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Abstract
AT for HADR: Progress and Opportunities
by
Ross Luo
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Trevor Darrell, Chair

In recent years, the Al research and the humanitarian assistance and disaster response
(HADR) communities have sought to collaborate together: There is a growing desire in
the AI research community to transition state of the art research towards endeavors for
social good. Likewise, the HADR community, comprised mainly of NGQO’s, governments,
and not-for-profit entities, has historically been insulated from the latest technological ad-
vances and welcomes infusions of technical insights. Part I of this work describes the origins,
progress, and takeaways of these collaborations.

Part II details some of my team’s ongoing contributions in this area. Notably, we are the first
to adapt structured Gaussian filters to the object detection task. We evaluate our CenterNet-
DLA detector with spherical Gaussian filters on COCO and the xView overhead object
detection dataset and achieve performance comparable to one with free-form deformable
convolution filters while utilizing fewer dynamic parameters.
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Chapter 1

Overview

Part I describes the origins, progress, and takeaways of recent academic initiatives aiming
to apply the latest Al advances to solve challenges faced by the HADR community. Many
of these challenges are not new but new Al advances have ignited a wave of enthusiasm in
tackling them. This work is meant to showcase high level trends and is not meant to be
exhaustive. Previous initiatives targeting these challenge areas are outside the scope of this
work.



Chapter 2

Introduction

Research advances in the past decade have generated optimism about AT applications. CNN’s
now outperform humans [13] in the ImageNet classification task; these and other computer
vision advances have kick-started industries aimed at automating aspects of human percep-
tion. Likewise, speech recognition algorithms now match or surpass human performance on
standard benchmarks [47] and have been integrated into the user interfaces of everything
from personal phones to smart homes to automobiles. Reinforcement learning advances have
enabled Al to attain or exceed human abilities in a wide range of tasks that previously were
not thought to be possible such as complex games [6, 43]. As a result of these developments,
market analysts project that the emerging Al industry will contribute between 6-16 trillion
dollars to the global economy in the next 5-15 years [12, 32, 33].

On the flip side, there is growing concern about the negative consequences of these advances.
Generative networks are now able to synthesize “deep fakes”, realistic text, images, videos,
and audio that could be utilized for misinformation and criminal activities [1, 26, 29]. Parallel
developments in Al algorithms, compute, storage, and cloud infrastructure have enabled the
engineering of mass surveillance systems. Algorithms operating on social media platforms
optimizing for engagement have been blamed for political polarization and echo chambers.
There is concern that many Al advances are dual-use, able to be adapted for civilian as well
as military purposes, and are contributing to an Al arms race [39]. Finally, the themes of Al
fairness, interpretability, and explainability are now major topics of discussion in industry,
academia, governments, and NGO’s as algorithms are increasingly being allowed to make
consequential and lasting decisions on people’s lives [31].

These negative consequences have led to calls in the Al community to make sure more is
done to so that Al advances lead to positive societal outcomes. As early as 2017, industry,
academia, governments, and NGO’s have come together and begun pursuing initiatives under
banners such as “Al for Good” [3], “Al for Social Good” [17, 19, 46], “Computer Vision for
Global Challenges” [8], and most recently “Al for HADR” [2].
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2.1 What is HADR

Disasters, natural and man-made, strike countries both rich and poor. The stakeholders
that respond to these calamities, providing food, supplies, monetary aid, manpower, lead-
ership, organization, technical expertise, security, and much more, collectively represent the
humanitarian assistance and disaster response (HADR) community.

HADR operations can be directed domestically or abroad. In contrast to developmental aid
which aims to build long-term resilience to mitigate potential disasters, HADR encompasses
the short-term steps taken immediately before, during, and after a disaster, encompassing
evacuation, search and rescue, aid, and recovery. HADR overlaps with humanitarian aid,
disaster recovery, disaster relief, and disaster management.

The HADR community is comprised of government entities, commercial interests, not-for-
profit organizations, NGO’s such as the Red Cross [9], and intergovernmental entities such
as the UN [27]. In the United States, HADR governmental entities include domestic-facing
stakeholders such as first responders, decision makers at various levels of government, FEMA,
and the National Guard as well as foreign-facing stakeholders such as USAID the Department
of State, and the Department of Defense.

