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Abstract

Computational fluorescence and phase super-resolution microscopy

by

Li-Hao Yeh

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Laura Waller, Chair

Light microscopy is an important driving force for new biological discoveries because of
its capability of visualizing micro-scale cell structures and interactions. Fundamentally, opti-
cal resolution is bounded by the diffraction limit, preventing observation of biological events
with even smaller scale. However, computational imaging approaches are efficient tools to
surpass this limit. In recent years, optimization formulation has become more popular be-
cause of its flexibility and efficacy toward information retrieval. In this thesis, we leverage the
power of optimization algorithms and new experimental schemes to tackle super-resolution
microscopy, both improving existing methods and developing new techniques. We first apply
rigorous optimization algorithm analysis to a super-resolution phase microscopy technique,
Fourier ptychography. A more accurate noise model and self-calibration algorithm ensure
a better reconstruction quality for this technique. Next, we incorporate optimization into
the study of a super-resolution fluorescence microscopy technique, structured illumination
microscopy. Super-resolution reconstruction is achieved even with a series of random un-
known illumination patterns, which is not possible without proper optimization formulation.
Next, we leverage the experience of the previous two projects to propose a super-resolution
microscopy method for phase and fluorescence contrast with multi-fold resolution improve-
ment in both 2D and 3D using an unknown speckle illumination composed of high-angle
plane waves from Scotch tape as a patterning element. The result is a practical method
for achieving multimodal super-resolution with > 2× resolution gain, surpassing the limit
of the traditional linear structured illumination microscopy. All these outcomes are within
the realm of computational super-resolution microscopy, where the optimization algorithm
is jointly designed with optics for efficient information retrieval to achieve super-resolution
microscopy.
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Chapter 1

Introduction

This thesis shows the progressive building blocks toward computational fluorescence and
phase super-resolution microscopy with speckle illumination. This chapter is devoted to the
basic concepts required to understand the material in this thesis.

Resolution is one of the important characteristics of a microscope system, specifying
the minimum distinguishable feature size. Fundamentally, when the microscope system is
free from imperfections, the resolution is limited by the diffraction effect of the light. The
so-called diffraction limit was defined 1.5 centuries ago by German Physicist, E. Abbe [1].
This diffraction limit defines the minimum resolvable feature size (i.e. the resolution) of a
microscope as inversely proportional to the amount of angular information a microscope can
collect, and is quantified by numerical aperture (NA). Higher NA leads to better resolution,
usually at the cost of small field-of-view (FOV), and limited by physical fabrication con-
straints and aberration. Breaking the diffraction limit enables observation of features that
were previously not resolvable, which could potentially bring new discoveries in biology [2–
16]. Lower NA objectives have poor resolution, but usually have larger FOV. Breaking
the diffraction limit in this case increases the amount of information transferred through
the microscope [17–30], opening up potential applications in high-throughput imaging that
is highly desired in the drug industry or system biology [31–37], where scientists need to
observe many cells at good resolution.

Throughout this thesis, our discussion is focused on scalar optics, where only one electric
field vector component is considered in the calculation.

1.1 Diffraction-limited resolution

In this section, we apply linear system theory to optical imaging systems similar to [38] to
analyze the mapping of information. A 4f system geometry is chosen for analysis because
most microscopes can be simplified into a 4f system. Based on the geometry, we will establish
the linear input-output relationship for coherent and incoherent imaging scenarios. These
input-output relationships are key to understanding diffraction-limited resolution.



CHAPTER 1. INTRODUCTION 2

1.1.1 Coherent imaging system

Figure 1.1: Diagram of a standard microscope modeled by a 4f system, imaging a sample
with a transmittance function o(r) illuminated by a coherent wave field u(r, t).

Figure 1.1 shows a 4f system diagram, representing a typical microscope. With this
geometry, we start by establishing the input-output relationship for the coherent imaging
case. The coherence we are referring to here is the spatial coherence of the light. To
rule out temporal coherence effects, we assume our illumination wave field to be quasi-
monochromatic (i.e. narrow-band light with temporal coherence length much larger than
the spatial coherence length). With this assumption, we represent the incident wave field
centered at frequency ν in the time-varying phasor form as

U(r, t) = R
{
u(r, t)e−i2πνt

}
= |u(r, t)| cos(2πνt+ ∠u(r, t)), (1.1)

where R{·} represents the operation of taking the real part of the variable, r = (x, y) is the
2D spatial coordinate, and u(r, t) is the time-varying phasor of the real wave field U(r, t).
In the following discussion, we will use phasor notation to refer to the electric field.

The electric field illuminates a sample whose transmittance function is o(r) and forms
the input wave field

ui(r, t) = u(r, t)o(r). (1.2)

According to Chapter 5.2 in [38], the wave field at the aperture plane after going through the
first 2f system (focal length f1) is a Fourier transform of the input wave field under paraxial
approximation and is expressed as

ua(r, t) =
1

iλf1

∫
ui(r

′, t)e
− i2πr

′·r
λf1 dr′ =

1

iλf1

ũi

(
r

λf1

, t

)
, (1.3)
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where λ is the central wavelength of the wave field and ã represents the 2D spatial Fourier
transform of the variable a. Since the wave field at the aperture is the Fourier transform of
the input wave field, its distribution represents the angular information of the input wave
field. This angular information is truncated by the aperture of the microscope, P (r), which
may be complex to model aberration. Thus, a limited amount of information is mapped
onto the imaging plane through the second 2f system (focal length f2) to form the output
wave field, expressed as

uo(r, t) =
1

iλf2

∫
ua(r

′, t)P (r′)e
− i2πr

′·r
λf2 dr′

= −f2

f1

∫
ũi

(
−f2u

f1

, t

)
P (−λf2u)ei2πu·rdu, r′ = −λf2u

= um(r, t)⊗ hc(r), (1.4)

where u is the 2D spatial frequency coordinate of the output wave field and ⊗ denotes 2D
convolution operation. The magnified wave field, um(r, t), the point spread function (PSF)
of the coherent imaging system, hc(r), and system magnification, M , are expressed as

um(r, t) =
1

M
ui

( r

M
, t
)
,

hc(r) =

∫
P (−λf2u)ei2πu·rdu,

M = −f2

f1

. (1.5)

Equation (1.4) has established the linear space-invariant relationship between the input
wave field and the output wave field. The output wave field from the 4f system is simply
a convolution between the magnified input wave field and the PSF of the coherent imaging
system, which is a Fourier transform of a scaled pupil function. In the second line of Eq. (1.4),
we recognize the transfer function of this linear system to be

h̃c(u) = P (−λf2u), (1.6)

which maps the frequency information between the output wave field and the magnified
input wave field (i.e. scattered field from the sample), and is called the coherent transfer
function. Usually, the aperture function of a non-aberrated system takes the form of a circle
function as

P (r) =

{
1, ‖r‖2 ≤ w
0, otherwise

⇒ h̃c(u) =

{
1, ‖u‖2 ≤ w

λf2
= NA

λ

0, otherwise
(1.7)

where w is the radius of the aperture. This implies the coherent transfer function to be a
circle function as well with the radius defined by the ratio of w and f2, which is the numerical
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aperture (NA) of the system. This coherent transfer function defines the passband of wave-
field information. Higher spatial frequency from the input wave field encodes information
of smaller feature sizes, which require imaging systems with larger NA to transfer. This
is the origin of the diffraction limited resolution for coherent imaging systems. Figure 1.2
shows the coherent transfer function and the corresponding PSF. The profile plot of the
PSF demonstrates the full-width-half-maximum of the PSF is around λ/NA, which sets the
coherent diffraction limit.

Figure 1.2: The 2D coherent transfer function and its corresponding point spread function
(PSF) with the profile plot showing the function value at the central cutline.

Assuming the illumination field is a plane wave from a single coherent light source (e.g.
a single laser) and the magnified object is denoted as om(r) = o

(
r
M

)
, we express our mea-

surement at the sensor as the time average of the light intensity

Io(r) =
〈
|uo(r, t)|2

〉
t

=
1

M2

∫∫ 〈
u
( r1

M
, t
)
u∗
( r2

M
, t
)〉

t
om(r1)o∗m(r2)hc(r− r1)h∗c(r− r2)dr1dr2

=
|u0|2
M2
·
∣∣∣∣∫ om(r1)hc(r− r1)dr1

∣∣∣∣2 , (1.8)

where we have used 〈
u
( r1

M
, t
)
u∗
( r2

M
, t
)〉

t
= |u0|2 (1.9)

because the wave field is fully correlated at two points r1 and r2 [39]. The measured intensity
is nonlinear to the input wave field (here the magnified transmittance function). If we are able
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to extract the output wave field information using holography or a phase retrieval method,
we can use the previously established input-output wave field relationship from Eq. (1.4) for
resolution analysis.

1.1.2 Incoherent imaging system

Similar to the coherent imaging scenario, we start the resolution analysis for an incoherent
imaging system by building up the input-output relationship for a 4f geometry. The funda-
mental wave propagation physics is the same as what we derived previously in the coherent
imaging case. The major difference happens in Eq. (1.8). For an incoherent imaging system,
the correlation of the wave field at position r1 and r2 is 0 except for r1 = r2, where we could
express it as

〈u(−r1, t)u
∗(−r2, t)〉t = κδ(r1 − r2), (1.10)

where κ is a constant in the unit of power to balance out the unit of a delta function such
that the overall unit of the field correlation is intensity. This leads us to write out the
measurement for an incoherent imaging system as

Io(r) =
κ

M2

∫
|om(r1)|2 |hc(r− r1)|2 dr1. (1.11)

Note that this is a linear space-invariant relationship with respect to intensity. The output
intensity is now a convolution of input intensity (absolute square of the magnified transmit-
tance function) and the intensity of the coherent PSF. The input-output relationship in the
incoherent imaging system is built on the intensity, not the wave field as in coherent imaging
case.

With this understanding, we identify the incoherent PSF as

hinc(r) = |hc(r)|2 . (1.12)

The Fourier transform of the incoherent PSF is thus

h̃inc(u) = h̃c ? h̃c(u), (1.13)

where ? is the autocorrelation operation. Since the incoherent PSF is the absolute square
of the coherent PSF, the incoherent transfer function is the autocorrelation of the coherent
transfer function. Similar to the coherent imaging case, the incoherent transfer function sets
the passband of the intensity information, and hence defines the diffraction-limited resolution
for an incoherent imaging system. Figure 1.3 shows the incoherent transfer function and the
corresponding PSF. The profile plot of the PSF demonstrates the full-width-half-maximum
of the PSF is around λ/2NA, which is 2× smaller than the coherent diffraction limit. Hence,
the intensity resolution with an incoherent system has 2× better resolution than a coherent
system. This incoherent imaging model is appropriate for modeling a transmission micro-
scope with an incoherent light source, or a fluorescence microscope, since fluorescent light is
also incoherent.
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Figure 1.3: The 2D incoherent transfer function and its corresponding point spread function
(PSF) with the profile plot showing the function value at the central cutline.

1.2 Super-resolution coherent imaging

In the coherent imaging scenario, we focus on observing light diffraction contrasts of samples.
Since the diffraction-limited resolution originates from the limited collection angle of the
diffracted light from the sample, the collection of higher-angle diffracted light is necessary to
break the diffraction limit. Borrowing from the concept of synthetic aperture in the radar
community, super-resolution techniques generally introduce ways to temporally multiplex
higher-angle diffracted light into the aperture for super-resolution coherent imaging [2, 10,
11, 40–42].

The general strategy of synthetic aperture coherent imaging is to illuminate the sample
with coherent plane waves at oblique angles. In terms of geometric optics, the diffractive
angle of light is constant with respect to the angle of the illumination light. When we
gradually increase the angle of oblique illumination, the angle of some originally detectable
diffraction light becomes too large to detect. However, the angle of some previously not
detectable diffraction light becomes small enough for the system to capture. Figure 1.4
demonstrates this phenomenon by comparing the scattered light using on-axis and oblique
illumination. By varying the angle of oblique illumination and capturing multiple images,
we are able to collect light from an overall larger range of angles.

In a more rigorous wave optics formulation, we write the output wave field under oblique
illumination as

uo(r) =
[
o(r)ei2πv0·r

]
⊗ hc(r), (1.14)
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Figure 1.4: Comparison of scattered field at the aperture for on-axis illumination and oblique
illumination. Coherent super-resolution information (higher-angle scattered light) is brought
into the system by oblique illumination.

where we have dropped the time-varying notation and assumed that magnification M = 1
for simplicity. v0 is the spatial frequency of the illumination light, which is related to the
angle of the illumination plane wave. For example, a x-tilted plane wave with angle, θ, has
v0 = (sin θ/λ, 0). By conducting a Fourier transform on this output field, we have

ũo(u) = o(u− v0) · h̃c(u). (1.15)

Thus, plane wave illumination on the sample shifts the Fourier space of the sample by v0.
This information then gets filtered by the coherent transfer function as shown in the field at
aperture in Fig. 1.4. With proper selection of v0, we can decide which part of the sample’s
Fourier space to transfer through the imaging system. Super-resolution coherent imaging is
then implemented by combining multiple of these measurements computationally. The final
achievable resolution depends on the final covered area of the Fourier space, which is set
by the sum of the bandwidth of the transfer function NA/λ and the maximally achievable
v0 = NAillum/λ, where NAillum is the illumination numerical aperture. The final resolution
is roughly the reciprocal of the Fourier space bandwidth, which is λ/(NA + NAillum).

The unmentioned problem here so far is that our sensor only measures intensity, instead
of the electric field as in Eq. (1.8). A direct synthesis of these high-angle diffraction wave
fields for super-resolution requires the detection of the complex wave field for linear super-
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Figure 1.5: Comparison of holographic synthetic aperture microscopy and Fourier ptycho-
graphic microscopy in terms of Fourier space sampling, type of acquisition, and inversion
solver.

position. An extra holography setup can achieve this type of detection. In fact, most of the
synthetic aperture coherent imaging techniques are implemented with a holography setup
equipped with oblique illumination capability [9, 11–16, 41]. An exception is a technique
called Fourier ptychographic microscopy (FPM) proposed by [20]. FPM achieves multiple
oblique illuminations efficiently with a LED array illuminator. A redundant sampling of v0

ensures a collection of high-angle diffraction intensity images with lots of overlapping parts
in Fourier space. The super-resolution wave field can then be deduced with only these redun-
dant intensity measurements using an optimization algorithm. Figure 1.5 summarizes the
differences between holographic synthetic aperture microscopy and FPM. The holographic
setup is efficient in terms of acquiring super-resolution information compared to FPM, and
the inversion algorithm is relatively simpler. However, the FPM setup is simpler and much
lower cost. In Chapter 2, we will go through a more detailed explanation of FPM and
describe the performance of its inverse algorithms.

1.3 Super-resolution incoherent imaging

Previously, we have established the input-output relationship for the incoherent imaging
scenario. The output measured intensity is a convolution between the intensity of the input
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wave and the incoherent PSF. In the following discussion, we focus on one of the common
incoherent imaging cases, fluorescence imaging, where we rewrite our imaging model as

Io(r) = Ii(r)⊗ hinc(r), (1.16)

where Ii(r) is the input fluorescent intensity. When the illumination (excitation) intensity
is uniform across the FOV, Ii(r) = of (r) is the fluorescent distribution of the sample at the
input sample plane. Mathematically, we have the same problem as previously encountered
in the coherent imaging case, where of (r) is diffraction-limited. However, this time the
linear space-invariant relationship is built upon the input-output intensity instead of the
electric field. The previous approach to increase resolution of a coherent imaging system
with oblique illumination gives uniform excitation intensity across the FOV, which results
in the same output intensity measurement as normal uniform excitation. Thus, it does not
encode super-resolution information. Different temporal multiplexing schemes are necessary
in this case for super-resolution fluorescent information. Generally speaking, there are two
main categories of methods that are able to encode super-resolution fluorescent information
in separate measurements based on different physical mechanisms, illumination-based and
single-molecule based methods.

1.3.1 Illumination based fluorescence super-resolution

In the coherent super-resolution case, varying plane wave illumination multiplexes infor-
mation of different Fourier spaces into the aperture. Active illumination is key to super-
resolution imaging. In fluorescence imaging, the strength of the fluorescent intensity scales
linearly with the intensity of the excitation light (when excitation intensity is low and there
is no saturation), so a plane wave modulation with any angle would result in constant ex-
citation intensity map and thus no spatial modulation on the fluorescent intensity. Thus,
varying illumination angles as in the coherent imaging case cannot be used. Instead of plane
wave modulation, we can project intensity variation (structured illumination) on the fluo-
rescent sample to create spatial modulation and multiplex super-resolution information into
the aperture. This approach is called structured illumination microscopy (SIM) [5, 6].

With this spatial modulation, the input fluorescent intensity is

Ii(r) = p(r) · of (r), (1.17)

where p(r) is the illumination intensity pattern and is a real function. We further express
the measured output intensity mathematically as

Io(r) = [p(r) · of (r)]⊗ hinc(r), (1.18)

To understand the super-resolution capability, we observe the Fourier transform of Eq. (1.18)
expressed as

Ĩo(u) = [p̃(u)⊗ õf (u)] · h̃inc(u) (1.19)
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Figure 1.6: Fourier space coverage comparison for a diffraction-limited system, linear SIM
under sinusoidal illumination, linear SIM under random illumination, and nonlinear SIM
under sinusoidal illumination. The modulation between the structured pattern and the fluo-
rescent sample in real space could be interpreted as a convolution of these variables’ spectrum
in the Fourier space. The nonlinear SIM is able to achieve larger Fourier space coverage be-
cause the nonlinearity helps to create pattern that is much larger than the illumination NA.
The inscribed figures in the illumination pattern columns are the corresponding real space
images of these illumination patterns.

For example, assuming the intensity variation is sinusoidal, the intensity modulation in the
real and Fourier space are expressed as

p(r) = 1 + cos(2πv0 · r + φ)

p̃(u) = δ(u) +
eiφ

2
δ(u− v0) +

e−iφ

2
δ(u + v0), (1.20)

where v0 and φ0 is the spatial frequency and the phase of the illumination pattern. In this
case, the Fourier space of the measured intensity is re-written as

Ĩo(u) =

[
õf (u) +

eiφ

2
õf (u− v0) +

e−iφ

2
õf (u + v0)

]
· h̃inc(u) (1.21)
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It is clear from Eq. (1.21) that multiple regions of Fourier space that were previously not
detectable are multiplexed into this measurement. To de-multiplex this information, multiple
measurements under the same illumination intensity but different phase shifts of the intensity
pattern are required. Finally, these de-multiplexed regions of Fourier space are stitched
together for super-resolution fluorescence imaging.

Generally speaking, the intensity modulation does not necessarily need to be sinusoidal
pattern. As long as the Fourier space of the pattern is able to cover the targeted resolution, it
can be any other pattern, such as a single focal spot (confocal microscope) [43, 44], multifocal
spots [45–48] or even random speckle patterns [48–57], which will be adopted later in this
thesis. Conditions with uniform, sinusoidal, and random illumination are illustrated in the
first three rows of Fig. 1.6. We see how spatial modulation of different patterns result in
larger coverage of Fourier space and the corresponding required shifts and rotations to fulfill
the condition for super-resolution de-mulitplexing. The final achievable resolution, similar
to the coherent imaging case, depends on the final covered area of the Fourier space, which
is set by the bandwidth of the transfer function 2NA/λ and the maximally achievable v0 =
2NAillum/λ. The final resolution is roughly the reciprocal of the Fourier space bandwidth,
which is λ/2(NA + NAillum), suggesting a maximum of 2× resolution gain for conventional
epi-illumination fluorescence system.

However, this new SIM resolution limit is still breakable. In the previous paragraphs, we
restricted ourselves to only discuss the case where the excitation intensity is weak enough
to be linear with the fluorescent intensity. When the illumination intensity is stronger and
the fluorescent rate starts to saturate, sinusoidal modulation becomes closer to square wave
modulation. This is equivalent to applying a square wave intensity pattern, which contains a
lot more high-frequency harmonics than the original illumination pattern, on the fluorescent
sample (This can not be easily achieved with linear SIM because of limited illumination
NA). Higher spatial frequency could be multiplexed into the system because of this, and
thus resolution of λ/2(NA + αNAillum), where α is the number of the harmonics that are
effective in bringing the super-resolution information. This is called nonlinear SIM [58],
which utilizes fluorescent saturation, one of the fluorescent non-linear properties, for super-
resolution. The last row of Fig. 1.6 summarizes how this saturation affects the Fourier
space of the illumination pattern and then brings even more Fourier space information into
the measurements. Other non-linear fluorescent properties (e.g. depletion, photo-switching,
photo-activation, etc.) are also used together with structured illumination for resolution
improvement [3, 59, 60].

For a conventional epi-illumination fluorescence system, NAillu = NA, nonlinear SIM
is the method to go beyond 2× resolution gain previously set by standard linear SIM. In
Chapter 4 and 5, we adopt transmission microscope geometry and demonstrate a method
for greater than 2× resolution gain with linear SIM, thus not requiring special fluorophores.
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1.3.2 Single-molecule based fluorescence super-resolution

Another powerful approach to get super-resolution fluorescence imaging is based on identify-
ing each single molecule with its statistical light emission behavior. The first two techniques
proposed using this idea were photo-activated localization microscopy (PALM) [7] and statis-
tic optical reconstruction microscopy (STORM) [8]. They both exploit the intrinsic light
emission properties of fluorescent molecules to statistically turn on sparsely distributed flu-
orescent molecules for each exposure. Since the turned-on molecules are sparse, they can
be successfully localized with a diffraction-limited microscope. By accumulating images of
these statistically turned-on sparse sets of fluorescent molecules, a final super-resolution im-
age with resolution up to single-molecule precision (usually on the order of 10nm) can be
achieved. These methods have much to offer, but will not be further discussed in this thesis.

1.4 Computational super-resolution imaging

Until now, we have reviewed several major approaches to achieve super-resolution imaging
for coherent and incoherent imaging systems. These previous techniques usually rely on
an analytic mathematical relationship for direct information retrieval. For example, we see
how measurements are linearly related to certain parts of the Fourier space in holography-
based synthetic aperture microscopy (Eq.(1.15)) and linear SIM with sinusoidal illumination
(Eq. (1.21)). This kind of relationship results in a simple one-step analytic inversion for
super-resolution reconstruction, which is fast in computation, and easy for performance
analysis.

However, analytic relationships cannot always be established. There are cases that
enough information is captured for super-resolution reconstruction when there is no cor-
responding analytic inverse model for it. For example, in the case of Fourier ptychography,
many scattering intensity measurements from angular illumination with redundant sampling
is sufficient for a super-resolution phase image reconstruction, but there is no direct inversion
relationship for this reconstruction. A similar situation applies to linear SIM with random
illumination, PALM and STORM. Thanks to recent advances in convex optimization and
compressed sensing [61, 62], the rekindled enthusiasm for optimization in the optical imaging
community has triggered advances in many imaging problems, demonstrating the power of its
general inversion framework. With optimization, problems like FPM, random-illumination
SIM, PALM, and STORM are nicely formulated and solved. Though this type of inversion
approach is usually associated with instability due to model mismatch, slow computation
due to iterative algorithms, and difficulty of information analysis due to non-linearity, it pro-
vides a more general framework of information retrieval and correspondingly a more flexible
design of optics to get the information.

Hence, incorporating the optimization component into the imaging problem potentially
leads to different trade-offs in the optical design process, which helps spawn new applica-
tion spaces. This approach is called computational imaging. Successful examples include
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high-content imaging techniques [18–22, 30], where people break traditional sensor pixel-
limited resolution for lensless microscopy [18, 19] and achieve more efficient resolution tiling
microscopy over traditional FOV tiling microscopy [20–22, 30] with proper formulation of
optimization to target high-throughput imaging applications. Another example is imaging
techniques in extreme imaging systems (X-ray, TEM) with limited optical design degrees of
freedom [63–67], where people have to exploit the generality of optimization formulation to
accommodate physically feasible information capturing schemes for efficient information re-
trieval. The generality of the optimization formulation also provides a platform for people to
easily include prior knowledge of their targeted unknown variable into the inversion process,
which reduces the number of measurements required for proper information retrieval [62,
68, 69]. These types of compressed sensing approaches toward imaging are also part of
computational imaging, but I will not talk too much about it in this thesis.

In this thesis, we first investigate existing computational imaging techniques for coherent
and incoherent super-resolution imaging such as FPM and SIM with random illumination.
Detailed optimization analysis of FPM leads us to discover the important role of the noise
model in an optimization for computational imaging techniques. Proper selection of the noise
model provides better robustness of information retrieval. Along with this investigation of
FPM and SIM, we also modeled experimental errors or unknown experimental parameters
such as system aberration, light source misalignment, and unknown random illumination
patterns into the inversion process to help self-calibrate our model for better-quality recon-
struction. In the end, we adopt this computational imaging approach, where the optimization
formulation is incorporated into the process of optical design, and come up with a speckle
illumination based imaging technique with new trade-offs for joint fluorescence and phase
super-resolution microscopy.

1.5 Outline of thesis

The arrangement of this thesis shows progressive building blocks towards the final computa-
tional framework for joint fluorescence and phase super-resolution microscopy with speckle
illumination. The summary of each chapter is described in the following points.

• Chapter 2 introduces an optimization algorithm analysis of a computational super-
resolution technique for coherent imaging, Fourier ptychographic microscopy (FPM).
FPM is a phase imaging technique that targets at the large fields-of-view and high-
resolution biological imaging. With a replacement of an LED array on a standard com-
mercial microscope, multi-angle illumination, which encodes multi-fold super-resolution
phase information, can be easily implemented with high speed. Those super-resolution
encoded measurements are then processed with an nonlinear optimization algorithm for
super-resolution phase reconstruction. Our analysis focuses on reviewing and compar-
ing multiple optimization algorithms of this problem using simulation and experimental
data, revealing the surprising impact of the noise model adopted in different algorithms



CHAPTER 1. INTRODUCTION 14

on final reconstructions. It also explores additional self-calibration algorithms for bet-
ter correcting experimental errors that cause model mismatch. Overall, this work led
to a more experimentally robust algorithm for FPM.

• Chapter 3 proposes a more robust optimization-assisted algorithm for structured illu-
mination fluorescence microscopy with random illumination patterns. Standard struc-
tured illumination microscopy uses organized periodic patterns for super-resolution en-
coding. High quality super-resolution reconstruction depends on accurate knowledge of
the illumination pattern, which requires well-aligned and aberration-free optics. Ran-
dom speckle illumination for super-resolution encoding is relatively easy to achieve and
maintain. However, the inverse problem becomes more complicated and unstable. In
this work, we studied better uses of the statistical information of the random patterns
and our proposed method out-performed other contemporary algorithms for the same
purpose, achieving better super-resolution fluorescence imaging with random patterns.

• Chapter 4 leverages the experiences from the previous chapters and proposes a com-
bined framework for super-resolution phase and fluorescence multimodal microscopy
using scanned unknown speckle illumination. We use Scotch tape as a patterning
element to efficiently generate large-area speckle illumination that has much higher
illumination angle than the detectable angle of a low-NA objective lens. With proper
optimization and self-calibration formulation, we are able to achieve 4× resolution im-
provement, resulting in sub-cellular resolution imaging over millimeter scale FOV for
both fluorescence and phase contrast, which leads us to high-content imaging applica-
tions. Computational imaging techniques for high-content imaging usually provide a
single contrast. We demonstrate that computational imaging plus Scotch-tape-enabled
speckle illumination is an efficient solution for multimodal high-content imaging.

• Chapter 5 generalizes the theoretical framework from Chapter 4 to a multiple scattering
3D model to enable 3D super-resolution fluorescence and phase imaging with unknown
speckle illumination, accommodating situations of thick samples and shallow depth-
of-field of speckles. This provides a potential solution for 3D multimodal high-content
imaging.

• Chapter 6 states conclusions and future work.



15

Chapter 2

Optimization analysis for Fourier
ptychographic phase microscopy

In Chapter 1, we have reviewed how super-resolution imaging is achieved in coherent imag-
ing. The general approach is to illuminate the sample with multiple different angles to collect
high-angle diffracted light, which contains high-resolution information of the scattering sam-
ple. Among many examples of coherent super-resolution imaging techniques, Fourier ptycho-
graphic microscopy (FPM) is a computational imaging approach (optimization-based solver)
that does not require interferometric measurements. By capturing a stack of low-resolution
images under dense sampling of different illumination angles, an inverse optimization algo-
rithm can be used to computationally reconstruct the high-resolution complex field.

As a stepping stone for developing further computational imaging methods in different
imaging scenarios, we first choose FPM as an computational imaging example to study
the concept of coherent super-resolution imaging and the optimization algorithm for image
reconstruction. In this chapter, we explain the concept of FPM and how experimentally we
implement this technique with an LED array. With this basic understanding, we focus our
study on the inverse optimization algorithm of FPM and then compare multiple proposed
algorithms in terms of experimental robustness.

In this study, we find that the main sources of error are noise, aberrations and mis-
calibration (i.e. model mis-match). Using simulations and experiments, we demonstrate
that the choice of cost function plays a critical role, with amplitude-based cost functions
performing better than intensity-based ones. The reason for this is that Fourier ptychography
datasets consist of images from both brightfield and darkfield illumination, representing a
large range of measured intensities. Both noise (e.g. Poisson noise) and model mis-match
errors are shown to scale with intensity. Hence, algorithms that use an appropriate cost
function will be more tolerant to both noise and model mis-match. Given these insights,
we propose a global Newton’s method algorithm which is robust and accurate. Finally, we
discuss the impact of procedures for algorithmic correction of aberrations and mis-calibration.



CHAPTER 2. OPTIMIZATION ANALYSIS FOR FOURIER PTYCHOGRAPHIC
PHASE MICROSCOPY 16

2.1 Introduction

2.1.1 LED array microscope

The LED array microscope is a powerful platform for computational coherent microscopy
in which a wide range of capabilities are enabled by a single hardware modification to a
traditional brightfield microscope - the replacement of the source with a programmable LED
array as shown in Fig. 2.1(a) [70]. Each LED in the array corresponds to illumination of the
sample by a unique angle. In Fourier optics, illuminating the sample with different angles is
equivalent to shifting the sample’s Fourier space in different amounts as in Eq. (1.15) shows.
Thus, this simple, inexpensive hardware modification allows programming of the Fourier
space measurement of our sample.

Figure 2.1: (a) Experimental setup for Fourier ptychography with an LED array microscope.
(b) The sample’s Fourier space is synthetically enlarged by capturing multiple images from
different illumination angles. Each circle represents the spatial frequency coverage of the
image captured by single-LED illumination. Brightfield images have orders of magnitude
higher intensity than darkfield (see histograms), resulting in different noise levels.

