
Safe and Sample-Efficient Reinforcement Learning

Michael Luo
Ashwin Balakrishna
Brijen Thananjeyan
Ion Stoica, Ed.
Ken Goldberg, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-101

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-101.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to acknowledge and thank the entire Recovery RL team, in
particular, Ashwin Balakrishna and Brijen Thananjeyan, for being
supportive, responsive mentors and introducing me to the field of safe RL. I
would also like to thank Prof. Ion Stoica and Ken Goldberg for advising and
guiding me on the path to make Reinforcement Learning (RL) practical for
real-life applications. Most importantly, I would like to thank my family for
supporting me during the quarantine.

Safe and Sample-Efficient Reinforcement Learning1

by

Michael Luo

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Professor Ken Goldberg

Spring 2021

1This thesis is adapted from Recovery RL: Safe Reinforcement Learning with Learned Recovery
Zones by Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E. Gonzalez, Julian Ibarz, Chelsea Finn, & Ken Goldberg and MESA: Offline Meta-RL for
Safe Adaptation and Fault Tolerance by Michael Luo, Ashwin Balakrishna, Brijen Thananjeyan, Suraj
Nair, Julian Ibarz, Jie Tan, Chelsea Finn, Ken Goldberg, & Ion Stoica. It is recommended to cite these papers
over this report.

The dissertation of Michael Luo, titled Safe and Sample-Efficient Reinforcement Learning, is
approved:

Chair Date

Date

University of California, Berkeley

Ken Goldberg (May 14, 2021 13:17 PDT)
Ken Goldberg May 14, 2021

Ion Stoica (May 14, 2021 13:37 PDT)
Ion Stoica May 14, 2021

https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAASZXmcIq29CXG8tDxKN_4VmypyOhI1Em3
https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAASZXmcIq29CXG8tDxKN_4VmypyOhI1Em3

Safe and Sample-Efficient Reinforcement Learning

Copyright 2021
by

Michael Luo

1

Abstract

Safe and Sample-Efficient Reinforcement Learning

by

Michael Luo

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ion Stoica, Chair

Reinforcement learning (RL) provides a flexible and general-purpose framework for learning
new behaviors through interaction with the environment. However, safe exploration is critical to
deploying reinforcement learning algorithms in risk-sensitive, real-world environments. Learning
new tasks in unknown environments requires extensive exploration, but safety requires limiting
exploration.

To navigate this tradeoff, we propose Recovery RL, an algorithm which (1) efficiently leverages
offline data to learn about constraint violating zones before policy learning and (2) separating
the goals of improving task performance and constraint satisfaction across two policies: a task
policy that only optimizes the task reward and a recovery policy that guides the agent back to
safety when constraint violation is likely. Recovery RL can be applied on top of any RL algorithm.
Simulation and physical experiments across 7 continuous control domains, including two contact
rich manipulation tasks and an image-based navigation task, suggest that Recovery RL trades off
constraint violations and task successes 2-80x more efficiently than the next best prior methods,
which jointly optimize task performance and safety via constrained optimization or reward shaping.

Next, we generalize the problem of safe exploration to the transfer learning setting, where there is
assumed access to environments of similar dynamics. In this setting, safe exploration is recasted as
an offline meta-reinforcement learning problem, where the objective is to leverage datasets of safe
and unsafe behavior across different environments to quickly adapt learned safety measures to new
environments with unseen, perturbed dynamics. We propose MEta-learning for Safe Adaptation
(MESA), an approach which meta-learns a safety measure and stacks on top of Recovery RL.
Simulation experiments across 5 continuous control domains suggest that MESA can leverage
datasets from prior environments to reduce constraint violations in unseen environments by up to 2x
while maintaining task performance compared to prior algorithms that do not learn transferable risk
measures.

i

To my parents, advisors, and research collaborators.

I would like to acknowledge and thank the entire Recovery RL team, in particular, Ashwin
Balakrishna and Brijen Thananjeyan, for being supportive, responsive mentors and introducing me
to the field of safe RL. I would also like to thank Prof. Ion Stoica and Ken Goldberg for advising

and guiding me on the path to make Reinforcement Learning (RL) practical for real-life
applications. Most importantly, I would like to thank my family for supporting me during the

quarantine.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1

2 Related Work 4
2.1 Safe Reinforcement Learning . 4
2.2 Meta Reinforcement Learning . 5

3 Preliminaries 7
3.1 Constrained Markov Decision Processes . 7
3.2 Safety Critics for Safe RL . 7
3.3 Meta-learning . 8

4 Recovery RL 9
4.1 Defining a Recovery Set and Policy . 9
4.2 Offline Pretraining . 11
4.3 Practical Implementation . 11

5 Recovery RL Experiments 12
5.1 Experiments . 14
5.2 Ablations: . 16

6 MEta-learning for Safe Adaptation (MESA) 17
6.1 Problem Statement . 17
6.2 Algorithm Description . 17

7 MESA Experiments 22
7.1 Experiments . 26
7.2 Ablations . 27

iii

8 Conclusion 29

Bibliography 31

A Hyperparameters for Recovery RL and Comparisons 36

B Hyperparameters for MESA and Comparisons 37
B.1 Dataset Details . 37

iv

List of Figures

1.1 Recovery RL: We illustrate Recovery RL on a 2D maze navigation task where a
constraint violation corresponds to hitting a wall. Recovery RL first learns safety
critic Q̂π

φ,risk with offline data from some behavioral policy πb, which provides a small
number of controlled demonstrations of constraint violating behavior as shown on the
left. For the purposes of illustration, we visualize the average of the Q̂π

φ,risk learned by
Recovery RL over 100 action samples. Then, at each timestep, Recovery RL queries
the task policy πtask for some action a at state s, evaluates Q̂π

φ,risk(s, a), and executes
the recovery policy πrec if Q̂π

φ,risk(s, a) > εrisk and πtask otherwise. The task policy,
recovery policy, and safety critic are updated after each transition from agent experience. 2

1.2 MEta-learning for Safe Adaptation (MESA): MESA takes a 3 phase approach to
learn a transferable risk measure for safe reinforcement learning. In Phase 1, MESA
uses offline datasets of interactions from a number of training environments with
different dynamics (in this case a HalfCheetah with a different disabled leg segment
in each environment) to meta-learn a safety critic Qπ

risk. In Phase 2, MESA adapts this
safety critic to a test environment with unseen dynamics (in this case HalfCheetah
has a disabled leg that was unseen in training) using a small dataset (10-100x smaller
than the training datasets) of offline transitions from the test environment and learns a
recovery policy to descend the learned safety critic and protect the agent from constraint
violations. Finally, in Phase 3, MESA uses the adapted safety critic and recovery policy
for safe reinforcement learning with Recovery RL. In this case, MESA is able to prevent
constraint violations by encouraging the agent to avoid letting the HalfCheetah’s head
collide with the ground. 3

5.1 Simulation Experiments Domains: We evaluate Recovery RL on a set of 2D naviga-
tion tasks, two contact rich manipulation environments, and a visual navigation task.
In Navigation 1 and 2, the goal is to navigate from the start set to the goal set without
colliding into the obstacles (red) while in the Maze navigation tasks, the goal is to
navigate from the left corridor to the red dot in the right corridor without colliding into
walls/borders. In both object extraction environments, the objective is to grasp and lift
the red block without toppling any of the blocks or colliding with the distractor arm
(Dynamic Obstacle environment). 13

v

5.2 Simulation Experiments: In all navigation tasks, we find that Recovery RL signif-
icantly outperforms prior methods with both model-free and model-based recovery
policies, while for the object extraction environments, Recovery RL with a model-based
recovery policy significantly outperforms prior algorithms while Recovery RL with a
model-free recovery policy does not perform as well. We hypothesize that this is due to
the model-based recovery mechanism being better able to compensate for imperfections
in Q̂π

φ,risk. The sawtooth pattern occurs due to constraint violations, which result in a
sudden drop in the ratio. 14

5.3 Physical Experiment: We evaluate Recovery RL on a constrained image-based reacher
task on the dVRK with a stay out zone in the center of the workspace. We supply all
algorithms with an overhead RGB image as input and find that Recovery RL significantly
outperforms Unconstrained and LR. 15

5.4 Ablations: We first study the affect of different algorithmic components of Recovery
RL (left). Results suggest that offline pretraining of πrec and Q̂π

φ,risk is critical for good
performance, while removing online updates leads to a much smaller reduction in
performance. Furthermore, we find that the action relabeling method for training πtask (
Section 4.1) is critical for good performance. We then study the sensitivity of Recovery
RL with model-based recovery to the number of offline transitions used to pretrain
πrec and Q̂π

φ,risk (right) and find that Recovery RL performs well even with just 1000
transitions in Doffline for the Object Extraction task, with performance degrading when
the number of transitions is reduced beyond this point. 15

6.1 Safety Critic Adaptation Visualizations: For purposes of illustration, we evaluate
MESA and a Multi-Task learning comparison on a simple Maze Navigation task (left)
from [59] in which the objective is for the agent (the red dot) to navigate from a random
point in the left column to the middle of the right column without colliding into any of
the Maze walls or boundaries. Environments are sampled by changing the gaps in the
walls (parameterized by w1, w2∼U (−0.1, 0.1)), leading to significant changes in which
behaviors are safe. On the left, we show heatmaps of the learned safety criticQπ

risk when
it is adapted to a new Maze with unseen wall gaps for the Multi-Task comparison (top)
and MESA (bottom). Here bluer colors denote low probability of constraint violation
while redder colors denote a higher probability, and the labels above the heatmaps
indicate the number of gradient steps used for adaptation on Dtest. The Multi-Task
learning comparison, which aggregates data from all environments to learn the safety
critic and does not explicitly optimize for adaptation, is much slower to adapt to the
new environment. However, MESA is able to leverage its learned prior to rapidly adapt
to the new gap positions. 18

vi

7.1 Simulation Domains: MESA is evaluated on a set of 2D navigation and locomotion
tasks in simulation. In Navigation 1 and Navigation 2, the agent learns to navigate
from a beginning position to the goal while avoiding the obstacles (red walls). In the
Cartpole-Length task, the goal is to keep the pole balanced on the cart while minimizing
the number of times the pole falls beneath the rail or moves off the rail. Lastly, in
the HalfCheetah-Disabled and Ant-Disabled tasks, the objective is to learn how to
move forwards while minimizing the number of collisions with the ground of the head
(HalfCheetah) or torso (Ant) during training. 23

7.2 Navigation Results: Top: Learning Curves During Phase 3. We find that in the
Navigation 1 task, MESA learns more efficiently than comparisons, but in the Naviga-
tion 2 task, MESA achieves very similar performance to the Multi-Task comparison,
which we hypothesize is because small changes in the dynamics of the underlying
linear system do not drastically affect the safety of different behaviors in Navigation
2 as the agent can simply learn to keep a large margin between itself and the obstacle.
Bottom: Cumulative Constraint Violations During Phase 3. We find that MESA
violates constraints less often than comparisons for Navigation 1, but performs very
similarly to comparisons in terms of cumulative constraint violations in Navigation 2 as
the agent can easily learn to keep a large margin between itself and the obstacle. 24

