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Abstract

Practical Algorithms for Reliable Autonomy

by

David Fridovich-Keil

Doctor of Philosophy in Engineering — Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Claire J. Tomlin, Chair

In this dissertation, I present several ideas for building practical algorithms for building
more reliable autonomous systems. That is, each of the ideas below is, from the outset,
designed to be physically implementable on real hardware and operate in real-time. In
Chapter 1, I provide a high-level overview of some of the key challenges in autonomy today
and how this work addresses some of those challenges. Chapter 2 presents an approach for
reachability-based robust motion planning, which for the first time attains adversarial robust-
ness for real-time motion planning problems. Chapter 3 introduces the prediction problem
which arises in multi-agent situations, and describes a Bayesian approach for determining
how confident one should be in a given predictive model. Chapter 4 combines elements of the
prediction and motion planning problems in a multi-player di↵erential game and presents a
novel real-time solution strategy. Finally, Chapter 5 lists several open problems and discusses
several exciting next steps.
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Chapter 1

Introduction

Autonomy is more and more present these days, with familiar parts of the puzzle in ev-
erything from cruise control devices to search engines. This dissertation aims to present
a generalized view of the important challenges, and will focus in on challenges which are
especially important in multi-agent scenarios.

1.1 The autonomy pipeline

Commonly in autonomous systems, there is a “pipeline” that involves familiar sub-problems.
Illustrated in Figure 1.1, we see that most autonomous systems involve, first and foremost,
a plant of some kind. The plant represents the specific, often physically embodied, entity
which interacts with nature and often whose precise outcome is unpredictable. We will see
examples of di↵erent types of plants in this thesis, including quadrotors, cars, and airplanes,
but many of the principles we develop will also apply to less embodied plants, such as social
networks and financial systems.

In any case, the plant embodies the interaction between nature and whatever man-made
process we are interested in. The way we measure the outcome of that interaction is with
sensors. These sensors essentially record the relevant information for the problem at hand,
but all higher-level processing of that information is deferred until the next step. The sensors
give us our only look at what actually happened—any other information which we might
wish to have is, unfortunately, unavailable.

Perception algorithms process the data recorded by the sensors. In the case of an au-
tonomous car, which we will see extensively later in this dissertation, the core perception al-
gorithms have to do with (a) localization and mapping, and (b) object detection/recognition
in camera/LIDAR frames. In many instances tracking relevant variables over time is also very
important, but we shall largely ignore this challenge here. Regardless, perception algorithms
generate what is, in control parlance, termed a “state estimate” and are, unsurprisingly,
closely related the state estimators and the study of state estimation.

Equipped with a state estimate from sensor data and perception algorithms, many au-
tonomous systems also require some means of predicting the future evolution of some of the
state variables in order to decide how best to react. Often, this comes down to predicting
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Plant Sensors

Perception

PredictionPlanning

Tracking 
control

Fig. 1.1: Typical pipeline of operations involved in autonomy. Most applications, embodied
or otherwise, will have some or all of these components.

the decisions made by other intelligent participants in the problem, something discussed in
both Chapters 3 and 4.

Once the autonomous system has a good idea of what’s going on around it (from the
“perception” module) and what’s likely to happen in the immediate future (from the predic-
tion module), it must then plan a best response. This can be formulated in many di↵erent
ways—often we’ll see this posed as an optimization problem, but that is by no means the
only way—but when the dust settles it should be clear what the autonomous system is “try-
ing” to do. Executing this plan, though, is an entirely di↵erent matter, which we shall come
to shortly.

The challenge of actually designing the input such that the plant executes the plan is
typically called tracking control. Of course, planning itself may very well be posed as an
optimal control problem, so it is best not to confuse or conflate tracking control with control
theory writ large. The problem tracking control must solve essentially boils down to the
problem that real systems don’t always behave how we’d like them to, how our models say
they’ll behave. This will be discussed in detail later, in Chapter 2.

1.2 Core challenges with autonomy

As I see it, autonomy engineers face two core challenges, and a third is also sometimes
important for some practitioners.

The first of these core issues has to do with sensing and perception, and is essentially
ignored here. The bottom line is, often engineers concerned with planning and control just
do not have a clear enough picture of what is going on in order to design a safe and correct
set of inputs to the system. For example, in the case of an autonomous car, a regular human
driver (and certainly my father) may be surprised that the LIDAR-enhanced sensing and
perception capabilities of an autonomous car are routinely confused by commonplace trees
and bushes that line many suburban streets. In any case, relatedly, the perception algorithms
most commonly employed are not always trustworthy. Although convolutional deep neural
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networks have made an indelible impact on detection problems, their output is not all that
reliable. It is common knowledge, for instance, that very small perturbations of images can
be classified arbitrarily badly. Fixing, or at the very least understanding, this unreliability is
a major direction of research now and I expect that it will continue to be a challenge many
years in the future.

The second core issue relates to how multiple agents interact, for example, on the road.
Whenever multiple decision-making, intelligent agents interact, be it on the road or on
a social network, an autonomous system needs to be capable of understanding and, often,
influencing that interaction. This will be the main focus of both Chapters 3 and 4, and much
future work discussed in Chapter 5. As we shall see in Chapter 3, it is common to employ
some method of prediction and thereby decompose the problem into sequential prediction
and planning subproblems. Chapter 4 will explore this issue further and o↵er a di↵erent
viewpoint, namely, that multi-agent situations can often be best expressed as multi-player
di↵erential games. Both views are certainly very useful in di↵erent circumstances, and I
believe they both will have a place in autonomous systems in the future.

Finally, but not insignificantly, I believe a major challenge of autonomy rests in robust
tracking control. This will be the focus of Chapter 2. Here, the basic challenge is that, while
abstract reasoning to do with perception, prediction, and planning may be very helpful, it is
essentially useless if we can’t rely on the tracking controller to execute the plans we generate.
In many systems, such as cars driving on a dry road, this problem may very well be e↵ectively
solved. On the other hand, there are many devices and maneuvers, such as acrobatics on a
quadrotor, for which tracking control is really not up to the same standard. Many times this
may be because the plant itself is “less stable” or somehow more sensitive to our input in a
“hard to control” way, but what we will focus on is an issue which also arises called model
mismatch. Here, we may use some mathematical model of how the physical system actually
evolves for higher level reasoning, control design, etc., but di↵erence or mismatch between
the physical system and a model of it can be significant. When we design robust controllers,
we are essentially trying to minimize our sensitivity to this mismatch, and we may do so in
a number of ways. Chapter 2 presents one particular method, based on worst-case analysis.
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Chapter 2

Robust Control for Modular,
Real-Time Motion Planning

2.1 Background

This Chapter deals with the final challenge mentioned in Chapter 1. Namely, this Chapter
focuses on the challenges that arise from model mismatch.

In robotics and control theory, whenever we are faced with a real plant—like a car or
a plane or even something non-embodied like a social network—we first model the time-
evolution of the relevant variables, the “state variables,” and how they respond to the inputs
we control. Following the convention, we shall refer to the state variables collectively as a
vector x, the inputs or controls u, and time t. This input-state relationship is often described
by a di↵erential equation,

ẋ = f(t, x, u) (2.1)

and often, we shall consider time-invariant dynamics where we drop the dependence of f on
t.

Example 1. Consider a pedestrian moving on the Cartesian plan. The state variables of
interest may be varied, including such things as position, heading, and speed, but this is a
matter of design choice.

For example, we shall choose to neglect heading and speed and model the state dynamics
as follows:

x ,

ṗx

ṗy

�
=


ux

uy

�
. (2.2)

Clearly, we have a lower-order dynamical model than we otherwise might have chosen
with inputs ux and uy directly a↵ecting the horizontal and vertical positions px and py of the
pedestrian. Still, we shall see a variety of reasons that such low order model may be useful.
In any case, this choice of state x , (px, py) and input u , (ux, uy) essentially defines the
dynamics f , in this case trivially.

This model of the dynamics, f , is purely mathematical in nature and is at best only
an approximation of the plant’s true dynamics. Denoting the true dynamics fp, the di↵er-
ence between the two may be inconsequential or highly consequential, depending upon the



CHAPTER 2. ROBUST CONTROL FOR MODULAR, REAL-TIME MOTION
PLANNING 5

problem at hand. This Chapter will present an approach to quantifying this model mis-
match, called FaSTrack [18], and several recent applications. FaSTrack addresses the issue
of model mismatch specifically for the case of motion planning, which as we shall see is a
fundamental challenge in robotics. This Chapter proceeds to introduce motion planning and
the core mathematical concepts behind FaSTrack, namely zero-sum di↵erential games, and
then introduce three applications.

Motion planning

Motion planning is a core problem in robotics, and like simultaneous localization and map-
ping it is probably one of the great success stories the field. In motion planning, we essentially
try to design a path which an autonomous system—in this literature, typically a robot—can
follow to satisfy some constraints—typically avoiding obstacles. As the reader might expect,
this is a fundamental challenge for robotics, and it is especially relevant for robots that move,
or mobile robotics. For example, consider the following:

Example 2. A quadrotor has dynamics

2

6666664

ṗx

ṗy

ṗz

v̇x

v̇y

v̇z

3

7777775
=

2

6666664

vx

vy

vz

g tan ux

�g tan uy

g � uz

3

7777775
. (2.3)

This is, of course, a drastic simplification that does not even track things like angular
velocities as state variables or account for complicated e↵ects like air friction, but as we will
see in this Chapter it is still useful for designing a robust controller. The state variables
in this model are position and speed, but notably not angles, whereas the control variables
are the pitch ux, roll uy, and thrust acceleration uz, and the acceleration due to gravity is
g = 9.81 m s�2. A fact which we shall ignore in this Chapter, yet is certainly worth noticing,
is that this model is actually linear with a slight transformation of the control variables ux

and uy.

To design a trajectory for the quadrotor of Example 2, we must specify a sequence of
control inputs u ⌘ (ux, uy, uz) that correspond to motion of the given system along that path
through the state space. Doing so may be simple—in this case, since a simple transformation
renders the system linear (multiple double integrators), it is actually straightforward in the
absence of obstacles—or complicated, depending upon the structure of the model.

Although it certainly has a long history, much of the modern interest in motion planning
falls into two categories: sampling-based (global) and optimization-based (local) methods.
We will see examples of both methods in this dissertation, but at least in this Chapter all of
the core ideas will apply equally well to both. This Chapter will not attempt to provide a
full summary of these types of methods; rather, the interested reader is encouraged to refer
standard texts on robotics and model predictive control such as [25] or [5]. One fact which
we note here is that [5] focuses on linear systems although actually model predictive control
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also applies and is commonly used for nonlinear systems. The reader is encouraged to refer
to [6] for a good description of the general principles.

Regardless, a common problem faced in motion planning is that practical algorithms need
to be real-time, or operate at around 10 Hz. This requirement is simple to understand; when
a robot is operating in the wild, it should always be following a plan generated based on
the latest sensor information about the world around it and where obstacles may be. There
has been a significant amount of research on this problem since it is so fundamental, and
as we have already mentioned, there are a number of approaches prevalent in the literature
which we shall not dwell upon here. Rather, we shall emphasize that the vast majority of
these approaches do not account for a common problem familiar to anyone working with a
physical robot: physical systems often di↵er in significant ways from our best attempts to
model them mathematically. Section 2.1 will present the main ideas behind a class of robust
control algorithms which we will use to address this key challenge.

Robust control as a zero-sum game

There are many di↵erent approaches to robust control, and for a more complete overview,
the reader should refer to a classic textbook such as [56] or (for linear control) [17]. Here,
we consider one particular interpretation of robust control in which we imagine the presence
of a (typically bounded) disturbance to the dynamical model we would otherwise use as an
abstraction of the physical system. For example, in Example 3 we present a version of the
dynamics from Example 2.

Example 3. Recall the dynamics presented earlier, in Example 2. We can account for some
error in these dynamics, e.g. due to a wind blowing on the quadrotor at a certain speed, by
rewriting the dynamics as 2

6666664

ṗx

ṗy

ṗz

v̇x

v̇y

v̇z

3

7777775
=

2

6666664

vx + dx

vy + dy

vz + dz

g tan ux

�g tan uy

g � uz

3

7777775
. (2.4)

Here, the disturbance is given by d ⌘ (dx, dy, dz) and is typically taken to be bounded
in a box such that |dx| < dx, |dy| < dy, and |dz| < dz. Our model essentially encodes the
restriction that “nature” can only a↵ect the velocity of the vehicle and not its acceleration,
and it cannot impart any angular velocity. This is clearly an assumption; yet, it may be a
simplification we are willing to make. In this case, since we have chosen not to model angles
as state variables, it may be reasonable to neglect nature’s e↵ect on them by imparting a
torque.

In general, we shall consider disturbed dynamics as a modification of (2.1), i.e.:

ẋ = f(t, x, u, d) . (2.5)

Further, we shall consider both u and d to be bounded, and although the reasons for con-
sidering primarily additive and bounded control and disturbance will be clear enough from
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the technical details, we note that this choice is not strictly necessary and, at least in the
case of disturbances, derived from early work by R. Isaacs, who invented the area of di↵er-
ential game theory which is largely the focus of this Section. His book [19] is a wonderful
introduction to di↵erential game theory and has been a great resource for the author.

In any case, we model “nature” as getting to choose the value of the disturbance in
order to maximize (make worse) our control objective, whatever it may be. Thus, we have
a zero-sum, two player di↵erential game:

VT (t, x0) = sup
d[u](·)

inf
u(·)

VT (t), x(t) = x0 . (2.6)

Here, VT (t) is a completely arbitrary control objective (which we wish to minimize),
which is understood without loss of generality to exist on time t 2 [0, T ] and in particular
to neglect the trajectory before time t, and the notation d[u](·) is meant to capture the “non-
anticipative” information pattern present. In other words, we wish to constrain nature to
only choose a disturbance signal d[u](·) which depends causally on the control signal u(·).
That is, nature gets to look at the current and prior values of the control, but crucially, does
not have access to the future. The function VT (t, x) is called the value function corresponding
to objective VT (t). Further, we have assumed that trajectories of the system begin at initial
state x0, i.e. x(t) = x0.

One fact which bears mentioning and which has been known since at least the late
1960s is that the Nash equilibria of these di↵erential games are given by a set of coupled
Hamilton-Jacobi (HJ) partial di↵erential equations (PDEs) [42]. A Nash equilibrium is a set
of strategies for each player where no player has any rational incentive to deviate from his
or her strategy. Nash equilibria are generally not unique and it is not always clear if they
are the best encapsulation of the notion of equilibrium for a given problem; yet, as we shall
see, Nash equilibria are appropriate for the problems considered in this Chapter, as shall be
made clear in the remainder of this Section.

Depending upon the structure of the objective VT , we can sometimes express the problem
in (2.6) as an equivalent so-called Hamilton-Jacobi-Isaacs (HJI) PDE. In particular, we shall
presume that the objective takes the form of an accumulated running cost plus a final cost,
i.e.,

VT (t0, x0) ,
Z

T

t0

g(s, x, u, d)ds + L(x(T ))

VT (T, x0) = L(x0), x(t0) = x0

. (2.7)

With this assumption, we can write down the corresponding HJI equation:

@VT

@t
= �min

u

max
d

⇢⌧
@VT

@x
, f(t, x, u, d)

�
+ g(t, x, u, d)

�
. (2.8)

Here, we see that at each point in time, the value function VT evolves according to a minimax
version of the inner product of the its spatial gradient and the dynamics themselves, which
can be understood as the directional derivative of the value function along the flow field
defined by the dynamics. Of course, we may need to bound u and d.
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Furthermore, note the ordering of the min and max in (2.8). This expression of the
HJI equation makes it clear that, at each moment in time, the disturbance must choose its
value after the control. In other words, we are giving the instantaneous advantage to the
disturbance for added robustness. In practice, however, we shall make an assumption known
as Isaacs’ condition which, hence the name, dates from Isaacs’ initial work on di↵erential
games [19], that the ordering of the max and min do not a↵ect the solution. This may be a
strong assumption in some cases; yet, the reader can readily see that this describes real-time
decision making in essentially any realistic setting.

Although the choice of objective VT can be arbitrary, we shall be primarily concerned
here with a type of reachability problem in which VT does not have a running cost and we
shall consider final costs that are the minimum over the time interval [0, T ] of a function,
i.e.,

VT (t0, x0) = min
t2[t0,T ]

`(t, x), x(t0) = x0 . (2.9)

With this assumption, we can rewrite a HJI equation that corresponds taking care to
handle the min properly, see e.g. [34]:

@VT

@t
= �min

⇢
0, min

u

max
d

⌧
@VT

@x
, f(t, x, u, d)

��
. (2.10)

This looks complicated, but the addition of the min with zero can be understood to
ensure that, in forward time, the value function can only get more positive. This means
that, in backward time, the value function can only get more negative and hence the value
function will never be above a value it will later take. Thus, the value function captures the
“min over time” character of (2.9) at each moment in time that the value function exists.
As before, we also require the value function to agree with the cost at the final time.

Example 4. Consider a quadrotor with the dynamics from Example 3. The objective is
expressed as the minimum distance to the origin over time, i.e.: VT (0, x0) = mint2[0,T ] kx(t)k2
where x(0) = x0. The corresponding HJI equation for this reachability problem is

@VT

@t
= �min

n
0, min

u

max
d

D
@VT

@x
, f(t, x, u, d)

Eo
(2.11)

= �min
n

0, min
u

max
d

�
V

px

T
(vx + dx) + V

py

T
(vy + dy) + V

pz

T
(vz + dz)

V
vx

T
(g tan ux)� V

vy

T
(g tan uy) + V

vz

T
(g � uz)

�o . (2.12)

Here, we have used the shorthand V
(·)
T
⌘ @VT

@(·) . At this point, we note that the min and
max can be separated. This is a general result of Isaacs’ condition! We continue:

@VT

@t
= �min

n
0, min

u

V
vx

T
(g tan ux)� V

vy

T
(g tan uy) + V

vz

T
(g � uz)

+ max
d

V
px

T
(vx + dx) + V

py

T
(vy + dy) + V

pz

T
(vz + dz)

o
. (2.13)

Of course, we cannot forget about the final condition that the value function must satisfy,
namely: VT (T, x0) = kx0k2. The final answer, then, meets this final value condition but also
satisfies the first order condition above.
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One other detail which determines the solution but which we have ignored so far is the
control and disturbance bounds above. Presuming that these are an interval as in Example 3,
the min and max can be easily solved according to the sign of the partial derivative of VT .
We omit these details in this example.

Robust tracking control

Thus far we have introduced the idea of nature “playing against us;” as we shall see, this is a
powerful idea that gives us a mechanism for addressing tracking control problems. Tracking
control problems arise specifically when the objective encodes a notion of tracking perfor-
mance for a specific trajectory. A simple example, though by no means the only one, is of
tracking a stationary reference signal. A more complicated example is given in Example 5.
This type of control is typically used to follow a desired trajectory which may be generated
by a motion planning algorithm, as in Figure 1.1.

Example 5. Suppose a system with dynamics ẋ = f(t, x, u) is trying to track the motion of
another system ˙̂x = h(t, x̂, w) in the same state space, i.e. we are interested in minimizing
the following control objective:

VT = max
t2[0,T ]

kx� zk2 . (2.14)

Although this objective is expressed as max over time rather than a min, it is relatively
simple to come up with the corresponding HJI equation as before. To do so, we simply replace
the first min in (2.10) with a max, i.e.:

@VT

@t
= �max

⇢
0, min

u

max
d

⌧
@VT

@x
, f(t, x, u)� h(t, x̂, w)

��
. (2.15)

where the di↵erence f � h corresponds to the relative dynamics of x� x̂, and the arguments
of the value function VT (·, ·) are (respectively) time t and relative state r = x� x̂.

Following the core idea of Example 5 and combining it with the notion of adversarial
robustness above, we can pose the problem of tracking an a priori unknown reference in
Eq. 2.16, taking r to be the relative state, which is generally some function of the system’s
state and the reference. We shall assume that the reference follows dynamics ˙̂x = h(t, x̂, w),
In virtually all our examples and applications, we shall assume that x̂ and x share the same
relevant dimensions (e.g. position), and that hence the computation of relative state r will
essentially amount to a simple subtraction, possibly with some zero-padding. For simplicity,
here we shall take r = x� x̂ and as in Example 5 the objective is maximum relative distance
over t 2 [0, T ]. The problem may be expressed as

VT (t0, x0) = sup
w[u](·)

sup
d[u](·)

inf
u(·)

(
max
t2[0,T ]

krkd

)
(2.16)

where the notation k · kd indicates measuring a Euclidean norm but only in position di-
mensions (i.e., distance). The problem of finding a minimal relative state representation is
known to be extremely challenging in general [19].
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As before, this zero-sum, e↵ectively two-player di↵erential game has a corresponding HJI
equation as follows:

@VT

@t
= �max

⇢
0, min

u

max
d

max
w

⌧
@Vt

@x
, f(t, x, u, d)� h(t, x̂, w)

��
. (2.17)

Thus, we have arrived at a general approach which provides strong guarantees of track-
ing performance. That is, our formulation allows for worst-case disturbance and reference
behavior, and provided we can solve the corresponding HJI equation given in (2.17), we can
quantify exactly how far the disturbed system could get from the reference over time horizon
T .

One fact which bears mentioning is that, once we have solved (2.17), the solution VT is
controlled-invariant, i.e., if the tracker applies control consistent with the arg min in (2.17)
then the value of VT will not increase along trajectories of the relative system. Accordingly,
we have that the smallest nonempty sublevel set of VT has a special meaning—it is the set of
relative states that, applying the arg min control from before and provided that the relative
system starts in a relative state contained in that set, the tracker can keep the relative
distance (measured in the k · kd norm) within the corresponding value of VT . This smallest
relative distance is called the Tracking Error Bound, or TEB. We shall call the corresponding
set of states S.

In practice, it may be useful to consider the case of T = 1, i.e., infinite time horizon.
Although this may not be strictly necessary in practice, it certainly makes matters simpler
for guarantees of tracking performance to hold for all time and not only for an interval.
Although a general theory for when relative dynamics a↵ord such a solution remains elusive,
in practice we find an infinite horizon solution by simply choosing a large value of T and
halting computation backward in time whenever the “current” solution VT is not changing
very much.

2.2 Applications

The ideas of the previous Section, and especially (2.17), form a general-purpose guaranteed
tracking tool known as FaSTrack [18], short for “Fast and Safe Tracking.” In the remainder
of this Chapter, we shall discuss some of the ways in which FaSTrack can be used in robotics
applications, and we shall restrict our attention to some of the fundamental issues we face
in such applications.

2.3 Multiple planning algorithms

Motion planning, as has been discussed already, is an extremely fundamental problem in
robotics, and especially in mobile robotics. Correspondingly, the community has devoted
significant research to it, and two major classes of motion planning algorithms have gained
popularity: sample-based and optimization-based. We shall not go into detail on these
approaches here, rather, the interested reader is encouraged to consult [21, 25, 16] which
present common sampling methods, as well as [55, 5] which discuss optimization and model
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predictive control. So far, we have presented a novel methodology for achieving a prior
known tracking performance despite adversarial disturbances in real-time, FaSTrack.

Still, there may be certain algorithms for planning that work especially well under some
circumstances—e.g., in cluttered spaces—and other algorithms that work well in di↵erent
circumstances—e.g., in mostly free space. For example, we may prefer an optimization-
based local method (see, e.g., [55]) in relatively open areas where we can expect there to be
minimal suboptimality issues due to the local nature of the solver, and a global sampling
method (e.g., [16]) in cluttered spaces. Hence, this Section addresses how we can modify
FaSTrack to enable the safe switching between multiple underlying planning algorithms, and
is largely adapted from work presented at ICRA 2018, titled “Planning, Fast and Slow: A
Framework for Adaptive Real-Time Safe Trajectory Planning” [15], coauthored with Sylvia
Herbert, Jaime Fisac, Sampada Deglurkar, and Claire Tomlin.

Problem formulation

We shall restrict our attention to static environments and time-invariant dynamical systems,
and operate in the situation where the di↵erent planners all use the same geometric algorithm
(in this case, [16]), yet di↵er in the speed with which the expect the robot to move along
planned trajectories. Let us consider planners {⇡i}N

i=1, and assume that planners are sorted
in order of strictly increasing speed. In this case, they also have strictly increasing tracking
error bound. In fact, we have that the set of relative states corresponding to the TEB for
planner ⇡i is contained within that of ⇡j, j > i. Moreover, we shall assume that transitions
are only made between ⇡i and ⇡j if |i � j| = 1, i.e., if the planners are adjacent. Thus, the
problem reduces to ensuring that such transitions ⇡i!j are safe, which we formalize as the
relative state ending up within the set of states (Sj) corresponding to the final planner ⇡j.

