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Abstract

Bridging Machine Learning and Computational Photography to Bring Professional
Quality into Casual Photos and Videos

by

Xuaner Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ren Ng, Chair

Having a compact, casual pocket camera always within reach is a delight. It opens the op-
portunity to capture spontaneous moments and casual events. While users appreciate the
convenience of mobile experience, their crave for visual quality of the professionals is hard
to achieve. Because of hardware limitations and a lack of control over suboptimal condi-
tions in the environment, casual photos and videos suffer from noise, lack of sharpness,
unflattering lighting, wrong focus, distracting obstructions, etc. The desires are eager to
make cameras see as our human visual system does, to understand the world and produce
photographs that are perceptually pleasing and meaningful. Professional studio photog-
raphy and cinematography have made the best attempts delivering high-quality photos
and videos by incorporating intricate hardware and gathering professional crew. Casual
imaging, on the other hand, is still nowhere close.

In this thesis, I argue that it is key for a camera to understand the semantics of the scene
– the context – presented in its viewfinder in order to intelligently capture and process
sensor data. The approach to bring in such contextual information is through machine
learning. Thankfully, modern mobile cameras are integrated with fast image processors
and even dedicated machine learning chips to drive the development of computational
capacities. Machine-learning-driven computational photography algorithms are lifted to
great practicality more than ever before. Throughout the thesis, I discuss the challenges of
causal imaging and how its quality can benefit from professional photography and cine-
matography principles. The thesis focuses on the quality enhancement from three aspects
– perceptual, lighting and focus. We propose a number of learning-based methods to lift
these limitations to produce unprecedented results, and show a potential direction that
integrates machine learning and imaging systems to enhance casual photos and videos
towards the quality of the professionals.
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Chapter 1

Introduction

When I walked from the office building to my car the other day, I took three photos with my
phone within the 10-minute walk: a light yellow vintage van on Bancroft avenue, bright
orange and red cotton-like clouds lit by the golden hour, and blooming flowers grown on
a roof shelf on campus (see Figure 1.1). American landscape photographer Robert Adams
once said “ No place is boring, if you’ve had a good night’s sleep and have a pocket full
of unexposed film.” Put in today’s context, we may replace “a pocket full of unexposed
film ” with “a pocket phone”. Those three photos I took on my way to my car are sponta-
neous and quick snapshots, enabled by modern compact imaging system that internally
accomplishes all the fundamental hardware and software image processing pipeline such
as stabilization, autofocus, auto-exposure, auto-white-balance, etc. Consumer-grade cam-
eras have shrunk their sizes to fit in our pockets, accompanied by advanced optics and elec-
tronics to preserve imaging quality. Artificial Intelligent (AI) efforts in the post-processing
pipeline even enable single-snap features that reach or even surpass physical limits, such
as high dynamic range from a burst of photos [60], hand-held low-light imaging [109]
and synthetic shallow depth of field for portrait photography [170]. Cloud storage and
high speed telecommunication made it easy for us to instantly upload and share photos
and videos with our families and other communities. We, as visual beings, use cameras to
record not only significant historical moments, but also our daily lives. Casual imaging,
in other words, has democratized visual content creation and documentation.

1.1 Casual Imaging
In this dissertation, I use the term casual imaging to refer to using consumer-grade cameras
for photography and videography, as opposed to professional imaging as studio photog-
raphy and cinematography.

Since Philippe Kahn took the first cell-phone photo of his new-born daughter in 1997,
the way we communicate and perceive the world has been tied with casual imaging –
everyone with a phone has a camera within reach, and photo enthusiasts have DSLR’s or
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Figure 1.1: Photographs taken with my smartphone on a random day when I walked from
my office building to my car.

Figure 1.2: Computational photography on smartphones features developed at Google
Research and deployed on Google Pixel smartphones. A) HDR+ using burst photogra-
phy [60]. B) Night sight for low-light imaging [109]. C) Portrait mode with synthetic
shallow depth of field [170].
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better. Up until the year of 2020, over 1.43 trillion of photos have been taken worldwide,
and 500 hours of video is uploaded every minute.

Casual Imaging offers unique advantages for both people holding the camera and
people facing the camera. It provides content creators (i.e., photographers and videog-
raphers) with the convenience and accessibility to capture spontaneous life moments and
documentaries when point-and-shoot is preferred [11]. The size of casual imaging devices
also benefits non-intrusive documentary filmmaking by placing the camera in a visually
unobtrusive position, especially when the subjects are not used to facing large cameras
and lighting setups.

While casual imaging has these practical benefits, achieving high image and video
quality on these casual devices is extremely challenging and has long been a research
question.

To state more clearly, I define “quality” from aspects of both perceptual quality and
semantic quality. Perceptual quality is inherent to the camera optical system, electron-
ics and signal processing software, referring to image resolution, noise level, geometric
distortion, dynamic range, etc. Perceptual quality can be measured quantitatively using
conventional reference-based metrics such as PSNR, SSIM [180] or neural-network-based
perceptual metric such as the LPIPS [195]. Semantic quality, on the other hand, is inher-
ent to the scene content and the clarity of storytelling. Focusing point, field of view, scene
composition, video cuts from one shot to another all affect how a viewer interprets a cer-
tain image or a video and thus its semantic quality. Semantic quality is challenging to
evaluate and measure because it is subjective and oftentimes by virtue of artistic choices.

Producing images with high perceptual and semantic quality is challenging. Profes-
sional photographers and cinematographers achieve so by using advanced imaging equip-
ment, scripted storyline as guidance, and a constructed environment. But on the other
hand, casual imaging is carried out in natural environments by average users who record
daily lives. Challenges regarding casual imaging arise from: 1) limitations in optical and
hardware systems, 2) inability to modify existing environments such as lighting and 3)
real-time autofocusing latency for spontaneous events. The goal of this thesis is to design
algorithms and software systems that combat these challenges to enhance perceptual and
semantic quality of casually taken images and videos.

1.2 Challenges of Casual Imaging
The quality of casual images and videos are yet comparable with those taken under a
professional context. Challenges primarily come from optical and hardware limitation of
casual devices (e.g. image sensors and lenses), imperfect shooting environment, and the
nature of uncertainty that makes real-time autofocusing fundamentally difficult.
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Figure 1.3: Left: A simple diagram of Bayer sensor used in most CMOS sensors. Incident
light is focused by the micro-lenses and filtered by the green, red and blur color filters.
Low-pass filter, or Anti-aliasing filter (AA filter) alleviates moiré or other high-frequency
artifacts, but undesirably blurred out details. Many modern cameras have thus left the
AA filter out. Right: Image sensor size comparison. Even the largest smartphone sensor
is small in size, compared to conventional large cameras (e.g. DSLR). This causes great
challenges to produce good quality imagery on small cameras (e.g. smartphones).

1.2.1 Image Sensors
The basic structure of image sensors consist of a mosaic filter for sensing color information
and a microlens array to condense the incident light on each pixel (silicon surface) [119],
see Figure 1.3. The majority of digital cameras uses CMOS image sensors these days for
its practical advantages such as low power consumption and camera-on-chip integration.
Major performance characteristics of image sensors include quantum efficiency, sensor
noise, dynamic range and spatial resolution. Understanding these characteristics provides
intuition in the parameters when evaluating imaging systems, and enables physically-
based simulation for statistical modeling. A comprehensive overview of CMOS sensors
can be found in [27].

The biggest limitation of image sensors on mobile devices is the sensor size. While
most smartphone cameras as of today produce mega-pixel images, high pixel count is not
equivalent to high quality because of the physically limited sensor size. With the same
pixel count, the best smartphone cameras use a sensor with a crop factor (the sensor’s
diagonal size compared to a full-frame 35 mm sensor) that ranges from 5 to 6.5, while
mainstream DSLR have a 1.5 crop factor, indicating each pixel area in a smartphone cam-
era is 1/16 to 1/11 that of a common DSLR (see Figure 1.3). With the same exposure time,
much less light goes into each pixel and thus less accurately light is measured. One dom-
inant sensor noise type is photon shot noise. Photon shot noise measures the variance
of the number of photons arriving when exposure varies from pixel to pixel. It follows a
Poisson distribution due to its independent occurrence. If on average λ photons are de-
tected in an interval of time, according to properties of Poisson distribution, its mean and
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variance, and the standard deviation follow:

µ = λ, σ2 = λ, σ =
√
λ

The signal-to-noise ratio (SNR) is measured by the ratio of mean pixel value and the stan-
dard deviation of pixel value, which is thus

SNR =
µ

σ
=

λ√
λ

=
√
λ

This indicates shot noise scales as square root of number of photons. A 16× decrease in
area will lower the SNR by 4× or−12dB. To achieve a similar quality imagery, the camera
either opens up aperture to let more light in, or increase the sensitivity (ISO) of the sensor.
The former is difficult for compact cameras like smartphones, for the same reason as the
sensor being physically limited. Increasing ISO will induce dominance of read noise, and
has little effect under dim or low light environment.

Quanta Image Sensor (QIS) [37] is envisioned to be the next paradigm of image sensor.
In a QIS, photoelectrons are counted one by one as a binary measurement in jots. This
indicates low read noise in a QIS. The readout speed can reach 1000fps to allow burst
frame processing for extreme low-light or high dynamic range imaging. Though image
reconstruction from raw QIS data is still in its early research stage to be made practical,
and how to make the best use of its temporal and spatial resolution also remains open
questions.

1.2.2 Camera Lenses
Similar to the physical limitation of image sensor size, camera lenses on casual devices are
constrained in size, and thus the maximum focal length as well as the maximum entrance
pupil, also called the aperture (seen from an axial point on the object side).

Focal length limits the optical zoom power of smartphones, and thus the ability to cap-
ture objects far-away. The average telephoto lens on smartphones today has a focal length
of 56 mm, while large cameras can mount a zoom lens that ranges from 24 mm to 240 mm,
or even 400 mm. All these are 35 mm equivalent numbers. To achieve the same level of
zoom, smartphones can use digital zoom. Conventionally, digital zoom is achieved by var-
ious interpolation methods to upsample the image to higher resolutions or by converting
between spatial and frequency domains from a signal processing perspective [10, 128].
Recently, learning-based methods on super-resolution leverage the correlation among lo-
cal and global patches as well as image semantics to recover the missing high frequency
details in more faithful ways [187]. On smartphones, a widely used approach is to resolve
details using multiple images taken within a short amount of time – a burst sequence [183].
This is often operated in the raw space to preserve the maximum information.

The most powerful optical system on a smartphone is deployed on the Huawei P40 Pro,
which uses a folded optic periscope system that achieves 10× optical zoom. However, the
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zoom levels are discrete and sparse. For example, a 5× zoom is still achieved by digital
zoom.

Aperture controls the area over which light can pass through the camera lens, often
measured as a F-number (N), which is the ratio between the the focal length and the
diameter of the aperture, denoted as

N =
f

A
(1.1)

With the same F-number, a smartphone camera and a DSLR receive a drastically different
amount of light because of the aperture size. Widening up the aperture also requires
attention to lens design as a bad design could worsen aberration distortion [52] such as
lens-flare artifacts [71].

Another physical limitation induced by aperture is depth of field, which is the range
of distance over which objects appear in sharp focus. Although a f/2 aperture often as-
sociates with a photo with shallow depth of field, the defocus blur size may appear just
noticeable on a smartphone device. The depth of field is determined by the size of the cir-
cle of confusion (CoC), which depends on the sensing medium, reproduction medium,
viewing distance, human vision and other various aspects. With a thin lens model, the
depth of field can be written as

D ≈ 2NCS2
o

f 2
(1.2)

WhereN is the F-number,C refers to the CoC, So the object distance and f the focal length.
The full derivation can be found in Section 2.1. Using the same F-number (sameN), taking
a photo of the same object (same So) and maintaining the same field of view (f shrinks,
along withC), the depth of field increases linearly with decreasing sensor size. This is one
reason small casual devices are not able to render aesthetically pleasing defocus blur. It is
also worth noticing that the depth of field is quadratic with focusing distance S0, which
explains when we use our phone to take a photo of a close-up object, the defocus blur
appears more salient, though still hardly noticeable compared to that of large cameras.

The defocus blur is proportional to the object depth by a normalized scalar [63] (see
Section 2.1 for details), which has the same geometry with disparity in a stereo setup.
This is intuitive by viewing the two ends of our eyes (or the lens aperture) as two pinhole
camera. Each point in the object space projects to the images formed by the two cameras.

In order to simulate more perceptually-appealing defocus blur on a smartphone, one
needs to know the depth (inverse disparity) of each pixel in the object space. But even
with perfect depth information, the rendering is always an approximation to the phys-
ical phenomenon because out-of-focus region receives contribution from pixels that are
occluded, which is hard to acquire from a single fixed viewpoint.
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1.2.3 Lighting
Lighting, either natural or artificial, refers to how the light sources are positioned relative
to the subjects in space, time and direction. As modeled in computer graphics, the irradi-
ance (i.e., optical power) received at a single point to be the integral of radiance from all
directions (e.g. a hemisphere over the point) weighted by their angles between the surface
normal:

E =

∫
L(ω) cos θdω (1.3)

where L(ω) is the radiance in the direction ω and θ is the angle between ω and surface
normal.

The incoming radiance with respect to the sensor or film, is the outgoing radiance
from points in the scene. The rendering equation tells us that given a scene point p and a
direction of interest ωo, its outgoing radiance is formulated as:

Lo(p, ωo) = Le(p, ωo) +

∫
fr(p, ωi → ωo)Li(p, ωi) cos θdωi (1.4)

where Le(p, ωo) is the emitted radiance (e.g. if p is on a light source), fr is the scattering
function that characterizes how light interacts with the object surface. Li is the relative
incoming radiance at point p.

In photography, the sensor records the irradiance (E) at each sample location. The in-
tegral is the summed radiance affected by the scattering function fr and thus the properties
of the light sources and the subjects (i.e., material and geometry) they interact with. The
position and quality of light can affect how an object is depicted, from clarity to emotion.
While there is no single formula of lighting that works for all scenarios, there is a lighting
vocabulary (derived from studio photography) that breaks down the infinite possibilities
of light into manageable topics for discussion [78]. For example, the quality of a light de-
scribes primarily its hardness and softness; the density of the shadow is determined by
the amount of bounce and fill light in the scene. An intimate family scene may dictate
the use of sunset and sunrise lighting to render a warmer tone; strong directional light-
ing exaggerates details and 3D shape, forming crisp and harsh shadows; diffuse lighting
smooths out surface roughness and renders a softer looking. All these lighting styles can
be constructed in a controlled environment with auxiliary lighting equipment.

Casual imaging only uses available lighting from the environment. While this pre-
serves the real world in an unaltered way, it suffers from the lighting conditions being
suboptimal for photography. It is not practical to always wait for the optimal lighting that
happens a few hours of a day. It is also not intuitive for an average user to decide the best
camera position given existing lighting. Casual imaging is constrained by what lighting
is available at the moment of capture – no matter if it is portrait or landscape, the camera
passively uses existing lighting, which can oftentimes be unflattering. Figure 1.4 illustrates
a few common lighting problems in casual photography.
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(A) Backlit (B) Low light (C) Hard light (D) Lens flare (E) Cast shadow

Figure 1.4: When the subject is lit from the back (A), it is hard to set a single exposure
to cover the wide dynamic range, and thus the background easily goes saturated and the
subject appears darker than desired. Under low-light (B), the image suffers from strong
shot noise. Midday sunlight (C) is harsh and strong, leaving high contrast facial shadows
with hard edges, making the photo look distracting. When strong light is within the field
of view of the camera, lens flare (the green circle and light streaks) caused by imperfect
optics and dust will be visible in the image. In (E), close objects (the window frame) cast
shadows and form an unpleasing look.

1.2.4 Focus
Conventional camera autofocus systems are classified into two buckets: contrast-detection
autofocus (CDAF) and phase-detection (PDAF). CDAF is slower, seeking focus by aiming
to maximize image contrast as the lens focus is changed; it performs poorly for video be-
cause the “focus seeking” behavior is visible in the recorded video. Phase detection can be
much faster, and is based on separately detecting and comparing light passing through dif-
ferent parts of the lens aperture. This was achieved in SLR cameras by reflecting light onto
PDAF units that each comprised microlens atop multiple pixels [49]. More recently, dual
pixel autofocus (DPAF) begins to dominate the consumer cameras. Unlike PDAF where
only a small portion of the pixels are responsible for autofocus, DPAF has each pixel on the
CMOS image sensor attached with two photodiodes, often accomplished by placing two
lenses on-top each pixel, and the two sides can operate separately or jointly. Each pixel is
therefore calculating phase differences and focus, greatly improving the focus speed and
accuracy.

Despite these physical autofocus systems, autofocus mistakes remain common and in-
evitable in casual videography, because the focus of each frame is “locked in” as it is being
shot. A full solution is impossible because the autofocus algorithm would have to pre-
dict the future (e.g. where actions go, who picks up the next dialogue line, etc.) at every
frame to correctly determine what to focus on, or transition focus to. Because there is no
movie script as in cinematography, memorable moments and decisive actions occur un-
predictably and can be easily missed.
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Smartphones visually suffer less from autofocus errors because the small lenses cause
essentially everything to be in focus at the same time. This is undesirable as videos often
appear cluttered and lens defocus quality is low; the ability of using focus to guide the
viewer’s gaze is lost. We either sacrifice shallow DOF, as in smartphone videos; or we
struggle to deliver accurate focus, as in videos from larger cameras.

1.2.5 Other Challenges
The challenges in optical limitations (sensors and lenses), lighting environment and fo-
cus are addressed in this thesis, but they do not cover all the obstacles in casual imaging.
Traditional camera white balance problems – the accuracy of rendering neutral colors –
are unsolved under low light and complicated mixed lighting conditions. One example
is correctly rendering the skin tone of a person lit by neon light. Another aspect that
requires considerable professional experiences and is hard to achieve in casual imaging
is composition and framing, which determines the arrangement of the visual elements
in an image. There are rules of composition such as the rule of thirds, S-shapes, con-
trasting/complementing colors, visual rhythm, leading lines, etc., but having a thorough
understanding of these rules to decide what to use for a particular image requires prac-
tice and relevant education. Not to mention composition is sometimes often of an artistic
choice that differentiates between good works and masterpieces. Related to the problem
of composition, obstructions in the environment are difficult to be identified and effec-
tively removed. Imagine a tourist sight with strangers, the camera system needs to first
identify who are the strangers and then remove them accompanied by filling the removed
regions with contents. Another common and similarly challenging scenario is removing
powerlines that appear thin structured and extremely distracting.

There are additional challenges for casual imaging on smartphones. Smartphone op-
tics suffer from geometric aberration that produces lens flare that appears as light spots
with color artifacts; high quality action shot is challenging on handheld device because
the shot needs to be sharp (low shutter speed) and clean (low noise); long exposure are
difficult to achieve on handheld devices where optical and sensor stabilization may not
suffice to account for large hand motion.

1.3 The Importance of Context
The eyes look, but the brain sees. A camera can gain intelligence if it understands what
it sees. A key contribution of this thesis is to identify and bring such contextual infor-
mation about the scene to casual camera systems. The thesis proposes solutions to limi-
tations in sensors, camera lenses, lighting and focus uncertainty under the framework of
machine learning, showing the effectiveness of learning contextual and semantic signals
from large-scale dataset. These contextual and semantic signals, encapsulated as context
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in the following, includes but is not limited to pixel and patch correlations among natural
images, the statistics of human faces and perceptual attention recognition.

To put it more concretely, if a camera ’detects’ a familiar face among a crowd, it could
set focus to that familiar person while blurring out the rest of scenes. If a camera ’recog-
nizes’ distracting obstructions in the scene, it could suggest the photographer reframing
or removing the obstructions. If a camera ’knows’ what a flower petal looks like, it could
recover the details of a low-quality image of a flower petal. The capability of ’detecting’,
’recognizing’ and ’knowing’ suggest a context-aware imaging system, which affords se-
mantics to the streaming frames or captured imagery. Casual photographers will benefit
from such an imaging system when they are limited by the device and environment.

Such context-aware imaging systems behave similarly to how humans perceive. Hu-
man perception operates in a collaborative manner between our visual system and brain.
Because each individual sees the world in a different way as basic as colors [44], it may
bring confusion to defining ‘physical reality’. On the more positive other side, because our
brain adapts to the environment continuously, it helps us see with context to understand
easily and quickly. For example, when we see through a fence, our brain filters out the ob-
struction (the fence) and observes lucidly what’s on the other side; when we see a person
under colorful neon light at night, we are still able to infer his/her ethnicity even though
the illumination has severely distorted the skin tone, because the human visual system is
so sensitive to faces that parts of our brain are dedicated for face processing [79]; we are
good at focusing on objects we can easily understand [134], and thus we naturally respond
to spontaneous events we care about. These capabilities are based on our knowledge and
understanding of the surroundings. My goal in this thesis is to amend a imaging system
with a similar ‘brain power’ as humans do.

Similar to how the human brain develops in response to new information and data
points, one approach to build a system with semantic understanding is learning patterns
and features from big data. Recent breakthroughs in computing power (i.e., GPU) and
the emergence of large-scale datasets have enabled using machine learning, in particular
deep neural networks, to automatically and effectively extract semantic features from data.
Since the first deep neural network, known as the AlexNet [94], revolutionizes perfor-
mance on classifying ImageNet dataset [20] in 2012, the field of deep learning has grown
rapidly. Various computer vision tasks have leveraged semantic and high-level image un-
derstanding, such as object recognition, object detection and semantic segmentation, to
name a few.

1.4 Challenges of Learning the Context From Data
The challenges of applying learning-based methods to computational photography prob-
lems are 1) formulating the problem into a machine learning framework, and 2) collecting
labeled training datasets at scale.
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Unlike image classification with a clear problem formulation (i.e., image in, label(s)
out) and has data with categorical labels that can be collected through crowdsourcing,
many computational photography problems are not straightforward to fit into machine
learning frameworks with clear definitions of input and output pairs. What is the ground
truth for an algorithm that enhances portrait lighting? How to define and evaluate a good
tone mapping method? What is the label for training an autofocusing model? Even if one
is given a well-defined problem, it remains a challenge how to acquire a dataset at scale
with sufficient diversity for training. Because the output of computational photography
problems are almost always images, the labels are dense at pixel level and often at the same
resolution as the input. For example, the label for image denoising is an image that has a
higher signal-to-noise ratio (SNR) than that of the input. Capturing pairs of images with
low and high SNR, however, requires great labor and domain knowledge in photography.

An alternative approach for real data collection is to use synthetic data, for example,
simulating sensor noise to learn an image denoising model. The advantage is that we
can use internet-scale images for simulation, but the downside is that synthesis is always
an approximation of the real physical process, and thus the distribution gap 1 between
training and testing data degrades the performance.

1.5 Applying Machine Learning to Enable Context-aware
Casual Imaging

In view of the challenges of applying machine learning to casual imaging, the following
chapters (Chapter 3, 4, 5) propose learning-based methods to the problems of superres-
olution [200], reflection removal [198], facial lighting editing [196] and casual video aut-
ofocus [199], by breaking them down into tractable sub-problems, and by collecting and
processing tailored datasets.

Chapter 3 brings machine learning into raw sensor space (Section 3.1) and learns cor-
relation among raw sensor patches, formulating super-resolution as a joint task that per-
forms image processing pipeline (camera ISP) and upsampling. The other problem men-
tioned in Chapter 3 is reflection removal (Section 3.2), which can be naturally formulated
as a supervised machine learning problem. We demonstrate that it is necessary to use
a hybrid collection of synthetic, which assures diversity and scale, and real data, which
brings in natural image statistics, to obtain good removal quality. Chapter 4 uses a data-
driven method to understand human faces and lighting in order to fix and improve portrait
lighting. The key is to break down the problem into sub-problems – in this case, categorize
portrait shadow into two types: foreign and facial shadows based on the source of shad-
ows – to make the problem manageable and well-defined to fit into a machine learning
framework. Similarly, Chapter 5 decomposes the problem of smartphone autofocus into

1Transfer learning [126] and domain adaptation [41] are ongoing research directions to improve model
generalization.
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two parts: rendering synthetic shallow depth-of-field and identifying salient focus. The
former uses machine learning to infer depth from a single image by learning the correla-
tion between object appearance and their relative depth with the camera; the latter learns
about scene semantics to predict the salient region that is more likely to be a meaningful
focus.

