
Satisfiability and Synthesis Modulo Oracles

Elizabeth Polgreen
Andrew Reynolds
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-10

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-10.html

April 13, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Satisfiability and Synthesis Modulo Oracles

Elizabeth Polgreen1,2 and Andrew J. Reynolds3 and Sanjit A. Seshia1

1 University of California, Berkeley
2 University of Edinburgh

3 University of Iowa

Abstract. In classic program synthesis algorithms, such as counterexample-
guided inductive synthesis (CEGIS), the algorithms alternate between
a synthesis phase and an oracle (verification) phase. Many synthesis
algorithms use a white-box oracle based on satisfiability modulo theory
(SMT) solvers to provide counterexamples. But what if a white-box oracle
is either not available or not easy to work with? We present a framework
for solving a general class of oracle-guided synthesis problems which we
term synthesis modulo oracles. In this setting, oracles may be black boxes
with a query-response interface defined by the synthesis problem. As a
necessary component of this framework, we also formalize the problem
of satisfiability modulo oracles, and present an algorithm for solving this
problem. We show that our algorithm for solving synthesis modulo ora-
cles is expressive enough to execute several algorithms for synthesis and
verification including CEGIS and ICE learning. We implement the first
prototype solver for satisfiability and synthesis modulo oracles and, with
an image transformation case study, demonstrate applicability to prob-
lems using complex oracles that incorporate compilation and execution
of code.

1 Introduction

A common formulation of program synthesis is to find a program, from a specified
class of programs, that meets some correctness specification [2]. Classically, this
is encoded as the 2nd-order logic formula ∃f1 . . . fm∀x1 . . . xn φ, where f1 . . . fm
is a set of target functions to be synthesized, x1 . . . xn is a set of 0-ary symbols,
and φ is a quantifier-free formula in a logical theory (or combination of theories)
T . A tuple of functions f∗1 . . . f

∗
m satisfies the semantic restrictions if the formula

∀x1 . . . xn φ is valid in T when the tuple is substituted for ~f in φ. Many problems
are specified in this form, and the SyGuS-IF format [20] is one way of specifying
such syntax-guided synthesis (SyGuS) problems.

Whilst powerful, this format is restrictive in one key way: it requires the
correctness condition to be specified as an satisfiability modulo theories (SMT) [5]
formula in a fully white-box manner. Put another way, SyGuS problems must
be specified with static constraints a-priori to the solving process. The limits
the problems that can be specified, as well as the oracles that can be used to
guide the search. For example, if one wants to synthesize (parts of) a proto-
col whose correctness needs to be checked by a temporal logic model checker

(e.g. [25]), such a model-checking oracle cannot be directly invoked within a
general-purpose SyGuS solver and instead requires creating a custom solver.
Typically the solution approach for SyGuS problems is thus some variable of a
particular type of counterexample-guided inductive synthesis (CEGIS), which is
illustrated in Figure 1, wherein a synthesis phase sends queries to a verification
oracle in the form of a candidate program, and the verification phase response
with a single point counterexample if the program is incorrect. This motivates
our introduction of (potentially black-box) oracles to the synthesis problem, and
necessarily therefore also to the SMT problem therein. Oracles can be black-box
external implementations which can be queried based on a pre-defined interface
of query and response types. Examples of oracles could be components of systems
that are too large and complex to analyze (but which can be executed on inputs),
external verification engines solving verification queries beyond SMT solving, or
even large databases which could be queried using simple interfaces.

Fig. 1: CEGIS with an SMT-
based verification oracle return-
ing counterexamples

Prior work has set out a theoretical frame-
work expressing synthesis algorithms as oracle
guided inductive synthesis [18], where a learner
interacts with an oracle via a pre-defined ora-
cle interface. However, this work does not give
a general algorithmic approach to solve oracle-
guided synthesis problems or demonstrate the
framework on practical applications. An im-
portant contribution we make in this work is
to give a unified algorithmic approach to solv-
ing oracle-guided synthesis problems, termed
SyMO. The SyMO approach is based on a
key insight: that query and response types can
be associated with two types of logical for-
mulas: verification assumptions and synthesis
constraints. The former provide a way to encode restrictions on black-box oracle
behavior into an SMT formula, whereas the latter provide a way for oracles to
guide the search of the synthesizer. SyMO is an iterative algorithm that alternates
between a synthesis phase, and an oracle phase which calls any available oracles.
The oracles generate assumptions and constraints, which are used to determine
correctness of candidate solutions and to guide the synthesis phase respectively.
One can think of constraints as “generalized counterexamples” — at any point
in the algorithm, the synthesis phase is searching for a function that satisfies the
oracle constraints obtained so far.

In order to explain the use-case for assumptions, let us first introduce oracle
function symbols and Satisfiability Modulo Theories and Oracles (SMTO). Oracle
function symbols are n-ary symbols whose behavior is associated with some
oracle. Consider a quantifier-free formula ρ which contains an oracle function
symbol θ. SMTO looks for a satisfying assignment to the formula based on
initially assuming θ is a universally quantified uninterpreted function (i.e., we
look for a satisfying assignment that would work for any possible implementation

2

(a) Original image (b) Target image (c) Target image 2

Fig. 2: Image manipulation: transformations synthesized by Delphi in < 15 sec.

of the oracle): ∀θρ. As we make calls to the oracle, we begin to learn more
about its behavior, and we encode this behavior as assumptions α, such that
the formula becomes ∀θα ⇒ ρ. This is the primary use-case for assumptions
generated by oracles, they are used to constrain the behavior of oracle function
symbols. Determining the correctness of a candidate function in a synthesis
problem is an SMTO problem and assumptions generated by oracles are used to
determine the correctness of candidate solutions.

As an exemplar of an existing oracle-guided synthesis algorithm that goes
beyond the SMT-solver based counterexample oracles, consider ICE-learning [16]
for invariant synthesis. ICE-learning is based on the synthesizer having access to
three oracles: an oracle which provides positive examples (examples which should
be contained within the invariant); an oracle which provides negative examples
(examples which should not be contained within the invariant); and an oracle
which provides implication examples (an example pair where if the first element
is contained within the invariant, both must be contained). Whilst it is possible
to build some of these oracles using an SMT solver, it is often more effective to
construct these oracles in other ways, for instance the positive example oracle
can simply execute the loop or system for which an invariant is being discovered
and return the output.

We implement SyMO in a prototype solver Delphi, and hint at its broad
utility by demonstrating several applications including programming by example,
invariant synthesis, synthesizing approximations for trigonometric functions, and
synthesizing image transformations. The latter use case, shown in Fig. 2, is an
illustration of the power of being able to incorporate oracles into SyMO that are
too complex to be modeled (in this instance, the oracle incorporates a compiler
and an image processing library).

To summarize, the main contributions of this paper are:

• A formalization of the problem of satisfiability and synthesis modulo oracles
(Sec. 2);

• A unifying algorithmic approach for solving these problems (Sec. 3 and Sec. 4);

• Demonstration of how this approach can capture popular synthesis strategies
from the literature (Sec. 5), and

3

• A prototype solver Delphi, and an experimental demonstration of the broad
applicability of this framework (Sec. 6).