2.2 Al for HADR

In 2019, NeurIPS was host to the first AI for HADR workshop. The purpose of the work-
shop was to “establish meaningful dialogue between the Al and HADR communities” and
to help transition “the research created by the NeurIPS community to real world humani-
tarian issues” [2]. Organizers and participants of the workshop included Al researchers from
academia and industry on the one hand and practitioners from not-for-profits, NGO’s and
governmental entities on the other. The workshop showcased ongoing collaborations in ar-
eas such as flood and fire prediction, damage assessment, and social media analysis during
disasters. A subsequent workshop was also hosted at NeurIPS 2020.

2.3 Related Initiatives

Prior to the formation of the Al for HADR workshop, the Al for Social Good and Computer
Vision for Global Challenge workshops were forums for Al for HADR work.

Al for Social Good

In 2018, NeurIPS hosted its first Al for Social Good workshop. The organizers framed the
workshop’s focus to be “on social problems for which artificial intelligence has the potential
to offer meaningful solutions” and solicited papers targeting themes inspired by the UN Sus-



CHAPTER 2. INTRODUCTION d

tainable Development Goals (SDGs). These themes were: education, protecting democracy,
urban planning, assistive technology for people with disabilities, health, agriculture, envi-
ronmental sustainability, economic, social, and gender inequality, social welfare and justice,
ethics, privacy, and security. The workshop brought together researchers, practitioners, and
philanthropists together into the same room to to build a community that could share their
successes and failures, identify evaluation criteria, build new tools and datasets, and inspire
others to join the mission [4]. Subsequent Al for Social Good workshops were organized for
ICLR 2019, ICML 2019, and NeurIPS 2019.

Computer Vision for Global Challenges (CV4GC)

The inaugural and only Computer Vision for Global Challenges (CV4GC) workshop was
hosted at CVPR 2019. Like AI for Social Good, CV4GC targeted priorities like the UN
SDG’s but narrowed its focus to computer vision applications [§].



Chapter 3

Review of Recent Progress

3.1 Overall Trends

The scope of this review is limited to HADR papers accepted at the Al for Social Good,
Computer Vision for Global Challenges, and Al for HADR workshops.To formally extract
insights about the scope of the efforts featured at these workshops, text mining was per-
formed on the workshop websites. Titles of accepted papers, names of authors, and author
institutions were aggregated, cleaned, and analyzed.

To begin, Table 3.1 tallies the number of accepted HADR papers at these workshops. It is
notable that 2019 was the height for the number of accepted papers. NeurIPS 2020 did not
host an Al for Social Good workshop but it did host an Al for HADR workshop. The reason
for all of this is unclear, but a center of focus for researchers in 2020 has been topics related
to COVID-19.
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Number of Accepted HADR Papers by Workshop

Workshop Conference *Accepted HADR Total Accepted
Papers
NeurIPS 2018 9 40
. ICLR 2019 2 24
AT for Social Good [CML 2019 9 23
NeurIPS 2019 2 41
CV for Global Challenges CVPR 2019 5 14

AT for HADR

NeurIPS 2019
NeurlIPS 2020

13
11

Table 3.1: A tally of HADR papers. *HADR papers were qualified based on whether ab-
stracts mentioned applications that fall into areas covered by the HADR workshops. For list

of works categorized as HADR, see Appendix A.

To gain insight into where Al for HADR research has been concentrated, author affiliations

were tallied. Table 3.2 ranks the top author affiliations. Notably, industry and academia are
both invested in Al for HADR research.

Top Author Affiliations in HADR Papers
Author Affiliation Type of Institution *Number of Appearances
Google Industry 45
Carnegie Mellon University Academia 16
CrowdAl Industry 7
Mila Academia 6
Facebook Industry 6

Table 3.2: Top author affiliation appearances in HADR papers. *Tallies are per author per
paper. Repeat authors and papers with a large number of authors inflate the tallies.

3.2 Common Themes

Because the scope of the three workshops have significant overlap, several initiatives spanned
multiple workshops and many authors appeared in multiple workshops. Notably, a flood
prediction project spanned four papers across three workshops.
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To gain insights into the contents of the HADR papers, abstracts were used. We first use
the abstracts to tag each paper with an application area, where appropriate. Table 3.3 lists
top 5 common application areas. Most of the damage assessment, mapping, and wildfire
prediction papers leveraged computer vision methods. NLP was leveraged in works that
aimed to mine social media in order to provide early disaster warning.

Top Application Areas
Application Area Number of Papers
Damage Assessment 10

Mapping 7
Flood Modeling 6
Wildfire Prediction )
Social Media Analysis 4

Table 3.3: Top application areas targeted by accepted papers

The contents of the abstracts were then mined. Table 3.4 is a filtered list of the most frequent
words and phrases found in the abstracts.

