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Abstract

Machine Learning for Deep Image Manipulation

by

Taesung Park

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alexei A. Efros, Chair

Common types of image editing methods focus on low-level characteristics. In this
thesis, I leverage machine learning to enable image editing that operates at a higher
conceptual level. Fundamentally, the proposed methods aim to factor out the visual
information that must be maintained in the editing process from the information
that may be edited by incorporating the generic visual knowledge. As a result, the
new methods can transform images in human-interpretable ways, such as turning
one object into another, stylizing photographs into a specific artist’s paintings, or
adding sunset to a photo taken in daylight.

We explore designing such methods in different settings with varying amounts of
supervision: per-pixel labels, per-image labels, and no labels. First, using per-pixel
supervision, I propose a new deep neural network architecture that can synthesize
realistic images from scene layouts and optional target styles. Second, using per-image
supervision, I explore the task of domain translation, where an input image of one
class is transformed into another. Lastly, I design a framework that can still discover
disentangled manipulation of structure and texture from a collection of unlabeled
images. We present convincing visuals in a wide range of applications including
interactive photo drawing tools, object transfiguration, domain gap reduction between
virtual and real environment, and realistic manipulation of image textures.
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Chapter 1

Introduction

Figure 1.1: (left) Typical image editing operations focus on low-level features, such as
changing brightness and contrast. (right) I aim to enable entirely new types of editing
operations, such as covering the input scene with snow. The editing was performed using
Park et al., 2020 [1] (see Chapter 4).

With the rise of digital cameras, smartphones and social media, photography
has become widely accessible to the general public. As a hobbiest photographer, I
also carry a digital camera, whether it’s a smartphone or a full-fledged DSLR, and
attempt to record my favorite life moments. However, more often than not, the
photos straight out of the camera don’t turn out to be as I wanted. Sometimes they
don’t replicate the real world as it is. Even if they do, they may still not capture my
subjective sensation of that moment.

Likely due to this, the usage of photo editing software is widespread. For example,
10 out of the top 40 most downloaded application on App Store in 2019 were
photo editing tools [2]. However, the range of possible operations by these apps
are still limited. For example, they offer ways to change low-level characteristics
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such as brightness and contrast, but there is no good way to edit images at a higher
conceptual level, such as adding snow to the image (Figure 1.1).

Why are high level editing operations challenging? Most existing photo editing
methods do not possess generic visual knowledge acquired prior to the editing tasks at
use time. Instead, they rely on hand-designed techniques to reshuffle and transform
the input pixels to simulate the desired editing effect. Certainly, there exist many
classic works in designing these techniques, such as finding the closest match in
reference images by looking at nearby patches [3–5], combining different images across
frequency bands [6–8], or morphing images by warping and blending [9–11]. However,
to add snow, its visual appearance needs to be acquired a priori, independent of the
test input images. This is where machine learning can come into play. We can gain
visual knowledge from a separate dataset, and use that for creating new realistic
visual that is nowhere present in the input images.

However, there is subtlety in using machine learning for image editing. There
seems to be a fundamental conflict: what information should be gleaned from the
dataset versus information that must be retained from the input image? If the output
image relies too much on the dataset, it will retain no resemblance to the input, so can
hardly be called “editing”, whereas relying too much on the input lessens the value of
the dataset (Figure 1.2). Unconditional image generation models like GANs [12,13]
are examples of such cases: they are exceptionally good at learning from the dataset,
but do not provide a well-grounded method for applying the acquired knowledge for
editing existing images. This conflict can be viewed as a disentanglement problem.
Starting from image pixels, one needs to factor out the visual information which is
specific to a given image from information that is applicable across the dataset.