Related work: Almost all synthesis algorithms can be framed as some form
of oracle guided synthesis. Counterexample-guided inductive synthesis (CEGIS)
is the original synthesis algorithm used for Syntax-Guided Synthesis [24], and
uses a correctness oracle that returns counterexamples. Further developments
in synthesis then typically fall into one of two categories: either they develop
innovative search algorithms to search the space more efficiently (for instance
genetic algorithms [12], or reinforcement learning [23], or partitioning the search
space in creative ways [3]; or they focus on extending the communication paradigm
permitted between the synthesis and the verification phase. For instance CEGIS
modulo theories [1], CEGIS(T), extends the oracle interface over standard CEGIS
to permit responses in the form of a restricted set of constraints over constants
in the candidate program; CVC4 stands out in making full use of the white-box
nature of the SMT solver oracle with its single-invocation algorithm [22]. Other
work leverages the ability to classify counterexamples as positive or negative
examples [19]. There are also notable algorithms in invariant synthesis based
on innovative use of different query types; IC3 [8], LoopInvGen [21], and ICE-
learning [16] being some specific instances. Our work has one key stand-out
difference over these: in all of these algorithms, the correctness criteria must be
specified as a logical formula, whereas in our framework we enable specification
of the correctness criteria as a combination of a logical formula and calls to
external oracles which may be opaque to the solver. Synthesis with distinguishing
inputs [17] is an exception to this literature and uses a specific set of three
interacting black-box oracles, to solve a very specific problem of synthesis of loop-
free programs from components. Our work differs from this and the previously-
mentioned algorithms in that they are customized to use certain specific types
of oracle queries, whereas, we give a “meta-solver” allowing any type of oracle
query that can be formulated as either generating a constraint or an assumption
in the form of a logical formula.

The idea of satisfiability with black-boxes has been tackled before on work
on abstracting functional components as uninterpreted/partially-interpreted
functions (see, e.g., [4, 10, 9]), which use counterexample-guided abstraction
refinement [11]. Here, components of a system are abstracted and then refined
based on whether the abstraction is sufficiently detailed to prove a property.
However, in order to do this, the full system must be provided as a white-box.
The key contribution our work makes in this area is a framework allowing the use
of black-box components that obey certain query-response interface constraints,
where the refinement is dictated by these constraints and the black-box oracle
interaction.

4

2 Oracles

In this section, we introduce basic definitions and terminology for the rest of the
paper. We begin with some preliminaries about SMT and synthesis.

2.1 Preliminaries and Notation

Satisfiability Modulo Theories (SMT): The input to an SMT problem is
a closed first-order logical formula ϕ. The task is to determine whether ϕ is
satisfiable or unsatisfiable with respect to some background theory T , which
restricts the interpretation of symbols in ϕ. If ϕ is satisfiable, a solver will usually
return a model of T that makes ϕ true, which will include assignments to all
free variables in ϕ. In this work we consider formula in prenex normal form:
ϕ ≈ q1x1q2x2 . . . qnxn .ρ, where q1 . . . qn ∈ {∀,∃}, all quantifiers range over 0-ary
symbols (symbolic constants), and ρ is a quantifier-free formula. Any first-order
formula can be rewritten into this prenex normal form so this restriction is not
limiting.

Syntax-Guided Synthesis: In syntax-guided synthesis, we are given a set
of functions f1 . . . fm to be synthesized, associated languages of expressions
L1, . . . , Lm (typically generated by grammars), and we seek to solve a formula of
the form

∃f1 ∈ L1 . . . fm ∈ Lm ∀x1, . . . xn φ,

where x1 . . . xn is a set of 0-ary symbols and φ is a quantifier-free formula in a
background theory T . In some cases, the languages Li include all well-formed
expressions in T of the same sort as fi, and thus can be dropped from the formula.
A tuple of candidate functions (f∗1 , . . . , f

∗
m) satisfies the semantic restrictions

for functions-to-synthesize (f1, . . . , fm) in conjecture ∃f1, . . . , fm.∀x1, . . . xn φ in
background theory T if ∀x1, . . . xn φ is valid in T when f1, . . . , fn are defined to
be terms whose semantics are given by the functions (f∗1 , . . . , f

∗
n) [2, 20].

2.2 Basic Definitions

In this work, we use the term oracle to refer to a (black-box) component which
can be queried in a pre-defined way by the solver. Here we define the necessary
oracle concepts we will need before we can outline satisfiability and synthesis
modulo oracles. These concepts are borrowed from [18] but we give our own
formal definitions.

Definition 1 (Oracle). Let Q be a set of queries and R be a set of responses.
An oracle is a binary relation O ⊆ Q×R which associates each query q ∈ Q to a
response r ∈ R. O may be functional, i.e., ∀q ∈ Q,∀r ∈ R,∀p ∈ Q, ((q, r) ∈ O ∧
(p, r) ∈ O)⇒ q = p, or non-functional. It is serial: ∀q ∈ Q,∃r ∈ R, (q, r) ∈ O.

5

A query-response pair (q, r) is consistent with oracle O if (q, r) ∈ O.
The solver interacts with oracles via queries and responses defined by an oracle

interface. Specifically, the oracle interface defines the query type and response
type, and any additional expressions are either oracle assumption generators
or oracle constraint generators. Substitution of the oracle response types into
the former generates an expression the solver assumes is true when checking
correctness of a solution; the latter generates an expression that holds for any valid
solution. We introduce the former to allow black-box components of correctness
specifications and the latter to provide guidance to a synthesis solver. Formally:

Definition 2 (Oracle Interface). An oracle interface I is a tuple that defines
the domain of the oracle (the set of queries Q that the oracle accepts), and the
co-domain of the oracle (the set of responses R that the oracle can return). The
domain Q is given as a list of sorted variables y1, . . . , yj where the sorts of the
variable correspond to the sorts in the query type. The response R is also given
as such a list of sorted variables z1), . . . zk. The oracle interface may provide one
or more assumption generators αgen and constraint generators βgen.

Definition 3 (Query type). A query type is defined as a tuple of sorts σ1, ..., σj
permitted in the background theory. A solver may query the oracle with a tuple
of constant literals of sorts σ1, ..., σj.

Definition 4 (Response type). A response type is defined as a tuple of sorts
σ′1, ..., σ

′
k permitted in the background theory. The oracle will return a tuple of

constant literals of sorts σ′1, ..., σ
′
k.

I =

Q : (y1 σ1), . . . , (yj σj)

R : (z1 σ
′
1), . . . , (zk σ

′
k)

αgen : assumption generator

βgen : constraint generator

Fig. 3: Oracle interface

We first define oracle assumption
generators and oracle function sym-
bols. If e is an expression and x is free
in e, let e(t/x) be the formula obtained
from the formula e by proper substitu-
tion of the variable x by the variable
t.