7.3 Locomotion Results: Top: Learning Curves During Phase 3. We find that across
all tasks MESA achieves similar task performance as the best comparison algorithm,
indicating that MESA is able to effectively learn in a test environment with previously
unseen dynamics. Bottom: Cumulative Constraint Violations During Phase 3. We
find that MESA violates constraints less often than comparisons on all tasks, and
this difference is most significant on the HalfCheetah-Disabled and Ant-Disabled
tasks, where MESA violates constraints significantly less often than comparisons.
This suggests that MESA is able to effectively leverage its prior experiences across
environments with different dynamics to rapidly adapt its risk measure to the test
environment. 25

7.4 Ablation: Sensitivity to Test Dataset Size: In Figure 7.4a, we investigate the sen-
sitivity of MESA to the number of transitions in the test dataset used for adapting
Qπ

risk for the HalfCheetah-Disabled task. We find that even with a test dataset 4 times
smaller than used in the experiments in Section 5, MESA does not experience much
degradation in performance. However, further reduction in the size of the test dataset
make it difficult for MESA to learn a sufficiently accurate safety critic in the test envi-
ronment, leading to more significant drops in performance. Generalization to More
Different Test Environment Dynamics: In Figure 7.4b, we investigate MESA’s and
Multi-Task’s generalization to partial joint failures in the HalfCheetah-Disabled task,
where the training sets are kept the same. We find that MESA is able to significantly
reduce the number of constraint violations compared to the Multi-Task comparison
while also achieving superior task performance, suggesting that as differences in system
dynamics increase between the training and testing environments, MESA is able to
more effectively adapt risk measures across the environments. 26

vii

List of Tables

A.1 Hyperparameter Ordering. 36
A.2 Recovery RL and Comparisons Hyperparameters. 36

B.1 Dataset Hyperparameters. 37
B.2 Algorithm Hyperparameters. 38
B.3 Navigation Hyperparameter Differences . 38
B.4 HalfCheetah-Disabled Hyperparameter Differences. 39
B.5 Ant-Disabled Hyperparameter Differences. 39

1

Chapter 1

Introduction

Reinforcement learning (RL) provides a general framework for robots to acquire new skills, and
has shown promise in a variety of robotic domains such as navigation [46], locomotion [21],
and manipulation [30, 40]. However, enforcing constraints on the agent’s behavior to encourage
safety during learning and exploration is challenging, since constraint violating states and the
states leading to them may be initially unknown and must be learned from experience. Thus, safe
exploration requires navigating a tradeoff: learning new skills through environmental interaction
requires exploring a wide range of possible behaviors, but learning safely forces the agent to restrict
exploration to constraint satisfying states.

We consider a RL formulation subject to constraints on the probability of unsafe future behavior
and design an algorithm that can effectively balance the often conflicting objectives of task directed
exploration and safety. Most prior work in safe RL integrates constraint satisfaction into the task
objective to jointly optimize the two. While these approaches are appealing for their generality
and simplicity, there are two key aspects which make them difficult to apply in practice. First, the
inherent objective conflict between exploring sufficiently to learn a good task policy and limiting
exploration to avoid constraint violations can lead to suboptimalities in policy optimization. Second,
sufficiently exploring the environment to learn about constraint structure necessitates a significant
amount of constraint violations during learning. However, this can result in the agent taking
uncontrolled actions which can damage both itself and the environment.

We take a step towards addressing these issues with two key algorithmic ideas. First, inspired
by recent work in robust control [17, 5, 19, 35], we represent the RL agent with two policies: the
first policy focuses on optimizing the unconstrained task objective (task policy) and the second
policy takes control when the task policy is in danger of constraint violations in the near future
(recovery policy). Instead of modifying the policy optimization procedure to encourage constraint
satisfaction, which can introduce suboptimality in the learned task policy [45], the recovery policy
can be viewed as defining an alternate MDP for the task policy to explore within in which constraint
violations are unlikely. Separating the task policy and the recovery policy makes it easier to balance
task performance and safety, and allows us to apply off-the-shelf RL algorithms for learning each.
Second, we leverage offline data to learn a recovery set, which indicates regions of the MDP in
which future constraint violations are likely, and a recovery policy, which is queried within this

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Recovery RL: We illustrate Recovery RL on a 2D maze navigation task where a constraint
violation corresponds to hitting a wall. Recovery RL first learns safety critic Q̂πφ,risk with offline data
from some behavioral policy πb, which provides a small number of controlled demonstrations of constraint
violating behavior as shown on the left. For the purposes of illustration, we visualize the average of the
Q̂πφ,risk learned by Recovery RL over 100 action samples. Then, at each timestep, Recovery RL queries the
task policy πtask for some action a at state s, evaluates Q̂πφ,risk(s, a), and executes the recovery policy πrec if
Q̂πφ,risk(s, a) > εrisk and πtask otherwise. The task policy, recovery policy, and safety critic are updated after
each transition from agent experience.

set to prevent violations. This offline data can be collected by a human or an agent under human
supervision to provide controlled examples of constraint violations, such as gently tipping over
a glass rather than aggressively knocking the glass over and shattering it. Thus, the agent is able
to observe constraint violations and learn from them without the task policy directly having to
experience too many uncontrolled examples of these violations during learning.

We present Recovery RL, a new algorithm for safe robotic RL. Unlike prior work, Recovery RL
(1) can effectively leverage offline data of constraint violations to learn about constraints before
interacting with the environment, and (2) uses separate policies for the task and recovery to learn
safely without significantly sacrificing task performance. We evaluate Recovery RL against 5 state-
of-the-art safe RL algorithms on 6 navigation and manipulation domains in simulation, including a
visual navigation task, and find that Recovery RL trades off constraint violations and task successes
2 - 80 times more efficiently than the next best prior method. We then evaluate Recovery RL on a
constrained image-based reaching task on a physical robot and find that Recovery RL trades off
constraint violations and task successes 12 times more efficiently than the next best prior algorithm.

Next, we address the challenge of safe exploration in the transfer learning setting. To motivate
transfer learning, a challenge with Recovery RL is that these offline transitions are required to be in
an environment with the same dynamics as that in which the agent is deployed, which is not always
be practical in risk-sensitive environments where a large number of constraint violations could be
exceedingly costly or dangerous. Additionally, shifting dynamics is a ubiquitous phenomenon in
real robot hardware: for example losses in battery voltage [51] or wear-and-tear in manipulators or
actuators [29]. These changes can drastically change the space of safe behaviors, as the robot may
need to compensate for unforeseen differences in the robot dynamics. Furthermore, these changes in

CHAPTER 1. INTRODUCTION 3

Figure 1.2: MEta-learning for Safe Adaptation (MESA): MESA takes a 3 phase approach to learn a
transferable risk measure for safe reinforcement learning. In Phase 1, MESA uses offline datasets of
interactions from a number of training environments with different dynamics (in this case a HalfCheetah
with a different disabled leg segment in each environment) to meta-learn a safety critic Qπrisk. In Phase 2,
MESA adapts this safety critic to a test environment with unseen dynamics (in this case HalfCheetah has a
disabled leg that was unseen in training) using a small dataset (10-100x smaller than the training datasets)
of offline transitions from the test environment and learns a recovery policy to descend the learned safety
critic and protect the agent from constraint violations. Finally, in Phase 3, MESA uses the adapted safety
critic and recovery policy for safe reinforcement learning with Recovery RL. In this case, MESA is able to
prevent constraint violations by encouraging the agent to avoid letting the HalfCheetah’s head collide with
the ground.

dynamics will often not be immediately observable for a robot control policy, motivating algorithms
which can identify and adapt to these changes based on interaction in the environment.

To address this, we aim to transfer knowledge about safety between environments with different
dynamics, so that the agent can rapidly learn to be safe when learning in a test environment with
previously unseen dynamics. Our insight is that a robot should be able to leverage offline datasets
across previous deployments, with knowledge of only safe and unsafe states in these datasets, to
rapidly learn to be safe in new environments without task specific information. This is motivated
by the idea of fault tolerance in robotics: an intelligent agent should be able to leverage prior
experiences to quickly adapt to unexpected changes in the environment dynamics without exhibiting
unsafe behaviors, such as a legged locomotion system learning to stabilize even when it suddenly
loses power in one of its joints.

The contributions of this work are (1) casting safe RL as an offline meta-reinforcement learning
problem [39, 12], where the objective is to leverage fully offline data from training and test
environments to learn how to be safe in the test environment; (2) MEta-learning for Safe Adaptation
(MESA), which meta-learns a risk measure that is used for safe reinforcement learning in new
environments with previously unseen dynamics; (3) simulation experiments across 5 continuous
control domains which suggest that MESA can cut the number of constraint violations in half in a
new environment with previously unseen dynamics while maintaining task performance compared
to that of prior algorithms.1

1Individual Contributions: Recovery RL: Generated experiment results for both Object Extraction environments
and ablations in Sections 5.1,5.2; MEta-learning for Safe Adaptation (MESA): Proposed MESA and conducted all
experiments and ablations in Sections 7.1, 7.2

4

Chapter 2

Related Work

Prior work has studied safety in RL in several ways, including imposing constraints on expected
return [1, 57], risk measures [24, 50, 54, 56], and avoiding regions of the MDP where constraint
violations are likely [14, 18, 5, 60, 7, 62]. We build on the latter approach, and design algorithms
which uses a learned recovery policy to keep the RL agent within a learned safe region of the MDP.

2.1 Safe Reinforcement Learning
Jointly Optimizing for Task Performance and Constraint Satisfaction: A popular strategy
in algorithms for safe RL involves modifying the policy optimization procedure of standard RL
algorithms to simultaneously reason about both task reward and constraints using methods such
as trust regions [1], optimizing a Lagrangian relaxation [57, 43, 52], or constructing Lyapunov
functions [9, 10]. The most similar of these works to Recovery RL is [52]. Srinivasan et al.[52]
trains a safety critic, which estimates the probability of future constraint violation under the current
policy, and optimizes a Lagrangian objective function to limit the probability of constraint violations
while maximizing task reward. Unlike Srinivasan et al. [52], which uses the safety critic to modify
the task policy optimization objective, Recovery RL uses it to determine when to execute a learned
recovery policy which minimizes the safety critic to keep the agent in safe regions of the MDP. This
idea enables Recovery RL to more effectively balance task performance and constraint satisfaction
than algorithms which jointly optimize for task performance and safety.

Closest to MESA, Zhang et al. [66] designs a model-based RL algorithm which leverages unsafe
data from a variety of training environments with different dynamics to predict whether the agent
will encounter unsafe states and penalize its reward if this is the case. Unlike Zhang et al. [66],
MESAexplicitly optimizes for adaptation and decouple information about constraints from the
reward function, making it possible to efficiently learn transferable notions of safety. Additionally,
we learn a risk measure in a fully offline setting, and do not assume direct access to the training
environments.

