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Abstract

Generalization via Information Bottleneck in Deep Reinforcement Learning

by

Xingyu Lu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Despite the significant progress of deep reinforcement learning (RL) in solving sequential
decision making problems, agents trained through RL often over-specialize to training en-
vironments and struggle to adapt to new, unseen circumstances. In this work, our primary
contribution is to propose an information theoretic regularization objective and an annealing-
based optimization method to promote better generalization ability in RL agents.

Training an agent that is resilient to unseen changes in environments helps combat ”diver-
sity”: a robot trained in an ideal setting may be required to perform in more adversarial
circumstances, such as increased obstacles, darker lighting and smoother/rougher surfaces; to
prevail in these unseen environments, agent must be capable of adapting to unseen dynamics.

Our work tackles the generalization problem from an information theoretic perspective. We
hypothesize that the expressiveness of deep neural networks (DNN) may cause memoriza-
tion of inputs from training environments, preventing the agent from learning the general
dynamics. We address this issue by adding communication constraints between observations
and internal representations in the form of an information bottleneck (IB). We suggest an
optimization scheme, based on annealing, to obtain a family of solutions parameterized by
the regularization weight.

In the first part of the thesis we focus our attention on various maze environments, which have
simple dynamics and can be naturally randomized by altering their wall and goal placements.
Through experiments in these environments, we study 1) the learning behavior of an agent
directly through IB; 2) the benefits of the proposed annealing scheme; 3) the characteristics
of the output of the IB; 4) the generalization benefits of a tight IB. In the second part of the
thesis we direct our attention to control environments with simulated robotic agents. We
demonstrate the generalization benefits of the IB over unseen goals and dynamics, comparing
it with other regularization methods and state-of-the-art DRL baselines.

To the best of our knowledge, our work is the first to study the benefits of information bot-
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tleneck in DRL for general domain randomization. We tackle the joint-optimization problem
by proposing an annealing scheme, and study a variety of domain randomization settings
including varying maze layouts, introducing unseen goals, and changing robot dynamics.

Furthermore, this work opens doors for the systematic study of generalization from training
conditions to extremely di↵erent testing settings, focusing on the established connections
between information theory and machine learning, in particular through the lens of state
compression and estimation.
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Chapter 1

Introduction

Despite the significant progress of deep reinforcement learning (RL) in solving sequential
decision making problems, agents trained through RL often over-specialize to training envi-
ronments and struggle to adapt to new, unseen circumstances ([16]).

The standard state-of-the-art DRL approaches often use the combination of an encoder,
representing either observations or raw states, and a policy, mapping representations to ac-
tions ([11], [12], [13]). An encoder is supposed to ”understand” the environment by extracting
relevant features, while a policy assigns optimal actions based on the state representation
produced by the encoder. This DRL cascade is usually optimised end-to-end on training
tasks, aiming to provide an optimal encoder and an optimal policy. In a recent study of gen-
eralization ([16]), however, it was found that policies trained through end-to-end RL often
perform poorly on tasks unseen during training.

We hypothesize that the poor generalization in unseen tasks is due to the DNNs memo-
rizing environment observations, rather than extracting the relevant information for a task.
In this work, we suggest adding communication constraints as an information bottleneck on
the encoder. Such bottleneck would limit the information flow between observations and
representations, thus encouraging the encoder to only extract relevant information from the
environment and preventing memorization.

A joint optimisation of encoder and policy with an information bottleneck is a challenging
problem, because, in general, the separation principle ([25]) is not applicable. The separation
principle allows to estimate state from observation (and under certain conditions to compress
observation [21]), and then to derive an policy. In the cases where the separation principle
is not applicable, a joint optimisation of encoder and policy can be seen as ’chicken and egg’
problem: to derive an optimal policy one needs a meaningful state representation, which in
turn depends on the performance of the policy.

Our main contributions are as follows. Firstly, we tackle the problem of poor general-
ization of DRL to unseen tasks by applying an information bottleneck between observations
and state representations (figure 1.1). Specifically, we find a stochastic mapping from ob-
servations to internal representations, and regularize such mapping to limit the amount of
information flow. Secondly, we propose an annealing scheme for a stable join-optimization
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Figure 1.1: Illustration of the proposed scheme. We add stochasticity to the perception
component (encoder) of the network, and constrain the information flow through it. The
arrows in black indicate the input/output flow of each component, while the arrows in red
indicate end-to-end gradients.

of the encoder and policy components of the network, finding a family of solutions pa-
rameterized by the weight of the information constraint. Thirdly, we demonstrate that
policies trained with an information bottleneck achieve significantly better performance on
tasks with unseen layouts, goals and dynamics, as compared to the standard DRL methods.
Finally, we demonstrate that our method produces state representations which admit a se-
mantic interpretation, which is in general not guaranteed for end-to-end DRL. Specifically,
we demonstrate that the encoder in our approach maps stochastic observations to a space
where distances between points are consistent with their values from the optimal critic.
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Chapter 2

Related Work

There is a series of previous works that address the problem of control with information bot-
tlenecks. [2] is one of the first works in this direction, where the e↵ects of state compression
were studied in the case of linear and known dynamics. Specifically, they showed that in
the case of Linear Quadratic Regulator, there exists an optimal compression scheme of state
observations. The following works, [22, 23, 21, 24], studied the optimality of compression
schemes under di↵erent assumptions, although all of them assumed known dynamics, and
did not consider information bottleneck for its generalization benefits.

