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Abstract

Robotic Untangling and Disentangling of Cables
via Learned Manipulation and Recovery Strategies

by

Priya Anandhi Sundaresan

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

Robotic untangling and disentangling of cables such as power cords, ropes, wires, and hoses
has applications in decluttering and prevention of tripping hazards in the home and work-
place. It can also serve as a prerequisite for downstream tasks such as knot-tying in robot-
assisted surgical suturing or wire harness assembly in electrical and automotive manufac-
turing. However, one-dimensional deformable objects are difficult to model analytically
and challenging for robots to visually track and manipulate. This is due to their infinite-
dimensional state space, tendency to self-occlude, complex dynamics, and visually homo-
geneous appearance. Meanwhile, recent advances in deep learning, computer vision, and
design of action primitives provide powerful means to handle increasingly complex manipu-
lation tasks. Leveraging these advances, we present novel algorithms for single and multiple
cable untangling and disentangling with learning-based perception.

First, we learn to untangle knots that involve multiple overlapping segments in single cables
from RGB image observations. We build on a high-level planner [9] that parameterizes
loosening actions via image keypoints and introduce a low-level controller for fine-grained
manipulation. This controller (1) performs grasp sampling and refinement on cables and
(2) monitors untangling progress to perform recovery interventions accordingly. Next, we
extend this manipulation stack to disentangle multiple cables.

We evaluate the proposed systems on physical experiments using the da Vinci surgical robot.
In single-cable experiments, the robot achieves successful untangling in 68.3% of single cable
knots with dense, non-planar starting states across 60 trials, outperforming baselines by
50%. In the multi-cable setting, the robot disentangles cables with 80.5% success, while
generalizing across unseen knots and both distinct and identically colored cables.
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3.1 Six action sequence to untangle a non-planar square knot. We demonstrate
the composition of HULK (Hierarchical Untangling from Learned Keypoints),
LOKI (Local Oriented Knot Inspection), and SPiDERMan (Sensing Progress
in Dense Entanglements for Recovery Manipulation), three algorithms that jointly
perform sequential untangling of a dense, non-planar square knot (A). HULK
learns to predict task-relevant keypoints for planning bilateral loosening (Node
Deletion) and straightening (Reidemeister) moves. Node Deletion moves sequen-
tially remove a crossing by pulling one cable segment (green) while holding an-
other (red) in place (B-C, D-E, J-K, L-M). LOKI learns manipulation features
to perform coarse-to-fine keypoint refinement and infers local cable grasp ori-
entations for fine-grained control. SPiDERMan’s recovery policy uses rotation
and recentering (Re-Pose) actions that reposition a knot into a new pose at the
workspace center for improved grasping (F-I). Finally, a Reidemeister move grasps
at predicted endpoints (blue) and pulls taut to yield a linear configuration (O). 8

3.2 Non-Planar Graphical Representation: We model cable configuration with
a graph as in Lui and Saxena [23] and extend this representation to non-planar
configurations with an updated annotation method in Equation (3.1). We visu-
alize a dense double overhand knot from two views to illustrate non-planarity,
along with its corresponding annotations and graphical representation. . . . . . 9

3.3 LOKI Dataset Generation: LOKI learns precise cable grasping from simula-
tion. We simulate cable crossings in Blender 2.80 as overlapping, warped cylin-
drical meshes (A) and render RGB cable crops (B). Each 200× 200 pixel crop is
annotated with a ground truth optimal grasp angle θ orthogonal to the topmost
cylinder orientation β and a local offset (poff,x, poff,y) to recenter the crop along
the cable width. At test time, a real cable crop centered at a HULK keypoint is
passed in and LOKI refines the keypoint via recentering and estimates the best
gripper orientation for robust grasping. . . . . . . . . . . . . . . . . . . . . . . 13
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3.4 System Overview: We illustrate Algorithm 1 used to perform the cable un-
tangling shown in Figure 3.1. Starting from the left, we untangle a cable from
a non-planar initial configuration following the actions outlined by BRUCE: one
initial Reidemeister move followed by successive Node Deletion moves until no
crossings remain. HULK instantiates BRUCE’s Reidemeister and Node Deletion
primitives by regressing 4 keypoints (left endpoint, pull, hold, and right endpoint)
from RGB image inputs to define high-level action plans. LOKI refines each ac-
tion by predicting a local offset to center each keypoint along the cable width
and a gripper orientation rotation to grasp orthogonally to the cable direction.
SPiDERMan senses action success by comparing configuration density in image
observations before and after a Node Deletion action is performed. SPiDERMan
also employs contour-detection methods (not shown) for sensing when the cable
is approaching workspace limits or when the cable is wedged in the gripper jaws.
When a lack of progress or a failure mode is detected, SPiDERMan performs
one of two failure recovery manipulation primitives: a Wedged Recovery move
or a Re-Posing move (Rotation or Translation). It checks when a cable is fully
untangled by comparing its density to that of a pre-defined reference image Iref

with a single loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Difficulty Tiers: Examples of dense initial configurations used in physical un-

tangling experiments. We categorize configurations into 5 tiers of difficulty based
on configuration complexity (semi-planar vs. non-planar), knot density (qualita-
tively measured), number of knots, and whether these knots were present in the
training data. Tiers 1 and 2 are semi-planar and are drawn from [9], while Tier
3 contain semi-planar configurations denser than those in [9] and Tier 4 and 5
consist of non-planar knots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Overview of IRON-MAN: IRON-MAN (Iterative Reduction Of Non-planar
Multiple cAble kNots) is an algorithm for disentanglement of several knotted ca-
bles. We present a sequence of moves planned by IRON-MAN on a three-cable
Carrick Bend knot. Following an initial Reidemeister (straightening) move (A)
which pulls opposing cable endpoints apart, IRON-MAN takes several Node Dele-
tion (loosening) moves (B-C, D-E, F-G) to reduce inter and intra-cable crossings.
Finally, we take three Cable Extraction (removal) moves (H-J) to isolate and
remove each cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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4.2 Graph Representation: Provided a dense initial square knot (A), we take a
Node Deletion move specified by hold (green) and pull (dark blue) keypoints,
yielding a looser configuration shown in (B). We use a graphical abstraction
to model the state of intertwined cables, extending previous work on modelling
single-cable configurations as in Chapter 3. In this graph, endpoints and intra/inter-
cable crossings constitute nodes, and edges denote over (+) and under (-) cross-
ings, shown in (C). We prioritize removing crossings that are non-trivial, such
as (3), rather than trivial ones such as (4), which can be easily undone by a
Reidemeister move without significantly loosening the configuration. . . . . . . 26

4.3 Physical Implementation of IRON-MAN: Image A depicts the endpoints
used for Reidemeister moves: p̂r and p̂l on cables c1 and c2, respectively. The
left endpoint annotation corresponds not to the leftmost endpoint in the scene
(on cable c1), but rather to the leftmost endpoint of cable c2 because p̂r is on
cable c1. Image B depicts the hold and pull keypoints, p̂hold and p̂pull, relative
to the first non-trivial crossing from the right endpoint. The first crossing from
the rightmost endpoint is a trivial crossing, and is skipped when traversing from
the right endpoint to annotate a Node Deletion move. Image C presents semi-
disentangled and entangled configurations. Although the image in the yellow
highlighted box still contains a crossing, it is trivial and thus acceptable by our
definition of semi-disentanglement. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Tiers of Configuration Difficulty: The configurations considered in this chap-
ter are organized into 3 tiers based on the number of cables in the knot and
whether the class of knot was present in training data images. For each config-
uration, we consider both settings where cables have contrasting colors (red and
white) and where cables are of the same color (all white). . . . . . . . . . . . . . 34
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3.1 Physical Results: Success rate and efficiency (median number of actions per
success) for untangling physical cables containing dense non-planar knots on the
dVRK. We categorize initial cable configuration complexity into four tiers: (1)
one semi-planar knot seen at train time, (2) two semi-planar knots both seen in
training, (3) one non-planar knot seen in training, and (4) one non-planar knot
unseen in training. Untangling experiments are given a horizon of 5 node deletion
actions to make progress. If the cable is equally or more dense after 5 untangling
actions, we conclude that the configuration is pathological and terminate the trial. 20

4.1 Physical Experiment Results: We report the success rate and median number
of actions to fully disentangle all cables in a scene using the physical implemen-
tation of IRON-MAN. We consider sets of cables that are all similarly colored
(white-white) and differently colored (red-white). The IRON-MAN implementa-
tion disentangles two cables in Tier 1 and 2 configurations and three cables in Tier
3 configurations with an overall success rate of 80.5%. We observe four failure
modes: (A) one or more cables springing out of the manipulation workspace, (B)
gripper collision in high-density configurations, (C) exceeding the maximum num-
ber of disentangling actions, and (D) moving entangled cables to the terminated
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Chapter 1

Introduction

Having to detangle power cords, wiring, tubing, suturing thread, and shoelaces is an all too
common occurrence in homes, offices, concert stages, warehouses, operating rooms, and more
[25, 38, 41, 30]. Rope disentangling can also be critical procedure in life-saving systems for
search-and-rescue operations [26, 17]. Thus, untangling and disentangling 1D deformable
objects, which we broadly refer to as cables, can greatly benefit from automation by mobile
manipulators.

To realize this, robots will need to tackle knots with increasing complexity and ca-
bles in greater quantities, which is the central focus of this thesis. Autonomous untan-
gling/disentangling would be fundamentally impactful as a stand-alone task but can also
serve as a prerequisite for any downstream cable arrangement task such as knot-tying or
coiling. In Chapter 2, we review relevant literature for the cable manipulation tasks con-
sidered in this thesis. There is a large body of related work that focuses on developing
analytical controllers for deformable object manipulation. Such methods often require many
hand-tuned specifications, significant system engineering, and rely on classical methods for
state estimation via visual feature extraction or segmentation. These methods tend to suffer
when applied to objects exhibiting self-occlusion, which is characteristic of tightly inter-
twined cables or complex knots. Meanwhile end-to-end methods have come a long way in
developing generalizable, task-agnostic robot learning frameworks. In doing so, they tend
to not leverage task/object geometry which can critically inform long-horizon planning for
complex tasks like cable manipulation. In this thesis, we draw inspiration from both lines
of work to develop an autonomous system for untangling. Like analytical controllers, the
proposed system is modularized into individual sub-systems, each targeting a particular ma-
nipulation or perception challenge. We employ deep-learning for the parts of the system
for which manually engineered solutions would be brittle or for which training supervision
is cheaply available. As a result, I have worked on using geometric planning and learned
perception to make progress towards robust, autonomous untangling and disentangling of
cables throughout the course of my Master’s studies.