The dynamics of the robot, a small quadcopter, are modeled as in Example 3 and account
for a disturbance (e.g., wind) d bounded in magnitude by d, i.e.:

2

6666664

ṗx

ṗy

ṗz

v̇x

v̇y

v̇z

3

7777775
=

2

6666664

vx + dx

vy + dy

vz + dz

g tan ux

�g tan uy

g � uz

3

7777775
. (2.18)

We shall also model each geometric planner ⇡i as following dynamics

2

4
ṗx

ṗy

ṗz

3

5 =

2

4
px

py

pz

3

5 (2.19)

with control inputs |{px, py, pz}| < {p
x,i

, p
y,i

, p
z,i

}, and increasing p·,i > 0 for sequential i.
Relative dynamics are straightforward: we subtract the position dimensions of the state
which align in both models and carry over the velocity dimensions which only appear in



CHAPTER 2. ROBUST CONTROL FOR MODULAR, REAL-TIME MOTION
PLANNING 12

(2.18). Thus, we have 2
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ṗx

ṗy

ṗz

v̇x

v̇y

v̇z

3

7777775
=

2

6666664

vx + dx � px

vy + dy � py

vz + dz � pz

g tan ux

�g tan uy

g � uz

3

7777775
. (2.20)

For fixed bounds on u and d, it is clear that increasing the planner’s maximum speed p

will only increase the size of the TEB. In fact, we can prove the following result:

Theorem 1. For the relative dynamics above in (2.20) and a sequence of planners with
increasing maximum speed p and fixed bounds on u and d, the TEB set Si corresponding to
⇡i (with max speed p

i
) is included by all sets Sj, j < i.

Proof. Suppose relative state r 2 Sj for j < i and some fixed j. Then, there exists a sequence
of optimal controls p for planner ⇡j, at each time within the bounds specified by p

j
, such

that r 2 Sj, or equivalently, that from r the relative system will stay within distance Ej

(measured by k · kd) of the origin. Holding bounds on u (for the tracker) and d (for nature)
fixed, it is clear that increasing the planner’s input bound p

j
will not disqualify planner j’s

input trajectory as a means to maintain Ej. Hence, r 2 Si for i < j, as required.

Achieving safe transitions

Safe transitions from ⇡i to ⇡j fall into two categories:

(a) i < j. Here, the transition is actually to a planner with a larger TEB whose corre-
sponding set of relative states includes that of the next planner ⇡j, i.e., by Theorem 1
Si ⇢ Sj. Hence, the transition is trivial, and we can safely transition from ⇡i to ⇡j

along the planned path using the controller associated to ⇡j.

(b) i > j. In this case, the transition is to a planner with smaller TEB, and by Theorem 1,
Sj ⇢ Si. We handle this case by solving a separate reachability problem with the rela-
tive system’s target being Sj and the planner’s input bound p

j
. This idea is presented

later within this Section.

Thus, we only need focus on case (b). As above, we address this challenge by again
using reachability, and consider the HJI equation for the relative system, namely (2.17), and
copied below and adapted to the dynamics of (2.20):

@VT

@t
= �max

⇢
0, min

u

max
d

max
w

⌧
@Vt

@x
, f(t, x, u, d)� h(t, x̂, w)

��
. (2.21)

Crucially, we must also satisfy the final condition that the relative state be within the
set corresponding to the tracking error bound for the planner we are switching into. That
is, if we are switching from planner i to j, then we must satisfy the final condition that the
relative state be within Sj.
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Fig. 2.1: A Dubins car attempting to track a geometric planner, shown in the limit where
the planner’s maximum speed p is very close to zero. In order to track the planner more
closely, the Dubins car must first exit its initial orbit (solid blue curve), as shown by the
dashed red curve.

We must solve the PDE over an a priori unspecified time interval, such that at the initial
time the preimage of Sj includes Si. To encode both this property and the aforementioned
terminal condition, we solve the final value HJI PDE above, with the terminal condition that
L(r0) for some relative state r0 be the signed distance of r0 to Sj (i.e., negative if r0 2 Sj,
positive if r0 62 S, and zero otherwise). We solve the PDE for an a priori unspecified time
interval until the initial condition is met. That is, we solve backward in time until the
smallest nonempty sublevel set of the solution includes Si. The resulting maximum relative
distance is called the Safe Switching Bound or SSB, with a corresponding set of states Ŝj,
and the smallest time horizon for which this holds is Ti!j. Moreover, by construction we
know that this safe switching set includes the set of relative states corresponding to the TEB
for both planners. This property is summarized in Lemma 1.

Lemma 1. The states corresponding to a safe switch from planner i to j include those
associated to planner j’s TEB as well as those for planner i. That is,

Sj ✓ Ŝj and Si ✓ Ŝj . (2.22)

Proof. The proof follows by construction. The first inclusion is a consequence of final condi-
tion in the HJI PDE above, namely that relative states must terminate within the tracking
error bound set Sj to be included in the safe switching set Ŝj. A similar argument applies
for the second inclusion which follows from the initial condition.

This property is illustrated in Figure 2.1, where a Dubins car is seeking to track a
geometric planner and in order to attain a lower tracking error it must first increase tracking
error. Here, the Dubins car has dynamics

2

4
ṗx

ṗy

✓̇

3

5 =

2

4
v cos ✓
v sin ✓

u

3

5 , (2.23)
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(b) Over-approximation

Fig. 2.2: Exact and over-approximated safe switching bounds and corresponding sets for
the double integrator tracking a geometric planner, both with dynamics given in (2.25).
Note that the SSB itself can be read out as the vertical extent of the dashed boundary, and
that units are in meters. The blue and red sets correspond to the tracking error sets S for
geometric planners with large and small maximum speeds p, respectively.

and the geometric planner has dynamics given above in (2.2) and for clarity copied below:

ṗx

ṗy

�
=


wx

wy

�
. (2.24)

Moreover, it should be noted that this safe switching set is really an over-approximation
of the true set, since it accounts for trajectories which do not start within Si. The set can be
computed easily for a tracker with double integrator dynamics following a geometric planner,
with both dynamics given by 

ṗx

v̇x

�
=


vx

u

�
, ṗx = w . (2.25)

Figure 2.2 summarizes how the safe switching bound is an over-approximation in this
case.

Building the meta-plan

We call a motion plan comprised of segments from a variety of planners a meta-plan. We
shall construct a meta-plan as a route through a randomly-generated tree T . We generate
the meta-planning tree according to the following steps. Note that we shall presume that
the first time this algorithm is run, planner 1 is used. There will, of course, be environments
with obstacles near the start position for which this assumption means that the overall meta-
planning algorithm will fail to find a solution; adapting to the more general case in which
some other planner starts is also possible.

1. Root. Each meta-planning invocation begins a new rooted tree T . Initially, the root
is placed at the location of the tracker. In subsequent invocations, the root is placed
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at the position along the existing meta-plan which corresponds to a short planning
time (typically ⌧ 1 s) from now, and the current planner will be the one tried first
during step 3. In the first instance, we must assume that the origin is within S1, and
in the second, we note that—by the inclusion principle in Lemma 1 and Theorem 1—
the relative state is certainly within either the safe switching set (if in the midst of a
switch) or the tracking error set (otherwise). Also, we note that the current planner is
the one that either we are currently using or, if in a switch, then it is the planner we
are switching into. Finally, as shall be made clear in step 2, the root is characterized
only by a geometric position. In general, the intent is that meta-plans be continuous
in position.

2. Sample. Points are sampled uniformly at random from free space and each new
sampled position is then added to T by connecting to its nearest neighbor in the tree.
This connection process is detailed in steps 3 and 4.

3. Plan. Given a sampled position pb and its nearest neighbor pa, we first try to connect
the two by running the first planner ⇡1, which has the largest TEB by Theorem 1. If
⇡1 successfully finds a trajectory that is collision-free when augmented by the TEB for
⇡1, then we insert the sampled point pb into the tree T with associated planner ⇡1.
Otherwise, if it does not succeed, then we must try a planner with a smaller TEB, i.e.,
we proceed to try with planner ⇡2. By assumption, all the planners have the same
dynamics (2.19) and hence a single algorithm may be run only once and all that needs
change is the check for collisions; in general, if planner dynamics di↵ered then it would
be necessary to generate a new trajectory from pa to pb. If the second planner fails,
then we proceed with the third and so on until we reach the planner which follows the
one used by the nearest neighbor, i.e., until we try ⇡a+1. By assumption, transitions
to subsequent planners are not allowed, but if we removed that assumption than of
course, we would need to try all planners.

4. Virtual backtrack. Suppose that we have just inserted a newly-sampled point pb with
nearest neighbor pa, then we must ensure that using we can safely use the planner
associated with pb, ⇡i. If that planner has a smaller tracking error set Si than the
planner used to reach pa, i.e., if i � a by Theorem 1, then the transition is automatically
safe by construction. However, we need to be careful if that is not the case (i < a).

First, we shall simply try to transition from ⇡a to ⇡i by rechecking that the plan
generated by ⇡i is collision-free while augmenting it with planner i’s SSB, and we recall
that by Lemma 1 the corresponding safe switching set Ŝi includes the i’th tracking error
set Si.

If this does not work, then we shall perform a virtual backtrack, which is illustrated
in Figure 2.3. Essentially, failure to connect under planner i’s SSB indicates that we
must be already using ⇡i by the time we reach pa. Thus, we shall attempt a transition
one step in T earlier between pa and its parent pa0 . To do so, we use planner ⇡i to find
a trajectory from pa0 to pa, and assuming that it was not already used for that segment
in T then it is collision-checked by augmenting it with the i-th SSB and ensuring
that the length of the trajectory in time is at least the SSB’s associated transition
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<latexit sha1_base64="ZITziU4Dd6e6It9YbOq4dzDJWnQ=">AAACH3icbVDLSgMxFL3j2/rWpZtgEQSlzIiiG0F041LB+qAdSia9rcEkE5I7Qhn6FW514de4E7f+jWntwteBwOGccwnnZFZJT3H8EY2NT0xOTc/MVubmFxaXlldWr3xeOIF1kavc3WTco5IG6yRJ4Y11yHWm8Dq7Px341w/ovMzNJfUsppp3jexIwSlIt00rW6XcTvqt5Wpci4dgf0kyIlUY4by1EkGznYtCoyGhuPeNJLaUltyRFAr7zcKj5eKed7GhkAid5RbdjuauK81RIk1adjHXSK7XZ5Xv8UAN1+jTctivzzaD0mad3IVniA3V7xcl1973dBaSmtOd/+0NxP+8RkGdw7SUxhaERnx91CkUo5wNxmJt6VCQ6gXChZOhGRN33HER6vhK2Cz5vdBfcrVbS/Zq+xd71eOT0XozsA4bsAUJHMAxnME51EGAhkd4gufoJXqN3qL3r+hYNLpZgx+IPj4BgEaikA==</latexit>

�i

<latexit sha1_base64="6u+KkXGjyflgcGAHO01FA/ZDVyw=">AAACHXicbVBNaxsxFHzrJm3ipM3XMRcRE+ihmN2SkF4Kobn06EAcG+zFaOVnW1jSCultYVn8I3ptD/k1uZVeQ/5N5I9D4mRAMMzMQ8xkVklPcfwY1d5tbL7/sLVd39n9+Glv/+Dw1ueFE9gWucpdN+MelTTYJkkKu9Yh15nCTja9mvudX+i8zM0NlRZTzcdGjqTgFKRO38pBJWeD/UbcjBdgr0myIg1YoTU4iKA/zEWh0ZBQ3PteEltKK+5ICoWzfuHRcjHlY+wpJEJnuUX3RXM3luZ7Ik1ajTHXSK6csfrzeKCGa/RptWg3Y6dBGbJR7sIzxBbq84uKa+9LnYWk5jTx695cfMvrFTT6llbS2ILQiOVHo0Ixytl8KjaUDgWpMhAunAzNmJhwx0Wo4+ths2R9odfk9mszOWueX581Ln+s1tuCYziBz5DABVzCT2hBGwRM4Tf8gb/RXXQf/Yv+L6O1aHVzBC8QPTwBlCyiIA==</latexit>

pa�

<latexit sha1_base64="nAMjoI1pILJcyFTHO6DlUSgwVr8=">AAACHHicbVBNS1tBFL1Pq9X4UbVLN0ND0YWE9ySl3RTEbrq0YKIQH+G+yU0cnZk3zNxXCI/8h2514a/prnQr+G86iVn40QMDh3POZTincFoFTtOHZGHxzdLy25XVxtr6xua7re2dbigrL6kjS1368wIDaWWpw4o1nTtPaApNZ8X1t6l/9pN8UKU95bGj3ODIqqGSyFHqun6Ne5P+VjNtpTOI1ySbkybMcdLfTuBiUMrKkGWpMYReljrOa/SspKbJRRXIobzGEfU0MZN36MgfGPQjZb9myub1iEpD7McT0Xgaj9SioZDXs3IT8TEqAzEsfXyWxUx9elGjCWFsipg0yJfhpTcV/+f1Kh5+yWtlXcVk5eNHw0oLLsV0KTFQniTrcSQovYrNhLxEjzLWCY24WfZyodeke9jK2q1PP9rNo+P5eiuwCx9gHzL4DEfwHU6gAxKu4BfcwG1yl/xO/iR/H6MLyfzmPTxDcv8PUnyhcA==</latexit>

pa

<latexit sha1_base64="f/10eHbKXj9CjDpWCd+ogYQjSWg=">AAACG3icbVBNS1tBFL1PWxvT1vqxdDM0FFxIeK8odVMQ3bhMoVEhPsJ9k5s4ODNvmLlPCI/8Bre68Ne4E7cu/DdOYhZWe2DgcM65DOcUTqvAafqULCx++Lj0qbHc/Pzl68q31bX141BWXlJXlrr0pwUG0spSlxVrOnWe0BSaToqLw6l/ckk+qNL+5bGj3ODIqqGSyFHqun6Nk/5qK22nM4j3JJuTFszR6a8lcDYoZWXIstQYQi9LHec1elZS0+SsCuRQXuCIepqYyTt05LcN+pGyvzNl83pEpSH244lovo5HatFQyOtZt4n4EZWBGJY+Pstipr6+qNGEMDZFTBrk8/DWm4r/83oVD/fyWllXMVn58tGw0oJLMR1KDJQnyXocCUqvYjMhz9GjjHVCM26WvV3oPTn+2c522rt/dlr7B/P1GrAJ32ELMvgF+3AEHeiCBAVXcA03yW1yl9wnDy/RhWR+swH/IHl8Buk7oT8=</latexit>

pb

<latexit sha1_base64="n2dnUZhIjFxb2Tiiuyz+IM9vjRo=">AAACG3icbVBNSwMxFHzrZ63fevQSLIIHKbui6EUQvXisYFWoS8mmrzWYZEPyVihLf4NXPfhrvIlXD/4b09qDXwOBYWYeYSazSnqK449oYnJqema2MledX1hcWl5ZXbv0eeEENkWucnedcY9KGmySJIXX1iHXmcKr7O506F/do/MyNxfUt5hq3jOyKwWnIDVtu8wG7ZVaXI9HYH9JMiY1GKPRXo3gppOLQqMhobj3rSS2lJbckRQKBzeFR8vFHe9hSyEROsstuh3NXU+ao0SatOxhrpFcf8Cq3+OBGq7Rp+Wo24BtBaXDurkLzxAbqd8vSq697+ssJDWnW//bG4r/ea2CuodpKY0tCI34+qhbKEY5Gw7FOtKhINUPhAsnQzMmbrnjItTx1bBZ8nuhv+Ryt57s1ffP92rHJ+P1KrABm7ANCRzAMZxBA5ogQMIDPMJT9By9RK/R21d0IhrfrMMPRO+f6u+hQA==</latexit>

TEBi+1

<latexit sha1_base64="GnofOzn6e0LAn5rkpxe2uq6Vgk4="></latexit>

TEBi

<latexit sha1_base64="YzyDBMWOS18W90yrERHwdqOBzN0=">AAACLHicbVBNSxxBFHxjTGI2H64xt1yaLIEcwjIjSrwERAnkqOCqsDssb3rfro39MXS/kWyG+S+56sFfk4uEXPM77F33YNSChqKqHk1VUWoVOE2vk6Uny0+fPV950Xr56vWb1fba26PgKi+pJ512/qTAQFpZ6rFiTSelJzSFpuPibG/mH5+TD8rZQ56WlBucWDVWEjlKw/a7AdMPts4b1PXht91mWKtm2O6k3XQO8ZBkC9KBBfaHawkMRk5WhixLjSH0s7TkvEbPSmpqBlWgEuUZTqiviZl8iSX5zwb9RNmvmbJ5PSFniP20Ea278UgtGgp5PS/biI9RGYmx8/FZFnP17kWNJoSpKWLSIJ+G+95MfMzrVzzezmtly4rJytuPxpUW7MRsOTFSniTraSQovYrNhDxFjzLWCa24WXZ/oYfkaKObbXa3DjY7O7uL9VbgPXyAT5DBF9iB77APPZDwE37BBVwmV8nv5E/y9za6lCxu1uE/JP9uADWtqBs=</latexit>

�i+1

<latexit sha1_base64="ZITziU4Dd6e6It9YbOq4dzDJWnQ=">AAACH3icbVDLSgMxFL3j2/rWpZtgEQSlzIiiG0F041LB+qAdSia9rcEkE5I7Qhn6FW514de4E7f+jWntwteBwOGccwnnZFZJT3H8EY2NT0xOTc/MVubmFxaXlldWr3xeOIF1kavc3WTco5IG6yRJ4Y11yHWm8Dq7Px341w/ovMzNJfUsppp3jexIwSlIt00rW6XcTvqt5Wpci4dgf0kyIlUY4by1EkGznYtCoyGhuPeNJLaUltyRFAr7zcKj5eKed7GhkAid5RbdjuauK81RIk1adjHXSK7XZ5Xv8UAN1+jTctivzzaD0mad3IVniA3V7xcl1973dBaSmtOd/+0NxP+8RkGdw7SUxhaERnx91CkUo5wNxmJt6VCQ6gXChZOhGRN33HER6vhK2Cz5vdBfcrVbS/Zq+xd71eOT0XozsA4bsAUJHMAxnME51EGAhkd4gufoJXqN3qL3r+hYNLpZgx+IPj4BgEaikA==</latexit>

�i+1

<latexit sha1_base64="ZITziU4Dd6e6It9YbOq4dzDJWnQ=">AAACH3icbVDLSgMxFL3j2/rWpZtgEQSlzIiiG0F041LB+qAdSia9rcEkE5I7Qhn6FW514de4E7f+jWntwteBwOGccwnnZFZJT3H8EY2NT0xOTc/MVubmFxaXlldWr3xeOIF1kavc3WTco5IG6yRJ4Y11yHWm8Dq7Px341w/ovMzNJfUsppp3jexIwSlIt00rW6XcTvqt5Wpci4dgf0kyIlUY4by1EkGznYtCoyGhuPeNJLaUltyRFAr7zcKj5eKed7GhkAid5RbdjuauK81RIk1adjHXSK7XZ5Xv8UAN1+jTctivzzaD0mad3IVniA3V7xcl1973dBaSmtOd/+0NxP+8RkGdw7SUxhaERnx91CkUo5wNxmJt6VCQ6gXChZOhGRN33HER6vhK2Cz5vdBfcrVbS/Zq+xd71eOT0XozsA4bsAUJHMAxnME51EGAhkd4gufoJXqN3qL3r+hYNLpZgx+IPj4BgEaikA==</latexit>

�i

<latexit sha1_base64="6u+KkXGjyflgcGAHO01FA/ZDVyw=">AAACHXicbVBNaxsxFHzrJm3ipM3XMRcRE+ihmN2SkF4Kobn06EAcG+zFaOVnW1jSCultYVn8I3ptD/k1uZVeQ/5N5I9D4mRAMMzMQ8xkVklPcfwY1d5tbL7/sLVd39n9+Glv/+Dw1ueFE9gWucpdN+MelTTYJkkKu9Yh15nCTja9mvudX+i8zM0NlRZTzcdGjqTgFKRO38pBJWeD/UbcjBdgr0myIg1YoTU4iKA/zEWh0ZBQ3PteEltKK+5ICoWzfuHRcjHlY+wpJEJnuUX3RXM3luZ7Ik1ajTHXSK6csfrzeKCGa/RptWg3Y6dBGbJR7sIzxBbq84uKa+9LnYWk5jTx695cfMvrFTT6llbS2ILQiOVHo0Ixytl8KjaUDgWpMhAunAzNmJhwx0Wo4+ths2R9odfk9mszOWueX581Ln+s1tuCYziBz5DABVzCT2hBGwRM4Tf8gb/RXXQf/Yv+L6O1aHVzBC8QPTwBlCyiIA==</latexit>

pa�

<latexit sha1_base64="nAMjoI1pILJcyFTHO6DlUSgwVr8=">AAACHHicbVBNS1tBFL1Pq9X4UbVLN0ND0YWE9ySl3RTEbrq0YKIQH+G+yU0cnZk3zNxXCI/8h2514a/prnQr+G86iVn40QMDh3POZTincFoFTtOHZGHxzdLy25XVxtr6xua7re2dbigrL6kjS1368wIDaWWpw4o1nTtPaApNZ8X1t6l/9pN8UKU95bGj3ODIqqGSyFHqun6Ne5P+VjNtpTOI1ySbkybMcdLfTuBiUMrKkGWpMYReljrOa/SspKbJRRXIobzGEfU0MZN36MgfGPQjZb9myub1iEpD7McT0Xgaj9SioZDXs3IT8TEqAzEsfXyWxUx9elGjCWFsipg0yJfhpTcV/+f1Kh5+yWtlXcVk5eNHw0oLLsV0KTFQniTrcSQovYrNhLxEjzLWCY24WfZyodeke9jK2q1PP9rNo+P5eiuwCx9gHzL4DEfwHU6gAxKu4BfcwG1yl/xO/iR/H6MLyfzmPTxDcv8PUnyhcA==</latexit>

pa

<latexit sha1_base64="f/10eHbKXj9CjDpWCd+ogYQjSWg=">AAACG3icbVBNS1tBFL1PWxvT1vqxdDM0FFxIeK8odVMQ3bhMoVEhPsJ9k5s4ODNvmLlPCI/8Bre68Ne4E7cu/DdOYhZWe2DgcM65DOcUTqvAafqULCx++Lj0qbHc/Pzl68q31bX141BWXlJXlrr0pwUG0spSlxVrOnWe0BSaToqLw6l/ckk+qNL+5bGj3ODIqqGSyFHqun6Nk/5qK22nM4j3JJuTFszR6a8lcDYoZWXIstQYQi9LHec1elZS0+SsCuRQXuCIepqYyTt05LcN+pGyvzNl83pEpSH244lovo5HatFQyOtZt4n4EZWBGJY+Pstipr6+qNGEMDZFTBrk8/DWm4r/83oVD/fyWllXMVn58tGw0oJLMR1KDJQnyXocCUqvYjMhz9GjjHVCM26WvV3oPTn+2c522rt/dlr7B/P1GrAJ32ELMvgF+3AEHeiCBAVXcA03yW1yl9wnDy/RhWR+swH/IHl8Buk7oT8=</latexit>

pb

<latexit sha1_base64="n2dnUZhIjFxb2Tiiuyz+IM9vjRo=">AAACG3icbVBNSwMxFHzrZ63fevQSLIIHKbui6EUQvXisYFWoS8mmrzWYZEPyVihLf4NXPfhrvIlXD/4b09qDXwOBYWYeYSazSnqK449oYnJqema2MledX1hcWl5ZXbv0eeEENkWucnedcY9KGmySJIXX1iHXmcKr7O506F/do/MyNxfUt5hq3jOyKwWnIDVtu8wG7ZVaXI9HYH9JMiY1GKPRXo3gppOLQqMhobj3rSS2lJbckRQKBzeFR8vFHe9hSyEROsstuh3NXU+ao0SatOxhrpFcf8Cq3+OBGq7Rp+Wo24BtBaXDurkLzxAbqd8vSq697+ssJDWnW//bG4r/ea2CuodpKY0tCI34+qhbKEY5Gw7FOtKhINUPhAsnQzMmbrnjItTx1bBZ8nuhv+Ryt57s1ffP92rHJ+P1KrABm7ANCRzAMZxBA5ogQMIDPMJT9By9RK/R21d0IhrfrMMPRO+f6u+hQA==</latexit>

TEBi+1

<latexit sha1_base64="GnofOzn6e0LAn5rkpxe2uq6Vgk4=">AAACLnicbVBNSxxBFHxjPjSbrzWBXHJpsgQCCctMUPQSEEPAowFXhd1hedP7dm3sj6H7jbhM5s94NYf8GsFD8OrPsHfdg9EUNBRV9WiqilKrwGl6mSw9evzk6fLKs9bzFy9fvW6vvtkPrvKSetJp5w8LDKSVpR4r1nRYekJTaDoojr/P/IMT8kE5u8fTknKDE6vGSiJHadh+N2A6Zeu8QV3v/dhuhrX6nDXDdiftpnOIhyRbkA4ssDtcTWAwcrIyZFlqDKGfpSXnNXpWUlMzqAKVKI9xQn1NzORLLMl/Megnyn7LlM3rCTlD7KeNaN2NR2rRUMjred1GfIzKSIydj8+ymKt3L2o0IUxNEZMG+Sjc92bi/7x+xePNvFa2rJisvP1oXGnBTsy2EyPlSbKeRoLSq9hMyCP0KGOd0IqbZfcXekj2v3azte76z7XO1vZivRV4Dx/gE2SwAVuwA7vQAwm/4AzO4XfyJ7lI/iZXt9GlZHHzFv5Bcn0DLMmoiw==</latexit>

