generalization to multiple objects comes from the architecture of sub-symbolic
superposition. Black box variants vary by the number of trainable parameters.

let us sythesize our own: analogical reasoning is a cognitive process that infers similarity
and correspondence between different cognitive concepts. An analogy is whatever correspon-
dence can be found. Clearly, certain concepts can be more or less analogous, and while we
know some things about the types of analogies that humans prefer (Ross, 1989; Gentner
et al., 1993), we are still only guessing about the computational and neural basis of human
analogical reasoning.

What makes analogy so powerful is that it gives one a framework for repurposing learned
knowledge in situtations that have never been encountered. Sometimes these novel cognitive
concepts come from completely different domains of knowledge than what has been previously
learned, making them appear, based only on their surface features, novel. After further
inspection, however, analogies exist precisely where one can draw structural correspondences
between elements of the learned and novel concepts. In some sense, and this is a term often
employed by psychologists in this context, an analogy involves an isomorphism between
concepts.

That the human facility for analogical reasoning helps with learning new information and
categorizing it for later recall should be fairly obvious. Think about how one typically learns
a second language. It is by analogy to concepts and words in one’s own fluent language that
novel concepts and words are introduced. Physics and mathematics textbooks are brimming
with analogy. The arrangement of subatomic particles in an atom is often explained in
analogy to the orbits of planets in our solar system. Consider the frequent appeal to geometric
intuition that permeates much of mathematics. Perhaps it is not too bold to say (as has been
argued by some cognitive scientists, see, e.g., Hofstadter and Sander (2013)) that cognition
is analogical reasoning.

It would appear that all but the most basic analogies require a facility for representing

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 71

Name ∼ rName Language ∼ rLanguage Currency ∼ rCurrency

USA ∼ nUSA Mex ∼ nMex

English ∼ aEnglish Spanish ∼ aSpanish

Dollar ∼ cDollar Pound ∼ cPound Peso ∼ cPeso

Table 3.3: Vector encodings of atomic concepts

and manipulating data structures, as defined in a general sense. The most basic structural
requirement of analogy is an association of variables with instance-specific values, otherwise
known as role-filler bindings. While various authors have suggested that these associations
be made in other ways (Thagard et al., 1990; Forbus et al., 1995), we suggest that the VSA
binding operation is an elegant way to do it, and in the preceeding chapters we have sketched
out a more general framework for building VSA data structures.

Analogical reasoning therefore appears in this thesis as an application of the multiplicative
distributed codes found in VSA data structures. We show how one can encode concepts in
an analogical reasoning problem. We will also show preliminary results on training a sub-
symbolic superposition encoder on analogy problems.

3.5.1 Encoding considerations

We will start with an example of analogical reasoning that is simple, abstract, and may seem
slightly afield from our prior experiments with visual scenes, but is relevant to VSAs in a
more general sense. Suppose one describes a country by its language, name, and currency.
Clearly much more than these properties goes into the cognitive concept of a country but
allow us to simplify things for the sake of illustration. We consider 3 different countries:

United States ={(Name, USA), (Language, English), (Currency, Dollar)} (3.20)
Thirteen Colonies ={(Name, USA), (Language, English), (Currency, Pound)} (3.21)

Mexico ={(Name, Mex), (Language, Spanish), (Currency, Peso)} (3.22)

Here we have three compound cognitive concepts, United States, Thirteen Colonies,
and Mexico, built from other cognitive concepts for languange, currency, etc., all of which
we assume to be atomic. Let us encode each atomic concept into a random high-dimensional
vector as shown in Table 3.3, where we mean by English ∼ aEnglish that the concept English
is encoded into a vector aEnglish.

The key question in this section is how to combine these atomic vectors to produce a
representation for each country. We start with what has been most commonly used in the
history of VSAs–a superposition of role-filler pairs.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 72

3.5.2 Superposition of role-filler pairs (sum_rfp)

A superposition of role-filler pairs represents United States in the following way:

United States ∼ dUS = rName ⊗ nUSA ⊕ rLanguage ⊗ aEnglish ⊕ rCurrency ⊗ cDollar

Mexico is encoded by

Mexico ∼ dMexico = rName ⊗ nMex ⊕ rLanguage ⊗ aSpanish ⊕ rCurrency ⊗ cPeso

One can form d−1
US ⊗ dMexico to find all the relevant correspondences between these two

concepts:

d−1
US ⊗ dMexico = n−1

USA ⊗ nMex ⊕ a−1
English ⊗ aSpanish ⊕ c−1

Dollar ⊗ cPeso ⊕ η1 (3.23)

where η1 collects the 6 other cross-terms, each of which is a product of 4 atomic vectors.
This implements Genter’s structure mapping idea, because it pairs up each of the concepts
that fill the same role (Gentner, 1983). One can query this with the representation of Dollar
and get back (a noisy version of) the representation of Peso:

cDollar ⊗ d−1
US ⊗ dMexico = cPeso ⊕ η2 (3.24)

where η2 is analogous, but different from η1 (and generally I will take ηx to be different
noise terms). This has been the method of VSA analogy works in the past (Kanerva, 2010).

There is an issue with using the multiplicative inverse on sum_rfp encodings. When the
concepts to be compared share one or more role-filler pairs, this leaves one or more multi-
plicative identity vectors in superposition. We illustrate by encoding Thirteen Colonies:

Thirteen Colonies ∼ d13c = rName ⊗ nUSA ⊕ rLanguage ⊗ aEnglish ⊕ rCurrency ⊗ cPound

The result of d−1
US ⊗ d13c is

d−1
US ⊗ d13c = c−1

Dollar ⊗ cPound ⊕ I⊕ I⊕ η3 (3.25)

These multiplicative identity vectors turn out to be problematic because forming the same
type of query before, cDollar ⊗ d−1

US ⊗ d13c does not yield cPound, as we desire. It might
be possible to infer from dUS and d13c on how many role-filler pairs they match, and then
subtract this many copies of I from d−1

US ⊗ d13c before multiplying by cDollar. However, this
is not entirely straightforward and a better solution exists.

Rather than using the binding operation on sum_rfp encodings, one should use vector
addition and subtraction. This still captures all the correspondences:

dMexico 	 dUS = rName ⊗ (nMex 	 nUSA)

⊕ rLanguage ⊗ (aSpanish 	 aEnglish)

⊕ rCurrency ⊗ (cPeso 	 cDollar)

(3.26)

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 73

d13c 	 dUS = rCurrency ⊗ (cPound 	 cDollar) (3.27)

Where 	 is just equivalent to adding by the additive inverse in the VSA algebra. From
above we can see that correspondences between the different fillers are still maintained,
thanks to the role vectors. This vector can be queried like so:

cDollar ⊕ r−1
Currency ⊗

(
dMexico 	 dUS

)
= cPeso + η4 (3.28)

This works for any country, regardless of how many role-filler pairs they share in common.
The idea here is that, because the method of combination for role-fill pairs was summation,
the operation that captures relations should be summation/subtraction. Otherwise unnnec-
essary cross-terms are introduced that affect the recovery of atomic concepts. In previous
deep learning works that have computed vector sums and differences to capture analogy
(Mikolov et al., 2013; Pennington et al., 2014), it has not been convincingly argued why
sums and differences are the appropriate operations for analogy. For the sum_rfp encoding
this is significantly more clear.

3.5.3 Product of fillers (prod_f)

The product of fillers encoding is:

United States ∼ dUS = nUSA ⊗ aEnglish ⊗ cDollar

Thirteen Colonies ∼ d13c = nUSA ⊗ aEnglish ⊗ cPound

Mexico ∼ dMexico = nMex ⊗ aSpanish ⊗ cPeso

We have dispensed with role vectors entirely. This makes decoding a country’s VSA rep-
resentation harder than in sum_rfp, unless of course one has a Resonator Network. The
benefit of doing it this way is the following:

d−1
US ⊗ d13c = c−1

Dollar ⊗ cPound (3.29)

There are no cross-terms here. If the binding operation used is not exactly invertible (e.g.
circular convolution in real-valued HRRs) then there will be a small amount of noise still,
but it is not of the magnitude represented by η1 to η4 above (Plate, 1994). This might
be very helpful depending on the application and how many atomic vectors need to be
decoded. Plate (1994) established (and Frady, Kleyko, et al. (2018) confirmed) that the
cross-terms contained in η1 to η4 are actually fairly problematic for VSA decoding capacity.
In particular, the number of neurons N has to grow at a rate linear in the number of cross
terms in order to keep up with this noise, which is not the type of scaling (i.e. logarithmic)
we usually benefit from in high dimensions. The prod_f encoding tries to avoid putting
things in superposition whenever possible.

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 74

Figure 3.19: Similarity-preservation of binding for real-valued HRRs

Similarity-preservation of binding

Given that we are advocating the binding operation of a VSA to capture relations between
things in an analogical reasoning setting, we would like to highlight a propery of this oper-
ation which may bear on how appropriate it is from a geometric perspective.

The binding operator ⊗ produces a vector dissimilar to each input, which Plate has called
its “randomizing” property (Plate, 1994). This is important because it otherwise would not
represent a conjunction of two concepts so much as it would represent a union. Researchers
have sometimes (ourselves included) refered to this as “destroying” similarity.

However, the binding operation preserves similarity in the following sense: x ≈ z ⇐⇒
x⊗ y ≈ z⊗ y. For several VSAs, namely MAP and “Unitary” HRRs, the similarity preser-
vation is exact. One geometric intuition for what is happening is that by binding it with y,
x gets mapped into a completely different part of the space, but this preserves the relative
similarity structure among all the vectors exposed to this mapping (such as z). This is a
fairly remarkable fact. It means that we may hope to encode analogies for which the source
domain is very different from the target domain, but where the key relations, captured by
relative similarity structure, remain intact. We show a simulation of this phenomenon for
real-valued HRRs in Figure (3.19). Notice that the similarity preservation for these vectors
is “noisy” but that the variance of this noise appears to decrease with increasing vector di-
mensionality. Plate derived expressions for this variance in his thesis (Plate, 1994), finding
that it scales as O(N−1).