The range of illumination angles that can be programmed is much larger than the range
of angles that pass through the objective [set by its numerical aperture (NAobj)]. This means
that illumination by the central LEDs produces brightfield images, whereas illumination by
the outer LEDs (outside the NAobj) produces dark field images as shown in Fig. 2.1(b) [70].
Alternatively, by sequentially taking a pair of images with either half of the source on, we
obtain phase derivative measurements by differential phase contrast (DPC) [71–76]. Finally,
a full sequential scan of the 2D array of LEDs (angles), while taking 2D images at each
angle, captures a 4D dataset similar to a light field [77] or phase space measurement [78].
This enables all the computational processing of light field imaging. For example, angular
information can be traded for depth by using digital refocusing algorithms to get 3D intensity
or 3D phase contrast [79].
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Up to this point, all these techniques can be realized by a simple replacement of the light
source with an LED array. The capability of combining digital signal processing and optical
imaging has been well demonstrated with the LED microscope. In the following, we will talk
about one more powerful capability of this microscope: Fourier ptychography.

2.1.2 Fourier ptychography

Figure 2.2: The full field of view and the zoomed region of the USAF resolution target for
the brightfield raw image from central LED illumination and FPM reconstructed image in
the central region of the FOV, demonstrating the super-resolution capability.

In the previous paragraph and chapter, taking images while sequentially scanning LEDs
in the array corresponds to measuring the Fourier space of the sample in different regions as
Fig. 2.1(b) and Eq. (1.15) show. Brightfield and darkfield measurements could be obtained
when the illumination angle is smaller and larger than the objective NA (NAobj), respec-
tively. Normally, a holography setup is necessary to measure the scattered electric field at
each illumination angle for further super-resolution synthesis from direct superposition as
discussed in Chapter 1. However, by densely sampling the scanned angle for redundant
Fourier space measurements, a nonlinear optimization algorithm could directly synthesize
these measurements without interferometric detection and enable a super-resolution com-
plex field reconstruction with effective NA of the sum of illumination and objective NA
(NAeff = NAillu + NAobj). This approach is essentially a combination of synthetic aperture
and translational-diversity phase retrieval [63, 80], which is termed Fourier Ptychographic
microscopy (FPM) [20]. Since illumination NA could easily go a lot higher than the NA of a
low-NA objective with the LED array microscope, FPM is usually implemented on a low-NA
microscope system to enable large field of view (FOV) and high resolution across the entire
image, resulting in gigapixel images as shown in Fig. 2.2. With access to super-resolution
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quantitative phase contrast using FPM, we can image biological cells with better contrast
than a traditional brightfield microscope as shown in Fig. 2.3. The phase image contains
quantitative shape and density information about the samples, providing details about small
sub-cellular structures.

Figure 2.3: The full field of view and the zoomed region for both brightfield and FPM
reconstructed phase of the Hela cell, respectively.

On the algorithm side, FPM is a large-scale optimization problem. A single full FOV
image taken under microscope contains ∼ 2000 × 2000 pixels and around 300 images are
taken in each experiment. Since it is a super-resolution phase imaging technique, the final
reconstruction has ∼ 104×104 pixels of complex values to solve for, which corresponds to 0.2
giga-variables. In addition, this problem is a phase retrieval problem and thus a nonlinear
and non-convex optimization problem. It is then challenging to prove algorithm convergence
to the global minimum. However, many people have shown successful reconstruction consis-
tently in practice when appropriate parameters are used. This is one of the important issues
that will be discussed in this chapter.

On the application side, FPM’s scan-free high space bandwidth product imaging capa-
bility has great potential for revolutionizing biomedical imaging, with applications in optical
disease diagnosis, digital pathology [20, 81–83] and in vitro live cell imaging [22]. The origi-
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nal FPM method only applies to 2D thin objects, however, new models and reconstruction
algorithms also enable 3D reconstruction of thick samples [79]. The ability to achieve such
capabilities with a simple and inexpensive hardware modification to a commercial microscope
(with no moving parts) opens up new opportunities for opensource distribution and wide-
scale adoption in biological imaging applications requiring large-scale in vitro microscopy.

2.1.3 Overview of Fourier ptychographic phase retrieval
algortihms

Multiple algorithms have been proposed for solving the nonlinear non-convex inverse FPM
problem, which amounts to phase retrieval and synthetic aperture. Amongst these, there
are the usual trade-offs between accuracy, noise performance and computational complex-
ity. Here, we review the first FPM algorithm and several other later proposed optimization
algorithms for comparison. We also classify these algorithms based on their gradient or-
ders, convergence claims, and implementations. In the end, we summarize our findings and
contribution to FPM algorithms from this study.

2.1.3.1 Gerchberg-Saxton FPM algorithm

The original FPM algorithm used a Gerchberg-Saxton approach [84], which is a type of
alternating projections [85–88], first developed for traditional ptychography [63, 80, 89–92]
and later for FPM [20, 21, 93]. Shifted support constraints (finite pupil size) are enforced in
the Fourier domain as the corresponding amplitude constraints (measured images) are ap-
plied in the image domain, while letting the phase evolve as each image is stepped through
sequentially. The Gerchberg-Saxton method, which is a type of gradient descent, represents
a natural way to solve phase retrieval problems by trying to directly minimize some cost
function that describes the differences between actual and predicted measurements. Unfor-
tunately, these formulations are often non-convex in nature and do not come with global
convergence guarantees.
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Figure 2.4: Schematic of the phase retrieval procedure for the Gerchberg-Saxton (gradient
descent) iterative algorithm. The sample’s complex field is iteratively updated as its estimate
is propagated back and forth between real space and Fourier space constraints, for each of
the measured intensity images taken at multiple Fourier regions.

Since this is the first proposed algorithm to solve FPM, we give a brief introduction on
how the algorithm stitch all low-resolution image to get one high-resolution phase image.
Figure 2.4 shows the reconstruction procedure for Gerchberg-Saxton approach. First, we
use the on-axis illuminated image as our initialization. Second, we crop the Fourier region
corresponding to the image illuminated with the next LED and then do inverse Fourier
transform to get our estimate complex field. Third, we replace the estimated amplitude with
the measured amplitude from our dataset. Fourth, we Fourier transform the updated image
and put this information to its corresponding region. By doing this process through all the
images and repeating this whole process many times, we can get a final reconstruction as
shown in the fifth step of Fig. 2.4.
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2.1.3.2 Other FPM algorithms

Figure 2.5: The general flow of iterative nonlinear optimization algorithms for Fourier pty-
chographic micrscopy.

In general, the procedures of all proposed Fourier ptychographic phase retrieval algorithms
including the Gerchberg-Saxton method can be summarized by an optimization procedure
as shown in Fig. 2.5. They are all based on minimizing a certain cost function defined by
measuring the difference between the measured intensity images and the estimated intensity
from propagating the estimate through the forward model. We first give an initialization as
mentioned in the last paragraph. To minimize the cost function, we then follow an iterative
process, which involves calculating the gradient (and possibly Hessian) of the cost function.
Using the gradient (and possibly Hessian), we form the search direction and update the
estimation along this direction with appropriately chosen step size. We then repeat this
process until we reach convergence. In the following, we will give an overview of the recently
proposed algorithm in the context of optimization and put them into different classes. A
brief introduction of algorithms that have been proposed to solve the FPM problem:

• Gradient descent: Use the gradient of the cost function and a proper step size to
minimize the cost function value to update the unknown variables.

• Wirtinger Flow: Similar to gradient descent but with special initialization and step
size to guarantee global convergence of the coded-mask phase retrieval problem [94].
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• Newton’s method: Approximate the cost function to be a quadratic function and use
both the gradient and Hessian of the cost function to give a better update direction of
the unknown variables. If the Hessian is approximated, the method is called a quasi-
Newton method. Gauss-Newton method is a kind of quasi-Newton method, which
approximates the Hessian with the outer product of the gradient.

• PhaseLift: Instead of solving the known variable vector x, this method reformulates
the phase retrieval problem and solve for optimal xxH . For this case, the problem be-
comes convex and there will be a global convergence, at a cost of significantly increased
computational complexity.

2.1.3.3 Classification of FPM algorithms

Depending on whether we only use the gradient or we use both the gradient and Hessian
to update our complex field, the algorithm can be classified as a first-order method or
a second-order method, respectively. Gradient descent and Wirtinger Flow [94] are first-
order methods. The Wirtinger Flow algorithm has been shown to have global convergence
guarantees. This method has been successfully applied to FPM [95], though the actual
implementation deviates from theory somewhat. In the Wirtinger Flow framework, the
optimization procedure is similar to gradient descent, except that the step size and initial
guess are carefully chosen for provable convergence. For the second-order methods (e.g.
Newton’s method), they have been shown to provide faster convergence rates [96]. While
computing second-order derivatives increases complexity, we find that it usually reduces the
number of iterations needed, enabling fast overall run times.

Another class of algorithms that have been proposed are based on convex relaxations [97–
101]. This class of phase retrieval algorithms, called PhaseLift, re-frames the problem in
higher dimensions such that it becomes convex, then aims to minimize the cost function
between actual and predicted intensity via semidefinite programming. These algorithms
come with the significant advantage of rigorous mathematical guarantees [102] and were
successfully applied to FPM data [101]. The actual implementations of these algorithms,
however, deviate from the provable case due to computational limitations.

Algorithms can be further classified as sequential or global, depending on whether the
update is done for each image, one at a time (sequentially), or all at once with the full set
of images (globally) for each iteration. Global methods are expected to perform better, at a
cost of additional computational requirements. In our studies, results show little difference
between the sequential and global implementation of any particular algorithm (see Fig. 2.9),
suggesting that sequential procedures may be sufficient, allowing reduced computational
requirements.

One seemingly unimportant classification of algorithms is whether their cost function
minimizes differences in intensity or amplitude. Throughout this chapter, we refer to algo-
rithms that minimize intensity differences as intensity-based algorithms, and algorithms that
minimize amplitude differences as amplitude-based algorithms. Since intensity is amplitude
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squared, both drive the optimization in the correct direction; hence, one might expect that
the choice between the two is of little consequence. Surprisingly, however, we find that
the cost function is the key predictor of experimental performance for our ex-
perimental dataset. Intensity-based algorithms suffer from strong artifacts (see Fig. 2.9),
which we show to be due to noise and model mis-match errors. Hence, amplitude-based
algorithms perform better on imperfect data, so are more robust. Our goal is to explain why
this happens.

2.1.3.4 Contribution of this chapter

We will show that in order for a phase retrieval scheme to be robust to experimental im-
perfections, the choice of cost function is of crucial importance. One source of error in our
experimental data is measurement noise, including Gaussian noise or Poisson shot noise. An-
other main source of error is model mis-match, caused by experimental imperfections such
as aberrations and LED misalignment. A particular problem of FPM datasets is that they
contain both brightfield and darkfield images, which have drastically different intensity levels
(see Fig. 2.1). Brightfield images can have several orders of magnitude higher intensity than
darkfield images; thus, the amount of Poisson noise will also be significantly higher. If this
difference in the noise levels is not properly accounted for, the brightfield noise may drown
out the darkfield signal. We will further show that aberrations and LED mis-calibration -
the two main model mis-match errors in our experiments - result also in intensity-dependent
errors. Thus, by carefully designing the the cost function, we can develop algorithms that
are significantly more robust to both noise and model mis-match.

In Section 2.2 and 2.3, we develop a maximum likelihood theory which provides a flexible
framework for formulating the FPM optimization problem with various noise models. In
particular, we will focus on Gaussian and Poisson noise models. We find that amplitude-
based algorithms effectively use a Poisson noise model, while intensity-based algorithms use
a Gaussian noise model. In Section 2.4, we simulate four FPM datasets, three of which
are contaminated with measurement errors (see Fig. 2.6): Poisson noise, aberrations, and
LED misalignment. We compare the performance of various algorithms on these datasets
to demonstrate that the imperfections in our experimental data are more consistent with
a Poisson noise model. This explains our observations that amplitude-based algorithms are
more experimentally robust than intensity-based algorithms. In Section 2.5, we develop
additional step in original FPM algorithm to correct for the two main model mis-matches,
which are aberrations and LED mis-calibration.

2.2 Optimization formulation to Fourier

ptychographic microscopy

After providing an introduction to Fourier ptychographic microscopy and its algorithms,
here we will present a more detailed formulation. In this section, we start from introducing



CHAPTER 2. OPTIMIZATION ANALYSIS FOR FOURIER PTYCHOGRAPHIC
PHASE MICROSCOPY 24

the physical forward model of Fourier ptychography and then move on to talk about how
to use this forward model to form optimization problems. Based on noise assumptions with
different statistics, the cost functions of the FPM optimization problem can be classified
as intensity-based (white Gaussian noise), amplitude-based (most commonly used), and the
Poisson-likelihood-based (Poisson noise) cost functions. These cost functions are then used
in later sections to derive different FPM algorithms. In the end of this section, we define the
notation used in this thesis.

2.2.1 Forward problem for Fourier ptychography

Consider a thin sample with transmission function o(r), where r = (x, y) represents the
2D spatial coordinates in the sample plane. Assuming that the LED array is sufficiently
far from the sample, each LED will illuminate the sample by a plane wave from a different
angle, defined by exp(i2πu` ·r), where u` = (u`,x, u`,y) is the spatial frequency corresponding
to the `-th LED, ` = 1, . . . , Nimg. After passing through the sample, the exit wave is the
product of the sample and illumination complex fields, o(r) exp(i2πu` · r). The tilted plane
wave illumination means that the Fourier transform of this exit wave is just a shifted version
of the Fourier spectrum of the object, O(u − u`), where O(u) = F{o(r)} and F is the 2D
Fourier transform. This exit wave then passes through the objective lens, where it is low-pass
filtered by the pupil function, P (u), which is usually a circle with its size defined by NAobj.
Finally, with F−1 being the 2D inverse Fourier transform, we can write the intensity at the
image plane as [21]

I`(r) = |F−1{P (u)O(u− u`)}|2. (2.1)

2.2.2 Optimization problem based on different noise models

Most algorithms solve the FPM problem by minimizing the difference between the measured
and estimated amplitude (or intensity), without assuming a noise model. Hence, the FPM
problem can be formulated as the following optimization

min
O(u)

fA(O(u)) = min
O(u)

∑
`

∑
r

|
√
I`(r)− |F−1{P (u)O(u− u`)}||2. (2.2)

Since the cost function here, fA(O(u)), aims to minimize the difference between the esti-
mated amplitude and the measured amplitude, this is the amplitude-based cost function.
By optimizing this cost function, the projection-based algorithms for Fourier ptychography
can be obtained [20, 21, 93], which treat each measurement as an amplitude-based sub-
optimization problem. This formulation is used in the traditional Gerchberg-Saxton phase
retrieval approach.

If we have information about the statistics of the noise, we can use it in our optimization
formulation via the maximum likelihood estimation framework [64]. If we assume that our
measured images suffer only from white Gaussian noise, then the probability of capturing
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the measured intensity I`(r) at each pixel, given the estimate of O(u), can be expressed as

p[I`(r)|O(u)] =
1√

2πσ2
w

exp

[
−(I`(r)− Î`(r))2

2σ2
w

]
, (2.3)

where Î`(r) = |F−1{P (u)O(u − u`)}|2 and σw is the standard deviation of the Gaussian
noise. Î`(r) and I`(r) denote the estimated and measured intensity, respectively.

The likelihood function is the overall probability due to all the pixels in all the images
and can be calculated as

∏
`

∏
r p[I`(r)|O(u)], assuming measurements from all pixels are

independent. In maximum likelihood estimation, the goal is to maximize the likelihood
function. However, it is easier to solve this problem by turning the likelihood function
into a negative log-likelihood function which can be minimized. The negative log-likelihood
function associated with this probability distribution can be calculated as

LGaussian(O(u)) = − log
∏
`

∏
r

p[I`(r)|O(u)]

=
∑
`

∑
r

[
1

2
log(2πσ2

w) +
(I`(r)− Î`(r))2

2σ2
w

]
. (2.4)

The next step is to minimize this negative log-likelihood function by estimating O(u) so
that the overall probability is maximized. For white Gaussian noise, it is assumed that σ2

w

are the same across all pixels for all images (i.e. all measurements have the same amount
of noise), though this will not be the case for FPM datasets. By making a Gaussian noise
assumption, the first term in (2.4) is a constant and can be ignored. The optimization
problem then reduces to

min
O(u)

fI(O(u)) = min
O(u)

∑
`

∑
r

|I`(r)− |F−1{P (u)O(u− u`)}|2|2. (2.5)

We call this cost function, fI(O(u)), the intensity-based cost function because it aims to
minimize the difference between the estimated intensity and the measured intensity. It also
implies that noise from each pixel is treated the same and independent of the measured
intensity. It will be shown later that the previous implementations of PhaseLift [101] and
Wirtinger flow algorithms [95] for FPM aimed to optimize this intensity-based cost function.
However, both can be implemented instead with a Poisson likelihood cost function.

If we assume instead that our measured images suffer from Poisson shot noise, then the
probability of the measured intensity, I`(r), given the estimate of O(u) can be expressed as

p[I`(r)|O(u)] =
[Î`(r)]I`(r) exp[−Î`(r)]

I`(r)!
≈ 1√

2πσ2
`,r

exp

[
−(I`(r)− Î`(r))2

2σ2
`,r

]
. (2.6)

Note that the Poisson distribution is used to describe the statistics of the incoming photons
at each pixel, which is a discrete probability distribution. Here, we assume that the intensity
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is proportional to the photon count, so we can treat the distribution of the intensity as a
Poisson distribution. When the expected value of the Poisson distribution is large, then this
Poisson distribution will become more like a Gaussian distribution having a standard devi-
ation proportional to the square root of the intensity, σ`,r ≈

√
I`(r), from the central limit

theorem. This means that a large measured intensity at a particular pixel will imply large
noise at that pixel. In the simulation, we impose Poisson noise on the measured intensity by
distributing each pixel value with a Gaussian distribution and setting the standard deviation
to 20

√
I`(r). The negative log-likelihood of the Poisson noise model can then be calculated;

the optimization problem is formed by minimizing the negative log-likelihood function with
estimation of O(u),

min
O(u)
LPoisson(O(u)) = min

O(u)

∑
`

∑
r

(−I`(r) log[Î`(r)] + Î`(r) + log[I`(r)!])

≈ min
O(u)

∑
`

∑
r

(I`(r)− Î`(r))2

2σ2
`,r

. (2.7)

This cost function comes from the likelihood function of the Poisson distribution, so we
call it the Poisson-likelihood-based cost function. It implies that the pixels with larger
measured intensity are weighted smaller because they suffer from more noise. Since the
brightfield images have more large-value pixels, they are assumed to be more noisy and thus
are weighted smaller in the cost function. It is shown in the next section that the gradient of
this cost function (2.19) is very similar to that of the amplitude-based cost function (2.16),
which suggests that the amplitude-based cost function deals well with Poisson-like noise or
model mis-match.

2.2.3 Vectorization Notation

For multivariate optimization problems such as (2.2) and (2.5) , it is convenient to reformulate
the problem using linear algebra. First, the functions need to be vectorized. Each of the
captured images, I`(r), having m × m pixels, are raster-scanned into vectors, I`, with size
m2 × 1. Since the estimated object transmission function will have higher space-bandwidth
product than the raw images, the estimated object should have n×n pixels, where n > m. For
convenience, we actually solve for the Fourier space of the object, O(u), which is vectorized
into a vector O with size n2 × 1. Before multiplying the pupil function, the Fourier space
of the object is downsampled by a m2 × n2 matrix Q`. The matrix Q` transforms a n2 × 1
vector into a m2 × 1 vector by selecting values out of the original vector, so the entries of
this matrix are either 1 or 0 and each row contains at most one nonzero element. The pupil
function P (u) is vectorized into a vector P with size m2× 1. The 2D Fourier transform and
inverse transform operator are m2 ×m2 matrices defined as F and F−1. | · |, | · |2,

√·, and
·/· are element-wise operators, and the diag(·) operator puts the entries of a vector into the
diagonal of a matrix.
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The second step is to rewrite the optimization in vector form using the new parameters.
First, the forward model (2.1) can be vectorized as

Î` = |g`|2 = |F−1diag(P)Q`O|2. (2.8)

The amplitude-based cost function (2.2) can be vectorized as

min
O

fA(O) = min
O

∑
`

(
√

I` − |g`|)†(
√

I` − |g`|), (2.9)

where the hyperscript † denotes a Hermitian conjugate.
Likewise, the intensity-based cost function (2.5) can be vectorized as

min
O

fI(O) = min
O

∑
`

(I` − |g`|2)†(I` − |g`|2). (2.10)

The Poisson likelihood cost function is more complicated to be expressed in vector form.
First, we rewrite |g`|2 as

|g`|2 = diag(ḡ`)F
−1diag(P)Q`O = A`O =

 a†`,1
...

a†`,m2

O, (2.11)

where A` = diag(ḡ`)F
−1diag(P)Q` is a m2 × n2 matrix with m2 × 1 row vectors, a†`,j,

j = 1, . . . ,m2, and ḡ` denotes the complex conjugate of vector g`. Then the likelihood
function can be rewritten as

min
O
LPoisson(O) =

∑
`

∑
j

[−I`,j log(a†`,jO) + a†`,jO + log(I`,j!)]. (2.12)

To minimize (2.9), (2.10) or (2.12) using an iterative optimization algorithm, the gradients
(and possibly Hessians) of the cost functions need to be calculated, both of which are shown
in the next section. Since (2.9), (2.10) and (2.12) are all real-valued functions of a complex
vector O, that means that O and Ō should be treated independently in the derivative
calculation, which is based on the CR-calculus discussed in [103] and the similar formulation
for traditional ptychography discussed in [92].

2.3 Algorithms for Fourier ptychographic microscopy

2.3.1 Solving the phase retrieval optimization problem

To solve an optimization problem, the general flow is summarized in Fig. 2.5. The key
component of every algorithm is to calculate the gradient and Hessian of the cost function
and form the descent direction. With the descent direction, we can then update the complex
field with proper step sizes to get the final reconstruction. Here, we calculate the gradient
and Hessian of the amplitude-based, intensity-based, and the Poisson-likelihood-based cost
functions for later explanation of various algorithms.
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2.3.1.1 Gradient of cost functions

Consider that equations (2.9) and (2.10) can be expressed as

fA(O) =
∑
`

f †A`fA`

fI(O) =
∑
`

f †I`fI`, (2.13)

where fA` ≡
√

I` − |g`|, and fI` ≡ I` − |g`|2.
Then, calculate the derivative of fA with respect to O, and it can then be expressed as

∇OfA(O) =
∑
`

[
∂(f †A`fA`)

∂O

]†
=
∑
`

[
∂(f †A`fA`)

∂fA`

∂fA`
∂O

+
∂(f †A`fA`)

∂f †A`

∂f †A`
∂O

]†
. (2.14)

Using |g`|2 = diag(ḡ`)g` and |g`| = (|g`|2)1/2, two chain rule parts in (2.14) are calculated as

∂(f †A`fA`)

∂fA`
= f †A` = fA`

∂(f †A`fA`)

∂f †A`
= fA` = f †A`

∂fA`
∂O

=
∂f †A`
∂O

= −∂(|g`|2)1/2

∂(|g`|2)

∂(diag(ḡ`)g`)

∂O
= −1

2
diag

(
ḡ`
|g`|

)
F−1diag(P)Q`, (2.15)

if g` does not contain any zero entries for ` = 1, . . . , Nimg.
By plugging these three terms into (2.14), the gradient of fA with respect to O becomes

∇OfA(O) = −
∑
`

Q†`diag(P̄)Fdiag

(
g`
|g`|

)
(
√

I` − |g`|)

= −
∑
`

Q†`diag(P̄)

(
Fdiag

(√
I`
|g`|

)
g` − diag(P)Q`O

)
. (2.16)

The gradient for fI can be calculated in the similar way, and the chain rule part of fI`
can be calculated as

∂fI`
∂O

=
∂f †I`
∂O

= −∂(diag(ḡ`)g`)

∂O
= −diag(ḡ`)F

−1diag(P)Q`. (2.17)

With (2.17), it is clear to express the gradient of fI as

∇OfI(O) =
∑
`

[
∂(f †I`fI`)

∂fI`

∂fI`
∂O

+
∂(f †I`fI`)

∂f †I`

∂f †I`
∂O

]†
= −2

∑
`

Q†`diag(P̄)Fdiag(g`)(I` − |g`|2).

(2.18)
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The calculation of gradient of LPoisson(O) with respect to O is different from the other
two. With the expression (2.12), the gradient of Poisson likelihood function can be calculated
as

∇OLPoisson(O) =

(
∂LPoisson

∂O

)†
=

(∑
`

∑
j

[
− I`,j

a†`,jO
a†`,j + a†`,j

])†

= −
(∑

`

∑
j

[
I`,j − a†`,jO

] 1

a†`,jO
a†`,j

)†

= −
(∑

`

(I` − |g`|2)†diag

(
1

|g`|2
)

diag(ḡ`)F
−1diag(P)Q`

)†
= −

∑
`

Q†`diag(P̄)Fdiag

(
g`
|g`|2

)
(I` − |g`|2). (2.19)

This is equivalent to the gradient of the intensity-based cost function with added weight
1/|g`|2 to the component from each image. In addition, this gradient is very similar to that
from the amplitude-based cost function in (2.16).

Since we have gradients for all cost functions, the updating equation for the gradient
descent method can then be expressed as

O(i+1) = O(i) − α(i)∇Of(O(i)), (2.20)

where i denotes the iteration number, α is the step size chosen by the line search algorithm,
and f(O) can be either intensity-based or amplitude-based cost function.

Looking at ∇OfA(O), ∇OfI(O) and ∇OLPoisson(O), they all contain the term Q†`diag(P̄)
followed by a residual term. The residual term basically finds the difference between the
estimate and the measurement. This difference carries the information to update the previous
estimation. Since each measurement carries the information for a specific region in the
Fourier space, the Q†`diag(P̄) term brings this updated information back to the right place
corresponding to some spatial frequency. For ∇OfA(O), the first term in the residual shows
the replacement of the amplitude in the real domain, which is the projection from the
estimate to the modulus space. Thus, the gradient descent method using the amplitude-
based cost function is similar to the projection-based phase retrieval solver.

2.3.1.2 Hessian of cost functions

The second-order Taylor expansion on an arbitrary real function f(c) with a complex vector
c = (OT , ŌT )T at certain point c0 = (OT

0 , Ō
T
0 )T can be written as [103]

f(c) ≈ f(c0) +∇f(c0)†(c− c0) +
1

2
(c− c0)†Hcc(c0)(c− c0), (2.21)
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where the matrix Hcc is the Hessian of f(c). For the case of a single-value function, the
second-order term in the Taylor expansion denotes the curvature of the function at that
expansion point. Thus, this Hessian matrix similarly contains the curvature information of
the original multi-variate function.

If the Hessian is a diagonal matrix, each diagonal entry denotes the curvature in each
corresponding dimension. If the Hessian is not diagonal, a coordinate transformation can
be found to make the Hessian diagonal by using eigenvalue decomposition. For a convex
problem, the Hessian is positive semidefinite. The curvatures of the cost function in different
dimensions are always nonnegative. A standard optimization process can lead to a global
minimum. However, if the problem is non-convex, a standard optimization process will
probably lead to a local minimum. Calculating the Hessian of a cost function is useful either
to examine the optimization process or to speed up the convergence rate by using Newton’s
method.

From [92, 103], the definition for the Hessian of a real-value function with multiple
complex variables is a 2n2 × 2n2 matrix and can be expressed as

Hcc =

[
HOO HŌO

HOŌ HŌŌ

]
, (2.22)

where each component n2 × n2 matrices can be further calculated as

HOO =
∂

∂O

(
∂f

∂O

)†
,HŌO =

∂

∂Ō

(
∂f

∂O

)†
HOŌ =

∂

∂O

(
∂f

∂Ō

)†
,HŌŌ =

∂

∂Ō

(
∂f

∂Ō

)†
. (2.23)

Similar to the calculation of the gradient, the components of the Hessians for amplitude-based,
intensity-based, and Poisson-likelihood-based cost functions can be calculated by taking an
additional derivative on the gradient of the cost functions. The components of the Hessian
for the amplitude-based cost function are

HA
OO =

∑
`

Q†`diag(P̄)F

[
1− 1

2
diag

(√
I`
|g`|

)]
F−1diag(P)Q`

HA
ŌO =

1

2

∑
`

Q†`diag(P̄)Fdiag

(√
I`g

2
`

|g`|3
)

F̄−1diag(P̄)Q̄`

HA
OŌ =

1

2

∑
`

QT
` diag(P)F̄diag

(√
I`ḡ

2
`

|g`|3
)

F−1diag(P)Q`

HA
ŌŌ =

∑
`

QT
` diag(P)F̄

[
1− 1

2
diag

(√
I`
|g`|

)]
F̄−1diag(P̄)Q̄`, (2.24)

where 1 is the m2 ×m2 identity matrix.
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Likewise, the Hessian of the intensity-based cost function is

HI
OO = 2

∑
`

Q†`diag(P̄)Fdiag(2|g`|2 − I`)F
−1diag(P)Q`

HI
ŌO = 2

∑
`

Q†`diag(P̄)Fdiag(g2
` )F̄

−1diag(P̄)Q̄`

HI
OŌ = 2

∑
`

QT
` diag(P)F̄diag(ḡ2

` )F
−1diag(P)Q`

HI
ŌŌ = 2

∑
`

QT
` diag(P)F̄diag(2|g`|2 − I`)F̄

−1diag(P̄)Q̄`. (2.25)

Finally, the Hessian of the Poisson likelihood cost function is

HP
OO =

∑
`

Q†`diag(|P|2)Q`

HP
ŌO =

∑
`

Q†`diag(P̄)Fdiag

(
I`g

2
`

|g`|4
)

F̄−1diag(P̄)Q̄`

HP
OŌ =

∑
`

QT
` diag(P)F̄diag

(
I`ḡ

2
`

|g`|4
)

F−1diag(P)Q`

HP
ŌŌ =

∑
`

QT
` diag(|P|2)Q̄`. (2.26)

In general, Newton’s method, which is the second-order method using the inversion of
Hessian matrix, is preferred in solving nonlinear least square problems because of its fast
convergence and stability compared to the first-order methods such as gradient descent. The
updating equation for Newton’s method can be expressed as[

O(i+1)

Ō(i+1)

]
=

[
O(i)

Ō(i)

]
− α(i)H−1

cc

[
∇Of(O(i))
∇Ōf(O(i))

]
. (2.27)

2.3.2 First-order methods

2.3.2.1 Sequential gradient descent method (GS algorithm) [20, 93]

For the implementation in [20, 93], the algorithm aims to optimize the amplitude-based cost
function (2.9). It is the simplest to implement and, in this case, equivalent to the Gerchberg-
Saxton approach of simply replacing known information in real and Fourier space. Since the
sequential strategy treats a single image as an optimization problem, the cost function for
each problem is just one component of Eq. (2.9) and is defined as

fA,`(O) = (
√

I` − |g`|)†(
√

I` − |g`|), (2.28)

where ` denotes the index of each measurement.
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The derivative of this cost function is thus a component of Eq. (2.16) and can be expressed
as

∇OfA,`(O) = −Q†`diag(P̄)

[
Fdiag

(√
I`
|g`|

)
g` − diag(P)Q`O

]
. (2.29)

The update equation for this sequential amplitude-based algorithm is then a gradient
descent with the descent direction given by Eq. (2.29) and step size 1/|P|2max:

O(i,`+1) = O(i,`) − 1

|P|2max

∇OfA,`+1(O(i,`)), (2.30)

where i indicates the iteration number, which goes to i + 1 after running through all the
measurements from ` = 1 to ` = Nimg. This algorithm adopts the alternating projection
phase retrieval approach. The first projection in the real domain is the amplitude replace-

ment operation diag
(√

I`
|g`|

)
g`, and the second projection is to project the previous estimated

Fourier region diag(P)Q`O onto the updated Fourier region Fdiag
(√

I`
|g`|

)
g`.

