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Abstract

To Send or to Not Send: A Case Study on Computer Vision for Low Power
Edge Devices

by

Ajay Gopi

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Prabal Dutta, Chair

The Internet of Things (IoT) has been a growing area of recent times. With the large and
ever-increasing number of IoT devices being deployed, there has been a rise in interest in
incorporating machine learning on these devices. Low-power microcontrollers provide a low-
cost compute platform to deploy intelligent IoT applications, but have extremely limited
on-chip memory and compute capability. The use of machine learning for these applications
highlights the tradeo↵ between local computation or sending the data to a more computa-
tionally powerful resource like the cloud. This paper explores this trade-o↵ space through
the computer vision tasks of people classification and people detection; people classification
involves determining whether a human exists in an image while people detection involves
providing bounding box information for all humans in an image. This paper uses existing
models for these tasks and evaluates the tradeo↵ between running models locally and send-
ing data to the cloud on the metrics of latency, energy, memory, and accuracy. The chosen
models are run on the nRF52840 SoC, a low-power MCU system with protocol support for
Thread and 802.15.4. Our findings confirm that local computation in low-energy constrained
embedded systems makes sense for people classification in considering energy, memory, ac-
curacy, and latency; however, these platforms are incompatible with more complex tasks like
people detection due to fundamental memory limitations.
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Chapter 1

Introduction

1.1 Overview

Machine learning on the edge is a growing field of interest. This growth has been fueled by
the advent of the Internet of Things (IoT) and the ever growing supply of IoT devices. It is
projected that there will be 41 billion such devices by 2027 [5]. Machine learning can be used
to provide many valuable and intelligent applications on these devices. Some existing ML
applications on IoT devices include tra�c video analytics to improve tra�c management
in large cities [13, 1], voice trigger detection [28], and gesture recognition on canes [24].
Designers of machine learning applications for these devices have a choice between sending
data to be processed elsewhere or locally. These devices introduce multiple constraints and
as a result it is often not obvious whether to run locally or send the data to cloud. For
example, limited memory makes sending all data to the cloud reasonable but limited energy
makes running local algorithms to process some or all of the data necessary. In this paper
we examine this tradeo↵ space on the tasks of people classification and people detection.

1.2 Task

Classification and detection are two prominent and interesting problems in the field of com-
puter vision. Classification is the task of classifying an image into one of many categories.
Detection is the task of finding and classifying a variable number of objects on an image. For
example, given an image, people classification involves determining if a person
exists in the image while people detection involves providing bounding boxes for
all people in the image.
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(a) Person classified (b) Person detected with bounding boxes

Figure 1.1: People Classification vs. Detection
The left image represents people classification, which is just determining the image has a person.

The right image represents people detection which involves generating bounding boxes for the

people in the image.

1.3 Target Hardware

The target end-device for this paper is the Permacam, a variant of Permamote [15], an
energy-harvesting sensor mote. The Permacam is built on the Nordic nRF52840 SoC which
has the 32-bit 64 MHz ARM Cortex-M4 CPU with a floating point unit, 256 KB RAM,
and 1 MB Flash. It has 802.15.4 support and utilizes OpenThread [23] to establish data
backhaul. It also utilizes the low power Himax HM01B0 320x320 color sensor which can come
in a monochrome version with QQVGA (160x120) internal downsampling. The motivation
behind using this device is its low power and energy consumption, resulting in a long lifetime
(greater than or equal to 10 years) with just a battery. While other devices such as CCTV
cameras or Raspberry Pi’s can o↵er similar functionality with less compute constraints, they
require a larger, constant source of power and electrical supply, which makes it much more
di�cult to deploy these devices in the field.
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Figure 1.2: Permacam

Imagined Use Case

The imagined use case of people classification on this device is smart lights. People classifi-
cation can be used to determine if a human exists in a room and can save energy from just
using motion sensing approaches. The imagined use case of people detection is occupancy
sensing and finer-grained lighting control.

1.4 Hypothesis

The central claim of this paper is that the feasibility of running machine learning models
for computer vision locally is dependent on task. In other words, for the task of people
classification, the benefits of local computation on severely resource constrained devices
outweighs the benefits of sending images to the cloud in regards to energy, latency, accuracy,
memory usage, and currently available technology; for the task of people detection, the
benefits of sending images to the cloud outweigh the benefits of local computation in regards
to the same factors, particularly memory.
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Chapter 2

Background

2.1 Convolutional Neural Networks Overview

The following sections will give an overview of neural networks with an emphasis on convo-
lutional neural networks.

Neural Networks Introduction

Neural networks are a set of algorithms that are used to approximate the human brain.
Neural networks provide a technical framework for representing the concepts of learning and
adjusting. The base component of a neural network is an artificial neuron. Artificial neurons
take a number of input signals xi and multiply them with weights wi. The output is biased
with wb and the resulting output is passed through a non-linear activation function (f). A
neuron’s output can be represented as y = f(

P
wi ⇤ xi + wb). The weights wi can be seen

as a way of tuning the neuron’s reaction to the input and their values can be modified to
produce the desired output signal.