Recently, it was shown that information bottleneck improves generalization in adversarial
inverse reinforcement learning ([17]). By placing a bottleneck on the discriminator of a
GAN, the author e↵ectively balances the performance of the discriminator and the generator
to provide more meaningful gradients. This work, however, focuses strictly on imitation
learning, and does not consider any online learning setting involving long-horizon planning.

Another relevant work is the work by Pacelli and Majumdar [15], where information
bottleneck is estimated and optimized through separate MINE estimators ([1]) at each time
step. While this work also tackles the problem of generalization, it only focuses on image-
based environments with changing textures, without considering changing environment goals
or dynamics. Additionally, the use of separate MINE estimators at each time step may limit
the scalability of the method for long horizon problems. Our work, in contrast, trains a single
encoder whose information is regularized without any explicit estimators, and we focus on
domain randomization problems with changing environment layouts, goals, and dynamics.

Finally, in the work from Goyal et al. [7], the information bottleneck between actions
and goals is studied with an aim to create goal independent policies. While both [7] and our
work utilize the variational approximation of the upper bound on the mutual information,
their work focuses on finding high information states for more e�cient exploration, which is
a di↵erent objective from our work.

To the best of our knowledge, our work is the first to study the benefits of information
bottleneck in DRL for general domain randomization. We tackle the joint-optimization prob-
lem by proposing an annealing scheme, and study a variety of domain randomization settings
including varying maze layouts, introducing unseen goals, and changing robot dynamics.
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Chapter 3

Preliminary

3.1 Markov Decision Process and Reinforcement
Learning

This paper assumes a finite-horizon Markov Decision Process (MDP) [18], defined by a
tuple (S,A,P , r, �, T ). Here, S 2 Rd denotes the state space (which could either be noisy
observations or raw internal states), A 2 Rm denotes the action space, P : S ⇥A⇥S ! R+

denotes the state transition distribution, r : S ⇥ A ! R denotes the reward function,
� 2 [0, 1] is the discount factor, and finally T is the horizon. At each step t, the action
at 2 A is sampled from a policy distribution ⇡✓(at|st) where s 2 S and ✓ is the policy
parameter. After transiting into the next state by sampling from p(st+1|at, st), where p 2 P ,
the agent receives a scalar reward r(st, at). The agent continues performing actions until
it enters a terminal state or t reaches the horizon, by when the agent has completed one
episode. We let ⌧ denote the sequence of states that the agent enters in one episode.

With such definition, the goal of RL is to learn a policy ⇡✓⇤(at|st) that maximizes the
expected discounted reward E⇡,P [R(⌧0:T�1)] = E⇡,P [

PT�1
0 �tr(st, at)], where expectation is

taken on the possible trajectories ⌧ and the starting states x0. In this paper, we assume
model-free learning, meaning the agent does not have access to the environment dynamics
P .

3.2 Mutual Information

Mutual information measures the amount of information obtained about one random variable
after observing another random variable [5]. Formally, given two random variables X and
Y with joint distribution p(x, y) and marginal densities p(x) and p(y), their MI is defined as



CHAPTER 3. PRELIMINARY 5

Figure 3.1: Illustration of a typical end-to-end deep reinforcement learning scheme. The
arrows in black indicate the input-output flow, while the red arrows indicate the gradient
flow.

the KL-divergence between joint density and product of marginal densities:

MI(X;Y ) = DKL(p(x, y)kp(x)p(y)) (3.1)

= Ep(x,y)[log
p(x, y)

p(x)p(y)
]. (3.2)

Mutual information quantifies reduction in uncertainty of one random variable given another
random variable distributed jointly. As a constraint, it limits the dependencies between
two random variables in an objective function. In general, this setting is formulated as a
constrained optimization problem: finding an optimum of an objective under the constraint
of mutual information between relevant random variables.

The rate-distortion function [5] and control under information constraints [22] are the
specific cases of this setting, which we study in this work with the aim to improve the
generalization of DRL to unseen tasks.

3.3 End-to-End Training

For all baseline experiments, we consider a typical end-to-end setting with deep neural net-
works, where the agent learns the perception system and planning jointly [14, 8]. This is in
contract to the classic separation principle [25], where a state observer and a controller are
designed and optimized separately for control. A simple block diagram illustrating end-to-
end scheme is presented in Figure 3.1.

