
Redesigning Power Systems on a Single Chip Micro

Mote with Berkeley Analog Generator Low Dropout

Series Regulator Generation

Jackson Paddock

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-124

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-124.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Redesigning Power Systems on SCμM with BAG LDO Generation

by Jackson Paddock

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Kristofer S.J. Pister
Research Advisor

(Date)

* * * * * * *

Professor Ali Niknejad
Second Reader

(Date)

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

ALI NIKNEJAD

Abstract

Redesigning Power Systems on a Single Chip Micro Mote with Berkeley Analog Generator
Low Dropout Series Regulator Generation

by

Jackson Paddock

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kristofer S.J. Pister, Chair

The Single Chip Micro Mote (SCµM) is a crystal-free radio chip with an on-board CPU
developed at UC Berkeley in the Swarm Lab. This chip was designed to function as the
brain of an untethered microrobot with no external components other than a power source
required. SCµM also features an optical programmer so that no cables are even needed to
program it. With its size and functionality, SCµM has the potential to allow a swarm of
microrobots to communicate and perform complex tasks in tandem.

Like every other circuit, SCµM needs power to operate, and one of the most common power
regulation circuits is an LDO (low dropout series regulator), which unlike many other DC-
DC converter designs, does not require any switching or inductors, which take up a lot of
area. This circuit is relatively simple, requiring only a voltage amplifier and one additional
transistor, but the challenges in design come from balancing stability, accuracy, and area.
The goal of this project was to write a process-independent script that will automatically
design such a circuit quickly and accurately in any technology while requiring minimal man-
ual adjustment on the part of the designer. Due to the prevalence of LDOs in integrated
circuit chips, the script discussed in this report has many real-world applications.

i

To my parents and my brother, and my friends from BareStage.

Thank you for supporting me in everything I do and making my life that much brighter.

ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Background on SCµM Power Systems 1
1.1 Power Domains . 1
1.2 Power Consumption . 1

2 LDO Design with BAG 4
2.1 Berkeley Analog Generator (BAG) . 4
2.2 LDO Design . 4
2.3 Script Design Approach . 8
2.4 Comparison to Hand-Designed LDOs . 14
2.5 Approximations and Errors . 25

3 Conclusion 31
3.1 Future Work . 31

Bibliography 33

A BAG Setup 34

B Example Characterization Input YAML File 39

C Example Design Script Input YAML File 43

D LDO Design Script 45

E VDDD Tap (SCµM) 60

iii

List of Figures

1.1 LDO with PMOS series device. 2

2.1 Block diagram of LDO feedback loop for a PMOS series device. 6
2.2 Block diagram of LDO power supply gain loop for a PMOS series device. 6
2.3 Small signal model for LDO load regulation calculation at low frequency with a

PMOS series device. 7
2.4 LDO with 5T differential amplifier topology and PMOS series device. 8
2.5 SCµM 3C auxiliary and digital LDO transient response at 5MHz. 15
2.6 SCµM generated LDO transient for amplifier channel length of 500nm at 5MHz. 19
2.7 SCµM generated LDO transient for amplifier channel length of 1µm at 5MHz. . 21
2.8 SCµM generated LDO transient for amplifier channel length of 5µm at 5MHz. . 23
2.9 EE290C hand-designed LDO transient response at 5MHz. 24
2.10 EE290C generated LDO transient for amplifier channel length of 400nm at 5MHz. 27
2.11 EE290C generated LDO transient for amplifier channel length of 1µm at 5MHz. 29

E.1 VDDD tap device proposed layout area. 61
E.2 SCµM Digital LDO schematic with NMOS tap device. 62

iv

List of Tables

1.1 SCµM 3C current draw in different operating states [3]. 1
1.2 SCµM power domains [2]. 2

2.1 LDO design script input parameters. 9
2.2 LDO design script output dictionary keys. 9
2.3 SCµM 3C auxiliary and digital LDO performance. 14
2.4 SCµM generated LDO input parameters for amplifier channel length of 500nm. . 18
2.5 SCµM generated LDO performance for amplifier channel length of 500nm. . . . 18
2.6 SCµM generated LDO input parameters for amplifier channel length of 1µm. . . 20
2.7 SCµM generated LDO performance for amplifier channel length of 1µm. 20
2.8 SCµM generated LDO input parameters for amplifier channel length of 5µm. . . 22
2.9 SCµM generated LDO performance for amplifier channel length of 5µm. 22
2.10 EE290C LDO performance with 10mA load current. 25
2.11 EE290C generated LDO input parameters for amplifier channel length of 400nm. 26
2.12 EE290C generated LDO performance for amplifier channel length of 400nm. . . 26
2.13 EE290C generated LDO input parameters for amplifier channel length of 1µm. . 28
2.14 EE290C generated LDO performance for amplifier channel length of 1µm. 28

v

Acknowledgments

I would like to offer many thanks to my advisor, Professor Kristofer Pister for guiding me
through this program and always having more confidence in me than I at times have have
in myself. Without him, I would not be where I am today and for that I would like to offer
my utmost gratitude.

Thank you to Lydia Lee, who has been my mentor on this project and has always given
me the guidance I needed when I was unsure of how to proceed with my work. Thank you
for your endless support and patience.

Thank you to Alex Moreno, Austin Patel, David Burnett, Fil Maksimovic, and the rest
of the SCµM team for all the advice and knowledge you have given me in the short time I’ve
worked with you.

1

Chapter 1

Background on SCµM Power Systems

1.1 Power Domains

SCµM has eight power domains as listed in Table 1.2, each of which is supplied by an LDO
connected to the off-chip battery voltage. There are also four different bandgap references,
inside the blocks for the digital LDO, optical/alwayson, radio divider, and radio LO. Each
of these LDOs is connected to the battery voltage for power, which is nominally at 1.5V,
but can be brought down to 1.2V. The chip also uses an external VDDIO to supply the level
shifters in the pad ring and GPIO to connect to chip-level inputs and outputs.

1.2 Power Consumption

The power consumption of the LDOs themselves are listed in Table 1.2. Each LDO reference
voltage is set by a constant bandgap reference current running through a tunable resistor.
The resistor for each LDO is the same and can be tuned to achieve discrete voltages between
0.8V and 1.2V. With a reference current of 500nA or 1µA, the resistor ranges between
950kΩ and 1.7MΩ. The LDOs that consume the most power in the amplifier, the Always
On and Sensor ADC LDOs, also have the largest biasing networks, which are partially for
the enable/disable bits that control whether or not the LDOs supply power to their loads.

State Clock Rate Average Current Consumption

Normal 5MHz 350µA
Radio on 5MHz 1.6mA

Low power 78kHz 200µA

Table 1.1: SCµM 3C current draw in different operating states [3].

1Better performance was seen in practice with a slightly higher reference voltage.

CHAPTER 1. BACKGROUND ON SCµM POWER SYSTEMS 2

Domain Operating Voltage Amplifier Sub-Blocks
Quiescent Current

Min Nom Max Min Nom Max

Digital (VDDD) 1V 4.763µA Cortex, RAM
Auxiliary 1V 4.763µA Auxiliary Digital Circuits,

GPIO Levelshifters
Always On 0.8V 1.2V 7.12µA 7.24µA Osc. DAC,

Optical Receiver
Sensor ADC 0.8V 1.2V 7.16µA 7.16µA ADC

Radio IF 0.8V 0.8V1 1.2V 4.85µA 4.85µA 5.32µA Radio IF
Radio LO 0.8V 5.98µA Radio LO
Radio PA 0.8V 4.84µA Radio TX PA

Radio Divider 0.8V 760nA Radio Divider

Table 1.2: SCµM power domains [2].

−

+

VDD

Iload

Vref

Figure 1.1: LDO with PMOS series device.

Combined, the regulators consume 40.5µA, which is more than 10% and 20% of the total
operating current in the normal and low power states respectively (Table 1.1). Even in the
radio on state, this current is not negligible. Disabling some LDOs may reduce this current
consumption, but the LDO quiescent current is still high compared to the results seen in
Section 2.4.

The dominant pole for the radio’s IF, LO, and PA LDOs was placed at the LDO output
to reduce the high frequency noise at the output and accommodate the sensitivity of the
attached circuits. The rest of the LDOs have the dominant pole at the output of the amplifier.
A dominant amplifier pole can lead to lower current consumption as discussed in Sections
2.2 and 2.3. The radio divider LDO does clearly have lower current than the radio LDOs
with dominant output poles, but there is a lot of room for improvement with the other LDOs
in terms of power efficiency. The current consumption of the digital, auxiliary, always on,

CHAPTER 1. BACKGROUND ON SCµM POWER SYSTEMS 3

and ADC LDOs should be much closer to that of the radio divider with the right design, if
not even lower. With the varying requirements for nominal output voltages and currents on
each LDO, and the sensitivity of the radio LDOs excepting the divider LDO, the Berkeley
Analog Generator (BAG), discussed in the next chapter, becomes a useful tool for efficiently
reducing power consumption and catering to the specifications of each LDO.

For SCµM, reducing leakage current is a very important goal. For any application where
the power supply is coming from a battery and not a lab bench, any reduction in power will
allow SCµM to run for a longer time, increasing the scope of potential applications.

4

Chapter 2

LDO Design with BAG

2.1 Berkeley Analog Generator (BAG)

The Berkeley Analog Generator (BAG) [1] is in infrastructure that supports a collection of
process-independent design scripts which, when given a set of input parameters, will au-
tomatically design a circuit to meet those parameters down to the transistor level. These
scripts can make the design process of a circuit block significantly faster and have the poten-
tial to design more efficient circuit blocks than would practically be created by hand. This
chapter discusses a BAG script in BAG2 created to design an LDO optimized for low power
consumption in any process, and potential applications for these designs.

This chapter describes the process the design script in Appendix D uses to generate
LDOs and provides examples of its results. The LDO design script has been validated in
both the TSMC 65nm LP and TSMC 28nm processes. The BAG framework and scripts used
are process-independent, but the process information for the technologies used is protected
under nondisclosure agreements. All process-specific information is located on private servers
hosted by the Berkeley Wireless Research Center (BWRC). The process information for
TSMC 65nm LP and TSMC 28nm is included in the library paths of the respective BAG
workspace repositories described in Appendix A. For non-BWRC readers, a template for
establishing the correct hooks can be found at:

https://github.com/ucb-art/BAG2_cds_ff_mpt.

2.2 LDO Design

The performance parameters this report uses to design an LDO are the static output error,
load regulation, noise rejection, and stability. Physical parameters used to determine tran-
sistor sizings and bias points are the load voltage, load current draw, load capacitance, power
supply, and amplifier reference current. For this report and the associated design script, a
5T amplifier topology with an NMOS input pair was used. All diagrams in this section and
LDOs designed with BAG use a PMOS series device. Although an NMOS series device is

CHAPTER 2. LDO DESIGN WITH BAG 5

possible, it may be difficult to keep in saturation unless the output common mode of the
amplifier is near the supply voltage. This issue is discussed in more detail in Section 2.3.

In this circuit, the two main poles are at the output of the amplifier and at the output
of the LDO. Although there are other capacitors that contribute to the frequency response
of the LDO, for the purposes of this section the amplifier and series device are assumed to
only have a single pole each. There is also a zero created by the capacitor (a combination
of explicit and parasitic) between the amplifier output of the amplifier and the LDO output
with the effective resistance it sees at 1/gm,ser considered in this section. The zero may
affect the phase margin at higher values of Camp or higher gain from the series device, but
the phase margin, derived from the loop gain in Figure 2.1 and given by Equation 2.2, is
primarily determined by how far away the amplier and LDO output poles are. The unity
gain frequency ω0 of the loop gain in Equation 2.1 is affected by the DC gain as well as the
poles and zeros.

LoopGain =
AampAser(1 + jω

ωz
)

(1 + jω
ωamp

)(1 + jω
ωout

)
(2.1)

PM = 180◦ + arctan

(
ω0

ωz

)
− arctan

(
ω0

ωamp

)
− arctan

(
ω0

ωout

)
(2.2)

An unknown load capacitance can pose challenges for ensuring stability, for example if
the load capacitance is higher than expected and the amplifier pole is dominant, the poles
in Equation 2.1 move closer together, leading to instability if they become too close. This
problem and possible solutions are discussed in more detail in Section 2.3.

