
Towards Characterizing Model Extraction Queries and

How to Detect Them

Zhanyuan Zhang
Yizheng Chen
David A. Wagner

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-126

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-126.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

5/14/2021

Towards Characterizing Model Extraction Queries
and How to Detect Them

Zhanyuan Zhang
University of California, Berkeley

Yizheng Chen
Columbia University

David Wagner
University of California, Berkeley

Abstract—Machine Learning as a Service (MLaaS) has become
popular in cloud services as Deep Neural Networks (DNNs)
are demonstrating high-performance in many domains and as
the rapid growth in cloud computing. Meanwhile, developing
enterprise MLaaS remains costly since training machine learning
models typically requires large-scale data collection and labeling.
However, researchers have shown that model extraction attacks
are able to steal functionality of models deployed on Cloud
only through black-box access to victim’s models and sending
adversarial queries to application programming interface (API).
This information leakage indicates potential threats to protecting
enterprise machine learning models as a part of intellectual
property. In this paper, we present two lines of our research
on model extraction attacks: characterizing adversarial queries
and building detectors against them. In our first line of research,
we find that although adversarial queries help adversary explore
victim’s decision regions to some extent, they fail to extract
properties of decision boundaries, which is most of the existing
algorithms claim to be capable of. In our second line of research,
we propose two ways to detect Jacobian-based and Data-free
model extraction attacks: 1) a similarity-based detector to show
the possibility of building a robust detector against model
extraction attacks by adopting detectors for adversarial examples,
and 2) a VAE-based detector that uses Variational Autoencoder
to estimate whether queries are benign or not.

Index Terms—model extraction/stealing, black-box attacks,
adversarial machine learning, MLaaS, intellectual property

I . I N T R O D U C T I O N

Deep Neural Networks (DNNs) has seen tremendous success
in many domains. Moreover, the rise of cloud platforms has
made Machine Learning as a Service (MLaaS) (e.g., Microsoft
Azure, Google Cloud Platform, Amazon Web Services, Clarifai)
more accessible. However, MLaaS faces a unique challenge:
model extraction attacks (MEA) can steal the functionality of
the model from a cloud platform, by querying the model on
many different inputs. This poses an business risk to MLaaS
service providers, since proprietary models are part of their
intellectual property.

Model extraction attacks enable an adversary to construct
a surrogate model that performs similarly to the service
provider’s model (the victim model). These attacks work
by sending queries to the ML prediction API and utilizing
information leaked via the API’s outputs. Researchers have
shown that model extraction attacks can be successful in
a black-box setting, without knowledge of victim’s training
set, model architecture, and other hyperparameters. In this
paper, we mainly focus on learning-based approaches to MEA
[1]. Adversaries using this approach will the API to build a

substitute dataset and train their surrogate model on it. There are
three main categories of learning-based MEA: Jacobian-based
Augmentation (JBA), Data-free (DF), and Active Learning (AL)
attacks (section §III). Briefly speaking, a JBA attack starts with
a small dataset of samples, then augments these samples by
constructing points that are near the decision boundary on the
surrogate model. A DF attack generates a substitute dataset
using a generative model, without needing any initial dataset.
An AL attack constructs its substitute dataset using active
learning.

In our first line of research, we investigate MEA attacks.
Many attacks assume that attackers have access to a dataset
of training images, but this assumption may not always be
realistic. We investigate the effectiveness of different MEA
attacks, under different assumptions about what kind of dataset
the attacker has access to. Prior work on JBA attacks [2], [3]
assumes that adversaries have a subset of victim’s training set,
but in practice, training sets are often proprietary and may
not be available to the adversary. Therefore, we measure the
effectiveness of JBA attacks when the attacker has access to
some other publicly accessible dataset, but not the victim’s
training set. We also compare JBA attacks to the other kinds
of MEA attacks. Our experiments show that JBA is useful for
attackers: JBA’s augmentation improves the substitute model’s
accuracy from 2–23 percentage points over other attacks, with
the advantage most pronounced when the attacker can only
collect a limited amount of data; in contrast, in this regime
there is not sufficient data for an AL attacker to learn efficient
sampling strategies, or for a DF attacker to learn how to generate
data similar to the victim’s proprietary data. These results show
that JBA attacks can be a significant threat to MLaaS service
providers.

We also investigate the reasons why JBA attacks succeed.
Prior works on JBA attacks [2]–[4] argue that their approaches
extract models by generating instances that are near or just
barely cross the victim model’s decision boundary, helping the
attacker learn exactly where victim model’s decision boundary
lives. We empirically test this hypothesis by measuring the
proportion of crossed samples and the predicted confidence
of the victim’s model to characterize and locate adversarial
queries. The proportion of crossed samples measures how many
augmented samples land on the opposite side of the decision
boundary as the original sample. The predicted confidence
(top-1 softmax) is a proxy for the sample’s distance to the
closest decision boundaries (the lower the closer). In our

experiments (section §IV), we find that JBA attacks are not
effective at generating queries that cross the victim model’s
decision boundary, so previous explanations about how JBA
attacks work may not be valid in general. In addition, we find
that DF attack, although it needs 400× more queries than JBA to
reach similar performance, can effectively generate queries that
explore a wide range of the victim model’s decision boundary.

In our second line of research, we propose defenses against
MEA attacks. We explore two ways to build a detector that
can detect a MEA in progress and terminate the adversary’s
accounts before the attack is successful. We build on prior
stateful defenses for detecting black-box attacks ([2], [5],
[6]), which work by tracking the sequence of queries from
an account and checking if they follow a pattern that is
characteristic of known attacks. We extend these methods to
build a robust stateful detector against JB and DF MEA attacks,
while maintaining API’s utility so that benign users will not be
affected. In particular, we adapt the Stateful Detector by Chen
et al. [5] to build a similarity-based detector against JBA and
Data-free MEA. Following [5], we test the similarity-based
detector against adaptive Query Blinding attacks (QB), and
show that our detector is still robust to QB: QB reduces the
number of fake accounts an adversary would need by about
2×, but even with the best QB attack, the adversary would still
need 8 fake accounts to mount a successful MEA.

We further introduce a novel adaptive attack, the Query
Filtering attack (QF). The QF attack is designed specifically to
evade stateful detectors. In a query filtering attack, the attacker
locally emulates the behavior of the detector to identify which
queries might raise alarms, and then filters those out (i.e.,
only queries the API on samples that are predicted to avoid
raising an alarm). Our best QF attack is able to use 0.19× less
fake accounts comparing to a non-adaptive attack, which can
be achieved when the attacker has access to part of victim’s
training set.

We propose a second stateful VAE-based detector that
monitors the accumulated likelihood of a sequence of queries.
It uses a Variational Auto-encoder to estimate how likely a
query is benign. The defender terminates an account when it
sees many queries that are unlikely to be benign. We find that
although our VAE-based detector outperforms our similarity-
based detector on the dataset it was specifically trained on, it
is prone to false positives, particularly if honest users send
queries from other datasets. When honest users may query a
broad variety of images, such as images from other distributions
or datasets, our VAE-based detector either is not sensitive to
adversarial queries, or it is too sensitive to benign queries.

In summary, we try to understand model extraction attacks
from both the attacker’s and defender’s perspectives, and make
the following contributions in this work:

1) Playing the role of attacker, we find that:

• Jacobian-based model extraction attack (JBA) has an
advantage over Active Learning and Data-free attacks
when the adversary can only collect a limited amount
of natural data for sending adversarial queries.

• Prior works on JBA have claimed that JBA gener-
ates queries that cross the victim model’s decision
boundary, or lie close to it. We disprove those claims.

• Complexity in query sets helps improve JBA to some
degree, but to further improve attack performance,
attackers need to choose query sets with a similar
distribution to the victim’s training set (more details
in section §IV-C).

2) Playing the role of defender, we explore two ways of
building detector for JBA attacks:
• We adapt the Stateful Detector by Chen et al. [5]

to MEA attacks and build a robust similarity-based
detector that can detect a wide range of MEA attacks.

• We introduce query filtering, an adaptive attack
where the adversary filters out queries that may cause
the detector to raise an alarm.

• We design a VAE-based detector and identify some
challenges with such a defense.

The rest of this paper will be structured as follow: Section §II
introduces the threat model that we focus on throughout this
paper, and section §III gives an overview on most of the existing
model extraction attack. We explore and characterize these
attacks in section §IV. In section §V, we introduce existing
defenses/detection schemes against model extraction attacks.
We propose novel detection schemes in section §VI and adaptive
attacks in section §VII. Finally, we evaluate our detectors in
section §VIII.

I I . P R O B L E M S TAT E M E N T

In this section, we state the threat model that we apply
to study model extraction attacks (MEAs) in this paper. For
simplicity, FA denotes adversary’s surrogate model, and FV
denotes victim’s secret model.

A. Adversaries’ Goal

In practice, adversary’ goal is to obtain a copy of surrogate
model that perform well on victim’s task. In our experiments,
we simulate this by evaluating the accuracy of FA on victim’s
test set, to which we refer as extraction accuracy, although in
reality, adversary often has no access to this test set.