The main advantage of end-to-end training is its versatility to understand and solve
complex systems, as back-propagating gradients all the way from control policy to perception
layers often automatically results in near-optimal state representations. The disadvantage,
on the other hand, is often poor generalization: as the network’s parameters are optimized for
specific tasks, without additional constraints they often end up overfitting onto the training
tasks, in forms such as memorization of the environment observation. In this work we study
this issues, and suggest a regularization objective as well as an optimization method while
maintaining the end-to-end nature of training.
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Chapter 4

Method

4.1 Overview

We consider an architecture in which the agent learns with limited information from the
environment: instead of learning directly from the environment states s 2 S, the agent
needs to estimate noisy encoding z 2 Z of the state, whose information is limited by a
bottleneck.

Formally, we decompose the agent policy ⇡✓ into an encoder f✓1 and a decoder g✓2 (action
policy), where ✓ = {✓1, ✓2}. The encoder maps environment states into stochastic embedding,
and the decoder outputs agent actions a 2 A:

p⇡✓
(a|s) =

Z

z

pg✓2 (a|z)pf✓1 (z|s)dz (4.1)

With such setup, we maximize the RL objective with a constraint on the mutual information
between the environment states and the embedding:

J(✓) = max
✓

E⇡✓,⌧ [R(⌧)] (4.2)

s.t. I(Z, S)  Ic (4.3)

This objective forces the agent to perform meaningful estimation of the states. As it
learns to ”forget” parts of the environment states that are not the most crucial for learning,
the agent picks up more general skills that are useful for transfer across similar tasks.

4.2 Variational approximation of Information

To estimate mutual information between S, and Z, We makes use of the following identity:

I(Z, S) = DKL [p(Z, S) | p(Z)p(s)] (4.4)

= ES [DKL [p(Z|S) | p(Z)]] (4.5)
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In practice, we take samples of DKL [p(Z|S) | p(Z)] to estimate the mutual information.
While p(Z|S) is straightforward to compute, calculating p(Z) requires marginalization across
the entire state space S, which in most non-trivial environments are intractable. Instead, we
follow the method adopted in many recent works and introduce an approximator, q(Z) ⇠
N (~0, I) , to replace p(Z).

This achieves an upper bound on I(Z, S):

ES[DKL [p(Z|S) | q(Z)]]

=

Z

s

dx p(s)

Z

z

dz p(z|s) log p(z|s)
q(z)

=

Z

z,s

dx dz p(z|s) log p(z|s)�
Z

z

dz p(z) log q(z)

�
Z

z,s

dx dz p(z|s) log p(z|s)�
Z

z

dz p(z) log p(z)

=

Z

s

dx p(s)

Z

z

dz p(z|s) log p(z|s)
p(z)

= I(Z, S)

where the inequality arises because of the non-negativeness KL-divergence:

DKL[p(z) |q(z)] � 0 (4.6)
Z

z

dz p(z) log p(z) �
Z

z

dz p(z) log q(z) (4.7)

4.3 Unconstrained Lagrangian

Finally, we introduce a Lagrangian multiplier � and optimize on the upper bound of I(Z, S)
given by the approximator q(Z):

L(✓) = max
✓

E⇡✓,⌧ [R(⌧)]� �ES[DKL [p(Z|S) | q(Z)]] (4.8)

As discussed in [20], the gradient update at time t is the policy gradient update with the
modified reward, minus a scaled penalty by KL-divergence between state and embedding:

r✓,tL(✓) = R0(t)r✓ log(⇡✓(at, st))

��r✓DKL[p(Z|s) | q(Z)] (4.9)

where R0(t) =
Pt

i=1 �
ir0(i) is the discounted reward until step t, and r0(i) is the environment

reward r(i) modified by the KL penalty: r0(i) = r(i) + �DKL[p(Z|s) | q(Z)].
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Algorithm 1: Annealing scheme
Input: An initial regularization weight �init

Input: A multiplicative factor ↵
Output: A set of policies {⇡✓t}
pretrain policy ⇡✓0 with deterministic encoder;
�0  �init;
for t = 1, . . . , T do

⇡✓t  ⇡✓t�1 ;
�t  �t�1 ⇤ ↵;
for episode = 1, . . . , N do

Collect trajectory ⌧ using ⇡✓t ;
Update ✓t using Equation 4.9;

end
end

4.4 Information-Value trade-o↵ by annealing

In analogy to the rate-distortion function mentioned in the preliminaries, we generate a
family of solutions (optimal pairs of encoder and policy) parametrized by the information
bottleneck constraint weight �. In our case, each solution is characterized by a correspond-
ingly constrained amount of information required to maximize the environment rewards.

The rationale is as follows: to encourage the agent to extract relevant information from
the environment, we want to impose high penalty for passing too much information through
the encoder. At the beginning of training, such penalty produces gradients that o↵sets the
agent’s learning gradients, making it di�cult for the agent to form good policies.