The first project discussed in this thesis, Chapter 3, considers untangling of a single
cable containing dense, non-planar knots from RGB image observations. Such knots lack
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space between self-intersections (dense) and contain crossings involving several overlapping
cable segments (non-planar). These assumptions actually encompass a large class of knots
that are common in our daily lives, from sailing knots to belaying knots in climbing rope
to miscellaneous tangles found in headphones, yarn, and shoelaces. This chapter covers
[35] which was accepted to RSS 2021. Prior work [9] has studied untangling semi-planar
knots in single cables, where each crossing contains at most two overlapping cable segments.
In Chapter 3, we extrapolate these methods to more complex knots involving crossings
containing up to three cable segments, with fine-grained sensing and recovery policies in place
to account for manipulation failures common in open-loop planning. The paper contributes
an open-sourced compositional system with a high-level action planner derived from learned
keypoints and a low-level controller for grasping and failure recovery. We also perform
physical experimental validation on the da Vinci surgical robot.

The second project, discussed in Chapter 4, involves studying how to generalize the
above approach to multi-cable knots. We present an iterative, graph-based algorithm for
disentangling multi-cable knots instantiated with learned perception and the controller from
Chapter 3. This chapter discusses [39] and is currently under review for IROS 2021.

Both projects are the result of a joint effort with my co-authors Jennifer Grannen [35, 39],
Vainavi Viswanath [39], and close collaborators Brijen Thananjeyan, Ashwin Balakrishna,
Jeffrey Ichnowski, Ellen Novosellor, Minho Hwang, Michael Laskey, Prof. Goldberg, and
Prof. Gonzalez. In this thesis, I discuss my individual contributions as well as the larger
context surrounding each of these projects.
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Chapter 2

Related Work

Deformable object manipulation has garnered significant attention in the robotics research
community in recent years [21, 43, 42, 34, 8, 13, 32, 33, 12, 30, 1], but choosing an appropriate
state/action space for these tasks remains an open question. Prior work often focuses on
generating manipulation plans for a single instance of a deformable object such as a rope,
cloth, or bag [34, 8, 9, 13, 32, 4]. Carrying out these plans while appropriately sensing
and accounting for possible failure modes is often left unaddressed, as is handling multiple
object instances. In this thesis, we focus on learning controllers to robustly execute plans for
untangling and disentangling, addressing failure modes specific to the tasks, and planning
with awareness of both single and multiple cable instances.

2.1 Deformable Object Manipulation

Perception-driven strategies are standard in multi-step robotic manipulation of deformable
objects. One strategy is to learn a representation for the state of a deformable object
and leverage it for downstream planning. For instance, Lui and Saxena [23] and Chi and
Berenson [3] propose using classical visual feature extraction to estimate the state of a rope
as an ordered point set and cloth as a warped 2D grid, respectively. Sundaresan et al.
[34] investigate object representation learning via dense object descriptors [31, 7] for rope
knot-tying and arrangement, and Ganapathi et al. [8] extend this methodology to 2D fabric
smoothing and folding. Chi and Song [4] also propose category-level pose estimation of
garments by mapping image observations into a canonical space that fully parameterizes
the 3D object state. Such global state representations are difficult to robustly infer in the
presence of partial or self-occlusion, common in tangled cables or folded cloths. To bypass
this, alternative perception-driven approaches explore learning a latent space representation
for cloth [43] that abstracts away visual cues but provides a compressed representation for
efficient planning. Another approach is tracking only a small set of task-relevant semantic
keypoints for untangling [9] or dynamic cloth unfolding [10]. Applying aforementioned single-
instance perception models out-of-the-box to multiple deformable object instances within the
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same scene would also require robust instance segmentation. This is nontrivial to learn or
analytically infer in cluttered multi-cable settings. Thus, we learn a representation of cables
via keypoints in a way that generalizes to single (Chapter 3) or multiple (Chapter 4) cable
instances and circumvents the need to infer full object geometry.

Other methods learn visuomotor policies end-to-end instead of taking a perception-driven
approach. Imitation learning [32], video prediction models [13], model-free reinforcement
learning (RL) [20], and model-based RL [24] have proven effective for goal-conditioned fabric
manipulation. Learning inverse dynamics models of deformable objects and leveraging them
towards planning has also yielded promising results on template shape matching and knot-
tying with rope [27]. Zhang et al. [44] learn to directly regress robotic configurations in joint
space for robotic vaulting of cables over obstacles. While these approaches provide flexible
frameworks that generalize across many tasks, they do not take advantage of geometric
structure in the problem or provide high-precision solutions for manipulation. This makes
them difficult to apply to tasks requiring extreme dexterity and geometric reasoning, such as
cable untangling and disentangling. Thus, we use geometry-aware perception for high level
planning and employ a learned controller only for precise grasping and failure recovery.

Lastly, several recent works have also learned deformable manipulation policies in simu-
lation either for warm-starting learning in the real world [44] or directly deploying learned
strategies via domain randomization [33, 34, 43, 8, 13, 33]. For tasks that require global
reasoning about highly complex objects such as untangling and disentangling, we find that
physical data is critical as it is difficult to realistically model the full state space of cables
in simulation. However, local features of knots are feasible to represent with simple geomet-
ric models and simulate. As a result, we learn to perceive cables globally from supervised
real-world examples and learn to infer structure about single and multi-cable knots using
synthetic data and self-supervision.

2.2 Cable Untangling

Prior work has focused on untangling single cables containing loose [23] or dense [9] knots,
where dense knots are those that lack space between adjacent cable segments. In particu-
lar, Lui and Saxena [23] present the first published study of robotic cable untying to our
knowledge. Given RGB-D observations, they use manually specified visual features and
particle filtering to approximate the state of a tangled cable by a linear graph. The graph
consists of vertices that denote crossings/endpoints and edges corresponding to adjoining
cable segments. This technique relies on adequate space amongst adjacent cable segments
for segmentation, which is not guaranteed in dense single or multi-cable knots. In subse-
quent work, Grannen et al. [9] learn to infer the graphical cable representation of [23] from
keypoints and apply it towards untangling of semiplanar knots, extending to a denser class
of knots than [23]. Semiplanar knots consist of crossings involving at most two overlapping
cable segments. The controllers in both [23, 9] are derived from analytical motion primi-
tives that can lead to repeated failures which prolong the task horizon (missed grasps, poor
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loosening actions) or irrecoverable states (knocking the cable out of reach, cable wedged
between grippers). In this thesis, we first aim to adapt method to a more challenging class
of dense, non-planar knots. Non-planar knots relax the semiplanar assumption to handle
up to three overlapping cable segments. In doing so, we employ coarse-to-fine refinement
strategies for robust cable grasping and preemptive failure avoidance, drawing from recent
work in designing precise controllers for surgical peg transfer [28] and peg insertion [19,
15]. Next, we propose closed-loop manipulation with recovery strategies. Prior work has
explored contact-rich robotics tasks with error recovery [40, 6, 37] but does not make use of
task geometry which is critical in cable untangling and disentangling. Finally, we extend the
graphical formulation of [23, 9] to the multi-cable setting and apply the above two strategies
towards disentangling of multiple cables.
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Chapter 3

Learning to Untangle Dense
Non-Planar Knots in Single Cables

3.1 Individual Contributions

This chapter is adapted from our paper “Untangling Dense Non-Planar Knots by Learning
Manipulation Features and Recovery Policies” which will appear at RSS ’21. This is joint
work with Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Ellen Novoseller,
Jeffrey Ichnowski, Minho Hwang, Michael Laskey, Prof. Ken Goldberg, and Prof. Joseph E.
Gonzalez.

In this chapter, my contributions include developing learning-based (HULK) and analyt-
ical (SPiDERMan) components of the perception systems, creating simulation environments
(LOKI), implementing several motion primitives involving grasping, pinning, and pulling
detailed in Section 3.4, and running physical experiments (Section 3.5).

First, I would like to acknowledge Jennifer Grannen, who developed SPiDERMan’s
progress sensing functionality, split the implementation of several motion primitives, per-
ceptual components, and experiments on the da Vinci with me (Section 3.4), and conducted
analyses of alternative perception and manipulation methods in parallel. She is also respon-
sible for Figure 3.5 and the digital knot drawings of Figure 3.2.

Brijen Thananjeyan, Ashwin Balakrishna, Jeffrey Ichnowski, and Ellen Novosellor played
critical roles in scoping this project, formalizing the algorithmic contributions, and providing
helpful feedback on the submitted version of the paper and this manuscript.

Minho Hwang’s assistance with operation of the da Vinci surgical robot was invaluable,
from helping us interface with and calibrate an overhead RGB-D sensor to providing expertise
on tuning gripper parameters for grasping and manipulation.

Finally, I am grateful for the useful recommendations from Michael Laskey of TRI, most
notably on designing the perception and simulation systems. I also thank Professors Ken
Goldberg and Joseph E. Gonzalez for their valuable insights and suggestions throughout this
project and on much of the work leading up to it.
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3.2 Problem Statement

The contribution of this chapter is an iterative, bilateral manipulation policy for untangling
dense, non-planar knots in a singular cable. The cable is deemed fully untangled if it reaches
a crossing-free state.

Assumptions

We assume access to a bilateral manipulator capable of pinning and pulling cable segments
simultaneously using two different arms. We also assume access to RGB image observations
from an overhead camera mounted a fixed distance above the surface of manipulation. While
we do not require the color of the cable or workspace surface to be pre-specified, we assume
the two are sufficiently distinguishable. Within the workspace, we assume that the cable is
within the kinematically feasible and reachable region of at least one robot arm, and that
cable thickness is less than the gripper’s maximum opening width.

This ensures that the robot is able to hold and pull cable segments with opposing arms.
We find that due to the long task horizon, it is highly possible for the cable to be pushed
to workspace extremities. Thus, these assumptions also allow for at least one arm to always
reposition the cable in a central place where it is then within reach of both arms. To
instantiate recovery and straightening actions, we also define three points, wl, wc, and wr,
corresponding to the left, center, and right-most points in the workspace.

In this chapter, we make the following assumptions about cable starting states:

• limited non-planarities : we arrived at this assumption by first relaxing that of prior
work [9]. While Grannen et al. [9] consider untangling of semi-planar cables, where
each crossing involves at most 2 cable segments, we allow each self-intersection to
involve up to 3 segments (non-planar).

• visible endpoints : Initially, both cable endpoints are unoccluded and in the field of view
of overhead RGB images for planning purposes. We denote the endpoints as left and
right based on thresholding their pixel coordinate x-values, breaking ties arbitrarily.

As humans, a common way to unknot a tangled cable is to trace from one endpoint up
until the first crossing encountered, undo it, and repeat. The endpoint visibility assumption
is based on this observation and provides a convention for action selection — we always undo
the crossing relative to the right-most endpoint.