After choosing a bias point for the gate of the series device (any voltage that keeps the
transistor in saturation), the bias points for a 5T differential amplifier topology as shown in
Figure 2.4 are entirely determined assuming a constant V* for the devices in the amplifier.
The BAG LDO design script makes this assumption to simplify the choices it makes, but
setting the amplifier input pair’s V* higher than the amplifier load pair’s V* improves noise
and matching.

Modeling the circuit as a block diagram like in Figure 2.1, the relationship between the
reference and the output of the LDO with a PMOS series is given by Equation 2.3, and the
corresponding static error, expressed as a unitless fraction between the difference between
the reference and output voltages and the reference voltage throughout this report, is given
by Equation 2.4 where Aser = gm,serro,ser > 0.

Aamp(−Aser)(Vout − Vref) = Vout

Vout

Vref

=
AampAser

AampAser + 1
(2.3)

Es = 1− Vout

Vref

=
1

AampAser + 1
(2.4)

CHAPTER 2. LDO DESIGN WITH BAG 6

Σ Aamp −AserVref
−

Vout

Figure 2.1: Block diagram of LDO feedback loop for a PMOS series device.

Apow

Σ −AserAamp Σ

Aser

Vpow

Vout

Figure 2.2: Block diagram of LDO power supply gain loop for a PMOS series device.

For high amplifier and series device gains, the static error in Equation 2.4 will be very
small and the actual static error will be dominated by the device offsets of the amplifier de-
vices. The LDO design script in Appendix D does not account for this in the approximations
it makes.

Modifying Figure 2.1 slightly to find the gain from the power supply to the output
through both the amplifier and the series device produces Figure 2.2, which in combination
with Equation 2.3 can be used to find the PSRR as in Equation 2.5. For a 5T differential
amplifier, Apow approaches 1 as the tail resistance increases.

−Aser(AampVout + ApowVpow) + AserVpow = Vout

PSRR =
Vpow

Vout

· Vout

Vref

=
AampAser + 1

Aser(1− Apow)
· AampAser

AampAser + 1
=

Aamp

1− Apow

(2.5)

Considering the amplifier output pole as a part of Aamp and the LDO output pole as
a part of Aser and that Apow is relatively independent of frequency near the amplifier and

CHAPTER 2. LDO DESIGN WITH BAG 7

−

+

Aamp vg,ser

vout

iload

ro,sergm,ser(−vg,ser)

Figure 2.3: Small signal model for LDO load regulation calculation at low frequency with a
PMOS series device.

output poles, the dominant pole and bandwidth of the PSRR equation is the amplifier output
pole.

To calculate load regulation for a peak load current variation of 10% from the nominal
value, which is expressed as a unitless fraction between the resulting peak to peak regulator
output voltage and the average regulator output voltage, the small signal model with an
abstracted amplifier in Figure 2.3 provides Equation 2.6.

vg,ser = Aampvout

vout
ro,ser

= iload − gmvg,ser = iload − gmAampvout

vout = ro,ser
1+AampAser

iload

LoadReg =
∆vout
Vout

=
∆iloadro,ser

Vout(1 + AampAser)
=

0.2 Iloadro,ser
Vout(1 + AampAser)

(2.6)

From these equations, a higher amplifier and series device gain improves static error,
PSRR, and load regulation. A lower series device output resistance also improves the load
regulation, but shorter channel devices also have a lower gain. For AampAser >> 1, the
load regulation equation becomes dependent on 1/gm,ser. A shorter channel length also
decreases the capacitance at the load of the amplifier, bringing the PSRR bandwidth higher.
Because the amplifier pole sees the output resistance of the amplifier, larger devices and
smaller effective widths will decrease the amplifier pole frequency and PSRR bandwidth,
and decrease the power consumed in the amplifier. The PSRR will also be increased by the
higher gain from longer channel devices in the amplifier. Conversely, shorter channel devices
and larger effective widths will increase the amplifier pole frequency and PSRR bandwidth,
and increase the power consumed in the amplifier. The PSRR will also decrease with shorter
channel amplifier devices.

CHAPTER 2. LDO DESIGN WITH BAG 8

IREF

Camp

Cload

Vout

VDD

Min,nMin,p

Mload,p Mload,n Mser

MtailMmir

Vref

Figure 2.4: LDO with 5T differential amplifier topology and PMOS series device.

2.3 Script Design Approach

The file regulator_ldo_series.py defines bag2_analog__regulator_ldo_series_dsn as
a subclass of the DesignModule class, which given a set of input parameters described
in Table 2.1 will design an LDO with either an n-type or p-type series device and a 5T
differential amplifier with an n-type input pair for the amplifier as shown in Figure 2.4. See
Appendix C for an example input YAML file, and Appendix D for the script itself. Although
this script has the option of using an NMOS series device, using a PMOS is recommended.
Unless the supply voltage is high or the device thresholds are very low, using an NMOS
series device may be difficult. The minimum series device gate voltage to keep the device
out of the subthreshold region is the device’s threshold voltage plus the regulator output
voltage, which may need to exceed the supply voltage to provide the nominal load current.
A different amplifier topology with a greater output swing would be more suited to using an
NMOS series device.

The inputs to this script are listed with descriptions in Table 2.1. The output is a single
dictionary, containing more dictionaries listed in Table 2.2 of the component sizes of the
particular design.

The first part of the LDO that the code designs is the series device. Because the current
is known, the drain and source voltages are known (the supply voltage and the output
voltage, depending on what type of device it is), and the channel length is known, the only
unknowns are the device’s effective width and gate voltage. By setting the gate voltage at
some value between the bounds that keep all devices in saturation, the effective width is
easily determined by a ratio of the total load current to the device current at the base width.
Since the transistor data is simulated with a fixed finger width, this code assumes that the

CHAPTER 2. LDO DESIGN WITH BAG 9

Parameter Description

specfile dict Transistor database spec file names for each device
ser type n or p for type of series device

vdd Supply voltage in volts
vout Reference voltage to regulate the output to
iload Bias current of series device, in amperes
iref Reference current for amplifier biasing, in amperes

iampmax Maximum amplifier current, in amperes
cload Load capacitance from the output of the LDO to ground

cdecap Maximum additional capacitance added to circuit
rsource Resistance from the power supply, in ohms

err Maximum percent static error at output (as decimal)
psrr Minimum power supply rejection ratio (dB, 20*log10(dVdd/dVout))

psrr fbw Minimum bandwidth for power supply rejection roll-off
pm Minimum phase margin for the large feedback loop, in degrees

loadreg Maximum absolute change in output voltage given change in output current
load pole True to ensure dominant pole is at theregulator output

v res Resolution of voltage bias point sweeps, in volts
sim env Simulation environment
l dict Transistor channel length dictionary

th dict Transistor flavor dictionary

Table 2.1: LDO design script input parameters.

Parameter Description

w dict Dictionary of transistor channel width per finger for each device
l dict Dictionary of transistor channel length for each device

nf dict Dictionary of transistor number of fingers for each device
th dict Dictionary of transistor flavor for each device

type dict Dictionary of transistor type, n or p, for each device
cap dict Dictionary of values of Camp and Cload

Table 2.2: LDO design script output dictionary keys.

CHAPTER 2. LDO DESIGN WITH BAG 10

device currents, capacitances, and transconductances scale linearly with increased effective
width. Additionally, without any information on minimum or maximum finger widths of the
devices used, this code assumes that the base finger width is the minimum value, and twice
that width is the maximum finger width. This assumption also ensures that any effective
width greater than the minimum finger width is possible, with accuracy of device matching
only limited to the how well the model matches the devices and what scale of resolution
is possible for fabrication. The class function resize_op(op,wm) takes in a dictionary of
transistor parameters and scales them up by the factor wm that the effective width increases
by. In pseudocode, this first layer of the design is:

best LDO design ← None, Iamp,best =∞
for Vg,ser where Mser in saturation do

size Mser for Iload
design amplifier(specs)
if Iamp,new < Iamp,best then

best LDO design ← new LDO design, Iamp,new

end if
end for
return best LDO design

To simplify the calculations, all amplifier stage devices (Mload,p, Mload,n, Min,p, Min,n, and
Mtail) are assumed to have the same V*. With the series device gate voltage set, the output
common mode voltage of the amplifier is also set. Because the gate and drain of the amplifier
load pair are tied together on Mload,p, all bias voltages for the amplifier devices are set by V*.
The only parameter that is not fixed for these devices at this point is the effective width,
which will be determined later.

The drains of Min,p and Min,n are tied to the series device gate voltage as previously
set in the sweep of the series device gate, and the gates are tied to Vref . V* is already
determined for the devices in this amplifier stage, so a sweep of the input pair source voltage
will determine what value will best match their V* with the load devices.

The only remaining unknown bias point is the tail device gate, which can be determined
through a sweep to match V* as with the input devices. Anticipating that an LDO produced
by this script will be fabricated and therefore require layout, this script also sizes Mmir to
ensure that they have the same finger width to promote better matching between devices.
Also with layout in mind, each device is later sized to have an even number of fingers so
a common centroid pattern is possible. In the case where the minimum number of fingers
desired is some number other than two, for example if Mmir has a large number of fingers and
Mtail is at its minimum, but the fingers will not fit in a single row given the area prescribed
for the LDO on a chip, the script can easily be modified to set a new guaranteed factor of
the number of fingers for a device. For the Mtail, line 156 in the code in Appendix D, which
guarantees an even number of fingers, can be changed from:

156 nf_tail = int(2*max(((2*op_load['ibias'])//Id_tail)+1,((2*op_in['ibias'
])//Id_tail)+1))

CHAPTER 2. LDO DESIGN WITH BAG 11

to the following to guarantee that the number of fingers is a multiple of four:

156 nf_tail = int(4*max(((2*op_load['ibias'])//Id_tail)+1,((2*op_in['ibias'
])//Id_tail)+1))

For Mmir, lines 147 through 149 can be changed from:

147 m_mir = iref/(2*op_mir['ibias'])
148 wm_mir = (m_mir%1 + 1)

149 nf_mir = 2*int(m_mir)

to the following to guarantee that the number of fingers is a multiple of four:

147 m_mir = iref/(4*op_mir['ibias'])
148 wm_mir = (m_mir%1 + 1)

149 nf_mir = 4*int(m_mir)

For Mload,p, Mload,n, Min,p, and Min,n, the guaranteed factor can be modified similarly to line
149 on lines 163 and 167 for the load devices and input devices respectively, additionally
changing the multipliers within the max() function in line 153 from ‘2’ to the desired factors.
While these modifications will always produce a potential sizing if the load, input, or tail
device factors are changed, increasing the guaranteed factor for the number of mirror device
fingers may increase the total current at a given bias point past the value of iref , and that
bias point will be ignored.

With the bias current iref as an input, the effective width of Mmir is uniquely determined
(as long as iref is larger than twice the base finger width current at the bias point). All
of the amplifier devices excluding the mirror are then set at minimum effective width based
on which device has the largest base current, accounting for the fact that the tail device
sinks the current of both input and load devices. Up to this point, the amplifier design in
pseudocode (with ranges on the for loops to keep devices in saturation) is:

V ∗
amp ← V ∗

load

for V ∈ [0, Vref − Vth,in] do
if V ∗

in = V ∗
amp then

Vs,in ← V
end if

end for
for V ∈ [Vth,tail, Vs,in + Vth,tail] do
if V ∗

in = V ∗
amp then

Vg,tail ← V
end if

end for
size Mmir for Iref
Wfinger,tail ← Wfinger,mir

Itail ← 2 ∗max(Itail,finger, 2 ∗ Iin,finger, 2 ∗ Iload,finger)
size Mtail for Itail
size Min, Mload for Itail/2

CHAPTER 2. LDO DESIGN WITH BAG 12

The final part of the amplifier design checks that specs are met and adds capacitors to
make the feedback loop stable. The specs that are most significantly affected by adding
capacitors and sizing up the amplifier devices are the phase margin and the power supply
rejection ratio bandwidth. There are two places to put the dominant pole in this circuit:
at the output of the amplifier and at the output of the LDO. The primary advantages of
placing the dominant pole at the output of the amplifier are low power and a lower value of
explicit capacitance added to the circuit, which can take up a lot of space on a chip. Power
consumption is generally lower with a dominant amplifier pole because the amplifier output
resistance is highest with minimally sized devices, and a higher resistance means a lower
pole, even with less capacitance than may be necessary for a dominant pole at the output
of the LDO. The disadvantages of a dominant amplifier pole are that the PSRR bandwidth
follows this pole closely, so a lower pole that is necessary for stability kills higher frequency
noise rejection, and if the estimate of the LDO load capacitance is too low, the poles will
be closer than expected and may lead to instability. In case the LDO load capacitance is
unknown, one of the inputs to the design script load_pole ensures that the dominant pole
is placed at the LDO output and the attempt to set it at the amplifier output is skipped.