It is worth noting that the algorithm in [20] directly replaces Fdiag
(√

I`
|g`|

)
g` in the

Fourier domain at each sub-iteration. A similar algorithm in [93], introduced for simultaneous
aberration recovery, has the same form as Eq. (2.30) that implements gradient descent in
the Fourier domain. However, when there is no pupil estimation, then P becomes a pure
support function with one inside the support and zero outside. In this situation, these two
algorithms become exactly the same, and thus we refer to both as sequential gradient descent
or Gerchberg-Saxton algorithm.

2.3.2.2 Wirtinger-flow algorithm [94, 95]

The Wirtinger flow optimization framework was originally proposed to iteratively solve the
coded-mask phase retrieval problem using nonlinear optimization [94]. It is a gradient de-
scent method implemented with a special initialization and special step sizes. For the FPM
implementation described in [95], the intensity-based cost function is used. Thus, the update
equation for the object transmission function O can be expressed as

O(i+1) = O(i) − α(i)∇OfI(O
(i)), (2.31)

where the step size is calculated by

α(i) =
min(1− e−i/i0 , θmax)

(O(0))†O(0)
, (2.32)

where ∇OfI(O
(i)) is the gradient of the intensity-based cost function calculated in (2.18),

and i0 and θmax are user-chosen parameters to calculate the step size.



CHAPTER 2. OPTIMIZATION ANALYSIS FOR FOURIER PTYCHOGRAPHIC
PHASE MICROSCOPY 33

In the previously proposed FPM implementation of Wirtinger flow [95], the algorithm
deviates somewhat from the original theory proposed in [94]. First, there is an additional
term in the cost function to deal with additive noise. Second, the initialization used in [95] is
not the proposed one in [94], but rather a low-resolution captured image. So the algorithm
in [95] is essentially a gradient descent method with the special step size based on the
intensity-based cost function and is not guaranteed to converge to the global minimum.

The Wirtinger flow algorithm can be implemented with different cost functions simply
by replacing the original intensity-based gradient with the other gradients derived in the
Appendix. For comparison, we have implemented the Wirtinger flow algorithm using all
three of the cost functions described here: amplitude-based, intensity-based and Poisson-
likelihood-based. The results are compared in Fig. 2.9 with experimental data and Section 2.4
with simulated data.

2.3.3 Second-order methods

Beyond first-order, a second-order optimization method can improve the convergence speed
and stability of the algorithm, especially for nonlinear and non-convex problems. Second-
order methods (e.g. Newton’s method) use both the first and second derivatives (Hessian)
of the cost function to create a better update at each iteration. As a result, they generally
require fewer iterations and move more directly towards the solution. The difficulty of second-
order implementations is in computing the Hessian matrix, whose size scales quadratically
with the size of the image. As a result, approximations to the Hessian are often used (known
as quasi-Newton methods) to trade performance for computational efficiency.

2.3.3.1 Sequential Gauss-Newton method [21]

First, we look at a Gauss-Newton method based on the amplitude-based cost function, which
approximates the Hessian matrix as a multiplication of its Jacobian matrix:

HA
cc,` ≈

(
∂fA`
∂c

)†(
∂fA`
∂c

)

=

 1
2
Q†`diag(|P|2)Q` Q†`diag(P̄)Fdiag

(
g2
`

|g`|2

)
F̄−1diag(P̄)Q̄`

QT
` diag(P)F̄diag

(
ḡ2
`

|g`|2

)
F−1diag(P)Q`

1
2
QT
` diag(|P|2)Q̄`

 ,
(2.33)

where c = (OT , ŌT )T (See Appendix). Since the inversion of this Hessian matrix requires
very high computational cost, we approximate the Hessian by dropping all the off-diagonal
terms of the Hessian matrix. Further, the inversion of the Hessian matrix may be an ill-
posed problem, so a constant regularizer is adopted. In the end, the approximated Hessian
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inversion becomes

(HA
cc,`)

−1 ≈

2Q†`diag
(

1
|P|2+∆

)
Q` 0

0 2QT
` diag

(
1

|P|2+∆

)
Q̄`

 , (2.34)

where ∆ is a constant vector with all the entries equal to a constant regularizer δ over all
pixels.

By applying Newton’s update, Eq. (2.27), with this approximated Hessian inversion, the
new estimate of O can be expressed as

[
O(i,`+1)

Ō(i,`+1)

]
=

[
O(i,`)

Ō(i,`)

]
−

Q†`diag
(
|P|
|P|max

)
Q` 0

0 QT
` diag

(
|P|
|P|max

)
Q̄`

 (HA
cc,`)

−1

[
∇OfA,`+1(O(i,`))
∇ŌfA,`+1(O(i,`))

]
,(2.35)

where the diag
(
|P|
|P|max

)
part is the step size for this descent direction. Note that when P is a

constant having either 0 or 1 values, this method is reduced to the sequential gradient descent
method with a tunable regularizer δ. In practice, however, we also simultaneously update P
(see Section 2.5.1), so the second-order optimization procedure becomes more crucial.

2.3.3.2 Global Newton’s method

Since we expect second-order methods to perform better than first-order, and also global
methods to be more stable than sequential, we propose a new global second-order (New-
ton’s) method, and show the results compared against other methods. For completeness, we
implement all three of the amplitude, intensity, and Poisson-likelihood-based cost functions,
showing that the amplitude and Poisson-likelihood-based cost functions indeed perform bet-
ter. The difficult step in deriving a Newton’s method for this problem is in calculating the
gradients and Hessians of the cost functions directly, without approximations. In the Ap-
pendix, we show our derivation, and in this section we use the results with a typical Newton’s
update equation:

[
O(i+1)

Ō(i+1)

]
=

[
O(i)

Ō(i)

]
− α(i)(Hcc)

−1

[
∇Of(O(i))
∇Ōf(O(i))

]
. (2.36)

The inverse of the Hessian matrix, (Hcc)
−1, is solved efficiently by a conjugate gradient

matrix inversion iterative solver as described in [104]. α(i) is determined by the backtracking
line search algorithm at each iteration, as described in [96]. The exact form of the cost
function and the Hessian depends on the algorithm used. For amplitude-based Newton’s
algorithm, f(O) = fA(O) and Hcc = HA

cc; for intensity-based Newton’s algorithm, f(O) =
fI(O) and Hcc = HI

cc; for Poisson-likelihood-based Newton’s algorithm, f(O) = LGaussian(O)
and Hcc = HP

cc.
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Since this problem is nonlinear, its Hessian can be negative definite for some iterations.
For this case, the conjugate gradient solver can not directly be applied to solve this inverse
problem and the gradient descent direction is used instead to prevent this situation in that
specific iteration. In [92], they prove the Hessian of the intensity-based and amplitude-based
cost functions for ptychography is usually positive-semi-definite if the initial guess is close
to the solution. The same proof can be applied to the Fourier ptychography case. This is
why in the real implementation the negative difiniteness of the Hessian matrix is seldom
encountered.

2.3.4 Convex-based method

2.3.4.1 PhaseLift algorithm [97–101]

The PhaseLift formulation for phase retrieval is conceptually quite different than the previous
methods described here. The idea is to lift the non-convex problem into a higher-dimensional
space in which it is convex, thereby guaranteeing convergence to the global solution. To do
this, the cost function of O is reformulated into that of a rank-1 matrix X = OO† and the
goal is to estimate X instead of O. The process of reformulation can be expressed as [101]

g =

 g1
...

gNimg

 =

F−1 · · · 0
...

. . .
...

0 · · · F−1


diag(P) · · · 0

...
. . .

...
0 · · · diag(P)


 Q1

...
QNimg

O

= DO =

 d†1
...

d†Nimgm2

O, (2.37)

where D is an Nimgm
2 × Nimgm

2 operator combining the inverse Fourier transform, pupil

cropping, and the downsampling operation with row vectors denoted by d†j.
Hence, the estimated intensity |g|2 as a function of X can be expressed

|g|2 =

 O†d1d
†
1O

...

O†dNimgm2d†Nimgm2O

 =

 Tr(d1d
†
1OO†)
...

Tr(dNimgm2d†Nimgm2OO†)

 =

 Tr(D1X)
...

Tr(DNimgm2X)

 = A(X),(2.38)

where A is a linear operator transforming X into |g|2. In Section 2.2.2, we discussed three
different cost functions. Only the intensity-based and Poisson-likelihood-based cost functions
are convex on the estimated intensity, Î`(r), which is a component of A(X). Thus, the
intensity-based and Poisson-likelihood-based cost functions can be turned into a convex
function on X through this transformation. For the implementation in [101], by defining
I = [IT1 , . . . , I

T
Nimg

]T , the intensity-based cost function can be expressed as

fI(X) = (I− |g|2)†(I− |g|2)

= (I−A(X))†(I−A(X)). (2.39)
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Since X is a rank-1 matrix, we then minimize the rank of X subject to I = A(X).
However, the rank minimization problem is NP-hard. Therefore, a convex relaxation [97–99]
is used instead to transform the problem into a trace minimization problem. Under this
relaxation, the optimization problem becomes

min
X

f ′I(X) = min
X

(I−A(X))†(I−A(X)) + αTr(X), (2.40)

where α is a regularization variable that depends on the noise level.
The problem with this new approach is that by increasing the dimensionality of the

problem, the size of the matrix X has become n2 × n2, which is too large to store and
calculate eigenvalue decomposition on a normal computer. To avoid these computational
problems, we do not directly solve (2.40), but rather apply a factorization to X = RR†,
where R is an n2 × k matrix. X is a rank-1 matrix so k is set to be 1 (R becomes O).
This new problem is then solved effectively using the augmented Lagrangian multiplier, by
modifying the original cost function [100, 101]

min
R

fAL,I(R) = min
R

σ

2
(I−A(RR†))†(I−A(RR†)) + yT (I−A(RR†)) + Tr(RR†), (2.41)

where y, Nimgm
2 × 1 vector, is the Lagrangian multiplier, and σ ≥ 0 is the augmented

Lagrangian multiplier. Both are parameters that can be tuned to give a better reconstruction.
By taking the derivative of this cost function with respect to R and updating R in each
iteration, the optimization problem can then be solved [100]. Unfortunately, after these
modifications, the problem becomes non-convex because of the minimization with respect to
R instead of X, and thus is no longer provable.

In order to provide a more familiar form for comparing the PhaseLift algorithm to the
others discussed in this paper, we define y = [yT1 , . . . ,y

T
Nimg

]T , where yi is m2 × 1 vector, so
that the minimization problem in Eq. (2.41) becomes

min
O

fAL,I(O) = min
O

σ

2

[∑
`

(I` − |g`|2 +
2

σ
y`)
†(I` − |g`|2)

]
+ O†O. (2.42)

Now, we see that the PhaseLift implementation is essentially an intensity-based cost function
with an additional constraint that may deal better with noise.

The corresponding derivative of the cost function is calculated as in the previous section:

∇OfAL,I(O) = −σ
∑
`

Q†`diag(P̄)Fdiag(g`)

(
I` − |g`|2 +

1

σ
y`

)
+ O. (2.43)

When σ is large compared to the component of y` and O, the factorized PhaseLift formulation
with rank-1 X is equivalent to the intensity-based optimization problem discussed in the
previous section. To solve this optimization problem, a quasi-Newton algorithm called L-
BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) method [96], which is a second-
order method using an approximated Hessian inversion from previous gradients, is adopted.
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We note that although the PhaseLift algorithm can also be implemented with the Poisson-
likelihood-based cost function, the algorithm in the rank-1 case is equivalent to our global
Newton’s method discussed in Section 2.3.3.2 for the same reason as in the above analysis.

2.4 Performance analysis of various algorithms

In this section, we compare the algorithms described in Section 2.3 using experimental data,
as well as simulated data that mimics the experimental errors described in Section 2.4.1. We
find that second-order optimization generally performs better than first-order, while global
methods do not give significant improvement over sequential. Further, we explain why the
cost function is a key consideration in choosing an algorithm by explaining the cause of the
high-frequency artifacts that result from intensity-based algorithms. Interestingly, the two
model mis-match errors (aberrations and LED mis-alignment) behave similarly to Poisson
noise, in that they also give intensity-dependent errors. Hence, the amplitude and Poisson
likelihood algorithms are more robust not only to Poisson noise, but also to model mis-match
errors.

2.4.1 Possible noise and simulated dataset

Ideally, all algorithms based on the forward model above should give good reconstructions.
However, noise and model mis-match errors cause deviations from our forward model. Thus,
a noise model that accurately describes the error will be important for noise tolerance.
Heuristically, we have identified three experimental non-idealities that cause error: Poisson
noise, aberrations and LED mis-alignment. We aim to separate and analyze the artifacts
caused by each through controlled simulations that incur only one type of error.

The simulated data (Fig. 2.6) uses the same parameters as our experimental setup, where
a 32 × 32 green LED array (central wavelength λ = 514 nm) is placed 77 mm above the
sample. LEDs are nominally 4 mm apart from each other and only the central 293 LEDs
are used, giving a maximum NAillu = 0.45. Samples are imaged with a 4× objective lens
having NAobj = 0.1.

Using our forward model, we simulate four datasets:

1. Ideal data: no noise is added. The object and pupil follow exactly the FPM forward
model that is assumed in the algorithm.

2. Poisson noise data: the ideal data is corrupted by Poisson-distributed noise at each
pixel. To emphasize the effect and to emulate experiments with lower-performance
sensors, we simulate 20× more noise than is present in our experiments (details in
Section 2.2.2).

3. Aberrated data: simulated images are corrupted by imaging system aberrations, which
are described by the aberrated complex pupil function shown in Fig. 2.6. The pupil
function used in these simulations was obtained from experimental measurements.
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Figure 2.6: To explain the artifacts in our experimental results, as well as evaluate the
robustness of various algorithms under common types of errors, we simulate several FPM
datasets with different types of known error: (1) Ideal data, (2) Poisson noise data, (3)
aberrated data, (4) LED misaligned data (×: original position, ◦: perturbed position).

4. LED mis-aligned data: the illumination angle of each LED is perturbed slightly (fol-
lowing a normal distribution with standard deviation σθ = 0.2◦). The black × and
blue ◦ in Fig. 2.6 show the original and perturbed LED positions, respectively.
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2.4.2 Reconstruction results from simulated and experimental
dataset

Figure 2.7: Reconstructed amplitude from simulated datasets with three types of errors, us-
ing different algorithms. The intensity-based algorithms suffer from high frequency artifacts
under both noise and model mis-match errors. The percentage on the top left corner of each
image is the relative error of each reconstruction.
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Figure 2.8: Reconstructed phase from simulated datasets with three types of errors, using
different algorithms. The intensity-based algorithms suffer from phase wrapping artifacts
under both noise and model mis-match errors. The percentage on the top left corner of each
image is the relative error of each reconstruction.

Next, we use each of the algorithms described in Section 2.3 to reconstruct amplitude and
phase from the datasets simulated in Section 2.4.1, in order to quantify performance under
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Figure 2.9: Fourier ptychographic reconstruction (amplitude only) of a test object with the
algorithms discussed here, all using the same experimental dataset. Algorithms derived
from the same cost function (amplitude-based, intensity-based, and Poisson-likelihood) give
similar performance, and first-order methods (Gerchberg-Saxton) suffer artifacts.

various experimental error types by comparing against the ground truth input. Figures 2.7
and 2.8 show the reconstructed amplitude and phase, respectively. On the top left corner
of each image we give the relative error of the reconstruction, defined as

Error =
‖Orecover −Otrue‖2

2

‖Otrue‖2
2

, (2.44)
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where Orecover and Otrue are the reconstructed and true images, respectively, in vector form.
In order to ensure that all algorithms converge to their stable solutions, we use 200 iterations
for each algorithm, except for Wirtinger flow, which requires 500 iterations. The tuning
parameters for each algorithm are summarized in Table 2.1. We have attempted to optimize
each parameter as fairly as possible; for example, we use a large σ in the PhaseLift algorithm
to achieve a better reconstruction. Small σ trades resolution for flatter background artifacts.

Table 2.1: Tuning Parameters

Gerchberg
Saxton

Sequential
Gauss-Newton

Amplitude
Newton

Amplitude
Wirtinger

Poisson
Newton

Poisson
Wirtinger

N/A δ = 5 N/A
i0 = 10

θmax = 0.05
N/A

i0 = 10
θmax = 0.05

Intensity
Wirtinger

PhaseLift
Intensity
Newton

i0 = 10
θmax = 1

σ = 1010 N/A

In analyzing results from the simulated datasets, we find that algorithms with the same
cost function give similar reconstruction artifacts. For example, the intensity-based algo-
rithms suffer from high-frequency artifacts and phase wrapping when the data is not per-
fect. Almost all algorithms give a satisfactory reconstruction when using the error-free
ideal dataset, except for intensity-based Wirtinger flow, which suffers some phase-amplitude
leakage and phase blurring (see Figs. 2.7-2.8). When the dataset contains noise or model
mis-match, we observe a distinct trend that amplitude-based and Poisson-likelihood-based
algorithms give a better result, compared with intensity-based algorithms. The exception to
this trend is the Gerchberg-Saxton algorithm, which is somewhat unstable and gets stuck in
local minima, so is not robust to any type of error.

The goal of our simulations was to determine the main error sources that cause artifacts in
the experimental reconstructions of Fig. 2.9. Since the experiments contain combined errors
from multiple sources, it is difficult to attribute artifacts to any particular type of error.
We find, however, that all three of our main error sources cause similar artifacts, hence
our experimental results may be corrupted by any of Poisson noise, aberration, or LED
misalignment. For example, notice that our simulated error-corrupted data all results in
high-frequency artifacts when using intensity-based algorithms, similar to the experimental
results. The Gerchberg-Saxton result also displays low-frequency errors in simulation, as
in experiment. The fact that both noise and model mis-match create similar artifacts is
unexpected, since they are very different error mechanisms. We explain below why all
three are intensity-dependent errors, which is the reason why the cost function choice is so
important for robustness. The consequence is that algorithms which use a more accurate
noise model (amplitude and Poisson likelihood-based) will not only be more robust to noise,
but also to model mis-match errors.
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Figure 2.10: Phase relative error as a function of iteration number for different algorithms
with the (a) ideal data, (b) Poisson noise data, (c) aberrated data and (d) LED misaligned
data. When the data is not perfect, some of the algorithms may not converge to a correct
solution.

To examine the convergence of each algorithm, Figure 2.10 plots the error for each itera-
tion when using the aberrated dataset and LED misaligned dataset with different algorithms.
The intensity-based algorithms (red curves) clearly do not converge to the correct solution
and can incur large errors when the data is not perfect. Compared to PhaseLift and the
intensity-based Newton’s method, the Wirtinger-flow algorithm seems to have lower error;
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however, this is only due to its slow convergence. If run it for many iterations, it will even-
tually settle on a similarly error-corrupted result as the other two intensity-based algorithms
(not shown). We also observe that amplitude-based (blue curves) and Poisson-likelihood-
based (black curve) algorithms converge to points with lower errors in a similar fashion.
This behavior is well explained by the similarity of the algorithms in their use of gradients
and Hessians (as shown in the Appendix). Again, the exception to the trend is the first-order
Gerchberg-Saxton algorithm, which recovers the object fairly well with aberrated data, but
goes unstable in the case of LED misalignment. Note that, when there is no pupil estimation
step, the only difference between the Gerchberg-Saxton and the sequential Gauss-Newton
algorithm is the step size. Since the latter algorithm gives a good reconstruction, while the
former diverges, we conclude that the Gerchberg-Saxton step size is too large for a stable
update in this particular case.

Table 2.2: Convergence Speed

Ideal data Misaligned data
Iteration
number

Runtime (s)
Iteration
number

Runtime (s)

Gerchberg
Saxton

4 2.22 diverges diverges

Sequential
Gauss-Newton

23 12.97 83 46.8

Amplitude
Newton

13 100.49 20 154.6

Amplitude
Wirtinger

46 26.28 158 89.52

Poisson
Newton

28 211.68 77 582.1

Poisson
Wirtinger

96 54.46 153 87.36

Intensity
Wirtinger

1481 651.64 diverges diverges

PhaseLift 67 386.28 diverges diverges
Intensity
Newton

12 74.44 diverges diverges

The convergence speed of each algorithm can be determined from Figure 2.10 using
two metrics: number of iterations required and total runtime. We choose the convergence
curves from the cases of ideal data and LED misaligned data and compare their iteration
numbers and runtimes in Table 2.2. All the algorithms were implemented in MATLAB on
an Intel i7 2.8 GHz CPU computer with 16G DDR3 RAM under OS X operating system.
We define convergence as the point when the relative phase error reaches its stable point.
The comparison does not consider the divergent cases. In the ideal data case, we can see
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that the sequential methods outperform all the other algorithms in terms of runtime. The
Gerchberg-Saxton algorithm is the fastest in terms of both iteration number and runtime for
this perfect dataset. The global Newton’s method using intensity-based and amplitude-based
cost functions also converge very fast in terms of iteration number. The Wirtinger flow
algorithm takes much longer to reach convergence both in runtime and iteration number.
For the case of the LED misaligned data, only five algorithms converge. In terms of iteration
number, the amplitude-based Newton’s method converges much faster than the other four,
as expected. However, the sequential Gauss-Newton algorithm converges much faster in
terms of the runtime. Though the global Newton’s method is theoretically better than the
others, it takes significant time to calculate the full Hessian matrix. Thus, the sequential
Gauss-Newton method is our preferred algorithm in practice, because it provides excellent
robustness while also enabling fast runtimes and reasonable computational complexity.

The main conclusions to be drawn from this section are that the FPM optimization al-
gorithms which are formulated from amplitude-based and Poisson-likelihood-based cost func-
tions are more tolerant to imperfect datasets with both Poisson noise and physical deviations
like model mis-match, which were represented by aberrations and LED misalignment here.
In the next section, we will explain more about the causes for this trend.
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2.4.3 Noise model analysis

Figure 2.11: Both Poisson noise and model mis-match (aberrations, LED misalignment)
cause errors that scale with mean intensity. Here, histograms show the intensity deviations
under Poisson noise, aberration, and misalignment for a brightfield and darkfield image.

The reason why amplitude-based and Poisson-likelihood-based algorithms have superior tol-
erance to experimental errors is due to their Poisson noise model. Each of these algorithms
makes an implicit or explicit assumption that the magnitude of the errors in the data scale
with the measured intensity. This is obviously a good model for Poisson noise errors, which
are defined as noise which scales with intensity. It is not as obvious that the model mis-match
errors (aberrations and LED misalignment) scale with intensity as well. To demonstrate this,
Fig. 2.11 shows the histogram of the difference between the deviated dataset and the ideal
dataset, for the cases of both brightfield and darkfield images. The histograms show a similar
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trend - all of the brightfield errors are much larger than the darkfield errors, with a similar
statistical variation. Thus, the errors from Poisson noise, aberrations and LED misalignment
all scale with the measured intensity. In our experimental data, there are always aberrations
in the objective lens, LED misalignment, and Poisson shot noise. Since the noise model for
the amplitude-based and Poisson-likelihood-based algorithms match the actual noise prop-
erties, these algorithms perform better than the intensity-based algorithms. And since the
images captured by FPM have drastically different intensity values, this effect dominates
the reconstruction artifacts. Note that these large variations in intensity values are specific
to FPM and likely do not play a major role in other phase imaging schemes (e.g. phase
from defocus or traditional ptychography), where images do not have such a wide range of
intensity values. In our experiments, the Poisson noise is fairly low (due to use of a high-
performance sCMOS sensor), but the model mismatch in the experimental data can cause
effects similar to strong Poisson noise.

Figure 2.12: The intensity-based cost function gives higher weighting to images in the low
spatial frequency region of the Fourier domain, resulting in high-frequency artifacts. Here,
we show the gradient of the amplitude-based, Poisson-likelihood-based and intensity-based
cost functions at the tenth iteration, using experimental data.

For further understanding, we look closer at the relationship between the noise model and
the cost function. Our optimization algorithms are derived from three cost functions. Each
of the cost functions makes a noise model assumption. The intensity-based cost function
assumes that noise in the data follows a white Gaussian noise model, which means that the
standard deviation of the noise is assumed to be the same across the brightfield and darkfield
images. Recall that the standard deviation of a Gaussian noise probability model is related
to the weight in the cost function for each pixel, as shown in Eq. 2.4. The larger the standard
deviation (amount of noise) at any pixel in Fourier space, the smaller the weighting, since
noisy pixels should be trusted less. In the Gaussian noise model, the weights in the cost
function for large-valued pixels and small-value pixels are the same. However, the deviation
for brightfield images is much larger than that for darkfield images, as shown in Fig. 2.11.
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Hence, the brightfield images will contribute more to the total cost function value if the
weights are all the same, due to their high intensity. The result is that the intensity-based
(Gaussian noise model) algorithms focus mostly on the brightfield images, which correspond
to low spatial frequency information, and the darkfield images do not contribute much. The
result is a failure in the high-frequency reconstruction, as we saw in Figs. 2.9, 2.7, 2.8, and
loss of effective resolution since the darkfield images contain all the sub-diffraction-limit
information. To illustrate the dramatic difference in weights, Fig. 2.12 shows the gradient
of the different cost functions. Obviously, the intensity cost function gives much higher
weighting to low spatial frequencies, which causes the high-frequency artifacts.

Since the amplitude-based cost function shares a similar gradient and Hessian with the
Poisson likelihood function, as shown in the Appendix and Fig. 2.12, it is not surprising that
they both produce a similar quality reconstruction. Both of these cost functions assume
the noise in the data follow a Poisson distribution, with the standard deviation scaling with
the measured intensity. This assumption matches the actual error better than the white
Gaussian assumption. The actual noise or deviations in the experiments for brightfield
images have larger standard deviation, while that for darkfield images have smaller standard
deviation. Under the Poisson noise model, the weight in the cost function is smaller for
the noisy brightfield images and larger for the darkfield images. At the end, algorithms
based on the Poisson noise model put more emphasis on the darkfield images and thus get
a better reconstruction compared to the intensity-based algorithms. Figure 2.12 shows that
the gradients for the amplitude-based and Poisson-likelihood-based cost function are similar
and are more uniform throughout the whole Fourier space.

2.5 Joint estimation of pupil function and LED

positions

In the previous section, we have shown that model mis-matches such as aberrations and LED
mis-alignment greatly affect the final reconstruction no matter what kinds of algorithms are
used. Thus, it is important to develop a sub-routine in the main algorithm that can correct
for these mis-matches. In this section, we will describe how we correct for these mis-matches
by including sub-optimization steps within the main algorithms. The flow to correct for
these mis-matches are summarized in Fig. 2.13.

2.5.1 Pupil recovery

There are already more sophisticated FPM extensions to correct for some model mis-match
errors [21, 93], similar to the probe correction algorithms in traditional ptychography [91].
Both of the methods previously developed for Fourier ptychography are derived from the
amplitude-based formulation. By taking the derivative of the cost function with respect to
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Figure 2.13: The flow of model mis-match correction algorithms for Fourier ptychographic
micrscopy. Redundancy and diversity in the dataset enables algorithmic self-calibraiton of
aberrations (pupil function) and LED posisiton errors.

P, the decent direction to estimate the pupil function can be calculated as

∇PfA,`(O,P) = −diag(Q̄`Ō)

[
Fdiag

(√
I`
|g`|

)
g` − diag(P)Q`O

]
. (2.45)

By applying the pupil estimation step after each object estimation using this gradient
or approximated Hessian, the sequential gradient descent [93] and the sequential Gauss-
Newton method [21] including pupil estimation can be derived. Here we only consider the
amplitude-based cost function, for simplicity.

We wish to investigate the improvements obtained by adding a pupil estimation step
to both first and second-order optimization algorithms. Figure 2.14 shows the reconstruc-
tion result from the sequential gradient descent (first-order) and sequential Gauss-Newton
(second-order) algorithms, using the aberrated dataset from the previous simulations. The
numbers at the top left corner are the relative error compared to the ground truth simulated
image. As can be seen, adding the pupil estimation step gives a better complex-field recon-
struction, and the second-order (Gauss-Newton) method with pupil estimation provides the
best result.
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Figure 2.14: Object and pupil reconstruction results using different algorithms, with and
without pupil estimation. The second-order method (sequential Gauss-Newton) with pupil
estimation gives the best result, as expected. In this case, we find that the second-order
method without pupil estimation is already better than first-order method (sequential gra-
dient descent) with pupil estimation.

Surprisingly, however, the second-order reconstruction without pupil estimation is better
than the first-order reconstruction with pupil estimation, for this case. This highlights the
robustness to aberrations that a second-order optimization scheme enables. The second-
order nature of the algorithm makes it faster in convergence, and also more stable. In terms
of runtime, the pupil estimation step takes about the same time as the object reconstruction
part, so the algorithm is two times slower when the pupil function step is incorporated.
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2.5.2 LED position recovery

Another possible correction scheme for model mis-match is that for LED misalignment. Since
each LED position corresponds to a certain shift of the pupil function in the Fourier domain,
this is similar to the shift of the probe function in traditional ptychography. There, iterative
algorithms have been proposed to correct for the positioning error of the probe function [89,
105–107]. In [89, 107], a gradient of the cost function with respect to the shift of the probe
function has been calculated and the conjugate gradient method has been applied to correct
for the positioning error. In [105], a simulated annealing method is adopted to estimate the
shift of the probe function. The simulated annealing method is also adopted to correct for
the misalignment of the spatial light modulator in a overlapped Fourier coding system [108],
analogous to FPM. In our experiments, we observe that the simulated annealing method can
locate the LED positions more accurately than other methods. Thus, we only compare with
the simulated annealing method.

2.5.2.1 Simulated annealing position estimation

Simulated annealing is a method of searching unknown variables over a finite space to mini-
mize or maximize the function of merit - the cost function in our case. Instead of exhaustively
testing all the possible states, simulated annealing iteratively approaches the optimal state.
At the first iteration, the algorithm randomly searches several states in the space and selects
the one with the smallest cost function value. The algorithm then starts at this state for the
next iteration, slowly reducing the search range in the following iterations until convergence.

Figure 2.15: (a) Adding LED misalignment correction improves the reconstruction results
(sequential Gauss-Newton method). (b) The original, perturbed, and corrected LED posi-
tions in angular coordinates. LED correction accurately retrieves the actual LED positions.
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In our sequential algorithm, the whole optimization problem is divided into many sub-
optimization problems for different collected images. At each sub-optimization problem, a
gradient descent or Gauss-Newton method is applied to update that corresponding region
in Fourier domain. To add a LED mis-alignment correction step, the simulated annealing
algorithm can be incorporated into each sub-iteration to find an optimal shift of the pupil
function. In each sub-iteration, the down-sampling matrix, Q`, which contains the informa-
tion of the pupil shift, is tested according to the annealing process for several possible states
corresponding to different shifts of the pupil. The state with the smallest cost function value
is selected to update the old down-sampling matrix. Then, the new down-sampling matrix
is used to update the corresponding region in the Fourier domain.