The goal to integrate machine learning is to extract context that is useful for down-
stream imaging tasks, minimizing the compromises on image quality in conventional ca-
sual imaging. This thesis shows that with this approach, casual imaging can produce
visual quality of professionals that is sharp, visually pleasing and semantically meaning-
ful.

1.6 Dissertation Road Map
The organization of this dissertation is as follows:
Chapter 2 briefly overviews the lens geometry, talks about professional photography and
cinematography and their differences from casual imaging. Studio lighting techniques
and film crew responsibilities are briefly described. This chapter then introduces contex-
tual information that has been missing in conventional casual imaging, and how machine
learning can bring it back by extracting useful information from large-scale data collec-
tions.
Chapter 3, 4, and 5 dive into the technical details of making casual imaging cinematic
from the three aspects – perceptual, lighting and focusing quality. These techniques use
machine learning to embed contextual information – object statistics, face semantics and
scene descriptors into features that can then be used to guide each task. In particular,
Chapter 3 focuses on image clarity and removing distracting signals from an image such as
reflections to enhance image perceptual quality. Chapter 4 talks about the challenges and
importance of handling lighting and shadow for casual portrait photography, leveraging
studio lighting principles to manipulate and enhance unflattering portrait lighting. Chap-
ter 5 proposes a prototype of real-time autofocusing for casual videography on smart-
phones, simulating shallow depth of field to render refocusable videos and bringing in
video saliency to guide where and when to shift focuses.

If the readers prefer, a visual version of the roadmap is available in Figure 1.5.
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Figure 1.5: The dissertation roadmap. Chapter 2 starts with an overview in lens geome-
try, and continues with professional techniques in photography and videography (cine-
matography). The importance of context is introduced as key to making casual imaging
cinematic. The thesis continues with a deep dive into the technical details of improving
casual imaging from the three aspects of perceptual, lighting and focusing quality. Con-
textual information is extracted from different aspects accordingly: object statistics, face
semantics and scene understanding.
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Chapter 2

Background

The primary goal of building computational tools for casual imaging is to produce images
of high quality like the ones produced by professional photographers and cinematogra-
phers. Professionals use better cameras and lenses, and more importantly, they manipu-
late and control the environment to be supportive of their photo-shooting plan or a movie
script. An iconic example is the opening scene of “The Godfather” [182], where Gordon
Willis, the cinematographer, sets up low-key overhead lighting to establish a dark and
insidious tone that aligns with the story.

While professional photography and cinematography largely attribute to artistic and
subjective choices, there are principles in this creative process that are commonly adopted
– on camera settings, lens choices, lighting, composition, focusing and other visual ele-
ments. These principles are grounded on the understanding of context, which profes-
sionals take full control over but casual users know little : who is the subject, what is the
occasion and how does the narrative go. To achieve high perceptual and semantic qual-
ity images and videos, one needs to understand and sets an expectation on the context.
This chapter is decomposed into a brief overview of professional photography and cin-
ematography, followed by how large-scale dataset and machine learning can transform
professional principles into contextual signal to guide casual imaging.

2.1 Lens Geometry
Lens geometry explains many of the camera features mentioned in Chapter 1 such as depth
of field and defocus blur. To simplify the analysis, I briefly overview its geometric forma-
tion using a thin-lens model (see Figure 2.1). The Gaussian lens formula [146] tells us

1

So
+

1

Si
=

1

f
(2.1)
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Figure 2.1: A thin lens diagram that demonstrates the geometric relationship between the
circle of confusion (C) and depth of field (D1 +D2). From the analysis we show depth of
field increase linearly with decreasing sensor size.

The depth of field of this thin lens system isD = D1 +D2 (note thatD1 6= D2), and can be
derived by similar triangles marked in yellow. We have

D1 ∗ f
CSo

=
So −D1

A
D1 ∗ f
CSo

=
So −D1

f
N

D1 =
NCS2

o

f 2 +NCSo

Similarly, D2 = NCS2
o

f2−NCSo
. The complete depth of field is thus

D = D1 +D2 =
2NCS2

of
2

f 4 −N2C2S2
o

When circle of confusion is small relative to the aperture, which is often the case, we can
simplify the depth of field further to

D =
2NCS2

o

f 2
(2.2)

Equation 2.2 shows how depth of field is correlated with the F-number, circle of confusion,
object distance and the focal length.

With the geometry illustrated in Figure 2.1, we can also derive the formulation of the
size of blur with respect to the depth of the object in the scene.
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For an object at distance Zo, it’s projected circle of confusion Co on the image plane can
be written as

Co = |A(
Si
So

)(1− Zo
So

)| (2.3)

The sign of the numerical value (without | · |) of Co depends on whether the object is
located in front of or behind the focal plane. As similarly derived in [63], if we express the
So/Zo as the relative depth d, equation 2.3 can be written as

Co = |A(
Si
So

)(1− 1

d
)| (2.4)

This indicates that the defocus blur is proportional to the object depth by a normalized
scalar, and that it is necessary to have scene depth to synthesize defocus blur.

2.2 Professional Photography
I use the term ‘professional’ to describe people who take photos for sessions of time with
auxiliary equipment (e.g. artificial lighting), either in a studio or outdoors. Apart from
high-end cameras and lenses that assist professional photographers obtain high quality
signal on the film or sensor, carefully controlled lighting is another crucial factor that dis-
tinguishes professional from casual photography. In professional photography, lighting is
adjusted to establish certain clarity and tone, from the aspects of direction, quality (soft-
ness), temperature and intensity (brightness).

Studio photography constructs a virtual environment with full control over lighting
and placement of the subject. Because there is no existing lighting to comply with, the
space for creativity is broad and possibilities are almost endless. Figure 2.2 illustrates the
basic lighting equipment used in studio portrait photography, including various types of
lighting, diffusers and reflectors. The most common studio photography is portrait pho-
tography, where the photographer spends a few hours optimizing the position and qual-
ity of lighting that aligns best with the subject’s identity and appearance. The goal is to
achieve the balance of lighting and shadow that establish the desired tone and emotion.
There are two major types of shadows on human faces – cast shadow caused by occlusion,
and attached shadow caused by geometry change (the cosine between the lighting direc-
tion and surface normal increases), see Figure 2.3 for an illustration. A slight change in the
lighting direction changes how shadow appears on the subject’s face. Because the human
perception system uses shadows, especially cast shadows to infer object shape and 3D ge-
ometry [135, 114], portrait shadow is essential for 3D perception of faces. The artistic uses
of portrait lighting and shadow are inspired from classical portrait paintings. One of the
most iconic lighting types is Rembrandt lighting, named after the famous Dutch painter
Rembrandt Harmenszoon van Rijn. Rembrandt lighting, together with loop lighting, split
lighting, butterfly lighting and others belong to the category of dramatic lighting, which
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Figure 2.2: A, B and C illustrate various types of lighting equipment used in studio pho-
tography. Diffusers are used to evenly spread the light. Reflectors are used to lighten up
shadows, or to reflect colored light onto the subject. A typical lighting setup – Three Point
Lighting – is layout in (D), where a main light, two background lights are used, together
with a diffused fill light to compensate for the darker region of the face.

is common in studio photography but not in outdoor photography, because the latter re-
quires a harmonization between artificial and existing lighting.

Outdoor or natural lighting photography uses the sun and skylight as the main light
source. It follows similar lighting principles and uses similar lighting equipment as in stu-
dio photography. The major difference in outdoor photography is its constraints from the
existing environment – time of day and weather. For example, mid-day sun casts strong
and directional sunlight where shadows appear high-contrast and hard, while cloudy day
gives diffuse and soft lighting that is often cooler. Depending on the desired portrait ap-
pearance, photographers may use diffusers to soften harsh lighting, or use reflectors and
artificial lighting to add intensity and change dominant lighting color/temperature. With-
out any additional equipment, natural lighting can be ideal as it is, but only during specific
time of day and weather conditions. Many photographers are willing to to wait for the
right moments to come, such as the golden hour, which is the period of daytime shortly
after sunrise or before sunset, or the sunset after a storm where partial sunlight streams
through the cloudy sky and creates dramatic contrast.

Another important aspect in professional photography is the strength and quality of
catch light – the reflection of light sources in the subject’s eyes [51]. Humans are natu-
rally inclined to make eye contacts, and thus eyes are the first thing a person notices when
showing a photo or painting a portrait. Catch light is often overlooked in casual photog-
raphy, partly because it requires additional equipment such as reflectors, and also careful
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Cast shadow

Attached shadow

Surface normal
Lighting direction

(A) Different portrait shadow types (B) Catch light

Figure 2.3: Two major shadow types on human faces are cast shadow and attached shadow.
Cast shadow is caused by occlusions that block the main light; the shadow region is mostly
lit only by global illumination. Attached shadow is caused by change of angle between the
surface normal and lighting direction, as illustrated in (A): as the side of face curves in-
ward, there is a gradual decrease of light that lands on the surface. Catch light (B) is
crucial for professional photography because it makes the subject look more lively. It is
often overlooked by casual photography, partly because catch light often requires inten-
tional placement of both the light source and subject.

placement of the light source and subject – all is difficult for casual imaging.

2.3 Cinematography
Cinematography is the artistic process of telling a story in motion through a lens. If the
goal of professional photography is to produce a still image at its best quality possible, the
goal of cinematography is to make each frame of the quality to be cohesive and supportive
of the story, even if each frame is not perfect on its own. Cinematography emphasizes
live-action issues and techniques; it needs to account for the subject movements – how
lighting changes along with the movements and when focus shifts from the current to the
next focusing point. Getting these right requires a dedicated crew (see Figure 2.4 for a
mini-version of a film set) to perform staging, framing and lighting design to plan ahead
where to place the camera, how to set the lighting and where the actors move for every
single shot.

The gap between cinematography and casual videography is largely due to the amount
of contextual understanding and control over the scene. Cinematography happens on a
set – an environment established with collaborative efforts between the director and the



CHAPTER 2. BACKGROUND 19

Figure 2.4: (Left) An illustration of a film crew on set. The director of photography (DP)
makes decision of the lighting and camera according to the movie script. The 1st assis-
tance cameraman (1AC) measures the focus distance for the shot, and the 2nd assistant
cameraman (2AC) marks the position on the ground to guide the actor. On the right is a
list of key crew in the cinematography department and the key departments for a feature
film.

crew. Actors can then rehearse the scene, staging and framing can be altered, and props
can be redressed to take best advantage of the lighting design. The camera setups and
actor movements are then marked for correct blocking; occasionally even the eyeline of
the actors are marked to avoid crossing the line 1 and having a reverse angle. During the
actual shooting, precise focus is guaranteed because the focusing points have been marked
on the camera lens according to the blocking. In case there is a focus error on one cam-
era, there are on average seven other shots for any single movement for the editor to later
choose from. These shots cover different angle or field of view of the scene, including but
not limited to full shot, medium shot, close-up shots, over the shoulder shot and high/low
angle shots. There are movies where focus is compromised for other purposes such as
emotion continuity. Les Misérables (2012) is one example where the audience can observe
focus errors in close-up shots because the director pursues the integrity of a complete mu-
sical piece and actor emotion, which inevitably induce misfocus when the movement is
relatively large. In movies with improvisational acting, such as Coherence (2014), the cin-
ematographer must try to anticipate what the actors will do; focus is occasionally wrong
and delayed. These are of course not standard cinematography, and require the crew to

1Cinematography terminology, meaning two characters in a scene should maintain the same left/right
relationship to one another. When the camera passes over the invisible axis connecting the two subjects, it
is called “crossing the line”.
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be even more experienced and capable to produce cinema quality shots.
Cinema lighting is design in a unique way that accounts for motion. Lighting is de-

signed layer by layer with a base light as foundation, similar in spirit to painting. Each
light source may or may not use a ‘flag’ – a black cloth supported by a C-stand 2 – to crop
a portion of its light path so that they do not interfere. Sometimes the use of the ‘flag’ is
to make a light path that aligns well with the subject motion. There are exceptions where
the film pursues naturalism to minimize the altering of the environment lighting. The
Revenant (2016) is one of the movies to pursue such realism by using natural lighting. As
a result, the movie is shot for only few hours per day due to natural lighting being un-
desirable most of the time. Barry Lyndon (1975) is another film that is shot with candle
lights using a specialized Zeiss lens with a f/0.7 aperture that is originally developed for
NASA’s Apollo missions.

Hardware is another significant difference between casual videography and cinematog-
raphy. Cinema camera is big in size to support efficient heat dissipation for long-time
shooting, to balance the heavy cinema lens built to be durable even in the harshest weather
conditions, and to act as a hardware hub for live-streaming to multiple monitors (e.g. for
the director, cinematographer, etc.), sound systems and various types of stabilizers. Dif-
ferent crew members in the camera department are in charge of operating the camera,
controlling the dolly and pulling the focus. There is hardly any hardware aspect that is
compromised for storytelling on a film set.

Cinematography is a highly customized and elaborated process that pursues perfec-
tion. None of its designs, setups or crew is available under a casual setting – no auxiliary
hardware, no script, no expectation of subject movement, and no amelioration to unsatis-
fying lighting conditions. Casual videography is extremely challenging, because it is an
one-man job to capture spontaneous actions in life, and often on a hand-held device.

2Cinematography terminology, referring to a stand that is primarily used to position light modifiers,
such as silks, nets, or flags, in front of light sources.



21

Chapter 3

Learning to Enhance Perceptual Quality

In this chapter, I aim to demonstrate how machine learning can improve the perceptual
quality of images through the tasks of super-resolution that learns patch statistics and
reflection removal that exploits natural image priors. The former shows that when ap-
plying machine learning to digital zoom, it is beneficial to operate on real, RAW sensor
data. Existing learning-based super-resolution methods do not use real sensor data, in-
stead operating on processed RGB images. We show that these approaches forfeit detail
and accuracy that can be gained by operating on raw data, particularly when zooming in
on distant objects. The key barrier to using real sensor data for training is that ground-
truth high-resolution imagery is missing. We show how to obtain such ground-truth data
via optical zoom and contribute a dataset, SR-RAW, for real-world computational zoom.
The latter part of the chapter presents one of the first learning-based approaches to sepa-
rating reflection from a single image. The model learns and uses priors of natural images
– low-level and high-level image features extracted from a convolutional neural network.
We also collect one of the first real-world datasets for reflection removal, which is used to
demonstrate the necessity of training with a hybrid collection of real and synthetic data
for this task.

3.1 Learning from Raw Sensor Data for Super-resolution

3.1.1 Introduction
Zoom functionality is a necessity for mobile phones and cameras today. People zoom onto
distant subjects such as wild animals and sports players in their captured images to view
the subject in more detail. Most smartphones are equipped with at least two cameras at
different zoom levels, indicating the importance of high-quality zoom functionality for the
consumer camera market.

Optical zoom is an optimal choice for image zoom and can preserve high image quality,
but zoom lenses are usually expensive and bulky. Alternatively, we can conveniently use
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Input with distant object ESRGAN Ours-syn-raw Ours

(A) Bicubic and G.T. (B) 8-bit RGB (C) Synthetic sensor (D) Real sensor

Figure 3.1: Our model (D) trained with real raw sensor data achieves better 4X compu-
tational zoom. We compare zoomed output against (B) ESRGAN [178], representative
of state-of-the-art learning-based super-resolution methods, which operate on processed
8-bit RGB input, and (C) our model trained on synthetic sensor data. In (A), digital
zoom via bicubic upsampling is the naı̈ve baseline and optical zoom serves as the ref-
erence ground truth. Our output is artifact-free and preserves detail even for challenging
regions such as the high-frequency grillwork.

digital zoom with a standard lens. However, digital zoom simply upsamples a cropped
region of the camera sensor input, producing blurry output. It remains a challenge to
obtain high-quality images for distant objects without expensive optical equipment.

We propose to improve the quality of super-resolution by starting with real raw sen-
sor data. Recently, single-image super-resolution has progressed with deep models and
learned image priors from large-scale datasets [12, 75, 85, 86, 96, 99, 110, 140, 201]. How-
ever, these methods are constrained in the following two respects. First, they approach
computational zoom under a synthetic setup where the input image is a downsampled
version of the high-resolution image, indirectly reducing the noise level in the input. In
practice, regions of distant objects often contain more noise as fewer photons enter the
aperture during the exposure time. Second, most existing methods start with an 8-bit
RGB image that has been processed by the camera’s image signal processor (ISP), which
trades off high-frequency signal in higher-bit raw sensor data for other objectives (e.g.
noise reduction).

In this work, we raise the possibility to apply machine learning to computational zoom
that uses real raw sensor data as input. The fundamental challenge is obtaining ground
truth for this task: low-resolution raw sensor data with corresponding high-resolution im-
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ages. One approach is to synthesize sensor data from 8-bit RGB images that are passed
through some synthetic noise model [46]. However, noise from a real sensor [166] can be
very challenging to model and is not modeled well by any current work that synthesizes
sensor data for training. The reason is that sensor noise comes from a variety of sources,
exhibiting color cross-talk and effects of micro-geometry and micro-optics close to the sen-
sor surface. We find that while a model trained on synthetic sensor data works better than
using 8-bit RGB data (e.g. compare (B) and (C) in Figure 3.1), the model trained on real
raw sensor data performs best (e.g. compare (C) and (D) in Figure 3.1).

To enable learning from real raw sensor data for better computational zoom, we pro-
pose to capture real data with a zoom lens [89], where the lens can move physically further
from the image sensor to gather photons from a narrower solid angle for optical magni-
fication. We build SR-RAW, the first dataset used for real-world computational zoom.
SR-RAW contains ground-truth high-resolution images taken with high optical zoom lev-
els. During training, an 8-bit image taken with a longer focal length serves as the ground
truth for the higher-bit (e.g. 12-14 bit) raw sensor image taken with a shorter focal length.

During training, SR-RAW brings up a new challenge: the source and target images
are not perfectly aligned as they are taken with different camera configurations that cause
mild perspective change. Furthermore, preprocessing introduces ambiguity in alignment
between low- and high-resolution images. Mildly misaligned input-output image pairs
make pixel-wise loss functions unsuitable for training. We thus introduce a novel contex-
tual bilateral loss (CoBi) that is robust to such mild misalignment. CoBi draws inspira-
tion from the recently proposed contextual loss (CX) [116]. A direct application of CX
to our task yields strong artifacts because CX doesn’t take spatial structure into account.
To address this, CoBi prioritizes local features while also allowing for global search when
features are not aligned.

In brief, we “Zoom to Learn” – collecting a dataset with ground-truth high-resolution
images obtained via optical zoom, to “Learn to Zoom” – training a deep model that achieves
better computational zoom. To evaluate our approach, we compare against existing super-
resolution methods and also against an identical model to ours, but trained on synthetic
sensor data obtained via a standard synthetic sensor approximation. Image quality is mea-
sured by distortion metrics such as SSIM, PSNR, and a learned perceptual metric. We also
collect human judgments to validate the consistency of the generated images with human
perception. Results show that real raw sensor data contains useful image signal for re-
covering high-fidelity super-resolved images. Our contributions can be summarized as
follows 1:

• We demonstrate the utility of using real high-bit sensor data for computational zoom,
rather than processed 8-bit RGB images or synthetic sensor models.

• We introduce a new dataset, SR-RAW, the first dataset for super-resolution from raw
data, with optical ground truth. SR-RAW is taken with a zoom lens. Images taken

1Project webpage at: https://ceciliavision.github.io/project-pages/project-zoom.html
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with long focal length serve as optical ground truth for images taken with shorter
focal length.

• We propose a novel contextual bilateral loss (CoBi) that handles slightly misaligned
image pairs. CoBi considers local contextual similarities with weighted spatial aware-
ness.

3.1.2 Background

Image Super-resolution. Image super-resolution has advanced from traditional filtering
to learning-based methods. The goal is to reconstruct a high-resolution image from a low-
resolution RGB image. Traditional approaches include filtering-based techniques such as
bicubic upsampling and edge-preserving filtering [105]. These filtering methods usually
produce overly smooth texture in the output high-resolution image. Several approaches
use patch matching to search for similar patches in a training dataset or in the image it-
self [39, 47, 69]. Recently, deep neural networks have been applied to super-resolution,
trained with a variety of losses [23, 75, 86].

Many recent super-resolution approaches are based on generative adversarial networks.
SRGAN [99] is an image super-resolution approach that applies a GAN to generate high-
resolution images. The loss used in SRGAN combines a deep feature matching loss and
an adversarial loss. Lai et al. . [96] propose the Laplacian Pyramid Super-Resolution Net-
work to progressively predict the residual of high-frequency details of a lower-resolution
image in a coarse-to-fine image pyramid. Wang et al. . [178] propose ESRGAN, which en-
hances image super-resolution with a Relativistic GAN [76] that estimates how much one
image is relatively more realistic than another. Wang et al. . [179] study class-conditioned
image super-resolution and propose SFT-GAN that is trained with a GAN loss and a per-
ceptual loss. Most existing super-resolution models take a synthetic low-resolution RGB
image (usually downsampled from a high-resolution image) as input. In contrast, we ob-
tain real low-resolution images taken with shorter focal lengths and use optically zoomed
images as ground truth.

invisialbe line
Image Processing with Raw Data. Prior works have used raw sensor data to enhance
image processing tasks. Farsiua et al. . [31] propose a maximum a posteriori technique
for joint multi-frame demosaicing and super-resolution estimation with raw sensor data.
Gharbi et al. . [46] train a deep neural network for joint demosaicing and denoising. Zhou
et al. . [205] address joint demosaicing, denoising, and super-resolution. These meth-
ods use synthetic Bayer mosaics. Similarly, Mildenhall et al. . [117] synthesize raw burst
sequences for denoising. Chen et al. . [13] present a learning-based image processing
pipeline for extreme low-light photography using raw sensor data. DeepISP is an end-
to-end deep learning model that enhances the traditional camera image signal process-
ing pipeline [145]. Similarly, we operate on raw sensor data and propose a method to
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(A) Example sequence from SR-RAW

(B1) Perspective (B2) Depth-of-field (B3) Resolution

Figure 3.2: Example sequence from SR-RAW and three sources of misalignment in data
capture and preprocessing. The unavoidable misalignment motivates our proposed loss.

super-resolve images by jointly optimizing for the camera image processing pipeline and
super-resolution from raw sensor data.

3.1.3 Dataset With Optical Zoom Sequences
To enable training with real raw sensor data for computational zoom, we collect a diverse
dataset, SR-RAW, that contains raw sensor data and ground-truth high-resolution images
taken with a zoom lens at various zoom levels. For data preprocessing, we align the cap-
tured images with different zoom levels via field of view (FOV) matching and geometric
transformation. The SR-RAW dataset enables training an end-to-end model that jointly
performs demosaicing, denoising, and super-resolution on raw sensor data. Training on
real sensor data differentiates our framework from existing image super-resolution algo-
rithms that operate on low-bit RGB images.

this is an invisible line
Data Capture with a Zoom Lens We use a 24-240 mm zoom lens to collect pairs of RAW
images with different levels of optical zoom. Each pair of images forms an input-output
pair for training a model: the short-focal-length raw sensor image is used as input and the
long-focal-length RGB image is regarded as the ground-truth for super-resolution. For
example, the RGB image taken with a 70mm focal length serves as the 2X zoom ground
truth for the raw sensor data taken with a 35mm focal length. In practice, we collect 7
images under 7 optical zoom settings per scene for data collection efficiency. Every pair of
images from the 7-image sequence forms a data pair for training a particular zoom model.
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In total, we collect 500 sequences in indoor and outdoor scenes. ISO ranges from 100 to
400. One example sequence is shown in Figure 3.2A.