As summarized by Jagielski et al. [1], adversary can have
other objectives while running model extraction and other
similar black-box attacks: some looking for high prediction
agreement (making the same predictions regardless of correct-
ness) between FV and FA ([1], [2], [4], [7], [8]); others aim
for recovering victim’s weights in surrogate model exactly (
[7], [9]–[12]).

B. Adversary’s Capabilities

In this paper, we focus on learning-based attackers. As
described in [1], learning-based attackers send queries and
ask FV to label them. Those queries and FV ’s labels form
a substitute dataset, where the attackers train their surrogate
model to achieve good performance on victim’s task. Therefore,
any attacks that require more than FV ’s outputs are out of our
scope. For instance, Functionally Equivalent Extraction attacks

require access to FV ’s ReLU function [1] or the prediction
confidence [9], CSI NN in [12] needs power side channel, and
the model reconstruction in [11] require FV to return gradient.

Query Sets: The attacker can collect a subset (e.g. 1% to
10%) of FV ’s unlabeled data XV in training set. When the
attacker has a subset of victim’s training set, we make sure
that the seed query set X0 is balanced, which means each class
has the same amount of data. This is reasonable since the
attacker knows the number of classes in victim’s task. Besides,
the adversary is able to collect data from all the publicly
accessible datasets. To simulate this, we choose datasets that
cover the spectrum of complexity (relative to victim’s training
set) as much as possible.

Black-box access: The adversary only has black-box access
to victim’s model – adversary can send any data to the
prediction API provided by the victim, and observe the outputs.
We simulate this by only allowing surrogate models to use
their queries and outputs from FV during its training process.

Hard-label: As for output granularity of the prediction API,
we believe that it is close to real-world practice to focus on hard-
label setting, where prediction API outputs its prediction label
but not its confidence scores. We belive it is also fair to let the
adversaries know how many candidate classes in victim’s task.
These are simulated by letting FV output an one-hot encoding
vector, which has 1 at the index of the predicted class, and
0’s in the rest of positions. However, for evaluation purpose,
we relax this constraint for Data-free attack, since adversary
needs FV to return logits (FV output without softmax) so that
the training of generative model is possible (more details in
section §III-B).

Sybil accounts: As many prior works ([5], [6], [13], [14])
have discussed, it is totally fair to assume that adversaries may
perform attacks through many Sybil accounts or IP addresses.

C. Defender

Who’s the victim: The defender is protecting a proprietary
image classifier FV . Clients must interact with FV through an
API from the service provider.

Monitoring queries: The defender monitors queries sent to
FV and is able to keep track of some metric or history about
the queries, hence our defender is stateful.

Defender’s goal is to detect and terminate accounts sending
queries for Jacobian-based model extraction attacks, without
affecting the usage of benign users. Every time the detector
raises an alarm, we consider it as terminating the attacker’s
account, but allow the attack to continue as if it’s under a new
account until the adversary exhausts the query budget. Note
that since we allow users, regardless of whether they are benign
or malicious, to send queries from any sources different from
victim’s, we consider all natural images benign. Hence, the
detectors we propose are only for finding out synthesized data,
but not those natural ones. More specifically, this implies that
our detectors work against Jacobian-based augmentation and
Data-free attacks, but not Active Learning attacks, since the
former two attacks synthesize data, but the latter one queries

all the natural images, which should be benign by our design
(mode details in section §III).

Detection Metrics:

• Number of accounts: We count the number of accounts
detected by the defender during a MEA. This simulates
the situation (e.g. Sybil attack) where the attacker creates
a new account once the previous ones get detected and
terminated by the defender.

• False Positive Rate (FPR): The defender should not affect
the utility of API. The usage of FPR is two-fold: 1) we
tune our detectors such that it has 0.01% FPR on tuning
set. This implies that we expect in practice, a benign
user sending 10,000 queries is very likely trigger a false
positive alarm; 2) to evaluate the FPR of our detectors,
we send natural images from a different distribution than
the tuning set’s.

I I I . M O D E L E X T R A C T I O N AT TA C K S

In this section, we give an overview on most of the
existing model extraction attack algorithms in prior works.
We additionally propose an attack based on binary search.

A. Jacobian-based Augmentation Attacks

Many existing model extraction attacks fall into the category
of Jacobian-based augmentation attack (JBA) ([2] [3] [4] [7]).
We will first describe the Jacobian-based augmentation attack
(JBA) algorithm, then discuss some variants of JBA, and lastly
propose our JBA attack variant (JBA-BS) based on line search.

1) Attack Algorithm: JBA starts with a seed query set X0:
[2] and [3] start with some subset of victim’s training set, while
our threat model allows adversary to start with any other public
accessible datasets. In general, adversary asks victim to label
their query set and applies some augmentation algorithms to
augment the query set. Algorithm 11 presents more details in
the procedure above.

Augmentation algorithm is essential to JBAs since adversary
relies on augmented data to explore some important properties
(i.e. decision boundary) of victim’s model. Since adversary has
only black-box access, adversary use their working model FA
as a proxy to victim’s model.

1Follow the official implementation: https://github.com/tribhuvanesh/prediction-
poisoning/blob/master/defenses/adversary/jacobian.py

Algorithm 1 Jacobian-based Augmentation Attacks
Input: Seed query set X0 = {x1, x2, . . . , xm}; Victim’s

Model FV ; Query budget B; n training epochs for each
augmentation round; N training epochs after all rounds;
Augmentation Algorithm Aug

Output: Trained Substitute Model FA
Initialisation : XQ ← X0; Initialize FA randomly or by
loading pre-trained weights; DT ← ∅

1: YQ ← FV (XQ) (Send queries to FV)
2: DT ← DT ∪ {(XQ, YQ)}
3: Train FA on DT for n epochs
4: while Number of queries < B - m do
5: XQ ← Aug(DT , FA)
6: YQ ← FV (XQ) (Send queries to FV)
7: DT ← DT ∪ {(XQ, YQ)}
8: Reinitialize FA and train it on DT for n epochs
9: end while

10: Reinitialize FA and train it on DT for N epochs
11: return FA

One can abstract augmentation algorithm as a procedure of
perturbing the original data x through the guide of Jacobian
calculated from some loss function L(x, FA(x)), as shown in
Algorithm 2:

Algorithm 2 Augmentation Algorithm
Input: Original data x; Adversary’s Model FA; Objective

function L; Number of Steps k; Step Size α
Output: Synthesized data x′

for step in 1, 2, . . . , k do
2: x′ ← x′ − α · sign(∇x(L(x, FA(x))))

end for
4: return x′

2) Attack Variants: Different Jacobian-based extraction
algorithms mainly differ in their loss functions L. Most of
the existing works design their loss functions based on the loss
functions for crafting adversarial examples:

Papernot et al. [4] and Juuti et al. [2] propose their loss
functions similar to the one used by targeted/non-targeted
Projective Gradient Descent Attack (PGD) [15], while Yu et
al. [3] investigate Carlini-Wagner `2 Attack (CW_`2) [16] and
Feature Adversary Attack [17].

Yu et al. [3] also propose Feature Fool (FF), which is
essentially the `2 distance between the original data x and
augmented data x′ plus a triplet margin loss [18] among the
extracted features of x′, x, and some input with targeted label
xt, which is mis-classified by FA to some class t:

min L(x,x′, xt) =‖ x− x′ ‖2 +

λ · Triplet(x, x′, xt)
such that x′ ∈ [0, 1]n

(1)

and

Triplet(x, x′, xt) = max{(M+ ‖ φk(x), φk(x′) ‖2
− ‖ φk(xt), φk(x′) ‖2), 0}

(2)

where φk(·) denotes the feature vector extracted by the kth layer
of FA, and M = α− 1

n2
y−ny

∑
i,j∈ys ‖ φA(xi)− φA(xj) ‖

2
2).

3) JBA-BS: Inspired by the line search in [7] and a way for
characterizing DNN decision boundary by Karimi et al. [19],
we propose JBA-BS. Given an example xs whose original
class is s and a targeted class t, JBA-BS first craft adversarial
example xt = PGD(xs, FA, t). Then a binary search is done
between xs and xt with update rules:

Let xmid ←
xs + xt

2
if LFA

(xmid) = t :

xt = xmid

else if LFA
(xmid) = s :

xs = xmid

and we terminate searching when any of the following
stopping conditions is met:

Number of iterations exceeds Nmax

‖ xs − xt ‖∞< ε

LFA
(xmid) 6= t and LFA

(xmid) 6= s

In section §IV, we use PGD, CW_`2, and binary search to
augment data and try to find out what happens as the Algorithm
1 (step 4 to step 8) iterates.

B. Data-free Extraction Attacks

Data-free extraction can be viewed as a special instance of
JBA: instead of starting from some natural images, adversary
synthesizes queries either by randomly sampling, or some
generative models.

Tramèr et al. [7] purpose their algorithm for extracting
shallow neural networks. They first generate some random
data (say 25% of the budget), and then synthesize data by line
search among these random data. In their implementation2, line
search is essentially binary search for finding the middle point
between two samples.

