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Abstract

Efficient Distribution of Robotics Workloads using Fog Computing

by

Raghav Anand

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg,

As more and more robots are used to perform tasks in homes, offices and warehouses, there will
be a need to scale algorithms to large fleets of robots to allow for fast, reliable and safe operation.
These algorithms will often have to leverage the power of the Edge and the Cloud (together called
the Fog) in unison to deliver the most efficient compute that any robot requires at any point in time.

In the first part of the thesis, we introduce Robot Inference and Learning as a Service for low-
latency and secure inference serving of deep models that can be deployed on robots. Unique
features of RILaaS include: 1) low-latency and reliable serving with gRPC under dynamic loads by
distributing queries over multiple servers on Edge and Cloud, 2) SSH based authentication coupled
with SSL/TLS based encryption for security and privacy of the data, and 3) front-end REST API
for sharing, monitoring and visualizing performance metrics of the available models. We report
experiments to evaluate the RILaaS platform under varying loads of batch size, number of robots,
and various model placement hosts on Cloud, Edge, and Fog for providing benchmark applications
of object recognition and grasp planning as a service. We address the complexity of load balancing
with a reinforcement learning algorithm that optimizes simulated profiles of networked robots.

In the second part of the thesis we propose a sampling-based multi-query graph-based motion plan-
ner for robots that parallelizes the search process using cloud-based serverless computing (AWS
Lambda). Using graph-based motion planning instead of tree-based alternatives allows for effi-
cient reuse of a precomputed road map between tasks in the same workspace. By parallelizing the
precomputation and reusing exploration, a robot executing multiple actions in the same workspace
can leverage an already dense graph to create more efficient motion plans in a short amount of time.
We introduce an algorithm to parallelize Probablistic Roadmaps (PRM) over serverless nodes, pro-
vide proofs of asymptotic optimality and probabilistic completeness and run a suite of experiments
on the Fetch robot for a pick-and-place task to measure the provided speedup.
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Chapter 1

Introduction

As more and more robots are used to perform tasks in homes, offices and warehouses, there will
be a need to scale algorithms to large fleets of robots to allow for fast, reliable and safe operation.
These algorithms will often have to leverage compute on both the Edge and the Cloud (together
called the Fog) to allow cost-efficient and speedy operation.

A large class of newly developed algorithms rely on computationally expensive deep neural
networks for perception, planning and control. There is often a difficulty in deploying these al-
gorithms to large robot fleets because of the additional infrastructure development that needs to
accompany the algorithm development. Chapter 3 presents Robot Inference and Learning as a
Service (RILaaS): a framework that allows easy deployment and distribution of deep models over
a heterogenous Fog infrastructure. RILaaS was built in collaboration with Ajay Tanwani and has
been accepted for publication to IEEE-RAL 2020 [44] ⇤. My contribution to RILaaS was to ar-
chitect and build out the backend for the platform (including containerization), setup the load
balancing framework (including the Q-Learning algorithm) and run all the experiments to validate
the reinforcement learning based load-balancer.

On the other hand, some robotics algorithms not involving deep neural networks require more
specific algorithms to efficiently parallelize them in a cost-effective manner. Motion planning for
robots is a common subprocedure that is required to complete more complex robotics tasks. For
robotic arms, motion planning using the onboard CPU is often slow due to the high dimensional
configuration space in which these plans have to be generated. Chapter 4 presents a novel way of
parallelizing graph based motion planning using serverless computing to allow the generation of
fast and cost-efficient motion plans. This work was done in collaboration with Jeffrey Ichnowski
and Chenggang Wu [3] †. My contribution here was to start from previous work on tree based
motion planning [14], formulate extensions to graph based planners, implement these extensions
in a C++ codebase and run experiments to measure speedups for the end-to-end motion planning
pipeline.

⇤Ajay Tanwani, Raghav Anand, Joseph Gonzalez, and Ken Goldberg. “RILaaS: Robot Inference and Learning as
a Service”. In:IEEE Robotics and Automation Letters(2020).

†Raghav Anand, Jeff Ichnowski, Chenggang Wu, Joseph Hellerstein, Joseph Gonzalez, Ken Goldberg “Distributed
Multi-Query Serverless Motion Planning”.
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Chapter 2

Related Work

2.1 Robot Inference and Learning as a Service

Cloud and Fog Robotics
Cloud Robotics provides on-demand availability of configurable resources to support robots’ oper-
ations [22]. The centralized Cloud approach alone often limits the latency and throughput of data
than deemed feasible for many robotics applications. Fog Robotics distributes the resource usage
between the Cloud and the Edge in a federated manner to mitigate the latency, security/privacy, and
network connectivity issues with the remote Cloud data centers [11, 43]. Popular cloud robotics
platforms include RoboEarth [48] – a world-wide web style database to store knowledge generated
by humans and robots accessed via Rapyuta platform; KnowRob [45] – a knowledge processing
system for grounding the knowledge on a robot; RoboBrain [37] – a large scale computational sys-
tem that learns from publicly available resources over internet; rosbridge [34] – a communication
package between the robot and the Robot Operating System (ROS) over Cloud; while Berkeley
robotics and automation as a service (BraaS) [46] and Dex-Net as a Service (DNaaS) [33] are
recent efforts to provide Cloud-based services for analytical grasp planning.

To the best of our knowledge, RILaaS is the first user-based data-driven general purpose infer-
ence serving platform for programming robots. We provide grasp planning and single-shot object
recognition services as an example where the robots send RGB and/or depth images of the envi-
ronment and retrieve the recognized objects and the grasp locations for robotic manipulation.

Inference Serving
Inference serving is emerging as an important part of a machine learning pipeline for deploying
deep models. The growing demand of machine learning based services such as image recogni-
tion, speech synthesis, recommendation systems etc. is resulting in tighter latency requirements
and more congested networks. Large tech companies have built their private model serving infras-
tructure to handle scaling, performance, and life cycle management in production, however, their
adoption in a wider machine learning and robotics community is rather limited.



CHAPTER 2. RELATED WORK 3

A simple way to deploy a trained model is to make a REST API using Flask. Although simple
and quick, it often causes scale, performance, and model life cycle management issues in produc-
tion. Tensorflow-serving uses SavedModels to package the trained models for scaling and sharing
of the deployed models [31]. The serving, however, does not support arbitrary pre-processing and
post-processing of the data which limits a range of applications. Clipper supports a wide variety
of frameworks including Caffe, Tensorflow and Scikit-learn for inference serving in the Cloud.
Additionally, it uses caching and adaptive batching to improve the inference latency and through-
put [10]. InferLine combines a planner and a reactive controller to continuously monitor and
optimize the latency objectives of the application [9]. Rafiki optimizes for model accuracy with
a reinforcement learning algorithm subject to service level latency constraints [49]. INFaaS au-
tomatically navigates the decision space on behalf of users to meet user-specified objectives [36].
Recently, a number of companies have entered the model serving space with Amazon Apache
MXNet, Nvidia TensorRT, Microsoft ONNX and Intel OpenVino to satisfy the growing applica-
tion demands. All these services are typically optimized to serve specific kinds of models in the
Cloud only. Moreover, creation or updating of the models at the back end is manual and cum-
bersome. In comparison to these services, RILaaS allows users to upload trained deep models,
share with other users and/or make them publicly available for others to test models with custom
data and easily deploy on new robots for querying the trained models. It distributes the queries
over Cloud and Edge to satisfy more stringent service level objectives than possible with inference
serving in the Cloud only.