Figure 2.1: A biological neuron vs. neural network representation



CHAPTER 2. BACKGROUND 5

Neural Network Structure

Neural networks consist of many interconnecting artificial neurons. Usually these neurons
are in layers such that neurons only have connections with future layers and there are no
cycles in the resulting structure. This structure is known as a feed-forward network. A
fully-connected network is a feed-forward network such that each neuron in every layer has
a connection to all neurons in the next layer.

Convolutional Neural Network Structure

Regular feed-forward networks can be used to solve multiple problems but certain issues
arise in the image classification/detection field. ’

1. Images are large in the number of input elements (pixels) they contain. For example,
feeding a 196x196 grayscale image into a single layer fully-connected network results
in 3,841,600 weights.

2. Fully-connected networks ignore the topology and structure of the input [18].

Convolutional neural networks address these issues with essentially sharing a set of pa-
rameters which are used throughout the image. Convolutional networks consist of multiple
convolutional layers. The input to the convolutional layer is a volume with height hin, width
win, and depth din and the output is a volume with height hout, width wout, and depth
dout. The parameters of the layer are separated into filters, which each have a height k,
width k, and a depth din (filters are generally square). Every filter is slid through the
image depending on the stride and an elementwise product is computed with the input im-
age and filter. dout filters are employed to produce the output volume. Instead of having
(hin ⇤win ⇤din)⇤ (hout ⇤wout ⇤dout) parameters like fully-connected layers, convolutional layers
have k ⇤ k ⇤ din ⇤ dout parameters. An illustration is shown in Figure 2.3.

Figure 2.2: Fully-connected network vs convolutional neural network
The left shows a regular fully-connected network while the right shows a convolutional network.

The convolutional network converts a 3D input volume into a 3D output volume. Visual is taken

from [6]
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Figure 2.3: Convolution overview
Red represents input image. The filter slides through the input image to produce output (repre-

sented with blue)

Why does this work?

Convolutional neural networks (CNNs) are able to perform at a high level due to them
using the locality of information in an image. Pixels in an image generally have a stronger
relationship to nearby pixels rather than ones far away. The reuse of parameters through
using the assumption of locality allows CNN filters to learn to detect distinct features as
shown in Figure 2.4.

Depthwise Separable Convolutions

Convolutional networks tremendously reduce parameters from using fully-connected net-
works. Even with these reductions, it may be tough to deploy common architectures such as
VGG-16 on an embedded system [29]. Depthwise separable convolutions address this issue
[3]. Depthwise separable convolutions consist of one depthwise convolution and multiple
pointwise convolutions. The depthwise convolution applies a single filter per input channel
and the pointwise convolutions are used to create a linear combination of the output of the
depthwise layer. While in a regular convolution dout k by k by din filters are required, depth-
wise separable convolutions require one k by k by din filter and dout 1 by 1 by din filters.
While there are more filters in depthwise separable convolutions, by replacing k by k by din

filters with 1 by 1 by din filters, depthwise separable convolutions significantly reduce the
number of overall parameters.
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Figure 2.4: Filters learned in AlexNet
Each of the 96 filters shown here is of size [11x11x3], and each one is shared by the 55*55 neurons

in one depth slice. Some of these are simple edge detectors, while others are more complex.

Figure 2.5: Depthwise Separable Convolution
(a) Shows standard convolution (b) Depthwise convolution (c) Shows 1x1 pointwise convolutions

The standard convolution is replaced with a depthwise convolution followed by a pointwise convo-

lution in depthwise separable convolutions. Visual taken from [12].
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2.2 Classification and Detection

This section will go over current models for image classification and object detection.

Top Performing Models for Classification

This section will briefly overview a set of models that are widely known in the area of image
classification.

Classification Model Comparison

Model Name # of
Conv
Layers

# of params
(millions)

MACS
(mil-
lions)

ImageNet top-1
Accuracy

AlexNet 8 60 1140 62.5%
VGG16 16 138 15470 74.4%

GoogLeNet 22 7 1600 69.8%
ResNet 50 25.6 3870 77.15%

SqueezeNetv1.0 18 26 860 57.5%
MobileNetv1 8 4.2 569 70.6%
NASNetA 23 88.9 23800 82.7%

Table 2.1: Comparison of image classification models
This shows a comparison of image classification models for the image classification task on Ima-

geNet, a dataset similar to COCO. MACS is the number of multiply accumulate operations in the

forward pass. The top-1 accuracy tracks the percentage of correct labels assigned at first guess.

• AlexNet

AlexNet was proposed by Alex Krishvesky et al. and is considered to be a breakthrough
paper that drew attention to CNN architectures when it won the ImageNet challenge
(ILSVRC) in 2012 [16]. It consists of a simple architecture of 5 conv layers and 3
fully connected layers. AlexNet uses ReLUs for the non-linearity layers and uses local
response normalization. The network achieved a top-1 accuracy rate of 62.5 percent
ILSVRC 2012.