Truong et al. [20] purpose their data-free model extraction
DFME based on Generative Adversarial Networks (GAN) [21].
Given an objective function L, which evaluates the discrepancy
between the performance of victim and adversary, adversary
trains a generator G to generate queries that maximizes L from
any data sampled from standard normal distribution, while
adversary’s substitute FA model was trained to minimizes L:

min
FA

max
G

Ez∼N (0,1)[L(FV (G(z)), FA(G(z)))] (3)

In their implementation3, adversary alternatively trains G,
for nG iterations, and then FV , for nV iterations, until the
budget is exhausted. Note that equation (3) involves FV , but
adversary only has black-box access to victim’s model, so
they need extra queries to approximate the gradient ∇xFV (x)
by the Forward Differences method [22], specifically by

2https://github.com/ftramer/Steal-ML/blob/master/neural-
nets/utils.py#L296

3https://github.com/cake-lab/datafree-model-extraction

independently sampling m directions Zi from the standard
Normal distribution:

∇FWDFV (x) =
1

m

m∑
i=1

FV (x+ ε · Zi)− FV (x)
ε

Zi (4)

In section §IV, we evaluate if the queries generated by DFME
can effectively help adversary explore the decision boundary in
victim’s model. Usually, data-free means not using any natural
images, but in section §VIII-A3 in order to demonstrate that our
detector can also detect queries generated by GAN even with
our adaptive attack query filtering (QF), we allow a adaptive
DFME attacker to use the dataset that distributes most closely
to victim’s training (more details of QF in section §VII-B).

C. Active Learning Extraction Attacks

Researchers also purpose model extraction attacks based on
Active Learning (AL). Unlike JBA, AL-based attacks usually
do not generate data, rather, they learn some sampling strategy
to sample those informative data from their query sets and
ask victim to label these data to construct a fake dataset.
Adversary then trains their substitute models on this dataset
and expect their substitute models FA achieve similar or even
better performance as FV . Adversary iteratively applies some
sampling strategies to collect and send queries from publicly
accessible sources, and the sampling strategies is trained to
improve as iteration goes. Researchers have purposed several
ways for constructing strategies and how to train them:

Correia-Silva et al. [8] purpose CopyCat, which collects
queries by randomly sampling from datasets that may or may
not be in the same problem-domain as victim. People often
call this strategy random strategy, and it usually serves as a
baseline for other active learning strategies, including the ones
below.

Orekondy et al. [23] purpose KnockoffNet with adaptive
strategies. Adaptive strategy is in a hierarchical structure like a
tree, where data fall in different abstract levels (i.e. from top to
bottom: animal→ bird→ sparrow). Starting from the top level,
adversary traverses to the bottom with the branching probability
specified by the adaptive strategy. The reward function for
training this hierarchical strategy encourages high-confident
sample for victim, diversity in sampling, and samples that reveal
the difference between FV and FA. And they use gradient
bandit algorithm [24] to train this adaptive strategy.

Pal et al. [25] purpose Uncertainty, K-center, DFAL, and
DFAL+K-center strategies in their ActiveThief. These strategies
basically evaluate all the samples in adversary’s query set and
collect the best k samples by their evaluation functions.
Uncertainty strategy is based on the Uncertainty Sampling by
Lewis and Gale [26]. This strategy prefers samples x having
higher entropy of Softmax(FA(x)):

Entropy(x) = −
C∑
i=1

pi log(pi) (5)

where C is the number of classes, and pi is the prediction
confidence softmax(FA(x)) at index i.

K-center strategy applies the greedy K-center algorithm by
Sener and Savarese [27]. At each iteration, adversary sets the
prediction probability vectors of the previously selected data
as centers and cluster the rest of candidate data. Then, the
adversary selects top-k distant data from their corresponding
centers.
DFAL strategy perturbs every candidate data x to x′ by the
DeepFool-based Active Learning (DFAL) algorithm [28] at
each iteration, such that FA(x) 6= FA(x

′). K samples with the
least perturbation ‖ x− x′ ‖22 will be selected.
Finally, for DFAL+K-center, adversary first applies the DFAL
strategy to pick N centers, and then use K-center strategy to
select k data.

In section §IV-C, we use random strategy as a baseline to
study JBAs’ performance.

I V. E X P L O R AT I O N O N JA C O B I A N - B A S E D AT TA C K S

We notice that one of the challenges for JBA attackers is
to prevent FA from overfitting the query set. Starting from
1% ∼ 10% budget of natural images, attackers rely on the
augmentation algorithms in JBA to expand their query set. If
JBA fails to add enough diversity to its query set, it almost
surely leads to overfitting FA to the query sets.

Existing JBAs ([2]–[4]) claim/assume that they are able
to introduce diversity by pushing data cross or closer to FV ’s
decision boundaries. Intuitively, pushing data cross boundaries
is similar to adversarial example crafting, which also changes
data label, and thus encourages data to add diversity not only
from its original decision region, but also its neighbor regions.
Samples that are close to decision boundary are also referred
to as uncertain samples. The claim that uncertain samples are
more informative is true in many machine learning models. For
instance, support vectors in Support Vector Machine are close
to decision boundaries/hyper-planes and have more influence
on the position and orientation of boundaries/hyper-planes than
other data in the training set; at each iteration of updating the
parameters of a logistic regression, Iteratively Re-Weighted
Least Squares (IRLS) gives more weight to data near the
decision boundary.

Generating adversarial or uncertain samples may be desir-
able to JBA, yet we still observe bottleneck of performance
and overfitting (depending on the seed query set, accuracy
> 90% and even ∼ 99% on query sets, while around
65% ∼ 87% on the test set) during JBA model extraction.
In this section, we characterize the diversity added by JBA
by the distance between data and the decision boundaries in
both FA and FV , and compare how much JBA can improve
from baselines trained on the initial query set (i.e. no Jacobian-
based augmented data). Given that the attacker may or may
not have access to the exact same dataset where FV is trained
on, we further examine how the diversity/complexity in query
set impact JBA. More specifically, we present our exploration
on JBAs from two angles:

1) Following the assumption/claim in prior works ([2], [4])
that JBAs work by introducing more diversity to the
initial query set X0, we take a closer look to examine

this statement and characterize the added diversity in
adversarial queries from two aspects:
• Pushing queries cross the decision boundaries and

thus change their labels after the Jacobian-based
augmentation.

• Generating more uncertain queries, which researchers
believe are more informative.

2) In section §IV-C, we explore how JBAs perform when the
attacker chooses datasets across a spectrum of complexity
relative to FV ’s training set to construct X0.

A. Experiment Settings

1) Model Architectures: In all the experiments on JBAs
and Random Sampling, we adapt the official implementation4.
Victim uses VGG16 [29] with batch normalization [30]
(VGG16-BN), and train the model on CIFAR10 training set
to reach 93.38% accuracy on the test set5. We allow the
adversaries to use the same model architecture as the victim
(VGG16-BN), and to start from loading ImageNet [31] pre-
trained weights to the model.

For DFME, we adapt the official implementation6. Both the
victim and adversary use model Resnet34-8x [32], and the
victim achieves 95.54% accuracy on CIFAR10 test set. The
weights for victim is available7.

Extraction Accuracy is evaluated on CIFAR10 test set.
2) Attack Algorithms: All the implementation are in PyTorch

[33], and we use PGD [15] and CW `2 attacks implemented
by Foolbox3([34], [35]). Unless specify otherwise, we use the
default settings in PyTorch, Foolbox3, and other source code.

At each iteration in attack algorithms below, we choose the
top-3 highest confident predictions of FA other than victim’s
prediction to craft targeted adversarial examples using some
augmentation algorithms.

JB-top3: We adapt the implementation and use the default
settings of I-FGSM [2] by Orekondy et al.8, and follow [36],
we rename I-FGSM to JB-top3.

JBA-PGD and JBA-CW_l2: As discussed in section §III-A,
Algorithm 2 can be any algorithm for crafting adversarial
examples. In JBA-PGD we use targeted `∞ PGD with ε =
8/256 with all the default settings, and in JBA-CW_l2, we use
targeted CW `2 attack [16], with 150 steps and 5 binary search
steps.

JBA-BS: We set ε = 1e− 6 and Nmax = 1000
DFME: We follow all the defualt setting in the official

implementation.
Random Sampling (RS): As discussed in section §III-C,

we compare JBAs against the random sampling strategy in
Active Learning Extraction Attacks using different query sets.

4https://github.com/tribhuvanesh/prediction-
poisoning/tree/master/defenses/adversary

5pre-trained weights can be downloaded here:
https://github.com/tribhuvanesh/prediction-poisoning#victim-models

6https://github.com/cake-lab/datafree-model-extraction
7https://github.com/VainF/Data-Free-Adversarial-Distillation#0-download-

pretrained-models-optional
8https://github.com/tribhuvanesh/prediction-

poisoning/blob/master/defenses/adversary/jacobian.py

All the accuracy scores (in %) are rounded to their nearest
integers, and vary within ±1%.