3.5.4 Analogical reasoning with a learned encoding

We have done some experiments with using a sub-symbolic superposition encoder (Section
3.4) in conjunction with VSA arithmetic to capture visual analogies. We have run these
experiments on a customized version of the CLEVR dataset (Johnson et al., 2017) and use
complex-valued HRRs. Suppose the analogy is defined by A : B :: C : D which indicates

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 75

Figure 3.20: Using two different types of arithmetic on the sum_rfp encoding

that A and B have a relation that is shared by C and D. Following the example of Reed
et al. (2015), we pass three images (A, B, and C) through the encoder, then we do vector
arithmetic on them to generate a represenation of D, and then we render this image with
a deconvolutional network. Let us first note evidence for the importance of matching the
arithmetic to the encoding. The sum/difference way of encoding this analogy is sB 	 sA ⊕ sC
while the product/quotient way is sB ⊗ s−1

A ⊗ sC. What is shown by Figure 3.20 is that the
sum/difference arithmetic is better for the sum of role-filler pairs encoding, as we suggested in
the previous section. While we do not show the reconstructed images, the subjective quality
of the reconstructions for the sum/difference variant is much better, actually capturing the
different factors of variation in the dataset, which is lost for the product/quotient arithmetic.

We tend to prefer the product of fillers encoding for its noise properties, but it is not
yet clear which is best in general. The fact that most deep learning works have had success
capturing analogy with additive and subtractive arithmetic, rather than multiplicative, may
give evidence for the sum_rfp encoding being easier to learn with gradient descent.

We compared our VSA analogy pipeline with the deep learning model from Reed et al.
(2015). What we found was that our approach, which uses many fewer trainable parameters,
was able to generate significantly better image analogies. In particular, the structure imposed
by our sub-symbolic superposition encoder regularizes the latent scene encodings so that they
actually capture the geometry of the analogy (sB ⊗ s−1

A ⊗ sC ≈ sD). This is shown in Figure
3.21.

3.6 Summary
This chapter has covered some applications of Vector Symbolic Architectures and Resonator
Networks. Ultimately it has been about composing and decomposing VSA data structures
that represent visual scenes. We have seen that mappings can be learned from the space of

CHAPTER 3. APPLICATIONS OF VSAS AND RESONATOR NETWORKS 76

Figure 3.21: Training an end-to-end analogical reasoning pipeline à la Reed et al. (2015)
works better with a sub-symbolic superposition encoder and VSA arithmetic.

images into the space of symbolic vectors, and that these representations have some desirable
properties. We have used the binding operator of VSAs to capture conjuctions of features,
and Resonator Networks to decompose these conjunctions. Such an approach of explicitly
coding multiplicative interactions helps one to get a handle on the combinatorics of visual
scenes. We outlined a VSA encoding that elegantly handles real numbers and may be critical
to scaling these applications. We also showed how transformation is another way to impose
certain structure on a latent VSA representation. Analogical reasoning is in some ways the
ultimate test of any structure-embedding theory, and we have just scratched the surface
here. We do think that explicitness about encoded structure, which is afforded by the VSA
perspective, is an interesting view on analogy and may help to demystify some of the prior
analogical reasoning work from deep learning.

At some level, we have been asking our various encoders to solve the factorization problem
for us, before ever involving a Resonator Network. One could view this as recoding the
image, in which factors are more easily discoverable, but collide more easily, into a VSA
representation that is more portable and supports downstream reasoning. Ultimately, our
objective is to integrate the encoding more tightly with Resonator Network dynamics, but
this is a challenge for another day.

77

Appendix A

Appendix to chapter 2

A.1 Implementation details
This section includes a few comments relevant to the implementation of Resonator Networks.
Algorithm 1 gives psuedocode for Ordinary Least Squares weights–the only change for outer
product weights is to use X> instead of X†. So long as Df < N/2, computing XfX

†
f

(
ô� c

)
has lower computational complexity than actually forming a single “synaptic matrix” Tf :=

XfX
†
f and then computing Tf

(
ô � c

)
in each iteration–it is faster to keep the matrices

Xf and X†f separate. This, of course, assumes that implementation is on a conventional
computer. If one can use specialized analog computation, such as large mesh circuits that
directly implement matrix-vector multiplication in linear time (Cannon, 1969), then it would
be preferable to store the synaptic matrix directly.

Lines 11 - 13 in Algorithm 1 “clean up” x̂(f) using the nearest neighbor in the codebook,
and also resolve a sign ambiguity inherent to the factorization problem. The sign ambiguity
is simply this: while c = x

(1)
? �x

(2)
? �. . .�x

(F)
? is the factorization we are searching for, we also

have c = −x
(1)
? �−x

(2)
? � . . .�x

(F)
? , and, more generally, any even number of factors can have

their signs flipped but still generate the correct c. Resonator Networks will sometimes find
these solutions. We clean up using the codevector with the largest unsigned similarity to the
converged x̂(f), which remedies this issue. One will notice that we have written Algorithm
1 to update factors in order from 1 to F . This is completely arbitrary, and any ordering is
fine. We have experimented with choosing a random update order during each iteration, but
this did not seem to significantly affect performance.

Computing ô with the most-recently updated values for factors 1 to f − 1 (see equation
(2.6)) is a convention we call ‘asynchronous’ updates, in rough analogy to the same term
used in the context of Hopfield Networks. An alternative convention is to, when computing
ô, not used freshly updated values for factors 1 to f − 1, but rather their values before the
update. This treats each factor as if it is being updated simultaneously, a convention we call
‘synchronous’ updates. This distinction is an idiosyncrasy of modeling Resonator Networks
in discrete-time, and the difference between the two disappears in continuous-time, where

APPENDIX A. APPENDIX TO CHAPTER 2 78

things happens instantaneously. Throughout this chapter, our analysis and simulations have
been with ‘asynchronous’ updates, which we find to converge significantly faster.

Not shown in Algorithm 1 is the fact that, in practice, we record a buffer of past states,
allowing us to detect when the dynamics fall into a limit cycle, and to terminate early.

Algorithm 1 Resonator Network with Ordinary Least Squares weights
Require: c . Composite vector to be factored
Require: X1,X2, . . . ,XF . Codebook matrices

(
x

(f)
j = Xf [: , j]

)
Require: k . Maximum allowed iterations
1: x̂(f) ← sgn

(∑
j x

(f)
j

)
∀f = 1, . . . , F

2: X†f ← pinv(Xf) ∀f = 1, . . . , F
3: i← 0
4: while not converged and i < k do
5: for f = 1 to F do
6: ô← x̂(1) � . . .� x̂(f−1) � x̂(f+1) � . . .� x̂(F)

7: x̂(f) ← sgn
(
XfX

†
f

(
ô� c

))
8: end for
9: i← i+ 1

10: end while
11: for f = 1 to F do . Nearest Neighbor decoding
12: u← arg maxj |sim(x̂(f), x

(f)
j)| . Un-signed NN w.r.t cos-similarity

13: x̂(f) ← x
(f)
u

14: end for
15: return x̂(f) ∀f = 1, . . . , F

A.2 Operational Capacity
The main text of Chapter 2 introduced our definition of operational capacity and highlighted
our two main results–that Resonator Networks have superior operational capacity compared
to the benchmark algorithms, and that Resonator Network capacity scales as a quadratic
function of N . This appendix provides some additional support and commentary on these
findings.

Figure A.1 compares operational capacity among all of the considered algorithms when
F , the number of factors, is 4. We previously showed this type of plot for F = 3, which was
Figure 2.3 in the main text. Resonator Networks have an advantage of between two and
three orders of magnitude compared to all of our benchmarks; the general size of this gap
was consistent in all of our simulations.

We concluded in Section 2.5.2 that the operational capacity of Resonator Networks scales
quadratically inN , which was shown in Figure 2.4. In Table A.1 we provide parameters of the

APPENDIX A. APPENDIX TO CHAPTER 2 79

Figure A.1: Comparing operational capacity against the benchmarks for F = 4 (4 factors)

least-squares quadratic fits shown in that plot. One can see from Figure 2.4b that capacity
is different depending on the number of factors involved, and in the limit of large N this
difference is determined by the parameter c. c first rises from 2 to 3 factors, and then falls
with increasing F . This implies that factorization is easiest for Resonator Networks when
the decomposition is into 3 factors, an interesting phenomenon for which we do not have an
explanation at this time.

Figure A.2 visualizes c as a function of F . The data indicates that for F ≥ 3, c may
follow an inverse power law: c = α1F

−α2 . The indicated linear fit, following a logarithmic
transformation to each axis, suggests the following values for parameters of this power law:
α1 ≈ 23.014 = 8.078, α2 ≈ 1.268. It is with some reservation that we give these specific
values for α1 and α2. Our estimates of operational capacity, while well-fit by quadratics,
undoubtedly have small amounts of noise. This noise can have a big enough impact on fitted
values for c that fitting the fit may not be fully justified. However, we do note for the sake
of completeness that this scaling, if it holds for larger values of F , would allow us to write
operational capacity in terms of both parameters N and F in the limit of large N :

Mmax ≈
8.078N2

F 1.268
∀F ≥ 3 (A.1)

APPENDIX A. APPENDIX TO CHAPTER 2 80

F
Parameters of quadratic fit

a b c

2 1.677× 105 −3.253× 102 0.293

3 1.230× 106 −3.549× 103 2.002

4 −5.663× 106 9.961× 102 1.404

5 1.140× 106 −2.404× 103 1.024

6 5.789× 106 −4.351× 103 0.874

7 −1.503× 107 −1.551× 103 0.669

Table A.1: Mmax = a+ bN + cN2

Figure A.2: Parameter c of the quadratic scaling depends on F . We find that it may follow
an inverse power law for F ≥ 3.

A.3 Table of benchmark algorithms

APPENDIX A. APPENDIX TO CHAPTER 2 81

Algorithm Dynamics for updating af [t] Eq.