SSBi

<latexit sha1_base64="HkcSPcZwcP7nUL46O56Lay2VTpw="></latexit>

�i

<latexit sha1_base64="6u+KkXGjyflgcGAHO01FA/ZDVyw=">AAACHXicbVBNaxsxFHzrJm3ipM3XMRcRE+ihmN2SkF4Kobn06EAcG+zFaOVnW1jSCultYVn8I3ptD/k1uZVeQ/5N5I9D4mRAMMzMQ8xkVklPcfwY1d5tbL7/sLVd39n9+Glv/+Dw1ueFE9gWucpdN+MelTTYJkkKu9Yh15nCTja9mvudX+i8zM0NlRZTzcdGjqTgFKRO38pBJWeD/UbcjBdgr0myIg1YoTU4iKA/zEWh0ZBQ3PteEltKK+5ICoWzfuHRcjHlY+wpJEJnuUX3RXM3luZ7Ik1ajTHXSK6csfrzeKCGa/RptWg3Y6dBGbJR7sIzxBbq84uKa+9LnYWk5jTx695cfMvrFTT6llbS2ILQiOVHo0Ixytl8KjaUDgWpMhAunAzNmJhwx0Wo4+ths2R9odfk9mszOWueX581Ln+s1tuCYziBz5DABVzCT2hBGwRM4Tf8gb/RXXQf/Yv+L6O1aHVzBC8QPTwBlCyiIA==</latexit>

�i+1

<latexit sha1_base64="ZITziU4Dd6e6It9YbOq4dzDJWnQ=">AAACH3icbVDLSgMxFL3j2/rWpZtgEQSlzIiiG0F041LB+qAdSia9rcEkE5I7Qhn6FW514de4E7f+jWntwteBwOGccwnnZFZJT3H8EY2NT0xOTc/MVubmFxaXlldWr3xeOIF1kavc3WTco5IG6yRJ4Y11yHWm8Dq7Px341w/ovMzNJfUsppp3jexIwSlIt00rW6XcTvqt5Wpci4dgf0kyIlUY4by1EkGznYtCoyGhuPeNJLaUltyRFAr7zcKj5eKed7GhkAid5RbdjuauK81RIk1adjHXSK7XZ5Xv8UAN1+jTctivzzaD0mad3IVniA3V7xcl1973dBaSmtOd/+0NxP+8RkGdw7SUxhaERnx91CkUo5wNxmJt6VCQ6gXChZOhGRN33HER6vhK2Cz5vdBfcrVbS/Zq+xd71eOT0XozsA4bsAUJHMAxnME51EGAhkd4gufoJXqN3qL3r+hYNLpZgx+IPj4BgEaikA==</latexit>

�i

<latexit sha1_base64="6u+KkXGjyflgcGAHO01FA/ZDVyw=">AAACHXicbVBNaxsxFHzrJm3ipM3XMRcRE+ihmN2SkF4Kobn06EAcG+zFaOVnW1jSCultYVn8I3ptD/k1uZVeQ/5N5I9D4mRAMMzMQ8xkVklPcfwY1d5tbL7/sLVd39n9+Glv/+Dw1ueFE9gWucpdN+MelTTYJkkKu9Yh15nCTja9mvudX+i8zM0NlRZTzcdGjqTgFKRO38pBJWeD/UbcjBdgr0myIg1YoTU4iKA/zEWh0ZBQ3PteEltKK+5ICoWzfuHRcjHlY+wpJEJnuUX3RXM3luZ7Ik1ajTHXSK6csfrzeKCGa/RptWg3Y6dBGbJR7sIzxBbq84uKa+9LnYWk5jTx695cfMvrFTT6llbS2ILQiOVHo0Ixytl8KjaUDgWpMhAunAzNmJhwx0Wo4+ths2R9odfk9mszOWueX581Ln+s1tuCYziBz5DABVzCT2hBGwRM4Tf8gb/RXXQf/Yv+L6O1aHVzBC8QPTwBlCyiIA==</latexit>

pa�

<latexit sha1_base64="nAMjoI1pILJcyFTHO6DlUSgwVr8=">AAACHHicbVBNS1tBFL1Pq9X4UbVLN0ND0YWE9ySl3RTEbrq0YKIQH+G+yU0cnZk3zNxXCI/8h2514a/prnQr+G86iVn40QMDh3POZTincFoFTtOHZGHxzdLy25XVxtr6xua7re2dbigrL6kjS1368wIDaWWpw4o1nTtPaApNZ8X1t6l/9pN8UKU95bGj3ODIqqGSyFHqun6Ne5P+VjNtpTOI1ySbkybMcdLfTuBiUMrKkGWpMYReljrOa/SspKbJRRXIobzGEfU0MZN36MgfGPQjZb9myub1iEpD7McT0Xgaj9SioZDXs3IT8TEqAzEsfXyWxUx9elGjCWFsipg0yJfhpTcV/+f1Kh5+yWtlXcVk5eNHw0oLLsV0KTFQniTrcSQovYrNhLxEjzLWCY24WfZyodeke9jK2q1PP9rNo+P5eiuwCx9gHzL4DEfwHU6gAxKu4BfcwG1yl/xO/iR/H6MLyfzmPTxDcv8PUnyhcA==</latexit>

pa

<latexit sha1_base64="f/10eHbKXj9CjDpWCd+ogYQjSWg=">AAACG3icbVBNS1tBFL1PWxvT1vqxdDM0FFxIeK8odVMQ3bhMoVEhPsJ9k5s4ODNvmLlPCI/8Bre68Ne4E7cu/DdOYhZWe2DgcM65DOcUTqvAafqULCx++Lj0qbHc/Pzl68q31bX141BWXlJXlrr0pwUG0spSlxVrOnWe0BSaToqLw6l/ckk+qNL+5bGj3ODIqqGSyFHqun6Nk/5qK22nM4j3JJuTFszR6a8lcDYoZWXIstQYQi9LHec1elZS0+SsCuRQXuCIepqYyTt05LcN+pGyvzNl83pEpSH244lovo5HatFQyOtZt4n4EZWBGJY+Pstipr6+qNGEMDZFTBrk8/DWm4r/83oVD/fyWllXMVn58tGw0oJLMR1KDJQnyXocCUqvYjMhz9GjjHVCM26WvV3oPTn+2c522rt/dlr7B/P1GrAJ32ELMvgF+3AEHeiCBAVXcA03yW1yl9wnDy/RhWR+swH/IHl8Buk7oT8=</latexit>

pb

<latexit sha1_base64="n2dnUZhIjFxb2Tiiuyz+IM9vjRo=">AAACG3icbVBNSwMxFHzrZ63fevQSLIIHKbui6EUQvXisYFWoS8mmrzWYZEPyVihLf4NXPfhrvIlXD/4b09qDXwOBYWYeYSazSnqK449oYnJqema2MledX1hcWl5ZXbv0eeEENkWucnedcY9KGmySJIXX1iHXmcKr7O506F/do/MyNxfUt5hq3jOyKwWnIDVtu8wG7ZVaXI9HYH9JMiY1GKPRXo3gppOLQqMhobj3rSS2lJbckRQKBzeFR8vFHe9hSyEROsstuh3NXU+ao0SatOxhrpFcf8Cq3+OBGq7Rp+Wo24BtBaXDurkLzxAbqd8vSq697+ssJDWnW//bG4r/ea2CuodpKY0tCI34+qhbKEY5Gw7FOtKhINUPhAsnQzMmbrnjItTx1bBZ8nuhv+Ryt57s1ffP92rHJ+P1KrABm7ANCRzAMZxBA5ogQMIDPMJT9By9RK/R21d0IhrfrMMPRO+f6u+hQA==</latexit>

TEBi

<latexit sha1_base64="YzyDBMWOS18W90yrERHwdqOBzN0="></latexit>

SSBi

<latexit sha1_base64="HkcSPcZwcP7nUL46O56Lay2VTpw="></latexit>

1-Step 
Virtual Backtrack

Attempted Switch

Newly-Connected 
Sample

Fig. 2.3: Illustration of the virtual backtracking procedure. A newly-sampled point pb is
attached to its parent pa with planner ⇡i in the top left. In the bottom left, we see that
using the SSB associated with planner i to collision-check the plan from pa to pb fails. To
the right, we execute a one-step virtual backtrack and successfully place the switch between
pa and its parent pa0 .

time Ti�1!i. Of course, since this SSB assumes an adjacent planner is being used
at pa0 , i.e., that ⇡j, j 2 {i � 1, i, i + 1} is being used, then if a di↵erent planner is
being used this procedure cannot work and the meta-planner will fail. If we allowed
non-adjacent transitions, then SSBs would need to be computed beforehand for all
possible transitions and we would not have this restriction. Regardless, if this one-
step backtrack fails because the collision-check itself fails, then we could try a similar
procedure recursively at each parent up to the root; in practice we terminate after a
single step for simplicity.

It should be clear by construction that the above meta-planning procedure is sound, as
summarized in the theorem below. The proof is omitted due to the clarity with which the
result derives from the steps mentioned above.

Theorem 2. If the meta-planner (which proceeds at each invocation according to the steps in
Section 2.3) succeeds, i.e., it finds a sequence of plans connecting points in T between the root
and the goal position, and if the physical system uses the associated TEB and SSB tracking
controllers, then under the static environment and other assumptions regarding geometric
planners, it will not result in collision.

Proof. Although most of the statement is self-evident by construction, we shall draw atten-
tion to the more subtle situation in which the robot must replan at some random time, e.g.,
due to the observation of a new obstacle. Here, because the planners are all geometric, in
the worst case (in which the meta-planner cannot find a suitable meta-plan to the desired
goal), then it is always possible to follow the existing meta-plan in reverse back to the start
position because the planners are geometric. If they were not, then this property would not
hold; the more general case is discussed above.
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i d{x,y,z} (m s�1) d{ax,ay,az} (m s�2) p{x,y,z} (m s�1)
1 0.5 0.1 1.0
2 0.4 0.1 0.8
3 0.3 0.1 0.6
4 0.2 0.1 0.4
5 0.2 0.1 0.2

Table 2.1: Disturbance bounds and maximum geometric planner speeds for software demon-
stration.

i d{x,y,z} (m s�1) d{ax,ay,az} (m s�2) p{x,y,z} (m s�1)
1 0.6 0.1 0.4
2 0.6 0.1 0.3
3 0.6 0.1 0.2

Table 2.2: Disturbance bounds and maximum geometric planner speeds for hardware
demonstration.

Results

To demonstrate the meta-planner in hardware, consider a quadrotor with dynamics similar
to those modeled as in (2.18) following a geometric planner with the dynamics of (2.19). For
clarity, these the relative dynamics are copied from (2.20) in (2.26) with minor modification
to account for acceleration disturbances {dax, day, daz}:

2

6666664

ṗx

ṗy

ṗz

v̇x

v̇y

v̇z

3

7777775
=

2

6666664

vx + dx � px

vy + dy � py

vz + dz � pz

g tan ux + dax

�g tan uy + day

g + daz � uz

3

7777775
. (2.26)

For all examples, we shall use �0.15 rad  {ux, uy}  0.15 rad, set 7.81 m s�2  uz 
11.81 m s�2, and recall that g = 9.81 m s�2 is the acceleration due to gravity. We also set the
disturbance and planner input bounds according to Table 2.1 for all software demonstrations,
and according to Table 2.2 for all hardware demonstrations. Also of note is that the dynamics
of (2.26) e↵ectively assume that the quadrotor is at zero yaw, which we maintain via an
auxiliary PD controller.

Note that these dynamics (2.26) separate into three decoupled subsystems, one in each
cardinal direction. For example, in the x-direction, we have the subsystem:


ṗx

v̇x

�
=


vx + dx � px

g tan ux

�
. (2.27)

Each of these subsystems may be solved independetly, e.g., using level set methods [32],
and in fact due to their simplicity they also a↵ord an analytic solution which is encoded in the
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(a) LQR controller (b) HJI controller

Fig. 2.4: In Figure 2.4a, using an LQR controller the tracker violates the TEB and collides
with an obstacle. In Figure 2.4b, the HJI controller from the meta-planner keeps the tracker
within the appropriate TEB and avoids obstacles.
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Fig. 2.5: The tracking error bound increases with the planner speed as shown and also with
increasing disturbance bounds.

corresponding software implementation of the meta-planner available at https://github.

com/HJReachability/meta_fastrack. To demonstrate the meta-planner in software, we
use the aforementioned implementation (which is entirely written in C++ and uses the
popular Robot Operating System (ROS) [36] framework for interprocess communication) and
use the disturbance and planner input bounds given in Table 2.1 as well as the BIT* geometric
planning algorithm [16] which is implemented in the Open Motion Planning Library (OMPL)
[45]. The meta-planning process typically completes in well under 1 s, and we see in Figure 2.4
that using the HJI-based controller specified during meta-planning avoids obstacles that a
simple linear feedback controller, e.g., obtained via LQR, does not. For simplicity, we operate
in a cube-shaped environment with smaller spherical obstacles as shown.

Additionally, we note that the TEB does increase in size as the disturbances get larger
and the planner gets faster. This relationship is summarized for the bounds of Table 2.1 in
Figure 2.5.

To test the meta-planner in hardware, we use a small Crazyflie 2.0 quadrotor and a motion
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(a) Crazyflie 2.0 in motion capture room
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(b) Typical tracking data in hardware

Fig. 2.6: Figure 2.6a shows a Crazyflie quadrotor flying inside our motion capture arena. In
Figure 2.6b, we see tracking data from a typical flight, including bounds for the quadrotor’s
position derived from meta-planning.

capture room for state estimation. ROS provides a convenient framework for interprocess
communication across the necessary computers. Figure 2.6a shows our Crazyflie quadcopter
flying in the motion capture room, and Figure 2.6b summarizes the tracking performance
for a typical flight. Notice how the TEB has also changed during flight, and the HJI-based
controller derived for safe switching successfully keeps the tracker within bounds at all times.
All code for the project can be found at https://github.com/HJReachability/fastrack.

2.4 Incremental, safe exploration

The robust control approach underlying FaSTrack [18] also enables incremental exploration
with strong non-collision guarantees. Incremental exploration is an important problem in
mobile robotics which arises when a robot is initially unaware of its environment but must
safely navigate to a pre-specified goal location. The robot is typically equipped with at least
one sensor, and for the purposes of this Section we shall presume that it is a range sensor—
that is, it detects whether the space within some field of view is free or occupied. The overall
approach to addressing this type of problem fundamentally relies upon constructing motion
plans that never sacrifice the ability to return to the starting position. This Section is based
upon [11], which was coauthored with Jaime Fisac and Claire Tomlin.

Preliminaries

We consider an autonomous navigation task in a bounded a priori unknown static envi-
ronment X ⇢ Rnx . The autonomous system has dynamic state x 2 S ⇢ Rnx , which
includes, but is in general not limited to its location x in the environment X . We presume
that for each point x 2 X , the environment representation can assign a label from the set
{OCCUPIED, FREE, UNKNOWN}. The system’s knowledge of the environment will be up-
dated online according to measurements from a well-characterized sensor, with field of view
F : S ! 2X . In this work, we will restrict our attention to deterministic sensing models,
i.e. if x 2 X is within the sensor’s field of view F(s), it will be correctly identified as either
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{OCCUPIED, FREE}. Probabilistic extensions are possible, though beyond the scope of
this paper.

We assume known time-invariant system dynamics, of the form:

ẋ = f(x, u, d) ,

where u 2 U ⇢ Rnu is the system’s control input and d 2 D ⇢ Rnd is a bounded disturbance.
In general, the dynamical model f of the physical system will be nonlinear and high-

order, making it challenging to compute trajectories in real time. Instead, we can use an
approximate, lower-order dynamical model for real-time trajectory computation, along with
a framework which produces a known tracking controller for the full-order model allowing
it to follow the trajectories of the low-order model with a guarantee on accuracy. Let
the simplified state of the system for planning purposes be p 2 P ⇢ Rnp , governed by
approximate planning dynamics :

ṗ = g(p, c) ,

with c 2 C ⇢ Rnc the control input of the simplified system, which we will refer to as the
planning system.

We use the FaSTrack framework [18] to provide a robust controlled invariant set in the
relative state space R ⇢ Rnr between the planning reference and the full system. This
relative state depends on the dynamical models used. A concrete example will be presented
in Section 2.4, and we direct the reader to [18, 15] for further discussion. The output of this
robust analysis is two-fold: the autonomous system is given an optimal tracking control law
k
⇤ : R! U that will keep the relative state inside of this invariant set at runtime regardless

of the low-order trajectory proposed by the planning algorithm. In turn, the planning
algorithm can use the projection of the invariant set onto the planning state space P as a
guaranteed tracking error bound E ⇢ P for the purposes of collision-checking at planning
time. A feature of the FaSTrack framework is that the robust safety analysis depends only
upon the relative dynamics, and not on the particular algorithm used for planning low-order
trajectories. We inherit this modularity in our recursively feasible planning framework, which
can be used with an arbitrary low-level motion planner. In Section 2.4, we demonstrate our
framework with a standard third-party algorithm from the Open Motion Planning Library
(OMPL) [45].

Recursive feasibility: safety and liveness

We now define several important concepts more formally, as they pertain directly to the
theoretical safety guarantees of our proposed framework. Let ⇠

�
·; t0, p, c(·)

�
: R! P denote

the trajectory followed by the planning system starting at state p at time t0 under some
control signal c(·) over time.

Given a planned state p, we refer to its footprint �(p) as the set of points x 2 X that are
occupied by the system in this state. We additionally define the robust footprint �E(p) as the
set of points x 2 X that are occupied by some p

0 2 {p+E} (with + here denoting Minkowski
addition). This represents the set of locations that may be occupied by the physical system
while attempting to track the planned state p. We will require that the system is at all times
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guaranteed to only occupy locations known to be FREE. For convenience, we will denote
by XFREE(t) the set of points x 2 X that are labelled as FREE at time t.

We then have the following definitions.

Definition 1. A planned trajectory ⇠
�
·; t0, p, c(·)

�
is known at time t0 to be safe, i.e. collision-

free, if it satisfies the following criterion:

8t � t0,�E

⇣
⇠
�
t; t0, p, c(·)

�⌘
✓ XFREE(t0) .

Observe that Definition 1 is not a statement about stability, as in e.g. [4]. Dynamic
stability is in fact neither a necessary nor a su�cient condition for safety understood as
guaranteed collision (and failure) avoidance.

Definition 2. The safe forward reachable set ⌦F of a set of states L ✓ P at time t0 is the
set of states p

0 2 P that are known at t0 to be safely reachable from L under some control
signal c(·).

⌦F (L; t0) :=
n

p
0 | 9p 2 L, 9t � t0, 9c(·), 8⌧ 2 [t0, t] :

�E

⇣
⇠
�
⌧ ; t0, p, c(·)

�⌘
✓ XFREE(t0), p

0 = ⇠
�
t; t0, p, c(·)

�o
.

Analogously, the safe backward reachable set ⌦B of L at t0 is the set of states p
0 2 P from

which L is known at time t0 to be safely reachable under some control signal (this can also
be thought of as the set of states p

0 2 P that can be safely reached from L in backward time,
hence the name backward reachable set):

⌦B(L; t0) :=
n

p
0 | 9p 2 L, 9t � t0, 9c(·), 8⌧ 2 [t0, t] :

�E

⇣
⇠
�
⌧ ; t0, p

0
, c(·)

�⌘
✓ XFREE(t0), p = ⇠

�
t; t0, p

0
, c(·)

�o
.

We will often consider reachable sets of individual states; for conciseness, we will write
⌦B(p; t0) rather than ⌦B({p}, t0).

We now proceed to define viability in terms of these sets.

Definition 3. A state p is viable at time t0 with respect to a goal state pgoal and a home state
phome if at t0 it is known to be possible to reach either pgoal or phome from p while remaining
safe, i.e. p 2 ⌦B

�
{pgoal, phome}; t0

�
. A trajectory ⇠ is viable at t0 if all states along ⇠ are

viable at t0. Note that a trajectory can be safe (Def. 1) but not viable.

Definition 4. The safely explorable set PSE(p) ⇢ P of a state p is the collection of states
that can eventually be visited by the system through a trajectory starting at state p with no
prior knowledge of X whose states are, at each time t � 0, viable according to the known
free space XFREE(t).

Based on the idea of the safely explorable set we can now introduce the important notion
of liveness for the purposes of our work.
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Definition 5. A state p is live with respect to a goal state pgoal if it is possible to reach
pgoal from p while remaining in the safely explorable set for all time, i.e if pgoal 2 PSE(p). A
trajectory ⇠ is live if all states in ⇠ are live.

Finally, we will refer to a planning algorithm as recursively feasible if, given that the
initial state p0 is live, all future states p are both live and viable. We will show that our
proposed framework is recursively feasible. Moreover, we will also show that it is safely
probabilistically complete, in the sense that, if p0 is live with respect to pgoal, then we will
eventually reach pgoal through continued guaranteed safe exploration, with probability 1.

General framework

Our framework is comprised of two concurrent, asynchronous operations: building a graph
of states which discretely under-approximate the forward and backward reachable sets of
the initial “home” state, and traversing this graph to find recursively feasible trajectories.
Namely, we define the graph GF := {V, E} of vertices V and edges E. Vertices are individual
states in P , and directed edges are trajectories ⇠ between pairs of vertices. GF will be a
discrete under-approximation of the current safe forward reachable set of the initial state
phome. We also define the graph GB ✓ GF to contain only those vertices which are in the safe
backward reachable set of phome and pgoal, and the corresponding edges. We use the notation
p 2 GF to mean that state p is a vertex in GF , and likewise for GB.

We use following two facts extensively. They follow directly from the definitions above
and our assumptions on deterministic sensing and a static environment.

Remark 1. A trajectory ⇠ that is safe at time t0 will continue to be safe for all t � t0.

Remark 2. A state p that is in the safe forward or backward reachable set of another state
p0 at time t0 will continue to belong to this set for all t � t0, i.e. ⌦F (p0; t0) ✓ ⌦F (p0; t) and
⌦B(p0; t0) ✓ ⌦B(p0; t).

Building the graph

We incrementally build the graph by alternating between outbound expansion and inbound
consolidation steps. In the outbound expansion step, new candidate states are sampled,
and if possible, connected to GF . This marks them as part of the forward reachable set of
phome. In the inbound consolidation step, we attempt to find a safe trajectory from forward-
reachable states in GF back to a state in GB, which is known to be viable. Successful inbound
consolidation marks a state as either able to reach pgoal or safely return to phome.
Outbound expansion. This process incrementally expands a discrete under-approximation
GF of the forward reachable set of the home state, ⌦F (phome; t). Note that, by Remark 2,
⌦F (phome; t) can only grow as the environment X is gradually explored over time and therefore
any state p added to GF at a given time t is guaranteed to belong to ⌦F (phome; t0) for all
t
0 � t.

We add states to GF via a Monte Carlo sampling strategy inspired by existing graph-
based kinodynamic planners [21], illustrated in Fig. 2.7a. We present a relatively simple
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(a) Outbound expansion. (b) Inbound consolidation.

Fig. 2.7: In outbound expansion (a), a new state is sampled from P and added to GF if
safely reachable from GF . In inbound consolidation (b) a state in GF is added to GB if it can
safely reach a (viable) state in GB.

strategy here, although more sophisticated options for sampling new states are possible, e.g.
[22, 16].

Let pnew be sampled uniformly at random from P at time t such that �E(pnew) ✓ XFREE(t).
We wish to establish whether or not pnew is in the safe forward reachable set of home at t, i.e.
pnew 2 ⌦F (phome; t). This is accomplished by invoking a third-party motion planner, which
will attempt to find a safe trajectory to pnew from any of the points already known to be in
⌦F (phome; t). In Section 2.4, we use a standard kinodynamic planner from the OMPL [45]
for this purpose.

We observe that repeatedly executing this procedure will, in the limit, result in a dense
discrete under-approximation of ⌦F (phome; t). Formally, assuming that the low-level planner
will find a valid trajectory to a sampled state p if one exists, then for any ✏ > 0, we have
that the probability that a new sampled state p

0 2 ⌦F (phome, t) will lie within a distance of
✏ from the nearest state p 2 GF goes to 1 in the limit of infinite samples. We formalize this
observation below, which will be useful in proving the safe probabilistic completeness of our
framework.

Lemma 2. For all ✏ > 0, assuming we sample candidate states p uniformly and indepen-
dently from P and P is compact, then letting pk be the k-th sampled state from P we have
that 8t:

lim
k!1

P
�

min
p2GF

kpk � pk < ✏ | pk 2 ⌦F (phome; t)
�

= 1 .

