
Exploring the Use of Parsons Problems for Learning a New
Programming Language

Mansi Shah

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-88
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-88.html

May 28, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work would not be possible without the support and help of my peers,
friends, and mentors. In particular, I'd like to thank:

- My advisor Dan Garcia, for inspiring me to study CS Education, and for all
of the support and guidance he's provided me.
- Michael Ball for his guidance and advice, and for his invaluable feedback as
my second thesis reader.
- Nate Weinmann for helping me learn about Parsons Problems, and advising
me on how to run this study.
- The entire CS10 staff, especially Maxson Yang, Niki Zarkub, Murtaza Ali,
and Bryant Bettencourt, for supporting this work in CS10.
- Lara McConnaughey, Suraj Rampure, and Andrew Chang for all of their
advice and support, and for their help editing my thesis.
- My family for their constant support, love, and encouragement.

UNIVERSITY OF CALIFORNIA, BERKELEY

MASTER’S PROJECT REPORT

Exploring the Use of Parsons Problems for

Learning a New Programming Language

Author:

Mansi SHAH

Advisor:

Teaching Professor Dan

GARCIA

A project submitted in fulfillment of the requirements

for the degree of Master of Science

in the

Department of Electrical Engineering and Computer Sciences

May 29, 2020

i

Abstract

Parsons Problems are programming puzzles where students rearrange code blocks

to construct a program. Parsons Problems have been found to be just as effective

for learning computer science as problems that involve writing or fixing code, while

taking students significantly less time to complete. Additionally, students find these

problems more engaging than traditional problems. In this study, we explore the use

of Parsons Problems for the specific learning goal of learning a new programming

language. In particular, we study whether these problems maintain their benefits in

this context, and how they should be designed to support this learning goal.

This study was carried out during the Spring 2020 semester of CS10, an introductory

computer science course for nonmajors at UC Berkeley, to help students who had

programmed for ten weeks using a block-based programming language, Snap!, to

transition to programming in Python. Out of the 87 students who participated in this

study, 83% found Parsons Problems helpful for transitioning to Python, 69% found

them more enjoyable than writing freeform Python code, and 68% found them more

time-efficient than writing freeform Python code; these trends were even stronger

for students with no prior Python experience. Ultimately, we found that Parsons

Problems are effective for learning syntax: students found them helpful, engaging,

and more time-efficient, making them an especially promising learning exercise for

introductory computer science courses.

ii

Acknowledgements

This work would not be possible without the support and help of my peers, friends,

and mentors. In particular, I’d like to thank:

• My advisor Dan Garcia, for inspiring me to study CS Education, and for all

of the support and guidance he’s provided me across my five years at UC

Berkeley.

• Michael Ball for his guidance and advice, and for his invaluable feedback as

my second thesis reader.

• Nate Weinmann for helping me learn about Parsons Problems, and advising

me on how to run this study.

• The entire CS10 staff, especially Maxson Yang, Niki Zarkub, Murtaza Ali, and

Bryant Bettencourt, for supporting this work in CS10.

• Lara McConnaughey, Suraj Rampure, and Andrew Chang for their advice and

support through this program, and for all of their help editing my thesis.

• My family for their constant support, love, and encouragement.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Parsons Problems . 1

1.2 CS10: The Beauty and Joy of Computing 2

1.3 Study Goals . 3

1.4 Related Work . 3

2 Study Design 6

2.1 CS10 Lab Context . 6

2.2 Checkoff Questions & Survey . 10

2.3 Limitations . 10

3 Analysis 12

3.1 Overview . 12

3.2 Student Approaches . 12

3.3 Student Challenges . 15

3.4 Helpfulness . 17

3.5 Efficiency . 18

3.6 Enjoyment . 18

3.7 Experience Level . 19

4 Conclusion 21

4.1 Future Work . 21

4.2 Closing Summary . 22

5 Appendix 24

5.1 Lab Questions . 24

iv

5.2 Survey Questions . 28

5.3 Logs . 29

1

1 Introduction

1.1 Parsons Problems

Parsons Problems are programming puzzles in which students drag-and-drop pre-

written code snippets to construct a program [18], as shown in Figure 1.1.

FIGURE 1.1: Sample Parsons Problem in Python. Students drag code
snippets from the left pane to the right pane in the correct order. In
this specific problem, which is a 2D Parsons Problem, students also

need to drag code snippets to the correct indentation level.

Parsons Problems offer a variety of benefits to learners. Due to their constrained

problem space and their use of pre-written code snippets, Parsons Problems impose

a lower cognitive load on students than traditional code-writing problems [21]. This

also allows students to focus less on syntax and more on problem-solving, which

may be especially helpful for novice programmers. Furthermore, because Parsons

Problems generally run in a browser-based environment, students do not have to

worry about learning to run their code; they can get continuous, rich feedback al-

most instantly, which is crucial for maintaining student engagement and in introduc-

tory computer science courses [2]. Altogether, Parsons Problems are highly effective

learning tools: they have been found to increase students’ engagement [4, 7, 18] and

substantially reduce the overall time students spend on problems, while still being

at least as effective for learning computer science as writing freeform code or fixing

buggy code [8, 10, 12, 21].

Chapter 1. Introduction 2

1.2 CS10: The Beauty and Joy of Computing

CS10: Beauty and Joy of Computing, the course in which this study has been con-

ducted, is an introductory computer science course at UC Berkeley for students with

no previous coding experience. The course is designed to be extremely accessible to

novice programmers and focuses on exposing students to big ideas in computer sci-

ence, getting students excited about the subject, and teaching them how to program

and apply computer science to larger problems [9].