Most Frequent Words and Phrases
Word or Phrase *Number of Appearances

Satellite 30
Damage 28
Building 20
Flood 19

Fire 14
Crowd 8
Social Media 7

Table 3.4: Filtered list of most frequent words and phrases appearing in abstracts. *Tally
refers to total number of appearances in abstracts. Occurrences in the same abstract are
double counted.
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3.3 Common Challenges

There are three common challenges that have been faced by the Al for HADR community: 1.
The Researcher-Practitioner Divide. 2. Dataset Availability 3. Short-Term Collaborations
Without Sustained Impact.

Researcher-Practitioner Divide

All three workshops operated with similar formats, featuring a mix of poster presentations,
oral presentations, invited talks, and speaker panels. Ostensibly, the rationale for this is
captured best by the stated motivation for the CV4GC workshop [8]:

“We argue that one of the main obstacles is the disconnection between domain experts:
those who are close to the problems on the ground, and those who have knowledge about
technical solutions. This disconnect might be driven by geographical divide, differences
in language and taxonomy, or might come from the lack of a accessible forum to find
each other. We propose this initiative as a first step to bridge the gap between these
two communities.”

AT for HADR adopts a similar purpose [2]:

“We intend to establish meaningful dialogue between the Artificial Intelligence (AI) and
Humanitarian Assistance and Disaster Response (HADR) communities. By the end of
the workshop, the NeurIPS research community can learn the practical challenges of
aiding those in crisis, while the HADR community can get to know the state of art and
practice in AI”

The structures of the workshops were designed to mitigate long-standing divides and to build
a community with meaningful dialogue. Invited talks were opportunities for practitioners to
describe problem statements and provide datasets and resources to translate research insights
into practical outcomes. Poster and oral presentations were opportunities for researchers to
share lessons learned.

Dataset Availability

Dataset availability is a prerequisite for any meaningful machine learning work. All of the
top application areas highlighted in Table 3.3 were enabled by dataset collaborations between
researchers and practitioners.

In flood prediction for example, Google recognized the scarcity of publicly available data [28]
and collaborated with India and Bangladesh to access real-time and historical water level
measurements, leading to a long-term project to provide flood warnings.
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In damage assessment, the xBD dataset [18] was a collaboration between CrowdAl, a com-
mercial company, CMU’s SEI, and the Department of Defense. It was unveiled at the first Al
for HADR workshop at NeurIPS 2019 and subsequently enabled multiple building damage
assessment submissions to the Al for HADR workshop at NeurIPS 2020.

Short-Term Collaborations Without Sustained Impact

AT for HADR branched off from the AI for Social Good movement but shares some of
the same hurdles. As Tomasev et al. note in their review of the Al for Social Good move-
ment, short-term initiatives like workshops are critical in “gathering momentum and bringing
application-domain experts together with Al researchers” but they recommend establish-
ing “long-term collaborations between application-domain experts and Al researchers and
formling] deep integrated partnerships that allow for enough time to reach good practical
solutions” [46].

One of the most important prerequisites for long-term collaborations is incentive-alignment.
Some of the high profile projects in Al for HADR, such as Google’s flood prediction initiatives
and Cal Fire’s initiatives with CrowdAl and the California ANG [14], have evolved into deep
partnerships because stakeholders on all sides have managed to find common incentive. In
recent years, both floods and wildfires have have inflicted significant material and human cost.
In particular, the 2018 California wildfire season was the worst in the state’s recorded history
and was also the worst in the nation for that year [38]. India’s 2019 monsoon season recorded
the most monsoonal rainfall in the last 25 years and led to the injury and displacement of
more than 2.5 million people [30]. These natural disaster events forced governmental entities
to invest in mitigation measures and offered Al researchers opportunities to apply state of
the art research to effect positive outcomes.

3.4 Conclusions

AT for HADR branched off from the AI for Social Good movement and has led to some
meaningful collaborations between researchers and practitioners in areas such as flood and
wildfire prediction and damage assessment. As noted in Tomasev et al. note, the trend of
applying tech to social domains is not new [46]. What is new with the new Al-centric move-
ments is that datasets have now become a prerequisite. The most successful collaborations
in the Al for HADR space have been enabled by first meaningfully connecting researchers
with practitioners, making sure researchers have access to the necessary datasets, and then
making sure incentives are aligned for long-term collaboration and dialogue.
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Chapter 4

Overview

Part II is a summary of some the team’s contributions to the Al for HADR community. Our
aim was to advance state of the art performance on overhead imagery datasets by evaluating
new methods on the xView dataset.

