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Abstract

Robust and Unsupervised Interest Point Detection for E�cient Visual Odometry

by

Farhan Toddywala

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kristofer Pister, Chair

Robotic exploration is a desirable goal for small-scale SWARM systems. From practical
applications like rendezvous to pursuit evasion, the ability to map out an environment rel-
ative to one’s own position is of vital importance to SWARMs. Simultaneous Localization
and Mapping (SLAM) techniques are well suited to this problem. While traditional SLAM
methods like Visual Odometry with the FAST interest point detector generally perform e�-
ciently and well at these tasks, they are insu�cient when dealing with the levels of noise we
expect to encounter with low-resolution, millimeter-scale, grayscale cameras. Our approach
seeks to address this problem through a combination of Control Feedback and Unsupervised
Learning techniques. Benchmarks on the KITTI Odometry dataset shows significant gains
in settings where images are grossly corrupted by Gaussian noise. Control Feedback tech-
niques alone can provide similar performance to the noiseless setting in these situations;
Unsupervised Learning techniques provide similar and sometimes even better performance
than FAST while performing fewer instructions in the worst case. Through these techniques,
we aim to bring robotic exploration at the scales we would expect for a SWARM system
closer to reality.
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Chapter 1

Introduction

Interest Point Detection has a rich history in the field of Computer Vision. Historically,
Interest Point Detection traces its roots back to corner detection, when algorithms were de-
signed specifically to find corners in images and use them as stable image features. Generally
speaking, the goal of interest point detection is to provide rich spatial information about the
structure of the image in a way which is repeatable, mathematically founded, and stable
under perturbations of the image. One of the most important interest point detectors to
have been discovered is the Features from Accelerated Segments Test (FAST) [7]. This algo-
rithm provides an extremely e�cient way of detecting interest points (specifically corners)
in images for tasks which require low-latency such as video processing or real-time feature
tracking on robotic systems.

One of the most important applications of Interest Point Detection is the problem of
pose estimation. Pose estimation provides a foundation for extrapolating 3 dimensional in-
formation from sets of 2 dimensional images. This enables systems to reconstruct the 3
dimensional positions of points within a set of images and determine the relative position
and orientations of the cameras which took those images. The latter capability is one of the
driving ideas behind Simultaneous Localization and Mapping [3] [1] [6] (SLAM) algorithms,
which enable systems to track their environments and positions as they move. SLAM is of
particular interest to small-scale, SWARMable robotic systems, in which a group of small
robots work together to accomplish larger goals. The ability to explore an environment in an
intelligent manner (intelligent exploration) enables more complex planning and coordination
with these small robots. At the same time, adapting computer vision algorithms, which tra-
ditionally require significant processing power, to these small robots is a challenge. Memory
is limited, processing power must be conserved, and cameras are likely to be low-resolution
and noisy. This last point is of special importance to my research.

Simultaneously, the field of artificial intelligence has grown exponentially over the last
two decades, with significant intersections with the field of Computer Vision. Past work has
been done in adapting interest point detection using Machine Learning techniques in both
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supervised and unsupervised learning. FAST in particular has a supervised learning exten-
sion to improve upon its already impressive e�ciency. However, none of these approaches
have yet taken into account a low-power system with noisy images, which is necessary in
enabling SLAM algorithms for SWARM systems. FAST in particular has a particular weak-
ness to image noise, as we will demonstrate later on. Unsupervised Learning provides a
flexible manner of formulating problems from an optimization perspective, giving us control
over what features we want to extract from an image and how much computation we want
to put into making that calculation. When combined with control feedback techniques, the
problem of image noise can be dealt with in an e�cient manner with respect to interest point
detection for pose estimation.

Having a Robust, SWARM-capable Visual Odometry algorithm has many real-world
implications. For example, SWARM tasks like Pursuit Evasion and Rendezvous have been
explored through the lens of deep reinforcement learning. These algorithms embed the
positional information of each robot into a high dimensional space to formulate an optimal
policy [5]. Thus, providing the capability for each robot to calculate a good estimate of its
position has significant applications for the future of SWARM robotics.
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Chapter 2

Related Work

2.1 FAST

Algorithm Description

FAST [7] is fundamentally a threshold based algorithm. To determine if a pixel is a corner,
the algorithm marks the 16 pixels in a “circle” around the candidate pixel as significantly
brighter, significantly darker or similar in intensity to the candidate pixel. This classification
is determined by a threshold t, i.e. if the intensity pi of a pixel in the circle centered on a
pixel c satisfies pi � t > pc then the pixel i is marked significantly brighter, and if pi + t < pc

then pixel i is marked significantly darker. Otherwise the pixel is marked as being similar in
intensity to the candidate pixel. We then look for N contiguous pixels that are either signifi-
cantly brighter or darker in the circle. N = 12 gives us a very fast way to reject non-corners.
To avoid adjacent pixels being marked as corners, we use a technique called Non-Maximal
Suppression, computing a score function (often a brightness metric such as

P16
i=1 pi), and

throwing out potential corners adjacent to other potential corners with a higher score. See
the figure below (2.1) for a visual aid for this algorithm.

This algorithm has a Machine Learning extension using a Decision Tree Classifier [8].
The algorithm marks each of the 16 surrounding pixels around a candidate as 1 if the pixel
is significantly brighter, -1 if the pixel is significantly darker, and 0 otherwise. Then it treats
these discrete embeddings as features, and tries to predict when a candidate will be marked
as a corner by FAST. This is useful because it can theoretically reduce computation by having
fewer than 16 levels in the decision tree. However, in practice, this algorithm is di�cult to
train because we have a severe imbalance of corners to non-corners; interest points typically
take up no more than 1-5% of the pixels in an image (liberally speaking).
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Figure 2.1: A visualization of the FAST algorithm from Rosten et al’s original paper[7].

Noise

When noise is added to images, the number of interest points detected by FAST shoots up
extremely quickly, which is problematic for any application using the interest point detector.
Let us consider a toy example to demonstrate why this phenomenon occurs. Consider a
grayscale image which displays a single color, with all pixels having an intensity of 127.