3) Query Sets: Since the victim train FV on CIFAR10,
we randomly sample a subset of CIFAR10 training set to be
D0. Our threat model allows adversaries to use other publicly
accessible datasets, so we additionally choose 8 other datasets
([31], [37]–[43]) and use their training set as query sets so
that adversaries can either sample seed images or queries from
these datasets. However, in our experiments, adversaries do
not sample queries from any union of datasets.

B. Diversity in Adversarial Queries

In [4] and [2], researchers claim/assume that JBAs work
by generating diverse samples exploring decision regions and
boundaries in DNNs. Indeed, we observe that the similarity
encoder in our detector (more details in section §VI-A) extracts
diverse feature factors from adversarial queries. To further
characterize and quantify how much diversity added by JBAs,
we measure the number of adversarial queries crossing decision
boundaries and going to other decision regions in FA and FV ,
after being Jacobian-based augmentation.

Fig. 1. Illustrations we borrow from [2]: decision regions are colored differently
and separated by black curves; black dots are adversarial queries, and the
lines connecting them trace their positions as augmentation iterates. Left:
We observe that JBAs do introduce additional features to D0. Right: We
are curious about whether pushing queries cross decision boundaries helps
improve extraction accuracy, and how many of them cross the boundaries in
FA and FV .

1) Comparing to baselines: To answer these questions, we
first build a baseline to see how much JBAs improve extraction
accuracy from that. We give all JBAs 50, 000 query budget.
For JBAs collecting X0 with size Nseed, the baseline is RS with
Nseed budget. Table I and table II summarize the experiment
results.

In table III, we record the extraction accuracy by DFME when
the attacker sends 50K, 500K, 5M, and 20M queries because
we find it helpful to shed some light on the characteristics
of adversarial queries. Due to initialize weights randomly,
the baseline for DFME is simply a random guess: given that
CIFAR10 has 10 classes, that will be 10%. And our experiment
show that after sending 50K queries, the extraction accuracy is
still 10%. However, being granted enough amount of budget,
DFME can obtain 88% extraction accuracy.

TABLE I
E X . A C C . O N C I FA R 1 0 (NS E E D = 500)

Scheme Ex. Acc.
Baseline 66%

JB-top3 67%
JBA-PGD 72%
JBA-CW_`2 61%
JBA-BinarySearch 63%

TABLE II
E X . A C C . O N C I FA R 1 0 (NS E E D = 5000)

Scheme Ex. Acc.
Baseline 85%

JB-top3 87%
JBA-PGD 87%
JBA-CW_`2 85%
JBA-BinarySearch 85%

Takeaway: Comparing table I and table II, the marginal effect
on how much JBAs improve from the baselines is apparent:
from up to 6% improvement when Nseed = 500 to up to 2%
when Nseed = 5, 000. Our experiments imply that there is an
upper bound on the improvement brought by Jacobian-based
augmentation. Nonetheless, JBAs are useful when the attacker
can only have access to less then 1% of FV ’s training data.
Given that an extraction accuracy of 87% is close to the oracle
accuracy 93%, we could possibly attribute this marginal effect
to model capacity.

Interestingly, this marginal effect does not show up in DFME.
Although using 400× more budget, DFME is able to converge
to even slightly better extraction accuracy then JBAs, and
have 78% improvement. This implies that the upper bound of
improvement in JBAs is not due to something like the curse
of dimensionality, but their own limitations. Figuring out what
helps DFME escape from the marginal effect in improvement
can shed some light on the future direction of designing more
effective augmentation algorithms for JBAs. In section §IV-B3,
we will compare the amount of uncertainty samples in DFME
and JBAs.

2) Diversity by Crossed Samples: To see how many ad-
versarial queries cross decision boundaries and go to other
decision regions after augmentation, we trace the proportion
of crossed samples at each iteration: we define data x is a
crossed sample if LF (x), the prediction label of a model F on
x, change after augmentation by Aug:

LF (x) 6= LF (x
′) where x′ = Aug(x, F)

And we plot the result in figure 2 for Nseed = 500, and in
figure 3 for Nseed = 5, 000.

Since we generate three new samples from each one of the
sample in the previous query set, JBAs applying Nseed = 500
use up their budget in 4 iterations, leaving us 4 observation in
figure 2. While for Nseed = 5, 000, budget is exhausted in 2
iterations, leaving us too few data points to see any tendency.
In order to increase the number of iterations to see the tendency
more clearer with Nseed = 5, 000, we randomly sample 400

TABLE III
E X . A C C . O F D F M E O N C I FA R 1 0

Queries 50K 500K 5M 20M

Ex. Acc. 10% 14% 71% 88%

data to augment from DT at each iteration(also referred as
reservoir sampling in [2], [4]). Hence, there are d 45,00012 e = 38
iterations in total. We find that whether use reservoir sampling
or not does not change our conclusion.

Fig. 2. Nseed = 500: Percentage of crossed samples at each iteration. Left:
crossed samples for FA. Right: crossed samples for FV

Fig. 3. Nseed = 5, 000: Percentage of crossed samples at each iteration. Left:
crossed samples for FA. Right: crossed samples for FV

So does adding diversity by pushing samples cross the
boundaries help? Yes, to some extent. Table I and figure 2
tell us that the attack starting with 1% of the FV ’s training
set XV , JBA-PGD has the highest extraction accuracy 72%,
improving 6% from the baseline, and its new synthesized data at
each iteration also has the highest proportion of cross samples
for FV comparing to other JBAs. However, for JBA-CW_`2,
almost 100% of the generated data are crossed samples for
FA, but less than 5% of them are crossed samples for FV . The
extraction accuracy of JBA-CW_`2 is lower than the baseline
due to overfitting. We know it is overfitting since JBA-CW_`2’s
training accuracy on the final synthesized data DT (containing
50K data) is 98%, while JBA-PGD is 92% – overfitting as
well, but less severe.

Nevertheless, table II and figure 3 tell us that if the attacker
has a larger seed query set (10% of XV), the best improvement
from the baseline is only 2%, even though JBAs can generate
more crossed samples for FV .

3) Diversity by Uncertain Samples: In addition to pushing
samples to different decision regions, some researchers believe
that near-boundary queries bring more uncertainty and thus are
more informative for model extraction attacks, so researchers
apply uncertainty sampling to augment D0. Researchers often
use the predicted confidence (top-1 highest confident class)
given by a classifier F on a input x as a proxy to measure the
distance from x to its nearest decision boundary in F . Based
on the setting above, Yu et al. [3] claim that their Feature
Fool (FF) attacks can "efficiently learn the distance between
decision boundaries of the victim model and the stolen model."
Although we do not implement FF, it suffices to study JBA-
CW_`2 because:
• The experiments in [3] show that in terms of extraction

accuracy, JBA-CW_`2 performs similarly to FF, and in
some cases even better;

• We verify that CW_`2 can also generate uncertain samples;
• Both FF and CW_`2 only have access to FA, but not FV .
We want to take a closer examination to see 1) whether JBAs

can generate uncertain samples for FV , and 2) whether those
uncertain queries generated by JBAs help improve extraction
accuracy.

Fig. 4. An illustration we borrow from [3]: researchers believe near-boundary
queries are helpful to model extraction attacks

We plot the histogram of predicted confidence given by both
FA and FV on adversarial queries in figure 5. We find that
the histograms for Nseed = 500 and Nseed = 5, 000 are close
enough that will not affect our conclusion, so we choose the
one for Nseed = 5, 000.

First, compared the predicted confidence histograms of FA
among 4 Jacobian-based attacks, the ones by JBA-CW_`2 and
JBA-BinarySearch verify that CW_`2 and our binary search
attack are effective at generating uncertain samples for FA. As
a side-note, uncertainty could also implies low-distortion. For
instance, CW_`2 produces 1 <‖ x− x′ ‖2< 2.5, while PGD
produces 5 <‖ x − x′ ‖2< 6. However, the highly left-skew
histograms of FV by these four attacks in figure 5 also suggest
that FV remain high-confident to most of the generated queries,
which implies the poor transferability of these uncertainty
samples: they remain far away from decision boundaries of
FV no matter how they locate in FA. Furthermore, poor

Fig. 5. JBAs: Histogram of predicted confidence

transferability implies low similarity between the boundaries
of FV and FA. Uncertain samples only for FA cannot help the
attacker train FA’s boundary to become similar to FV ’s.

Combining figure 3 and figure 5, we may shed some light
on the characteristics of adversarial queries generated by
different JBAs: JB-top3 and JBA-PGD push samples cross
decision boundaries and even overshoot them too far away
from the boundaries. This makes sense since they both do
not have regulation term relevant to predicted confidence in
their objective function; JB-CW_`2 and JB-BinarySearch are
able to generate uncertain samples for FA, but they have poor
transferability to FV , and the majority of them are not crossed
samples to FV , either.

In contrast to JBAs, we find that DFME can generate
uncertain samples for both FV and FA even when the number
of queries is 50K and extraction accuracy is only 10% at that
moment. Furthermore, we can also observe that the predicted
confidence distribute much more uniformly from 0 to 1 than
in JBAs, and distributions of FA and FV start synchronizing
at least after sending 5M queries. Based on these observations,
we have the conjecture that an effective MEA need to be
able to generate queries not just through pushing samples
cross decision boundaries, or generate uncertain samples, but
thoroughly exploring the whole input space.