During data capture, camera settings are important. First, depth of field (DOF) changes
with focal length and it is not practical to adjust aperture size for each focal length to make
DOF identical. We choose a small aperture size (at least f/20) to minimize the DOF dif-
ference (still noticeable in Figure 3.2 B2), using a tripod to capture indoor scenes with a
long exposure time. Second, we use the same exposure time for all images in a sequence
so that noise level is not affected by focal length change. But we still observe noticeable
illumination variations due to shutter and physical pupil being mechanical and involving
action variation. This color variation is another motivation for us to avoid using pixel-to-
pixel losses for training. Third, although perspective does not change with focal length,
there exists slight variation (length of the lens) in the center of projection when the lens
zooms in and out, generating noticeable perspective change between objects at different
depths (Figure 3.2 B1). Sony FE 24-240mm, the lens we use, requires a distance of at least
56.4 meters from the subject to have less than one-pixel perspective shift between objects
that are 5 meters apart. Therefore, we avoid capturing very close objects but allow for such
perspective shifts in our dataset.

this is an invisible line
Data Preprocessing For a pair of training images, we denote the low-resolution image by
RGB-L and its sensor data by RAW-L. For high-resolution ground truth we use RGB-H
and RAW-H. We first match the field of view (FOV) between RAW-L and RGB-H. Align-
ment is then computed between RGB-L and RGB-H to account for slight camera movement
caused by manually zooming the camera to adjust focal lengths. We apply a Euclidean mo-
tion model that allows image rotation and translation via enhanced correlation coefficient
minimization [29]. During training, RAW-L with matched FOV is fed into the network as
input; its ground truth target is RGB-H that is aligned and has the same FOV with RAW-L.
A scale offset is applied to the image if the optical zoom does not perfectly match the target
zoom ratio. For example, an offset of 1.07 is applied to the target image if we use (35mm,
150mm) to train a 4X zoom model.

this is an invisible line
Misalignment Analysis Misalignment is unavoidable during data capture and can hardly
be eliminated by the preprocessing step. Since we capture data with different focal lengths,
misalignment is inherently caused by the perspective changes as described in Section 3.1.3.
Furthermore, when aligning images with different resolutions, sharp edges in the high-
resolution image cannot be exactly aligned with blurry edges in the low-resolution image
(Figure 3.2 B3). The described misalignment in SR-RAW usually causes 40-80 pixel shifts
in an 8-megapixel image pair.
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(A) Bicubic (B) Train with CX (C) Train with CoBi (D) Ground truth

Figure 3.3: Training with the contextual loss (CX) results in periodic artifacts as shown on
the flat wall in (B). These artifacts are caused by inappropriate feature matching between
source and target images, which does not take spatial location into account. In contrast,
training with the proposed contextual bilateral loss (CoBi) leads to cleaner and better
results, as shown in (C).

3.1.4 Contextual Bilateral Loss
When using SR-RAW for training, we find that pixel-to-pixel losses such as L1 and L2

generate blurred images due to misalignment in the training data (Section 3.1.3). On the
other hand, the recently proposed Contextual Loss (CX) [116] for unaligned data is also
unsatisfactory as it only considers features but not their spatial location in the image. For a
brief review, the contextual loss was proposed to train with unaligned data pairs. It treats
the source image P as a collection of feature points piNi=1 and the target imageQ as a set of
feature points qjMj=1. For each source image feature p, it searches for the nearest neighbor
(NN) feature match q such that q = arg minq D(p, qj)

M
j=1 under some distance measure

D(p, q). Given input image P and its target Q, the contextual loss tries to minimize the
summed distance of all matched feature pairs, formulated as

CX(P,Q) =
1

N

N∑
i

min
j=1,...,M

(Dpi,qj). (3.1)

We find that training with the contextual loss yields images that suffer from significant
artifacts, demonstrated in Figure 3.3. We hypothesize that these artifacts are caused by
inaccurate feature matching in the contextual loss. We thus analyze the percentage of
features that are matched uniquely (i.e., bijectively). The percentage of target features
matched with a unique source feature is only 43.7%, much less than the ideal percentage
of 100%.

In order to train our model appropriately, we need to design an image similarity mea-
sure applicable to image pairs with mild misalignment. Inspired by the edge-preserving
bilateral filter [167], we integrate the spatial pixel coordinates and pixel-level RGB infor-



CHAPTER 3. LEARNING TO ENHANCE PERCEPTUAL QUALITY 28

mation into the image features. Our Contextual Bilateral loss (CoBi) is defined as

CoBi(P,Q) =
1

N

N∑
i

min
j=1,...,M

(Dpi,qj + wsD′pi,qj), (3.2)

where D′pi,qj = ‖(xi, yi) − (xj, yj)‖2. (xi, yi) and (xj, yj) are spatial coordinates of features
pi and qj , respectively, and ws denotes the weight of spatial awareness for nearest neigh-
bor search. ws enables CoBi to be flexible to the amount of misalignment in the training
dataset. The average number of one-to-one feature matches for our model trained with
CoBi increases from 43.7% to 93.9%.

We experiment with different feature spaces for CoBi and conclude that a combination
of RGB image patches and pre-trained perceptual features leads to the best performance.
In particular, we use pretrained VGG-19 features [153] and select ‘conv1 2’, ‘conv2 2’, and
‘conv3 2’ as our deep features, shown to be successful for image synthesis and enhance-
ment [15, 198]. Cosine distance is used to measure feature similarity. Our final loss func-
tion is defined as

CoBiRGB(P,Q, n) + λCoBiVGG(P,Q), (3.3)

where we use n × n RGB patches as features for CoBiRGB, and n should be larger for the
8X zoom (optimal n = 15) than the 4X zoom model (optimal n = 10).

3.1.5 Experimental Setup
We use images from SR-RAW to train a 4X model and an 8X model. We pack each 2 × 2
block in the raw Bayer mosaic into 4 channels as input for our model. The packing reduces
the spatial resolution of the image by a factor of two in width and height, without any loss
of signal. We subtract the black level and then normalize the data to [0, 1]. White balance is
read from EXIF metadata and applied to the network output as post-processing for com-
parison against ground truth. We adopt a 16-layer ResNet architecture [61] followed by
log2N + 1 up-convolution layers where N is the zoom factor.

We split 500 sequences in SR-RAW into training, validation, and test sets with a ratio
of 80:10:10, so that there are 400 sequences for training, 50 for validation, and 50 for test-
ing. For a 4X zoom model, we get 3 input-output pairs per sequence for training, and for
an 8X zoom model, we get 1 pair per sequence. Each pair contains a full-resolution (8-
megapixel) Bayer mosaic image and its corresponding full-resolution optically zoomed
RGB image. We randomly crop 64 × 64 patches from a full-resolution Bayer mosaic as
input for training.

We first compare our approach to existing super-resolution methods that operate on
processed RGB images. Then we conduct controlled experiments on our model variants
trained on different source data types. All comparisons are tested on the 50 held-out test
sequences from SR-RAW.

this is a blank line
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Features Syn Real

1. AA Filter No Yes/No

2. Bit Depth 8 12-14

3. Crosstalk No Yes

4. Fill Factor 100% <100%

Table 3.1: A range of sensor characteristics exist in real sensor data, but are not accurately
reflected in synthesized sensor data. Each of the features listed in the table corresponds to
its numbered label on the illustration, indicating the challenge to model realistic synthetic
sensor data.

Baselines. We choose a few representative super-resolution (SR) methods for compar-
isons: SRGAN [99], a GAN-based SR model; SRResnet [99] and LapSRN [96], which
demonstrate different network architectures for SR; a model by Johnson et al. . [75] that
adopts perceptual losses; and finally ESRGAN [178], the winner of the most recent Per-
ceptual SR Challenge PIRM [9].

For all baselines except [75], we use public pretrained models; we first try to fine-tune
their models on SR-RAW, adopting the standard setup in the literature: for each image, the
input is the downsampled (bicubic) version of the target high-resolution image. However,
we notice little difference in average performance (<±0.04 for SSIM,<±0.05 for PSNR, and
<±0.025 for LPIPS) in comparison to the pretrained models without fine-tuning, and thus
we directly use the models without fine-tuning for comparisons. For baseline methods
without pretrained models, we train their models from scratch on SR-RAW.

this is a blank line
Controlled Experiments on Our Model. For comparison, we also train a copy of our
model (“Ours-png”) using 8-bit processed RGB images to evaluate the benefits of having
real raw sensor data. Different from the synthetic setup described in Section 3.1.5, instead
of using downsampled RGB image as input, we use the RGB image taken with a shorter
focal length as input. The RGB image taken with a longer focal length serves as the ground
truth.

To test whether synthesized raw data can replace real sensor data for training, we adopt
the standard sensor synthesis model described by Gharbi et al. [46] to generate synthetic
Bayer mosaics from 8-bit RGB images. In brief, we retain one color channel per pixel ac-
cording to the Bayer mosaic pattern from a white-balanced, gamma-corrected sRGB im-
age, and introduce Gaussian noise with random variance. We train a copy of our model
on these synthetic sensor data (“Ours-syn-raw”) and test on real sensor data that is white-
balanced and gamma-corrected.
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3.1.6 Results

Quantitative Evaluation To quantitatively evaluate the presented approach, we use the
standard SSIM and PSNR metrics, as well as the recently proposed learned perceptual
metric LPIPS [195], which measures perceptual image similarity using a pretrained deep
network. Although there is mild misalignment in the input-output image pairs in SR-RAW
(see Section 3.1.3), this misalignment exists across all methods and thus the comparisons
are fair.

The results are reported in Table 3.2. They indicate that existing super-resolution mod-
els do not perform well on real low-resolution images that require digital zoom in practice.
These models are trained under a synthetic setting where input images (usually down-
sampled) are clean and only contain 8-bit signal. GAN-based methods often generate
noisy artifacts and lead to low PSNR and SSIM scores. Bicubic upsampling and SRResnet
produce blurry results and get a low score in LPIPS. Our model, trained on high-bit real
raw data and supervised by optically zoomed images, can effectively recover high-fidelity
visual information with 4X and 8X computational zoom.

In Table 3.3, we show evaluations on our model trained with two different strate-
gies. “Ours-png” is our model trained on processed RGB images. By accessing real low-
resolution data taken by a short focal length, the model learns to better handle noise, but
its super-resolution power is limited by the low-bit image source. “Ours-syn-raw” is our
model trained on synthetic Bayer images. While the model gets access to raw sensor data
during test time, it is limited by the domain gap between synthetic and real sensor data.
We illustrate in Figure 3.1 that a range of real sensor features are not reflected in a synthetic
sensor model. Anti-aliasing filter (AA filter) exists in selected camera models. Synthetic
sensor data is generated from 8-bit images while real sensor data contains high-bit signals.
Inter-sensor crosstalk and sensor fill factor introduce noise into the color filter array and
can be hardly parameterized by a simple noise model [186]. The synthetic sensor model
is insufficient to represent these complicated noise patterns.

this is an invisible line
Qualitative Results We show qualitative comparisons in Figure 3.4 against baseline meth-
ods, and in Figure 3.5 against our model variants trained with different data. Most input
images contain objects that are far from the viewpoint and require computational zoom
in practice. Ground truth is obtained using a zoom lens with 4X optical zoom. In Fig-
ure 3.4, baseline methods fail to separate contents from the noise; it appears that their
performance is limited by only having access to 8-bit signals in color images, especially
in “Stripe”, which contains high-frequency details. Text in “Parking” appear noisy in all
baseline results, while our model generates a clean and discernible output image. In Fig-
ure 3.5, the model trained on synthetic sensor data produces jagged edges in “Mario” and
“Poster,” and demosaic color artifacts in “Pattern.” Our model, trained on real sensor data
with SR-RAW, can generate a clean demosaiced image with high image fidelity.

this is an invisible line
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4X 8X

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Bicubic 0.615 20.15 0.344 0.488 14.71 0.525
SRGAN [99] 0.384 20.31 0.260 0.393 19.23 0.395
SRResnet [99] 0.683 23.13 0.364 0.633 19.48 0.416
LapSRN [96] 0.632 21.01 0.324 0.539 17.55 0.525
Johnson et al. . [75] 0.354 18.83 0.270 0.421 18.18 0.394
ESRGAN [178] 0.603 22.12 0.311 0.662 20.68 0.416

Ours 0.781 26.88 0.190 0.779 24.73 0.311

Table 3.2: Our model, trained with raw sensor data, performs better computational zoom
than baseline methods, as measured by multiple metrics. Note that a lower LPIPS score
indicates better image quality.

4X 8X

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Ours-png 0.589 22.34 0.305 0.638 21.21 0.584
Ours-syn-raw 0.677 23.98 0.231 0.643 22.02 0.473

Ours 0.781 26.88 0.190 0.779 24.73 0.311

Table 3.3: Controlled experiments on our model, demonstrating the importance of using
real sensor data.

Perceptual Experiments We also evaluate the perceptual quality of our generated images
by conducting a perceptual experiment on Amazon Mechanical Turk. In each task, we
compare our model against a baseline on 100 4X-zoomed images (50 test images from
SR-RAW and additional 50 images taken without ground truth). We conduct blind ran-
domized A/B testing against LapSRN, Johnson et al. ., ESRGAN, and our model trained
on synthetic sensor data. We show the participants both results side by side, in random
left-right order. The original low-resolution image is also presented for reference. We ask
the question: “A and B are two versions of the high-resolution image of the given low-
resolution image. Which image (A or B) has better image quality?” In total, 50 workers
participated in the experiment. The results, listed in Table 3.4, indicate that our model
produces images that are seen as more realistic in a significant majority of blind pairwise
comparisons.
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Input GT [75] [99] [178] [96] Ours

Figure 3.4: Our 4x zoom results show better perceptual performance in super-resolving
distant objects against baseline methods that are trained under a synthetic setting and
applied to processed RGB images. From left to right are: input, ground truth, Johnson et
al. [75], SRResnet [99], ESRGAN [178], LapSRN [96] and ours.

Preference rate

Ours>Syn-raw 80.6%
Ours>ESRGAN [178] 83.4%
Ours>LapSRN [96] 88.5%
Ours>Johnson et al. . [75] 92.1%

Table 3.4: Perceptual experiments show that our results are preferred over baseline meth-
ods by a large margin.
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Input Bicubic Synthetic sensor Ours GT

Figure 3.5: The model trained on synthetic sensor data produces artifacts such as jagged
edges in “Mario” and “Poster” and color aberrations in “Pattern”, while our model, trained
on real sensor data, produces clean and high-quality zoomed images.

3.1.7 Generalization to Other Sensors
Different image sensors have different structural noise patterns in their Bayer mosaics (See
Figure 3.1). Our model, trained on one type of Bayer mosaic, may not perform as well
when applied to a Bayer mosaic from another device (e.g. iPhoneX). To explore the poten-
tial of generalization to other sensors, we capture 50 additional iPhoneX-DSLR data pairs
in outdoor environments. We fine-tune our model with only 5000 iterations to adapt our
model to the iPhoneX sensor. A qualitative result is shown in Figure 3.6. The results in-
dicate that our pretrained model can be generalized to another sensor by fine-tuning the
model on a small dataset captured with that sensor, and also indicate that input-output
data pairs can come from different devices, suggesting the application of our method to
devices with limited optical zoom power.
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Figure 3.6: Our model can adapt to input data from a different sensor after fine-tuning on
a small dataset.

3.1.8 Discussion
We have demonstrated the effectiveness of using real raw sensor data for computational
zoom. Images are directly super-resolved from raw sensor data via a learned deep model
that performs joint ISP and super-resolution. Our approach absorbs useful signal from the
raw data and produces higher-fidelity results than models trained on processed RGB im-
ages or synthetic sensor data. Other downstream applications such as image recognition
may similarly benefit from using raw sensor.

While we have shown model generalization capability through lightweight additional
data collection and fine tuning, the model performance and data scale are not addressed in
this work. Exploring the possibility of learning a generative model (reversely from JPEG
to RAW) to produce sensor-specific noise may enable training with internet-scale dataset.
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3.2 Learning to Remove Reflection From an Image

3.2.1 Introduction
Reflection from windows and glasses is ubiquitous in the real world, but it is usually un-
desirable in photographs. Users often want to extract the hidden clean transmission image
by removing reflection from an image. For example, we may have been tempted to take
photos through an aquarium glass or skyscraper windows, but reflection can often dam-
age the image quality. Removing reflection from a single image allows us to recover visual
content with better perceptibility. Thus, separating the reflection layer and transmission
layer from an image — the reflection separation problem — is an active research area in com-
puter vision.

Let I ∈ Rm×n×3 be the input image with reflection. I can be approximately modeled as
the sum of the transmission layer T and the reflection layer R: I = T + R. Our goal is to
recover the transmission layer T given I , which is an ill-posed problem without additional
constraints or priors.

As the reflection separation problem is ill-posed, prior works often require additional
input images and hard-crafted priors. A line of previous research uses multiple images as
input or requires explicit user guidance [56, 156, 185]. Multiple images, however, are not
always available in practice, and user guidance is inconvenient and error-prone. Recent
researchers proposed methods for reflection removal from a single image [149, 107], but
these approaches rely on hand-crafted priors such as ghost cues and relative smoothness
which may not generalize to all images with reflection. More recently, CEILNet [30] uses
a deep neural network to train a model with low-level losses on color and edges, but this
approach does not directly enable the model to learn high-level semantics which can be
highly useful for reflection removal. Low-level information is insufficient for reflection
separation when there is color ambiguity or the model needs to ”recognize” objects in the
image. For example, in Figure 3.7, our model trained with perceptual losses may have
learned the representations of lamps and faces, and thus correctly removes them from the
input image, while CEILNet fails to do so.

In this paper, we present a fully convolutional network with perceptual losses that en-
code both low-level and high-level image information. Our network takes a single image
as input and directly synthesizes two images: the reflection layer and the transmission
layer. We further propose a novel exclusion loss that effectively enforces the separation of
transmission and reflection at pixel level. To thoroughly evaluate and train different ap-
proaches, we build a dataset that contains real-world images and the ground-truth trans-
mission images. Our dataset covers diverse natural environments including indoor and
outdoor scenes. We also use this real-world dataset to compare our approach quantita-
tively to previous methods. In summary, our main contributions are 2:

2Project webpage at: eecs.berkeley.edu/~cecilia77/project-pages/reflection.html
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Transmission Reflection Transmission Reflection

Input CEILNet [30] Our results

Figure 3.7: Results by CEILNet [30] and our approach on real-world images. The top
row shows a real image from the CEILNet dataset with a window reflecting a poster of
a human face; the bottom row shows an image taken by ourselves, with a lamp as the
reflection. From left to right: the input images, CEILNet results and our results. Note that
our approach trained to learn both low-level and high-level image statistics successfully
removes the reflection layers of the face and lamp, while CEILNet does not.

• We propose to use a deep neural network with perceptual losses for single image
reflection separation. We impose perceptual supervision through two losses with
different levels of image information: a feature loss from a visual perception network,
and an adversarial loss to refine the output transmission layer.

• We propose a carefully designed exclusion loss that emphasizes independence of the
layers to be separated in the gradient domain.

• We build a dataset of real-world images for reflection removal with corresponding
ground-truth transmission layers. This new dataset enables quantitative evaluation
and comparisons among our approach and existing algorithms.

• Our extensive experiments on real data and synthetic data indicate that our method
outperforms state-of-the-art methods in SSIM, PSNR, and a perceptual user study
on Amazon Mechanical Turk. Our trained model on reflection separation can be
directly applied to two other image enhancement tasks, flare removal and dehazing.
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(a) Input (b) Without Lfeat (c) Without Ladv (d) Without Lexcl (e) Complete model

Figure 3.8: Visual comparisons on the three perceptual loss functions, evaluated on a real-
world image. In (b), we replaceLfeat with image spaceL1 loss and observed overly-smooth
output. (c) shows artifacts of color degradation and noticeable residuals without Ladv. In
(d), the lack ofLexcl makes the predicted transmission have undesired reflection residuals.
Our complete model in (e) is able to produce better and cleaner prediction.

3.2.2 Related Work

Multiple-image methods. As the reflection separation problem is ill-posed, most previ-
ous work tackles this problem with multiple input images. These multi-image approaches
often use motion cues to separate the transmission and reflection layers [185, 56, 106, 158,
141, 40, 163, 57]. The motion cues are either inferred from calibrated cameras, or motion
parallax that assumes the background and reflection objects have greatly different motion
fields. Some other multi-image approaches include the use of flash and no-flash image
pairs to improve the flash image with reflection removed [2]. Schechner et al. [144] use a
sequence of images with different focus settings to separate layers with depth estimation.
Kong et al. [91] exploit physical properties of polarization and use multiple polarized
images taken with angular filters to find the optimal separation. More recently, Han and
Sim [57] tackle the glass reflection removal problem with multiple glass images, assuming
that the gradient field in background image is almost constant while the gradient field in
reflection varies much more. Although multiple-image methods have shown promising
performance in removing reflection, capturing multiple images is sometimes impossible,
for example, these methods can not be applied to existing or legacy photographs.

invisible line
Single-image methods. Another line of work considers using a single image with pre-
defined priors. A widely used prior is the natural image gradient sparsity [102, 101] to
find minimum edges and corners for layer decomposition. The gradient sparsity prior
is also explored together with optimal and minimum user assistance to better guide the
ill-posed separation problem [100, 156]. A recent work by Arvanitopoulos et al. [4] uses
the gradient sparsity constraint, combined with a data fidelity term in the Laplacian space
to suppress reflection. However, all these approaches rely on low-level heuristics and are
limited in cases where a high-level understanding of the image is needed.
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Another prior for reflection separation is that the reflection layer is often out of focus
and appears smooth. This is explicitly formulated into an optimization objective by Li and
Brown [107], in which they penalize large reflection gradients. Although the assumption
of relative smoothness is valid, their formulation can break down when the reflection layer
has high contrast. Wan et al. [172] propose a variation of this smoothness prior where
depth of field is used as guidance for edge labeling and layer separation. Additionally,
Shih et al. [149] focus on a subset of the problem where reflection has ghost effects, and
use estimated convolution kernel to optimize for reflection removal.

Fan et al. [30] recently propose a deep learning network, the Cascaded Edge and
Image Learning Network (CEILNet), for reflection removal. They formulate reflection
removal as an edge simplification task and learn an intermediate edge map to guide layer
separation. CEILNet is trained purely with a low-level loss that combines the differences
in color space and gradient domain. The main difference between CEILNet and ours is
that they did not explicitly utilize perceptual information during training.

invisible line
Benchmark datasets. A benchmark dataset by Wan et al. [171] was proposed recently for
reflection removal. The authors collected 1500 real images of 40 scenes in a controlled lab
environment by imaging pairs of daily objects and postcards, as well as 100 scenes in natu-
ral outdoor environments with three different pieces of glasses. However, the dataset has
not been released publicly yet at the time of submission. In order to evaluate among dif-
ferent models quantitatively on real-world images, we collect a dataset of 110 real images
with ground truth in natural scene environments.

3.2.3 Overview
Given an image I ∈ [0, 1]m×n×3 with unwanted reflection, our approach decomposes I
into two layers: a transmission layer fT (I; θ) and a reflection layer fR(I; θ) using a single
network f(I; θ) = (fT (I; θ), fR(I; θ)), where θ is the network weights. We train the network
f on a dataset D = {(I, T,R)}where I is the input image, T is the transmission layer of I ,
and R is the reflection layer of I .