If a load pole at the amplifier output is allowed, the script begins by checking if the
LDO meets the specs without any additional capacitance, then increases the capacitor tied
to the amplifier output until either all specs are met, the PSRR bandwidth drops below the
minimum spec, or the maximum allowable capacitance is added. In the case where the spec
is not met or the dominant pole is placed at the output of the LDO, the script adds the
maximum allowable capacitance to the LDO output to bring that pole as low as possible.
This has little effect on the PSRR bandwidth, which is still tied to the amplifier output pole.
If the phase margin and PSRR bandwidth are still too low, the script begins increasing
the effective width of the amplifier devices to decrease the output resistance and drive the
amplifier pole higher. This excludes the tail mirror device because the reference current it
takes is fixed and does not affect the pole.

With the tail finger width fixed so it matches the reference current mirror, the only way
to increase its effective width is by adding fingers. This script does so two fingers at a time
to promote symmetry in layout as mentioned before. If the desired factor for the tail device
is a number other than two, changing the number of fingers added to the number of tail
fingers nf_tail on line 237 to that factor will ensure the proper number of fingers. At this
point in the loop, the tail device is resized but the amplifier load and input devices also have
to be resized relative to the tail. Simply adding fingers to these devices will not be enough
to match their currents because they don’t necessarily have the same finger widths as the
tail or each other, so they are resized relative to the new tail bias current. This process
continues until either a solution is found, or the maximum amplifier current is exceeded.
The pseudocode for upsizing transistors and ensuring stability is:

if specs met then
return amplifier design

end if

CHAPTER 2. LDO DESIGN WITH BAG 13

if not load pole then
Cload ← 0
for Camp < max decap do
if specs met then
return amplifier design

end if
end for

end if
Cload ← Cmax

Camp ← 0
while Itail < Imax do
if specs met then
return amplifier design

end if
nf tail← nf tail + 2
size Min, Mload for Itail/2

end while
return no design

Once the amplifier at a bias point is designed, the function op_compare(op1,op2) is
called in meet_spec(**params) to determine whether to keep or ignore the current iteration.
This function is set to compare only the amplifier bias current but can be changed to optimize
for any other performance parameter specified in the design input file. Line 335 also sets the
maximum amplifier bias current to the bias current of the best amplifier design found up to
that point. This line may be slightly redundant considering that the previous line calling
op_compare(op1,op2) also compares the amplifier bias currents and will always choose
the new design because of the assignment in line 335, but calling op_compare(op1,op2)

allows for the optimized parameter to be swapped out more easily, and the assignment of
the maximum bias current may shorten the run time of the while loop on line 213 in the
amplifier design if the bias current is already greater than will be considered for the final
design.

This script utilizes the LTICircuit class as defined in BAG_framework/data/lti.py,
which can use the transistor parameters obtained for the design and solve the small sig-
nal equations of the circuit model when the nodes each component connects to are defined.
The resulting circuit model can be used to calculate the transfer function between any two
nodes with voltage or current inputs, giving the gain and bandwidth of a particular transfer
function. Using this class to calculate the circuit performance parameters is advantageous
because it allows for more rigorous calculations of small signal circuits (i.e. including all
parasitic capacitors) and can easily be used to model more complicated amplifier topologies
quickly without having to derive precise transfer functions by hand. LTICircuit also does
not require a license to use as other circuit modeling software like Cadence Virtuoso does.

CHAPTER 2. LDO DESIGN WITH BAG 14

Reference Voltage 1V
Load Current 1mA
Static Error -2.756m

Amp Current 4.763µA
Phase Margin 85.62◦

PSRR 43.87dB
PSRR Bandwidth 461.9Hz
Load Regulation 96.50µ
Amp Capacitor 3.60pF
Load Capacitor 452pF
Total Gate Area 756.6µm2

Table 2.3: SCµM 3C auxiliary and digital LDO performance.

2.4 Comparison to Hand-Designed LDOs

SCµM Digital and Auxiliary LDOs

SCµM is generally operated with an auxiliary and digital LDO reference and output voltage
of 1V and a battery voltage of 1.5V. Both of these LDOs, which use the same schematic,
have an PMOS series device. Table 1.1 lists the three main operating points of SCµM and
their total operating current draws. With these numbers, a reasonable nominal current to
design for seems to be about 1mA based on the increase in current when the radio is on.

The load capacitance of both the auxiliary and digital LDOs on SCµM contributed by
the layout and other circuits is unknown. For this application, PSRR bandwidth is not as
important because the regulator loads are entirely digital, so the dominant pole will be placed
at the output of the amplifier as it is on SCµM 3C. With this in mind, what is necessary
to generate a viable LDO for SCµM is an upper bound on that unknown load capacitance.
For this thesis, the assumed load capacitance value will be 100pF. If a better estimate is
determined through extraction or measurement, the BAG design script can be rerun with a
higher load capacitance by changing a a single line in the input YAML file.

Tables 2.4 through 2.9 and Figures 2.6 through 2.8 show the inputs (in the format the
design script would read them) and respective output performances of the LDO design script
for various series device and amplifier channel lengths. There is a slight variation between the
performance calculated by the script and the simulated performance, but generally the two
are fairly close. The biggest issue with these designs is the bias points of the amplifier. The
script uses the function estimate_vth(db,is_nch,lch,vgs,vbs) to estimate the threshold
voltage of a device given a bias point, but is not very accurate. This function uses the the
device’s V* and Vgs to estimate the threshold, assuming a quadratic model for vgs/lch <
1V/µm and a linear model otherwise, which varies dramatically as Vgs changes. Due to the

CHAPTER 2. LDO DESIGN WITH BAG 15

Figure 2.5: SCµM 3C auxiliary and digital LDO transient response at 5MHz.

CHAPTER 2. LDO DESIGN WITH BAG 16

inaccuracies in the function it is difficult to ensure that all devices are close enough to the
threshold to achieve high gain and low current consumption but are still in saturation. Even
using the estimated threshold of the amplifier load (which is higher than the series device
for the designs in the tables because of the channel length), the PMOS devices generally
have a lower V* than the NMOS, so the load devices can be in saturation with the input
and tail devices pushed subthreshold. Of the LDOs listed in Tables 2.4 through 2.9, the
designs with all devices in saturation are the ones with an amplifier channel length of 5µm.
The remaining designs with amplifier channel lengths of 500nm and 1µm have the input and
tail devices subthreshold (as determined by simulation), as well as the load devices for the
designs with 280nm channel length series devices. On average, the subthreshold devices only
had Vgs lower than the threshold by about 71mV, with the greatest difference being about
150mV.

The 5µm amplifier channel length designs are each better than the auxiliary and digital
LDOs currently on SCµM for each parameter, with the exception of the phase margin, PSRR
bandwidth, and peak to peak of the transient plots at 5MHz. Although the phase margin
is slightly lower for these designs, they are all still well within the bounds for stability. The
PSRR bandwidths are low, especially with larger series devices, but the PSRR bandwidth
of SCµM is also only 461.9Hz, less than twice the PSRR bandwidth for the design with
a 280nm series device channel length. Given that this script was designed to optimize for
power, this design was very successful. Replacing the auxiliary and digital LDOs on SCµM
with the 5µm amplifier channel length and 280nm series device channel length design would
decrease the amplifier current consumption by 94.8% from 4.763µA to 248.1nA at a load
current draw of 1mA. Without even considering the large resistors and capacitors needed
for the LDOs presently on SCµM, this design only takes up 10.3% of the device gate area
those LDOs need. On top of this, the design script runs much faster than it takes to design
an LDO by hand, with a total runtime of about 80 seconds.

If having the amplifier devices slightly below the threshold is not an issue for matching
in the particular process all nine designs listed in Tables 2.4 through 2.9 are viable options
with significantly lower amplifier current consumption, the highest being 1.432µA with an
amplifier channel length of 500nm and device channel length of 320nm. Across every single
option, the only specs that are worse than the parameters in Table 2.3 are again the phase
margin and PSRR bandwidth, but all options are stable and some even have a higher PSRR
bandwidth. The only point of concern is the slightly lower phase margin of the design with an
amplifier channel length of 500nm and a series device channel length of 300nm in combination
with the unknown parasitic load capacitance on SCµM, but if that value is discovered to be
more than 100pF, the PSRR bandwidth is high enough that adding a very small capacitor at
the amplifier output will likely resolve the issue of stability without bringing the bandwidth
down too far compared to the LDOs on SCµM.

Each transient simulation in Figures 2.6 through 2.8 has a load current that switches
between 100µA and 1.1mA at 5MHz, which is an overestimate of how quickly the current
will change between two extreme values. At this frequency and magnitude, the output
voltage only changes by about 300mVpp for amplifier channel lengths on 500nm and 1µm,

CHAPTER 2. LDO DESIGN WITH BAG 17

and 200mVpp for an amplifier channel length of 5µm. The digital and auxiliary LDOs on
SCµM only have a voltage variation of about 100mVpp, which is due to the larger explicit
capacitor at the load.

While this data is only for the auxiliary and digital LDOs, with the right set of param-
eters the design script can also generate a new schematic for each of the other LDOs on
SCµM. There has been discussion of moving SCµM to a different technology process. Given
reasonable specs, this script can generate the LDO designs for that project with ease, leaving
only the verification simulations and layout to be done manually.

EE290C: 28nm SoC for IoT

For the Spring 2021 iteration of EE290C at UC Berkeley, the students collectively designed
and taped out a system-on-a-chip (SoC) for internet-of-things (IoT) applications, with an
on-chip CPU, radio, and Bluetooth Low Energy (BLE) and Advanced Encryption Standard
(AES) compatibility. This chip design also includes two LDOs for the auxiliary and digital
domains both of which use the same amplifier designs and device sizings. These LDOs
were designed without the use of BAG. The simulated specs across temperature and process
corners are shown in Table 2.10.

These LDOs were designed with 400nm channel length devices for the amplifier devices
and a channel length of 150nm for the series device. Due to the nature of the course, these
LDOs were designed at the same time as the rest of the chip, so almost no information about
the load was known until about halfway through the design process. Even after the current
draw from the analog and digital halves of the chip were estimated at 10mA or lower, the
load capacitance was still unknown. Because of this, and a desire for a higher frequency
power supply noise rejection bandwidth, the dominant pole was placed at the output of
the LDO to keep the amplifier output pole and PSRR bandwidth higher and ensure the
stability of the feedback loop. Although the phase margin for this design is very low, the
simulated performance does not include the additional capacitance from the chip’s power
grid and circuit blocks attached to it. Because the LDO output is the dominant pole, that
additional parasitic capacitance will only increase the phase margin. Through simulation, it
also appears that the phase margin increases if the load does not draw the full 10mA allotted
to each regulator.

With the same channel lengths for each device as the hand-designed LDO, the results
of running the generator script with the parameters listed in Table 2.11 are shown in Table
2.12 (for a series device channel length of 150nm). For this set of inputs, the PSRR and
phase margin improved significantly, with a slight decrease in required gate area. The static
error has notably gotten worse, but the other parameters have stayed relatively similar. Each
generated design of this LDO in Tables 2.11 through 2.14 has all devices in saturation, unlike
the designs for SCµM in the 65nm process. Of the options, targeting low power and higher
PSRR bandwidth, the 1µm amplifier channel length and 150nm series device channel length

1Text in YAML file is the corner name instead of “nominal.”

