A Study of Transfer Learning Methods within Natural
Language Processing and Reinforcement Learning

Shrishti Jeswani
Joseph Gonzalez, Ed.
John F. Canny, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-98
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-98.html

May 29, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank my advisor, Professor Joseph Gonzalez, for providing
me with several opportunities and resources during my time at UC Berkeley.
I'm very grateful for the Google AdsAl team and my host/mentor, Principal
Scientist Sugato Basu, for giving the opportunity to intern with AdsAl and
inspiring my research. | would also like to thank graduate students Eric
Wallace and Charles Packer for their continuous guidance and support in my
research endeavors. Thank you to my friends, fellow TAs and the RISE lab
community for the encouragement and memories. Finally, | would like to
thank my family for the endless support and guidance throughout my years
at Berkeley.

A Study of Transfer Learning Methods within Natural Language
Processing and Reinforcement Learning

by Shrishti (Sona) Jeswani

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Joseph Gonzalez
Research Advisor

May 21' 9\02.0

(Date)

sk ock sk sk sk ok ok

e

Professor John Canny
Second Reader

May 28, 2020

(Date)

Sona Jeswani

A Study of Transfer Learning Methods within Natural Language Processing and
Reinforcement Learning
by

Shrishti (Sona) Jeswani

A thesis submitted in partial satisfaction of the
requirements for the degree of
Masters of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Joseph Gonzalez, Chair
Professor John Canny

Spring 2020

A Study of Transfer Learning Methods within Natural Language Processing and
Reinforcement Learning

Copyright 2020
by
Shrishti (Sona) Jeswani

Abstract

A Study of Transfer Learning Methods within Natural Language Processing and
Reinforcement Learning

by
Shrishti (Sona) Jeswani'
Masters of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Joseph Gonzalez, Chair

Learning to adapt to new situations in the face of limited experience is the hallmark of human
intelligence. Whether in Natural Language Processing (NLP) or Reinforcement learning
(RL), versatility is key for intelligent systems to perform well in the real world. This work
will propose and evaluate solutions to salient transfer learning problems in NLP and RL.

Although today’s pre-trained language models are considerably more robust to out-of-distribution
data than traditional NLP models, they still remain notoriously brittle. We present a test-
time training technique for NLP models to adapt to unforeseen distribution shifts at test-
time, where no data is available during training time to use for domain adaptation. Our
approach updates models at test-time using an unsupervised masked language modeling
(MLM) objective. We ensure that this auxiliary loss is helpful by training using a gradient
alignment technique that pushes the MLM and supervised losses together. We evaluate our
approach on a variety of different tasks such as sentiment analysis and semantic similarity.

Although deep RL algorithms enable agents to perform impressive tasks, they often require
several trials in order for agents to develop skills within a given environment. Furthermore,
agents struggle to adapt to small changes in the environment, requiring additional samples to
rebuild their knowledge about the world. In contrast, humans and animals are able to rapidly
adapt to changes, while learning quickly from their prior experiences. Our objective is to im-
prove generalization performance of state-of-the-art meta-RL approaches, where we consider
generalization to changes in environment dynamics and environment reward structure. We
propose and evaluate various novel meta-RL architectures, which aim to improve adaptation
to new environments by disentangling components of the recurrent policy network.

'Based on paper drafts:
“Handling Unforeseen Distribution Shift Via Test-time Retrieval and Training” written with Eric Wallace
and Joseph E. Gonzalez; “Improving Generalization in RL Through Better Adaptation” written with Charles
Packer, Katelyn Gao and Joseph E. Gonzalez

Contents

Contents
1 Introduction
1.1 Handling Unseen Distribution Shift in NLP
1.2 Improving Generalization in RL Through Better Adaptation
2 Transfer Learning Background
2.1 Definition
2.2 Taxonomy e

5

Handling Unseen Distribution Shift in NLP

3.1 Background
3.2 Approach
3.3 Experiments
3.4 Related Work
3.5 Conclusion and Future Work L.

Improving Generalization in RL Through Better Adaptation

4.1 Background
4.2 Related Work
4.3 Approach
4.4 Experiments
4.5 Conclusion and Future Worko

Conclusion and Future Work

Bibliography

i

Acknowledgments

I would like to thank my advisor, Professor Joseph Gonzalez, for providing me with several
opportunities and resources during my time at UC Berkeley. I'm very grateful for the Google
AdsAT team and my host/mentor, Principal Scientist Sugato Basu, for giving the opportunity
to intern with AdsAl and inspiring my research. I would also like to thank graduate students
Eric Wallace and Charles Packer for their continuous guidance and support in my research
endeavors. Thank you to my friends, fellow TAs and the RISE lab community for the
encouragement and memories. Finally, I would like to thank my family for the endless
support and guidance throughout my years at Berkeley.

Chapter 1

Introduction

The classic supervised machine learning paradigm is based on learning in isolation, where
each task is solved by using a separate model with a single dataset. Transfer learning is a set
of methods used to overcome the isolated learning paradigm by utilizing knowledge acquired
for one task to solve related ones. By leveraging data from additional domains or tasks,
models are able to generalize better and transfer knowledge between tasks. In fact, transfer
learning is very reminiscent to how humans approach learning; humans have the inherent
ability to utilize knowledge/experiences from previous tasks and domains to solve new tasks.

In the last few years, Natural Language Processing (NLP) has witnessed the emergence
of several transfer learning methods and architectures; these techniques have significantly
improved performance on a wide range of NLP tasks and transformed the landscape of NLP
research. Similarly, within reinforcement learning (RL), there has been an increased interest
in training agents to adapt to different environments by learning from previous experience.
There are several interesting transfer learning applications within NLP and RL; we explore
a few of them within this work.

In real-world NLP settings, the examples received at test-time are often drawn from
a different distribution than examples during training. Since many distribution shifts are
unforeseen in practice, language models must be robust to out-of-distribution examples at
test time without prior knowledge of the distribution shift. In this work, we explore a new
setting where there is no data available during training to anticipate distribution shifts at
test-time. We perform a comprehensive study of the robustness of pretrained models and
propose methods that enable models to adapt on-the-fly to new distributions at test-time.

Within the field of RL, enabling agents to quickly learn new tasks by using previous
experience is a well-studied problem. Since it is impractical to train an agent to learn
each individual skill in isolation, it is crucial for agents to adapt in order to pick up new
skills/tasks faster and handle unseen situations at test time. In this work, we propose and
evaluate novel architectures in order to improve generalization to both environment dynamics
and environment reward structure.

CHAPTER 1. INTRODUCTION 2

1.1 Handling Unseen Distribution Shift in NLP

Pretrained language models are foundational for strong performance in a wide variety of
natural language processing tasks. Pretrained models such as ELMo [42] and BERT [7] are
trained on large, diverse corpora of unlabeled text; as a result, the representations learned
from these models have achieved state-of-the-art performance across many downstream tasks
with datasets from a diverse set of sources/domains. Although, these pretrained represen-
tations have proven to be transferable to a wide range of domains, research still shows that
there exist generalization gaps between in-domain data and out-of-distribution data [21].

This is a problem because the train and test data are rarely drawn from the same dis-
tribution in practice. This distribution mismatch often arises from the natural evolution of
trends, language, and society over time. Accordingly, it is crucial for models to generalize
to out-of-distribution examples. Much of previous research in generalization assumes that
the distribution shift is known in advance [17, 57|, allowing us to apply standard supervised
and unsupervised domain adaptation techniques.

However, in many real-world settings, there is no prior data available to anticipate distri-
bution shifts, henceforth unforeseen distribution shift. For example, in fake news detection,
models must constantly stay up to date with evolving topics and trends without prior knowl-
edge. Furthermore, search engines must recommend results given queries from a very diverse
set of evolving users. These real-world settings exemplify the limitations in assuming the
distribution shift is known beforehand.

In our NLP study, we explore a new setting in which the distribution of the examples
received during test-time is unknown; in other words, there is no data available during
training-time to anticipate distribution shifts. We propose a technique to adapt to unfore-
seeable domain/distribution shifts during test-time. Upon receiving an example from an
unfamiliar domain during test-time, we believe the language model will greatly benefit from
additional training (or fine-tuning) on the test example and other similar, relevant examples
using the unsupervised masked language modeling objective. By taking gradient step(s)
using an labeled objective on the test-example, the model is able to get practice reading the
domain and making predictions before actually testing; this is very similar to how humans
approach learning. Using test-time training for out-of-distribution generalization has been
studied in computer vision [56]; however, these ideas have several unique applications for
NLP.

In order for auxiliary tasks to be helpful for the primary task, the tasks must share
similarities. One way to measure task similarity is to compute the cosine similarity between
the gradients of the tasks [8]. Our test-time training approach only works if the gradients
from the masked language modeling objective are roughly aligned with the gradients of the
supervised objective. To this end, we propose a gradient alignment technique to explicitly
train a model such that the gradients from the masked language modeling objective and the
supervised objective is aligned.

We evaluate our approach on a variety of different tasks such as sentiment analysis,
textual entailment, and semantic similarity.

CHAPTER 1. INTRODUCTION 3

1.2 Improving Generalization in RL Through Better
Adaptation

Deep reinforcement learning (RL) has emerged as an important family of techniques that
learn to accomplish goals in a variety of complex real-world environments. Deep RL methods
have been shown to learn complex tasks ranging from games [15] to robotic control [29, 51]
by simply exploring the environment and receiving rewards.

Although deep reinforcement learning algorithms allow agents to perform impressive
tasks, they often require a large number of trials in order for agents to develop skills within
a given environment. Furthermore, agents are unable to adapt to small changes in the
environment and require additional trials/samples in order to rebuild their knowledge about
the world. In contrast, humans and animals are able to adapt to changes in the environment,
while learning quickly from their prior knowledge about the world. These problems are rooted
in how deep RL algorithms are commonly trained and evaluated on a fixed environment;
the algorithms are evaluated in terms of their ability to optimize a policy in a complex
environment, rather than their ability to learn a representation that generalizes to previously
unseen circumstances.

In principle, meta-reinforcement learning (meta-RL) algorithms enable agents to learn
new skills from small amounts of experience; however, many state-of-the-art model-free meth-
ods still struggle to adapt to new environments with different dynamics using a restricted
amount of new experience.

We are interested in developing methods that enable agents to better adapt to new
environments that differ from those seen during training. In particular, we are interested in
settings where environment dynamics (e.g., friction or torque in a Mujoco environment) and
environment reward structure (e.g., target velocity for a running Mujoco robot) are different
at test time than during training; either from the same distribution of MDPs (interpolation),
or from a different distribution (extrapolation).