C. Impacts of Query Set Selection

We measure the effectiveness of JB-top3 and JBA-PGD
under different threat models. An attacker may not have access
to any of the samples from the exact same training set used
to train the victim model. Instead, a real-world attacker may
have access to some seed samples from a different distribution.

Fig. 6. DFME: Histogram of prediction confidence with different number of
queries

We use 8 public datasets as different types of seed samples for
the attackers.

TABLE IV
E X . A C C . O N C I FA R 1 0 : R S V. S . J BA S (NS E E D=500)

QuerySet (Size) RS JB-top3 JBA-PGD
Budget: 500 50,000 50,000

Seed Images: (Baseline) 500 500

CIFAR10 [38] 66% 67% 72%
TinyImageNet [37] 46% 57% 61%

ImageNet1k [31] 44% 57% 62%
CIFAR100 [38] 43% 55% 58%

SVHN [39] 19% 24% 32%
CINIC10 [40] 58% 64% 69%
Indoor67 [41] 33% 44% 51%

CUBS200 [42] 20% 23% 31%
Caltech256 [43] 44% 49% 58%

Following the previous section (section §IV-B1), we examine
the impacts of query set selection by comparing JB-top3 and
JBA-PGD against their RS baselines. JBAs have 50, 000 query
budget. For JBAs collecting X0 with size Nseed from a dataset
D, the baseline is RS with Nseed budget from the same dataset.

Table V and table IV summarize the comparison, and as a
reference, we include the extraction accuracy of RS using the
50K budget in table VI. Note that Indoor67, CUBS200, and
Caltech256 (have 14,280, 6,033, and 23,380 images in their
training sets, respectively) have less than 50K data in their
training set, and thus RS in table VI using 50K budget will
not be able to consume all budget. For these three datasets, RS
simply terminates after it exhausts all the data in the query sets,
while JBAs are able to use up all 50K budgets by Jacobian-

TABLE V
E X . A C C . O N C I FA R 1 0 : R S V. S . J BA S (NS E E D=5,000)

QuerySet (Size) RS JB-top3 JBA-PGD
Budget: 5,000 50,000 50,000

Seed Images: (Baseline) 5,000 5,000

CIFAR10 [38] 85% 87% 87%
TinyImageNet [37] 69% 78% 78%

ImageNet1k [31] 67% 78% 78%
CIFAR100 [38] 68% 78% 78%

SVHN [39] 24% 40% 43%
CINIC10 [40] 78% 84% 84%
Indoor67 [41] 50% 70% 71%

CUBS200 [42] 31% 46% 54%
Caltech256 [43] 63% 77% 77%

TABLE VI
E X . A C C . O N C I FA R 1 0 : R A N D O M S A M P L I N G

QuerySet (Size) RS
Budget: 50,000

TinyImageNet [37] 84%
ImageNet1k [31] 85%

CIFAR100 [38] 84%
SVHN [39] 36%

CINIC10 [40] 89%

Indoor67 [41] 63%
CUBS200 [42] 36%

Caltech256 [43] 78%

based augmentation.
In general, JBAs can extract a model with higher accuracy

compared to the baseline RS adversary. The amount of accuracy
improvement varies from 2% to 21%, depending on the where
seed images come from and how many of them are available
to the attacker. Our experiments suggest that when adversary
has limited amount of data as the X0, JBAs outperform a RS
attacker.

Furthermore, we can conclude that high quality data for MEA
do not necessarily come from those large and universal datasets:
if we rank the extraction accuracy from low to high (figure 7
and figure 8), we can see that as the dataset getting larger
and more complicated, the baseline and resulting extraction
accuracy getting higher (SVHN→ CIFAR100); to some point,
complexity in dataset does not help improve the extraction
accuracy, but the similarity to FV ’s training set (ImageNet1k→
CIFAR10) does. Table VI tells us that even when the attacker
can collect large amount of data, JBAs still outperform RS attack
if the data quality are low (SVHN, Indoor67, and CUBS200),
but when the attacker has access to decent quality data, RS
attack is a better option.

Takeaway:

• JBA has an advantage over other MEA methods when the
attacker can only collect limited amount of data, or when
the initial query set has too little overlap with victim’s
task domain;

• The quality of MEA queries is positively correlated to the
similarity between the query set and victim’s training set.

Fig. 7. Nseed = 500: extraction accuracy ranked by X0

Fig. 8. Nseed = 5, 000: extraction accuracy ranked by X0

V. E X I S T I N G D E F E N S E S

In this section, we introduce the existing defenses or detection
schemes against model extraction attacks (MEAs).

A. PRADA

Juuti et al. [2] propose their detector PRADA based on the
observation that the `2 distance among benign queries follows
normal distribution, and their detector monitors the distribution
of minx∈history ‖ x− xnew query ‖2 and check the normality of
this distribution by running Shapiro-Wilk normality tests.

Unfortunately, `2-norm is not stable and many prior works
([3], [5]) have demonstrated that attacker can bypass PRADA.
Chen et al. show that using feature vectors extracted by
similarity encoder is a more robust query representation for
detection.

B. Out-of-distribution Detector

Atli et al. [44] and Kariyappa et al. [45] propose detector
based on out-of-distribution (OOD) detection. Atli et al. train
a binary classifier to tell whether a query comes from the same
distribution as victim’s training set. Kariyappa et al. fine-tune
FV such that it tends to output high top-1 prediction confidence
(> 90%) on in-distribution data, while the top-1 prediction
confidence for OOD data distribute uniformly from 0 to 1.

Essentially, this type of detector assume all the OOD data are
adversarial, while in our work, we assume all the natural data
are benign.

C. Prediction Poisoning/Modification
Orekondy et al. [36] propose prediction poisoning that

perturbs victim’s output prediction probability vector. More
specifically, given a loss function L, they add perturbation ε∗

to a output y such that

ε∗ = max
ε

∠(∇FA
L(FA, y + ε),∇FA

L(FA, y))

while maintaining API utility. In other words, ε∗ is a misinfor-
mation that give a wrong direction to adversaries when they
use this contaminated output to train FA on some loss L. But
attacker can easily post-process the output into a one-hot vector
(like in our setting) to avoid this poison output.

Kariyappa et al. [46] show that discontinuous predictions on
adversarial queries prevent the attacker from effectively stealing
models. In their threat model, any data coming from different
distribution than the victim’s training set are consider malicious.
They propose Ensemble of Diverse Models (EDM) that is able to
produce inconsistent predictions on out-of-distribution (OOD)
data. More specifically, the defender trains a collection of FV s
producing accurate prediction on in-distribution data, while
FV s produce inconsistent predictions on OOD data. Incoming
queries go through a secret perceptual hashing they propose,
and is assigned to one of the victim’s models for prediction
according to the hashing.

D. Detectors against Black-box Attacks
Similar to MEA, black-box adversarial example attacks

(AEAs) ([47]–[50]) send a sequence of queries to FV in
order to craft adversarial examples. We show that defenses for
black-box AEAs can inspire the design of detection scheme for
MEA. Our similarity-based detector is inspired by the Stateful
Detector (SD) for AEAs proposed by Chen et al. [5] (more
details in section §VI). SD extracts queries’ feature vectors and
store it in its history. It then monitors the a query’s average
distance to its k-nearest neighbors, and terminates the account
once this distance is below some threshold.

Blacklight by Li et al. [6] is another detector for black-box
AEAs. Blacklight also exploits the similarity among adversarial
queries, hence it is possible to build a MEA detector based
on Blacklight. It computes a set of fingerprints for each query
through secure on-way hashes, and it searches for similar queries
by hash table lookup.

V I . O U R D E T E C T O R S

In this section, we introduce two detectors to protect the
model against learning-based attacks, specifically Jacobian-
based augmentation attacks (JBA) (algorithm 1) and Data-free
attacks (DFA) (introduced in section §III-B). They are the
similarity-based detector in section §VI-A and the VAE-based
detector in section §VI-B.

In particular, our detector functions at step 5 in the Algorithm
1, keeping an eye on the received queries and terminating users’
accounts if any suspicious behavior is detected.

A. Similarity-based Detector

This method is inspired by the Stateful Detector against
black-box adversarial examples crafting by Chen et al. [5].
While their detector monitors if the average distance of a query
to its k-nearest neighbors below some threshold, we empirically
find that the number of similar pairs is a better indicator to
malicious behaviors. A similar pairs (qi, qj) is a pair of queries
that the `2 distance between their feature vectors f(qi) and
f(qi), respectively, is less than some threshold δ:

(qi, qj)similar := (qi, qj) such that `2(f(qi), f(qj)) < δ

Fig. 9. Illustration of detection scheme when queries feature vectors are
embedded in 2-dimensional space
Left: Detection scheme in [5], where ravg is the average `2-distance to the
k-nearest queries; defenders expect ravg to be less than some threshold when
adversaries are sending malicious queries. Right: Our scheme counts the
number of similar pairs (circled in green), where the `2-distance of their
feature vectors is less than some threshold.