Definition 5 (Oracle assumption generators). An oracle assumption gen-
erator αgen is a formula using symbols from the background theory, and variables
y1, . . . yj from the domain and z1, . . . zk from the co-domain of the oracle. When
the oracle is queried with a tuple of constant literals c1, ..., ck and responds with
a tuple of constant literals d1, . . . , dj, a new term α is generated with constant
literals c1, . . . cj in place of identifiers y1 . . . yj and constant literals d1, . . . dk in
place of z1 . . . zk. That is, α ≈ αgen(c1/y1, . . . , cj/yj , d1/z1, . . . dk/zk).

Given a synthesis conjecture ∃f1 . . . fm∀x1 . . . xn, φ, and a generated assump-
tion α, the new synthesis conjecture becomes ∃f1 . . . fm∀x1 . . . xn, α⇒ φ. Given
a first-order satisfiability formula in prenex normal form ∃x1 . . . ∃xnρ, the new
satisfiability problem becomes ∃x1 . . . ∃xnα ⇒ ρ. We comment on the satisfia-
bility of these formulas in the following sections, but a solution to the original

6

first-order formula is not necessarily a valid solution to the formula with the
assumption applied.

Next, we define a notion of an oracle constraint. We define oracle constraints
only for the purposes of synthesis problems, where these constraints are used to
guide the synthesis algorithm.

Definition 6 (Oracle constraint generators). An oracle constraint genera-
tor βgen is a formula that uses symbols from the background theory, and sorted
variables y1, . . . yj from the domain and z1, . . . zk from the co-domain of the oracle.
When the oracle is queried with a tuple of constant literals c1, ..., cj and responds
with a tuple of constant literals d1, . . . , dk, a new term β is generated with constant
literals c1, . . . cj in place of identifiers y1 . . . yj and constant literals d1, . . . dk in
place of z1 . . . zk. That is β ≈ βgen(c1/y1, . . . , cj/yj , d1/z1, . . . dk/zk).

Given a synthesis conjecture ∃f1 . . . fm∀x1 . . . xn φ, and a generated constraint
β, the new synthesis conjecture becomes ∃f1 . . . fm ∀x1 . . . xn .φ ∧ β.

Finally, we define oracle function symbols, syntactic sugar for a specific use
case of oracle assumption generators. An oracle function symbol is a functional
symbol that may be used in the synthesis or satisfiability conjecture, and is
associated to a functional (black-box) external interpretation in the form of an
oracle. These symbols allow us to use oracles in constraints and assertions. They
introduce a very specific restricted type of higher-order quantification to the
problem which we will describe in more detail in Section 3: oracle function symbols
are treated as universally quantified uninterpreted functions, and the associated
oracle generates assumptions constraining the behavior of the uninterpreted
function.

Definition 7 (Oracle Function Symbol). An oracle function symbol θ is a
function symbol of sort σ1 × . . . × σj → σ′ which is associated to a functional
oracle O with an oracle interface which defines the domain as (y1, σ1), . . . , (yj , σj),
and the co-domain as (z, σ′), and an oracle assumption generator αgen ≈
θ(y1, . . . yj) = z.

We are now ready to define the two main problems introduced by this paper.

Definition 8 (Satisfiability Modulo Oracles). A satisfiability modulo ora-
cles (SMTO) problem consists of a formula ζ, which may be quantified, in a
background theory T , and a set of oracle interfaces I1 . . . Ip. The formula is
satisfiable if there exists a satisfying assignment to A =⇒ (ζ ∧B) in T , where
A is a conjunction of all assumptions and B is a conjunction of all constraints
generated by the oracle interfaces.

Definition 9 (Restricted SMTO). We defined a restricted SMTO problem
where ζ is of the form ∃x1 . . . xn,∀θ1 . . . θp ρ, where θ1 . . . θp are oracle function
symbols and I1 . . . Ip is the set of oracle interfaces corresponding to these symbols.
The formula is satisfiable if there exists a satisfying assignment to ρ in T that
includes only query-response pairs consistent with the oracles for θ1 . . . θp.

7

The alternation of quantifiers in the above definition is important. We are looking
for an assignment to the xi variables that will satisfy ρ no matter what (black-box)
oracles implement the interfaces Ii corresponding to the θi symbols.

Definition 10 (Synthesis Modulo Oracles). A synthesis modulo oracles
(SyMO) conjecture consists of a formula ∃f1 . . . fm,∀θ1 . . . θp, x1 . . . xn φ, and a
set of oracle interfaces I1 . . . Ik, where k ≥ p, and interfaces I1 . . . Ip correspond
to the oracle function symbols.

A tuple of functions ~f∗ satisfies the synthesis conjecture if φ[~f∗/~f] is true for all
x1 . . . xn and for all (black-box) oracles implementing the oracle interfaces for
θ1 . . . θp.

3 Satisfiability Modulo Oracles

Recall we defined a general SMTO problem and a restricted SMTO problem in
section 2. In this section, we describe our approach to solving the restricted SMTO
problem. First, we discuss some of the subtleties that arise when reasoning about
the satisfiability and unsatisfiability of formulas the general SMTO problem.

Oracle assumption generators: Suppose we have a formula, Q1x1 . . . Qnxnρ,
where Q1, . . . , Qn are quantifiers, x1, . . . , xn are 0-ary symbols, and there is
additionally an external oracle that generates assumptions. Calling the oracle i
times generates a sequence of formulas, where αi is the assumption generated by
the ith call to the oracle:

γ0 ≈Q1x1 . . . Qnxn ρ

γ1 ≈Q1x1 . . . Qnxn (α1 ⇒ ρ)

. . .

γi ≈Q1x1 . . . Qnxn (αi ⇒ . . . (α2 ⇒ (α1 ⇒ ρ)))

The problem is T -satisfiable after i calls to the oracle iff ¬γi is unsatisfiable. The
problem is unsatisfiable iff γi is unsatisfiable. If the assumptions generated do
not contradict each other, a formula that is satisfiable after i calls to the solver
will remain satisfiable, no matter how many further calls to the oracle are made.

Oracle constraint generators: Extending this correctness definition to constraints,
suppose we have the same formula Q1x1 . . . Qnxnρ but we now have an external
oracle that generates constraints. Calling the oracle i times generates the following
sequence of formula, where βi is the constraint generated by the ith call to the
oracle:

γ0 ≈Q1x1 . . . Qnxn ρ

γ1 ≈Q1x1 . . . Qnxn ρ ∧ β1
. . .

γi ≈Q1x1 . . . Qnxn ρ ∧ β1 ∧ . . . ∧ βi

8

Again, the problem is satisfiable after i calls to the oracle, iff any formula ¬γi
is unsatisfiable, and unsatisfiable after i calls to the oracle iff the formula γi is
unsatisfiable. If a formula is unsatisfiable after i calls, it will remain unsatisfiable,
no matter how many more calls to the oracles are made.

Correctness of general SMTO: The general SMTO problem permits both as-
sumption and constraint generators, giving the formula γi ≈ Q1x1 . . . Qnxn(α1 ∧
. . . ∧ αi) =⇒ (ρ ∧ β1 ∧ . . . ∧ βi. The problem is satisfiable after i calls to the
oracle if ¬γi is unsatisfiable, and it is unsatisfiable if γi is unsatisfiable. Given
that satisfiablility changes depending on the sequence of oracle calls, a solver
must return both a “satisfiable/unsatisfiable” result and the sequence of calls
used to reach that result.