Inference Optimization
Deploying deep learning models is not just about setting up the web server API, but ensuring
that the service is scalable and the requests are optimized for service level objectives. The Cloud
provides seemingly infinite resources for compute and storage, whereas resources at the Edge of
the network are limited. Edge and Fog Computing brings Cloud-inspired computing, storage, and
networking closer to the robot where the data is produced [39]. Quality of service provisioning
depends upon a number of factors such as communication latency, energy constraints, durability,
size of the data, model placement over Cloud and/or Edge, computation times for learning and
inference of the deep models, etc. This has motivated several models for appropriate resource
allocation and service provisioning [29]. Schaerf et al. investigate adaptive load balancing in a
decentralized and distributed system [38]. Tian et al. present a fog robotic system for dynamic
visual servoing with an ayschronous heartbeat signal [47]. Chinchali et al. use a deep reinforce-
ment learning strategy to offload robot sensing tasks over the network [7]. Nassar and Yilmaz [30]
and Baek et al. [4] allocate resources in the Fog network with a reinforcement learning based load
balancing algorithm.

RILaaS takes a distributed approach to inference serving where a load-balancer receives infer-
ence requests from nearby robots/clients at the Edge and learns to decide whether to process the
requests on Cloud or Edge servers based on their resource consumption. We show its application
to vision-based grasping and object recognition and investigate the inference scaling problem by
simulating increasing number of requests in the network.
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2.2 Parallelizing Graph based Motion Planning

Sampling based Motion Planning
Sampling-based motion planners solve motion-planning [8] problems by generating random robot
configurations and connecting them into a graph of feasible motions. Planners such as PRM [21]
and RRT [24] are probabilistically complete, meaning that with enough time, they will find a
solution with probability 1. With attention to sampling and connection strategy, these planners can
be asymptotically-optimal (e.g., PRM* and RRT* [19] and SST [26]), meaning that with enough
time, they will find an optimal solution with probability 1. In some scenarios, finding a single
solution to a motion planning problem or single-query is sufficient, while in other scenarios it can
be beneficial to precompute a multi-query graph or road map of motions that can later be quickly
search with different start and goal configurations. In this paper, we build on prior work in graph-
based planners to build a multi-query motion planner by parallelizing the sampling loop using
cloud-based serverless computing to construct a graph.

Parallel Algorithms for Motion Planning
Amato et al. [1] showed that sampling-based motion planners are well-suited for parallel compu-
tation. Prior work exploring parallelizing sampling-based motion planning takes mulitple forms,
including building a single graph in shared memory with locks [41] and without locks [13], or in
distributed memory [32, 6, 18]. In this work, we parallelize the construction of a single graph by
distributing graph generation to multiple concurrent serverless computing processes.

Spliting a motion planning problem into smaller regions is a tactic prior work explores either to
tackle simpler problems or to distribute work in a parallel computing environment. KPIECE [41]
prioritizes sampling cells to break up motion planning problems based on complexity of each cell.
Jacobs et al. [17] divide space for sampling using radial splits. Ichnowski et al. [15] recursively
split sampling regions to always keep the working data set small enough to fit in the CPU cache.

Serverless Computing
Serverless computing has gained wide attention in recent years. Compared to traditional serverful
computing, where users provision virtual machines (VM) and perform computation on these VMs,
serverless computing has two key advantages. First, it abstracts away the notion of servers; users
only need to register functions with the system and define when to trigger function execution.
This drastically simplified the deployment process as users no longer need to manually provision
VMs and worry about finding the VM that has the optimal combination of CPU, memory, and
network resources. Second, serverless platforms automatically adapt to workload changes; they
dynamically scale up as the workload spikes and scale down as the workload troughs, and users
only pay for the compute allocated during the function execution. In our setting, as the robot
moves across different environment and performs the search, the amount of compute required
across environment dynamically changes, making serverless computing an attractive option.
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Using the Cloud for Motion Planning
Cloud-based computation for robotics shows promise in offloading compute-intensive processes
from a robot’s onboard computer [16], allowing robots to have low-power CPUs and light-weight
batteries to power them. Motion planning can be computationally challenging [5], and thus is a
good candidate for cloud-based computation [23]. In prior work, Ichnowski et al. [14] showed that
serverless computing of tree-based single-query motion planners has the potential to dramatically
speed up motion plan computation. In this work, we propose speeding up graph-based multi-query
motion planning using serverless computing. Unlike prior serverless motion planning work which
could limit its network communication to a small portion of the graph (e.g., the solution), this work
requires coordination in the construction of a shared graph on which it will later perform multiple
queries.
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Chapter 3

Robot Inference and Learning as a Service

3.1 Introduction
Robot programming has evolved from low level coding to more intuitive methods. Common ways
of programming robots include use of a teaching pendant to record and playback a set of via-
points, offline programming with the use of a simulator, programming by demonstration such as
kinesthetic teaching, or programming by exploration for trial and error learning of the desired
task. Despite the variety of interfaces, teaching a new task to a robot requires a skilled person
which involves data collection, labeling and/or learning a policy from hundreds of hours of robot
training [25]. In this work, we advocate the need of a programming-by-abstraction approach
where high-level skills such as grasping and object recognition etc. can readily be acquired in a
‘plug-and-play’ manner to facilitate programming of complex skills.

Recent advancements in deep learning have led to a rise of robotic applications that rely on
computationally expensive models such as deep neural networks for perception, planning and con-
trol. Typical usage of a deep learning model involves: training, adaptation and/or inference. The
training stage involves estimation of model parameters on large scale data, adaptation is the pro-
cess of transferring/fine-tuning the model to a new domain/environment, while inference requires
predicting the model output for a given input. While training and adaptation of a deep model is
computationally and resource intensive, inference is often lightweight and must be done in real-
time to meet the performance requirements of the application. As an example, training a deep
object recognition model on ImageNet-1k may last for days, adaptation may take hours, but the
inference time is often less than 100 milliseconds.