Our loss function contains three terms: a feature loss Lfeat by comparing the images
in feature space, and an adversarial loss Ladv for realistic image refinement, an exclusion
loss Lexcl that enforces separation of the transmission and reflection layers in the gradient
domain. Our overall loss function is

L(θ) = w1Lfeat(θ) + w2Ladv(θ) + w3Lexcl(θ), (3.4)

where we set w1 = 0.1, w2 = 0.01 and w3 = 1 to balance the weight of each term.
An ideal model for reflection separation should be able to understand contents in

an image. To train our network f with semantic understanding of the input image, we
form hypercolumn features [59] by extracting features from a VGG-19 [154] network pre-
trained on the ImageNet dataset [139]. The benefit of using hypercolumn features is that
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the input is augmented with useful features that abstract visual perception of a large
dataset such as ImageNet. The hypercolumn feature at a given pixel location is a stack
of activation units across selected layers of a network at that location. Here, we sampled
the layers ’conv1 2’, ’conv2 2’, ’conv3 2’, ’conv4 2’, and ’conv5 2’ in the pre-trained VGG-
19 network. The hypercolumn feature has 1472 dimensions in total. We concatenate the
input image I with its hypercolumn features as the augmented input for f .

Our network f is a fully convolutional network that has a similar network architecture
to the context aggregation network [190, 15]. Our network has a large receptive field of
513 × 513 to effectively aggregate global image information. The first layer of f is a 1 × 1
convolution to reduce feature dimension (1472+3) to 64. The following 8 layers are 3× 3
dilated convolutions. The dilation rate varies from 1 to 128. All the intermediate layers
have 64 feature channels. For the last layer we use a linear transformation to synthesize 2
images in the RGB color space.

We evaluate different methods on the publicly available synthetic and real images from
the CEILNet dataset[30] and the real-world dataset we collected. We compare our method
to the state-of-the-art reflection removal approach CEILNet [30], an optimization based
approach [107], and Pix2pix [73], a general framework for image translation.

3.2.4 Training a Reflection Removal Model

Feature loss We use a feature loss to measure the difference between our predicted trans-
mission layer and the ground-truth transmission in feature space. As the aforementioned
observation in Figure 3.7 shows, semantic reasoning about the scene would benefit the task
of reflection removal. A feature loss that combines low-level and high-level features from
a perception network would serve our purpose. Feature loss has also been successfully
applied to other tasks such as image synthesis and style transfer [15, 43, 98, 75].

Here, we compute the feature loss by feeding the predicted image layer and the ground
truth through a pre-trained VGG-19 network Φ. We compute the L1 difference between
Φ(fT (I; θ) and Φ(T ) in selected feature layers:

Lfeat(θ) =
∑

(I,T )∈D

∑
l

λl‖Φl(T )− Φl(fT (I; θ))‖1, (3.5)

where Φl indicates the layer l in the VGG-19 network. The weights {λl} are used to balance
different terms in the loss function. We select the layers ’conv1 2’, ’conv2 2’, ’conv3 2’,
’conv4 2’, and ’conv5 2’ in the VGG-19 network.

invisible line
Adversarial loss During the course of our research, we find that transmission image can
suffer from unrealistic color degradation and undesirable subtle residuals without an ad-
versarial loss. We adopted the conditional GAN [73] for our model. Our generator would
be fT (I; θ). The architecture of our discriminator, denoted as D, has 4 layers and 64 fea-
ture channels wide. The discriminator tries to discriminate between patches in the real
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transmission images and patches given by fT (I; θ) conditioned on I . The goal is to let the
network D learn a suitable loss function for further refining layer separation, and to push
the predicted transmission layers toward the domain of real reflection-free images.

Loss for the discriminator D is:∑
(I,T )∈D

logD(I, fT (I; θ))− logD(I, T ), (3.6)

where D(I, x) outputs the probability that x is a natural transmission image given the
input image I . Then our adversarial loss is:

Ladv(θ) =
∑
I∈D

− logD(I, fT (I; θ)). (3.7)

We optimize over − logD(I, fT (I; θ)) instead of log (1−D(I, fT (I; θ))) for better gradient
performance [50].

invisible line
Exclusion loss We further propose an exclusion loss in the gradient domain to better sep-
arate the reflection and transmission layers. We explore the relationship between the two
layers through analysis of the edges in the two layers. Our key observation is that the edges
of the transmission and the reflection layers are unlikely to overlap. An edge in I should
be caused by either T or R, but not both. Thus we minimize the correlation between the
predicted transmission and reflection layers in the gradient domain. We formulate the
exclusion loss as the product of normalized gradient fields of the two layers at multiple
spatial resolutions :

Lexcl(θ) =
∑
I∈D

N∑
n=1

‖Ψ(f ↓nT (I; θ), f ↓nR (I; θ))‖F , (3.8)

Ψ(T,R) = tanh(λT |∇T |)� tanh(λR|∇R|), (3.9)

where λT and λR are normalization factors, ‖·‖F is the Frobenius norm,�denotes element-
wise multiplication, and n is the image downsampling factor: the images fT and fR are
downsampled by a factor of 2n−1 with bilinear interpolation. We setN = 3, λT =

√
‖∇R‖F
‖∇T‖F

,

and λR =
√
‖∇T‖F
‖∇R‖F

in our experiments.
Note that the normalization factors λT and λR are critical in Equation 3.9, since the

transmission and reflection layers may contain unbalanced gradient magnitudes. The re-
flection layer can be either blurred with low intensity and thus consists of small gradi-
ents, or it could reflect very bright light and composes brightest spots in the image, which
produces high contrast reflection and thus large gradients. A scale discrepancy between
|∇T | and |∇R|would cause unbalanced updates to the two layer predictions. We observe
that without proper normalization factors, the network would suppress the layer with a
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Figure 3.9: Visual comparisons of training with and without gradient normalization. In
the middle two columns, the small window at the right bottom corner of each image shows
the gradient magnitude of each image. In the rightmost column, Ψ denotes the normal-
ized gradient product formulated in Equation 3.9. The first row left to right shows: input,
ground truth transmission T , ground truth reflection R, and Ψ. Ψ(T,R) is close to zeros
indicating that the gradient fields of T and R are not correlated. The middle row shows
results trained with no normalization in the gradient fields. We observe that the reflec-
tion prediction trained without normalization is heavily suppressed. Bottom row shows
results trained with gradient normalization with better reflection separation.
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smaller gradient update rate to close to zero. A visual comparison of results with and
without normalization is shown in Figure 3.9.

Lexcl is effective in separating the transmission and reflection layers at the pixel level.
If we disable Lexcl in our model, some residual reflection may remain visible in the output
transmission image, as shown in Figure 3.8 (d).

invisible line
Implementation Given the ground-truth reflection layer R, we can further constrain the
prediction fR(I; θ) with R. Reflection layer is usually not in focus and thus blurry. We
simply add a L1 loss in color space to constrain fR(I; θ):

LR(θ) =
∑

(I,R)∈D

‖fR(I; θ)−R‖1. (3.10)

We train the network f by minimizing (L+LR) on synthetic and real data jointly. Note that
we disable LR when training on a real-world image as it is difficult to estimateR precisely.
We tried computing R = I − T but R sometimes contains significant artifacts because
I = R + T may not hold when I is overexposed.

For the training data, we use 5000 synthetic images and extract 500 image patches from
90 real-world training images with random resolutions between 256p and 480p. To further
augment the data, we randomly resize image patches while keeping the original aspect
ratio. We train for 250 epochs with batch size 1 on an Nvidia Titan X GPU and weights are
updated using the Adam optimizer [87] with a fixed learning rate of 10−4.

3.2.5 Reflection Dataset Collection

Synthetic data To create synthetic images with reflection, we choose 5000 random pairs
of images from Flickr: one outdoor image and one indoor image for each pair. We use
an image (either indoor or outdoor) as the transmission layer and the other image as the
reflection layer. We assume the transmission and reflection layers locate on different focal
planes so that the two layers exhibit noticeable different blurriness. This is a valid assump-
tion in real-life photography, where the object of interest (e.g. artwork through museum
windows) is often in the transmission layer and is set to be in focus. In addition, reflection
could be intentionally blurred by shooting with a wide aperture. We use this assumption
to create a synthetic dataset, by applying a Gaussian smoothing kernel with a random
kernel size in the range of 3 to 17 pixels to the reflection image.

Our image composition approach is similar to the one proposed by Fan et al. . [30],
but our forward model has the following differences. We remove gamma correction from
the images and operate in linear space to better approximate the physical formation of
images. Instead of fixing the intensity decay onR, we apply variation to the intensity decay
since we observe that reflection in real images could have comparable or higher intensity
level than the transmission layer. We apply slight vignette centered at random position in
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Figure 3.10: Real data collection setup and captured images. We capture two images with
and without the glass with same camera settings in a static scene. Right column from top
to bottom: captured image with reflection and the ground-truth transmission image T .

the reflection layer, which simulates the scenario when camera views the reflection from
oblique angles.

invisible line
Real data At the time of developing this work, there is no publicly available benchmark
with ground-truth transmission to evaluate different reflection removal approaches on
real data. We collected a dataset of 110 real image pairs: image with reflection and its
corresponding ground-truth transmission image. The images with reflection were taken
with a Canon 600D camera on a tripod with a portable glass in front of the camera. The
ground-truth transmission layer was captured when the portable glass was removed. Each
image pair was taken with the same exposure setting. Our setup for data capture is shown
in Figure 3.10. We captured the dataset with the following considerations:

• Environments: indoor and outdoor

• Lighting conditions: skylight, sunlight, and incandescent

• Camera viewing angles: front view and oblique view

• Camera apertures (affecting the reflection blurriness): f/2.0 — f/16
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Synthetic Real
Method SSIM PSNR SSIM PSNR

Input 0.689 15.09 0.697 17.66
Pix2pix [73] 0.583 14.47 0.648 16.92
Li and Brown [107] 0.742 15.30 0.750 18.29
CEILNet [30] 0.826 20.47 0.762 19.04
Ours 0.853 22.63 0.821 21.30

Table 3.5: Quantitative comparison results among our method and 3 other previous meth-
ods. We evaluated on synthetic data provided by CEILNet [30], and our real image test
set. We also provide a trivial baseline that takes the input image as the result transmission
image.

Preference rate

Ours>CEILNet [30] 84.2%
Ours>Li and Brown [107] 87.8%

Table 3.6: The preference rate shows the percentage of comparisons in which users prefer
our results.

We split the dataset randomly into a training set and a test set. We extract 500 patches
from 90 training images for training and use 20 images for quantitative evaluation.

3.2.6 Experiments

Comparison to prior work We compare our model to CEILNet [30], the layer separation
method by Li and Brown [107], and Pix2pix [73]. We evaluated different methods on the
publicly available synthetic images from the CEILNet dataset [30] and the real images
from the test set of our real-world dataset.

Our model is only trained on our generated synthetic dataset and the training set of
our real-world dataset. For CEILNet, we evaluate its pre-trained model on the CEILNet
synthetic images. To evaluate CEILNet on our real data, we fine-tune its model with our
real training images (otherwise it performs poorly). We evaluate the approach of Li and
Brown [107] with the provided default parameters. Pix2pix is a general image translation
model, we train its model on our generated synthetic dataset and the training set of our
collected real dataset.
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Synthetic Real
Method SSIM PSNR SSIM PSNR

Ours w/o Lfeat 0.683 18.24 0.743 19.07
Ours w/o Ladv 0.818 20.80 0.793 21.12
Ours w/o Lexcl 0.796 19.58 0.802 20.22
Ours Ladv-only 0.765 18.05 0.782 19.52

Ours complete 0.853 22.63 0.821 21.30

Table 3.7: Quantitative comparisons on synthetic and real images among multiple ablated
models of our method. We remove each of the three losses and evaluate on the re-trained
models. ’Ours Ladv-only’ denotes our method trained with only an adversarial loss. Our
complete model shows better performance on both synthetic and real data. We evaluate
on synthetic data provided by CEILNet [30], and our real test images described in Section
3.2.5.

The quantitative results are shown in Table 3.5. We compute the PSNR and SSIM be-
tween the result transmission images of different methods and ground-truth transmission
layer. We demonstrate strong quantitative performance over previous works on both syn-
thetic and real data.

We also conduct a user study on Amazon Mechanical Turk, following the protocol by
Chen and Koltun [15]. During the user study, each user is presented with a input real-
world image with reflection, our predicted transmission image, and the predicted trans-
mission image by a baseline in the same row. Then the user needs to choose an output
image that is closer to the reflection-free version of the input image between the two pre-
dicted transmission images. There are 80 real-world images for comparisons from our
dataset and the CEILNet dataset. The results are reported in Table 3.6. 84.2% of the com-
parisons to CEILNet and 87.8% of the comparisons to Li and Brown have our results rated
to contain less reflection. The results are statistically significant with p < 10−3 and 20 users
participate in the user study.

invisible line
Qualitative results We present qualitative results of different methods in Figure 3.11 and
Figure 3.12, evaluated on real-world images from our dataset (with ground truth) and
from CEILNet [30] (without ground truth), respectively.

invisible line
Controlled experiments To analyze how each loss contributes to the final performance of
our network, we remove or replace each loss in the combined objective and re-train the
network. A visual comparison is shown in Figure 3.8. When we replace the feature loss
Lfeat with a L1 loss in color space, the output images tend to be overly-smooth; similar
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Transmission Reflection Transmission Reflection

Input Ground-truth T CEILNet [30] Our results

Figure 3.11: Visual results comparison between CEILNet [30] and our method, evaluated
on real images from our dataset described in Section 3.2.5. From left to right: input, ground
truth transmission layer, CEILNet [30] predictions and our predictions. Notice that our
method produces better and cleaner predictions in both the transmission and reflection
layers.

Transmission Reflection Transmission Reflection Transmission Reflection

Input CEILNet [30] Li and Brown [107] Our results

Figure 3.12: Qualitative comparisons among CEILNet [30], Li and Brown [107] and our
method, evaluated on real images in the CEILNet dataset. Note that even though we have
no supervision on the reflection layer for real data, our method predicts cleaner reflection
layer thanks to the hybrid training scheme.
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Figure 3.13: Extension applications on camera flare removal and image dehazing. For each
column, from top to bottom: input, our predicted enhanced layer, our predicted removed
layer.

observation is also discussed in [202, 73]. Without Lexcl, we notice that visible contents of
the reflection layer may appear in the transmission prediction. The adversarial refinement
loss Ladv helps recover cleaner and more natural results, as shown in (e).

The quantitative results are shown in Table 3.7. We also analyze the performance of
the model with only an adversarial loss, which is similar to a conditional GAN [73].

invisible line
Extensions We demonstrate two additional image enhancement applications, flare re-
moval and dehazing, using our trained model to remove an undesired layer. Note that
we directly apply our trained reflection removal model without training or fine-tuning on
any flare removal or dehazing dataset. These two tasks can be treated as layer separation
problems, similar to reflection separation. For flare removal, we aim to remove the optical
artifacts of lens flare, which is caused by light reflection and scattering inside the lens. For
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Transmission Reflection

Input CEILNet [30]

Ground-truth T Our results

Figure 3.14: A challenging case with sharp reflection. Our method produces better reflec-
tion separation results than CEILNet, but is not able to remove reflection completely.

dehazing, we target at removing the hazy layer. The hazy images suffer from contrast loss
caused by light scattering, reflection and attenuation of particles in the air. We show the
extension results in Figure 3.13. Our trained model can achieve image enhancement by
removing undesirable layers from the input images for flare removal and dehazing.

3.2.7 Discussion
We presented an end-to-end learning approach for single image reflection separation with
perceptual losses and a customized exclusion loss. To decompose an image into the trans-
mission and reflection layers, we found it effective to train a network with combined low-
level and high-level image features. In order to evaluate different methods on real data, we
collected a new dataset of real-world images for reflection removal that contains ground-
truth transmission layers. We additionally extend our approach to two other photo en-
hancement applications to show generality of our approach for layer separation problems.

Although our reflection separation model outperforms state-of-the-art approaches on
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both synthetic and real images, we believe the performance can be further improved. Fig-
ure 3.14 illustrates one challenging scenario where the reflection layer is almost as sharp
as the transmission layer in a real-world image. Integrating additional sensor data such as
depth or a second view such as a stereo pair, or collecting real-world examples with sharp
reflections may address this challenge.
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Chapter 4

Learning Better Shadow and Lighting for
Casual Portraits

This chapter talks about using machine learning to enhance casual portrait photographs
in the aspects of lighting and shadows, specifically foreign shadow removal, facial shadow
softening, and lighting ratio balancing. Motivated by the physical tools used by photog-
raphers in studio environments, we demonstrate how Light Stage scans can be used to
produce training data for facial shadow softening, and observe the value of in-the-wild im-
ages with a shadow synthesis model that accounts for the irregularity of foreign shadows
in the real world. We present a mechanism for allowing convolutional neural networks
to exploit the inherent bilateral symmetry of human subjects, and demonstrate that this
improves the performance of facial shadow softening. Given just a single image of a hu-
man subject taken in an unknown and unconstrained environment, our complete system
is able to remove unwanted foreign shadows, soften harsh facial shadows, and balance the
image’s lighting ratio to produce a flattering and realistic portrait image.

4.1 Introduction
The aesthetic qualities of a photograph are largely influenced by the interplay between
light, shadow, and the subject. By controlling these scene properties, a photographer can
alter the mood of an image, direct the viewer’s attention, or tell a specific story. Vary-
ing the position, size, or intensity of light sources in an environment can affect the per-
ceived texture, albedo, and even three-dimensional shape of the subject. This is especially
true in portrait photography, as the human visual system is particularly sensitive to subtle
changes in the appearance of human faces. For example, soft lighting (e.g. light from a
large area light source like an overcast sky) reduces skin texture, which may cause the
subject to appear younger. Conversely, harsh lighting (e.g. light from a small or distant
source like the midday sun) may exaggerate wrinkles and facial hair, making a subject
appear older. Similarly, any shadows falling on the subject’s face can accentuate its three-
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Figure 4.1: The results of our portrait enhancement method on real-world portrait pho-
tographs. Casual portrait photographs often suffer from undesirable shadows, particu-
larly foreign shadows cast by external objects, and dark facial shadows cast by the face
upon itself under harsh illumination. We propose an automated technique for enhancing
these poorly-lit portrait photographs by removing unwanted foreign shadows, reducing
harsh facial shadows, and adding synthetic fill lights.

dimensional structure or obfuscate it with distracting intensity edges that are uncorrelated
with facial geometry. Other variables such as the lighting angle (the angle at which light
strikes the subject) or the lighting ratio (the ratio of illumination intensity between the
brightest and darkest portion of a subject’s face) can affect the dramatic quality of the
resulting photograph, or may even affect some perceived quality of the subject’s personal-
ity: harsh lighting may look “serious”, or lighting from below may make the subject look
“sinister”.

Unfortunately, though illumination is clearly critical to the appearance of a photograph,
finding or creating a good lighting environment outside of a studio is challenging. Profes-
sional photographers spend significant amounts of time and effort directly modifying the
illumination of existing environments through physical means, such as elaborate lighting
kits consisting of scrims (cloth diffusers), reflectors, flashes, and bounce cards [51].

In this work, we attempt to provide some of the control over lighting that professional
photographers have in studio environments to casual photographers in unconstrained en-
vironments. We present a framework that allows casual photographers to enhance the



CHAPTER 4. LEARNING BETTER SHADOW AND LIGHTING FOR CASUAL
PORTRAITS 52

quality of light and shadow in portraits from a single image after it has been captured. We
target three specific lighting problems common in casual photography and uncontrolled
environments:

4.1.1 Foreign Shadows
We will refer to any shadow cast on the subject’s face by an external occluder (e.g. a tree,
a hat brim, an adjacent subject in a group shot, the camera itself, etc.) as a foreign shadow.
Notably, foreign shadows can result in an arbitrary two-dimensional shape in the final
photograph, depending on the shape of the occluder and position of the primary, or key,
light source. Accordingly, they frequently introduce image intensity edges that are uncor-
related with facial geometry and therefore are almost always distracting. Because most
professional photographers would remove the occluder or move the subject in these sce-
narios, we will address this type of shadow by attempting to remove it entirely.

4.1.2 Facial Shadows
We will refer to any shadow cast on the face by the face itself (e.g. the shadow attached to
the nose when lit from the side) as a facial shadow. Because facial shadows are generated
by the geometry of the subject, these shadows (unlike foreign shadows) can only project
to a small space of two-dimensional shapes in the final image. Though they may be aes-
thetically displeasing, the image intensity edges introduced by facial shadows are more
likely than foreign shadows to be a meaningful cue for the shape of the subject. Because
facial shadows are almost always present in natural lighting environments (i.e., the envi-
ronment is not perfectly uniform), we do not attempt to remove them entirely. We instead
emulate a photographer’s scrim in this scenario, which effectively increases the size of the
key light and softens the edges of the shadows it casts.

4.1.3 Lighting Ratios
In scenes with very strong key lights (e.g. outdoors on a clear day), the ratio between the
illumination of the brightest and darkest parts of the face may exceed the dynamic range
of the camera, resulting in a portrait with dark shadows or blown out highlights. While
this can be an intentional artistic choice, typical portrait compositions target less extreme
lighting ratios. Professional photographers balance lighting ratios by placing a secondary,
or fill, light in the scene opposite the key. We similarly place a virtual fill light to balance
the lighting ratio and add definition to the shape of the shadowed portion of the subject’s
face.

Our framework consists of two machine learning models: one trained for foreign shadow
removal, and another trained for handling facial shadow softening and lighting ratio ad-
justment. This grouping of tasks is motivated by two related observations.
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Our first observation, as mentioned above, is tied to the differing relationships between
shadow appearance and facial geometry. The appearance of facial shadows in the input
image provides a significant cue for shape estimation, and should therefore be useful input
when synthesizing an image with softer facial shadowing and a smaller lighting ratio.
But foreign shadows are much less informative, and so we first identify and remove all
foreign shadows before attempting to perform facial shadow manipulation. This approach
provides our facial shadow model with an image in which all shadow-like image content
is due to facial shadows, and also happens to be consistent with contemporary theories on
how the human visual system perceives shadows [135].

Our second observation relates to training dataset requirements.
Thanks to the unconstrained nature of foreign shadow appearance, it is possible to

train our first network with a synthetic dataset: 5000 “in-the-wild” images, augmented
with randomly generated foreign shadows for a total of 500K training examples. This
strategy is not viable for our second network, as facial shadows must be consistent with
the geometry of the subject and so cannot be generated in this way. Constructing an “in-
the-wild” dataset consisting entirely of images with controlled facial shadowing is also
intractable. We therefore synthesize the training data for this task using one-light-at-a-
time (OLAT) scans taken by a Light Stage, an acquisition setup and method proposed to
capture reflectance field [19] of human faces. We use the Light Stage scans to synthesize
paired harsh/soft images for use as training data. Section 4.3 will discuss our dataset
generation procedure in more detail.

Though trained separately, the neural networks used for our two tasks share similar
architectures: both are deep convolutional networks for which the input is a 256 × 256
resolution RGB image of a subject’s face. The output of each network is a per-pixel and per-
channel affine transformation consisting of a scalingA and offsetB, at the same resolution
as the input image Iin such that the final output Iout can be computed as:

Iout = Iin ◦ A+B, (4.1)

where ◦ denotes per-element multiplication. This approach can be thought of as an exten-
sion of quotient images [148] and of residual skip connections [62], wherein our network
is encouraged to produce output images that resemble scaled and shifted versions of the
input image. The facial shadow network includes additional inputs that are concatenated
onto the input RGB image: 1) two numbers encoding the desired shadow softening and
fill light brightness, so that variable amounts of softening and fill lighting can be specified
and 2) an additional rendition of the input image with the face mirrored about its axis of
symmetry (i.e., pixels corresponding to the left eye of the input are warped to the position
of the right eye, and vice versa). Using a mirrored face image in this way broadens the
spatial support of the first layer of our network to include the image region on the oppo-
site side of the subject’s face. This allows the network to exploit the bilateral symmetry of
human faces and to easily “borrow” pixels with similar semantic meaning and texture but
different lighting from the opposite side of the subject’s face (see Section 4.4 for details).
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In addition to the framework itself, this work presents the following technical contri-
butions1:

• Techniques for generating synthetic, real-world, and Light Stage-based datasets for
training and evaluating machine learning models targeting foreign shadows, facial
shadows, and virtual fill lights.