CHAPTER 2. LDO DESIGN WITH BAG 18

Spec Value

ser type p
vdd 1.5
vout 1
iload 1e-3
iref 500e-9

iamp max 100e-6
cload 100e-12

cdecap 100e-12
rsource 0

Spec Value

err 1e-3
psrr 50

psrr fbw 1e3
pm 60

loadreg 1e-3
load pole False

v res 10e-3
sim env nominal1

Device Base Finger Width Channel Type Device Type

amp in 500nm NMOS Input
amp load 500nm PMOS Input
amp tail 500nm NMOS Input
amp mir 500nm NMOS Input

ser 500nm PMOS Input

Table 2.4: SCµM generated LDO input parameters for amplifier channel length of 500nm.

Lser 280nm 280nm 300nm 320nm
Data Source SCµM Script Sim. Script Sim. Script Sim.

Static Error −2.756m 672.8µ 123.9µ 528.9µ −225.5µ 462.4µ −266.3µ
Amp Current 4.763µA 465.3nA 297.8nA 878.9nA 727.4nA 1.462µA 1.432µA
Phase Margin 85.62◦ 61.88◦ 69.07◦ 62.94◦ 60.53◦ 82.33◦ 80.06◦

PSRR 43.87dB 63.37dB 60.77dB 66.08dB 68.31dB 68.97dB 71.48dB
PSRR Bandwidth 461.9Hz 2.073kHz 3.040kHz 1.602kHz 2.116kHz 1.708kHz 717.1Hz
Load Regulation 96.50µ 170.4µ 132.8µ 162.9µ 10.95µ 10.50µ 11.87µ
Amp Capacitor 3.60pF 0F 0F 0F 0F 625.7fF 625.7fF
Load Capacitor 452pF 0F 0F 0F 0F 0F 0F
Total Gate Area 756.6µm2 112.3µm2 112.3µm2 153.8µm2 153.8µm2 137.2µm2 137.2µm2

Table 2.5: SCµM generated LDO performance for amplifier channel length of 500nm.

CHAPTER 2. LDO DESIGN WITH BAG 19

Figure 2.6: SCµM generated LDO transient for amplifier channel length of 500nm at 5MHz.

CHAPTER 2. LDO DESIGN WITH BAG 20

Spec Value

ser type p
vdd 1.5
vout 1
iload 1e-3
iref 500e-9

iamp max 100e-6
cload 100e-12

cdecap 100e-12
rsource 0

Spec Value

err 1e-3
psrr 50

psrr fbw 100
pm 60

loadreg 1e-3
load pole False

v res 10e-3
sim env nominal1

Device Base Finger Width Channel Type Device Type

amp in 500nm NMOS Input
amp load 500nm PMOS Input
amp tail 500nm NMOS Input
amp mir 500nm NMOS Input

ser 500nm PMOS Input

Table 2.6: SCµM generated LDO input parameters for amplifier channel length of 1µm.

Lser 280nm 280nm 300nm 320nm
Data Source SCµM Script Sim. Script Sim. Script Sim.

Static Error −2.756m 513.2µ 116.8µ 294.8µ −206.1µ 233.8µ −274.5µ
Amp Current 4.763µA 310.2nA 198.4nA 338.0nA 327.0nA 499.1nA 488.9nA
Phase Margin 85.62◦ 70.80◦ 74.33◦ 77.64◦ 74.74◦ 79.56◦ 75.7◦

PSRR 43.87dB 62.27dB 65.90dB 66.86dB 82.82dB 68.37dB 87.03dB
PSRR Bandwidth 461.9Hz 1.252kHz 1.031kHz 529.2Hz 163.7Hz 404.1Hz 159.7Hz
Load Regulation 96.50µ 130.0µ 5.328µ 74.04µ 5.170µ 60.21µ 4.829µ
Amp Capacitor 3.60pF 0F 0F 0F 0F 0F 0F
Load Capacitor 452pF 0F 0F 0F 0F 0F 0F
Total Gate Area 756.6µm2 122.9µm2 122.9µm2 157.1µm2 157.1µm2 233.0µm2 233.0µm2

Table 2.7: SCµM generated LDO performance for amplifier channel length of 1µm.

CHAPTER 2. LDO DESIGN WITH BAG 21

Figure 2.7: SCµM generated LDO transient for amplifier channel length of 1µm at 5MHz.

CHAPTER 2. LDO DESIGN WITH BAG 22

Spec Value

ser type p
vdd 1.5
vout 1
iload 1e-3
iref 500e-9

iamp max 100e-6
cload 100e-12

cdecap 100e-12
rsource 0

Spec Value

err 1e-3
psrr 70

psrr fbw 100
pm 60

loadreg 1e-3
load pole False

v res 10e-3
sim env nominal1

Device Base Finger Width Channel Type Device Type

amp in 500nm NMOS Input
amp load 500nm PMOS Input
amp tail 500nm NMOS Input
amp mir 500nm NMOS Input

ser 500nm PMOS Input

Table 2.8: SCµM generated LDO input parameters for amplifier channel length of 5µm.

Lser 280nm 280nm 300nm 320nm
Data Source SCµM Script Sim. Script Sim. Script Sim.

Static Error −2.756m 126.7µ 38.46µ 121.3µ 11.21µ 110.6µ −40.47µ
Amp Current 4.763µA 314.1nA 248.1nA 638.1nA 495.8nA 990.4nA 991.1nA
Phase Margin 85.62◦ 70.83◦ 71.38◦ 70.36◦ 70.35◦ 69.31◦ 66.81◦

PSRR 43.87dB 78.83dB 75.08dB 79.36dB 78.92dB 81.42dB 93.80dB
PSRR Bandwidth 461.9Hz 1.589kHz 244.6Hz 4.432kHz 199.2Hz 1.474kHz 52.13Hz
Load Regulation 96.50µ 47.49µ 2.325µ 44.67µ 2.117µ 44.67µ 2.242µ
Amp Capacitor 3.60pF 168.9fF 168.9fF 240.7fF 240.7fF 279.8fF 279.8fF
Load Capacitor 452pF 0F 0F 0F 0F 0F 0F
Total Gate Area 756.6µm2 130.1µm2 130.1µm2 154.2µm2 154.2µm2 148.3µm2 148.3µm2

Table 2.9: SCµM generated LDO performance for amplifier channel length of 5µm.

CHAPTER 2. LDO DESIGN WITH BAG 23

Figure 2.8: SCµM generated LDO transient for amplifier channel length of 5µm at 5MHz.

CHAPTER 2. LDO DESIGN WITH BAG 24

Figure 2.9: EE290C hand-designed LDO transient response at 5MHz.

CHAPTER 2. LDO DESIGN WITH BAG 25

Temperature (nominal1) Corners (27◦C) nominal1, 27◦C
Parameter 0◦C 27◦C 85◦C Minimum Maximum Rsup = 10

Static Error 61.93µ −54.9µ −184.4µ −1.076m 923.5µ 260.8µ
Amp Current 192.5µA 196.4µA 203.8µA 176.6µA 217.7µA 192.1µA
Phase Margin 49.57◦ 50.54◦ 52.84◦ 47.22◦ 55.95◦ 50.35◦

PSRR 52.03dB 52.47dB 62.99dB 50.17dB 59.25dB 49.89dB
PSRR Bandwidth 733.8kHz 663.0kHz 180.9kHz 316kHz 891.5kHz 877.8kHz
Load Regulation 380.5µ 408.1µ 471.5µ 329.0µ 483.1µ 488.6µ
Amp Capacitor 0F 0F 0F 0F 0F 0F
Load Capacitor 100nF 100nF 100nF 100nF 100nF 100nF
Total Gate Area 208.7µm2 208.7µm2 208.7µm2 208.7µm2 208.7µm2 208.7µm2

Table 2.10: EE290C LDO performance with 10mA load current.

design seems to be best. It has comparable power consumption, phase margin, and load
regulation to the hand-designed LDO, with significant increases to both PSRR and PSRR
bandwidth. The static error is a lot larger, but only amounts to about a 1mV offset from
the nominal 900mV. The area is also slightly larger, but would still easily fit within the
area bounds of the power block on the chip for EE290C. The transient responses of each
generated LDO and the hand-designed LDO are shown in Figures 2.10 and 2.11. The chip
for EE290C is designed to run at 100MHz, but the response at this frequency and the plot
of the load current were too fast to show at the same scale as the startup transient due to
the large output capacitor. The plots at 100MHz and 5MHz are virtually indistinguishable
from each other, even between designs with different channel lengths. The main difference
is the settling time of the startup transient due to the frequency of the secondary pole at
the amplifier output. Although the difference in performance is not as dramatic as it is for
the redesigned SCµM LDOs, the speed at which this script is able to generate this designs
is still significantly faster than designing without it.

2.5 Approximations and Errors

The main sources of error in this script are likely from the device characterization and
simplification of the model the LTICircuit functions use for calculation. The LTICircuit class
assumes the canonical small signal model [4, Fig. 2.38]. Inaccuracies with this assumption
produce the error seen in the design script outputs.

This script uses is the function estimate_vth(db,is_nch,lch,vgs,vbs) to approximate
the threshold voltage for the output device, because this information is not included in the
device characterization BAG uses due to the variation from linear or quadratic models in
real devices. This estimation is very rough and usually inaccurate if the bias points the
threshold is estimated at put the device out of saturation. To avoid this, the script estimates

CHAPTER 2. LDO DESIGN WITH BAG 26

Spec Value

ser type p
vdd 1.5
vout 0.9
iload 10e-3
iref 10e-6

iamp max 500e-6
cload 0

cdecap 100e-9
rsource 0

Spec Value

err 0.01
psrr 40

psrr fbw 500e3
pm 60

loadreg 10e-3
load pole True

v res 10e-3
sim env nominal1

Device Base Finger Width Channel Type Device Type

amp in 500nm NMOS Input
amp load 500nm PMOS Input
amp tail 270nm NMOS Input
amp mir 270nm NMOS Input

ser 500nm PMOS Input

Table 2.11: EE290C generated LDO input parameters for amplifier channel length of 400nm.

Lser 150nm 150nm 180nm
Data Source Original Script Sim. Script Sim.

Static Error −54.9µ 2.523m −1.848m 1.862m −2.123m
Amp Current 196.4µA 251.0µA 258.3µA 393.2µA 405.4µA
Phase Margin 50.54◦ 65.70◦ 63.07◦ 64.48◦ 62.49◦

PSRR 52.47dB 59.56dB 63.81dB 60.85dB 84.72dB
PSRR Bandwidth 663.0kHz 525.8kHz 436.7kHz 508.8kHz 81.15kHz
Load Regulation 408.1µ 774.9µ 432.5µ 694.1µ 400.3µ
Amp Capacitor 0F 0F 0F 0F 0F
Load Capacitor 100nF 100nF 100nF 100nF 100nF
Total Gate Area 208.7µm2 185.4µm2 185.4µm2 295.9µm2 295.9µm2

Table 2.12: EE290C generated LDO performance for amplifier channel length of 400nm.

CHAPTER 2. LDO DESIGN WITH BAG 27

Figure 2.10: EE290C generated LDO transient for amplifier channel length of 400nm at
5MHz.

CHAPTER 2. LDO DESIGN WITH BAG 28

Spec Value

ser type p
vdd 1.5
vout 0.9
iload 10e-3
iref 10e-6

iamp max 500e-6
cload 0

cdecap 100e-9
rsource 0

Spec Value

err 0.01
psrr 60

psrr fbw 1e6
pm 60

loadreg 10e-3
load pole True

v res 10e-3
sim env nominal1

Device Base Finger Width Channel Type Device Type

amp in 500nm NMOS Input
amp load 500nm PMOS Input
amp tail 270nm NMOS Input
amp mir 270nm NMOS Input

ser 500nm PMOS Input

Table 2.13: EE290C generated LDO input parameters for amplifier channel length of 1µm.

Lser 150nm 150nm 180nm
Data Source Original Script Sim. Script Sim.