Robots are increasingly linked to the network and thus not limited by the onboard resources
for compute, storage and networking with Cloud and Fog Robotics [22, 43]. By offloading the
computational and storage requirements over the network, the robots can share training, adaptation
and inference of deep learning models and reduce the burden of collecting and labelling massive
data for programming a separate model for each robot. Once trained, the models can be deployed
to an inference serving system to meet the performance requirements of the application such as
bandwidth, latency, accuracy and so on. To our surprise, there is very little research on how to
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Figure 3.1: RILaaS uses a hierarchy of resources in the Cloud-Edge continuum to distribute infer-
ence/prediction serving of deep learning models such as grasp planning and object recognition on
a fleet of robots. Users can manage robots and models with a front-end API that interacts with the
inference loop through a metrics server, authorization cache, and a Docker model repository.

use/re-use and deploy such models once they are trained. The focus of this paper is on scalable
inference serving of deep models on networked robots.

In this paper, we introduce a novel Robot-Inference-and-Learning-as-a-Service (RILaaS) plat-
form to meet the service level objectives in inference serving of deep models on robots. RILaaS
abstracts away applications from the training phase with virtualized computing and storage of mod-
els and datasets, thereby, removing hardware and software dependencies on custom middleware. It
allows users to easily upload, test, share, monitor and deploy trained models on robots for querying
the service ubiquitously. The service optimizes for lower latency and scalable inference across a
fleet of robots by distributing queries over Cloud and Edge using a model-specific load balancing
strategy (see Fig. 3.1). We also address the complexity of load balancing with a reinforcement
learning algorithm that optimizes load profiles of networked robots by distributing queries over
Cloud and Edge, and observe that it outperforms several baselines including round robin, least
connections, and least model time. We show the application of RILaaS to deep object recognition
and grasp planning, where a model takes as input images of the robot environment and returns
objects and/or grasp configurations as output. We investigate the performance of RILaaS platform
under varying batch sizes, number of robots, and simulated dynamic loads for vision-based declut-
tering, where a mobile robot grasps objects from a cluttered floor and sorts them into respective
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bins.

Contributions
This chapter makes the following contributions:

1. We present RILaaS: a novel user-based low-latency inference serving platform to facilitate
large-scale use/re-use of deep models for robot programming.

2. We provide examples of deep object recognition and grasp planning as a service with RILaaS
and benchmark their performance with varying number of robots, batch sizes and dynamic
loads.

3. We optimize the round-trip latency times for scalable inference serving by distributing queries
over Cloud and Edge servers with a reinforcement learning algorithm that outperforms sev-
eral baselines under simulated dynamic loads by at least 14.04% reduction in round-trip
latency time compared to the next best least-connections strategy.

3.2 RILaaS Features and Challenges Addressed
Consider the multi-agent setting with a set of M robots hr

1

. . . rMi each having access to a set of
trained models or policies h⇡

1

. . . ⇡Di that are deployed on a set of N servers. Each model may
be deployed on one or more servers, and the location of each server is fixed either on Cloud, Edge
or anywhere along the continuum. The robot observes the state of the environment as {⇠t}

TB
t=1

in a
mini-batch of size TB, sends the request to the inference service and receives the response {yt}

TB
t=1

.
The job of the inference service is to compute the response {yt = ⇡(⇠t)}

TB
t=1

for the requested
model such that the round-trip latency time is optimized in communication with the set of robots,
while preserving the privacy and security of the data.

Next, we describe the specific challenges in developing the general purpose inference serving
platform and discuss the RILaaS methodology to address the outlined issues.

Model Support: Prominent machine learning frameworks such as PyTorch, Tensorflow, Spark,
Caffe are widely used for training and adaptation of deep models. Deploying these multiple
frameworks on a robot or a set of inference servers is complex because of conflicting depen-
dencies between each framework. RILaaS accepts any arbitrary model for deployment by using
Docker containers to allow each framework to exist independently of the other. Each container
can be customized to the requirements of a particular framework. The containers accept inputs of
Map<name, numeric array> and return outputs of the same form, where the map function
adapts the model inputs and outputs to the RILaaS format.

Rapidly Deployable: RILaaS abstracts away applications from models to facilitate ease of
deployment on custom hardware with varying specifications. It only requires the public SSH key
of the robot for authenticating and subscribing to the required models, after which the robot can
readily access model outputs over a network call.
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Figure 3.2: Front-end API snapshots (not shown to scale): (top) Users can upload, share and
visualize models and datasets, (bottom-left) interface to upload new models and set access control
policies, (bottom-right) interface to deploy available models on robots.

Security and Privacy: Inference serving often requires transmitting sensitive data over un-
trusted wireless networks (such as images of private locations) . Hosting models on the Edge of
the network can keep data private and the network secure, but it comes at the cost of developing and
maintaining a heterogeneous Edge infrastructure. RILaaS uses a Fog robotics approach to place
models on the Cloud and the Edge servers depending upon the security requirements specified by
the user. This allows access to the infinite compute capacity of the Cloud for low-sensitivity mod-
els while using secure but less powerful Edge infrastructure for private data. Moreover, RILaaS’s
front end allows easy management of access controls on a per-robot per-model basis.

Scalable Workloads: Robots with limited onboard compute may have to trade-off between
doing fast inference on a remote server using hardware accelerators such as GPUs (while incurring
additional network overhead) and doing slow inference locally on CPUs. Latency times need be
optimized to deal with dynamic application dependent workloads. RILaaS optimizes the inference
serving latency for each individual model by using reinforcement learning to distribute queries
over the Cloud and the Edge servers according to their resource consumption.

Performance Monitoring: Monitoring the inference service is useful to evaluate desired ac-
curacy and latency for real time applications. RILaaS allows users to specify and log metrics for
each model and each robot over a front-end.
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3.3 RILaaS Architecture
RILaaS is divided into four modules: 1) Front-end, 2) Management Server, 3) Inference Server
and 4) Request Interceptor. The front-end provides a simple interface to upload trained mod-
els and deploy them on robots. The management server is responsible for storing the authoriza-
tion policies and deploying the containerized models on requested servers. The inference server
computes the response of the incoming queries using specified models. The request interceptor
authorizes the use of specified models, while the load-balancer hosted on the request interceptor
learns to distribute queries over multiple inference servers. Additionally, the monitoring server
collects metrics about the model and the robot performance. The user first uploads or chooses a
publicly shared model over the front-end where it is containerized and deployed on the inference
server. Robots are added by specifying their public SSH key and subscribing to the desired mod-
els. Robots can then query the deployed models over the network using a minimalist client library.
The monitoring server runs in the background to log the desired metrics for visualization via the
front-end. The overall architecture is summarized in Fig. 3.1.

User End: Front-End and Management Server
RILaaS provides a user-facing REST API that interacts with the management server to create,
view and update models, datasets, robots and metrics (see Fig. 3.2 for front-end snapshots). The
front-end is a user-based platform that provisions for:

Model Creation: Users upload the model folder containing the pre-trained model weights and
specify the input, output types and optional pre-processing and post-processing modules. The man-
agement server containerizes the model automatically and uploads the image in a docker repository
hosted on AWS. We package each model in a separate Docker container to resolve system conflicts
between models and prevent over-utilization of system resources.