The simulated annealing method estimates the LED positions with good accuracy. Fig-
ure 2.15 shows the reconstruction result from the simulated LED misaligned dataset, both
with and without the LED correction step. The result using the LED correction clearly
shows better quality and smaller error, as seen in Fig. 2.15(a). Since the LED correction
scheme also estimates the actual LED positions, which we intentionally perturbed in order to
impose a known error, we can also compare the actual and recovered LED positions, shown
in Fig. 2.15(b).

To complete the picture, we now show experimental reconstructions with and without the
two correction schemes: pupil correction and LED mis-alignment corrections (see Fig. 2.16).
Since we do not know ground truth for our experiments, we can only make qualitative
observations. An incremental improvement is observed when adding the pupil estimation
and then the LED correction steps - the background variation becomes flatter. Figure 2.16(b)
shows the corrected LED positions compared to the original ones, in angular coordinates.
Corrected positions of LEDs in different regions share similar offset because the fabrication
process of the LED array can cause unexpected position misalignment for each LED. Notice
that the LEDs at the edges (corresponding to higher angles of illumination) incur more
variation, since these are more sensitive to calibration. Also, many of the large deviations
occur at the edges that are not along the horizontal and vertical axes. In these areas, the LED
position recovery is poor because the object has very little information there (the resolution
test target contains only square features) and so the data contains little information about
these areas. However, any errors in LED positions in this area will also not significantly affect
the reconstruction if they do not contribute much energy to the object spectrum. If the goal
was not to correct the image results, but rather to find the LED positions accurately, then
one should choose an object that contains uniformly distributed spatial frequencies (e.g. a
random diffuser or speckle field). Although the simulated annealing further improves our
reconstruction, we note that it is more than ten times slower to process the data because of
the local search performed at each sub-iteration.
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Figure 2.16: Experimental reconstructions with and without LED misalignment correction
(sequential Gauss-Newton method). (a) The reconstructed object and pupil. (b) The original
and corrected LED positions, in angular coordinates.

2.6 Conclusion

In this chapter, we formulated the Fourier ptychographic phase retrieval problem using max-
imum likelihood optimization theory. Under this framework, we reviewed the existing FPM
algorithms and classified them based on their cost functions as: amplitude-based algorithms
(akin to a Poisson noise model) and intensity-based algorithms (akin to a white Gaussian
noise model). We derived a new algorithm based on the Poisson likelihood function, which
is more robust to measurement imperfections. We compared the tolerance of these algo-
rithms under errors due to experimental noise and model mis-match (aberrations and LED
mis-alignment) using both simulated data and experimental data. Because the noise and
model mis-match error for brightfield and darkfield images depend on the measured inten-
sity, the amplitude-based and Poisson-likelihood-based algorithms that use a the Poisson
noise model are more robust than the intensity-based algorithms. This can be explained
by the standard deviation of the noise model determining the weight of each image in the
optimization. Hence, intensity-based algorithms over-weight the brightfield images, resulting
in poor high-frequency reconstruction, which is where the high-resolution details reside.

Next, we used existing pupil estimation algorithms and proposed a simulated-annealing-
based LED correction algorithm for algorithmic self-calibration of model mis-match. We
compared the performance of the pupil estimation algorithms and found that second-order
methods give the best results. We also showed the capability of the simulated annealing
method to correct for misaligned LEDs and find their actual positions.

Based on our studies, we conclude that the global Newton’s method gives the best recon-
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struction, but with high computational cost. Considering both robustness and computational
efficiency, we find that the sequential Gauss-Newton method provides the best trade-offs for
large-scale applications. Its experimental robustness is verified in our recent time-series in
vitro experiments [22], where we demonstrate sub-second acquisition times for FPM.
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Chapter 3

Computational random structured
illumination fluorescence microscopy

In Chapter 2, we have demonstrated the effectiveness of computational imaging approach to
achieve super-resolution coherent imaging. By adopting the optimization formulation, the
information retrieval process is no longer restricted to analytic inversion, which makes the
optical design more flexible (non-interferometric system for phase imaging). In addition, we
also demonstrate the effectiveness of self-calibration algorithm to correct for experimental
errors, such as system aberration and illumination mis-alignment. Better image quality could
be achieved with the power of computational imaging.

Carrying this idea in mind, in this chapter, we investigate if computational imaging ap-
proach could also be a benefit to super-resolution fluorescent imaging system. Structured illu-
mination microscopy (SIM) is also an illumination based super-resolution imaging technique
similar to FPM, but for fluorescent microscopy. It improves resolution by down-modulating
high-frequency information of an object to fit within the passband of the imaging system as
we explained in Chapter 1. Generally, the reconstruction process requires prior knowledge of
the illumination patterns, which implies a well-calibrated and aberration-free system. With
the help of optimization formulation, we propose a new algorithmic self-calibration strategy
for SIM that does not need to know the exact patterns a priori, but only their covariance.
The algorithm, termed PE-SIMS, includes a Pattern-Estimation (PE) step requiring the uni-
formity of the sum of the illumination patterns and a SIM reconstruction procedure using a
Statistical prior (SIMS). Additionally, we perform a pixel reassignment process (SIMS-PR)
to enhance the reconstruction quality. We achieve 2× better resolution than a conventional
widefield microscope, while remaining insensitive to aberration-induced pattern distortion
and robust against parameter tuning. In the end, we also propose a generalization of this
method to 3D super-resolution fluorescent imaging.
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3.1 Introduction

3.1.1 Short review of structured illumination microscopy

SIM [2, 4–6], as explained in Chapter 1, uses illumination of multiple structured patterns
to down-modulate high spatial frequency information of the object into the low-frequency
region, which can then pass through the bandwidth of the microscope’s optical transfer
function (OTF) and be captured by the sensor. The reconstruction algorithm for SIM
combines demodulation process which brings the high spatial frequency information back to
its original position and synthetic aperture that extends the support of the effective OTF.
Various types of structured patterns have been used to realize SIM: periodic gratings [2,
4–6], a single focal spot (confocal microscope) [43, 44], multifocal spots [45–48] and random
speckles [48–57]. When the illumination patterns themselves are diffraction-limited, linear
SIM is restricted to 2× the bandwidth of a widefield microscope [6], allowing up to ∼ 2.4×
resolution enhancement (metrics explained in Sec. 3.3).

3.1.2 Blind structured illumination microscopy

In practice, structured illumination systems are sensitive to aberrations and experimental
errors. To avoid reconstruction artifacts that degrade resolution, the patterns that are
projected onto the sample must be known accurately. Periodic grating patterns can be
parameterized by their contrast, period and phase angle, which may be estimated in the post-
processing [109–112]. For multifocal patterns, the location of each focal spot is required [45].
For random speckle patterns, the relative shifts of the patterns are needed [53, 54]. Even with
careful calibration and high-quality optics, distortions caused by the sample may degrade
the result.

To alleviate some of the experimental challenges, blind SIM was proposed, enabling SIM
reconstruction without many priors [51, 52, 56, 57, 113, 114]. The only assumption is that
the sum of all illumination patterns is uniform. Optimization-based algorithms have been
adopted, including iterative least squares with positivity and equality constraints [51, 56,
113], joint support recovery [52] and `1 sparsity constraints [57]. However, these algorithms
are sensitive to parameter tuning and may show low contrast in reconstructing high spatial
frequencies [51]. Another algorithm, speckle super-resolution optical fluctuation imaging
(S-SOFI) realizes SOFI [115] by first projecting random speckle patterns onto the object,
and then using the statistical properties of the speckle patterns as a prior to reconstruct
a high-resolution image [55]. S-SOFI is experimentally simple and robust; however it only
achieves a 1.6× resolution enhancement instead of 2.4× for conventional SIM techniques (as
compared to a widefield microscope).
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3.1.3 Contribution of this chapter

In this chapter, we propose a new reconstruction algorithm for SIM that is applicable to
any illumination patterns. Our method, termed pattern estimation structured illumination
microscopy with a statistical prior (PE-SIMS), is as robust and insensitive to parameter
tuning as S-SOFI, and achieves better resolution enhancement (up to 2×). Like blind SIM,
the patterns need not be known (except for a requirement on the covariance of the patterns).
We demonstrate our method using simulated and experimental results with both speckle
and multifocal patterns. We discuss pattern design strategies to reduce the amount of data
required and demonstrate an extension that uses pixel reassignment [116–120] to improve
the reconstruction quality. In the end, we generalize this idea to 3D imaging.

3.2 Theory and method

Our algorithm takes in a SIM dataset consisting of multiple images captured under different
structured illumination patterns (e.g. random speckles, multifocal spots). We reconstruct
the super-resolved image in two parts. The first part is an iterative optimization procedure
for estimating each illumination pattern based on an approximated object. The second
part reconstructs the high-resolution image using the estimated patterns and the measured
images, along with a statistical prior. Before introducing these two parts, we start by defining
the SIM forward model.

3.2.1 Forward model of structured illumination microscopy

A representative experimental setup is shown in Fig. 3.1. A DMD spatial light modulator
(SLM) is used to project patterns onto the object through an objective lens. The measured
intensity for the `-th captured image is the product of the object’s fluorescence distribution
o(r) with the illumination pattern p`(r), where r = (x, y) denotes the lateral position coor-
dinates. This product is then convolved with the system’s incoherent point spread function
(PSF) on the detection side, hdet(r):

I`(r) = [o(r) · p`(r)]⊗ hdet(r) =

∫∫
o(r′)p`(r

′)hdet(r− r′) d2r′. (3.1)

3.2.2 Part 1: Pattern estimation

The first part of our inverse algorithm is to estimate the illumination patterns. To do so, we
start with an low-resolution approximation of the object. Then, we use this object and our
measured images to iteratively estimate the patterns (see Fig. 3.2).
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Figure 3.1: Example experimental setup for structured illumination microscopy (SIM) using
a deformable mirror device (DMD) to capture low-resolution images of the object modulated
by different illumination patterns. Our IPE-SIMS algorithm reconstructs both the super-
resoloved image and the unknown arbitrary illumination patterns.

Part 1a: Approximate widefield image

If we already knew the object o(r), it would be straightforward to estimate the pattern for
each measured image by dividing out the object from each of the measurements. However,
the object o(r) is unknown. Hence, we start by making a rough estimate of the object. We
first take the mean of all the measured images:

Iavg(r) = 〈I`(r)〉` = [o(r) · 〈p`(r)〉`]⊗ hdet(r) ≈ p0o(r)⊗ hdet(r), (3.2)

where 〈·〉` is the mean operation with respect to `, and p0 = 〈p`(r)〉` is approximately a
constant over the entire field of view. The resulting image will be equivalent to the low-
resolution widefield image if the sum of all illumination patterns is approximately uniform.

Part 1b: Deconvolve widefield image

Since the widefield image represents the convolution of the object with its PSF, we can
perform a deconvolution operation to estimate the low-resolution object:

oest(r) = F−1

{
Ĩavg(u) · h̃det(u)

|h̃det(u)|2 + β

}
, (3.3)
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Figure 3.2: The first part of our algorithm, Pattern Estimation (PE), iteratively estimates
the illumination patterns from an approximated object given by the deconvolved widefield
image.

where F and F−1 denote the Fourier transform and its inverse, respectively, ·̃ denotes the
Fourier transform of a certain function, u = (ux, uy) are the lateral spatial frequency coordi-
nates and β is a small Tikhonov regularization constant. Note that this object estimate has
diffraction-limited resolution and will be used only for estimating the illumination patterns.

Part 1c: Pattern estimation

We then use the low-resolution object estimate oest(r) to recover each of the illumination
patterns. Since each image is simply the product of the illumination and object, we could
divide each image by the estimated object to get the pattern. However, we instead solve
the problem as an optimization procedure in order to impose the correct Fourier support
constraint and avoid reconstruction artifacts. The `-th pattern estimate is the solution to
the following problem

minimize
p`

f(p`) = fdiff(p`) + IC(p`) =
∑
r

|I`(r)− [oest(r) · p`(r)]⊗ hdet(r)|2 + IC(p`),

where IC(p`) =

{
0, p` ∈ C

+∞, p` /∈ C , C =

{
p`(r)

∣∣∣∣p̃`(u) = 0, ∀u >
2NA

λillu

}
,

(3.4)

where λillu is the wavelength of the excitation light. The first term of the cost function,
fdiff(p`), in Eq. (3.4) is the least square error (residual) between the measured intensity and
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the predicted intensity based on our current estimate. The second term enforces a frequency
support constraint for the illumination pattern via an indicator function IC. This is important
to reduce artifacts in the pattern estimation because a normal division between the measured
image and estimated object will create errors outside of this frequency support. In our epi-
illumination geometry, the constraint is that the frequency content of each illumination
pattern be confined within the OTF defined by the objective’s NA.

We implement a proximal gradient descent algorithm [121], summarized in Algorithm 1.
Proximal gradient descent is designed to solve convex optimization problems like ours that
have two cost function terms: one being a differentiable cost function term (e.g. the residual)
and the other being a constraint or regularization term (usually nondifferentiable). When
the constraint is defined by an indicator function, as in Eq. (3.4), the method is also known
as a projected gradient method.

To implement, we first compute the gradient of the differentiable cost function term with
respect to p`(r)

g
(k)
` (r) =

∂fdiff(p
(k)
` )

∂p`
= −oest(r) · [hdet(r)⊗ (I`(r)− [oest(r) · p(k)

` (r)]⊗ hdet(r))],(3.5)

where k denotes evaluation of the gradient using the pattern at the k-th iteration.
We define the projection operation ΠC to force the information outside of the OTF to

be zero at each iteration. To reduce high-frequency artifacts, the following soft-edge filter is
used

ΠC(y) = F−1

{
F{y} · |h̃illu(u)|2
|h̃illu(u)|2 + δ

}
, (3.6)

where hillu(r) is the system’s PSF on the illumination side, and δ determines the amount of
high-frequency information that is suppressed in the pattern estimation step. We repeat this
process of updates and projections until convergence (typically ∼50 iterations to estimate
each pattern).

The convergence speed for proximal gradient descent is on the order of O(1/K) [121],
indicating that the residual between the current and optimal cost functions is inversely
proportional to the number of iterations K. To accelerate convergence, one extra step is
conducted in Algorithm 1 to include the information of the previous estimate [122, 123].
The convergence rate for this accelerated proximal gradient method, O(1/K2) [123], is sig-
nificantly faster than the normal proximal gradient method.
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Algorithm 1 Pattern Estimation

Require: I`(r), oest(r)

1: initialize p
(1)
` (r) with all zero image t1 = 1

2: for k = 1 : K do
3: Select step size η(k) > 0

4: p̂
(k+1)
` (r) = ΠC

[
p

(k)
` (r)− η(k)g

(k)
` (r)

]
, where ΠC denotes the projection onto C.

5: tk+1 =
1+
√

1+4t2k
2

6: p
(k+1)
` (r) = p̂

(k)
` (r) + tk−1

tk+1

[
p̂

(k+1)
` (r)− p̂(k)

` (r)
]

7: end for
8: Output: p`(r)

3.2.3 Part 2: SIM with a statistical prior

Once we have recovered the illumination patterns, the second part of the algorithm is to
reconstruct a high-resolution image from the measured dataset I`(r) and the estimated pat-
terns p`(r). We call this part of the algorithm Structured Illumination Microscopy with a
Statistical prior (SIMS), summarized in Fig. 3.3. There are four steps, which are explained
below. We will also describe how the statistical prior is used and why this procedure gives
better resolution.

· · ·

· · ·

Measurements

Estimated patterns

2a. Pixel-wise
covariance

Covariance image

2b: Pattern-pattern covariance
Theoretically or numerically calculate the 

pattern-pattern covariance to determine PSF 

Pattern-pattern
Covariance

2c. Deconvolve

Deconvolved
covairance image

SIMS 
reconstruction

2d. Shading
correction

Figure 3.3: The second part of our algorithm, termed structured illumination microscopy
with a statistical prior (SIMS), estimates the high-resolution object from the measured im-
ages and the estimated illumination patterns obtained in Part 1.
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Part 2a: Calculate the pattern-intensity covariance

Consider the case where the pattern p(r) is a random variable at position r and the measured
intensity I(r) is also a random variable at position r. The `-th image is thus the `-th sample
function for these random variables (one event out of the sample space). Covariance is a
measure of how much two random variables change together. Since the intensity I(r) is the
blurred version of the product between random patterns p(r) and deterministic object o(r)
(Eq. (3.1)), the covariance between the pattern and the intensity should give high similarity
wherever the object o(r) has signal and thus allow us to find the object underneath the
random-pattern illumination [49, 124–127]. We calculate this covariance image Icov(r) as

Icov(r) = 〈∆p`(r)∆I`(r)〉` =

∫∫
o(r′) 〈∆p`(r)∆p`(r

′)〉` hdet(r− r′)d2r′, (3.7)

where ∆I`(r) = I`(r)− 〈I`(r)〉`, and ∆p`(r) = p`(r)− 〈p`(r)〉`.
Regardless of which illumination pattern is imposed, the covariance image always gives an

estimate of the object. However, the resolution of the reconstructed object may be different
for different pattern statistics. We can quantify this by taking a closer look at the expression
on the right-hand side of Eq. (3.7). The covariance between p(r) and p(r′) acts as the PSF of
the covariance image, which thus determines resolution. If the patterns are perfectly spatially
correlated, the pattern-pattern covariance is a constant, and the pattern-intensity covariance
image is a normal widefield image with PSF of h(r). If the patterns are perfectly spatially
uncorrelated, the pattern-pattern covariance is 〈|∆p`(r)|2〉` δ(r − r′), which, for a constant
variance, results in the PSF being a delta function and the object being reconstructed with
perfect resolution. In practice, this is not achievable, since the illumination is bandlimited
and thus cannot be perfectly uncorrelated. In the general case, to find the resolution (PSF)
of the covariance image, we need to calculate the spatial covariance of the patterns, which
is the subject of Part 2b, below.

Part 2b: Calculate pattern-pattern covariance

To calculate the spatial covariance of the projected patterns, we first consider the pattern
formation model. In our experiments, for example, we use a DMD to create random patterns
at the sample plane. Assuming that the projected DMD pattern is sparse enough to avoid
interference cross-terms, we can express our pattern under the incoherent model as

p`(r) =

∫∫
t`(r

′)hillu(r− r′)d2r′, (3.8)
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where t`(r) is the `-th pattern on the DMD. With this model, the pattern-pattern covariance
is

〈∆p`(r)∆p`(r
′)〉` =

∫∫ ∫∫
〈∆t`(r1)∆t`(r2)〉` hillu(r− r1)hillu(r′ − r2)d2r1d

2r2

=

∫∫ ∫∫
γt
〈
∆t2`(r1)

〉
`
δ(r1 − r2)hillu(r− r1)hillu(r′ − r2)d2r1d

2r2

≈ αt

∫∫
hillu(r− r1)hillu(r′ − r1)d2r1 = αt(hillu ? hillu)(r− r′), (3.9)

where we have used an assumption that the DMD pattern values at position r1 and r2 are
perfectly uncorrelated:

〈∆t`(r1)∆t`(r2)〉` = γt
〈
∆t2`(r1)

〉
`
δ(r1 − r2) ≈ αtδ(r1 − r2), (3.10)

with γt being a constant that maintains unit consistency. This assumption is valid because
the effective DMD pixel size is small compared to the FWHM of the optical system and we
can control ∆t`(r) to create an uncorrelated pattern. In the experiment, each position of
t`(r) is an independent and identically distributed random variable. When the number of
patterns is large enough, the variance 〈∆t2`(r1)〉` approaches the same constant for all the
positions. We can then combine γt and the variance into a single constant αt.

Ideally, we can assume hillu(r) ≈ hdet(r) when λillu ≈ λdet, where λdet is the wavelength
of the fluorescent emission detection light, and theoretically calculate the pattern-pattern
covariance. We can also estimate hillu ? hillu(r) by numerically evaluating Eq. (3.9) using our
estimated patterns, which accounts for possible aberrations in the illumination optics.

Part 2c: PSF deconvolution of the covariance image

The pattern-pattern covariance derived in Part 2b is related to the PSF of the pattern-
intensity covariance calculated in Part 2a. Hence, we can plug the pattern-pattern covariance
into Eq. (3.7) and write the covariance image as

Icov(r) = 〈∆p`(r)∆I`(r)〉` =

∫∫
αto(r

′)[(hillu ? hillu) · hdet](r− r′)d2r′. (3.11)

Importantly, the effective PSF for this correlation image is now [(hillu ? hillu) · hdet](r),
and the corresponding effective OTF is [|h̃illu|2 ⊗ h̃det](u). Since both |h̃illu|2 and h̃det have
approximately the same Fourier support as the widefield OTF, the convolution between
them covers around 2× the support of the widefield OTF, as in conventional SIM. Given the
effective PSF, we implement a standard deconvolution to improve contrast at high spatial
frequencies:

Icov,dec(r) = F−1

{
Ĩcov(u) ·H(u)

|H(u)|2 + ξ

}
, (3.12)

where H(u) = [|h̃illu|2 ⊗ h̃det](u) and ξ is a small regularization parameter.
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Part 2d: Shading correction operation

When the number of images is not large enough to give uniform variance of the patterns at
each pixel (〈∆t2`(r′)〉` from Eq. (3.9)), low-frequency shading artifacts will occur. These can
be seen in the deconvolved covariance image in Fig. 3.3. To resolve this, we can estimate and
correct for the variance across the image using our previously estimated projected patterns.
Since the projected pattern p`(r) is the blurred version of the pattern on the DMD, by ig-
noring the high-frequency component of the DMD pattern, we can approximate the variance
of the DMD pattern by

αt(r) = γt
〈
∆t2`(r)

〉
`
≈ γt

〈
∆p2

`(r)
〉
`
. (3.13)

We divide out the spatially-varying variance αt in Eq. (3.11) from the deconvolved SIMS
image,

ISIMS(r) =
Icov,dec(r) · αt(r)

α2
t (r) + ε

, (3.14)

where ε is a regularizer and ISIMS(r) is the output from our SIMS reconstruction (Part 2c).
This result of this step is our final reconstruction of the high-resolution object function.

3.2.4 Parameter tuning

Our SIMS algorithm involves 4 regularizers: β, δ, ξ, and ε, described in Eq. (3.3), Eq. (3.6),
Eq. (3.12), and Eq. (3.14), respectively. Each is decoupled from the others and acts similarly
to a typical Tikhonov regularizer, so tuning may be done independently. Generally, we want
the regularizers to be as small as possible, while still avoiding noise amplification.

The procedure to tune the regularization parameters heuristically is summarized as fol-
lows. First, we check if the widefield images are well-deconvolved by finding the smallest
β to give the image with best resolution but without obvious noise amplification, then we
move on to check the deconvolved covariance image by tuning the SIMS regularizer ξ and
the smooth-edge filter regularizer δ using the same principle, and finally we check the final
reconstruction by using the smallest shading correction regularizer ε with enough shading
correction but without evident noise amplification.

3.3 Simulation results

3.3.1 Definition of resolution

Before introducing and comparing any SIM algorithms, we want to first define the resolution
criterion considered in this paper. Resolution of a microscopic image is usually defined by
measuring the minimal resolvable distance between two points. Consider a widefield image
with detected wavelength λ and numerical aperture NA; the Abbe resolution criterion is then
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0.5λ/NA, the full width at half maximum (FWHM) of the widefield PSF. As two points get
closer to each other, the contrast between them decreases. Hence, the Abbe resolution
criterion can be thought of as setting the minimum acceptable contrast between two points
at 0.01. We can therefore define the resolution of a microscope or a reconstruction algorithm
by measuring the smallest resolvable fine features that have contrast between them of at
least 0.01.

3.3.2 Comparison of algorithms

Given this definition of resolution, we quantify the resolution for various algorithms in
Fig. 3.4. The Siemens star test target (o(r, θ) = 1 + cos 40θ in polar coordinates) has
varying spatial frequencies along the radius. The resolution of different imaging methods is
quantified by reading the minimal resolved period when the contrast reaches 0.01. The ef-
fective modulation transfer function (MTF) of each method is shown in Fig. 3.4b, measured
as the contrast of the reconstructed Siemens star image at different radii.

Our simulations use a SIM dataset with random patterns, so that we may compare against
the previously proposed reconstruction algorithms of blind SIM [51] and S-SOFI [55]. We
create Nimg = 400 speckle-illuminated images from shifted random patterns on the DMD,
with shifts of 0.6 FWHM of the PSF across 20×20 steps in the x and y directions, respectively.
In each pattern, only 10% of the DMD pixels are turned on. This noise-free situation allows
us to compare the ideal achieved resolution for the different algorithms.

Figure 3.4a shows the widefield, deconvolved widefield, confocal, and deconvolved confo-
cal images of the Siemens star, as compared to blind SIM [51], S-SOFI [55] and our algorithm.
At the bottom, we show the measured effective MTF for each algorithm. In terms of visual
effect, S-SOFI [55] gives the least artifacts.

Table 3.1: Achieved resolution for different algorithms

Widefield
Widefield

deconvolved
Confocal

Confocal
deconvolved

Resolution
[λ/2NA]

1.035 0.844 0.681 0.428

Enhancement 1 × 1.23 × 1.52 × 2.42 ×
Blind SIM S-SOFI PE-SIMS PE-SIMS-PR

Resolution
[λ/2NA]

0.563 0.619 0.551 0.517

Enhancement 1.84 × 1.67 × 1.88 × 2.00 ×

To compare resolution, we use our definition of the minimal resolved separation when the
contrast drops to 0.01 and summarize the results in Table 3.1. The enhancement metric gives
the ratio resolution improvement over widefield imaging. S-SOFI resolves features down to
1.67 × smaller than the widefield microscope, which is close to the claimed 1.6× in [55],
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Figure 3.4: (a) Simulated reconstructions of a Siemens star target under a widefield mi-
croscope, deconvolved widefield, confocal microscope, deconvolved confocal, blind SIM [51],
S-SOFI [55], our PE-SIMS and PE-SIMS-PR algorithms. (b) The effective modulation trans-
fer function (MTF) of each method, given by the contrast of the reconstructed Siemens star
image at different radii.

and Blind SIM achieves 1.84× improvement but lower contrast for high-frequencies, which
is consistent with [51]. Our PE-SIMS and PE-SIMS-PR (PE-SIMS with pixel reassignment
algorithm [116–120] described in Sec. 3.6) algorithms give better resolution compared to
other methods. We resolve features down to 1.84× and 2×, respectively, close to the limit
set by the deconvolved confocal image. Hence, our method performs the best of the blind
algorithms.

Ideally, if we know all the patterns and our spatial modulation covers the full Fourier
bandwidth of the objective, we could reconstruct out to 4NA/λ in Fourier space, achieving
enhancement of 2.42×, as in the case of deconvovled confocal image or periodic SIM with
known patterns. The blind algorithms, however, deal with an ill-posed problem (measure
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Nimg images and solve Nimg +1 images) that can only become well-posed through appropriate
constraints. If the prior for these algorithms are not accurate enough, they may solve a
different problem even if the problem becomes well-posed. This is why algorithms with
different prior assumptions give different resolution performance for the same dataset, as we
saw in Table 3.1.

3.4 Experimental results

Our experimental setup is shown in Fig. 3.1. A laser beam (Thorlabs, CPS532, 4.5 mW)
is expanded to impinge onto a reflective DMD spatial light modulator (DLP R©Discovery
4100, .7 XGA, 1024×768 pixels, pixel size 13.6 µm). The DMD generates a total of Nimg

random patterns (30% of DMD pixels turned on). These random illumination patterns are
projected onto the object (with demagnification of 60×) through a 4f system composed of
a 200 mm convex lens and a 60× objective lens with NA= 0.8 (Nikon CFI). The resulting
fluorescent light is then collected with another 4f system formed by the same 60× objective
and a 400 mm convex lens (magnification 120×). A dichroic mirror blocks the reflected
illumination light (as in a typical epi-illumination setup). The images are taken with an
sCMOS camera (PCO.edge 5.5, 2560×2160 pixels, pixel size 6.5 µm). Patterns are shifted
on a 20× 20 grid in the x and y directions with a step size of 0.6 FWHM of the PSF, while
collecting images at each step. Our test object is carboxylate-modified red fluorescent beads
(Excitation wavelength: 580 nm/Emission wavelength: 605 nm) having mean diameter of
210 nm (F8810, Life Technologies).

Reconstruction results are shown in Fig. 3.5, demonstrating improved resolution using
our PE-SIMS algorithm, as compared to standard widefield or deconvolved widefield images.
To quantitatively analyze the experimental results, we measure the resolved feature size of
the reconstructed image and compare it to our theory. As shown in the cutline in Fig. 3.5,
two fluorescent beads separated by 328 nm can clearly be resolved using our method, which
are otherwise unresolvable in either widefield or deconvolved widefield images. The contrast
of this two-Gaussian shape shows these two Gaussian are separated by 1.16× FWHM, so the
FWHM of the reconstructed beads is around 283 nm, which is below the diffraction limit
λ/2NA = 371 nm and closer to the size of the beads (210 nm in diameter).

Our algorithm can be used on other types of SIM datasets, as long as the pattern-pattern
covariance gives a point-like function at the center. As an example, we tested our algorithm
on a dataset from a previous method, Multispot SIM (MSIM) [45]. In MSIM, the patterns are
a shifting grid of diffraction-limited spots. Since the previous MSIM implementation assumes
known patterns, a calibration step captured an extra dataset with a uniform fluorescence
sample in order to measure the patterns directly. Our algorithm ignores this calibration
data, yet accurately reconstructs both the object and patterns (see Fig. 3.6). The MSIM
result using the calibration data is shown for comparison. The sample is microtubules
stained with Alexa Fluor 488 in a fixed cell observed under a TIRF 60× objective with
NA = 1.45. Our PE-SIMS-PR reconstruction gives a similar result to the known-pattern
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Figure 3.5: Reconstructions of red fluorescent beads (Ex:580 nm/Em:605 nm) from the
experiment using random pattern illumination with 20× 20 scanning step.

MSIM reconstruction.

3.5 Reduced acquisitions by multi-spot scanning

In this paper, we used 400 random speckle illumination patterns to reconstruct the image, far
more than the 9-image requirement of conventional SIM [6]. This large number of images was
required for high-quality reconstructions because the average and variance of the illumination
patterns must be sufficiently flat in order to avoid shading variations. Recall that we want
αt(r) ≈ γt 〈∆p2

`(r)〉` in Eq. (3.13) to be close to a constant, which suggests that the variance of
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Figure 3.6: Comparison of our algorithm on dataset from Multispot SIM (MSIM) which uses
withNimg = 224 scanned multi-spot patterns from [45]. We show the deconvolved widefield
image and the reconstructions using MSIM with known patterns, as well as our blind PE-
SIMS algorithm with and without pixel reassignment.

the random patterns is constant. When the number of images Nimg goes down, this statistical
assumption is not true any more. We use a shading correction algorithm (Sec. 3.2.3) to fix
this problem by estimating the nonuniform variance, but it is still only an estimate. Hence,
when the degree of variance nonuniformity increases (as the number of images decresases),
the shading correction algorithm incurs errors.