Configuration Graph

We formalize the problem of cable untangling by extending the graphical representation
from [23] to handle non-planarities and use this as a representation for planning via an algo-
rithmic supervisor BRUCE (Sec. 3.3). The deployed untangling system does not explicitly
reconstruct or operate on this graph. Rather we use a combination of learned algorithms
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Figure 3.1: Six action sequence to untangle a non-planar square knot. We demonstrate the
composition of HULK (Hierarchical Untangling from Learned Keypoints), LOKI (Local
Oriented Knot Inspection), and SPiDERMan (Sensing Progress in Dense Entanglements
for Recovery Manipulation), three algorithms that jointly perform sequential untangling of
a dense, non-planar square knot (A). HULK learns to predict task-relevant keypoints for
planning bilateral loosening (Node Deletion) and straightening (Reidemeister) moves. Node
Deletion moves sequentially remove a crossing by pulling one cable segment (green) while
holding another (red) in place (B-C, D-E, J-K, L-M). LOKI learns manipulation features
to perform coarse-to-fine keypoint refinement and infers local cable grasp orientations for
fine-grained control. SPiDERMan’s recovery policy uses rotation and recentering (Re-Pose)
actions that reposition a knot into a new pose at the workspace center for improved grasping
(F-I). Finally, a Reidemeister move grasps at predicted endpoints (blue) and pulls taut to
yield a linear configuration (O).

—HULK (Sec. 3.3), LOKI, and SPiDERMan (Sec. 3.4)— to intelligently sense the relevant
portions of the graph as features from RGB image observations and execute untangling
actions accordingly.
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Figure 3.2: Non-Planar Graphical Representation: We model cable configuration with
a graph as in Lui and Saxena [23] and extend this representation to non-planar configurations
with an updated annotation method in Equation (3.1). We visualize a dense double overhand
knot from two views to illustrate non-planarity, along with its corresponding annotations and
graphical representation.

Prior work has explored representations such as Bezier curves and splines to represent
cables [34]. For tangled cables, we find that a graph structure streamlines specifying the key
features of a cable’s topology, particularly crossings and nested levels of self-occlusion. We
use an undirected graphG = (V,E) to model the state of a cable, where vertices v ∈ V specify
cable endpoints and crossing locations and edges e = (u, v) ∈ E for u, v ∈ V represent cable
segments joining vertices. In the remaining sections, we will refer to a “vertex” as a “node.”
The left and right cable endpoints are denoted by nodes vl and vr, respectively. For any node
v ∈ V and edge e ∈ E adjacent to v, we annotate the graph with X(v, e) ∈ {+1,−1,−2}
(Equation 3.1) to designate the cable segment hierarchy at a node:

X(v, e) =


+1

if v is an endpoint or if e crosses
above all other edges at v

−1 if e crosses below only one edge at v

−2 if e crosses below two other edges at v.

(3.1)

We parameterize an under-crossing by one node v and two incident edges ei, ej ∈ E, where
ei = (v, v′) and ej = (v, v′′) for some v′, v′′ ∈ V , X(ei, v) = X(ej, v) ∈ {−1,−2}, and ei, ej
are contiguous in the physical cable. By this notation, the cable segment represented by ei, ej
is occluded by one or two other cable segments, in line with the non-planarity assumption.
Similarly, an over-crossing is a set of one node v and two incident edges ei = (v, v′) and
ej = (v, v′′) for some v′, v′′ ∈ V , where X(ei, v) = X(ej, v) = +1 and ei, ej are adjoining in
the physical cable.
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Under the non-planar assumption, each node has degree ≤ 6, corresponding to 3 cable
segments at a crossing. Edges with the same annotation X(v, e) at a node v represent the
same cable segment on either side of the crossing. A cable with |V | = 2 has only endpoint
nodes and no crossings, and thus is fully untangled. We will later revisit this property to
define a termination condition for the task when |V | = 2.

Action Space

At each time t, each gripper performs either a holding, pulling, or rotating action. We define
all actions with respect to the 2D image frame. Due to the high degrees of freedom in a cable,
there are many feasible action spaces and we specify actions in image space for simplicity.

The left robot arm performs a pulling action, at,l, by grasping the cable at the pixel
(xt,l, yt,l) with z-axis rotation θt,l, lifting by a fixed amount, pulling to (xt,l + ∆xt,l, yt,l +
∆yt,l), and releasing the cable. Holding actions are indicated via (∆xt,l,∆yt,l) = (0, 0). We
denote moving between points without grasping the cable via 1grasp = 0. Lastly, ∆θt,l (in
degrees) indicates rotating a grasped cable about the z-axis. The right robot arm uses an
analogous action formulation, at,r. We show the full action representation for both arms in
Equation 3.2:

at,l = (xt,l, yt,l, θt,l,∆xt,l,∆yt,l,∆θt,l,1grasp)

at,r = (xt,r, yt,r, θt,r,∆xt,r,∆yt,r,∆θt,r,1grasp).
(3.2)

This action space extends that of Grannen et al. [9], which only parameterizes grasp points
and pull vectors.

3.3 Preliminaries

Grannen et al. [9] introduced BRUCE and HULK, two algorithms for untangling. In the
remainder of this chaper, we discuss the relevant algorithmic modifications we make to both
to accommodate non-planar knots. While BRUCE focuses on formalizing an algorithm for
untangling based on the graph from Section 3.2, HULK discusses how to practically instan-
tiate BRUCE from RGB images without reconstructing or employing the graph directly.
Together, they lay the foundation of the algorithms discussed in the remaining parts of
Chapters 3 and 4.

BRUCE: Basic Reduction of Under-Crossing Entanglements

Grannen et al. [9] propose Basic Reduction of Under-Crossing Entanglements (BRUCE),
an algorithm to iteratively untangle semiplanar knots which operates on a cable’s graph
representation. BRUCE uses two manipulation primitives adapted from Lui and Saxena
[23]: (1) Reidemeister moves pull the cable endpoints apart to reduce self-occlusions that
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are not part of a knot, and (2) Node Deletion moves delete a crossing in the graph by
holding an over-crossing edge in place with one arm while the other arm pulls out cable slack
from the corresponding under-crossing. Both of these primitives are practical instantiations
of topological moves in knot theory [22].

First, BRUCE takes a Reidemeister move to disambiguate the cable state. This step
straightens any rope slack that is not involved in knot. Next, BRUCE alternates between
Node Deletion and Reidemeister moves. Node Deletion moves sequentially delete crossings
and Reidemeister clear any accumulated cable slack to simplify the configuration and expose
any remaining knots. In the context of the graph, Node Deletion moves locate the under-
crossing edge (labeled −1) exiting the right-most node vr, while holding a corresponding
over-crossing edge (+1) at vr in place.

To apply to non-planar knots, we extend Node Deletion moves to operate on under-
crossing edges labeled as both −1 and −2 instead of just −1. A Node Deletion move holds
an over-crossing edge (+1) and pulls out the under-crossing edge (−1 or −2) traced from the
right endpoint. Each action reduces |E| and |V | by at least 2 and 1, respectively, terminating
with |V | = 2: a fully linear cable with no crossings and two exposed endpoints.

HULK: Hierarchical Untangling from Learned Keypoints

In RGB image observations, the ground truth cable graph representation is not directly
observable. One option would be to approximate the cable graph from images, and plan
untangling actions accordingly. Instead, Grannen et al. [9] propose Hierarchical Untangling
from Learned Keypoints (HULK). HULK directly predicts keypoints from images to execute
BRUCE’s manipulation primitives, bypassing the need for graph reconstruction. HULK
learns a mapping from an image to four Gaussian heatmaps centered at task-relevant key-
points, f : R640×480×3 7→ R640×480×4. The argmaxes of the four heatmap outputs, denoted
by p̂l, p̂r, p̂pull, and p̂hold, indicate the predicted pixel locations of the left and right cable
endpoints (p̂l and p̂r) and the predicted pull and hold grasp locations for the next planned
Node Deletion move (p̂pull and p̂hold).

HULK learns to predict the pull and hold keypoints at the first under/over-crossing pair
relative to the right endpoint. This is the crossing for which, by tracing from the right
endpoint towards the left endpoint along the cable length, the segment of cable contiguous
with the right endpoint slips underneath a different part of the cable. This is a key convention
used to disambiguate action selection, as there are many feasible crossings to be undone
otherwise. HULK does not explicitly trace any part of the cable but rather learns contextual
information to directly regress the right-most under-crossing as a keypoint.

In this chapter, we adapt the HULK training procedure from Grannen et al. [9], orig-
inally trained on semiplanar knots, to operate on dense, non-planar configurations. Since
training HULK only requires light supervision in the form of keypoints, we follow the train-
ing procedure in [9] and train HULK on 200 pairs of images and hand-annotations for
non-planar configurations. Initially, we focused on learning pin and pull keypoints en-
tirely from self-supervision via a cable simulator developed in Blender 2.80 [18] (https:

https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/blender-rope-sim
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//github.com/priyasundaresan/blender-rope-sim). The simulator renders photorealis-
tic and domain-randomized cable images and saves ground truth annotations with which to
train HULK. In practice, we found two main challenges with this approach: (1) develop-
ing a cable simulator with believable physics and (2) transferring the learned representation
from simulation to real. Because of these challenges, we instead pivoted to training HULK
entirely from real data while using data augmentation techniques to reduce the supervision
burden. The full pipeline for labelling 200 pairs of images takes in total about about 20 min-
utes. Then, we apply various data augmentation techniques including image adjustments
and affine transformations to generate a training dataset of 3,500 examples.

As in [9], we use a Gaussian standard deviation of 8 for the heatmap training data
centered about each hand-labelled keypoint to train the model.

Once trained, HULK uses the predicted keypoints p̂l, p̂r, p̂pull, and p̂hold to plan a bilateral
move (at,l,at,r) at time t for the left and right arms, respectively, as follows.

For a Node Deletion move, the right arm holds the configuration at p̂hold while the left
arm grasps at p̂pull and pulls in the direction away from p̂hold by some fixed distance n to
slacken the cable. In the work of Grannen et al. [9], both arms use coarse analytical grasp

rotations θ̂pull = arctan
(

p̂pull,y−p̂hold,y
p̂pull,x−p̂hold,x

)
and θ̂hold = θ̂pull + 90◦:

at,l = (p̂pull,x, p̂pull,y, θ̂pull, nx, ny, 0, 1)

at,r = (p̂hold,x, p̂hold,y, θ̂hold, 0, 0, 0, 1).
(3.3)

Note that we instead learn the grasp orientations θ̂pull, θ̂hold instead of using heuristic
approximations, further discussed in Section 3.4. For a Reidemeister move, the left and
right arms simultaneously grasp at p̂l and p̂r and pull the endpoints to opposing workspace
ends wl and wr, with analytical grasp rotations θ̂l and θ̂r obtained as the angle between
[1, 0] and the vector orthogonal to the first principal component of a masked crop around p̂l

and p̂r:

at,l = (p̂l,x, p̂l,y, θ̂l, wl,x − p̂l,x, wl,y − p̂l,y, 0, 1)

at,r = (p̂r,x, p̂r,y, θ̂r, wr,x − p̂r,x, wr,y − p̂r,y, 0, 1).
(3.4)

3.4 Methods

The main contribution of this chapter is two new algorithms, LOKI (Local Oriented Knot
Inspection) and SPiDERMan (Sensing Progress in Dense Entanglements for Recovery Manip-
ulation). These are combined to learn a robust controller to increase robustness of high-level
manipulation plans provided by HULK (Section 3.3).

https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/blender-rope-sim
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Figure 3.3: LOKI Dataset Generation: LOKI learns precise cable grasping from simula-
tion. We simulate cable crossings in Blender 2.80 as overlapping, warped cylindrical meshes
(A) and render RGB cable crops (B). Each 200× 200 pixel crop is annotated with a ground
truth optimal grasp angle θ orthogonal to the topmost cylinder orientation β and a local
offset (poff,x, poff,y) to recenter the crop along the cable width. At test time, a real cable crop
centered at a HULK keypoint is passed in and LOKI refines the keypoint via recentering
and estimates the best gripper orientation for robust grasping.