Model Sharing: Users can make their models private, public or share with other users on the
platform to facilitate re-usability of models across applications.

Robot Creation: Users deploy the uploaded models on robot(s) by adding their public SSH
key for authentication. Note that all publicly available models are automatically made available to
any robot registered with the service.

Dataset Creation: The front-end allows users to upload test datasets for querying the uploaded
models and visualizing the model outputs. The test datasets can similarly be made public for other
users to test the models. This allows users to ensure the functioning of their deployed models
before querying them from the robot.

Metrics Viewer: A flexible query interface through Prometheus allows users to view met-
rics about their model/robot such as requests sent/received and the round-trip communication
latency times. Additional end-points for metrics can be added via a dedicated endpoint that is
asynchronously monitored by the management server.
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Robot End: Request Interceptor and Inference Server
The Request Interceptor receives the incoming requests from the networked robots and distributes
them to the inference servers. The request interceptor may be deployed on the robot itself or at
the Edge of the network for a fleet of robots. Note that multiple request interceptors can also be
deployed for the same application. The request interceptor is responsible for SSH based authentica-
tion of the robots and authorizing access control for the models. Authentication and authorization
policies prevent misuse of compute resources by intruders. Authentication is done using JSON
Web Tokens (JWT) signed with private SSH key of the robot, while authorization policies are
stored in a database in the management server. Naively fetching model access policies from re-
mote databases for every request can slow down inference, thereby, these access policies are stored
on a local Redis cache to minimize network calls to a remote database for each robot query. The
cache is updated using an event-triggered system that maintains the most recent version of access
control policies from the management server. The request interceptor subsequently directs the au-
thorized queries to the inference servers using a user-specified load balancing strategy to optimize
the round-trip latency times.

Inference Servers deploy the containerized models on provisioned servers to process the in-
coming requests. The servers may be placed on Cloud, Edge and/or anywhere along the continuum
depending upon the application requirements. Modular resource placement allows the robots to ac-
cess resources from the Edge and seamlessly switch to the Cloud for scalability if Edge resources
are lacking. Moreover, non-critical models can also be rate limited on a per-robot basis in order to
prevent DoS attacks from occurring at the Edge and ensure high availability of important models.

Inference Query Life Cycle
RILaaS abstracts away the hardware and software dependencies required for inference of deep
robot models. Once a model has been deployed on the RILaaS platform, a robot or a fleet of robots
can readily access the deep models by a simple network call after installing the minimalist RILaaS
client python package. As shown in the code snippet below, the RobotClient object contains
the necessary parameters for authentication and authorization of the robot and the required deep
model. The robot specifies the target address of the request interceptor, the model name and the
model version for inference, the private SSH key of the robot for inference and the SSL certificate
location. The SSL certificate encrypts the communication between the robot and the servers. The
robot communicates with the servers using gRPC, an open source Remote Procedure Call library
built on HTTP/2. Once it is created, the RobotClient object is used to make predictions with a
simple function call.

from client import RobotClient
rc = RobotClient(

TARGET_IP ,
MODEL_NAME ,
MODEL_VERSION ,
PRIVATE_SSH_KEY_PATH ,
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Figure 3.3: Inference optimization with adaptive load-balancing: A Q-Learning algorithm adapts
the distribution of the incoming requests from the robots between the Cloud and the Edge resources
to optimize the round-trip latency time.

objects,
grasps

RGBD
Image

Figure 3.4: Vision-based decluttering application where the robots send the RGBD image of the
environment to the inference service and retrieves the object categories and bounding boxes, along
with their grasp locations to put the objects in their corresponding bins.

SSL_CERTIFICATE_LOCATION
)

outputs = rc.predict(inputs)

3.4 Inference Optimization with Adaptive Load-Balancing
The inference requests from a robot or a fleet of robots can be optimized for large-scale serving
of deep models. A-priori estimation of querying rate of the model and the round-trip inference
time of the model provide a useful criteria for inference optimization. Ensemble modeling is also
useful to deploy multiple models of the same task and optimize the inference times. Appropriate
model selection can provide a trade-off between accuracy and latency to satisfy the service level
objectives [10, 49]. Flexibility in placement and usage of resources can also increase the overall
system efficiency. Consider, for example, a resource constrained network where GPUs are avail-
able on the Cloud and only CPUs are available at the Edge of the network. Even though a GPU
provides superior computation capabilities compared to a CPU, the round-trip communication time
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Figure 3.5: Comparison of the average round-trip latency times of the object recognition model on
(left) and the grasp planning model on (right) with the use of Edge or Cloud resources. We make
two observations: 1) the round-trip communication time scales sub-linearly with increasing batch
size and number of robots across both models, 2) the difference between the Edge and the Cloud
latency times is more dominant when the computation time is less than the communication time as
for the object recognition model in comparison to the grasp planning model.
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Figure 3.6: A comparison between RILaaS and tensorflow Serving deployed on the Edge for the
object detection model. RILaaS performs on par with tensorflow serving and the gap closes further
with more users.
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of using a GPU in the Cloud vs a CPU locally is application and workload dependent. Note that
the capital and operational expense for a CPU is far lower than that of a GPU. Simple application
profiling may be used for resource placement in this context [20]. However, finding an appropriate
balance for performance and cost is challenging when the application demands and the availability
of resources keeps changing over time, making continuous re-evaluation necessary [50].

Load balancing across multiple servers is useful for optimizing resource utilization, reducing
latency and ensuring fault-tolerant configurations [38]. Traditional load balancing strategies sup-
ported in RILaaS include,

Round Robin: Requests are distributed in a cyclic order regardless of the load placed on each
server.

Least Connections: The next request is assigned to the server with the least number of active
connections.

Least Model Time: Requests are assigned based on running estimate of average round-trip
latency for each model. To prevent choosing a single server for extended periods of time, we
randomize the server selection with a probability to explore all available resources.

We use nginx [35] for load-balancing with round robin or least connections. The nginx load bal-
ancing strategies naively assume homogeneity of servers, i.e., each request takes a similar amount
of time to process on available resources. Moreover, the heuristics used in these strategies are not
suitable for handling dynamic loads where the number of requests vary over time. In this work,
we seek to optimize the inference times under dynamic loads by distributing queries over a set of
non-homogeneous servers between the Edge and the Cloud (see Fig. 3.3 for an overview). Note
that this work does not directly address the problem of autoscaling (creating new servers) to meet
load spikes, instead the focus is on optimizing the load across a fixed set of servers.