In CS10, students are first introduced to programming using a visual blocks-based

programming language called Snap! [13], as shown in Figure 1.2. In block-based

programming languages, students drag and drop code and construct solutions from

a limited set of code blocks, providing similar features and benefits as Parsons Prob-

lems. In fact, using block-based programming languages in introductory computer

science courses has been shown to improve programming efficiency [19] and learn-

ing gains [20]. Through programming in Snap!, students develop strong founda-

tions in computational thinking, and are able to solve problems involving recursion,

higher order functions, and other core computer science concepts.

FIGURE 1.2: Snap! Interactive Development Environment (IDE) with
a tree recursive reporter block implementing subsets. Reporter blocks

“speak” their reported (i.e., returned) values.

Chapter 1. Introduction 3

After teaching in Snap! for around 10 weeks (in a course of 15 weeks), CS10 tran-

sitions to teaching students Python, which is a text-based programming language.

Although students feel comfortable with the computational ideas presented to them,

there tends to be a higher learning curve for picking up the syntax, especially com-

ing from a block-based programming language where syntax is relatively straight-

forward.

1.3 Study Goals

Currently, CS10 introduces students to Python using traditional programming exer-

cises, in which students write freeform code. This study explores how using Parsons

Problems could help scaffold students’ transition between learning in Snap! and

Python.

Parsons Problems are especially appropriate in this situation because students are

used to programming in a block-based programming environment, which is similar

to a Parsons Problem in that students drag and drop pre-written code blocks. Using

Parsons Problems will then allow students to transition to a new programming lan-

guage in an environment that is familiar to them from Snap!.

We hope that Parsons Problems will:

• Help students adjust to and feel more comfortable writing Python code

• Increase students’ engagement and enjoyment of the course material

• Reduce the time students spend on the introductory Python assignment

In addition to exploring the above questions, we share various design considerations

for tailoring Parsons Problems to learning syntax.

1.4 Related Work

While there has not been a lot of literature that specifically studies the effective-

ness of Parsons Problems for learning syntax, there have been studies that evaluate

Parsons Problems in the context of learning to program in general. Ericson et al.

Chapter 1. Introduction 4

[8] conducted a study in a CS1 course using Python that examined the effective-

ness of Parsons Problems in the context of writing and fixing code. In the study,

they partitioned students into three groups, all of whom were given the same prob-

lem in different formats: one group was given the problem as a Parsons Problem,

another as a debugging exercise, and one as a code-writing exercise. To measure

learning effectiveness, the researchers had students complete a pretest before their

practice, a posttest directly after their practice, and a final posttest a week later. The

pretests and posttests consisted of four different kinds of problems: multiple-choice,

Parsons Problems, fixing code, and writing code. After the study, the researchers

found no significant difference in scores across all three groups. They did, however

find that the students assigned to the Parsons group finished their practice problems

faster, suggesting that Parsons Problems are more efficient learning tools. Another

study, conducted by Zhi et al. [21], studied the effectiveness of Parsons Problems

in block-based learning environments. In this study, which used the block-based

programming language Snap!, half of the assignments in the course were presented

as Parsons Problems, and the other half were presented as code-writing problems.

The researchers compared solution time and code quality across assignments and

found that performance on each of the labs was similar, but the labs involving Par-

sons Problems took students about half as much time to solve. These findings are

consistent with those from Ericson et al.’s study, suggesting that the effectiveness of

Parsons Problems does not just stem from the elimination of syntax errors, but also

the constrained problem space, which reduces cognitive load.

Another research area for Parsons Problems is in their design. One such design con-

sideration is the use of two-dimensional Parsons Problems [15], in which students

do not just have to place the blocks in the correct order, but also indent blocks cor-

rectly. While their effectiveness is still an active area of research, literature suggests

that two-dimensional Parsons Problems have become the standard template for im-

plementing Parsons Problems in Python, despite being more difficult to solve [5].

Another design consideration is the use of distractors, which are code blocks that are

provided to students, but not used in the solution [3, 18]. The research in this area

is also not conclusive, with some studies suggesting that distractors can be used to

highlight and clear common misconceptions [18], while other studies suggest that

they may actually decrease learning effectiveness [11]. It is worth noting that the

Chapter 1. Introduction 5

Ericson study that found Parsons Problems to be highly efficient for learning used

Parsons Problems with distractors. [8]. Lastly, another area of research is the kinds

of feedback given to students. One common form of feedback in Parsons Problems

is line-based feedback [18], in which students are told which lines of their program

are incorrect. However, some drawbacks of line-based feedback are that it requires

problems to have a unique solution, and makes it easier for students to revert to

trial-and-error based approaches to solve the problem [14]. Recently, the algorithm

to assign line-based feedback was improved upon, and has not been evaluated in

literature since [5, 16]. An alternative to line-based feedback is execution-based feed-

back, which gives students feedback similar to what they would get from compiling

their code and running unit tests. Initial studies of this form of feedback show that

students who receive execution-based feedback requested feedback less often and

took more time to complete problems then students who received line-based feed-

back [14]. This suggests that execution-based feedback may make problems more

difficult for students, but requires them to think more critically about the problem at

hand.

6

2 Study Design

This study was conducted during the first Python lab in the Spring 2020 semester of

CS10; a total of 83 students participated. Prior to the lab, the only in-class exposure

students have had to Python is in one lecture, where students are introduced to

some basic elements of the programming language. For the purposes of the study,

we restructured the lab to introduce students to Python using Parsons Problems,

transitioning to freeform code-writing only towards the end of the lab. Following the

lab, we had students fill out surveys with their understanding of Python concepts,

and their experiences with the new format.