Our objective is to improve the generalization performance of state-of-the-art model-
free meta-RL approaches, where we are concerned with generalization to both changes in
environment dynamics and environment reward structure. In line with our objective, we
propose and evaluate various novel meta-RL architectures based on the architecture and
training algorithm described by previous work (ie. RL?) [10]. Our architectural changes aim
to improve adaptation to new environments by disentangling the recurrent and feed forward
components of the recurrent policy network.

CHAPTER 1. INTRODUCTION 4

We begin Chapter 2 by discussing a formal definition of transfer learning, along with
different settings of transfer learning that arise; this will build a foundation on transfer
learning that is necessary for subsequent chapters.

In Chapter 3 of this work, we explore a new NLP setting in which the domain of the
examples received during test-time is unknown; in other words, there is no data available
during training-time to anticipate distribution shifts. We propose a technique to adapt to
unforeseeable domain/distribution shifts during test-time, similar to how humans approach
learning.

In Chapter 4 of this work, we examine meta-learning techniques within RL in order
to develop policies that can adapt to different tasks and environments at test-time. We
propose and evaluate various novel meta-RL architectures based on the architecture and
training algorithm described by [10] (RL?).

Chapter 2

Transfer Learning Background

In the classic supervised machine learning setting, if we intend to train a model to solve a
given task and domain, we assume that labelled data is available for the same given task and
domain. This traditional supervised learning paradigm breaks down when labeled data for
the task and domain is scarce. Transfer learning enables us to leverage data from a related
task or domain known as a source task or source domain. We seek to apply this knowledge
to the target task or target domain. Knowledge can manifest in several different forms, but
we primarily link it with the representations learned by neural network models.

2.1 Definition

We provide a formal definition of transfer learning following the notation of previous work [38,
48]. We first introduce the concepts of a domain and a task. A domain D consists of a
feature space x and a marginal probability distribution P(X) over the feature space, where
X ={x1,...,x,} € x. X is arandom variable that represents the sample of data points used
for training, where each z; is the feature representation of each example.

Given a domain D = {X, P(X)}, a task T consists of a label space), a prior distribution
P(Y), and a conditional probability distribution P(Y|X) that is typically learned from the
training data consisting of pairs z; € X and y; €).

Given a source domain Dyg, a corresponding source task T, along with a target domain
Dr and a target task T , transfer learning aims to learn the target conditional probability
distribution Pr(Y7|X7) in D using the information gained from Dg and T, where Dg # Dr
or Ts # Tr.

2.2 Taxonomy

Based on different situations between the source domains, target domains, source tasks and
target tasks, transfer learning can be categorized into the following sub-settings [38]:

CHAPTER 2. TRANSFER LEARNING BACKGROUND 6

1. Inductive Transfer Learning: The target task is different from the source task,

regardless of whether the source and target domains are the same or not. This can be
written as T # Tk.

2. Transductive Transfer Learning: The source and target tasks are the same, while
the source and target domains are different. This can be written as T's = T, Dg # Dr.
In this scenario, no labeled data in the target domain are available while a lot of labeled
data in the source domain are available.

3. Unsupervised Transfer Learning: The target task is different from the source task,
but related. The primary focus is on solving unsupervised learning tasks in the target
domain, such as clustering, dimensionality reduction and density estimation. In this
case, there are no labeled data available in both source and target domains during
training.

Previous work has adapted this transfer learning taxonomy to common NLP scenarios
as shown in 2.1 [38, 48]. Sequential transfer learning is the most frequently used transfer
learning scenario in natural language processing. Both meta-learning and lifelong learning
can both be viewed as instances of sequential transfer learning.

Domain
daptati
Different domains adaptation
Transductive
Same task: |transfer learning
bl
labeled data
K Different languages ;
only in source Cross-lingual
domain learning
Transfer
learning
Different tasks; Multi-task
labeled data Tasks learned learning
in target simultaneously
domain Inductive

transfer learning

Tasks learned

sequentially Sequential

transfer learning

Figure 2.1: The transfer learning taxonomy adapted to NLP as presented in [48]

There are several different techniques to transfer knowledge across tasks and domains.
Listed below are the ways in which to transfer knowledge between tasks and domains [38].

CHAPTER 2. TRANSFER LEARNING BACKGROUND 7

1. Instance transfer: Assumes that select data in the source domain can be reused for
learning in the target domain by instance re-weighting and importance sampling [38].

2. Feature-representation transfer: The knowledge used to transfer across domains
is encoded into the learned feature representations; therefore, the goal is to learn a
“good” feature representation for the target domain [38].

3. Parameter transfer: The transferred knowledge is encoded into the shared parame-
ters or priors [38].

4. Relational-knowledge transfer: Builds mapping of relational knowledge between
the source domain and the target domains [38].

In the Natural Language Processing chapter, we primarily focus on sequential transfer
learning and domain adaptation through parameter transfer. Within the Reinforcement
Learning chapter, we focus on meta-learning techniques and building policies that can adapt
to different environment dynamics.

Chapter 3

Handling Unseen Distribution Shift in
NLP

3.1 Background

Natural Language Processing is the set of methods for making human language accessible
to computers. Contemporary approaches to natural language processing heavily rely on
neural models to build representations of language. Recently, pretraining has emerged as
an important technique that leverages large unlabeled corpora to learn universal language
representations; these representations are then fine-tuned to downstream tasks using labeled
data from the target domain.

Pretrained Models

With evolution of deep learning within the past decade, models have rapidly increased in
parameter count. These larger models require more data training data to fully learn language
representations; however labeled data tends to be scarce for several NLP tasks such as
textual entailment, question answering, document similarity, etc. Building large-scale labeled
datasets is very challenging due to limited resources and expensive annotation costs. On the
other hand, unlabeled corpora remains abundant and easily accessible. Pre-training is able
to leverage large corpora through self-supervised learning, which studies the creation of labels
from data, by designing ingenious tasks that contain semantic information without human
annotations [22].

Pretrained models such as ELMo [42] and BERT [7] are trained on large, diverse corpora
of unlabeled text. BERT uses the following self-supervised pre-training objectives:

1. Masked Language Model (MLM), which randomly masks some tokens from the
input and the objective is to predict masked vocab. This objective enables the repre-
sentation to fuse left and right context.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 9

2. Next Sentence Prediction (NSP), which receives pairs of sentences as input and
learns to predict if the second sentence in the pair is the subsequent sentence in the
original document.

BERT’s pre-training corpus consists of BooksCorpus (800M words) [65] and English
Wikipedia (2,500M words). Since the release of BERT, there have been several domain-
specific BERTS developed such as BioBERT (biomedical text) [28], SciBERT (scientific
publications) [1], Clinical BERT (clinical notes) [24]. These models have been pretrained on
a domain specific corpus and yield better performance when fine-tuning them on downstream
NLP tasks for those domains.

Pretrained language models form the foundation of today’s NLP. The representations
learned from these models have achieved state-of-the-art performance across many down-
stream tasks with datasets from a diverse set of sources/domains.

Fine-Tuning

After pre-training on large, diverse corpora of unlabeled text, fine-tuning is a technique
used to adapt the models’ knowledge to downstream tasks. Adapting pretrained models to
downstream tasks is a form of transfer learning, which is a means to extract knowledge from
a source setting and apply it to a different target setting [38].

For the standard fine-tuning procedure, the pre-trained model is first initialized with the
pre-trained parameters, then all of the parameters are fine-tuned using labeled data for the
downstream tasks. This standard fine-tuning technique used for pre-trained models is shown

in Figure 3.1.
Load Pretrained Fine-Tune BERT Evaluate on

[Labeled Data]

Pretraining Fine-Tuning Inference

Figure 3.1: The typical setting that BERT is used in, with no domain adaptation strategies.

Apart from the standard fine-tuning technique, there is extensive research on different
fine-tuning techniques. Several previous works have shown that further pre-training on cor-
pora related to the target domain helps improve performance on downstream tasks [17, 16].
Other works have suggested using discriminative fine-tuning, which uses different learning
rates for each layer [23]. Very recent work shows that fine-tuned models are close in param-
eter space to the pre-trained one, with the closeness varying from layer to layer; therefore,

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 10

it suffices to fine-tune only the most critical layers [44]. In this chapter, we run several
experiments in order to understand and interpret what happens to language representations
during and after fine-tuning.

Evaluation on Downstream Tasks

The General Language Understanding Evaluation (GLUE) benchmark [60] is a collection
of nine natural language understanding tasks, including single-sentence classification tasks
(CoLLA and SST-2), pairwise text classification tasks (MNLI, RTE, WNLI, QQP, and MRPC),
text similarity task (STS-B), and relevant ranking task (QNLI). The GLUE benchmark serves
as a metric to compare different pre-trained models. In this chapter, we evaluate our methods
on a variety of tasks using several diverse datasets.

3.2 Approach

We explore a new setting in which the domain of the examples received during test-time
is unknown; in other words, there is no data available during training-time to anticipate
distribution shifts. We propose a technique to adapt to unforeseeable domain/distribution
shifts during test-time. Upon receiving an example from an unfamiliar domain during test-
time, we believe the language model will greatly benefit from additional training (or fine-
tuning) on the test example and other similar, relevant examples using the unsupervised
masked language modeling objective. By taking gradient step(s) using an labeled objective
on the test-example, the model is able to get practice reading the domain and making
predictions before actually testing; this is very similar to how humans approach learning.
Using test-time training for out-of-distribution generalization has been studied in computer
vision [56]; however, these ideas have several unique applications for NLP.

In order for auxiliary tasks to be helpful for the primary task, the tasks must share
similarities. One way to measure task similarity is to compute the cosine similarity between
the gradients of the tasks [8]. Our test-time training approach only works if the gradients
from the masked language modeling objective are roughly aligned with the gradients of the
supervised objective. To this end, we propose a gradient alignment technique to explicitly
train a model such that the gradients from the masked language modeling objective and the
supervised objective is aligned.

We evaluate our approach on a variety of different tasks such as sentiment analysis,
textual entailment, and semantic similarity.

Test-time Training

Test-time training for out-of-distribution generalization was first introduced for computer
vision models [56]. Let x; be an unlabeled example received at test time. Although we do
not know the domain of example x;, we can use information about z; in order to update the

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 11

Load Pretrained Fine-Tune BERT Receive example Update model using ,M,ake
BERT weights on Domain A from Domain B |:> similar examples prediction, then
reset model
Labeled Data { Unlabeled Data J
Pretraining Fine-Tuning Online Inference

Figure 3.2: This is our test-time training approach for the setting in which the domain of the
examples at test-time is unknown. Upon receiving an example at test time, we take gradient
steps on similar examples, make the prediction, then reset the weights before receiving the
next example during inference.

parameters before making a prediction y;. In this test-time training approach, the model
parameters 6 depend on the test instance x, but not its unknown label y.