We formulate the adaptive load-balancing as a reinforcement learning problem to minimize the
expected round-trip latency for each request in a given time horizon on a per-model basis. We
assign an ‘agent’ to each model to distribute the incoming queries, i.e., the number of agents scale
linearly with the number of models used. Each agent keeps an estimate of each server in a Markov
decision process tuple hS,A,Ri where st 2 S is the state representation of the server at time t,
at 2 A is the action of sending request to one of the N servers which results in transition to a new
state s0t 2 S 0 along with the reward r(st,at) 2 R as an estimate of the round-trip latency, i.e.,

st =

2

6664

pt,1 , qt,1
pt,2 , qt,2

...
pt,N , qt,N

3

7775
, at =

2

6664

1

2

...
N

3

7775
, rt = � (1 + L(st,at))

2 , (3.1)

where pt,i is the number of requests of a model on server i at time t, qt,i represents the total number
of active requests of all models on server i at time t, and L(st,at) is the round-trip latency of
sending and receiving a inference request to a server. Note that the reward function penalizes the
high latency times in a quadratic manner. The agent learns to choose the server by taking action at

such that the expected latency in a given time horizon is minimized as estimated by the Q-function
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Figure 3.7: Inference optimization of varying test load profiles for object recognition on (left)
and grasp planning on (right). For each model, top row shows the round-trip latency of load-
balancing strategies, second and third row shows the Q-learning and least connections policy output
in allocating Edge or Cloud resources, fourth row shows the requests rate profile. Q-learning scales
better with increasing loads than other load-balancing strategies by optimally figuring out how to
use Edge resources more frequently to reduce the average round-trip latency times.

Q(st,at),

Q(st,at) = E
"

TX

t=0

�tr(st,at)

#
, at = arg max

at=1...N
Q(st,at), (3.2)

where � is the discount factor of future rewards. The Q-function is recursively updated using the
Bellman equation [42]. With a small probability, a server is randomly chosen to encourage explo-
ration of the state and action space. The agent continuously optimizes the action selection to drive
down the latency times for each model based on the observed load profiles from the networked
robots. Note that in a real world setting, this training can be done during periods of low usage by
replaying past load profiles, while using a competitive baseline until the load balancing model is
trained.

3.5 Experiments and Results
We now present experiments for evaluating the RILaaS platform to serve deep models of object
recognition and grasp planning on a large scale. We empirically investigate the effect of vary-
ing batch size, number of users and resource placement, followed by the adaptive load-balancing
experiments to optimize simulated dynamic load profiles with a fleet of robots. We use the Ama-
zon EC2 (East) p2.1xlarge instance with 1 Tesla K80 GPU in Northern Virginia (us-east-1) for
Cloud compute and use Amazon S3 buckets for Cloud storage. The Edge infrastructure comprises
of a workstation with 1 NVidia V100 GPU located at a nearby data center.
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Application Workloads
We consider real-world application scenarios where RILaaS is used to provide object recognition
and grasp planning as a service for vision-based robot decluttering, building upon our previous
work in [43, 40].

Object Recognition: We use the MobileNet-Single Shot MultiBox Detector (SSD) [27]
model with focal loss and feature pyramids as the base model for object recognition (other well-
known models including YOLO, Faster R-CNN etc. can similarly be used [12]). The input RGB
image is fed to a pre-trained VGG16 network, followed by feature resolution maps and a feature
pyramid network, before being fed to the output class prediction and box prediction networks.
The model is trained on 12 commonly used household and machine shop object categories using a
combination of synthetic and real images of the environment.

Grasp Planning: Robots in homes, factories or warehouses require robust grasp plans in order
to interact with objects in their environment. We use the Dex-Net grasp planning model to plan
grasps from the depth images of the environment [28]. The model samples antipodal pairs from a
depth image and feeds them to a convolutional neural network to predict the probability of success.
The sampled grasps are successively filtered with a cross-entropy method to return the most likely
grasp. Note that the pre-processing step of sampling many different grasps requires CPU usage,
whereas predicting the grasp success requires GPU resources for efficient grasp planning.

Vision-Based Decluttering: We sequentially pipeline the object recognition and grasp plan-
ning models together for vision-based surface decluttering [43]. The robot sends RGBD images of
the environment, where the RGB image is used for object recognition and the cropped depth image
from the output bounding box of the object recognition model is used by the grasp planning model
to output the top ranked grasp for the robot to pick and place the object into its corresponding bin
(see Fig. 3.4).

Scalability of RILaaS
We deployed the trained models on the RILaaS platform to receive images from the robot, perform
inference, and send back the output results to the robot. We measure the round-trip time t(rtt), i.e.,
time required for communication to/from the server and the inference time t(inf). We experiment
with two hosts for the inference service: EC2 Cloud (East), and Edge with GPU support.

Resource Placement with Cloud vs Edge: Results in Table 3.1 show that the communication
time is a major component of the overall round-trip latency time. Deploying the inference ser-
vice on the Edge significantly reduces the round-trip inference time and the timing variability in
comparison to hosting the service on Cloud, with a communication overhead of around 100 mil-
liseconds only. The difference in resource placement is less pronounced for grasp planning model
where CPU computation time is a dominant factor. Moreover, the authentication time only takes
1 millisecond on average with Redis cache in comparison to 630 milliseconds with a relational
database on AWS.

Effect of Batch Size and Number of Robots: We next vary the batch size and number of
robots making concurrent requests to the service. Fig. 3.5 suggests that the average round-trip
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Table 3.1: Computation time for inference t(inf) vs round trip communication time t(rtt) (in mil-
liseconds) for inference over Edge and EC2-East Cloud. Results are averaged across 6 trials.
Communication time dominates the computation time and increases as the distance to the server
increases.

Location t(inf) t(rtt)

Object Detection
EC2-East 42.79 ± 0.41 483.82 ± 70.87

Edge 36.03± 3.18 172.77± 43.55

Grasp Planner
EC2-East 1501.61 ± 12.76 2051.48 ± 22.684

Edge 1386.95± 22.92 1515.59± 26.16

latency grows sub-linearly with the batch size and the number of robots querying the service.
Moreover, deploying models on Edge yields lower round-trip latency times across both models,
but the difference is more pronounced for the object recognition model with lower computation
time than the grasp planning model.

Comparison with Tensorflow Serving: Fig. 3.6 suggests that RILaaS gives comparable
results to tensorflow-serving for the object recognition model deployed at the Edge. Note that
the tensorflow-serving does not provide out-of-the-box pre-processing/post-processing, authenti-
cation, authorization and metrics for models that it supports. Consequently, the grasp planning
model cannot be hosted on tensorflow-serving as it iterates over preprocessing and inference. RI-
LaaS supports a tensorflow-serving backend while providing the aforementioned features to make
it feasible for a wide variety of models.