Figure 1.2: The desired image editing model must harmonize the input and visuals of the
training dataset. The output image needs to contain new visual obtained from the dataset,
but still be in resemblance to the original input image.
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The presentation of the thesis is organized in terms of gradually reducing the
amount of required training time supervision. In Chapter 2, I start out by studying
the simplest setting: for every pixel and image in the dataset, we directly supervise
what an ideal output should be. While such supervised approach can produce
powerful results, collecting ground truth targets for every single pixel is very costly,
if not impossible. In this regard, Chapter 3 proceeds by reducing the amount of
supervision, from per-pixel to per-image. By doing so, we attain a more versatile
image manipulation model that can be used for various tasks, ranging from learning
a style of an artist to improving visual recognition of perception modules trained
in virtual environment. Lastly, in Chapter 4, I propose an approach that can still
discover disentangled representation of structure and texture in a fully unsupervised
setting with no per-pixel or per-image labels.
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Chapter 2

Learning Representation for Image
Editing from Paired Examples

sky

sea

tree

cloud

mountain

grass

Figure 2.1: Our model allows user control over both semantic and style as synthesizing
an image. The semantic (e.g., the existence of a tree) is controlled via a label map (the
top row), while the style is controlled via the reference style image (the leftmost column).
Please visit our website for interactive image synthesis demos.

How can we train a model that takes an image as input and produces an edited
image as output? A conceptually straightforward way is to employ supervised
learning. That is, our model can be trained on a dataset consisting of desired input
– output pairs. In this scenario, we are essentially providing an exampler output
for each pixel. The focus of this chapter is designing an effective framework, an
architectural design in particular, that can produce convincing output images.

We propose spatially-adaptive normalization, a simple but effective layer for

https://github.com/NVlabs/SPADE
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synthesizing photorealistic images given an input semantic layout. Previous methods
directly feed the semantic layout as input to the deep network, which is then
processed through stacks of convolution, normalization, and nonlinearity layers.
We show that this is suboptimal as the normalization layers tend to “wash away”
semantic information. To address the issue, we propose using the input layout
for modulating the activations in normalization layers through a spatially-adaptive,
learned transformation. Experiments on several challenging datasets demonstrate the
advantage of the proposed method over existing approaches, regarding both visual
fidelity and alignment with input layouts. Finally, our model allows user control over
both semantic and style. Code is available at https://github.com/NVlabs/SPADE1.

2.1 Introduction
Conditional image synthesis refers to the task of generating photorealistic images

conditioning on certain input data. Seminal work computes the output image
by stitching pieces from a single image (e.g., Image Analogies [4]) or using an
image collection [15–19]. Recent methods directly learn the mapping using neural
networks [20–27]. The latter methods are faster and require no external database of
images.

We are interested in a specific form of conditional image synthesis, which is
converting a semantic segmentation mask to a photorealistic image. This form has
a wide range of applications such as content generation and image editing [20–22].
We refer to this form as semantic image synthesis. In this paper, we show that the
conventional network architecture [20,22], which is built by stacking convolutional,
normalization, and nonlinearity layers, is at best suboptimal because their normaliza-
tion layers tend to “wash away” information contained in the input semantic masks.
To address the issue, we propose spatially-adaptive normalization, a conditional
normalization layer that modulates the activations using input semantic layouts
through a spatially-adaptive, learned transformation and can effectively propagate
the semantic information throughout the network.

We conduct experiments on several challenging datasets including the COCO-
Stuff [28, 29], the ADE20K [30], and the Cityscapes [31]. We show that with
the help of our spatially-adaptive normalization layer, a compact network can
synthesize significantly better results compared to several state-of-the-art methods.
Additionally, an extensive ablation study demonstrates the effectiveness of the
proposed normalization layer against several variants for the semantic image synthesis

1This work was first published as Semantic Image Synthesis with Spatially Adaptive Normalization
in CVPR, 2019 [14].

https://github.com/NVlabs/SPADE
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task. Finally, our method supports multi-modal and style-guided image synthesis,
enabling controllable, diverse outputs, as shown in Figure 2.1. Also, please see our
SIGGRAPH 2019 Real-Time Live demo and try our online demo by yourself.