Consider a point p in the image. Clearly, this point in the noise free image cannot be
considered a corner since there is no di↵erence between any of the pixels. However, now add
gaussian noise z to every pixel’s intensity where z ⇠ N(0, t), where t is the FAST threshold.
Then, the probability that any pixel in the 16 pixel circle around p has an intensity no smaller
than 127� t is approximately 84%, and the probability that p’s intensity is no greater than
127�2t is approximately 2.5%. Assuming N = 12 (i.e. we look for 12 contiguous pixels that
are significantly brighter or darker than the center pixel in the surrounding circle), defining
X = k to be the a random variable representing the event where the longest chain of pixels
with intensity greater than or equal to 127� t is exactly k, we have

P (X � 12) = P (X = 16) + P (X = 15) + P (X = 14) + P (X = 13) + P (X = 12)

= 0.8416 +16⇥ 0.8415 ⇥ 0.16+ 16⇥ 0.8414 ⇥ 0.162 +16⇥ 0.8413 ⇥ 0.162 +16⇥ 0.8412 ⇥ 0.162
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⇡ 37.7%

Then, the probability that p is marked as an interest point is then

2⇥ P (X � k)⇥ P (p  127� 2t)

⇡ 0.377⇥ 2⇥ 0.025

= 1.89%

The factor of 2 accounts for symmetry about 127. Then, if we have an image with dimen-
sions of approximately 1200⇥ 375 as in our experiments detailed later on in this thesis, we
expect approximately 8500 interest points in this new image. Note that this is a loose lower
bound on the number of interest points we expect, as to get the true number we would
have to approximate an integral over all possible combinations of p’s noisy intensity and the
intensities of the remainder of the pixels. We simulated this exact scenario and found that
on average we got roughly 23000-25000 interest points depending on our choice of t. In sum-
mation, our addition of gaussian noise has brought us from 0 interest points in a completely
uninteresting, information scarce image to almost 8500 in expectation at minimum! This
demonstrates the issue noise brings: additive noise will add a large amount of points which
convey little information about the 3D structure of the scene displayed in the image to our
pose estimation calculation, resulting in poorer overall performance in trajectory estimation.
Even in normal images, the above example demonstrates that patches of the image which
are relatively uniform and uninteresting will eventually get marked with many corners as
noise is added. The figures below (2.2, 2.3 and 2.4) demonstrate this issue with FAST.

2.2 Visual Odometry

Monocular Visual Odometry [10] (VO) is a SLAM algorithm which maps a set of images
taken by a moving camera to a 3D trajectory. The algorithm works as follows. First, an
interest point detector (like FAST) is used to generate a number of interest points (pixels)
in an image. Next, a subsequent image is taken, and using an Optical Flow algorithm (in
our case the Lucas-Kanade algorithm), we obtain an estimate of where those pixels are
in the second image. This gives us 2 sets of interest points corresponding to the same
”features” in both images. Next, using epipolar geometry, we are able to obtain estimates
for the SO(3) rotation matrix R and the R

3 translation vector t, where t represents the
translation between the cameras assuming the global coordinate system is framed relative to
the first image (we will need to adjust this t to get a global pose estimate). Note that these
estimates only provide information about the directions of the positions and orientations
of the cameras between both images; scale information cannot be inferred from Monocular
Visual Odometry. This can be alleviated through inertial measurements (which can be fused
with Visual Odometry to get Visual Inertial Odometry algorithms), or through adding a
second camera (which must be spaced some distance apart from the first camera to get
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useful distance measurements). For the sake of our experiments, we use the ground truth
scale information and focus on improving cumulative VO pose estimations. If the scale of
the motion between the two images is greater than some threshold (as we don’t want the
trajectory to change if the system is not moving), we can simply use the updates

pt = pt�1 + st ⇥Rt�1t

Rt = Rt�1R

to estimate our position and orientation. Here pt represents our position in 3D space at time
t, Rt represents our orientation at time t, and st represents the scale factor (how far we
moved in real world units) at time t (we use the ground truth for this). Note that R0 = I

and p0 = 0 unless we are given estimates a priori. On subsequent iterations, we use the
corresponding points detected by the optical flow algorithm as our set of interest points. At
each subsequent image, this number of interest points will drop (as points start to leave the
frame or become obscured). Once the number of interest points we are tracking drops below
some threshold, we re-run FAST to obtain a new set of interest points and continue. When
noise is added to images, this last step often interferes with obtaining a good pose estimate,
slowly throwing the trajectory more and more o↵ course, as demonstrated below in 2.5 and
2.6.

Figure 2.2: An example of corners detected by FAST on a grayscale image. The FAST
threshold is set to 10. Black markers denote corners detected by FAST.
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Figure 2.3: An example of corners detected by FAST on a grayscale image corrupted by 0-
mean Gaussian noise with a standard deviation of 2 is added to the image. Pixels are rounded
to the nearest 8-bit value after noise is added, and capped between [0, 255] inclusive. The
FAST threshold is set to 10. Black markers denote corners detected by FAST. Notice that
the pixels on the left and right side with high brightness and somewhat uniform color have a
massive spike in corners detected. This is partially due to the phenomenon described above,
and made worse due to the fact that pixel values are capped to be no greater than 255.

Figure 2.4: An example of corners detected by FAST on a grayscale image corrupted by
0-mean Gaussian noise with a standard deviation of 6 is added to the image. Pixels are
rounded to the nearest 8-bit value after noise is added, and capped between [0, 255] inclusive.
The FAST threshold is set to 10. Black markers denote corners detected by FAST. The
image has significantly more corners detected, many of which clump together. Non-maximal
suppression can only mitigate adjacent pixels from being marked as corners, so the clustering
e↵ect of corner detections in uniformly colored image segments still occurs.
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Figure 2.5: KITTI Sequence 3 trajectory using FAST when there is no image noise. In green
is the predicted trajectory, and in red is the ground truth trajectory. The green trajectory
and red trajectory overlap almost completely, indicating that at 0 noise, FAST provides a
very accurate trajectory.

Figure 2.6: KITTI Sequence 3 trajectory using FAST with 0 mean Gaussian noise with a
standard deviation of 70. In green is the predicted trajectory, and in red is the ground truth
trajectory. The green trajectory and red trajectory stop overlapping very early on, indicating
that FAST failed quickly under noise.
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Chapter 3

Dynamic Thresholding

3.1 Control Feedback for Interest Point Detection

As we saw in the previous chapter, when the number of interest points detected by FAST in-
creases dramatically under noise, the information conveyed by those interest points starts to
become less and less useful. Since the primary issue is that a large number of points which are
not at all corner-like start to resemble a corner when noise is added, the natural inclination
can simply be to set the threshold of FAST higher. However, even at a fixed threshold, the
number of interest points detected in a sequence of images fluctuates greatly, since we don’t
expect every image to have the same amount of corners. Noise makes this issue even worse,
increasing the magnitude of these fluctuations. To improve FAST, we propose a method to
dynamically regulate the number of interest points detected without increasing the spatial
or computational complexity of the algorithm. Qualitatively, the automatic tuning sets a
acceptable range of interest points. If FAST produces more than the upper limit of that
range, we set the new threshold to be old threshold multiplied by a constant greater than 1
(rounding to the nearest integer); increasing the FAST threshold will reduce the number of
interest points for that portion of the sequence of images. Similarly, if FAST produces fewer
than the upper limit of that range, we set the new threshold to be the old threshold multi-
plied by a constant less than one. Reducing the FAST threshold will increase the number of
corners detected. This algorithm can be thought of as a simple control feedback mechanism.