To tackle this problem, we create the entire family of solutions through annealing, starting
from a deterministic (unconstrained) encoder, and gradually injecting noise by increasing
the penalty coe�cient (temperature parameter), �. The details of this annealing scheme are
summarized in Algorithm 1.

This approach allows training of well-formed policies for much larger � values, as the
encoder has already learned to extract useful information from the environment, and only
needs to learn to ”forget” more information as � increases. In the experiment section, we
will demonstrate that training the model using annealing enables the agent to learn with
much larger � coe�cients compared to from scratch.
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4.5 Domain Randomization and Transfer

Without any additional constraint on the encoder, it is unclear what information the embed-
ding would retain after shrinking the information bottleneck. For a simple pendulum task
with a white background and a red arm, for instance, the encoder may learn to only look
at the arm or only look at the background; either way, it would allow the agent to solve the
task while removing information from the states.

To tackle this issue, we introduce additional domain randomization during training.
While domain randomization has been shown to greatly encourage the agent to general-
ize across domains ([19]), we found that with an appropriate information bottleneck the
agent learns to generalize with very limited domain randomization.

Intuitive, if randomization is limited, the agent may learn to solve the task by memorizing
all the randomized configurations. For instance, for a maze with 3 similar layouts, it may
remember all three layouts and all possible agent positions to solve the task. With a tight
information bottleneck, however, the agent is forced to extract limited information from the
mazes, so it would have to learn general maze-solving skills.

Our full scheme for learning and transferring domain-independent skills through infor-
mation bottleneck is detailed in Algorithm 2. In the experiment section, we show that with
an information bottleneck, the agent learns to quickly transfer to new environments with
extremely limited domain randomization.

Algorithm 2: Domain Randomization with Information Bottleneck
Input: A set of training environments Ttrain

Input: A set of test environments Ttest

Input: An initial regularization weight �init

Input: A multiplicative factor ↵
Input: A desired regularization weight �⇤

Input: (Optional) A desired regularization weight for transfer �0

Output: A policy ⇡⇤ for test environments
train policies {⇡✓t} using Annealing(�init, ↵), sampling tasks T 2 Ttrain;
take policy ⇡✓t⇤ corresponding to regularization weight �⇤;
(Optional) �⇤  �0;
for episode = 1, . . . , N do

Collect trajectory ⌧ in T 2 Ttest using ⇡✓⇤t ;
Update ✓t⇤ using Equation 4.9;

end
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Chapter 5

Experiments - Maze Environments

In this chapter, we apply the approaches described in Chapter 4 to discrete maze environ-
ments. In doing so, we aim to answer the following questions:

1. How does an agent learn from scratch with an information bottleneck?

2. How e↵ective is learning through annealing compared to learning from scratch?

3. How well can a policy trained end-to-end with an information bottleneck transfer to
new, unseen maze layouts?

5.1 Environment Overview

MiniGrid Environments are used as the primary discrete experiments ([4]). The maze en-
vironments have relatively simple dynamics, but the reward signals are strictly sparse: the
agent does not receive any rewards until it reaches the goal.

Figure 5.1: Visualization of examples of grid layouts used in this paper. The first layout is
fixed for Section 5.2, while the other 3 are sampled from randomly generated maze layouts.
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To enforce fairness of comparison and to validate the results statistically, we randomly
generate and sample maze environments of the same size to test the agent’s ability to transfer
to new layouts. Additionally, while the algorithm’s behavior is consistent for all mazes,
we fix one maze layout for illustration. The fixed layout and examples of the randomly
generated layouts are listed in figure 5.1. For these environments, the gray blocks indicate
walls, the dark blocks indicate free space, the green blocks the goal, and finally the red
triangle the agent. These mazes share the same size of 12-by-12, and their di�culties vary
depending on the random seeds. These environments are fully observable: the agent receives
full observation information about its position, the goal position, and the placement of the
walls as 2D compact grid encodings.

For each transfer experiment, we randomly sample 4 mazes, 3 of which are used for the
training set and 1 for testing. For the fixed maze, we fix the goal to be the bottom left corner
of the maze, as illustrated in figure 5.1; for all randomly generated mazes, we randomize the
goal position at the beginning of the episode. Randomization of the goal is important for
generalization, as it dramatically increases the dimension of the underlying task.

This particular experiment setup allows us to focus the agent on extracting the relevant
information from the mazes: to solve the tasks in 3 training mazes, the agent may either
memorize all three layouts and act accordingly, or it could learn general navigational skills
to reach the goal. In the following sections, we show that the agent learns to generalize only
with a tight information bottleneck given limited randomization.

5.2 Direct Learning with Information Bottleneck

We first study the behavior of an agent learning with an information bottleneck from scratch,
which means the agent tries to directly find an optimal encoder and an optimal policy for
a particular �. Specifically, we show that for small values of �, when there is enough
information about the state, the agent succeeds to learn.

In the following section we show that, in general, the agent does not succeed to learn
from scratch for high values of � (meaning a high weight of the information constraint in
the optimization). In this case, the annealing scheme allows to solve the task even for high
values of �.