Restricting Exploration with an Auxiliary Policy: Another approach to safe RL explicitly re-

CHAPTER 2. RELATED WORK 5

stricts policy exploration to a safe subset of the MDP using a recovery or shielding mechanism.
This idea has been explored in [17, 5], which utilize Hamilton-Jacobi reachability analysis to define
a task policy and safety controller, and in the context of shielding [19, 35, 2]. In contrast to these
works, which assume approximate knowledge of system dynamics [17, 5, 19, 35, 2] or require
precise knowledge of constraints apriori [2], Recovery RL learns information about the MDP,
such as constraints and dynamics, from experience and can scale to high-dimensional state spaces.
Additionally, Recovery RL reasons about probabilistic constraints rather than robust constraints,
allowing it to estimate a safe set without a dynamics model. Han et al. [23] and Eysenbach et
al. [14] introduce reset policies which are trained jointly with the task policy to reset the agent to its
initial state distribution, ensuring that the task policy only learns behaviors which can be reset [14].
However, enforcing the ability to fully reset can be impractical or inefficient. Inspired by this work,
Recovery RL instead executes approximate resets to nearby safe states when constraint violation
is probable. Similar to Recovery RL, Richter and Roy [46] learns the probability of constraint
violation conditioned on an action plan to activate a hand-designed safety controller. In contrast,
Recovery RL uses a learned recovery mechanism which can be broadly applied across different
tasks.

Leveraging Demonstrations for Safe RL and Control: Finally, there has also been significant
prior work investigating how demonstrations can be leveraged to enable safe exploration. Rosolia
and Borrelli [47], Thananjeyan et al.[58] introduce model predictive control algorithms which
leverage initial constraint satisfying demonstrations to iteratively improve their performance with
safety guarantees, and Thananjeyan et al.[60] extends these ideas to the RL setting. In contrast to
these works, Recovery RL learns a larger safe set that explicitly models future constraint satisfaction
and also learns the problem constraints from prior experience without task specific demonstrations.
Additionally, Recovery RL can be applied with either model-free or model-based RL algorithms
while [60, 58] require a dynamics model to evaluate reachability-based safety online.

2.2 Meta Reinforcement Learning
There is a rich literature [49, 6, 42, 61, 25] studying learning agents that can efficiently adapt to new
tasks. In the context of reinforcement learning, this problem, termed meta-reinforcement learning
[13, 63, 16], aims to learn RL agents which can efficiently adapt their policies to new environments
with unseen transition dynamics and rewards. A number of strategies exist to accomplish this such
as recurrent or recursive policies [13, 63, 38], gradient based optimization of policy parameters
[16, 26], task inference [44, 27, 15], or adapting dynamics models for model-based RL [48, 41].
One of the core challenges studied in many meta-RL works is efficient exploration [53, 44, 67, 37],
since the agent needs to efficiently explore its new environment to identify the underlying task.
Unlike all of these prior works, which focus on learning transferable policies, we focus on learning
risk measures which can be used to safely learn new tasks in a test environment with previously
unseen dynamics. Additionally, we study learning these measures in the context of offline meta-RL,
and learn from purely offline datasets of prior interactions in various environments with different

CHAPTER 2. RELATED WORK 6

dynamics.
The offline meta reinforcement learning problem [39, 12, 34] considers a setting in which the

agent learns from a set of offline data from each training task, and adapts to the test environment
conditioned only on a small set of offline transitions. Critically, this setting is particularly well suited
to the problem of safe RL, because it has potential to enable an agent to be safe in an environment
with previously unseen dynamics, conditioned on a small set of experiences from that environment.
In this work, we formalize safe reinforcement learning as an offline meta-RL problem and present
an algorithm to adapt a safety critic to new environments and use this adapted safety critic for safe
reinforcement learning.

Srinivasan et al. [52] and Thananjeyan et al. [59] also leverage prior offline data from previous
interactions to learn how to be safe. However, unlike these works, which assume that prior data
is collected in an environment with the same dynamics as the test environment, MESA learns
to leverage experience from a variety of environments with different dynamics in addition to a
small amount of data from the test environment. This choice makes it possible to avoid excessive
constraint violations in the test environment, in which constraint violations may be costly, by
leveraging prior experience in safer environments or from accident logs from previous deployments.

One option for meta-learning for safe RL is using meta-learning for sim-to-real domain adap-
tation where data can be collected safely and at scale in simulated environments [4]. By contrast,
MESA explicitly reasons about safety constraints in the environment to learn adaptable risk mea-
sures. Additionally, while prior work has also explored using meta-learning in the context of
safe-RL [20], specifically by learning a single safety filter which keeps policies adapted for different
tasks safe, we instead adapt the risk measure itself to unseen dynamics and fault structures.

7

Chapter 3

Preliminaries

3.1 Constrained Markov Decision Processes
In safe reinforcement learning, an agent interacts with a Constrained Markov Decision Process
(CMDP) [3], defined by the tupleM = (S,A, P, r, C, ρ0, γ, γrisk), where S represents the state
space, A is the action space, the transition dynamics function P : S × A × S → [0, 1] maps the
current state and action to a probability distribution of next states, r : S × A → R is the reward
function, C : S → {0, 1} is a constraint function which indicates whether a state is constraint
violating, ρ0 : S → [0, 1] is the starting state distribution, and γ, γrisk ∈ [0, 1] are the discount
factors for the rewards and constraint values. As in prior work [52, 59], we assume constraint
violations end the episode immediately. The expected return for a policy π : S → A is R(π) =
Eπ,ρ0,P [

∑∞
t γtR(st, at)]. The discounted probability of future constraint violation for policy π

is Qπ
risk = Eπ,ρ0,P [

∑∞
t γtriskC(st)] = Eπ,ρ0,P [

∑∞
t γtriskP (C (st) = 1)]. Unlike unconstrained RL,

safe RL agents seek to optimize:

π∗ = arg max
π

{Rπ : Qπ
risk ≤ εrisk} (3.1)

where εrisk is a hyper-parameter that defines how safe the agent should be.

3.2 Safety Critics for Safe RL
Recent work [59, 52] investigates ways to estimate the discounted future probability of catastrophic
constraint violations under the current policy:

Qπ
risk(st, at) = Eπ

[
∞∑
t′=t

γt
′−t

risk C(st′)|st, at

]
= C(st) + (1− C(st))γriskEπ [Qπ

risk(st+1, at+1)|st, at] .
(3.2)

. This is different from the standard Bellman equations for solving MDPs due to the assumption that
episodes terminate when C(st) = 1. In practice, algorithms search over a parametric function class:

CHAPTER 3. PRELIMINARIES 8

{
Qπ
ψ,risk(st, at) : ψ ∈ Ψ

}
, where ψ is a particular parameter vector and Ψ is its possible values.

This function is trained by minimizing an MSE loss function with respect to a target function on a
dataset of transitions {(st, at, C(st), st+1)i}Ni=1 collected in the environment:

Jrisk(st, at, st+1;ψ) =

1

2

(
Qπ
ψ,risk(st, at)− (C(st) + (1− C(st))γrisk E

at+1∼π(·|st+1)
[Qπ

ψ,risk,targ(st+1, at+1)])

)2 (3.3)

where Qπ
ψ,risk,targ is a target network and C(st) denotes whether state st is constraint violating. In

practice, we use a target network to create the targets as in prior work [52, 22]. The safety critic can
be used for constrained policy search, by either optimizing a Lagrangian function [57, 52, 8] with it
or filtering dangerous actions [52, 59].

3.3 Meta-learning
Consider a task distribution p(M) where tasks are sampled viaMi∼p(M). In the RL setting, each
task corresponds to an MDP, all of which share the same state and action spaces but may have
varying dynamics (e.g. varying controller impedance for a legged robot). The goal in MESA is to
learn risk measures that rapidly adapt to new environments, such as when a robot’s actuator loses
power and it is forced to compensate with only the remaining actuators. We will briefly discuss how
functions can be initialized for rapid adaptation to new tasks by training on similar tasks.

Meta-learning learns a model explicitly optimized for adaptation to a new task from p(M). Let
θ′i = θ − α∇θLMi

(fθ) be the parameters θ after a single gradient step from optimizing LMi
(fθ).

Model-Agnostic Meta-Learning (MAML) [16] optimizes the following meta-objective at meta-train
time:

min
θ

EMi∼p(M)

[
LMi

(fθ′i)
]

=

min
θ

EMi∼p(M)

[
LMi

(fθ−α∇θLMi
(fθ))

] (3.4)

After meta-training, to quickly adapt to a new test environment, MAML computes a task-specific
loss function from an unseen task and updates θ with several gradient steps using a standard RL
algorithm.

9

Chapter 4

Recovery RL

Here we outline the central ideas behind Recovery RL. In Section 3.2, we reviewed how to learn
a safety critic to estimate the probability of future constraint violations. Then, in Section 4.1, we
will show how this safety critic can be used to define the recovery policy for Recovery RL and
the recovery set in which it is activated. In Section 4.2, we will discuss how the safety critic and
recovery policy are learned from offline data and, in Section 4.3, we will discuss implementation
details.

4.1 Defining a Recovery Set and Policy
Recovery RL executes a composite policy π in the environment, which selects between a task-driven
policy πtask and a recovery policy πrec at each timestep based on whether the agent is in danger of
constraint violations in the near future. To quantify this risk, we use Qπ

risk to construct a recovery set
that contains state-action tuples from which π may not be able to avoid constraint violations. Then
if the agent finds itself in the recovery set, it executes a learned recovery policy instead of πtask to
navigate back to regions of the MDP that are known to be sufficiently safe. Specifically, define two
complimentary sets: the safe set T πsafe and recovery set T πrec:

T πsafe = {(s, a) ∈ S ×A : Qπ
risk(s, a) ≤ εrisk} T πrec = S ×A \ T πsafe

We consider state-action tuple (s, a) safe if in state s after taking action a, executing π has a
discounted probability of constraint violation less than εrisk.

If the task policy πtask proposes an action aπtask at state s such that (s, aπtask) 6∈ T πsafe, then
a recovery action sampled from πrec is executed instead of aπtask . Thus, the recovery policy in
Recovery RL can be thought of as projecting πtask into a safe region of the policy space in which
constraint violations are unlikely. The recovery policy πrec is also an RL agent, but is trained to
minimize Q̂π

φ,risk(s, a) to reduce the risk of constraint violations under π. Let aπtaskt ∼πtask(·|st) and

CHAPTER 4. RECOVERY RL 10

aπrect ∼πrec(·|st). Then π selects actions as follows:

at =

{
aπtaskt (st, a

πtask
t) ∈ T πsafe

aπrect (st, a
πtask
t) ∈ T πrec

(4.1)

Recovery RL acts as a filtering mechanism that aims to block proposed actions that are likely to lead
to unsafe states, equivalent to modifying the environment that πtask operates in with new dynamics:

P πrec
εrisk

(s′|s, a) =

{
P (s′|s, a) (s, a) ∈ T πsafe

P (s′|s, aπrec) (s, a) ∈ T πrec

(4.2)

We train Q̂π
φ,risk on samples from π since πtask is not executed directly in the environment, but is

rather filtered through π.