Overall, this mechanism may seem counterintuitive: we are changing a 1 parameter
algorithm to a 5 parameter algorithm, where our parameters are the upper and lower limit
of the number of interest points we desire, the increasing and decreasing rate at which
we change the FAST threshold, and the starting FAST threshold. However, in practice,
the choice of these hyperparameters is far more robust and less sensitive than the FAST
threshold alone, and we have very good heuristics for them. Experimental observations and
tuning suggestions are described below.

Another natural choice of dynamicly modifying the FAST threshold could be an additive
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solution, where if the threshold is too high we decrease by a constant value and vice versa
instead of reducing by a multiplicative factor. This works too, though for the purposes of our
experiments we stuck with the multiplicative strategy because it allowed us to use the same
algorithm when dealing with other threshold-based interest point detectors with a di↵erent
scale of thresholds.

3.2 Hyperparameter selection

In practice, dynamic thresholding is primarily dependent on a good choice of a range of
interest points. Some heuristics we can provide are that 1000-1300 to 2000-2200 worked well
across many di↵erent sequences when the standard deviation of added gaussian noise was less
than 60. Additionally, more gross levels of corruption beyond Gaussian noise with a standard
deviation of 60 may require this range to be shifted up slightly to somewhere around 1500-
2500. The performance increase is only marginal though, with trajectories looking more or
less the same visually. A relatively wide range of acceptable interest point counts allows for
the threshold to remain stable; changing an already good threshold too often can result in
poor performance. The rates of change for the FAST threshold in dynamic thresholding are
fairly robust given a good range of interest points, though it is important not to set them to
be too large to avoid instability. 1.1 and 0.9 worked well in the experiments we performed,
but not much di↵erence was noticed when changed to 1.25 and 0.8. 1.5 and 0.67 provided
some benefits on certain sequences, but caused the trajectory to degrade and go o↵ course in
several others due to dropping the threshold too low or increasing it too much during crucial
frames (i.e. during turns). When dealing with a sequence or additive noise which changes
the number of interest points between consecutive images at a very fast rate, these choices
may need to be increased, though this is entirely dependent on the sequence and camera.
All experiments were performed on the KITTI Odometry dataset. Finally, the choice of
a base FAST threshold is the least important hyperparameter to tune, as it gets adjusted
relatively quickly. However, on shorter sequences with gross corruptions, it may take longer
for the images to re-run the FAST algorithm because there are so many interest points to
track. In these conditions, picking a relatively large threshold (roughly 70 worked for us in
these situations) can help the algorithm to converge to a relatively stable number of interest
points quickly.
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Chapter 4

Dynamic Thresholding Experiments

4.1 Experimental Setup

To evaluate the dynamic thresholding algorithm, we will run the visual odometry algorithm
on the KITTI Odometry Dataset. This dataset contains roughly 1200⇥ 375 8-bit resolution
greyscale images[4]. Note that although this sequence has both left and right images for
binocular algorithms, we will only use the left (image 0) sequences for our monocular VO
setup. We use sequences 3, 6 and 0 to represent easy, medium and hard trajectories which
are also realistic in di�culty. The di�culty of a sequence can be defined by 3 characteristics:
1) How sharp/how prolonged turns are in the sequence 2) How far straight the sequence goes
on after a di�cult turn and 3) How many images the sequence contains. Sequence 3 can
be considered easy as it has gradual turns over approximately 800 images. Sequence 6 has
2 full 180 degree turns over approximately 1100 images. Sequence 0 has many large (90+)
degree turns over almost 4500 images.

For a baseline comparison, we fix the FAST threshold at 50 for our initial experiments,
chosen by cross-validating across accuracy with multiple thresholds. While other smaller
thresholds provide marginally better performance with no noise, they fail extremely quickly
when even a small amount of noise is added to the images, so this gives FAST a fair chance
against the dynamic thresholding algorithm. For Dynamic Thresholding, we pick a range of
interest points from 1000 to 2000, and we pick rates of increase and decrease as 1.1 and 0.9
respectively. See Chapter 3 for more information on the choices of these parameters.

We model noise using independent identically distributed gaussian random variables for
each pixel centered at 0 with varying standard deviation. After noise is added, pixels are
rounded to the nearest integer between 0 and 255, and any pixels outside of this range are set
to 0 or 255, whichever is closer. The goal of this experiment is to simulate on-chip variation
of scale cameras which may be found on SWARM systems [2].
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For our first set of experiments, we vary the standard deviation of the sampled additive
Gaussian noise in the range of [0, 60]. Note that the noise used in our experiments is higher
than most found in scale photography, but could account for other process and computation
errors.

With image noise added, we run both FAST and the Dynamic Thresholding algorithms
on each sequence. We measure the mean squared error between the predicted trajectory and
the given ground truth for each sequence. To account for variation in between runs, we run
the sequences 10 times each for every noise setting on both algorithms. This gives us a good
estimate of the mean and variance of each algorithm when dealing with noisy images.

In a second set of experiments, we model a sequence in which images become dynamically
corrupted as the robot moves–a varying noise level. Similar to a random walk, we update
the Gaussian noise standard deviation by adding a random pixel noise shift X 2 {�1, 0, 1}
(discrete uniform distribution) to the current noise standard deviation. The pixel noise is
capped between 0 and some upper limit L 2 {15, 30, 45} to see how performance varies with
di↵erent ranges of noise intensity during the sequence. This noise parameter starts o↵ at 0
for all sequences. This type of noise is motivated by the observation that the number of in-
terest points detected during a sequence tends to fluctuate depending on lighting conditions
and during turns, so it may be helpful for an interest point detector to deal with situations
where the clarity of the image changes as the sequence evolves.

4.2 Results and Observations

Visualizing the results proved to be an interesting task, as at relatively higher levels of
image corruption, FAST failed completely, resulting in an extremely o↵-course trajectory.
This, of course, shoots the MSE of the predicted trajectories up enormously. To make our
results more interpretable, we display the ratio between the MSE of FAST and Dynamic
Thresholding, where a ratio above 1 indicates that regular FAST gives a higher error in its
trajectory than FAST with dynamic thresholding.

Dynamic Thresholding shows a clear improvement over the standard FAST algorithm
in static noise (4.1) and a marginal improvement in dynamic noise (4.2) when noise levels
become relatively high (see figures 4.3 and 4.4 for example trajectories). With static Gaussian
noise with a standard deviation greater than 20, standard FAST trajectory MSE is on average
23.1, 82.9, and 4.7 times higher for sequences 0, 3 and 6 than the MSE of the dynamic
thresholding trajectory. With dynamic Gaussian noise with an upper limit of 30 or greater,
the standard FAST trajectory MSE is on average 7.3, 44.5, and 5.5 times higher for sequences
0, 3 and 6 than the MSE of the Dynamic Thresholding trajectory. Importantly, these results
show that visual odometry can still be performed in extremely noise heavy situations, which
will be required to translate pose estimation to microrobots using low-power, noisy cameras.
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Figure 4.1: Static Noise: ratio of standard FAST error over average Dynamic Threshold-
ing FAST MSE (n = 10), higher ratio is lower error, with static i.i.d. Gaussian noise of
intensities2 [5, 60] on KITTI sequences 0, 3, 6. The lower noise levels are less consistent,
but still show an improvement with Dynamic Thresholding in FAST when the noise levels
are constant. The dynamics thresholding shows a clear trend of improvement as the noise
levels continue to increase beyond � = 25. The bars around each line indicate the standard
error of the observations.