Alternating Least Squares
af [t+ 1] =

(
ξ>ξ

)−1
ξ>c

ξ := diag
(
ô(f)[t]

)
Xf

(2.10)

Iterative Soft Thresholding
af [t+ 1] = S[af [t]− η∇afL ;λη](
S[x ; γ]

)
i

:= sgn(xi)max(|xi| − γ, 0)
(A.3)

Fast Iterative Soft Thresholding

αt =
1 +

√
1 + 4α2

t−1

2

βt =
αt−1 − 1

αt

pf [t+ 1] = af [t] + βt(af [t]− af [t− 1])

af [t+ 1] = S[pf [t+ 1]− η∇pfL ;λη](
S[x ; γ]

)
i

:= sgn(xi)max(|xi| − γ, 0)

(A.4)

Projected Gradient Descent
af [t+ 1] = PCf

[
af [t]− η∇afL

]
PCf [x] := arg min

z∈Cf

1
2

∣∣∣∣x− z
∣∣∣∣2

2

(A.5)

Multiplicative Weights

wf [t+ 1] = wf [t]�
(
1− η

ρ
∇afL

)
af [t+ 1] =

wf [t+ 1]∑
iwfi[t+ 1]

ρ := max
i

∣∣(∇afL)i
∣∣

(A.6)

Map Seeking Circuits

af [t+ 1] = T
(
af [t]− η

(
1 +

1

ρ
∇afL

)
; ε
)

T
(
x ; ε

)
i

:=

{
xi if xi ≥ ε

0 otherwise

ρ :=
∣∣min

i
(∇afL)i

∣∣
(A.7)

Table A.2: Dynamics for af , benchmark algorithms. (see Appendices A.4 - A.9 for discussion
of each algorithm, including hyperparameters η, λ, and ε, as well as initial conditions).

APPENDIX A. APPENDIX TO CHAPTER 2 82

A.4 Tensor Decompositions and Alternating Least
Squares

Tensors are multidimensional arrays that generalize vectors and matrices. An Fth-order ten-
sor has elements that can be indexed by F separate indexes–a vector is a tensor of order 1
and a matrix is a tensor of order 2. As devices for measuring multivariate time series have be-
come more prevalent, the fact that this data can be expressed as a tensor has made the study
of tensor decomposition a very popular subfield of applied mathematics. Hitchcock (Hitch-
cock, 1927) is often credited with originally formulating tensor decompositions, but modern
tensor decomposition was popularized in the field of psychometrics by the work of Tucker
(Tucker, 1966), Carroll and Chang (Carroll & Chang, 1970), and Harshman (Harshman,
1970). This section will highlight the substantial difference between tensor decomposition
and the factorization problem solved by Resonator Networks.

The type of tensor decomposition most closely related to our factorization problem (given
in equation (2.1)) decomposes an Fth-order tensor C into a sum of tensors each generated
by the outer product ◦:

C =
R∑
r=1

x(1)
r ◦ x(2)

r ◦ . . . ◦ x(F)
r (A.8)

The outer product contains all pairs of components from its two arguments, so
(
w ◦ x ◦ y ◦

z
)
ijkl

= wixjykzl. The interpretation is that each term in the sum is a “rank-one” tensor of
order F and that C can be generated from the sum of R of these rank-one tensors. We say
that C is “rank-R”. This particular decomposition has at least three different names in the
literature - they are Canonical Polyadic Decomposition, coined by Hitchcock, CANonical
DECOMPosition (CANDECOMP), coined by Carroll and Chang, and PARAllel FACtor
analysis (PARAFAC), coined by Harshman. We will simply call this the CP decomposition,
in accordance with the convention used by Kolda (Kolda & Bader, 2009) and many others.

CP decomposition makes no mention of a codebook of vectors, such as we have in (2.1).
In CP decomposition, the search is apparently over all of the vectors in a real-valued vector
space. One very useful fact about CP decomposition is that under relatively mild conditions,
if the decomposition exists, it is unique up to a scaling and permutation indeterminacy.
Without going into the details, a result in Kruskal (1977) and extended by Sidiropoulos and
Bro (2000) gives a sufficient condition for uniqueness of the CP decomposition based on what
is known as the Kruskal rank kXf

of the matrix Xf := [x
(f)
1 ,x

(f)
2 , . . .x

(f)
R]:

F∑
f=1

kXf
≥ 2R + (F − 1) (A.9)

This fact of decomposition uniqueness illustrates one way that basic results from matrices
fail to generalize to higher-order tensors (by higher-order we simply mean where the order
is ≥ 3). Low-rank CP decomposition for matrices (tensors of order 2) may be computed

APPENDIX A. APPENDIX TO CHAPTER 2 83

with the truncated Singular Value Decomposition (SVD). However, if C is a matrix and its
truncated SVD is UΣV> := X1X

>
2 , then any non-singular matrix M generates an equally-

good CP decomposition (UΣM)(VM−1)>. The decomposition is highly non-unique. All
matrices have an SVD, whereas generic higher-order tensors are not guaranteed to have a
CP decomposition. And yet, if a CP decomposition exists, under the mild condition of
equation (A.9), it is unique. This is a somewhat miraculous fact, suggesting that in this
sense, CP decompostion of higher-order tensors is easier than matrices. The higher order of
the composite object imposes many more constraints that make the decomposition unique.

Another interesting way that higher-order tensors differ from matrices is that computing
matrix rank is easy, whereas in general computing tensor rank is NP-hard, along with many
other important tensor problems (Hillar & Lim, 2013). Our intuition about matrices largely
fails us when dealing with higher-order tensors. In some ways the problems are easier and in
some ways they are harder. Please see Sidiropoulos et al. (2017) for a more comprehensive
comparison.

The vector factorization problem defined by (2.1) differs from CP decomposition in three
key ways:

1. The composite object to be factored is a vector, not a higher-order tensor. This is an
even more extreme difference than between matrices and higher-order tensors. In CP
decomposition, the arrangement and numerosity of tensor elements constitute many
constraints on what the factorization can be, so much so that it resolves the uniqueness
issue we outlined above. In this sense, tensors contain much more information about
the valid factorization, making the problem significantly easier. The size and form of
these tensors may make finding CP decompositions a computational challenge, but CP
decomposition is analytically easier than our vector factorization problem.

2. Search is conducted over a discrete set of possible factors. This differs from the stan-
dard formulation of CP decomposition, which makes no restriction to a discrete set of
factors. It is however worth noting that a specialization of CP decomposition called
CANonical DEcomposition with LINear Constraints (CANDELINC) (Carroll et al.,
1980) does in fact impose the additional requirement that factors are formed from a
linear combination of some basis factors. In our setup the solutions are ‘one-hot’ linear
combinations.

3. The factors are constrained to {−1, 1}N , a small sliver ofRN . This difference should not
be underestimated. We have shown in Section 2.5.6 that the interior of this hypercube
is treacherous from an optimization perspective and Resonator Networks avoid it by
using a highly nonlinear activation function. This would not make sense in the context
of standard CP decomposition.

Perhaps the most convincing demonstration that (2.1) is not CP decomposition comes
from the fact that we applied Alternating Least Squares to it and found that its performance
was relatively poor. Alternating Least Squares is in fact the ‘workhorse’ algorithm of CP

APPENDIX A. APPENDIX TO CHAPTER 2 84

decomposition (Kolda & Bader, 2009), but it cannot compete with Resonator Networks on
our different factorization problem (2.1). The excellent review of Kolda and Bader (2009)
covers CP decomposition and Alternating Least Squares in significant depth, including the
fact that ALS always converges to a local minimum of the squared error reconstruction loss.
See, in particular, section 3.4 of their paper for more detail.

One special case of CP decomposition involves rank-1 components that are symmetric
and orthogonal. For this problem, a special case of ALS called the tensor power method
can be used to iteratively find the best low-rank CP decomposition through what is known
as ‘deflation’, which is identical to the explaining away we introduced in part one of this
series (Frady et al., 2020). The tensor power method directly generalizes the matrix power
method, and in this special case of symmetric, orthogonal tensors is effective at finding the
CP decomposition. A good initial reference for the tensor power method is De Lathauwer
et al. (2000b). A discussion of applying tensor decompositions to statistical learning prob-
lems is covered by Anandkumar et al. (2014), which develops a robust version of the tensor
power method and contains several important probabilistic results for applying tensor de-
compositions to noisy data. The tensor power method differs from Resonator Networks in
the same key ways as ALS–composite objects are higher-order tensors, not vectors, search
is not necessarily over a discrete set, the vectors are not constrained to {−1, 1}N , and the
dynamics make linear least squares updates in each factor.

Another popular tensor decomposition is known as the Tucker Decomposition (Tucker,
1963, 1966). It adds to CP decomposition an order-F “core tensor” G that modifies the
interaction between each of the factors:

C =
P∑
p=1

Q∑
q=1

. . .
R∑
r=1

gpq...r x(1)
p ◦ x(2)

q ◦ . . . ◦ x(F)
r (A.10)

This adds many more parameters compared to CP decomposition, which is a special case of
Tucker decomposition when G is the identity. For the purpose of illustration, we reprint in
Figure A.3 (with a slight relabeling) a figure from Kolda and Bader (2009) that depicts an
order-3 Tucker decomposition. This decomposition goes by many other names, most popu-
larly the Higher-order SVD, coined in De Lathauwer et al. (2000a). The Tucker decomposi-
tion can also be found via Alternating Least Squares (see Kolda and Bader (2009), Section
4.2, for a tutorial), although the problem is somewhat harder than CP decomposition, both
by being computationally more expensive and by being non-unique. Despite this fact, the
applications of Tucker decomposition are wide-ranging–it has been used in psychometrics,
signal processing, and computer vision. One well-known application of Tucker decomposition
in computer vision was TensorFaces (Vasilescu & Terzopoulos, 2002). This model was able
to factorize identity, illumination, viewpoint, and facial expression in a dataset consisting of
face images.

The summary of this section is that vector factorization problem (2.1) is not tensor de-
composition. In some sense it is more challenging. Perhaps not surprisingly, the standard
algorithm for tensor decompositions, Alternating Least Squares, is not particularly compet-

APPENDIX A. APPENDIX TO CHAPTER 2 85

Figure A.3: Tucker decomposition with 3 factors

itive on this problem when compared to Resonator Networks. It is interesting to consider
whether tensor decomposition might be cast into a form amenable to solution by Resonator
Networks. Given the importance of tensor decomposition as a tool of data analysis, we
believe this warrants a closer look.