CHAPTER 2. BACKGROUND 9

• VGG16

VGG16 was proposed by K. Simonyan and A. Zisserman from the University of Ox-
ford and won part of the ILSVRC 2014 challenge. It replaces the large kernel filters in
AlexNet with multiple 3x3 filters. It is widely used for its simple and regular architec-
ture. VGG16 consists of 16 layers, which progressively expand the number of channels
of the image from 3 to 4096 and reduce the height and width of the image from 224
by 224 to 7 by 7. VGG16 achieved a top-1 accuracy of 74.4 percent [29].

• GoogLeNet

GoogLeNet was proposed by Christian Szegedy et al. and was published around the
same time as VGG16. It won the ILSVRC 2014 and achieved a top-1 accuracy of 69.8
percent. Its top-5 accuracy was more impressive, with the model achieving a top-5
accuracy of 93.3 percent. The novel element in this architecture was a newly crafted
module called the Inception module, which concatenates multiple convolutions on an
input [30].

• ResNet

ResNet was proposed by Kaiming He et al. and won the ILSVRC in 2015. It intro-
duced the novel idea of skip connections which allowed the 152 layer model to train
e↵ectively. ResNet’s skip connections solved the vanishing gradient problem that arose
when training deep neural networks. The model achieved a top-1 accuracy of 77.15
percent [11].

• SqueezeNetv1.0

SqueezeNetv1.0 was proposed by Forrest Iandola et al. at Berkeley in 2016. SqueezeNet,
unlike the previous architectures discussed, did not focus on producing a state-of-the-
art accuracy. It focused on optimizing latency and other constraints and the authors
developed a network with an accuracy similar to AlexNet but with 50x less parameters.
SqueezeNet introduced Fire modules which are comparable to GoogLeNet’s Inception
modules. It achieved a 57.5 percent top-1 accuracy and 80.3 percent top-5 accuracy.
[14].

• MobileNetv1

MobileNetv1 was proposed by Andrew G. Howard in 2017. It was built to address
factors other than accuracy such as latency. MobileNetv1 consists of a lightweight
architecture that uses depthwise convolutions. It used two parameters, ↵ , the width
multiplier, and ⇢, the resolution multiplier, to reduce the number of channels per layer
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and reduce input size respectively. It achieved an accuracy of 70.6 percent on ImageNet.
[12]

• NASNet

NASNet was proposed by Baret Zoph et al. at Google Brain in 2018. The central idea
behind NASNet is to explore architectures through using Neural Architecture Search
instead of manually creating architectures. NASNet is comprised of normal cells and
reduction cells, which are searched through using a controller RNN. The weights of this
RNN are updated through training. The NASNetA architecture resulted in a top-1
accuracy of 82.7 percent

Top Performing Models for Detection

This section will briefly overview a set of models that are widely known in the area of object
detection.

Object Detection Model Comparison

Model Name mAP Time (seconds)

R-CNN 62.4 49
Fast R-CNN 70.0 23
Faster R-CNN 78.8 .2
YOLO 63.7 .02
SSD 83.2 .02
YOLOv2 78.0 .025

Table 2.2: Comparison of object detection models
This shows a comparison of object detection models on the Pascal VOC dataset. mAP represents

mean average precision.

• RCNN

RCNN was invented by Ross Girshick et al. at UC Berkeley in 2014 [9]. The idea was
to use a CNN as a feature extractor combined with an existing region proposal method
known as selective search. The regions proposed by selective search were warped into
a square image in order to conform to the feature extractor CNN’s input size. The
output of the CNN was fed into an SVM for determining the class of object and into
a bounding box regressor to correct the proposed bounding box.
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• Fast RCNN

Fast RCNN was a continuation of RCNN by the same creator, Ross Girshick [8].
RCNN was slow due to the large amount of convolutions that had to be performed.
The idea behind FastRCNN was to run the entire image through the convolutional
neural network once and to map the regions proposed by selective search to the feature
map produced by convolution. An ROI pooling layer was used to make the shape of
these regions consistent and the output features were fed into a fully-connected network
to determine the class. This reduced the test and training times by a factor of roughly
9 and 23 respectively.

• Faster RCNN

Faster RCNN [8] by Ross Girshick addressed the issue from Fast RCNN where region
proposal was taking longer than the convolutions used for classification. The idea
behind Faster RCNN was to delegate the region proposal to a CNN, called the region
proposal network. This ended up reducing detection time by an order of magnitude.

• YOLO

YOLO (You only look once) was proposed by Joseph Redmon et al. in 2016. The
main idea behind YOLO [26] was to treat the detection as a regression problem and
not do processing for particular regions but to do it uniformly across the image. The
input image was divided into a 7x7 grid and for each cell, C conditional class proba-
bilities were predicted and for each bounding box type (B), 5 numbers were predicted:
xcenter, ycenter, H,W, andC. This resulted in an output volume of shape 7⇤7⇤(5⇤B+C).
Through this assumption, YOLO essentially reduced object detection networks in to
a large convolutional neural network.