2.1 CS10 Lab Context

In CS10, lab sections are the first place where students practice what they learn. Dur-

ing lab sections, students are given approximately two-hour long lab assignments,

which they typically complete through pair-programming. Staff members are avail-

able to help students debug their code and understand concepts during lab time.

Students who do not finish the lab during the allocated time are given one week to

complete the assignment on their own [1].

At the time of this study, UC Berkeley had moved to online learning due to COVID-

19. Lab sections were still being held online, but the teaching staff noticed a dra-

matic decrease in the number of students attended online lab sections, suggesting

that students were completing labs on their own without working with their peers

or soliciting as much help from staff members.

For this study, we tried to stay as true to the original lab as possible– the only change

made to the content of the lab was the format of the problems. The lab had six ques-

tions, the first four of which we converted to Parsons Problems. The remaining two

problems remained as is, asking students to write Python code in a text editor (with

Chapter 2. Study Design 7

(A) Parsons Problem before student takes any actions.

(B) Parsons Problem after student drags two code fragments to the solution space.

FIGURE 2.1: Parsons Problem for Sum All Numbers on lab.

no scaffolding) and run it through a Python shell. The goal of the lab is to help stu-

dents translate their knowledge of Snap! to Python, without introducing any new

forms of computational thinking.

The Parsons Problems were implemented using the js-parsons library, which was

written by Ihantola et al. [15]. In addition to refactoring problems in the lab using

this library, we also added more fine-grained logging, functionality to collect and

aggregate logs, and a feature to allow students to export their code.

Below is a list of the problems on the assignment, presented in the order students

worked on them. More details can be found in the Appendix, Section 5. Figure 2.1

shows a sample problem from the lab.

1. Parsons Problem for the "Hello World" program

2. Parsons Problem to return the sum of all numbers between x and y

Chapter 2. Study Design 8

3. Parsons Problem to write a function that calculates xy for non-negative integer

values of y

4. Parsons Problem to check if a word is a palindrome

5. Free-form problem to reverse a string

6. Free-form problem to draw a C-Curve fractal

2.1.1 Two-Dimensional Parsons Problems

Indentation is a key part of Python syntax. Since the goal of this lab is to help in-

troduce students to Python syntax, and because indentation has semantic meaning

in the Python language, we decided to use two-dimensional Parsons Problems, in

which students have to arrange code both in the right sequence and with the correct

indentation.

2.1.2 Use of Distractors

There is currently no strong consensus in the literature about whether the use of dis-

tractors in Parsons Problems is beneficial to student learning. Parsons and Haden

[18], who first introduced Parsons Problems, suggested distractors can be helpful

in addressing student misconceptions. In line with that guidance, we made use of

distractors to address common mistakes students make with Python (e.g., missing

colon, incorrect indexing, etc.).

For example, in the problem where students had to construct a program that added

all of the numbers between x and y, inclusive, we included four versions of a for

loop:

• for i in range(x, y):

• for i in range(x, y + 1):

• for i in range(x + 1, y):

• for i in range(x + 1, y + 1):

2.1.3 Feedback

We considered two options for feedback: line-based feedback, which tells students

which lines of their code are incorrect, and execution-based feedback, which gives

Chapter 2. Study Design 9

students feedback based on the results of executing their code. Execution-based

feedback is helpful because it makes students think about the logic of their program

as a whole, but it can’t give students feedback about individual lines of code. Since

the level of computational thinking in this lab is not new and we wanted to focus on

teaching students syntax, we opted to use line-based feedback, as it helps students

isolate exactly which lines of their code are incorrect, enabling them to more easily

identify their misconceptions about Python syntax.

When students request feedback on their code, the system will first include a de-

scription of all of the student’s errors in a pop up window, and then color all of their

code fragments based on correctness, as shown in Figure 2.2. There are four possi-

ble classes of error messages a student can receive: incorrect position, too few lines, too

many lines, and incorrect indent.

2.1.4 Data Collection

When students worked on problems, they were instructed to click the "Get Feed-

back" button shown in Figure 2.1 to verify the correctness of their solution, and then

use the "Export" button to download their code for submission. We logged various

student interactions with the problems, as described in the lists below, and we sent

the logs to our database every time a student requested feedback. We then aggre-

gated the following pieces of data per problem session, which we define as the time

a unique user spent working on a problem before leaving the page:

• Student actions (ex: dragged block into code, dragged block out of code, in-

dented block, requested feedback, etc.)

• Start time of each action (we also used this to determine total time spent on the

problem)

• Error messages

• Whether the student successfully solved the problem before they left the page

Chapter 2. Study Design 10

2.2 Checkoff Questions & Survey

Following the lab, we gave students an anonymous survey, in which they reflected

on their experience with the lab, specifically regarding the different question for-

mats. In addition to the survey, we also had students submit written checkoff ques-

tions (students are required to do these for all labs), which are questions we ask at

the end of the lab to check students’ understanding of the concepts. The checkoff

questions ask about both general concepts and specific code.

2.3 Limitations

The structure of this study had one major limitation: there was no formal control

group. To the best of our abilities, we compared outcomes and attitudes from this

lab to those from previous semesters, in which the presentation of Python material

was almost identical (except the question formats). However, classes being forcibly

transitioned to remote instruction due to COVID-19 changed the nature in which

students interacted with labs and introduced some confounding variables to this

study.

Chapter 2. Study Design 11

(A) Example of feedback for correct solution.