LOKI: Local Oriented Knot Inspection

Our insight is that fine-grained grasp planning for dense, non-planar knots requires nuance
that neither HULK’s primitives nor heuristic/analytical methods for cable grasp planning
[34, 9] offer. Thus, we introduce a low-level controller called LOKI: Local Oriented Knot
Inspection. This controller jointly infers robust antipodal grasps that enclose a cable segment
orthogonally and performs coarse-to-fine refinement of keypoints. These adjustments are
designed to prevent near-miss grasps common to HULK (Section 3.3). Given a locally-
cropped cable image, centered at one of the four HULK keypoints p̂ ∈ {p̂l, p̂r, p̂pull, p̂hold},
LOKI outputs (1) θ: an angle about the z-axis denoting the top-down grasp orientation
and (2) poff = (poff,x, poff,y): a local offset in pixel space to recenter the keypoint along the
cable width. We implement LOKI as a multi-headed deep neural network with a ResNet-18
[11] backbone that learns a mapping g : R200×200×3 7→ ([0, 180],R200×200). These outputs
correspond to the predicted z-axis rotation (in degrees) and an unnormalized 2D heatmap
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centered at the refined keypoint p̂+p̂off . We discuss the procedure for obtaining the heatmap
and rotation training labels below.

Dataset Generation

We train LOKI in a self-supervised fashion from synthetic images. Simulation provides two
advantages in this setting: (1) LOKI requires reasoning about local cable self-intersections
which can be approximated with geometric models more readily than global knotted configu-
rations, and (2) hand-annotation of the cable orientation is tedious to implement and collect
but readily accessible from synthetic meshes. We implement a simulation environment in
Blender 2.80 [18] that models cable self-intersections as two overlapping cylinder meshes
slightly warped to emulate the curvature of real cables. We generate varied training data by
positioning a synthetic overhead camera above, but not centered on, the topmost cylinder.
Before warping, this cylinder is parameterized by a pitch angle β denoting its orientation in
the xy-plane and a translation projected to pixel coordinates (u, v). For each synthetic image
rendered, we record the desired gripper orientation as 90◦+β to model a grasp enclosing the
cable orthogonally, and a ground-truth Gaussian heatmap N ((u, v), σ2I) over the network
input image centered at (u, v), where I is a 2× 2 identity matrix.

Initially, we only focused on the problem of just regressing the gripper orientation from
synthetic cable crops. However, the observation that HULK keypoints are occasionally off-
center w.r.t. cable width, and that the cylindrical centers are available in sim, prompted the
addition of (u, v) as a refined, re-centered keypoint output to the model.

Empirically, we find that σ = 5 px yields stable training without producing high-entropy
heatmaps. LOKI is trained from 3,500 such examples using mean-squared error in degrees
for the orientation output’s loss and binary cross entropy loss for the heatmaps.

Given a global image I ∈ R640×480×3 and a HULK keypoint p̂, we take a 60 × 60 crop
centered at p̂. We resize this crop to the LOKI network input dimensions, 200 × 200,
resulting in a cropped image Î. LOKI yields outputs [θ̂, H] = g(Î), such that p̂off is given
by the highest-probability point in H:

(p̂off,x, p̂off,y) = γ
[(

argmax(ui,vi)∈Î H[ui, vi]
)
− (uc, vc)

]
,

where γ = 60/200 is a downscale factor to account for crop resizing and (uc, vc) = (100, 100)
is the upscaled crop center. The refined keypoint (p̂x+ p̂off,x, p̂y + p̂off,y) and predicted gripper

orientation θ̂ are used for planning all grasps across the manipulation primitives.

SPiDERMan: Sensing Progress in Dense Entanglements for
Recovery Manipulation

With an implementation of HULK alone, as described in Section 3.3, we observe 4 main
manipulation failure-modes: (1) consecutive poor action executions due to high cable density,
(2) task incomplete after exceeding the maximum number of untangling actions, (3) the
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cable leaving the workspace during manipulation, and (4) the high-density cable becoming
wedged in the robot jaws. Our insight is that many of these failures are either recoverable,
avoidable, or at least able to be sensed and planned around. Thus, we propose SPiDERMan.
SPiDERMan uses both learned and analytical methods to sense untangling progress and
common manipulation failures and employs two novel manipulation primitives to avoid and
recover from these failures. In this section, we discuss SPiDERMan’s detection of failure
modes and response via two manipulation primitives for recovery.

Detection

SPiDERMan employs a hybrid of learned and analytical perception in its approach. To
address failures (1) and (2), SPiDERMan compares workspace image observations It′ ∈
R640×480×3 before and after executing actions to sense loosening progress or lack thereof. In
this framing, t′ denotes the number of Node Deletion actions executed thus far.

In practice, we find that specifying a continuous metric or reward function for untan-
gling progress is difficult. One such metric could be a measure of cumulative area between
crossings which directly quantifies density, but learning such a metric re-introduces the chal-
lenges of state estimation and segmentation. Thus, we instead learn to classify whether
progress is being made with simple pairwise comparisons across the current observation and
a history of observations. SPiDERMan uses a ResNet-18 backbone and learns a classifier
d : R640×480×6 7→ {0, 1}, trained with a binary cross-entropy loss.

At test time, d(I1, I2) uses a simple binary decision rule with a threshold of 0.5 to classify
whether image I1 corresponds to a denser (1) or less dense (0) state than I2. If SPiDERMan
classifies two consecutive actions as not making progress, given by the following condition:

d(It′ , It′−1) and d(It′−1, It′−2), (3.5)

we conclude that the configuration is pathological and plan an intervention. This allows
SPiDERMan to track untangling progress over multiple actions, allowing for an adaptive
termination condition instead of a fixed action limit:

d(It′ , It′−5) or d(Iref, It′) (3.6)

Condition (3.6) evaluates to true when no progress has occurred over the last 5 actions, or
if the cable reaches a fully-untangled state. This allows untangling to continue for as long
as progress is being achieved.

When It′ is fully untangled, both Iref and It′ are equally dense. For this reason, we use an
image observation of a knot-free cable with a single crossing for Iref (Figure 3.4) to prevent
termination false negatives from a biased preference of Iref . We found that using a fully
straightened cable as Iref would delay untangling termination longer than necessary, since
SPiDERMan is disinclined to classify any current cable state as more untangled than a fully
linearized configuration.
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Figure 3.4: System Overview: We illustrate Algorithm 1 used to perform the cable un-
tangling shown in Figure 3.1. Starting from the left, we untangle a cable from a non-planar
initial configuration following the actions outlined by BRUCE: one initial Reidemeister move
followed by successive Node Deletion moves until no crossings remain. HULK instantiates
BRUCE’s Reidemeister and Node Deletion primitives by regressing 4 keypoints (left end-
point, pull, hold, and right endpoint) from RGB image inputs to define high-level action
plans. LOKI refines each action by predicting a local offset to center each keypoint along the
cable width and a gripper orientation rotation to grasp orthogonally to the cable direction.
SPiDERMan senses action success by comparing configuration density in image observations
before and after a Node Deletion action is performed. SPiDERMan also employs contour-
detection methods (not shown) for sensing when the cable is approaching workspace limits
or when the cable is wedged in the gripper jaws. When a lack of progress or a failure mode
is detected, SPiDERMan performs one of two failure recovery manipulation primitives: a
Wedged Recovery move or a Re-Posing move (Rotation or Translation). It checks when a
cable is fully untangled by comparing its density to that of a pre-defined reference image Iref

with a single loop.

SPiDERMan also applies analytical contour-based perception to implement recovery ma-
nipulation primitives, relying on an earlier assumption that the cable and workspace are sep-
arable in terms of color. Given a workspace image observation It, we preprocess the image by
converting to grayscale and applying binary thresholding. The algorithm detects all contigu-
ous contours in the resulting image using the open-source implementation from Suzuki et al.
[36] in OpenCV [2]. We extract an approximate contour of the cable P = {p1,p2, . . . ,pn}
via contour area filtering. Next, SPiDERMan approximates the cable center as the mean
point p̄ of the contour, projected to the lie on the cable: p̂c = arg minpi∈P ||pi− p̄||. Between
actions, the left and right grippers move to known poses with gripper jaw pixel coordinates
gl and gr, respectively, outside of the field of view of the untangling workspace. Given p̂c,
gl, and gr, Condition (3.7) detects when the cable is wedged in either of the grippers by
checking when the distance between the approximate cable center, p̂c, and either gripper
tooltip, gr or gl, is below a hand-tuned threshold of 20 px:

min{||p̂c − gl||, ||p̂c − gr||} < 20 px. (3.7)
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To detect when the cable is leaving the workspace, we define a second condition over the
contour-based perception method above to check when the center of the cable mask p̂c is
within a hand-tuned 200 px threshold from the predefined workspace center wc:

||p̂c −wc|| > 200 px. (3.8)

Recovery

We define two novel manipulation primitives to recover once a failure is detected: (1) Re-
Posing moves that reorient and place a cable at the workspace center, and (2) Wedged
Recovery moves detach a gripper jaw wedged between two cable segments.

For a Re-Posing move, we improve the Recentering primitive from Grannen et al. [9] to
rotate the cable in addition to centering the configuration in the workspace. The right arm
first grasps the cable at the center of the configuration p̂c with a grasp location p̂c + p̂c,off

and grasp rotation of θ̂c predicted by LOKI. The right arm then lifts by a fixed amount
and moves the cable to the predefined workspace center wc. When two successive poor
actions are detected, the right gripper then rotates by 180◦ to re-pose the configuration
before releasing the grasp. We define a Re-Posing move (Rotation) to include this rotation,
while a Re-Posing move (Translation) does not:

at,r = (p̂c,x, p̂c,y, θ̂c, wc,x − p̂c,x, wc,y − p̂c,y, {0◦, 180◦}︸ ︷︷ ︸
optional rotation

, 1).