• Symmetric face image generation for explicitly encoding symmetry cue into training
our facial shadow model.

• Ablation studies that demonstrate our data and models achieve portrait enhance-
ment results that outperform all baseline methods in numerical metrics and percep-
tual quality.

The remainder of the paper is organized as follows. Section 4.2 describes prior work in
lighting manipulation, shadow removal, and portrait retouching. Section 4.3 introduces
our synthetic dataset generation procedure and our real ground-truth data acquisition.
Section 4.5 talks about our network architecture and training procedure. Section 4.6 shows
a series of ablation studies and presents qualitative and quantitative results and compar-
isons. Section 4.7 discusses limitations of our approach.

4.2 Related Work
The detection and removal of shadows in images is a central problem within computer
vision, as is the closely related problem of separating image content into reflectance and
shading [65]. Many graphics-oriented shadow removal solutions rely on manually-labeled
“shadowed” or “lit” regions [184, 151, 54, 3]. Once manually identified, shadows can be
removed by solving a global optimization technique, such as graph cuts. Because relying
on user input limits the applicability of these techniques, fully-automatic shadow detec-
tion and manipulation algorithms have also attracted substantial attention. Illumination
discontinuity across shadow edges [142] can be used to detect and remove shadows [5].
Formulating shadow enhancement as local tone adjustment and using edge-preserving
histogram manipulation [82] enables contrast enhancement on semantically segmented
photographs. Relative differences in the material and illumination of paired image seg-
ments [55, 112] enables the training of region-based classifiers and the use of graph cuts
for labeling and shadow removal. Shadow removal has also been formulated as an en-
tropy minimization problem [35, 34], where invariant chromaticity and intensity images
are used to produce a shadow mask that is then re-integrated to form a shadow-free image.
These methods assume that shadow regions contain approximately constant reflectance
and that image gradients are entirely due to changes in illumination, and are thereby fail
when presented with complex spatially-varying textures or soft shadowing. In addition,

1Project website: https://people.eecs.berkeley.edu/~cecilia77/project-pages/portrait.html
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by decomposing the shadow removal problem into two separate stages of detection and
manipulation, these methods cannot recover from errors during the shadow detection
step [112].

General techniques for inverse rendering [133, 147] and intrinsic image decomposi-
tion [53, 6] should, in theory, be useful for shadow removal, as they provide shading and
reflectance decompositions of the image. However, in practice these techniques perform
poorly when used for shadow removal (as opposed to shading removal) and usually con-
sider cast shadows to be out of scope. For example, the canonical Retinex algorithm [65]
assumes that shading variation is smooth and monochromatic and therefore fails catas-
trophically on simple cases such as shadows cast by the midday sun, which are usually
non-smooth and chromatic (sunlit yellow outside the shadow, and sky blue within).

More recently, learning-based approaches have demonstrated a significant improve-
ment on general-purpose shadow detection and manipulation [84, 67, 68, 22, 206, 203, 17].
However, like all learned techniques, such approaches are limited by the nature of their
training data. While real-world datasets for general shadow removal are available [132,
173], they do not include human subjects and therefore are unlikely to be useful for our
task, which requires the network to reason about specific visual characteristics of faces,
such as the skin’s subsurface scattering effect [24]. Instead, in this paper, we propose to
train a model using synthetic shadows generated on images in the wild. We only use
images of faces to encourage the model to learn and use priors on human faces. Ear-
lier work has shown that training models on faces improves performance on face-specific
subproblems of common tasks, such as inpainting [189, 168], super-resolution [16] and
synthesis [21].

Another problem related to ours is “portrait relighting”—the task of relighting a single
image of a human subject according to some desired environment map [160, 204]. These
techniques could theoretically be used for our task, as manipulating the facial shadows of
a subject is equivalent to re-rendering that subject under a modified environmental illumi-
nation map in which the key light has been dilated. However, as we will demonstrate (and
was noted in [160]) these techniques struggle when presented with images that contain
foreign shadows or high-frequency image structure due to harsh shadows in the input im-
age, which our approach specifically addresses. Example-based portrait lighting transfer
techniques [150, 152] also represent potential alternative solutions to this task, but they
require a high-quality reference image that exhibits the desired lighting, and that also con-
tains a subject with a similar identity and pose as the input image—an approach that does
not scale to casual photos in the wild.

4.3 Data Synthesis
There is no tractable data acquisition method to collect a large-scale dataset of human faces
for our task with diversity in both the subject and the shadows, as the capture process
would be onerous for both the subjects (who must remain perfectly still for impractically
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Figure 4.2: The pipeline of our foreign shadow synthesis model (Section 4.3.1). The col-
ors of the “lit” image I` are randomly jittered to generate a “shadow” image Is. The input
maskMin shown here is generated from an object silhouette, though it may also be gener-
ated with Perlin noise. Min is subjected to a subsurface scattering (SS) approximation of
human skin to generateMss, then a spatially-varying blur and per-pixel intensity variation
to generate M . I` and Is are then blended according to the shadow mask M to generate a
training sample I .

long periods of time) and the photographers (who must be specially trained for the task
and find thousands of willing participants in thousands of unique environments). Instead,
we synthesize custom datasets for our subproblems by augmenting existing datasets—
Recall that our two models require fundamentally different training data. Our foreign
shadow datasets (Section 4.3.1) are based on images of faces in the wild with rendered
shadows, while our facial shadow and fill light datasets (Section 4.3.2) are based on a
Light Stage dataset with carefully chosen simulated environments.

4.3.1 Foreign Shadows
To synthesize images that appear to contain foreign shadows, we model images as a linear
blend between a “lit” image I` and a “shadowed” image Is, according to some shadow
mask M :

I = I` ◦ (1−M) + Is ◦M (4.2)

The lit image I` is assumed to contain the subject lit by all light sources in the scene (e.g. the
sun and the sky), and the shadowed image Is is assumed to be the subject lit by everything
other than the key (e.g. just the sky). The shadow mask M indicates which pixels are
shadowed: M = 1 if fully shadowed, and M = 0 if fully lit. To generate a training sample,
we need I`, Is, and M . I` is selected from an initial dataset described below, Is is a color
transform of I`, andM comes from a silhouette dataset or a pseudorandom noise function.
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Because deep learning models are highly sensitive to the realism and biases of the
data used during training, we take great care to synthesize as accurate a shadow mask
and shadowed image as possible with a series of augmentations on Is and M . Figure 4.2
presents an overview of the process and below we enumerate different aspects of our syn-
thesis model and their motivation. In Section 4.6.2, we will demonstrate their efficacy
through an ablation study.

invisible line
Input Images Our dataset is based on a set of 5,000 faces in the wild that we manually iden-
tified as not containing any foreign shadows. These images are real, in-the-wild JPEG data,
and so they are varied in terms of subject, ethnicity, pose, and environment. Common ac-
cessories such as hats and scarves are included, but only if they do not cast shadows. We
make one notable exception to this policy: glasses. Shadows from glasses are unavoidable
and behave more like facial shadows than foreign. Accordingly, shadows from glasses are
preserved in our ground truth.

invisible line
Light Color Variation The shadowed image region Is is illuminated by a lighting environ-
ment different from that of the non-shadow region. For example, outdoor shadows are
often tinted blue because when the sun is blocked, the blue sky becomes the dominant
light source. To account for such illumination differences, we apply a random color jitter,
formulated as a 3× 3 color correction matrix, to the lit image I`.

invisible line
Shape Variation The shapes of natural shadows are as varied as the shapes of natural
objects in the world, but those natural shapes also exhibit significant statistical regulari-
ties [70]. To capture both the variety and the regularity of real-world shadows, our dis-
tribution of input shadow masks Min is half “regular” real-world masks drawn from a
dataset of 300 silhouette images of natural objects, randomly scaled and tiled; and half
“irregular” masks generated using a Perlin noise function at 4 octaves with a persistence
drawn uniformly at random within [0, 0.85], with the initial amplitude set to 1.0.

invisible line
Subsurface Scattering Light scatters beneath the surface of human skin before exiting,
and the degree of that scattering is wavelength-dependent [58, 74, 93]: blood vessels cause
red light to scatter further that other wavelengths, causing a visible color fringe at shad-
ows. We approximate the subsurface scattering appearance by uniformly blurring Min

with a different kernel per color channel, borrowing from [33]. In brief, the kernel for
each channel is a sum of Gaussians G(σc,k) with weights wc,k, such that each channel Mc

of the shadow mask with subsurface scattering Mss is rendered as:

Mc =
∑
k

Min ∗G(σc,k)wc,k. (4.3)

invisible line
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Figure 4.3: Our facial shadow synthesis model. Our input image is a OLAT render corre-
sponding to an environment with a single key light turned on as shown in (a). To soften
the shadows by some variable amount, we distribute the key’s energy to a variable num-
ber of its neighbors, as shown in (b) and (c). We also add a number of fill lights on the
opposite side of the Light Stage, to brighten the darker side of the face as shown in (d),
with the fill light’s difference image visualized in (e). For clarity, only half of the Light
Stage’s lights are rendered.

Spatial Variation The softness of the shadow being cast on a subject depends on the rel-
ative distances between the subject, the key light, and the object casting the shadow. Be-
cause this relationship varies over the image, our shadow masks incorporate a spatially-
varying blur over Mss. While many prior works assume that the shadow region has a
constant intensity [193], we note that a partially translucent occluder or an environment
violating the assumption that lights are infinitely far away will cause shadows to have
different local intensities. Accordingly, we similarly apply a spatially-varying per-pixel
intensity variation to Mss as well, modeled as Perlin noise at 2 octaves with a persistence
drawn uniformly at random from [0.05, 0.25] and an initial amplitude set to 1.0. The final
mask with spatial variation incorporated is what we refer to as M above.

4.3.2 Facial Shadows
We are not able to use “in-the-wild” images for synthesizing facial shadows because the
highly accurate facial geometry it would require is generally not captured in such datasets.
Instead, we use Light Stage data that can relight a scanned subject with perfect fidelity
under any environment and select the simulated environment with care. Note that we
cannot use light stage data to produce more accurate foreign shadows than we could using
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raw, in-the-wild JPEG images, which is why we adopt different data synthesis for these
two tasks.

When considering foreign shadows, we adopt shadow removal with the rationale that
foreign shadows are likely undesirable from a photographic perspective and removing
them does not affect the apparent authenticity of the photograph (as the occluder is rarely
in frame). Facial shadows, in contrast, can only be softened if we wish to affect the mood of
the photograph while remaining faithful to the scene’s true lighting direction.

We construct our dataset by emulating the scrims and bounce cards employed by pro-
fessional photographers. Specifically, we generate harsh/soft facial shadow pairs using
OLAT scans from a Light Stage dataset. This is ideal for two reasons: 1) each individual
light in the stage is designed to match the angular extent of the sun, so it is capable of
generating harsh shadows, and 2) with such a dataset, we can render an image I simulat-
ing an arbitrary lighting environment with a simple linear combination of OLAT images
Ii with weights wi, i.e., I =

∑
i Iiwi.

For each training instance, we select one of the 304 lights in the stage and dub it our key
light with index ikey, and use its location to define the key light direction ~̀key. Our harsh
input image is defined to be one corresponding to OLAT weights wi = {Pkey if i = ikey,
ε otherwise}, where Pkey is a randomly sampled intensity of the key light and ε is a small
non-zero value that adds ambient light to prevent shadowed pixels from becoming fully
black. The corresponding soft image is then rendered by splatting the key light energy to
the set of its m nearest neighboring lights Ω(~̀key), where m is drawn uniformly from a set
of discrete numbers [5, 10, 20, 30, 40]. This can be thought of as convolving the key light
source with a disc, similar in spirit to a diffuser or softbox. We then compute the location
of the fill light (Figure 4.3(d)):

~̀
fill = 2(~̀key · ~n)~n− ~̀key, (4.4)

where ~n is the unit vector along the camera z-axis, pointing out of the Light Stage. For
all data generation, we use a fixed fill light neighborhood size of 20, and a random fill
intensity Pfill in [0, Pkey/10]. Thus, the soft output image is defined as one corresponding
to OLAT weights

wi =


Pkey/m, if i ∈ Ω(~̀key)

Pfill, if i ∈ Ω(~̀fill)
ε, otherwise

(4.5)

To train our facial shadow model, we use OLAT images of 85 subjects, each of which
was imaged under different expressions and poses, giving us in total 1795 OLAT scans to
render our facial harsh shadow dataset. We remove degenerate lights that cause strong
flares or at extreme angles that render too dark images, and end up using the remaining
284 lights for each view.
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(a) Input Image (b) Detected Landmarks

(c) Mirrored Input (d) |Input - Mirror|

Figure 4.4: The symmetry of human faces is a useful cue for reasoning about lighting: a
face’s reflectance and geometry is likely symmetric, but the shadow cast upon that face
is likely not symmetric. To leverage this, a landmark detection system is applied to the
input image (a) and the recovered landmark (b) are used to produce a per-pixel mirrored
version of the input image (c). This mirrored image is appended to the input image in our
networks, which improves performance by allowing the network to directly reason about
asymmetric image content (d) which is likely due to facial and foreign shadows.

4.4 Facial Symmetry
Human faces tend to be bilaterally symmetric: the left side of most faces closely resembles
the right side in terms of geometry and reflectance, except for the occasional blemish or mi-
nor asymmetry. However, images of faces are rarely symmetric because of facial shadows.
Therefore, if a neural network can easily reason about the symmetry of image content on
the subject’s face, it will be able to do a better job of reducing shadows cast upon that face.
For this reason, we augment the image that is input to our neural networks with a “mir-
rored” version of that face, thereby giving the early layers of those networks the ability to
straightforwardly reason about which image content is present on the opposite side of the
face. Because the subject’s face is rarely perfectly vertical and oriented perpendicularly to
the camera’s viewing direction, it is not sufficient to simply mirror the input image along
the x-axis. We therefore estimate the geometry of the face and mirror the image using that
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estimated geometry, by warping image content near each vertex of a mesh to the location
of its corresponding mirrored vertex. See Figure 4.4 for a visualization.

Given an image I , we use the landmark detection system of [81] to produce a model of
facial geometry consisting of 468 2D vertices (Figure 4.4(b)) and a mesh topology (which
is fixed for all instances). For each vertex j we precompute the index of its bilaterally
symmetric vertex j̄, which corresponds to a vertex (uj̄, vj̄) at the same position as (uj, vj)
but on the opposite side of the face. With this correspondence we could simply produce
a “mirrored” version of I by applying a meshwarp to I where the position of each vertex
j is moved to the position of its mirror vertex j̄. However, a straightforward meshwarp is
prone to triangular-shaped artifacts and irregular behavior on foreshortened triangles or
inaccurately-estimated keypoint locations. For this reason we instead use a “soft” warping
approach based on an adaptive radial basis function (RBF) kernel: For each pixel in I
we compute its RBF weight with respect to the 2D locations of all vertices, express that
pixel location as a convex combination of all vertex locations, and then interpolate the
“mirrored” pixel location by computing the same convex combination of all mirrored vertex
locations. Put formally, we first compute the Euclidean distance from all pixel locations to
all vertex locations:

Di,j = (xi − uj)2 + (yi − vj)2 (4.6)

With this we compute a weight matrix consistent of normalized Gaussian distances:

Wi,j =
exp (−Di,j/σj)∑
j′ exp (−Di,j′/σj′)

(4.7)

Unlike a conventional normalized RBF kernel, Wi,j is computed using a different σ for
each of the j vertices. Each vertex’s σ is selected such that each landmark’s influence in
the kernel is inversely proportional to how many nearby neighbors it has for this particular
image:

σj = select
j′

(
(uj − uj′)2 + (vj − vj′)2 , Kσ

)
(4.8)

Where select(·, K) returns the K’th smallest element of an input vector. This results in
a warp where sparse keypoints have significant influence over their local neighborhood,
while the influence of densely packed keypoints is diluted. This weight matrix is then
used to compute the weighted average of mirrored vertex locations, and this 2D location
is used to bilinearly interpolate into the input image to produce it’s mirrored equivalent:

Ī = I

(∑
j

Wi,juj̄ ,
∑
j

Wi,jvj̄

)
(4.9)

The only hyperparameter in this warping model is an integer value Kσ, which we set to 4
in all experiments. This proposed warping model is robust to asymmetric expressions and
poses assuming the landmarks are accurate, but is sensitive to asymmetric skin features,
e.g., birthmarks.
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The input to our facial shadow network is the concatenation of the input image I with
its mirrored version Ī along the channel dimension. This means that the receptive field
of our CNN includes not just the local image neighborhood, but also its mirrored coun-
terpart. Note that we do not include the mirrored image as input to our foreign shadow
model, as we found it did not improve results. We suspect that this is due to the un-
constrained nature of foreign shadow appearance, which weakens the assumption that
corresponding face regions will have different lighting.

4.5 Neural Network Architecture and Training
Here we describe the neural network architectures that we use for removing foreign shad-
ows and for softening facial shadows. As the two tasks use different datasets and there is
an additional conditional component in the facial shadow softening model, we train these
two tasks separately.

For both models, we employ a GridNet [38] architecture with modifications proposed
in [122]. GridNet is a grid-like architecture of rows and columns, where each row is a
stream that processes features with resolution kept unchanged, and columns connect the
streams by downsampling or upsampling the features. By allowing computation to hap-
pen at different layers and different spatial scales instead of conflating layers and spatial
scales (as U-Nets do) GridNet produces more accurate predictions as has been success-
fully applied to a number of image synthesis tasks [122, 123]. We use a GridNet with eight
columns wherein the first three columns perform downsampling and the remaining five
columns perform upsampling, and use five rows for foreign model and six rows for facial
model, as we found this to work best after an architecture search.

For all training samples, we run a face detector to obtain a face bounding box, then
resize and crop the face into 256× 256 resolution. For the foreign shadow removal model,
the input to the network is a 3-channel RGB image and the output of the model is a 3-
channel scaling A and a 3-channel offset B, which are then applied to the input to pro-
duce a 3-channel output image (Equation 4.1). For the facial shadow softening model, we
additionally concatenate the input to the network with its mirrored counterpart (as per
Section 4.4). As we would like our model to allow for a variable degree of shadow soft-
ening and of fill lighting intensity, we introduce two “knobs”—one for light size m and
the other for fill light intensity Pfill, which are assumed to be provided as input. To inject
this information into our network, a 2-channel image containing these two values at every
pixel is concatenated into both the input and the last layers of the encoders of the network.

We supervise our two models using a weighted combination of pixel-space L1 loss
(Lpix) and a perceptual feature space loss (Lfeat) which has been used successfully to train
models such as image synthesis and image decomposition [15, 197, 199]. Intuitively, the
perceptual loss accounts for high-level semantics in the reconstructed image but may be
invariant to some non-semantic image content. By additionally minimizing a per-pixel
L1 loss our model is better able to recover low-frequency image content. The perceptual
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loss is computed by processing the reconstructed and ground truth images through a pre-
trained VGG-19 network Φ(·) and computing the L1 difference between extracted features
in selected layers as specified in [197]. The final loss function is formulated as:

Lfeat(θ) =
∑
d

λd ‖Φd (I∗)− Φd (f (Iin ; θ))‖1

Lpix(θ) = ‖I∗ − f(Iin ; θ)‖1

L(θ) = 0.01× Lfeat(θ) + Lpix(θ), (4.10)

where I∗ is the ground-truth shadow-removed or shadow-softened RGB image, f(·; θ)
denotes our neural network, and λd denotes the selected weight for the d-th VGG layer.
Iin = I for foreign removal model and Iin = concat(I, Ī, Pfill,m) for facial shadow soften-
ing model. This same loss is used to train both models separately. We minimize L with
respect to both of our model weights θ using Adam [88] (β1 = 0.9, β2 = 0.999, ε = 10−8)
for 500K iterations, with a learning rate of 10−4 that is decayed by a factor of 0.9 every 50K
iterations.

4.6 Experiments
We use synthetic and real in-the-wild test sets to evaluate our foreign shadow removal
model (Section 4.6.3) and our facial shadow softening model (Section 4.6.4). We also
present an ablation study of the components of our foreign shadow synthesis model (Sec-
tion 4.6.2) as well as of our facial symmetry modeling.

4.6.1 Evaluation Data
We evaluate our foreign shadow removal model with two datasets:
(1) foreign-syn We use a held-out set of the same synthetic data generation approach de-
scribed in (Section 4.3.1), where the images (i.e., subjects) and shadow masks to generate
test-set images are not present in the training set.
(2) foreign-real We collect an additional dataset of in-the-wild images for which we can
obtain ground-truth images that do not contain foreign shadows. This dataset enables the
quantitative and qualitative comparison of our proposed model against prior work. This
is accomplished by capturing high-framerate (60 fps) videos of stationary human subjects
while moving a shadow-casting object in front of the subject. We collect this evaluation
dataset outdoors, and use the sun as the dominant light source. For each captured video,
we manually identify a set of “lit” images and a set of “shadowed” images. For each
“shadowed” image, we automatically use homography to align it to each “lit” and find
the one that gives the minimum mean pixel error as its counterpart. Because the foreign
object is moving during capture, this collection method provides a diversity in the shape
and the position of foreign shadows. In total, we capture 20 videos of 8 subjects during
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(a) Frame 33 (Shadow 1) (b) Frame 36 (Shadow 2) (c) Frame 54 (Shadow-free)

Figure 4.5: An example of the shadow removal evaluation dataset we produce using video
captured by a smartphone camera stabilized on a tripod. By filming a stationary subject
under the shadow cast by a moving foreign occluder (a-c), we are able to obtain multiple
input/ground-truth image pairs of the subject (a, c), (b, c). This provides us with an
efficient way to collect a set of diverse foreign shadows for evaluation.

different times of day, which gives us 100 image pairs of foreign shadow with ground
truth.

We evaluate our facial shadow model with another dataset:
(3) facial-syn We use the same OLAT Light Stage data that is used to generate our facial
model training data to generate a test set, by using a held-out set of 5 subjects that are not
used during training. We record each harsh input shadow image and the soft ground-truth
output image along with their corresponding light size m and fill light intensity Pfill for
use. Note that though this dataset is produced through algorithmic means, the ground-
truth outputs are a weighted combination of real observed Light Stage images, and are
therefore an accurate reflection of the true appearance of the subject up to the sampling
limitations of the Light Stage hardware.

We qualitatively evaluate both our foreign shadow removal model and our facial shadow
softening model using an additional dataset:
(4) wild We collect 100 “in the wild” portrait images of varied human subjects that con-
tain a mix of different foreign and facial shadows. Images are taken from the Helen
dataset [97], the HDRnet dataset [45], and our own captures. These images are processed
by our foreign shadow removal model, our facial shadow softening model, or both, to gen-
erate enhanced outputs that give a sense of the qualitative properties of both components
of our model. See Figures 4.1, 4.8, 4.10 for results.