Proof. This follows directly from the properties of uniform sampling from compact sets.

Inbound consolidation. This process incrementally adds states in GF to a discrete ap-
proximation GB of the safe backward reachable set of {phome, pgoal}. By Definition 3, any
state added to this set is viable, which means that a trajectory will always exist from it to
either pgoal or phome. This is a crucial element of our overall guarantee of recursive feasibility.
We recall that GB ✓ GF .

Suppose that p 2 GF \ GB. We will attempt to add p to GB by finding a safe trajectory
from p to any of the states currently in GB by invoking the low-level motion planner. If we
succeed in finding such a trajectory, then by construction there exists a trajectory all the
way to phome, so we add p to GB. If p is added to GB, we also add all of its ancestors in GF
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to GB, since there now exists a trajectory from each ancestor through p to either phome or
pgoal. This procedure is illustrated in Fig. 2.7b.

Exploring the graph

When requested, we must be able to supply a safe trajectory beginning at the current state
reference p(t) tracked by the system. Recall from Section 2.4 that under the robust tracking
framework [18], the physical system’s state x(t) is guaranteed to remain within an error
bound E of p(t) measured on the planning state space P . This property allows us to make
guarantees in terms of planning model states p rather than full physical system states x.

Trajectories ⇠ output by our framework must guarantee future safety for all time; that
is, as the system follows ⇠ we must always be able to find a safe trajectory starting from
any future state. In addition, we require that phome remains safely reachable throughout
the trajectory; this ensures that liveness is preserved (if it was possible from phome to safely
explore X and reach pgoal then this possibility will not be lost by embarking on ⇠). Note that
liveness is an important property separate from safety: a merely safe planner may eventually
trap the system in a periodic safe orbit that it cannot safely exit.

By construction, any cycle in GB is safe for all future times (Remark 1). Readily, this
suggests that we could guarantee perpetual recursive feasibility by always returning the
same cycle. However, this naive strategy would never reach the goal. Moreover, it would
not incrementally explore the environment. In order to force the system to explore unknown
regions of X , we modify this naive strategy by routing the system through a randomly
selected unvisited state pnew 2 GB, and then back to phome. The trajectory always ends in a
periodic safe orbit between pnew and phome. Note that this random selection does not need to
be done naively (e.g. by uniform sampling of unvisited states in GB), and e�cient exploration
strategies are certainly possible. In our examples we will use an ✏-greedy sampling heuristic
by which, with probability 1�✏, we select the unvisited p 2 GB closest to pgoal, and otherwise,
with probability ✏, we uniformly sample an unvisited state in GB.

Of course, if pgoal is ever added to GB, we may simply return a trajectory from the current
state p(t) to pgoal. This will always be possible because, by construction, every state in GB

is safely reachable from every other state in GB (if necessary, looping through phome).

Algorithm summary

To summarize, our framework maintains graph representations of the forward reachable set
of phome and the backward reachable set of {phome, pgoal}. Over time, these graphs become
increasingly dense (Lemma 2). Additionally, all output trajectories terminate at pgoal or in
a cycle that includes phome. This implies our main theoretical result:

Theorem 3. Assuming that we are able to generate an initial viable trajectory (e.g. a loop
through phome), all subsequently generated trajectories will be viable and preserve the liveness
of phome. Thus, our framework guarantees recursive feasibility.

Proof. By assumption, the initial trajectory ⇠0 output at t0 is safe (Definition 1). We now
proceed by induction: assume that the i-th reference trajectory ⇠i is viable for the knowledge
of free space at the time ti at which it was generated, i.e. 8t � ti, ⇠i(t) 2 ⌦B({phome, pgoal}; ti).
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Assuming pgoal has not been reached yet at the time of the next planning request, ti+1, a
new trajectory will be generated from initial state ⇠i(ti+1). The new trajectory ⇠i+1 will
be created by concatenating safe trajectories between states in GB ✓ ⌦B({phome, pgoal}; ti)
and therefore will be a viable trajectory. Such a trajectory can always be found, because
it is always possible to choose ⇠i+1 ⌘ ⇠i, which, by the inductive hypothesis was a viable
trajectory at time ti and, by Remark 2, continues to be viable at ti+1. Therefore all planned
trajectories ⇠i will retain the ability to either safely reach pgoal or safely return to phome. In
the former case, ⇠i is immediately live (and since 8t � 0, ⇠i(t) 2 ⌦F (phome; ti), phome must
have been live too); in the latter, ⇠i will inherit the liveness of phome, by observing that
8t � 0, ⇠i(t) 2 ⌦B(phome; ti).

Corollary 1. Given that the safety of trajectories is evaluated using the robust footprint
�E(·), and the relative state between the dynamical system and the planning reference is
guaranteed to be contained in E , Theorem 3 implies that the dynamical system can continually
execute safe trajectories in the environment.

Moreover, we ensure that each output trajectory visits an unexplored state in GB, which
implies that GB approaches the safely explorable set PSE(phome) from Definition 4. Together
with Theorem 3, this implies the following completeness result:

Theorem 4. In the limit of infinite runtime, our framework eventually finds the goal with
probability 1 if it is within the safely explorable set.

Proof. By Theorem 3, all trajectories output will be viable; hence, the autonomous system
will remain safe for all time (Corollary 1). Further, since each generated trajectory visits
a previously unvisited state in GB with nonzero probability, by Lemma 2 it will eventually
observe new regions in the safely explorable set PSE(phome) if any exist. Moreover, those
regions will eventually be sampled, added to GB, and visited by subsequent trajectories. Be-
cause we have assumed all sets of interest to be bounded, this implies that we will eventually
add pgoal to GB as long as pgoal 2 PSE(phome).

Remarks

We conclude this Section with several brief remarks regarding implementation.
In our discussion of building the graph, we specify that states should be connected to

existing states in GF and GB. In practice, we find that connecting to one of the k-nearest
neighbors (measured in the Euclidean norm over P) in the appropriate graph su�ces.

In our discussion of exploring the graph, we describe traversing GB to find safe trajectories
between vertices. For e�ciency, we recommend maintaining the following at each vertex:
cost-from-home, cost-to-home, and cost-to-goal, where cost may be any consistent metric on
trajectories (e.g. duration). If these quantities are maintained, then care must be taken to
update them appropriately for descendants and ancestors of states that are added to GF and
GB while building the graph.

Finally, we observe that outbound expansion, inbound consolidation, and graph explo-
ration may all be performed in parallel and asynchronously.



CHAPTER 2. ROBUST CONTROL FOR MODULAR, REAL-TIME MOTION
PLANNING 26

Example

We demonstrate our framework in a real-time simulation, implemented within the Robot
Operating System (ROS) software environment [36].

Let the high-order system dynamics be given by the following 6D model:

ẋ =

2

6666664

ẋ

v̇x

ẏ

v̇y

ż

v̇z

3

7777775
=

2

6666664

vx

g cos u1

vy

�g sin u2

vz

u3 � g

3

7777775
(2.28)

where g is acceleration due to gravity, the states are position and velocity in (x, y, z), and
the controls are u1 = pitch, u2 = roll, and u3 = thrust acceleration. These dynamics are a
reasonably accurate model for a lightweight quadrotor operating near a hover and at zero
yaw.

We consider the following lower-order 3D dynamical model for planning:

ṗ =

2

4
ẋ

ẏ

✓̇

3

5 =

2

4
v cos ✓
v sin ✓

c

3

5 (2.29)

where v is a constant tangential speed in the Frenet frame, states are absolute heading ✓, and
(x, y) position in fixed frame, and control c is the turning rate. We interpret these dynamics
as a Dubins car operating at a fixed z height zp.

We take controls to be bounded in all dimensions independently by known constants:
u 2 [u1, u1] ⇥ [u2, u2] ⇥ [u3, u3] and c 2 [c, c]. In order to compute the FaSTrack tracking
error bound E , we must solve a Hamilton Jacobi (HJ) reachability problem for the relative
dynamics defined by (2.28) and (2.29). In this case, the relative dynamics are given by:

ṙ =

2

664

ḋ

 ̇

v̇T

v̇N

3

775 =

2

664

vT cos + vN sin 
�c� vT sin + vN cos 
u1 cos ✓ � u2 sin ✓ + cvT

�u1 sin ✓ � u2 cos ✓ � cvT

3

775 (2.30)

with the relative states d (distance),  (bearing), vT (tangential velocity), and vN (normal
velocity) illustrated in Fig. 2.8a.

Fig. 2.8b is a 3D rendering of the FaSTrack value function [18] computed using level
set methods [32]. The value function records the maximum relative distance between the
high- and low-order dynamical models (i.e. d). In order to guarantee that, at run-time, the
distance between the two systems does not exceed this value, the value function is computed
by solving a di↵erential game in which c(·) seeks to maximize the relative distance and
u(·) seeks to minimize it. Observe in Fig. 2.8b that level sets of the value function with
su�ciently high value are well-approximated by discs centered on the origin in (x, y). Thus,
we approximate the TEB E by such a disc for rapid collision-checking during each call to the
low-level motion planner. Since the high-order dynamics (2.28) do allow for variation in z,
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(a) Relative states. (b) Computed value function.

Fig. 2.8: (a) Relative states for 6D near-hover quadrotor tracking 3D Dubins car. (b)
Minimum value over vT and vN , for each relative (x, y) position in the planner’s Frenet
frame. Any non-empty sublevel set can be used as a tracking error bound E .

we also incorporate a z extent for E which may be obtained by solving a similar di↵erential
game in the (z, vz) subsystem of (2.28), as in [15].

We use the KPIECE1 kinodynamic planner [44] within the Open Motion Planning Li-
brary (OMPL) [45] to plan all trajectories for the low-level dynamics while building the
graphs GF and GB. For simplicity, we model static obstacles as spheres in R3 and use an
omnidirectional sensing model in which all obstacles within a fixed range of the vehicle are
sensed exactly. We emphasize that these choices of environment and sensing models are
deliberately simplified in order to more clearly showcase our framework. The framework
itself is fully compatible with arbitrary representations of static obstacles and deterministic
sensing models. Extensions to dynamic obstacles and probabilistic sensing are promising
directions for future research.

We demonstrate our framework in a simple simulated environment, shown in Fig. 2.9,
designed to illustrate the importance of maintaining recursive feasibility. This simulation is
intended as a proof of concept; our central contribution is theoretical and applies to a range
of planning problems.1

Observe in Fig. 2.9 that our method avoids collision where a non-recursively-feasible
approach would likely fail. Here, the goal is directly in front of the home position and the
way there appears to be in XFREE(t). However, just beyond our sensor’s field of view F ,
there is a narrow dead end. Many standard planning techniques would either optimistically
assume the unknown regions of the environment are free space, or plan in a receding horizon
within known free space XFREE(t). In both cases, the planner would tend to guide the system
into the narrow dead end, leading to a crash (recall that the planner’s speed v is fixed).

1Video summary available at: https://youtu.be/GKQwFxdJWSA
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Fig. 2.9: Depiction of our framework in operation, using a Dubins car model with a fixed
minimum turning radius and constant speed. Left: Schematic diagram of an environment in
which a non-recursively feasible planning algorithm could enter a narrow dead end and fail
to recover. Right: Snapshots of our framework over time. We build a search graph in known
free space, identifying robustly viable trajectories that can safely return to the initial state
or directly reach the goal. The physical system iteratively explores the environment along
these recursively feasible plans and is eventually guaranteed to identify a viable trajectory
to the goal, if one exists (bottom right).

By contrast, our approach eventually takes a more circuitous—but recursively feasible—
route to the goal. The evolution of planned viable trajectories is shown on the right in
Fig. 2.9. Initially, we plan tight loops near phome, but over time we visit more of the safely
explorable space PSE(phome), and eventually we find pgoal. All code for the project can be
found at https://github.com/HJReachability/fastrack.

2.5 A More Scalable Solution Strategy

Solving the Hamilton-Jacobi-Isaacs equation (2.10) is generally numerically challenging, al-
though methods have been developed for highly structured systems [7] as well as which
depend upon approximations [23, 24]. This Section shall develop one such approximate
method based upon neural network classifiers, which is able to extend HJI methods for
reachability to higher dimensional state spaces and, in some cases, maintain a guarantee
of conservativeness. The following is based upon [38], which was coauthored with Vicenç
Rubies-Royo, Sylvia Herbert, and Claire Tomlin.
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Classification-based Approximate Reachability

In this Section we introduce our classification-based method for approximating the optimal
control of HJ reachability when the dynamics are control-a�ne, and for simplicity we shall
also assume time-invariance. Even though we will use feedforward neural networks to build
the classifiers, it is possible to use other methods (e.g. SVM, decision trees). Ultimately, the
choice of the classifier determines how conservative the results of the procedure will be. We
leave a full investigation of classifier performance for future work.

Control- and disturbance-a�ne systems. A control/disturbance-a�ne system is a
special case of (2.1) of the form

ẋ = ↵(x) +
NuX

i=1

�i(x)ui +
NdX

j=1

�j(x)dj , (2.31)

recalling that x 2 S ⇢ Rn is the state, and taking u 2 U ⇢ RNu , d 2 D ⇢ RNd , and
↵, �i, �j : Rn ! Rn. We will assume that both control and disturbance are bounded by
interval constraints along each dimension, i.e. ui 2 [ui

min
, u

i

max
] for i = 1, . . . , Nu, and

dj 2 [dj

min
, d

j

max
] for j = 1, . . . , Nd. Observe that when dynamics f are of the form (2.31),

the objective on the right-hand side of (2.10) is a�ne in the instantaneous control u
0 and

disturbance d
0 at every time t. The optimal solution, therefore, lies at one of the 2Nu (or 2Nd)

corners of the hyperbox containing u (or d). That is, the optimal control and disturbance
policies are “bang-bang”2 (we refer the reader to chapter 4 of [27]). Furthermore, the optimal
values for any ui or dj at a certain state and time are mutually independent; therefore, for
control/disturbance-a�ne systems, we can frame the HJI reachability problem of solving the
right-hand side of (2.10) as a series of Nu + Nd binary classification problems at each time.

Dynamic programming with binary classifiers. Algorithm 1 describes the process
of learning these classifiers in detail. We begin by discretizing the time-horizon T into
small (evenly spaced) intervals of size �t > 0 in line 3, and proceed to use the dynamic
programming principle backwards in time to build a sequence of approximately optimal
control and disturbance policies. In total, the number of classifiers will be T

�t
(Nu + Nd).

At an intermediate time t < 0, we will have already obtained the binary classifiers for the
control and disturbance policies from t + �t to 0: ⇧u

(t+�t):0 and ⇧d

(t+�t):0. Here, ⇧u

⌧
and ⇧d

⌧

each denote a set of classifiers for the discrete time step ⌧ (i.e. |⇧c

⌧
| = Nu and |⇧d

⌧
| = Nd).

We now define the function C, which computes the cost (2.6) if control and disturbance
acted according to these pre-trained policies:

C(x, ⇧u

(t+�t):0,⇧
d

(t+�t):0) := V(t, x, u(·), d(·)) , (2.32)

where, due to our discretization, control and disturbance are piecewise constant over time,
i.e. u(t) = ⇧u

⌧
and d(t) = ⇧d

⌧
for t 2 [⌧, ⌧ + �t) and all discrete time steps ⌧ .

At time t, we can determine for some arbitrary state x the optimal control and disturbance
by solving the right-hand side of (2.10) as follows. First, compute the cost of applying

2For many physical systems, it is preferable to apply a smooth control signal. We note that the bang-
bang control resulting from solving the right side of (2.10) need only be applied at the boundary of the
reach-avoid set.



CHAPTER 2. ROBUST CONTROL FOR MODULAR, REAL-TIME MOTION
PLANNING 30

Algorithm 1: Learning policies and disturbances

1 Input: ẋ = f(x, u, d), S, U , D, T, �t, C, N, Trn(·, ·)
2 Initialize ⇧u, ⇧d  {}
3 For k = 0, . . . , bT/�tc
4 Initialize P, U

⇤
, D

⇤  {} // No training data.
5 For q = 1, . . . , N
6 Sample x ⇠ Unif{S}
7 Initialize u

⇤
, d

⇤  umin, dmin

8 ŝ ⇠(�k�t; x,�(k + 1)�t, umin, dmin)
9 ĉ C(ŝ, ⇧u, ⇧d)

10 For i = 1, . . . , Nu // Find best control.
11 û umin; û

i  u
i

max

12 x
0  ⇠(�k�t; x,�(k + 1)�t, û, dmin)

13 If (C(x0
, ⇧u, ⇧d) < ĉ): u

⇤
i
 u

i

max

14 For j = 1, . . . , Nd // Find best disturbance.

15 d̂ dmin; d̂
i  d

i

max

16 x
0  ⇠(�k�t; x,�(k + 1)�t, umin, d̂)

17 If (C(x0
, ⇧u, ⇧d) > ĉ): d

⇤
i
 d

i

max

18 U
⇤  {U

⇤
, u

⇤} // Record control.
19 D

⇤  {D
⇤
, d

⇤} // Record disturbance.
20 P  {P, x} // Record state.
21 // Train new classifiers. Add them to overall policy.
22 ⇧u

�(k+1)�t
 Trn(P, U

⇤), ⇧u  {⇧u, ⇧u

�(k+1)�t
}

23 ⇧d

�(k+1)�t
 Trn(P, D

⇤), ⇧d  {⇧d, ⇧d

�(k+1)�t
}

24 Return ⇧u, ⇧d

umin = (u0
min

, . . . , u
Nu

min
) and dmin = (d0

min
, . . . , d

Nd

min
) from t to t+�t; that is, let ĉ = C

�
⇠(t+

�t; x, t, umin, dmin), ⇧u

(t+�t):0, ⇧
d

(t+�t):0

�
. Now, separately for each component i of u (and

likewise for d), set u
i(t) = umax and compute the cost. If the cost is less than (resp. greater

than, for disturbance) ĉ, then this is the optimal control (resp. disturbance) in dimension i

at time t. This corresponds to lines 7-17.
Equipped with this procedure for computing approximately optimal3 control and distur-

bance actions, we record the computed state-action pairs (lines 18-20) for N states sampled
uniformly over S4 (lines 5-6). We then train separate binary classifiers for each component
of u and d, and add them to their current set ⇧u

⌧
or ⇧d

⌧
. These are finally appended to the

time-indexed control and disturbance policy sets ⇧u and ⇧d (lines 22-23). Trn(·, ·) denotes
a training procedure given state-action pairs. The final subsection in this segment contains
further details pertaining to how the classifiers were trained.

Two of the main benefits of performing approximate reachability analysis using binary

3Approximately optimal, since we compute policies at time t based on previously trained control and
disturbance policies for ⌧ > t.

4While other distributions could be used, in this work we focus solely on uniform sampling. Di↵erent
sampling strategies may result in di↵erent algorithm performance.
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classifiers rather than grids are memory usage and time complexity. The memory footprint
of medium-sized neural networks of the sort used in this paper can be on the order of
103 parameters or ⇠ 10 Kb, as opposed to ⇠ 10 Gb for dense grids of 4D systems. In
our experience, Algorithm 1 typically terminates after an hour for the 6D and 7D systems
presented in Section 24, whereas grid-based methods are completely intractable for coupled
systems of that size.

Special case: value function convergence.
For some instances of problem (2.9) and (2.6) the value function V (t, s) converges, i.e. we

have: limt!�1 V (t, s) = V
⇤(s). From (2.10), the corresponding optimal control and distur-

bance policies also converge. While in this paper we make no claims regarding convergence
of the classifiers to the true optimal policies, our empirical results do suggest convergence in
practice (see Figure 2.14). When this happens, we denote ⇧u

�T
= ⇧u

�1 (resp. ⇧d

�T
= ⇧d

�1),
for T large enough. In practice, the horizon can be progressively increased as needed. A
benefit of converged policies is that when estimating V

⇤(s) we only require the last set of
binary classifiers ⇧u

�1 and ⇧d

�1, allowing us to store only Nu + Nd classifiers.

Summary of guarantees. Algorithm 1 returns a set of approximately optimal policies for
the control and the disturbance for a finite number of time steps. Recalling (2.32), in order
to obtain an estimate of the value at a certain state x and time t, it su�ces to simulate an
entire trajectory from that state and time using the learned policies. The value V

⇧u,⇧d(t, x)
is the cost of the associated trajectory, measured according to (2.9).

A benefit of working with policy approximators rather than value function approximators
is that in the case of no disturbance, the value function induced by the learned control policy
will always upper-bound the true value. This means that a reach-avoid set computed via
Algorithm 1 will be a subset of the true reach-avoid set.

For reachability problems involving a disturbance, if the optimal disturbance policy is
known a priori, the same guarantee still applies. However, if the optimal disturbance is un-
known and must also be learned, no guarantees can be made because the learned disturbance
policy will not generally be optimal. We formalize this result with the following proposition.

Proposition 1. If we assume (a) no disturbance, or (b) access to a worst-case optimal
disturbance policy, then the computed reach-avoid set is a subset of the true set.

Proof. First assume no disturbance. Due to the use of function approximators, the control
policy ⇧u will be suboptimal relative to the optimal controller u

⇤(·), meaning it is less
e↵ective at minimizing the cost functional (2.9). Therefore, V

⇧u(t, x) � V (t, x). Denoting
the neural network reach-avoid sets as RA⇧u

t
:= {x : V

⇧u(t, x)  0}, this inequality implies
that RA⇧u

t
✓ RAt.

Note that this applies to all states x and times t, not just those that were sampled
in Algorithm 1. When optimizing over both control and disturbance this guarantee does
not hold because the disturbance will generally be suboptimal and therefore not worst-case.
However, when provided with an optimal disturbance policy at the onset, we recover the
case of optimizing over only control.
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Fig. 2.10: Reach-avoid set computation for 2D dynamics in (2.33) for two di↵erent control
bounds. Sets computed using our method are subsets of the true sets.

Examples

In this Section, we will present two reachability problems without disturbances, and compare
the results of our proposed method with those obtained from a full grid-based approach [32].
In each case, we observe that our method agrees with the ground truth, with a small but
expected degree of conservatism. For these examples, the set L is a box of side-length 2
centered at (x, y) = (0, 0), and G consists of the outer boundaries (i.e. max{|x|, |y|}  3)
and the shaded obstacles (Fig. 2.10 and Fig. 2.11).

2D point. Consider a 2D dynamical system with inputs u1 2 [u1, u1] and u2 2 [u2, u2] which
evolves as follows:

ẋ = u1, ẏ = u2 (2.33)

Fig. 2.10 shows the reach-avoid sets for two di↵erent control bounds. We overlay the sets
computed by our method on top of that computed using a dense 121⇥121 grid [32]. The red
set was computed using standard HJ reachability and the blue set was computed using our
classification-based method. Points inside the reach-avoid sets represent states from which
there exists a control sequence which reaches the target while avoiding all obstacles. As
guaranteed in Proposition 1, the set computed via Algorithm 1 is always a subset of the
ground truth, meaning that every state marked in Fig. 2.10 as safe is also safe using the
optimal controller. The computation time for the grid-based approach was 20 seconds, while
for the classification-based it was 10 minutes.

4D unicycle. Next, we consider a higher-dimensional system representing a 4D unicycle
model:

ṡ =

2

664

ẋ (x-position)
ẏ (y-position)
✓̇ (yaw angle)
v̇ (tangential speed)

3

775 =

2

664

v cos ✓
v sin ✓

u!

ua

3

775 (2.34)
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Fig. 2.11: Reach-avoid set computation for the 4D dynamics in (2.34) for two di↵erent 2D
slices and tangential speed v = 1.

in which controls are tangential acceleration ua 2 [0, 1] and yaw rate u! 2 [�1, 1]. Fig. 2.11
shows a computed a reach-avoid set for this system for di↵erent 2D slices of the 4D state
space on a 1214 grid. As expected, our approach yields a conservative subset of the true
reach-avoid set. In this case, the computation time for the grid-based approach was 3 days,
while for the classification-based it was 30 minutes.

FaSTrack overview and 6D quadrotor. As we have seen in Section 2.1, FaSTrack (Fast
and Safe Tracking) is a recent method for safe real-time motion planning [18]. FaSTrack
breaks down an autonomous system into two agents: a simple planning model used for real-
time motion planning, and a more complicated tracking model used to track the generated
plan. To ensure safe tracking, FaSTrack computes the largest relative distance between the
two models (tracking error), and the planning algorithm uses this result to enlarge obstacles
for collision-checking. The computation also provides an optimal feedback controller to
ensure that the tracker remains within this bound during planning.

To solve for the largest tracking error in FaSTrack, we set the cost in (2.9) as the distance
to the origin in relative position space. We denote relative states by r 2 R ⇢ RNr , and solve
the zero-sum di↵erential game of (2.16).

In practice, we combine the input of the planner with that of the disturbance additively,
i.e., we relative state dynamics. Henceforth, policy ⇧d

�1 will represent the concatenated
disturbance and planning algorithm policies.