A Wedged Recovery move is comprised of two successive actions. When detecting
that the left robot gripper jaw is wedged between cable segments, the left arm first brings
the stuck cable to the workspace center wc and releases its grasp. Given the detected
cable contour P , the right arm grasps the cable at the far right point on the cable mask
p̂hold = arg minpi∈P ||pi −wr|| with a grasp location p̂hold + p̂hold,off and grasp rotation θ̂hold

given by LOKI and holds it down on the workspace while the left arm returns to its home
position, a fixed height above the predefined point wl:

at,l = (wl,x, wl,y, 0, wc,x − wl,x, wc,y − wl,y, 0, 1)

at+1,r = (p̂hold,x, p̂hold,y, θ̂hold, 0, 0, 0, 1)

at+1,l = (wc,x, wc,y, 0, wl,x − wc,x, wl,y − wc,y, 0, 0).

When the cable is wedged in the right robot gripper, we execute the equivalent procedure
with the roles of the right and left arms switched. In this case, p̂hold represents the far left
point on the cable mask, and the right arm returns to the home position above the predefined
point wr.

Algorithm 1 presents the full untangling algorithm, combining HULK (Section 3.3), LOKI
(Section 3.4) and SPiDERMan (Section 3.4).
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Algorithm 1 Untangling with LOKI and SPiDERMan

Input: RGB image of cable
Reidemeister move with p̂r︸︷︷︸

HULK

+ p̂r,off, θ̂r︸ ︷︷ ︸
LOKI

, p̂l + p̂l,off, θ̂l

while NOT Eq. (3.6) do . Termination check
while Eq. (3.7) do . Wedge check

Wedge Recovery with p̂hold + p̂hold,off, θ̂hold, wc, wl/r

if Eq. (3.5) then . Poor actions check
Re-Posing (Rotation) with p̂c + p̂c,off, θ̂c, wc

if Eq. (3.8) then . Leaving workspace check
Re-Posing (Translation) with p̂c + p̂c,off, θ̂c, wc

Node Deletion with p̂hold + p̂hold,off, θ̂hold, p̂pull + p̂pull,off, θ̂pull

return DONE

3.5 Experiments

We experimentally evaluate the separate and joint effectiveness of HULK, LOKI, and SPi-
DERMan in performing physical untangling of dense semi-planar and non-planar knots.

Overview of Policies

We compare (1) the proposed method (Alg. 1) synthesizing HULK, LOKI, and SPiDERMan
(H+L+S) against three baselines that ablate the effectiveness of LOKI or SPiDERMan
individually and together: (2) HULK alone (H), (3) HULK with only LOKI (H+L), and
(4) HULK with only SPiDERMan (H+S). Notably, baselines (2) and (4) employ analytical
grasp planning described in Section 3.3. In this strategy, Reidemeister grasps are planned
orthogonally to the major axis given by principal component analysis on masked endpoint
crops. Node Deletion grasps are also heuristically planned and are orthogonal to predicted
action vectors as described in Sec. 3.3. Baselines (2) and (3) do not use any recovery
manipulation primitives. All policies employ the termination condition given by Eq. (3.6).

We train HULK and SPiDERMan on the same dataset of 320 cropped, 640×480 real RGB
workspace image observations augmented 8X and centered around detected cable contours
according to Section 3.4. We also train LOKI from 3,000 200× 200 synthetically-generated
cable crops.

Tiers of Difficulty

All policies are tested on novel dense knots characterized by five tiers of difficulty, defined
by the knot classes encountered and whether these knot classes are seen in training:
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Figure 3.5: Difficulty Tiers: Examples of dense initial configurations used in physical
untangling experiments. We categorize configurations into 5 tiers of difficulty based on con-
figuration complexity (semi-planar vs. non-planar), knot density (qualitatively measured),
number of knots, and whether these knots were present in the training data. Tiers 1 and
2 are semi-planar and are drawn from [9], while Tier 3 contain semi-planar configurations
denser than those in [9] and Tier 4 and 5 consist of non-planar knots.

Tier 1: A single, novel semiplanar knot (figure-eight or overhand) while knots of this class
were present in training data, as in [9]

Tier 2: Two semiplanar knots (figure-eight or overhand) while knots of this class were
present in training data, as in [9]

Tier 3: Two semiplanar knots (figure-eight or overhand) while knots of this class were
present in training data, denser than those seen in [9]

Tier 4: A single non-planar knot (double overhand or square) while knots of this class
were present in training data

Tier 5: A single non-planar knot (stevedore, bowline, ashley stopper, granny, or heaving
line) while knots of this class were not present in training data

HULK, LOKI, and SPiDERMan were trained on configurations containing up to two
overhand and figure-eight knots, and single double overhand and square knots. While Tiers
1-4 contain knots types that appear in the training dataset, Tier 5 tests the generalization
capabilities of HULK, LOKI, and SPiDERMan to knots not present in the training data.
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Experimental Setup

We execute all experiments using the bilateral dVRK robot [16] equipped with two 7-DoF
arms. The dVRK performs untangling of a cut elastic hairtie on a boxed, foam-padded sur-
face to avoid end-effector damage and to prevent the cable from easily leaving the workspace.
Given its small dimensions of 5mm by 15cm and its flexible material properties, we find this
elastic cable to be conducive to manipulation with the dVRK. The workspace is equipped
with an overhead Zivid OnePlus RGBD sensor which captures 1900 × 1200 RGBD image
observations, although only the RGB channels are used in HULK, LOKI, and SPiDERMan
inference. The dVRK is calibrated with a standard pixel-to-world camera transformation
using the procedure described in [14]. The complete experimental setup with workspace
bounds wl,wr. Each grasp is executed with a 30◦ approach angle to avoid collisions caused
by top down grasping.

Tier Policy Success Rate Node Deletion Actions Recovery Actions Total Actions Failure Modes
A B C D E

1 H 6/12 6.5 – 6.5 1 3 0 2 0
1 H+L 6/12 5 – 5 2 2 0 2 0
1 H+S 6/12 5 3.5 8.5 0 0 0 6 0
1 H+L+S 8/12 6.5 1 8 1 1 2 0 0

2 H 4/12 5.5 – 5.5 1 6 0 1 0
2 H+L 7/12 5 – 5 0 4 0 1 0
2 H+S 8/12 5 0.5 7.5 2 0 0 1 1
2 H+L+S 9/12 4 2 6 1 0 1 0 1

3 H 0/12 – – – 0 7 0 3 2
3 H+L 6/12 4 – 4 1 5 0 0 0
3 H+S 4/12 8.5 1 9.5 3 0 1 3 1
3 H+L+S 8/12 5.5 0 6.5 1 0 1 2 0

4 H 1/12 6 – 6 3 6 0 1 1
4 H+L 5/12 6 – 6 3 4 0 0 0
4 H+S 4/12 10.5 3.5 14 4 0 0 3 1
4 H+L+S 10/12 9 3 12.5 2 0 0 0 0

5 H 0/12 – – – 1 10 0 1 0
5 H+L 0/12 – – – 1 9 0 1 1
5 H+S 3/12 5 2 7 1 0 2 6 0
5 H+L+S 6/12 8 2.5 10.5 2 0 0 4 0

Table 3.1: Physical Results: Success rate and efficiency (median number of actions per
success) for untangling physical cables containing dense non-planar knots on the dVRK. We
categorize initial cable configuration complexity into four tiers: (1) one semi-planar knot
seen at train time, (2) two semi-planar knots both seen in training, (3) one non-planar knot
seen in training, and (4) one non-planar knot unseen in training. Untangling experiments
are given a horizon of 5 node deletion actions to make progress. If the cable is equally or
more dense after 5 untangling actions, we conclude that the configuration is pathological
and terminate the trial.
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Results

Given the trained networks, we instantiate the proposed policies and baselines and run 12
trials of dVRK cable untangling for each method and each of the four tiers. At the beginning
of each trial, a human supervisor manually ties a dense configuration and places it at wc.
Then, the dVRK executes the untangling procedure in Algorithm 1 without intervention. A
successful trial is defined as one that terminates such that the cable has at most one crossing
and no knots. This definition accounts for the natural tendency of the cable to lie in single-
crossing stable poses due to its elastic material properties. On an Nvidia GeForce RTX 2080,
HULK keypoint inference takes 314 ms, LOKI offset and rotation inference takes 260 ms, and
SPiDERMan density comparison takes 18 ms. Node Deletion and Reidemeister moves take
10 s to execute each, while Re-Posing and Wedge Recovery moves take 7 s and 15 s to execute
respectively. We report the untangling success rate and median number of Node Deletion
moves, Recovery moves (Re-Posing and Wedged Recovery), and total actions per success in
Table 3.1. These results suggest that the combination of HULK, LOKI, and SPiDERMan
is effective in performing cable untangling, and exhibits higher empirical success with fewer
actions than methods that do not jointly leverage all 3 algorithms.

We observe 5 failure modes:

(A) gripper collision due to poor keypoint and/or grasp rotation predictions in high-density
configurations;

(B) robot gripper jaws wedged between cable segments due to high configuration density
and/or failed recovery actions;

(C) premature termination due to density comparison false positives in Equation (3.5);

(D) termination due to lack of untangling progress;

(E) the cable suddenly springing out of the reachable workspace where Re-Posing moves
cannot grasp the cable due to poor keypoint predictions and the cable’s elastic material
properties.

Across policies that do not leverage SPiDERMan, the most common failure mode is the
tendency of the gripper jaws to become wedged between cable segments (B). This failure
mode is exacerbated with increasing density and non-planarity, though somewhat alleviated
by LOKI’s grasp refinement. SPiDERMan’s sensing of configuration density change over
time can either mistakenly or correctly detect a lack of untangling progress, resulting in
premature (C) or justified rollout termination (D), respectively. Gripper collisions (A) and
the cable springing to workspace extremities (E) account for the remaining manipulation-
induced errors. Failure (A) is an artifact of high-density configurations and mispredicted
grasp locations and orientations, while (E) can cause SPiDERMan’s recovery moves to reach
robot joint limits, yielding an irrecoverable state.
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3.6 Discussion

In this chapter, we present the problem of untangling dense, non-planar knots in singular
cables. Our approach builds on high-level action planning at the level of image keypoints
(HULK) and instantiates a low-level controller (LOKI) to enable more secure grasping be-
tween cable segments. Finally, we address the failures in open-loop planning via SPiDER-
Man. SPiDERMan uses a combination of learned and heuristic perception strategies to
counteract common manipulation failures. These include dislodging a cable that is wedged
between grippers, re-centering a cable within the workspace, and placing the cable in a new
stable pose upon sensing a lack of untangling progress to reveal new knot geometry.