In order to update the parameters 6 at test time, we can create a self-supervised learning
problem from the test instance x. Self-supervised learning is a technique that automatically
creates labels from unlabeled inputs using an auxiliary task. Specifically, we can use the
masked language modeling (MLM) objective over unlabeled text. In addition to using test
instance x for test-time training, we can also retrieve similar examples from the training
corpus. By taking gradient steps on similar examples during test-time, the model will be
able to get practice reading a domain before making predictions.

In the online setting, we receive examples sequentially, one at a time. In the setting
where the examples arrive in batches, we can perform test-time training using the batched
data.

Parameter Resetting. After making a prediction for each example during test-time,
we consider whether the parameters should be rewound to the parameters attained after fine-
tuning. Not resetting the parameters may cause the model to drift away from the source
domain, which is known as catastrophic forgetting [34]. On the other hand, if we know that
we will receive a series of inputs from a certain domain, then it may be beneficial to keep
updating the model without resetting parameters. In this report, we perform all test-time
training experiments by resetting the model parameters after each example at test time.

Computational Efficiency. One downside to test-time training is that it increases
compute, since additional forward and backward passes are required during inference. In
order to reduce compute, we can only take gradient steps on examples that appear to be
out-of-distribution. A simple baseline for out-of-distribution detection would be to set a
threshold in the output confidence. This is something we save for future work.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 12

VL
‘L\“ MLM
N X
\\\; / . Domain A
¥ oo VI_Supervised
Domain B

Figure 3.3: The gradient alignment technique decreases the angle between the gradient of
the MLM objective and the gradient of the Supervised objective. 0} represents the optimal
parameters for a given example at test-time. The supervised gradient is from an oracle
setting, where we use the label of the example at test-time.

Retrieval Techniques. Given a test example from an unfamiliar domain, how do we
retrieve the most relevant examples to use during test-time training” The type of domain
shift can often suggest the most effective retrieval technique. For instance, if the example at
test-time primarily consists of unknown words, it might be beneficial to retrieve examples
that have the same unknown words. This type of retrieval would be based on keyword sim-
ilarity. We did not get a chance to explore different test-time retrieval techniques; however,
we save this for future work.

Aligning Supervised and MLM Gradients

In our initial test-time training experiments, we found that the Masked Language Modeling
gradients often do not align with the gradients from the supervised task loss. This is shown
visually in Figure 3.3 After computing the cosine similarity and angular deviation between
the two gradients, we found that the gradients were often dissimilar as shown in our results
in Table 3.2

This explains why out-of-the-box test-time training does not help out-of-distribution
performance. In order for auxiliary tasks to be helpful for the primary task, their gradients
must roughly align. To this end, we propose a gradient alignment technique to train a model
that is fine-tunable using the masked language modeling objective.

Previous work [27] presents a Restricted Inner Product Poison Learning (RIPPLe) tech-
nique that shows the possibility of “weight poisoning” attacks. This work proposes an
interesting objective:

Ly (0) + Amaz(0, =V Lp(0)"V Lpr(6) (3.1)

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 13

The second regularization term encourages the inner product between the poisoning loss
gradient and the fine tuning loss gradient to be non-negative. This objective function inspired
us to construct a meta-learning objective that trains the model to be fine tunable using the
masked language modeling loss at test time. Let Lgy be the supervised loss and Ly be
the masked language modeling loss. We propose the following objective:

VLMLM(Q)TVLS‘/(Q)
IV Ly |||V Lsv||

The objective above can also be written in terms of the cosine similarity between the
gradient vectors:

Lsy(6) — A

(3.2)

Lsv(0) — Acos(B) (3.3)

where [represents the angle between the Supervised gradient and the MLM gradient and
A represents the strength of the regularization. Rather than encouraging the model to learn
parameters such that the gradients to have a high dot product, we instead normalize the
gradient vectors. This prevents the model from increasing the norm of the gradients in order
to decrease the loss.

3.3 Experiments

We use the BERT Base model [7] in our experiments. Note that our approach is agnostic to
the underlying pretrained model.

Train and Test Datasets

We evaluate generalization using a variety of tasks and data sources. We utilize two sentiment
analysis datasets:

e We use the SST-2 Dataset, which contains formal movie reviews labeled with their
sentiment [54]. We also use the IMDb dataset [30], which is also a binary sentiment
analysis dataset containing of informal reviews

e The Amazon Review Dataset contains product reviews from Amazon [33, 18].
We primarily focused on the categories that had larger generalization gaps in [21].
We collected data from a few clothing categories (Women Clothing, Mens Clothing,
Baby Clothing, Shoes) and two categories of entertainment products (Movies, Music).
Models predict a review’s 1 to 5 star rating, and we report accuracy.

We utilize the following datasets for semantic similarity, entity span identification and part-
of-speech tagging tasks:

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 14

e The STS-B Dataset requires predicting the semantic similarity between pairs of
sentences [3]. The dataset contains text of different genres and sources; we use four
sources from two genres: Microsoft Research Paraphrase Corpus (MSRpar) (news),
Headlines (news); MSRvid (captions), Images (captions). The evaluation metric is
Pearson’s correlation coefficient.

e The canonical Conference on Natural Language Learning (ColNLL) 2003 shared
task dataset contains named entity spans that were annotated on a corpus of new-
stext [50]. After training on the CoNLL dataset, we focus on identifying named entity
spans in Tweets, which was the shared task of the 2016 Workshop on Noisy User
Text [55].

e The Penn Parsed Corpora of Historical English (PPCHE) contains part-of-
speech annotations for texts originating from several historical periods [26]. We pri-
marily focus on the corpus that covers Early Modern English, which we refer to as
PPCEME. Due to the limited access of this dataset, we were not able to run exper-
iments in time for this report; however, in the coming weeks, we will train on the
Penn Treebank (PTB) corpus of 20th century English [32], and then evaluate on
the PPCEME test set.

We chose these tasks and datasets because they represent realistic distribution shifts and
are used in past work [21, 17].

Tools

We used PyTorch [40] along with the Hugging Face Transformers library [62] in order
to run our experiments. The Hugging Face Transformers library provides saved models
checkpoints for numerous pretrained models; we load the official pre-trained BERT weights
for our experiments. We also used Jupyter Notebooks and Pandas for data cleaning and
visualization. In order to run experiments, we used the RISE machines with GPUs along
with the Slurm Workload Manager to schedule jobs.

Natural Robustness of BERT We investigate the natural ability of the BERT-Base
model to generalize to out-of-distribution examples; our experiment results are listed in
Table 3.1. These experiments form a baseline/reference for comparing the experiments that
use our domain adaptation techniques.

Robustness with Test-Time Adaptation We perform our test-time adaptation ap-
proach by a taking gradient step We found that test-time training alone does not signifi-
cantly help performance as shown in our results in Table 3.2. Even after running additional
test-time training experiments using more gradient steps and more examples, we found that
using the masked language modeling objective is not helpful at test-time, since it does not
align with the true supervised objective (in terms of their gradients).

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 15

Dataset Metric Trial 1 Trial 2
In-Domain OOD In-Domain OOD
SST /IMDb Accuracy 0.94 0.89 0.93 0.89
SST/IMDb MCC 0.867 0.774 0.86 0.786
Amazon (BC to Mu) Accuracy 0.53 0.39 0.49 0.44
Amazon (WC to Mu) Accuracy 0.55 0.51 0.58 0.50
Amazon (MC to Mu) Accuracy 0.53 0.48 0.52 0.47
STS-B Pearson 0.86 0.59 0.87 0.59
STS-B Spearman 0.87 0.57 0.86 0.56
STS-B Average Correlation 0.86 0.58 0.86 0.57
CoNLL/Twitter Precision 0.97 0.55 0.97 0.57
CoNLL/Twitter Recall 0.98 0.66 0.98 0.67
CoNLL/Twitter F1 0.97 0.61 0.98 0.62

Table 3.1: Results for the experiments where we finetune BERT Base on one domain, then
test on another domain. This shows the generalization gap between in-domain and out-of-
distribution data. For the SST/IMDB experiments, we train on SST, then test on IMDB.
For the Amazon experiments, we separately train on Baby Clothing (BC), Women’s Clothing
(WC) and Men’s Clothing (MC), then test on Music (Mu). For the STS-B experiments, we
train on News Headlines and test on MSRpar. The NER experiments are trained on CONLL
dataset and tested on the Twitter Dataset.

Adding Gradient Alignment We ran experiments to fine-tune our models using our
gradient alignment objective in Equation 4.1. From our current results, we found that fine-
tuning with the new objective does not hurt performance on the source domain or target
domain. Due to limited compute resources, we were not able to run test-time training
experiments on these models; however, we do so in the coming weeks.

Fine-Tuning With a Joint Objective Language models pretrained on a large, diverse
set of unlabeled text form the foundation of today’s NLP. The masked language modeling
objective helps the model learn from unlabeled corpora through a self-supervised framework.
The traditional way to fine-tune pretrained models is to use a supervised objective to help
"specialize” the model, as displayed in 3.1. We hypothesize that using a supervised objective
during fine-tuning may contribute to catastrophic forgetting of general knowledge learning
during pre-training (hence, the generalization gaps). To this end, we run experiments that
use the following joint loss during fine-tuning:

LFT(Q) = LMLM(Q) +)\Lgv(e) (34)

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 16

Dataset Trial 1 Trial 2

Cosine Sim. Angle OOD Acc. Cosine Sim. Angle OOD Acc.

SST/IMDb —0.16 94.65 0.87 —0.19 102.46 0.88
STS-B —0.20 125.46 - —0.19 126.38 -
Amazon (WC/Mu) 0.01 104.46 0.51 —0.01 100.91 0.52

Table 3.2: Results for the cosine similarity and angular deviation between the masked lan-
guage modeling gradient and the true supervised gradient averaged over all the test examples.
We observe that the cosine similarity between the gradients is weak; therefore, the masked
language modeling gradient alone may not be useful in updating the model at test time.
This explains why test-time training alone does not significantly help performance, as shown
in by these OOD Accuracy results. This motivates our gradient alignment approach during
fine-tuning.

With this objective, the model will continue using masked language objective on data
from the source domain during training. We hope that this helps alleviate catastrophic
forgetting and helps the model "remember” masked language modeling. We display our
results in the appendix within Tables 3.3, 3.4, 3.5, 3.6 and 3.7. Note that the experiments
that use the standard supervised fine-tuning objective (without the MLM objective) are
shown in Table 3.1.