(B) Example of feedback for solution with missing and incorrect lines. When a student requests
feedback for this code, an alert will pop up saying "Code fragments in your program are wrong,
or in wrong order. This can be fixed by moving, removing, or replacing highlighted fragments,"
and the incorrect code fragments will be colored in red. The logged errors for this code would be:

incorrect position, too few lines.

(C) Example of feedback for solution with incorrect indentation. When a student requests feed-
back for this code, an alert will pop up saying "The highlighted fragment 4 belongs to a wrong
block (i.e. indentation)" ("fragment 4" here means the fourth code block). Note that the system
will only highlight the first indentation issue. The logged errors for this code would be: incorrect

indentation.

(D) Example of feedback for solution with incorrect lines and indentation. When a student re-
quests feedback for this code, an alert will pop up saying "Code fragments in your program are
wrong, or in wrong order. This can be fixed by moving, removing, or replacing highlighted frag-
ments." As in the last example, the system will only highlight the first issue. The logged errors for

this code would be: incorrect position, incorrect indentation.

FIGURE 2.2: Examples of feedback for various attempts to solve the
exponent problem on the lab.

12

3 Analysis

3.1 Overview

For our analysis, we combined data from our logs (597 entries) and the survey (87

responses) we administered after the lab. The logs included information about the

amount of time students took, their number of attempts, their actions, the error mes-

sages they received, and whether or not they were ultimately successful. The survey

included more qualitative data; it asked students to self-report their experiences and

challenges with the different problems on the lab. In our analysis, we hoped to an-

swer the following questions:

• How did students approach the Parsons Problems?

• What challenges did students face when working on the Parsons Problems,

and how can that inform the design of future iterations of these problems?

• Did students find the Parsons Problems helpful in adapting to writing Python?

• Did students spend less time on the Parsons Problems, as the literature sug-

gests?

• Did students enjoy working on the Parsons Problems?

Overall, we were pleased to find out that students overall found the Parsons Prob-

lems beneficial to their learning. Their challenges also gave us important insight into

how we can improve future iterations of Parsons Problems for this use.

3.2 Student Approaches

To understand students’ approaches to Parsons Problems, we first analyzed the

number of attempts, which we defined as the number of times a student requested

feedback on each problem, and the amount of time students spent on each problem,

as shown in 3.1. Consistent with our expectations, the median number of attempts

Chapter 3. Analysis 13

and amount of time spent was higher for problems later in the lab (which we be-

lieved were harder).

FIGURE 3.1: Graphs of the number of attempts and time taken per
Parsons Problem

We also found no correlation between attempts (ρ = -0.11) or time taken (ρ = -0.08)

and whether or not the student was ultimately successful in solving the problem

in that sitting (about 20.4% of the total attempt sequences on a problem did not

end with the student successfully solving the problem). However, a problem could

also be marked unsuccessful if a student refreshed or left the page without finish-

ing it, and then came back to finish it later (this would be marked as two different

sequences, the first being unsuccessful and the second being successful). Most stu-

dents submitted the lab with correct answers (correct code and correct answers to

check-off questions), so we believe that most unsuccessful sequences in our logs

were results of the latter scenario.

We then analyzed the average time taken per attempt for each of the Parsons Prob-

lems (excluding hello_world), as shown in Figure 3.2. We noticed that there seemed

to be three main kinds of approaches:

• Students who made fewer attempts, but spent a lot of time on each attempt.

• Students who spent a moderate amount of time and attempts to solve the prob-

lem (this is by far the most common group).

• Students who made many attempts, and spent very little time on each attempt,

implying a brute force or guess-and-check approach.

Chapter 3. Analysis 14

FIGURE 3.2: Graphs of the amount of time students took per attempt
for the three hardest Parsons Problems. The graph on the left has no
axis transformations (we also removed outliers), but clearly shows
the right tail (high attempts, low time/attempt), and the upper tail
(low attempts, high time/attempt). The graph on the right has a log
transformation on each axis, and shows all of the data, including the

outliers.

The last approach, which resembles a brute force strategy, could be a consequence

of the use of line-based feedback, as it highlights each line students gets incorrect,

allowing them to easily substitute different code blocks in their place [5].

Following this reasoning, we attempted to cluster the students to see if we could

meaningfully group students based on their problem solving approaches. When

clustering, we took into account the number of attempts, the actions a student took,

the kinds of error messages they got, the amount of time it took, and whether they

were ultimately successful, with various different preprocessing methods. We tried

two different clustering algorithms, K-Means and Agglomerative Clustering (which

is less sensitive to outliers), and two different dimensionality reduction methods to

visualize the data (t-SNE and PCA). We did not find any meaningful clusters using

these approaches– we believe that this could either be because we didn’t have a

large enough sample, or because there actually weren’t distinct sets of approaches

students take to solving these problems if we take into account their sequence of

actions, not just their attempts.

Chapter 3. Analysis 15

3.3 Student Challenges

In the followup survey, we had students self-report their biggest difficulties working

on the lab. The top answers for each problem type are summarized in Table 3.1. Ta-

ble 3.2 describes potential areas of difficulty on each problem to better contextualize

the data in Table 3.1.

Parsons Problems Freeform Python
Indentation 23 (26%) Syntax 57 (66%)

Unclear feedback 16 (18%) Running Python code in shell 12 (14%)
Algorithm 14 (18%) Autograder/Unclear Feedback 8 (9%)

Syntax 11 (13%) Algorithm 5 (6%)
Using Provided Code Blocks 8 (9%) Indentation 2 (2%)

Distractors 4 (5%) Lack of Help 2 (2%)

TABLE 3.1: Self-reported challenges for students as they did Parsons
Problems and wrote free-form Python code.