Following Proposition 1, when the optimal converged disturbance policy ⇧d

�1 is known
analytically, the policies learned in Algorithm 1 will (by Proposition 1) yield a value function
which over-approximates the optimal value function, i.e. V

⇧u,d
⇤
(t, r) � V (t, r). Thus, the

maximum relative distance ever achieved between tracking mode and planning model, from
any initial relative state, will always be greater when using the binary classifier policies than
the optimal policy. For safe trajectory tracking, this translates into enlarging obstacles by a
larger amount, meaning we still preserve safety.

We employ Algorithm 1 to find the largest tracking error for two nonlinear models of
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(a) Ground truth (b) Learned ⇧u
�1 (c) Learned ⇧{u,d}

�1
(d) Level curves

Fig. 2.12: Level sets of V
⇤ in the (rx, vx) states (setting other states to zero) for (a) ground

truth grid-based representation, (b) neural network ⇧u

�1 trained on optimal disturbance
policy d

⇤(·), and (c) neural networks ⇧u

�1 and ⇧d

�1 trained jointly. We encode the optimal
(learned) control at each state as a di↵erent color. (d) Overlay of level sets from (a-c).
Our method only yields a conservative result (a superset of the ground truth) when ⇧u

�1 is
trained against d

⇤(·).

the tracking model, which become control-a�ne under small angle assumptions. First, we
consider a 6D near-hover model which decouples into three 2D subsystems and thus admits
a comparison to grid-based methods. Then, we present results for a fully-coupled 7D model
that cannot be solved exactly using grid-based techniques and use it for quadrotor control.

6D decoupled. We first consider a 6D quadrotor tracking model and 3D geometric planning
model. Here, the quadrotor control consists of pitch (u✓) and roll (u�) angles, and thrust
acceleration (uT ), while the planning model’s maximum speeds are bx, by, and bz in each
dimension. All of our results assume u�, u✓ 2 [�0.1, 0.1] rad, uT � g 2 [�2.0, 2.0] m s�2,
and bx = by = bz = 0.25 m s�1. We assume a maximum velocity disturbance of 0.25 m s�1

in each dimension. The relative position states (rx, ry, rz) and the tracker’s velocity states
(xvx, xvy, xvz) adhere to the following relative dynamics :

2

4
ṙx

ṙy

ṙz

3

5 =

2

4
xvx � dvx � bx

xvy � dvy � by

xvz � dvz � bz

3

5 ,

2

4
ẋvx

ẋvy

ẋvz

3

5 =

2

4
g tan u✓

�g tan u�

uT � g

3

5 . (2.35)

Without yaw, these dynamics decouple into three 2D subsystems, (rx, svx), (ry, svy), and
(rz, svz), and we use the technique in [7] to solve 2.17 independently for each 2D subsystem
using grid-based techniques.

Figure 2.12 shows the level sets of the value function V
⇤ and corresponding optimal

tracker control policies. Fig. 2.12a is the grid-based ground truth, while Figure 2.12b shows
the induced value function for the neural network classifier policy ⇧u

�1 trained against the
optimal disturbance policy d

⇤(·), and Figure 2.12c shows the induced value function when
⇧u

�1 and ⇧d

�1 were trained jointly. Note that the classification-based results shown here
did not take advantage of system decoupling. Corroborating our theoretical results, the
level sets of the value function induced by our learned classifiers over-approximate the true
level sets when the disturbance plays optimally (Figure 2.12d). Also, observe that using
a learned (and hence, generally suboptimal) ⇧d

�1, the resulting level sets in Figure 2.12c
still well-approximate (though they do not include) those in 2.12a. For each level curve, the
maximum tracking error x is the largest value of the level curve along the rx axis. Observe
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Fig. 2.13: Relative distance between the quadrotor (tracking model) and planned trajectory
(planning model) over time during a hardware test wherein a Crazyflie 2.0 must navigate
through a motion capture arena around spherical obstacles. The quadrotor stays well within
the computed tracking error bound throughout the flight. Note that the tracking error
is large because our controller accounts for adversarial disturbances, unlike many common
controllers.

in Figure 2.12d that the maximum tracking error is similar in all three cases. Finally, the
line that separates the colored areas in the background of each inset in Figure 2.12 denotes
the decision boundary for the controller in each case.

7D coupled. In this example, we introduce yaw (x ) into the model as an extra state in
(2.36) and introduce yaw rate control u 2 [�1.0, 1.0] rad s�1. The relative position dynamics
in (rx, ry, rz) are identical to (2.35). The remaining states evolve as:

2

664

ẋvx

ẋvy

ẋvz

x 

3

775 =

2

664

g(sin u✓ cos x + sin u� sin x )
g(� sin u� cos x + sin u✓ sin x )

uT cos u� cos u✓ � g
u 

3

775 . (2.36)

This dynamical model is now 7D. It is too high-dimensional and coupled in the controls
for current grid-based HJ reachability schemes, yet our proposed method is still able to
compute a safety controller and the associated largest tracking error.

Hardware demonstration. We tested our learned controller on a Crazyflie 2.0 quadrotor
in a motion capture arena. Figure 2.13 displays results for (2.36). As shown, the quadrotor
stays well within the computed error bound. For this experiment ⇧u was trained using a
sub-optimal disturbance policy. Even though we do not have a rigorous safety guarantee
in this general case because we computed the disturbance, these results corroborate our
intuition from Figure 2.12 where the computed error bound remains essentially unchanged
when using a learned disturbance instead of the optimum. However, by Proposition 1, with
the optimal disturbance we could compute a strict guarantee. The hardware demonstration
can be seen in our video: https://youtu.be/_thXAaEJYGM.
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Implementation details. In this part of the chapter, we train each binary classifier by
minimizing the cross-entropy loss between inputs and labels via stochastic gradient descent.
We run the classification problem for a pre-specified number of gradient steps between each
new set of policies. Since we expect policies to vary slowly over time, we initialize the weights
for each new network with those from its predecessor. This serves two purposes. First, it
serves as a “warm start” leading to faster stochastic gradient descent convergence. Second, it
provides a practical indicator of policy convergence—i.e. if the initial classification accuracy
of a new policy is almost equal to that of its predecessor, the policy has most likely converged.
Figure 2.14 shows a typical learning curve when running Algorithm 1. The figure shows the
progression of the validation error (against unseen state-action pairs) in each iteration.0 2 4 6 8 10 12
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Fig. 2.14: Learning curves for a single classifier of the 6D decoupled system. Classification
error decreases between spikes, which mark each new k in Algorithm 1. Spikes shrinking
hints that classifiers eventually converge.

All feedforward neural network classifiers had two hidden layers of 20 neurons each,
with rectified linear units (ReLUs) as the activation functions, and a final softmax output.
The gradient descent algorithm employed was RMSprop with learning rate ↵ = 0.001 and
momentum constant � = 0.95. When using function approximators, it is in general unclear
how many samples should be taken as a function of the state dimension. In our case, the
number of points N sampled at each iteration was 1k for the 2D example, and 200k for
the 4D, 6D and 7D system. All initial weights and biases were drawn from a uniform
probability distribution between [�0.1, 0.1]. All computations were performed on a 12 core,
64-bit machine with Intel R� CoreTM i7-5820K CPUs @ 3.30GHz. In our implementation
we did not employ any form of parallelization. All code for the project can be found at
https://github.com/HJReachability/Classification_Based_Reachability.
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Chapter 3

Adaptive, Confidence-Aware
Prediction

Unlike the previous Chapter, which dealt primarily with uncertainty regarding internal sys-
tem dynamics, this Chapter will deal with uncertainty in the decisions of other agents. As
we will see, that extrinsic uncertainty is fundamentally di↵erent and requires a di↵erent
approach. In the previous Chapter, our primary outlook was that any uncertainty could be
handled as though it were adversarial. We will discuss some shortcomings and present an
alternative view later in Chapter 5, but regardless, to handle uncertainty in the actions of
others, it is clear that an adversarial assumption is too conservative for some applications.
To see this, one need only imagine worst-case behavior on the road, where avoiding someone
who wants to collide is virtually impossible.

In this Chapter, we will also primarily concern ourselves with motion planning problems.
That is, many problems in autonomy boil down to a single autonomous agent trying to
decide how best to act in any particular situation. Here, the problem we shall address is:
how can we predict the motion of other agents, and plan around those predictions? This
Chapter is based upon work published at the International Journal of Robotics Research in
2019, titled “Confidence-aware motion prediction for real-time collision avoidance” [13], and
coauthored with Andrea Bajcsy, Jaime Fisac, Sylvia Herbert, Steven Wang, Anca Dragan,
and Claire Tomlin, which itself is based upon earlier work published at the Robotics: Science
& Systems conference in 2018 [10].

3.1 The Inherent Di�culty with Prediction

Predicting other agents’ decisions is inherently di�cult because there are so many possible
trajectories that any agent could follow over some time horizon into the future. To deal
with this uncertainty, there are a number of approaches in the literature ranging from Par-
tially Observable Markov Decision Processes (POMDPs) [46], to generative modeling [20],
to inverse optimal control [57]. Although existing methods vary significantly, they share in
common the idea that it is important to model the decisions of another agent. Whether this
is done implicitly or explicitly, these models (as any do) inevitably break, often at inoppor-
tune moment. This Chapter will present an approach based on inverse optimal control which
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exploits such a model when it appears to explain decisions a robot observes, and e↵ectively
reverts to a conservative, adversarial mode when it does not. For clarity, the method is
demonstrated in the case of a human avoiding a quadrotor, although the method is certainly
more broadly applicable. As we shall see, in these problems the best one can hope to do is
to plan to avoid collision with high probability.

3.2 The Bayesian Solution: Adaptive
Confidence-Awareness

Problem Setup

We consider a single mobile robot operating in a shared space with a single human agent
(e.g. a pedestrian or human-driven car). For simplicity, we presume that the robot has
full knowledge of its own state and that of the human, although both would require online
estimation in practice. As we present each formal component of this problem, we will provide
a concrete illustration using a running example in which a quadcopter is navigating around
a pedestrian.

Dynamical system models and safety

We will model the motion of both the human and the robot as the evolution of two dynamical
systems. Let the state of the human be xH 2 RnH , where nH is the dimension of the human
state space. We similarly define the robot’s state, for planning purposes, as xR 2 RnR . In
general, these states could represent the positions and velocities of a mobile robot and a
human in a shared environment, the kinematic configurations of a human and a robotic
manipulator in a common workspace, or the positions, orientations, and velocities of human-
driven and autonomous vehicles in an intersection. We express the evolution of these states
over time as a family of ordinary di↵erential equations:

ẋH = fH(xH , uH) , ẋR = fR(xR, uR) (3.1)

where uH 2 RmH and uR 2 RmR are the control actions of the human and robot, respectively.
Running example: We introduce a running example for illustration purposes throughout

the paper. In this example we consider a small quadcopter that needs to fly to goal loca-
tion gR 2 R3 in a room where a pedestrian is walking. For the purposes of planning, the
quadcopter’s 3D state is given by its position in space xR = [px, py, pz], with velocity controls
assumed decoupled in each spatial direction, up to vR = 0.25 m/s. The human can only move
by walking and therefore her state is given by planar coordinates xH = [hx, hy] evolving as
ẋH = [vH cos uH , vH sin uH ]. Intuitively, we model the human as moving with a fixed speed
and controlling her heading angle. At any given time, the human is assumed to either move
at a leisurely walking speed (vH ⇡ 1 m/s) or remain still (vH ⇡ 0).

Ultimately, the robot needs to plan and execute an e�cient trajectory to a pre-specified
goal state (gR), without colliding with the human. We define the keep-out set K ⇢ RnH⇥RnR

as the set of joint robot-human states to be avoided (for example, because they imply physical
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collisions). To avoid reaching this set, the robot must reason about the human’s future
motion when constructing its own motion plan.

Running example: In our quadcopter-avoiding-pedestrian example, K consists of joint
robot-human states in which the quadcopter is flying within a square of side length l = 0.3 m
centered around the human’s location, while at any altitude, as well as any joint states in
which the robot is outside the environment bounds defined as a box with a square base of side
L = 3.66 m and height H = 2 m, regardless of the human’s state.

Robust robot control

Provided an objective and a dynamics model, the robot must generate a motion plan which
avoids the keep-out set K. Unfortunately, this safety requirement is di�cult to meet during
operation for two main reasons:

1. Model mismatch. The dynamical system model fR will never be a perfect representation
of the real robot. This mismatch could lead to unintended collision.

2. Disturbances. Even with a perfect dynamics model, there may be unobserved, external
“disturbance” inputs such as wind or friction. Without accounting for these distur-
bances, the system is not guaranteed to avoid K, even if the planned trajectory is
pointwise collision-free.

To account for modelling error and external disturbances, we could in principle design a
higher fidelity dynamical model directly in a robust motion planning framework. Unfortu-
nately, however, real-time trajectory optimization in high dimensions can be computationally
burdensome, particularly when we also require some notion of robustness to external distur-
bance. Ideally we would like to enjoy the computational benefits of planning with a lower-
fidelity model while enforcing the safety constraints induced by the higher-fidelity model. To
characterize this model mismatch, we consider a higher fidelity and typically higher-order
dynamical representation of the robot, with state representation sR 2 RnS . This dynamical
model will also explicitly account for external disturbances as unknown bounded inputs,
distinct from control inputs. In order to map between this higher fidelity “tracking” state
sR and the lower fidelity “planning” state xR, we shall assume a known projection operator
⇡ : RnS ! RnR . Fortunately, we can plan in the lower-dimensional state space at runtime,
and guarantee robust collision avoidance via an o✏ine reachability analysis that quantifies
the e↵ects of model mismatch and external disturbance. This framework, called FaSTrack
and first proposed by [18], is described in further detail below and in chapter 2.

Running example: We model our quadcopter with the following flight dynamics (in the
near-hover regime, at zero yaw with respect to a global coordinate frame):

2

4
ṗx
ṗy
ṗz

3

5 =

2

4
vx
vy
vz

3

5 ,

2

4
v̇x
v̇y
v̇z

3

5 =

2

4
ag tan u✓
�ag tan u�
uT � ag

3

5 , (3.2)

where [px, py, pz] is the quadcopter’s position in space and [vx, vy, vz] is its velocity expressed
in the fixed global frame. We model its control inputs as thrust acceleration uT and attitude
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angles (roll u� and pitch u✓), and denote the acceleration due to gravity as ag. The quad-
copter’s motion planner generates nominal kinematic trajectories in the lower-dimensional
[px, py, pz] position state space. Therefore we have a linear projection map ⇡(sR) = [I3, 03]sR,
that is, xR retains the position variables in sR and discards the velocities.

Predictive human model

In order to predict the human’s future motion, the robot uses its internal model of human
dynamics, fH . Under this modeling assumption, the human’s future trajectory depends upon
the choice of control input over time, uH(·). Extensive work in econometrics and cognitive
science, such as [50, 28, 1], has shown that human behavior—that is, uH—can be well
modeled by utility-driven optimization. Thus, the robot models the human as optimizing a
reward function, rH(xH , uH ; ✓), that depends on the human’s state and action, as well as a
set of parameters ✓. This reward function could be a linear combination of features as in
many inverse optimal control implementations (where the goal or feature weighting ✓ must be
learned, either online or o✏ine), or more generally learned through function approximators
such as deep neural networks, where ✓ are the trained weights as in [9].

We assume that the robot has a suitable human reward function rH , either learned o✏ine
from prior human demonstrations or otherwise encoded by the system designers. Thus
endowed with rH , the robot can model the human’s choice of control action as a probability
distribution over actions conditioned on state. Under maximum-entropy assumptions ([57])
inspired by noisy-rationality decision-making models ([1]), the robot models the human as
more likely to choose (discrete) actions uH with high expected utility, in this case the state-
action value (or Q-value):

P (uH | xH ; �, ✓) =
e
�QH(xH ,uH ;✓)

P
ũ
e�QH(xH ,ũ;✓)

. (3.3)

We use a temporally- and spatially-discretized version of human dynamics, f̃H . These
discrete-time dynamics may be found by integrating fH over a fixed time step of �t with
fixed control uH over the interval. We provide further details on this discretization for each
example.

Running example: The quadcopter’s model of the human assumes the human intends
to reach some target location gH 2 R2 in a straight line. The human’s reward function is
given by the distance traveled over time step �t, i.e. rH(xH , uH ; gH) = �vH�t , and human
trajectories are constrained to terminate at gH . The state-action value, parameterized by
✓ = gH , captures the optimal cost of reaching gH from xH when initially applying uH for a
duration �t: QH(xH , uH ; gH) = �vH�t� kxH + vH�t[cos uH , sin uH ]> � gHk2.

Often, the coe�cient � is termed the rationality coe�cient, since it quantifies the degree
to which the robot expects the human’s choice of control to align with its model of utility. For
example, taking � # 0 yields a model of a human who appears “irrational,” choosing actions
uniformly at random and completely ignoring the modeled utility. At the other extreme,
taking � " 1 corresponds to a “perfectly rational” human, whose actions exactly optimize
the modeled reward function. As we will see below, � can also be viewed as a measure of
the robot’s confidence in the predictive accuracy of QH .
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Note that QH(xH , uH ; ✓) only depends on the human state and action and not on the
robot’s. Thus far, we have intentionally neglected discussion of human-robot interaction
e↵ects. These e↵ects are notoriously di�cult to model, and the community has devoted a
significant e↵ort to building and validating a variety of models, e.g. [49], [39]. In that spirit,
we could have chosen to model human actions uH as dependent upon robot state xR in
(3.3), and likewise defined QH to depend upon xR. This extended formulation is su�ciently
general as to encompass all possible (Markov) interaction models. However, in this work we
explicitly do not model these interactions; indeed, one of the most important virtues of our
approach is its robustness to precisely these sorts of modeling errors.

Probabilistically safe motion planning

Ideally, the robot’s motion planner should generate trajectories that reach a desired goal state
e�ciently, while maintaining safety. More specifically, in this context “safety” indicates that
the physical system will never enter the keep-out set K during operation, despite human
motion and external disturbances. That is, we would like to guarantee that (⇡(sR), xH) 62 K
for all time.

To make this type of strong, deterministic, a priori safety guarantee requires the robot
to avoid the set of all human states xH which could possibly be occupied at a particular
time, i.e. the human’s forward reachable set. If the robot can find trajectories that are
safe for any possible human trajectory then there is no need to predict the human’s next
action. Unfortunately, the forward reachable set of the human often encompasses such a
large volume of the workspace that it is impossible for the robot to find a guaranteed safe
trajectory to the goal state. This motivates refining our notion of prediction: rather than
reasoning about all the places where the human could be, the robot can instead reason about
how likely the human is to be at each location. This probabilistic reasoning provides a guide
for planning robot trajectories with a quantitative degree of safety assurance.

Our probabilistic model of human control input (3.3) coupled with dynamics model fH

allows us to compute a probability distribution over human states for every future time. By
relaxing our conception of safety to consider only collisions which might occur with su�cient
probability Pth, we dramatically reduce the e↵ective volume of this set of future states to
avoid. In practice, Pth should be chosen carefully by a system designer in order to trade o↵
overall collision probability with conservativeness in motion planning.

The proposed approach in this paper follows two central steps to provide a quantifiable,
high-confidence collision avoidance guarantee for the robot’s motion around the human.
First, we present our proposed Bayesian framework for reasoning about the uncertainty
inherent in a model’s prediction of human behavior. Based on this inference, we demonstrate
how to generate a real-time probabilistic prediction of the human’s motion over time. Next,
we extend a state-of-the-art, provably safe, real-time robotic motion planner to incorporate
our time-varying probabilistic human prediction.

Confidence-Aware Human Motion Prediction

Any approach to human motion prediction short of computing a full forward reachable set
must, explicitly or implicitly, reflect a model of human decision-making. In this work, we
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make that model explicit by assuming that the human chooses control actions in a Markovian
fashion according to the probability distribution (3.3). Other work in the literature, such as
[41], aims to learn a generative probabilistic model for human trajectories; implicitly, this
training procedure distills a model of human decision making. Whether explicit or implicit,
these models are by nature imperfect and liable to make inaccurate predictions eventually.
One benefit of using an explicit model of human decision making, such as (3.3), is that we
may reason directly and succinctly about its performance online.

In particular, the entropy of the human control distribution in (3.3) is a decreasing func-
tion of the parameter �. High values of � place more probability mass on high-utility control
actions uH , whereas low values of � spread the probability mass more evenly between di↵er-
ent control inputs, regardless of their modeled utility QH . Therefore, � naturally quantifies
how well the human’s motion is expected to agree with the notion of optimality encoded
in QH . The commonly used term “rationality coe�cient”, however, seems to imply that
discrepancies between the two indicate a failure on the human’s part to make the “cor-
rect” decisions, as encoded by the modeled utility. Instead, we argue that these inevitable
disagreements are primarily a result of the model’s inability to fully capture the human’s
behavior. Thus, instead of conceiving of � as a rationality measure, we believe that � can be
given a more pragmatic interpretation related to the accuracy with which the robot’s model
of the human is able to explain the human’s motion. Consistently, in this paper, we refer to
� as model confidence.

An important related observation following from this interpretation of � is that the
predictive accuracy of a human model is likely to change over time. For example, the human
may change their mind unexpectedly, or react suddenly to some aspect of the environment
that the robot is unaware of. Therefore, we shall model � as an unobserved, time-varying
parameter. Estimating it in real-time provides us with a direct, quantitative summary of the
degree to which the utility model QH explains the human’s current motion. To do this, we
maintain a Bayesian belief about the possible values of �. Initially, we begin with a uniform
prior over � and over time this distribution evolves given measurements of the human’s state
and actions.

Real-time inference of model confidence

We reason about the model confidence � as a hidden state in a hidden Markov model (HMM)
framework. The robot starts with a prior belief b

0
� over the initial value of �. In this work,

we use a uniform prior, although that is not strictly necessary. At each discrete time step
k 2 {0, 1, 2, . . . }, it will have some belief about model confidence b

k

�(�). 1 After observing a
human action u

k

H
, the robot will update its belief to b

k

+ by applying Bayes’ rule.
The hidden state may evolve between subsequent time steps, accounting for the important

fact that the predictive accuracy of the human model may change over time as unmodeled
factors in the human’s behavior become more or less relevant. Since by definition we do not
have access to a model of these factors, we use a naive “✏-static” transition model: at each
time k, � may, with some probability ✏, be re-sampled from the initial distribution b

0
�, and

otherwise retains its previous value. We define the belief over the next value of � (denoted by

1To avoid confusion between discrete and continuous time, we shall use superscripts to denote discrete
time steps (e.g. xk

H
) and parentheticals to denote continuous time (e.g. xH(t)).
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�
0) as an expectation of the conditional probability P (�0 | �), i.e. b

k

�(�0) := E
�⇠b

k�1
+

[P (�0 |
�)]. Concretely, this expectation may be computed as

b
k

�(�0) = (1� ✏)bk�1
+ (�0) + ✏b

0
�(�0) . (3.4)

By measuring the evolution of the human’s state xH over time, we assume that, at every
time step k, the robot is able to observe the human’s control input u

k

H
. This observed control

may be used as evidence to update the robot’s belief b
k

� about � over time via a Bayesian
update:

b
k

+(�) =
P (uk

H
| x

k

H
; �, ✓)bk�(�)

P
�̃
P (uk

H
| x

k

H
; �̃, ✓)bk�(�̃)

, (3.5)

with b
k

+(�) := P (� | x
0:k
H

, u
0:k
H

) for k 2 {0, 1, ...}, and P (uk

H
| x

k

H
; �, ✓) given by (3.3).

It is critical to be able to perform this update rapidly to facilitate real-time operation;
this would be di�cult in the original continuous hypothesis space � 2 [0,1), or even in a
large discrete set. Fortunately, our software examples and hardware demonstration suggest
that maintaining a Bayesian belief over a relatively small set of N� = 5 discrete values of �
distributed on a log scale achieves significant improvement relative to using a fixed value.

The “✏-static” transition model leads to the desirable consequence that old observations
of the human’s actions have a smaller influence on the current model confidence distribution
than recent observations. In fact, if no new observations are made, successively applying
time updates asymptotically contracts the belief towards the initial distribution, that is,
b
k

�(·) ! b
0
�(·). The choice of parameter ✏ e↵ectively controls the rate of this contraction,

with higher ✏ leading to more rapid contraction.