2.2 Related Work

Deep generative models can learn to synthesize images. Recent methods include
generative adversarial networks (GANs) [12] and variational autoencoder (VAE) [32].
Our work is built on GANs but aims for the conditional image synthesis task. The
GANs consist of a generator and a discriminator where the goal of the generator
is to produce realistic images so that the discriminator cannot tell the synthesized
images apart from the real ones.
Conditional image synthesis exists in many forms that differ in the type of input
data. For example, class-conditional models [27,33–36] learn to synthesize images
given category labels. Researchers have explored various models for generating images
based on text [24,37–39]. Another widely-used form is image-to-image translation
based on a type of conditional GANs [20, 40–46], where both input and output
are images. Compared to earlier non-parametric methods [4, 15, 18], learning-based
methods typically run faster during test time and produce more realistic results.
In this work, we focus on converting segmentation masks to photorealistic images.
We assume the training dataset contains registered segmentation masks and images.
With the proposed spatially-adaptive normalization, our compact network achieves
better results compared to leading methods.
Unconditional normalization layers have been an important component in
modern deep networks and can be found in various classifiers, including the Local Re-
sponse Normalization in the AlexNet [47] and the Batch Normalization (BatchNorm)
in the Inception-v2 network [48]. Other popular normalization layers include the
Instance Normalization (InstanceNorm) [49], the Layer Normalization [50], the Group
Normalization [51], and the Weight Normalization [52]. We label these normalization
layers as unconditional as they do not depend on external data in contrast to the
conditional normalization layers discussed below.
Conditional normalization layers include the Conditional Batch Normalization
(Conditional BatchNorm) [53] and Adaptive Instance Normalization (AdaIN) [54].
Both were first used in the style transfer task and later adopted in various vision
tasks [26,27,34,35,44,55–59]. Different from the earlier normalization techniques,
conditional normalization layers require external data and generally operate as
follows. First, layer activations are normalized to zero mean and unit deviation.

https://www.youtube.com/watch?v=Gz9weuemhDA&feature=youtu.be&t=2949
https://github.com/NVlabs/SPADE
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Then the normalized activations are denormalized by modulating the activation using
a learned affine transformation whose parameters are inferred from external data.
For style transfer tasks [53, 54], the affine parameters are used to control the global
style of the output, and hence are uniform across spatial coordinates. In contrast,
our proposed normalization layer applies a spatially-varying affine transformation,
making it suitable for image synthesis from semantic masks. Wang et al. proposed
a closely related method for image super-resolution [57]. Both methods are built
on spatially-adaptive modulation layers that condition on semantic inputs. While
they aim to incorporate semantic information into super-resolution, our goal is to
design a generator for style and semantics disentanglement. We focus on providing
the semantic information in the context of modulating normalized activations. We
use semantic maps in different scales, which enables coarse-to-fine generation. The
reader is encouraged to review their work for more details.

2.3 Semantic Image Synthesis
Let m ∈ LH×W be a semantic segmentation mask where L is a set of integers

denoting the semantic labels, and H and W are the image height and width. Each
entry in m denotes the semantic label of a pixel. We aim to learn a mapping function
that can convert an input segmentation mask m to a photorealistic image.
Spatially-adaptive denormalization. Let hi denote the activations of the i-th
layer of a deep convolutional network for a batch of N samples. Let Ci be the
number of channels in the layer. Let H i and W i be the height and width of the
activation map in the layer. We propose a new conditional normalization method
called the SPatially-Adaptive (DE)normalization2 (SPADE). Similar to the Batch
Normalization [48], the activation is normalized in the channel-wise manner and then
modulated with learned scale and bias. Figure 2.2 illustrates the SPADE design.
The activation value at site (n ∈ N, c ∈ Ci, y ∈ H i, x ∈ W i) is

γi
c,y,x(m)

hi
n,c,y,x − µi

c

σi
c

+ βi
c,y,x(m) (2.1)

where hi
n,c,y,x is the activation at the site before normalization and µi

c and σi
c are the

2Conditional normalization [53,54] uses external data to denormalize the normalized activations;
i.e., the denormalization part is conditional.
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element-wise

conv

𝛾

𝛽

Batch

Norm

conv

Figure 2.2: In the SPADE, the mask is first projected onto an embedding space and
then convolved to produce the modulation parameters γ and β. Unlike prior conditional
normalization methods, γ and β are not vectors, but tensors with spatial dimensions. The
produced γ and β are multiplied and added to the normalized activation element-wise.

mean and standard deviation of the activations in channel c:

µi
c = 1

NH iW i

∑
n,y,x

hi
n,c,y,x (2.2)

σi
c =

√√√√ 1
NH iW i

∑
n,y,x

(
(hi

n,c,y,x)2 − (µi
c)2
)
. (2.3)