• SSD

SSD [21] by Wei Liu, et al. is similar in its approach to YOLO in that it performed
region proposal and detection in one shot (hence the name single shot detector). One
key di↵erence between SSD and YOLO is that SSD applied an object detection layer
at di↵erent parts of the main convolutional networks layers. This resulted in SSD
producing many more bounding box proposals than YOLO.
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2.3 Embedded Systems Overview

Low power microcontrollers (MCUs) have to deal with many more constraints than regular
hardware devices such as desktops, servers, or even phones. The main constraints that these
MCUs have to deal with are energy, memory, computation, and communication. These
constraints lead to interesting tradeo↵s which need to be considered when designing a system.
A prime example is that limited memory makes sending all the data to the cloud reasonable,
but limited energy makes running local algorithms to process the data necessary.

Energy Constraints

Energy is a central constraint in embedded devices as these devices are often deployed in
the edge. Devices that rely on batteries are limited by the energy storage of the battery.
A typical coin cell battery allows an average power draw of 27µW for one year [7]. While
certain devices are capable of scavenging energy from the environment, this amount is usually
limited to microwatts. For example, in our target device , the maximum power that can be
provided by the solar panel is 218µW at best. This is calculated as the typical irradiance in
brightly lit indoor environments is 100µW/cm

2 and solar cells are at best 20 percent e�cient,
so the 10.9cm2 solar panel used in the target device can provide at best 218µW [15, 10].

Limited Working Memory

Current microcontrollers have limited RAM (on the order of 100-300 kilobytes) and a
megabytes or less of flash. Over the past decasdes, there has a been a significant increase in
the memory capacity of these devices. For example, Table 2.3 shows the clock speed, RAM,
and flash memory of two embedded platforms, the TelosB mote [25] and nRF52840DK [22].
Within a decade the RAM has increased from 10kB to 256kB. However, this memory is
still extremely limited in comparison to the memory of traditional devices where machine
learning is run, such as servers.

TelosB nRF52840DK

MCU MSP430F1611 nRF52840
Sleep Current 2.6µA 1.5µA
Word Size 16-bit 32-bit
CPU Clock 8MHz 64MHz
Flash 48kB 1MB
RAM 10kB 256kB

Table 2.3: Comparison of embedded devices
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Constrained Communication

Communication also presents a barrier for the majority of embedded devices. WiFi radios
require hundreds of milliwatts or more and even low-power technologies such as Bluetooth
Low Energy or 802.15.4 require around ten milliwatts. Due to these energy constraints in
communication, embedded devices duty-cycle their radios, powering them between 0.1 and
1% of the time in many deployment scenarios. This limits communication to the range of
kilobits and thus makes local processing more desirable in terms of latency and energy.

Computation Capabilities

In recent times, the computation capabilites of microcontrollers have reached hundreds of
megahertz [27]. Dedicated hardware have been developed for exploring the viability of
general purpose hardware that can e�ciently accelerate operations for constrained devices,
with systems such as a 14.6 A 0.62 mW ultra-low-power convolutional-neural-network face-
recognition processor [2]. Even without special accelerators, it is now in the realm of possi-
bility and beneficial to run machine learning models locally.

Even without specialized hardware, the low sampling rate of sensors in embedded systems,
in order to meet energy constraints, make continuously running learning techniques possible.
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Chapter 3

Approach

3.1 Model Training

The following sections will describe the steps taken to prepare models for people classification
and people detection. The code used for producing these models can be found at https:
//github.com/ajax98/PersonMLModels.

People Classification

We first approach the easier task of people classification, and then extend our approach to
people detection.

COCO Dataset Overview

Just like any other neural networks, large amounts of data are required to train convolutional
neural networks. This data comes in the form of datasets. The COCO dataset is a widely
used dataset to benchmark object detection and segmentation models. It is comprised of
natural images of complex scenes that contain multiple objects. It has 91 object types with
more than a million labeled instances in 328K images. COCO has fewer categories than the
popular ImageNet dataset but has far more pictures per category. COCO addresses the issue
of previous datasets by providing non-iconic views (e.g. objects can be occluded), multiple
objects per image, and precise 2D localization of objects (bounding boxes) [20].

Dataset

The publicly available Visual Wake Words dataset was used [4]. The labels for the Visual
Wake Words dataset were produced by modifying the COCO dataset for classifying people.
Labels were created by sampling through the dataset and assigning each image a label 1 if a
person existed in that image or a 0 if that was not the case. This was done by determining if
an image had a bounding box corresponding to a human. In order to make training e�cient

https://github.com/ajax98/PersonMLModels
https://github.com/ajax98/PersonMLModels
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and have less outliers, only bounding boxes that occupied more than .5 % of the image area
were considered. Approximately half of the images were labelled as human in the training
and validation sets.