Human motion prediction

Equipped with a belief over � at time step k, we are now able to propagate the human’s state
distribution forward to any future time via the well-known Kolmogorov forward equations,
recursively. In particular, suppose that we know the probability that the human is in each
state x



H
at some future time step . We know that (according to our utility model) the

probability of the human choosing control u


H
in state x



H
is given by (3.3). Accounting for

the otherwise deterministic dynamics model f̃H , we obtain the following expression for the
human’s state distribution at the following time step + 1:

P (x+1
H

; �, ✓) =
X

x


H
,u



H

P (x+1
H

| x


H
, u



H
; �, ✓) · (3.6)

P (u
H

| x


H
; �, ✓)P (x

H
; �, ✓) ,

for a particular choice of �. Marginalizing over � according to our belief at the current step
time k, we obtain the overall occupancy probability distribution at each future time step :

P (x
H

; ✓) = E�⇠bkP (x
H

; �, ✓) . (3.7)

Note that (3.6) is expressed more generally than is strictly required. Indeed, because the
only randomness in dynamics model f̃H originates from the human’s choice of control input
uH , we have P (x+1

H
| x



H
, u



H
; �, ✓) = 1{x

+1
H

= f̃H(x
H

, u


H
)}.
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Model confidence with auxiliary parameter identification

Thus far, we have tacitly assumed that the only unknown parameter in the human utility
model (3.3) is the model confidence, �. However, often one or more of the auxiliary param-
eters ✓ are also unknown. These auxiliary parameters could encode one or more human goal
states or intents, or other characteristics of the human’s utility, such as her preference for
avoiding parts of the environment. Further, much like model confidence, they may change
over time.

In principle, it is possible to maintain a Bayesian belief over � and ✓ jointly. The Bayesian
update for the hidden state (�, ✓) is then given by

b
k

+(�, ✓) =
P (uk

H
| x

k

H
; �, ✓)bk�(�, ✓)

P
�̃,✓̃

P (uk

H
| x

k

H
; �̃, ✓̃)bk�(�̃, ✓̃)

, (3.8)

with b
k

+(�, ✓) := P (�, ✓ | x
0:k
H

, u
0:k
H

) the running posterior and b
k

�(�, ✓) := P (�, ✓ | x
0:k�1
H

, u
0:k�1
H

)
the prior at time step k.

This approach can be practical for parameters taking finitely many values from a small,
discrete set, e.g. possible distinct modes for a human driver (distracted, cautious, aggressive).
However, for certain scenarios or approaches it may not be practical to maintain a full
Bayesian belief on the parameters ✓. In such cases, it is reasonable to replace the belief
over ✓ with a point estimate ✓̄, such as the maximum likelihood estimator or the mean, and
substitute that estimate into (3.6). Depending on the complexity of the resulting maximum
likelihood estimation problem, it may or may not be computationally feasible to update
the parameter estimate ✓̄ at each time step. Fortunately, even when it is computationally
expensive to estimate ✓̄, we can leverage our model confidence as an indicator of when re-
estimating these parameters may be most useful. That is, when model confidence degrades
that may indicate poor estimates of ✓̄.

Prediction Examples

We illustrate these inference steps with two sets of examples: our running pedestrian example
and a simple model of a car.

Pedestrian model (running example)

So far, we have presented a running example of a quadcopter avoiding a human. We use a
deliberately simple, purely kinematic model of continuous-time human motion:

ẋH =


ḣx

ḣy

�
=


vH cos uH

vH sin uH

�
. (3.9)

However, as discussed above, the proposed prediction method operates in discrete time
(and space). The discrete dynamics corresponding to (3.9) are given by

x
k+1
H
� x

k

H
⌘ xH(t + �t)� xH(t) (3.10)

=


vH�t cos uH(t)
vH�t sin uH(t)

�
,

for a time discretization of �t.
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Dubins car model

To emphasize the generality of our method, we present similar results for a di↵erent appli-
cation domain: autonomous driving. We will model a human-driven vehicle as a dynamical
system whose state xH evolves as

ẋH =

2

4
ḣx

ḣy

ḣ�

3

5 =

2

4
vH cos h�

vH sin h�

uH

3

5 . (3.11)

Observe that, while (3.11) appears very similar to (3.9), in this Dubins car example the angle
of motion is a state, not a control input.

We discretize these dynamics by integrating (3.11) from t to t+�t, assuming a constant
control input uH :

x
k+1
H
� x

k

H
⌘ xH(t + �t)� xH(t) = (3.12)

2

4
vH

uH(t)

�
sin

�
h�(t) + uH(t)�t

�
� sin(h�(t))

�

� vH

uH(t)

�
cos

�
h�(t) + uH(t)�t

�
� cos(h�(t))

�

uH�t

3

5

For a specific goal position g = [gx, gy], the Q-value corresponding to state-action pair
(xH , uH) and reward function rH(xH , uH) = �vH�t (until the goal is reached) may be found
by solving a shortest path problem o✏ine.

Accurate model

First, we consider a scenario in which the robot has full knowledge of the human’s goal, and
the human moves along the shortest path from a start location to this known goal state.
Thus, human motion is well-explained by QH .

The first row of Fig. 3.1 illustrates the probability distributions our method predicts for
the pedestrian’s future state at di↵erent times. Initially, the predictions generated by our
Bayesian confidence-inference approach (right) appear similar to those generated by the low
model confidence predictor (left). However, our method rapidly discovers that QH is an
accurate description of the pedestrian’s motion and generates predictions that match the
high model confidence predictor (center). The data used in this example was collected by
tracking the motion of a real person walking in a motion capture arena. See Section 3.2 for
further details.

Likewise, the first row of Fig. 3.2 shows similar results for a human-driven Dubins car
model (in simulation) at an intersection. Here, tra�c laws provide a strong prior on the
human’s potential goal states. As shown, our method of Bayesian model confidence inference
quickly infers the correct goal and learns that the human driver is acting in accordance with
its model QH . The resulting predictions are substantially similar to the high-� predictor.
The data used in this example was simulated by controlling a Dubins car model along a
pre-specified trajectory.
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Fig. 3.1: Snapshots of pedestrian trajectory and probabilistic model predictions. Top row:
Pedestrian moves from the bottom right to a goal marked as a red circle. Middle row:
Pedestrian changes course to avoid a spill on the floor. Bottom row: Pedestrian moves to
one known goal, then to another, then to a third which the robot has not modeled. The
first two columns show predictions for low and high model confidence; the third column
shows the predictions using our Bayesian model confidence. For all pedestrian videos, see:
https://youtu.be/lh_E9rW-MJo.
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Fig. 3.2: Snapshots of Dubins car and probabilistic predictions. Top row: Car moves
straight ahead toward one of two known goals (red arrows), staying in its lane. Middle row:
Car suddenly swerves to the left to avoid a pothole. Bottom row: Car turns to the right,
away from the only known goal. The left and center columns show results for low and high
confidence predictors, respectively, and the right column shows our approach using Bayesian
inferred model confidence. For all Dubins car videos, see: https://youtu.be/sAJKNnP42fQ.
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Unmodeled obstacle

Often, robots do not have fully specified models of the environment. Here, we showcase
the resilience of our approach to unmodeled obstacles which the human must avoid. In this
scenario, the human has the same start and goal as in the accurate model case, except that
there is an obstacle along the way. The robot is unaware of this obstacle, however, which
means that in its vicinity the human’s motion is not well-explained by QH , and b(�) ought
to place more probability mass on higher values of �.

The second rows of Fig. 3.1 and Fig. 3.2 illustrate this type of situation for the pedes-
trian and Dubins car, respectively. In Fig. 3.1, the pedestrian walks to an a priori known
goal location and avoids an unmodeled spill on the ground. Analogously, in Fig. 3.2 the car
swerves to avoid a large pothole. By inferring model confidence online, our approach gener-
ates higher-variance predictions of future state, but only in the vicinity of these unmodeled
obstacles. At other times throughout the episode when QH is more accurate, our approach
produces predictions more in line with the high model confidence predictor.

Unmodeled goal

In most realistic human-robot encounters, even if the robot does have an accurate environ-
ment map and observes all obstacles, it is unlikely for it to be aware of all human goals. We
test our approach’s resilience to unknown human goals by constructing a scenario in which
the human moves between both known and unknown goals.

The third row of Fig. 3.1 illustrates this situation for the pedestrian example. Here,
the pedestrian first moves to one known goal position, then to another, and finally back to
the start which was not a modelled goal location. The first two legs of this trajectory are
consistent with the robot’s model of goal-oriented motion, though accurate prediction does
require the predictor to infer which goal the pedestrian is walking toward. However, when
the pedestrian returns to the start, her motion appears inconsistent with QH , skewing the
robot’s belief over � toward zero.

Similarly, in the third row of Fig. 3.2 we consider a situation in which a car makes an
unexpected turn onto an unmapped access road. As soon as the driver initiates the turn, our
predictor rapidly learns to distrust its internal model QH and shift its belief over � upward.

Safe probabilistic planning and tracking

Given probabilistic predictions of the human’s future motion, the robot must plan e�cient
trajectories which avoid collision with high probability. In order to reason robustly about
this probability of future collision, we must account for potential tracking errors incurred
by the real system as it follows planned trajectories. To this end, we build on the recent
FaSTrack framework of [18], which provides control-theoretic robust safety certificates in
the presence of deterministic obstacles, and extend it to achieve approximate probabilistic
collision-avoidance.
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Background: fast planning, safe tracking

Recall that xR is the robot’s state for the purposes of motion planning, and that sR encodes
a higher-fidelity, potentially higher-dimensional notion of state (with associated dynamics).
The recently proposed FaSTrack framework from [18] uses Hamilton-Jacobi reachability anal-
ysis to quantify the worst-case tracking performance of the sR-system as it follows trajectories
generated by the xR-system. For further reading on reachability analysis refer to [8], [33], and
[2]. A byproduct of this FaSTrack analysis is an error feedback controller that the sR system
can use to achieve this worst-case tracking error. The tracking error bound may be given
to one of many o↵-the-shelf real-time motion planning algorithms operating in xR-space in
order to guarantee real-time collision-avoidance by the sR-system.

Formally, FaSTrack precomputes an optimal tracking controller, as well as a correspond-
ing compact set E in the robot’s planning state space, such that

�
⇡(sR(t))� xR,ref(t)

�
2 E

for any reference trajectory proposed by the lower-fidelity planner. This bound E is a tra-
jectory tracking certificate that can be passed to an online planning algorithm for real-time
safety verification: the dynamical robot is guaranteed to always be somewhere within the
bound relative to the current planned reference point xR,ref(t). This tracking error bound
may sometimes be expressed analytically; otherwise, it may be computed numerically o✏ine
using level set methods, e.g. [32]. Equipped with E , the planner can generate safe plans
online by ensuring that the entire tracking error bound around the nominal state remains
collision-free throughout the trajectory. E�ciently checking these E-augmented trajectories
for collisions with known obstacles is critical for real-time performance. Note that the plan-
ner only needs to know E (which is computed o✏ine) and otherwise requires no explicit
understanding of the high-fidelity model.

Running example: Since dynamics (3.2) are decoupled in the three spatial directions, the
bound E computed by FaSTrack is an axis-aligned box of dimensions Ex⇥Ey⇥Ez. For further
details refer to [15].

Robust tracking, probabilistic safety

Unfortunately, planning algorithms for collision checking against deterministic obstacles can-
not be readily applied to our problem. Instead, a trajectory’s collision check should return
the probability that it might lead to a collision. Based on this probability, the planning
algorithm can discriminate between trajectories that are su�ciently safe and those that are
not.

As discussed above, a safe online motion planner invoked at time t should continually
check the probability that, at any future time ⌧ , (⇡(sR(⌧)), xH(⌧)) 2 K.

The tracking error bound guarantee from FaSTrack allows us to conduct worst-case anal-
ysis on collisions given a human state xH . Concretely, if no point in the Minkowski sum
{xR + E} is in the collision set with xH , we can guarantee that the robot is not in collision
with the human.

The probability of a collision event for any point xR(⌧) along a candidate trajectory is
then

Pcoll

�
xR(⌧)

�
:= P

�
(xR, xH) 2 K

�
. (3.13)
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Assuming worst-case tracking error bound E , this quantity can be upper-bounded by the
total probability that xH(⌧) will be in collision with any of the possible robot states x̃R 2
{xR(⌧) + E}. For each robot planning state xR 2 RnR we define the set of human states in
potential collision with the robot:

HE(xR) := {x̃H 2 RnH : (3.14)

9x̃R 2 {xR + E}, (x̃R, x̃H) 2 K} .

Running example: Given K and E , HE(xR) is the set of human positions within the
rectangle of dimensions (l + Ex)⇥ (l + Ey) centered on [px, py]. A human anywhere in this
rectangle could be in collision with the quadcopter.

The following result follows directly from the definition of the tracking error bound and
a union bound.

Proposition 2. The probability of a robot with worst case tracking error E colliding with
the human at any trajectory point xR(⌧) is bounded above by the probability mass of xH(⌧)
contained within HE(xR(⌧)).

We shall consider discrete-time motion plans. The probability of collision along any such
trajectory from current time step k to final step k + K is upper-bounded by:

P
k:k+K

coll  P
k:k+K

coll := (3.15)

1�
k+KY

=k

P

⇣
x


H
62 HE(x



R
) | x



H
62 HE(x

s

R
), k  s < 

⌘
.

Evaluating the right hand side of (3.15) exactly requires reasoning about the joint dis-
tribution of human states over all time steps and its conditional relationship on whether
collision has yet occurred. This is equivalent to maintaining a probability distribution over
the exponentially large space of trajectories x

k:k+K

H
that the human might follow. As motion

planning occurs in real-time, we shall resort to a heuristic approximation of (3.15).
One approach to approximating (3.15) is to assume that the event x

1
H
62 HE(x

1
R

) is
independent of x

2
H
62 HE(x

2
R

), 81 6= 2. This independence assumption is equivalent to
removing the conditioning in (3.15). Unfortunately, this approximation is excessively pes-
simistic; if there is no collision at time step , then collision is also unlikely at time step
+1 because both human and robot trajectories are continuous. In fact, for su�ciently small
time discretization �t and nonzero collision probabilities at each time step, the total collision
probability resulting from an independence assumption would approach 1 exponentially fast
in the number of time steps K.

We shall refine this approximation by finding a tight lower bound on the right hand
side of (3.15). Because collision events are correlated in time, we first consider replacing
each conditional probability P

�
x


H
62 HE(xR) | x

s

H
62 HE(xs

R
), k  s < 

�
by 1 for all

 2 {k + 1, . . . , k + K}. This e↵ectively lower bounds P
k:k+K

coll by the worst case probability
of collision at the current time step k:

P
k:k+K

coll � 1� P
�
x
k

H
62 HE(x

k

R
)
�

(3.16)

= P
�
x
k

H
2 HE(x

k

R
)
�

.
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a) b) c)

Fig. 3.3: Scenario from the middle row of Fig. 3.1 visualized with robot’s trajectory.
When � is low and the robot is not confident, it makes large deviations from its path to
accommodate the human. When � is high, the robot refuses to change course and comes
dangerously close to the human. With inferred model confidence, the robot balances safety
and e�ciency with a slight deviation around the human.

This bound is extremely loose in general, because it completely ignores the possibility of
future collision. However, note that probabilities in the product in (3.15) may be conditioned
in any particular order (not necessarily chronological). This commutativity allows us to

generate K � k +1 lower bounds of the form P
k:k+K

coll � P
�
x


H
2 HE(xR)

�
for  2 {k, . . . , k +

K}. Taking the tightest of all of these bounds, we can obtain an informative, yet quickly
computable, approximator for the sought probability:

P
k:k+K

coll � max
2{k:k+K}

P
�
x


H
2 HE(x



R
)
�
⇡ P

k:k+K

coll (3.17)

To summarize, the left inequality in (3.17) lower-bounds P
k:k+K

coll with the greatest marginal
collision probability at any point in the trajectory. On the right side of (3.17), we take this
greatest marginal collision probability as an approximator of the actual probability of col-
lision over the entire trajectory. In e↵ect, we shall approximate P

k:k+K

coll with a tight lower
bound of an upper bound. While this type of approximation may err on the side of optimism,
we note that both the robot’s ability to replan over time and the fact that the left side of
(3.17) is an upper bound on total trajectory collision probability mitigate this potentially
underestimated risk.

Safe online planning under uncertain human predictions

This approximation of collision probability allows the robot to discriminate between valid
and invalid candidate trajectories during motion planning. Using the prediction methodology
proposed in Section 3.2, we may quickly generate, at every time t, the marginal probabilities
in (3.17) at each future time  2 {k, . . . , k+K}, based on past observations at times 0, . . . , k.
The planner then computes the instantaneous probability of collision P

�
x


H
2 HE(xR)

�
by
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Fig. 3.4: The human (black dot) is moving west towards a goal. Visualized are the predicted
state distributions for one second into the future when using low, high, and Bayesian model
confidence. Higher-saturation indicates higher likelihood of occupancy. The dashed circle
represents the pedestrian’s 1 second forward reachable set.

integrating P
�
x
⌧

H
| x

0:k
H

�
over HE(xR), and rejects the candidate point x



R
if this probability

exceeds Pth.
Note that for graph-based planners that consider candidate trajectories by generating a

graph of time-stamped states, rejecting a candidate edge from this graph is equivalent to
rejecting all further trajectories that would contain that edge. This early rejection rule is
consistent with the proposed approximation (3.17) of P

k:k+K

coll while preventing unnecessary
exploration of candidate trajectories that would ultimately be deemed unsafe.

Throughout operation, the robot follows each planned trajectory using the error feedback
controller provided by FaSTrack, which ensures that the robot’s high-fidelity state represen-
tation sR and the lower-fidelity state used for planning, xR, di↵er by no more than the
tracking error bound E . This planning and tracking procedure continues until the robot
reaches its desired goal state.

Running example: Our quadcopter is now required to navigate to a target position shown
in Fig. 3.3 without colliding with the human. Our proposed algorithm successfully avoids
collisions at all times, replanning to leave greater separation from the human whenever her
motion departs from the model. In contrast, robot planning with fixed model confidence is
either overly conservative at the expense of time and performance or overly aggressive at the
expense of safety.

Connections to reachability analysis

In this Section, we present an alternative, complementary analysis of the overall safety
properties of the proposed approach to prediction and motion planning. This discussion is
grounded in the language of reachability theory and worst-case analysis of human motion.

Forward reachable set

Throughout this Section, we frequently refer to the human’s time-indexed forward reachable
set. We define this set formally below.

Definition 6. For a dynamical system ẋ = f(x, u) with state trajectories given by the
function ⇠

�
x(0), t, u(·)

�
=: x(t), the forward reachable set ⌦F (x, t) of a state x after time t
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Fig. 3.5: Visualization of the states with probability greater than or equal to the collision
threshold, Pth = 0.01. The human’s forward reachable set includes the set of states assigned
probability greater than Pth. We show these “high probability” predicted states for predictors
with fixed low and high �, as well as our Bayesian-inferred �.

has elapsed is

⌦F (x, t) := {x
0 : 9u(·), x0 = ⇠(x, t, u(·))} .

That is, a state x
0 is in the forward reachable set of x after time t if it is reachable via some

applied control signal u(·).

Remark 3. For Pth = 0 and any finite �, the set of states assigned probability greater than
Pth is identical to the forward reachable set, up to discretization errors. This is visualized
for low, high, and Bayesian model confidence in Fig. 3.4.

A su�cient condition for the safety of individual trajectories

Above, we construct an approximation to the probability of collision along a trajectory,
which we use during motion planning to avoid potentially dangerous states. To make this
guarantee of collision-avoidance for a motion plan even stronger, it would su�ce to ensure
that the robot never comes too close to the human’s forward reachable set. More precisely,
a planned trajectory is safe if {xR(t) + E} \ ⌦F (xH , t) = ;, for every state xR(t) along a
motion plan generated when the human was at state xH . The proof of this statement follows
directly from the properties of the tracking error bound E described in Section 3.2.

While this condition may seem appealing, it is in fact highly restrictive. The requirement
of avoiding the full forward reachable set is not always possible in confined spaces; indeed,
this was our original motivation for wanting to predict human motion. However, despite
this shortcoming, the logic behind this su�cient condition for safety provides insight into
the e↵ectiveness of our framework.

Recovering the forward reachable set

Though it will not constitute a formal safety guarantee, we analyze the empirical safety
properties of our approach by examining how our predicted state distributions over time
relate to forward reachable sets. During operation, our belief over model confidence � evolves
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to match the degree to which the utility model QH explains recent human motion. The “time
constant” governing the speed of this evolution may be tuned by the system designer to be
arbitrarily fast by choosing the parameter ✏ to be small, as discussed in above. Thus, we
may safely assume that b(�) places high probability mass on small values of � as soon as
the robot observes human motion which is not well explained by QH .

Fig. 3.5 shows the sets of states with “high enough” (> Pth) predicted probability mass
overlaid on the human’s forward reachable set at time t, which is a circle of radius vHt

centered on xH for the dynamics in our running example. When � is high (10), we observe
that virtually all of the probability mass is concentrated in a small number of states in the
direction of motion predicted by our utility model. When � is low (0.05) we observe that the
set of states assigned probability above our collision threshold Pth occupies a much larger
fraction of the reachable set. A typical belief b(�) recorded at a moment when the human
was roughly moving according to QH yields an intermediate set of states.

Fig. 3.6 illustrates the evolution of these sets of states over time, for the unmodeled
obstacle example of Figure 3.1 in which a pedestrian avoids a spill. Each row corresponds
to the predicted state distribution at a particular point in time. Within a row, each column
shows the reachable set and the set of states assigned occupancy probability greater than
Pth = 0.01. The color of each set of states corresponds to the value of � used by the low
confidence and high confidence predictors, and the maximum a posteriori value of � for the
Bayesian confidence predictor. The human’s known goal state is marked by a red dot.

Interestingly, as the Bayesian model confidence decreases—which occurs when the pedes-
trian turns to avoid the spill at t ⇡ 6 s—the predicted state distribution assigns high prob-
ability to a relatively large set of states, but unlike the low-� predictor that set of states is
oriented toward the known goal. Of course, had b(�) placed even more probability mass on
lower values of � then the Bayesian confidence predictor would converge to the low confidence
one.

Additionally, we observe that, within each row as the prediction horizon increases, the
area contained within the forward reachable set increases and the fraction of that area
contained within the predicted sets decreases. This phenomenon is a direct consequence of
our choice of threshold Pth. Had we chosen a smaller threshold value, a larger fraction of the
forward reachable set would have been occupied by the lower-� predictors.

This observation may be viewed prescriptively. Recalling the su�cient condition for safety
of planned trajectories above, if the robot replans every Treplan seconds, we may interpret
the fraction of ⌦F (·, t + Treplan) assigned occupancy probability greater than Pth by the low
confidence predictor as a rough indicator of the safety of an individual motion plan, robust
to worst-case human movement. As this fraction tends toward unity, the robot is more and
more likely to be safe. However, for any Pth > 0, this fraction approaches zero for Treplan " 1.
This immediately suggests that, if we wish to replan every Treplan seconds, we can achieve a
particular level of safety as measured by this fraction by choosing an appropriate threshold
Pth.

In summary, confidence-aware predictions rapidly place high probability mass on low
values of � whenever human motion is not well-explained by utility model QH . Whenever
this happens, the resulting predictions encompass a larger fraction of the forward reachable
set, and in the limit that Pth # 0 we recover the forward reachable set exactly. The larger this
fraction, the more closely our approach satisfies the su�cient condition for safety presented
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Fig. 3.6: The human (black dot) is walking towards the known goal (red dot) but has to
avoid an unmodeled co↵ee spill on the ground. Here we show the snapshots of the predictions
at various future times (columns) as the human walks around in real time (rows). The
visualized states have probability greater than or equal to Pth = 0.01. Each panel displays
the human prediction under low confidence (in yellow), high confidence (in dark purple), and
Bayesian confidence (colored as per the most likely � value), as well as the forward reachable
set. The human’s actual trajectory is shown in red.
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Fig. 3.7: Predicting with fixed-� (in this case, � = 20) can yield highly inaccurate predic-
tions (and worse, confidently inaccurate ones). The subsequent motion plans may not be
safe; here, poor prediction quality leads to a collision.

Fig. 3.8: Inferring � leads to predicted state distributions whose entropy increases whenever
the utility model QH fails to explain observed human motion. The resulting predictions
are more robust to modeling errors, resulting in safer motion plans. Here, the quadcopter
successfully avoids the pedestrian even when she turns unexpectedly.

above.

Hardware Demonstration

We implemented confidence-aware human motion prediction (Section 3.2) and integrated
it into a real-time, safe probabilistic motion planner (Section 3.2), all within the Robot
Operating System (ROS) software framework of [36]. To demonstrate the e�cacy of our
methods, we tested our work for the quadcopter-avoiding-pedestrian example used for illus-
tration throughout this paper. Human trajectories were recorded as (x, y) positions on the
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ground plane at roughly 235 Hz by an OptiTrack infrared motion capture system, and we
used a Crazyflie 2.0 micro-quadcopter, also tracked by the OptiTrack system.2

Figure 3.3 illustrates the unmodeled obstacle case from Section 3.2, in which the pedes-
trian turns to avoid a spill on the ground. Using a low model confidence results in motion
plans that suddenly and excessively deviate from the ideal straight-line path when the pedes-
trian turns to avoid the spill. By contrast, the high confidence predictor consistently predicts
that the pedestrian will walk in a straight line to the goal even when they turn; this almost
leads to collision, as shown detail in Figure 3.7. Our proposed approach for Bayesian model
confidence initially assigns high confidence and predicts that the pedestrian will walk straight
to the goal, but when they turn to avoid the spill, the predictions become less confident.
This causes the quadcopter to make a minor course correction, shown in further detail in
Figure 3.8.