Algorithm 1 Recovery RL
Require: Doffline, task horizon H , number of episodes N

1: Pretrain πrec and Q̂π
φ,risk on Doffline . Section 4.2

2: Dtask ← ∅, Drec ← Doffline

3: s0 ← env.reset()
4: for i ∈ {1, . . . N} do
5: for t ∈ {1, . . . H} do
6: if C(st) = 1 or is terminal(st) then
7: st ← env.reset()

8: aπtaskt ∼πtask(·|st) . Query task policy
9: . Check if task policy will be unsafe

10: if (st, a
πtask
t) ∈ T πrec then

11: at∼πrec(·|st) . Select recovery policy
12: else
13: at = aπtaskt . Select task policy
14: Execute at, observe st+1, rt = R(st, at), ct = C(st)
15: . Relabel transition
16: Dtask ← Dtask ∪ {(st, aπtaskt , st+1, rt)}
17: Drec ← Drec ∪ {(st, at, st+1, ct)}
18: Train πtask on Dtask, πrec and Q̂π

φ,risk on Drec . Eq. 3.3

It is easy to see that the
proposed recovery mecha-
nism will shield the agent
from regions in which con-
straint violations are likely
if Q̂π

φ,risk is correct and exe-
cuting πrec reduces its value.
However, this poses a po-
tential concern: while the
agent may be safe, how
do we ensure that πtask

can make progress in the
new MDP defined in equa-
tion 4.2? Suppose that
πtask proposes an unsafe
action aπtaskt under Q̂π

φ,risk.
Then, Recovery RL ex-
ecutes a recovery action
aπrect and observes transition
(st, a

πrec
t , st+1, rt) in the en-

vironment. However, if
πtask is updated with this ob-
served transition, it will not learn to associate its proposed action (aπtaskt) in the new MDP with rt
and st+1. As a result, πtask may continue to propose the same unsafe actions without realizing it
is observing the result of an action sampled from πrec. To address this issue, for training πtask, we
relabel all actions with the action proposed by πtask. Thus, instead of training πtask with executed
transitions (st, at, st+1, rt), πtask is trained with transitions (st, a

πtask
t , st+1, rt). This ties into the

interpretation of defining a safe MDP with dynamics P πrec
εrisk

(s′|s, a) for πtask to act in since all
transitions for training πtask are relabeled as if πtask was executed directly.

CHAPTER 4. RECOVERY RL 11

4.2 Offline Pretraining
To convey information about constraints before interaction with the environment, we provide the
agent with a set of transitions Doffline that contain constraint violations for pretraining. While this
requires violating constraints in the environment, a human may be able to carefully demonstrate
these unsafe transitions in a relatively controlled manner (e.g. gently tipping over a glass) so that
the robot does not need to accidentally learn them online (e.g. knocking the glass off the table).
We pretrain Q̂π

φ,risk by minimizing Equation 3.3 over offline batches sampled from Doffline. We
additionally pretrain πrec using the data in Doffline. Note that any RL algorithm can be used to
represent πtask while any off-policy RL algorithm can be used to learn πrec. For some environments
in which exploration is challenging, we utilize a separate set of task demonstrations to initialize
πtask to expedite learning.

Recovery RL first pretrains Q̂π
φ,risk and recovery policy πrec on a set of transitions Doffline

containing constraint violations. During online RL training, the agent actually executes π, which is
an algorithmic selection between policy πtask and πrec. This process is summarized in Algorithm 1
and Figure 1.1.

4.3 Practical Implementation
Recovery Policy: In principle, any off-policy RL algorithm can be used to learn πrec. In this paper,
we explore both model-free and model-based RL algorithms to learn πrec. For model-free recovery,
we perform gradient descent on the safety critic Q̂π

φ,risk(s, πrec(s)), as in the popular off-policy RL
algorithm DDPG [36]. For model-based recovery, we perform model predictive control (MPC)
over a learned dynamics model fθ. For lower dimensional tasks, we utilize the PETS algorithm
from Chua et al. [11] to plan over a learned stochastic dynamics model while for tasks with visual
observations, we utilize a VAE based latent dynamics model.

Task Policy: We utilize the popular maximum entropy RL algorithm SAC [22] to learn πtask, but
note that any RL algorithm could be used. Details on the implementation of both policies can be
found in the supplement.

12

Chapter 5

Recovery RL Experiments

In the following experiments, we aim to study whether Recovery RL can (1) more effectively trade
off task performance and constraint satisfaction than prior algorithms, which jointly optimize for
both and (2) effectively leverage offline data for safe RL.

Domains: We evaluate Recovery RL on a set of 6 simulation domains (Figure 5.1) and an image-
based constrained reaching task on a physical robot (Figure 5.3). All experiments involve policy
learning under state space constraints, in which a constraint violation terminates the current episode.
This makes learning especially challenging, since constraint violations directly preclude further
exploration. This setting is reflective of a variety of real world environments, in which constraint
violations can require halting the robot due to damage to itself or its surrounding environment.

We first consider three 2D navigation domains: Navigation 1, Navigation 2, and Maze. Here,
the agent only observes its position in 2D space and experiences constraint violations if it hits
obstacles, walls, or workspace boundaries. We then consider three higher dimensional tasks to
evaluate whether Recovery RL can be applied to contact rich manipulation tasks (Object Extraction,
Object Extraction (Dynamic Obstacle)) and vision-based continuous control (Image Maze). In the
object extraction environments, the goals is to extract the red block without toppling any blocks, and
in the case of Object Extraction (Dynamic Obstacle), also avoiding contact with a dynamic obstacle
which moves in and out of the workspace. Image Maze is a shorter horizon version of Maze, but the
agent is only provided with image observations rather than its (x, y) position in the environment.

We then evaluate Recovery RL on an image-based constrained reaching task on the da Vinci
Research Kit (dVRK) [31] where the robot must guide its end effector within 2 mm of a target
position from two possible starting locations while avoiding a stay-out zone for the end effector
in the center of the workspace. The dVRK is cable-driven and has relatively imprecise controls,
motivating closed-loop control strategies to compensate for these errors [28]. Furthermore, the
dVRK system has been used in the past to evaluate safe RL algorithms [60] due to its high cost and
the delicate structure of its arms, which make safe learning critical. Exact environment, task, and
data collection details can be found in the supplement for all simulation and physical experiments.

CHAPTER 5. RECOVERY RL EXPERIMENTS 13

Figure 5.1: Simulation Experiments Domains: We evaluate Recovery RL on a set of 2D navigation tasks,
two contact rich manipulation environments, and a visual navigation task. In Navigation 1 and 2, the goal
is to navigate from the start set to the goal set without colliding into the obstacles (red) while in the Maze
navigation tasks, the goal is to navigate from the left corridor to the red dot in the right corridor without
colliding into walls/borders. In both object extraction environments, the objective is to grasp and lift the red
block without toppling any of the blocks or colliding with the distractor arm (Dynamic Obstacle environment).

Evaluation Metric: Since Recovery RL and prior methods trade off between safety and task
progress, we report the ratio of the cumulative number of task successes and the cumulative number
of constraint violations at each episode to illustrate this (higher is better). We tune all algorithms
to maximize this ratio, and task success is determined by defining a goal set in the state space for
each environment. To avoid issues with division by zero, we add 1 to the cumulative task successes
and constraint violations when computing this ratio. This metric provides a single scalar value to
quantify how efficiently different algorithms balance task completion and constraint satisfaction. We
do not report reward per episode, as episodes terminate on task completion or constraint violation.
In the supplementary material, we also report additional metrics for each experiment: cumulative
task successes and cumulative constraint violations. For all experiments, we replicate each run
across 3 random seeds and report the mean and standard error.

Comparisons: We compare Recovery RL to algorithms which ignore constraints (Unconstrained)
and enforce constraints by implementing constraints into the policy optimization objective (LR,
SQRL, RSPO) or employing reward shaping (RP, RCPO). Specifically, we compare Recovery RL
to: Unconstrained, where the agent only optimizes for the task reward and ignores constraints, La-
grangian Relaxation (LR), which minimizes Lpolicy(s, a, r, s′; π) + λ(Ea∼π(·|s)

[
Q̂π
φ,risk(s, a)

]
−

εrisk), where Lpolicy is the policy optimization loss function used and the second term approxi-
mately implements the constraint Q̂π

φ,risk(s, a) ≤ εrisk, with both updated via dual gradient descent,
Safety Q-Functions for RL (SQRL) [52], which combines the LR method with a filtering mech-
anism to reject policy actions for which Q̂π

φ,risk(s, a) > εrisk, Risk Sensitive Policy Optimization
(RSPO) [50], where the agent minimizes Lpolicy(s, a, r, s′; π) + λt(Ea∼π(·|s)

[
Q̂π
φ,risk(s, a)

]
− εrisk),

where λt is a sequence that decreases to 0, Reward Penalty (RP), in which the agent observes a
new reward function that penalizes constraint violations: R′(s, a) = R(s, a)− λC(s), and Critic
Penalty Reward Constrained Policy Optimization (RCPO) [57], where the agent optimizes the
Lagrangian relaxation via dual gradient descent and the policy gradient trick. The policy gradient
update maximizes Eπ

[∑∞
t=0 γ

t(R(st, at)− λQ̂π
φ,risk(st, at))

]
and the multiplier update is the same

as in LR.

CHAPTER 5. RECOVERY RL EXPERIMENTS 14

Figure 5.2: Simulation Experiments: In all navigation tasks, we find that Recovery RL significantly
outperforms prior methods with both model-free and model-based recovery policies, while for the object
extraction environments, Recovery RL with a model-based recovery policy significantly outperforms prior
algorithms while Recovery RL with a model-free recovery policy does not perform as well. We hypothesize
that this is due to the model-based recovery mechanism being better able to compensate for imperfections in
Q̂πφ,risk. The sawtooth pattern occurs due to constraint violations, which result in a sudden drop in the ratio.

All of these algorithms are implemented with the same base algorithm for learning the task policy
(Soft Actor Critic [22]) and all but Unconstrained and RP are modified to use the same safety critic
Q̂π
φ,risk which is pretrained on Doffline for all methods. Thus, the key difference between Recovery

RL and prior methods is how Q̂π
φ,risk is utilized: the comparisons use a joint objective which uses

Q̂π
φ,risk to train a single policy that optimizes for both task performance and constraint satisfaction,

while Recovery RL separates these objectives across two sub-policies. We tune all prior algorithms
and report the best hyperparameter settings found on each task for the ratio based evaluation metric
introduced above. See the supplement for ablations studying different hyperparameter choices for
Recovery RL and the comparison algorithms, a detailed study of the importance of each component
of Recovery RL, and further details on experimental setup and parameters.

5.1 Experiments
Simulation Experiments: We study the performance of Recovery RL and prior methods in all
simulation domains in Figure 5.2. Results suggest that Recovery RL with both model-free and model-
based recovery mechanisms significantly outperform prior algorithms across all 3 2D pointmass
navigation environments (Navigation 1, Navigation 2, Maze) and the visual navigation environment
(Image Maze). In the Object Extraction environments, we find that Recovery RL with model-

CHAPTER 5. RECOVERY RL EXPERIMENTS 15

Figure 5.3: Physical Experiment: We evaluate Recovery RL on a constrained image-based reacher task on
the dVRK with a stay out zone in the center of the workspace. We supply all algorithms with an overhead
RGB image as input and find that Recovery RL significantly outperforms Unconstrained and LR.