Restricted SMTO: In restricted SMTO, we permit only oracle function symbols
and their associated assumption generating oracles, and no other oracles. This
introduces a specific form of higher order quantification: ∃x1 . . . ∃xn∀θ ρ, where
θ is an oracle function symbol and x1 . . . xn are 0-ary symbols. For simplicity
we consider a formula with only one oracle function symbol, but the following
applies for a formula with any finite positive number of oracle function symbols.
Intuitively, we wish to find a model for the free variables x1, . . . xn and for θ such
that ρ is true and the model for θ is consistent with the external implementation
the oracle function symbol is associated to. Recall that, for an oracle function
symbol θ with sort σ1 × . . . × σj → σ′, calling the corresponding oracle with
a set of constant literals c1, . . . , cj and receiving a response d will generate an
assumption α ≈ θ(c1, . . . cj) = d. Now suppose we generate the following sequence
of formula:

γ0 ≈∃x1 . . . ∃xn∀θ ρ

γ1 ≈∃x1 . . . ∃xn∀θ (α1 ⇒ ρ)

. . .

γn ≈∃x1 . . . ∃xn∀θ (αn ⇒ . . . (α2 ⇒ (α1 ⇒ ρ)))

As before, the problem is satisfiable after i calls to the oracle, and for any
number of subsequent calls to the oracles, if ¬γi is unsatisfiable. The problem
is unsatisfiable if γi is unsatisfiable. However, we know that the oracles will
not generate assumptions that contradict each other, since they only generate
constraints based on equality, and the oracles are functional. Thus α1 ∧ . . . ∧ αi

is always satisfiable, and the problem is unsatisfiable iff α1 ∧ . . . ∧ αi ∧ ρ is
unsatisfiable. Once a satisfiable/unsatisfiable result is obtained for a restricted
SMTO problem, the result cannot be changed by making more calls to the oracles.

3.1 Algorithm for restricted Satisfiability Modulo Oracles

9

Fig. 4: Satisfiability Modulo Oracle
Solver

Our algorithm for restricted SMTO
builds on existing work in SMT solv-
ing, first looking for satisfying assign-
ments to the SMT formula while over-
approximating oracle function sym-
bols as uninterpreted functions, and
then checking whether this assign-
ment is consistent with the oracles.
That is, an SMT solver finds a sat-
isfying assignment to the following for-
mula, assuming the oracle function
symbols are uninterpreted functions:
∃x1 . . . xn,∃θ1 . . . θp ρ.

The corresponding oracles are
called to check whether the satisfying
assignment to the oracle function sym-

bols ~θ is consistent with them. If the satisfying assignment was not consistent
with the oracles, an oracle assumption is added to the formula and it is passed
back to the SMT solver, which attempts to find a new satisfying assignment. A
sequence of i calls to oracles generates a sequence of assumptions α1 . . . αi. These
assumptions are conjoined to yield the formula:

∃x1 . . . xn,∃θ1 . . . θp ρ ∧ α1 ∧ . . . ∧ αi.

This process repeats until a satisfying assignment is found that is consis-
tent with the oracles. If ∃x1 . . . xn,∃θ1 . . . θp ρ ∧ α1 ∧ . . . ∧ αi is T -satisfiable
and consistent with the behavior of the oracles, then it follows the formula
∃x1 . . . xn,∀θ1 . . . θp (α1 ∧ . . .∧αi)⇒ ρ is also T -satisfiable since the behavior of
the oracle function symbols must be restricted by an assumption in α1 . . . αi for
every argument used in application of an oracle function symbol in the satisfying
assignment. This algorithm is illustrated in Figure 4 and given as Algorithm 1.

Theorem 1 (Soundness of SMTO algorithm). Algorithm 1 returns UNSAT
iff the SMTO problem ∃x1 . . . xm∀θ1 . . . θp ρ is unsatisfiable with respect to oracles
for θ1, . . . , θp implementing oracle interfaces I1, . . . , Ip.

Proof sketch. Algorithm 1 returns UNSAT when the underlying SMT solver
returns UNSAT on the formula ∃x1 . . . xn,∃θ1 . . . θp ρ ∧ α1 ∧ . . . ∧ αi for some
i ≥ 0. This indicates there are no values for the xis and no oracle implementations
consistent with the assumptions generated from the oracle interfaces on which ρ
evaluates to true, viz., the SMTO problem is unsatisfiable. Similarly, Algorithm 1
returns SAT only when the SMT solver returns a model that is consistent with
all oracles: i.e., each oracle, when evaluated on an input query generated from
the model, produces a response matching the interpretation of its corresponding
oracle function symbol.

10

Algorithm 1: Satisfiability Modulo Oracles (SMTO)

input : ∃x1 . . . xn∀θi . . . θp ρ, Oracle Interfaces I1 . . . Ip
output :UNSAT/SAT + assumptions α + optional(model)
Algorithm SMTO

α← true
while true do

success=true if SMTSolver(ρ ∧ α)=UNSAT then
return UNSAT, α

else
model←model from SMT solver
for θi ∈ {θ1 . . . θp} do

is consistent, αnew ← consistent(θi, Ii, ρ, model)
α← α ∧ αnew

if !is consistent then
success=false
break

end

end
if success then

return SAT, α, model
end

end

end

Procedure consistent(θi, Ii, ρ, model)
for app in applications of θi in ρ do

inputs ← evaluate(app, model)
response ← call oracle(Ii, inputs) // Call oracle interface
αnew ← θi(inputs) = response
if !(response=evaluate(θi(inputs),model)) then

return False, αnew

end

end
return True, αnew

Theorem 2 (Completeness for Decidable T and Finite Oracle Domains).
Let background theory T be decidable, and let the domain of all oracle function
symbols be finite. In this case Algorithm 1 terminates.

Proof sketch. Termination is guaranteed since the algorithm never repeats the
same assignment to oracle inputs, and therefore, all input-output pairs for each
oracle will be exhausted eventually. At this point, the oracle function symbols
can be replaced by interpreted functions (lookup tables), and the formula reduces
to one in the (decidable) background theory T .

Termination is not guaranteed in all background theories since it may be
possible to write formula where the number of input valuations to the oracle
function symbols that must be enumerated is infinite. For example, this is possible

11

in the theory of Linear Integer Arithmetic with an oracle function symbol with
integer arguments.

4 Synthesis Modulo Oracles

A synthesis modulo oracles problem consists of: a set of universally quantified
0-ary symbols x1, . . . xn; a set of oracle function symbols θ0, . . . θt; a synthesis
conjecture
∃f1 . . . fm ∀x1 . . . xm, θ1 . . . θp, .φ where φ is a quantifier-free formula; and a set of

oracle interfaces ~I that refer to oracles corresponding to oracle function symbols
and any additional external oracles. We now explain how the oracle assumptions,
oracle constraints and oracle function symbols affect the synthesis conjecture.