With this goal in mind, we adapted two scale-adaptive object detection methods, deformable
convolutions and spherical Gaussian filters, to a CenterNet-DLA detector and benchmarked
them against a SSD baseline. Our hope is that insights gained from our work can be adapted
to improve disaster response capabilities.
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Chapter 5

xView Dataset

The xView dataset was released in 2018 as part of the xView detection challenge with the
aim of advancing solutions for national security and disaster response. It is an overhead
object detection dataset with image chips spanning more than 1400 km? of Earth’s surface
and labeled with roughly 1 million objects across 60 classes. Image chips were sourced from
Digital Globe WorldView-3 satellites with 0.3m ground sampling distance. The raw dataset
chips each cover roughly 1 km? in ground area and measures roughly 3000% pixels. Figure
5.1 shows some example image chips.

Figure 5.1: Example Xview image chips showcasing the geographic span of the dataset

5.1 Dataset Characteristics

The xView dataset [22] possesses many characteristics that are common to overhead ob-
ject detection datasets. These include the presence of dense labels, object occlusions, small
objects, and imbalances in label density, detection scale, and class counts [42]. These charac-
teristics make xView a great proxy for other overhead datasets but also make it a challenging
dataset to tackle.

Some of these characteristics are the result of the data curation strategy. xView image
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chips were sourced to minimize bias across areas of interest (AOIs) [22]. Example AOI’s
include mines, ports, airfields, and coastal, inland, urban, and rural regions. However, due
to the emphasis on minimizing AOI bias, other data imbalances were created. Class counts
are extremely imbalanced, with the ”building” and ”small car” labels dominating instance
counts due to their prevalence in dense urban AOI’s. See figure 4.2 for class instance count
distribution.

Instances per Category

Instance Count
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Figure 5.2: Figure from the xView paper [22] documenting class instance count distribution

Other characteristics are a function of the inherent constraints of satellite imagery. The
WorldView-3 satellite produces some of the most high resolution commercial imagery avail-
able with a ground sampling distance of 0.3m per pixel (the federal limit is 0.25m). Even
then, objects such as cars and vehicles still end up being sometimes only a few pixels across.
This makes the classification task difficult even for human eyes. The resolution constraint
also means that image chips span wide swaths of area, leading to urban image chips con-
taining thousands of overlapping labels coexisting with rural image chips with no labels.

Figure 5.3: Example of dense detections in an urban chip and the low resulting resolution
of a small object (car)

All of the above characteristics limit the ability for object detection algorithms to generalize
effectively. As a result, even the 1st place winner of the xView challenge only achieved a
mAP of 0.28 [40]. Compare this to literature state of the art performance on the MS COCO
object detection dataset, which currently lies at 0.55 [45].
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Chapter 6

Object Detection Efforts

6.1 Overview

To tackle xView’s scale variance, we adapted a CenterNet detector with a DLA-34 backbone
and compared the performance of free-form deformable convolution filters to spherical Gaus-
sian filters. We are the first to apply structured Gaussian filters to a detection task. The
two yielded nearly identical mAPs in the xView and COCO datasets but Gaussian filters
utilize fewer dynamic parameters. Both of these methods outperformed a baseline SSD-512
detector by 0.02 mAP.

6.2 Introduction

Prior to the proliferation of CNN’s in object detection, state of the art detectors utilized
sliding window and selective search methods for localizing objects within an image [5, 16]
and handcrafted feature extractors with HOG [11] and SIFT [25] to help classify them.

After AlexNet won the ImageNet classification challenge in 2012 [21], RCNN [16] was among
the first to demonstrate the advantage of using CNN backbones as feature extractors. CNN
backbones have advanced a lot since then. Skip connections (ResNet) [20] and inception
modules (GoogLeNet) [44] have allowed for the training of deeper and more accurate net-
works.

For object localization, RCNN and later Fast RCNN used a selective search based region
proposal framework [7] before passing the proposals to a CNN for classification [15, 16].
Faster RCNN replaced selective search with a region proposal network (RPN) that generates
proposals based on anchor points [37]. Subsequent single-stage detectors such as SSD [24]
and YOLO [34, 35, 36] implemented localization with concepts similar to anchor points.
CenterNet replaces anchor points that are exhaustively generated with center points that
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are placed at the peaks of class heatmaps generated from image features. Bounding boxes
are then regressed from the features at the peaks [48]. This is more computational efficient
and allows CenterNet to achieve strong speed-accuracy trade off.