The environment used has a simple layout, and the agent is able to achieve around 0.4
mean reward with a random policy (reward range for this environment is 0 to 0.9). With a
relatively small � value of 10�4, the agent quickly learns the optimal policy, achieving mean
episode rewards around 0.75 (figure 5.3).

In contrary to general end-to-end training, learning with an information bottleneck can
more be interpretable as we reference the mutual information (MI) curve1 of the encoder’s
input (raw observation) and output (embedding). In particular, figure 5.3 shows that the
MI curve initially drops, before an abrupt jump at around 300,000 frames that directly

1This curve is in reality an upper bound on mutual information. For ease of notation, the rest of the
paper will still refer to this curve as the MI curve, as long as such ambiguity does not invalidate reasoning.
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Figure 5.2: Visualization of the encoder output and policy by iterations. For top row,
coloring is done by clustering the encoder output; for all subsequent rows, coloring indicates
action probability. Note that a solution quickly emerges between 400,000 and 500,000 steps.

corresponds to the increase in the agent’s mean reward. To understand such change in
the MI curve, we visualize the change in the policy and the encoder throughout training:
Figure 5.2 shows the formation of local solutions before a global solution emerges, and the
convergence from local solutions to the global solution exactly corresponds to the jump in
MI and the mean reward.

This behaviour of information drop before the fast reward accumulation admits a general
interpretation: the information bottleneck ”squeezes” the information from the state to only
allow relevant information required to solve the task. As illustrated in the next section, this
behavior causes learning to fail if the initial � value is too high.

Furthermore, we demonstrate that the code learned through information bottleneck
learns structured information about the maze. Figure 5.4 illustrates the projection of every
state’s embedding (after convergence) onto 2D space through T-SNE, with each point col-
ored by its critic value. From the projection plot, we observe the emergence of consistent
value gradients as well as local clustering by actions.
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Figure 5.3: Learning and MI curves of the fixed maze (first in figure 5.1). The three sets of
curves correspond to � = 0.0001 from scratch (top) , � = 0.005 from scratch (middle), and
annealed � from 0.0001 to 1 (bottom). For a small � value, the agent is able to learn the
optimal policy in 500,000 steps; for larger � values, however, we can only achieve learning
through annealing. To better illustrate the learning behavior, a single run is used for each
plot.
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Figure 5.4: T-SNE projection of the encoder output for every state on 2D plane. There exist
1) a consistent color gradient along the diagonal by critic values 2) branching by optimal
actions.

5.3 Advantages of Learning Through Annealing

In this section, we show that even with a simple maze layout, the agent still struggles to
learn with relatively large � values from scratch; learning through annealing, on the other
hand, enables the agent to smoothly compress information while maintaining high quality
policies.

Figure 5.3 also illustrates the MI curve of an agent learning the fixed maze from scratch,
with a large � value of 0.005. As shown in the plot, the relatively high KL penalty causes
a rapid drop in the MI curve, resulting a high stochastic encoder that does not contain any
information about the states. Learning through annealing, on the other hand, results in a
smooth and gradual drop in MI curve as well as the mean reward. For the same � value of
0.005 (indicated by the red vertical bar), the agent has maintained the optimal policy while
achieving higher compression of the states.

As we show in the next section, being able to learn with tight information bottlenecks is
crucial for better generalization. This highlights the benefits of annealing, as it allows us to
have well-formed solutions for every choices of �.
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Figure 5.5: Learning curves of randomly generated mazes for baseline and di↵erent informa-
tion bottlenecks. The orange curve reaches near-optimal values the fastest, while the green
and purple curves are very similar.

5.4 Generalization through information bottleneck

We now evaluate the transferrability of the agent’s policy with an information bottleneck.
Specifically, we apply Algorithm 2 to the random mazes, and compare the transfer results
to learning with full information.

Figure 5.5 shows the learning curves of three di↵erent setups: learning with a tight
information bottleneck (� = 0.05); learning with a loose information bottleneck (� = 0.0001
as ablation); learning with full information (� = 0 and deterministic encoder as baseline).

As the plot shows, learning with a tight information bottleneck achieves the best transfer
learning result, reaching near-optimal solution of 0.9 mean reward around 2 times faster
compared to the baseline. The close performance between the baseline and the ablation
suggests the benefit of generalization only emerges as we tighten the information bottleneck.
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Chapter 6

Experiments - Control Environments

We have studied in Chapter 5 the learning behavior of information bottleneck, the benefits of
annealing, and the generalization advantages of policies trained through a tight information
bottleneck.

We now turn our attention to control environments to fully explore the generalization
benefits of information bottlenecks. In particular, we apply our proposed approach (Chapter
4) to control environments, including Reacher, CartPole, and HalfCheetah from OpenAI
Gym ([3]). We demonstrate that by finding the optimal information bottleneck size through
annealing, we train policies in these environment that e�ciently generalize to unseen goal
and dynamics, which may require extreme policy extrapolation.