Oracle Symbols and Assumptions: Suppose we have a formula
∃f1 . . . fm ∀x1 . . . xn,∀θφ and a set of external oracles corresponding to the oracle
function symbols. Initially, before we call any oracles, a set of candidate functions
f∗1 . . . f

∗
m is correct iff the formula γ0 ≈ ∀x1 . . . xn,∀θφ is T -valid when f1 . . . fm

are replaced by f∗1 . . . f
∗
m. Each call we make to an oracle generates an assumption

α (which may be an assumption related to an oracle function symbol, or any
other assumption). Making i calls to the oracle gives us this sequence of formula,
where αi is the assumption generated by the ith call to the oracle:

γ0 ≈ ∀x1 . . . xn,∀θφ
γ1 ≈ ∀x1 . . . xn,∀θ(α1 ⇒ φ)

. . .

γ0 ≈ ∀x1 . . . xn,∀θ(αn ⇒ . . . (α2 ⇒ (α1 ⇒ φ)))

Rewriting the implications as disjuctions (e.g., ¬α1 ∨ φ), makes it clear this
sequence of formula is monotone: if a set of candidate functions is valid according
to γ0, it is valid according to all γi>0. Thus, if we find a set of valid solutions at
any iteration of the synthesis process, we know the solutions will remain valid no
matter how many times we call the oracles that generate assumptions.

Oracle Constraint Generators: As previously mentioned, we require oracles will
not generate constraints that remove solutions to the synthesis conjecture, i.e.,
for any constraint β, (∀~xφ)⇒ β should be true . These constraints are used to
guide the solver. If a sequence of oracles are called, and a sequence of constraints
β1, . . . βn are generated, the constraints could be conjoined together and this new
synthesis conjecture, ∃~f ∀~x, ~θ φ ∧ β1 ∧ . . . ∧ βn, will be equisatisfiable with the
original synthesis conjecture. We will show how oracle constraints are used to
guide the solver in the following section.

4.1 Algorithm for Synthesis with Oracles

We now proceed to describe an algorithm for solving synthesis problems using
oracles, illustrated in Figure 5. The algorithm is broken down into two phases: a

12

synthesis phase and an oracle phase, and maintains two formulas, a verification
formula V and a synthesis formula S. These are initialised as S = ∃f1 . . . fm. .true
and V = ∃x1 . . . xn .θ1 . . . θp .¬φ. The algorithm proceeds as follows, updating
these two formulas:

Synthesis Phase: When the synthesis phase receives a new constraint β, it
updates the synthesis formula such that S′ = S ∧ β. It looks for a set
of candidate functions that satisfy the synthesis formula. The candidate
functions ~f∗ are passed to the oracle phase.

Oracle Phase I: The oracle phase calls the SMTO solver to solve the verification
formula, as described in section 3. In the process of solving the formula, any
oracle assumption α that is generated is added to the verification formula,
which becomes ∃x1 . . . xn ∀θ1 . . . θp(α ⇒ ¬φ). If the SMTO solver returns

UNSAT, then ~f∗ is a valid solution to the synthesis problem. If the SMTO
solver returns SAT, then a counterexample constraint β is generated, which
is returned to the synthesis phase.

Oracle Phase II: Additionally, in the second half of the oracle phase, the
solver may call any further oracles which are available (not corresponding to
oracle function symbols) and the assumptions are added to the verification
formula and constraints are passed to the synthesis formula.

Fig. 5: SyMO Algorithm Illustration

Generating counterexample con-
straints: In order to generate
a counterexample constraint β
from the SMTO solver, take
the formula ∃f1 . . . fm .(~α ⇒
φ), where ~α is a conjunc-
tion of any assumptions gen-
erated by the SMTO solver.
We substitute any 0-ary sym-
bols x1 . . . xn for their con-
crete values on the counterex-
ample model. We use e(t/x)
to indicate the formula ob-
tained by substitution of x
with t in formula e. If we ob-
tain a counterexample which
assigns c1 . . . cn to 0-ary vari-

ables x1 . . . xn, we obtain the following counterexample constraint:

(~α⇒ φ)(c1/x1, . . . , cn/xn)

All applications of functional oracle function symbols accepting only 0-ary param-
eters now have constant input arguments. Use θi,j to indicate the jth application
of oracle i in the formula α⇒ φ. For any oracle application, we obtain the result
of that oracle call from the satisfiability modulo oracles solver, which we denote

13

Algorithm 2: Synthesis Modulo Oracles

input : ∃f1 . . . fm∀x1 . . . xn∀θ1 . . . θp φ
input :Oracle Interfaces: I1, . . . Ik, where p ≤ k.
output : solution f1 . . . fm / no solution
A← true ; // conjunction of assumptions
S ← true ; // synthesis formula
while true do

/* verification formula */
V ← ∃x1 . . . xn∀θi . . . θp (A ∧ ¬φ)
µ ←Synthesize(∃f1 . . . fm .S) ;
if µ = ∅ then

return no solution;
else

f∗1 . . . f
∗
m ← µ ; // extract candidate solutions from model

Result, α, model ← SMTO(V(f∗1 . . . f
∗
m), I1 . . . Ip) ;

if Result=UNSAT then
return f∗1 . . . f

∗
m

else
A← A ∧ α ;
/* Generate constraint from model */
S ← S ∧ generate constraint(model);
/* call all oracles that were not called by SMTO solver */
for i ∈ Ip . . . Ik do

if * then
α, β ← call oracle(i) ; // call oracle based on interface
A← A ∧ α ; // Update assumptions
S ← S ∧ β ; // Update synthesis formula

end

end

end

end

end

zi,j .
(~α⇒ φ)(c1/x1, . . . , cn/xn, z1,1/θ1,1, . . . , zi,j/θi,j)

Any applications of functional oracle function symbols in φ accepting functional
parameters, i.e.,., oracles that receive the candidate function as an argument,
still have a non-constant argument. The results of these oracles are therefore
replaced with fresh free variables. This weakening is introduce since state-of-the-
art SMT solvers do not currently support uninterpreted functions that accept
n-ary parameters as arguments.

Inferring inputs for additional oracles: The inputs for oracle function symbols
are inferred by the satisfiability modulo oracles solver. For other oracles, the
input values are inferred by mapping concrete values from the counterexample
to applications of the synthesis function in φ and mapping oracle query inputs

14

to synthesis function applications within constraint generators. For example, if
f(x) appears in φ, and the counterexample for x is 7, and there exists an oracle
interface with a single input z and the generator βgen : f(z) = y, we will call
that oracle with the value 7. To make this inference more straightforward, given
an oracle interface with query inputs y1 . . . yj and responses z1 . . . zk, we limit
αgen and βgen to expressions in the following grammar, which notably prohibits
arbitrary nesting of oracle function symbol calls:

αgen : :=P
βgen : :=P
P: := ¬P |P∨P |P∧P |P⇒P |F(V, . . . ,V) |V<V |V>V |V=V | θ (V, . . . ,V) |

θ(F)
V : := y1 | . . . | yj | z1 | . . . | zk |F(V, . . .V) | constant
F : := f1 | . . . | fm
θ : := θ1 | . . . | θm

Theorem 3 (Soundness). Suppose Algorithm 2 returns a solution f . This
solution satisfies the synthesis conjecture.