The extreme performance di↵erence on sequence 0 in the noiseless setting occurs because
FAST had a few sequences where it missed a turn completely, resulting in a completely
incorrect trajectory. This error is compounded due to sequence 0’s extreme length, as mis-
takes tend to compound immensely in Visual Odometry. This issue is addressed in later
experiments in Chapter 6.
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Figure 4.2: Dynamic Noise: ratio of standard FAST error over average Dynamic Thresh-
olding trajectory MSE (n = 10), higher is better, with dynamically changing additive noise
over KITTI sequences 0, 3, 6. The x-axis is the maximum noise level in the dynamic setting,
L. There is a reduction in mapping error of up to 50x depending on the noise level and
sequence. The bars around each line indicate the standard error of the observations.

Figure 4.3: Trajectory of FAST without dynamic thresholding on sequence 0 when 0 mean
gaussian noise with a standard deviation of 60 is added to the images. In green is the
predicted trajectory, and in red is the ground truth trajectory. FAST is able to closely
follow the until about halfway, where it misses a turn and diverges.
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Figure 4.4: Trajectory of FAST with dynamic thresholding on sequence 0 when 0 mean
gaussian noise with a standard deviation of 60 is added to the images. In green is the
predicted trajectory, and in red is the ground truth trajectory. FAST is able to closely
follow the trajectory longer with dynamic thresholding, beginning to diverge after about
80% of the trajectory has completed.
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Chapter 5

Unsupervised Learning

In a similar manner to FAST’s supervised learning extension, we seek to use unsupervised
learning to find a more e�cient algorithm for interest point detection which, when paired
with the dynamic thresholding algorithm described in Chapter 3, will outperform FAST
(also paired with dynamic thresholding).

5.1 Motivation

Unsupervised Learning approaches for interest point detection have been proposed [9], but
none perform e�ciently enough where they can be considered as a viable alternative to
FAST. To do this, we require that the learned interest point detector to focus on a very
small number of pixels around a candidate pixel. This leads us to formulate the detector
as a sparse learning problem. We will consider a (possibly parametrized) score function f✓

which assigns every pixel a score in R, where the score corresponds to how ”interesting”
the point is. Ideally, we want the same point in two di↵erent (slightly moved and rotated)
images to have the same score, since they are both displaying the same point in 3D space.

5.2 Formulation

We can define a set of candidate features around every candidate pixel (ignoring borders,
since those pixels often get lost quickly during the optical flow step anyway), where a natural
choice is the n⇥n block around that pixel. Denote the set of features for point i in 3D space
in image 1 as xi

1 and in image 2 as xi
2. Then, we wish to optimize the function

min
✓,W

�||W ||1 +
mX

i=1

(f✓(W � x
i
1)� f✓(W � x

i
2))

2 +R(f✓(W � x
i
1)) +R(f✓(W � x

i
2))

Where m is the number of datapoints in our training set, R is a regularization function which
can be used to center and control the distribution of pixel scores within an image, and W is
a mask which selects which pixels are most important to consider around a candidate pixel.
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Sparsity

In our objective function

min
✓,W

�||W ||1 +
mX

i=1

(f✓(W � x
i
1)� f✓(W � x

i
2))

2 +R(f✓(W � x
i
1)) +R(f✓(W � x

i
2))

We use the L1 norm to encourage sparsity. The reason we do this is that optimizing to reduce
the number of nonzero entries in W would require the use of the L0 pseudonorm. However,
optimizing this norm is intractable. The L1 norm is the convex hull of the L0 pseudonorm,
so it provides the best possible tractable replacement for the L0 pseudonorm. Unfortunately,
the L1 norm is not continuously di↵erentiable, so the objective into plugging into a gradient
descent algorithm will not work. Moreover, even if a subgradient method is used, it will
not necessarily encourage sparsity within a feasible number of iterations, requiring us to
decide which weights to set to 0 based on a threshold. Therefore, we will use a proximal
gradient descent method, which works by first di↵erentiating our loss function (excluding
the L1 term) with respect to W , obtaining the gradient dL

dW . Once we run our gradient step
on W , we apply the soft thresholding operator to W , which is defined as

soft�(x) = sign(x)⇥max(|x|� �, 0)

To summarize, in order to encourage sparsity in the number of pixels we consider for each
candidate interest point, we run the updates

Zt = Wt � ↵⇥rWf

Wt+1 = soft�(Zt)

5.3 Data Generation

To generate training data, we need to gather pairs of points between pairs of images which
represent the same point in 3D space. Once we have these points in both images, we can
simply grab the n⇥ n block of pixels around each point as our features. To do this we rely
on epipolar geometry and a ground truth knowledge of the relative pose between each pair
of images. If a point p in 3D space, where p = ( px py pz 1 ) is present in 2 images, then
we have

p1 = K (R1 �R1C1 ) p

p2 = K (R2 �R2C2 ) p

where Ri represents the rotation matrix of camera i relative to the global coordinate frame,
K represents the camera calibration matrix (which is the same for our purposes since we
will be using a single moving camera), and Ci represents the center of the camera relative to
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the global coordinate frame. To find p2 given p1, we must assume that p is visible to both
cameras. Given this, we start by multiplying p1 by R

�1
1 K

�1 = R
T
1K

�1. This gives us

R
T
1K

�1
p1 = ( I �C2 ) p

= ( px py pz )� C1

Thus,
R

T
1K

�1
p1 + C1 = ( px py pz )

Then,
R

T
1K

�1
p1 + C1 � C2 = ( px py pz )� C2

= ( I �C2 ) p

= R
�1
2 K

�1
p2

Therefore,
p2 = K (R2 �R2C2 ) p

= KR2 ( I �C2 ) p

= KR2(R
T
1K

�1
p1 + C1 � C2)

Note that the KITTI Odometry dataset gives us a ground truth pose for each image of the
form

(Ri ti )

Therefore, we replace C1 with �R
T
1 t1 and C2 with �R

T
2 t2 for an overall equation of

p2 = KR2(R
T
1K

�1
p1 �R

T
1 t1 +R

T
2 t2)

= K(R2(R
T
1K

�1
p1 �R

T
1 t1) + t2)

Dividing by the third entry (to avoid floating point issues) and rounding p2 to the nearest
available pixel, we now have 2 pixels in 2 separate images which correspond to each other
after moving. In order to simulate noisy conditions, we will add noise to our features in the
following manner: first we sample a value s uniformly in [0, 80], and add iid noise z1 ⇠ N(0, s)
to p1’s block of features. Then we sample a second variable t ⇠ N(s, 1) and add i.i.d. noise
z2 ⇠ N(0, t) (rounding both features to be integers in [0, 255]). This will allow for us to train
on noisy data so that our interest point function will not vary wildly when it encounters
noise. Additionally, we make sure the noise added in between a pair of points is roughly, but
not exactly the same to simulate dynamic conditions we may encounter like lighting changes.
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5.4 SLIPD