Figure 3.7 shows simulations demonstrating the effect of reducing the number of images.
We use the same random pattern as in Sec. 3.2.3 and shift by step sizes of 0.6 FWHM of
the PSF. As we decrease the number of images from 400 to 36, the reconstruction becomes
worse, due to shading errors. The shading map, αt(r)o(r), is shown in the bottom row of
Fig. 3.7. We can see the artifacts happen at the region where the αt(r) is dim and changing.
Without knowing the patterns a priori it is not possible to fully correct these shading effects.

Since we know that the artifacts that appear with too few images are due to a non-uniform
αt(r), we can attempt to design patterns that will be uniform with a minimal number of
images. We would like 〈∆p2

`(r)〉` to give a uniform map. Consider the contribution from a
single pattern; ∆p2

`(r) is similar to the original pattern but with sharper bright spots. The
ensemble average over ` sums up all these bright spots after shifting the pattern around.
For a shifted random pattern, we must capture many images in order for the summation of
the bright spots to give a uniform map. One efficient way to get a sum of bright spots to
become a uniform map is to use a periodic multi-spot pattern (see Fig. 3.7) [45, 46, 48]. The
period of this multi-spot pattern is designed to be 6 shifting step sizes. Thus, we can use
6× 6 scanning steps to give a uniform shading map αt(r). The reconstruction is also shown
in Fig. 3.7 to be almost as good as the one illuminated with 400 shifted random patterns.
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Figure 3.7: Results with simulated and experimental (fluorescent beads) datasets comparing
random speckle and multi-spot illumination patterns. (middle row) Shading maps overlaid
on the object. Decreasing the number of random patterns results in shading artifacts in the
reconstruction. The random patterns are scanned in 20× 20, 10× 10, and 6× 6 steps with
the same step size of 0.6 FWHM of the PSF, while the multi-spot pattern is scanned with
6× 6 steps.

Experimentally, we see similar trends in image reconstruction quality for different illumi-
nation strategies (see the bottom row of Fig. 3.7). Results from random pattern illumination
of fluorescent beads with Nimg = 400 and multi-spot illumination with Nimg = 36 give very
similar results, and shading artifacts become prominent as the number of patterns is reduced.
Note that we use the same algorithm for both the random and multi-spot illuminated datasets
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because the PSFs of the pattern-intensity covariance images Icov(r) for both cases are the
same.

To show that the PSF for the pattern-intensity covariance image with random and multi-
spot illumination are the same, we must derive the pattern-pattern covariance 〈∆p`(r)∆p`(r

′)〉`
as we did in Part 2b in Sec. 3.2.3. To calculate the pattern-pattern covariance, we need to cal-
culate the covariance of the patterns on the DMD 〈∆t`(r)∆t`(r

′)〉` and plug it into Eq. (3.9)
to get pattern-pattern covariance 〈∆p`(r)∆p`(r

′)〉`. For the multi-spot case, we can express
the pattern on the DMD and its zero-mean pattern as

t`(r) = Λ2
∑
m,n

δ(r− rmn − r`) + t0

∆t`(r) ≈ Λ2
∑
m,n

δ(r− rmn − r`), (3.15)

where rmn = (mΛ, nΛ), m and n are integers, and Λ is the period of the pattern. Then, we
can calculate the covariance of the pattern on the DMD as

〈∆t`(r1)∆t`(r2)〉` =

∫∫
∆t(r1 − r`)∆t(r2 − r`)d

2r`

= Λ4
∑
m,n

δ(r1 − r2 − rmn) ?
∑
m,n

δ(r1 − r2 − rmn)

≈ Λ4η
∑
m,n

δ(r1 − r2 − rmn), (3.16)

where η is a constant that enforces unit consistency. Plugging this into Eq. (3.9), we can
then calculate the pattern-pattern covariance as

〈∆p`(r)∆p`(r
′)〉` = (hillu ? hillu)(r− r′)⊗ Λ4η

∑
m,n

δ(r− r′ − rmn). (3.17)

Although the pattern-pattern covariance is only a replica of the (hillu ? hillu)(r), the PSF
of the covariance image, Icov(r), only depends on the multiplication of hdet(r) and (hillu ?
hillu)(r)⊗Λ4η

∑
m,n δ(r−rmn) as Eq. (3.7) derived. If the period of the multi-spot pattern is

large compared to (hillu ? hillu)(r), we can still have our PSF as [(hillu ? hillu) · hdet](r), which
is the same as the case of random pattern illumination.

3.6 Pixel reassignment for better SNR

In this section, we first discuss the similarity between SIMS and confocal microscopy. This
leads to an extension of our method that incorporates the pixel reassignment procedure
proposed in [116–120]. In computing the covariance of the shifted pattern p`(r− rs) and the
intensity I`(r), there is still some information of the object leftover. Pixel reassignment helps
incorporate it in a straightforward fashion, giving better SNR in the final reconstruction.
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In Sec. 3.2.3 of our SIMS procedure, we first calculate the covariance image Icov(r). The
PSF of this covariance image is determined by imposing our statistical prior on the pattern-
pattern covariance 〈∆p`(r)∆p`(r

′)〉`. The effect is similar to the illumination PSF of confocal
microscopy [44]. Looking at Eq. (3.11), our covariance image with PSF of [(hillu?hillu)·hdet](r)
is the same as a confocal image taken with illumination PSF, (hillu ? hillu)(r), and detection
PSF, hdet(r).

From the same SIM dataset, we can further use the shifted patterns p`(r − rs) and
correlate them with the intensity I`(r) to compute a series of shifted covariance images

Iscov(r, rs) = 〈∆p`(r− rs)∆I`(r)〉` =

∫∫
o(r′) 〈∆p`(r− rs)∆p`(r

′)〉` h(r− r′)d2r′

=

∫∫
αto(r

′)(hillu ? hillu)(r− rs − r′)hdet(r− r′)d2r′. (3.18)

The PSF of the shifted covariance image Iscov(r) is the product of (hillu ? hillu)(r − rs) and
hdet(r), whose center is approximately at rs/2. This image is the same as the image taken
under a confocal microscope with a shifted pinhole. This implies by shifting around the
patterns and correlating with the intensity, we get the equivalent of many 2D confocal images
taken with the pinhole at different positions. This is the same dataset as would be described
in the imaging scanning microscope, where the single-pixel camera and pinhole is replaced
with a CCD in the confocal system [118, 119]. Though these images are not centered, they
still contain the information of the same object. Pixel reassignment was proposed in [117–
120] as a way to incorporate this 4D information to get a 2D image with better SNR.

Since the 2D images from rs-shifted patterns are approximately rs/2-shifted versions of
the one at rs = 0, we can shift the information back to the center region and sum up all
these images to enhance the SNR and form a pixel-reassigned (PR) image as

IPR(r) =

∫∫
Iscov

(
r +

rs
2
, rs

)
d2rs

=

∫∫
αto(r

′)

[∫∫
(hillu ? hillu)

(
r− rs

2
− r′

)
hdet

(
r +

rs
2
− r′

)
d2rs

]
d2r′

=

∫∫
αto(r

′)[(hillu ? hillu)⊗ hdet](2(r− r′))d2r′ (3.19)

This synthesized image using pixel reassignment gives a PSF of [(hillu ? hillu) ⊗ hdet](2r).
Figure 3.8(a) shows the comparison between the SIMS PSF, [(hillu ? hillu) · hdet](r), and the
PSF of SIMS with pixel reassignment, [(hillu ? hillu) ⊗ hdet](2r) both in the real space and
the Fourier space (assuming hillu ≈ hdet). In the real space, the PSF after doing pixel
reassignment looks fatter than the one without pixel reassignment. However, the OTF of
the one with pixel reassignment has larger value in the high-frequency region, where the
noise severely degrade the image resolution. Thus, we get better SNR by summing up all
the information we have and have a OTF that better deals with noise at high-frequency
region. Since we know the PSF, [(hillu ? hillu) ⊗ hdet](2r), and the shading map, αt(r), of
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Figure 3.8: (a) Comparison of the PSF and OTF for SIMS and SIMS with pixel reassignment
(PR). (b) Comparisons of the deconvolved widefield image and the reconstructions of the
6× 6 multi-spot scanned fluorescent beads with and without pixel reassignment.

this pixel-reassigned image IPR(r), we can again apply the deconvolution and the shading
correction operation described in Sec. 3.2.3 to get a PE-SIMS-PR reconstruction.

Figure 3.8(b) compares the reconstruction result of fluorescent beads using 6× 6 multi-
spot illumination with and without applying pixel reassignment algorithm. Pixel reassign-
ment results in sharper contrast when two beads are close to each other and helps clean up
some background deconvolution errors. A cut-line plot of the fluorescent beads in Fig. 3.8(b)
shows that the FWHM of the reconstructed bead from SIMS (300.3 nm) is larger than for
SIMS-PR with pixel reassignment (254 nm), giving better resolution.

3.7 Extension to 3D imaging

So far, we have seen our proposed algorithm effectively reconstructs 2D super-resolution
fluorescent images without knowing the structured patterns, which relaxes the hardware



CHAPTER 3. COMPUTATIONAL RANDOM STRUCTURED ILLUMINATION
FLUORESCENCE MICROSCOPY 74

calibration requirement for SIM. Furthermore, the blind SIM idea is also applicable in 3D
imaging as we can see in the demonstrations of both 3D-S-SOFI [128] and 3D blind SIM [56].
However, the previous 3D blind SIM imaging formulation is not accurate because modeling
axial sample scanning requires special z-coordinate treatment mathematically. The mathe-
matical structure of 2D SIM cannot be directly generalize to 3D by simply adding one more
dimension. Here, we adopt more rigorous 3D imaging formulation as in [129] and propose a
3D extension of our 2D blind SIM algorithm to reconstruct 3D SIM images with unknown
patterns. Finally, we apply this algorithm to experimental data with multi-spot illumina-
tion patterns to demonstrate 3D resolution enhancement without knowing the illumination
patterns a priori.

3.7.1 Theory and method

Consider the experimental setup as in the 2D case shown in Fig. 3.1, except the sample
here is mounted on a axially translating motion stage. A deformable mirror device (DMD)
is used to project patterns onto the object through an objective lens, while a motion stage
scans the sample in axial direction to collect an intensity stack. The `-th captured intensity
stack, I`(r⊥, z) (where r⊥ = (x, y) denotes lateral coordinates), can be represented as the
product of the object’s fluorescence distribution, o(r⊥, z), and the illumination pattern,
p`(r⊥, z), followed by a convolution with the system’s detection-side incoherent 3D point
spread function (PSF), hdet(r⊥, z):

I`(r⊥, z) =

∫∫∫
o(r′⊥, z

′)p`(r
′
⊥, z − z′)

hdet(r⊥ − r′⊥, z − z′)d2r′⊥dz
′. (3.20)

Note that the z-coordinate of the pattern in this model is not referenced to the object, but
rather the PSF. This is because the pattern stays static relative to the objective lens while
we scan the object axially. With this forward model, we can describe our self-calibration
algorithm, 3D PE-SIMS, in two parts. The first part is Pattern Estimation (PE), in which
an optimization procedure estimates the 3D illumination patterns. The second part is 3D
SIM with a Statistical prior (SIMS), in which the super-resolved image is reconstructed from
the estimated patterns and the measured intensity stacks.

3.7.1.1 Pattern Estimation

Part 1a: Approximate the widefield image

The captured intensity stack mixes information from the object and the illumination pattern.
To recover the illumination patterns, which are diffraction-limited, we first make a low-
resolution (diffraction-limited) estimate of the object by taking a mean of the intensity
stacks:

Iavg(r⊥, z) = 〈I`(r⊥, z)〉` ≈ p0o(r⊥, z)⊗ hdet(r⊥, z), (3.21)
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where 〈·〉` denotes a mean operation with respect to `. The mean of the illumination patterns
should be close to a constant across the whole volume 〈p`(r′⊥, z − z′)〉` ≈ p0, as in blind
SIM [51].

Part 1b: Deconvolve the widefield image

The best estimate of the object before doing the SIMS reconstruction is obtained by a 3D
deconvolution procedure on the mean intensity stack. This gives a low-resolution object
estimate:

oest(r⊥, z) = F−1

{
Ĩavg(u⊥, uz) · h̃det(u⊥, uz)

|h̃det(u⊥, uz)|2 + β

}
, (3.22)

where u⊥ = (ux, uy) represents the lateral spatial frequency coordinates and β is the Tikhonov
regularization constant.

Part 1c: Estimate patterns

The low-resolution object estimate oest(r⊥, z) is then used to estimate the patterns. In order
to implement an efficient pattern estimation algorithm, we turn (3.20) into a convolution-
based operation as

I`(r⊥, z) ≈
∑
u′z

∆u′z

∫∫
o(r′⊥, z

′)p`(r
′
⊥, u

′
z)hdet,u′z(r⊥ − r′⊥, z − z′)d2r′⊥

=
∑
u′z

∆u′z[(o · p`,u′z)⊗ hdet,u′z ](r⊥, z), (3.23)

where we have used

p`(r
′
⊥, z − z′) ≈

∑
u′z

∆u′zp`(r
′
⊥, u

′
z)e

i2πu′z(z−z′), (3.24)

and defined hdet,u′z(r⊥, z) = hdet(r⊥, z)e
i2πu′zz and p`,u′z = p`(r⊥, u

′
z). A key feature of our

algorithm is that we use this expression and a Fourier support constraint on the illumination
patterns to estimate the 3D patterns via an optimization procedure

min
p`,uz

f(p`,uz) =
∑
r⊥,z

∣∣∣∣∣I`(r⊥, z)−∑
uz

∆uz[(o · p`,uz)⊗ hdet,uz ](r⊥, z)

∣∣∣∣∣
2

+ IC(p`,uz),

where IC(p`,uz) =

{
0, p`,uz ∈ C

+∞, p`,uz /∈ C
, C =

{
p`,uz

∣∣∣p̃`(u⊥, uz) = 0, if h̃illu(u⊥, uz) = 0
}
,

(3.25)

where h̃illu(u⊥, uz) represents the illumination-side incoherent 3D OTF. This optimization
problem is solved by using a projected Nesterov’s gradient descent method [123].
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3.7.1.2 3D SIM with a Statistical prior

The second part of our algorithm uses the structured illumination dataset and the recovered
illumination patterns to reconstruct the high-resolution object image.

Part 2a: Calculate pattern-intensity covariance

First, we calculate the pattern-intensity covariance as in 2D case [130]. Since we have
estimated the patterns, we can retrieve the high-resolution object as

Icov(r⊥, z) ≡ 〈∆p`(r⊥, 0)∆I`(r⊥, z)〉` (3.26)

=

∫∫∫
o(r′⊥, z

′) 〈∆p`(r⊥, 0)∆p`(r
′
⊥, z − z′)〉` hdet(r⊥ − r′⊥, z − z′)dr′⊥dz′

=

∫∫∫
o(r′⊥, z

′)[(hillu ? hillu) · hdet](r⊥ − r′⊥, z − z′)dr′⊥dz′,

where we have used the pattern-pattern covariance 〈∆p`(r⊥, z)∆p`(r′⊥, z′)〉` = (hillu?hillu)(r⊥−
r′⊥, z − z′). This can be considered as a 3D extension from the 2D correlation [130].

Part 2b: PSF deconvolution of covariance image

From 2a, the effective 3D PSF for the covariance image stack is heff(r⊥, z) = [(hillu ? hillu) ·
hdet](r⊥, z). Since we know the PSF hillu and hdet, we can then conduct another deconvolution
to get the final reconstruction:

Icov,dec(r⊥, z) = F−1

{
Ĩcov(u⊥, uz) · h̃eff(u⊥, uz)

|h̃eff(u⊥, uz)|2 + ξ
A(u⊥, uz)

}
, (3.27)

where ξ is another Tikhonov regularization constant and A(u⊥, uz) is the apodization filter
(typically a triangular shape filter from the origin of Fourier space to the support of the
effective OTF that approximates the extended OTF support).

3.7.2 Experimental results

Our experiment setup is geometrically the same as in the 2D case shown in Fig. 3.1, except
that it is a high-NA version of the 2D setup and the object here is mounted on a translation
stage for axial scanning. A 70 mW green laser beam at 532 nm is coupled into a single-
mode fiber (Thorlabs, SM450) with an ouput power of 10 mW. The output beam is then
collimated and impinge onto a reflective DMD spatial light modulator (DLP R©Discovery
4100, .7” XGA, 1024×768 pixels, pixel size 13.6 µm). The patterns generated by the DMD
are projected onto the object (with 125× demagnification) through a 4f system composed of
a 250 mm convex lens (Thorlabs, AC508-250-A-ML) and a objective lens (Nikon, CFI Plan
Apo Lambda 100X Oil, NA = 1.45). The resulting fluorescent light is then collected by the
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same system with a dichroic mirror in the way to block the reflected illumination light. In
the acquisition process, the object is scanned in the z-direction with a piezo-stage (Thorlabs,
MAX311D) and the images are taken with an sCMOS camera (PCO.edge 5.5, 2560×2160
pixels, pixel size 6.5 µm).

Figure 3.9: (Left) x-y and x-z cross-sections of the experimental raw data from fluorescent
beads illuminated with a multispot pattern. (Right) The estimated 3D illumination pattern
from our pattern estimation algorithm.

To first test out our algorithm and quantify the performance of it, we choose to im-
age a test object, carboxylate-modified red fluorescent beads (Excitation wavelength: 580
nm/Emission wavelength: 605 nm) having mean diameter of 210 nm (F8810, Life Technolo-
gies). In this experiment, we generate a multispot pattern with period of 4.2 diffraction spot
(λ/2NA = 208.6 nm) corresponding to 8 pixels on the DMD. This pattern is then shifted
in a 8× 8 grid with a step size of 0.525 diffraction spot and there are total 64 images taken
for one z plane. This process is then repeated for 20 z planes. Figure 3.9 shows one of the
x-y and x-z views of a 3D acquisition under one pattern illumination. It is obvious that the
pattern information can be directly seen on the raw data. By plugging all the data into the
first part of our algorithm, we can estimate the illumination pattern and the result is shown
in the right hand side of Fig. 3.9. Compared with the raw data on the left, the estimated
pattern has not only sharper illumination spots but also lower background signal.

With the estimated pattern, we then run the second part of our algorithm and give a
3D super-resolved reconstruction on the fluorescent beads. Figure 3.10 shows a comparison
of our reconstruction and widefield image in one of the x-y and x-z views. Before the
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Figure 3.10: (Top) Comparison of widefield and 3D PE-SIMS reconstruction, showing x-y
and x-z cross-sections for a sample with 200 nm red fluorescent beads. (Bottom) Histogram
on the size (FWHM) of 32 reconstructed fluorescent beads.

reconstruction, the widefield image can not see each individual bead, while the reconstructed
image can resolve almost every one of them.

To carefully quantify the resolution of our experiment, we randomly pick 32 fluorescent
beads in the reconstruction and then calculate its full width at half maximum (FWHM) in
both x and z direction. The bottom part of Fig. 3.10 shows the histogram and mean of
the FWHM of the beads in x and z direction. However, this FWHM includes the effects
from the size of the beads and size of the reconstructed PSF. We need to have the FWHM
of a single bead to characterize the size of the reconstructed PSF. In the widefield image,
the FWHM of an isolated fluorescent bead is 247 nm and a diffraction spot size (FWHM of
widefield PSF) is 208 nm. We can then calculate the FWHM of a single 210 nm fluorescent
bead as

√
2472 − 2082 = 133 nm. With the FWHM of the fluorescent bead, we can then



CHAPTER 3. COMPUTATIONAL RANDOM STRUCTURED ILLUMINATION
FLUORESCENCE MICROSCOPY 79

characterize the FWHM of our reconstructed PSF as
√

1832 − 1332 = 126 nm in x, y direction
and
√

4592 − 1332 = 439 nm in the z direction.

Figure 3.11: Comparison of widefield and 3D PE-SIMS reconstruction, showing x-y and x-z
cross-sections for a 3D bacteria aggregation sample (Candidatus Kuenenia stuttgartiensis).

Next, we move on to image a more complicated biological sample (Candidatus Kuenenia
stuttgartiensis) with the same setup and illumination patterns as our previous experiment.
This sample is a 3D aggregation of bacteria with diameter of 1 µm [131]. The outer region
of the bacteria is filled with Cy3-fluorescent-tagged 16s ribosomal RNA. Figure 3.11 shows
a comparison between the widefield and 3D PE-SIMS reconstructed images of this bacteria
in one of the x-y and x-z views. A clear resolution improvement in x and y and the depth
sectioning ability are observed in the reconstructed images. To even verify this reconstruc-
tion, we can compare the reconstructed bacteria with the one observed under an electron
microscope in [131] and find out that the size of both images match nicely.

3.8 Conclusion

We have proposed a robust algorithm that can give 2× resolution improvement compared to
widefield fluoresence imaging using 2D and 3D SIM dataset without knowing the imposed
patterns. Our algorithm first estimates each illumination pattern from a low-resolution ap-
proximate object and measured intensities by solving a constrained convex optimization
problem. We then synthesize a high-resolution image by calculating the covariance between
the estimated patterns and the measured intensity images, followed by a deconvolution to
get to the final reconstruction. For 2D algorithm, we quantified the limits on resolution of
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our algorithm by the reconstructed contrast of a simulated Siemens star target. In simula-
tions, we showed that our algorithm gives better resolution compared to previously proposed
blind algorithms [51, 55]. Experimentally, we demonstrated this improvement on both ran-
dom speckle pattern illumination and multi-spot scanned illumination. For 3D algorithm,
we quantify the resolution achieved experimentally by measuring the FWHM of the recon-
structed 200 nm fluorescent beads. With the multispot illuminated SIM dataset processed
by 3D algorithm, we achieved 126 nm resolution laterally and 440 nm resolution axially. In
the end, we apply this algorithm on a more complicated biological sample and demonstrate
3D resolution improvement.
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Chapter 4

Computational speckle structured
illumination phase and fluorescence
microscopy

In Chapter 2 and 3, we have explored the coherent super-resolution and incoherent super-
resolution imaging techniques with the help of computational imaging approaches. Opti-
mization relaxes the optics information retrieval process to achieve super-resolution phase
retrieval without interferometric setup and super-resolution fluorescent imaging with ran-
dom illumination coding. With this simplification on optical system design from the power
of computational imaging, FPM demonstrates multi-fold (4 ∼ 6×) resolution improvement
for coherent phase imaging simply by replacing the light source with an LED array. Although
this resolution gain happens in an intrinsically low-NA imaging system, which does not re-
ally break the diffraction limit for high-NA system, it efficiently captures high-resolution
information over large field-of-view allowed by low-NA objective, resulting in a high-content
coherent imaging technique.

Here we investigate whether it is possible to make similar multi-fold resolution gains
for fluorescence imaging. A key to a multi-fold resolution enhancement for fluorescence
imaging is to generate an illumination pattern that has larger NA than the detection objective
over a large FOV. Illumination NA determines how much super-resolution information is
encoded in the system. The higher the illumination NA that is achieved, the higher resolution
gain can be obtained. Larger illumination NA over a large FOV is normally difficult for
traditional optical design to realize. However, being able to use random speckle illumination
for super-resolution fluorescent imaging from the previous chapter has provided a simple
solution to this problem, leading toward high-content fluorescence imaging. At the same
time, this solution also provides a hint toward high-content coherent imaging, which pairs
with fluorescence channel to form high-content multimodal imaging.

In this chapter, we focus on speckle structured illumination microscopy (SIM) as a robust
and cost-effective solution for high-content fluorescence microscopy with simultaneous high-
content quantitative phase (QP). This multi-modal compatibility is essential for studies
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requiring cross-correlative biological analysis. Our method encodes super-resolution fluo-
rescence and phase information by using laterally-translated Scotch tape to generate high-
resolution speckle illumination patterns across a large FOV. Custom optimization algorithms
then jointly reconstruct the sample’s super-resolution fluorescence (incoherent) and QP (co-
herent) distributions, while digitally correcting for system imperfections such as unknown
speckle illumination patterns, system aberrations and pattern translations. Beyond previous
linear SIM works, we achieve resolution gains of 4× the objective’s diffraction-limited native
resolution, resulting in 700 nm fluorescence and 1.2 µm QP resolution, across a FOV of
2× 2.7 mm2, giving a space-bandwidth product (SBP) of 60 megapixels.

4.1 Introduction

4.1.1 High-content microscopy

The space-bandwidth product (SBP) metric characterizes information content transmitted
through an optical system; it can be thought of as the number of resolvable points in an
image (i.e. the system’s field-of-view (FOV) divided by the size of its point spread function
(PSF) [38, 132]). Typical microscopes collect images with SBPs of < 20 megapixels, a
practical limit set by the systems’ optical design and camera pixel count. For large-scale
biological studies in systems biology and drug discovery, fast high-SBP imaging is desired [31–
37, 133]. The traditional solution for increasing SBP is to use an automated translation
stage to scan the sample laterally, then stitch together high-content images. However, such
capabilities are costly, have long acquisition times and require careful auto-focusing, due to
small depth-of-field (DOF) and axial drift of the sample over large scan ranges [134].

Instead of using high-resolution optics and mechanically scanning the FOV, new ap-
proaches for high-content imaging use a low-NA objective (with a large FOV) and build
up higher resolution by computationally combining a sequence of low-resolution measure-
ments [17–30]. Such approaches typically illuminate the sample with customized patterns
that encode high-resolution sample information into low-resolution features, which can then
be measured. These methods reconstruct features smaller than the diffraction limit of the
objective, using concepts from synthetic aperture [2, 11, 41] and super-resolution (SR) [3,
5–8, 58]. Though the original intent was to maximize resolution, it is important to note that
by increasing resolution, SR techniques also increase SBP, and therefore have application in
high-content microscopy. Eliminating the requirement for long-distance mechanical scanning
means that acquisition is faster and less expensive, while focus requirements are also relaxed
by the larger DOF of low-NA objectives.

Existing high-content methods generally use either an incoherent imaging model to recon-
struct fluorescence [23–30], or a coherent model to reconstruct absorption and quantitative
phase (QP) [17–22]. Both have achieved gigapixel-scale SBP (milli-/centi- meter scale FOV
with sub-micron resolution). However, none have demonstrated cross-compatibility with
both coherent (phase) and incoherent (fluorescence) imaging.
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4.1.2 Contribution of this chapter

Here, we demonstrate multi-modal high-content imaging via a computational imaging frame-
work that allows super-resolution fluorescence and QP. Our method is based on structured
illumination microscopy (SIM), which is compatible with both incoherent [2, 5, 6, 60] and
coherent [14, 135–139] sources of contrast [13, 16, 140, 141].

Though most SIM implementations have focused on super-resolution, some previous
works have recognized its suitability for high-content imaging [23–29]. However, these pre-
dominantly relied on fluorescence imaging with calibrated illumination patterns, which are
difficult to realize in practice because lens-based illumination has finite SBP. Here, we use
random speckle illumination, generated by scattering through Scotch tape, in order to achieve
both high-NA and large FOV illumination. Our method is related to blind SIM [51]; however,
instead of using many random speckle patterns (which restricts resolution gain to ∼1.8×),
we translate the speckle laterally, enabling resolution gains beyond that of previous meth-
ods [51, 52, 56, 57, 113, 114, 130]. Previous works also use high-cost spatial-light-modulators
(SLM) [142] or galvonemeter/MEMs mirrors [139, 143] for precise illumination, as well as
expensive objective lenses for aberration correction. We eliminate both of these requirements
by performing computational self-calibration, solving for the translation trajectory and the
field-dependent aberrations of the system.

Our proposed framework enables three key advantages over existing methods:

• resolution gains of 4× the native resolution of the objective (linear SIM is usually
restricted to 2×) [51–54, 56, 57, 113, 114, 130],

• synergistic use of both the fluorescent (incoherent) and quantitative-phase (coherent)
signal from the sample to enable multi-modal imaging,

• algorithmic self-calibration to significantly relax hardware requirements, enabling low-
cost and robust imaging.

In our experimental setup, the Scotch tape is placed just before the sample and mounted
on a translation stage (Fig. 4.1). This generates disordered speckles at the sample that
are much smaller than the PSF of the imaging optics, encoding SR information. Nonlinear
optimization methods are then used to jointly reconstruct multiple calibration quantities:
the unknown speckle illumination pattern, the translation trajectory of the pattern, and
the field-dependent system aberrations (on a patch-by-patch basis). These are subsequently
used to decode the SR information of both fluorescence and phase. Compared to traditional
SIM systems that use high-NA objective lenses, our system utilizes a low-NA low-cost lens
to ensure large FOV. The Scotch tape generated speckle illumination is not resolution-bound
by any imaging lens; this is what allows us to achieve 4× resolution gains. The result is high-
content imaging at sub-micron resolutions across millimeter scale regions. Various previous
works have achieved cost-effectiveness, high-content (large SBP), or multiple modalities, but
we believe this to be the first to simultaneously encompass all three.
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Figure 4.1: Structured illumination microscopy (SIM) with laterally-translated Scotch tape
as the patterning element, achieving 4× resolution gain. Our imaging system has both an in-
coherent arm, where Sensor-F captures raw fluorescence images (at the emission wavelength,
λem = 605 nm) for fluorescence super-resolution, and a coherent arm, where Sensor-C1
and Sensor-C2 capture images with different defocus (at the laser illumination wavelength,
λex = 532 nm) for both super-resolution phase reconstruction and speckle trajectory calibra-
tion. OBJ: objective, AP: adjustable iris-aperture, DM: dichroic mirror, SF: spectral filter,
ND-F: neutral-density filter.

4.2 Theory

SIM generally achieves super-resolution by illuminating the sample with a high spatial-
frequency pattern that mixes with the sample’s information content to form low-resolution
“beat” patterns (i.e. moire fringes). Measurements of these “beat” patterns allow eluci-
dation of sample features beyond the diffraction-limited resolution of the imaging system.
Maximum achievable resolution in SIM is set by the sum of the numerical apertures (NAs) of
the illumination pattern, NAillum, and the imaging system, NAsys. Thus, SIM enables a res-
olution gain factor (over the system’s native resolution) of (NAillum + NAsys)/NAsys [6]. The
minimum resolvable feature size is inversely related to this bound, d ∝ 1/(NAillum + NAsys).