Proof sketch. Solutions are returned if the SMTO solver is unable to find any
counterexample that shows the solution violates φ. Since the SMTO solver is
sound (Theorem 1), it follows that the solution returned by Alg. 2 satisfies the
synthesis conjecture.

5 Instances of Synthesis Modulo Oracles

5.1 Query Classes and Corresponding Interfaces

A number of different queries are categorized in work by Jha and Seshia [18],
including queries such as membership queries, where the learner selects an example
set of input-output pair(s) and asks if they are permitted by the specification φ.
We describe the oracle interfaces for each of these classic query types. Suppose we
are synthesising a single function f : σ1 × . . .× σj → σ′ to satisfy a specification
∃f∀x1, . . . xn∀θ1, . . . θp .φ. For consistency with the definitions in Section 2, we use
y1, y2 . . . for oracle query identifiers and z1, z2, . . . for oracle response identifiers,
while the sorts are consistent with the sorts in the function definition. The solver
infers from the specification φ which constant literals it should call the oracles
with in place of the symbols y1, y2, The following oracles generate oracle
constraints, and are not associated to oracle function symbols. Their interfaces
are shown in Figure 6:

Membership queries: the learner selects a concrete set of constants of sorts
σ1, . . . , σj , σ

′. This is an input-output pair {c1, . . . cj}, c and the learner
asks whether f(c1, . . . , cj) = c is permitted by the specification φ. The
oracle responds with a boolean variable b which indicates whether the input-
output pair is permitted by the specification, and a constraint that specifies
b ⇐⇒ f(c1, . . . , cj) = c.

15

Input-output query: the learner selects a possible set of inputs c1, . . . , cj
and requests the correct output from the oracle. This is a type of mem-
bership query, and the oracle returns a concrete value c and a constraint
(f(c1, . . . , cj) = c).

Negative example queries: the learner asks for a negative input-output
example which is not permitted by φ. The response from the oracle is
a set of constants c1, . . . , cj , c of sort σ1, . . . , σj , σ

′ and a constraint that
(f(c1, . . . , cj) 6= c).

Positive example queries: the learner asks for a negative input-output exam-
ple which is permitted by φ. The response from the oracle is a set of constants
c1, . . . , cj , c of sort σ1, . . . , σj , σ

′ and a constraint that (f(c1, . . . , cj) = c).

Imem =

Q : (y1 σ1), . . . , (yj , σj)(yj+1 σ

′)

R : (z1 bool)

βgen : z1 ⇐⇒ (f(y1, . . . , yj) = yj+1)

Membership query interface

Ii/o =

Q : (y1 σ1), . . . , (yj σj)

R : (z1 σ
′)

βgen : (f(y1, . . . , yj) = z1)

Input-output example interface

Ineg =

Q : ∅
R : (z1 σ1), . . . , (zj σj), (z σ

′)

βgen : (f(z1, . . . , zj) 6= zj+1)

Negative example interface

Ipos =

Q : ∅
R : (z1 σ1), . . . , (zj σj), (zj+1 σ

′)

βgen : (f(z1, . . . , zj) = zj+1)

Positive example interface

Fig. 6: Oracle interfaces for constraint generating oracles. bool indicates a boolean
sort.

The following oracles are associated to oracle function symbols and generate
oracle constraints and assumptions:

Correctness queries: Given a candidate program y, the oracle returns true if
y is correct and false otherwise, along with counterexample values c1, . . . cn
corresponding to the variables x1, . . . xn if y is not correct. Suppose that
x1, . . . xn have sorts σ1, . . . σn. The constraint generator is the formula φ
with the oracle response symbols z1, . . . , zn in place of x1, . . . xn. The con-
straint is generated by substituting the counterexample values in place of
the oracle response symbols, giving φ(c1/x1, . . . , cn/xn). A correctness oracle
is associated to an oracle function symbol θ which accepts a function as
input, which is asserted to be true in the verification formula φ. When the
oracle is called and the function is correct, it generates an oracle assumption
θ(y) = true. If the oracle is called and the function is incorrect, it generates
the assumption θ(y) = false. The interface is as below, and correctness oracles

16

without counterexamples are handled in the same way but without βgen.:

Icorr =

Q : (y (σ1 × . . .× σj → σ′))

R : (z1 σ1), . . . , (zn σn), (zn+1 bool),

αgen : θ(f∗) = zn+1

βgen : φ(z1/x1, . . . , zn/xn)

5.2 Reduction from Existing Synthesis Algorithms

The synthesis modulo oracles framework we present is a flexible and general
framework for program synthesis. It is possible for this framework and the
corresponding algorithm to implement any inductive synthesis algorithm, i.e.,
any synthesis algorithm where the synthesis phase of the algorithm iteratively
increases the constraints over the synthesis function. Here we describe how,
by providing specific oracles the algorithm describes will implement standard
synthesis algorithms such as CEGIS [24], ICE-learning [16] and Synthesis with
distinguishing inputs [17].

CounterExample Guided Inductive Synthesis: Suppose we are solving
a synthesis formula with a single variable x and a single synthesis function f ,
where f : σ → σ′. CEGIS consists of two phases, a synthesis phase that solves
the formula S = ∃f∀x ∈ Xcex, φ, where Xcex is a subset of all possible values of
x, and a verification phase which solves the formula V = ∃x¬φ. There are two
way of implementing CEGIS in our framework. The first is simply to pass the
full SMT-formula φ to the algorithm as is, without providing external oracles.
The second method is to replace the specification given to the oracle guided
synthesis algorithm with ∃f∀θ .θ(f) and use an external correctness oracle with
counterexamples, illustrated here for a task of synthesising a function f , and
receiving a candidate synthesis function y : σ → σ′:

Icorr =

Q : (y (σ → σ′))

R : (z1 σ), (z2 bool)

αgen : θ(y) = z2

βgen : φ(z1/x)

By inspecting the formula solved by the synthesis phase at each iteration, we
can see that, after the first iteration, the synthesis formula are equisatisfiable if
the sequence of counterexamples obtained is the same for both algorithms.

17

iter. CEGIS SyMO with correctness oracle

1 Xcex = ∅
∃f.∃x.φ ∃f.true

2 Xcex = c1 β1 = φ(k1/x)
. ∃f.∀x ∈ Xcex .φ(x) ∃f.β1

3 Xcex = c1, c2 β2 = φ(k2/x)
. ∃f.∀x ∈ Xcex .φ(x) ∃f.β1 ∧ β2

.

Table 1: Comparison of the synthesis formula at each iteration, showing that,
if the same sequence of counterexamples is obtained, the synthesis formula are
equisatisfiable at each step, i.e., SyMO reduces to CEGIS.

Fig. 7: Synthesis with distinguishing in-
puts

Synthesis with distinguishing in-
puts: This algorithm [17], illustrated
in Figure 7, uses several oracles which
interact with each other. The synthe-
sis phase searches for a function that
satisfies a list of input-output exam-
ples. If one is found, it is passed to
a distinguishing-input oracle, which
looks for another, different, function
that behaves the same as the existing
function on the list of input-output
examples, but behaves differently on
another distinguishing input.