Because we are aiming to minimize computation as much as possible, a natural choice of f
is to apply the mask W to our features, and simply sum over them (note that in this case f

is no longer parametrized and ✓ can be ignored). What we obtain is a Sparse Linear Interest
Point Detector, or SLIPD. If we stack our features for each pair row-wise into matrices X1

and X2 respectively, we obtain the following as a part of our objective:

mX

i=1

(f✓(W � x
i
1)� f✓(W � x

i
2))

2 = ||X1W �X2W ||22

= ||(X1 �X2)W ||22
Ignoring the regularization term (for now), we obtain an objective

min
W

�||W ||1 + ||(X1 �X2)W ||22

This resembles an singular vector problem with L1 regularization! All thats left is a constraint
on the norm L2 norm of W. We replace the regularization function R with a unit norm
constraint on W (||W ||22 = 1). This can be solved in several ways. We can obtain a basis
using the k singular vectors corresponding to the k smallest singular values of X1 �X2 and
find a sparse vector in that basis (using several Linear Programs), or we can use Projected
Proximal Gradient Descent. We use the latter for convenience sake.

Preliminary Results

Preliminary Results for SLIPD were unsuccessful, with the algorithm performing worse than
FAST (See figure below). What we took away from this is that f needs to impose some
kind of nonlinearity, as a linear function is not expressive enough, our hyperparameters need
tuning, and we should probably impose some constraints so that the thresholds we pick have
a predictable behavior. This leads us to our more successful new formulation

5.5 Leaky-SLIPD

To address the issues faced by SLIPD we add a few modifications. Firstly, f now applies
a nonlinearity of leaky-relu to W � x before summing over all dimensions. Here we use 0.5
as our leaky relu parameter. Secondly, we impose a KL divergence penalty R to make the
distribution of scores outputted by the function resemble a gaussian. Specifically, over every
minibatch, we penalize the negative log probability of the interest point scores as if they
were sampled from a unit gaussian. This will make the behavior of the thresholding more
predictable. We found that this fixed many of the issues we encountered with SLIPD and
provided comparable performance to FAST.
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Computational E�ciency

For our experiments (see Chapter 6) we obtained a mask W with 8 nonzero parameters after
training Leaky-SLIPD.

Sequential Comparison

First, we consider a comparison of the number of primitive operations (branches, bit shifts,
additions and multiplications) necessary for both algorithms without specialized hardware.

For Leaky-SLIPD, consider a general mask which considers a n ⇥ n block of candidate
pixels around each pixel, and obtains a mask with a sparsity of k. Then, obtaining a score for
each pixel requires 2 steps. First, we center our data. While this would traditionally require
dividing by 127.5 and subtracting 1 to get the data in [�1, 1] for ease of training, this first
division is computationally expensive. Thus, we replace the division by 127.5 with a division
by 128. Our experiments do not show any significant performance di↵erences (that is, outside
the margin of error) between these preprocessing steps on any sequences. As an example,
we show the di↵erences between these two methods on KITTI Sequence 3 in figures 6.8 and
6.7 in Chapter 6. This requires 1 floating point multiplication (which can be implemented
as a bit shift when dividing by 128) and 1 floating point addition operation per pixel. Then,
for each pixel, we apply the mask W . This requires k floating point multiplications. Next,
we check if any of the nonzero mask entries have a negative output output, and if so we
multiply it by 0.5 (right shift by 1 bit), giving us k branching operations, k floating point
multiplications, and up to k right shift operations. Finally, we sum over all these values,
requiring k � 1 floating point additions. To determine if a point is interesting, we compare
this final score to a pre-set threshold, requiring 1 branch statement. To run non-maximal
suppression, we already have a set of interest point scores, so we only need to compare
each possible corner to its adjacent pixels, requiring 8 branch statements. Thus, in total,
Leaky-SLIPD requires 17 branch statements, k � 1 additions, k multiplications, and k right
shift operations in the worst case. For an M ⇥K image, Leaky-SLIPD can operate on all
pixels in the M � n ⇥K � n sub-image (to avoid edge cases). Thus, on an M ⇥K image,
Leaky-SLIPD requires

17(M � n)(K � n)

branch statements
(k � 1)(M � n)(K � n) +MK

additions
k(M � n)(K � n) +MK

multiplications and
k(M � n)(K � n)
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right shift operations. Note that with vector instructions, we can solve for multiple corners
at once (this applies to FAST too). For k = 8 and n = 14 as we have, this simplifies to

17(M � 14)(K � 14)

branch statements
7(M � 14)(K � 14) +MK

additions
8(M � 14)(K � 14) +MK

multiplications and
8(M � 14)(K � 14)

right shift operations.
Compare this to FAST. There are several ways to implement FAST, with various heuris-

tics for improving performance. If the hyperparameter N � 12 (meaning we require 12
or more contiguous pixels in the surrounding circle to be significantly brighter or darker
than the center pixel), a pixel can be rejected in very few branching operations by checking
whether at least 3 out of pixels 1, 5, 9 and 13 in the circle surrounding a pixel are marked
as bright or dark. However, this does not guarantee that any pixel which is not a corner
will be rejected in 4 operations. Let us assume that we run this rejection test on every
pixel, and then default to the regular FAST algorithm if it passes. Then, we first check
whether pixels 1 and 9 are marked as either bright or dark. This takes 4 branch statements.
Denote the proportion of pixels in the image which will be rejected at this step as q1. If so,
we check pixels 5 and 13 and see whether any group of 3 of those 4 pixels are marked as
bright or dark. This will take 12 branch operations. Denote the proportion of pixels in the
image which will be rejected at this step as q2. Thus, the rejection test will take 4 branch
statements to be reject in the first step, and up to 12 in the second step before we run FAST.