We train a similarity encoder with the same architecture as
in [5] to extract the feature vectors of queries (more details
in section §VIII-A). In general, an encoder f first train on
a classification problem and learn to extract features, then
we train the encoder on the same dataset to minimize the
contrastive loss function [51]:

min L(x0, x+, x−, f) =‖ f(x0)− f(x+) ‖22
+max{0,m2− ‖ f(x0)− f(x−)}

(6)

where x0 is a natural image, x+ is x0 after slight transfor-
mation, and x− is a different natural image in the dataset. We
find that m =

√
10 suffices to train a good encoder in our

settings, and we tune the threshold δ such that the FPR on the
tuning set is 0.01%.

B. VAE-based Detector

In this section, we will first briefly introduce Variational
Autoencoder (VAE), and then we will introduce how we take
advantage of VAE to build our detector.

VAE is a type of generative model consisting of a encoder
and a decoder. Encoder E encodes input x as a distribution
qx(z) over the latent space; to generate data, VAE samples z
from qx(z) and decoder D decodes z as the generated data:

x
encoder−−−−→ qx(z)

sample z∼qx(z)−−−−−−−−−→ z
decoder−−−−→ D(z) = x′

The likelihood of x′ evaluates how close x′ is to x. If we
assume the reconstruction error x− x′ = δ ∼ Gaussian(0, σ),
then the likelihood of x′ can be written as:

Likelihood(x′|x,E,D) =
1√
2πσ

exp{−1

2

(
x− x′

σ

)2

}

Further, we take the natural log of this likelihood and get:

log p(x′|z) = l(x′|x,E,D) ∼ −
(
x− x′

σ

)2

If x is an image, then the log-likelihood of the reconstructed
image x′ will be proportional to the negative mean square error
(MSE) between x and x′. Indeed, many VAEs use MSE(x, x′)
as their reconstruction loss during the training.

An adversary using JBA or DFA must perturb or generate
their queries with features that E and D never saw during their
training time. Therefore, we expect the log-likelihood for an
adversarial query is lower than for a benign one. To add more
flexibility to the detector and allow us to tune its FPR, we create
a credibility interval for the estimation of log-likelihood. The
credibility interval includes values that are within α× standard
deviation away from an estimation. We tune α > 0 such that
the FPR on tuning set is 0.01%. The detector monitors the
average of estimated log-likelihood and calculate the sample
standard deviation of this value as FV is receiving queries.
Detector considers a query malicious if the upper bound of
the estimation is lower than the average log-likelihood of the
benign users.

Besides checking if the upper bound lower than the threshold,
one can possibly additionally check if the lower bound is higher
than the threshold. However, we choose not to do so because
we often observe a scenario where the lower bound higher
than the threshold when adversary sending first several natural
images, as illustrated in figure 10. This makes our tuning for
FPR tricky, since some detected queries are natural images,
which should be consider benign by the design of our threat
model. There may be ways to design a better credibility interval
to avoid this problem, but we do not explore this in this paper.

There are many powerful VAEs in existing works, and
here we choose VQ-VAE proposed by Oord et al. [52] to
build our VAE-based detector. The latent space of VQ-VAE is
discrete in z ∈ {1, 2, . . . ,K} with corresponding embeddings
e1, e2, . . . , eK . Encoder encodes and maps each pixel in the
input image to one of the latent space embeddings, and then
decoder reconstructs the image from this discretely embedded
version of input.

It is possible to use ELBO, instead of log p(x′|z), to estimate
the benign likelihood. ELBO bounds log p(x), and particularly
for VQ-VAE:

log p(x) ≥ log p(x′|z)p(z)

where p(z) is the prior for the sampled latent variable. However,
we do not do so, since 1) the prior distribution is independent
from the training of VQ-VAE: Oord et al. trains a PixelCNN
[53] to learn the prior distribution over z in an autoregressive

Fig. 10. Illustration of the scenario where the lower bound of average log-
likelihood estimation higher than the threshold when the adversary is setting
benign images.

Fig. 11. An illustration we borrow from [52]. The encoder maps pixels into
discrete latent space, and converts this encoded input to the decoder’s input
through an embedding lookup.

way once the training of VQ-VAE is done; 2) we find it difficult
to fit a satisfying prior distribution that is beneficial to our
detector. Nonetheless, we believe using other VAE architectures
and ELBO could possibly yield a better detector.

V I I . A D A P T I V E AT TA C K S

An effective detector should be robust enough to work even
after the attacker is aware of its deployment and understand how
it works. In this section, we introduce two adaptive attacks that
are specifically designed against our detectors: query blinding
in section §VII-A and query filtering in section §VII-B. In
general, a JBA attacker deploys an adaptive attack at step 5 in
the Algorithm 1, before sending the queries to FV , which is
potentially protected by a defender.

We also implement our adaptive attacks for DFME attackers
[20]. Recall from section §III-B that in one training epoch, 1)
DFME first trains the generator G, then 2) uses G to generate
data and ask FV to label them for FA’s training. Both of these
steps need to send queries to FV , but without the gradient
approximation in the first step, DFME will not effectively
work. Hence, we deploy our adaptive attacks in the second
step, before sending queries to FV .

A. Query Blinding

Query blinding (QB), proposed by Chen et al. [5], is a general
strategy against detector exploiting any forms of similarity
among adversarial queries. QB hides an actual query x by
some random transformation function t, which has a parameter
r to control the degree of randomness. Then, adversary send
x′ = t(x; r) to FV , and the goal is to obtain a output that is
similar to FV (x) without revealing x to the detector. With QB,
step 5 becomes YT ← FV (t(XT ; r)) and the rest of Algorithm
1 remains unchanged, including the step 6.

Fig. 12. Left: Original input images; Right: Output images of a converged
auto-encoder blinding function: the auto-encoder learns to allocate the input
random noise to positions that have minimal impact on model outputs.

Following [5], we choose a wide range of random image
transformations (e.g. rotation, scaling, random noise, etc.) to
test our detector apply their corresponding default r in [5].
We also follow the setting and architecture in [5] to examine
an auto-encoder blinding function. An auto-encoder blinding
function tauto takes in a random noise z ∼ N (0, 0.095) and
the original image x, then we train tauto such that for a model
F :

F (tauto(x, r)) ≈ F (x)

As illustrated in figure 12, a converged auto-encoder blinding
function can re-distribute the input noise so that it has minimal
impact on model outputs. Given our threat model, the attacker
train this the auto-encoder and F on either the subset of FV ’s
training set {(X ,Y)}V , or a publicly accessible dataset that is
the most similar to {(X ,Y)}V .

B. Query Filtering

In this work, we propose query filtering, another general
strategy against MEA detectors, specifically to evade stateful
detector. The goal of QF is to allow the attacker to locally
emulates a stateful detector and remove those queries that can
possibly raise detector’s alarm. For instance, if the attacker
realizes that the defender is using similarity-based detector to
protect FV , then the attacker cam implement QF by training
a substitute similarity encoder Esub and tune a substitute
detection threshold δsub to build a substitute detector Dsub. The
attacker thus can remove those queries which Dsub believes
are suspicious. Again, due to our threat model, the attacker
can train this Dsub on either the subset of FV ’s training set
{(X ,Y)}V , or a publicly accessible dataset that is the most
similar to {(X ,Y)}V .

V I I I . E VA L U AT I O N S O N D E T E C T O R S

Evaluation settings follow section §IV-A unless state other-
wise. JBAs sample 5,000 seed images and has 50K budget. All
the accuracy scores (in %) are rounded to their nearest integers,
and vary within ±1%. Examination of similarity-based detector
is presented in section §VIII-A; and the results on VAE-based
detector is in section §VIII-B.

A. Similarity-based Detector

As introduced in section §VI-A, our similarity-based detector
monitors the similarity of the incoming queries to queries in
the history. Defenders can terminate the users’ accounts once
they find too many similar pairs.

1) Settings: We use the same architecture and method in [5]
to train our similarity encoder and query blinding autoencoder.
In our setting, an account is terminated if there are 50 similar
pairs. We tune the detector threshold=0.12986328125 by binary
search on both the training and testing sets of the CIFAR10
and CINIC10, so that the false positive rate (FPR) reaches
0.01%. We use the default parameter r in [5] for our query
blinding adaptive attack.

2) Effectiveness: In table VII, JBAs construct Nseed = 5, 000
X0 from CIFAR10 and use 50K budgets. The table suggests
that JB-top3 and JBA-PGD use least amount of accounts to
mount MEA.

TABLE VII
S I M I L A R I T Y- B A S E D D E T E C T O R A G A I N S T J BA S

JBA # Accounts Ex. Acc. on CIFAR10
JB-top3 59 87%
JBA-PGD 21 87%
JBA-CW_`2 126 85%
JBA-BinarySearch 765 85%

Table VIII reports the number of accounts needed when the
attacker collect X0 from different datasets. In table IX, we
report the false positive rate (FPR) calculated under the benign
usage of that dataset (i.e. by sending ALL natural images in
the dataset). Note that since we tune the threshold on both
CIFAR10 and CINIC10 so that our detector has FPR 0.01%

on the concatenation of them, but table IX evaluate the FPR on
each dataset separately, so the FPR on CIFAR10 and CINIC10
are not exactly 0.01%.