If such a function exists, the dis-
tinguishing input is passed to an in-

put/output oracle, and the input/output pair is passed to the synthesiser. If a
distinguishing input does not exist, correctness of the function is checked and
the algorithm terminates (if this function is not correct, then there is no solution
to the synthesis problem).

We implement this algorithm in our framework observing that synthesiser
needs only to query the correctness oracle and the distinguishing input oracle,
which maintains a list of inputs it has returned so far, and receives a response from
only one oracle, the input/output oracle. The interface for the distinguishing
input-oracle is as follows for a specification synthesising f , and a candidate
synthesis function y : σ1 × . . .× σn → σ′:

IsynthDI =

Q : (y (σ1 × . . .× σn → σ′))

R : (z1 σ1), . . . , (zn σn), (zn+1 σ
′)

βgen : f(z1, . . . zn) = zn+1

ICE learning: ICE learning [16] is an algorithm for learning invariants based
on using examples, counterexamples and implications. Recall the classic invariant

18

synthesis problem is to find an invariant inv such that:

∀x, x′ ∈ X.init(x) =⇒ inv(x)∧
inv(x) ∧ trans(x, x′) =⇒ inv(x′)∧

inv(x′) =⇒ φ

where init defines some initial conditions, trans defines a transition relation and
φ is some property that should hold. ICE is an oracle guided synthesis algorithm,
where, given a candidate inv∗, if the candidate is incorrect (i.e., violates the
constraints listed above) the oracle can provide: positive examples E ⊆ X, which
are values for x where inv(x) should be true; negative examples C ⊆ X, which
are values for x where inv(x) should be false; and implications I ⊆ X×X, which
are values for x and x′ such that inv(x) ⇒ inv(x′). The learner then finds a
candidate inv, using a symbolic encoding, such that

(∀x ∈ E.inv(x)) ∧ (∀x ∈ C.¬inv(x)) ∧ (∀(x, x′) ∈ I.inv(x)⇒ inv(x′)).

The synthesis modulo oracles algorithm described in this work will implement
ICE learning, when given a correctly defined set of oracles and oracle interface
and a constraint θcorr(inv) = true. Interfaces for these oracles, in a system with
variables x1 . . . xn, are shown in Figure 8. Note that implication queries generate
constraints enforcing that if the pre-state of the implication pair lies in the
invariant, so must the post-state, which also allows the learner to exclude the
pre-state in its next round of synthesis.

Icorr =

Q : (y (σ1 × . . .× σn → bool))

R : (z bool)

αgen : θcorr(y) = z

Ineg =

Q : (y (σ1 × . . .× σn → bool))

R : (z1 σ1), . . . , (zn σn)

βgen : ¬inv(z1, . . . zn)

Iimpl =

Q : (y (σ1 × . . .× σn → bool))

R : (z1 σ1), . . . , (zn σn),

(z′1 σ1), . . . , (z′n σn)

βgen : inv(z1, . . . zn) =⇒
inv(z′1, . . . z

′
n)

Ipos =

Q : (y (σ1 × . . .× σn → bool))

R : (z1 σ1), . . . , (zn σn)

βgen : inv(z1, . . . zn)

Fig. 8: Oracle interfaces for ICE learning, receiving a candidate invariant y.

6 Delphi: a Satisfiability and Synthesis Modulo Oracles
Solver

We implement the algorithms described above in a prototype solver Delphi4.
The solver is configured as follows: the synthesis phase uses a symbolic synthesis

4
link: https://drive.google.com/file/d/1IW6EcLcJKF7TU_F09WHisTqz_dpyqfRU

19

encoding, which uses either an SMT solver(Z3 version 4.4.8 [13] or CVC4 version
1.9 [7]) or MiniSAT version 2.2 [14] as a base solver. Alternatively the synthesis
phase may be delegated to any existing synthesis solver that accepts SyGuS-IF.
The default is to use CVC4 as a synthesis solver for the synthesis phase, and
MiniSAT as a bitblaster for the SMTO solver. The solver supports linear integer
arithmetic and bitvector theories and accepts input files expressed in an extension
of SMT-lib [6] and SyGuS-IF [20]. We provide a number of utilities for modeling

Benchmarks constraints time(s) Benchmarks constraints time(s)

Image invert/zombie 10/20 1/1 Image attenuate 16 14
Image crop1/2/3 22/27/33 14/27/33 Image brighter 18 11
Image darker1/2 34/11 256/18

Table 2: 9 image transformation examples.

oracles of different types, and present case studies as an illustration of generality
(although we remark that SyMO is likely less efficient than a specialized algorithm
for each domain due to overhead incurred calling external oracles).

6.1 Oracle templates and utilities

The key benefit of our framework is that a user may express and solve a broad
range of synthesis problems without building their own custom synthesis engine.
Instead, they need only provide oracles and a specification. We provide a number
of oracle utilities demonstrating a few such cases:

Programming by Example: We provide template files for synthesising sum-
maries of executable black-boxes based on input-output examples, which
we call PBE-exe. The user associates the black-box to an oracle function
symbol θref and specifies N , the number of input-output pairs the summary
must satisfy. These examples are selected using another black-box which
generates pseudo-random numbers based off a seed, and is associated to an
oracle function symbol θrand. The specification thus is to satisfy the query
∃f ∀x.θrand, θref , (0 ≤ x ≤ N) =⇒ f(θrand(x)) = θref (θrand(x)). The ora-
cles for θref and θrand have interfaces of the form Ii/o, and the SyMO solver
is used as correctness oracle.

ICE-learning: We provide example oracles for the oracles for ICE-learning with
interfaces shown in Section 5. The negative and implication oracles are based
on using an SMT solver to find counterexamples. The positive oracle uses
both an SMT solver to find counterexamples, and executes an unrolling of
the loop in order to generate positive examples.

Compilation and execution oracles: We provide a utility for compiling can-
didate functions expressed in SyGuS-IF into C code, which oracles can then
compile and execute.

20

6.2 Case Studies

Image Processing: To illustrate the flexibility of the framework consider an image
processing challenge. Given two images, we wish to synthesize a transformation
between the two. Figure 2 shows two such example transformations. The oracle
is a program that loads two JPEG images of up to 256× 256 pixels: the original
image, and the target image. Given a candidate transformation function, it
translates the function into C code, and then executes the compiled code with
the original image as input. It compares the result with the target image. If all
the pixels are identical, the oracle returns “true”. If the transformation is not
correct, it selects a range of the incorrect pixels and returns constraints to the
synthesizer that give the correct input-output behavior on those pixels. The goal
of the synthesis engine is to generalize from few examples to the full image. The
oracle contains a C compiler and the STB image processing library5, and the
workflow is illustrated in Figure 9.

Fig. 9: Oracle for image transformations

SyGuS benchmarks: We apply CEGIS, PBE and ICE instantiations of SyMO
on a set of randomly selected SyGuS benchmarks [2]. We compare executable
oracles with using CEGIS with SMT-lib constraints for the PBE benchmarks.
Note in PBE-cegis, the concrete input-output pairs are included in φ and a single
call to the SMT solver oracle validates satisfaction of these, thus typically only 2
oracle calls are required.