Model Training

The model architecture was based o↵ MobileNetv1 [12] due to its lightweight architecture
and parameters of ↵ and ⇢ that allowed for tuning the size of the model. Vanilla MobileNetv1
gave a 90 % accuracy on the dataset. Through applying data augmentation tricks such as
image flipping and random cropping, the accuracy increased to roughly 94 percent. Our
model size was reduced by reducing the depth of each convolutional layer by 75 percent
(↵ = .25). This resulted in the architecture shown in Figure 3.1. This architecture reached
an accuracy of roughly 85 percent. While the model parameter size was within the flash
memory limits of our target system, it exceeded the limit when combined with our input
image. Thus, in order to account for this, the input resolution was reduced from 224x224x3
to 96x96x1. This model gave an accuracy of roughly 78 percent. After applying post-training
quantization, the model reached a size of roughly .23 MB with an accuracy of 76 percent.
These models are summarized in Table 3.1.
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Model Name Input Size Model Size (MB) Accuracy

Vanilla MobileNet v1 224x224x3 16.4 .94
MobileNet v1 .25 224x224x3 .903452 .85
MobileNet v1 .25 96x96x1 .903452 .78
Quantized MobileNet v1 96x96x1 .237267 .76

Table 3.1: Classification architectures

Figure 3.1: MobileNet Architecture
This shows the MobileNet Architecture ↵ = .25 applied to grayscale images. Conv BN represents a

convolution followed with a batch normalization while Conv DW represents a depthwise separable

convolution.
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People Detection

As we were able to produce models for people classification with reasonable accuracy, we
continued to develop models for people detection.

Dataset

Similar to the Visual Wake Words datset used for people classification, the dataset used
for people detection was sampled from COCO. Additional information, such as bounding
box coordinates of people in a frame were included in the annotations. These coordinates
were normalized in order to conform to YOLO’s abstraction that every grid cell is at the
center and 1x1. See code in Appendix Listing 6.1 for details on how these annotations were
produced.

Model Training

The model was based o↵ of YOLOv3 tiny (Figure 3.2). By applying techniques such as
inserting images of di↵erent sizes to increase robustness of grid prediction, the model achieved
a mean average precision of 70.3 on our validation dataset. In order to compress the model
architecture to fit in our target hardware, multiple convolutional layers in the architecture
were replaced with depthwise separable convolutions. This itself reduced the size of our
model by roughly an order of magnitude. The number of filters for each layer and number
of layers were also reduced, allowing us to reach a model size of 1.5 MB. After training our
model, we achieved a mean average precision of 36.9 on our validation set.

Model Name Input Size Model Size (MB) mAP

YOLOv3 Tiny 416x416x1 33 70.3
YOLOv3 Ultra Tiny Quan-
tized

416x416x1 1.5 36.9

Table 3.2: Detection architectures
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Figure 3.2: YOLO Architecture
This shows the rough architecture of YOLOv3 tiny. The dotted line represents a residual connection

where the features are being concatenated while the solid line representing passing the output of a

convolutional layer into a new convolutional layer. YOLO Layers are where the output is interpreted

as grid cells and the loss is calculated and propagated backwards.

Figure 3.3: YOLO Ultra Tiny Output

3.2 Porting Model to Edge Device

After training models for people classification and people detection, the next step was to
port these models to our target device. In order to port the model to the target device,
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we used TensorFlow Lite. The code for the ported application can be found at https:
//github.com/lab11/nrf52x-base/tree/tflite.

Overview of TensorFlow Lite

TensorFlow Lite is a set of tools that facilitates running machine learning models on mo-
bile, embedded, and IoT devices. It has features that allow for on-device machine learning
inference with low latency and a small binary size. The main components of TensorFlow
Lite are its interpreter and converter. The interpreter is essentially a library that takes a
model file as input, executes the operations specified by the model, and provides access to
the output. This interpreter supports a limited set of operations which can be expanded
through defining custom operations. The converter is used to convert TensorFlow Models
into a FlatBu↵er, an e�cient storage format which can be later run using the interpreter.
See Figure 3.4 for details on the conversion of a model to the FlatBu↵er format.

Figure 3.4: TensorFlow Lite Workflow
This diagram represents the steps on converting a TensorFlow model to run on TensorFlow Lite.

The model can be trained using the tf.Keras or low level (computation graph) APIs . The trained

model can be converted from its saved format to a TFLite Flatbu↵er by the TFLite Converter.

The server here represents any device used for training and the client represents the nRF52840.

https://github.com/lab11/nrf52x-base/tree/tflite
https://github.com/lab11/nrf52x-base/tree/tflite
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FlatBu↵er Model Representation

TensorFlow models are converted into a FlatBu↵er representation before being run on the
target device. FlatBu↵ers is a cross platform serialization library that can be used across
many languages. What sets FlatBu↵ers apart is that it represents hierarchical data in a
binary bu↵er such that it can accessed without parsing or unpacking. The first step in
using FlatBu↵ers is to design a schema, which specifies the various objects that are being
serialized and the relationship between these objects. The next step is to use the flatc
compiler, which is used to generate a C++ header with helper classes to access and construct
serialized data. Finally the FlatBufferBuilder is used construct a FlatBu↵er binary. In
the case of the TensorFlow Lite, the schema describes a model objects’ relationship with
various other objects. These objects and their components are outlined in Figure 3.5.