2We note that in a more realistic setting, we would require alternative methods for state estimation
using other sensors, such as lidar and/or camera(s). A video recording may be found at https://youtu.

be/2ZRGxWknENg.
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Chapter 4

Coupled Planning and Prediction

So far, in Chapters 2 and 3 we have seen the problems of motion planning and probabilistic
prediction of the decisions of other agents. Recalling the diagram of Figure 1.1, it is clear
that these problems are typically solved in sequence with prediction preceding planning. In
this Chapter, we shall see why this may not always be a good idea, and that coupling the two
results in a fairly general form of a di↵erential game. We shall note some preliminary facts
about these games and subsequently present a new real-time, approximate solution strategy
for them. Much of this Chapter is based upon work published at the International Conference
on Robotics and Automation in 2020, titled “E�cient iterative linear-quadratic approxima-
tions for nonlinear multi-player general-sum di↵erential games” [14] (coauthored with Ellis
Ratner, Lasse Peters, Anca Dragan, and Claire Tomlin), and “An iterative quadratic method
for general-sum di↵erential games with feedback linearizable dynamics” [12] (coauthored with
Vicenç Rubies-Royo and Claire Tomlin).

4.1 The problem with operating sequentially

Recalling the diagram of Figure 1.1, we see that it is common to predict the future state
of the world (i.e., decisions of other agents) before planning an autonomous response. This
sequential pipelining e↵ectively means that planned responses do not impact the predicted
state of the world. In other words, it encodes that decisions of the autonomous system
cannot a↵ect the decisions of other agents. This could be a fair assumption, for example
in the case of an autonomous car which observes a pedestrian looking at his or her phone.
Whether the pedestrian chooses to jaywalk or not should not depend upon the behavior
of the car (unless he or she has very good hearing). In more common situations, though,
and especially in cases where we can expect a certain level of situational awareness like
intersections and merging, this sequential operation may is a dramatic simplification. To
really capture the e↵ect each agent has on every other agent, we should couple the problems of
prediction and planning, which results in a multi-player di↵erential game. In full generality,
this should almost certainly be a stochastic di↵erential game in order to account for the
inherent randomness in agents’ decisions. As a first step, however, we shall restrict our
attention to deterministic di↵erential games in this Chapter.
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4.2 Preliminaries for di↵erential games

We consider a N -player finite horizon general-sum di↵erential game characterized by non-
linear system dynamics

ẋ = f(t, x, u1:N) , (4.1)

where x 2 Rn is the state of the system, and ui 2 Rmi , i 2 [N ] ⌘ {1, . . . , N} is the control
input of player i, and u1:N ⌘ (u1, u2, . . . , uN). Each player has a cost function Ji defined
as an integral of running costs gi. Ji is understood to depend implicitly upon the state
trajectory x(·), which itself depends upon initial state x(0) and control signals u1:N(·):

Ji

�
u1:N(·)

�
,

Z
T

0

gi

�
t, x(t), u1:N(t)

�
dt, 8i 2 [N ] . (4.2)

We shall presume that f is continuous in t and continuously di↵erentiable in {x, ui}
uniformly in t. We shall also require gi to be twice di↵erentiable in {x, ui}, 8t.

Ideally, we would like to find time-varying state feedback control strategies �⇤
i
2 �i for

each player i which constitute a global Nash equilibrium for the game defined by (4.1)
and (4.2). Here, the strategy space �i for player i is the set of measurable functions
�i : [0, T ] ⇥ Rn ! Rmi mapping time and state to player i’s control input. Note that,
in this formulation, player i only observes the state of the system at each time and is un-
aware of other players’ control strategies. With a slight abuse of notation Ji(�1; . . . ; �N) ⌘
Ji

�
�1(·, x(·)), . . . , �N(·, x(·))

�
, the global Nash equilibrium is defined as the set of strategies

{�i} for which the following inequalities hold (see, e.g., [3, Chapter 6]):

J
⇤
i
, Ji(�

⇤
1 ; . . . ; �

⇤
i�1; �

⇤
i
; �⇤

i+1; . . . �
⇤
N

)

 Ji(�
⇤
1 ; . . . ; �

⇤
i�1; �i; �

⇤
i+1; . . . �

⇤
N

), 8i 2 [N ] .
(4.3)

In (4.3), the inequalities must hold for all �i 2 �i, 8i 2 [N ]. Informally, a set of feedback
strategies (�⇤1 , . . . , �

⇤
N

) is a global Nash equilibrium if no player has a unilateral incentive to
deviate from their current strategy.

Since finding a global Nash equilibrium is generally computationally intractable, recent
work in adversarial learning [29] and motion planning [52, 51] consider local Nash equilibria
instead. Further, [52, 51] simplify the information structure of the game and consider open
loop, rather than feedback, strategies. Local Nash equilibria are characterized similarly to
(4.3), except that the inequalities may only hold in a local neighborhood within the strategy
space [37, Definition 1]. In this paper, we shall seek a related type of equilibrium, which we
describe more precisely in Section 10. Intuitively, we seek strategies which satisfy the global
Nash conditions (4.3) for the limit of a sequence of local approximations to the game. Our
experimental results indicate that it does yield highly interactive strategies in a variety of
di↵erential games.

4.3 Iterative linear-quadratic games

We approach the N -player general-sum game with dynamics (4.1) and costs (4.2) from
the perspective of classical LQ games. It is well known that Nash equilibrium strategies
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Algorithm 2: Iterative LQ Games

Input: initial state x(0), control strategies {�0
i
}i2[N ], time horizon T , running costs

{gi}i2[N ]

Output: converged control strategies {�⇤
i
}i2[N ]

1 for iteration k = 1, 2, . . . do
2 ⇠

k ⌘ {x̂(t), û1:N(t)}t2[0,t]  
3 getTrajectory

�
x(0), {�k�1

i
}
�
;

4 {A(t), Bi(t)} linearizeDynamics
�
⇠
k
�
;

5 {li(t), Qi(t), rij(t), Rij(t)} quadraticizeCost
�
⇠
k
�
;

6 {�̃k
i
} solveLQGame

�

7 {A(t), Bi(t), li(t), Qi(t), rij(t), Rij(t)}
�
;

8 {�k
i
} stepToward

�
{�k�1

i
, �̃

k

i
}
�
;

9 if converged then
10 return {�k

i
}

for finite-horizon LQ games satisfy coupled Riccati di↵erential equations. These coupled
Riccati equations may be derived by substituting linear dynamics and quadratic running
costs into the generalized HJ equations [43] and analyzing the first order necessary conditions
of optimality for each player [3, Chapter 6]. These coupled di↵erential equations may be
solved approximately in discrete-time using dynamic programming [3]. We will leverage the
existence and computational e�ciency of this discrete-time LQ solution to solve successive
approximations to the original nonlinear nonquadratic game.

Iterative LQ game algorithm

Our iterative LQ game approach proceeds in stages, as summarized in Algorithm 2. We begin
with an initial state x(0) and initial feedback control strategies {�0

i
} for each player i, and

integrate the system forward (line 3 of Algorithm 2) to obtain the current trajectory iterate
⇠
k ⌘ {x̂(t), û1:N(t)}t2[0,T ]. Next (line 4) we obtain a Jacobian linearization of the dynamics

f about trajectory ⇠k. At each time t 2 [0, T ] and for arbitrary states x(t) and controls ui(t)
we define deviations from this trajectory �x(t) = x(t)� x̂(t) and �ui(t) = ui(t)� ûi(t). Thus
equipped, we compute a continuous-time linear system approximation about ⇠k:

˙�x(t) ⇡ A(t)�x(t) +
X

i2[N ]

Bi(t)�ui(t), (4.4)

where A(t) is the Jacobian Dx̂f
�
t, x̂(t), û1:N(t)

�
and Bi(t) is likewise Dûi

f
�
t, x̂(t), û1:N(t)

�
.

We also obtain a quadratic approximation to the running cost gi for each player i (see
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line 5 of Algorithm 2)

gi

�
t, x(t), u1:N(t)

�
⇡

gi

�
t, x̂(t), û1:N(t)

�
+

1

2
�x(t)T (Qi(t)�x(t) + 2li(t)) +

1

2

X

j2[N ]

�uj(t)
T (Rij(t)�uj(t) + 2rij(t)) , (4.5)

where vector li(t) is the gradient Dx̂gi, rij is Dûj
gi, and matrices Qi and Rij are Hessians

D
2
x̂x̂

gi and D
2
ûj ûj

gi, respectively. We neglect mixed partials D
2
ûj ûk

gi and D
2
x̂ûj

gi as they rarely
appear in cost structures of practical interest, although they could be incorporated if needed.

Thus, we have constructed a finite-horizon continuous-time LQ game, which may be
solved via coupled Riccati di↵erential equations [3, 17]. This results in a new set of candidate
feedback strategies {�̃k

i
} which constitute a feedback (global) Nash equilibrium of the LQ

game [3]. In fact, these feedback strategies are a�ne maps of the form:

�̃
k

i

�
t, x(t)

�
= ûi(t)� P

k

i
(t)�x(t)� ↵k

i
(t) , (4.6)

with gains P
k

i
(t) 2 Rmi⇥n and a�ne terms ↵k

i
(t) 2 Rmi .

However, we find that choosing �k
i

= �̃
k

i
often causes Algorithm 2 to diverge because the

trajectory resulting from {�̃i} is far enough from the current trajectory iterate ⇠k that the
dynamics linearizations (Algorithm 2, line 4) and cost quadraticizations (line 5) no longer
hold. As in ILQR [48], to improve convergence, we take only a small step in the “direction”
of �̃k

i
.1 More precisely, for some choice of step size ⌘ 2 (0, 1], we set

�
k

i

�
t, x(t)

�
= ûi(t)� P

k

i
(t)�x(t)� ⌘↵k

i
(t) , (4.7)

which corresponds to line 8 in Algorithm 2. Note that at t = 0, �x(0) = 0 and �k
i

�
0, x(0)

�
=

ûi(0) � ⌘↵
k

i
(0). Thus, taking ⌘ = 0, we have �k

i

�
t, x(t)

�
= ûi(t) (which may be verified

recursively). That is, when ⌘ = 0 we recover the open-loop controls from the previous
iterate, and hence x(t) = x̂(t). Taking ⌘ = 1, we recover the LQ solution in (4.6). Similar
logic implies the following lemma.

Lemma 3. Suppose that trajectory ⇠⇤ is a fixed point of Algorithm 2, with ⌘ 6= 0. Then, the
converged a�ne terms {↵⇤

i
(t)} must all be identically zero for all time.

In ILQR, it is important to perform a line-search over step size ⌘ to ensure a su�cient
decrease in cost at every iteration, and thereby improve convergence (e.g., [48]). In the
context of a noncooperative game, however, line-searching to decrease “cost” does not make
sense, as costs {Ji} may conflict. For this reason, like other local methods in games (e.g.,
[52]), our approach is not guaranteed to converge from arbitrary initializations. In practice,
however, we find that our algorithm typically converges for a fixed, small step size (e.g.
⌘ = 0.01). Heuristically decaying step size with each iteration k or line-searching until
k⇠k� ⇠k�1k is smaller than a threshold are also promising alternatives. Further investigation
of line-search methods in games is a rich topic of future research.

1We also note that, in practice, it is often helpful to “regularize” the problem by adding scaled identity
matrices ✏I to Qi and/or Rij .
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Remark 4. Although we have presented our algorithm in continuous-time, in practice, we
solve the coupled Riccati equations analytically in discrete-time via dynamic programming.
Please refer to [3, Corollary 6.1] for a full derivation. To discretize time at resolution �t,
we employ Runge-Kutta integration of nonlinear dynamics (2.1) with a zero-order hold for
control input over each time interval �t.

That is, we numerically compute:

x̂(t + �t) = x̂(t)+

Z
t+�t

t

f(s, x̂(s), û1:N(s))ds

where ûi(s) = �
k�1
i

�
t, x̂(t)

�
, 8i 2 [N ], and

x̂(0) = x(0). (4.8)

Characterizing fixed points

Suppose Algorithm 2 converges to a fixed point (�⇤1 , . . . , �
⇤
N

). These strategies are the global
Nash equilibrium of a local LQ approximation of the original game about the limiting oper-
ating point ⇠⇤. While it is tempting to presume that such fixed points are also local Nash
equilibria of the original game, this is not always true because converged strategies are only
optimal for a LQ approximation of the game at every time rather than the original game.
This approximation neglects higher order coupling e↵ects between each player’s running cost
gi and other players’ inputs uj, j 6= i. These coupling e↵ects arise in the game setting but
not in the optimal control setting, where ILQR converges to local minima.

Computational complexity and runtime

The per-iteration computational complexity of our approach is comparable to that of ILQR,
and scales modestly with the number of players, N . Specifically, at each iteration, we first
linearize system dynamics about ⇠k. Presuming that the state dimension n is larger than
the control dimension mi for each player, linearization requires computing O(n2) partial
derivatives at each time step (which also holds for ILQR). We also quadraticize costs, which
requires O(Nn

2) partial derivatives at each time step (compared to O(n2) for ILQR). Fi-
nally, solving the coupled Riccati equations of the resulting LQ game at each time step has
complexity O(N3

n
3), which may be verified by inspecting [3, Corollary 6.1] (for ILQR, this

complexity is O(n3)).
Total algorithmic complexity depends upon the number of iterations, which we currently

have no theory to bound. However, empirical results are extremely promising. For the
three-player 14-state game described in below, each iteration takes < 8 ms and the entire
game can be solved from a zero initialization (P 0

i
(·) = 0,↵0

i
(·) = 0) in < 0.25 s. Moreover,

receding horizon invocations in a hardware collision-avoidance test can be solved in < 50 ms
(see below). All computation times are reported for single-threaded operation on a 2017
MacBook Pro with a 2.8 GHz Intel Core i7 CPU. For reference, the iterative best response
scheme of [51] reports solving a receding horizon two-player zero-sum racing game at 2 Hz,
and the method of [47] reportedly takes several minutes to converge for a di↵erent two-player
zero-sum example. The dynamics and costs in both cases di↵er from those described below
(or are not clearly reported); nonetheless, the runtime of our approach compares favorably.
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Examples

In this Section, we demonstrate our algorithm experimentally in three-player noncooperative
settings, both in software simulation and hardware.2

Monte Carlo study. We begin by presenting a Monte Carlo study of the convergence
properties of Algorithm 2. As we shall see, the solution to which Algorithm 2 converges
depends upon the initial strategy of each player, �0

i
. For clarity, we study this sensitivity in a

game with simplified cost structure so that di↵erences in solution are more easily attributable
to coupling between players.

Concretely, we consider a three-player “hallway navigation” game with time horizon
10 s and discretization 0.1 s. Here, three people wish to interchange positions in a narrow
hallway while maintaining at least 1 m clearance between one another. We model each player
i’s motion as:

ṗx,i = vi cos(✓i) , ✓̇i = !i ,

ṗy,i = vi sin(✓i) , v̇i = ai ,
(4.9)

where pi := (px,i, py,i) denotes player i’s position, ✓i heading angle, vi speed, and input
ui := (!i, ai) yaw rate and longitudinal acceleration. Concatenating all players’ states into a
global state vector x := (px,i, py,i, ✓i, vi)3i=1, the game has 12 state dimensions and six input
dimensions.

We encode this problem with running costs gi (4.2) expressed as weighted sums of the
following:

wall: 1{|py,i| > dhall}(|py,i|� dhall)
2 (4.10)

proximity: 1{kpi � pjk < dprox}(dprox � kpi � pjk)2 (4.11)

goal: 1{t > T � tgoal}kpi � pgoal,ik2 (4.12)

input: u
T

i
Riiui (4.13)

Here, 1{·} is the indicator function, i.e., it takes the value 1 if the given condition holds,
and 0 otherwise. dhall and dprox denote threshold distances from hallway center and between
players, which we set to 0.75 and 1 m, respectively. The goal cost is active only for the last
tgoal seconds, and the goal position is given by pgoal,i for each player i. Control inputs are
penalized quadratically, with Rii a diagonal matrix. The hallway is too narrow for all players
to cross simultaneously without incurring a large proximity cost; hence, this proximity cost
induces strong coupling between players’ strategies.

Figure 4.1 displays the results of our Monte Carlo study. We seed Algorithm 2 with 500
random sinusoidal open-loop initial strategies, which correspond to the trajectories shown
in Figure 4.1(E). From each of these initializations, we run Algorithm 2 for 100 iterations
and cluster the resulting trajectories by Euclidean distance. As shown in Figure 4.1(A1, B1,
C1), these clusters correspond to plausible modes of interaction; in each case, one or more
players incur slightly higher cost to make room for the others to pass. Beside each of these
clusters in Figure 4.1(A2, B2, C2), we also report the mean and standard deviation of each
player’s cost at each solver iteration. As shown in Figure 4.1(F), state trajectories converge
within an `1 tolerance of 0.01 in well under 100 iterations.

2Video summary available at https://youtu.be/KPEPk-QrkQ8.
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Fig. 4.1: Monte Carlo results for a three-player hallway navigation game. (A1, B1, C1)
Converged trajectories clustered by total Euclidean distance; each cluster corresponds to a
qualitatively distinct mode of interaction. (A2, B2, C2) Costs for each player at each solver
iteration. The shaded region corresponds to one standard deviation. (D) Several converged
trajectories did not match a cluster (A-C). (E) Trajectories resulting from 500 random initial
strategies. (F) Histogram of iterations until state trajectory has converged.
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0.0  t  0.8 0.8  t  1.5 1.5  t  5.0

1.5 � t � 5.0
0.0  t  0.8 0.8  t  1.5 1.5  t  5.0

0.8 � t � 1.5
0.0  t  0.8 0.8  t  1.5 1.5  t  5.0

Goals

LanesCar

Pedestrian

Crosswalk

0.0 � t � 0.8

Car

Fig. 4.2: Three-player intersection game. (Left) Green car seeks the lane center and then
swerves slightly to avoid the pedestrian. (Center) Red car accelerates in front of the green
car and slows slightly to allow the pedestrian to pass. (Right) Red car swerves left to give
pedestrian a wide berth.

In these 500 random samples, only 6 did not converge and had to be resampled, and 5
converged to trajectories which were outliers from the clusters depicted in Figure. 4.1(A-C).
These outliers are shown in Figure 4.1(D). We observe that, in these 5 cases, the players
come within 0.5 m of one another.

Three-player intersection. Next, we consider a more complicated game intended to model
tra�c at an intersection. As shown in Fig. 4.2, we consider an intersection with two cars
and one pedestrian, all of which must cross paths to reach desired goal locations. We use a
time horizon of 5 s with discretization of 0.1 s, and Algorithm 2 terminates in under 0.25 s.

We model the pedestrian’s dynamics as in (4.9) and each cars i’s dynamics as follows:

ṗx,i = vi cos(✓i) , ✓̇i = vi tan(�i)/Li, �̇i =  i

ṗy,i = vi sin(✓i) , v̇i = ai ,
(4.14)

where the state variables are as before (4.9) except for front wheel angle �i. Li is the
inter-axle distance, and input ui := ( i, ai) is the front wheel angular rate and longitudinal
acceleration, respectively. Together, the state of this game is 14-dimensional.

The running cost for each player i are specified as weighted sums of (4.11)–(4.13), and
the following:

lane center: d`(pi)
2 (4.15)

lane boundary: 1{d`(pi) > dlane}(dlane � d`(pi))
2 (4.16)

nominal speed: (vi � vref,i)
2 (4.17)

speed bounds: 1{vi > vi}(vi � vi)
2

+ 1{vi < v
i
}(v

i
� vi)

2 (4.18)
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Fig. 4.3: Time-lapse of a hardware demonstration of Algorithm 2. We model the inter-
action of a ground robot (blue triangle) and two humans (purple and red triangles) using
a di↵erential game in which each agent wishes to reach a goal location while maintaining
su�cient distance from other agents. Our algorithm solves receding horizon instantiations
of this game in real-time, and successfully plans and executes interactive collision-avoiding
maneuvers. Planned (and predicted) trajectories are shown in blue (robot), purple, and red
(humans).

Here, dlane denotes the lane half-width, and d`(pi) := minp`2` kp` � pik measures player i’s
distance to lane centerline `. Speed vi is penalized quadratically away from a fixed reference
vref,i also outside limits v

i
and vi.

Fig. 4.2 shows a time-lapse of the converged solution identified by Algorithm 2. These
strategies exhibit non-trivial coordination among the players as they compete to reach their
goals e�ciently while sharing responsibility for collision-avoidance. Such competitive be-
havior would be di�cult for any single agent to recover from a decoupled, optimal control
formulation. Observe how, between 0  t  0.8 s (left), the green car initially seeks the lane
center to minimize its cost, but then turns slightly to avoid the pedestrian (blue). Between
0.8  t  1.5 s (center), the red car turns right to pass in front of the green car, and then
slows and begins to turn left to give the pedestrian time to cross. Finally (right), the red
car turns left to give the pedestrian a wide berth.

Receding horizon motion planning. Di↵erential games are appropriate in a variety of
applications including multi-agent modeling and coordinated planning. Here we present a
proof-of-concept for their use in single-agent planning in a dynamic environment. In this
setting, a single robot operates amongst multiple other agents whose true objectives are
unknown. The robot models these objectives and formulates the interaction as a di↵erential
game. Then, crucially, the robot re-solves the di↵erential game along a receding time horizon
to account for possible deviations between the other agents’ decisions and those which result
from the game solution.

We implement Algorithm 2 in C++3 within the Robot Operating System (ROS) frame-
work, and evaluate it in a real-time hardware test onboard a TurtleBot 2 ground robot, in a
motion capture room with two human participants. The TurtleBot wishes to cross the room

3Code available at: github.com/HJReachability/ilqgames
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while maintaining > 1 m clearance to the humans, and it models the humans likewise. We
model the TurtleBot dynamics as (4.9) and humans likewise but with constant speed vi, i.e.:

ṗx,i = vi cos(✓i) , ṗy,i = vi sin(✓i) , ✓̇i = !i . (4.19)

We use a similar cost structure as in the intersection example, and initialize Algorithm 2
with all agents’ strategies identically zero (i.e., P

0
i
(·),↵0

i
(·) ⌘ 0). We re-solve the game

in a 10 s receding horizon with time discretization of 0.1 s, and warm-start each successive
receding horizon invocation with the previous solution. Replanning every 0.25 s, Algorithm 2
reliably converges in under 50 ms. We gather state information for all agents using a motion
capture system. Fig. 4.3 shows a time-lapse of a typical interaction.

Initially, in frame (a) Algorithm 2 identifies a set of strategies which steer each agent to
their respective goals while maintaining a large separation. Of course, the human participants
do not actually follow these precise trajectories; hence later receding horizon invocations con-
verge to slightly di↵erent strategies. In fact, between frames (c) and (d) the red participant
makes an unanticipated sharp right-hand turn, which forces the (blue) robot to stay to the
right of its previous plan and then turn left in order to maintain su�cient separation be-
tween itself and both humans. We note that our assumed cost structure models all agents
as wishing to avoid collision. Thus, the resulting strategies may be less conservative than
those that would arise from a non-game-theoretic motion planning approach.

Full-scale demonstration. We have also tested this game-theoretic receding horizon mo-
tion planner at scale in a Boeing test aircraft at a small commercial airport. The details of this
demonstration are forthcoming. However, to summarize, the same underlying C++/ROS
implementation discussed above was used to process received telemetry on the aircraft and
a supposed taxiway intruder, and transmit real-time receding horizon game solutions to the
actuators of the aircraft at 10 Hz.

Improvements due to feedback linearizable structure

In this Section, we shall consider the situation when game dynamics are feedback linearizable.
That is, we presume that the game state x 2 Rn evolves as

ẋ = f(x) +
NX

i=1

bi(x)ui , (4.20)

where ui 2 Rmi is the control input of player i. In the examples below, x will be the
concatenated states of multiple subsystems, but this is not strictly necessary. We assume
that (4.20) is input-output feedback linearizable with no zero dynamics, i.e. there exist
outputs y = h(x) such that y and finitely many of its time derivatives evolve linearly as a
function of some auxiliary inputs zi 2 Rmi , for some control law ui := ui(x, zi).

Summary of feedback linearization. This Section provides a brief review of feedback
linearization, a geometric control technique popularly used across a wide range of robotic
applications including manipulation, quadrotor flight, and autonomous driving.