TABLE VIII
S I M I L A R I T Y- B A S E D D E T E C T O R F O R J B - T O P 3 A N D J BA - P G D

JB-top3 JBA-PGD
Query Set # Accounts Ex. Acc. # Accounts Ex. Acc.

CIFAR10 59 87% 21 87%
TinyImageNet 96 78% 25 78%
ImageNet1k 90 78% 24 78%
CIFAR100 101 78% 26 78%
SVHN 221 40% 43 43%
CINIC10 54 84% 18 84%
Indoor67 90 70% 25 71%
CUBS200 94 46% 24 54%
Caltech256 73 77% 16 77%

TABLE IX
F P R O F S I M I L A R I T Y- B A S E D D E T E C T O R

Query Set FPR
CIFAR10 0.008%
TinyImageNet 0.008%
ImageNet1k 0.011%
CIFAR100 0.007%
SVHN 0.060%
CINIC10 0.011%
Indoor67 0.013%
CUBS200 0.008%
Caltech256 0.007%

From table VIII, we can see how effective our similarity-
based detector is on different threat model. In general, JBA-
PGD uses less amount of accounts than JB-top3. For attackers
having access to some victim’s training data XV (in our case is
CIFAR10), it takes JB-top3 59, and JBA-PGD 21, accounts to
extract a surrogate model with 87% accuracy on victim’s task.
For other attackers who do not have access to XV , it generally
takes them more accounts to extract a surrogate model (except
for CINIC10 and Caltech256).

Combining table VIII and table IX, one can find that although
the similarity encoder is trained on CIFAR10, and the threshold
is only tuned on CIFAR10 and CINIC10, our similarity-based
detector is able to detect and terminate many adversarial
accounts while keeping FPR 0.01 ± 0.003%, regardless of
the sources of X0. This suggests that similarity-based detector
can be a powerful yet easily-deployed detection scheme against
Jacobian-based extraction attacks.

3) Adaptive Attack: We show that our similarity-based
detector is robust against adaptive attacks. As discussed in
section §VI-A, adaptive attacks include query blinding (QB,
section §VII-A) and query filtering (QF, section §VII-B). In
table X and table XI, we summarize the results of testing the
similarity-based detector against adaptive JB-top3 and JBA-
PGD that construct X0 from CIFAR10. Table XII presents
the results when JB-top3 attacker construct X0 from CINIC10.
Table XIII presents the results on vanilla and adaptive DFME
attack.

TABLE X
A D A P T I V E J B - T O P 3 W I T H C I FA R 1 0 X0

Adaptive Scheme Query Set # Accounts Ex. Acc.
Non-adaptive CIFAR10 59 87%

Query Filtering Trained on full cinic10 55 82%
Trained on cifar10 seed 11 86%

Crop 50 85%
Brightness 221 77%

Scale 28 86%
Rotate 59 86%

Query Blinding Contrast 266 79%
Uniform 245 79%
Gaussian 179 77%
Translate 19 85%

Auto-encoder 6 81%

TABLE XI
A D A P T I V E J BA - P G D W I T H C I FA R 1 0 X0

Adaptive Scheme Query Set # Accounts Ex. Acc.
Non-adaptive CIFAR10 21 87%

Query Filtering Trained on full cinic10 21 87%
Trained on cifar10 seed 8 87%

Crop 26 86%
Brightness 88 83%

Scale 16 86%
Rotate 18 87%

Query Blinding Contrast 226 82%
Uniform 91 82%
Gaussian 84 82%
Translate 13 86%

Auto-encoder 2 82%

Among all the adaptive attacks, QF trained on CIFAR10 seed
images performs the best in table X, table XI, and table XII,
while QF trained on the full CINIC10 does not effectively
bypass the detector. This suggests that when the attacker
has access to part of FV ’s training set data XV , our QF can
reduce the effectiveness of similarity-based detector, but when
the attacker does not have this advantage, even a substitute
similarity encoder trained on data that distribute similarly to
XV does not help filtering out suspecious data. Among all the
QBs, random scaling works the best: reduce the number of
accounts while not losing extraction accuracy too much. Auto-
encoder QB can reduce the number of account even more, but
the resulting extraction accuracy also drops severely.

With table XIII, we show that our similarity-based detector
can also work with data generated by GAN and detect DFME
attack. Comparing to JBA attacker, DFME attacker needs 400×
more queries and ∼ 965× more accounts to extract a copy of
surrogate model that perform slightly better (2%) than JBA’s. As
a reminder that strictly speaking, DFME is not supposed to use
any natural images and requires FV to return soft-labels. But
as discussed in section §III-B and section §II-B, for evaluation
purpose, we allow DFME attacker to use the CINIC10 and relax
our threat model to allow DFME to see logit scores, rather the
hard-labels. As explained in section §VII, we deploy adaptive
attacks before G(z) is sent to FV for labeling and leave the

TABLE XII
A D A P T I V E J B - T O P 3 W I T H C I N I C 1 0 X0

Adaptive Scheme Query Set # Accounts Ex. Acc.
Non-adaptive CINIC10 54 84%

Query Filtering Trained on full cinic10 58 83%
Trained on cifar10 seed 8 82%

Crop 58 82%
Brightness 228 70%

Scale 28 82%
Rotate 58 83%

Query Blinding Contrast 320 70%
Uniform 244 69%
Gaussian 186 68%
Translate 26 82%

Auto-encoder 4 67%

TABLE XIII
S I M I L A R I T Y D E T E C T O R A G A I N S T D F M E (2 0 M Q U E R I E S)

Adaptive Scheme Data-free # Accounts Ex. Acc.
Non-adaptive 56981 89%

Query Filtering Trained on full cinic10 126674 87%

Uniform 57394 87%
Gaussian 57222 88%

Scale 56981 88%
Query Blinding Brightness 56994 89%

Rotate 56981 89%
Contrast 112231 70%

Crop 56981 88%
Translate 56981 85%

gradient approximation part untouched. Table XIII also shows
that QF and QB are not effective at bypassing detector. Note
that QF-CINIC10 roughly double the number of accounts: QF
filters out and rejects to send ∼ 80% of the generative queries,
and in order to use up all 20M budget, the number of iterations
is roughly double.

B. VAE-based Detector

1) Likelihood changes: As introduced in section §VI-B, our
likelihood-based detector monitors the average log-likelihood
while victim’s model receiving queries. Figure 13 plots the
change in queries’ average log-likelihood before (left) and after
(right) adversaries send queries augmented by Jb-top3. The
orange line is the change by sending 50K natural images in
CIFAR10 training set, while the blue line represents the change
by Jb-top3 with 5000 seed images and 50K as its total budget.
We can see that in the first 5000 queries, two lines converge to
the same value, but once the adversary starts sending augmented
images, its log-likelihood declines.

2) Settings: We use VQ-VAE proposed by Oord et al.
[52] to calculate the likelihood of a query. As discussed in
section §VI-B, the reconstruction loss, which is the mean-
square-error, between the original image and the reconstructed
image is a proxy of the negative log-likelihood of the original
image. We train our VQ-VAE on CIFAR10 training set using
this implementation9 and the default setting reported in [52].

9https://github.com/zalandoresearch/pytorch-vq-vae

Fig. 13. Change in average log-likelihood over the number of queries.

One may notice that the estimate of log-likelihood fluctuates
a lot in the first few queries. Therefore, we allow the detector
warms up in the first 50 queries to stabilize its log-likelihood
estimation. In other words, our detector starts comparing against
threshold after 50 queries.

In order to tune the sensitivity of this detector, we create a
credibility interval around the estimated log-likelihood (the grey
area in figure 13). Only when the upper bound of the likelihood
is lower than the some threshold=α, does the defender cancel
users’ accounts due to potential malicious usages. Ideally, the
threshold here is the average log-likelihood of all the natural
images in the problem-domain of victim’s model. Values within
an interval is within β-times standard deviation around the
estimated log-likelihood.

For the following experiments, we estimate α =
−1.298600417103578 from both the training and test
set in CIFAR10. We use binary search and set β =
0.3763033370971679 so that the FPR on CIFAR10 is 0.01%.