Compiling and Linking TensorFlow Lite Runtime

While TensorFlow Lite had compilation workflows for devices such as the Arduino Nano
33 BLE Sense, Sparkfun Edge, etc., none existed for our target device. This was designed
through meeting a set of requirements. The requirements for porting a device are C++11
compatability, debug logging (printing strings to the debug console), math libray (libm.a),
and global variable initialization. We used the arm-eabi-gcc compiler which satisfied the
requirement of C++11 compatibility. Debugging logging was implemented based o↵ the
fprintf function. We included the math library while linking, satisfying that requirement.
Finally, global variable initialization was satisfied by the compiler. For debugging, the work-
flow included arm-eabi-gdb and JLink. From this step, many integration issues arose
which had to be addressed. Each of these issues were addressed through understanding var-
ious parts of the TensorFlow Lite internals and the approach to resolving them are detailed
in the following section.

Resolving Issues

The section details various TensorFlow Lite issues resolved.

RAM region overflow

This error was due to too much space being allocated to the heap. As TensorFlow Lite does
not use dynamic allocation, this was resolved by setting the HEAP SIZE=0x2000.

Failed to get registration for opcode d

In TensorFlow Lite, every operation/registration has a corresponding opcode. In order make
sure the operations are registered and can be used, an op resolver is used. In order to make
sure that the operations defined in the graph were acceptable, we added DEPTHWISE CONV2D,
CONV 2D, and AVERAGE POOL2D to the list of operations.
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Figure 3.5: Flatbu↵er Model Representation
The model was represented as the following in TensorFlow Lite. A model is composed of a subgraph

which represents the computation graph and operators which represent operations such as convo-

lution. The subgraph has multiple tensors, which are essentially multidimensional arrays which

represent inputs and outputs to various nodes of the graph. The operators represent particular

instantiations of operators which contain information on the input and output to the output. The

inputs and outputs in a subgraph are numbers that index the list of tensors for tensors that are

the overall input and output to the graph.
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Figure 3.6: Memory Map
This represents the memory usage of running the people classification model on the target device.

The flash contains const objects such as the people classification model and test image as well as

the code segment. The RAM consists of the stack, heap, bss, and data segments. The bss mainly

consists of the tensor arena, an area used by TensorFlow Lite for calculating the forward pass of

the model. As the diagram shows, RAM is generally more of a constraint than Flash.

Tensor Arena not su�cient

This error was complex in that it had many possible causes and was solved by understand-
ing the internals of TensorFlow Lite. Initially it was assumed that the target device did not
have enough memory available for running the model. In order to debug this, we looked
through the elf file created using nm and constructed the memory map shown in Figure
3.6. This showed us that this was not the issue. The next step that was taken was to
quantize the model using the TensorFlow Lite Converter, and this was performed by adding
converter.optimizations = [tf.lite.Optimize.DEFAULT]. As this did not solve the is-
sue, we then looked through the tensors of the graph and realized that some of tensors were
still not quantized. This error was solved by setting converter.target spec.supported ops
to [tf.lite.OpsSet.TFLITE BUILTINS INT8] and setting the converter.inference input type
and converter.inference output type to tf.uint8 in the converter, which set the input
and output to uint8 and limited the set of operations to int8, thus quantizing all tensors.
This solved this issue and output was produced in terms of a person and no person score.
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Figure 3.7: Flatbu↵er Converter vs. Interpreter Mismatch

Flatbu↵er Converter vs. Interpreter Mismatch

While the issue seemed to be solved, there was a hidden issue. By making the converter
input and output type uint8, the TensorFlow Lite Converter added extra nodes rather than
converting the existing input nodes and output nodes type from float to tf.uint8 as shown
in Figure 3.7. This resulted in unnecessary memory usage. In order to resolve this we initially
tried to modify the FlatBu↵er model structure. However, this structure was static and as
a result, we modified the processing of the model in TensorFlow Lite so that the additional
input and output nodes were ignored. This resolved this issue.
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Chapter 4

Results

The following sections will overview the testing of the approach, the measurement of the
energy, latency, accuracy, and memory across di↵erent models, and a comparison between
running people classification model locally and sending data to the cloud.

4.1 Experiment Setup

In order to explore the tradeo↵ between accuracy, energy, latency and memory, we trained
our model on 4 di↵erent input sizes, 48x48, 72x72, 96x96, and 120x120. These sizes were
chosen so the model could fit on the target device while maintaining a reasonable factor of
di↵erence in the image resolutions. The energy, latency, and memory usage of these models
were measured. These energy and latency results were compared with the energy and time
required to send data to a cloud AWS instance. It is assumed that the cloud instance does
not have memory constraints and accuracy-wise performs as well as the best possible model
for people classification.