3.4 Related Work

Robustness of Pretrained Models

Previous works systematically study the out-of-distribution (OOD) robustness of various
NLP models, including pre-trained transformers [21]. Even today’s pre-trained models
exhibit significant generalization gaps between in-distributon and out-of-distribution data.
In order to methodically evaluate robustness, prior work has decomposed robustness into
a model’s ability to (1) generalize and to (2) detect OOD examples [2, 21]. In line with
previous work, we primarily focus on measuring OOD generalization by evaluating model
performance under shifts in vocabulary, topic and style using a variety of different tasks and
datasets.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 17

Domain Adaptation Techniques

Domain adaptation is an important problem in NLP and has been well studied in recent
years. There is an expansive set of work domain adaptation studies that have focused on
tasks such as sentiment analysis [14, 53|, paraphrase detection [52], and Part-Of-Speech
(POS) tagging.

Unsupervised Domain Adaptation

One particular line of work this unsupervised domain adaptation (transfer learning), which
studies the problem of distribution shift (from P to Q), when unlabeled data from Q is
available at training-time. Some NLP research in unsupervised domain adaptation has shown
improved performance when fine-tuning the pre-trained models using unlabeled data from
the target domain (e.g., [17, 16]), as shown in Figure 3.4. Although this fine-tuning improves
performance, it requires knowledge of the target domain during training; this knowledge is
not available in our setting. Therefore, we view this as the upper bound on performance,
since the model is specialized for the target domain during training. The lower bound on
performance is when the model is trained on an entirely different domain than the target
domain (with no additional fine-tuning on the target domain). Our work attempts to close
the gap between these two bounds, given no prior information about the target domain at
test-time.

Supervised Domain Adaptation

Other research has proposed techniques that use labeled data from the target domain during
fine-tuning. Most of these studies assume that there is prior knowledge about the distribution
shift available during training; this assumption differentiates our work from most prior work
in domain adaptation.

Computer Vision Parallels

Transfer learning has been heavily used in computer vision; instead of building a model from
scratch, we can start with a model pre-trained on ImageNet.

We were inspired by many of the unsupervised domain adaptation techniques explored in
computer vision [59, 13, 5]. We also took inspiration from recent computer vision research
in self-supervised learning, which studies the creation of labels from data, by designing
ingenious tasks that contain semantic information without human annotations [22]. In fact,
test-time training was originally explored in computer vision [56], which inspired our own
approach in the NLP setting.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 18

(" step1 N

LDomain—Tune BERT

on Domain B

Load Pretrained [Unlabeled Data] Evaluate on
BERT weights :1> Step 2 I:\> Domain B

‘ Task-Tune BERT ’

on Domain A

[Labeled Data]

J 4

Pretraining Fine-Tuning Inference

Figure 3.4: The approach used in [17] when we know the domain received at test time. In
order to adapt to out-of-distribution examples, this technique performs a domain-tuning step
using unlabeled data from domain B. Next, a task-tuning step is performed using unlabeled
data on Domain A.

Auxiliary Losses

Much of recent work has explored the use of auxiliary losses to help improve data efficiency
and build useful representations. Auxiliary tasks have been proven to work well in prac-
tice [25, 64, 35, 39]; however, the efficacy of an auxiliary task depends on the similarity
between an auxiliary task and the main task of interest. A previous work [8] proposes using
cosine similarity of gradients between tasks as a generalizable measure of task similarity.
Using the cosine similarity metric, we evaluate the effectiveness of the masked language
modeling auxiliary task for test-time training. Furthermore, we propose a gradient align-
ment technique in order to train the model to be fine tunable using the MLM loss at test
time. Our technique is reminiscent of Model-Agnostic Meta-Learning (MAML), which is an
algorithm to help networks to quickly adapt to new tasks [12].

Pre-Training and Self-Supervision

Very early work has shown the efficacy of pretraining. Prior work found that using unlabeled
data from related tasks in the pre-training can improve the generalization of a subsequent
supervised model [6]. These results demonstrate that one can use unsupervised learning with
more unlabeled data to improve supervised learning; this result helped build the foundation
of today’s NLP. Given this result, we aim to explore ways to leverage unlabeled data during
the fine-tuning step to help the model generalize to out-of-distribution data.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 19

Previous research demonstrates that self-supervision can greatly improves robustness and
uncertainty [20]. Although self-supervision may not substantially improve accuracy when
used with standard training on labeled datasets, it has been shown to improve several aspects
of model robustness, including robustness to adversarial examples [31], label corruptions
[41], and common input corruptions [19]. These findings motivate the idea of using masked
language modeling loss (in addition to supervised loss) when fine-tuning language models.
The standard fine-tuning technique used for pre-trained models is shown in Figure 3.1.

Understanding Fine-Tuning

Prior research explores the inductive transfer learning setting for NLP using the language
modeling objective [38]. Previous work introduced Universal Language Model Finetuning
(ULMFiT), which pretrains a language model on a large general-domain corpus and fine-
tunes it on the target task using novel techniques [23].

3.5 Conclusion and Future Work

Since distribution shifts are often unforeseen in practice, models must adapt on-the-fly at
test-time. We presented a test-time training technique that leverages unsupervised infor-
mation from the test example and similar training examples to adapt NLP models. We
explicitly optimize the auxiliary MLM loss to be helpful during test-time training by opti-
mizing the loss’ gradient to be aligned with the supervised loss. We evaluated our techniques
using several different tasks and datasets

In ongoing work, we will continue to evaluate our approach, as well as study how train-
ing with MLM loss during fine-tuning changes both in-distribution and out-of-distribution
performance. It would also be interesting to study the effect of fine-tuning on the MLM loss
of in-domain and OOD examples. This would help understand what fine-tuning is exactly
doing to the embeddings.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 20

Dataset Metric Trial 1 Trial 2

In-Domain OOD In-Domain OOD
Lambda = 1.0 Accuracy 0.91 0.87 0.92 0.87
Lambda = 1.0 MCC 0.83 0.743 0.842 0.745
Lambda = 1.25 Accuracy 0.91 0.87 0.92 0.88
Lambda = 1.25 MCC 0.828 0.741 0.839 0.758
Lambda = 1.50 Accuracy 0.91 0.87 0.92 0.88
Lambda = 1.50 MCC 0.831 0.742 0.837 0.754
Lambda = 1.75 Accuracy 0.92 0.87 0.92 0.88
Lambda = 1.75 MCC 0.837 0.744 0.851 0.753
Lambda = 2.0 Accuracy 0.92 0.88 0.92 0.88
Lambda = 2.0 MCC 0.828 0.753 0.839 0.753

Table 3.3: Results from the experiments in which we fine-tune using the joint loss on SST
data and evaluate on IMDB data. We see that adding the masked language modeling loss
as an auxiliary loss does not make a significant impact on performance.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP

Dataset Metric Trial 1 Trial 2

In-Domain OOD In-Domain OOD
Lambda = 1.0 Pearson 0.87 0.58 0.86 0.60
Lambda = 1.0 Spearman 0.87 0.56 0.86 0.57
Lambda = 1.0 Avg Correlation 0.87 0.57 0.86 0.58
Lambda = 1.25 Pearson 0.87 0.47 0.87 0.45
Lambda = 1.25 Spearman 0.87 0.48 0.87 0.36
Lambda = 1.25 Avg Correlation 0.87 0.48 0.87 0.41
Lambda = 1.50 Pearson 0.87 0.53 0.87 0.59
Lambda = 1.50 Spearman 0.87 0.48 0.86 0.54
Lambda = 1.50 Avg Correlation 0.87 0.50 0.86 0.56
Lambda = 1.75 Accuracy 0.88 0.47 0.85 0.59
Lambda = 1.75 Spearman 0.88 0.39 0.85 0.54
Lambda = 1.75 Avg Correlation 0.88 0.43 0.85 0.56
Lambda = 2.0 Accuracy 0.87 0.52 0.87 0.63
Lambda = 2.0 Spearman 0.88 0.46 0.87 0.59
Lambda = 2.0 Avg Correlation 0.87 0.49 0.87 0.61

21

Table 3.4: Results from the experiments in which we fine-tune using the joint loss on the
STS-B data. We see that adding the masked language modeling loss as an auxiliary loss
does not make a significant impact on performance.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 22

Dataset Metric Trial 1 Trial 2

In-Domain OOD In-Domain OOD
Lambda = 1.0 Precision 0.95 0.51 0.95 0.49
Lambda = 1.0 Recall 0.96 0.64 0.96 0.64
Lambda = 1.0 F1 0.95 0.57 0.95 0.55
Lambda = 1.25 Precision 0.95 0.52 0.95 0.51
Lambda = 1.25 Recall 0.96 0.64 0.96 0.64
Lambda = 1.25 F1 0.96 0.58 0.96 0.57
Lambda = 1.50 Precision 0.96 0.53 0.95 0.52
Lambda = 1.50 Recall 0.97 0.64 0.97 0.65
Lambda = 1.50 F1 0.96 0.58 0.96 0.58
Lambda = 1.75 Precision 0.96 0.53 0.96 0.51
Lambda = 1.75 Recall 0.97 0.66 0.97 0.65
Lambda = 1.75 F1 0.96 0.59 0.96 0.57
Lambda = 2.0 Precision 0.96 0.53 0.96 0.50
Lambda = 2.0 Recall 0.97 0.66 0.97 0.67
Lambda = 2.0 F1 0.97 0.59 0.97 0.57

Table 3.5: Results from the experiments in which we fine-tune using the joint loss on the
CoNLL data for entity span identification. We evaluate OOD performance the the Twitter
Data. We see that adding the masked language modeling loss as an auxiliary loss does not
make a significant impact on performance.

CHAPTER 3. HANDLING UNSEEN DISTRIBUTION SHIFT IN NLP 23

Dataset Metric Trial 1 Trial 2
In-Domain OOD In-Domain OOD
Lambda = 1.0 Accuracy 0.55 0.49 0.56 0.51
Lambda = 1.25 Accuracy 0.55 0.51 0.55 0.49
Lambda = 1.50 Accuracy 0.58 0.48 0.55 0.51
Lambda = 1.75 Accuracy 0.56 0.51 0.56 0.49
Lambda = 2.0 Accuracy 0.55 0.44 0.55 0.49

Table 3.6: Results from the experiments in which we train using the joint loss on Amazon
Women’s Clothing Reviews. We evaluate OOD performance using Amazon Music
Reviews. We see that adding the masked language modeling loss as an auxiliary loss does
not make a significant impact on performance.

Dataset Metric Trial 1 Trial 2
In-Domain OOD In-Domain OOD
Lambda = 1.0 Accuracy 0.55 0.49 0.57 0.49
Lambda = 1.25 Accuracy 0.55 0.50 0.56 0.52
Lambda = 1.50 Accuracy 0.57 0.46 0.56 0.50
Lambda = 1.75 Accuracy 0.56 0.50 0.53 0.53

Table 3.7: Results from the experiments in which we train using the joint loss on Ama-
zon Men’s Clothing Reviews. We evaluate OOD performance using Amazon Music
Reviews. We see that adding the masked language modeling loss as an auxiliary loss may
marginally help with performance.