A.5 General notes on gradient-based algorithms
When L is the negative inner product, the gradient with respect to af is:

∇afL =−X>f
(
c� x̂(1) � . . .� x̂(f−1) � x̂(f+1) � . . .� x̂(F)

)
=−X>f

(
c� ô(f)

)
(A.11)

The term c � ô(f) can be interpreted as an estimate for what x̂(f) should be based on the
current estimates for the other factors. Multiplying by X>f compares the similarity of this
vector to each of the candidate codevectors we are entertaining, with the smallest element of
∇afL (its value is likely to be negative with large absolute value) indicating the codevector
which matches best. Following the negative gradient will cause this coefficient to increase
more than the coefficients corresponding to the other codevectors. When L is the squared
error, the gradient with respect to af is:

∇afL = X>f

((
c− x̂(1) � . . .� x̂(F)

)
�
(
− x̂(1) � . . .� x̂(f−1) � x̂(f+1) � . . .� x̂(F)

))
:= X>f

(
x̂(f) �

(
ô(f)
)2 − c� ô(f)

)
(A.12)

This looks somewhat similar to the gradient for the negative inner product–they differ by an
additive term given by X>f

(
x̂(f)�

(
ô(f)
)2
)
. At the vertices of the hypercube all the elements

APPENDIX A. APPENDIX TO CHAPTER 2 86

of x̂(f) are 1 or −1 and the term
(
ô(f)
)2 disappears, making the difference between the two

gradients just X>f x̂(f). Among other things, this makes the gradient of the squared error
equal to zero at the global minimizer x

(1)
? . . .x

(F)
? , which is not the case with the negative

inner product. To be clear, (A.11) is the gradient when the loss function is the negative
inner product, while (A.12) is the gradient when the loss function is the squared error.

A.5.1 Fixed-stepsize gradient descent on the squared error

In fixed-step-size gradient descent for unconstrained convex optimization problems, one must
often add a restriction on the stepsize, related to the smoothness of the loss function, in order
to ensure that the iterates converge to a fixed point. We say that a function L is L-smooth
when its gradient is Lipschitz continuous with constant L:

||∇L(x)−∇L(y)||2 ≤ L||x− y||2 ∀x, y (A.13)

For a function that is twice-differentiable, this is equivalent to the condition

0 � ∇2L(x) � LI ∀x (A.14)

Where 0 is the matrix of all zeros and and I is the identity. Absent some procedure for
adjusting the stepsize η at each iteration to account for the degree of local smoothness, or
some additional assumption we place on the loss to make sure that it is sufficiently smooth,
we should be wary that convergence may not be guaranteed. On our factorization problem
we find this to be an issue. Unconstrained gradient descent on the squared error works
for the simplest problems, where M is small and the factorization can be easily found by
any of the algorithms in this chapter. However, as M increases, the exceedingly “jagged”
landscape of the squared error loss makes the iterates very sensitive to the step size η,
and the components of af [t] can become very large. When this happens, the term ô(f)[t]
amplifies this problem (it multiplies all but one of the af [t]’s together) and causes numerical
instability issues. With the squared error loss, the smoothness is very poor: we found that
fixed-stepsize gradient descent on the squared error was so sensitive to η that it made the
method practically useless for solving the factorization problem. Iterative Soft Thresholding
and Fast Iterative Soft Thresholding use a dynamic step size to avoid this issue (see equation
(A.15)). In contrast, the negative inner product loss, with respect to each factor, is in some
sense perfectly smooth (it is linear), so the step size does not factor into convergence proofs.

A.6 Iterative Soft Thresholding (ISTA) and Fast
Iterative Soft Thresholding (FISTA)

Iterative Soft Thresholding is a type of proximal gradient descent. The proximal operator
for any convex function h(·) is defined as

proxh(x) := arg min
z

1
2
||z− x||22 + h(z)

APPENDIX A. APPENDIX TO CHAPTER 2 87

When h(z) is λ||z||1, the proximal operator is the so-called “soft-thresholding” function,
which we denote by S : (

S[x ; γ]
)
i

:= sgn(xi)max(|xi| − γ, 0)

Consider taking the squared error loss and adding to it λ||af ||1:

L(c, ĉ) + λ||af ||1 = 1
2
||c− ĉ||22 + λ||af ||1

Applying soft thesholding clearly minimizes this augmented loss function. The strategy is
to take gradient steps with respect to the squared error loss but then to pass those updates
through the soft thresholding function S. This flavor of proximal gradient descent, where ĉ
is a linear function of af and h(·) is the `1 norm, is called the Iterative Soft Thresholding
Algorithm (Daubechies et al., 2004), and is a somewhat old and popular approach for finding
sparse solutions to large-scale linear inverse problems.

The dynamics of ISTA are given in equation (A.3) and there are a few parameters worth
discussing. First, the dynamic stepsize η can be set via backtracking line search or, as we
did, by computing the Lipschitz constant of the loss function gradient:

η =
1

L

∣∣ ||∇aL(x)−∇aL(y)||2 ≤ L||x− y||2 ∀x, y (A.15)

The scalar λ is a hyperparameter that effectively sets the sparsity of the solutions considered–
its value should be tuned in order to get good performance in practice. In the experiments
we show in this chapter, λ was 0.01. The initial state af [0] is set to 1.

Convergence analysis of ISTA is beyond the scope of this dissertation, but it has been
shown in various places (Bredies and Lorenz (2008), for instance) that ISTA will converge
at a rate ' O(1/t). Iterative Soft Thresholding works well in practice, although for 4 or
more factors we find that it is not quite as effective as the algorithms that do constrained
descent on the negative inner product loss. By virtue of not directly constraining the coef-
ficients, ISTA allows them to grow outside of [0, 1]N . This may make it easier to find the
minimizers a?1, a

?
2, . . . , a

?
F , but it may also lead the method to encounter more suboptimal

local minimizers, which we found to be the case in practice.
One common criticism of ISTA is that it can get trapped in shallow parts of the loss

surface and thus suffers from slow convergence (Bredies & Lorenz, 2008). A straightfor-
ward improvement, based on Nesterov’s momentum for accelerating first-order methods,
was proposed by Beck and Teboulle (2009), which they call Fast Iterative Soft Thresholding
(FISTA). The dynamics of FISTA are written in equation (A.4), and converge at the signif-
icantly better rate of ' O(1/t2), a result proven in Beck and Teboulle (2009). Despite this
difference in worst-case convergence rate, we find that the average-case convergence rate on
our particular factorization problem does not significantly differ. Initial coefficients af [0] are
set to 1 and auxiliary variable αt is initialized to 1. For all experiments λ was set the same
as for ISTA, to 0.01.

APPENDIX A. APPENDIX TO CHAPTER 2 88

A.7 Projected Gradient Descent
Starting from the general optimization form of the factorization problem (2.9), what kind
of constraint might it be reasonable to enforce on af? The most obvious is that af lie on
the simplex ∆Df := {x ∈ RDf |

∑
i xi = 1, xi ≥ 0 ∀i}. Enforcing this constraint means

that x̂(f) stays within the −1, 1 hypercube at all times and, as we noted, the optimal values
a?1, a

?
2, . . . , a

?
F happen to lie at vertices of the simplex, the standard basis vectors ei. Another

constraint set worth considering is the `1 ball B||·||1 [1] := {x ∈ RDf | ||x||1 ≤ 1}. This set
contains the simplex, but it encompasses much more of RDf . One reason to consider the `1

ball is that it dramatically increases the number of feasible global optimizers of (2.9), from
which we can easily recover the specific solution to (2.1). This is due to the fact that:

c = X1a
?
1 �X2a

?
2 � . . .�XFa?F ⇐⇒ c = X1(−a?1)�X2(−a?2)� . . .�XFa?F

and moreover any number of distinct pairs of factor coefficients can be made negative–
the sign change cancels out. The result is that while the simplex constraint only allows
solution a?1, a

?
2, . . . , a

?
F , the `1 ball constraint also allows solutions −a?1,−a?2, a

?
3, . . . , a

?
F , and

a?1, a
?
2,−a?3, . . . ,−a?F , and −a?1,−a?2,−a?3, . . . ,−a?F , etc. These spurious global minimizers

can easily be detected by checking the sign of the largest-magnitude component of af . If
it is negative we can then multiply by −1 to get a?f . Choosing the `1 ball over the simplex
is purely motivated from the perspective that increasing the size of the constraint set may
make finding the global optimizers easier. However, we found that in practice, it did not
significantly matter whether ∆Df or B||·||1 [1] was used to constrain af .

There exist algorithms for efficiently computing projections onto both the simplex and
the `1 ball (see Held et al. (1974), Duchi et al. (2008), and Condat (2016)). We use a variant
summarized in Duchi et al. (2008) that has computational complexity O(Df logDf)–recall
that af has Df components, so this is the dimensionality of the simplex or the `1 ball being
projected onto. When constraining to the simplex, we set the initial coefficients af [0] to

1
Df

1, the center of the simplex. When constraining to the unit `1 ball we set af [0] to 1
2Df

1,
so that all coefficients are equal but the vector is on the interior of the ball. The only
hyperparameter is η, which in all experiments was set to 0.01. We remind the reader that
we defined the nullspace of the projection operation with equation (2.22) in Section 2.5.6,
and the special case for the simplex constraint in (2.23) and (2.24).

Taking projected gradient steps on the negative inner product loss works well and is
guaranteed to converge, whether we use the simplex or the `1 ball constraint. Convergence
is guaranteed due to this intuitive fact: any part of −η∇afL not in N

(
PCf [x]

)
, induces a

change in af , denoted by ∆af [t] which must make an acute angle with −∇afL. This is by
the definition of orthogonal projection, and it is a sufficient condition for showing that ∆af [t]
decreases the value of the loss function. Projected Gradient Descent iterates always reduce
the value of the negative inner product loss or leave it unchanged; the function is bounded
below on the simplex and the `1 ball, so this algorithm is guaranteed to converge.