Inference Optimization under Dynamic Loads
We simulate time-varying requests of different profiles to evaluate the performance of inference
optimization with adaptive load-balancing. We query the object recognition and grasp planning
model alternatively at specified rates to simulate the decluttering setup, and compare the Q-learning
based adaptive load-balancing with round robin, least connections and least model time strategies.
The request profiles include: 1) uniform loads of 1, 2, 4, 8 requests per second, 2) step-wise in-
creasing loads of 1, 2, 3, 4 requests per second, 3) spiked loads where nominal load of 2 requests
per second is augmented with 13 requests per second for up to 2 seconds, 4) Poisson distributed
loads where requests follow the Poisson process with arrival rate of 1, 2, 4, 8 requests per second,
5) sinusoidal loads with varying amplitudes and frequencies of 0.05, 0.01, 0.08 Hz. The first 4
types of load profiles are used for both training and testing, while the sinusoidal load profiles are
only used for testing of the optimal inference serving policy.

Fig. 3.7 shows the plots of the object recognition and grasp planning model for various request
profiles. It can be seen that the Q-learning strategy outperforms the commonly used load-balancing
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strategies. Least-connections performance is better among the compared load-balancing strategies
and its performance is similar to Q-learning for lighter workloads. The inference serving policy
reveals that the Q-learning is able to decrease the average latency times by more frequently using
the Edge resource as compared to the Cloud. Overall, the adaptive load-balancing strategy with
Q-learning for object recognition gives 15.76% and 70.7% decrease in round-trip latency time
compared to the next best least connections and worst performing round-robin baseline. Similarly,
the grasp planning model shows 12.32% and 65.91% decrease in the round-trip latency time with
Q-learning in comparison to least connections and round-robin strategies.
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Chapter 4

Parallelizing Graph Based Motion Planning
Using Lambda Serverless Computing

4.1 Introduction
Motion planning for robots is a common subprocedure that is required to complete more complex
robotics tasks. For robots in cluttered environments that have many degrees of freedom, plan-
ning can be computationally challenging [5]. Additionally, motion planning problems can have
highly varied computational costs. Investing in local computational resources to solve this prob-
lem will lead to low utilization of these resources on the one hand, and introduce problems with
maintenance and scalability of resources on the other hand. Moreover general motion planning
problems scale exponentially with the dimension of the space, which means that low dimensional
problems might be tractable on robot hardware whereas high dimensional problems may not. Con-
sider a robot tasked with cleaning an office space (see Fig. 4.1): computing motion plans to move
between rooms is relatively inexpensive as the problem can be reduced to finding paths in a 2-
dimensional space that the robot can track. Planning manipulator arm motions to grasp objects in
each of these rooms requires solving higher-dimensional problems that requires vastly more com-
putational power for a short amount of time. Similarly in a warehouse or a factory scenario, robots
often have to plan manipulator arm trajectories for many motions within a single work cell. This
paper proposes methods to leverage the elasticity of the cloud by using serverless computing to
parallelize computations of complex motion plans for multi-query motion planning.

In our previous work [14], serverless computing provides on-demand parallelism for tree-based
planning algorithms. One problem with tree-based planners is the need to replan from scratch with
every new start and goal, even if the robot is operating in the same environment. For example, in
the office decluttering scenario, separate motion plans need to be computed for each object on a
desk. Reusing exploration from previous motion plans could greatly reduce the amount of time
required to move each object. Similarly in a warehouse scenario, robots often have to execute
multiple pick-and-place motions in the same environment to reach different grasping positions. In
this paper, we propose a parallelized serverless graph-based motion planner as it allows for efficient
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Figure 4.1: A robot organizes a shelf by computing a sequence of motions for its manipulator arm
to grasp and place various objects (shown in red). As the obstacle environment does not change
between tasks, the robot can compute a motion plan graph once for the sequence of tasks, and then
use shortest searching on the graph to complete the sequence of tasks. We propose speeding up the
precomputation of the graph using cloud-based parallel serverless “Lambda” computing, allowing
the robot to more efficiently use computing while spending wall-clock time before it can start the
tasks.

reuse of previous exploration in these multi-query paradigms.
Serverless computing, or Function-as-a-Service (FaaS), is a paradigm in which simple func-

tions can be run on-demand on various cloud and edge systems, and pricing is granular at 100 ms
resolution [2]. The intermittent workloads that home and office motion-planning scenarios present
match serverless paradigm of elastically scaling compute resources to minimize cost and meed
demand. Although each compute unit in a serverless scenario is limited in its computational capa-
bilities, an efficient parallel algorithm can take advantage of the availability of a massive number
of such units to achieve large speedups.

This chapter makes the following contributions:

1. a distributed parallel algorithm for computing probabilistically-complete and asymptotically-
optimal motion plans using serverless computing

2. an implemented system of the above strategies on Amazon Web Services FaaS “Lambda”
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environment

3. time-bounded allocation of resources for motion-planning for both single query and multi-
query problems

4. experiments in simulation and on the Fetch mobile manipulator that suggesting that the pro-
posed algorithms provide speedups against local baselines

4.2 Problem Statement
In this paper we propose speeding up multi-query motion planning through the use of cloud-based
serverless computing. In this section we formalize the motion planning problem, and provide
backgound on the serverless computing environment.

Multi-query Motion Planning Problem
Let ~q 2 C be the complete specification of a robot’s degrees of freedom (e.g., joint angles, po-
sition and orientation in space), where C is the configuration space, the set of all possible con-
figurations. Let C

obstacle

⇢ C be the configurations that are in obstacle or otherwise violate task-
specific constraints, and the remaining configurations C

free

= C \ C
obstacle

is the free space. Let
L : C ⇥ C ! {0, 1} be an indicator function that is 1 if the path between two configurations
is entirely in C

free

according to a local planner, and 0 otherwise. Given a start configuration
~q
start

2 C
free

and a goal configuration ~q
goal

, the objective of motion planning is to find a sequence
⌧ = (~q

0

, ~q
1

, . . . , ~qn) such that ~q
0

= ~q
start

, ~qn = ~q
goal

, and L(~qi, ~qi+1

) = 1 for all i 2 [0, n).
The objective of multi-query motion planning is to precompute a data structure that allows for

the efficient computation of ⌧ given changing ~q
start

and ~q
goal

.
Given a cost function d : C ⇥ C ! R+, let c(⌧) =

Pn�1

i=0

d(~qi, ~qi+1

). The objective of optimal
motion planning is to compute a ⌧ that minimizes c(⌧). An asymptotically-optimal motion planner
finds a ⌧ such that c(⌧) = c(⌧ ⇤

) + ✏, where c(⌧ ⇤
) is the optimal motion plan cost, and ✏ decreases

towards 0 with additional computation.