With progress towards single cable untangling, one natural question is: how can we
extend this approach to multiple cables? We consider this problem and the new challenges
it introduces in Chapter 4.
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Chapter 4

Learning to Disentangle Multiple
Cables

4.1 Individual Contributions

This chapter covers our paper “Disentangling Dense Multi-Cable Knots” as submitted to
IROS ’21. This is joint work with Vainavi Viswanath, Jennifer Grannen, Brijen Thananjeyan,
Ashwin Balakrishna, Ellen Novoseller, Jeffrey Ichnowski, Minho Hwang, Michael Laskey,
Prof. Ken Goldberg, and Prof. Joseph E. Gonzalez.

In this project, my contributions include algorithmic and system design (Section 4.2),
full-stack integration of perception and manipulation on the da Vinci surgical robot, infras-
tructure for experiments, and running physical trials (Section 4.4).

Building a robust system for cable disentanglement was a massive team effort that re-
quired the ability to explore and iterate on many ideas in parallel. This was made possible
by my collaborators Vainavi Viswanath and Jennifer Grannen. Vainavi took the lead on
the perception stack including HULK and detection of algorithmic termination (3.4). This
is especially commendable considering the extent of what she managed to accomplish while
working remotely due to COVID. She also created the figures in this chapter (Figures 4.1,
4.2, 4.3, 4.4). Jennifer Grannen’s efforts on manipulation primitive design along with her
work on deployment of perception systems was crucial to the development of this system.
This chapter built substantially upon manipulation and perception stacks she developed in
[9].

Brijen Thananjeyan, Ashwin Balakrishna, Ellen Novoseller, and Jeffrey Ichnowski played
essential roles in this project from its initial scoping down to the experimental design. They
were especially helpful in formalizing the topological graphical representation of multi-cable
knots. They also provided very helpful suggestions on designing the primitives and order of
operations for the manipulation stack required to tackle this complex task.

We thank Minho Hwang immensely for all of his expertise on the da Vinci surgical robot
platform, which was foundational to implementing the systems of Chapters 3 and 4.
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Professor Joseph E. Gonzalez provided one of the first motivating examples for au-
tonomous cable disentangling in his discussion of wire harness assembly, and gave helpful
feedback leading up until paper submission. Michael Laskey further assisted with project
scoping in the context of home robotics, and Professor Ken Goldberg provided meaningful
feedback at every stage of this project.

4.2 Problem Statement

In this chapter, we consider the setting of a bilateral robot attempting to disentangle a
knotted configuration of n > 1 cables from RGB images, instead of a singular cable as
discussed in Chapter 3. The objective is to remove all intra-cable and inter-cable crossings
in the scene with a minimal number of actions while recognizing when cables become fully
untangled and setting them aside.

Assumptions

We make the following assumptions, which naturally extend those of Chapter 3 to the multi-
cable setting:

• cables distinguishable : we assume all cables are color-separable from the background
but need not be distinguishable from each other;

• visible endpoints : at least two endpoints are visible in the initial cable configuration;

• linear pull actions sufficient : we assume all cables are within reachable limits of the
robot, thus ensuring the robot can successfully perform grasping and pulling actions.

• non-planarities : we allow non-planar knots, where more than two cable segments can
be involved in each intersection.

Workspace Definition

We define a Cartesian (x, y, z) coordinate frame for the workspace with wl, wr, wc ∈ R3

denoting the left, right, and center points of the workspace for planning purposes. Next, we
assume access to a bilateral robot and a flat manipulation surface that lies in the xy-plane.
The primary difference in this setting is that rather than containing only a single cable, the
scene now contains n > 1 cables that can be knotted or twisted together. The addition of
several cables requires careful consideration of three new challenges: (1) slack management
in the workspace, (2) appropriate handling of both intra and inter-cable crossings, and (3)
separation of cables in addition to untangling.

To address (3), we assume the existence of a termination area to the right of the ma-
nipulation workspace, where we relocate cables as they become fully disentangled. The
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Figure 4.1: Overview of IRON-MAN: IRON-MAN (Iterative Reduction Of Non-planar
Multiple cAble kNots) is an algorithm for disentanglement of several knotted cables. We
present a sequence of moves planned by IRON-MAN on a three-cable Carrick Bend knot.
Following an initial Reidemeister (straightening) move (A) which pulls opposing cable end-
points apart, IRON-MAN takes several Node Deletion (loosening) moves (B-C, D-E, F-G)
to reduce inter and intra-cable crossings. Finally, we take three Cable Extraction (removal)
moves (H-J) to isolate and remove each cable.

termination area is centered at the point pterm ∈ R3 and is within reach of the robot’s grip-
pers. We define intra-cable crossings to be crossings that only involve a single cable, while
inter-cable crossings are crossings involving at least two cables.
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Figure 4.2: Graph Representation: Provided a dense initial square knot (A), we take
a Node Deletion move specified by hold (green) and pull (dark blue) keypoints, yielding
a looser configuration shown in (B). We use a graphical abstraction to model the state of
intertwined cables, extending previous work on modelling single-cable configurations as in
Chapter 3. In this graph, endpoints and intra/inter-cable crossings constitute nodes, and
edges denote over (+) and under (-) crossings, shown in (C). We prioritize removing crossings
that are non-trivial, such as (3), rather than trivial ones such as (4), which can be easily
undone by a Reidemeister move without significantly loosening the configuration.

The toplogy of crossings within and amongst cables is not directly observable, and must
instead be inferred from RGB images. At time t, each manipulation action is planned directly
from an RGB image observation It.

Configuration Graph

BRUCE (Section 3.3) introduces an untangling algorithm operating on a graph structure that
concisely represents the configuration space of single-cable knots [9, 23, 35]. This section
extends the undirected graph G = (V,E) representation to handle n-cable knots. Vertices
v ∈ V represent any cable endpoints and crossings in the structure, and edges e ∈ E represent
cable segments (with no crossings) joining two vertices, denoted as e = (u, v) for u, v ∈ V .
While the graph representation of Chapter 3 considers crossings with ≤ 3 cable segments,
in this chapter, a crossing (vertex v) can have k segments for any k ≥ 1, such that 2k cable
segments extend from the crossing, and the corresponding vertex v has a degree of 2k. The
graph vertices makes no distinction between intra-cable and inter-cable crossings. Endpoint
vertices differ in that they always have a degree of one. Additionally, we annotate every
adjacent (vertex, edge) pair with a label X(v, e) ∈ {−1, . . . ,−(k − 1)} ∪ {+1}, where k is
the number of segments in the crossing at vertex v, according the definition below:

X(v, e) =

+1
if v is an endpoint or if e crosses over
all other edges at v

−m if e crosses under m edges at v
(4.1)

Intuitively, X(v, e) indicates the depth of edge e at the crossing represented by vertex v. For
example, Chapter 3 considered an annotation scheme with labels {−2,−1,+1} (Equation
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3.1) for crossings involving up to 3 cable segments where an over-crossing occludes at most 2
cable segments. Equation 4.1 merely generalizes this annotation scheme to arbitrary levels of
self-occlusion. Observe that this graph can have multiple edges, as illustrated in Figure 4.2,
but no two pairs of contiguous edges will have the same two annotations. With this graph
definition, the multiple cable disentangling objective is to reach a configuration graph with
|V | = 2 per cable, one corresponding to each endpoint, such that the two vertices belonging
to each cable are connected by an edge with positive annotations on both ends.

Action Space

Using the same action space as that of Chapter 3, we redefine action primitives for multi-
cable disentangling and introducing specialized motion primitives for cable separation. At
each time t, we consider linear, bilateral actions at = (at,right,at,left). Each gripper grasps
the cable with a top-down grasp orientation θt,k about the z-axis at a fixed 30◦ approach
angle relative to the vertical, moves a displacement (∆xt,k,∆yt,k) while closing (1grasp = 1)
or leaving open (1grasp = 0) the gripper jaws, and releases the cable (Equation 3.2):

at,right = (xt,r, yt,r, θt,r,∆xt,r,∆yt,r,1grasp)

at,left = (xt,l, yt,l, θt,l,∆xt,l,∆yt,l,1grasp).

Because the perception systems of operate in pixel space, we require access to a standard
world (x, y, z) to pixel coordinate (px, py) transformation. In the remaining sections, we will
describe positions in terms of pixels, overloading the action notation to use pixel coordinates
as well as workspace positions.

4.3 Methods

To the best of our knowledge, prior work has only considered single-cable untangling [23,
9, 35], and the resulting algorithms cannot be directly employed for disentangling multiple
cables. In Chapter 3, we cover three methods for single-cable untangling: a high level action
planner HULK (Section 3.3) and a low-level controller composed of LOKI and SPiDERMan
(Section 3.4) for precise grasping and recovery manipulation, respectively. In this chapter,
we present a novel algorithm IRON-MAN for disentangling multiple cables using the graph
representation of multi-cable knots defined in Section 4.2. Next, we discuss the perception
methods and manipulation primitives used to instantiate IRON-MAN for physical disentan-
gling. The proposed perception stack redefines HULK keypoints as described in Section 3.3
to accommodate multiple cables, and directly employs LOKI and SPiDERMan (Section 3.4)
to account for grasp refinement and recovery actions during disentangling, respectively. We
also adapt the motion primitives (Node Deletion, Reidemeister moves) of the single cable un-
tangling work from Chapter 3 to the multi-cable setting and introduce a novel manipulation
primitive for managing excess cable slack.
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Figure 4.3: Physical Implementation of IRON-MAN: Image A depicts the endpoints
used for Reidemeister moves: p̂r and p̂l on cables c1 and c2, respectively. The left endpoint
annotation corresponds not to the leftmost endpoint in the scene (on cable c1), but rather to
the leftmost endpoint of cable c2 because p̂r is on cable c1. Image B depicts the hold and pull
keypoints, p̂hold and p̂pull, relative to the first non-trivial crossing from the right endpoint.
The first crossing from the rightmost endpoint is a trivial crossing, and is skipped when
traversing from the right endpoint to annotate a Node Deletion move. Image C presents semi-
disentangled and entangled configurations. Although the image in the yellow highlighted
box still contains a crossing, it is trivial and thus acceptable by our definition of semi-
disentanglement.

IRON-MAN

We present IRON-MAN, an algorithm for disentangling multiple cables knotted or twisted
together. IRON-MAN operates on the implicit graph representation of a scene and dis-
entangles n cables with repeated crossing removal. Compared to BRUCE (Section 3.3),
IRON-MAN must reason about 2n endpoints and a greater number of potential crossings.
This manifests in more challenging cable slack management in the practical instantiation of
IRON-MAN.