Figure 5.4: Ablations: We first study the affect of different algorithmic components of Recovery RL (left).
Results suggest that offline pretraining of πrec and Q̂πφ,risk is critical for good performance, while removing
online updates leads to a much smaller reduction in performance. Furthermore, we find that the action
relabeling method for training πtask (Section 4.1) is critical for good performance. We then study the
sensitivity of Recovery RL with model-based recovery to the number of offline transitions used to pretrain
πrec and Q̂πφ,risk (right) and find that Recovery RL performs well even with just 1000 transitions in Doffline

for the Object Extraction task, with performance degrading when the number of transitions is reduced beyond
this point.

based recovery significantly outperforms prior algorithms, while Recovery RL with a model-free
recovery mechanism does not perform nearly as well. We hypothesize that the model-based recovery
mechanism is better able to compensate for noise in Q̂π

φ,risk, resulting in a more robust recovery
policy. We find that the prior methods often struggle as they tend to sacrifice either safety or task
performance, while Recovery RL is generally able to effectively optimize for task performance in
the safe MDP defined by the recovery policy. We study this further in the supplement.

Physical Experiment: We evaluate Recovery RL and prior algorithms on an image-based reaching
task with delta-position control on the da Vinci Research Kit in Figure 5.3. See Figure 5.3 for an
illustration of the experimental setup. We find that Recovery RL substantially outperforms prior
methods, suggesting that Recovery RL can be used for visuomotor control on physical robots.

CHAPTER 5. RECOVERY RL EXPERIMENTS 16

5.2 Ablations:
We ablate different components of Recovery RL and study the sensitivity of Recovery RL to the
number of transitions in Doffline for the Object Extraction domain in Figure 5.4. Results suggest
that Recovery RL performs much more poorly when πrec and Q̂π

φ,risk are not pretrained with data
from Doffline, indicating the value of learning to reason about safety before environment interaction.
However, when πrec and Q̂π

φ,risk are not updated online, performance degrades much less significantly.
A key component of Recovery RL is relabeling actions when training the task policy so that πtask

can learn to associate its proposed actions with their outcome (Section 4.1). We find that without
this relabeling, Recovery RL achieves very poor performance as it rarely achieves task successes.
Additionally, we find that although the reported simulation experiments supply Recovery RL and all
prior methods with 20, 000 transitions in Doffline for the Object Extraction task, Recovery RL is able
to achieve good performance with just 1000 transitions in Doffline, with performance significantly
degrading only when the size of Doffline is reduced to less than this amount.

17

Chapter 6

MEta-learning for Safe Adaptation (MESA)

6.1 Problem Statement
We consider the offline meta-reinforcement learning problem setting introduced in [39, 12], in
which the objective is to leverage offline data from a number of different tasks to rapidly adapt to an
unseen task at test-time. We consider an instantiation of this setting in which tasks correspond to
CMDPs {Mi}Ni=1, each with different system dynamics pi(s′|s, a), but which otherwise share all
other MDP parameters, including the same state and action spaces and constraint function. Here
the agent is not allowed to directly interact with any environment at meta-train time or meta-test
time, but is only provided with a fixed offline dataset of transitions from environments. This setting
is particularly applicable to the safe reinforcement learning setting, where direct environmental
interaction can be risky, but there may be accident logs from prior robot deployments in various
settings. We formalize the problem of learning about constraints in the environment in the context
of offline meta-reinforcement learning, in which the agent is provided with offline data from Ntrain

training environments {Mtrain
i }

Ntrain
i=1 with varying system dynamics and must rapidly adapt to being

safe in a new environmentMtest with unseen system dynamics. The intuition is that when dynamics
change, the states which violate constraints remain the same, but the behaviors that lead to these
states may be very different. Thus, we consider the problem of using data from a number of training
environments to optimize the safe RL objective in equation 3.1.

We assume that the agent is provided with a set of Ntrain datasets of offline transitions Dtrain =
{Dtrain

i }
Ntrain
i=1 from training environments with different dynamics in addition to a small dataset Dtest

of offline transitions from the test environmentMtest, in which the agent is to be deployed. The
agent’s objective is to leverage this data to optimize the safe RL objective in equation 3.1 in MDP
Mtest by learning some task τ in MDPMtest while minimizing constraint violations.

6.2 Algorithm Description
We introduce MEta-learning for Safe Adaptation (MESA), a 3-phase procedure to optimize the
objective in Section 6.1. First, MESA uses datasets of offline transitions from the training envi-

CHAPTER 6. META-LEARNING FOR SAFE ADAPTATION (MESA) 18

Figure 6.1: Safety Critic Adaptation Visualizations: For purposes of illustration, we evaluate MESA and
a Multi-Task learning comparison on a simple Maze Navigation task (left) from [59] in which the objective is
for the agent (the red dot) to navigate from a random point in the left column to the middle of the right column
without colliding into any of the Maze walls or boundaries. Environments are sampled by changing the gaps
in the walls (parameterized by w1, w2∼U(−0.1, 0.1)), leading to significant changes in which behaviors
are safe. On the left, we show heatmaps of the learned safety critic Qπrisk when it is adapted to a new Maze
with unseen wall gaps for the Multi-Task comparison (top) and MESA (bottom). Here bluer colors denote
low probability of constraint violation while redder colors denote a higher probability, and the labels above
the heatmaps indicate the number of gradient steps used for adaptation on Dtest. The Multi-Task learning
comparison, which aggregates data from all environments to learn the safety critic and does not explicitly
optimize for adaptation, is much slower to adapt to the new environment. However, MESA is able to leverage
its learned prior to rapidly adapt to the new gap positions.

ronments to meta-learn a safety critic optimized for rapid adaptation (Phase 1). Then, we discuss
how MESA adapts its meta-learned safety critic using a dataset of offline transitions from the test
environment (Phase 2). This same dataset is also used to learn a recovery policy, which is trained
to descend the safety critic and prevent the agent from visiting unsafe states as in Thananjeyan
et al. [59], but we note that the learned safety critic can also be used in conjunction with other
safe RL algorithms such as those from Srinivasan et al. [52], Bharadhwaj et al. [8]. Finally, the
meta-learned safety critic and recovery policy are used and trained online for safe reinforcement
learning when learning some downstream task τ in the testing environment (Phase 3). The full
algorithm is summarized in Algorithm 2 and Figure 1.2. An illustration of the adaptation procedure
for the safety critic is shown in Figure 6.1.

Phase 1: Meta-Learning Qπ
risk

Given offline transitions from Ntrain training environments, {Dtrain
i }

Ntrain
i=1 , we meta-learn the safety

critic Qπ
risk using Model-agnostic Meta Learning [16] (Section 3). We utilize the following safety

critic loss function for parameter ψ and transition (st, at, ct, st+1):

Lrisk(ψ, (st, at, ct, st+1)) = (Qπ
ψ,risk(st, at)− (ct

+ γrisk(1− ct)Eat+1∼π(at+1|st+1)

[
Qπ
ψ,risk,targ(st+1, at+1)

]
))2

2

(6.1)

CHAPTER 6. META-LEARNING FOR SAFE ADAPTATION (MESA) 19

in each meta-training iteration where ct indicates a constraint violation at state st. Note that Qπ
risk is

initially calibrated to data in the training datasets {Dtrain
i }

Ntrain
i=1 , which are collected by a mixture of

policies.
The recovery policy is not trained with a MAML-style objective. Similar to the actor’s loss

function in DDPG [36], the recovery policy, parameterized by ω, aims to minimize the safety critic
value for input state st:

Lπrec(ω, st) = Qπ
ψ,risk(st, πω,rec(·|st)).

In principle, this loss function can be replaced with any off-policy algorithm objective, such as
AWR and SAC. We overload the loss function notation to also represent empirical risk functions for
an input dataset D such that

Lrisk(ψ,D) = E(st,at,ct,st+1)∼D [Lrisk(ψ, (st, at, ct, st+1))] (6.2)

and

Lπrec(ω,D) = Est∼D [Lπrec(ψ, st)] (6.3)

. When running MAML, we let LMi
(·) = Lrisk(·,Dtrain

i) where Dtrain
i denotes a dataset of offline

transitions from environment i. The input to the loss is Qψ, and MAML optimizes ψ to minimize
the time to adapt the safety critic to a new environment.

Phase 2: Test Time Adaptation
A previously unseen test environmentMtest is sampled from p(M) and the agent is supplied with
a dataset of offline transitions Dtest from Mtest. This dataset is much smaller than the training
dataset, since data collection in the test environment results in costly constraint violations. As
shown later in Section 7, Dtest is 10-100x smaller than Dtrain. We then perform M gradient steps
with respect to Lrisk(ψ,Dtest) as defined in equation 6.2 to rapidly adapt safety critic Qπ

risk,ψ with
respect to parameters ψ. We also use this same dataset to train a recovery policy πrec,ω to minimize
Lπrec(ω,Dtest) as defined in equation 6.3. Note that the learned Qπ

risk,ψ is initially calibrated with
the policy used for data collection in the meta-training and meta-testing environments. Since these
datasets are designed to show numerous examples of constraint violations, the resulting Qπ

risk,ψ

measures the probability of constraint violation of a policy that is trying to violate constraints, and
thus serves as a pessimistic initialization for online learning of some downstream task τ . This
is a desirable property, as Qπ

risk,ψ will initially prevent constraint violations, and then become
increasingly less pessimistic during online exploration when calibrated with the task policy for task
τ .

Phase 3: Using Qπ
risk and πrec for Safe RL

We initialize the safety critic and recovery policy with the adapted Qπ
risk and πrec,ω when learning a

task τ in the test environment. Note that since the safety critic is learned offline in a task-agnostic

CHAPTER 6. META-LEARNING FOR SAFE ADAPTATION (MESA) 20

Algorithm 2 MEta-learning for Safe Adaptation (MESA)

Require: Training datasets Dtrain = {Dtrain
i }Ntrain

i=1 , adaptation dataset Dtest, task horizon H , safety
threshold εrisk, safety critic step sizes α1 and α2, recovery policy step size β.
for i ∈ {1, . . . N} do . Phase 1: Offline Meta-Learning

for j ∈ {1, . . . K} do
Sample Dtrain

j ∼Dtrain

ψ′j ← ψ − α1 · ∇ψLrisk
(
ψ,Dtrain

j

)
for j ∈ {1, . . . K} do

Sample Dtest
j ∼Dtest

ψ ← ψ − α2 ·
∑

j∇ψLrisk
(
ψ′j,Dtrain

j

)
ω ← ω − β · ∇ωLπrec (ω,Dtest)

for i ∈ {1, . . .M} do . Phase 2: Test Time Adaptation
ψ ← ψ − α1 · ∇ψLrisk (ψ,Dtest)
ω ← ω − β · ∇ωLπrec (ω,Dtest)

Dtask ← ∅
while not converged do . Phase 3: Recovery RL

s1∼env.reset()
for t ∈ {1, . . . H} do

aπt , a
rec
t ∼πθ(·|st), πrec(·|st)

if Qπ
risk(st, at) ≤ εrisk then
at = aπt

else
at = arec

t

Execute at, observe rt, ct, and st+1

Add (st, a
π
t , ct, st+1) to Dtest

Add (st, at, rt, st+1) to Dtask

θ ← θ − γ · ∇θLπ
(
θ,Dtask

)
ψ ← ψ − α1 · ∇ψLsafe (ψ,Dtest)
ω ← ω − β · ∇ωLπrec (ω,Dtest)
if ct then

End episode

CHAPTER 6. META-LEARNING FOR SAFE ADAPTATION (MESA) 21

way, we can flexibly utilize the meta-learned safety critic and recovery policy to learn a previously
unknown task τ in the test environment. As in the Recovery RL paper [59], both Qπ

risk and πrec are
updated online through interaction with the environment so that they are calibrated with the learned
task policy for τ and improve their estimates over time.