Serverless Computing Environment
The robot has an onboard computer and networked access to a cloud-based computing service.
There are two classes of cloud-based computing service: always-on computers (servers) of vary-
ing size and serverless computing. For server-based computing, users provision certain number
of servers and are charged based on the computing capabilities and generally in 1 h increments.
Serverless computing, on the other hand, allows for unbounded concurrent execution of single
(possibly multi-threaded) functions, that do not store state between executions, cannot accept in-
bound network connections, and have bounded runtime. Serverless computing is charged in very
short (e.g., 100 ms) increments. The goal of our serverless multi-query motion planning is to
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perform parallel precomputation step of multi-query motion planning while avoiding the over-
allocation (overcharging) of server-based computing.

4.3 Method
In this section we describe the parallelized serverless sampling-based motion planner. The motion
planner is based on PRM*, for which we provide a brief background. We then present the algo-
rithm that runs on the serverless cloud. Due to constraints on serverless computing, specifically
statelessness and only allowing outbound network connections, we define a coordinator algorithm
that runs on a separate computer (either in the cloud or not) that allows inbound connections and
can keep state. Note that a robot with a public IP can be used as the coordinator and bypass a sep-
arate provisioned server. Moreover if a coordinator server is provisioned, it can be a lightweight
instance with a far lower cost than the more compute intensive instances required for motion plan-
ning.

Probabilistic Road Maps (PRM) and PRM* Background
The Probabilistic Road Maps (PRM) [21] motion planner randomly samples configurations to build
a graph of the connectivity of the environment. This graph is then subsequently be searched to find
paths between any two points. The original version of the algorithm samples n configurations in
C
free

and connect pairs of configurations that are at most a distance of rprm away provided there is
a collision-free path between them according to a local planner. The next phase is the query phase
in which a shortest-path searches (e.g., Djikstra’s) compute a path connection arbitrary start and
goal configurations. PRM is probablistically complete, but not necessarily asymptotically optimal,
depending on choice of rprm. Karaman et al. [19] presented PRM* which provides a lower bound
r⇤prm such that PRM with rprm > r⇤prm is asymptotically optimal. This value of r⇤prm is:

r⇤prm = �⇤
prm ·

✓
log(n)

n

◆ 1
d

,

where �⇤
prm is determined by the volume of obstacle-free space and the dimension of the planning

environment.

Serverless Algorithm
To parallelize the computation of the PRM, we propose exploiting the determinism of sampling

methods used to construct these graphs. In particular, random number generators create determin-
istic sequences of points when provided with a particular seed. Thus as long as all lambdas are
initialized with the same random seed, they will sample the same set of points. Additionally,
the sampling stage of the PRM algorithm is much cheaper than the nearest neighbor queries and
the connection of edges. For instance, sampling and validating 1000 points for an 8 dimensional
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Figure 4.2: A central coordinator handles initializing lambdas and maintains open connections to
them to allow communication between lambdas. Note that the coordinator need not be a very large
instance as it performs mostly a network bound task. Moreover, multiple robots can reuse a single
coordinator for maximum efficiency.

Figure 4.3: Each of the 4 lambdas on the left connect a subset of the edges in the sampled vertices.
These edges are sent to the coordinator which combines them into the complete graph on the right.
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Algorithm 1 Lambda Algorithm
Require: L is the planner over subspace S

1: G = (V = ?, E = ?)

2: while not done do
3: ~q

rand

 random sample
4: if ~q

rand

2 C
free

then
5: if i mod num lambdas = lambda id then
6: for ~q

near

in near (~q
rand

, rprm) do
7: if ID(~q

near

) > ID(~q
rand

) then
8: steer(~q

rand

, ~q
near

)
9: end if

10: end for
11: end if
12: i = i + 1

13: end if
14: if nsamples = sample threshold then
15: nsamples = 0

16: Send new vertices/ edges to coordinator
17: end if
18: Update rprm

19: end while

Algorithm 2 Coordinator Algorithm
1: Receive problem specification from robot
2: G = (V = ?, E = ?)

3: for lambda in num lambdas do
4: initializeLambda(lambda)
5: end for
6: while not done do
7: for lambda in lambdas do
8: Receive new vertices and edges Gl from lambda
9: G = G

S
Gl

10: end for
11: if time limit exceeded then
12: exit and return graph to robot
13: end if
14: end while

space took 0.063 seconds, whereas connecting the edges for the above samples took 6.194 seconds.
These two properties allow us to tradeoff some redundant sampling work for communication of
vertices between lambdas.
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Figure 4.4: A Fetch robot performing two decluttering tasks in the experiments. As the robot
approaches a desk (left) and a bookshelf (right) it computes a road map of motions for its 8-DOF
manipulator arm using serverless computing, it then uses to perform a sequence of decluttering
tasks.

In particular, all the lambdas perform the sampling step. However, we cyclically choose which
vertices each lambda is responsible for connecting to the existing graph. Additionally, since the
constructed graph is undirected, each edge is added to the coordinator twice. To avoid this redun-
dant computation an ordering is enforced where an edge is only attempted to be connected if the
source vertex has an id that is less than the target vertex. While this ordering strategy can create
load imbalances for a small number of vertices, in the limit of many vertices which are required
for sufficient exploration of the space, each vertex should have approximately the same number of
target edges to connect.

We maintain the probabilistic completeness and asymptotic optimality of the PRM algorithm
as the edges and vertices are exactly the same ones that would be created in the serial version of
the algorithm.

4.4 Experiments and Results
To test the proposed motion plannner’s ability to speed up motion planning with serverless compu-
tation, we experiment on a Fetch robot tasked with decluttering an office space. We use Amazon’s
Lambda as the serverless computing environment, selecting the maximum CPU and memory allo-
cation setting for each lambda. The coordinating server runs on an c5.xlarge instance (two 64-bit
Arm Neoverse cores on a Graviton Processor) in the same region as the lambda processes. Since
the algorithm is based on random sampling, all experiments are run for 10 trials and the median
values are plotted (since the median is less sensitive to outliers).

Bandwidth Optimization
To provide a framework for the remainder of the results presented, we will first describe band-
width bottlenecks that we faced when scaling to larger numbers of lambdas due to the centralized
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Figure 4.5: Tuning the communication to optimize for bandwidth. The second parameter in the
legend indicates how many points were sampled by each lambda before communicating with the
coordinator. A higher number of samples before communication increases the packet size sent.
In the graph we see that a small packet size of 1 does not scale to large numbers of lambdas, but
increasing the packet size results in better scaling of the number of edges (left) and number of
vertices (right).

coordinator. The parameter that decides the bandwidth is s: the number of points each lambda
samples before communicating any newly found edges to the coordinator. A higher s will increase
the packet size, reduce the frequency of communication and improve the bandwidth of communi-
cation. However, if s is too large, lambdas might exit before sending any points to the coordinator
due to the time-bound nature of the computation. Thus it is ideal to set s to be as small as possible
until the coordinator is unable to keep up with the frequency of packets.