Static Error −54.9µ 2.225m 1.262m 1.539m 489.0µ
Amp Current 196.4µA 192.9µA 205.9µA 281.9µA 294.5uµA
Phase Margin 50.54◦ 66.36◦ 54.90◦ 64.67◦ 54.24◦

PSRR 52.47dB 62.50dB 51.72dB 64.46dB 55.61dB
PSRR Bandwidth 663.0kHz 1.039MHz 1.877MHz 1.080MHz 1.434MHz
Load Regulation 408.1µ 963.9µ 408.8µ 958.4µ 393.6µ
Amp Capacitor 0F 0F 0F 0F 0F
Load Capacitor 100nF 100nF 100nF 100nF 100nF
Total Gate Area 208.7µm2 235.0µm2 235.0µm2 302.7µm2 302.7µm2

Table 2.14: EE290C generated LDO performance for amplifier channel length of 1µm.

CHAPTER 2. LDO DESIGN WITH BAG 29

Figure 2.11: EE290C generated LDO transient for amplifier channel length of 1µm at 5MHz.

CHAPTER 2. LDO DESIGN WITH BAG 30

the threshold of the series device with its defined drain-source voltage (between the supply
voltage and the output voltage) with the gate source voltage likely overestimated at half the
supply voltage.

The static error is currently measured as the error caused by the non-infinite loop gain
as shown in Equation 2.4. As mentioned briefly in Section 2.2, the static error calculated
by this design script will likely be dominated by device offsets in the amplifier, which is not
taken into account.

The PSRR is also approximated as the inverse of the gain from the power supply to the
output rather than the gain from the input to the output divided by the power supply gain
as described in Equation 2.5. The PSRR bandwidth would require the convolution of two
lists of coefficients for both the numerator and denominator. For the purposes of this script,
because the gain from the reference to the output is approximately 1 for a high loop gain, it
was omitted from this calculation.

The YAML file that the specs of a completed generation are dumped into appears to
have trouble with numbers such as the capacitances or device finger widths that are NumPy
data types, but the data is stored properly even though the formatting is not as readable
as a basic Python integer or float type is. The results are directly printed to that terminal,
and if lost, can easily be generated again in very little time.

31

Chapter 3

Conclusion

This report details the approach of a BAG design script to generate LDOs with real appli-
cations on chips like SCµM. Although there are improvements to be made on this script,
as it stands it is still an incredibly efficient and practical tool for LDO design. Using only
the most basic LDO topology, design can be done quickly and is easily transferable between
processes, allowing for fast estimates of performance and comparisons between designs, op-
timization goals, and technologies. With known specs for each LDO on SCµM, it is possible
to redesign lower power LDOs for each of the eight domains listed in Table 1.2 in under a
day, potentially increasing their accuracy and noise reduction as well. The ability to design
so many circuits in so little time is invaluable to so many projects, especially in an academic
setting, allowing designers to focus more of their energy on the circuits powered by LDOs.
With the necessity for power regulation on any chip, this script will undoubtedly see use in
the future.

3.1 Future Work

This design script does not check for the amplifier device thresholds, assuming that if the
series device is in saturation the amplifier load will be as well, and then the V* of the other
amplifier devices will be set to match the load pair keeping them in saturation if they have
similar V* characteristics in the different regions of operation. If the channel length for
the amplifier devices is significantly larger than the series device length, the amplifier load
threshold will exceed the estimate for the series device and put all amplifier device gate
voltages subthreshold. If the script did include threshold estimates for the amplifier devices
as well using the function estimate_vth(db,is_nch,lch,vgs,vbs), many of the tests run
in Section 2.5 may not produce a solution due to the inaccuracy of the estimation function.
A near-threshold biasing point improves the gain and power consumption of the amplifier
significantly, and the overestimation of the threshold voltage may push devices too far from
that point to meet more demanding specs. Each device that was operating subthreshold in
Section 2.5 was within 100mV of the actual device threshold. Implementing a more accurate

CHAPTER 3. CONCLUSION 32

threshold estimation or even extraction during characterization for BAG would significantly
improve the performance of this design script and likely others as well.

Other features this script does not include but could be beneficial for any updated versions
of this script are the frequency response of the load regulation, static error caused by device
offsets, and the option of increasing the width of the amplifier devices for a pole at the
amplifier output if the phase margin spec is met but the PSRR bandwidth spec is not.
For the load regulation at higher frequencies, there may be peaking if the load capacitance
is small, which depending on the operating frequency of the load circuits, could mean a
significantly worse load regulation. This issue occurs most often if the dominant pole of the
LDO is at the amplifier output. Adding estimates of the device offset contribution to static
error will produce more accurate results in comparison to simulation, particularly at higher
loops gains where Equation 2.4 is small. The modification to the amplifier device width for
pole placement is only useful if the phase margin of a design is already higher than the spec
without additional decap added, and if the PSRR spec is not met. Increasing the amplifier
width increases the amplifier pole frequency, bringing the phase margin down and PSRR
bandwidth up at the cost of power. It is possible that moving the pole to the output of the
LDO will produce a design that meets both specs anyway and uses less power at the same
time, but this may be a worthwhile modification if area for capacitors is limited and a higher
PSRR bandwidth is necessary.

The final area in which this script could be expanded upon is automating layout. Ap-
proximating the area as the device gate area is easy to do by multiplying device widths and
lengths. Some scripts do have the infrastructure to generate a layout from the produced
design [5], which would be helpful in situations like with EE290C where the area allowed
for the LDOs changed multiple times during the design process. Due to lack of setup in the
processes used in this report and time, this script does not contain layout functionality, but
adding it to this script will unquestionably speed up the design process further.

Appendix D describes additional issues with the power systems on SCµM that have not
been resolved to date and possible routes to finding a solution.

33

Bibliography

[1] Eric Chang et al. “BAG2: A process-portable framework for generator-based AMS cir-
cuit design”. In: 2018 IEEE Custom Integrated Circuits Conference (CICC). 2018, pp. 1–
8. doi: 10.1109/CICC.2018.8357061.

[2] Filip Maksimovic. “Monolithic Wireless Transceiver Design”. PhD thesis. EECS De-
partment, University of California, Berkeley, May 2020, pp. 64–65. url: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-33.html.

[3] Alex Moreno et al. “Single-Chip micro-Mote for Microrobotic Platforms”. In: Govern-
ment Microcircuit Applications & Critical Technology Conference. GOMACTech, 2020.

[4] Behzad Razavi. Design of Analog CMOS Integrated Circuits. first. McGraw-Hill, 2001,
p. 36.

[5] Nicholas Werblun. “Closing the Analog Design Loop with the Berkeley Analog Gen-
erator”. MS. EECS Department, University of California, Berkeley, May 2019. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-23.html.

34

Appendix A

BAG Setup

APPENDIX A. BAG SETUP 35

Workspace Repository

To get the files needed to run BAG in the TSMC 65nm LP process, clone the repository at
https://bwrcrepo.eecs.berkeley.edu/tsmc65/tsmc65lp/bag2_tsmc65lp_workspace by
running in a terminal:

$ git clone git@bwrcrepo.eecs.berkeley.edu:tsmc65/tsmc65lp/

bag2_tsmc65lp_workspace

To get the files needed to run BAG in the TSMC 28nm process, clone the repository at
https://bwrcrepo.eecs.berkeley.edu/tstech28/bag2_tsmc28_workspace by running in
a terminal:

$ git clone git@bwrcrepo.eecs.berkeley.edu:tstech28/

bag2_tsmc28_workspace

$ git checkout ee194_290c

Switching to the ee194_290c branch is necessary for TSMC 28nm to avoid an error with
submodule paths missing in setup. After cloning the repository, add submodules in the BAG
workspace directory with the following commands:

$ git submodule add https :// github.com/PisterLab/span_ion

span_ion_proj

$ git submodule add https :// github.com/PisterLab/bag2_analog

$ git submodule add https :// github.com/PisterLab/bag2_digital

$ git submodule add https :// github.com/PisterLab/

bag2_wrappers

$ git submodule init

$ git submodule update --recursive

The cds.lib for both technologies will need to be modified so it contains:

INCLUDE cds.lib.bag

INCLUDE cds.lib.core

DEFINE BAG_prim $BAG_WORK_DIR/BAG_prim

These will provide Cadence Virtuoso a path to the respective technology libraries and BAG
frameworks. The final line redefines a library path in cds.lib.bag to point to the work
directory instead of the technology configuration directory.

For TSMC 28nm, it will also be necessary to copy the directory scripts_char from the
TSMC 65nm LP workspace, because it does not exist in the 28nm repository. Additionally,
in bag_libs.def, remove the line:

serdes_digitalbase_templates $BAG_WORK_DIR/serdes_digitalbase
/BagModules

APPENDIX A. BAG SETUP 36

It is also necessary to copy bag_testbenches from the TSMC 65nm LP workspace into the
TSMC 28nm workspace so BAG sees that the correct directory name exists (i.e. without
the extension _ec). In cds.lib.bag add the line:

DEFINE bag_testbenches $BAG_WORK_DIR/bag_testbenches/
bag_testbenches

In bag_libs.def add the lines:

bag_testbenches $BAG_WORK_DIR/bag_testbenches/BagModules
bag2_analog $BAG_WORK_DIR/bag2_analog/BagModules
span_ion $BAG_WORK_DIR/span_ion_proj/BagModules

Finally, in bag_startup.py, change the line:

sys.path.append(os.path.join(os.environ['BAG_WORK_DIR '], '
bag_testbenches_ec '))

to the following:

sys.path.append(os.path.join(os.environ['BAG_WORK_DIR '], '
bag_testbenches '))

To get the LDO design script, example input spec file, and another file dsn_cell.py nec-
essary to run the design script, also clone https://github.com/PisterLab/bag2_analog.
Copy the directory scripts_dsn from this new into the main BAG workspace folder, and
move dsn_cell.py into BAG_framework/run_scripts inside the workspace. The final hier-
archy of these added files should be:

bag2 tsmc<process> workspace

BAG framework

run scripts

dsn cell.py

scripts dsn

ldo params.yaml

regulator ldo series.py

Create a symbolic link to scripts_dsn in the main workspace directory with the com-
mand:

$ ln -s BAG_framework/run_scripts/dsn_cell.py ./

BAG provides a framework for storing and accessing process characterization data for
use in design scripts. To run characterization on a transistor, a YAML file such as the
example in Appendix B will be necessary. Process-sensitive information has been removed
from this example, so in addition to changing any transistor dimensions appropriately, the
contents of the env_list list will have to be changed from ‘nominal’ to the appropriate
corner names, and any time ‘th type’ appears it should be replaced with the name of the
intent as described later in the Primitive Setup subsection. To characterize a PMOS device,
change every instance of ‘nch’ to ‘pch’ and set is_nmos to ‘False.’ This file is read by BAG to

APPENDIX A. BAG SETUP 37

set the testbench parameters for characterization. Once the YAML file and BAG workspace
are setup, the process of characterization in the next subsection can begin.

All setup before this point only needs to be run once. The next subsections about
characterization and primitive setup only have to be run once for each transistor setting or
device type, but must be rerun if any settings change. When changing settings, it is also
helpful to set a different filepath for the characterization data to be written to so previously
characterized transistor data is still accessible without rerunning characterization.

Process Characterization

To run characterization once the BAG workspace is set up and a YAML file is configured
for the appropriate transistor (examples in specs_mos_char/ in the 65nm workspace), start
Virtuoso from a C shell by running:

$ source .cshrc

$ virtuoso &

If using Bash instead of a C shell, replace source .cshrc with:

$ source .bashrc

Once Virtuoso opens, run the following command from the Virtuoso Log window (not the
terminal):

load(" start_bag.il")

To start the BAG session, run the following command from the terminal in the BAG
workspace directory Virtuoso was launched in:

$./ start_bag.sh

This will begin a terminal-based IPython session. From here, to run characterization:

$ run -i scripts_char/nmos_char.py

$ run -i scripts_char/pmos_char.py

Each command will run the characterization in the respective YAML files pointed to in
nmos_char.py and pmos_char.py. The config_file path in these scripts can be modified
to point to the proper characterization input YAML file.

If a testbench for a particular type of transistor already exists in the testbench li-
braries BAG creates called AAAFOO_MOSCHAR_NCH or AAAFOO_MOSCHAR_PCH, the character-
ization script may raise an error that it “cannot load adexl database” if Cadence has locked
the ADE XL. To fix this error and run the characterization, delete the existing testbench
library, close Virtuoso, and exit the BAG session in the terminal. Restart Virtuoso and BAG
using the process described above and run the characterization as before. The characteriza-
tion should run to completion.