22

Chapter 7

MESA Experiments

In experiments, we study the degree to which MESA can leverage offline data from environments
with different dynamics to quickly learn how to be safe in a new test domain with modified,
previously unseen dynamics from a small amount of experience in the new domain. To do this, we
compare MESA with prior safe reinforcement learning algorithms and study the degree to which
they can limit constraint violations when learning in a perturbed test environment with previously
unseen dynamics. MEta-learning for Safe Adaptation (MESA) and all comparisons are built on top
of the Soft Actor Critic (SAC) algorithm from Haarnoja et al. [22].

Comparisons: We compare MESA with the following algorithms:

• Unconstrained: A soft actor critic agent which only optimizes for task rewards and ignores
constraints.

• Recovery RL (RRL): Uses data only from Dtest to learn Qπ
risk and then uses Qπ

risk in con-
junction with the Recovery RL algorithm [59].

• Multi-Task Learning (Multi-Task): Learns Qπ
risk from a combination of all data from

both the training datasets {Di}Ntrain
i=1 in phase 1 and then adapts in phase 2 using gradient

steps on only the test dataset Dtest (we use the same number of gradient steps for the Multi-
Task comparison on Dtest as for MESA). In phase 3, Multi-Task uses the learned Qπ

risk in
conjunction with the Recovery RL algorithm [59] as in MESA and the RRL comparison.

The comparison to the Unconstrained algorithm allows us to evaluate the degree to which reasoning
about constraints helps avoid them. The comparison to the Recovery RL algorithm allows us to
understand how offline data from different environments allows MESA to learn about constraints in
the test environment. Finally, the comparison to the Multi-Task Learning algorithm allows us to
evaluate the benefits of specifically leveraging meta-learning to quickly adapt learned risk measures.

Experimental Procedure: We evaluate MESA and comparisons in terms of their ability to (1) effi-
ciently learn some downstream task τ in the test environment and (2) satisfy constraints while doing

CHAPTER 7. MESA EXPERIMENTS 23

(a) Navigation 1 (b) Navigation 2 (c) Cartpole-Length

(d) HalfCheetah-Disabled (e) Ant-Disabled

Figure 7.1: Simulation Domains: MESA is evaluated on a set of 2D navigation and locomotion tasks in
simulation. In Navigation 1 and Navigation 2, the agent learns to navigate from a beginning position to
the goal while avoiding the obstacles (red walls). In the Cartpole-Length task, the goal is to keep the pole
balanced on the cart while minimizing the number of times the pole falls beneath the rail or moves off the rail.
Lastly, in the HalfCheetah-Disabled and Ant-Disabled tasks, the objective is to learn how to move forwards
while minimizing the number of collisions with the ground of the head (HalfCheetah) or torso (Ant) during
training.

so. Thus, we report learning curves (total rewards or cumulative task successes) and cumulative
number of constraint violations for all algorithms and study whether MESA can leverage prior
experience from different environments to learn safely in the test environment. During learning,
episodes are terminated upon a constraint violation, making learning about constraints critical for
safely learning in the test environment. To control for stochasticity in RL training, we report average
performance over 3 to 5 random seeds with standard error shading for all learning curves.

Domains: We evaluate MESA and comparisons on 5 simulation domains which are illustrated
in Figure 7.1. All domains we study have the property that the changes in the dynamics are
not immediately observable in the agent’s observation, motivating learning how to be safe from
interaction experience when dynamics change. This is common in various practical settings, such as
a robot with worn out joints or sudden power loss in a legged locomotion system. We first consider
two 2D navigation domains from [59] in which the agent must navigate between a start set and goal
set without colliding into red obstacles in a system with linear Gaussian dynamics. The environment
distribution for both domains is defined by varying the coefficients of the A and B matrices in the
transition dynamics function where st+1 = A · st +B · at + ε, where ε∼N (0, σ2I).

We then consider a cartpole task (Cartpole-Length) in which the agent must balance the cartpole
system without letting the pole fall below the cart. Here environments are sampled by varying the
length of the pole, where pole lengths for the training environments are sampled from U (0.4, 0.8)
and the test environment corresponds to a pole of length 1. We also consider two legged locomotion

CHAPTER 7. MESA EXPERIMENTS 24

Figure 7.2: Navigation Results: Top: Learning Curves During Phase 3. We find that in the Navigation 1
task, MESA learns more efficiently than comparisons, but in the Navigation 2 task, MESA achieves very
similar performance to the Multi-Task comparison, which we hypothesize is because small changes in
the dynamics of the underlying linear system do not drastically affect the safety of different behaviors in
Navigation 2 as the agent can simply learn to keep a large margin between itself and the obstacle. Bottom:
Cumulative Constraint Violations During Phase 3. We find that MESA violates constraints less often than
comparisons for Navigation 1, but performs very similarly to comparisons in terms of cumulative constraint
violations in Navigation 2 as the agent can easily learn to keep a large margin between itself and the obstacle.

tasks, HalfCheetah-Disabled and Ant-Disabled, in which the agent is rewarded for running as fast as
possible, but violates constraints given a collision of the head with the floor or torso with the floor
for the HalfCheetah-Disabled and Ant-Disabled tasks respectively. For both HalfCheetah-Disabled
and Ant-Disabled, environments are sampled by choosing a specific joint and simulating a loss
of power (power loss corresponds to always providing zero motor torque to the joint), resulting
in significantly different locomotion dynamics across environments. The Cartpole-Length and
HalfCheetah-Disabled tasks are adapted from [66] while the Ant-Disabled task is adapted from [41].

Data Collection: For the navigation environments, offline datasets for both the training and testing
datasets for meta-learning the safety critic are collected by executing a random policy where the

CHAPTER 7. MESA EXPERIMENTS 25

Figure 7.3: Locomotion Results: Top: Learning Curves During Phase 3. We find that across all tasks
MESA achieves similar task performance as the best comparison algorithm, indicating that MESA is able to
effectively learn in a test environment with previously unseen dynamics. Bottom: Cumulative Constraint
Violations During Phase 3. We find that MESA violates constraints less often than comparisons on all tasks,
and this difference is most significant on the HalfCheetah-Disabled and Ant-Disabled tasks, where MESA
violates constraints significantly less often than comparisons. This suggests that MESA is able to effectively
leverage its prior experiences across environments with different dynamics to rapidly adapt its risk measure
to the test environment.

episode does not terminate upon constraint violation. We collect a total of 20-25 datasets for each
of the sampled training environments, with each dataset consisting of 10000 transitions (680 and
1200 violations in Navigation 1 and Navigation 2 respectively), which is similar to the dataset size
collected in [59]. However, the dataset in the test environment is 50-100x smaller than each training
task dataset (∼100, 200 transitions with 15, 36 violations respectively).

Similarly, for locomotion environments, the datasets from the test environment are collected via
a random policy rollout, where the episode does not terminate early upon constraint violations. To
collect datasets from the training environments, we train SAC on each of the training environments
and log the replay buffer from an intermediate checkpoint. For the HalfCheetah-Disabled and Ant-
Disabled tasks, we collect 4 and 3 training datasets of 400 episodes (on average ∼400K transitions
with 14K and 113K violations) respectively. The dataset from the testing environment consists
of 40K transitions (2.4K, and 11.2K violations for HalfCheetah, Ant), which is 10x smaller than
before. For the Cartpole-Length task, 20 training datasets are generated, with each containing 200
episodes of data (∼20K timesteps with 4.5K violations). The dataset from the testing environment

CHAPTER 7. MESA EXPERIMENTS 26

(a) Varying Test Dataset Sizes (b) Test Task Generalization: Partial Joint Failures

Figure 7.4: Ablation: Sensitivity to Test Dataset Size: In Figure 7.4a, we investigate the sensitivity of
MESA to the number of transitions in the test dataset used for adapting Qπrisk for the HalfCheetah-Disabled
task. We find that even with a test dataset 4 times smaller than used in the experiments in Section 5, MESA
does not experience much degradation in performance. However, further reduction in the size of the test
dataset make it difficult for MESA to learn a sufficiently accurate safety critic in the test environment,
leading to more significant drops in performance. Generalization to More Different Test Environment
Dynamics: In Figure 7.4b, we investigate MESA’s and Multi-Task’s generalization to partial joint failures
in the HalfCheetah-Disabled task, where the training sets are kept the same. We find that MESA is able to
significantly reduce the number of constraint violations compared to the Multi-Task comparison while also
achieving superior task performance, suggesting that as differences in system dynamics increase between
the training and testing environments, MESA is able to more effectively adapt risk measures across the
environments.

contains 1K transitions (with 200 violations), which is 20x smaller than before.

7.1 Experiments
Navigation Results: We evaluate the performance of MESA and comparisons in Figure 7.2. For
both Navigation 1 and 2, unconstrained SAC performs poorly as it no mechanism with which to
reason about constraints, and thus collides frequently and is unable to learn the task. In addition,
for both environments, MESA violates constraints less often than the Multi-Task comparison, but
the performance gap is somewhat small in these environments. We hypothesize that this is because
in the Navigation environments, particularly Navigation 2, the space of safe behaviors does not
change significantly as a function of the system dynamics, making it possible for the Multi-Task
comparison to achieve strong performance by simply learning the safety critic jointly on a buffer of
all collected data. For Navigation 2, we observe that the Recovery RL comparison violates the least
constraints but does not succeed as often as the Multi-Task comparison and MESA. We hypothesize
that since the safety critic for Recovery RL is trained only on the small dataset of transitions in
the test environment, it is overly pessimistic when evaluating the risk of out-of-distribution states.
This makes it mark all such states as dangerous, making it difficult to explore. This phenomenon is
analogous to the over-estimation of Q-values observed in standard offline RL algorithms [32].

Locomotion Results: We also evaluate the performance of MESA on the set of 3 locomotion

CHAPTER 7. MESA EXPERIMENTS 27

environments in Figure 7.3. In Cartpole-Length, the Recovery RL comparison exhibits the most
constraint violations, which suggests that the set of transitions from the test environment is too
small to learn a sufficiently accurate safety critic. MESA and the Multi-Task comparison achieve
somewhat similar performance in this environment, but both are able to leverage their learned prior
from the training tasks to achieve somewhat fewer constraint violations than the Unconstrained and
Recovery RL comparisons. We hypothesize that the difference in the dynamics between the training
and test environments is insufficient for MESA and the Multi-Task comparison to gain sufficient
benefit from data in the training environments.

The HalfCheetah-Disabled and Ant-Disabled environments present settings in which the dynam-
ics are much more different between the training and testing environments. Accordingly, MESA
significantly outperforms the other methods, including the Multi-Task comparison. We hypothesize
that this is because the different training environments are sufficiently different in their dynamics
that a safety critic and recovery policy trained jointly on all of them is unable to accurately represent
the boundaries between safe and unsafe states. Thus, when adapting to an environment with unseen
dynamics, the space of safe behaviors may be so different than in the training environments that the
Multi-Task comparison cannot easily adapt. MESA mitigates this issue by explicitly optimizing the
safety critic for rapid adaptation to environments with different dynamics.

7.2 Ablations
In ablations, we seek to answer the following questions: (1) how small can the dataset from the test
environment be for MESA to safely adapt to new test environments? and (2) how well can MESA
generalize to environments consisting of more significantly different dynamics (e.g. partial joint
failures when only trained on datasets with examples of full joint failures)?