TABLE XIV
L I K E L I H O O D - B A S E D D E T E C T O R A G A I N S T J B - T O P 3

Query Set # Accounts
CIFAR10 122
TinyImageNet 573
ImageNet1k 1
CIFAR100 514
SVHN 1
CINIC10 304
Indoor67 673
CUBS200 1
Caltech256 1

3) Effectiveness: One can tell from table XIV and table XV
that likelihood-based detector outperforms similarity-based
detector in terms of the number of adversarial accounts by
2×, but only when victim receive data from CIFAR10, where
the likelihood-based detector was trained on. Otherwise, our
likelihood-based detector either fails to detect any adversarial
queries (e.g. for Caltech256, ImageNet1k, and SVHN), or the
FPR is unacceptably high (e.g. for Indoor67, TinyImageNet,
and CIFAR100). Figure 14 presents the changes in average
likelihood as sending natural images in datasets, which further
explain table XIV and table XV. These imply that although

Fig. 14. Change in average log-likelihood over the number of queries. The
credibility intervals of out-of-distribution (OOD) data often do not include the
threshold.

likelihood-based detectors perform well in some dataset-specific
scenarios, and there are at least two challenges to bring it into
broader applications: 1) train the likelihood estimator (in our
case, VQ-VAE) so that the average likelihood of benign queries
converge to the value that is further away from adversarial
ones’, and 2) queries coming from closed problem-domain
should have similar likelihood even though they come from

TABLE XV
F P R O F L I K E L I H O O D - B A S E D D E T E C T O R

Query Set FPR
CIFAR10 0.01%
TinyImageNet 1.45%
ImageNet1k 0%
CIFAR100 1.18%
SVHN 0%
CINIC10 0.17%
Indoor67 1.46%
CUBS200 0%
Caltech256 0.003%

different dataset (e.g. CIFAR10 and CINIC10).
On the other hand, table XIV and figure 14 suggest that

if the defender rejects queries that are not in the credibility
interval, then our VAE-based detector can possibly serve as
a out-of-distribution (OOD) data detector. This property is
helpful in a threat model where the defender assumes all OOD
data are malicious ([44], [45]). However, we have not done
further evaluation on whether our VAE-based detector can serve
as a robust OOD detector, and we think this is an interesting
direction for future work.

I X . C O N C L U S I O N

In this paper, we explore Jacobian-based augmentation model
extraction attack (JBA):
• JBA has advantage over other attacks when it is difficult

for the attacker to collect large amount of data.
• We disprove the claim and assumption that Jacobian-based

augmentation generates queries that cross or lie close to
victim model’s decision boundary.

• Complexity of query set helps improve JBA to some
extent. The ideal query set should distribute as similarly
to victim’s training set as possible. For instance, a subset
of victim’s training set.

As a defender, we:
• build a similarity-based detector for detecting Jacobian-

based model extraction attacks.
• propose query filtering, an adaptive attack against stateful

detectors, and we show that our similarity-based detector
can still work under query filtering attack.

• take the first step to design a VAE-based detector and
identify some challenges with such defense scheme.

R E F E R E N C E S

[1] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High
accuracy and high fidelity extraction of neural networks,” 2020. I, II-A,
II-A, II-B, II-B

[2] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “Prada: Protecting
against dnn model stealing attacks,” 2019. I, II-A, III-A, III-A1, III-A2,
IV, 1, IV-A2, IV-B, 1, IV-B2, V-A

[3] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “Cloudleak:
Large-scale deep learning models stealing through adversarial examples,”
in NDSS, 2020. I, III-A, III-A1, III-A2, III-A2, IV, IV-B3, IV-B3, 4, V-A

[4] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” 2017.
I, II-A, III-A, III-A2, IV, 1, IV-B, IV-B2

[5] S. Chen, N. Carlini, and D. Wagner, “Stateful detection of black-box
adversarial attacks,” 2019. I, 2, II-B, V-A, V-D, VI-A, 9, VI-A, VII-A,
VII-A, VII-A, VII-A, VIII-A1, VIII-A1

[6] H. Li, S. Shan, E. Wenger, J. Zhang, H. Zheng, and B. Y. Zhao, “Blacklight:
Defending black-box adversarial attacks on deep neural networks,” 2020.
I, II-B, V-D

[7] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” 2016. II-A, II-A, III-A,
III-A3, III-B

[8] J. R. Correia-Silva, R. F. Berriel, C. Badue, A. F. de Souza, and T. Oliveira-
Santos, “Copycat cnn: Stealing knowledge by persuading confession with
random non-labeled data,” 2018 International Joint Conference on Neural
Networks (IJCNN), Jul 2018. II-A, III-C

[9] N. Carlini, M. Jagielski, and I. Mironov, “Cryptanalytic extraction of
neural network models,” 2020. II-A, II-B

[10] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, KDD ’05, (New York, NY, USA), p. 641–647,
Association for Computing Machinery, 2005. II-A

[11] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model reconstruction
from model explanations,” 2018. II-A, II-B

[12] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Csi neural network: Using
side-channels to recover your artificial neural network information,” 2018.
II-A, II-B

[13] J. J. Douceur, “The sybil attack,” in Proceedings of 1st International
Workshop on Peer-to-Peer Systems (IPTPS), January 2002. II-B

[14] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai, “Uncovering
social network sybils in the wild,” ACM Trans. Knowl. Discov. Data,
vol. 8, Feb. 2014. II-B

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2019. III-A2,
IV-A2

[16] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” 2017. III-A2, IV-A2

[17] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, “Adversarial manipulation
of deep representations,” 2016. III-A2

[18] D. P. Vassileios Balntas, Edgar Riba and K. Mikolajczyk, “Learning
local feature descriptors with triplets and shallow convolutional neural
networks,” in Proceedings of the British Machine Vision Conference
(BMVC) (E. R. H. Richard C. Wilson and W. A. P. Smith, eds.), pp. 119.1–
119.11, BMVA Press, September 2016. III-A2

[19] H. Karimi, T. Derr, and J. Tang, “Characterizing the decision boundary
of deep neural networks,” 2020. III-A3

[20] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model
extraction,” 2021. III-B, VII

[21] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014. III-B

[22] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Finite
sample convergence rates of zero-order stochastic optimization methods.,”
in NIPS, pp. 1448–1456, Citeseer, 2012. III-B

[23] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing func-
tionality of black-box models,” 2018. III-C

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018. III-C

[25] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. Shevade, and V. Ganapathy,
“Activethief: Model extraction using active learning and unannotated pub-
lic data,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 865–872, Apr. 2020. III-C

[26] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in SIGIR ’94 (B. W. Croft and C. J. van Rijsbergen, eds.),
(London), pp. 3–12, Springer London, 1994. III-C

[27] O. Sener and S. Savarese, “Active learning for convolutional neural
networks: A core-set approach,” 2018. III-C

[28] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” 2016. III-C

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015. IV-A1

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015. IV-A1

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition, pp. 248–255, Ieee, 2009.
IV-A1, IV-A3, IV, V, VI

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. IV-A1

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017. IV-A2

[34] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python toolbox
to benchmark the robustness of machine learning models,” in Reliable
Machine Learning in the Wild Workshop, 34th International Conference
on Machine Learning, 2017. IV-A2

[35] J. Rauber, R. Zimmermann, M. Bethge, and W. Brendel, “Foolbox native:
Fast adversarial attacks to benchmark the robustness of machine learning
models in pytorch, tensorflow, and jax,” Journal of Open Source Software,
vol. 5, no. 53, p. 2607, 2020. IV-A2

[36] T. Orekondy, B. Schiele, and M. Fritz, “Prediction poisoning: Towards
defenses against dnn model stealing attacks,” in International Conference
on Learning Representations, 2020. IV-A2, V-C

[37] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” 2015.
IV-A3, IV, V, VI

[38] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009. IV-A3, IV, V, VI

[39] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading
digits in natural images with unsupervised feature learning,” NIPS, 01
2011. IV-A3, IV, V, VI

[40] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “Cinic-10
is not imagenet or cifar-10,” 2018. IV-A3, IV, V, VI

[41] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 413–420,
2009. IV-A3, IV, V, VI

[42] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” Tech. Rep. CNS-TR-2011-001,
California Institute of Technology, 2011. IV-A3, IV, V, VI

[43] G. Griffin, A. Holub, and P. Perona, “Caltech256 image dataset,” 2006.
IV-A3, IV, V, VI

[44] B. G. Atli, S. Szyller, M. Juuti, S. Marchal, and N. Asokan, “Extraction
of complex dnn models: Real threat or boogeyman?,” 2020. V-B, VIII-B3

[45] S. Kariyappa and M. K. Qureshi, “Defending against model stealing
attacks with adaptive misinformation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2020. V-B, VIII-B3

[46] S. Kariyappa, A. Prakash, and M. K. Qureshi, “Protecting {dnn}s from
theft using an ensemble of diverse models,” in International Conference
on Learning Representations, 2021. V-C

[47] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in Proceedings of the 35th
International Conference on Machine Learning (J. Dy and A. Krause,
eds.), vol. 80 of Proceedings of Machine Learning Research, pp. 2137–
2146, PMLR, 10–15 Jul 2018. V-D

[48] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models,” 2018. V-D

[49] S. Moon, G. An, and H. O. Song, “Parsimonious black-box adversarial
attacks via efficient combinatorial optimization,” 2019. V-D

[50] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack: A
query-efficient decision-based attack,” 2020. V-D

[51] S. Bell and K. Bala, “Learning visual similarity for product design with
convolutional neural networks,” ACM Transactions on Graphics, vol. 34,
pp. 98:1–98:10, 07 2015. VI-A

[52] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” 2018. VI-B, 11, VIII-B2, VIII-B2

[53] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,”
2016. VI-B