APPENDIX A. BAG SETUP 38

Primitive Setup

If a particular transistor does not have an existing cell in the library BAG_Prim, a new cell
can be made with drain, source, gate, and body contacts connected to input/output pins
labelled D, S, G, and B respectively, and transistor length, width, and number of fingers
set at pPar("l"), pPar("w"), and pPar("nf") respectively. The name of this cell should
be nmos4_[type] or pmos4_[type] where ‘[type]’ is the string in the characterization
parameters YAML file used to direct the ‘intent’ to the correct cell, such as ‘lvt’ or ‘hvt.’

Another error that may appear during characterization is “KeyError: ‘vgs,’ ” which oc-
curs if the device width or length is out of the bounds required by the process.

Running a Design Script

To run a design script, from the BAG session run:

$ run dsn_cell.py spec_dir/spec.yaml -dump spec_dir/result.

yaml

where spec_dir/spec.yaml is the filepath to the YAML file with the design script to use
and parameters to run it with such as the example in Appendix C (which is scrubbed of
process-sensitive information), and spec_dir/result.yaml is the filepath to the YAML file
to write the output of the script to.

If changes have been made to any file in the BAG workspace, it may be necessary to
exit the BAG session and restart it as described in the Process Characterization subsection
above. In some cases, it may be necessary to also close Virtuoso, then rerun all startup
commands, also as described in the Process Characterization subsection above.

39

Appendix B

Example Characterization Input
YAML File

APPENDIX B. EXAMPLE CHARACTERIZATION INPUT YAML FILE 40

1 dut_lib: 'bag_testbenches'
2 dut_cell: 'mos_analogbase'
3 layout_package: 'abs_templates.mos_char'
4 layout_class: 'Transistor'
5

6 impl_lib: 'AAAFOO_MOSCHAR_NCH'
7 dsn_basename: 'NCH'
8

9 rcx_params:

10 capacitance:

11 ground_net: b

12 view_name: 'schematic'
13

14 root_dir: 'data/nch_scrubbed'
15 summary_fname: 'summary.yaml'
16

17 routing_grid:

18 layers: [1, 2, 3, 4, 5, 6, 7]

19 widths: [0.080, 0.080, 0.080, 0.080, 0.080, 0.080, 0.080]

20 spaces: [0.080, 0.080, 0.080, 0.080, 0.080, 0.080, 0.080]

21 bot_dir: 'y'
22

23 sweep_params:

24 intent: ['th_type']
25

26 layout_params:

27 mos_type: 'nch'
28 lch: 1.0e-6

29 w: 0.5e-6

30 fg: 20

31 intent: 'th_type'
32 fg_dum: 4

33 stack: 1

34 ptap_w: 0.5e-6

35 ntap_w: 0.5e-6

36 tr_w_dict:

37 g: 1

38 d: 2

39 s: 2

40 tr_sp_dict:

41 gs: 1

42 gd: 1

43 sb: 1

44 db: 1

APPENDIX B. EXAMPLE CHARACTERIZATION INPUT YAML FILE 41

45

46 # Used only if we're doing schematic-only simulation

47 schematic_params:

48 mos_type: 'nch'
49 lch: 1.0e-6

50 w: 0.5e-6

51 fg: 20

52 intent: 'th_type'
53 stack: 1

54 dum_info: !!null

55

56 dut_wrappers: []

57

58 env_list: ['nominal']
59

60 measurements:

61 - meas_type: 'mos_ss'
62 meas_package: 'verification.mos.sim'
63 meas_class: 'MOSCharSS'
64 out_fname: 'mos_ss.yaml'
65 is_nmos: True

66 fg: 20

67 testbenches:

68 ibias:

69 tb_package: 'verification.mos.sim'
70 tb_class: 'MOSIdTB'
71 tb_lib: 'bag_testbenches'
72 tb_cell: 'mos_tb_ibias'
73 sch_params: {}

74 wrapper_type: ''
75 vgs_num: 200

76 vgs_max: 1.0

77 ibias_min_fg: 1.0e-9

78 ibias_max_fg: 200.0e-6

79 vgs_resolution: 2.0e-3

80 sp:

81 tb_package: 'verification.mos.sim'
82 tb_class: 'MOSSPTB'
83 tb_lib: 'bag_testbenches'
84 tb_cell: 'mos_tb_sp'
85 sch_params: {}

86 wrapper_type: ''
87 vgs_num: 30

88 vds_num: 20

APPENDIX B. EXAMPLE CHARACTERIZATION INPUT YAML FILE 42

89 vds_min: 5.0e-3

90 vds_max: 1.0

91 vbs: [0.0, 0.15, 0.3, 0.45]

92 sp_freq: 1.0e+6

93 cfit_method: 'average'

43

Appendix C

Example Design Script Input YAML
File

APPENDIX C. EXAMPLE DESIGN SCRIPT INPUT YAML FILE 44

1 dsn_mod: scripts_dsn.regulator_ldo_series

2 dsn_cls: bag2_analog__regulator_ldo_series_dsn

3

4 params:

5 ser_type: p

6 vdd: !!float 1.5

7 vout: !!float 1

8 iload: !!float 1e-3

9 iref: !!float 1e-6

10 iamp_max: !!float 100e-6

11 cload: !!float 1e-9

12 cdecap: !!float 1e-9

13 rsource: !!float 0

14 err: !!float 1e-3

15 psrr: !!float 40

16 psrr_fbw: !!float 1e3

17 pm: !!float 60

18 loadreg: !!float 1e-3

19 load_pole: False

20 v_res: !!float 10e-3

21

22 specfile_dict:

23 amp_in: specs_mos_char/nch.yaml

24 amp_load: specs_mos_char/pch.yaml

25 amp_tail: specs_mos_char/nch.yaml

26 amp_mir: specs_mos_char/nch.yaml

27 ser: specs_mos_char/pch.yaml

28 th_dict:

29 amp_in: th_type

30 amp_load: th_type

31 amp_tail: th_type

32 amp_mir: th_type

33 ser: th_type

34 l_dict:

35 amp_in: !!float 500e-9

36 amp_load: !!float 500e-9

37 amp_tail: !!float 500e-9

38 amp_mir: !!float 500e-9

39 ser: !!float 500e-9

40 sim_env: nominal

45

Appendix D

LDO Design Script

APPENDIX D. LDO DESIGN SCRIPT 46

1 # -*- coding: utf-8 -*-

2

3 from typing import Mapping, Tuple, Any, List

4

5 import os

6 import pkg_resources

7 import numpy as np

8 import warnings

9 from pprint import pprint

10

11 from bag.design.module import Module

12 from bag.core import BagProject

13 from span_ion_proj.scripts_dsn import DesignModule, get_mos_db, estimate_vth,

parallel, verify_ratio, num_den_add, enable_print, disable_print

14 from bag.data.lti import LTICircuit, get_w_3db, get_stability_margins

15

16 # noinspection PyPep8Naming

17 class bag2_analog__regulator_ldo_series_dsn(DesignModule):

18 """Module for library bag2_analog cell regulator_ldo_series

19 Fill in high level description here.

20 """

21

22 @classmethod

23 def get_op_info(cls) -> Mapping[str,str]:

24 # type: () -> Dict[str, str]

25 """Returns a dictionary from parameter names to descriptions.

26 Returns

27 -------

28 param_info : Optional[Dict[str, str]]

29 dictionary from parameter names to descriptions.

30 """

31 ans = super().get_op_info()

32 ans.update(dict(

33 specfile_dict = 'Transistor database spec file names for each device'
,

34 ser_type = 'n or p for type of series device',
35 th_dict = 'Transistor flavor dictionary.',
36 l_dict = 'Transistor channel length dictionary',
37 sim_env = 'Simulation environment',
38 vdd = 'Supply voltage in volts.',
39 vout = 'Reference voltage to regulate the output to',
40 loadreg = 'Maximum absolute change in output voltage given change in

output current',
41 iload = 'Bias current of series device, in amperes.',

APPENDIX D. LDO DESIGN SCRIPT 47

42 iref = 'Reference current for amplifier biasing, in amperes',
43 iamp_max = 'Maximum amplifier current, in amperes',
44 cload = 'Load capacitance from the output of the LDO to ground',
45 cdecap = 'Maximum additional capacitance added to circuit',
46 rsource = 'Resistance from the power supply, in ohms',
47 err = 'Maximum percent static error at output (as decimal)',
48 psrr = 'Minimum power supply rejection ratio (dB, 20*log10(dVdd/dVout

))',
49 psrr_fbw = 'Minimum bandwidth for power supply rejection roll-off',
50 pm = 'Minimum phase margin for the large feedback loop, in degrees',
51 load_pole = 'True to ensure dominant pole is at theregulator output',
52 v_res = 'Resolution of voltage bias point sweeps, in volts'
53))

54 return ans

55

56 def resize_op(self, op, wm):

57 op_new = dict()

58 for key,value in op.items():

59 if key[0] != 'v':
60 op_new[key] = wm*value

61 else:

62 op_new[key] = value

63 return op_new

64

65 def dsn_fet(self, **params):

66 specfile_dict = params['specfile_dict']
67 ser_type = params['ser_type']
68 th_dict = params['th_dict']
69 sim_env = params['sim_env']
70

71 db_dict = {k:get_mos_db(spec_file=specfile_dict[k],

72 intent=th_dict[k],

73 sim_env=sim_env) for k in specfile_dict.keys()}

74

75 vdd = params['vdd']
76 vout = params['vout']
77 vg = params['vg']
78 iload = params['iload']
79

80 vs = vout if ser_type == 'n' else vdd

81 vd = vdd if ser_type == 'n' else vout

82 vb = 0 if ser_type == 'n' else vdd

83

84 ser_op = db_dict['ser'].query(vgs=vg-vs, vds=vd-vs, vbs=vb-vs)

APPENDIX D. LDO DESIGN SCRIPT 48

85 nf = int(round(iload/ser_op['ibias']))
86 m = iload/(2*ser_op['ibias'])
87 wm = (m%1 + 1)

88 nf = 2*int(m)

89 ser_op = self.resize_op(ser_op,wm)

90 return m > 1, dict(nf=nf, wm=wm, op=ser_op)

91

92 def dsn_amp(self, **params):

93 vdd = params['vdd']
94 vincm = params['vout']
95 voutcm = params['voutcm']
96 iload = params['iload']
97 iref = params['iref']
98 iamp_max = params['iamp_max']
99 cload = params['cload']

100 cdecap_max = params['cdecap']
101 rsource = params['rsource']
102 err_max = params['err']
103 psrr_min = params['psrr']
104 psrr_fbw_min = params['psrr_fbw']
105 pm_min = params['pm']
106 loadreg_max = params['loadreg']
107 load_pole = params['load_pole']
108 v_res = params['v_res']
109 ser_type = params['ser_type']
110 ser_info = params['ser_info']
111 db_dict = params['db_dict']
112 amp_in = 'n'
113

114 # Get amplifier load pair parameters

115 op_load = db_dict['amp_load'].query(vgs=-(vdd-voutcm), vds=-(vdd-voutcm),

vbs=0)

116 Vstar_load = op_load['vstar']
117

118 amp_dsn_info = dict()

119

120 # Choose amp bias voltages

121 Vstar_in_err = float('inf')
122 vtail = 0

123 op_in = dict()

124 for vtail_i in np.arange(0,min(voutcm,vincm),v_res):

125 op_in_i = db_dict['amp_in'].query(vgs=vincm-vtail_i, vds=voutcm-

vtail_i, vbs=-vtail_i)

126 Vstar_in_i = op_in_i['vstar']

APPENDIX D. LDO DESIGN SCRIPT 49

127 if Vstar_in_err > abs(Vstar_load-Vstar_in_i) and op_in_i['ibias'] >

0:

128 Vstar_in_err = abs(Vstar_load-Vstar_in_i)

129 vtail = vtail_i

130 op_in = op_in_i

131 Vstar_in = Vstar_in_i

132

133 Vstar_tail_errsq = float('inf')
134 vgtail = 0

135 op_tail = dict()

136 for vgtail_i in np.arange(0,vdd,v_res):