Test Dataset Size: We first investigate the sensitivty of MESA to the size of the test dataset.
Figure 7.4a, we study performance when the test dataset is 1x, 1/2x, 1/4x, 1/8x, and 1/16x the size
of the test dataset (40K transitions) used for the HalfCheetah-Disabled results reported in Section 5.
We find that MESA can do well when given a test dataset 1/4 the size of the original test dataset
(10K transitions, which is 10 episodes of environment interaction). This suggests that the test
size dataset can be up to 40x smaller than the training dataset sizes without significant drop in
performance. We find that when the test dataset is reduced to 1/8 and 1/16 the size of the original
test dataset, MESA exhibits degrading performance, as the safety critic has insufficient data to learn
about constraints in the test environment.

Test Environment Generalization: Here we study how MESA performs when the test environ-
ments have more significantly different dynamics from those seen during training. To evaluate
this, we consider the HalfCheetah-Disabled task, and train MESA using the same training datasets
considered in Section 5, in which specific joints are selected to lose power. However, at test
time, we evaluate MESA on a setting with partial power losses to joints, in which the maximum
applicable power to certain joints is set to some k percent of the original maximum power, where

CHAPTER 7. MESA EXPERIMENTS 28

k ∈ U (0.5, 0.95). This is analogous to partial subsystem failures that can occur in real-world robotic
systems. In, Figure 7.4b, we find that MESA achieves superior performance compared to the the
Multi-Task comparison in terms of both task performance and constraint violations during training.
This suggests that MESA could rapidly learn to be safe even with system dynamics that are out of
the meta-training environment distribution.

29

Chapter 8

Conclusion

We present Recovery RL, a new algorithm for safe RL which is able to (1) efficiently leverage a
small set of demonstrations of constraint violations to reduce the probability of constraint violations
during learning and (2) effectively balance task-directed exploration and safety by decoupling them
across a task policy and a recovery policy. We find that Recovery RL more effectively balances task
performance and constraint satisfaction than 5 state-of-the-art prior algorithms for safe RL across
6 simulation domains and an image-based constrained reaching task on a physical robot. Results
suggest that Recovery RL could scale well to robotic tasks with complex, contact rich dynamics
and high dimensional state spaces such as images.

Next, we investigate safe exploration in the transfer learning setting. We formulate safe reinforce-
ment learning as an offline meta-reinforcement learning problem and motivate how learning from
offline datasets of unsafe behaviors in previous environments can provide a scalable and compelling
way to learn tasks safely in new environments with unobserved change in system dynamics. We then
present MEta-learning for Safe Adaptation (MESA), a new algorithm for learning a risk measure
which can transfer knowledge about safety across environments with different dynamics. Results in
simulation experiments suggest that MESA is able to achieve strong performance across 5 different
robotic simulation domains and is able to effectively adapt to test environments with previously
unseen dynamics.

All in all, Recovery RL and MESA are promising directions in safe RL that enable an agent
to leverage prior knowledge of safe and unsafe behavior to minimize the number of constraint
violations in the test environment. We observe that our agent’s performance heavily depends on
γrisk and εrisk. In addition, the learned safety boundaries are oftentimes too pessimistic, which can
impair exploration. Hence, we hope to explore the following research directions:

• Learning Safety Boundaries without an Offline Dataset: To learn without datasets, we believe
novel exploration algorithms are needed to guide the agent to quickly understand safety
boundaries in as few constraint violations as possible.

• Hyperparameter Optimization: γrisk and εrisk should be automatically tuned and change based
on the agent’s history of constraint violations. For example, the agent should automatically

CHAPTER 8. CONCLUSION 30

tune its behavior to be more risky if it wants to better understand an unknown region of the
state space.

• Reducing Safety Critic’s Pessimism: Learned safety boundaries oftentimes return pessimistic
values for states visited outside of the training distribution. We believe that being more
conservative in training, as shown by recent work in offline RL [33, 65], can help mitigate
this issue.

• More Complex and Diverse Tasks: We hope to extend Recovery RL to learn in more complex
manipulation tasks and MESA to meta-learn across a more diverse set of tasks, such as all 50
environments in [64].

RL faces many challenges before it can widely deployed in real-life applications. For an agent to
be truly intelligent and reliable, not only must a robot learn to be safe, it must also learn to perform
robustly in settings outside of training. During my PhD program at UC Berkeley, I hope to continue
my work in safe RL and engage in new, exciting RL applications to better understand and address
these roadblocks.

31

Bibliography

[1] Joshua Achiam et al. “Constrained Policy Optimization”. In: Proc. Int. Conf. on Machine
Learning. 2017.

[2] Mohammed Alshiekh et al. “Safe Reinforcement Learning via Shielding”. In: 2018.

[3] Eitan Altman. Constrained Markov Decision Processes. 1999, p. 260. DOI: 10.1016/
0167-6377(96)00003-X.

[4] Karol Arndt et al. “Meta Reinforcement Learning for Sim-to-real Domain Adaptation”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA) (2020).

[5] Somil Bansal et al. “Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances”.
In: Conference on Decision and Control (CDC). 2017.

[6] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule.
Citeseer.

[7] Felix Berkenkamp et al. “Safe Model-based Reinforcement Learning with Stability Guaran-
tees”. In: Proc. Advances in Neural Information Processing Systems. 2017.

[8] Homanga Bharadhwaj et al. “Conservative Safety Critics for Exploration”. In: arXiv preprint
arXiv:2010.14497 (2020).

[9] Y. Chow et al. “A Lyapunov-based Approach to Safe Reinforcement Learning”. In: NeurIPS.
2018.

[10] Y. Chow et al. “Lyapunov-based Safe Policy Optimization for Continuous Control”. In: ICML
Workshop RL4RealLife. 2019.

[11] Kurtland Chua et al. “Deep Reinforcement Learning in a Handful of Trials using Probabilistic
Dynamics Models”. In: Proc. Advances in Neural Information Processing Systems (2018).

[12] Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline Meta Learning of Exploration. 2021.
arXiv: 2008.02598 [cs.LG].

[13] Yan Duan et al. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. 2016.
arXiv: 1611.02779 [cs.AI].

[14] Benjamin Eysenbach et al. “Leave no Trace: Learning to Reset for Safe and Autonomous
Reinforcement Learning”. In: International Conference on Learning Representations (2018).

[15] Rasool Fakoor et al. Meta-Q-Learning. 2020. arXiv: 1910.00125 [cs.LG].

https://doi.org/10.1016/0167-6377(96)00003-X
https://doi.org/10.1016/0167-6377(96)00003-X
https://arxiv.org/abs/2008.02598
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1910.00125

BIBLIOGRAPHY 32

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. 2017. arXiv: 1703.03400 [cs.LG].

[17] Jaime F. Fisac et al. “A General Safety Framework for Learning-Based Control in Uncertain
Robotic Systems”. In: IEEE Transactions on Automatic Control. 2018.

[18] Jaime F. Fisac et al. “Bridging Hamilton-Jacobi Safety Analysis and Reinforcement Learning”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2019.

[19] J. H. Gillula and C. J. Tomlin. “Guaranteed Safe Online Learning via Reachability: tracking a
ground target using a quadrotor”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
2012.

[20] Djordje Grbic and Sebastian Risi. Safe Reinforcement Learning through Meta-learned In-
stincts. 2020. arXiv: 2005.03233 [cs.LG].

[21] Tuomas Haarnoja et al. “Soft Actor-Critic Algorithms and Applications”. In: CoRR (2018).

[22] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor”. In: Proc. Int. Conf. on Machine Learning (2018).

[23] Weiqiao Han, Sergey Levine, and Pieter Abbeel. “Learning Compound Multi-Step Controllers
under Unknown Dynamics”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS) (2015).

[24] M. Heger. “Consideration of risk in reinforcement learning”. In: Machine Learning Proceed-
ings. 1994.

[25] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. “Learning To Learn Using
Gradient Descent”. In: IN LECTURE NOTES ON COMP. SCI. 2130, PROC. INTL. CONF.
ON ARTI NEURAL NETWORKS (ICANN-2001. Springer, 2001, pp. 87–94.

[26] Rein Houthooft et al. Evolved Policy Gradients. 2018. arXiv: 1802.04821 [cs.LG].

[27] Jan Humplik et al. Meta reinforcement learning as task inference. 2019. arXiv: 1905.06424
[cs.LG].

[28] Minho Hwang et al. “Efficiently Calibrating Cable-Driven Surgical Robots With RGBD
Sensing, Temporal Windowing, and Linear and Recurrent Neural Network Compensation”.
In: Robotics and Automation Letters (RAL) (2020).

[29] Julian Ibarz et al. “How to Train Your Robot with Deep Reinforcement Learning: Lessons
we Have Learned”. In: Int. Journal of Robotics Research (IJRR) (2021).

[30] Dmitry Kalashnikov et al. “QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based
Robotic Manipulation”. In: Conference on Robot Learning (CoRL) (2018).

[31] Peter Kazanzides et al. “An Open-Source Research Kit for the da Vinci Surgical System”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2014.

[32] Aviral Kumar et al. Conservative Q-Learning for Offline Reinforcement Learning. 2020.
arXiv: 2006.04779 [cs.LG].

https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/2005.03233
https://arxiv.org/abs/1802.04821
https://arxiv.org/abs/1905.06424
https://arxiv.org/abs/1905.06424
https://arxiv.org/abs/2006.04779

BIBLIOGRAPHY 33

[33] Aviral Kumar et al. Conservative Q-Learning for Offline Reinforcement Learning. 2020.
arXiv: 2006.04779 [cs.LG].

[34] Lanqing Li, Rui Yang, and Dijun Luo. “Efficient Fully-Offline Meta-Reinforcement Learning
via Distance Metric Learning and Behavior Regularization”. In: International Conference
on Learning Representations. 2021. URL: https://openreview.net/forum?id=
8cpHIfgY4Dj.

[35] Shuo Li and Osbert Bastani. “Robust Model Predictive Shielding for Safe Reinforcement
Learning with Stochastic Dynamics”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). 2020.

[36] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: Proc.
Int. Conf. on Learning Representations (2016).

[37] Evan Zheran Liu et al. Decoupling Exploration and Exploitation for Meta-Reinforcement
Learning without Sacrifices. 2021. arXiv: 2008.02790 [cs.LG].

[38] Nikhil Mishra et al. A Simple Neural Attentive Meta-Learner. 2018. arXiv: 1707.03141
[cs.AI].

[39] Eric Mitchell et al. Offline Meta-Reinforcement Learning with Advantage Weighting. 2020.
arXiv: 2008.06043 [cs.LG].

[40] Anusha Nagabandi et al. “Deep Dynamics Models for Learning Dexterous Manipulation”.
In: Conference on Robot Learning (CoRL) (2019).

[41] Anusha Nagabandi et al. Learning to Adapt in Dynamic, Real-World Environments Through
Meta-Reinforcement Learning. 2019. arXiv: 1803.11347 [cs.LG].

[42] Devang K Naik and Richard J Mammone. “Meta-neural networks that learn by learning”.
In: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks. Vol. 1.
IEEE. 1992, pp. 437–442.