Problem Format Description Distractors? Program
Length

Hello
World

Parsons Function that prints "Hello,
World!"

None 2 lines

Sum All
Numbers

Parsons Function that sums all numbers
between x and y, inclusive

For loop con-
ventions

5 lines

Exponent Parsons Function that computes xy for
non-negative integer y

General syn-
tax, logic

6 lines

Palindrome Parsons Function that determines
whether a string is a palindrome

General syn-
tax, string
syntax, logic

6 lines

Reverse
String

Freeform
Python

Function that reverses a string n/a 5 lines

C-Curve Freeform
Python

Function that draws a recursive
C-Curve using Turtle Graphics

n/a 9 lines

TABLE 3.2: Description of problems and potential areas of difficulty

3.3.1 Indentation

One challenge that students reported about Parsons Problems stood out in particu-

lar: indentation. While it is unclear how challenges with indentation compare across

problem formats (since students may have reported issues with indentation under

syntax as well), in previous iterations of the course students have been able to pick

up indentation without reporting as much trouble.

Chapter 3. Analysis 16

One theory we have as to why students struggled more with indentation when us-

ing Parsons Problems is that when students type code in a text editor (which is how

they wrote code for this lab), the text editor will correctly indent code following a

for loop, if statement, or function definition. In the absence of a text editor, students

may not know when to indent code, especially when they first start to program in a

language like Python.

There is value to learning when to indent code, because even if the text editor auto-

matically indents code for students, students still need to know when to unindent

their code, like after the body of a for loop. We therefore do believe that there is

value in teaching students indentation using Parsons Problems, though more atten-

tion may need to be paid to teaching students explicit indentation rules.

3.3.2 Feedback

Another interesting challenge students faced was around feedback, especially when

compared across problem types. Overall, it seemed like students’ reactions to the

line-based feedback were mixed. While some students appreciated that the feedback

tool highlighted exactly which lines of code were incorrect, others complained that

the feedback they received was vague: "it was unclear whether the highlighted errors

referred specifically to the individual blocks or the entire section underneath them." Interest-

ingly, fewer students reported issues with feedback when completing the free-form

Python exercises, which used a unit test-based autograder and provided feedback

similar to execution-based feedback in Parsons Problems.

Another limitation of line-based feedback is that the problem needs to be set up in

a way that allows for only one solution. Some students also expressed frustration

with this: "there are so so so many different answers to solving the same problem that I

couldn’t achieve with the blocks I was given in the [Parsons] problems."

And finally, line-based feedback may have enabled more students to use a more

brute-force approach to solving the problems when they were stuck, as described

in the previous section. There currently is not much literature evaluating line-based

feedback since the algorithm was improved upon [5, 16]. Some future directions

could be to explore how the new line-based feedback algorithm affects students

Chapter 3. Analysis 17

learning (both in terms of computational thinking and picking up syntax), and how

it affects the prevalence of each of the three approaches mentioned in the previ-

ous section. Additionally, given that some students complained about the clarify of

the feedback, it is worth exploring whether UI/UX changes in the feedback system

could improve students’ learning and experience with the system.

3.3.3 Comparison to Error Messages

Table 3.3 has a summary of the error messages that students received. Note that

students could receive more than one error message in a single feedback request.

Error Message Frequency
Incorrect Position 4095 (54.5%)

Too Few Lines 1861 (24.8%)
Too Many Lines 861 (11.5%)
Incorrect Indent 689 (9.2%)

TABLE 3.3: Error messages for Parsons Problems (6296 total feedback
requests)

The error messages suggest that indentation may not have been as frequent of an is-

sue as students self-reported. One hypothesis for why there is a mismatch between

self-reported challenges and error messages is that coming from a block-based pro-

gramming language, indentation is a new kind of error that students faced, which

is why it was brought up more. However, even if indentation wasn’t the most com-

mon error students faced, it was still the challenge they most commonly reported,

and adequate steps should be taken to help scaffold learning indentation in the fu-

ture. One possible way to do this could be to first introduce students to Python using

1D Parsons Problems, in which blocks of code are already pre-indented. Once they

familiarize themselves with indentation patterns, then students can be introduced

to 2D Parsons Problems, like the ones in this lab.

3.4 Helpfulness

Despite the challenges students faced, students’ self-reported data suggests that stu-

dents found the Parsons Problems quite helpful in adjusting to writing Python code

(p ≈ 0). This was especially true for students who had no previous Python experi-

ence, as shown in Figure 3.3.

Chapter 3. Analysis 18

FIGURE 3.3: Graph of how helpful students found the Parsons Prob-
lems, augmented by their Python experience.

3.5 Efficiency

Students also confirmed our hypothesis that they would spend less time working

on Parsons Problems as opposed to the freeform Python code (p = 1.2 × 10−9). This

is especially promising, as high time commitment has long been a complaint from

CS10 students, and has been noted as a reason for higher attrition in CS1 courses [17].

3.6 Enjoyment

One of our last goals for using Parsons Problems to introduce students to Python

was to increase their engagement with and enjoyment of the material. Our data

suggests that students enjoyed the Parsons Problems more than they enjoyed the

freeform Python problems. (p = 3 × 10−10). The data for self-reported enjoyment is

summarized in Figure 3.4.

This data is exciting, as it reaffirms that Parsons Problems are a more engaging and

enjoyable way to introduce students to Python. However, at the same time, it opens

up a lot of questions about why students found Parsons Problems more enjoyable.