Applying projected gradient descent on the squared error did not work, which is related
to the smoothness issue we discussed in Appendix A.5.1, although the behavior was not as

APPENDIX A. APPENDIX TO CHAPTER 2 89

dramatic as with unconstrained gradient descent. We observed in practice that projected
gradient descent on the squared error loss easily falls into limit cycles of the dynamics. It
was for this reason that we restricted our attention with projected gradient descent to the
negative inner product loss.

A.8 Multiplicative Weights
When we have simplex constraints Cf = ∆Df , the Multiplicative Weights algorithm is an
elegant way to perform the superposition search. It naturally enforces the simplex constraint
by maintaining a set of auxiliary variables, the ‘weights’, which define the choice of af at
each iteration. See equation (A.6) for the dynamics of Multiplicative Weights. We choose a
fixed stepsize η ≤ 0.5 and initial values for the weights all one: wf [0] = 1. In experiments in
this paper we set η = 0.3. The variable ρ exists to normalize the term 1

ρ
∇afL so that each

element lies in the interval [−1, 1].
Multiplicative Weights is an algorithm primarily associated with game theory and online

optimization, although it has been independently discovered in a wide variety of fields (Arora
et al., 2012). Please see Arora’s excellent review of Multiplicative Weights for a discussion
of the fascinating historical and analytical details of this algorithm. Multiplicative Weights
is often presented as a decision policy for discrete-time games. However, through a straight-
forward generalization of the discrete actions into directions in a continuous vector space,
one can apply Multiplicative Weights to problems of online convex optimization, which is
discussed at length in Arora et al. (2012) and Hazan et al. (2016). We can think of solving
our problem (2.9) as if it were an online convex optimization problem where we update each
factor x̂(f) according to its own Multiplicative Weights update, one at a time. The function
L is convex with respect to af , but is changing at each iteration due the updates for the
other factors - it is in this sense that we are treating (2.9) as an online convex optimization
problem.

A.8.1 Multiplicative Weights is a descent method

A descent method on L is any algorithm that iterates af [t+1] = af [t]+η[t]∆af [t] where the
update ∆af [t] makes an acute angle with −∇afL: ∇afL>∆af [t] < 0. In the case of Multi-
plicative Weights, we can equivalently define a descent method based on ∇wf L̃>∆wf [t] < 0

where L̃(wf) is the loss as a function of the weights and ∇wf L̃ is its gradient with re-
spect to those weights. The loss as a function of the weights comes via the substitution

APPENDIX A. APPENDIX TO CHAPTER 2 90

af =
wf∑
i wfi

:=
wf
Φf

. We now prove that ∇wf L̃>∆wf [t] < 0:

∇wf L̃ =
∂af
∂wf

∂L
∂af

=

Φf−wf1

Φ2
f

−wf2
Φ2
f

· · · −wfk
Φ2
f

−wf1
Φ2
f

Φf−wf2
Φ2
f

· · · −wfk
Φ2
f

...
...

−wf1
Φ2
f

−wf2
Φ2
f

· · · Φf−wfk
Φ2
f

∇afL

=
(1

Φf

I− 1

Φ2
f

1w>
)
∇afL

=
1

Φf

∇afL −
L(af)

Φf

1 (A.16)

This allows us to write down ∆wf [t] in terms of ∇wf L̃:

∆wf [t] = −1

ρ
wf [t]�∇afL = −1

ρ
wf [t]�

(
Φf∇wf L̃+ L(af [t])1

)
= −Φf

ρ
diag(wf [t])∇wf L̃ −

L(af [t])

ρ
wf [t] (A.17)

And then we can easily show the desired result:

∇wf L̃>∆wf [t] = −Φf

ρ
∇wf L̃>diag(wf [t])∇wf L̃ −

L(af [t])

ρ
∇wf L̃>wf [t]

= −Φf

ρ
∇wf L̃>diag(wf [t])∇wf L̃ −

L(af [t])

ρ

(1

Φf

∇afL> −
L(af [t])

Φf

1>
)
wf [t]

= −Φf

ρ
∇wf L̃>diag(wf [t])∇wf L̃ −

L(af [t])

ρ

(
L(af [t])− L(af [t])

)
= −Φf

ρ
∇wf L̃>diag(wf [t])∇wf L̃

< 0 (A.18)

The last line follows directly from the fact that wf are always positive by construction
in Multiplicative Weights. Therefore, the matrix diag(wf [t]) is positive definite and the
term Φf

ρ
is strictly greater than 0. We’ve shown that the iterates of Multiplicative Weights

always make steps in descent directions. When the loss L is the negative inner product, it is
guaranteed to decrease at each iteration. Empirically, multiplicative weights applied to the
squared error loss also always decreases the loss function. We said in Appendix A.5.1 that
descent on the squared error with a fixed step size is not in general guaranteed to converge.
However, the behavior we observe with Multiplicative Weights descent on the squared error

APPENDIX A. APPENDIX TO CHAPTER 2 91

might be explained by the fact that the stepsize is normalized by ρ at each iteration in
this algorithm. Both functions are bounded below over the constraint set ∆Df , so therefore
Multiplicative Weights must converge to a fixed point. In practice, we pick a step size η
between 0.1 and 0.5 and run the algorithm until the normalized magnitude of the change in
the coefficients is below some small threshold:∣∣∣af [t+ 1]− af [t]

∣∣∣
η

< ε

The simulations we showed in the Results section utilized η = 0.3 and ε = 10−5.

A.9 Map Seeking Circuits
Map Seeking Circuits (MSCs) are neural networks designed to solve invariant pattern recog-
nition problems. Their theory and applications have been gradually developed by Arathorn
and colleagues over the past 18 years (see, for example, D. W. Arathorn (2001, 2002), Gedeon
and Arathorn (2007), and Harker et al. (2007)), but remain largely unknown outside of a
small community of vision researchers. In their original conception, they solve a “correspon-
dence maximization” or “transformation discovery” problem in which the network is given
a visually transformed instance of some template object and has to recover the identity
of the object as well as a set of transformations that explain its current appearance. The
approach taken in Map Seeking Circuits is to superimpose the possible transformations in
the same spirit as we have outlined for solving the factorization problem. We cannot give
the topic a full treatment here but simply note that the original formulation of Map Seek-
ing Circuits can be directly translated to our factorization problem wherein each type of
transformation (e.g. translation, rotation, scale) is one of the F factors, and the particular
values of the transformation are vectors in the codebooks X1, X2, . . . ,XF . The loss function
is L : x,y 7→ −〈x ,y〉 and the constraint set is [0, 1]Df (both by convention in Map Seeking
Circuits). The dynamics of Map Seeking Circuits are given in equation (A.7), with initial
values af [0] = 1 for each factor. The small threshold ε is a hyperparameter, which we set
to 10−5 in experiments, along with the stepsize η = 0.1. Gedeon and Arathorn (2007) and
Harker et al. (2007) proved (with some minor technicalities we will not detail here) that Map
Seeking Circuits always converge to either a scalar multiple of a canonical basis vector, or
the zero vector. That is, af [∞] = βfei or 0 (where (ei)j = 1 if j = i and 0 otherwise, and
βf is a positive scalar).

Due to the normalizing term ρ, the updates to af can never be positive. Among the
components of ∇afL which are negative, the one with the largest magnitude corresponds
to a component of af which sees an update of 0. All other components are decreased by
an amount which is proportional to the gradient. We noted in comments on (A.11) that
the smallest element of ∇afL corresponds to the codevector which best matches c � ô(f), a
“suggestion” for x̂(f) based on the current states of the other factors. The dynamics of Map

APPENDIX A. APPENDIX TO CHAPTER 2 92

Seeking Circuits thus preserve the weight of the codevector which matches best and decrease
the weight of the other codevectors, by an amount which is proportional to their own match.
Once the weight on a codevector drops below the threshold, it is set to zero and no longer
participates in the search. The phenomenon wherein the correct coefficient afi? drops out
of the search is called “sustained collusion” by Arathorn (D. W. Arathorn, 2002) and is a
failure mode of Map Seeking Circuits.

A.10 Percolated noise in Outer Product Resonator
Networks

A Resonator Network with outer product weights XfX
>
f that is initialized to the correct

factorization is not guaranteed to remain there, just as a Hopfield Network with outer product
weights initialized to one of the ‘memories’ is not guaranteed to remain there. This is in
contrast to a Resonator Network (and a Hopfield Network) with Ordinary Least Squares
weights Xf

(
X>f Xf

)−1
X>f , for which each of the codevectors are always fixed points. In this

section, when we refer simply to a Resonator Network or a Hopfield Network we are referring
to the variants of these models that use outer product weights.

The bitflip probability for the fth factor of a Resonator Network is denoted rf and defined
in (2.13). Section A.10.1 derives r1, which is equal to the bitflip probability for a Hopfield
network, first introduced by (2.12) in the main text. Section A.10.2 derives r2, and then
section A.10.3 collects all of the ingredients to express the general rf .

A.10.1 First factor

The stability of the first factor in a Resonator Network is the same as the stability of the
state of a Hopfield network–at issue is the distribution of x̂(1)[1]:

x̂(1)[1] = sgn
(
X1X

>
1 x(1)

?

)
:= sgn

(
Γ
)

Assuming each codevector (each column of X1, including the vector x
(1)
?) is a random bipolar

vector, each component of Γ is a random variable. Its distribution can be deduced from
writing it out in terms of constant and random components:

Γi =

D1∑
m

N∑
j

(
x(1)
m

)
i

(
x(1)
m

)
j

(
x(1)
?

)
j

= N
(
x(1)
?

)
i
+

D1∑
m6=?

N∑
j

(
x(1)
m

)
i

(
x(1)
m

)
j

(
x(1)
?

)
j

= N
(
x(1)
?

)
i
+ (D1 − 1)

(
x(1)
?

)
i
+

D1∑
m 6=?

N∑
j 6=i

(
x(1)
m

)
i

(
x(1)
m

)
j

(
x(1)
?