[43] Fritz Wysotzki Peterr Geibel. “Risk-Sensitive Reinforcement Learning Applied to Control
under Constraints”. In: Journal of Artificial Intelligence Rersearch. Vol. 24. 2005.

[44] Kate Rakelly et al. Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic
Context Variables. 2019. arXiv: 1903.08254 [cs.LG].

[45] Alex Ray, Joshua Achiam, and Dario Amodei. “Benchmarking Safe Exploration in Deep
Reinforcement Learning”. In: NeurIPS Deep Reinforcement Learning Workshop. 2019.

[46] Charles Richter and Nicholas Roy. “Safe Visual Navigation via Deep Learning and Novelty
Detection”. In: Robotics Science and Systems (RSS) (2013).

[47] Ugo Rosolia and Francesco Borrelli. “Learning Model Predictive Control for Iterative Tasks.
A Data-Driven Control Framework”. In: IEEE Transactions on Automatic Control (2018).

[48] Steindor Saemundsson, Katja Hofmann, and Marc P. Deisenroth. “Meta Reinforcement
Learning with Latent Variable Gaussian Processes”. In: Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI). 2018. URL: https://arxiv.org/abs/
1803.07551.

https://arxiv.org/abs/2006.04779
https://openreview.net/forum?id=8cpHIfgY4Dj
https://openreview.net/forum?id=8cpHIfgY4Dj
https://arxiv.org/abs/2008.02790
https://arxiv.org/abs/1707.03141
https://arxiv.org/abs/1707.03141
https://arxiv.org/abs/2008.06043
https://arxiv.org/abs/1803.11347
https://arxiv.org/abs/1903.08254
https://arxiv.org/abs/1803.07551
https://arxiv.org/abs/1803.07551

BIBLIOGRAPHY 34

[49] Jurgen Schmidhuber. “Evolutionary Principles in Self-Referential Learning. On Learning now
to Learn: The Meta-Meta-Meta...-Hook”. Diploma Thesis. Technische Universitat Munchen,
Germany, 14 5 1987. URL: http://www.idsia.ch/˜juergen/diploma.html.

[50] Yun Shen et al. “Risk-sensitive Reinforcement Learning”. In: Neural Computation. Vol. 26.
2014.

[51] Xingyou Song et al. “Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning”.
In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2020).

[52] Krishnan Srinivasan et al. “Learning to be Safe: Deep RL with a Safety Critic”. In: arXiv
preprint arXiv:2010.14603 (2020).

[53] Bradly Stadie et al. “The Importance of Sampling inMeta-Reinforcement Learning”. In:
Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran
Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/
file/d0f5722f11a0cc839fa2ca6ea49d8585-Paper.pdf.

[54] A. Tamar, Y. Glassner, and S. Mannor. “Policy Gradients Beyond Expectations: Conditional
value-at-risk”. In: CoRR. 2014.

[55] Pranjal Tandon. PyTorch implementation of soft actor critic. https://github.com/
pranz24/pytorch-soft-actor-critic. 2020.

[56] Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. “Worst Cases Policy Gradi-
ents”. In: Conf. on Robot Learning (CoRL) (2019).

[57] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. “Reward Constrained Policy Optimiza-
tion”. In: Proc. Int. Conf. on Learning Representations. 2019.

[58] Brijen Thananjeyan et al. “ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic
Nonlinear Dynamical Systems with Adjustable Boundary Conditions”. In: Workshop on the
Algorithmic Foundations of Robotics. 2020.

[59] Brijen Thananjeyan et al. “Recovery RL: Safe Reinforcement Learning with Learned Recov-
ery Zones”. In: NeurIPS Robot Learning Workshop. NeurIPS. 2020.

[60] Brijen Thananjeyan et al. “Safety Augmented Value Estimation from Demonstrations (SAVED):
Safe Deep Model-Based RL for Sparse Cost Robotic Tasks”. In: Robotics and Automation
Letters (RAL) (2020).

[61] Sebastian Thrun and Lorien Pratt. “Learning to learn: Introduction and overview”. In: Learn-
ing to learn. Springer, 1998, pp. 3–17.

[62] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. “Safe Exploration in Finite
Markov Decision Processes with Gaussian Processes”. In: Proc. Advances in Neural Infor-
mation Processing Systems. 2016.

[63] Jane X Wang et al. Learning to reinforcement learn. 2017. arXiv: 1611.05763 [cs.LG].

[64] Tianhe Yu et al. Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Rein-
forcement Learning. 2019. arXiv: 1910.10897 [cs.LG].

http://www.idsia.ch/~juergen/diploma.html
https://proceedings.neurips.cc/paper/2018/file/d0f5722f11a0cc839fa2ca6ea49d8585-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d0f5722f11a0cc839fa2ca6ea49d8585-Paper.pdf
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://arxiv.org/abs/1611.05763
https://arxiv.org/abs/1910.10897

BIBLIOGRAPHY 35

[65] Tianhe Yu et al. MOPO: Model-based Offline Policy Optimization. 2020. arXiv: 2005.
13239 [cs.LG].

[66] Jesse Zhang et al. “Cautious Adaptation for Reinforcement Learning in Safety-Critical
Settings”. In: Proc. Int. Conf. on Machine Learning (2020).

[67] Jin Zhang et al. Learn to Effectively Explore in Context-Based Meta-RL. June 2020.

https://arxiv.org/abs/2005.13239
https://arxiv.org/abs/2005.13239

36

Appendix A

Hyperparameters for Recovery RL and
Comparisons

We use the same γrisk and εrisk for LR, RSPO, SQRL, and RCPO. For LR, RSPO, and SQRL, we
find that the initial choice of λ strongly affects the overall performance of this algorithm and heavily
tune this. We use the same values of λ for LR and SQRL, and use twice the best value found for LR
in as an initialization for the λ-schedule in RSPO. We also heavily tune λ for RP and RCPO. These
values are shown for each environment in the tables below.

Algorithm Name Hyperparameter Format
LR (γrisk, εrisk, λ)
RP λ

RCPO (γrisk, εrisk, λ)
MF Recovery (γrisk, εrisk)
MB Recovery (γrisk, εrisk, H)

Table A.1: Hyperparameter Ordering.

LR RP RCPO MF Recovery MB Recovery
Navigation 1 (0.8, 0.3, 5000) 1000 (0.8, 0.3, 1000) (0.8, 0, 3) (0.8, 0.3, 5)
Navigation 2 (0.65, 0.1, 1000) 3000 (0.65, 0.1, 5000) (0.65, 0, 1) (0.65, 0.1, 5)

Maze (0.5, 0.15, 100) 50 (0.5, 0.15, 50) (0.5, 0, 15) (0.5, 0.15, 15)
Object Extraction (0.75, 0.25, 50) 50 (0.75, 0.25, 50) (0.75, 0, 25) (0.85, 0.35, 15)

Object Extraction (Dyn. Obstacle) (0.85, 0.25, 20) 25 (0.85, 0.25, 10) (0.85, 0.35) (0.85, 0.25, 15)
Image Maze (0.65, 0.1, 10) 20 (0.65, 0.1, 20) (0.65, 0, 1) (0.6, 0.05, 10)

Image Reacher (0.55, 0.05, 1000) N/A N/A (0.55, 0.05) N/A

Table A.2: Recovery RL and Comparisons Hyperparameters.

37

Appendix B

Hyperparameters for MESA and
Comparisons

We report global hyperparameters shared across all algorithms in Table B.2 and additionally include
domain specific hyperparameters in separate tables in Tables B.3, B.4, and B.5. We use the same
base neural network architecture for the safety critic, recovery policy, actor for the task policy, and
critic for the task policy. This base network is a fully connected network with 2 hidden layers each
with 256 hidden units. For the task policy, we utilize the Soft Actor Critic algorithm from [22] and
build on the implementation provided in [55].

B.1 Dataset Details
For all navigation environments, data is collected with a random policy initialized at pre-specified
points in the map, with actions sampled uniformly. For Navigation 1, the agent is randomly
initialized at various points in the tunnel. For Navigation 2, the agent is randomly initialized at
different sides of the rectangular obstacle. Each episode lasts for 10 timesteps for both environments.

For the locomotion environments, datasets are collected by an early-stopped SAC run, where
the episode does not end on constraint violation. The testing dataset is collected by a randomly
initialized policy. Each episode consists of 1000 timesteps.

DATASET NTRAIN |DTRAIN| |DTEST|

Navigation 1 20 10K 100
Navigation 2 25 10K 200
Cartpole-Length 20 20K 1K
HalfCheetah-Disabled 4 400K 40K
Ant-Disabled 3 400K 40K

Table B.1: Dataset Hyperparameters.

APPENDIX B. HYPERPARAMETERS FOR MESA AND COMPARISONS 38

HYPERPARAMETERS UNCONSTRAINED RRL MULTI-TASK MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 10000 10000
Inner Batch Size |Bin| — — — 256
Outer Batch Size |Bout| — — — 256
Inner Adaptation Steps — — — 1
Inner LR α1 — — — 0.001
Outer LR α2 — — — 0.00001
Task Batch Size K — — — 5
Adam LR η — — 0.0003 —
Batch Size B — — 256 —

Phase 2: Offline Finetuning (Dtest)

Total Iterations M — 10000 500 500
Batch Size B — 256 256 256
Adam LR — 0.0003 η α1

Phase 3: Online Finetuning

Adam LR 0.0003 0.0003 η α1

Batch Size B 256 256 256 256
Discount γ 0.99 0.99 0.99 0.99
γrisk — 0.8 0.8 0.8
εrisk — 0.1 0.1 0.1

Table B.2: Algorithm Hyperparameters.

HYPERPARAMETERS UNCONSTRAINED RRL MULTI-TASK MESA

Phase 2: Offline Finetuning (Dtest)

Total Iterations M — 2000 100 100
Batch Size B — 64 64 64

Phase 3: Online Finetuning

γrisk (Navigation 2) — 0.65 0.65 0.65
εrisk (Navigation 1) — 0.3 0.3 0.3

Table B.3: Navigation Hyperparameter Differences

APPENDIX B. HYPERPARAMETERS FOR MESA AND COMPARISONS 39

HYPERPARAMETERS UNCONSTRAINED RRL MULTI-TASK MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 15000 15000

Table B.4: HalfCheetah-Disabled Hyperparameter Differences.

HYPERPARAMETERS UNCONSTRAINED RRL MULTI-TASK MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 15000 15000

Phase 3: Online Finetuning

Risk Threshold εrisk — 0.3 0.3 0.3

Table B.5: Ant-Disabled Hyperparameter Differences.

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Safe Reinforcement Learning
	Meta Reinforcement Learning

	Preliminaries
	Constrained Markov Decision Processes
	Safety Critics for Safe RL
	Meta-learning

	Recovery RL
	Defining a Recovery Set and Policy
	Offline Pretraining
	Practical Implementation

	Recovery RL Experiments
	Experiments
	Ablations:

	MEta-learning for Safe Adaptation (MESA)
	Problem Statement
	Algorithm Description

	MESA Experiments
	Experiments
	Ablations

	Conclusion
	Bibliography
	Hyperparameters for Recovery RL and Comparisons
	Hyperparameters for MESA and Comparisons
	Dataset Details

		2021-05-14T14:19:39-0700
	Agreement certified by Adobe Sign