Some studies suggest that Parsons Problems are more enjoyable because of their

Chapter 3. Analysis 19

FIGURE 3.4: Graph of how much students enjoyed Parsons Problems
as compared to free-form Python problems, augmented by experi-

ence.

inherent puzzle-like structure, which gamifies the programming experience [18].

However, we believe that another contributor to the observed difference in enjoy-

ment may be due to students’ familiarity with concepts: while students are used

to the drag-and-drop programming environment present in Parsons Problems, they

initially faced challenges picking up Python syntax, which became especially apa-

prent when they wrote freeform Python code. Students reported having less trouble

with Parsons Problems, which may be a reason they enjoyed them more.

3.7 Experience Level

As we saw in Figures 3.3 and 3.4, Parsons Problems are particularly beneficial for

students with no previous Python programming experience (which describes the

majority of CS10 students, as shown in Figure 3.5). Out of the 87 students who

participated in this study, 83% found Parsons Problems helpful for transitioning to

Python, 69% found them more enjoyable than writing freeform Python code, and

68% found them to be more time-efficient than writing freeform Python code. How-

ever, out of the 58 students who had no previous Python programming experience,

88% found Parsons Problems helpful for transitioning to Python, 74% found them

more enjoyable than writing freeform Python code, and 71% found them to be more

Chapter 3. Analysis 20

FIGURE 3.5: Students’ experience with Python before taking CS10.

time-efficient.

Given the research about Parsons Problems, it makes sense why they would be espe-

cially beneficial for beginners: they help scaffold students’ learning so they can mas-

ter certain elements of Python programming before writing programs from scratch.

For example, for this lab, using Parsons Problems helped students familiarize them-

selves with syntax and indentation patterns in Python before jumping into freeform

problems, which require a stronger grasp of indentation and syntax.

21

4 Conclusion

4.1 Future Work

To date, there exists relatively little literature on the effectiveness of Parsons Prob-

lems [5]. This study presents some findings about the use of Parsons Problems to

help students learn a new programming language, while opening up various direc-

tions for future studies.

One limitation of this study was the lack of a control group, making it difficult to

isolate the effect of Parsons Problems from other confounding variables, especially

given classes were no longer held in person. Additionally, much of the analysis re-

lied on self-reported data; a future direction could be to use methods like pre/post

tests, freefrom problem logging, and interviews to collect similar types of data, and

examine its consistency with the data from this study.

This study raised many questions about Parsons Problems in general. One open di-

rection is an investigation of different feedback types in Parsons Problems, which

hasn’t been done since the algorithm for line-based feedback was updated. This

study uses the line-based feedback method– while some students found it helpful, it

also had various consequences, including opening up the possibility of using a brute

force approach to solve the problem, and limiting the solution space of a single solu-

tion. Future studies could ask how the feedback type affects how students approach

problems, and what they later take away from them.

Another future direction, as mentioned in the analysis section, is to further investi-

gate why students find Parsons Problems more engaging and enjoyable than free-

form Python problems. Is it because of the inherent structure of Parsons Problems, as

suggested by Parsons and Haden [18], or could it be because of students’ familiarity

with syntax, as this paper hypothesizes? Does students’ enjoyment of the different

Chapter 4. Conclusion 22

kinds of problems evolve with their experience, and how can we take elements of

Parsons Problems to make traditional Python problems more enjoyable?

Additionally, given that students struggled with indentation, future studies could

include a more scaffolded approach to introducing students to indentation. Early

problems could start as one-dimensional Parsons Problems, where blocks are pre-

indented and students only need to worry about putting code in the correct order.

Slowly, indentation-based scaffolding could be removed, perhaps by first introduc-

ing distractors and then changing the format to two-dimensional Parsons Problems.

Eventually, the problems could transition from focusing on syntax to focusing on

logic, until students are ready for freeform Parsons Problems. Adaptive Parsons

Problems, which adjust in difficulty and scaffolding based on student performance,

could also work well in this context [6].

One challenge in CS10 students’ transition from Snap! to Python that this study does

not investigate is confidence: in previous semesters, some students noted that their

challenges adjusting to programming in Python made them feel less confident in

their programming abilities as a whole. This study suggests that Parsons Problems

help students adjust to writing Python code; could it also affect their confidence

when it comes to their programming abilities? If so, how does this inform how we

should use Parsons Problems in introductory computer science courses?

4.2 Closing Summary

This study investigated how Parsons Problems could help students learning a new

programming language. It confirmed the findings of a lot of existing literature: Par-

sons Problems take students less time and are more engaging than their traditional

freeform counterparts, suggesting that they are an effective and efficient learning

tool. It also provided promising results about how Parsons Problems can aid stu-

dents transition to a new programming language: a majority of students found it

helpful, and were able to finish lab exercises correctly. Parsons Problems are an ef-

fective means of scaffolding student learning; in this case they allowed students to

transition to Python more slowly, focusing on individual elements of Python pro-

gramming before writing entire programs in it. Based on our conclusions from

Chapter 4. Conclusion 23

this study, we recommend the use of Parsons Problems to help students familiar-

ize themselves with new syntactic structures, as they are more effective, efficient,

and enjoyable than their traditional counterparts.

24

5 Appendix

5.1 Lab Questions

The full version of the lab can be accessed here.

5.1.1 Parsons Problems

Hello World

Question: Write a function that prints the text "Hello, World!"

Learning Goals: Familiarize students with Parsons Problem interface (dragging and

dropping code, indentation, requesting feedback).

Code Provided: (Order is random)

• def hello_world():

• print("Hello, World!")

Solution:

def hello_world():

print("Hello, World!")

Sum All Numbers

Question: Write a function that takes in as input two numbers, x and y, and returns

the sum of all numbers between x and y (inclusive).