24

Chapter 4

Improving (Generalization in RL
Through Better Adaptation

4.1 Background

Reinforcement learning (RL) studies algorithms for sequential decision problems, where an
agent learns to maximize cumulative reward by interacting with its environment. The re-
inforcement learning setting can be formulated as a Markov Decision Process (MDP) with
states S, actions A, transitions T', rewards r, and discount factor . Given that an agent is in
state s and takes action a, the probability that the agent lands in a new state s' is T'(s, a,).
The objective of RL is to learn a policy m(a|s) that, given a state, outputs the probability
distribution over the next action the agent should take to maximize its cumulative reward.

In recent years, deep RL has eliminated the need to hand-engineer features for RL policies.
Using deep neural networks has enabled reinforcement learning algorithms to solve complex
problems end-to-end.

Meta Learning

The success of deep learning heavily relies on the availability of vast amount of labeled data.
Current ML /AT systems can learn a complex skill or task very well in a fixed environment,
given a large amount of time/experience; however, it is impractical to train each skill in each
setting in isolation. Instead of considering each new task in isolation, agents should be able to
quickly learn new tasks by reusing previous experience. This crucial ability to adapt not only
enables agents to pick up new skills/tasks faster, but also helps agents handle unexpected
perturbations or unseen situations at test time. This is the approach of meta-learning, or
learning to learn.

Meta-learning algorithms leverage data from previous tasks to develop a learning proce-
dure that can quickly adapt to new tasks. During meta-learning, the model is trained to
learn multiple tasks in the meta-training set; these tasks are referred to as meta-training
tasks. Meta-learning techniques assume that the previous meta-training tasks and the new

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 25

meta-test tasks are drawn from the same task distribution and share similarities that can
be exploited for fast learning. In this meta-learning approach, there exist two layers of op-
timization at play — the learner, which learns new tasks, and the meta-learner, which trains
the learner.

Meta-learning is a key stepping stone towards versatile agents that can continually
adapt and learn a wide variety of tasks throughout their lifetimes. A few common ap-
proaches to meta-learning within reinforcement learning are optimization-based approaches
and recurrence-based approaches.

Optimization-Based Meta-Learning.

Standard deep learning models learn by computing gradients through backpropogation;
however, this is not designed to be effective with a small number of training examples.
Furthermore, it is not guaranteed to converge within few optimization steps. Therefore,
optimization-based meta-learning adjusts the optimization algorithm so that the model can
learn new tasks using a few examples.

A well-known, prominent example is Model-Agnostic Meta-Learning (MAML)[12]. MAML
aims to learn the initial parameters of a neural network such that the model will perform
well on new tasks with only a few gradient steps computed with a small amount of data from
the new task. The model is essentially learning an internal representation that is broadly
suitable for several different tasks. In other words, this paper builds a general model that is
easy to fine-tune to similar tasks (using less data and only a few gradient steps). Figure 4.1
illustrates the optimization.

— meta-learning

0 ---- learning/adaptation
VLs
VL
VEl /,—".03
I.,I \\.0;

Figure 4.1: A figure of model-agnostic meta-learning algorithm (MAML) from [12], which
optimizes for parameters 6 that can quickly adapt to new tasks. This set of parameters 6
can be seen as only a few gradient steps away from the optimal parameters of other tasks.

There are several advantages of MAML. Firstly, it does not make any assumptions about
the form of the model. Secondly, there are no additional parameters introduced for meta-
learning, making it very efficient. Furthermore, the learner uses a known optimization process

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 26

(gradient descent). It can also be applied to several domains such as regression, classification,
and reinforcement learning.

Recurrence-Based Meta-Learning.

Another approach to meta-learning is to use recurrent models (ie. RNN, LSTM, etc.). The
recurrent model processes inputs sequentially and produces outputs at each timestep.

Previous work introduces the RL? meta-RL approach [10]. This technique uses a Recur-
rent Neural Network (RNN) to represent the RL algorithm, where the inputs are the same as
a typical RL algorithm would receive (observations, actions, rewards and termination flags).
A trial is defined as a series of episodes of interaction with a fixed MDP; the objective is
to maximize the expected total discounted reward accumulated during a trial rather than
an episode. The agent must be able to integrate all given information to adapt its strategy
because each trial is a different MDP (which likely requires a different strategy). Ultimately,
this paper learns a policy that automatically adapts to the environment, essentially cast-
ing learning a RL Algorithm as a reinforcement learning problem. The agent-environment
interaction can be shown in Figure 4.2.

Figure 4.2: A figure of the agent-environment interaction of RL2 from [10].

Our work primarily builds on top RL?. We evaluate the ability of RL? of environment
dynamics and environment reward structure. Furthermore, we propose and evaluate novel
architectural improvements to this meta-RL approach.

4.2 Related Work

There are two main approaches to generalization in RL: learning policies that are robust
to environment variations and learning policies that adapt to such variations. A recent
representative of the robust approach is the EPOpt algorithm [45], which maximizes a risk-
sensitive objective (expected reward over the subset of environments with lowest expected

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 27

reward). Adversarial training has also been proposed to learn a robust policy [43]. A key
weakness of robust policies is that they may sacrifice performance on many environment
variants in order to avoid failing on a few.

Lately there has been increased interest in learning policies that can adapt to the envi-
ronment at hand. A number of algorithms learn embeddings for each environment variant
as a function of trajectories sampled from that environment, which are utilized by the agent.
Previous work presents model-free methods, letting the embedding be input into a policy
and/or value function [10, 61, 58, 36, 46]. In contrast, other previous research [4, 49] are
model-based methods, where the embedding is input into a dynamics model and actions are
selected using model predictive control. Other works [11] and [47] (and many other exten-
sions) present a meta-learning formulation of generalization in RL, training a policy that
can be updated with good data efficiency for each test environment.

Our work primarily builds upon the architecture and training setup presented in the RL?
work [10]. RL? aims to train an agent that can adapt to the dynamics of the environment
at hand. RL? models the policy and value functions as a recurrent neural network (RNN)
with the current trajectory as input, not just the sequence of states; the hidden states of
the RNN may be viewed as an embedding of the environment. Specifically, for the RNN
the inputs at time t are s;, a;_1, r:_1, and d;_q, where d;_; is a Boolean variable indicating
whether the episode ended after taking action a;_i; the hidden states are updated and a;
is output. At each iteration trajectories are generated using the current policy with the
environment state reset at the end of each episode. The hidden states of the policy are reset
and a new environment is sampled from q only at the end of every N episodes, which is called
a trial. The generated trajectories are then input into some policy-based RL algorithm that
maximizes the expected reward in a trial (TRPO in the paper, and PPO in open-sourced
baselines and in our own implementation).

4.3 Approach
Meta-RL Robots

We evaluate our methods on various locomotion tasks, which are widely analyzed in rein-
forcement learning and control literature. Figure 4.3 illustrates six common robots used for
locomotion tasks [9]. In general, performing tasks using these robots is more challenging
than other basic tasks/robots due to high degrees of freedom. We primarily use the Hopper,
Walker and HalfCheetah robots.

Meta-RL Environment Specifications

Recent meta-RL approaches such as PEARL [46] and ProMP [47] have studied the adaptation
of agents to changes in environment dynamics. We evaluate our approach on the becnhmark
environments considered in PEARL and ProMP (i.e., the ‘RandParams‘, ‘RandVel‘, and

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 28

(d)

(e

Figure 4.3: Mlustration from [9] of robots used for locomotion tasks: (a) Swimmer; (b)
Hopper; (c) Walker; (d) Half-Cheetah; (e) Ant; (f) Simple Humanoid and (g) Full Humanoid.

‘RandDirec’ environments), as well as the environments derived from [37], which varies
multiple environment parameters and measures both in-distribution (i.e., test parameters
are drawn from the same distribution as the training parameters) and out-of-distribution
performance.

HopperRandParams, WalkerRandParams

The HopperRandParams and WalkerRandParams environments randomize the environment
configuration (ie. friction, joint mass, inertia, etc.) for each trial. The agent receives a reward
equal to its velocity. These environments are used to understand adaptation to environment
dynamics.

HalfCheetahRandVel, HalfCheetahRandDirec

We also run experiments in the environments HalfCheetahRandVel and HalfCheetahRand-
Direc, which enable us to test adaptation in reward function (specifically velocity and goal
location, respectively). Specifically, the HalfCheetahRandDirec environment changes the
task by randomizes direction in the XY plane. The agent must learn to run in that di-
rection as far as possible, with reward equal to average velocity minus control costs. The

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 29

HalfCheetahRandVel environment randomizes the target velocity. With this modified reward
function, the agent must learn to move forward at the new target velocity.

Meta-RL Architectures

Inspired by promising RL? results recently reported by [46] (which indicate that RL? performs
better on certain environments than previously reported), we propose several improvements
to RL2.

We investigate several adaptive policy architectures which aim to disentangle the system-
identification and control aspects of the learned policy. These architectures include stacking
the hidden state, splitting the feed-forward and recurrent computation paths, and supervising
the system-identification portion of the policy network. In this paper we present results for
a subset of the proposed architectures (stacked hidden state and embedding-conditioned
policies), however we also outline the other architecture ideas which we are currently also
investigating.

Stacked hidden states

One possible approach to improving RL? is to modify the architecture of the recurrent unit.
Recall that for a standard RNN cell with input z; and hidden state h;, and weight matrices
Wan, Why, and W, the calculation at the hidden layers can be rewritten as follows (ignoring
biases):

hiyr = tanh(Wopai1 + Whanhy)
ht+2 = tanh(thtz + Whhht+1) (41)
= tanh(thng + Whh tanh(thxtH + Whhht))

Input: In the setup of our problem, the input x; concatenates information about the
next state, current action, current reward and current done flag. Specifically, the standard
RNN cell will receive input z; = (25, ,2f, 27, 2f). We define input z; be an Mz1 vector,
where M = M + M, + M, + My is the sum of the dimensions of =}, z}, z}, z¢.

Weight Matrices: When computing W,,x;,1, we observe that the first M, columns
of Wy, are only multiplied by the state portion of the input. The next M, columns are
only multiplied by the action portion of the input. This pattern is illustrated in Figure 4.4.
Continuing this pattern, we can define the following partition W, = (W2, , We Wr, W4].