)
j

(A.19)

APPENDIX A. APPENDIX TO CHAPTER 2 93

(a) Bitflip prob. for D1 /N ∈ (0, 2] (b) Bitflip prob. for D1 /N ∈ (0, 0.25]

Figure A.4: Effect of self-connections on bitflip probability

The third term is a sum of (N − 1)(D1 − 1) i.i.d. Rademacher random variables, which in
the limit of large ND1 can be well-approximated by a Gaussian random variable with mean
zero and variance (N − 1)(D1 − 1). Therefore, Γi is approximately Gaussian with mean
(N +D1 − 1)

(
x

(1)
?

)
i
and variance (N − 1)(D1 − 1). The probability that

(
x̂(1)[1]

)
i
6=
(
x

(1)
?

)
i

is given by the cumulative density function of the Normal distribution:

h1 := Pr
[(

x̂(1)[1]
)
i
6=
(
x(1)
?

)
i

]
= Φ

(−N −D1 + 1√
(N − 1)(D1 − 1)

)
(A.20)

We care about the ratio D1 /N and how the bitflip probability h1 scales with this number.
We’ve called this h1 to denote the Hopfield bitflip probability but it is also r1, the bitflip
probability for the first factor of a Resonator Network. We’ll see that for the second, third,
fourth, and other factors, hf will not equal rf , which is what we mean by percolated noise,
the focus of Section 2.5.1 in the main text. If we eliminate all “self-connection” terms from
X1X

>
1 , by setting each element on the diagonal to zero, then the second term in (A.19)

is eliminated and the bitflip probability is Φ
(−N√

(N−1)(D1−1)

)
. This is actually significantly

different from (A.20), which we can see in Figure A.4. With self-connections, the bitflip
probability is maximized when D1 = N (the reader can verify this via simple algebra), and
its maximum value is ≈ 0.023. Without self-connections, the bitflip probability asymptotes
at 0.5. The actual useful operating regime of both these networks is where D1 is significantly
less than N , which we zoom in on in Figure A.4b. A “mean-field” analysis of Hopfield
Networks developed by Amit, Gutfreund, and Sompolinsky (Amit et al., 1985, 1987) showed

APPENDIX A. APPENDIX TO CHAPTER 2 94

that when D1 /N > 0.138, a phase-change phenomenon occurs in which a small number
of initial bitflips (when the probability is 0.0036 according to the above approximation)
build up over subsequent iterations and the network almost always moves far away from
x

(1)
? , making it essentially useless. We can see that the same bitflip probability is suffered

at a significantly higher value for D1 /N when we have self-connections–the vector x
(1)
?

is significantly more stable in this sense. We also found that a Resonator Network has
higher operational capacity (see Section 2.5.2) when we leave in the self-connections. As
a third point of interest, computing XfX

>
f x

(1)
? is often much faster when we keep each

codebook matrix separate (instead of forming the synaptic matrix XfX
>
f directly), in which

case removing the self-connection terms involves extra computation in each iteration of the
algorithm. For all of these reasons, we choose to keep self-connection terms in the Resonator
Network.

A.10.2 Second factor

When we update the second factor, we have

x̂(2)[1] = sgn
(
X2X

>
2

(
ô(2)[1]� c

))
:= sgn

(
Γ
)

Here we’re just repurposing the notation Γ to indicate the vector which gets thresholded to
−1 and +1 by the sign function to generate the new state x̂(2)[1]. Some of the components
of the vector ô(2)[1] � c will be the same as x

(2)
? and some (hopefully small) number of the

components will have been flipped compared to x
(2)
? by the update to factor 1. Let us denote

the set of components which flipped as Q. The set of components that did not flip is Qc.
The number of bits that did or did not flip is the size of these sets, denoted by |Q| and
|Qc|, respectively. We have to keep track of these two sets separately because it will affect
the probability that a component of x̂(2)[1] is flipped relative to x

(2)
? . We can write out the

constant and random parts of Γi along the same lines as what we did in (A.19).

Γi =

D2∑
m

N∑
j

(
x(2)
m

)
i

(
x(2)
m

)
j

(
ô(2)[1] � c

)
j

=

D2∑
m

N∑
j∈Qc

(
x(2)
m

)
i

(
x(2)
m

)
j

(
x(2)
?

)
j
−

D2∑
m

N∑
j∈Q

(
x(2)
m

)
i

(
x(2)
m

)
j

(
x(2)
?

)
j

= |Qc|
(
x(2)
?

)
i
+

D2∑
m 6=?

N∑
j∈Qc

(
x(2)
m

)
i

(
x(2)
m

)
j

(
x(2)
?

)
j
− |Q|

(
x(2)
?

)
i
−

D2∑
m6=?

N∑
j∈Q

(
x(2)
m

)
i

(
x(2)
m

)
j

(
x(2)
?

)
j

= (N − 2|Q|)
(
x(2)
?

)
i
+

D2∑
m 6=?

N∑
j∈Qc

(
x(2)
m

)
i

(
x(2)
m

)
j

(
x(2)
?

)
j
−

D2∑
m 6=?

N∑
j∈Q

(
x(2)
m

)
i

(
x(2)
m

)
j

(
x(2)
?

)
j

(A.21)

APPENDIX A. APPENDIX TO CHAPTER 2 95

If i is in the set of bits which did not flip previously, then there is a constant (D2− 1)
(
x

(2)
?

)
i

which comes out of the second term above. If i is in the set of bits which did flip previously,
then there is a constant −(D2 − 1)

(
x

(2)
?

)
i
which comes out of the third term above. The

remaining contribution to Γi is, in either case, a sum of (N − 1)(D2 − 1) i.i.d. Rademacher
random variables, analogously to what we had in (A.19). Technically |Q| is a random variable
but when N is of any moderate size it will be close to r1N , the bitflip probability for the
first factor. Therefore, Γi is approximately Gaussian with mean either

(
N(1− 2r1) + (D2 −

1)
)(

x
(2)
?

)
i
or
(
N(1− 2r1)−

(
D2− 1)

)(
x

(2)
?

)
i
, depending on whether i ∈ Qc or i ∈ Q. We call

the conditional bitflip probabilities that result from these two cases r2′ and r2′′ :

r2′ := Pr
[(

x̂(2)[1]
)
i
6=
(
x(2)
?

)
i

∣∣ (ô(2)[1]� c
)
i

=
(
x(2)
?

)
i

]
= Φ

(−N(1− 2r1)− (D2 − 1)√
(N − 1)(D2 − 1)

)
(A.22)

r2′′ := Pr
[(

x̂(2)[1]
)
i
6=
(
x(2)
?

)
i

∣∣ (ô(2)[1]� c
)
i
6=
(
x(2)
?

)
i

]
= Φ

(−N(1− 2r1) + (D2 − 1)√
(N − 1)(D2 − 1)

)
(A.23)

The total bitflip probability for updating the second factor, r2, is then r2′(1− h1) + r2′′h1.

A.10.3 All other factors

It hopefully should be clear that the general development above for the bitflip probability
of the second factor will apply to all subsequent factors–we just need to make one modifi-
cation to notation. We saw that bitflip probability was different depending on whether the
component had flipped in the previous factor (the difference between (A.22) and (A.23)). In
the general case, what really matters is whether the factor sees a net bitflip from the other
factors. It might be the case that the component had initially flipped but was flipped back
by subsequent factors–all that matters is whether an odd number of previous factors flipped
the component. To capture this indirectly, we define the quantity nf to be the net bitflip
probability that is passed on to the next factor (this is equation 2.14 in the main text):

nf := Pr
[(

ô(f+1)[t]� c
)
i
6=
(
x(f+1)
?

)
i

]
For the first factor, r1 = n1 but in the general case it should be clear that

rf = rf ′(1− nf−1) + rf ′′nf−1

which is equation (2.17) in the main text. This expression is just marginalizing over the
probability that a net biflip was not seen (first term) and the probability that a net bitflip
was seen (second term). The expression for the general nf is slightly different:

nf = rf ′(1− nf−1) + (1− rf ′′)nf−1

APPENDIX A. APPENDIX TO CHAPTER 2 96

Figure A.5: Agreement between simulation and theory for rf . Shades indicate factors 1-5
(light to dark).

which is equation (2.18) in the main text. The base of the recursion is n0 = 0, which makes
intuitive sense because factor 1 sees no percolated noise.

In (A.22) and (A.23) above we had r1 but what really belongs there in the general case
is nf−1. This brings us to our general statement for the conditional bitflip probabilities rf ′
and rf ′′ , which are equations 2.19 and 2.20 in the main text:

rf ′ = Φ
(−N(1− 2nf−1)− (Df − 1)√

(N − 1)(Df − 1)

)

rf ′′ = Φ
(−N(1− 2nf−1) + (Df − 1)√

(N − 1)(Df − 1)

)
What we have derived here in Appendix A.10 are the equations (2.12) - (2.20). This

result agrees very well with data generated in experiments where one actually counts the
bitflips in a randomly instantiated Resonator Network. In Figure A.5 we show the sampling
distribution of rf from these experiments compared to the analytical expresssion for rf . Dots
indicate the mean value for rf and the shaded region indicates one standard deviation about
the mean, the standard error of this sampling distribution. We generated this plot with 250
iid random trials for each point. Solid lines are simply the analytical values for rf , which
one can see are in very close agreement with the sampling distribution.

97

Bibliography

Adelson, E. H., & Pentland, A. P. (1996). The perception of shading and reflectance. Per-
ception as Bayesian inference, 409–423.

Amari, S.-I., & Maginu, K. (1988). Statistical neurodynamics of associative memory. Neural
Networks, 1 (1), 63–73.

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1987). Information storage in neural networks
with low levels of activity. Physical Review A, 35 (5), 2293.

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985). Storing infinite numbers of patterns
in a spin-glass model of neural networks. Physical Review Letters, 55 (14), 1530.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., & Telgarsky, M. (2014). Tensor decom-
positions for learning latent variable models. Journal of Machine Learning Research,
15, 2773–2832.

Arathorn, D. W. (2002). Map-seeking circuits in visual cognition: A computational mecha-
nism for biological and machine vision. Stanford, CA, Stanford University Press.

Arathorn, D. W. (2001). Recognition under transformation using superposition ordering
property. Electronics Letters, 37 (3), 164–166.

Arora, S., Hazan, E., & Kale, S. (2012). The multiplicative weights update method: A meta-
algorithm and applications. Theory of Computing, 8 (1), 121–164.