To account for the scale and transformation variance of objects and the inherent hierarchical
attributes of images, various approaches have been proposed. Historically, image feature
pyramids had been used to incorporate image features at different scales. SSD, FPN, and
DLA use similar principles to sample and incorporate features from different layers [23, 24,
49]. DLA in particular utilizes hierarchical skip connections. In addition, various proposals
have been made to modify the convolution operations in these networks. Normally, con-
volutional layers are calculated by passing a fixed convolution filter of size k x k across a
feature map with some stride. This means that regardless of the task a given layer’s features
are sampled at fixed locations. Deformable convolutions have been shown to improve accu-
racy in object detection and segmentation tasks by dynamically altering filter offset based
on input features [10]. Structured adaptive receptive fields such as gaussian filters achieve
similar performance as the more computational-intensive free-form deformable convolutions
but with fewer dynamic parameters [41].

6.3 CenterNet Detector

The CenterNet detector treats object detection as a keypoint estimation problem. A heatmap
for each class is generated for each image. Peaks of the heatmaps are used to propose center
points and the features at those points are used to regress bounding boxes. [48]

DLA-34 Backbone

We use a DLA-34 backbone for feature extraction. Deep Layer Aggregation (DLA) em-
phasizes deeper connectivity between layers by adding hierarchical skip connections that
incorporate earlier layers more. The result is improved performance, parameter count, and
memory usage over baseline models that use traditional skip connections. The approach
is similar to that of FCN skip connections and FPN top-down connections. DLA-34 is
specifically a ResNet-34 backbone augmented with iterative (IDA) and hierarchical deep
aggregation (HDA) blocks (See figure 6.1) [49].
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[:] Hierarchical Deep Aggregation
Iterative Deep Aggregation

|:| Aggregation Node

—= Downsample 2x

I:l Conv Block

oo e )

Figure 6.1: Modifications to a ResNet backbone featuring both IDA and HDA blocks. Dia-
gram is from DLA paper [49]

Deformable Convolutions

Deformable convolutions allow for dynamic adjustments to the receptive fields of convolu-
tional layers at inference time in order to account for scale variations that are inherent in
images. This is done by adding 2D offsets to the grid sampling locations of a standard
convolution filter. (See figure 6.2)

(a) (b)

Figure 6.2: A deformable convolution yields a free-form receptive field (b) compared to a
fixed receptive field from a traditional convolution (a). Figure is from the DCN paper [10]

These offsets are obtained by passing the same input feature map through an additional
convolutional filter to obtain an offset field. The result is a free-form receptive field at each
location in a feature map (see Figure 6.3).
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2]~
O——b\.\»
HEIR
offsets

input feature map output feature map

Figure 2: Illustration of 3 x 3 deformable convolution.

Figure 6.3: A deformable convolution involves learning an offset field that is utilized to
predict offsets specific to each input. Figure is from the DCN paper [10]

Our DLA-34-Deformable backbone is a DLA-34 backbone with additional skip connections
and its 3 x 3 convolutions in the upsampling stages substituted with deformable convolutions
(see figure 6.4)

I:I Sum Node —= UpMNode ---—-> Dclorm Conv I:I Slage

Figure 6.4: DLA-34-Deformable is a DLA-34 with extra skip connections and static convo-
lutions replaced with deformable convolutions. Figure is from the CenterNet paper [48]
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Gaussian Sigma Filter

In contrast to free-form deformable convolution filters, structured Gaussian filters have been
proposed to allow for dynamic receptive fields while reducing the number of dynamic pa-
rameters [41].

Here, we adopt spherical Gaussian filters where a scaled offset can be specified with a single

2
o parameter through it’s covariance ¥ where > = (‘70 a% )

1 T -1
a3 = ¥ = X2
( ) 2mvdet 2

Figure 6.5 illustrates what a spherical Gaussian filter looks like.

Figure 6.5: Illustration of a spherical Gaussian filter. A single ¢ parameter determines offset
scaling through its covariance

Our DLA-34-Sigma backbone is a DLA-34-Deformable backbone with deformable convolu-
tions replaced with these spherical Gaussian filters. In doing so, we reduce the number of
dynamic parameters per convolutional layer from 2k? to 1.