Given the input and weight matrices specified above, the hidden state calculation be-
comes:

hiyo = tanh(Wopxiyo + Wiy tanh(Wopxiy + Wiphy))
= tanh(W3,z5, 5 + Wahat o + Wiay ., + Wi, (4.2)
+ Whn tanh(W2, 7, o + Woaiy + Whap, + dehx;l+1 + Whinhi))

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 30

When written out in this form, we see that h;, o measures the error in the time series
model with parameter Wy, of the quantity Wys; 1 + Woay + Wyry + Wyd;. The addition of
the (factored) weight matrices seems suboptimal because it does not take into account the
MDP structure. Instead of adding the matrices, we can vertically concatenate them, i.e.,
(We g, W at What W ad 1. Figure 4.4 illustrates the standard architecture of
the RL? recurrent unit, while Figure 4.5 illustrates our stacked modification.

Weights W Input x,
[]]
: [Hidden State Computation:] [Output Computation: J
thx(= : = L
W x W h_ Stateh Weights W, State h Outputy,
I - Y, = < | =
NxM Nx1
Weights W, State h h=o(| |*)= AxN Ax1
—_— 1 —
Wiihey = * T

NxN Nx1 Nx1

Figure 4.4: The standard RL? recurrent unit architecture based on equations 4.1 and 4.1.

4.4 Experiments

Stacked Hidden States

In order to improve the generalization performance of state-of-the-art meta-RL approaches,
we propose an extension to the network architecture described by [10] (RL?) where we
concatenate/stack the weight matrices for state, action, reward and done. In this section, we
evaluate meta-train and meta-test performance of the stacked architecture. In line with our
objective, we have conducted several experiments using both the ordinary LSTM architecture
and stacked LSTM architecture sweeping over the following hyperparameters: Number of
Hidden Units, Allocation of Hidden Units to [state, action, reward, done|, Learning Rate,
Random Seed, Rollouts Sampled per MDP (rollouts_per meta task in the figures).

For evaluating meta-train performance, we have primarily focused our efforts in the
Hopper and Walker environments because these environments are also considered in [46]
and [47], which allows us to compare against their RL? baseline (as a sanity check), MAML,

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 31

Weights: Inputs:

h ™t
NXM, pxq [Hidden State Computation: J [Output Computation: J
W | W]
X = = X
W, x N, Mx1 W x W h Stateh Weights W, State h, Outputy,
X t
E ”
d d M x1 = =
WX, NxMo Y x
I — X
E MEIM h =0 ')= AN AT
Nd Md ’
Weights W, State h
Nx1 Nx1 Nx1 Nx1
= X =
Whhhm -
NxN Nx1 Nx1

Figure 4.5: Our proposed stacked RL? recurrent unit architecture, which accounts for the
MDP structure by disentangling the state, action, reward and done inputs.

as well as PEARL and ProMP. In these experiments, we focus on generalization with respect
to environment dynamics (i.e., the RandParams environments), where each task/MDP is a
different randomization of the simulation parameters, including friction, joint mass, and
inertia.

Ordinary LSTM vs. Stacked LSTM

Our preliminary analysis focuses on comparing average return during training between
stacked and unstacked LSTMs. We ran initial experiments on the Hopper environment
using 64 hidden units and a variety of different learning rates. The figure below displays
the average training return from using an ordinary LSTM (on left) and a stacked LSTM (on
right).

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 32

HopperRandParams Ordinary LSTM Training Return over Timesteps HopperRandParams Stacked LSTM Training Return over Timesteps

350 —— hidden

—— hidden

hidden_sizes=[[31, 31, 1

—— hidden_sizes=[[31, 31, 1,

train-AverageReturn

150

train-AverageReturn

EY 10m 15m 20m 25 30M 35M aom

n_timesteps

n_timesteps

Although we do not see an immediate improvement using the stacked LSTMs, the meta-
training curves do not give us the full story as far as adaptation goes, and we do see significant

improvements in meta-test. Similar observations hold across a variety of other environments,
and base cell types (e.g., with RNNs instead of LSTMs).

PPO Baseline Experiments

As a baseline, we ran experiments using Proximal Policy Optimization (PPO) on the same
randomized environments, which corresponds to domain randomization (on a static policy).
This domain randomization (DR) baseline is absent from [46] and [47], and is present in [37]
however using slightly different environments.

HopperRandParams PPO WalkerRandParams PPO
—— hidden_sizes=[64, 641, earning_rate=0.0001 —— hidden_sizes=
—— hidden_sizes=(64, 64], learning_ate=0.001 hidden_sizes
—— hidden. sizes=[64, 641, earning_rate=0.01 —— hidden_sizes=
—— hiaden_sizes=(64), learning_rate=0.0001 —— hidden_sizes=
—— hiaden_sizes=[64], learning_rate=0.001 —— hidden_sizes

—— hidden_sizes=[64], learning_rate=0.01 —— hidden_sizes=|

train-AverageReturn
train-AverageReturn

20m aom oM som 100M 120M 140M 160M 0 20m aom som som 100M 120M 140M 160M

n_timesteps n_timesteps

From the DR PPO experiments above, we can conclude that DR PPO performs worse in
meta-training as compared to RL2 and PEARL; indicating that adaptation may be beneficial
in achieving high average return in these environments. Note that this comparison should be
made at the same number of timesteps; for example, PPO on Walker achieves 300 average
training return at 40M timesteps, while RL2 achieves 475 average training return at 40M
timesteps. Furthermore, we observe that the extra parameters from using [64, 64] do not
provide any additional benefit as compared to [64].

—— hidden_sizes=[[24, 24, 8, 8]], learning_rate=0.001
—— hidden_sizes=[[24, 24, 8, 81}, learning_rate=0.01
sizes=[[28, 28, 4, 41}, learning_rate=0.001
—— hidden_sizes=[[28, 28, 4, 4], learning_rate=0.01
sizes=[[30, 30, 2, 2]}, learning_rate=0.001

—— hidden_sizes=[[30, 30, 2, 2]}, learing_rate=0.01

, 11, learning_rate=0.001

1 1]], learning_rate=0.01

[64, 64), learning._rate=0.0001
[64, 64), learning_rate=0.001

[64, 64), learning_rate=0.01

[64), le

[64), learning_rate=0.01

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 33

Ablation Experiments

The policy architecture in the original RL? paper takes in the [state, action, reward, done]
inputs, however, no ablation is done over the set of inputs to determine if the network is
really utilizing the additional information. In our new stacked architecture, each of these
inputs is allocated a certain number of hidden units. We first run ablation experiments on
the stacked architecture, zeroing out each of the 4 inputs one at a time. These ablation
experiments help illustrate which inputs are important per environment, which may inform
how to modify /improve the RL? architecture.

The following graphs display ablation experiments on the HopperRandParams environ-
ment using a stacked architecture of [16, 16, 16, 16] nodes in the left plot and [32, 32, 32,
32] in the right plot.

HopperRandParams Stacked LSTM Ablation using [16, 16, 16, 16] HopperRandParams Stacked LSTM Ablation using [32, 32, 32, 32]

We notice that in both curves, removing the state yields very poor performance. This
makes sense; naturally, knowing the state is essential in performing well in both the Hop-
perRandParams and WalkerRandParams environments.

The following graphs show the ablation experiments on the HalfCheetahRandVel using a
stacked architecture of [16, 16, 16, 16] nodes in the left plot and [32, 32, 32, 32] in the right
plot.

HalfCheetahRandVel Stacked LSTM Ablation using [16, 16, 16, 16] HalfCheetahRandVel Stacked LSTM Ablation using [32, 32, 32, 32]

The following graphs show the ablation experiments on the HalfCheetahRandDirec using
a stacked architecture of [16, 16, 16, 16] nodes in the left plot and [32, 32, 32, 32| in the right
plot.

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 34

HalfCheetahRandDirec Stacked LSTM Ablation using [16, 16, 16, 16] HalfCheetahRandDirec Stacked LSTM Ablation using [32, 32, 32, 32]

nnnnnnnnnn

The HalfCheetahRandVel and HalfCheetahRandDirec environments test how well the
agent is able to adapt to a changing reward function (specifically, modulated by velocity
and goal direction, respectively). This aligns with what is observed in the graphs above;
we observe that performance suffers when the reward is ablated. Therefore, knowing the
reward is very important for the agent to perform well in the environment. Furthermore, it
appears that removing A/D can actually help performance. This indicates that the system-
identification component of the network may not be working effectively, or that there is some
sort of optimization problem during training.

Rollout Experiments

Previous work in meta-RL that used RL? has primarily trained using 2 episodes per trial.
Intuitively, the more experience an agent has in a given MDP, the more it should be able
to learn about this environment configuration. However, in dense reward environments, it is
unclear as to how much additional episodes in a trial can help. The figure below displays the
effect of number of rollouts (i.e., episodes) per sampled MDP (papers using RL? generally
report results with 2). We observe that the average return is higher for 3 and 5 rollouts
per MDP vs 2, and that 1 rollout per MDP performs poorly. Note that the return/reward
graphed in the plot above is based on the agent’s performance in the final episode in the
trial.

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 35

WalkerRandParams Ordinary LSTM Training Return over Timesteps

800

rollouts_per_meta_task=1

rollouts_per_meta_task=2

rollouts_per_meta_task=3

rollouts_per_meta_task=5

train-AverageReturn

0 20M 40M 60M 80M 100M

n_timesteps

Meta-test performance: Quantifying Adaptation

The motivation behind using a recurrent policy is to allow the agent to utilize past informa-
tion in order to adapt to a given environment configuration. Without any adaptation taking
place, the recurrence in the policy is superfluous. With this in mind, we seek to devise
experiments where adaptation is needed to succeed, and where the level of adaptation can
be quantified.

Sparse Reward Environments: In sparse reward environments, the agent only re-
ceives a reward at the end of each episode; therefore, we can measure adaptation by observing
performance over the course of a trial. For example, in the random-goal-maze environment,
the agent should improve from episode 1 to episode 2. [10] accesses the adaptation of the
RL? agents in this way.

Dense Reward Environments: In dense reward environments, the agent receives a
reward at each timestep within the episode. Therefore, measuring adaptation is less clear
because the agent can adapt within the first few timesteps of the episode. E.g., [36] claims
that ‘In contrast, SNAIL and [RL?] LSTM are able to specialize themselves based on the
shared task structure, enabling them to identify the task within the initial timesteps of
the first episode, and then act optimally thereafter.” In subsequent sections, we discuss
ways to measure adaption for dense reward environments, i.e., to test that adaptation is
actually happening, and that the learned policy is not just simply a robust policy.

Inspecting the hidden units/activations during testing

One useful method to gain intuition on adaptation performance is to visualize the hidden
states. In Figure 4.7, we can see that the hidden states have strong periodicity, which

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 36

upon further inspection (aligning the x-axis to the timesteps in Mujoco renderings) we can
see correspond to the periodicity in the Hopper’s movement (see Figure 4.6). However
these visualizations alone are not indicative that the hidden state is being used to learn an
environment embedding for system identification.