Learning Goals: Familiarize students with for loops.

Code Provided: (Order is random)

• def sum_all_numbers(x, y):

• total = 0

• for i in range(x, y + 1):

• for i in range(x, y): (distractor)

https://beautyjoy.github.io/bjc-r/topic/topic.html?topic=berkeley_bjc/python/besides-blocks-welcome-parsons.topic&course=cs10_fa19.html&novideo&noreading&noassignment

Chapter 5. Appendix 25

• for i in range(x + 1, y): (distractor)

• for i in range(x + 1, y + 1): (distractor)

• total = total + i

• return total

Solution:

def sum_all_numbers(x, y):

total = 0

for i in range(x, y + 1):

total = total + i

return total

Exponent

Question: Write an exponent(num, power) function that takes two arguments (a

number and an exponent) and returns the computed result. (Also includes sample

input/outputs)

Learning Goals: Familiarize students with while loops.

Code Provided: (Order is random)

• def exponent(num, power):

• def exponent(num, power) (distractor)

• result = 1

• result = 0 (distractor)

• while power > 0:

• result = result * num

• result = result * power (distractor)

• result = result * 2 (distractor)

• power = power - 1

• return result

Chapter 5. Appendix 26

Solution:

def exponent(num, power):

result = 1

while power > 0:

result = result * num

power = power - 1

return result

Palindrome

Question: Write a function that takes in an input string and returns True if the string

is a palindrome and False otherwise.

Note: Students have already written this exact function in Snap!, so the logic should

not be new to them.

Learning Goals: Familiarize students with if/elif/else, string operations, and

writing recursive code in Python.

Code Provided: (Order is random)

• def palindrome(string):

• if len(string) < 2:

• if len(string) < 2 (distractor)

• return True

• return False (distractor)

• elif string[0] != string[-1]:

• elif string[0] != string[1]: (distractor)

• return False

• return palindrome(string[1:-1]

• return palindrome(string[0:-1]) (distractor)

Solution:

def palindrome(string):

if len(string) < 2:

Chapter 5. Appendix 27

return True

elif string[0] != string[-1]:

return False

return palindrome(string[1:-1]

5.1.2 Free-Form Questions

Reverse String

Question: Write a function that takes in a string and returns the same string in re-

verse order.

Learning Goals: Familiarize students with loops and string operations in Python.

Solution: (There may be many possible solutions)

def reverse_string(string):

new_string = ""

for letter in string:

new_string = letter + new_string

return new_string

C-Curve

Question: Write a function that draws the fractal pattern shown in Figure 5.1.

Note: Includes introduction to turtle graphics before the question. Students have

had extensive practice with drawing fractals in Snap!

Learning Goals: Familiarize students with turtle library. Solution: (There may be

many possible solutions)

import turtle as t

def c_curve(level, size):

if level == 1:

t.forward(size)

else:

t.left(45)

c_curve(level - 1, size / 2)

t.right(90)

c_curve(level - 1, size / 2)

Chapter 5. Appendix 28

FIGURE 5.1: C-Curve fractal for students to recreate

t.left(45)

5.2 Survey Questions

1. Prior to this class, how much experience did you have programming in Python?

• No experience at all

• Very limited exposure

• Some exposure

• Extensive exposure (an entire class, for example)

2. In this lab, we tried out a new question format, in which we had you drag

and drop Python code. How helpful did you find this kind of question when

adjusting to writing Python? (Answers were on a 5-point Likert scale)

3. How much did you enjoy working on the drag and drop Python problems

as compared to the regular Python problems (like reverse_string)? (Answers

were on 5-point Likert scale)

4. How did you feel about the balance of problems on this lab? (Answers were

given from 1-5, where 1 was "There were too many drag and drop problems,

I wish we had more freeform Python problems" and 5 was "There were too

many freeform Python problems, I wish we had more drag and drop prob-

lems")

5. How did the amount of time you spent compare between the drag and drop

problems and the freeform Python problems?

• I spent more time on the drag and drop problems.

• I spent about the same time on each of the kinds of problems.

• I spent more time on the freeform Python problems.

Chapter 5. Appendix 29

6. About how much time total did you spend on this lab?

• <1 hour

• 1-2 hours

• 2-3 hours

• 4-6 hours

• 6+ hours

7. What were the greatest challenges you faced when completing the drag and

drop exercises?

8. What were the greatest challenges you faced when completing the freeform

Python exercises?

9. Do you have any other comments/feedback about the lab?

5.3 Logs

We first cleaned the raw logs, and organized them in a table with the schema below.

Each row represented a single session, which we define as the time a student spent

on a single page before refreshing or leaving the page. We had a total of 597 entries

in our log table.

• ID: Unique identifier for single session (time spent on page)

• problem: Name of problem

• attempts: Total number of attempts before leaving page

• start_time: Start time on page

• end_time: End time on page

• actions: Sequence of actions. Possible actions are:

– add output: Add line to solution

– feedback: Request feedback

– move input: Line moved within input space

– move output: Move line in solution

Chapter 5. Appendix 30

– remove output: Remove line from solution

• errors: Errors student received, in order. Possible errors are:

– incorrect indent

– incorrect poisition

– too few lines

– too many lines

• success: Whether the student successfully solved the problem before leaving

the page.

• total time: Total time spent on page

31

Bibliography

[1] CS10: The Beauty and Joy of Computing, Spring 2020. UC Berkeley EECS.

https://cs10.org/sp20.

[2] BEAUBOUEF, T., AND MASON, J. Why the high attrition rate for computer

science students: Some thoughts and observations. SIGCSE Bull. 37, 2 (June

2005), 103–106.