Multi-cable Reidemeister Moves

In Chapter 3, Reidemeister moves (Equation 3.4) pull apart the left and right endpoints
vl, vr of a singular cable to disambiguate the cable configuration. However, a scene with
n > 1 cables contains n right endpoints and n left endpoints so the choice of vl, vr for
instantiating a Reidemeister move is ambiguous. To resolve this, IRON-MAN first locates
the rightmost endpoint node vr, which belongs to some cable ci, i ∈ {1, ..., n}. This is the
rightmost endpoint in the scene across all possible cables. After defining vr, the leftmost
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endpoint node vl is defined as the leftmost endpoint belonging to some cable cj, where j 6= i
and j ∈ {1, ..., n} (Fig. 4.3). If only a single cable ck remains in the scene so that n = 1, we
define vr and vl to be the right and left endpoints of ck, breaking ties arbitrarily. Reidemeister
moves as defined in Equation 3.4 are then performed on the endpoints vr and vl.

Multi-Cable Node Deletion Moves

In the single cable untangling work of Chapter 3, operating on the first under-crossing
relative to the right endpoint provided an unambiguous convention for Node Deletion moves.
However, in the setting of multiple cables, the presence of multiple endpoints, a greater
potential for accumulated slack, and inter and intra-cable crossings of varying degrees of
entanglement complicates action selection. To address this, IRON-MAN first categorizes
crossings as either non-trivial or trivial when determining which crossings to remove. Non-
trivial crossings are integral to maintaining the knot structure, while trivial crossings are
those that come undone trivially by performing a Reidemeister move. For example, a twist
is a set of trivial crossings, in which pulling the two cables apart via a Reidemeister move,
will undo all of the crossings. Removing a trivial crossing from a configuration does not
change the number and types of knots present in the configuration, and as a result does not
reduce the overall configuration density. Thus, IRON-MAN manages physical cable slack
effectively and efficiently by prioritizing removal of non-trivial crossings. Reduction of trivial
crossings is instead left to Reidemeister moves. IRON-MAN traverses the graph from the
rightmost endpoint vr and performs a Node Deletion move as defined in Equation 3.3 on the
first non-trivial undercrossing it encounters.

Algorithm Summary

IRON-MAN disentangles n-cable knots given a graph representation of the knotted structure
using multi-cable Reidemeister and Node Deletion moves, as defined above. First, IRON-
MAN performs a Reidemeister move to remove trivial crossings such as intra-cable loops
and disambiguate the knot configuration. Next, IRON-MAN successively performs Node
Deletion moves on the first non-trivial crossing with respect to the rightmost endpoint in
the scene until no non-trivial crossings remain. As disentangling progresses, certain cables
reach fully untangled states. These cables can be entirely removed from the scene in order
to simplify the scene graph by minimizing the number of trivial crossings. For such cables,
IRON-MAN uses a novel manipulation primitive called a Cable Extraction move (discussed
further below) to remove fully untangled cables from the workspace.

Physical Disentangling

Perception

IRON-MAN operates on a graph representation, which is not directly observable. Therefore,
we instantiate IRON-MAN to operate on image inputs using learned perception components
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as in Chapter 3 for deployment on a physical robot. As in HULK (Section 3.3), we learn the
newly-defined keypoints for holding and pulling actions and right and left endpoints from
RGB image inputs to perform IRON-MAN’s multi-cable Reidemeister and Node Deletion
moves on physical knots. This section describes the networks used to implement motion
primitives for IRON-MAN, while Section 4.4 details the training dataset generation proce-
dure.

Our approach uses a ResNet-34 backbone to separately learn three mappings for instan-
tiating actions:

• g1 : R640×480×3 7→ R640×480×2 maps an image to 2 heatmaps centered respectively at
the keypoints p̂hold and p̂pull, located at the first non-trivial intersection as defined in
IRON-MAN. These predictions are used to perform multi-cable Node Deletion moves.

• g2 : R640×480×3 7→ R640×480×2 maps an image to 2 heatmaps centered respectively at the
2 keypoints p̂r and p̂l, respectively located at the endpoints of cables ci and cj, i 6= j,
to implement IRON-MAN’s multi-cable Reidemeister moves. Note that p̂r corresponds
to the rightmost endpoint in the scene, while p̂l is the leftmost endpoint in the scene
that does not belong to cable ci.

• h : R640×480×3 7→ {0, 1} is a binary classifier that detect when the cable ci corresponding
to the rightmost endpoint p̂r is semi-disentangled from the remaining cables. Cable
ci is what we call semi-disentangled from a cable configuration if the only crossings
involving ci are trivial and ci can be fully disentangled when pulled apart from the
other cables (see Fig. 4.3). A cable in a semi-disentangled is ready to be removed from
the scene, which we instantiate with a Cable Extraction move detailed below.

We train and implement LOKI per the procedure in Section 3.4. The only modification we
make for LOKI in the multi-cable setting is to train on simulated cable crops consisting of
both homogeneous and differently colored cables, since both are considered in this chapter
(Assumption 4.2). By querying LOKI, we obtain refined keypoints, p̃l, p̃r, p̃hold, p̃pull, and
their corresponding gripper orientations for executing grasps.

Manipulation

To execute the actions from IRON-MAN on a set of physical cables, we apply a novel
manipulation primitive, a Cable Extraction move, along with Reidemeister moves and
Node Deletion moves, to the task of multi-cable disentangling. We iteratively disentangle
each cable in the scene with multi-cable Reidemeister and Node Deletion moves using newly-
defined keypoints as in Section 4.3. During task execution, we use Cable Extraction moves
to drop fully disentangled cables at pterm, a predefined point within the termination area
outside the manipulation region.

We define a Cable Extraction move, a novel manipulation primitive that fully disen-
tangles and removes a semi-disentangled cable from a scene. This primitive is intended to
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preemptively de-clutter the workspace of fully disentangled cables to prevent unnecessary
accumulation of cable slack. Given an image observation of the workspace It, we perform
Cable Extraction moves when h(It) = 1, meaning the cable ci corresponding to the rightmost
endpoint p̃r is detected as semi-disentangled. The right arm grasps ci at its right endpoint
p̃r, while the left arm pins p̃l, the leftmost endpoint from cable cj (i 6= j), against the
workspace surface without closing the gripper jaws and grasping the cable. Crucially, we
use soft pinning, which differs from holding in that a) in holding, the cable is not pushed
against the workspace, and b) in soft pinning, the gripper jaws do not close to grasp the
cable. Specifically, we use 1grasp = 0 to achieve soft pinning. When only one cable is left
in the scene, the predicted Reidemeister endpoints often lie on the same cable. This causes
one arm to pull the right endpoint of the cable while pinning the left cable during a Cable
Extraction move. Soft pinning crucially allows for the right arm to pull the remaining slack
through the jaws of the left gripper, yielding a successful extraction. Finally, the right arm
deposits cable ci at a predefined termination point pterm, reducing the number of trivial
crossings in the scene:

at,r = (p̃x,r, p̃y,r, px,term − p̃x,r, py,term − p̃y,r, θ̂r, 1)

at,l = (p̃x,l, p̃y,l, 0, 0, θ̂l, 0).

Finally, we implement a subset of manipulation recovery primitives from SPiDERMan
(Section 3.4) for multi-cable disentangling. In particular, we implement the Wedge Re-
covery and Re-posing (translation) moves which rely on contour detection (Equation
3.8, Equation 3.7) and knowledge of wl, wr, wc ∈ R3. The implementation of SPiDERMan
from Chapter 3 also included a binary classifier operating pairwise on current and past cable
observations to sense loosening progress and termination. We omit this functionality for
multi-cable disentangling for two reasons. First, sensing progress via pairwise comparisons
of current and past observations is ambiguous when the number of crossings and cables con-
sidered changes drastically during task execution. Second, a more natural way of detecting
termination in the multi-cable setting is to detect vacancy of the manipulation surface, since
Cable Extraction moves sequentially deposit disentangled cables in a separated termination
area.

Method Summary

The final manipulation stack consists of five manipulation primitives – Node Deletion
moves, Reidemeister moves, Cable Extraction moves, Wedge Recovery moves,
and Re-posing (translation) moves – instantiated with modified versions of HULK,
SPiDERMan, and LOKI. The complete disentangling algorithm is presented in Algorithm 2.
Starting with a Reidemeister move, IRON-MAN pulls endpoints p̃r and p̃l to opposite sides
of the workspace, removing any initial trivial crossings in the process. Then, we successively
take Node Deletion moves specified by p̃hold and p̃pull on the first non-trivial undercrossing
localized relative to the p̂r. Upon detecting a semi-disentangled cable ci, we employ a Cable
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Extraction move to remove ci and any of its associated trivial crossings from the scene.
This process repeats iteratively until all cables have been disentangled and deposited in the
termination area, with occasional interventions by SPiDERMan (Figure 4.1).

Algorithm 2 Disentangling with IRON-MAN

1: Input: RGB image of cable
2: Predict p̃l, p̃r, p̃hold, p̃pull

3: ci, cj ← cables corresponding to p̃r, p̃l, respectively.
4: Reidemeister move with p̃r (cable ci), p̃l (cable cj)
5: while workspace not empty do
6: Predict p̃l, p̃r, p̃hold, p̃pull

7: ci ← cable corresponding to p̃r

8: Execute SPiDERMan recovery policy
9: if cable ci is semi-disentangled then
10: Cable Extraction move with p̃r, p̃l

11: else
12: Node Deletion move with p̃hold, p̃pull

13: return DONE

4.4 Experiments

We evaluate IRON-MAN to disentangle knot configurations containing two or three cables
and with three tiers of increasing difficulty. We implement the full system in experiments
with the bilateral da Vinci surgical robot. We are not aware of any multi-cable disentangling
algorithms that would provide a meaningful baseline, and single-cable algorithms are not
well-defined in this setting.

Training Dataset Generation

We train the Reidemeister and Node Deletion coarse keypoint prediction models g1 and g2

on a dataset of 270 real workspace images with hand-labeled keypoints, augmented to a
dataset of 7,020 examples via affine transforms, lighting shifts, and blurring. We similarly
train the semi-disentanglement classifier h on a dataset of 170 real workspace images. For
each image, we assign labels 0 or 1 by hand to indicate “semi-disentangled” or “entangled,”
respectively, augment to a dataset of 5,200 examples using similar augmentation techniques
as mentioned above, and train with a binary cross-entropy loss. All datasets consist only
of configurations with up to two cables, where the cables’ colors are either both white or
red and white. To reduce manipulation errors during experiments, we project all keypoint
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Tier Color Success Rate Disentangling Actions Recovery Actions Total Actions Failure Modes

1 r-w 12/12 7 0 7.5 A (0), B (0), C (0), D (0)
1 w-w 10/12 11.5 1 12.5 A (0), B (0), C (1), D (1)
2 r-w 7/12 19 0 20 A (1), B (1), C (1), D (2)
2 w-w 9/12 15.5 2 15 A (0), B (1), C (2), D (0)
3 r-w-w 11/12 16 1 17 A (0), B (0), C (0), D (1)
3 w-w-w 9/12 15 1 16 A (0), B (1), C (0), D (2)

Table 4.1: Physical Experiment Results: We report the success rate and median number
of actions to fully disentangle all cables in a scene using the physical implementation of
IRON-MAN. We consider sets of cables that are all similarly colored (white-white) and
differently colored (red-white). The IRON-MAN implementation disentangles two cables in
Tier 1 and 2 configurations and three cables in Tier 3 configurations with an overall success
rate of 80.5%. We observe four failure modes: (A) one or more cables springing out of the
manipulation workspace, (B) gripper collision in high-density configurations, (C) exceeding
the maximum number of disentangling actions, and (D) moving entangled cables to the
terminated workspace.

predictions p̂ ∈ {p̂hold, p̂pull, p̂l, p̂r} onto the cable mask obtained by color thresholding from
the background.