6.1 Reacher Setup and Results

In the Reacher environment, a robotic arm has two sections with a joint in the middle. The
arm’s one end is fixed at the center of the plane, and its goal is typically to reach a certain
point on the plane with the other end of the arm. While this task can be naturally formulated
as a sparse reward problem ([10]), we adapt the environment’s default dense reward signals
for ease of training.

As shown in figure 6.1, we fix 3 goal positions for training and test the agent’s ability to
generalize to the 4th position. With this setup, we evaluate how well a policy generalizes
to a new, unseen goal. As during training we only provide limited goal randomization, it is
possible for a policy to simply memorize a separate policy for each goal, causing it to overfit
onto the training setup.

For this environment, we study information bottleneck as well as other regularization
techniques for generalization ([6]), including L-2 regularization and dropout. With a high
� value of 0.9 learned through annealing, we achieve significantly better transfer results
compared to the baseline. Other regularization techniques such as L�2 penalty and dropout
also provide generalization benefits over the baseline, however their performances are below
that of a well-tuned information bottleneck. Moreover, combining information bottleneck
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Figure 6.1: Visualization of all 4 goal positions in Reacher environment. The first 3 goals
are used for training, while the 4th goal is used for testing.

with dropout, we are able to converge to the optimal policy within 700,000 steps (figure 6.2)
1.

6.2 CartPole Setup and Results

The CartPole environment consists of a pole attached to a cart sliding on a frictionless sur-
face. The pole is free to swing around the connection point to the cart, and the environment
goal is to move the cart either left or right to keep the pole upright. The agent obtains a
reward of 1 for keeping the pole upright at each time step, and can achieve a maximum of
200 reward over the entire episode. Should the pole fail to maintain an angle of 12 degrees
from the vertical line, the episode will terminate early.

Unlike other environments studied in this chapter, the CartPole environment is configured
to have 2 discrete actions: moving left and right at each time step. While this results in a
simple system, we study a harder generalization problem: generalizing to unseen environment
dynamics. Specifically, we vary two environment parameters: the magnitude of the cart’s
push force, and the length of the pole. The push force a↵ects the cart’s movement at each
time step, while the length of the pole a↵ects its torque.

We provide limited randomization during training compared the configuration in [16]:
we range push forces from 7 to 13, and the pole length from 0.45 to 0.55. For evaluation, we
consider a much wider range as well as extreme values: we first test the policy’s performance
on push forces ranging from 1 to 40 and pole lengths from 0.1 to 1.7; then, we test on
extremely large values of push forces (80, 160) and pole lengths (1.7, 3.4, 6.8) to assess
the policy’s stability. While push force is di�cult to visualize, Figure 6.3 illustrates the
di↵erent pole lengths used for training and evaluation. We consider an oracle-based approach,
providing to the agent parameter values, to focus our attention on the policy’s generalizability
to unseen dynamics.

1Combination of information bottleneck and L-2 regularization is trivial and not included, as optimizing
mutual information using a variational approximator already uses a L-2 penalty on the encoder.
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Figure 6.2: Learning curves of Reacher on the test goal. Overall, the combination of in-
formation bottleneck and dropout (gray) gives the best performance, starting with a higher
reward at zero-shot and converging to the optimal solution much faster than other settings.

Evaluating Generalization Benefits

Given extremely limited randomization during training, the agent may easily overcome the
changing dynamics across episodes through memorization. This would lead to very good
training performance, but poor generalization over unseen parameters that change the envi-
ronment dynamics. As illustrated in Figure 6.4, both the baseline and our approach achieve
good training performance; the baseline, however, fails to generalize beyond unseen pole
lengths, while our method produces a policy that adapts to almost all test configurations.
The di↵erence in generalization to unseen dynamics between the baseline and our approach
showcases the power of information bottleneck: by limiting the amount of information flow
between observation and representation, we force the DNN to learn a general representation
of the environment dynamics that can be readily adapted to unseen values.

Perhaps surprisingly, a policy trained with a well-tuned bottleneck performs well even
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Figure 6.3: Visualization of 3 di↵erent pole lengths in the CartPole environment. The lengths
are: 0.1 (left), 0.5 (middle), and 1.3 (right). The middle configuration is included in training,
while the configurations on two sides are seen only during testing.

Figure 6.4: Evaluation performance of policies trained through baseline (left) and infor-
mation bottleneck (right) on CartPole. The x-axis indicates the length of the pole, while
the y-axis indicates the push force of the cart. Each evaluation result is averaged over 20
episodes, and the parameter set used in training is marked with a blue rectangle.

in extreme configurations, as seen in Figure 6.5. Even with parameter values that are more
than 10 times larger than the average training values, the policy trained using a information
bottleneck still achieves optimal performance.