[3] DENNY, P., LUXTON-REILLY, A., AND SIMON, B. Evaluating a new exam ques-

tion: Parsons problems. In Proceedings of the Fourth International Workshop on

Computing Education Research (New York, NY, USA, 2008), ICER ’08, Associa-

tion for Computing Machinery, p. 113–124.

[4] DICHEVA, D., AND HODGE, A. Active learning through game play in a data

structures course. In Proceedings of the 49th ACM Technical Symposium on Com-

puter Science Education (New York, NY, USA, 2018), SIGCSE ’18, Association for

Computing Machinery, p. 834–839.

[5] DU, Y., LUXTON-REILLY, A., AND DENNY, P. A review of research on parsons

problems. In Proceedings of the Twenty-Second Australasian Computing Education

Conference (New York, NY, USA, 2020), ACE’20, Association for Computing Ma-

chinery, p. 195–202.

[6] ERICSON, B., MCCALL, A., AND CUNNINGHAM, K. Investigating the affect

and effect of adaptive parsons problems. In Proceedings of the 19th Koli Calling

International Conference on Computing Education Research (New York, NY, USA,

2019), Koli Calling ’19, Association for Computing Machinery.

[7] ERICSON, B. J., GUZDIAL, M. J., AND MORRISON, B. B. Analysis of interac-

tive features designed to enhance learning in an ebook. In Proceedings of the

Eleventh Annual International Conference on International Computing Education Re-

search (New York, NY, USA, 2015), ICER ’15, Association for Computing Ma-

chinery, p. 169–178.

https://cs10.org/sp20

BIBLIOGRAPHY 32

[8] ERICSON, B. J., MARGULIEUX, L. E., AND RICK, J. Solving parsons problems

versus fixing and writing code. In Proceedings of the 17th Koli Calling International

Conference on Computing Education Research (New York, NY, USA, 2017), Koli

Calling ’17, Association for Computing Machinery, p. 20–29.

[9] GARCIA, D., HARVEY, B., AND BARNES, T. The beauty and joy of computing.

ACM Inroads 6, 4 (Nov. 2015), 71–79.

[10] GARCIA, R., FALKNER, K., AND VIVIAN, R. Scaffolding the design process

using parsons problems. In Proceedings of the 18th Koli Calling International Con-

ference on Computing Education Research (New York, NY, USA, 2018), Koli Calling

’18, Association for Computing Machinery.

[11] HARMS, K., CHEN, J., AND KELLEHER, C. Distractors in parsons problems

decrease learning efficiency for young novice programmers. pp. 241–250.

[12] HARMS, K. J., ROWLETT, N., AND KELLEHER, C. Enabling independent

learning of programming concepts through programming completion puz-

zles. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC) (2015), pp. 271–279.

[13] HARVEY, B., AND MÖNIG, J. Snap! (build your own blocks). https://snap.

berkeley.edu.

[14] HELMINEN, J., IHANTOLA, P., KARAVIRTA, V., AND ALAOUTINEN, S. How

do students solve parsons programming problems? – execution-based vs. line-

based feedback. In 2013 Learning and Teaching in Computing and Engineering

(2013), pp. 55–61.

[15] IHANTOLA, P., AND KARAVIRTA, V. Two-dimensional parson’s puzzles: The

concept, tools, and first observations. Journal of Information Technology Education

10 (2011), 119–132.

[16] KARAVIRTA, V., HELMINEN, J., AND IHANTOLA, P. A mobile learning applica-

tion for parsons problems with automatic feedback. pp. 11–18.

[17] KINNUNEN, P., AND MALMI, L. Why students drop out cs1 course? In Pro-

ceedings of the Second International Workshop on Computing Education Research

(New York, NY, USA, 2006), ICER ’06, Association for Computing Machinery,

p. 97–108.

https://snap.berkeley.edu
https://snap.berkeley.edu

BIBLIOGRAPHY 33

[18] PARSONS, D., AND HADEN, P. Parson’s programming puzzles: A fun and

effective learning tool for first programming courses. In Proceedings of the 8th

Australasian Conference on Computing Education - Volume 52 (AUS, 2006), ACE

’06, Australian Computer Society, Inc., p. 157–163.

[19] PRICE, T. W., AND BARNES, T. Comparing textual and block interfaces in a

novice programming environment. In Proceedings of the Eleventh Annual Inter-

national Conference on International Computing Education Research (New York, NY,

USA, 2015), ICER ’15, Association for Computing Machinery, p. 91–99.

[20] WEINTROP, D., AND WILENSKY, U. Comparing block-based and text-based

programming in high school computer science classrooms. ACM Trans. Comput.

Educ. 18, 1 (Oct. 2017).

[21] ZHI, R., CHI, M., BARNES, T., AND PRICE, T. W. Evaluating the effectiveness

of parsons problems for block-based programming. In Proceedings of the 2019

ACM Conference on International Computing Education Research (New York, NY,

USA, 2019), ICER ’19, Association for Computing Machinery, p. 51–59.

	Abstract
	Acknowledgements
	Introduction
	Parsons Problems
	CS10: The Beauty and Joy of Computing
	Study Goals
	Related Work
	Study Design
	CS10 Lab Context
	Checkoff Questions & Survey
	Limitations
	Analysis
	Overview
	Student Approaches
	Student Challenges
	Helpfulness
	Efficiency
	Enjoyment
	Experience Level
	Conclusion
	Future Work
	Closing Summary
	Appendix
	Lab Questions
	Survey Questions
	Logs