The variables γi
c,y,x(m) and βi

c,y,x(m) in (2.1) are the learned modulation param-
eters of the normalization layer. In contrast to the BatchNorm [48], they depend on
the input segmentation mask and vary with respect to the location (y, x). We use the
symbol γi

c,y,x and βi
c,y,x to denote the functions that convert m to the scaling and bias

values at the site (c, y, x) in the i-th activation map. We implement the functions
γi

c,y,x and βi
c,y,x using a simple two-layer convolutional network, whose design is in

the appendix.
In fact, SPADE is related to, and is a generalization of several existing normal-

ization layers. First, replacing the segmentation mask m with the image class label
and making the modulation parameters spatially-invariant (i.e., γi

c,y1,x1 ≡ γi
c,y2,x2 and

βi
c,y1,x1 ≡ βi

c,y2,x2 for any y1, y2 ∈ {1, 2, ..., H i} and x1, x2 ∈ {1, 2, ...,W i}), we arrive
at the form of the Conditional BatchNorm [53]. Indeed, for any spatially-invariant
conditional data, our method reduces to the Conditional BatchNorm. Similarly,
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Figure 2.3: Comparing results given uniform segmentation maps: while the SPADE
generator produces plausible textures, the pix2pixHD generator [22] produces two identical
outputs due to the loss of the semantic information after the normalization layer.

we can arrive at the AdaIN [54] by replacing m with a real image, making the
modulation parameters spatially-invariant, and setting N = 1. As the modulation
parameters are adaptive to the input segmentation mask, the proposed SPADE is
better suited for semantic image synthesis.
SPADE generator. With the SPADE, there is no need to feed the segmentation
map to the first layer of the generator, since the learned modulation parameters
have encoded enough information about the label layout. Therefore, we discard
encoder part of the generator, which is commonly used in recent architectures [20,22].
This simplification results in a more lightweight network. Furthermore, similarly to
existing class-conditional generators [26,34,35], the new generator can take a random
vector as input, enabling a simple and natural way for multi-modal synthesis [43,44].

Figure 2.4 illustrates our generator architecture, which employs several ResNet
blocks [60] with upsampling layers. The modulation parameters of all the normal-
ization layers are learned using the SPADE. Since each residual block operates at a
different scale, we downsample the semantic mask to match the spatial resolution.

We train the generator with the same multi-scale discriminator and loss function
used in pix2pixHD [22] except that we replace the least squared loss term [61] with
the hinge loss term [26, 62, 63]. We test several ResNet-based discriminators used
in recent unconditional GANs [34,35,64] but observe similar results at the cost of
a higher GPU memory requirement. Adding the SPADE to the discriminator also
yields a similar performance. For the loss function, we observe that removing any
loss term in the pix2pixHD loss function lead to degraded generation results.
Why does the SPADE work better? A short answer is that it can better
preserve semantic information against common normalization layers. Specifically,
while normalization layers such as the InstanceNorm [49] are essential pieces in
almost all the state-of-the-art conditional image synthesis models [22], they tend
to wash away semantic information when applied to uniform or flat segmentation
masks.
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ResBlk

Figure 2.4: In the SPADE generator, each normalization layer uses the segmentation mask
to modulate the layer activations. (left) Structure of one residual block with the SPADE.
(right) The generator contains a series of the SPADE residual blocks with upsampling
layers. Our architecture achieves better performance with a smaller number of parameters
by removing the downsampling layers of leading image-to-image translation networks such
as the pix2pixHD model [22].

Let us consider a simple module that first applies convolution to a segmentation
mask and then normalization. Furthermore, let us assume that a segmentation mask
with a single label is given as input to the module (e.g., all the pixels have the
same label such as sky or grass). Under this setting, the convolution outputs are
again uniform, with different labels having different uniform values. Now, after we
apply InstanceNorm to the output, the normalized activation will become all zeros
no matter what the input semantic label is given. Therefore, semantic information
is totally lost. This limitation applies to a wide range of generator architectures,
including pix2pixHD and its variant that concatenates the semantic mask at all
intermediate layers, as long as a network applies convolution and then normalization
to the semantic mask. In Figure 2.3, we empirically show this is precisely the case
for pix2pixHD. Because a segmentation mask consists of a few uniform regions in
general, the issue of information loss emerges when applying normalization.