137 op_tail_i = db_dict['amp_tail'].query(vgs=vgtail_i, vds=vtail, vbs=0)

138 Vstar_tail_i = op_tail_i['vstar']
139 if Vstar_tail_errsq > abs(Vstar_load-Vstar_tail_i)**2+abs(Vstar_in-

Vstar_tail_i)**2 and op_tail_i['ibias'] > 0:

140 Vstar_tail_errsq = abs(Vstar_load-Vstar_tail_i)**2+abs(Vstar_in-

Vstar_tail_i)**2

141 vgtail = vgtail_i

142 op_tail = op_tail_i

143 Vstar_tail = Vstar_tail_i

144

145 # Size reference current mirror

146 op_mir = db_dict['amp_mir'].query(vgs=vgtail, vds=vgtail, vbs=0)

147 m_mir = iref/(2*op_mir['ibias'])
148 wm_mir = (m_mir%1 + 1)

149 nf_mir = 2*int(m_mir)

150 if nf_mir == 0:

151 return False, amp_dsn_info

152

153 # Size amplifier devices and base current

154 Id_tail = wm_mir*op_tail['ibias']
155 wm_tail = wm_mir

156 nf_tail = int(2*max(((2*op_load['ibias'])//Id_tail)+1,((2*op_in['ibias'])
//Id_tail)+1))

157 if Id_tail*nf_tail > iamp_max:

158 return False, amp_dsn_info

159

160 Id_load = Id_tail*nf_tail/2

161 m_load = Id_load/op_load['ibias']
162 wm_load = (m_load/2)%1 + 1

163 nf_load = 2*int(m_load/2)

164

165 m_in = Id_load/op_in['ibias']
166 wm_in = (m_in/2)%1 + 1

APPENDIX D. LDO DESIGN SCRIPT 50

167 nf_in = 2*int(m_in/2)

168

169 # Resize op and format parameters

170 op_dict = {'amp_in' : self.resize_op(op_in, wm_in),

171 'amp_tail' : self.resize_op(op_tail, wm_tail),

172 'amp_load' : self.resize_op(op_load, wm_tail),

173 'amp_mir' : self.resize_op(op_mir, wm_mir),

174 'ser' : ser_info['op']}
175 nf_dict = {'amp_in' : nf_in,

176 'amp_tail' : nf_tail,

177 'amp_load' : nf_load,

178 'amp_mir' : nf_mir,

179 'ser' : ser_info['nf']}
180 wm_dict = {'amp_in' : wm_in,

181 'amp_tail' : wm_tail,

182 'amp_load' : wm_load,

183 'amp_mir' : wm_mir,

184 'ser' : ser_info['wm']}
185

186 A = abs(self._get_loopgain_lti(op_dict, nf_dict, ser_type, amp_in,

rsource))

187 dc_err = 1/(A+1)

188 loadreg = self._get_loadreg_lti(op_dict, nf_dict, ser_type, amp_in, cload

, 0, rsource, vincm, iload)

189 psrr, psrr_fbw = self._get_psrr_lti(op_dict, nf_dict, ser_type, amp_in,

cload, 0, rsource)

190 pm = self._get_stb_lti(op_dict, nf_dict, ser_type, amp_in, cload, 0,

rsource)

191 if pm > pm_min and psrr > psrr_min and psrr_fbw > psrr_fbw_min and

loadreg < loadreg_max and dc_err < err_max and Id_tail*nf_tail < iamp_max and

not load_pole:

192 amp_dsn_info.update(dict(op_dict=op_dict,nf_dict=nf_dict,wm_dict=

wm_dict))

193 amp_dsn_info.update(cap_dict=dict(cdecap_amp=0, cdecap_load=0))

194 amp_dsn_info.update(dict(loadreg=loadreg, psrr=psrr, psrr_fbw=

psrr_fbw, pm=pm, err=dc_err, ibias=Id_tail*nf_tail))

195 return True, amp_dsn_info

196 if psrr_fbw > psrr_fbw_min and Id_tail*nf_tail < iamp_max and not

load_pole:

197 # Find minimum decap necessary with dominant amplifier pole

198 cdecap_min = ser_info['op']['cgg']*ser_info['nf']
199 for cdecap_amp in np.logspace(np.log10(cdecap_min),np.log10(

cdecap_max),100):

200 loadreg = self._get_loadreg_lti(op_dict, nf_dict, ser_type,

APPENDIX D. LDO DESIGN SCRIPT 51

amp_in, cload, cdecap_amp, rsource, vincm, iload)

201 psrr, psrr_fbw = self._get_psrr_lti(op_dict, nf_dict, ser_type,

amp_in, cload, 0, rsource)

202 pm = self._get_stb_lti(op_dict, nf_dict, ser_type, amp_in, cload,

cdecap_amp, rsource)

203 if psrr_fbw < psrr_fbw_min:

204 break

205 if pm > pm_min and psrr > psrr_min and psrr_fbw > psrr_fbw_min

and loadreg < loadreg_max and dc_err < err_max:

206 amp_dsn_info.update(dict(op_dict=op_dict,nf_dict=nf_dict,

wm_dict=wm_dict))

207 amp_dsn_info.update(cap_dict=dict(cdecap_amp=cdecap_amp,

cdecap_load=0))

208 amp_dsn_info.update(dict(loadreg=loadreg, psrr=psrr, psrr_fbw

=psrr_fbw, pm=pm, err=dc_err, ibias=Id_tail*nf_tail))

209 return True, amp_dsn_info

210 if psrr > psrr_min and loadreg < loadreg_max:

211 pm = 0

212 psrr_fbw = 0

213 while (pm < pm_min or psrr_fbw < psrr_fbw_min) and Id_tail*nf_tail <

iamp_max:

214 # Resize amp parameters

215 Id_load = Id_tail*nf_tail/2

216

217 m_load = Id_load/op_load['ibias']
218 wm_load = (m_load/2)%1 + 1

219 nf_load = 2*int(m_load/2)

220

221 m_in = Id_load/op_in['ibias']
222 wm_in = (m_in/2)%1 + 1

223 nf_in = 2*int(m_in/2)

224

225 op_dict.update({'amp_in' : self.resize_op(op_in, wm_in),

226 'amp_tail' : self.resize_op(op_tail, wm_tail),

227 'amp_load' : self.resize_op(op_load, wm_tail)})

228 nf_dict.update({'amp_in' : nf_in,

229 'amp_tail' : nf_tail,

230 'amp_load' : nf_load})

231 wm_dict.update({'amp_in' : wm_in,

232 'amp_tail' : wm_tail,

233 'amp_load' : wm_load})

234 loadreg = self._get_loadreg_lti(op_dict, nf_dict, ser_type,

amp_in, cload+cdecap_max, 0, rsource, vincm, iload)

235 psrr, psrr_fbw = self._get_psrr_lti(op_dict, nf_dict, ser_type,

APPENDIX D. LDO DESIGN SCRIPT 52

amp_in, cload+cdecap_max, 0, rsource)

236 pm = self._get_stb_lti(op_dict, nf_dict, ser_type, amp_in, cload+

cdecap_max, 0, rsource)

237 nf_tail += 2

238 amp_dsn_info.update(dict(op_dict=op_dict,nf_dict=nf_dict,wm_dict=

wm_dict))

239 amp_dsn_info.update(cap_dict=dict(cdecap_amp=0, cdecap_load=

cdecap_max))

240 amp_dsn_info.update(dict(loadreg=loadreg, psrr=psrr, psrr_fbw=

psrr_fbw, pm=pm, err=dc_err, ibias=Id_tail*nf_dict['amp_tail']))
241 spec_met = pm > pm_min and psrr > psrr_min and psrr_fbw >

psrr_fbw_min and loadreg < loadreg_max and dc_err < err_max and Id_tail*

nf_dict['amp_tail'] < iamp_max

242 return spec_met, amp_dsn_info

243 else:

244 return False, amp_dsn_info

245

246

247 def meet_spec(self, **params) -> List[Mapping[str,Any]]:

248 specfile_dict = params['specfile_dict']
249 th_dict = params['th_dict']
250 l_dict = params['l_dict']
251 sim_env = params['sim_env']
252

253 db_dict = {k:get_mos_db(spec_file=specfile_dict[k],

254 intent=th_dict[k],

255 sim_env=sim_env) for k in specfile_dict.keys()}

256 params.update(dict(db_dict=db_dict))

257

258 ser_type = params['ser_type']
259 vdd = params['vdd']
260 vout = params['vout']
261 iload = params['iload']
262 iref = params['iref']
263 iamp_max = params['iamp_max']
264 cload = params['cload']
265 cdecap_max = params['cdecap']
266 rsource = params['rsource']
267 err_max = params['err']
268 psrr_min = params['psrr']
269 psrr_fbw_min = params['psrr_fbw']
270 pm_min = params['pm']
271 loadreg_max = params['loadreg']
272 load_pole = params['load_pole']

APPENDIX D. LDO DESIGN SCRIPT 53

273 v_res = params['v_res']
274

275 vth_ser = estimate_vth(db=db_dict['ser'],
276 is_nch=ser_type=='n',
277 lch=l_dict['ser'],
278 vgs=vdd-vout if ser_type=='n' else -vdd/2,

279 vbs=0-vout if ser_type=='n' else 0)

280

281 # Keep track of best option

282 best_op = dict(ibias=float('inf'),
283 err=float('inf'),
284 psrr=0,

285 psrr_fbw=0,

286 pm=0,

287 loadreg=float('inf'))
288

289 type_dict = {'ser' : ser_type,

290 'amp_load' : 'p',
291 'amp_in' : 'n',
292 'amp_tail' : 'n',
293 'amp_mir' : 'n'}
294

295 w_dict = {k:db.width_list[0] for k,db in db_dict.items()}

296

297 self.other_params = dict(l_dict=l_dict,

298 w_dict=w_dict,

299 th_dict=th_dict,

300 cload=cload,

301 ser_type=ser_type)

302

303 # Sweep gate bias voltage of the series device

304 vg_min = vout+vth_ser

305 vg_max = min(vdd+vth_ser, vdd)

306 vg_vec = np.arange(vg_min, vg_max, v_res)

307

308 for vg in vg_vec:

309 print('Designing the series device...')
310 # Size the series device

311 match_ser, ser_info = self.dsn_fet(vg=vg, **params)

312 if not match_ser:

313 continue

314 print('Done')
315

316 # Design amplifier s.t. output bias = gate voltage

APPENDIX D. LDO DESIGN SCRIPT 54

317 # This is to maintain accuracy in the computational design proces

318 print('Designing the amplifier...')
319

320 params.update(dict(voutcm=vg,

321 iamp_max=iamp_max,

322 ser_info=ser_info))

323 spec_met, amp_dsn_info = self.dsn_amp(**params)

324 print('Done')
325

326 if not spec_met:

327 print('Amp specs not met.')
328 continue

329 else:

330 print('AMP SPECS MET.')
331

332 amp_dsn_info.update(dict(w_dict=w_dict, l_dict=l_dict, th_dict=

th_dict, type_dict=type_dict))

333

334 best_op.update(self.op_compare(best_op,amp_dsn_info))

335 iamp_max = best_op['ibias']
336 return [best_op]

337

338 def _get_loopgain_lti(self, op_dict, nf_dict, ser_type, amp_in, rsource) ->

float:

339 '''
340 Returns:

341 A: DC loop gain

342 '''
343 ckt = LTICircuit()

344

345 n_ser = ser_type == 'n'
346 n_amp = amp_in == 'n'
347 vdd = 'vdd' if rsource != 0 else 'gnd'
348

349 # Series device

350 ser_d = vdd if n_ser else 'reg'
351 ser_s = 'reg' if n_ser else vdd

352 ckt.add_transistor(op_dict['ser'], ser_d, 'out', ser_s, fg=nf_dict['ser'
], neg_cap=True)

353

354 # Passives

355 if rsource != 0:

356 ckt.add_res(rsource, 'gnd', 'vdd')
357

APPENDIX D. LDO DESIGN SCRIPT 55

358 # Amplifier

359 tail_rail = 'gnd' if n_amp else vdd

360 load_rail = vdd if n_amp else 'gnd'
361 inp_conn = 'gnd' if n_ser else 'amp_in'
362 inn_conn = 'gnd' if not n_ser else 'amp_in'
363 ckt.add_transistor(op_dict['amp_in'], 'outx', inp_conn, 'tail', fg=

nf_dict['amp_in'], neg_cap=False)