Linear SIM typically maximizes resolution by using either: 1) a high-NA objective in
epi-illumination configuration, or 2) two identical high-NA objectives in transmission ge-
ometry [6, 13]. Both result in a maximum of 2× resolution gain because NAillum = NAsys,
which corresponds to an SBP increase by a factor of 4×. Given the relatively low native
SBP of high-NA imaging lenses, such increases are not sufficient to qualify as high-content
imaging. Though nonlinear SIM techniques can enable higher resolution gains [58], they re-
quire either fluorophore photo-switching or saturation capabilities, which can associate with
photobleaching and low SNR, and are not compatible with coherent QP techniques.
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In this work, we aim for > 2× resolution gain; hence, we need the illumination NA to be
larger than the detection NA, without using a high-resolution illumination lens (that would
restrict the illumination FOV). To achieve this, we use a wide-area high-angle scattering
element - layered Scotch tape - on the illumination side of the sample (Fig. 4.1). Multiple
scattering within the tape creates a speckle pattern with finer features than the PSF of
the imaging system, i.e. NAillum > NAsys. This means that spatial frequencies beyond 2×
the objective’s cutoff are mixed into the measurements, which gives a chance to achieve
resolution gains greater than two.

Algorithmically, to decode the high-resolution information, we need to jointly estimate
the speckle pattern and the sample. This framework shares similar characteristics with the
work on blind SIM first introduced by [51], where completely random speckle patterns were
sequentially illuminated onto the sample. Unfortunately, the reconstruction formulation
proposed in that work is especially ill-posed due to randomness between the illumination
patterns, i.e., if Nimg raw images are taken, there would be Nimg + 1 unknown variables to
solve for (Nimg illumination patterns and 1 sample distribution). To better condition this
problem, priors based on speckle statistics [51, 56, 113, 114, 130] and sample sparsity [52, 57]
can be introduced, pushing blind SIM to 2× resolution gain. However, to implement high-
content microscopy using SIM, we desire a resolution gain of > 2×. Even with priors, we
found that this degree of resolution gain was not experimentally achievable with uncorrelated
and random speckle illuminations, due to the reconstruction formulation being so ill-posed.

To address this issue, we improve the posedness of the problem by illuminating with a
constant speckle pattern that is translated between measurements, as opposed to randomly
changing speckle patterns. Because each individual illumination pattern at the sample is a
laterally shifted version of every other illumination pattern, the posedness of the reconstruc-
tion framework dramatically increases. Previous works [30, 53, 54] have also demonstrated
this concept to effectively achieve beyond 2× resolution gain.

The following sections outline the algorithm that we use to reconstruct large SBP flu-
orescence and QP images from low-resolution acquisitions of a sample illuminated by a
laterally-translating speckle pattern. Our strategy relies on an inverse problem, where both
the sample and illumination speckle (which is unknown) are iteratively estimated [30, 53,
54].

4.2.1 Super-resolution fluorescence imaging

Fluorescence imaging requires an incoherent imaging model. The intensity at the sensor is a
low-resolution image of the sample’s fluorescent distribution, obeying the system’s incoherent
resolution limit, dsys = λem/2NAsys, where λem is the emission wavelength. The speckle
pattern generated through the Scotch tape excites the fluorescent sample with features of
minimum size dillum = λex/2NAillum, where λex is the excitation wavelength and NAillum is set
by the scattering angles exiting the Scotch tape. Approximating the excitation and emission
wavelengths as similar (λ = λex ≈ λem), the resolution limit of the SIM reconstruction
is dSIM ≈ λ/2(NAsys + NAillum), with a resolution gain factor of dsys/dSIM. This factor is
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mathematically unbounded; however, it will be practically limited by the illumination NA
and SNR.

4.2.1.1 Incoherent forward model for fluorescence imaging

Plane-wave illumination of the Scotch tape, positioned at the `-th scan-point, r`, creates a
speckle illumination pattern, pf (r− r`), at the plane of the fluorescent sample, of (r), where
subscript f identifies variables in the fluorescence channel. The fluorescent signal is imaged
through the system to give an intensity image at the camera plane:

If,`(r) = [of (r) · C{pf (r− r`)}]⊗ hf (r), ` = 1, . . . , Nimg, (4.1)

where r is the 2D spatial coordinates (x, y), hf (r) is the system PSF, and Nimg is the total
number of images captured. The subscript ` describes the acquisition index.

In this formulation, of (r), hf (r), and If,`(r) are 2D M × M -pixel distributions. To
accurately model different regions of the pattern translating into the object’s M ×M FOV
with incrementing r`, we initialize pf (r) as a N ×N pixel 2D distribution, with N > M , and
introduce a cropping operator C to select the M ×M region of the scanning pattern that
illuminates the sample.

4.2.1.2 Inverse problem for fluorescence imaging

We next formulate an optimization problem to extract SR estimates of the sample, of (r), and
illumination distributions, pf (r), from the raw fluorescence measurements, If,`(r), as well as
refine the estimate of the system’s PSF [30] (aberrations) and speckle translation trajectory,
r`. We start with a crude initialization from raw observations of the speckle made using
the coherent imaging arm (more details in Sec. 4.2.3). Defining ff (of , pf , hf , r1, . . . , rNimg

)
as a joint-variable cost function that measures the difference between the raw intensity
acquisitions and the expected intensities from estimated variables via the forward model, we
have:

min
of ,pf ,hf ,r1,...,rNimg

ff (of , pf , hf , r1, . . . , rNimg
) =

Nimg∑
`=1

ff,`(of , pf , hf , r`),

where ff,`(of , pf , hf , r`) =
∑
r

|If,`(r)− [of (r) · C{pf (r− r`)}]⊗ hf (r)|2 .
(4.2)

To solve (4.2), a sequential gradient descent [144, 145] algorithm is used, where the gradient
is updated once for each measurement. The sample, speckle pattern, system’s PSF and
scanning positions are updated by sequentially running through Nimg measurements within
one iteration. After the sequential update, an extra Nesterov’s accelerated update [122] is
included for both the sample and pattern estimate, to speed up convergence. Sec. 4.2.4
contains a detailed derivation of the gradient with respect to the sample, structured pattern,
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system’s PSF and the scanning position based on the linear algebra vectorial notation. The
algorithm is described in Sec. 4.2.5.

4.2.2 Super-resolution quantitative-phase imaging

In this section, we present our coherent model for SR quantitative-phase (QP) imaging.
A key difference between the QP and fluorescence imaging processes is that the detected
intensity at the image plane for coherent imaging is nonlinearly related to the sample’s
QP [38, 136]. Thus, solving for a sample’s QP from a single intensity measurement is a
nonlinear and ill-posed problem. To circumvent this, we use intensity meaurements from
two planes, one in-focus and one out-of-focus, to introduce a complex-valued operator that
couples QP variations into measurable intensity fluctuations, making the reconstruction well-
posed [86, 146]. The defocused measurements are denoted by a new subscript variable z.
Figure 4.1 shows our implementation, where two defocused sensors are positioned at z0 and
z1 in the coherent imaging arm.

Generally, the resolution for coherent imaging is roughly half that of its incoherent coun-
terpart [38] . For our QP reconstruction, the resolution limit is dSIM = λex/(NAsys +NAillum),
where the coherent resolution of the native system and the speckle are dsys = λex/NAsys and
dillum = λex/NAillum, respectively.

4.2.2.1 Coherent forward model for phase imaging

Assuming an object with 2D complex transmittance function oc(r) is illuminated by a speckle
field, pc(r), where subscript c refers to the coherent imaging channel, positioned at the `-th
scanning position r`, we can represent the intensity image formed via coherent diffraction
as:

Ic,`z(r) = |[oc(r) · C {pc(r− r`)}]⊗ hc,z(r)|2 = |gc,`z(r)|2, ` = 1, . . . , Nimg, z = z0, z1,(4.3)

where gc,`z(r) and hc,z(r) are the complex electric-fields at the imaging plane and the system’s
coherent PSF at defocus distance z, respectively. The comma in the subscript separates the
channel index, c or f , from the scanning-position and acquisition-number indices, ` and z.
Nimg here indicates the total number of translations of the Scotch tape. The defocused PSF
can be further broken down into hc,z(r) = hc(r)⊗hz(r), where hc(r) is the in-focus coherent
PSF and hz(r) is the defocus kernel. Similar to Section 4.2.1.1, Ic,`z(r), oc(r), and hc,z(r)
are 2D distributions with dimensions of M ×M pixels, while pc(r) is of size N × N pixels
(N > M). C is a cropping operator that selects the sub-region of the pattern that interacts
with the sample. The sample’s QP distribution is simply the phase of the object’s complex
transmittance, ∠oc(r).

4.2.2.2 Inverse problem for phase imaging

We now take the raw coherent intensity measurements, Ic,`z(r), and the registered trajectory,
r`z, from both of the defocused coherent sensors (more details in Sec. 4.2.3) as input to jointly
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estimate the sample’s SR complex-transmittance function, oc(r), and illumination complex-
field, pc(r), as well as the aberrations inherent in the system’s PSF, hc(r). The optimization
also further refines the scanning trajectory, r`z. Based on the forward model, we formulate
the joint inverse problem:

minimize
oc,pc,hc,r1z0 ,r1z1 ,··· ,rNimgz0

,rNimgz1

fc(oc, pc, hc, r1z0 , r1z1 , · · · , rNimgz0 , rNimgz1) =
∑
`,z

fc,`z(oc, pc, hc, r`z),

where fc,`z(oc, pc, hc, r`z) =
∑
r

∣∣∣∣√Ic,`z(r)− |[oc(r) · C {pc(r− r`z)}]⊗ hc,z(r)|
∣∣∣∣2 .(4.4)

Here, we adopt an amplitude-based cost function, fc, which robustly minimizes the distance
between the estimated and measured amplitudes in the presence of noise [84, 86, 144].
We optimize the pattern trajectories, r`,z0 and r`,z1 , separately for each coherent sensor, in
order to account for any residual misalignment or timing-mismatch (see Sec. 4.2.3). As in
the fluorescence case, sequential gradient descent [144, 145] was used to solve this inverse
problem.

4.2.3 Registration of coherent images

Knowledge of the Scotch tape scanning position, r`, reduces the complexity of the joint
sample and pattern estimation problem and is necessary to achieve SR reconstructions with
greater than 2× resolution gain. Because our fluorescent sample is mostly transparent, the
main scattering component in the acquired raw data originates from the Scotch tape. Thus,
using a sub-pixel registration algorithm [147] between successive coherent-camera acquisi-
tions, which are dominated by the scattered speckle signal, is sufficient to initialize the
scanning trajectory of the Scotch tape,

r`z = R [Ic,1z(r), Ic,`z(r)] , (4.5)

where R is the registration operator. These initial estimates of r`z are then updated, along-
side of (r), oc(r), pf (r), and pc(r) using the inverse models described in Sec. 4.2.1.2 and
4.2.2.2. In the fluorescence problem described in Sec. 4.2.1.2, we only use the trajectory
from the in-focus coherent sensor at z = 0 for initialization, so we omit the subscript z in
r`z.

4.2.4 Solving the inverse problem

4.2.4.1 Vectorial notation

Fluorescence imaging vectorial model

In order to solve the multivariate optimization problem in Eq. (4.2) and (4.4) and derive
the gradient of the cost function, it is more convenient to consider a linear algebra vectorial
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notation of the forward models. The fluorescence SIM forward model in Eq. (4.1) can be
alternatively expressed as

If,` = Hfdiag (S(r`)pf ) of , (4.6)

where If,`, Hf , S(r`), pf , and of designate the raw fluorescent intensity vector, diffraction-
limit low-pass filtering operation, pattern translation/cropping operation, N2 × 1 speckle
pattern vector, and M2 × 1 sample’s fluorescent distribution vector, respectively. The 2D-
array variables described in (4.1) are all reshaped into column vectors here. Hf and S(r`)
can be further broken down into their individual vectorial components:

Hf = F−1
M diag

(
h̃f

)
FM ,

S(r`) = QF−1
N diag(e(r`))FN , (4.7)

where h̃f is the OTF vector and e(r`) is the vectorization of the exp(−j2πu · r`) function,
where u is spatial frequency. The notation diag(a) turns a n × 1 vector, a, into an n × n
diagonal matrix with diagonal entries from the vector entries. FN and FM denote the N×N -
point and M ×M -point 2D discrete Fourier transform matrix, respectively, and Q is the
M2 ×N2 cropping matrix.

With this vectorial notation, the cost function for a single fluorescence measurement is

ff,`(of ,pf , h̃f , r`) = fTf,`ff,` = ‖If,` −Hfdiag (S(r`)pf ) of‖2
2 , (4.8)

where ff,` = If,` −Hfdiag (S(r`)pf ) of is the cost vector and T denotes the transpose oper-
ation.

Coherent imaging vectorial model

As with the fluorescence vectorial model, we can rewrite Eq. (4.3) using vectorial notation:

Ic,`z = |gc,`z|2 , (4.9)

where

gc,`z = Hc,zdiag(S(r`z)pc)oc

Hc,z = F−1
M diag(h̃c)diag(h̃z)FM . (4.10)

oc and pc are the M2 × 1 sample transmittance function vector and N2 × 1 structured field
vector, respectively. h̃c and h̃z are the system pupil function and the deliberate defocus pupil
function, respectively. With this vectorial notation, we can then express the cost function
for a single coherent intensity measurement as

fc,`z(oc,pc, h̃c, r`z) = fTc,`zfc,`z =
∥∥∥√Ic,`z − |gc,`z|

∥∥∥2

2
, (4.11)

where fc,`z =
√

Ic,`z − |gc,`z| is the cost vector for the coherent intensity measurement.
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4.2.4.2 Gradient derivation

Gradient derivation for fluorescence imaging

To optimize Eq. (4.2) for the variables of , pf , h̃f and r`, we first derive the necessary
gradients of the fluorescence cost function. Consider taking the gradient of ff,` with respect
to of , we can represent the 1×M2 gradient row vector as

∂ff,`
∂of

=

(
∂ff,`
∂ff,`

)
·
(
∂ff,`
∂of

)
=
(
2fTf,`

)
· (−Hfdiag (S(r`)pf )) . (4.12)

Turning the row gradient vector into a M2 × 1 column vector in order to update the object
vector in the right dimension, we the final gradient becomes

∇offf,` =

(
∂ff,`
∂of

)T
= −2diag (S(r`)pf ) HT

f ff,`. (4.13)

To compute the gradient of pf , we first rewrite the cost vector ff,` as

ff,` = If,` −Hfdiag (o) S(r`)pf . (4.14)

Now, we can write the gradient of the cost function with respect to the pattern vector in
row and column vector form as

∂ff,`
∂pf

=

(
∂ff,`
∂ff,`

)
·
(
∂ff,`
∂pf

)
=
(
2fTf,`

)
· (−Hfdiag (of ) S(r`))

∇pfff,` =

(
∂ff,`
∂pf

)T
= −2S(r`)

Tdiag (of ) HT
f ff,`. (4.15)

Similar to the derivation of the pattern function gradient, it is easier to work with the
rewritten form of the cost vector expressed as

ff,` = If,` − F−1
M diag (FMdiag (S(r`)pfof )) h̃f . (4.16)

The gradient of the cost function with respect to the OTF vector in the row and column
vector form are expressed, respectively, as

∂ff,`

∂h̃f
=

(
∂ff,`
∂ff,`

)
·
(
∂ff,`

∂h̃f

)
=
(
2fTf,`

)
·
(
−F−1

M diag (FMdiag (S(r`)pfof ))
)

∇h̃f
ff,` =

(
∂ff,`

∂h̃f

)†
= −2diag

(
FMdiag (S(r`)pfof )

)
FM ff,`, (4.17)

where a denotes entry-wise complex conjugate operation on any general vector a. One
difference between this gradient and the previous one is that the variable to solve, h̃f , is now
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a complex vector. When turning the gradient row vector of a complex vector into a column
vector, we have to take a Hermitian operation, †, on the row vector following the conventions
in [103]. We will have more examples of complex variables in the coherent model gradient
derivation.

For taking the gradient of the scanning position, we again rewrite the cost vector ff,`:

ff,` = I` −Hfdiag (of ) QF−1
N diag (FNpf ) e(r`). (4.18)

We can then write the gradient of the cost function with respect to the scanning position as

∂ff,`
∂q`

=

(
∂ff,`
∂ff,`

)
·
(
∂ff,`
∂e(r`)

)
·
(
∂e(r`)

∂q`

)
=
(
2fTf,`

)
·
(
−Hfdiag (of ) QF−1

N diag (FNpf )
)
· (diag (−j2πuq) e(r`)) , (4.19)

where q is either the x or y spatial coordinate component of r`. uq is the N2 × 1 vectorial
notation of the spatial frequency function in the q direction.

To numerically evaluate these gradients, we represent them in the functional form as:

∇offf,`(of , pf , hf , r`) = −2pf (r− r`) ·
[
h∗f (−r)⊗ (If,`(r)− [of (r) · C{pf (r− r`)}]⊗ hf (r))

]
,

∇pfff,`(of , pf , hf , r`) = −2δ(r + r`)⊗ P
{
of (r) ·

[
h∗f (−r)⊗ (If,`(r)− [of (r) · C{pf (r− r`)}]⊗ hf (r))

]}
,

∇h̃f
ff,`(of , pf , hf , r`) = −2 (F {of (r) · C {pf (r− r`)}})∗ · F {If,`(r)− [of (r) · C {pf (r− r`)}]⊗ hf (r)} ,

∇q`ff,`(of , pf , hf , r`) = −2

{∑
r

(If,`(r)− [of (r) · C{pf (r− r`)}]⊗ hf (r)) ·

hf (r)⊗
[
of (r) · C

{
∂pf (r− r`)

∂q`

}]}
, (4.20)

where a∗ stands for complex conjugate of function, a, F is the Fourier transform operator,
and P is a zero-padding operator that pads an M ×M image to size N ×N pixels. In this
form, If,`(r), of (r), and hf (r) are 2D M ×M images, while pf (r) is a N × N image. The
gradients for the sample and the structured pattern are of the same size as of (r) and pf (r),
respectively. Ideally, the gradient of the the scanning position in each direction is a real
number. However, due to imperfect implementation of the discrete differentiation in each
direction, the gradient will have small imaginary value that will be dropped in the update
of the scanning position.

Gradient derivation for coherent imaging

For the coherent imaging case, we will derive the gradients of the cost function in Eq. (4.11)
with respect to the sample transmittance function oc, speckle field pc, pupil function h̃c,
and the scanning position r`z. First, we take the gradient of fc,`z with respect to oc, we then
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have the gradient in the row and column vector forms as

∂fc,`z
∂oc

=

(
∂fc,`z
∂fc,`z

)
·
(
∂fc,`z
∂gc,`z

)
·
(
∂gc,`z
∂oc

)
=
(
2fTc,`z

)
·
(
−1

2
diag

(
gc,`z
|gc,`z|

))
· (Hc,zdiag (S(r`z)) pc)

∇ocfc,`z =

(
∂fc,`z
∂oc

)†
= −diag(S(r`z)pc)H

†
c,zdiag

(
gc,`z
|gc,`z|

)
fc,`z, (4.21)

where the
gc,`z

|gc,`z| operation denotes entry-wise division between the two vectors, gc,`z and

|gc,`z|. In addition, the detailed calculation of
∂fc,`z
∂gc,`z

can be found in the Appendix of [144].

Next, we take the gradient with respect to the pattern field vector, pc, and write down the
corresponding row and column vectors as

∂fc,`z
∂pc

=

(
∂fc,`z
∂fc,`z

)
·
(
∂fc,`z
∂gc,`z

)
·
(
∂gc,`z
∂pc

)
=
(
2fTc,`z

)
·
(
−1

2
diag

(
gc,`z
|gc,`z|

))
· (Hc,zdiag (oc) S(r`z))

∇pcfc,`z =

(
∂fc,`z
∂pc

)†
= −S(r`z)

†diag (oc) H†c,zdiag

(
gc,`z
|gc,`z|

)
fc,`z. (4.22)

In order to calculate
∂gc,`z
∂pc

, we need to reorder the dot multiplication of oc and S(r`z)pc as
we did in deriving the gradient of the pattern for fluorescence imaging.
In order to do aberration correction, we will need to estimate the system pupil function, h̃c.
The gradient with respect to the pupil function can be derived as,

∂fc,`z

∂h̃c
=

(
∂fc,`z
∂fc,`z

)
·
(
∂fc,`z
∂gc,`z

)
·
(
∂gc,`z

∂h̃c

)
=
(
2fTc,`z

)
·
(
−1

2
diag

(
gc,`z
|gc,`z|

))
·
(
F−1
M diag [FMdiag (S(r`z)pc) oc] diag(h̃z)

)
∇h̃c

fc,`z =

(
∂fc,`z

∂h̃c

)†
= −diag(h̃z)diag

[
FMdiag (S(r`z)pc) oc

]
FMdiag

(
gc,`z
|gc,`z|

)
fc,`z.(4.23)
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In the end, the gradient of the scanning position for refinement can be derived as

∂fc,`z
∂q`z

=

(
∂fc,`z
∂fc,`z

)
·
[(

∂fc,`z
∂gc,`z

)
·
(
∂gc,`z
∂e(r`z)

)
·
(

e(r`z)

∂q`

)
+

(
∂fc,`z
∂gc,`z

)
·
(
∂gc,`z

∂e(r`z)

)
·
(

e(r`z)

∂q`

)]

= 2

(
∂fc,`z
∂fc,`z

)
· Re

{(
∂fc,`z
∂gc,`z

)
·
(
∂gc,`z
∂e(r`z)

)
·
(

e(r`z)

∂q`

)}
= 2

(
2fTc,`z

)
· Re

{(
−1

2
diag

(
gc,`z
|gc,`z|

))
·
(
Hc,zdiag (oc) QF−1

N diag (FNpc)
)
· (diag (−j2πuq) e(r`z))

}
= −2Re

{
fTc,`zdiag

(
gc,`z
|gc,`z|

)
Hc,zdiag(oc)QF−1

N diag(FNpc)diag(−j2πuq)e(r`z)

}
, (4.24)

where q is either the x or y spatial coordinate component of r`z.
In order to numerically evaluate these gradients, we represent them, as we did for the

gradients of the fluorescence model, into functional forms:

∇ocfc,`z(oc, pc, hc, r`z) = −p∗c(r− r`z) ·
[
h∗c,z(−r)⊗

((√
Ic,`z(r)

|gc,`z(r)| − 1

)
· gc,`z(r)

)]

∇pcfc,`z(oc, pc, hc, r`z) = −δ(r + r`z)⊗ P
{
o∗c(r) ·

[
h∗c,z(−r)⊗

((√
Ic,`z(r)

|gc,`z(r)| − 1

)
· gc,`z(r)

)]}

∇h̃c
fc,`z(oc, pc, hc, r`z) = −h̃∗z(u) · F {pc(r− r`z) · oc(r))}∗F

{(√
Ic,`z(r)

|gc,`z(r)| − 1

)
· gc,`z(r)

}

∇q`zfc,`z(oc, pc, hc, r`z) = −2Re

{∑
r

[(√
Ic,`z(r)

|gc,`z(r)| − 1

)
· g∗c,`z(r)

]
·[

hc,z(r)⊗
(
oc(r) · C

{
∂pc(r− r`z)

∂q`z

})]}
. (4.25)

4.2.5 Reconstruction algorithm

With the derivation of the gradients in Sec. 4.2.4, we summarize here the reconstruction
algorithm for fluorescence imaging and coherent imaging.

4.2.5.1 Algorithm for fluorescent imaging

First, we initialize the sample, of (r), with the mean image of all the structure illuminated
images, If,`(r), which is approximately a widefield diffraction-limited image. As for the
structured pattern, pf (r), we initialize it with a all-one image. The initial OTF, h̃f (u), is
set as a non-aberrated incoherent OTF. Initial scanning positions are from the registration
of the in-focus coherent speckle images, Ic,`z(r) (z = 0).
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In the algorithm, Kf is the total number of iterations (Kf = 100 is generally enough
for convergence). At every iteration, we sequentially update the sample, structured pattern,
system’s OTF and the scanning position using each single frame from ` = 1 to ` = Nimg. A
Nesterov acceleration step is applied on the sample and the structured pattern at the end of
each iteration. The detailed algorithm is summarized in Algorithm 5.

Algorithm 2 Fluorescence imaging reconstruction

Require: If,`(r), r`, ` = 1, . . . , Nimg

1: initialize o
(1,0)
f (r) =

∑
` If,`(r)/Nimg

2: initialize p
(1,0)
f (r) with all one values

3: initialize h̃f (u) with the non-aberrated incoherent OTF

4: initialize r
(1)
` with the scanning position from the registration step

5: for k = 1 : Kf do
6: Sequential gradient descent
7: for ` = 1 : Nimg do

8: o
(k,`)
f (r) = o

(k,`−1)
f (r)−∇offf,`(o

(k,`−1)
f , p

(k,`−1)
f , r

(k)
` )/max(p

(k,`−1)
f (r))2

9: p
(k,`)
f (r) = p

(k,`−1)
f (r)−∇pfff,`(o

(k,`−1)
f , p

(k,`−1)
f , r

(k)
` )/max(o

(k,`−1)
f (r))2

10: ξ(u) = F{o(k,`−1)
f (r) · C{p(k,`−1)

f (r− r`)}}
11: h̃

(k,`)
f (u) = h̃

(k,`−1)
f (u)−∇h̃f

ff,`(o
(k,`−1)
f , p

(k,`−1)
f , h

(k,`−1)
f , r

(k)
` ) · |ξ(u)|/12[max(|ξ(u)|) ·

(|ξ(u)|2 + δ)], where δ is chosen to be small
12:

13: Scanning position refinement
14: x

(k+1)
` = x

(k)
` − α∇x`ff,`(o

(k,`−1)
f , p

(k,`−1)
f , r

(k)
` )

15: y
(k+1)
` = y

(k)
` − α∇y`ff,`(o

(k,`−1)
f , p

(k,`−1)
f , r

(k)
` )

16: end for
17: Nesterov’s acceleration
18: if k = 1 then
19: t1 = 1
20: o

(k+1,0)
f (r) = o

(k,Nimg)
f (r)

21: p
(k+1,0)
f (r) = p

(k,Nimg)
f (r)

22: else

23: tk+1 =
1+
√

1+4t2k
2

24: o
(k+1,0)
f (r) = o

(k,Nimg)
f (r) + tk−1

tk+1

[
o

(k,Nimg)
f (r)− o(k−1,Nimg)

f (r)
]

25: p
(k+1,0)
f (r) = p

(k,Nimg)
f (r) + tk−1

tk+1

[
p

(k,Nimg)
f (r)− p(k−1,Nimg)

f (r)
]

26: end if
27: end for
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4.2.5.2 Algorithm for coherent imaging

For coherent imaging, we initialize oc(r) with all ones. The pattern, pc(r), is initialized
with the mean of the square root of registered coherent in-focus intensity stack. The pupil
function is initialized with a circ function (2D function filled with ones within the defined
radius) with the radius defined by the objective NA. In the end, we initialize the scanning
position, r`z, from the registration of the intensity stacks, Ic,`z, for respective focal planes.

For the coherent imaging reconstruction, we use a total number of Kc ≈ 30 iterations
to converge. We sequentially update oc(r), pc(r), hc(r), and r`, (` = 1, . . . , Nimg) for each
defocused plane (total number of defocused planes is Nz) per iteration. Unlike for our
fluorescence reconstructions, we do not use the extra Nesterov’s acceleration step in the QP
reconstruction.

Algorithm 3 Coherent imaging reconstruction

Require: Ic,`z(r), r`z, ` = 1, . . . , Nimg

1: initialize o
(1,0)
c (r) with all one values

2: initialize p
(1,0)
c (r) =

∑
`

√
Ic,`,z=0(r + r`,z=0)/Nimg

3: initialize h̃
(1,0)
c (u) with all one values within a defined radius set by the objective NA

4: initialize r
(1)
`z with the scanning position from the registration step

5: for k = 1 : Kc do
6: Sequential gradient descent
7: for t = 1 : (Nimg ·Nz) do
8: z = zmod(t,2)

9: ` = mod(t, Nimg)
10: if t < Nimg ·Nz then

11: o
(k,t)
c (r) = o

(k,t−1)
c (r)−∇ocfc,`z(o

(k,t−1)
c , p

(k,t−1)
c , h̃

(k,t−1)
c , r

(k)
`z )/max

(∣∣∣p(k,t−1)
c (r)

∣∣∣)2

12: p
(k,t)
c (r) = p

(k,t−1)
c (r)−∇pcfc,`z(o

(k,t−1)
c , p

(k,t−1)
c , h̃

(k,t−1)
c , r

(k)
`z )/max

(∣∣∣o(k,t−1)
c (r)

∣∣∣)2

13: ξ(u) = F{o(k,t−1)
c (r) · C{p(k,t−1)

c (r− r`)}}
14: h̃

(k,t)
c (u) = h̃

(k,t−1)
c (u)−∇h̃c

fc,`z(o
(k,t−1)
c , p

(k,t−1)
c , h̃

(k,t−1)
c , r

(k)
`z )·|ξ(u)|/5[max(|ξ(u)|)·

(|ξ(u)|2 + δ)], where δ is chosen to be small
15: else
16: Do the same update but save to o

(k+1,0)
c (r), p

(k+1,0)
c (r), h̃

(k+1,0)
c (r)

17: end if
18:

19: Scanning position refinement
20: x

(k+1)
`z = x

(k)
`z − β∇x`zfc,`z(o

(k,t−1)
c , p

(k,t−1)
c , h̃

(k,t−1)
c , r

(k)
`z )

21: y
(k+1)
`z = y

(k)
`z − β∇y`zfc,`z(o

(k,t−1)
c , p

(k,t−1)
c , h̃

(k,t−1)
c , r

(k)
`z )

22: end for
23: end for
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4.3 Experimental results

Figure 4.1 shows our experimental setup. A green laser beam (BeamQ, 532 nm, 200 mW)
is collimated through a single lens. The resulting plane wave illuminates the layered Scotch
tape (4 layers of 3M 810 Scotch Tape, S-9783), creating a speckle pattern at the sample.
The Scotch tape is mounted on a 3-axis piezo-stage (Thorlabs, MAX311D) to enable lateral
speckle scanning. The transmitted light from the sample then travels through a 4f system
formed by the objective lens (OBJ) and a single lens. In order to control the NA of our
detection system (necessary for our verification experiment), an extra 4f system with an
adjustable iris-aperture (AP) in the Fourier space is added. Then, the coherent and fluores-
cent light are optically separated by a dichroic mirror (DM, Thorlabs, DMLP550R), since
they have different wavelengths. The fluorescence is further spectrally filtered (SF) before
imaging onto Sensor-F (PCO.edge 5.5). The (much brighter) coherent light is ND-filtered
and then split by another beam-splitter before falling on the two defocused coherent sensors,
Sensor-C1 and Sensor-C2 (FLIR, BFS-U3-200S6M-C). Sensor-C1 is focused on the sample,
while Sensor-C2 is defocused by 0.8 mm.

For our initial verification experiments, we use a 40× objective (Nikon, CFI Achro 40×)
with NA = 0.65 as our system’s microscope objective (OBJ). Later high-content experimen-
tal demonstrations switch to a 4× objective (Nikon, CFI Plan Achro 4×) with NA = 0.1.