4.2 Testing

In order to test that TensorFlow Lite on the target device worked, we compared results of 5
di↵erent images across 3 di↵erent settings: TensorFlow Python, TensorFlow Lite on Linux,
and TensorFlow Lite on target device (nrf52840). As the output of TensorFlow Python (the
reference) was in floats, a dequantization node was implemented in the TensorFlow Lite on
the target device implementation that simply divided by the scale and added the zero point
to the quantized output. Images a and b were taken from the COCO validation dataset and
images c to e were taken from the target device, the Permacam. The results on these images
across these three settings are shown below.
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(a) (b) (c) (d) (e)

Image Python
96

Linux
96

Device
96

a
.8 .31 .31

b
3.26 3.31 3.31

c
-0.84 -0.71 -0.71

d
-1.73 -1.65 -1.65

e
0.43 0.21 0.21

Table 4.1: Testing of Model
The images a to e were run through the model on TensorFlow Python locally, TensorFlow Lite

locally (Linux), and TensorFlow Lite for the target device. The output represents a person score;

if the score is greater than 1 (represented with color green), there is a person otherwise there is not

(represented with color red). The scores di↵er between TensorFlow Python and the other two due

to quantization and rounding errors that come with representing floats with ints. Images c to e are

taken from the target device, the Permacam.

4.3 Measurement

The 4 aspects measured across the models are energy, latency, memory and accuracy.

Energy

The energy was measured through using the ADS1115, a data acquisition device, along with
an Arduino. The measurement was repeated across di↵erent versions of the model and all
instances gave a current of roughly 7.5 milli Amperes and power of 0.034 W. See Appendix
for details on power measurement.
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(a) 48x48 Current Usage (b) 96x96 Current Usage

Figure 4.1: Energy Measurement Setup
(a) and (b) show the current measured for the 48x48 model and 96x96 model respectively. The

bumps in current usage represent the completion of a detection and are directly due to toggling an

LED. The average current usage is 7.5 milliAmperes across models.

Latency

The latency for running each model was measured through using the real-time counter
(RTC). The RTC runs on the low frequency clock and the frequency of counting is de-
termined by fRTC = 32.768/(PRESCALER + 1). By setting the PRESCALER to 327, the
count was incremented every 10 milisecond.

Figure 4.2: Real Time Clock Diagram
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Peak Memory Usage

The peak memory usage of the target device was measured by looking through the tensors of
the model. TensorFlow Lite processes models through first creating structures that reference
the Tensors (inputs/outputs of Operators) and structures that keep track of memory; in other
words, it uses memory for bookkeeping. While processing an the model, TensorFlow Lite
allocates memory for the input and output the current operator it is processing, the current
node usage. Therefore the peak memory usage is nothing but the sum of the current input,
current output, and bookkeeping memory.

Accuracy

The accuracy of the model was measured through running each model through the COCO
validation dataset.

Cost of Sending Data to Cloud

Other members of our research lab determined the cost of sending data to cloud. The
data was sent using OpenThread with CoAP (constrained application protocol). The target
device was able to achieve a goodput of 20 kbps using a block size of 512 bytes at a 0 dBm
radio power mode. At the 0 dBm power mode, the radio consumes 4.8 mA and allows for
10-30 meters range of communication. Increasing the transmit power to +4dBm increases
the range but also increases the current consumption to 9.6 mA.
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4.4 Results

Figure 4.3: Input Image Resolution vs Latency

Figure 4.4: Input Image Resolution vs Energy
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Figure 4.5: Input Image Resolution vs Memory

Figure 4.6: Input Image Resolution vs Accuracy
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4.5 Analysis for People Classification

The following graphs (4.3,4.4,4.5,4.6) show that the decision between cloud and local com-
pute is complex. Latency-wise and energy-wise it is a close call between cloud and local
processing. Sending data to the cloud takes less time than local processing, a di↵erence that
only increases with input size. However, sending data to the cloud requires more energy due
to the extra power needed for the wireless radio. Factoring in a few more variables makes
the decision for local processing more clear. First, the TensorFlow Lite convolutions run are
not optimized and can be sped up through using e�cient neural network kernels through
ARM-CMSIS NN [17]. Secondly, the model architecture itself can be optimized through
using Neural Architecture Search that factors in energy and latency [31]. Furthermore, the
energy and latency cost for sending data to the cloud shown in Figure 4.4 and Figure 4.3
is the best case scenario. Any packet loss can increase the time and therefore energy re-
quired to transmit data to cloud. Also, in scenarios where the communication distance is
higher (greater than 30 meters), more devices need to be added to the thread network or the
transmit power needs to be increased. Increasing the transmit power however increases the
current and energy consumption as shown in the graphs above. Considering these factors
and the factors of energy and latency, it does make sense to people classification locally.

Local processing is however not without sacrifice, as running locally does not provide the
same accuracy as running in the cloud. The best trained model for local processing had an
80 % accuracy on the validation dataset. While the accuracy of this model is far from state-
of-the-art accuracy, it can be improved through finding better model architectures or having
multiple devices running this model simultaneously and aggregating their results (essentially
ensemble models). Increasing input size could be a solution to improve accuracy as shown
in Figure 4.6; however, this is constrained by the available RAM.

In running models locally, memory, particularly RAM, is the greatest constraint. While
getting model parameters to compress is possible through quantization, during inference
each operation needs su�cient space to store its input and output. This is not trivial, as
while convolutional neural networks generally reduce the height and width of the input image
through each hidden layer, the depth of the output of these hidden layers increases. These
increases in depth can easily push the input/output to operators beyond the limits of the
available RAM. For the task of people classification,this turns out to not be an issue and
models can meet RAM constraints.