6.4 Results and Conclusion

For our experiments, we chose the COCO dataset and SSD-512 detector as baselines. We
chipped xView to 512x512 image chips to match the input resolution of COCO.

We trained each detector (SSD-512, CenterNet-DLA-Deformable, CenterNet-DLA-Sigma)
to convergence on COCO and xView and collect evaluation results in Table 6.1.
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Evaluation Results

Object Detector COCO mAP xView mAP
SSD-512 0.465 0.178
CenterNet-DLA-Deformable 0.485 0.198
CenterNet-DLA-Sigma 0.485 0.187

Table 6.1: Evaluation results on COCO and xView.

20

CenterNet DLA outperformed SSD in both COCO and xView. Furthermore, the spherical
Gaussian filters were shown to provide most if not all of the benefits of the deformable
convolutions while utilizing fewer dynamic parameters (2k? vs 1 for each convolutional layer).

6.5 Future Work

While we show the advantage of CenterNet-DLA modified with adaptive receptive fields
over a baseline SSD, additional ablation studies involving CenterNet-DLA without dynamic
receptive fields and CenterNet with different backbones could be conducted to determine the
relative contributions of the CenterNet detector and the DLA backbone to our performance.
To explore performance differences, training times between SSD and CenterNet could be
compared. The speed-accuracy trade-off at test time and memory footprint differences for
dynamic receptive fields could also be explored.
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List of Papers Categorized As HADR

*Excludes papers accepted to the Al for HADR workshops

Workshop Conference | Title Authors

Al4SG NeurIPS18 A Longitudinal Evaluation of a | Jessica Lee et al.
Deployed Predictive Model of
Fire Risk

AI4SG NeurIPS18 ML for Flood Forecasting at Scale | Sella Nevo et al.

Al4SG NeurIPS18 Intelligent Drone Swarm for | Vincenzo Lomonaco et al.
Search and Rescue Operations at
Sea

AT4SG NeurIPS18 From Satellite Imagery to Disas- | Jigar Doshi et al.
ter Insights

AI4SG NeurIPS18 A Complementary Approach to | Sriram Ganapathi Subra-
Improve Wild Fire Prediction | manian et al.
Systems

AI4SG NeurIPS18 Witnessing atrocities: quantify- | Julien Cornebise et al.
ing villages destruction in Darfur
with crowdsourcing and transfer
learning

AT4SG NeurIPS18 Rapid Computer Vision-aided | Tim G. J. Rudner et al.
Disaster Response via Fusion of
Multiresolution, Multisensor, and
Multitemporal Satellite Imagery

AI4SG NeurIPS18 Foundational mapping of Uganda | Alexei Bastidas et al.

to assist American Red Cross dis-
aster response to floods and pan-
demics
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AI4SG

NeurIPS18

Towards Global Remote Dis-
charge Estimation: Using the
Few to Estimate The Many

Yotam Gigi et al.

Al45G

ICLR19

A pipeline for emergency re-
sponse

Ayan Mukhopadhyay et al.

Al45G

ICLR19

Disaster Insurance - New para-
metric contracts based on satel-
lite images

Eric Bouyé et al.

CV4GC

CVPR19

Building High Resolution Maps
for Humanitarian Aid and Devel-
opment with Weakly- and Semi-
Supervised Learning

Derrick Bonafilia et al.

Cv4GC

CVPR19

Creating xBD: A Dataset for As-
sessing Building Damage from
Satellite Imagery

Ritwik Gupta et al.

Cv4GC

CVPR19

DisplaceNet:  Recognising Dis-
placed People from Images by Ex-
ploiting Dominance Level

Grigorios Kalliatakis et al.

Cv4GC

CVPR19

Deep Landscape Features for
Improving Vector-borne Disease
Prediction

Nabeel Abdur Rehman et
al.

CV4GC

CVPR19

Detecting Roads from Satellite
Imagery in the Developing World

Yoni Nachmany et al.

AI4SG

ICML19

Crisis Sub-Events on Social Me-
dia: A Case Study of Wildfires

Shan Jiang et al.

AI4SG

ICML19

Addressing Novel Sources of Bias
for Change Detection on Large
Social Networks

Gabriel Cadamuro et al.

AI4SG

NeurIPS19

Large-Scale Landslides Detection
from Satellite Images with Incom-
plete Labels

Masanari Kimura et al.

Al45G

NeurIPS19

Using News Articles to Model
Hepatitis A Outbreaks: A Case
Study in California and Kentucky

Marie Charpignon et al.
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