4.6.2 Ablation Study of Foreign Shadow Synthesis
Our foreign shadow synthesis technique (Section 4.3.1) simulates the complicated effect
of foreign shadows on the appearance of human subjects. We evaluate this technique by
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(a) Input Image (b) Our Model, No-SV (c) Our Model, No-SS

(d) Our Model, No-Color (e) Our Model (f) Ground Truth

Figure 4.6: A visualization of an ablation study of our foreign shadow removal algorithm
as different aspects of our foreign shadow synthesis model (Section 4.3.1) are removed.
The “No-SV”, “No-SS”, and “No-Color” ablations show our model trained on synthesized
data without modeling spatial variation, approximate subsurface scattering, or color per-
turbation, respectively. The top row shows the images generated by each model, and the
bottom row shows the difference between each output and the ground truth image (f).
Our complete model (e) clearly outperforms the others. Notice the red-colored residual
along the shadow edge in the model trained without approximating subsurface scattering
(c), and the color inconsistency in the removed region in the model trained without color
perturbation (d). A quantitative evaluation on the entire set foreign-real is shown in
Table 4.1.
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Rendered Test Set (foreign-syn) Real Test Set (foreign-real)

Synthesis Model PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS↓

Ours, “No-Color” 26.248 0.818 0.079 21.387 0.766 0.085
Ours, “No-SV” 27.546 0.830 0.058 22.095 0.782 0.081
Ours, “No-SS” 26.996 0.809 0.074 21.663 0.770 0.086
Ours 29.814 0.054 23.816 0.782 0.074

Table 4.1: A quantitative ablation study of our foreign shadow removal model in terms of
PSNR, SSIM, and LPIPS. Ablating any component of our removal model hurts the perfor-
mance of the resulting model.

Rendered Test Set (foreign-syn) Real Test Set (foreign-real)

Removal Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input Image 20.657 0.807 0.206 19.671 0.766 0.115
Guo et al. [55] 19.170 0.699 0.359 15.939 0.593 0.269
Hu et al. [68] 20.895 0.742 0.238 18.956 0.699 0.148
Cun et al. [17] 22.405 0.845 0.173 19.386 0.722 0.133
Ours 29.814 0.926 0.054 23.816 0.782 0.074

Table 4.2: A quantitative evaluation of our foreign shadow removal model. We compare
against baseline methods of [55], [68] (SRD) and [17] on both synthetic and real test
sets. The input image itself is also included as point of reference. In terms of both image-
quality (PSNR) and perceptual-quality (SSIM and LPIPS), our model produces better
performance on all three metrics with a large margin. Visual comparisons can be seen
in Figure 4.7.

removing each of the three components and measuring model performance. Our three
ablations are: 1) “No-SV”: synthesis without spatially varying blur or the intensity varia-
tion of the shadow, 2) “No-SS”: synthesis where the approximated subsurface scattering
of skin has been removed, and 3) “No-Color”: synthesis where the color perturbation to
generate the shadow image is not randomly changed. Quantitative results for this abla-
tion study on our foreign-syn and foreign-real datasets can be found in Table 4.1, and
qualitative results for a test image from foreign-real are shown in Figure 4.6.

4.6.3 Foreign Shadow Removal Quality
Because no prior work appears to address the task of foreign shadow removal for hu-
man faces, we compare our model against general-purpose shadow removal methods: the
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Shadow Reduction Model PSNR↑ SSIM↑ LPIPS↓

PR-net [160] 21.639 0.709 0.152
Ours w/o Symmetry 24.232 0.826 0.065
Ours 26.740 0.914 0.054

Table 4.3: A comparison of our facial shadow reduction model against the PR-net of [160]
and an ablation of our model with symmetry. in terms of PSNR, SSIM, and LPIPS on the
“facial-syn” test dataset. We see that PR-net performs poorly on images that contain
harsh facial shadows, and removing the concatenated “mirrored” input during training
(i.e., setting Iin = I) lowers accuracy by all three metrics.

state-of-the-art learning-based method of [17]2 that uses a generative model to synthesize
and then remove shadows, a customized network with attention mechanism designed by
[68]3 for shadow detection and removal, and the non-learning-based method of [55] that
relies on image segmentation and graph cuts. The original implementation from [55] is
not available publicly, so we use a reimplementation4 that is able to reproduce the results
of the original paper. We use the default parameters settings for this code, as we find that
tuning its parameters did not improve performance for our task. [68] provide two models
trained on two general-purpose shadow removal benchmark datasets (SRD and ISTD), we
use the SRD model as it performs better than the ISTD model on our evaluation dataset.

We evaluate these baseline methods on our foreign-syn and foreign-real datasets,
as these both contain ground truth shadow-free images. We compute PSNR, SSIM [180]
and a learned perceptual metric LPIPS [194] between the ground truth and the output.
Results are shown in Table 4.2 and Figure 4.7. Our model outperforms these baselines by
a large margin.

4.6.4 Facial Shadow Softening Quality
Transforming harsh facial shadows to soft in image space is roughly equivalent to re-
lighting a face with a blurred version of the dominant light source in the original light-
ing environment. We compare our facial softening model against the portrait relighting
method from [160], by applying a Gaussian blur to the estimated environment map from
the model and then pass to the decoder for relighting. The amount of blur to apply, how-
ever, cannot map exactly to our light size parameter. We experiment with a few blur kernel
values and choose the one that produces the minimum mean pixel error with the ground
truth. We do this for each image, and show qualitative comparisons in Figure 4.10. In
Table 4.3, we compare our model against the [160] baseline and against an ablation of our

2https://github.com/vinthony/ghost-free-shadow-removal
3https://github.com/xw-hu/DSC
4https://github.com/kittenish/Image-Shadow-Detection-and-Removal
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(a) Input (b) Guo[55] (c) Hu[68] (d) Cun[17] (e) Our Model (f) G.T.

Figure 4.7: Foreign shadow removal results on images from our foreign-real test dataset.
The method of [55] often incorrectly identifies dark image regions as shadows and re-
moves them, while also failing to identify real shadows (b). The deep learning approaches
of [17] and [68] (c, d) do a better job of correctly identifying shadow regions but often
fail to remove shadows completely, and also change the overall brightness and tone of the
image in a way that does not preserve the authenticity of the input image. Our method is
able to entirely remove foreign shadows while still preserving the overall appearance of
the subject (e), thereby producing output images that more closely resemble the ground
truth (f).

model without symmetry, and demonstrate an improvement with respect to both. For all
comparisons, we use facial-syn, which has ground truth soft facial shadows.

4.6.5 Preprocessing for Portrait Relighting
Our method can also be used as a “preprocessing” step for image modification algorithms
such as portrait relighting [160, 204], which modify or replace the illumination of the input
image. Though often effective, these portrait relighting techniques sometimes produce
suboptimal renderings when presented with input images that contain foreign shadows
or harsh facial shadows. Our technique can improve a portrait relighting solution: our
model can be used to remove these unwanted shadowing effects, producing a rendering
that can then be used as input to a portrait relighting solution, resulting in an improved
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Figure 4.8: Foreign shadow removal results of our model on our wild test dataset. Input
images that contain unwanted foreign shadows (top) are processed by our foreign shadow
removal model (bottom). Though real-world foreign shadows exhibit significant variety
in terms of shape, softness, and color, our foreign shadow removal model is able to suc-
cessfully generalize to these challenging real-world images despite having been trained
entirely on our synthetic training data (Section 4.3.1).

final rendering. See Figure 4.11 for an example.

4.7 Discussion
Our proposed model is not without its limitations, some of which we can identify in
our wild dataset. When foreign shadows contain many finely-detailed structures (which
are underrepresented in training), our output may retain visible residuals of those (Fig-
ure 4.12(a)). While exploiting the bilateral symmetry of the subject significantly improves
our facial softening model’s performance, this causes our model to sometimes fail to re-
move shadows that also happen to be bilaterally symmetric (Figure 4.12(b)). Because the
training data of our shadow softening model is rendered by increasing the light size—a
simple lighting setup that introduces bias towards generating diffused-looking images.
For example, when the “light size” is set high in Figure 4.10 (c), our shadow softening
model generates images with a “flat” appearance and smooths out high frequency details
in the hair regions that could have been preserved if different lighting setups are used for
face and hair during training data generation.

Our model assumes that shadows belong to one of two categories (“foreign” and “fa-
cial”) but these two categories are not always entirely distinct and easily-separated. Be-
cause of this, sufficiently harsh facial shadows may be erroneously detected and removed
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(a) Input (e) Ground Truth(d) Output w/ symmetry(c) Output w/o symmetry(b) Output from PR-net

Figure 4.9: Facial shadow softening results on facial-syn. We compare against the por-
trait relighting model (PR-net) [160] by applying a blur to its estimated environment light
and relighting the input image with that blurred environment map. PR-net is able to suc-
cessfully soften low frequency shadows but struggles with harsh facial shadows (b). The
ablation of our model without our symmetry component (Section 4.4) also underperforms
on these harsh facial shadows (c). Our complete model successfully softens these hard
shadows (d), as it is able to reason about the bilateral symmetry of the subject and “bor-
row” pixels with similar reflectance and geometry from the opposite side of the face.

by our foreign shadow removal model (Figure 4.12(c)). This suggests that our model
may benefit from a unified approach for both kinds of shadows, though this approach is
somewhat at odds with the constraints provided by image formation and our datasets: a
unified learning approach would require a unified source of training data, and it is not
clear how existing light stage scans or in-the-wild photographs could be used to construct
a large, diverse, and photorealistic dataset in which both foreign and facial shadows are
present and available as ground-truth.

Constructing a real-world dataset for our task that contains ground-truth is challeng-
ing. Though the foreign-realdataset used for qualitatively evaluating our foreign shadow
removal algorithm is sufficiently diverse and accurate to evaluate different algorithms, it
has some shortcomings. This dataset is not large enough to be used for training, and
does not provide a means for evaluating facial shadow softening. This dataset also as-
sumes that all foreign shadows are cast by a single occluder blocking the light of a single
dominant illuminant, while real-world instances of foreign shadows often involve multi-
ple illuminants and occluders. Additionally, to satisfy our single-illuminant assumption,
this dataset had to be captured in real-world environments that have one dominant light
source (e.g. , outdoors in the midday sun). This gave us little control over the lighting en-
vironment, and resulted in images with high dynamic ranges and therefore “deep” dark
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(a) Input (b) Output (c) Output (d) Output (e) |(c) - (d)|
(m = 10) (m = 40) (m = 40,

Pfill = Pmax
fill )

Figure 4.10: Facial shadow softening results on images from wild. Input images may con-
tain harsh facial shadows, such as around the eyes (row 1) and by the subject’s cheek (row
3). Applying our facial shadow softening model with a variable “light size” m produces
images with softer shadows (b, c). The specular reflection also gets suppressed, which is
a desired photographic practice as specular highlights are often distracting and obscuring
the surface of the subject. Additionally, the lighting ratio component of our model reduces
the contrast induced by facial shadows (d) by adding a synthetic fill light with intensity
Pfill, set here to the maximum value used in training (Section 4.3.2), in the direction op-
posite to the detected key light, as visualized in (e).
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(a) Input (b) Relighting on (a) (c) Our output (d) Relighting on (c)

Figure 4.11: The portrait relighting technique of [160] provides an alternative approach
for shadow manipulation. However, applying this technique to input images that contain
foreign shadows and harsh facial shadows (a) often results in relit images in which these
foreign and facial shadows persist as artifacts (b). If this same portrait relighting technique
is instead applied to the output images of our model (c), it produces a less jarring (though
still somewhat suboptimal) rendering of the subject (d).

(a) Fine-detailed shadows. (b) Symmetric facial shadows. (c) Mixed shadows.

Figure 4.12: Example failure cases from our wild dataset. We notice limitations of our for-
eign shadow removal model in handling fine-detailed structures (a), of our facial shadow
softening model reducing highly facial shadows (b), and of the models not correctly sep-
arating the two types of shadows (c).
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shadows, which may degrade (via noise and quantization) image content in shadowed
regions. A real-world dataset that addresses these issues be invaluable for evaluating and
improving portrait shadow manipulation algorithms.
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Chapter 5

Learning to Autofocus for Casual
Videography

Always remember your focus
determines your reality.

— George Lucas

This chapter introduces the challenge of delivering cinema-like focus in casual videog-
raphy (i.e., shallow DOF with context-aware focusing). We show that a traditional ap-
proach based on physical camera auto-focus is bound to fail, because errors in focus are
baked into the video and focusing correctly in real-time requires error-prone guessing
about where the action will go. We embrace this insight and take a fundamentally dif-
ferent approach with two parts: first, committing to rendering refocusable video from
deep DOF video (RVR sub-system) rather than recording shallow DOF imagery; second,
looking at future video frames to make focus decisions at every point in the video (LAAF
sub-system) rather than only looking at past frames.

5.1 Introduction
Cinematic focus is characterized by the beautiful, shallow depth of field (DOF) of large
lenses, which are prized for their ability to visually isolate movie stars, control the viewer’s
gaze, blur out backgrounds and create gorgeous “bokeh balls” of defocused color. Focus
that is tack sharp is essential, but shallow DOF makes it difficult and expensive to achieve.
On a movie set, the primary camera assistant (“focus puller”) must operate the camera
focus controls in realtime to track moving subjects and transition focus according to the
screenplay. In movies with improvisational acting, such as Coherence (2014), the cine-
matographer must try to anticipate what the actors will do; of course significant focus
error must be accepted. It is far more common to have a movie script, and for the focus
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(A) Input casually 
acquired  video, 
deep DOF

(B) Synthesized 
shallow DOF, 
refocusable  video

(C) Look-Ahead 
Autofocus: 
computer vision 
analysis of focus 
targets

(D) Final shallow 
DOF video with 
intelligent 
autofocus

Figure 5.1: We present a new approach to pursue cinema-like focus in casual videogra-
phy, with shallow depth of field (DOF) and accurate focus that isolates the subject. We
start with (A) a deep DOF video shot with a small lens aperture. We use a new combina-
tion of machine learning, physically-based rendering, and temporal filtering to synthesize
(B) a shallow DOF, refocusable video. We also present a novel Look-Ahead Autofocus
(LAAF) framework that uses computer vision to (C) analyze upcoming video frames for
focus targets. Here we see face detection (white boxes) and localization of who is speak-
ing/singing [125] (heat map). The result is shallow DOF video (D), where LAAF tracks
focus on the singer to start, and transitions focus to the child as the camera pans away from
the musicians. The LAAF framework makes future-aware decisions to drive focus tracking
and transitions at each frame. This presents a new framework to solve the fundamental
realtime limitations of camera-based video autofocus systems.

puller to give actors markers on the ground to indicate where they should stand at specific
points to facilitate highly accurate focusing.

These are the issues that make cinematic focus impossible for casual videographers,
even though we would love to achieve the aesthetic. Instead, with smartphone videogra-
phy we sacrifice cinematic DOF, because the small lenses cause essentially everything to
be in focus at the same time. In contrast, with cameras that have larger sensors and lenses
capable of cinema-like DOF, we inevitably sacrifice focus accuracy. The reason is that there
is no movie script, so memorable moments and decisive actions occur unpredictably. Like
the focus puller for the Coherence movie, the camera’s autofocus system would need a
crystal ball to perfectly track each moving subject, or decide to transition focus to a new
target in anticipation of its actions taking control of the narrative.

In this paper, we argue that a new direction is necessary if we are to ever truly deliver
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cinema-like focus for casual videography. An example of the kind of unprecedented re-
sults we seek is a shallow DOF video of a group conversation where the focus transitions
perfectly from person to person before each person begins talking. Another example is a
video that faithfully tracks focus on a rapidly moving soccer player, and then presciently
pulls focus onto another player before she heads the ball into the goal. The key to our new
approach is to commit to capturing refocusable video, and open the door to analyzing
future video frames in order to determine whether to enable accurate tracking and antici-
patory decisions about whether to transition focus to a decisive action by a new target. To
enable these conventionally impossible capabilities, we contribute a framework composed
of two modules1.

• Refocusable Video Rendering (RVR) Rather than capturing regular video with
static focus, we produce synthetic “refocusable video” where the focus depth of each
frame can be computationally changed after capture. Our approach is to syntheti-
cally render a shallow DOF video, from a deep DOF video that can be recorded with
a smartphone. We build on recent methods in this vein, which are limited to still
photography and suffer from disturbing temporal inconsistency when applied frame
by frame to videos. We extend synthetic shallow DOF to full video using a combi-
nation of machine learning, physically-based rendering and temporal filtering. For
machine learning, we contribute a dataset of over 2,000 image pairs or triplets where
the aperture and/or focus are varied, and explain how to use these data to train a
convolutional neural network that predicts RGBD video and recovers HDR as input
to Refocusable Video Rendering (RVR).

• Look-Ahead Autofocus (LAAF) for Casual Videography We introduce the notion
of Look-Ahead Autofocus that analyzes the seconds of video frames ahead of the
current frame in order to decide whether to maintain or transition the focal depth of
synthetic focus rendering. We demonstrate LAAF with examples of “AI-assistance”
that include: motion and face detection to focus on upcoming human actions, audio
localization to focus on who is about to speak, and a machine-learning-based focus
detector that shows how a large-scale video dataset can be used to help autofocus of
more generic videos. We build an interactive GUI incorporating with subject track-
ing and automatic focus transition so that the user only makes focus choices on a few
keyframes to render a video with shallow DOF and annotated focus.

5.2 Prior Art and Related Work

Camera Autofocus Systems Camera autofocus systems have generally been classified into
two buckets: contrast-detection autofocus (CDAF) and phase-detection (PDAF). CDAF is

1Please visit our project website for accompanying videos: https://ceciliavision.github.io/

vid-auto-focus/
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slower, seeking focus by aiming to maximize image contrast as the lens focus is changed; it
performs poorly for video because the ”focus seeking” behavior is visible in the recorded
video. Phase detection can be much faster, and is based on separately detecting and com-
paring light passing through different parts of the lens aperture. This was achieved in SLR
cameras by reflecting light onto PDAF units that each comprised a microlens atop multiple
pixels [49].

To enable PDAF in mirrorless camera designs, sensor makers began embedding mi-
croscopic PDAF units sparsely into the pixel arrays themselves [36], and advanced to
the point that every imaging pixel became a PDAF unit to maximize light and autofocus-
sensitive area [118, 90]. This last design is now common in smartphones [36, 104]. One
might argue that such advances in physical autofocus systems are asymptotically approach-
ing the fastest possible in many devices today. And yet, autofocus mistakes remain com-
mon and inevitable in casual videography, because the focus of each frame is “locked in”
as it is being shot. A full solution is impossible because the autofocus algorithm would
have to predict the future at every frame to correctly determine what to focus on, or transi-
tion focus to. This paper aims to lift this fundamental limitation by synthesizing shallow
depth of field as a video postprocess, and using video autofocus algorithms that “look
ahead” to make contextually meaningful predictions about what to focus on.

invisible line
Light Field Imaging Another way to capture refocusable images is a light field camera,
but the cost of light field video systems remains very high. Rather than capturing a 2D
slice of the light field, as is the case with a conventional camera that samples a set of rays
that converge at a single point, commercial light field cameras, e.g. , Lytro ILLUM2 capture
a 4D slice of the light field, trading spatial resolution for angular resolution. Light field
imaging not only captures the set of rays from different viewpoints [103], but also enables
physically-accurate synthetic aperture rendering and after-the-fact refocusing [121, 181].
Beyond spatial resolution trade-offs, commercial light field video cameras currently have
decreased video frame rate, approximately 3 FPS rather than the desired minimum of 30
FPS. Wang et al. [176] propose a hybrid system using one light field camera and one DSLR
camera to produce 30 FPS light field video view interpolation.

invisible line
Synthetic Defocus To the best of our knowledge, there has not been works for rendering
synthetic defocus for videos. The first step towards RVR is to accomplish single image
synthetic defocus, we give a high-level review on synthetic defocus for still images.

Stereo can be used to derive this necessary depth [191, 77]. PDAF sensors described
earlier can be used to provide stereo views of the scene through right and left halves of
the lens aperture. This has been used to estimate depth for synthesizing defocus blur for
smartphone computational photography [170, 104].

Data-driven machine learning approaches have also proven valuable in synthetic de-
focus tasks using single images, a lot of which are for driving scenarios using specialized

2https://www.dpreview.com/products/lytro/compacts/lytro_illum
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Figure 5.2: Overall system pipeline to compute shallow DOF video from a deep DOF
video input. The Refocusable Video Renderer (RVR) contains a time-Stabilized RGBD-
HDR (Section 5.4) that computes temporal-stabilized depth and recovers HDR. The Look-
Ahead Autofocus (LAAF) (Section 5.5) pipeline consists of three approaches with differ-
ent levels of automation, detecting New Focus Targets and generating autofocus depth
followed by a focus puller that smooths focus transition. Output is a shallow DOF video
with contextually-meaningful focus.

datasets [48, 95, 42]. MegaDepth [108] is a concurrent work that targets more generic im-
age contents. Most related to our own work is the method of Srinivasan et al. [157], who
use weak supervision by predicting a depth map for an input photo, passing it through
a differentiable forward rendering model, and then applying a reconstruction loss to the
output shallow depth-of-field photo. However, their forward model does not correctly
render occlusion or salient bokeh at saturated regions. Furthermore, their method is
trained on domain-specific dataset of flowers and indoor buildings and thus performance
degrades when applied to other object categories. Park et al. [127] combines hand-crafted
features with deep features to render refocusable images. However, they focus on notice-
able defocus that is generated by medium-large aperture sizes. Therefore their method
degrades on images taken by ∼f/16 and smaller aperture sizes, while this paper focuses
on defocus size generated by f/20 or smaller.

A number of works also use defocus as a cue to predict depth of the scene [115]. Nayar
and Nakagawa [120] propose a focus operator which compares texture variability between
images to determine relative level of focus. Correspondences from light-field imaging can
be used to reduce ambiguity in depth-from-defocus [165]. Suwajanakorn et al. [162]
recently explored depth-from-defocus for smart-phone imagery and Tang et al. [164]
generalize depth-from-defocus for unconstrained smartphone imagery in the wild using
two perceptibly similar images.

invisible line
Video Analysis Understanding video contents, such as knowing when and where ac-
tivity happens or which regions are visually salient, is key to our video autofocus algo-
rithm. Recent advances in data-driven machine learning have enabled progress in video
understanding tasks such as activity classification [155, 80], activity recognition and detec-
tion [161, 175, 32, 8], which benefits LAAF in localizing action in videos. Video saliency
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detects salient subjects under a more generic context, often making use of eye tracking
signals [111, 177, 159]. We find saliency detection effective in proposing a coarse focus re-
gion for LAAF, and it can be combined with other detectors for finer-grained localization.
A topic similar to video attention along the temporal axis is video summarization [192,
113], extracting keyframes or subshot as visual summaries for long videos. More recently,
audio-visual signals have been combined jointly to learn semantically meaningful video
representations, one application we use to detect and locate people who are speaking is
audio source localization [125].

5.3 System Overview: RVR-LAAF
Our system (See Figure 5.2) aims to render cinematic autofocus for casual videos. It con-
sists of two components: Refocusable Video Rendering (RVR) (Section 5.4) — rendering
videos with shallow DOF focused at any depth at any time, and video Look-ahead Auto-
focus (LAAF) (Section 5.5) — choosing when and where to focus to make the autofocus
choices contextually meaningful and visually appealing.

RVR is built upon a refocusable single frame renderer and a temporal module. We
summarize our contribution in rendering refocusable video in Figure 5.3. We find it key
to render RVR with temporal coherence, estimation of HDR detail, and a physically-based
forward model of lens defocus. We achieve temporal stability by applying an occlusion-
aware temporal filtering that is based on optical flow and robust to outliers (see Section 5.4
and Figure 5.3A). For photo-realistic rendering, we train a neural network to jointly esti-
mate, from a single image, the defocus size and unclipped intensity value for each pixel.
We find HDR recovery enables rendering of realistic bokeh (Figure 5.3B) and a correct for-
ward model enables correct occlusion effects (Figure 5.3D). To train the network, we collect
a large-scale aperture dataset that contains image pairs and triplets. We find our collected
triplet dataset to improve estimation around large disparity regions (Figure 5.3C). We call
our trained network a RGBD-HDR estimator (Section 5.4). RVR takes a deep DOF video
that can be captured by a smartphone, and generates a shallow DOF video that can be
focused on any depth at any frame.

RVR delivers video that can be focused at any depth, but the question remains: what
is the correct depth to focus on at every frame? For example, retaining optical focus and
simply synthesizing shallow DOF (see Figure 5.4C row 2) results in obvious focus errors
and often lacks contextual meaning (e.g. focusing on one person while another person,
blurred out, is speaking).