In contrast, the segmentation mask in the SPADE Generator is fed through
spatially adaptive modulation without normalization. Only activations from the
previous layer are normalized. Hence, the SPADE generator can better preserve
semantic information. It enjoys the benefit of normalization without losing the
semantic input information.
Multi-modal synthesis. By using a random vector as the input of the generator,
our architecture provides a simple way for multi-modal synthesis [43,44]. Namely,
one can attach an encoder that processes a real image into a random vector, which
will be then fed to the generator. The encoder and generator form a VAE [32],
in which the encoder tries to capture the style of the image, while the generator
combines the encoded style and the segmentation mask information via the SPADEs
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Label Ground Truth CRN [21] pix2pixHD [22] Ours

Figure 2.5: Visual comparison of semantic image synthesis results on the COCO-Stuff
dataset. Our method successfully synthesizes realistic details from semantic labels.

Label Ground Truth CRN [21] SIMS [65] pix2pixHD [22] Ours

Figure 2.6: Visual comparison of semantic image synthesis results on the ADE20K outdoor
and Cityscapes datasets. Our method produces realistic images while respecting the spatial
semantic layout at the same time.



2.4. EXPERIMENTS 12

COCO-Stuff ADE20K ADE20K-outdoor Cityscapes
Method mIoU accu FID mIoU accu FID mIoU accu FID mIoU accu FID

CRN [21] 23.7 40.4 70.4 22.4 68.8 73.3 16.5 68.6 99.0 52.4 77.1 104.7
SIMS [65] N/A N/A N/A N/A N/A N/A 13.1 74.7 67.7 47.2 75.5 49.7

pix2pixHD [22] 14.6 45.8 111.5 20.3 69.2 81.8 17.4 71.6 97.8 58.3 81.4 95.0
Ours 37.4 67.9 22.6 38.5 79.9 33.9 30.8 82.9 63.3 62.3 81.9 71.8

Table 2.1: Our method outperforms the current leading methods in semantic segmentation
(mIoU and accu) and FID [66] scores on all the benchmark datasets. For the mIoU and
accu, higher is better. For the FID, lower is better.

Figure 2.7: Semantic image synthesis results on the Flickr Landscapes dataset. The images
were generated from semantic layout of photographs on the Flickr website.

to reconstruct the original image. The encoder also serves as a style guidance network
at test time to capture the style of target images, as used in Figure 2.1. For training,
we add a KL-Divergence loss term [32].

2.4 Experiments

Implementation details. We apply the Spectral Norm [63] to all the layers in both
generator and discriminator. The learning rates for the generator and discriminator
are 0.0001 and 0.0004, respectively [66]. We use the ADAM solver [67] with β1 = 0
and β2 = 0.999. All the experiments are conducted on an NVIDIA DGX1 with
8 32GB V100 GPUs. We use synchronized BatchNorm, i.e., these statistics are
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collected from all the GPUs.
Datasets. We conduct experiments on several datasets.
• COCO-Stuff [28] is derived from the COCO dataset [29]. It has 118, 000 training
images and 5, 000 validation images captured from diverse scenes. It has 182
semantic classes. Due to its vast diversity, existing image synthesis models perform
poorly on this dataset.
• ADE20K [30] consists of 20, 210 training and 2, 000 validation images. Similarly

to the COCO, the dataset contains challenging scenes with 150 semantic classes.
• ADE20K-outdoor is a subset of the ADE20K dataset that only contains outdoor

scenes, used in Qi et al. [65].
• Cityscapes dataset [31] contains street scene images in German cities. The training

and validation set sizes are 3, 000 and 500, respectively. Recent work has achieved
photorealistic semantic image synthesis results [23,65] on the Cityscapes dataset.
• Flickr Landscapes. We collect 41, 000 photos from Flickr and use 1, 000 samples for

the validation set. To avoid expensive manual annotation, we use a well-trained
DeepLabV2 [68] to compute input segmentation masks.