Barron, J. T., & Malik, J. (2015). Shape, illumination, and reflectance from shading. IEEE
transactions on pattern analysis and machine intelligence, 37 (8), 1670–1687.

Barrow, H., & Tenenbaum, J. (1978). Recovering intrinsic scene characteristics from images.
Computer Vision Systems, 2, 3–26.

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2 (1), 183–202.

Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces, In Proceed-
ings of the 26th annual conference on computer graphics and interactive techniques.

Boucheron, S., Lugosi, G., & Massart, P. (2013). Concentration inequalities [A nonasymptotic
theory of independence, with a foreword by Michel Ledoux]. Oxford University Press,
Oxford. https://doi.org/10.1093/acprof:oso/9780199535255.001.0001

Bredies, K., & Lorenz, D. A. (2008). Linear convergence of iterative soft-thresholding. Journal
of Fourier Analysis and Applications, 14 (5-6), 813–837.

Cadieu, C. F., & Olshausen, B. A. (2012). Learning intermediate-level representations of
form and motion from natural movies. Neural computation, 24 (4), 827–866.

https://doi.org/10.1093/acprof:oso/9780199535255.001.0001

BIBLIOGRAPHY 98

Cannon, L. E. (1969). A cellular computer to implement the kalman filter algorithm (Doctoral
dissertation). Montana State University-Bozeman, College of Engineering.

Carroll, J. D., & Chang, J.-J. (1970). Analysis of individual differences in multidimensional
scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika,
35 (3), 283–319.

Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). Candelinc: A general approach to
multidimensional analysis of many-way arrays with linear constraints on parameters.
Psychometrika, 45 (1), 3–24.

Chen, Y., Paiton, D. M., & Olshausen, B. A. (2018). The sparse manifold transform, In
Advances in neural information processing systems.

Chengxiang, Z., Dasgupta, C., & Singh, M. P. (2000). Retrieval properties of a hopfield
model with random asymmetric interactions. Neural computation, 12 (4), 865–880.

Cheung, B., Livezey, J., Bansal, A., & Olshausen, B. (2015). Discovering hidden factors of
variation in deep networks, In International conference on learning representations
(iclr 2015), workshop.

Cheung, B., Weiss, E., & Olshausen, B. (2017). Emergence of foveal image sampling from
learning to attend in visual scenes, In International conference on learning represen-
tations (iclr).

Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern formation and par-
allel memory storage by competitive neural networks. IEEE transactions on systems,
man, and cybernetics, (5), 815–826.

Condat, L. (2016). Fast projection onto the simplex and the l1 ball. Mathematical Program-
ming, 158 (1-2), 575–585.

Cox, G. E., Kachergis, G., Recchia, G., & Jones, M. N. (2011). Toward a scalable holographic
word-form representation. Behavior research methods, 43 (3), 602–615.

Culpepper, B., & Olshausen, B. A. (2009). Learning transport operators for image manifolds,
In Advances in neural information processing systems.

da Silva, A. P., Comon, P., & de Almeida, A. L. (2015). An iterative deflation algorithm
for exact cp tensor decomposition, In 2015 ieee international conference on acoustics,
speech and signal processing (icassp). IEEE.

Daubechies, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences,
57 (11), 1413–1457.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000a). A multilinear singular value
decomposition. SIAM journal on Matrix Analysis and Applications, 21 (4), 1253–1278.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000b). On the best rank-1 and rank-(r 1,
r 2,..., rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis
and Applications, 21 (4), 1324–1342.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

BIBLIOGRAPHY 99

Duchi, J., Shalev-Shwartz, S., Singer, Y., & Chandra, T. (2008). Efficient projections onto
the l 1-ball for learning in high dimensions, In Proceedings of the 25th international
conference on machine learning. ACM.

Fiete, I. R., Burak, Y., & Brookings, T. (2008). What grid cells convey about rat location.
Journal of Neuroscience, 28 (27), 6858–6871.

Fodor, J. A. (1975). The language of thought. Cambridge, MA, Harvard university press.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical

analysis. Cognition, 28 (1-2), 3–71.
Forbus, K. D., Gentner, D., & Law, K. (1995). Mac/fac: A model of similarity-based retrieval.

Cognitive science, 19 (2), 141–205.
Frady, E. P., Kleyko, D., & Sommer, F. T. (2018). A theory of sequence indexing and working

memory in recurrent neural networks. Neural Computation, 30 (6), 1449–1513.
Frady, E. P., Kent, S. J., Kanerva, P., Olshausen, B., & Sommer, F. (2018). Cognitive

neural systems for disentangling compositions, In Cognitive computing 2018 (extended
abstract).

Frady, E. P., Kent, S. J., & Olshausen, B. A. (2018). A recurrent neural network model
for factoring distributed representations, In Computational and systems neuroscience
(cosyne ’18) (extended abstract) [link].

Frady, E. P., Kent, S. J., Olshausen, B. A., & Sommer, F. T. (2020). Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representations of
data structures. Neural Computation, 32 (12), 2311–2331. https://doi.org/10.1162/
neco_a_01331

Frady, E. P., & Sommer, F. T. (2019). Robust computation with rhythmic spike patterns.
Proceedings of the National Academy of Sciences, 116 (36), 18050–18059.

Gayler, R. W. (1998). Multiplicative binding, representation operators & analogy (workshop
poster) (K. Holyoak, D. Gentner, & B. Kokinov, Eds.). In K. Holyoak, D. Gentner,
& B. Kokinov (Eds.), Advances in analogy research: Integration of theory and data
from the cognitive, computational, and neural sciences.

Gayler, R. W. (2004). Vector symbolic architectures answer jackendoff’s challenges for cog-
nitive neuroscience. arXiv preprint arXiv:cs/0412059.

Gedeon, T., & Arathorn, D. (2007). Convergence of map seeking circuits. Journal of Math-
ematical Imaging and Vision, 29 (2-3), 235–248.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive sci-
ence, 7 (2), 155–170.

Gentner, D., Rattermann, M. J., & Forbus, K. D. (1993). The roles of similarity in transfer:
Separating retrievability from inferential soundness. Cognitive psychology, 25 (4), 524–
575.

Gupta, S., Imani, M., & Rosing, T. (2018). Felix: Fast and energy-efficient logic in memory,
In 2018 ieee/acm international conference on computer-aided design (iccad). IEEE.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a
spatial map in the entorhinal cortex. Nature, 436 (7052), 801–806.

https://www.spencerkent.com/cosyne2018_res_circuits.pdf
https://doi.org/10.1162/neco_a_01331
https://doi.org/10.1162/neco_a_01331

BIBLIOGRAPHY 100

Harker, S., Vogel, C. R., & Gedeon, T. (2007). Analysis of constrained optimization variants
of the map-seeking circuit algorithm. Journal of Mathematical Imaging and Vision,
29 (1), 49–62.

Harshman, R. A. (1970). Foundations of the parafac procedure: Models and conditions for
an ’explanatory’ multimodal factor analysis (tech. rep. UCLA Working Papers in
Phonetics, 16, 1-84). University of California, Los Angeles.

Hazan, E. et al. (2016). Introduction to online convex optimization. Foundations and Trends
in Optimization, 2 (3-4), 157–325.

Hebb, D. O. (1949). The organization of behavior; a neuropsychological theory. New York,
NY, John Wiley & Sons.

Held, M., Wolfe, P., & Crowder, H. P. (1974). Validation of subgradient optimization. Math-
ematical programming, 6 (1), 62–88.

Hertz, J., Grinstein, G., & Solla, S. (1986). Memory networks with asymmetric bonds, In
Aip conference proceedings. American Institute of Physics.

Hillar, C. J., & Lim, L.-H. (2013). Most tensor problems are np-hard. Journal of the ACM
(JACM), 60 (6), 1–39.

Hinton, G. E., Rumelhart, D. E., & McClelland, J. L. (1986). Distributed representations.
In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Ex-
plorations in the microstructure of cognition: Foundations (pp. 77–109). Cambridge,
MA, MIT Press.

Hinton, G. E. (1981a). Implementing semantic networks in parallel hardware. In G. E. Hin-
ton & J. A. Anderson (Eds.), Parellel models of associative memory (pp. 191–217).
Hillsdale, N.J., Laurence Erlbaum Associates.

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks. Artificial
Intelligence, 46 (1-2), 47–75.

Hinton, G. E. (1981b). A parallel computation that assigns canonical object-based frames
of reference, In Proceedings of the 7th international joint conference on artificial
intelligence-volume 2. Morgan Kaufmann Publishers Inc.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics, 6 (1-4), 164–189.

Hofstadter, D., & Sander, E. (2013). Surfaces and essences: Analogy as the fuel and fire of
thinking. New York, NY, Basic Books.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the national academy of sciences, 79 (8), 2554–
2558.

Hopfield, J. J. (1984). Neurons with graded response have collective computational proper-
ties like those of two-state neurons. Proceedings of the national academy of sciences,
81 (10), 3088–3092.

Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decisions in optimization
problems. Biological cybernetics, 52 (3), 141–152.

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal
of machine learning research, 5 (Nov), 1457–1469.

BIBLIOGRAPHY 101

Huang, J., & Hagiwara, M. (1999). A new multidimensional associative memory based on
distributed representation and its applications, In Ieee international conference on
systems, man, and cybernetics.

Janner, M., Wu, J., Kulkarni, T. D., Yildirim, I., & Tenenbaum, J. (2017). Self-supervised
intrinsic image decomposition. Advances in Neural Information Processing Systems,
30, 5936–5946.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick,
R. (2017). Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning, In Proceedings of the ieee conference on computer vision and pattern
recognition.

Julesz, B. (1971). Foundations of cyclopean perception. Chicago, IL, University of Chicago
Press.

Kainen, P. C., & Kurkova, V. (1993). Quasiorthogonal dimension of euclidean spaces. Applied
mathematics letters, 6 (3), 7–10.

Kanerva, P. (1996). Binary spatter-coding of ordered k-tuples, In International conference
on artificial neural networks.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors. Cognitive Computa-
tion, 1 (2), 139–159.