6.3 HalfCheetah Setup and Results

Finally, we demonstrate the generalization benefits of our method in the HalfCheetah en-
vironment. In this environment, a bipedal robot with 6 joints and 8 links imitates a 2D
cheetah, and its goal is to learn to move in the positive direction without falling over. The
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Figure 6.5: Evaluation performance of policy with information bottleneck on extreme config-
urations in CartPole. The x-axis indicates the length of the pole, while the y-axis indicates
the push force of the cart. Each evaluation result is averaged over 20 episodes. Note that
the agent achieves near-optimal reward in all 6 configurations.

Figure 6.6: Visualization of the HalfCheetah environment. Although not visually di↵erent,
di↵erent configurations of the robot have di↵erent torso densities, altering its movement
dynamics.
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Figure 6.7: Visualization of 3 di↵erent pole lengths in the CartPole environment. The
lengths are: 0.1 (left), 0.5 (middle), and 1.3 (right). The middle configuration is included in
training, while the configurations on two sides are seen only during testing. All evaluations
use rewards averaged over 20 episodes.

environment reward is a combination of its velocity in the positive direction and the cost
of its movement (in the form of a L-2 cost on action). A illustration of the environment is
provided in Figure 6.6.

The environment has continuous actions corresponding to the force values applied to its
joints. Its dynamics is more complex in nature compared to CartPole, making generalization
a challenging task. Similar to [16], we vary the torso density of the robot to change its
movement dynamics. In particular, we vary the training density from 750 to 1000, and test
the policy’s performance on density values ranging from 50 to 2000. As the robot’s actions
corresponding to forces, whose e↵ects are linearly a↵ected by density, policy extrapolation
from the training parameters to the test parameters is extremely challenging.

As shown in Figure 6.7, while both the baseline’s and our method’s performances su↵er
outside of the training range, our method achieves significantly better reward when the
density is low. Figure 6.8 better illustrates the performance di↵erence between the baseline
and our method: for most test configurations our method performs significantly better than
the baseline, especially for density values that are lower than those seen in testing. This
again indicates better stability and generalization in the policy trained with an information
bottleneck.
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Figure 6.8: Visualization of the evaluation reward di↵erence between the baseline and our
method. The y-axis indicates the torso density, while the x-axis indicates the reward dif-
ference averaged over 20 episodes. The red bars indicate configurations where the baseline
achieves higher evaluation reward than our method, and the blue bars indicate where our
method outperforms the baseline.
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Chapter 7

Conclusion and Future Work

In this work we proposed a principled way to improve generalization to unseen tasks in deep
reinforcement learning, by introducing a stochastic encoder with an information bottleneck
optimized through annealing.

We have proved our hypothesis that generalization in DRL can be improved by prevent-
ing explicit memorization of training environment observations. We showed that an explicit
information bottleneck in the DRL cascade forces the agent to learn to squeeze the minimum
amount of information from the observation before the optimal solution is found, preventing
it from overfitting onto the training tasks. This led to much better generalization perfor-
mances (for unseen maze layouts, unseen goals, and unseen dynamics) than baselines and
other regularization techniques such as L-2 penalty and dropout.

Practically, we showed that the suggested annealing scheme allowed the agent to find
optimal encoder-policy pairs under di↵erent information constraints, even for significant
information compression that corresponds to very large � values. This annealing scheme
was designed to gradually inject noise to the encoder to reduce information (by gradually
increasing �), while keeping a well-formed policy that received meaningful RL gradients.
This slow change in the values of � is critical, when it is not guarantied to have an optimal
simultaneous solutions for the encoder and policy, as in cases where the separation principle
is not satisfied.

Overall, we found significant generalization advantages of our approach over the baseline
in the maze environment as well as control environment such as CartPole, Reacher, and
HalfCheetah. A CartPole policy trained using an information bottleneck, for instance, was
able to generalize to test parameters more than 10 times larger than the training parameters,
completely beating the baseline’s generalization performance.

A promising future direction for research is to rigorously study the properties of the repre-
sentation space, which may contribute to improving the interpretability of representations in
deep neural networks in general. One of the insights of this work was that the produced rep-
resentation in the maze environments preserved critic value distances of the original states;
the representation space was thus consistent with the planning space, allowing generalization
over unseen layouts.
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Chapter 8

Appendix

8.1 Environment Descriptions

GridWorld

The agent is a point that can move horizontally or vertically in a 2-D maze structure. Each
state observation is a compact encoding of the maze, with each layer containing information
about the placement of the walls, the goal position, and the agent position respectively. The
goal state is one in which the goal position and the agent position are the same. The agent
obtains a positive reward of 1 when it reaches the goal, and no reward otherwise.

Reacher

The agent is a robotic arm with two rigid sections connected by a joint. The agent moves
about a fixed center on the plane by applying a force to each rigid section. Each state
observation encodes the angles of two sections, the position of the tip of the arm, and the
direction to goal. The reward rt received at time t is �(kpt � pgk+ ↵ katk), where pt is the
position of the tip of the arm at time t, pg is the position of the goal, and at is the action
input at time t.