364 ckt.add_transistor(op_dict['amp_in'], 'out', inn_conn, 'tail', fg=nf_dict

['amp_in'], neg_cap=False)

365 ckt.add_transistor(op_dict['amp_tail'], 'tail', 'gnd', tail_rail, fg=

nf_dict['amp_tail'], neg_cap=False)

366 ckt.add_transistor(op_dict['amp_load'], 'outx', 'outx', load_rail, fg=

nf_dict['amp_load'], neg_cap=False)

367 ckt.add_transistor(op_dict['amp_load'], 'out', 'outx', load_rail, fg=

nf_dict['amp_load'], neg_cap=False)

368

369 # Calculating stability margins

370 num, den = ckt.get_num_den(in_name='amp_in', out_name='reg', in_type='v')
371 A = num[-1]/den[-1]

372

373 return A

374

375 def _get_psrr_lti(self, op_dict, nf_dict, ser_type, amp_in, cload, cdecap_amp

, rsource) -> float:

376 '''
377 Returns:

378 psrr: PSRR (dB)

379 fbw: Power supply -> output 3dB bandwidth (Hz)

380 '''
381 n_ser = ser_type == 'n'
382 n_amp = amp_in == 'n'
383

384 # Supply -> output gain

385 ckt_sup = LTICircuit()

386 ser_d = 'vdd' if n_ser else 'reg'
387 ser_s = 'reg' if n_ser else 'vdd'
388 inp_conn = 'gnd' if n_ser else 'reg'
389 inn_conn = 'reg' if n_ser else 'gnd'
390 tail_rail = 'gnd' if n_amp else 'vdd'
391 load_rail = 'vdd' if n_amp else 'gnd'
392

393 # Passives

394 if rsource != 0:

395 ckt_sup.add_res(rsource, 'vbat', 'vdd')

APPENDIX D. LDO DESIGN SCRIPT 56

396 ckt_sup.add_cap(cload, 'reg', 'gnd')
397 ckt_sup.add_cap(cdecap_amp, 'out', 'reg')
398

399 # Series device

400 ckt_sup.add_transistor(op_dict['ser'], ser_d, 'out', ser_s, fg=nf_dict['
ser'], neg_cap=False)

401

402 # Amplifier

403 ckt_sup.add_transistor(op_dict['amp_in'], 'outx', inp_conn, 'tail', fg=

nf_dict['amp_in'], neg_cap=False)

404 ckt_sup.add_transistor(op_dict['amp_in'], 'out', inn_conn, 'tail', fg=

nf_dict['amp_in'], neg_cap=False)

405 ckt_sup.add_transistor(op_dict['amp_tail'], 'tail', 'gnd', tail_rail, fg=

nf_dict['amp_tail'], neg_cap=False)

406 ckt_sup.add_transistor(op_dict['amp_load'], 'outx', 'outx', load_rail, fg

=nf_dict['amp_load'], neg_cap=False)

407 ckt_sup.add_transistor(op_dict['amp_load'], 'out', 'outx', load_rail, fg=

nf_dict['amp_load'], neg_cap=False)

408

409 if rsource == 0:

410 num_sup, den_sup = ckt_sup.get_num_den(in_name='vdd', out_name='reg',
in_type='v')

411 else:

412 num_sup, den_sup = ckt_sup.get_num_den(in_name='vbat', out_name='reg'
, in_type='v')

413 gain_sup = num_sup[-1]/den_sup[-1]

414 wbw_sup = get_w_3db(den_sup, num_sup)

415

416 if gain_sup == 0:

417 return float('inf')
418 if wbw_sup == None:

419 wbw_sup = 0

420 fbw_sup = wbw_sup / (2*np.pi)

421

422 psrr = 10*np.log10((1/gain_sup)**2)

423

424 return psrr, fbw_sup

425

426 def _get_stb_lti(self, op_dict, nf_dict, ser_type, amp_in, cload, cdecap_amp,

rsource) -> float:

427 '''
428 Returns:

429 pm: Phase margin (degrees)

430 '''

APPENDIX D. LDO DESIGN SCRIPT 57

431 ckt = LTICircuit()

432

433 n_ser = ser_type == 'n'
434 n_amp = amp_in == 'n'
435 vdd = 'vdd' if rsource != 0 else 'gnd'
436

437 # Series device

438 ser_d = vdd if n_ser else 'reg'
439 ser_s = 'reg' if n_ser else vdd

440 ckt.add_transistor(op_dict['ser'], ser_d, 'out', ser_s, fg=nf_dict['ser'
], neg_cap=False)

441

442 # Passives

443 ckt.add_cap(cload, 'reg', 'gnd')
444 ckt.add_cap(cdecap_amp, 'out', 'reg')
445 if rsource != 0:

446 ckt.add_res(rsource, 'gnd', 'vdd')
447

448 # Amplifier

449 tail_rail = 'gnd' if n_amp else vdd

450 load_rail = vdd if n_amp else 'gnd'
451 inp_conn = 'gnd' if n_ser else 'amp_in'
452 inn_conn = 'gnd' if not n_ser else 'amp_in'
453 ckt.add_transistor(op_dict['amp_in'], 'outx', inp_conn, 'tail', fg=

nf_dict['amp_in'], neg_cap=False)

454 ckt.add_transistor(op_dict['amp_in'], 'out', inn_conn, 'tail', fg=nf_dict

['amp_in'], neg_cap=False)

455 ckt.add_transistor(op_dict['amp_tail'], 'tail', 'gnd', tail_rail, fg=

nf_dict['amp_tail'], neg_cap=False)

456 ckt.add_transistor(op_dict['amp_load'], 'outx', 'outx', load_rail, fg=

nf_dict['amp_load'], neg_cap=False)

457 ckt.add_transistor(op_dict['amp_load'], 'out', 'outx', load_rail, fg=

nf_dict['amp_load'], neg_cap=False)

458

459 # Calculating stability margins

460 num, den = ckt.get_num_den(in_name='amp_in', out_name='reg', in_type='v')
461 pm, _ = get_stability_margins(np.convolve(num, [-1]), den)

462

463 return pm

464

465 def _get_loadreg_lti(self, op_dict, nf_dict, ser_type, amp_in, cload,

cdecap_amp, rsource, vout, iout) -> float:

466 '''
467 Returns:

APPENDIX D. LDO DESIGN SCRIPT 58

468 loadreg: Load regulation for peak-to-peak load current variation of

20% (V/V)

469 '''
470 n_ser = ser_type == 'n'
471 n_amp = amp_in == 'n'
472 vdd = 'vdd' if rsource != 0 else 'gnd'
473

474 # Supply -> output gain

475 ckt = LTICircuit()

476 ser_d = vdd if n_ser else 'reg'
477 ser_s = 'reg' if n_ser else vdd

478 inp_conn = 'gnd' if n_ser else 'reg'
479 inn_conn = 'reg' if n_ser else 'gnd'
480 tail_rail = 'gnd' if n_amp else vdd

481 load_rail = vdd if n_amp else 'gnd'
482

483 # Passives

484 if rsource != 0:

485 ckt.add_res(rsource, 'gnd', 'vdd')
486 ckt.add_cap(cload, 'reg', 'gnd')
487 ckt.add_cap(cdecap_amp, 'out', 'reg')
488

489 # Series device

490 ckt.add_transistor(op_dict['ser'], ser_d, 'out', ser_s, fg=nf_dict['ser'
], neg_cap=False)

491

492 # Amplifier

493 ckt.add_transistor(op_dict['amp_in'], 'outx', inp_conn, 'tail', fg=

nf_dict['amp_in'], neg_cap=False)

494 ckt.add_transistor(op_dict['amp_in'], 'out', inn_conn, 'tail', fg=nf_dict

['amp_in'], neg_cap=False)

495 ckt.add_transistor(op_dict['amp_tail'], 'tail', 'gnd', tail_rail, fg=

nf_dict['amp_tail'], neg_cap=False)

496 ckt.add_transistor(op_dict['amp_load'], 'outx', 'outx', load_rail, fg=

nf_dict['amp_load'], neg_cap=False)

497 ckt.add_transistor(op_dict['amp_load'], 'out', 'outx', load_rail, fg=

nf_dict['amp_load'], neg_cap=False)

498

499

500 num, den = ckt.get_num_den(in_name='reg', out_name='reg', in_type='i')
501 transimpedance = num[-1]/den[-1]

502

503 loadreg = transimpedance*0.2*iout/vout

504

APPENDIX D. LDO DESIGN SCRIPT 59

505 return loadreg

506

507 def op_compare(self, op1:Mapping[str,Any], op2:Mapping[str,Any]):

508 return op1 if op1['ibias'] < op2['ibias'] else op2

509

510 def get_sch_params(self, op):

511 try:

512 w_dict_new = dict()

513 for key in op['w_dict'].keys():
514 w_dict_new[key]=op['wm_dict'][key]*op['w_dict'][key]
515 dsn_op = dict(w_dict=w_dict_new,

516 l_dict=op['l_dict'],
517 nf_dict=op['nf_dict'],
518 th_dict=op['th_dict'],
519 type_dict=op['type_dict'],
520 cap_dict=op['cap_dict'])
521 except KeyError:

522 dsn_op = 'No solution found within specs'
523 return dsn_op

60

Appendix E

VDDD Tap (SCµM)

APPENDIX E. VDDD TAP (SCµM) 61

Figure E.1: VDDD tap device proposed layout area.

The biggest unresolved issue with the power systems on SCµM is the “VDDD tap”
problem. A large proportion of the fabricated chips will stop executing instructions in the
boot sequence unless the output of the digital LDO is briefly shorted to some voltage between
the nominal LDO output (1V) and the battery voltage. The amount of time the LDO output
must remain shorted is currently unknown. The cause of this problem is also still unknown,
but the issue seems to occur after the first SRAM instruction, when the second instruction
does not run. One proposed solution is to add a small transistor either in parallel with the
series device (PMOS) or between the amplifier output and ground (NMOS) with an inverter
at the gate. The proposed area for these added devices is shown in the 45µm by 25µm red
box in Figure E.1, and the schematic with an added NMOS is shown in Figure E.2. The gate
or inverter could then be connected to a repurposed GPO pin that would default low when
power is connected and the boot sequence begins, shorting the series device gate to ground.
Once the SRAM instructions continue to run and SCµM continues to boot, the GPO would
switch high and the LDO would be allowed to operate normally. If the issue stems from
the design of the digital LDO on SCµM, redesigning it may solve this issue on its own, but
the auxiliary LDO uses an identical schematic and does not experience this problem. The
SRAM on chip is provided by TSMC and was not designed specifically for SCµM, so the
interaction between this block and the digital LDO could be another reason for the problem.

APPENDIX E. VDDD TAP (SCµM) 62

14
9.

6k
Ω

V
D
D

V
bi
a
s,
1

V
bi
a
s,
2

89
7.

7k
Ω

44
8.

8k
Ω

3.
60

p
F

45
2p

F

V
o
u
t

29
9.

2k
Ω

I R
E
F

V
re
f

V
o
u
t

V
b
ia
s,
1

V
b
ia
s,
2

5
µm

1
0
µm

5
µm

1
0
µm

1
0
µm

5
µm

1
0
µm

5
µm

5
µm

1
0
µm

5
µm

1
0
µm

1
0
µm

5
µm

1
0
µm

5
µm

5
µm

6
0
n
m

5
µm

6
0
n
m

5
µm

1
0
µm

5
µm

1
0
µm

2
0
0
µm

2
8
0
n
m

1
0
µm

5
µm

1
0
µm

5
µm

5
µm

1
0
µm

5
µm

1
0
µm

5
µm

2
8
0
n
m

G
P

O

F
ig

u
re

E
.2

:
S
C

µM
D

ig
it

al
L

D
O

sc
h
em

at
ic

w
it

h
N

M
O

S
ta

p
d
ev

ic
e.

	ms_titlepage2.pdf
	thesis_jackson_final.pdf