To run FAST, we must be able to label each pixel as significantly brighter, darker or
in between as compared to the center pixel. Naively, this would require between 1 and 2
addition operations for each of the 16 pixels. However, we can reduce this down to 2 addition
operations and store them in registers. First, for pixel p’s intensity Ip and a threshold t,
we can calculate tbright = Ip + t and tdark = Ip � t. Then, we need 16 branch statements
to determine which label each of the surrounding pixels gets. However, because we don’t
care about the order in which the contiguous bright or dark pixels occur, we may need to
look at each of the 16 surrounding pixels more than once. Otherwise, we could naively begin
counting a ”significant” sequence from the middle rather than the beginning. The worst case
scenario we could run into is that a sequence begins 1 pixel before our starting point and
that the sequence is of exactly N pixels. In this case, we need to check N � 1 pixels twice to
realize that p is a corner. Additionally, we need to keep track of how long a sequence gets.
Assuming N > 8, which is a standard for FAST, we would need to run N � 1 additions to
keep track of the length of the contiguous sequence. This gives us a total of 16 + N � 1
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branch statements and 2 + N � 1 additions to determine if a pixel is a corner in the worst
case. If a pixel is marked as a corner, (and we assume a proportion q3 of them will do so)
we also need to determine a corner ”score” to run non-maximal suppression. Assuming that
we use a simple corner score like the sum of the surrounding pixel intensities (a widely used
choice), we will need 15 more addition operations. Then, to run non-maximal suppression,
we need to compare each pixel to all adjacent pixels which are marked as corners, and only
mark that pixel as a corner if it has the highest corner score as its neighbors. This will take
8 branch statements. Thus, in the worst case, FAST requires 23+N branch statements and
16+N additions. For an M⇥K image, FAST can operate on all pixels in the M�6⇥K�6
sub-image (to avoid edge cases). Incorporating our rejection test, on an M⇥K image, FAST
requires

(M � 6)(K � 6)((1� q1 � q2 � q3)(15+N +4+12)+ 4q1 + q2(4+ 12)+ q3(23+N +4+12))

= (M � 6)(K � 6)((1� q1 � q2 � q3)(31 +N) + 4q1 + 16q2 + q3(39 +N))

branch statements and

(M � 6)(K � 6)((1� q1 � q2 � q3)(1 +N) + 2(q1 + q2)) + q3(16 +N))

addition statements. For N = 12, which is commonly used, then we have

(M � 6)(K � 6)(43(1� q1 � q2 � q3) + 4q1 + 16q2 + 51q3)

branch statements and

(M � 6)(K � 6)(13(1� q1 � q2 � q3) + 2(q1 + q2)) + 28q3)

additions.
While a direct comparison between the two algorithms requires values for q1, q2, q3, it

is clear that in the worst case FAST performs almost 3 times as many branch statements
(using N = 12), and about double the addition statements. However, FAST doesn’t need to
perform any multiplications or right bit shifts, each of which are performed roughly as often
as the additions in Leaky-SLIPD.

Parallel Comparision

Leaky-SLIPD’s computations can be done in parallel using specialized hardware. First, when
centering the pixels in [�1, 1], all pixels have to run the same operation (divide by 127.5 and
subtract 1). This can be parallelized in hardware. Assuming we have h1 units of hardware
to execute this operation, this step gives us a total of MK

h1
additions and MK

h1
multiplications

(note: this is in terms of time taken to perform the operation, as the number of operations
does not change). Until the summation at the end, all computations performed on the k

pixels can be done using separate identical hardware to apply the mask and nonlinearity.
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Assuming we have k of these hardware units to multiply by the mask, check whether the
result is greater than 0 and if not perform a right shift on its bits, then this operation will
take as much time as 1 multiplication, 1 branch statement and 1 bit shift for each pixel
processed. Then, summing over the results can also be parallelized assuming k is a power
of 2 (which it is in our experimental results). It will take log2(k) steps of additions to get
the final score. We then need 1 branch operation to determine if the pixel is greater than
the predetermined threshold. Non-maximal suppression can also be performed using parallel
hardware (we have no edge cases due to padding) since we simply need to check if the corner
score of a pixel is greater than all of its neighbors, which will take the equivalent of 2 branch
operations in total (1 to compute each individual comparison, and 1 to check the condition
given every comparision). Thus, in total, with specialized hardware Leaky-SLIPD can take
the equivalent of

MK

h1
+ (M � n)(K � n)

multiplications
MK

h1
+ (M � n)(K � n)log2(k)

additions
4(M � n)(K � n)

branch operations, and
(M � n)(K � n)

right bit shifts in terms of time with the right hardware. At any given time, the hardware
will require max(h1, k) multiplications, max(h1, log2(k)) additions, 1 right bit shift and 8
branch statements. For k = 8 and n = 14 as we have, this simplifies to

MK

h1
+ (M � 14)(K � 14)

multiplications
MK

h1
+ 3(M � 14)(K � 14)

additions
4(M � 14)(K � 14)

branch operations, and
(M � 14)(K � 14)

right bit shifts in terms of time. The hardware will require

max(h1, 8)

multiplications
max(h1, 3)
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additions, 1 right bit shift and 8 branch statements
FAST’s rejection test can be made much faster using optimized hardware. All combina-

tions of pixels 1, 5, 9 and 13 can be checked at once after comparing to tdark and tbright (which
themselves can be computed in parallel). This will take 3 steps of branching operations: 1 to
compare to tdark and tbright, 1 to check each of the 4 combinations of 3 pixels, and 1 to check
if any of these 4 combinations contains all bright or all dark pixels. Assume the proportion
of pixels rejected by this step is q1+ q2. Next, optimizing for FAST in hardware can be done
by noticing that if a sequence of N contiguous pixels contains all bright or all dark pixels, it
must have a starting point (unless all the pixels in the circle are bright or dark). Thus, we
can check all 32 options in parallel and ignore counting the length of each sequence. This
can be done with the same set of branching operations for all 16 starting positions, which
check if pixel 1 is bright, and if so is pixel 2 bright and so on (with a counterpart for dark
pixels). This will take N branching operations. Once this is done, if the pixel is marked as
a corner it will need a corner score (denote the probability of this happening as q3. This will
similarly take log2(16) = 4 additions, and 2 branch operations to actually run non-maximal
suppression. Thus, in total, with specialized hardware, FAST can take the equivalent of

(M � 6)(K � 6)(3(q1 + q2) + (3 +N + 2)q3 + (1� q1 � q2 � q3)(3 +N))

= (M � 6)(K � 6)(3(q1 + q2) + (5 +N)q3 + (1� q1 � q2 � q3)(3 +N))

branch operations and

(M�6)(K�6)((q1+q2+q3)+(1+4)(1�q1�q2�q3)) = (M�6)(K�6)((q1+q2+q3)+5(1�q1�q2�q3))

additions. For N = 12, our number of branch statements simplifies to

(M � 6)(K � 6)(3(q1 + q2) + 17q3 + 15(1� q1 � q2 � q3))

At any given time, the hardware will require 32 branch operations, and 4 additions.
While again, a direct comparison between the two algorithms requires values for q1, q2, q3,

it is clear that in the worst case FAST performs approximately 4 times as many branch
statements (using N = 12), and about 67% more addition statements. However, FAST
doesn’t need to perform any multiplications or right bit shifts; for each pixel these operations
are only performed twice and once respectively in the worst case for Leaky-SLIPD. In terms
of the amount of computation that needs to be done at once, Leaky-SLIPD will need to
perform up to max(h1, 8) multiplications at once (likely the most intensive step), and FAST
will have to perform 32 branch statements at once.