Kanerva, P. (2010). What we mean when we say “what’s the dollar of mexico?”: Prototypes
and mapping in concept space, In 2010 aaai fall symposium series.

Kent, S. J., Frady, E. P., Sommer, F. T., & Olshausen, B. A. (2020). Resonator networks,
2: Factorization performance and capacity compared to optimization-based methods.
Neural Computation, 32 (12), 2332–2388. https://doi.org/10.1162/neco_a_01329

Kent, S. J., & Olshausen, B. A. (2017). A vector symbolic approach to scene transformation,
In Cognitive computational neuroscience (ccn ’17) (extended abstract) [link].

Kobayashi, M., Hattori, M., & Yamazaki, H. (2002). Multidirectional associative memory
with a hidden layer. Systems and Computers in Japan, 33 (3), 1494–1502.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review,
51 (3), 455–500.

Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on Systems, man,
and Cybernetics, 18 (1), 49–60.

Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics. Linear algebra and its ap-
plications, 18 (2), 95–138.

Land, M., & Nilsson, D. (2012). Animal eyes. Oxford, UK, OUP Oxford.
LeCun, Y. (1998). The mnist database of handwritten digits. http : / / yann . %20lecun .

%20com/exdb/mnist/
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization, In

Advances in neural information processing systems.
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitts, W. H. (1959). What the frog’s

eye tells the frog’s brain. Proceedings of the IRE, 47 (11), 1940–1951.

https://doi.org/10.1162/neco_a_01329
https://www.spencerkent.com/ccn2017_vsst_abstract.pdf
http://yann.%20lecun.%20com/exdb/mnist/
http://yann.%20lecun.%20com/exdb/mnist/

BIBLIOGRAPHY 102

Marr, D. (1982). Vision. San Francisco, CA, W. H. Freeman & Company.
Maudgalya, N., Olshausen, B. A., & Kent, S. J. (2020). Vector symbolic visual analogies,

In Aaai symposium on conceptual abstraction and analogy in natural and artificial
intelligence.

McClelland, J. L., & Kawamoto, A. H. (1986). Mechanisms of sentence processing: Assign-
ing roles to constituents. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel
distributed processing: Explorations in the microstructure of cognition, vol. 2: Psy-
chological and biological models (pp. 272–325). Cambridge, MA, MIT Press.

McCoy, R. T., Linzen, T., Dunbar, E., & Smolensky, P. (2019). RNNs implicitly implement
tensor-product representations, In International conference on learning representa-
tions. https://openreview.net/forum?id=BJx0sjC5FX

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5 (4), 115–133.

Memisevic, R., & Hinton, G. E. (2010). Learning to represent spatial transformations with
factored higher-order boltzmann machines. Neural computation, 22 (6), 1473–1492.

Metcalf Eich, J. (1982). A composite holographic associative recall model. Psychological
Review, 89 (6), 627.

Metcalf Eich, J. (1985). Levels of processing, encoding specificity, elaboration, and charm.
Psychological Review, 92 (1), 1.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed rep-
resentations of words and phrases and their compositionality. Advances in neural
information processing systems, 26, 3111–3119.

Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High
motion coherence thresholds in children with autism. Journal of Child Psychology and
Psychiatry, 43 (2), 255–263.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. nature, 518 (7540), 529–533.

Moradshahi, M., Palangi, H., Lam, M. S., Smolensky, P., & Gao, J. (2019). Hubert untangles
bert to improve transfer across nlp tasks. arXiv preprint arXiv:1910.12647.

Murdock, B. B. (1983). A distributed memory model for serial-order information. Psycho-
logical Review, 90 (4), 316.

Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative infor-
mation. Psychological Review, 89 (6), 609.

Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobiological model
of visual attention and invariant pattern recognition based on dynamic routing of
information. Journal of Neuroscience, 13 (11), 4700–4719.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation, In Proceedings of the 2014 conference on empirical methods in natural
language processing (emnlp).

Personnaz, L., Guyon, I., & Dreyfus, G. (1986). Collective computational properties of neural
networks: New learning mechanisms. Physical Review A, 34 (5), 4217.

https://openreview.net/forum?id=BJx0sjC5FX

BIBLIOGRAPHY 103

Pitts, W., & McCulloch, W. S. (1947). How we know universals the perception of auditory
and visual forms. The Bulletin of mathematical biophysics, 9 (3), 127–147.

Plate, T. A. (2000). Analogy retrieval and processing with distributed vector representations.
Expert systems, 17 (1), 29–40.

Plate, T. A. (1994). Distributed representations and nested compositional structure (Doctoral
dissertation). University of Toronto.

Plate, T. A. (2003). Holographic reduced representation: Distributed representation of cogni-
tive structure. Stanford, CA, CSLI Publications.

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural
Networks, 6 (3), 623–641.

Plate, T. A. (1991). Holographic reduced representations: Convolution algebra for composi-
tional distributed representations, In International joint conference on artificial in-
telligence.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46 (1-2),
77–105.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Rahimi, A., Datta, S., Kleyko, D., Frady, E. P., Olshausen, B., Kanerva, P., & Rabaey, J. M.
(2017). High-dimensional computing as a nanoscalable paradigm. IEEE Transactions
on Circuits and Systems I: Regular Papers, 64 (9), 2508–2521.

Reed, S., Sohn, K., Zhang, Y., & Lee, H. (2014). Learning to disentangle factors of variation
with manifold interaction, In International conference on machine learning.

Reed, S., Zhang, Y., Zhang, Y., & Lee, H. (2015). Deep visual analogy-making, In Advances
in neural information processing systems.

Ross, B. H. (1989). Distinguishing types of superficial similarities: Different effects on the
access and use of earlier problems. Journal of Experimental Psychology: Learning,
memory, and cognition, 15 (3), 456.

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules, In Ad-
vances in neural information processing systems.

Sidiropoulos, N. D., & Bro, R. (2000). On the uniqueness of multilinear decomposition of n-
way arrays. Journal of Chemometrics: A Journal of the Chemometrics Society, 14 (3),
229–239.

Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E. E., & Faloutsos,
C. (2017). Tensor decomposition for signal processing and machine learning. IEEE
Transactions on Signal Processing, 65 (13), 3551–3582.

Singh, M. P., Chengxiang, Z., & Dasgupta, C. (1995). Fixed points in a hopfield model with
random asymmetric interactions. Physical Review E, 52 (5), 5261.

Smolensky, P. (1992). Principles for an integrated connectionist symbolic theory of higher cog-
nition (tech. rep. Technical Report CU-CS-600-92). University of Colorado at Boulder.

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 46 (1-2), 159–216.

BIBLIOGRAPHY 104

Sohl-Dickstein, J., Wang, C. M., & Olshausen, B. A. (2010). An unsupervised algorithm for
learning lie group transformations. arXiv preprint arXiv:1001.1027.

Spall, J. C. (2005). Introduction to stochastic search and optimization: Estimation, simula-
tion, and control (Vol. 65). John Wiley & Sons.

Tenenbaum, J. B., & Freeman, W. T. (2000). Separating style and content with bilinear
models. Neural computation, 12 (6), 1247–1283.

Thagard, P., Holyoak, K. J., Nelson, G., & Gochfeld, D. (1990). Analog retrieval by constraint
satisfaction. Artificial intelligence, 46 (3), 259–310.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive
psychology, 12 (1), 97–136.

Tucker, L. R. (1963). Implications of factor analysis of three-way matrices for measurement of
change. In C. W. Harris (Ed.), Problems in measuring change (pp. 122–137). Madison
WI, University of Wisconsin Press.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychome-
trika, 31 (3), 279–311.

Tulsiani, S., Gupta, S., Fouhey, D., Efros, A. A., & Malik, J. (2018). Factoring shape, pose,
and layout from the 2d image of a 3d scene, In Computer vision and pattern regognition
(cvpr).

Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science, 274 (5293), 1724–1726.

Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles:
Tensorfaces, In European conference on computer vision. Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
& Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30, 5998–6008.

Von der Malsburg, C. (1995). Binding in models of perception and brain function. Current
opinion in neurobiology, 5 (4), 520–526.

Whitehead, A. N., & Russell, B. (1925). Principia mathematica. Cambridge, England, Cam-
bridge University Press.

Willshaw, D. (1981). Holography, associative memory, and inductive generalization. In G. E.
Hinton & J. A. Anderson (Eds.), Parellel models of associative memory (pp. 103–
124). Hillsdale, N.J., Laurence Erlbaum Associates.

Wolfe, J. M., & Cave, K. R. (1999). The psychophysical evidence for a binding problem in
human vision. Neuron, 24 (1), 11–17.

Wu, T. F., Li, H., Huang, P.-C., Rahimi, A., Rabaey, J. M., Wong, H.-S. P., Shulaker, M. M.,
& Mitra, S. (2018). Brain-inspired computing exploiting carbon nanotube fets and
resistive ram: Hyperdimensional computing case study, In 2018 ieee international
solid-state circuits conference-(isscc). IEEE.

Xu, Z.-B., Hu, G.-Q., & Kwong, C.-P. (1996). Asymmetric hopfield-type networks: Theory
and applications. Neural Networks, 9 (3), 483–501.

	Contents
	List of Figures
	List of Tables
	Introduction
	Levels of intelligence
	The primacy of factorization
	Vector Symbolic Architectures (VSAs)
	Previous approaches to factorization

	Resonator Networks
	Statement of the problem
	Factoring by search in superposition
	Resonator Networks
	The optimization approach
	Results
	Discussion

	Applications of VSAs and Resonator Networks
	Tree search
	Visual scene analysis
	Vector symbolic scene transformation
	Sub-symbolic superposition
	Analogical Reasoning
	Summary

	Appendix to chapter 2
	Implementation details
	Operational Capacity
	Table of benchmark algorithms
	Tensor Decompositions and Alternating Least Squares
	General notes on gradient-based algorithms
	Iterative Soft Thresholding (ISTA) and Fast Iterative Soft Thresholding (FISTA)
	Projected Gradient Descent
	Multiplicative Weights
	Map Seeking Circuits
	Percolated noise in Outer Product Resonator Networks

	Bibliography