Our observations are that the performance of different SyMO configurations
depends on two factors: both the number and quality of constraints needed to ac-
curately represent the target function, as well as the difficulty the synthesis phase
has in solving the constraints. The image crop transformations are particularly
affected by the sampling of the counterexample constraints, since there must be
sufficient constraints to accurately place the location of the crop boundary. We
also observe that our instantiation of ICE typically generates fewer constraints
than CEGIS, and the failure mode of the respective algorithms differs: CEGIS
typically generates increasingly many constraints, enumerating through constant

5
https://github.com/nothings/stb

21

values; whilst ICE generates sets of constraints that become tricky to solve and
the synthesis phase absorbs all the solving time. This hints at the benefits of
a framework that can combine different oracle types. We observe that, whilst
the SyMO framework enables these image transformation problems to be solved
with ease, it would be very difficult to obtain a pure oracle-free logical encoding
of this problem which incorporates both a compiler and an image manipulation
library. Without this framework, a user wishing to solve these problems with
program synthesis would have to build their own custom synthesis tool.

Benchmark constraints time Benchmark constraints time

inv-CEGIS (avg) 40 163s inv-ICE (avg) 16 121s
Sin-PBE 17 3s Cos-PBE 17 3s
PBE-exe(avg) 18.8 91s PBE-cegis(avg) 2 136s

Table 3: Case studies of SyMO. PBE results are an average of 25 benchmarks,
and invariant comparisons are an average of 5 examples. Time is reported in
seconds to nearest second and timeouts are awarded a penalty of 300s. Number
of calls is averaged across all results (solved and unsolved).

Future work: We see a lot of scope for future work on SyMO. In particular
we plan to embed SMTO solving into software verification tools; allowing the
user to replace functions that are tricky to model (for instance trigonometric
functions) with oracle function symbols. The key algorithmic developments we
plan to explore in future work include developing more sophisticated synthesis
strategies that decide when to call oracles based on the learnt utility and cost of
the oracles. An interesting part of future work will be to explore interfaces to
oracles that provide syntactic constraints, such as those used in [1, 15], which
will require use of context-sensitive grammars in the synthesis phase. There are
a number of future work developments that are implementation focused: we will
develop more seamless integration with oracles, permitting communication via
APIs as well as the existing command line access to binaries; and implement
existing successful synthesis algorithms in the synthesis phase.

7 Conclusion

We have presented a unifying framework for synthesis modulo oracles, identifying
two key types of oracle query-response patterns: those that return constraints
that can guide the synthesis phase and those that assert correctness. We proposed
an algorithm for a meta-solver for solving synthesis modulo oracles, and as a
necessary part of this framework we have formalized the problem of satisfiability
modulo oracles. Delphi is the first implemented solver for SyMO problems
and our case studies demonstrate the flexibility of a reasoning engine that can
incorporate oracles based on complex systems. By making use of this framework,
a user is able to solve a broad range of synthesis problems without building their
own custom synthesis tool.

22

Acknowledgments

We thank Susmit Jha for his feedback on an earlier version of this paper. This
work was supported in part by NSF grants CNS-1739816 and CCF-1837132, by
the DARPA LOGiCS project under contract FA8750-20-C-0156, by the iCyPhy
center, and by gifts from Intel, Amazon, and Microsoft.

References

1. Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Eliza-
beth Polgreen. Counterexample guided inductive synthesis modulo theories. In
International Conference on Computer Aided Verification, pages 270–288. Springer,
2018.

2. Rajeev Alur, Rastislav Bod́ık, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juni-
wal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman,
Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Dependable
Software Systems Engineering, volume 40 of NATO Science for Peace and Security
Series, D: Information and Communication Security, pages 1–25. IOS Press, 2015.

3. Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative
program synthesis via divide and conquer. In TACAS (1), volume 10205 of Lecture
Notes in Computer Science, pages 319–336, 2017.

4. Zaher S. Andraus and Karem A. Sakallah. Automatic abstraction and verification
of Verilog models. In Proceedings of the 41th Design Automation Conference, DAC
2004, San Diego, CA, USA, June 7-11, 2004, pages 218–223. ACM, 2004.

5. Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.

6. Clark Barrett, Cesare Tinelli, et al. The SMT-LIB standard: Version 2.0.
7. Clark W. Barrett, Haniel Barbosa, Martin Brain, Duligur Ibeling, Tim King, Paul

Meng, Aina Niemetz, Andres Nötzli, Mathias Preiner, Andrew Reynolds, and Cesare
Tinelli. CVC4 at the SMT competition 2018. CoRR, abs/1806.08775, 2018.

8. Aaron R. Bradley. SAT-based model checking without unrolling. In VMCAI,
volume 6538 of Lecture Notes in Computer Science, pages 70–87. Springer, 2011.

9. Bryan A. Brady, Randal E. Bryant, and Sanjit A. Seshia. Learning conditional
abstractions. In FMCAD, pages 116–124. FMCAD Inc., 2011.

10. Bryan A. Brady, Randal E. Bryant, Sanjit A. Seshia, and John W. O’Leary. ATLAS:
automatic term-level abstraction of RTL designs. In Proceedings of the Eighth
ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE), pages 31–40, July 2010.

11. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, volume 1855 of Lecture
Notes in Computer Science, pages 154–169. Springer, 2000.

12. Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. Program synthesis
for program analysis. ACM Trans. Program. Lang. Syst., 40(2):5:1–5:45, 2018.

13. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

23

14. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, volume 2919
of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

15. Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using
conflict-driven learning. In PLDI, pages 420–435. ACM, 2018.

16. Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. ICE: A robust
framework for learning invariants. In CAV, volume 8559 of Lecture Notes in
Computer Science, pages 69–87. Springer, 2014.

17. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In International Conference on Software
Engineering (ICSE), pages 215–224. ACM, 2010.

18. Susmit Jha and Sanjit A. Seshia. A theory of formal synthesis via inductive learning.
Acta Informatica, 54(7):693–726, 2017.

19. Anders Miltner, Saswat Padhi, Todd D. Millstein, and David Walker. Data-driven
inference of representation invariants. In PLDI, pages 1–15. ACM, 2020.

20. Abhishek Udupa Mukund Raghothaman, Andrew Reynolds. The SyGuS language
standard version 2.0. https://sygus.org/language/, 2019.

21. Saswat Padhi, Rahul Sharma, and Todd Millstein. LoopInvGen: A loop invariant
generator based on precondition inference. ArXiv e-prints, 2019.

22. Andrew Reynolds, Morgan Deters, Viktor Kuncak, Clark W. Barrett, and Cesare
Tinelli. On counterexample guided quantifier instantiation for synthesis in CVC4.
CoRR, abs/1502.04464, 2015.

23. Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. Learning a meta-
solver for syntax-guided program synthesis. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

24. Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık, Sanjit A. Seshia, and
Vijay A. Saraswat. Combinatorial sketching for finite programs. In ASPLOS, pages
404–415. ACM, 2006.

25. Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M. K. Martin, and Rajeev Alur. TRANSIT: specifying protocols with concolic
snippets. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
287–296. ACM, 2013.

24