Energy Analysis

To analyze the energy cost of Leaky-SLIPD we will assume a preprocessing step such that
the algorithm boils down to mainly multiply-accumulate (MAC) operations. This step will,
for each of the surrounding ”feature” pixels, compare the sign of the centered pixel intensity
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and its corresponding weight during each Leaky-SLIPD operation (for a given candidate
interest point). Then, if the signs do not match the pixel’s centered value will by divided by
2, amounting to a bit shift (this step will essentially perform the bit shift before applying the
mask). We do nothing if the signs do match. Finally, the (possibly bit shifted) centered pixel
values are multiplied by their mask value and summed over to get the final Leaky-SLIPD
score for the candidate interest point. This operation will amount to k MAC operations per
candidate interest point (where k is the sparsity of the mask). Then, for an M ⇥K image
where we consider an n⇥ n block of candidate ”feature” pixels, this translates to

k(M � n)(K � n)

MAC operations. If we choose to use a MAC operation to center each pixel instead of using
a separate bit shift and addition to divide by 128 and subtract 1, we get

MK

extra MAC operations. Assuming each MAC costs 1 pJ, then for k = 8, n = 14 (as in our
learned mask) and M = K = 128 this translates to

8(128� 14)(128� 14)(1⇥ 10�12)

⇡ 0.104µJ

As an energy cost for Leaky-SLIPD on the entire 128 ⇥ 128 image. Assuming we also use
MAC’s for the preprocessing steps, we get

(8(128� 14)(128� 14) + 1282)(1⇥ 10�12)

⇡ 0.1204µJ

As an energy cost for Leaky-SLIPD on the entire 128 ⇥ 128 image. We do not provide a
direct comparison to FAST here because FAST does not use MAC’s in its implementation.
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Chapter 6

Unsupervised Learning Experiments

6.1 Experimental Setup

To evaluate Leaky-SLIPD, we follow a very similar procedure as in our dynamic thresholding
experiments. We use the same sequences from the KITTI Odometry Dataset.

First, we train Leaky-SLIPD as we described in chapter 4. To do this, we use � = 0.005,
a learning rate of 0.1 and 30 epochs. Additionally, we divide our pixel values by 127.5 and
subtract 1 to center our data in the range [�1, 1]. Our results give us a mask W with 8
non-zero entries.

When using dynamic thresholding, both FAST and Leaky-SLIPD will use the same range
of interest points of 1300-2100 (this is slightly higher than in previous experiments as we
found that we got a closer average number of interest points detected between both algo-
rithms; performance overall was comparable to 1000-2000). Both algorithms will use the
rates of 1.1 and 0.9 to adjust their thresholds. Finally, Leaky-SLIPD will have a base
threshold of 1.0 and FAST will start o↵ at 70 (we increase this because it allows FAST and
Leaky-SLIPD to start o↵ at and converge to nearly the same number of interest points in
roughly the same amount of time). We checked to make sure that no experiment had one
algorithm detecting significantly more or fewer interest points than the other so that results
were more directly attributable to the algorithms themselves. To avoid extremely large and
hard to interpret MSE numbers from our previous experiments, we change our evaluation
metrics slightly. Firstly, we truncate sequence 0 at 1500 images so its evaluation metric is
more comparable to the other 2 sequences (as early errors will result in very high deviations
later on even if the algorithm doesn’t make any further mistakes) and to speed up testing.
Secondly, we modify the evaluation metric from mean squared error to mean euclidean error
(MEE), which can be related as MEE =

p
n⇥MSE. To get the MEE ratio from our

previous graphs, we would simply need to take the square root of the values on the y axis
(since the factor related to the number of images cancels), which implies that this metric
follows the same pattern as we saw earlier, albeit with somewhat smaller ratios. Together,



CHAPTER 6. UNSUPERVISED LEARNING EXPERIMENTS 27

these steps will mitigate the penalty that an algorithm pays if it goes o↵ course in a run,
reducing the impact of outliers we saw in the previous experiment. We take the average of
10 runs for each algorithm for every level of noise and sequence.

We also provide a comparison here of both algorithms (Leaky-SLIPD and FAST) without
dynamic thresholding. We use a a base threshold of 50 for FAST and 0.7 for Leaky-SLIPD
since we found these to give roughly the same number of interest points and perform well.

We test here using the same static noise setup from our dynamic thresholding experi-
ments, except this time we consider gaussian noise standard deviations in the range of [0, 80].
See 6.1, 6.2 and 6.3 below.

We modify our setup from earlier regarding dynamic noise slightly. First, we consider
upper limits on the standard deviation of the gaussian noise in the range of [20, 80]. Next,
we start o↵ the noise standard deviation at half the upper limit for each test. The reason
for this is so that the average noise experienced during each test during the beginning of
the trajectory is di↵erent for di↵erent upper limits. The rest of the setup (minus changes
already stated) are the same as in chapter 4. See 6.4, 6.5 and 6.6 below.

6.2 Results and Observations

Static Noise

When dynamic thresholding is not used, the static noise experiments show FAST and Leaky-
SLIPD to be comparable in performance, having many overlaps. When dynamic thresholding
is used, for all 3 sequences, Leaky-SLIPD outperforms FAST at 0 noise. For sequence 6,
FAST consistently outperforms Leaky-SLIPD on average at all levels of noise except for 0.
For sequence 3, Leaky-SLIPD generally outperforms FAST on average for lower noise levels
( 60 standard deviation), and the FAST marginally outperforms Leaky-SLIPD on average
when noise levels exceed 80. On sequence 0, Leaky-SLIPD consistently outperforms FAST on
average. Additionally, FAST has significant outliers where it completely fails at certain turns,
resulting in extremely high MEE (causing the large standard errors we see in the graph).
Overall, Leaky-SLIPD seems at least comparable to FAST, much better in some cases and
somewhat worse in others. The sequence 6 issues are interesting in that both algorithms fail
to properly make the 180 degree turns when noise is present, but FAST’s failures are lesser
in magnitude, perhaps indicating that Leaky-SLIPD has a marginal disadvantage when it
comes to sharp, prolonged turns. However, the other 2 dataset show that Leaky-SLIPD
handles both gradual turns and sharp turns (< 180 degrees) marginally better than FAST.
Furthermore, these results are consistent with the dynamic thresholding results found earlier,
with dynamic thresholding outperforming its static threshold counterpart signficantly (albeit
with a less extreme di↵erence due to the experimental design changes we made). Generally,
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the performance increases found with dynamic thresholding begin to occur when the standard
deviation of the gaussian noise is between 20 and 40. These gains are significant, as they
typically provide similar, if performance as the normal interest point detectors did at 0 noise.

Dynamic Noise

The results for Dynamic noise were somewhat mixed. On Sequence 0, Leaky-SLIPD gen-
erally outperformed FAST on average until the noise upper limit was 80. At lower noise
levels, SLIPD without dynamic thresholding provided the best performance. Leaky-SLIPD
benefitted from dynamic thresholding when the upper limit of the noise exceeded 60, per-
forming the best out of all 4 algorithms at the noise upper limit of 60. FAST here did not
benefit from dynamic thresholding as consistently as much as in Chapter 4. This result is
not as surprising, as we significantly cut down on the amount of sequence 0 we used to save
time and avoid major outliers. Notably, FAST with dynamic thresholding provided the best
performance at our highest level of noise.