4.3.1 Sample preparation

Results presented in this work targeted super-resolution of 1 µm and 2 µm diameter polystyrene
microspheres (Thermofischer) that were fluorescently tagged to emit at a center wavelength
of λem = 605 nm. Monolayer samples of these microspheres were prepared by placing micro-
sphere dilutions (60 uL stock-solution/500 uL isopropyl alcohol) onto #1.5 coverslips and
then allowing to air-dry. High-index oil (nm(λ) = 1.52 at λ = 532 nm) was subsequently
placed on the coverslip to index-match the microspheres. An adhesive spacer followed by
another #1.5 coverslip was placed on top of the original coverslip to assure a uniform sample
layer for imaging.

4.3.2 Super-resolution verification

4.3.2.1 Fluorescent imaging verification

We start with a proof-of-concept experiment to verify that our method accurately recon-
structs a fluorescent sample at resolutions greater than twice the imaging system’s diffraction-
limit. To do so, we use the higher-resolution objective (40×, NA 0.65) and a tunable Fourier-
space iris-aperture (AP) that allows us to artificially reduce the system’s NA (NAsys), and
therefore, resolution. With the aperture mostly closed (to NAsys = 0.1), we acquire a low-
resolution SIM dataset, which is then used to computationally reconstruct a super-resolved
image of the sample with resolution corresponding to an effective NA = 0.4. This recon-
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struction is then compared to the widefield image of the sample acquired with the aperture
open to NAsys = 0.4, for validation.
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Figure 4.2: Verification of fluorescence super-resolution with 4× resolution gain. Widefield
images, for comparison, were acquired at (a) 0.1 NA and (e) 0.4 NA by adjusting the aperture
size. (b) The Scotch tape speckle pattern creates much higher spatial frequencies (∼0.35 NA)
than the 0.1 NA detection system can measure. (c) Using the 0.1 NA aperture, we acquire
low-resolution fluorescence images for different lateral positions of the Scotch tape. (d) The
reconstructed SIM image contains spatial frequencies up to ∼0.4 NA and is in agreement
with (e) the deconvolved widefield image with the system operating at 0.4 NA.

Results are shown in Fig. 4.2, comparing our method against widefield fluorescence images
at NAs of 0.1 and 0.4, with no Scotch tape in place. The sample is a monolayer of 1 µm
diameter microspheres, with center emission wavelength λem = 605 nm. At 0.1 NA, the
expected resolution is λem/2NA ≈ 3.0 µm and the microspheres are completely unresolvable.
At 0.4 NA, the expected resolution is λem/2NA ≈ 0.76 µm and the microspheres are well-
resolved. With Scotch tape and 0.1 NA, we acquire a set of measurements as we translate the
speckle pattern in 267 nm increments on a 26×26 rectangular grid - Nimg = 676 acquisitions
total (details in Sec. 5.4).

Figure 4.2(d) shows the final SR reconstruction of the fluorescent sample in real space,
along with the amplitude of its Fourier spectrum. Individual microspheres can be clearly
resolved, and results match well with the 0.4 NA deconvolved widefield image (Fig. 4.2(e)).
Fourier-space analysis confirms our resolution improvement factor to be 4×, which suggests
that the Scotch tape produces NAillum ≈ 0.3. To verify, we fully open the aperture and ob-
serve that the speckle pattern contains spatial frequencies up to NAillum ≈ 0.35 (Fig. 4.2(b)).
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4.3.2.2 Coherent imaging verification

To quantify super-resolution in the coherent imaging channel, we use the low-resolution
objective (4×, NA 0.1) to image a USAF1951 resolution chart (Benchmark Technologies).
This phase target provides different feature sizes with known phase values, so is a suitable
calibration target to quantify both the coherent resolution and the phase sensitivity of our
technique.

Results are shown in Fig. 4.3. The coherent intensity image (Fig. 4.3(a)) acquired with
0.1 NA (no tape) has low resolution (∼ 5.32 µm), so hardly any features can be resolved .
In Fig. 4.3(b), we show the “ground truth” QP distribution at 0.4 NA, as provided by the
manufacturer.
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Figure 4.3: Verification of coherent quantitative phase (QP) super-resolution with 4× resolu-
tion gain. (a) Low-resolution intensity image and (b) “ground truth” phase at NA=0.4, for
comparison. (c) Raw acquisitions of the speckle-illuminated sample intensity from two focus
planes, collected with 0.1 NA. (d) Reconstructed SR amplitude and QP, demonstrating 4×
resolution gain.

After inserting the Scotch tape, it was translated in 400 nm increments on a 36 × 36
rectangular grid, giving Nimg = 1296 total acquisitions (details in Sec. 5.4) at each of the
two defocused coherent sensors (Fig. 4.3(c)). Figure 4.3(d,e) shows the SR reconstruction
for the amplitude and phase of this sample, resolving features up to group 9 element 5 (1.23
µm separation). Thus, our coherent reconstruction has a ∼ 4× resolution gain compared to
the brightfield intensity image.
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4.3.3 High-content fluorescent and QP microscopy
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Figure 4.4: Reconstructed super-resolution fluorescence with 4× resolution gain across the
full FOV (See Visualization 1). Four zoom-ins of regions-of-interest (ROIs) are compared to
their widefield counterparts.

Of course, artificially reducing resolution in order to validate our method required using
a moderate-NA objective, which precluded imaging over the large FOVs allowed by low-
NA objectives. In this section, we demonstrate high-content fluorescence imaging with the
low-resolution, large FOV objective (4×, NA 0.1) to visualize a 2.7×3.3 mm2 FOV (see
Fig. 4.4(a)). We note that this FOV is more than 100× larger than that allowed by the 40×
objective used in the verification experiments, so is suitable for large SBP imaging.
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Figure 4.5: Reconstructed multimodal (fluorescence and quantitative phase) high-content
imaging (See Visualization 2 and 3). Zoom-ins for three ROIs compare the widefield, super-
resolved fluorescence, coherent intensity, and super-resolved phase reconstructions.

Within the imaged FOV for our 1 µm diameter microsphere monolayer sample, we zoom
in to four regions-of-interest (ROI), labeled 1 , 2 , 3 , and 4 . Widefield fluorescence
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imaging cannot resolve individual microspheres, as expected. Using our method, however,
gives a factor 4× resolution gain across the whole FOV and enables resolution of individual
microspheres. Thus, the SBP of the system, natively ∼5.3 mega-pixels of content, was
increased to ∼85 mega-pixels, a factor of 42 = 16×. Though this is still not in the Gigapixel
range, this technique is scalable and could reach that range with a higher-SBP objective and
sensors.

We next include the QP imaging channel to demonstrate high-content multimodal imag-
ing, as shown in Fig. 4.5. The multimodal FOV is smaller (2×2.7 mm2 FOV) than that
presented in Fig. 4.4 because our coherent detection sensors have a lower pixel-count than
our fluorescence detection sensor. Figure 4.5 includes zoom-ins of three ROIs to visualize
the multimodal SR.

As expected, the widefield fluorescence image and the on-axis coherent intensity image
do not allow resolution of individual 2 µm microspheres, since the theoretical resolution
for fluorescence imaging is λem/2NAsys ≈ 3µm and for QP imaging is λex/NAsys ≈ 5µm.
However, our SIM reconstruction with 4× resolution gain enables clear separation of the
microspheres in both channels. Our fluorescence and QP reconstructions match well, which
is expected since the fluorescent and QP signal originate from identical physical structures
in this particular sample.

The full-FOV reconstructions (Fig. 4.4 and 4.5) are obtained by dividing the FOV into
small patches, reconstructing each patch, then stitching together the high-content images.
Patch-wise reconstruction is computationally favorable because of its low-memory require-
ment, but also allows us to correct field-dependent aberrations. Since we process each patch
separately using our self-calibration algorithm, we solve for each patch’s PSF independently
and correct the local aberrations digitally. The reconstruction takes approximately 15 min-
utes for each channel on a high-end GPU (NVIDIA, TITAN Xp) for a patch with FOV of
110× 110 µm2.

4.3.4 Self-calibration analysis

In Sec. 4.2.1.2 and 4.2.2.2, we presented the inverse problem formulation for super-resolution
fluorescence and QP. We note that those formulations also included terms to self-calibrate for
unknowns in the system’s experimental OTF and the illumination pattern’s scan-position.
Here we demonstrate how these calibrations are important for our reconstruction quality.

To demonstrate the improvement in our fluorescence imaging reconstruction due to the
self-calibration algorithm, we select a region of interest from the dataset presented in Fig. 4.4.
Figure 4.6 shows the comparison of the SR reconstruction with and without self-calibration.
The SR reconstruction with no self-calibration contains severe artifacts in reconstructions
of both the speckle illumination pattern and the sample’s fluorescent distribution. With
OTF correction, dramatic improvements in the fluorescence SR image are evident. OTF
correction is especially important when imaging across a large FOV (Fig. 4.4 and 4.5) due
to space-varying aberrations.
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Figure 4.6: Algorithmic self-calibration significantly improves fluorescence super-resolution
reconstructions. Here, we compare the resconstructed fluorescence image, speckle intensity,
and OTF with no correction, OTF correction, and both OTF correction and scanning posi-
tion correction. The right panel shows the overlay of the uncorrected and corrected scanning
position trajectories.

Further self-calibration to correct for errors in the initial estimate of the illumination
pattern’s trajectory enables further refinement of the SR reconstruction. We see that this
illumination trajectory demonstrates greater smoothness after undergoing self-calibration.
We fully expect that this calibration step to have important ramifications in cases where the
physical translation stage is of lower stability or more inaccurate incremental translation.

We also test how the self-calibration affects our phase reconstruction, using the same
dataset as in Fig. 4.3. Similar to the conclusion from the fluorescence self-calibration demon-
stration, pupil correction (coherent OTF) plays an important role in reducing SR reconstruc-
tion artifacts as shown in Fig. 4.7. The reconstructed pupil phase suggests that our system
aberration is mainly caused by astigmatism. Further refinement of the trajectory of the illu-
mination pattern improves the SR resolution by resolving one more element (group 9 element
6) of the USAF chart. Paying more attention to the uncorrected and corrected illumina-
tion trajectory, we find that the self-calibrated trajectory of the illumination pattern tends to
align the trajectories from the two coherent cameras. We also notice that the trajectory from
the quantitative-phase channels seems to jitter more compared to the fluorescence channel.
We hypothesize that this is due to longer exposure time for each fluorescence acquisition,
which would average out the jitter.



CHAPTER 4. COMPUTATIONAL SPECKLE STRUCTURED ILLUMINATION
PHASE AND FLUORESCENCE MICROSCOPY 103

No correction
Pupil 

correction
Scanning position +

Pupil correction

Re
co

ns
tr

uc
te

d
am

pl
itu

de
Re

co
ns

tr
uc

te
d

sp
ec

kl
e 

am
pl

itu
de

Re
co

ns
tr

uc
te

d
Pu

pi
l p

ha
se

Re
co

ns
tr

uc
te

d
ph

as
e

!ℓ (unit: per low-res PSF spot size)

# ℓ
(u

ni
t: 

pe
r l

ow
-r

es
 P

SF
 sp

ot
 si

ze
)

1

1.5

2.5
3

0.5

0
-0.5

2

-3 -1.5 -1 -0.5 0 0.5-2.5 -2

1

1.5

2.5
3

0.5

0
-0.5

2

Corrected scanning position
Uncorrected scanning position

1.5p

0

rad

2

-1.5

rad

Figure 4.7: Algorithmic self-calibration significantly improves coherent super-resolution re-
constructions. We show a comparison of reconstructed amplitude, phase, speckle amplitude,
and phase of the pupil function with no correction, pupil correction, and both pupil cor-
rection and scanning position correction. The right panel shows the overlay of scannning
position trajectory for the in-focus and defocused cameras before and after correction.

4.4 Discussion

Unlike many existing high-content imaging techniques, one benefit of our method is its easy
compatibility for simultaneous QP and fluorescence imaging. This arises from SIM’s unique
ability to multiplex both coherent and incoherent signals into the system aperture [13].
Furthermore, existing high-content fluorescence imaging techniques that use micro-lens ar-
rays [23–28] are resolution-limited by the physical size of the lenslets, which typically have
NAillum < 0.3. Recent work [29] has introduced a framework in which gratings with sub-
diffraction slits allow sub-micron resolution across large FOVs - however, this work is heavily
limited by SNR, due to the primarily opaque grating, as well as tight required axial alignment.
Though the Scotch tape used in our proof-of-concept prototype also induced illumination
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angles within a similar range as micro-lens arrays (NAillum ≈ 0.35), we could in future use
a stronger scattering media to achieve NAillum ≈ 1.0, enabling further SR and thus larger
SBP.

The main drawback of our technique is that we use around ∼ 1200 translations of the
Scotch tape for each reconstruction, which results in long acquisition times (∼ 180 seconds
for shifting, pausing, and capturing) and higher photon requirements. Heuristically, for both
fluorescence and QP imaging, we found that a sufficiently large scanning range (larger than
∼ 2 low-NA diffraction limited spot sizes) and finer scan steps (smaller than the targeted
resolution) can reduce distortions in the reconstruction. Tuning such parameters to minimize
the number of acquisitions without degrading reconstruction quality is thus an important
subject for future endeavors.

4.5 Conclusion

We have presented a large-FOV multimodal SIM fluorescence and QP imaging technique.
We use Scotch tape to efficiently generate high-resolution features over a large FOV, which
can then be measured with both fluorescent and coherent contrast using a low-NA objec-
tive. A computational optimization-based self-calibration algorithm corrected for experimen-
tal uncertainties (scanning-position, aberrations, and random speckle pattern) and enabled
super-resolution fluorescence and quantitative phase reconstruction with factor 4× resolution
gain.
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Chapter 5

Computational speckle structured
illumination 3D phase and
fluorescence microscopy

In Chapter 4, we implemented structured illumination microscopy (SIM) using speckle illu-
mination from simple Scotch tape as a solution for 2D multimodal high-content microscopy.
In this work, we extend the method to 3D by leveraging the fact that the speckle illumination
is in fact a 3D structured pattern. We use both a coherent and an incoherent imaging model
to develop algorithms for joint retrieval of the 3D super-resolved fluorescent and complex-
field distributions of the sample. Our reconstructed images resolve features beyond the
physical diffraction-limit set by the system’s objective (> 2× lateral resolution improvement
for the coherent channel) and demonstrate 3D multimodal imaging with ∼ 0.6×0.6×6 µm3

resolution over a volume of ∼ 314× 500× 24 µm3.

5.1 Introduction

High-content optical microscopy is a driving force for large-scale biological study in fields such
as drug discovery and systems biology. With fast imaging speeds over large fields-of-view
(FOV) and high spatial resolutions [31–37, 133], one can visualize rare cell phenotypes and
dynamics. The traditional solution for 2D high-content microscopy is to mechanically scan
samples through the limited FOV of a high-NA (i.e. high resolution) imaging objective and
then digitally stitch the images together. However, this scheme is limited in imaging speed
due to the large-distance translations of the sample as well as the need for auto-refocusing
at each translation position [134]. These issues are further compounded when extending this
high-content imaging strategy to 3D.

Recently, computational imaging has demonstrated efficient strategies for high-content
2D microscopy. In contrast with slide scanning, these strategies often employ a low-NA
imaging objective to acquire low-resolution (large-FOV) measurements. Developments in
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synthetic aperture [2, 11, 41] and super-resolution (SR) [3, 5–8, 58] microscopies have demon-
strated that a series of such measurements, if taken under varying sample illuminations, can
be digitally combined into a single high-resolution large-FOV image. This eliminates the re-
quirement for large-distance mechanical scanning in high-content imaging, which results in
faster acquisition and more cost-effective optical setups, while also relaxing the sample’s auto-
refocusing requirements due to the low-NA objective’s longer depth-of-field (DOF) [17–30,
79, 148, 149]. Examples of such approaches include lensless microscopy [17–19] and Fourier
ptychography [20–22, 79, 148, 149] for coherent absorption and quantitative phase imaging.
For incoherent fluorescent imaging, micro-lenslet arrays [24, 25, 27, 28], Talbot plane scan-
ning [23, 26, 29], diffuse media [30], or meta-surfaces [150] have also been demonstrated.
Among these examples, 3D high-content imaging capability has only been demonstrated
in the coherent imaging context (quantitative phase and absorption) by Fourier ptychogra-
phy [79, 149].

Our previous work demonstrated multimodal coherent (quantitative phase) and incoher-
ent (fluorescence) imaging for high-content 2D microscopy [151]. Multimodal imaging is
important for biological studies requiring cross-correlative analysis [13, 16, 140, 141, 152].
Structured illumination microscopy (SIM) [2, 5, 6, 60] with speckle illumination [30, 51–54,
56, 57, 113, 114, 130] has been used to encode 2D SR quantitative phase and fluorescence.
However, because propagating speckle contains 3D features, it also encodes 3D information.
Considering speckle patterns as random interference of multiple angled plane waves, the
scattered light from interactions with the sample carries 3D phase (coherent) information,
similar to the case of non-random angled illumination in diffraction tomography [9, 153–155]
and 3D Fourier ptychography [79, 149]. Simultaneously, the fluorescent (incoherent) light
excited by the 3D speckle pattern encodes 3D SR fluorescence information as in the case of
3D SIM [129]. Combining these, we propose a method for 3D SR quantitative phase and
fluorescence microscopy using speckle illumination.

Experimentally, we position a Scotch tape patterning element just before the sample,
mounted on a translation stage to generate a translating speckle field that illuminates the
sample (Fig. 5.1). Because the speckle grain size is smaller than the PSF of the low-NA
imaging objective (which provides large-FOV), the coherent scattered light from the speckle-
sample interaction encodes 3D SR quantitative phase information. In addition to lateral
scanning of the Scotch tape, axial sample scanning is necessary to efficiently capture 3D SR
fluorescence information. Nonlinear computational methods based on the 3D coherent beam
propagation model [79, 156] and the 3D incoherent imaging model [129] were formulated
to reconstruct the 3D speckle field and imaging system aberrations, which are subsequently
used to reconstruct the sample’s 3D SR quantitative phase and fluorescence distributions.
Since the Scotch tape is directly before the sample, the illumination NA is not limited by
the objective lens, allowing for > 2× lateral resolution gain across the entire FOV. This
framework enables us to achieve 3D imaging at sub-micron lateral resolution and micron
axial resolution across a half-millimeter FOV.
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Figure 5.1: 3D multimodal structured illumination microscopy (SIM) with laterally trans-
lating Scotch tape as the patterning element. The coherent arm (Sensor-C1 and Sensor-C2)
simultaneously captures images with different defocus at the laser illumination wavelength
(λex = 532 nm), used for both 3D phase retrieval and speckle trajectory calibration. The in-
coherent (fluorescence) arm (Sensor-F) captures low-resolution raw fluorescence acquisitions
at the emission wavelength (λem = 605 nm) for 3D fluorescence super-resolution reconstruc-
tion. OBJ: objective, DM: dichroic mirror, SF: spectral filter, ND-F: neutral-density filter.

5.2 Theory

We start by introducing the concept of 3D coherent and incoherent transfer functions (TFs),
using the Born (weak scattering) assumption [153], to analyze the information encoding
process. We then lay out our 3D coherent and incoherent imaging models and derive the
corresponding inverse problems to extract SR quantitative phase and fluorescence from the
measurements.

Previous work derived linear space-invariant relationships between raw measurements and
3D coherent scattering and incoherent fluorescence [129, 153, 157, 158]. These relationships
enable us to define TFs for the coherent and incoherent imaging processes. The supports of
these TFs in 3D Fourier space determine how much spatial frequency content of the sample
can be passed through the system (i.e. the 3D diffraction-limited resolution).

In a coherent imaging system with on-axis plane-wave illumination, the TF describes the
relationship between the sample’s scattering potential and the measured 3D scattered field,
and takes the shape of a spherical cap in 3D Fourier space (Fig. 5.2(a)). In an incoherent
imaging system, the TF is the autocorrelation of the coherent system’s TF [158], relating the
sample’s fluorescence distribution to the 3D measured intensity. It takes the shape of a torus
(Fig. 5.2(b)). The spatial frequency bandwidth of these TFs are summarized in Table 5.1,
where the lateral resolution of the system is proportional to the lateral bandwidth of the TF.
The incoherent TF has 2× greater bandwidth than the coherent TF and axial bandwidth
generally depends on the lateral spatial frequency, so axial resolution is specified in terms of
the best-case. Note that the axial bandwidth of the coherent TF is zero, which means there
is zero axial resolution for coherent imaging; hence the poor depth sectioning ability in 3D
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Figure 5.2: 3D coherent and incoherent transfer function (TF) analysis of the SIM imaging
process. The 3D (a) coherent and (b) incoherent TFs of the detection system are autocorre-
lated with the 3D Fourier support of the (c) illumination speckle field and (d) illumination
intensity, respectively, resulting in the effective Fourier support of 3D (e) coherent and (f)
incoherent SIM. In (e) and (f), we display decomposition of the auto-correlation in two
steps: 1© tracing the illumination support in one orientation and 2© replicating this trace
in azimuthal direction.

holographic imaging [16, 155, 159].
SIM enhances resolution by creating beat patterns. When a 3D structured pattern mod-

ulates the sample, the sample’s sub-diffraction features create lower-frequency beat patterns
which can be directly visualized and used to reconstruct a SR image of the sample via
post-processing [6, 129]. This process is generally applicable to both coherent and inco-
herent imaging [13, 16, 140, 141], enabling 3D SR multimodal imaging. Mathematically,
a modulation between the sample contrast and the illumination pattern in real space can
be interpreted as a convolution in Fourier space. This convolution result is then passed
through the 3D TF defined in Fig. 5.2(a,b). The effective support of information going into
the measurements can be estimated by conducting cross-correlations between the 3D TFs
and the Fourier content of the illumination patterns, as shown in Fig. 5.2(c,e) and 5.2(d,f)
for coherent and incoherent systems, respectively. The lateral and axial spatial frequency
bandwidth of both illumination and 3D SIM Fourier supports for coherent and incoher-
ent imaging are summarized in Table 5.1. Assuming approximately equal excitation and
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Table 5.1: Summary of spatial frequency bandwidths

Lateral bandwidth Axial bandwidth

Coherent TF 2NAdet

λex
0

Incoherent TF 4NAdet

λem

2(1−cos θdet)
λem

Illum. field 2NAillum

λex
0

Illum. intensity 4NAillum

λex

2(1−cos θillum)
λex

3D coherent SIM 2NAdet+2NAillum

λex

1−cos θdet
λex

+ 1−cos θillum
λex

3D incoherent SIM 4NAdet

λem
+ 4NAillum

λex
2
(

1−cos θdet
λem

+ 1−cos θillum
λex

)
NAdet,NAillum: the numerical aperture of the detection and illumination system,

θdet, θillum: the maximal detectable and illuminating half angle of light,
λex, λem: the wavelength of the excitation and emission light.

emission wavelengths, the achievable lateral resolution gain of 3D SIM (ratio between lat-
eral bandwidths of 3D SIM and 3D TF) is (NAdet + NAillum)/NAdet for both coherent and
incoherent imaging. Axially, coherent SIM builds up the spatial frequency bandwidth in
the axial direction, and incoherent SIM can achieve axial resolution gain with a factor of
(2− cos θdet − cos θillum)/(1− cos θdet).

In this work, the Scotch tape allows us to create a high-resolution speckle illumination
such that NAillu > NAdet, enabling > 2× lateral resolution gain [151]. From the TF analysis,
we also see that information beyond diffraction-limit in the axial dimension is obtainable.
The next sections outline our computational scheme for 3D SR phase and fluorescence re-
construction. Our algorithm jointly estimates the illumination speckle field, system pupil
function (aberrations), the sample’s 3D transmittance function, and the sample’s 3D fluo-
rescence distribution.
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Figure 5.3: 3D multi-slice model: (a) coherent and (b) incoherent imaging models for inter-
action between the sample and the speckle field.
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5.2.1 3D super-resolution phase imaging

We adopt a multi-slice coherent scattering model to describe the 3D multiple-scattering
process [79, 156] and solve for 3D SR quantitative phase. Our system captures intensity at
two focus planes, zc1 and zc2, for every speckle scanned point [151]. With these measurements
and the multi-slice model, we are able to reconstruct the sample’s 3D SR complex-field and
the scattered field inside the 3D sample, which is used in the fluorescence inverse problem.

5.2.1.1 Forward model for 3D coherent imaging

Figure 5.3(a) illustrates the 3D multi-slice coherent imaging model. Plane-wave illumination
of the Scotch tape, positioned at the `-th scanned point, r`, creates speckle field pc(r− r`),
where r = (x, y) is the lateral spatial coordinate. This speckle field propagates a distance
∆s` to the sample. The field interacting with the first layer of the sample is described as:

f`,1(r) = C{pc(r− r`)⊗ h∆s`,λex(r)}, (5.1)

where hz,λ(r) = F−1
{

exp
(
i2πz

√
1/λ2 − ‖u‖2

2

)}
is the angular spectrum propagation ker-

nel [38], u = (ux, uy) is the spatial frequency coordinate, and C{·} is a cropping operator
that selects the part of the speckle field that illuminates the sample. To model scattering
and propagation inside the sample, the multi-slice model approximates the 3D sample as
multiple slices of complex transmittance function, tm(r) (m = 1, · · · ,M), where m is the
slice index number. As the field propagates through each slice, it first multiplies with the 2D
transmittance function of the sample at that slice, then propagates to the next slice. The
spacing between slices is modeled as uniform media of thickness ∆zm. Hence, at each layer
we have:

g`,m(r) = f`,m(r) · tm(r), m = 1, · · · ,M,

f`,m+1(r) = g`,m(r)⊗ h∆zm,λex(r), m = 1, · · · ,M − 1. (5.2)

After passing through all the slices, the output scattered field, g`,M(r), propagates to the
focal plane to form G`(r) = g`,M(r) ⊗ h∆zM,`,λex(r) and gets imaged onto the sensor (with
defocus z), forming our measured intensity:

Ic,`z(r) = |G`(r)⊗ hc(r)⊗ hz,λex(r)|2 , ` = 1, · · · , Nimg, z = zc1, zc2, (5.3)

where hc(r) is the system’s coherent point spread function (PSF). The measured intensity
subscripts c and ` denote indices for the coherent imaging channel and acquisition number,
respectively. Nimg is the total number of translations of the Scotch tape. Note that all the
spacing distances, ∆zm, are independent of the axial scanned position, ∆s`, except for the
distance to the focal plane, which is ∆zM,` = ∆s` + z0, where z0 is the distance from the last
layer of the sample to the focal plane (before axial scanning). As the sample is scanned, we
account for this shift by propagating extra distance back to the focal plane.
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5.2.1.2 Inverse problem for 3D coherent imaging

We take the intensity measurements from both coherent cameras, {Ic,`z(r) | z = zc1, zc2}, and
the scanning trajectory, r` (calculated via standard rigid-body 2D registration [147, 151]),
as inputs to jointly estimate the sample’s 3D SR transmittance function, t1(r), · · · , tM(r), as
well as the illumination complex-field, pc(r), and the system’s coherent PSF, hc(r), including
aberrations.

Based on the forward model in the previous section, we formulate the inverse problem
as:

minimize
t1,··· ,tM ,pc,hc

ec(t1, · · · tM , pc, hc) =
∑
`,z

ec,`z(t1, · · · , tM , pc, hc)

where ec,`z(t1, · · · , tM , pc, hc) =
∑
r

∣∣∣∣√Ic,`z(r)− |G`(r)⊗ hc(r)⊗ hz,λex(r)|
∣∣∣∣2 . (5.4)

Here we adopt an amplitude-based cost function, ec, which minimizes the difference between
the measured and estimated coherent amplitude in the presence of noise [144]. In order to
solve this optimization problem, we use a sequential gradient descent algorithm [144, 145].
The gradient based on each single measurement is calculated and used to update the sample’s
transmittance function, illumination speckle field, and coherent PSF. A whole iteration of
variable updates is complete after running through all the measurements. In Sec. 5.2.3, we
provide a detailed derivation of the gradients and in Sec. 5.2.4 we lay out our reconstruction
algorithm.

5.2.2 3D super-resolution fluorescence imaging

Reconstruction of 3D SR images for the fluorescence channel involves an incoherent multi-
slice forward model (Fig. 5.3(b)) and a joint inverse problem solver. The coherent result
provides a good starting estimate of the 3D speckle intensity throughout the sample, which,
together with the fluorescent channel’s raw data, is used to reconstruct the sample’s 3D SR
fluorescence distribution and the system’s aberrations at the emission wavelength, λem.

5.2.2.1 Forward model for 3D fluorescence imaging

The 3D fluorescence distribution is also modeled by multiple slices of 2D distributions, om(r)
(m = 1, · · · ,M), as shown in Fig. 5.3(b). Each layer is illuminated by the m-th layer’s
excitation intensity, |f`,m(r)|2, for Scotch tape position r`. The excited fluorescent light
is mapped onto the sensor through 2D convolutions with the incoherent PSF at different
defocus distances, zm,`. The sum of contributions from different layers form the measured
fluorescence intensity:

If,`(r) =
M∑
m=1

[
om(r) · |f`,m(r)|2

]
⊗ |hf,zm,`(r)|2, ` = 1, · · · , Nimg, (5.5)
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where hf,zm,`(r) is the coherent PSF at defocus distance zm,`, which could be further decom-
posed into hf,zm,`(r) = hf (r)⊗hzm,`,λem(r), where hf (r) is the in-focus system’s coherent PSF
at λem. The incoherent PSF is the intensity of the coherent PSF at λem. The subscript f de-
notes the fluorescence channel and the defocus distance, zm,`, depends on the axial scanning
position, ∆s`.

5.2.2.2 Inverse problem for 3D fluorescence imaging

The fluorescence inverse problem takes as input the raw fluorescence intensity measure-
ments, If,`(r), the registered scanning trajectory, r`, and the 3D estimates from the coherent
model, in order to estimate the sample’s 3D SR fluorescence distribution and aberrations
at the emission wavelength. We also refine the speckle field estimate using the fluorescence
measurements.

Based on the incoherent forward model, our 3D SR fluorescence inverse problem is:

minimize
o1,··· ,oM ,pc,hf

ef (o1, · · · oM , pc, hf ) =
∑
`

ef,`(o1, · · · , oM , pc, hf )

where ef,`(o1, · · · , oM , pc, hf ) =
∑
r

∣∣∣∣∣If,`(r)−
M∑
m=1

[
om(r) · |f`,m(r)|2

]
⊗ |hf,zm,`(r)|2

∣∣∣∣∣
2

,

(5.6)

where ef is the cost function. Similar to the coherent inverse problem, we adopt a sequential
gradient descent algorithm for estimation of each unknown variable. The detailed derivation
of gradients and algorithm implementation are summarized in Sec. 5.2.3 and 5.2.4, respec-
tively.

5.2.3 Solving the inverse problem

5.2.3.1 Vectorial notation

In order to derive the gradient to solve for multivariate optimization problem in Eq. (5.4)
and (5.6), it is more convenient to represent our 3D coherent and fluorescent model in the
linear algebra vectorial notation in the following sections.