Our solution is called the LAAF framework and comprises three complementary tech-
niques for attacking this problem of ”when and where to focus”. First (Section 5.5.1),
LAAF contains a carefully designed user interface (RVR-LAAF GUI) that enables a user
to specify only a small number of semantically meaningful ”new focus targets” in a video
clip – the system then tracks these subjects to maintain focus on them, and adds focus-
pull transitions automatically. Second (Section 5.5.2), LAAF provides AI-based autofocus
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(3D) Comparison of synthetic shallow DOF rendering models. 
The in-focus regions such as the person's shoulder and hat should 
occlude the background defocus. Our forward model, see 
Section 4.1 correctly renders such occlusions while the model that 
uses weighted layer summation [Srinivasan et al. 2018] does not.

(3B) Shallow DOF Rendering with HDR Recovery. Visually salient bokeh that appears at saturated regions in (a) is suppressed in (b) without recovering a 
higher dynamic range. Predicted HDR recovery map enables more photo-realistic shallow DOF rendering. Rendered video results demonstrate more 
visually prominent differences and can be seen in the accompanying video.

(3C) Effect of photo triplets in training. We compare the disparity map 
and shallow DOF rendering using networks trained w/ and w/o triplet 
consistency. The results with triplet consistency are geometrically more 
accurate in the background region of high disparity.

Temporal stabilization, close-up
(3A) Flicker reduction by temporal filtering. Flicker reduction is best 
appreciated in the accompanying video. As a proxy, we plot the mean 
pixel value around saturated pixels, which we find is correlated with 
flicker level in video. Note that temporal filtering greatly reduces the 
high-frequency fluctuations. The sample video frames illustrate 
typical levels of stabilization delivered by the temporal filtering. Note the 
high fluctuation in focus on the woman's face before filtering.

Figure 5.3: Summarized contribution of proposed Refocusable Video Renderer.
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(4C) GUI-based video autofocus. (Row 1) Input video shows the camera shi!s from the mango tart to the person. (Row 2) naïve 
synthetic SDOF video would not be able to resolve focus in time, blurring out the person’s face. (Row 3) Our RVR-LAAF GUI is 
incorporated with vision-based tracking. (High-res GUI demo can be found in the accompanying video) User only needs to annotate New Focus 
Target (Row 3 Middle) when they identify a preferred focus subject. The GUI tracks the subject (Row 3 Right) until the next New Focus Target 
is selected. (Row 4) The resulting video shows autofocus that transitions correctly to the face without lagging, as the user knows camera is shi!
ing to a more preferred focus subject. The video result can be found in the accompanying video.

(4B) Illustration of computing New Focus Targets from scene-specific 
LAAF. For a given scene (eg. conversation), a set of detectors generate 
focus probability maps and their intersection is computed. K-
means clustering finds the center of the majority cluster and 
generates its center (x, y), which reads from predicted 
disparity map to produce a focus depth plot. We apply 
1-D bilateral filter to the plot and detect focus depth 
discontinuity to be the New Focus Targets, denoted as (x, y, t).

(4A) Illustration of synthetic focus pulling. Input to the module is a 
set of {(x, y, t)} triplets denoting new focus targets and times. 
Three such focus targets are shown as diamonds on the timelines 
above. For each of these targets, we perform focus tracking (top 
graph) by computing (x, y) tracking across time, and look up the 
focus depth from the estimated depth map. Next, we execute 
fast focus pull transitions (bo"om graph) from one target to 
the next, with focus arriving at each target slightly before t 
to allow the viewer to visually se"le before action begins.
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Figure 5.4: Summarized contribution of proposed Look-Ahead AutoFocus, Part I.
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(4D) Audio-aware video autofocus. (Row 1) Input video shows two people discussing a bug on the ground. (Row 2) naïve synthetic SDOF video 
would focus on the foreground person exclusively, blurring out the speaker in the background. (Row 1 sub) Audio localization mapping, a recent 
advance in computer vision, identifies the active speaker at each point in the video. (Row 4) The resulting video shows autofocus that transitions 
smoothly from speaker to speaker, before they begin speaking. The video result can be found in the accompanying video.

(4E) Action-aware video auto-focus. (Row 1) Input video shows children playing in the background and plant in foreground, optically focused on 
foreground. (Row 2) Naïve synthetic SDOF video would blur out the action in the background, because the input video is optically focused on the 
foreground. (Row 3) Intersection of visual saliency mapping and motion detection mapping isolates action of children in the background. 
(Row 4) The resulting video is autofocused on the background.

a. Input casually 
acquired  video, 
deep DOF

b. Synthesized 
shallow DOF, 
refocusable video, 
with naïve optical 
focus (front person)

c. Audio-aware 
LAAF: New Target 
Mapper localizes 
the active speaker

d. Final shallow 
DOF video with 
focus set to and 
tracked the active 
speaker

a. Input casually 
acquired  video, 
deep DOF

b. Synthesized 
shallow DOF, 
refocusable video, 
with naïve optical 
focus (the bush)

c. Action-aware 
LAAF: New Target 
Mapper localizes 
the salient object 
in motion

d. Final shallow 
DOF video with 
focus set to and 
tracked the salient 
action

Figure 5.5: Summarized contribution of proposed Look-Ahead AutoFocus, Part II.
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modules that only requires the user to choose the type of scene – then, the system fully
automates the task by choosing ”new focus targets” intelligently. We demonstrate ex-
amples for scenes that contain conversations or actions, where the system automatically
pre-focuses on each person before they speak or on actions before they occur. Third (Sec-
tion 5.5.4), (Section 5.3), we demonstrate a first attempt at fully automating video auto-
focus using a machine learning approach – we contribute ground-truth focus annotations
on a large-scale video dataset, using our RVR-LAAF GUI to create this sizable dataset
efficiently.

5.4 Refocusable Video Rendering (RVR)
In this paper we introduce the first synthetic defocus renderer for videos. We take Monoc-
ular Depth Estimation (MDE) [157] as our launching point, and comprehensively re-work
the method to make it suitable for synthesizing defocus for casual videography. This sec-
tion presents the implementation details. The four critical changes are:

• Adding HDR recovery estimation, which we show is critical to achieving plausi-
ble bokeh balls that are a visual hallmark of shallow DOF videos (Figure 5.3B, Sec-
tion 5.4)

• Building a superior training dataset with far greater scene diversity. This dataset
contains novel ”triplets” of images (Figure 5.6) that we find is important to improve
depth estimation in foreground and background regions (Figure 5.3C Section 5.4).

• Correcting the forward model to make it handle occlusions correctly and so that
background defocus does not incorrectly ”bleed” around foreground objects (Fig-
ure 5.3D, Section 5.4)

• Adding temporal coherence to ameliorate flicker (Figure 5.3A, Section 5.4)

RGBD-HDR Estimator We offer an indirectly-supervised approach to estimate disparity
and HDR with only aperture supervision, by training a neural network that jointly pre-
dicts a disparity map D and recover high dynamic range (HDR) E from a single image
that has a deep DOF and standard dynamic range (SDR). D and E will be formally de-
fined later. Unlike the MDE dataset that is designed to avoid saturation, our extended
MDE dataset contains a diverse set of scenes that cover a wide dynamic range. We find
that both disparity and HDR can be estimated purely from our extended MDE dataset, by
imposing supervision on the reconstructed shallow DOF images. Alternative to our joint
prediction is to estimate depth and HDR separately in sequence, for example, an HDR
recovery network followed by a depth prediction network. Recent works have addressed
performance on monocular depth estimation [108] and monocular HDR recovery [25].
Our sub-system on monocular shallow DOF rendering would be approximately equiva-
lent to a composition of these state-of-the-art works. One of our advantages is that we do
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not require ground truth supervision on either depth or HDR, while the aforementioned
methods use direct supervision and thus require challenging data capturing and annota-
tion to account for model generalization to different or more generic scene contents.

We formulate our joint disparity and HDR estimation network as following. Given
training dataset A with pairs of small aperture input IS and large aperture ground truth
output IL, the major loss we apply to optimize the network parameters is the rendering
loss:

Lrend = ‖IL −F(IS,D,E)‖1 (5.1)

We use shallow DOF rendering as the objective, thereby bypassing the need to have direct
supervision using disparity or HDR ground truth, which can be extremely challenging to
collect and annotate.

The forward model F is based on an ideal thin lens model [131]. It takes a deep DOF
image with predicted D and E to render a synthetic shallow DOF image. We use a disk
kernel K to approximate the point spread function of a defocused point through the lens.
To handle occlusion, we blend layers of different disparity levels in order from back to
front to prevent background blur from incorrectly bleeding around the silhouette of fore-
ground objects, as shown in Figure 5.3D. Previous methods such as [157] simply sum up
all disparity levels.

We define disparity D, the inverse depth, in its stereo sense being created by the dif-
fering vantage points from left and right edges of the lens aperture. This amount is pro-
portional to the defocus blur size in pixel space by a normalized scalar [63]. Assume the
disparity map D ranges from dmin to dmax and denote disk kernel radius as r (r = 0 at focal
plane). We discretize D into |dmax − dmin| levels using a soft mask M . We define M as the
matte for content at the corresponding disparity level. M allows the forward model F to
be differentiable and also stabilizes training. Formally, M at disparity d is defined as:

M(D, d) = exp(−λ(D− d)2) (5.2)

λ is empirically set to 2.8 to model a continuous and rapid falloff across neighboring dis-
parity levels. Because we predict signed disparity and define focal plane to have zero
disparity, r = d(d ≥ 0) when d is behind the focal plane, otherwise, r = −d(d < 0). We use
I l to denote the rendered shallow DOF image. Using our back-to-front forward rendering
model, the shallow DOF image at disparity level d, denoted as I ld, is computed by blending
it with its previous disparity level I ld−1 using the aforementioned content mask M :

I ld = I ld−1 · (1−M(D, d)) +
(
IS ·M(D, d)

)
⊗K(r) (5.3)

One of the beautiful and characteristic visual signatures of shallow DOF video are so-
called ”bokeh balls,” which are bright disks optically created by defocusing of small, bright
lights (see the background of the middle image in Figure 5.6). A numerical challenge for
synthesizing such bokeh balls is that one needs HDR images to capture the very high in-
tensity of the small lights [18]. Without HDR, the represented intensity of the small bright
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lights is limited by the 8-bit fixed point precision of our input videos – when synthetically
defocusing these lights, the incorrectly low intensity value spreads out over many pixels
and becomes invisible rather than a bright ball of light (see middle image in Figure 5.3B).
Therefore, we find HDR recovery key to render visually salient bokeh that appears at sat-
urated regions, which has not been considered in prior synthetic defocus rendering mod-
els [92, 188, 170]. We undo gamma correction on input images to work in linear space. We
predictE in log scale to recover a high dynamic range. Pixels that are saturated in the deep
DOF image are often not saturated in its shallow DOF pair, because their energy is spread
over many pixels. This provides indirect signal for the network to learn HDR recovery.
We replace IS in Equation 5.3 with its HDR version IS′ , computed as:

IS
′
= IS · ek·E (5.4)

where k affects the maximum recovered saturation value and is empirically set to 50.
invisible line

Data Collection. To train our RGBD-HDR Estimator, we build upon the Flower dataset
collected in [157] and contribute the first large-scale aperture dataset that covers diverse
object categories. The dataset contains 1.2K image pairs and 0.8K image triplets taken with
different aperture sizes (f/2, f/8 and f/22) and focus depth. Each image pair or triplet is
taken in a scripted continuous shot using Magic Lantern3 firmware add-on for Canon EOS
DSLR cameras. This minimizes misalignment among pairs/triplets during capturing time.
Pixel-wise alignment is further imposed via correlation coefficient minimization [28].

invisible line
Image Pair and Triplet Supervision. The network takes in a deep DOF image and pre-
dicts both a disparity map and a high dynamic range, which are used to render a shal-
low DOF image, and has ground truth to compare against. This rendering loss is back-
propagated to update network parameters until convergence. We notice that the precision
of large defocus values in D is less accurate as the gradient of the reconstruction loss de-
creases inversely proportional to the size of the defocus disk kernel (∂Lrend

∂r
∝ 1

r2
). This

produces visual artifacts when refocusing the video to planes that are originally at large
disparity. To mitigate imbalanced loss gradient back-propagated through different dispar-
ity planes, we apply a triplet consistency checking during training. Our dataset contains
two types of image triplets: aperture and focal triplets. Aperture triplets are taken with
f/2, f/8 and f/22. The estimated disparity should be able to scale to render both median
DOF and shallow DOF images. This constraint also helps stabilize training. Focal triplets
include a deep DOF image and two shallow DOF images focused at different depths. The
estimated disparity map should be able to shift to render both shallow DOF images at dif-
ferent depths. From our thin lens model assumption, the non-linearity between change
of focal plane and change of defocus blur size only depends on the object disparity and
lens movement in sensor coordinate, which is relatively small to be negligible. As long as

3https://magiclantern.fm/
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f/22, 0.77m f/2, 0.77m f/2, 1.54m

f/22 f/8 f/2

f/22 f/2

Figure 5.6: Example image pairs and triplets in our dataset. (Row 1) A focal triplet exam-
ple, defocus map predicted from the input image is used to reconstruct the image with the
same focus depth but taken with a large aperture (middle image) shifted to reconstruct
the image taken with a large aperture at a different depth plane (right image). (Row 2)
An example of aperture triplet, defocus map predicted from the input image is used to
reconstruct the large aperture image, and scaled to reconstruct the medium aperture im-
age. (Row 3) An example of image pairs, note that the focus is on the middle plane for
this example.

the object is not too close to the camera, we can assume the shift of focal plane to be linear
to the change of defocus size. For the prime lens, Canon EF 50mm f/1.8, that we use for
data capturing, scene depths difference from infinity to 0.5m generate a deviation of ∼5%
from the assumed linear model. Training with both types of triplet data helps to improve
the precision of large disparity region estimation. Figure 5.3C shows a visual comparison
on the estimated disparity map and back-focus shallow DOF rendering between training
with and without triplet consistency data.

invisible line
Loss Functions. We train RGBD-HDR with rendering objectives that penalize difference
between rendered results and ground truth shallow DOF targets. We supervise the net-
work with per-pixel L1 loss, denoted as Lpix, as well as low-level and high-level image
features denoted as Lfeat, by feeding the network output and target through a pre-trained
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VGG-19 network Φ. We compute the L1 difference between Φ(F(IS,D,E)) and Φ(IL) in
selected feature layers.

Lrend(IS, IL) = Lfeat(I
S, IL) + Lpix(IS, IL)

=
∑
i

λi‖Φi(I
L)− Φi(F(IS,D,E))‖1+

‖IL −F(IS,D,E)‖1,

(5.5)

where Φi indicates the layer i in the VGG-19 network. The weights {λi} are used to bal-
ance different terms in the loss function. We select the layers conv1 2, conv2 2, conv3 2,
conv4 2, and conv5 2 in the VGG-19 network. These features are demonstrated to be eff-
fective for image enhancement, style transfer and many other image processing tasks [15,
75, 197].

Image triplets are applied in an adjusted rendering objective that penalizes difference
from shallow DOF image IL′ after adjusting aperture (scale) and focal plane (shift), with
the adjustments linearly approximated by an affine model. Similar toLrend,Ladjust rend com-
putes theL1 difference between Φ(F(IS, αD+β,E)) and Φ(IL) in the same selected feature
layers. We find this image triplet training effectively improves RGBD-HDR prediction at
far planes, as shown in Figure 5.3C.

We additionally incorporate an edge-aware smoothness penalty Lsmooth on the pre-
dicted disparity map by minimizing the L1 norm of its gradients, weighted less on the
input image edges. This ensures the predicted disparity map to be locally smooth and is
formulated as:

Lsmooth(D) = ‖∂xD‖1 · e−|∂xI
S | + ‖∂yD‖1 · e−|∂yI

S |

Overall, we train our network by minimizing a loss function that is a weighted sum of
Lrend, Ladjust rend, and Lsmooth.

Ltotal =
∑

(IS ,IL,IL
′
)∈A

Lrend(IS, IL) + Ladjust rend(IS, IL
′
)

+ w1Lsmooth(D)

(5.6)

where w1 is the weight for the smoothness regularization, and is set to 10 across all experi-
ments. When a triplet is not available for a particular example, i.e., , only a pair is available,
we omit Ladjust rec(I

S, IL
′
) and double the weight of Lrend(IS, IL).

invisible line
Training and Implementation. We use a U-net network architecture [138] that contains
an encoder-decoder structure with skip connections. All layers are followed by a leaky
ReLU activation, except for the last prediction layer that produces 3 + N channels. Three
of these channels are used for HDR recovery. The other N channels are used as a bilateral-
space representation over luma, which are sliced with a bilateral slicing operator (where
N is defined by bandwidth parameters of the bilateral slicing operator) into pixel-space to
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produce a 1-channel signed disparity map. In practice, we find that predicting a bilateral-
space representation improves fidelity of the disparity map over predicting directly in
pixel-space, particularly around edges. This is consistent with the findings of Gharbi et al.
[45] and Barron et al. [7]. Positive disparity refers to planes behind the focal plane while
negative disparity represents planes in front of the focal plane.

We train the network with batch size 1 on an NVIDIA Titan X GPU and weights are
updated using the Adam optimizer [87] with a fixed learning rate of 10−4. A full network
architecture will be made available in a code release. The network converges after 150K
iterations. Our network is fully convolutional and can run at arbitrary image sizes. During
training, we resize the images to random resolutions between 512p and 1024p.

invisible line
Video Temporal Consistency. Visually, we find that the most important change when
going from still images to video is to enforce temporal consistency. Independently render-
ing each frame with shallow DOF causes visually disturbing flickering, especially around
prominent bokeh. A comparison can be found in Figure 5.3A. To impose temporal co-
herency, we apply a weighted temporal moving average that is occlusion-aware and robust
to outliers to D and E. For each target frame Ii, we compute wi, wi−1, ..., wi−M ∈ W , where
M is the number of neighboring frames. We compute optical flow using a pre-trained deep
neural network Flownet 2.0 [72] for consecutive pairs of frames, and align Ii−1, ..., Ii−M to
Ii using concatenated flows. wi is computed as a weighted combination of an occlusion
weight woccl

i and an outlier weight wmed
i .

Occlusion Weight Occluded pixels should be weighted little. We adopt the tactic of
forward-backward consistency checking [124, 14], computing both forward f i→i+1 and
backward optical flow f i+1→i for frame pair Ii and Ii+1. Consider point p in fi that shifts
to p+ f i→i+1(p). We check if we can find a point q in fi+1 such that:

‖(p− f i+1→i(q))‖2 + ‖(q − p+ f i→i+1(p))‖2 ≤ δ (5.7)

where δ is a small distance threshold. If there exists such a q in fi+1, p is considered as a
consistent pixel in fi. For each frame Ii we compute such an occlusion mask and call it
woccl
i .

Outlier Rejection To account for optical flow inaccuracies, we classify a warped pixel as
an outlier if it has very different values within its temporal moving window. We assume
that outliers are sparse and thus a majority vote approach such as median filtering would
be effective. For any point p in frame Ii, its outlier weight w(p)i is set to

e−median(|pi+fj→i(p)−pi|ij=i−M )

We compute an outlier weight for each frame and call it wmed
i . Overall, the filtered predic-

tion Di (or Ei) of target frame Ii is computed as:

Di =
∑

j=i−M,...,i−1

Wj · (Di + f j→i) +Wi · Di (5.8)
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where
∑i

i−M Wj = 1. We set M to 6 for all experiments.
invisible line

Parallelization in Scanner. We have a sizable set of 100 test videos, so we use modern
infrastructure to process them with RVR. We choose to use Scanner [130], which gives
us the option to process on different hardware and parallelize on the cloud. With full
parallelism we could in principle process all 100 videos in under a minute. In practice
we use a local 4-core machine with a single Titan X GPU. On average, we process one
2 megapixel video frame in ten seconds, including RGBD-HDR inference, bi-directional
optical flow computation, and temporal filtering. The current bottleneck is the flow-based
temporal filtering and the fact that we do not take full advantage of Scanner’s distributed
processing of jobs. It remains as future work to get the total processing time down to
realtime.

5.5 Look-Ahead Autofocus (LAAF)
Being able to synthesize refocusable videos is not a complete solution to generating a
meaningful shallow DOF video – deciding on when and where to focus in the video is
challenging and essential. In the conversation example shown in Figure 5.5D, the focus
should shift between the active speaker and lock at the person when he/she speaks – fail-
ing to set focus correctly would cause unsynced audio and visual focus and thus confuse
the viewer. On a movie set, exact focus is achieved by a movie script that exhaustively de-
fines what should be in focus at every moment in the film, and a dedicated focus puller (the
1st Assistant Camera) who measures and marks the exact focus position. In this section,
we demonstrate how LAAF uses recent computer vision advances in video understand-
ing — analyzing semantics of current and future frames — to enable video autofocus that
automates portions of focusing process in cinematography. This is, we believe for the first
time, the important and previously impossible problem of delivering cinema-like focus in
casual videography is shown to be tractable. We demonstrate three approaches towards
semi-automated and fully-automated video autofocus, using:

• an interactive GUI with vision-based tracking and simple human focus selection
(Section 5.5.1)

• scene-specific (e.g. conversation, action, etc.) AI-assist modules (Section 5.5.2)

• a data-driven CNN network trained from a large-scale video dataset with focus an-
notation, labeled using our GUI (Section 5.5.4)

Output from the above three approaches is a set of {(x, y, t̂)i} triplets denoting New
Focus Targets — focus regions and times. Three such New Focus Targets are shown as
diamonds on the timelines in Figure 5.4A. For each New Focus Target, we perform focus
tracking by computing (x, y) tracking across time, and look up the focus depth from the
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estimated depth map. Next, we execute focus pull from one target to the next, with focus
arriving at each target slightly before to allow the viewer to visually settle before action
begins. We set a default duration of 10 frames (∼ 0.67 sec) for a focus pull and linearly
interpolate focal planes in between.

For real systems LAAF could happen during video capture as well. To do this, we
would need to buffer a few seconds of video frames, which would be the temporal window
we set to look ahead, and then pipeline the LAAF processing with video recording.

5.5.1 GUI-based Video Semi-Autofocus
We build an interactive RVR-LAAF GUI incorporating a vision-based tracker (e.g. KCF
tracker [64]) such that the user only needs to specify a New Focus Target, instead of se-
lecting a focus subject for each frame, which is extremely inefficient and impractical. The
tracker tracks the selected focus region until the user pauses the video to select the next
New Focus Target.

One interesting point is that RVR-LAAF GUI provides benefit even for simple scenes,
such as a single person, that seem amenable to conventional autofocus. One might think
that in these situations simply synthesizing shallow DOF from the recorded video would
suffice. However, the issue is that synthetic defocus will amplify any misfocus error. So
even in these situations, RVR-LAAF GUI allows us to increase the focus accuracy of the
output video by adjusting the synthetic focal plane onto the person of interest and track the
corrected subject. In other words, autofocus achieved by LAAF is essential to delivering
even simple synthetic defocus video accurately.

5.5.2 Scene-Specific Video Autofocus
Fully-automated video autofocus without human interaction requires visual and semantic
understanding of the video context. We show how LAAF incorporates recent advances
in video understanding to automate, to some extent, human choices of focus selections.
Faces, actions, audio sources and other salient (visually distinctive) objects, are some com-
mon subjects to set in focus in casual videography. We exploit a set of context-aware de-
tectorsH (e.g. face, action detectors) to automate the generation of New Focus Targets.