We train LOKI on 3,000 200 × 200 crops of images of configurations with one red and
one white cable, generated in simulation via Blender 2.80 [18]. Offset heatmap labels are
generated in simulation as 2D Gaussian distributions centered along the cable width with
a standard deviation of 5 px. SPiDERMan detects when to perform recovery actions via
analytical methods for sensing cable contours as described in Section 3.4.

Tiers of Difficulty

Across all difficulty tiers, the knot types considered are dense and depicted in Figure 4.4.
The tiers are defined by the number of cables in the knot and whether the class of knots was
present in the training dataset. In all three tiers, we consider both knots in which cables
have contrasting colors (red and white) and knots in which all cables are of the same color
(white).

Tier 1: Two-cable knots where the class of knots was present in the training dataset
(two-cable twists, Carrick Bend, Sheet Bend, and Square knots).

Tier 2: Two-cable knots where the class of knots was not present in the training dataset
(Crown, Fisherman’s, and two-cable Overhand knots).

Tier 3: Three-cable knots where the class of knots was not present in the training
dataset (braids, three-cable Carrick Bend, three-cable Sheet Bend, and three-cable Square
knots).
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Figure 4.4: Tiers of Configuration Difficulty: The configurations considered in this
chapter are organized into 3 tiers based on the number of cables in the knot and whether
the class of knot was present in training data images. For each configuration, we consider
both settings where cables have contrasting colors (red and white) and where cables are of
the same color (all white).
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Experimental Setup

We use a da Vinci Research Kit (dVRK) surgical robot with two 7-DOF arms to untie 2 or
3 cut elastic hairties of diameter 5 mm and length 15 cm. We chose to disentangle hairties,
as they have a smooth surface and fit well in the dVRK’s end effector. We also use a foam
padded stage on which the hairties rest during experiments to avoid end effector damage
under collisions with the manipulation surface and to create friction with the hairties to
prevent them from sliding out of the workspace. We collect 1920 × 1200 overhead RGB
images for perception inference with a Zivid OnePlus RGBD camera.

Results

Table 4.1 presents the results from the physical trials. IRON-MAN succeeds in disentangling
all cables with success rates of 91.6%, 66.6%, and 83.3% on Tier 1, Tier 2, and Tier 3
configurations, respectively. The success rates drop for the knots in Tiers 2 and 3, as they
are not present in training data images. In successful Tier 2 and 3 cases, both the numbers
of disentangling actions (Node Deletion and Cable Extraction moves) and SPiDERMan
Recovery actions (Re-posing and Wedge Recovery moves) increase compared to Tier 1.

Failure Modes

In the disentangling experiments, the physical implementation of IRON-MAN encounters
four failure modes:

(A) One or more cables springing out of the reachable manipulation workspace due to
elastic cable physics.

(B) Robot gripper jaws colliding when executing Node Deletion moves in high-density cable
configurations.

(C) Exceeding a maximum threshold of 20, 30, and 30 disentangling actions for Tiers 1, 2,
and 3 respectively, due to repeatedly-poor action predictions and executions. We allow
fewer total actions in Tier 1 because the class of Tier 1 knots was seen in training.

(D) Semi-disentangled cables dropped in the termination area—rather than fully disentan-
gled cables—due to poorly-executed Cable Extraction moves that do not effectively
pin down remaining cables in the scene.

We observe that the most common failure mode is (D), moving semi-disentangled (rather
than fully disentangled) cables to the termination area with poor Cable Extraction manip-
ulation. When the left arm does not effectively pin the remaining cables in the scene, high
cable friction causes multiple cables to move with the grasped semi-disentangled cable into
the termination area without removing trivial crossings. We also observe two manipulation
failure modes relating to cable grasps. Due to the hairties’ elastic properties, poor cable
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grasps occasionally cause one or more cables to spring out of the reachable manipulation
workspace, which yields an irrecoverable state (A). In high-density configurations, disentan-
gling actions often require gripper jaws to grasp adjacent cable segments that are very close
together. These grasps may cause gripper jaw collision, which requires human intervention
to reset the robot and is deemed a failure (B). We limit the number of disentangling actions
to 20 actions for Tier 1 configurations and 30 actions for Tier 2 and 3 configurations to
end rollouts when the robot is repeatedly unable to execute effective disentangling actions
in pathological high-density configurations where gripper jaws cannot grasp between cable
segments (C).

4.5 Discussion

In this chapter, we build upon the strategies for single cable untangling from Chapter 3
and extend them to handle disentangling of multiple cables. We saw that dealing with
multiple cables introduces new challenges, such as handling excess cable slack, tracking more
endpoints and crossings, accommodating both identical and differently colored cables, and
separating fully disentangled cables from remaining entanglements. To address these issues,
we formalize a graph-based disentangling algorithm IRON-MAN with sensitivity to both
intra and inter-cable crossings. We do not aim to infer or reconstruct full state knowledge
of multiple cable instances in the scene. Instead, we reduce the problem to learning which
crossings and endpoints to attend to at any point in time during task execution. We embed
this awareness in the training procedure for HULK, and combine it with LOKI, SPiDERMan,
and additional Cable Extraction primitives to instantiate IRON-MAN for robust multi-cable
disentanglement.
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Chapter 5

Conclusions

We present robot algorithms for untangling and disentangling single-cable and multi-cable
dense, non-planar knots from RGB image observations. This thesis details the design of an
iterative algorithm for intra and inter-cable crossing removal, perception of knot structures
with global and local awareness, design of loosening and recovery motion primitives, and
deployment of the resulting system onto a da Vinci surgical robot. A key focus of this
thesis is understanding the interplay between precise controllers and recovery policies. While
learning to sense and act with precision is important for proactive failure avoidance, errors
are inevitable during any robotic manipulation task. Consequently, we additionally focus
our efforts on anticipating or reducing the severity of failures.

In Chapter 3, we present LOKI and SPiDERMan, two algorithms that comprise a low-
level controller for manipulation. LOKI and SPiDERMan jointly introduce precision and
recovery into a previous high-level planner, HULK, for performing robust untangling of
dense, non-planar knots in singular cables. Empirically, we find that the combination of
HULK, LOKI, and SPiDERMan collectively outperforms baselines without recovery or re-
finement strategies. The combination achieves 72.8% success and 50% success on untangling
seen knots and unseen knots, 66.7% success on non-planar knots not studied in prior work,
and averages ≤ 9 actions over successful trials. In Chapter 4, we formalize the problem
of disentangling multiple cables with IRON-MAN, an algorithm for sequentially removing
crossings within and across cables. IRON-MAN — instantiated with HULK, LOKI, and SPi-
DERMan — disentangles up to three cables with 80.5% success. Together, HULK, LOKI,
SPiDERMan, and IRON-MAN crucially leverage as much structure in the tasks as possible,
and use analytical methods, deep-learning, and simulation as tools to address particular
manipulation or perception pitfalls.

The open-source implementations for this body of work are linked below and intended
for use:

• Cable Simulation Environment

• HULK Training/Inference

• LOKI Training/Inference

• SPiDERMan Training/Inference

• da Vinci Untangling/Disentangling
Codebase

https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/keypoints_cls/tree/develop
https://github.com/priyasundaresan/six-dof-grasp/tree/kpt_rot
https://github.com/jenngrannen/density-classification
https://github.com/priyasundaresan/cable-disentangling
https://github.com/priyasundaresan/cable-disentangling
https://github.com/priyasundaresan/blender-rope-sim
https://github.com/priyasundaresan/keypoints_cls/tree/develop
https://github.com/priyasundaresan/six-dof-grasp/tree/kpt_rot
https://github.com/jenngrannen/density-classification
https://github.com/priyasundaresan/cable-disentangling
https://github.com/priyasundaresan/cable-disentangling
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Chapter 6

Future Work

We view these as promising initial results but acknowledge several limitations that must be
overcome to realize general-purpose, fully autonomous cable untangling and detangling. To
that end, we are excited about several opportunities for future work:

• Further Method Optimization: The motion primitives considered in Chapters
3 and 4 are instantiated with linear trajectories and fixed approach angles, which
may limit the range of possible untangling actions. In future work, we would like to
expand the action space to include trajectories for more nuanced grasping between
cable segments. We can also consider dynamic untangling actions such as shaking,
bilateral pulling, slack clearance, or in-air untangling. On the perception side, we
can improve the search space of viable crossings to be undone. Algorithms such as
HULK and BRUCE strive for deterministic action selection by using conventions such
as undoing crossings relative to endpoints. Instead, we could consider learning a multi-
modal distribution or ranking over pulls/pins instead of a single prediction.

• Improving Generality: We hope to test the limits of HULK and SPiDERMan’s
performance on a diversified set of cables of varying physical properties such as friction,
texture, turning radius, and length. These properties can substantially impact knot
tightness, slack management, and ease of manipulation. Learning to grasp orthogonal
to the cable direction from images may be too simple of an assumption for non-uniform
thickness cables like ribbons or rubber bands. In follow-up work, we can also consider
a low-level grasping controller learned directly from self-supervised interaction. This
framework may enable one-shot or few-shot generalization to a cable with new physics
at test time.

• Task Extensions: We are encouraged by several application-oriented extensions. One
avenue is search, untangling, and retrieval of a cable with a target adapter (USB, Thun-
derbolt, etc.) from clutter, building on recent work in mechanical search of rigid objects
[5]. The ideas of using keypoints for planning with a low-level grasping controller are
also applicable to other deformable manipulation tasks such as knot-tying, cloth fold-
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ing/unfolding, or bag manipulation. It is interesting to consider untangling followed by
tying. This could apply to a task like shoelace tying, where untying could be a prereq-
uisite. Alternatively, we can pose this as an adversarial learning framework [29] where
tying and untying are jointly trained adversarial policies with competing objectives.

This work presents learnings about cable disentangling and untangling over the last two
years, but leaves ample room to further our understanding of deformable objects and how
best to interact with them. I am eager to continue tackling problems within and beyond this
domain during my PhD at Stanford.
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