Recall dynamics (4.20), and define the matrix b(x) := [b1(x), . . . , bN(x)] 2 Rn⇥m and
vector u

T = [uT

1 , . . . , u
T

N
] 2 Rm, with m =

P
i
mi the total control dimension. Thus, (4.20)
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may be rewritten as
ẋ = f(x) + b(x)u, y = h(x) (4.21)

where y is the output of the system, and the functions f, b, and h are su�ciently smooth.
Suppose that (4.21) has well-defined vector relative degree (r1, . . . , rm) [40, Definition

9.15] and is full-state feedback linearizable. Then, there exists a matrix M(x) and vector
m(x) such that the time derivatives of the outputs y follow

[y(r1)
1 , . . . , y

(rm)
m

]T = M(x)u + m(x) . (4.22)

Presuming the invertibility of the so-called “decoupling matrix” M(x), we may design
the following feedback linearizing control law as a function of both state x and an auxiliary
input

u(x, z) = M
�1(x)(z �m(x)), (4.23)

which renders the input-output dynamics linear in the new auxiliary inputs z:

[y(r1)
1 , . . . , y

(rm)
m

]T = z. (4.24)

Note that, as for u in (4.20) we shall consider z
T = [zT1 , . . . , z

T

N
] to be a concatenation of

auxiliary inputs for each player, with zi 2 Rmi .
We have seen how a careful choice of feedback linearizing controller u(x, z) renders the

dynamics of the output y and its derivatives linear. Define the state of this linear system
as � := [y1, . . . , y

(r1�1)
1 , . . . , ym, . . . , y

(rm�1)
m ]T . Just as there is a bijective map (4.23) between

control u and auxiliary input z whenever M(x) is invertible, there is also a bijection between
state x and linear system state �, x = �(�) [40] because (4.21) is full-state feedback lineariz-
able. We shall use both bijective maps (and their derivatives) below to rewrite costs (4.2)
in terms of the linearized dynamics (4.24).

Taking Advantage of Feedback Linearization Consider the following example of a
(single player) 4D unicycle dynamical model:

ẋ =

2

664

ṗx

ṗy

✓̇

v̇

3

775 =

2

664

v cos ✓
v sin ✓

w

a

3

775 , y =


px

py

�
(4.25)

representing the evolution of the positions px and py, the orientation ✓, and speed v.
The inputs w and a represent the angular rate and the acceleration. By taking time
derivatives of the output y following the procedure above, we obtain the new set of states
� = [px, ṗx, py, ṗy]T for the linearized system. Di↵erentiation reveals that


p̈x

p̈y

�
=


�v sin ✓ cos ✓
v cos ✓ sin ✓

� 
w

a

�
. (4.26)

From this result, we compute the inverse decoupling matrix and drift term as

M
�1(x) =


� sin ✓/v cos ✓/v

cos ✓ sin ✓

�
, m(x) = 0. (4.27)
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Algorithm 3: Feedback Linearized Iterative LQ Games

Input: initial linearized system state �(0) and control strategies {�0
i
}i2[N ], time

horizon T

Output: converged control strategies {�⇤
i
}i2[N ] for the linearized system

1 for iteration p = 1, 2, . . . do
2 ⇠

p ⌘ {�̂(t), ẑi(t)}i2[N ],t2[0,T ]  
3 getTrajectory

�
�(0), {�p�1

i
}
�
;

4 {li(t), Qi(t), Rij(t)} quadraticizeCost
�
⇠
p
�
;

5 {�̃p
i
} solveLQGame

�
{li(t), Qi(t), Rij(t)}

�
;

6 {�p
i
} stepToward

�
{�p�1

i
, �̃

p

i
}
�
;

7 if converged then
8 return {�p

i
}

Finally, we can also explicitly derive the state conversion map �(�)

�(�) =

2

664

px

pyp
ṗ2
x

+ ṗ2
y

tan�1( ṗy
ṗx

)

3

775 . (4.28)

Now, consider a di↵erential game with two players, each of whom independently follows
dynamics (4.25). The inverse decoupling matrix M

�1(x) and the Jacobian of the state
conversion map � for the full system will be block diagonal.

Transforming costs. So far, we have introduced feedback linearization and shown how to
derive the mappings from auxiliary input z to control u and linearized system state � to
state x. To exploit the feedback linearizable structure of (4.21) when solving the game, we
must rewrite running costs gi(t, x, u1, . . . , uN) in terms of � and z. Overloading notation, we
shall denote the transformed running costs as

gi(t;�; z1; . . . ; zN) ⌘

gi

⇣
t;�(�); u1

�
�(�), z1

�
; . . . ; uN

�
�(�), zN

�⌘
,

(4.29)

where ui(�(�), zi) is given in (4.23).
Algorithm 3 presents our main algorithm; a core step will be to compute first and second

derivatives of each player’s running cost with respect to the new state � and inputs zi.
This may be done e�ciently using the chain rule and exploiting known sparsity patterns
for particular systems and costs. For completeness, however, we shall ignore sparsity and
illustrate computing the first derivative of gi with respect to the j

th dimension of �, denoted
�j:

@gi

@�j

=
nX

p=1

@gi

@xp

@xp

@�j

+
NX

n=1

mnX

p=1

@gi

@un,p

nX

q=1

@un,p

@xq

@xq

@�j

(4.30)
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where un,p is the p
th entry of the n

th player’s control input.
Second derivatives may be computed similarly, though again we stress that for specific

dynamics and cost functions it is often much more e�cient to exploit the a priori known
sparsity of partial derivatives. Interestingly, we also observe that the terms arising from the
second sum in (4.30), which account for the state-dependence of the feedback linearizing
controllers (4.23), are often negligible in practice and may be dropped without significant
impact on solution quality.

Core algorithm. Like the original iterative LQ game algorithm, we proceed from a set of
initial strategies �i for each player—understood now to map from (t,�) to zi—and iteratively
refine them by solving LQ approximations. Our main contribution, therefore, lies in the
transformation of the game itself into the coordinates �, zi which correspond to feedback
linearized dynamics. As we shall see in the results below, iterative LQ approximations are
much more stable in the transformed coordinates and converge at least as quickly.

Algorithm 3 outlines the major steps in the resulting algorithm. We begin at the given
initial condition �(0) for the linearized system and strategies �0

i
for each player. Note that

these strategies define control laws for the linearized system, i.e. zi(t) ⌘ �i

�
t,�(t)

�
.

At each iteration, we first (Algorithm 3, line 3) integrate the linearized dynamics (4.24)
forward to obtain the current operating point (�̂(·), {ẑi(·)}). Then (Algorithm 3, line 4), we
compute a quadratic approximation to each player’s running cost in terms of the variations
�� := �� �̂ and �zj := zj � ẑj

gi(t;�; z1; . . . ; zN)� gi(t; �̂; ẑ1; . . . ; ẑN) ⇡ ��
T
li(t)+

1

2
��

T
Qi(t)��+

1

2

NX

j=1

�z
T

j
(Rij(t)�zj + 2rij(t)),

(4.31)

using the chain rule as in (4.30) to compute the terms li, Qi and Rij for each player.
Equipped with linear dynamics (4.24) and quadratic costs (4.31), the solution of the

resulting general-sum LQ game is given by a set of coupled Riccati di↵erential equations,
which may be derived from the first order necessary conditions of optimality for each player
[3, Chapter 6]. In practice (Algorithm 3, line 5), we numerically solve these equations in
discrete-time using a time step of �t. If a solution exists at the p

th iteration, it is known to
take the form

�̃
p

i
(t,�) ⌘ ẑi(t)� P

p

i
(t)

�
�(t)� �̂(t)

�
� ↵p

i
(t) (4.32)

for matrix P
p

i
(t) and vector ↵p

i
(t) [3, Corollary 6.1].

We cannot simply use these strategies at the (p + 1)th iteration or we risk diverging,
however, without further assumptions on the curvature and convexity of running costs gi. In
fact, these costs are generally nonconvex when expressed in terms of � and zj (4.29), which
necessitates some care in updating strategies. To address this issue (Algorithm 3, line 6),
we follow a common practice in the ILQR and sequential quadratic programming literature
(e.g., [48]) and introduce a step size parameter ⌘ 2 (0, 1]:

�
p

i
(t,�) = ẑi(t)� P

p

i
(t)

�
�(t)� �̂(t)

�
� ⌘↵p

i
(t). (4.33)
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Observe that, taking ⌘ = 0 and recalling that �(0) = �̂(0), we recover the previous open-loop
control signal �p

i
(t,�) = ẑi, 8t 2 [0, T ]. Taking ⌘ = 1, we recover the LQ solution from this

iteration (4.32). As is common in the literature, we perform a backtracking linesearch on ⌘,
starting with initial value ⌘0 and terminating when the trajectory that results from (4.33)
satisfies a trust region constraint at level ✏. In our experiments, we use an L1 constraint,
i.e.

k�(t)� �̂(t)k1 < ✏, 8t, (4.34)

and check that M
�1 exists at each time.

E↵ect of feedback linearization. In comparison to the non-feedback linearized case of
Section 4.3, the linearized dynamics (4.24) are independent of trajectory (and hence also of
iteration). That is, in such cases [14], each iteration begins by constructing a Jacobian lin-
earization of dynamics (4.20); this is superfluous in our case. As a consequence, large changes
in auxiliary input z between iterations—which lead to large changes in state trajectory—are
trivially consistent with the feedback linearized dynamics (4.24). By contrast, a large change
in control u may take the nonlinear dynamics (4.20) far away from the previous Jacobian
linearization, which causes the algorithm from [14] to be fairly sensitive to step size ⌘ and
trust region size ✏. We study this sensitivity more carefully in the results below.

Finally, it is important to note that while many systems of interest (e.g., manipulators,
cars, and quadrotors) are feedback linearizable, this is not true of all systems. Addition-
ally, there are two drawbacks of our algorithm that deserve mention. First, we must take
care to avoid regions in which M

�1 does not exist. We accomplish this by designing costs
that penalize proximity to singularities. While this can potentially limit the range of be-
haviors, many motion problems naturally incorporate these costs. Second, the transformed
costs gi(t;�; . . . ) may have much more varied, extreme curvature than the original costs
gi(t, x, . . . ). In some cases, this can make Algorithm 3 sensitive to linesearch parameters
⌘0 and ✏, even o↵setting the benefits mentioned above. We defer further discussion and
empirical study to the results below.

Results. To showcase the benefits of our feedback linearization-based approach, we study
the empirical sensitivity of solutions to the initial step size ⌘0 and trust region size ✏ hyperpa-
rameters. We shall consider a three-player intersection example and compare the strategies
identified by Algorithm 3 with those identified on the original dynamics, using the algorithm
from [14]. Here, two cars, modeled with bicycle dynamics
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ȧ

3

5 =

2

4
a

!



3

5 (4.35)

(with inter-axle distance L and inputs ! controlling front wheel rate �̇ and  controlling
jerk), and a pedestrian modeled with dynamics (4.25) navigate an intersection. Like (4.25),
bicycle dynamics (4.35) are feedback linearizable in the outputs (px, py). We place quadratic
penalties on each player’s distance from the appropriate lane center and from a fixed goal
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Fig. 4.4: Distribution of pairs (⌘0, ✏) colored by quality metric q. Pairs with low q are
colored blue, and high q pairs are colored red.

location, as well as on the di↵erence between speed v and a fixed nominal speed v̄. Players
are also penalized quadratically within a fixed distance of one another 4.

In order to assess the quality of a trajectory ⇠ = (�, z1, . . . , zN) generated by a particular
algorithm, we define the similarity metric to the desired trajectory to be:

q(⇠, ⇠̃) := max
t2[0,T ]

k�(t)� �̃(t)k2,(px,py). (4.36)

Here, we take ⇠̃ := (�̃, z̃1, . . . , z̃N) to be the equilibrium trajectory which that algorithm
ideally converges to. The norm measures Euclidean distance only in the (px, py) dimensions.
Trajectories that diverge or converge to unreasonable solutions yield high values for q, while
trajectories that closely match ⇠̃ incur low values.

We fix the initial conditions and cost weights identically for both algorithms. Thus, any
trajectory ⇠ identified by the solver will solely be a function of the initial step size ⌘0 and
trust region size ✏. Therefore, we will overload the penalty metric notation as q(⌘0; ✏). Given
this metric we study the quality of solutions over the ranges ⌘0 2 [0.1, 0.75] and ✏ 2 [1.0, 10.0],
and test 324 uniformly sampled (⌘0, ✏) pairs.

Fig. 4.4 displays the sampled pairs over the space of ⌘0 and ✏. For clarity, we set a
success threshold q

⇤ and color “successful” pairs with q(⌘0; ✏)  q
⇤ blue, and “unsucessful”

pairs red. Fig. 4.5 shows histograms of solution quality q for each algorithm, with a horizontal
line denoting threshold q

⇤. We observe that solving the game using feedback linearization
converges much more reliably than solving it for the original nonlinear system. Moreover, for
converged trajectories with low q-value, the average computation time was 0.3982 ± 0.3122
s (mean ± standard deviation) for our method and 0.8744 ± 0.9582 s for the baseline.

Unfortunately, these results do not generalize to all games. As discussed above, in some
cases the cost landscape gets much more complicated when expressed in linearized system

4For details concerning weighing of di↵erent cost terms we refer the reader to our github repository at
https://github.com/HJReachability/ilqgames
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Fig. 4.5: Comparison of the proposed algorithm with the state of the art [14] for a three
player intersection game. Histograms (left, baseline; right, ours) show that our method is
much more numerically stable and converges more frequently. Insets labelled {A, B, C, D}
show a typical trajectory for the associated bin. The dotted horizontal line shows threshold
q
⇤, used to distinguish samples from Fig. 4.4.

coordinates �, zi. For example, a simple quadratic penalty on a single player’s speed di↵er-
ence from nominal v̄ in (4.25) is nonconvex and non-smooth near the origin when expressed
as a function of linearized system state �:

(v � v̄)2 ()
⇣
v̄ �

q
ṗ2
x

+ ṗ2
y

⌘2

. (4.37)

Consequences vary; the e↵ect is negligible in the intersection example from Fig. 4.5, but
it is more significant in the roundabout example below, where cars must slow down before
turning into the roundabout.

Fortunately, in practical settings of interest it is typically straightforward to design
smooth, semantically equivalent costs explicitly as functions of the linearized system coordi-
nates �. For example, we can replace the nominal speed cost of (4.37) with a time-varying
quadratic penalty in that player’s position (px, py):

(v � v̄)2 =)
�
px(t)� p̄x(t)

�2
+
�
py(t)� p̄y(t)

�2
, (4.38)

where
�
p̄x(·), p̄y(·)

�
defines the point on the lane center a distance v̄t from the initial condi-

tion.



CHAPTER 4. COUPLED PLANNING AND PREDICTION 74

-200 -100 0 100 200
Number of trajectories (sampled uniformly in 0 , )

0

5

10

15

20

25

30

35

40

45

50
Si

m
ila

rit
y 

to
 d

es
ire

d 
(x

,y
) t

ra
je

ct
or

y
Baseline Ours

A

B

C

D

E

C

B

A E

D

Fig. 4.6: Relative performance obtained for a roundabout from using the structure of
feedback linearization.

We demonstrate the e↵ectiveness of this substitution in two examples—merging into a
roundabout, and overtaking a lead vehicle—in which the original cost (4.37) led to instability
in Algorithm 3. In both cases, we also use simple quadratic penalties for zi (rather than
transforming kuik2 into linearized coordinates), albeit with di↵erent weightings. Results for
the roundabout merging and overtaking examples are shown in Figures 4.6 and 4.7, respec-
tively. From the 324 samples in each (drawn from expanded ranges ⌘0 2 [0.1, 1.0], ✏ 2 [1, 50]),
we see that Algorithm 3 converged more frequently than the method of [14]. Moreover, when
successful, the average computational time in the roundabout example was 0.2797±0.1274 s
for our method and 0.4244 ± 0.5259 s for the baseline. Runtimes for the overtaking example
were 0.5112± 0.3228 s (ours) and 0.4417± 0.4142 s (baseline). Observe how runtimes for our
approach cluster more tightly around the mean, indicating a more reliable convergence rate.

Discussion

We have presented a novel algorithm for finding local solutions in multi-player general-
sum di↵erential games. Our approach is closely related to the iterative linear-quadratic
regulator (ILQR) [26], and o↵ers a straightforward way for optimal control practitioners to
directly account for multi-agent interactions via di↵erential games. We performed a Monte
Carlo study which demonstrated the reliability of our algorithm and its ability to identify
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Fig. 4.7: Comparison for a three vehicle high speed overtaking maneuver.

complex interactive strategies for multiple agents. These solutions display the competitive
behavior associated with local Nash equilibria, although there are subtle di↵erences. We also
showcased our method in a three-player 14-dimensional tra�c example, and tested it in real-
time operation in a hardware robot navigation scenario, following a receding time horizon
and in a full-scale demonstration on an airplane. Additionally, we have presented a further
adaptation of our general approach to situations in which the underlying di↵erential game
has feedback linearizable dynamics. Here, we showed that these games could sometimes be
solved more quickly and reliably by using this additional structure.

There are several other approaches to identifying local solutions in di↵erential games,
such as iterative best response [52]. We have shown the computational e�ciency of our
approach. However, quantitatively comparing the solutions identified by di↵erent algorithms
is challenging due to di↵erences in equilibrium concept, information structure (feedback
vs. open loop), and implementation details. Furthermore, in arbitrary general-sum games,
di↵erent players may prefer di↵erent equilibria. Studying the qualitative di↵erences in these
equilibria is an important direction of future research.

Although our experiments show that our algorithm converges reliably, we have no a pri-
ori theoretical guarantee of convergence from arbitrary initializations. Future work will seek
a theoretical explanation of this empirical property. Improving performance and address-
ing convergence are important directions of future research. We also intend to investigate
inequality-constrained di↵erential games; here, we believe that interior point methods may
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present a promising direction. Finally, it will be critical to develop a theory for online esti-
mation of other players’ objectives, and for understanding the sensitivity of local solutions
to misspecified objectives and sub-optimal play.
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Chapter 5

Conclusion

5.1 What’s missing

This dissertation has presented several practical algorithms for building reliable autonomous
systems. Chapter 2 presented a method for obtaining adversarial disturbance-rejection in
real-time motion planning problems. Chapter 3 investigated multi-agent situations, in which
the uncertainty came from the motion of other agents rather than from internal system
dynamics, and presented a probabilistic online method for adapting a measure of confidence
one should have in a predictive utility model. Chapter 4 brought the two preceding chapters
together in some sense. Here, the focus was on coupling prediction to planning and this
resulted in a di↵erential game, and the Chapter presented a novel solution strategy that was
amenable to real-time operation.

Moving forward, of course there are many interesting directions for future research and
Section 5.2 will discuss a few of the most immediate. However, the remainder of this Section
will attempt to enumerate a more complete (though certainly only partial) list of problems.
For simplicity, however, each problem shall not attempt a full description of any related
work and will only state the underlying problem as it pertains to what has been described
previously.

Unknown objectives in di↵erential games

A key assumption in Chapter 4 was that we knew the costs for all players a priori. Yet, for
many applications of practical interest such as tra�c, this is not necessarily the case. We
need, therefore, a method for estimating each player’s cost in real-time, given that they are
acting according to a solution of the game, e.g., a Nash equilibrium. Although this seems
extremely di�cult and ill-posed, we do have some hope in some cases. Namely, in the tra�c
problems considered in the examples in Chapter 4 and which are broadly descriptive of the
problems faced by autonomous car companies, there may be very good priors. For example,
we can reasonably guess that a reasonable driver wishes to do stay in his or her lane, make
forward progress, not collide, etc., and these wishes are easily encoded in a set of weighted
costs of the sort in Chapter 4. Therefore, the problem may reduce to learning a set of weights
on a small set of known functions, which is likely much easier to do.
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Partial observability in game dynamics

So far, we have also presumed that strategies have full state feedback. This is particularly
important as a distinction from the open loop information pattern which is common in model
predictive control and for which there is also a closed-form LQ game solution [3, Chapter 6].
However, full state observability is a strong assumption that may not hold in some cases, such
as long-occluded regions at intersections which may or may not contain one or more cars.
Unfortunately, it is theoretically incredibly challenging to handle partial state observability
in di↵erential games; yet, it is certainly a topic of practical interest.

Randomness in di↵erential games

We have presented coordinated prediction and planning as though they equate with a dif-
ferential game; however, to fully account for uncertainty in human drivers’ behavior it is
almost certain that we need to consider stochastic di↵erential games. These have certainly
been studied, and the interested reader is directed to [3], however, a significant amount of
work is required to model the uncertain dynamics of certain, e.g, tra�c games, and devise a
real-time solution strategy.

Team e↵ects

In many situations which may be understood as di↵erential games, natural solutions which
arise in practice involve multiple players collaborating. It is not clear if these coalitions
are well-modeled by a greedy Nash equilibrium, or if it is very important to account for
the coalition’s coordinated decision-making explicitly. A deeper investigation is certainly
warranted.

Equilibrium accuracy

This issue is really two separate problems: first, it is important to understand what exactly
the iterative LQ method of Chapter 4 finds at equilibrium and how it relates to a Nash
equilibrium; second, it is not at all clear how closely the notion of a Nash equilibrium models
the behavior of real people. The first problem is readily apparent from the brief discussion
of Section 10. The second, however, is both empirical and theoretical. It will be important
both to measure how closely peoples’ behavior in di↵erential games qualitatively matches
greedy Nash behavior (vs. other notions of equilibrium such as Stackelberg or Conjectural
Variations) and how closely it quantitatively matches (e.g., how close to people come to
equilibrium behavior even though they are not necessarily computing it precisely).

Equilibrium alignment

In all kinds of games, including di↵erential games, there are generally multiple Nash equilibria
(not including the presence of local equilibria). For example, [30, 31] not only show the
presence of such equilibria, but also show that policy gradient algorithms do not generally
converge to such equilibria. In the tra�c games of Chapter 4, these equilibria correspond
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to qualitatively di↵erent sets of strategies, e.g., at an intersection. It will be extremely
important to devise a real-time method for an autonomous system to align itself to the
choice of equilibrium one or more other (human) agents are choosing. Moreover, it is not
necessarily clear that other agents will play an equilibrium strategy; indeed, any theoretical
assumption in that regard must be validated empirically.

Accounting for a receding horizon in di↵erential games

In practice, almost all practical motion planning applications solve the underlying problem
in a receding time horizon, of the type described in Chapter 4. The community has devoted
significant attention to recursive feasibility issues in model predictive control, which also
follows a receding horizon; still, it will be important to construct costs for di↵erential games
that a↵ord some notion or robustness in a receding time horizon.

Non-adversarial disturbances

Many systems of practical interest a↵ord relatively simple, often physical, models; yet, these
models do not capture the precise state evolution of the real system due to other e↵ects. In
these cases, the mismatch of the model is not truly adversarial, and it is not necessarily best
to study it as such. In Chapter 2, we presumed that this model mismatch could be captured
by presuming the presence of a bounded adversarial disturbance injected by “nature.” This
may be a reasonable assumption for the case of a quadrotor undergoing variable gusts of
wind, but it is probably not the best assumption in all cases, e.g., a Baxter robot with
internal joint springs and modeled using classic open-loop manipulator chain dynamics. It
will be important to address these non-adversarial model mismatch issues in the future,
and thereby facilitate real-time operation of complex systems using simple but known and
incorrect models.

5.2 What’s next

In this Section, I shall briefly describe progress on two of these problems; the remainder of
these many issues I happily leave for future work.

Progress on equilibrium alignment

In the recent paper [35], we present a novel method for inferring the equilibrium other players
are operating at in a di↵erential game. We use the method of Chapter 4 to identify equilibria
of a game, and a particle filter with random equilibria (generated by seeding each player with
a random strategy and finding the corresponding equilibrium identified by the solver). The
particle filter uses a straightforward noise model to process observations of each player’s state
and re-weights each particle according to how likely it is to have generated the observed data.
The ego vehicle then executes its strategy for the most likely equilibrium at each time step.

Going forward, additional work on this problem will be very important. For example,
future work should also address situations in which the other agents do not all agree on a
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single equilibrium of the game. Additionally, future work ought not to assume that all agents
operate at precisely the equilibria (or necessarily that they agree on the type of equilibrium),
not to mention the di�cult issue of whether other agents will even operate at a (possibly)
local equilibrium at all.

Learning to correct non-adversarial disturbances

The recent papers [53, 54] develop a new technique for using model-based control techniques
such as feedback linearization in contexts with unknown model mismatch. Here, we develop
a method which uses a model-free policy gradient reinforcement learning algorithm for mod-
ifying a nominal controller both o✏ine and online. Our procedure has theoretical guarantees
of stability and convergence only in the restrictive case in which the learned modification
to an existing controller is linearly parameterized ; in practice, however, we find that it can
work well in hardware with learned neural network controllers.

In the future, this general approach for treating model mismatch is extremely promising.
That is, a paradigm which will emerge in the learning and control literature is that analytical
models can provide “mostly correct” control schemes and the remaining mismatch (e.g., in
the behavior of the a priori designed controller) may be “fixed” with learning techniques.
These model-based control schemes are often more straightforward to design and analyze
than learned counterparts; yet by learning the remainder we can hope to correct the mismatch
that is inevitably present.
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