In order to better understand/visualize the patterns within the hidden states, we can
additionally perform Principal Component Analysis (PCA) and project the high dimensional
states onto a 2D plane. In the simple case where we vary only one free variable (eg friction),
if we sample E trajectories from T trials/MDPs, we should expect the activations along
each trajectory from the same trial/ MDP to be in a cluster. For example, the hidden state
activations for trajectories in high friction environments should be clustered together, while
low friction trajectories should be in a separate cluster. We are currently implementing
cluster visualizations for hidden states at test-time, and will include them in a subsequent
iteration of this research paper. Additionally, we are investigating inspecting the gradients
during meta-training to better understand what the hidden state is learning.

Continual Adaptation Experiments

In a dense reward environment, the recurrent policy should ostensibly adapt within the first
few timesteps of an episode, unlike in a sparse reward environment, where adaptation will
occur on the scale of episodes (instead of timesteps). Because adaptation happens within an
episode in dense reward environments (e.g., Mujoco locomotion envs), it is hard to discern
between an adaptive policy and a robust policy. One way to tell the difference is to deploy
the agent in an environment where it needs to continually adapt to changing goals or dynam-
ics. In the subsequent sections, we test the adaptive policies on HalfCheetahRandDirec and
RandVel environments where the goal direction and goal/target velocity change mid-episode.
For the target velocity envs, we test both interpolation (target velocities within the original
[0,3] range), and extrapolation to a new target velocity (4).

For RandVel, we test on three scenarios:

1. Interpolation: Goal velocity sequence of [0,1,2,3] at 50 timestep intervals

2. Extrapolation 1: Goal velocity sequence of [1,2,3,4] at 50 timestep intervals
3. Extrapolation 2: Goal velocity sequence of [3,4] at 100 timestep intervals
For RandDirec, we test on two scenarios:

1. Backwards-Forwards: Target direction switches from Backwards to Forwards mid-
episode (100 timesteps)

2. Forwards-Backwards: Opposite of Backwards-Forwards

In the subsequent sections, we provide high-level conclusions from our results for brevity,
but include the full suite of experiments in Section 77 and Section 4.4.

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 37

Does RL? continually adapt on HalfCheetahRandVel?

We perform experiments to evaluate how well RL? adapts on the HalfCheetahRand Vel en-
vironment. If the agent is adapting perfectly, the graph should look like a sawtooth wave,
where the cheetah slows down / speeds up until it hits goal velocity, then cruises at the goal
velocity.

We performed continual adaptation experiments using both an Ordinary RNN and Stacked
RNN with 64 units. Interpolation and Extrapolation results are shown in Figure 4.8, Figure
4.9 and Figure 4.10. We can draw the following conclusions:

BasicRNNStackInputs (64 units) vs BasicRNN (64 units)

1. Interpolation: The stacked architecture is marginally better. Based on the reward
trajectories, the stacked architecture is able to adapt to final goal velocity better.

2. Extrapolation 1 and 2: The stacked architecture is much better, and actually has the
best (highest) terminal goal velocity.

Does RL? continually adapt on HalfCheetahRandDirec?

In order to measure how RL? continually adapts in the HalfCheetahRandDirec environment,
we change the direction midway through the episode and analyze how well the agent is able
to adapt to this new reward function. We test on both scenarios: changing backwards to
forwards and changing forwards to backwards.

We performed continual adaptation experiments using both an Ordinary RNN and Stacked
RNN with 64 units. Forward-to-Backward and Backward-to-Forward results are shown in
Figure 4.11 and Figure 4.12. We can draw the following conclusions:

BasicRNNStackInputs (64 units) vs BasicRNN (64 units)

1. Back to Forward: Based on the cumulative reward and overall reward trajectories, the
stacked architecture performs much better.

2. Forward to Back: Based on the cumulative reward and overall reward trajectories, the
stacked architecture performs much better.

Takeaway: In both cases, we can see that the stacked architecture is quite promising,
indicating that the stacked hidden states architecture can enable significantly better adap-
tation to new, changing environments. Additionally, it seems that the stacked architecture
has the best extrapolation performance. We are planning on expanding the number of test
environments to include environments with continually changing dynamics (in addition to
changing goals) to further investigate these results and see if they still hold.

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 38

4.5 Conclusion and Future Work

Our preliminary analysis indicates that the stacked hidden states architecture can enable sig-
nificantly better adaptation to new, changing environments. We are planning on expanding
the number of test environments to include environments with continually changing dynam-
ics (in addition to changing goals) to further investigate these results and see if they still
hold.

Another direction is to investigate test-time adaptation to environments with sparse
rewards, such as mazes with varying goals (a common benchmark in prior work) to see if
our preliminary observations still hold, as well as evaluating our new architectures on the
recently released Meta-World benchmark. [63].

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 39

Figure 4.6: Cyclic motion of the Hopper which corresponds to the cyclic patterns in the
hidden states heatmap.

ep. 1 ep. 2 ep. 3 ep. 4 ep.5
len: 142 len: 84 len: 137 len: 200 len: 200
rew: 380.46 rew: 231.27 rew: 418.17 rew: 546.99 rew: 552.66

- 0.8

- 0.4

- 0.0

- —0.4

-—0.8

Figure 4.7: Heatmap visualization of the hidden states over the course of a trial (all five
episodes) during meta-test (HopperRandParams). The hidden state is represented by a
1 x 64 column vector (y-axis). The x-axis is time, with extra spacing between episodes.
Memory (hidden state) is reset at the beginning of the first episode in the trial, and preserved
throughout the rest of the trial.

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER

Ir ion: HalfCt ‘el Basic RNN using 64 Units Interpolation: HalfCheetahRandVel Stacked RNN using 64 Units
0.0 - e 0.0 - . -
NV o 3 e " ' r A RS Lok &3 a
4 AT A oo TP e WA O T
-0.5 - b N "‘ K —0.5 - X ‘ "
LA | Wy
-10- |/ V£ M -1.0- j p
! M |
o -15- B -15- !
s s
g -2.0 - o -2.0-
—2.5. — traj 1, cum_rew=-115.09 —— traj 1, cum_rew=-73.03
—— traj 2, cum_rew=-107.09 —2.5- —— traj 2, cum_rew=-152.05
3.0 - —— traj 3, cum_rew=-161.30 —3.0- ~—— traj 3, cum_rew=-96.89
——— traj 4, cum_rew=-85.57 —— traj 4, cum_rew=-121.13
38 traj 5, cum_rew=-109.17 s traj 5, cum_rew=-77.01
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
timestep timestep

Figure 4.8: HalfCheetahChangingVel (changing target velocity during episode) interpolation
results with standard RNN (left) and stacked RNN (right). The stacked RNN performs
marginally better than the standard RNN (ideal performance is a sawtooth wave). Using a

standard RNN, the agent is unable to adapt to the new velocity, flipping over at the end of
trajectory 3.

Extrapolation 1: HalfCheetahRandVel Basic RNN using 64 Units Extrapolation 1: HalfCheetahRandVel Stacked RNN using 64 Units
0

, ﬂv/ﬁm‘?\ﬂ \ ‘,‘;QWM ’WW“ W Vm}.w_ '(" AWN’ i
. I & | -0.5- \ J‘ . r ‘
f\elw .l | M\N\.NWM L N &!\ f\ illllM\r l
! .‘\ ‘
‘ |
|‘\4

® ® ‘
© [\
2 z i
g2 5. @ oys- |
—— traj 1, cum_rew=-310.66 —— traj 1, cum_rew=-101.26 \
—— traj 2, cum_rew=-216.46 —— traj 2, cum_rew=-108.37 '
_4 . — traj 3, cum_rew=-205.82 2.0 - —— traj 3, cum_rew=-104.00 l
—— traj 4, cum_rew=-164.19 —— traj 4, cum_rew=-108.27
traj 5, cum_rew=-199.07 —25- traj 5, cum_rew=-93.38
-5 - v \ V ' ' ' ' ' " " " ' ' | | ' '
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
timestep

timestep

Figure 4.9: HalfCheetahChangingVel (changing target velocity during episode) extrapolation
1 results with standard RNN (left) and stacked RNN (right). The stacked RNN adapts
significantly better to changing goals than the standard RNN, based on the cumulative
reward and overall reward trajectories. Using a standard RNN, the agent is unable to adapt
to the new velocity, flipping over at the end of trajectory 1 and 2.

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER

Extrapolation 2: HalfCheetahRandVel Basic RNN using 64 Units Extrapolation 2: HalfCheetahRandVel Stacked RNN using 64 Units
0 0.0 -
i tw‘
-0.5 - !
-1- A
-1.0 -
: \
© -2 ° |
& A g -15- '
=
@ W @ '
37 — traj 1, cum_rew=-361.99 -2.0- {— traj 1 cum_ rew- -148.81
—— traj 2, cum_rew=-287.73 * —— traj 2, cum_rew=-154.19
_4 - — traj 3, cum_rew=-367.42 =25~ — tra! 3, cum_rew=-156.53
—— traj 4, cum_rew=-712.63] 5 tra! 4, cum_rew=-124.34
traj 5, cum_rew=-563.78 it A A, -3.0- / traj 5, cum_rew=-181.76
0 25 50 75 100 125 150 175 200 0 25 50 75 . 100 125 150 175 200
timestep timestep

Figure 4.10: HalfCheetahChangingVel (changing target velocity during episode) extrapola-
tion 2 results with standard RNN (left) and stacked RNN (right). The stacked RNN adapts
better to changing goals than the standard RNN, based on the cumulative reward and overall

reward trajectories. Using a standard RNN, the agent is unable to adapt to the new velocity,
flipping over in trajectory 4 and 5.

Forward to Backward: HalfCheetahRandDirec Basic RNN using 64 Units Forward to Backward: HalfCheetahRandDirec Stacked RNN using 64 Units

- m w W -
°: —‘! |tlr;a‘fl \c'lrl rew=113.71 “' II”‘?&WV\W %" traj 1, cum_rew=387.42 ‘M

© ©
|4 4
o o
= =
oL , o
—— traj 2, cum_rew=27.37 —2-1== traj 2, cum_rew=415.25 | ’ V
_4 . — traj 3, cum_rew=-82.11 —— traj 3, cum_rew=362.48 i)
—— traj 4, cum_rew=225.48 4 traj 4, cum_rew=294.03
-6 - traj 5, cum_rew=158.44 traj 5, cum_rew=308.99
0 25 50 75 00 125 150 175 200 0 25 50 75 100 125 150 175 200
timestep timestep

Figure 4.11: HalfCheetahRandDirec results changing the goal direction from forward to
backward during the episode. We use a standard RNN (left) and a stacked RNN (right).
Based on the cumulative reward and overall reward trajectories, the stacked RNN adapts

significantly better to changing goals than the standard RNN. Using a stacked RNN also
achieves more consistent results.