On sequence 3, without dynamic thresholding, Leaky-SLIPD outperformed FAST on av-
erage across the board. However, both algorithms had increasing failure rates for higher
upper limits on noise (i.e. trajectories with very high MEE), which is reflected by their
standard error bars. When dynamic thresholding is used Leaky-SLIPD consistently outper-
formed FAST on average, though the performance di↵erence is closer at higher noise levels.
Standard Error’s with dynamic thresholding did not increase dramatically as noise levels in-
creased. This is consistent with findings in chapter 4, though the di↵erence in performance
between dynamic and static thresholds is not as extreme. This is likely due to changes in
how we conducted our experiments (described above).

On Sequence 6, FAST generally outperformed Leaky-SLIPD on average. Dynamic thresh-
olding provided FAST with significant performance advantages, as well as a lower variance
between runs. Leaky-SLIPD benefitted from dynamic thresholding in the noise upper limit
range of [40, 60].

Takeaways

Overall, it seems that dynamic thresholding provides the best performance increases when
roughly the same level of noise is added to images in a sequence on both algorithms, which
is more along the lines of the noise we expect to encounter due to millimeter scale cameras.
Additionally, Leaky-SLIPD provides some notable performance advantages over FAST on
Sequence 0 and 3, but not on Sequence 6. This is due to the 180 degree turns encountered
on sequence 6; when noise is relatively high, both algorithms overshoot the 180 degree turns,
resulting in compounding error, but Leaky-SLIPD consistently overshoots by more than
FAST. Thus, if a SWARM robot is navigating with very sharp and prolonged turns, FAST
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may be more appropriate, and if it is navigating with smoother and less prolonged turns,
Leaky-SLIPD may provide better performance.
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Figure 6.1: Static Noise: MEE of FAST vs Leaky-SLIPD, with and without dynamic
thresholding as static noise standard deviation increases on KITTI sequence 0. Leaky-
SLIPD with dynamic thresholding shows a clear advantage over FAST except at noise std
= 60. It also has a consistently lowe standard error at each noise level. Without dynamic
thresholding, FAST and SLIPD perform roughly the same. The bars around each line
indicate the standard error of the MEE.

Figure 6.2: Static Noise: MEE of FAST vs Leaky-SLIPD, with and without dynamic
thresholding as static noise standard deviation increases on KITTI sequence 3. Leaky-
SLIPD with dynamic thresholding shows a clear advantage over FAST until noise std of 80.
Without dynamic thresholding, Leaky-SLIPD performs a bit better at low noise levels, and
worse at higher noise levels. The bars around each line indicate the standard error of the
MEE.
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Figure 6.3: Static Noise: MEE of FAST vs Leaky-SLIPD, with and without dynamic
thresholding as static noise standard deviation increases on KITTI sequence 6. FAST with
dynamic thresholding shows an advantage over Leaky-SLIPD for all noise levels (though it
loses at 0 noise). Without dynamic thresholding, the two algorithms perform roughly the
same, alternating which is better at each noise level. The bars around each line indicate the
standard error of the MEE.

Figure 6.4: Dynamic Noise: MEE of FAST vs Leaky-SLIPD, with and without dynamic
thresholding as dynamic noise standard deviation upper limit increases on KITTI sequence 0.
Leaky-SLIPD with dynamic thresholding shows a marginal advantage over other algorithms
when noise upper limit is at 20 and 60, and Leaky-SLIPD without dynamic thresholding
performs best in between at a noise upper limit of 40. FAST with dynamic thresholding
takes a slight advantage over Leaky-SLIPD with dynamic thresholding when the noise upper
limit is 80. Standard errors are relatively high as all algorithms su↵ered from some failure
cases with high trajectory errors (dynamic thresholding on SLIPD and FAST with and
without dynamic thresholding su↵ered the worst in this respect).
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Figure 6.5: Dynamic Noise: MEE of FAST vs Leaky-SLIPD, with and without dynamic
thresholding as dynamic noise standard deviation upper limit increases on KITTI sequence 3.
Leaky-SLIPD with dynamic thresholding performs the best on average at all noise level upper
limits except 20 (where regular Leaky-SLIPD marginally outperforms it on average), closely
followed by FAST with dynamic thresholding. Leaky-SLIPD without dynamic thresholding
marginally outperformed FAST (also without dynamic thresholding) on average, though
both had high standard errors due to trajectory failures at higher noise levels.

Figure 6.6: Dynamic Noise: MEE of FAST vs Leaky-SLIPD, with and without dynamic
thresholding as dynamic noise standard deviation upper limit increases on KITTI sequence
6. FAST shows an advantage over Leaky-SLIPD for all noise levels. FAST With dynamic
thresholding provides an advantage over vanilla FAST throughout. Dynamic thresholding
improves Leaky-SLIPD in the noise upper limit range of [40, 60], and is marginally worse at
20 and 80.
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Figure 6.7: Static Noise: MEE of Leaky-SLIPD with dynamic thresholding with di↵erent
centering coe�cients when noise is static. In green is the performance of Leaky-SLIPD when
all pixels are centered by dividing by 127.5 and subtracting 1. In blue is Leaky-SLIPD when
all pixels are centered by dividing by 128 and subtracting 1. Notably, there is no significant
performance gain or loss by changing this division constant, as the performance is nearly
equal (with neither having a consistently lower mean error) and always within the margin
of error (even at a noise level of 80, where the means somewhat di↵er).

Figure 6.8: Dynamic Noise: MEE of Leaky-SLIPD with dynamic thresholding with di↵er-
ent centering coe�cients when noise is dynamic. In green is the performance of Leaky-SLIPD
when all pixels are centered by dividing by 127.5 and subtracting 1. In blue is Leaky-SLIPD
when all pixels are centered by dividing by 128 and subtracting 1. Notably, there is no
significant performance gain or loss by changing this division constant, as the performance
is nearly equal (with neither having a consistently lower mean error) and always within the
margin of error.
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Chapter 7

Conclusions

In this paper, we have presented a novel, highly e�cient method for Unsupervised Interest
Point Detection, as well as a method for regulating the aforementioned algorithm (as well
as FAST) to be viable under extremely noisy settings, like the ones we would expect with
millimeter scale cameras. Specifically, we observed and exploited the fact that a specific
range of a number of interest points provides good and robust performance to come up with
a dynamic thresholding algorithm which can provide great performance even at gross levels
of image corruption. Additionally, we observed certain desirable properties of an interest
point detector being used for the purposes of Visual Odometry to create an Unsupervised
Interest Point Detection algorithm which can perform equally well or better than FAST in
many circumstances. With these additions to the Visual Odometry algorithm, small-scale,
SWARMable robotic exploration is significantly more viable.
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