According to Eq. (5.1) and (5.2), we are able to re-express the multi-slice scattering model
using the vectorial formulation into

f`,1 = H∆s`,λexQS`pc,

g`,m = diag(f`,m)tm, m = 1, · · · ,M,

f`,m+1 = H∆zm,λexg`,m, m = 1, · · · ,M − 1,

G` = H∆zM,`,λexg`,M , (5.7)

where the boldface symbols are the vectorial representation of the 2D variables in non-
boldface form in the original model except for the cropping operator Q, the shifting operator
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S` that shifts the speckle pattern with r` amount, and the defocus convolution operation
expressed as

Hz,λ = F−1diag(h̃z,λ)F, (5.8)

where F and F−1 are Fourier and inverse Fourier transform operator, respectively, h̃z,λ is
the vectorized coherent TF for propagation distance z and wavelength λ. With all these
equations defined in vectorial form, we rewrite our coherent and fluorescence intensity as

Ic,`z = |HcHz,λexG`|2 ,

If,` =
M∑
m=1

Kzm,`diag(|f`,m|2)om, (5.9)

where Hc is also a convolution operation as expressed in Eq. (5.8) with the TF vector, h̃z,λ,
replaced by the pupil vector h̃c, and

Kzm,` = F−1diag
(
F|F−1diag(h̃zm,`,λem)h̃f |2

)
F (5.10)

is the convolution operation with the incoherent TF at zm,`.
Next we use this vectorial model to represent the coherent and fluorescent cost functions

for a single intensity measurement as

ec,`z(t1, · · · , tM ,pc, h̃c) = eTc,`zec,`z =
∥∥∥√Ic,`z − |HcHz,λexG`|

∥∥∥2

2
,

ef,`(o1, · · · ,oM ,pc, h̃f ) = eTf,`ef,` =

∥∥∥∥∥If,` −
M∑
m=1

Kzm,`diag(|f`,m|2)om

∥∥∥∥∥
2

2

, (5.11)

where ec,`z =
√

Ic,`z − |HcHz,λexG`| and ef,` = If,` −
∑M

m=1 Kzm,`diag(|f`,m|2)om are the
coherent and fluorescent cost vectors, respectively.

5.2.3.2 Gradient derivation

The following derivation is based on CR calculus and is similar to the derivation introduced
by our previous work [144, 151].

Gradient derivation for 3D coherent imaging

To optimize Eq. (5.4) for t1, · · · , tM , pc, h̃c, we need to take the derivative of the coherent
cost function with respect to them. We first express the gradients of all the transmittance
function vectors, t1, · · · , tM as

∇tmec,`z =

(
∂ec,`z
∂g`,m

· ∂g`,m
∂tm

)†
= diag(f`,m)

(
∂ec,`z
∂g`,m

)†
= diag(f`,m)v`,m, (5.12)
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where

v`,M =

(
∂ec,`z
∂g`,M

)†
= −H†∆zM,`,λexH

†
z,λex

H†cdiag

(
HcHz,λexG`

|HcHz,λexG`|

)
ec,`z

v`,m =

(
∂ec,`z
∂g`,m+1

· ∂g`,m+1

∂g`,m

)†
= H†∆zm,λexdiag(tm+1)v`,m+1, m = 1, · · · ,M − 1, (5.13)

are auxiliary vectors for intermediate gradient derivation steps, † is the Hermitian operation,
and · is the complex conjugate operation. With these auxiliary vectors, it is relatively simple
to derive the gradient of the speckle field vector, pc, as

∇pcec,`z =

(
∂ec,`z
∂g`,1

· ∂g`,1
∂pc

)†
= S†`Q

†H†∆s`,λexdiag(t1)v`,1. (5.14)

As for the gradient of the pupil function, h̃c, we have

∇h̃c
ec,`z =

(
∂ec,`z

∂h̃c

)†
= −diag(FG`)diag(h̃z,λex)Fdiag

(
HcHz,λexG`

|HcHz,λexG`|

)
ec,`z (5.15)

Gradient derivation for 3D fluorescence imaging

To optimize Eq. (5.6) for o1, · · · ,oM , pc, h̃f , we need to take the derivative of the fluores-
cent cost function with respect to each. First, we express the gradient for the fluorescence
distribution vectors from different layers, o1, · · · ,oM as

∇omef,` =

(
∂ef,`
∂om

)†
= −2diag(|f`,m|2)K†zm,`ef,`, m = 1, · · · ,M (5.16)

Then, we would like to derive the gradient of the speckle field, pc, as

∇pcef,` =
M∑
m=1

(
∂ef,`
∂f`,m

· ∂f`,m
∂pc

)†
= −2

M∑
m=1

(
∂f`,m
∂pc

)†
diag(f`,m)diag(om)K†zm,`ef,`, (5.17)

where (
∂f`,m
∂pc

)†
=

(
∂f`,m
∂g`,m−1

· ∂g`,m−1

∂g`,m−2

· · · ∂g`,2
∂g`,1

∂g`,1
∂pc

)†
= S†`Q

†H†∆s,λex

[
diag(t1)H†∆z1,λex

]
· · ·
[
diag(tm−1)H†∆zm−1,λex

]
. (5.18)

As for the gradient of the pupil function at the fluorescent wavelength, h̃f , we can express
as

∇h̃f
ef,` = −2

M∑
m=1

diag(h̃zm,`,λem)Fdiag(F−1diag(h̃zm,`,λem)h̃f )

F−1diag(Fdiag(|f`,m|2)om)Fef,` (5.19)
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5.2.4 Reconstruction algorithm

5.2.4.1 Initialization of the variables

Since we use a gradient-based algorithm to solve, we must initialize each output variable,
ideally as close as possible to the solution, based on prior knowledge.

For 3D coherent reconstructions, the targeted variables are transmittance function, tm(r),
incident speckle field, pc(r), and pupil function, h̃c(u). We have no prior knowledge of the
transmittance function or pupil function, so we set tm(r) = 1 for m = 1, · · · ,M and h̃c(u)
to be a circle function with radius defined by NAdet/λex. This initializes with a completely
transparent sample and non-aberrated system. If the sample is mostly transparent, the
amplitude of our incident speckle field is the overlay of all the in-focus shifted coherent
intensities:

pinitial
c (r) =

Nimg∑
`=1

Ic,`,z=0(r + r`)/Nimg. (5.20)

For 3D fluorescence reconstruction, the targeted variables are sample fluorescence distri-
bution, om(r), incident field, pc(r), and pupil function at the emission wavelength, h̃f (u).
We have no prior knowledge of the system’s aberrations, so we set h̃f (u) to be a circle func-
tion with radius defined by NAdet/λem. For the incident speckle field, we use the estimated
speckle field from the coherent reconstruction as our initialization. The key to a successful
3D fluorescence reconstruction with this dataset is an initialization of the sample’s 3D flu-
orescence distribution using the correlation-based SIM solver [49, 124–127, 130] that gives
us an approximate result to start with. We adapt the correlation-based solver in our case
for rough 3D SR fluorescence estimation. The basic idea is that we use the knowledge of
illumination speckle intensity from the coherent reconstruction to compute the correlation
between the speckle intensity and our fluorescence measurement. This correlation is stronger
when the speckle intensity lines up with the fluorescent light generated by this excitation
in the measurement. Each layer of the estimated speckle intensity gates out out-of-focus
fluorescent light in the measurement, so we could get a rough estimate of the 3D fluorescent
sample. Mathematically, we express this correlation as

oinitial
m (r) =

9∑
n=1

〈(
If,`(r)− 〈If,`(r)〉`(n)

)(
|fm,`(r)|2 −

〈
|fm,`(r)|2

〉
`(n)

)〉
`(n)

, (5.21)

where 〈·〉`(n) is the averaging operation over ` index of fluorescence images with the same

z-scan position (at n-th layer) in the set defined `(n) = {122(n− 1) + 1, · · · , 122n}.
To understand why this correlation gives a good estimation of the 3D fluorescent sam-

ple, we go through a more detailed derivation with a short-hand notation ∆ to denote the
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operation ∆a`(r) = a`(r)− 〈a`(r)〉`(n). Then, we examine one component of Eq. (5.21):

〈
∆|fm,`(r)|2∆If,`(r)

〉
`(n)

=
M∑

m′=1

∫
om′(r

′)
〈
∆|fm,`(r)|2∆|fm′,`(r′)|2

〉
`(n)

hf,zm′,`(r− r′)dr′

≈
M∑

m′=1

∫
om′(r

′)
〈
∆|fm,`(r)|2

〉2

`(n)
δm,m′δ(r− r′)hf,zm′,`(r− r′)dr′ ∝

〈
∆|fm,`(r)|2

〉2

`(n)
om(r),(5.22)

where we assume the speckle intensity is completely uncorrelated spatially in 3D, which is
an approximation because the speckle has finite grain size depending on the illumination
NA. Under this assumption, this correlation is almost the 3D fluorescence distribution with
an extra modulation factor. Hence, it serves well as a initialization for our 3D fluorescence
distribution.

5.2.4.2 Iterative algorithm

With all the initializations, we summarize our algorithm for both imaging contrast with the
following pseudo-code:

Algorithm 4 3D coherent imaging reconstruction

Require: Ic,`z, r`, ` = 1, . . . , Nimg

1: initialize t
(1,0)
1 , · · · , t(1,0)

M , p
(1,0)
c , h̃

(1,0)
c ; normalize Ic,`z

2: for k = 1 : Kc do
3: Sequential gradient descent
4: for j = 1 : (Nimg ·Nz) do
5: z = zmod(j,2); ` = mod(j,Nimg)
6: if j < Nimg ·Nz then
7: for m = 1 : M do

8: t
(k,j)
m = t

(k,j−1)
m −∇tmec,`z(t

(k,j−1)
1 , · · · , t(k,j−1)

M , p
(k,j−1)
c , h̃

(k,j−1)
c )/4 max

(∣∣∣p(k,j−1)
c

∣∣∣)2

9: end for
10: p

(k,j)
c = p

(k,j−1)
c (r)−∇pcec,`z(t

(k,j−1)
1 , · · · , t(k,j−1)

M ,

p
(k,j−1)
c , h̃

(k,j−1)
c )/max

(
|t(k,j−1)

1 |, · · · , |t(k,j−1)
M |

)2

11: ξ = F{G(k,j−1)
` }

12: h̃
(k,j)
c = h̃

(k,j−1)
c −∇h̃c

ec,`z(t
(k,j−1)
1 , · · · , t(k,j−1)

M , p
(k,j−1)
c , h̃

(k,j−1)
c ) · |ξ|/[max(|ξ|) · (|ξ|2 + δ)],

where δ is chosen to be small
13: else
14: Do the same update but save to t

(k+1,0)
1 , · · · , t(k+1,0)

M , p
(k+1,0)
c , h̃

(k+1,0)
c

15: end if
16: end for
17: Filter t

(k+1,0)
1 , · · · , t(k+1,0)

M with Gaussian filter to damp down high-frequency artifacts
18: end for
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Algorithm 5 3D fluorescence imaging reconstruction

Require: If,`, r`, f1,`, · · · , fM,` ` = 1, . . . , Nimg

1: initialize o
(1,0)
1 , · · · , o(1,0)

M , p
(1,0)
c , h̃

(1,0)
f ; normalize If,`

2: for k = 1 : Kf do
3: Sequential gradient descent
4: for ` = 1 : Nimg do
5: if j < Nimg then
6: for m = 1 : M do
7: o

(k,j)
m = o

(k,j−1)
m −∇omef,`(o

(k,j−1)
1 , · · · , o(k,j−1)

M ,

p
(k,j−1)
c , h̃

(k,j−1)
f )/max

(
|f (k,j−1)

1,` |, · · · , |f (k,j−1)
M,` |

)4

8: end for
9: p

(k,j)
c = p

(k,j−1)
c (r)−∇pcef,`(o

(k,j−1)
1 , · · · , o(k,j−1)

M ,

p
(k,j−1)
c , h̃

(k,j−1)
f )/max

(
|t(k,j−1)

1 |, · · · , |t(k,j−1)
M |

)2

10: h̃
(k,j)
f = h̃

(k,j−1)
f −∇h̃f

ef,`(o
(k,j−1)
1 , · · · , o(k,j−1)

M ,

p
(k,j−1)
c , h̃

(k,j−1)
f )/max

(
|F{o(k,j−1) · |f (k,j−1)

` |2}|
)2

11: else
12: Do the same update but save to o

(k+1,0)
1 , · · · , o(k+1,0)

M , p
(k+1,0)
c , h̃

(k+1,0)
f

13: end if
14: end for
15: end for

3D coherent reconstruction takes about 40 iterations, while the 3D fluorescence recon-
struction takes around 25 iterations to reach convergence.

5.3 Experimental results

Figure 5.1 shows the experimental setup. A green laser beam (BeamQ, 532 nm, 200 mW)
is collimated through a single lens and illuminates the layered Scotch tape element, creating
a speckle pattern at the sample. The Scotch tape and the sample are mounted on a 3-axis
closed-loop piezo-stage (Thorlabs, MAX311D) and a 1-axis open-loop piezo-stage (Thorlabs,
NFL5DP20), respectively, to enable lateral speckle scanning and axial sample scanning.
The transmitted diffracted and fluorescent light from the sample then travels through the
subsequent 4f system formed by the objective lens (Nikon, CFI Achro 20×, NA=0.4) and
a tube lens. The coherent and fluorescent light have different wavelengths and are optically
separated by a dichroic mirror (Thorlabs, DMLP550R), after which the fluorescence is further
spectrally filtered before being imaged onto Sensor-F. The coherent light is ND-filtered and
then split by a beam-splitter onto two sensors. Sensor-C1 is in focus, while Sensor-C2 is
defocused by 3 mm.
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Successful reconstruction relies on appropriate choices for the scanning range and step
size [151]. Generally, the translation step size should be 2-3× smaller than the targeted
resolution and the total translation range should be larger than the diffraction-limited spot
size of the original system. Our system has detection NA of 0.4 and targeted resolution of
500 nm, so a 36 × 36 Cartesian scanning path with a step size of 180 nm is appropriate
for 2D SR reconstruction. For coherent imaging, since there is zero axial bandwidth in
the coherent TF (Fig. 5.2(a)), the sample’s complete diffraction information is projected
axially and encoded in the measurement. This enables SR reconstruction of the sample’s
3D quantitative phase from just the translating speckle, as in the 2D case. Incoherent
imaging, however, demonstrates some degree of optical sectioning due to its torus-shaped
TF (Fig. 5.2(b)) - hence fluorescent light that is outside of the DOF of the imaging objective
will have weak contrast. Thus, in order to reconstruct 3D fluorescence with high fidelity, we
add axial scanning to our acquisition procedure [129].

Here, we use an interleaving scanning scheme, alternating between axial sample scanning
and lateral speckle scanning (Fig. 5.1). The 36 × 36 Cartesian speckle scanning path is
divided into 9 blocks of 12 × 12 sub-scanning paths. Each sub-scanning path is associated
with a z-scan position. This means the distance from incident speckle field to sample is

∆s` = (n− 1)s, for ` = 122(n− 1) + 1, · · · , 122n, where n = 1, · · · , 9, (5.23)

where s is the axial step size. We set the fifth z-scan position as the middle of the sample.
The total scanning range is roughly the thickness of the sample and the step size is at least
2× smaller than the Nyquist-limited axial resolution of the fluorescence microscope. This
extra z-scan enables 3D SR fluorescence information.

5.3.1 3D super-resolution demonstration

With a 0.4 NA objective, our system’s native lateral resolution is 1.33 µm for coherent
imaging and 760 nm for fluorescence (Table 5.1) . According to TF analysis, the intrinsic
DOF is infinite for coherent imaging and 7.3 µm for fluorescence imaging. In order to
characterize the resolution capability of our method, we begin by imaging a sample with
features below both diffraction limits - a mono-layer of fluorescent polystyrene microspheres
with diameter 700 nm. We scan with a z-scan step size of 1 µm across 8 µm range, fully
covering the thickness of the sample. 15 axial layers are assigned to the transmittance
function, with each separated by 1.7 µm based on Nyquist sampling of the expected axial
resolution for our 3D reconstruction.

Figure 5.4 shows that our 3D reconstructions clearly resolve the sub-diffraction individ-
ual microspheres and demonstrate better sectioning ability in both coherent and fluorescent
channels compared to standard widefield imaging. In the reconstruction, the average lateral
peak-to-peak distance of these microspheres is around 670 nm, which is smaller than the
nominal size of each microsphere. This is likely due to vertical staggered stacking of the
microspheres. Given that our lateral resolution is at least 670 nm, we do break the lat-
eral diffraction limit for both coherent and fluorescent channels, and the coherent channel
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achieves > 2× lateral resolution improvement. Axially, we demonstrate 6 µm resolution for
both channels, which is beyond the axial diffraction limit for both channels. The coherent
channel improves the axial resolution from no sectioning ability to 6 µm, suggesting that the
illumination NA of this speckle is >0.4.
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Figure 5.4: 3D multimodal (fluorescence and phase) SIM reconstruction compared to wide-
field fluorescence and coherent intensity images for 700 nm fluorescent microspheres. Res-
olution beyond the system’s diffraction limit is achieved in both the (a) coherent and (b)
fluorescent arms.

5.3.2 3D large-FOV multimodal demonstration

Next we demonstrate 3D multimodal imaging for our full sensor area, giving a FOV ∼314µm
× 500µm. The native system resolution (1.33µm for coherent and 760nm for fluorescence)
corresponds to ∼1.4 Mega-pixels of information. As characterized previously, our method
achieves ∼0.6×0.6×6µm3 resolution for both fluorescence and phase imaging over an axial
range of ∼24 µm. This corresponds to ∼14 Mega-voxels of information, a ∼10× increase in
the information amount. Our experiments are only a prototype; this technique should be
scalable to the Gigavoxel range with a higher-throughput objective and higher illumination
NA.

Figure 5.5 shows the full-sensor 3D quantitative phase and fluorescence reconstructions
of a multi-size sample (mixed 2 µm, 4 µm fluorescent, and 3 µm non-fluorescent polystyrene
microspheres). We zoom-in on 2 regions of interest (ROIs), displaying 4 axial layers for
each. The arrows highlight 2µm fluorescent microspheres, which defocus more quickly than
the larger microspheres. The locations of the fluorescent microspheres match well in both
the fluorescence and phase channels. However, there are some locations in the fluorescence
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reconstruction where 4 µm microspheres collapse because the immersing media is dissolving
the beads over time.

Finally, we demonstrate our technique on human colorectal adenocarcinoma (HT-29)
cells fluorescently tagged with AlexaFluor phalloidin, which labels F-actin filaments (sample
preparation details in Sec. 5.3.3). During acquisition, we use a z-scan step size of 1.6 µm
across a 12.8 µm range. We assign 19 axial layers to the transmittance function, separated
by 1.7 µm. Figure 5.6 shows the full-sensor 3D quantitative phase and fluorescence recon-
structions, with zoom-ins on 2 ROIs. The sample’s morphological features, as visualized with
quantitative phase, match well with the F-actin visualization of the fluorescent channel. This
is expected since F-actin filaments are generally known to encapsulate the cell body.
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Figure 5.5: Reconstructed 3D multimodal (fluorescence and phase) large-FOV for mixed 2
µm, 4µm fluorescent and 3 µm non-fluorescent polystyrene microspheres. Zoom-ins for two
ROIs show fluorescence and phase at different depths.
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Figure 5.6: Reconstructed 3D multimodal (fluorescence and phase) large-FOV imaging for
HT-29 cells. Zoom-ins for two ROIs show fluorescence and phase at different depths. The
blue arrows in two ROIs indicate two-layer cell clusters that come in and out of focus.
The orange arrows indicate intracellular components, including higher-phase-contrast lipid
vesicles at z = −5.1 µm, nucleolus at z = 0, as well as the cell nucleus and cell-cell membrane
contacts.
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5.3.3 Sample preparation

The sample shown in Fig. 5.4 is a monolayer of 700 nm diameter polystyrene microspheres
(Thermofischer, R700), prepared by placing microsphere dilutions (60 uL stock-solution/500
uL isopropyl alcohol) onto #1.5 coverslips and then allowing to air dry. Water is subsequently
placed on the coverslip to reduce the index-mismatch of the microspheres to the air. An
adhesive spacer followed by another #1.5 coverslip was placed on top of the original coverslip
to assure a uniform sample layer for imaging.

The sample used in Fig. 5.5 is a mixture of 2 µm (Thermofischer, F8826) and 4 µm (Ther-
mofischer, F8858) fluorescently-tagged (λem = 605 nm) and 3 µm non-fluorescent (Sigma-
Aldrich, LB30) polystyrene microspheres. We follow a similar procedure as before, except
that the dilution is composed of 60 uL stock solution of each type of microspheres and 500
uL isopropyl alcohol. Since the microspheres are larger in size, we adopt high-index oil
(nm(λ) = 1.52 at λ = 532 nm) for sample immersion.

Figure 5.6 uses a sample of HT-29 cells grown in DMEM with 10% FBS, trypsonized
with 1× trypsin, passaged twice a week into 100mm dishes at 1/5, 1/6, 1/8 dilutions and
stored in a 37C 5% CO2 incubator. For imaging, HT-29 cells were grown on glass cover-
slips (12mm diameter, No. 1 thickness; Carolina Biological Supply Co.) and fixed with
3% paraformaldehyde for 20min. Fixed cells were blocked and permeabilized in phosphate
buffered saline (PBS; Corning Cellgro) with 5% donkey serum (D9663, Sigma-Aldrich), 0.3%
Triton X-100 (Fisher Scientific) for 30 minutes. Cells were incubated with Alexa Fluor 546
Phalloidin (A22283, ThermoFisher Scientific) for 1 hour, washed 3 times with PBS, and
mounted onto a second glass coverslip (24x50mm, No. 1.5 thickness; Fisher Scientific) and
immobilized with sealant (Cytoseal 60; Thermo Scientific).

5.4 Discussion

In this work, we successfully demonstrate 3D resolution improvement for both quantitative
phase and fluorescent imaging. Unlike traditional 3D SIM or 3D quantitative phase meth-
ods which use expensive spatial-light-modulators (SLMs) [14, 142] or galvonemeter/MEMs
mirrors [9, 139, 143] for programmed illumination, our technique is relatively simple and
inexpensive. Layered Scotch tape efficiently creates speckle patterns with NAillum > 0.4,
which is hard to achieve with traditional patterning approaches to high-content imaging
(e.g. lenslet array or grating masks [23–29]). Furthermore, the random structured illumi-
nation conveniently multiplexes both phase and fluorescence information into the system’s
aperture, enabling us to achieve 3D multimodal SR.

We note that our fluorescent reconstruction relies on the recovered 3D speckle from the
coherent imaging channel - mismatch between the two channels can result in artifacts that
degrade resolution. The SR gain we achieve in the fluorescent channel does not match that
achieved in the coherent channel - we attribute this mainly to mismatch in axial alignment
between the coherent and fluorescent imaging cameras. The long DOF of the imaging objec-
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tive made it difficult to axially align the cameras to within the axial resolution limit of the
high-resolution speckle illumination pattern. In addition, our 3D coherent reconstruction
suffers from coherent noise due to system instabilities during the long acquisition process.
Specifically, 3D phase information is encoded into the speckle-like (high dynamic range) fea-
tures within the measurements, which are affected by Poisson noise. These factors reduce
performance in both the 3D phase and fluorescence reconstructions.

Another limitation is the relatively long acquisition time - ∼ 1200 translations of the
Scotch tape results in ∼ 180 seconds (without hardware optimization). The number of
acquisitions could potentially be reduced with further investigation of the scanning range,
step size, and optimal trajectory. This would also reduce computational processing time for
the reconstruction, which currently takes ∼6 hours on a NVIDIA, TITAN Xp GPU with
MATLAB, for each 40 × 40 µm2 patch. Cloud computing could in future parallelize the
reconstruction by patches.

5.5 Conclusion

We have presented a 3D SIM multimodal (phase and fluorescence) technique using Scotch
tape as the patterning element. The Scotch tape efficiently generates high-resolution 3D
speckle patterns over a large volume, which multiplexes 3D super-resolution phase and flu-
orescence information into our low-NA imaging system. A computational optimization al-
gorithm based on 3D coherent and incoherent imaging models is developed to both solve
the inverse problem and self-calibrate the unknown 3D random speckle illumination and the
system’s aberrations. The result is 3D sub-diffraction fluorescence reconstruction and 3D
sub-diffraction phase reconstruction with > 2× lateral resolution enhancement. The method
is potentially scalable for Gigavoxel imaging.
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Chapter 6

Conclusion and future work

This thesis has explored various coherent and incoherent imaging methods for super-resolution
microscopy and high-content microscopy. The fundamental theme in this thesis is to relax
the traditional optical design problem for more flexible imaging with the help of optimization
algorithms. Optimization formulation serves as a more general framework than analytic in-
version for information retrieval, which helps to solve problems with more complex nonlinear
information mapping. This approach has already triggered research on unexplored imaging
methods and demonstrated several improvements on the existing methods. Throughout
this thesis, our focus is to apply this approach for super-resolution coherent and incoherent
imaging. The main contributions include:

• Analysis of various phase retrieval optimization algorithms in the context of the super-
resolution coherent imaging technique, Fourier ptychographic microscopy (FPM), and
discovery of the important role of the noise model in experimental robustness of the
reconstruction.

• Development of a self-calibration algorithm for FPM to correct for experimental errors
such as system aberrations and light source misalignment.

• Development and experimental verification of a blind algorithm for structured illumi-
nation microscopy (SIM) to achieve better and more robust 2D and 3D super-resolution
fluorescence imaging with random illumination patterns.

• Proposal and experimental verification of a high-content (4× super-resolution gain
over the intrinsic system) fluorescence and phase microscopy framework with a speckle
structured illumination approach. Self-calibration algorithms were developed in tan-
dem to improve the imaging quality.

• Introduction of a general 3D imaging model for the speckle SIM framework. Devel-
opment and experimental verification of the corresponding algorithm for 3D super-
resolution phase and fluorescence imaging with random speckle.
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Beyond this work, there are many unexplored directions to use optimization for better
solutions of inverse problems or better design of imaging systems. We list a few potential
directions that are most related to the current work and worth exploring in the near future.

• Engineered speckle pattern: In this work, there are many examples of using random
speckle illuminations for coherent and incoherent super-resolution imaging. Theoreti-
cally, the multiplexing capability of super-resolution information is highly dependent
on the properties of speckle patterns such as the distribution of spatial frequency con-
tent and underlying statistics of the speckles. As [78, 160, 161] suggest, it is possible
to control properties of the speckle pattern such as the statistics and correlation. A fu-
ture work combining the idea of engineered speckle patterns and our imaging method
would be worth pursuing. For example, to extend our work in Chapter 4 for super
high-content imaging, we need to increase the illumination NA even more than what
we use now (NAillum ≈ 0.35). Illumination NA not only affects the lateral size but also
the axial size of the speckle pattern. The higher the illumination NA, the smaller the
lateral and axial size of the speckle grain. Hence, the axial interaction of the speckle
and the sample becomes more evident, which requires the 3D model discussed in Chap-
ter 5 and deviates from the purpose of simply doing 2D high-content imaging. In order
to stick to 2D high-content imaging, we need to have a speckle pattern with small
lateral but large axial grain size. Under this condition, we can borrow the concept
from Bessel beams [162, 163] to explore and create this type of Bessel speckle pattern
as shown in [164].

• Joint-channel imaging in scattering media: In Chapter 5, we leveraged the 3D
scattering information from the coherent imaging channel to predict 3D speckle inten-
sity for 3D super-resolution fluorescence reconstruction. This demonstrates a use case
of our 3D coherent reconstruction for further prediction or modeling. Let us consider a
different geometry, where the scattering layer is in between the fluorescent sample and
the detection optics. The fluorescent measurement on the camera is blurry because of
the scattering layer. A normal deblurring process would require the knowledge of a
point spread function for proper deconvolution. If we could set up a coherent imaging
channel to use 3D FPM or our 3D method to estimate the 3D scattering structure, we
would have better chance to obtain the knowledge of this space-variant point spread
function for later deconvolution. This could be a potential way to tackle imaging
problem in scattering media.

In addition to those natural continuations of the work described in this thesis, we now
discussed two more general situations in computational imaging to which optimization-based
approaches can yield better solutions than analytic inversions.

The first is when the targeted information is highly nonlinear in the imaging model so
that there is no obvious analytic relationship between that information and the feasible
physical measurement. For example, sample scattered electric field (or phase) is nonlinear
to the intensity measurement, thus an optimization formulation is required unless there is



CHAPTER 6. CONCLUSION AND FUTURE WORK 127

a way to turn the measurement linear to the electric field, such as in holography. Previous
research has also suggested that using a computational multislice model can be an effective
approach for 3D refractive index retrieval [79, 156, 165]. Multiple scattering slices used
to model refractive index of 3D samples interact with each other and are nonlinear with
intensity. In this thesis, we also investigate these examples, including FPM, blind SIM (a
nonlinear problem because the pattern and the sample are unknown variables), 2D and 3D
multimodal SIM with an unknown pattern. Imaging modalities where imaging contrast is
a highly nonlinear function of the desired solution are the best candidates for improved
solutions using computational imaging. For example, nonlinear label-free microscopy, such
as coherent anti-Stokes Raman scattering (CARS) microscopy [166] and stimulated Raman
scattering (SRS) microscopy [167], measure intensity that is a nonlinear function of the
desired quantity. With a proper computational model, more measurements that contain
more information such as resolution or 3D information can potentially give better solutions.
A similar example is polarization microscopy [168], where asymmetric refractive index is
encoded in the spatial distribution of the 3D electric field that is nonlinear with the intensity
measurement. The joint-estimation problem used for self-calibration throughout this thesis is
a nonlinear problem as well. Thus, computational imaging approaches using self-calibration
can be applied to a variety of imaging systems to achieve better imaging quality.

The second situation is the optimal acquisition design problem. Since a lot of computa-
tional imaging problems are nonlinear optimization problems, there is no easy way to analyze
how information is transferred in the measurement. Many times people intuitively come up
with one or two ways to acquire desired information with limited understanding and rea-
soning on optimality of the acquisition scheme. There is a strong need to understand how
to better acquire data with computational imaging techniques. Up to now, this type of de-
sign problem relied on a framework called unrolled optimization [169, 170]. This framework
starts with a set of ground truth images and then it generates measurements based on some
acquisition schemes. By comparing reconstructions to its corresponding ground truths, the
appropriateness of the current acquisition scheme can be evaluated. It will be a future step
of the computational imaging community to start thinking about this design problem for
every computational imaging technique.

As mentioned, it is difficult to analyze the performance and well-posedness of computa-
tional imaging techniques. Usually, thorough simulations and experimental verification are
required to justify the effectiveness of reconstruction and characterize the convergence condi-
tions of the technique. For example, thorough simulations and experiments have been done
to verify the reconstruction effectiveness of multiplexed FPM [21] as well as our methods
in Chapter 4 and 5. In addition, the measurements are usually nonlinear to the targeted
unknown variables. This also makes resolution analysis more difficult than methods based
on direct analytic linear inversion. Having a systematic way to analyze the well-posedness
and performance of computational imaging techniques not only is important challenge in its
own right but will also aid in making system design more efficient.
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