CHAPTER 4. IMPROVING GENERALIZATION IN RL THROUGH BETTER
ADAPTATION 42

Backward to Forward: HalfCheetahRandDirec Basic RNN using 64 Units Backward to Forward: HalfCheetahRandDirec Stacked RNN using 64 Units

8-
i 3 A
v ‘ A
a- (W V4 4- ULy
2- [2- !
© 0y \/\/‘N ©
‘g 0- «(, v “v § 0-
v |
© 2" — traj 1, cum_rew=308.97 | € -2 - —— traj 1, cum_rew=349.53
—4 - —— traj 2, cum_rew=263.01 . traj 2, cum_rew=345.00
- - traj 3, cum_rew=272.75 \ ——— traj 3, cum_rew=378.53
—— traj 4, cum_rew=111.26 —6 - —— traj 4, cum_rew=256.76
¢ traj 5, cum_rew=293.77 e traj 5, cum_rew=400.17
0 25 50 75 _ 100 125 150 175 200 0 25 50 75 00 125 150 175 200
timestep timestep

Figure 4.12: HalfCheetahRandDirec results changing the goal direction from backward to
forward during the episode. We use a standard RNN (left) and a stacked RNN (right).
Based on the cumulative reward and overall reward trajectories, the stacked RNN adapts

significantly better to changing goals than the standard RNN. Using a stacked RNN also
achieves more consistent results.

43

Chapter 5

Conclusion and Future Work

In this work, we proposed and evaluated solutions to salient transfer learning problems in
both Natural Language Processing and Reinforcement Learning.

In Chapter 3, we presented a test-time training technique that leverages unsupervised
information from the test example and similar training examples to adapt NLP models.
Further work should focus on how training with MLM loss during fine-tuning changes both
in-distribution and out-of-distribution performance. A possible other direction is to study
the effect of fine-tuning on the MLM loss of in-domain and OOD examples. This would help
understand what fine-tuning is exactly doing to the embeddings.

In Chapter 4, we proposed and evaluated a meta-RL architectures based on the archi-
tecture and training algorithm described by previous work (ie. RL?) [10]. Our architectural
changes improves adaptation to new environments by disentangling the recurrent and feed
forward components of the recurrent policy network. One direction to investigate is test-
time adaptation to environments with sparse rewards, such as mazes with varying goals (a
common benchmark in prior work) to see if our preliminary observations still hold, as well
as evaluating our new architectures on the recently released Meta-World benchmark.

44

Bibliography

Iz Beltagy, Arman Cohan, and Kyle Lo. “Scibert: Pretrained contextualized embed-
dings for scientific text”. In: arXiv preprint arXiv:1903.10676 (2019).

Dallas Card, Michael Zhang, and Noah A. Smith. “Deep Weighted Averaging Classi-
fiers”. In: FAT. 2018.

Daniel Cer et al. “SemEval-2017 Task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation”. In: SemFEval. 2017.

Ignasi Clavera et al. “Learning to Adapt: Meta-Learning for Model-Based Control”.
In: arXiv:1803.11347 (2018).

Gabriela Csurka. “Domain adaptation for visual applications: A comprehensive sur-
vey”. In: arXiv preprint arXiw:1702.05374 (2017).

Andrew M Dai and Quoc V Le. “Semi-supervised sequence learning”. In: 2015.

Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: NAACL-HLT. 2019.

Yunshu Du et al. “Adapting auxiliary losses using gradient similarity”. In: arXiv
preprint arXiv:1812.02224 (2018).

Yan Duan et al. “Benchmarking deep reinforcement learning for continuous control”.
In: International Conference on Machine Learning. 2016, pp. 1329-1338.

Yan Duan et al. “RL?: Fast Reinforcement Learning via Slow Reinforcement Learning”.
In: arXiw:1611.02779 (2016).

Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks”. In: 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for
fast adaptation of deep networks”. In: ICML. 2017.

Yaroslav Ganin et al. “Domain-adversarial training of neural networks”. In: The Jour-
nal of Machine Learning Research. 2016.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Domain adaptation for large-scale
sentiment classification: A deep learning approach”. In: 2011.

BIBLIOGRAPHY 45

[15]

[16]

[17]

Xiaoxiao Guo et al. “Deep learning for real-time Atari game play using offline Monte-
Carlo tree search planning”. In: Advances in neural information processing systems.
2014, pp. 3338-3346.

Suchin Gururangan et al. “Don’t Stop Pretraining: Adapt Language Models to Do-
mains and Tasks”. In: 2020.

Xiaochuang Han and Jacob Eisenstein. “Unsupervised domain adaptation of contex-
tualized embeddings: A case study in early modern english”. In: EMNLP. 2019.

Ruining He and Julian J. McAuley. “Ups and Downs: Modeling the Visual Evolution
of Fashion Trends with One-Class Collaborative Filtering”. In: WIWWW. 2016.

Dan Hendrycks and Thomas Dietterich. “Benchmarking Neural Network Robustness
to Common Corruptions and Perturbations”. In: ICLR. 2019.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. “Using pre-training can improve
model robustness and uncertainty”. In: 2019.

Dan Hendrycks et al. “Pretrained Transformers Improve Out-of-Distribution Robust-
ness”. In: 2020.

Dan Hendrycks et al. “Using self-supervised learning can improve model robustness
and uncertainty”. In: NeurIPS. 2019.

Jeremy Howard and Sebastian Ruder. “Universal language model fine-tuning for text
classification”. In: 2018.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. “Clinicalbert: Modeling clini-
cal notes and predicting hospital readmission”. In: arXiw preprint arXiv:1904.05342
(2019).

Max Jaderberg et al. “Reinforcement learning with unsupervised auxiliary tasks”. In:
2017.

Anthony Kroch, Beatrice Santorini, and Ariel Diertani. “Penn-Helsinki Parsed Corpus
of Early Modern English”. In: (2004). URL: http://www.ling.upenn.edu/hist-
corpora/PPCEME-RELEASE-2/index.html.

Keita Kurita, Paul Michel, and Graham Neubig. “Weight Poisoning Attacks on Pre-
trained Models”. In: ACL. 2020.

Jinhyuk Lee et al. “BioBERT": a pre-trained biomedical language representation model
for biomedical text mining”. In: Bioinformatics 36.4 (2020), pp. 1234-1240.

Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Journal
of Machine Learning Research 17.1 (2016), pp. 1334-1373.

Andrew L. Maas et al. “Learning word vectors for sentiment analysis”. In: ACL. 2011.

Aleksander Madry et al. “Towards deep learning models resistant to adversarial at-
tacks”. In: 2018.

BIBLIOGRAPHY 46

[32]

[33]

[34]

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. “Building a
large annotated corpus of English: The Penn Treebank”. In: Computational Linguistics.
1993.

Julian J. McAuley et al. “Image-based Recommendations on Styles and Substitutes”.
In: SIGIR. 2015.

Michael McCloskey and Neal J Cohen. “Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem”. In: Psychology of learning and motiva-
tion. 1989.

Piotr Mirowski et al. “Learning to navigate in complex environments”. In: 2017.
Nikhil Mishra et al. “A Simple Neural Attentive Meta-Learner”. In: 2018.

Charles Packer et al. “Assessing Generalization in Deep Reinforcement Learning”. In:
arXiv:1810.12282 (2019).

Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: /[EEE TKDE.
2009.

Georgios Papoudakis, Kyriakos C. Chatzidimitriou, and Pericles A. Mitkas. “Deep
reinforcement learning for doom using unsupervised auxiliary tasks”. In: arXiv preprint
arXiw:1807.01960 (2018).

Adam Paszke et al. “PyTorch: An imperative style, high-performance deep learning
library”. In: 2019.

Giorgio Patrini et al. “Making deep neural networks robust to label noise: A loss
correction approach”. In: 2017.

Matthew E. Peters et al. “Deep contextualized word representations”. In: 2018.
Lerrel Pinto et al. “Robust Adversarial Reinforcement Learning”. In: 2017.

Evani Radiya-Dixit and Xin Wang. “How fine can fine-tuning be? Learning efficient
language models”. In: arXiv preprint arXiv:2004.14129 (2020).

Aravind Rajeswaran et al. “EPOpt: Learning robust neural network policies using
model ensembles”. In: 2017.

Kate Rakelly et al. “Efficient Off-Policy Meta-Reinforcement learning via Probabilistic
Context Variables”. In: 2019.

Jonas Rothfuss et al. “ProMP: Proximal Meta-Policy Search”. In: 2019.

Sebastian Ruder. “Neural Transfer Learning for Natural Language Processing”. PhD
thesis. National University of Ireland, Galway, 2019.

Steindér Seemundsson, Katja Hofmann, and Marc Peter Deisenroth. “Meta Reinforce-
ment Learning with Latent Variable Gaussian Processes”. In: 2018.

Erik F Sang and Fien De Meulder. “Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition”. In: arXiv preprint c¢s/0306050 (2003).

BIBLIOGRAPHY 47

[51]
[52]
[53]
[54]

[55]

[56]
[57]

[58]

John Schulman et al. “High-dimensional continuous control using generalized advan-
tage estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

Darsh J Shah et al. “Adversarial domain adaptation for duplicate question detection”.
In: 2018.

Jian Shen et al. “Wasserstein distance guided representation learning for domain adap-
tation”. In: 2018.

Richard Socher et al. “Recursive deep models for semantic compositionality over a
sentiment treebank”. In: EMNLP. 2013.

Benjamin Strauss et al. “Results of the wnut16 named entity recognition shared task”.
In: Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT). 2016,
pp. 138-144.

Yu Sun et al. “Test-time training for out-of-distribution generalization”. In: arXiw
preprint arXiv:1909.13231 (2019).

Yu Sun et al. “Unsupervised Domain Adaptation through Self-Supervision”. In: arXiw
preprint arXiv:1909.11825 (2019).

Flood Sung et al. “Learning to learn: Meta-critic networks for sample efficient learn-
ing”. In: arXiw:1706.09529 (2017).

Eric Tzeng et al. “Adversarial discriminative domain adaptation”. In: 2017.

Alex Wang et al. “Glue: A multi-task benchmark and analysis platform for natural
language understanding”. In: arXiv preprint arXiv:1804.07461 (2018).

Jane X Wang et al. “Learning to reinforcement learn”. In: arXiv:1611.05763 (2016).

Thomas Wolf et al. “Transformers: State-of-the-art Natural Language Processing”. In:
arXiv preprint arXiw:1910.03771 (2019).

Tianhe Yu et al. “Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning”. In: arXiv preprint arXiv:1910.10897 (2019).

Yuting Zhang, Kibok Lee, and Honglak Lee. “Augmenting supervised neural networks
with unsupervised objectives for large-scale image classification”. In: 2016.

Yukun Zhu et al. “Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 19-27.