CartPole

The agent is a cart sliding on a frictionless horizontal surface with a pole attached to its top.
The pole is free to swing about the cart, and at each time step the cart moves to the left
or to the right to keep the pole in upright position. Each sate observation consists of four
variables: the cart position, the cart velocity, the pole angle, and the pole velocity at tip.
The reward at every time t is 1, and the episode terminates when it reaches 200 in length
or when the pole fails to maintain an upright angle of at most 12 degrees.
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Environment Gridworld Reacher CartPole HalfCheetah
State Dimensions (12, 12, 3) (11,) (4,) (18,)
Action Dimensions (4,) (2,) (2, ) (6,)
Maximum Steps 100 50 200 1000

Table 8.1: Environment dimensions and horizons

HalfCheetah

The agent is a bipedal robot with 6 joints and 8 links imitating a 2D cheetah. The agent
moves horizontally on a smooth surface, and its goal is to learn to move in the positive direc-
tion without falling over, by applying continuous forces to each individual joint. The state
observations encode the robot’s position, velocity, joint angles, and joint angular velocities.
The reward rt at each time t is the robot’s velocity in the positive direction, vt = xt � xt�1,
minus the action costs ↵ katk. Here, xt indicates the position of the robot at time t, and at
is the robot’s action input.

8.2 Network Parameters and Hyperparameters for
Learning

For all maze experiments we use standard A2C, and for all control experiments we use PPO.
Our baseline is adopted from [9], and we modify the code to add a stochastic encoder.

GridWorld

For baseline, we use 3 layers of convolutional layers with 2-by-2 kernels, and channel size 16,
32, 64 respectively. The convolutional layers are followed by a linear layer (”deterministic
encoder”) of hidden size 64. Finally, the actor and critic each uses 1 linear layers of hidden
size 64. We use Tanh activations between layers. For our approach, we add an additional
linear layer after the convolution to output the diagonal variance of the encoder to provide
stochasticity.

Reacher

For baseline, we use 1 linear layer of hidden size 64, followed by an additional linear layer of
hidden size 32 (”deterministic encoder”). Actor and critic each uses 2 linear layers of hidden
size 128. For our approach, we again add an additional linear layer of hidden size 32 after
the first linear layer to output the diagonal variance for the stochastic encoder.
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Parameter Value
gamma 0.99

entropy coe�cient 0.01
leaning rate 7⇥ 10�4

gae-lambda coef 0.95
value loss coef 0.5

encoder dimension 64
� 0.005

Table 8.2: Hyperparameters for GridWorld

CartPole

We follow the same architecture as for Reacher.

HalfCheetah

We follow mostly the same architecture as for Reacher, except the encoder layer has a hidden
size of 128 instead of 32.

8.3 Hyperparameter Selection

The most crucial hyperparameter value is �, which determines the size of the information
bottleneck. We performed the annealing scheme introduced in Algorithm 1 to find optimal
representations and control policies for each � to determine the optimal � value. For all
other hyperparameters, we mostly followed the hyperparameters used in each environment’s
respective baselines, with the exception of tuning the learning rates, batch size, and encoder
dimension. Learning rate was tuned through random initialization and short training; batch
size and encoder dimension were turned through a binary sweep.

We provide hyperparameter choices in Table 8.2 and Table 8.3 respectively.

8.4 Full Evaluation Results Along Annealing Curve
for Cartpole and HalfCheetah

We provide the full evaluation results for both control environments along their respective
annealing curves in Figure 8.1 and Figure 8.2. For each set of plots, we demonstrate the grad-
ual increase in generalization performance due to tightening of the information bottleneck,
followed by a sudden deterioration of the policy as the encoder loses too much information.
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Figure 8.1: Full evaluation results for CartPole policies trained with an information bot-
tleneck through annealing. Each subplot’s title indicates the iteration number, the x-axis
the pole length, the y-axis the push force, and the value of each cell the evaluation reward
averaged over 20 episodes. The best policy was found at iteration 10,000, which corresponds
to a � value of 5e-5
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Figure 8.2: Full evaluation results for HalfCheetah policies trained with an information
bottleneck through annealing. Each subplot’s title indicates the iteration number, overall
average reward across all configurations and average test reward across all test configurations.
The x-axis indicates the robot’s torso length, and the y-axis indicates the evaluation reward
averaged over 20 episodes. The best policy was found at iteration 3500, which corresponds
to a � value of 5e-4.
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Parameter Value
gamma 0.99

entropy coe�cient 0.0
leaning rate 3⇥ 10�4

clip range [�0.2, 0.2]
max gradient norm 0.5

batch size 128
gae-lambda coef 0.95
entropy coef 0.01
value loss coef 0.5

encoder dimension 64
� for Reacher 0.9
� for CartPole 5e-5

� for HalfCheetah 5e-4

Table 8.3: Hyperparameters for Reacher, CartPole, and HalfCheetah