As illustrated in Figure 5.4B, we compute the intersection of a selected set of detection
to identify a scene-dependent and contextually-meaningful focus region. We then apply
K-means clustering (K empirically set to 4) to determine the majority clustering centroid
position (x, y) and read in the focus depth from the predicted disparity map D. Frames
with empty intersection use its previous disparity level. Next, we apply a bilateral filter
followed by an edge detection to identify focus depth discontinuity, which marks the New
Focus Target, (x, y, t). Note that we use (x, y) instead of D(x, y) to denote New Focus Tar-
get because we later use (x, y) to track the subject to synthesize focus puller as shown in
Figure 5.4A.
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For example, we demonstrate scene-specific LAAF on two types of videos, one on ac-
tion videos that use action and saliency detection (H = {Hact, Hsal}) to detect salient re-
gions that also involve action (Section 5.5.2); one on conversation videos that use audio
localization and face detector (H = {Haud Hface} to detect and focus on the person who
is speaking (Section 5.5.2). These two types of videos are commonly seen in both casual
videography and professional filmmaking. According to a video essay that educates focus
rack and summarizes the best 30 rack focus examples throughout the film history (years
1963-2016) 4, half of the focus racks are triggered by human action or audio source change.

invisible line
Action-aware LAAF. We collect a set of videos that involve unexpected actions, which trig-
ger focus depth change towards the action subject. An example scenario is a background
subject of interest enter the frame unexpectedly while focus is at the foreground, and the
result we seek is to shift focus at, or a few frames before, the subject entering the view.
We use an action localizer (Hact) and a salient object detector (Hsal) to generate probable
focus regions that are both salient and involve actions. Hact is based on optical flow and
deepmatch [136] for action localization and tracking, and is used as video pre-processing
step for several computer vision tasks such as unsupervised video feature learning [129].
Hsal is based on a still image saliency detection [66] work, which trains a deep network to
compute a saliency heat map that identifies visually distinctive objects and regions in an
image. As illustrated in Figure 5.5E, LAAF analyzes future frames (Row 1) and detects the
child’s action that is about to happen. Instead of always keeping focus on the foreground
bush, LAAF is able to shift focus to the background before the child slides down the hill
(Row 4).

invisible line
Audio-aware LAAF. We demonstrate LAAF applied to another video collection of conver-
sational scenes. The goal is to place focus right before the person who is about to speak. We
use an audio localizer (Haud) and face detector (Hface) to compute probable focus regions
of the person who is speaking. Haud employs a recent work on audio localization [125],
where the authors train a deep network to learn multisensory representation using the fact
that visual and audio signals often align temporally. Hface is a machine-learning-based face
detector from dlib5. As illustrated in Figure 5.5D, without LAAF the focus is always on
the front person, blurring out the person in the back even when she starts talking (Row
2). LAAF analyzes future frames to understand who’s speaking, and is able to correctly
shift focus a few frames before the person starts to talk (Row 4).

5.5.3 New Focus Targets Evaluation.
To evaluate the set of New Focus Targets (x,y,t) generated from scene-specific LAAF, we
compute the difference on focus plane in disparity units ∆d = D(x, y) − D(x̂, ŷ), and the

4https://www.youtube.com/watch?v=tT_qv9ptauU&t=75s
5http://dlib.net/
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temporal position offset in number of frames ∆t = t− t̂, where (x̂, ŷ, t̂) is the ground truth
annotated New Focus Targets, using RVR-LAAF GUI.

5.5.4 Data-driven Video Autofocus
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Figure 5.7: AF-Net architecture predicts
the focus region (M) for i1, ..., is and the
probability (P) of the center frame ic be-
ing a New Focus Target. The key of AF-
Net is to cover a wide temporal range
such that it sees past and future frames
to make the prediction. In this illus-
tration, CNN-1 has a temporal receptive
field (fT ) of 2T and CNN-2 has a wide
temporal receptive field of 2T · s, where
s is the number of temporal units (fs).

To make autofocus fully automated on videos
with any scene content, we present a first at-
tempt at training a CNN (AF-Net) to pre-
dict New Focus Targets, replacing the scene-
dependent detectors used in scene-specific
LAAF. This is enabled using our RVR-LAAF
GUI to annotate New Focus Targets on a large-
scale video dataset. AF-Net takes in a sequence
of frames centered at the query frame to predict
the focus region (x, y) and the probability of the
query frame being a New Focus Target.

The key to LAAF is to analyze past and, par-
ticularly, future frames. A major challenge that
arises is to have the network cover a wide tem-
poral span of frames in a manner that is efficient
in memory and computation. We introduce
a temporal aggregation architecture consisting
of two CNNs with different temporal receptive
field sizes, as illustrated in Figure 5.7. The tem-
poral receptive field is determined by the num-
ber of temporal units fs, and the temporal cov-
erage fT inside each temporal unit. CNN-1 has
a temporal receptive field of fT to predict the
focus region of the middle query frames (i1, ...,
is). CNN-2 takes in feature maps generated
from CNN-1, and predicts the probability of
the global center frame (ic), efficiently seeing a
wider temporal receptive field of fs · fT frames.
Loss of the network is a weighted sum of the
evaluation metrics ∆d and ∆t we described in
Section 5.5.2.

However, evaluating ∆d requires disparity
maps for all videos. We find that large-scale
public video datasets that contains deep DOF
are heavily-compressed [1, 177] and cannot be
processed by our RGBD-HDR or have tracking
be applied with high fidelity. We thus made 2
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adjustments to training our AF-Net. First, instead of using ∆d = D(x, y), we use its proxy
(x, y) as supervision. Second, we choose to use a eye-tracking dataset DHF1K [177] and
a filtered version of its ground truth eye fixation map to supervise (x, y), which we find
to be highly correlated with focus region we annotated at New Focus Targets; supervision
for t comes from our annotation. We call our annotated focus video dataset VAF.

We remove unsuitable videos (e.g. with jump cuts) and end up with 419 videos (640×
360) of 20-60 seconds each in full frame rate (30 FPS). We reduce temporal sampling rate by
a factor of 5 and set temporal stride of AF-Net to be 5. Both CNN-1 and CNN-2 architecture
resembles ResNet-10, followed by a global average pooling for CNN-2. Training schedules
are set to be the same as training our RGBD-HDR net.

5.6 Results
We evaluate the key components of RVR (Section 5.6.1), and follow the metric described
in Section 5.5.2 to quantitatively evaluate LAAF (Section 5.6.2). We also show a compari-
son against the autofocus system inside a high-end consumer camera Olympus EM1.2 in
Section 5.6.5.

5.6.1 RVR Evaluation
We render shallow DOF video using forward model in Equation 5.3 frame by frame, and
compare rendering results with and without temporal coherency in Figure 5.3A. The focal
planes are set to be the same for each comparison. We also show a forward model with
and without occlusion-awareness in Figure 5.3D, and with and without HDR recovery in
Figure 5.3B.

Evaluating intermediate network predictions on disparity and HDR maps against ground
truth provides additional insight on rendering performance. For depth sensing, advanced
range sensors such as LiDAR captures high-quality dense depth maps. Lightweight RGB-
D cameras such as Intel RealSense [83] have achieved adequate resolution for some consumer-
grade applications, but still suffer from noisy output and limited precision around object
edges. It still remains a challenge to obtain accurate depth for casual videos using portable
devices. A survey on RGBD camera is written by Zollhöfer [207]. Current high-end smart-
phones such as iPhone X supports depth measurement using dual-pixels and dedicated
post-processing to generate smooth, edge-preserving depth maps. A recent paper [174] on
monocular shallow DOF synthesis uses iPhone to construct the iPhone Depth Dataset for
model training and testing. In a similar manner, we capture 50 test images using an iPhone
X and extract disparity map as a proxy for ground truth to evaluate our predicted dispar-
ity map. We also apply a state-of-the-art monocular depth estimator, MegaDepth [108],
to these test images for comparison. We follow the quality metric proposed in [143] to
compute the RMS (root-mean-squared) error measured in disparity units between the
predicted disparity map and its ground truth. For HDR evaluation, it is even more chal-
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lenging to capture ground truth HDR using existing hardware sensors. We choose to use
the public HDR test dataset constructed from exposure stacks from HDRCNN [25], and
use their metric by computing the mean square error in the log space of the predicted
linear image and its ground truth.

Figure 5.8A shows a histogram on disparity evaluation between our prediction and
that from MegaDepth. Our indirect method without depth supervision produces com-
parable performance with MegaDepth that requires ground truth depth for training. In
Figure 5.8B, we plot the histogram on HDR evaluation of the test images from [25]. It is
expected that HDRCNN generates better quantitative performance as the model is trained
with ground truth supervision, while our model is trained without direction supervision
on HDR and on a different dataset. We provide an alternative way to recover HDR with-
out ground truth required, and are able to produce HDR maps with adequate quality to
render shallow DOF images (see Figure 5.3B). Importantly, per frame estimation of depth
and HDR is not sufficient for rendering refocusable video, as we have shown that temporal
coherence is also critical in Figure 5.3A.

We design RVR as a flexible system to incorporate future works that improve upon
disparity and HDR estimation for still images and even for videos, or use camera sensors
that support depth and HDR video streaming. A recent work [170] uses dual-pixel im-
agery to estimate scene disparity for smartphone photography. When dual-pixel imagery
is available, RVR could use its depth estimation as D in the pipeline.

5.6.2 LAAF Evaluation

We evaluate the predicted New Focus Target (x, y, t) against ground truth (x̂, ŷ, t̂) (from
GUI annotation) using ∆d and ∆t (See Section 5.5.2). For each test video, we compute the
average focus depth difference |∆d| across all frames, and the average temporal position
difference |∆t| across all New Focus Targets.

invisible line
GUI-based Semi-Autofocus We show an example in Figure 5.4C using RVR-LAAF GUI
to annotate a New Focus Target (on the person’s face). Figure 5.4C Row 3 presents that the
user only needs to annotate the New Focus Target — selecting a focus region and creating
a tracker, and the GUI will then track the selected region. The GUI also features fine tuning
on the defocus strength and the focus puller duration to account for different story tone
and visual sensitivity. High-res version of the GUI is shown in the accompanying video.

invisible line
Evaluation on Action-aware Autofocus We test LAAF on 11 casually collected videos
with unexpected action that triggers focus depth change. We use action-aware LAAF with
H = {Hsal, Hact}, as described in Section 5.5.2 to compute New Focus Targets. Among all
11 test videos, 8 (72%) videos achieve |∆t| < 15, generating New Focus Targets that on
average offset by less than half a second. Most test videos use LAAF to locate focus regions
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Figure 5.8: Evaluation on predicted disparity and HDR against ground truth. Depth
ground truth is obtained using dual-pixel on an iPhone X. HDR ground truth is from
the public dataset described in [25].

within 2 depth planes difference from ground truth. Quantitative results are shown in
Table 5.1. A qualitative result is shown in Figure 5.5E.

invisible line
Evaluation on Data-driven Autofocus Detector Among the 419 VAF videos, 40 videos are
held out as test set for evaluation. To evaluate New Focus Target, we run inference on a
100-frame clip to get the probability of each frame being the New Focus Target and select
the frame with the highest probability. Note that for a test clip that does not have New
Focus Targets (no focus depth changes required), we only evaluate ∆d but not ∆t. We
also test on 30 collected smartphone videos, among which 11 are the action videos used to
evaluate action-aware LAAF in Table 5.1. |∆t| on the 11 action videos increase from 15.1
(using our specialized action-aware LAAF) to 21 (using AF-Net). However, AF-Net has



CHAPTER 5. LEARNING TO AUTOFOCUS FOR CASUAL VIDEOGRAPHY 96

a.  
 

b.  
 

 
 

 

c.  
 

 
 

d.  
 
 
 

Figure 5.9: Data-driven AF-Net to predict New Focus Targets for video autofocus. (Row 1)
Input video shows a dumpling is picked up from the plate. (Row 2) naı̈ve synthetic SDOF
video would easily suffer from mis-focus when applied shallow DOF. (Row 3) Focus re-
gion prediction from AF-Net; green marks focus with higher probability. Second frame
(bounded by red) is the predicted temporal position of the New Focus Target, when the
person picks up the dumpling. (Row 4) The resulting video shows autofocus that tracks
accurately on the dumpling. Video result can be found in the accompanying video.

Video ID 1 2 3 4 5 6 7 8 9 10 11

|∆d| 1.3 1.4 1.2 2.2 2.0 1.4 1.6 1.2 1.8 4.7 3.1
|∆t| 6 8 3 15 7 10 14 20 7 > 30 16

Table 5.1: New Focus Target evaluation of action-aware LAAF on 11 casually collected
videos using metrics introduced in Section 5.5.2. |∆d| (in disparity units) evaluates the
performance of computed depth plane over all frames for each video. |∆t| (in number of
frames) evaluates the average performance of temporal position of all New Focus Targets.
Ground truth is obtained from hand-annotation using our RVR-LAAF GUI.
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Dataset VAF-test Ours-test Ours-action-test
Method AF-Net AF-Net Action-LAAF AF-Net

|∆d| — 2.64 1.99 2.21
|∆t| 19.8 24.5 15.1 21.0

Table 5.2: Results using AF-Net to predict New Focus Targets on VAF test and our collected
videos. We compute the average |∆t| across all test videos. |∆d| is evaluated only on our
test videos as we do not have disparity for VAF. We find AF-Net to perform slightly worse
than action-aware LAAF on the action videos, but achieves reasonable performance on
generic video contents, e.g. 1 second difference in t on all test videos. Ground truth for
our collected test videos are from hand-annotation using RVR-LAAF GUI.

the advantage of handling generic video contents and is able to achieve |∆t| less than 1
second on all test videos (see Table 5.2). This indicates the potential of having a large-scale
annotated video dataset with temporal aggregation (AF-Net) to tackle the challenging
problem of video autofocus. One example result is shown in Figure 5.9. Video results are
at 05:58 in the accompanying video.

5.6.3 Limitation of AF-Net
While AF-Net explores the potential of using machine learning for video autofocus, its
requirement of large-scale video focus annotation is expensive and the dataset we accu-
mulated was of modest size. Recently, unsupervised visual feature learned from large-
scale unlabeled videos has shown to be effective for video understanding, such as ob-
ject tracking via video colorization [169] and audio localization by learning to temporally
align audio and video [125]. We believe video autofocus can be likewise addressed by
self-supervision to learn from unlabeled internet-scale videos such as public movie clip
dataset [137].

5.6.4 Analysis of Artifacts in Output Video
The accompanied video discussed in this section can be found here: https://youtu.be/
FqQQw3DGI9I. The performance of our RVR-LAAF system is commensurate with a first
prototype according to this new approach to the video auto-focus problem. For example,
visible artifacts present in rendered videos due to imperfect disparity and HDR estima-
tion. In this section, we classify the video artifacts visible in the results and discuss their
causes by inspection and analysis of the real video results presented in previous sections,
as well as experiments on a rendered video clip (see Supplementary Video B ) that pro-
vides “ground truth” for comparison.
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For the synthetic scene, we used a clip from the Blender Open Movie titled “Sintel”
(2010), rendering this scene with a simulation of a small aperture similar to the deep DOF
video captured by a modern smartphone camera. In Supplementary Video B , we show
ablation results that compare ground truth disparity or HDR with estimations using our
method and Eilertson et al. [26] for HDR and MegaDepth [108] for disparity. It is im-
portant to note that there is a large domain shift between this synthetic rendering and the
real training data used in all the estimation methods described, which disadvantages the
estimated results. Nevertheless, the comparisons against ground truth provide empiri-
cal clues to support technical dissection of which errors in the system are associated with
which classes of video artifacts.

The most visually prominent set of artifacts is due to errors in estimated disparity.
There are several classes of visual artifacts that may be seen. First, depth estimation across
boundaries is imperfect, which is residual error in spite of our bilateral space processing.
These edge errors cause prominent visual artifacts when in-focus regions are incorrectly
blurred. Examples can be seen in the synthetic video result at 00:25 (ear) and in real
video results at 05:13 (front person’s right shoulder). The second class of visual artifact is
splotchiness of synthesized defocus blur, due to incorrect spatial variation of depth esti-
mates on flat regions. This error tends to appear in regions at large disparity, and is resid-
ual error in spite of our triplet training procedure (Section 5.4) that helps to effectively
reduce this problem. Examples can be seen in the synthetic video result at 00:31 (in the
highlight region of the background arm), and in the real video result at 06:20 (background
segments are incorrectly rendered sharper). The third class of visual artifact related to dis-
parity estimation error is temporal fluctuation of the defocus blur, typically in regions of
background. Examples of this error can be seen in the background of synthetic video re-
sults around 0:14, and in the real video results at 04:27 (behind conversation) and 05:20
(behind dog). This is residual temporal error in spite of compensation by our temporal
stabilization module.

A second set of artifacts is related to errors in HDR estimation. The most common
examples of this error manifests as missing bokeh balls (false negative) in output video,
while hallucinated bokeh balls (false positive) are generally rare. For example, real video
results at 02:20 fail to recover HDR specular highlights on the glistening sea surface and
are therefore missing salient bokeh balls expected in that region. Synthetic video results at
00:43 underestimate the HDR value of the background figure’s arm and renders a darker
defocused highlight.

5.6.5 Compare Against Market Camera
High-end consumer cameras with state-of-the-art autofocus technology still suffers from
mis-focus, especially during a rapid subject change that requires focus to resolve accord-
ingly. We capture a pair of videos of the same scene with a Olympus EM1.2 under f/2.8
and a smartphone. RVR-LAAF is then applied to the video from the smartphone to ren-
der shallow DOF with autofocus using our GUI. We compare the two videos and show
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Input Synthetic Anamorphic Bokeh

Figure 5.10: Cinematic bokeh rendering. Our system takes in the deep DOF image (on the
left), and renders a cinematic bokeh using the predicted disparity and HDR map, and a
lens shape that approximates the cinematography lens ARRI Master Anamorphic.

RVR-LAAF tracks focus accurately while the DSLR fails to transition focus when making
large subject change.

Another interesting application is that we can simulate effect produced by expensive
camera lenses. We apply our system to demonstrate a cinematic bokeh rendering in Fig-
ure 5.10 that approximates the ARRI Master Anamorphic6 lens for professional cinematog-
raphy. Anamorphic lenses are prized by certain cinematographers, in part because of their
ellipsoidal, decidedly non-circular, defocus blur, as seen in Figure 5.10.

5.7 Discussion
In this paper, we built our RVR-LAAF prototype as a proof-of-concept for two main rea-
sons. First, to show that we can achieve fundamentally better video auto-focus decisions
by re-structuring the problem this way. And second, to show that it is tractable to attack
the two sub-problems posed by this approach: synthesizing refocusable video and com-
puting meaningful look-ahead autofocus decisions today. Regarding synthetic refocus-
able video, we summarized a broad array of technical approaches that the imaging and
computational photography communities are actively advancing, from light field imag-
ing to novel sensor designs to machine learning for depth inference. We are confident
that performance and quality will improve rapidly. Regarding the problem of computing
meaningful look-ahead auto-focus decisions, we hope to have clearly conveyed the idea
that this problem is also tractable and ripe for research. We believe that this area can also
advance rapidly, given the broad range of current research in computer vision that can be
brought to bear.

6http://www.arri.com/camera/cine_lenses/prime_lenses/anamorphic/



100

Chapter 6

Conclusion

As a photography enthusiast, I always like bringing a camera everywhere I go, and have
been using a Fujifilm mirrorless in the past few years. I take photos casually of any in-
teresting object or event, but occasionally am disappointed by the photos later displayed
on the screen, – cluttered, distracting, missing the best moment of an expression or action
– which are far less impressive than the image recorded in my mind. Partly, this is be-
cause I am not a great photographer, but I also believe that our brain plays an important
role cleaning, refining and fixing the imperfect image projected onto our retina. Our brain
understands what it sees and processes as the way we prefer, either it is our friend burst
into laughter, or looking through a window to something we have yearned for, or enjoy-
ing a mid-day picnic with families on a sunny day, we can easily focus our attention on
our friend, ignore the window reflection and will likely not realize the distracting shad-
ows on others’ faces until we take out our camera and snap a picture. Our brain, in these
cases, helps us naturally attend to people we know, filter out distraction (the reflection)
and extract information of a face about its semantics rather than its apparent look.

I believe it is necessary for a camera to gain similar understanding as our brain does
to achieve the similar functionality of cleaning, refining and fixing imagery. If there is a
task human visual system can easily do while a camera struggles with, the knowledge the
human brain uses to accomplish the task will likely benefit the camera too. One simple ex-
ample is getting the correct white balance – we have no problem identifying the skin tone
of a person lit by colorful neon lights, or perceiving the colors on snowy days – two chal-
lenging scenarios of auto-white-balance even for the best consumer cameras. By working
on this thesis, I learned, and also showed that the solution to bring such understanding
into a camera system is to learn from data. We can use machine learning to enhance im-
age resolution, to remove unwanted contents (e.g. reflection and shadow), and to identify
semantically meaningful regions of a video for autofocus.

The efforts of developing machine learning algorithms need to go along with using the
right data and finding the appropriate evaluation metrics. A slight shift between training
and testing dataset distribution can degrade model performance. Many computational
photography algorithms target mobile devices, whose input images will have character-
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istics seen in mobile photography – deep depth of field, lens flare artifact, shot noise in
low-light regions, obstructions or distractors that clutter the scene, to name a few. Either
the model uses smartphone images for training, or it incorporates relevant data augmenta-
tions to align the train-test data distributions. While there are well-established perceptual
metrics such as PSNR, many computational photography tasks rely on human eyeballing
(e.g. a user study) for quality evaluation. It is challenging to quantitatively measure re-
flection removal quality with no ground truth, or the quality of video autofocus where
the ground truth itself may be a perspective of the viewer. An evaluation framework that
incorporates semantic quality, viewing condition and even user input will likely benefit
the development of computational photography algorithms.

Future cameras are blessed with stronger computing power and breakthroughs in sen-
sors and lenses, opening up wider opportunities for machine learning and intelligence.
Mobile devices are equipped with more than one cameras that by nature acquires stereo,
becoming more similar to human perception mechanism and even surpassing it because
the cameras also have different focal lengths. SPAD sensors that were once only for scien-
tific imaging are demonstrating practicality towards consumer cameras, leveraging burst
photography techniques such as robust temporal alignment, distortion-free image warp-
ing and handling of dynamics and motion. Video are now shot in 4K resolution on most
mobile devices, which will benefit from more efficient data encoding and processing to
make the best use out of the resolution. LiDAR depth sensing has just launched on mo-
bile devices with accurate depth data to better understand the 3D space. Though LiDAR
raw data is still sparse, it will motivate depth densification and refinement that have been
already researched in the field of autonomous driving.

One of the interesting and controversial topics in computational photography is au-
thenticity versus manipulation. Here I refer manipulation as the editing algorithms to
improve image quality (similar to the ones shown in this thesis), as opposed to adding
creativity or artistic aspects. Manipulation methods are sometimes seen as the culprit for
altering the reality and defeating the purpose of an immersive photography experience. I
see in a different way. I think the key to preserving authenticity is via regulations of how
the images are presented and distributed. One recent effort is the Content Authenticity
Initiative 1, which is building a system to provide provenance and history for digital me-
dia. I always respect every aspect of photography and I am willing to spend efforts and
time on this subject. However, I think it is even better to share the beauty of photography
to a wider audience who may not be able to devote the same commitment. This is the goal
of what I hope computational photography can achieve. After all, the moment our brain
processes what we see, the reality has been altered by us in a unique way. What we see is
already a projected reality, so is every photograph.

I expect to see cameras to incorporate with machine intelligence at a flashing speed in
the next few years. Personally, I will still learn to be a serious photographer; I will wait for
the golden hour to get the best lighting; I will bring a tripod to capture the night sky; I will

1https://contentauthenticity.org
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exchange physical lenses to suit different types of scenes. But for my friends, families who
do not have time for photography, I will encourage them to bring a smartphone, because
I hope they capture the world with a similar high quality as I do, and I am confident that
casual imaging can get there. I look forward to the day when people are not limited by
their devices or capturing constraints, but only by where they go and what they see.
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