Therefore, by analyzing latency, energy, memory, and accuracy, we can see
that running models locally is more advantageous than sending data to the cloud
for people classification with the condition that the input image resolution must
be constrained. In the case of the Permacam, the input image resolution constraint can
be met through using the monochrome version of the HiMax sensor which provides QQVGA
(160x120) monochrome output.
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4.6 Analysis for People Detection

Experiments were unable to be run for people detection due to memory constraints. The
YOLOv3 Tiny model parameters size was 22 MB (well beyond the memory of the target
device). While modifications made through replacing convolutions with depth separable
convolutions and quantization allowed the model parameters to fit in the flash, inference
was not possible due to the lack of RAM. This once again points to RAM being the great-
est constraint in running models locally. Therefore, through analyzing the memory
constraints we can see sending data to the cloud for people detection is more
reasonable than running locally at this current point of time. Future technology
innovations can change how much can be accomplished locally versus in the cloud.
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Chapter 5

Conclusion and Future Work

In this thesis, we explore the viability of running computer vision machine learning models
on constrained embedded devices. Our experiments confirm our initial hypothesis that the
feasibility is dependent on task. In other words, local computation in low-energy constrained
embedded systems is viable for people classification while considering energy, memory, and
latency, but does not make sense for ”tougher” problems such as people detection due to
memory limitations.

Future work would be to explore compression methods and novel machine learning ar-
chitectures for the tasks of people classification and people detection. Compression methods
such as pruning [19] and DeepIoT [32] could be e↵ective ways of reducing architecture size
and compute. Another approach would be to look into neural architecture search which
takes into consideration the constraints of latency, energy and memory in order to produce
novel architectures for both people classification and people detection [31].
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Chapter 6

Appendix

6.1 YOLO Dataset Code

1 import numpy as np

2 from pycocotools.coco import COCO

3 import json

4 from PIL import Image

5

6

7

8 #Category of person is 1

9 foreground_img_ids = coco.getImgIds(catIds =1)

10 background_img_ids = coco.getImgIds(catIds=range (2 ,81))

11

12 #Iterate through images that are labelled as Person

13 for img_id in foreground_img_ids:

14 img = coco.imgs[img_id]

15 height = img[’height ’]

16 width = img[’width ’]

17 name = img[’file_name ’]. replace(’jpg’, ’txt’)

18 img_area = height * width

19

20 f = open(output_path+name ,"w+")

21

22 #Iterate through annotations in the image

23 for ann_id in coco.getAnnIds( imgIds=img_id , catIds=

foreground_class_id ):

24

25

26 ann = coco.anns[ann_id]

27 ann_area = ann[’area’]

28 norm_area = ann_area/img_area

29

30 #If area of object is greater than .005 consider it and modify

the bounds (for YOLO processing)
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31

32 if norm_area > .005:

33

34 bbox = ann[’bbox’]

35 from_left = bbox [0]

36 from_top = bbox [1]

37 ann_width = bbox [2]

38 ann_height = bbox [3]

39 x_center = from_left + ann_width /2

40 y_center = from_top + ann_height /2

41 norm_x_cent = x_center/width

42 norm_ann_width = ann_width/width

43 norm_y_cent = y_center/height

44 norm_ann_height = ann_height/height

45

46 f.write("0 %f %f %f %f\n" % (norm_x_cent , norm_y_cent ,

norm_ann_width , norm_ann_height))

47

48

49 f.close()

Listing 6.1: YOLO

6.2 Energy Measurement

The energy used locally through the board was measured through using the ADS1115, a
data acquisition device, along with an Arduino. The nRF52840 board was connected to a
power supply through a 5 volt connection to VIN . The ground of the board was connected
to a 50 Ohm resistor and the voltage across this resistor was measured using the ADS1115.
The voltage across the 50 Ohm resistor was converted into current by dividing by the resis-
tance and power was found by multiplying the voltage and current. The energy used was
determined by integrating power usage across time. This measurement was repeated across
di↵erent versions of the model and all instances gave a current of roughly 7.5 milli Amperes.

An image of the setup and circuit diagram are shown below.
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Figure 6.1: Energy Mesasurement ADS1115 + Arduino Due

The following equations display how the energy used was determined. Edut and Pdut

represent the energy and power consumed by the nRF52840 respectively. Ics, Vcs, and Rcs

represent the current, voltage, and resistance of current sense resistor respectively.
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Ics = Vcs/Rcs (6.1)

Vdut = Vcc � Vcs (6.2)

Pdut = Vdut ⇤ Ics (6.3)

Edut = Pdut ⇤ T (6.4)

Due to calibration errors and lack of more precise equipment, there may be some errors
in the detected values but the values are roughly around what should be expected. Some
other more precise methods for measuring current and power would be to use the NI DAQ
USB-6009 or the High Voltage Power Monitor from Monsoon Solutions. Circuit diagrams
for these approaches are provided below.

Figure 6.2: Energy Mesasurement NI DAQ USB-6009
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Figure 6.3: Energy Mesasurement Monsoon
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