As seen in Fig. 4.5 for more than 64 lambdas the coordinator is unable to receive all the vertices
and edges in time. Note that for 64 and 128 lambdas, higher values of s at around 10 � 100 are
sufficient to unblock the coordinator and continue to allow the algorithm to scale. For the remainder
of the experiments, different numbers of lambdas will be compared only with the optimized value
of s.

Graph Size Scaling
In order to measure the parallel efficiency of the algorithm, we look at how three different quan-
tities scale across both Fetch scenarios: the number of samples generated, the number of vertices
generated and the number of edges generated. We expect sublinear scaling for the number of ver-
tices and samples as each new vertex added to the graph has a higher cost for nearest neighbor
queries and more edges to add. On the other hand, we expect atleast linear scaling for the number
of edges generated as each edge should be generated exactly once globally. Parallel efficiency for
these three quantities (denoted by n) are computed at t = 60s for k lambdas using e =

nk
k·n1

. From
Fig. 4.6 and Table. 4.1 we observe the expected superlinear scaling for the number of edges with
a mean parallel efficiency of 1.16, sublinear scaling for the number of samples generated with a
mean parallel efficiency of 0.472 and sublinear scaling for the number of vertices generated with a
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Num Lambdas Sample Scaling Vertex Scaling Edge Scaling
1 1.00 1.00 1.00
4 0.71 0.73 1.10
8 0.60 0.62 1.15
32 0.40 0.45 1.19
64 0.35 0.39 1.26

128 0.30 0.34 1.26

Table 4.1: Parallel efficiency results for the common seed algorithm. Edge scaling is linear or
superlinear as expected, while sample scaling and vertex scaling are sublinear due to the additional
cost incurred for every vertex added.
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Figure 4.6: Scaling results for the common seed algorithm. Edge scaling (bottom) is linear or
superlinear as expected, while sample scaling (top right) and vertex scaling (top left) are sublinear
due to the additional cost incurred for every vertex added.
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Figure 4.7: Path costs for two randomly sampled goal positions with increasing time and varying
the number of lambdas. The marginal performance improvement reduces with more lambdas,
however there is usually some benefit to increased scaling.

Num Lambdas Path Cost at 3s Path Cost at 60s t
to best at 3

t
to best at 9

1 inf 20.23 11.68 9.68
4 27.72 17.16 10.41 9.17
8 22.70 15.99 7.56 8.41

32 19.52 15.07 2.68 4.32
64 16.90 14.44 1.74 2.34
128 15.63 14.30 1.00 1.00

Table 4.2: Path scaling results for the common seed algorithm. The first two columns indicate
the mean path cost at 3s and the mean path cost at 60s. The next two columns represent a time
multiplier of how much additional time fewer lambdas take to find equivalent solutions to the
solution 128 lambdas finds in 3s and 9s.

mean parallel efficiency of 0.506.

Path Cost Scaling
In order to measure the degree of scaling in terms of path costs, 20 randomly sampled goals in
front of the robot were chosen and path costs from the start position to these goals were computed.
The following 4 metrics are computed across both Fetch scenarios:

• The mean path cost across all goals at 3 seconds

• The mean path cost across all goals at 60 seconds

• The mean increase in time (as a multiple) taken for smaller number of lambdas to get an
equivalent path found by 128 lambdas in 3 seconds
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Figure 4.8: Edges sampled per lambda over a 20 second period are nearly equal indicating good
load balancing of work even though the edge connections are random.

• The mean increase in time (as a multiple) taken for smaller number of lambdas to get an
equivalent path found by 128 lambdas in 9 seconds

The last 2 metrics are used to demonstrate the time speedup provided by using the maximum
number of lambdas. Note that for these two metrics, if no equivalent solution was found by 60
seconds then the time to find was set to 60. From Table. 4.2 we see that there is a large improvement
in the path cost with increasing numbers of lambdas. Additionally we see that the time benefit
provided by using more lambdas is often sufficient to justify the use of increased numbers of
lambdas: 128 lambdas finds solutions atleast 9�11 times quicker than a single lambda. In practice
this speedup will be higher because a single lambda often cannot find the same solution as 128

lambdas even after 60 seconds as is observed in Fig. 4.2.

Distribution of Work
Due to the random nature of this algorithm, the distribution of work among lambdas is also mea-
sured. Ideally we would want the number of edges sampled by each lambda to be nearly the same
to have an equal distribution of work. The number of edges each lambda generates for varying
numbers of lambdas is plotted in Figure. 4.8. From the figure it is clear that each lambda does
roughly the same amount of work over a 20s period, indicating good load balancing for this prob-
lem.
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Chapter 5

Conclusion and Future Work

Virtualizing robot storage, compute and programming is a key enabler for large-scale learning
and inference of deep models for robotic applications. In chapter 3 we introduced RILaaS as a
novel user-based inference serving platform for deploying deep learning models on robots that
satisfies heterogeneous model support, rapid deployment, security and privacy, and low latency
requirements of the applications. We used reinforcement learning for scalable inference serving
that adapts better with dynamic loads than commonly used load balancing strategies. We provide
deep object recognition and grasp planning as a service and showed its application to vision-based
decluttering of objects from the floor and depositing them in target bins. To the best of our knowl-
edge, RILaaS is the first of its kind user based inference serving platform of deep models for robotic
applications. In future work, we plan to couple a digital twin/simulator with the uploaded models
for efficient sim-to-real transfer and federated learning with a fleet of robots. Moreover, we will
test various models for segmentation, hierarchical task planning etc. in a multi-agent distributed
environment with a set of robots.

In chapter 4 we proposed using cloud-based serverless computing to rapidly compute a prob-
abilistically complete and asymptotically-optimal road map for multi-query motion planning. The
serverless computing environment provides a nearly unbounded source of parallelism that we ex-
ploit by determining how much parallelism we wish to use depending on the speed and quality of
solution required. Each lambda then samples and builds a graph on a subset of vertices, periodi-
cally sharing information with the coordinator about parts of the graph. In experiments for a Fetch
robot, the proposed serverless computing sped up motion planning computation by atleast 9 times
while providing linear scaling in the number of edges in the graph with a parallel efficiency of
1.16, suggesting this approach can be used in practice to speed up sproadically computationally-
intensive motion-planning problem while being more cost effective than an always-on high-end
computer. In future work, we plan to explore parallelizing the sampling stage of the process, as
well as dynamically allocating more lambdas to work on specific regions of the state space that are
difficult to explore.

Overall, we explored two different ways to distribute computation of robot algorithms over a
heterogenous Fog infrastructure: the first a general purpose platform to deploy deep models and
the second a problem specific parallelization of motion planning using serverless computing. As



CHAPTER 5. CONCLUSION AND FUTURE WORK 31

robots become more prevalent in our lives, it will be necessary to expand upon these paradigms
and ensure that roboticists have access to simple ways to deploy their algorithms at scale and take
advantage of the Fog.
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