We train the competing semantic image synthesis methods on the same training set
and report their results on the same validation set for each dataset.
Performance metrics. We adopt the evaluation protocol from previous work [21,22].
Specifically, we run a semantic segmentation model on the synthesized images and
compare how well the predicted segmentation mask matches the ground truth input.
Intuitively, if the output images are realistic, a well-trained semantic segmentation
model should be able to predict the ground truth label. For measuring the seg-
mentation accuracy, we use both the mean Intersection-over-Union (mIoU) and the
pixel accuracy (accu). We use the state-of-the-art segmentation networks for each
dataset: DeepLabV2 [68, 69] for COCO-Stuff, UperNet101 [70] for ADE20K, and
DRN-D-105 [71] for Cityscapes. In addition to the mIoU and the accu segmentation
performance metrics, we use the Fréchet Inception Distance (FID) [66] to measure
the distance between the distribution of synthesized results and the distribution of
real images.
Baselines. We compare our method with 3 leading semantic image synthesis models:
the pix2pixHD model [22], the cascaded refinement network (CRN) [21], and the
semi-parametric image synthesis method (SIMS) [65]. The pix2pixHD is the current
state-of-the-art GAN-based conditional image synthesis framework. The CRN uses
a deep network that repeatedly refines the output from low to high resolution, while
the SIMS takes a semi-parametric approach that composites real segments from
a training set and refines the boundaries. Both the CRN and SIMS are mainly
trained using image reconstruction loss. For a fair comparison, we train the CRN
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Dataset Ours vs. Ours vs. Ours vs.
CRN pix2pixHD SIMS

COCO-Stuff 79.76 86.64 N/A
ADE20K 76.66 83.74 N/A

ADE20K-outdoor 66.04 79.34 85.70
Cityscapes 63.60 53.64 51.52

Table 2.2: User preference study. The numbers indicate the percentage of users who favor
the results of the proposed method over those of the competing method.

and pix2pixHD models using the implementations provided by the authors. As
image synthesis using the SIMS requires many queries to the training dataset, it is
computationally prohibitive for a large dataset such as the COCO-stuff and the full
ADE20K. Therefore, we use the results provided by the authors when available.
Quantitative comparisons. As shown in Table 2.1, our method outperforms
the current state-of-the-art methods by a large margin in all the datasets. For the
COCO-Stuff, our method achieves an mIoU score of 35.2, which is about 1.5 times
better than the previous leading method. Our FID is also 2.2 times better than the
previous leading method. We note that the SIMS model produces a lower FID score
but has poor segmentation performances on the Cityscapes dataset. This is because
the SIMS synthesizes an image by first stitching image patches from the training
dataset. As using the real image patches, the resulting image distribution can better
match the distribution of real images. However, because there is no guarantee that a
perfect query (e.g., a person in a particular pose) exists in the dataset, it tends to
copy objects that do not match the input segments.
Qualitative results. In Figures 2.5 and 2.6, we provide qualitative comparisons
of the competing methods. We find that our method produces results with much
better visual quality and fewer visible artifacts, especially for diverse scenes in the
COCO-Stuff and ADE20K dataset. When the training dataset size is small, the
SIMS model also renders images with good visual quality. However, the depicted
content often deviates from the input segmentation mask (e.g., the shape of the
swimming pool in the second row of Figure 2.6).

In Figures 2.7 and 2.8, we show more example results from the Flickr Landscape
and COCO-Stuff datasets. The proposed method can generate diverse scenes with
high image fidelity. More results are included in the appendix.
Human evaluation. We use the Amazon Mechanical Turk (AMT) to compare the
perceived visual fidelity of our method against existing approaches. Specifically, we
give the AMT workers an input segmentation mask and two synthesis outputs from
different methods and ask them to choose the output image that looks more like a
corresponding image of the segmentation mask. The workers are given unlimited time
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Figure 2.8: Semantic image synthesis results on COCO-Stuff. Our method successfully
generates realistic images in diverse scenes ranging from animals to sports activities.

to make the selection. For each comparison, we randomly generate 500 questions for
each dataset, and each question is answered by 5 different workers. For quality control,
only workers with a lifetime task approval rate greater than 98% can participate in
our study.

Table 2.2 shows the evaluation results. We find that users strongly favor our
results on all the datasets, especially on the challenging COCO-Stuff and ADE20K
datasets. For the Cityscapes, even when all the competing methods achieve high
image fidelity, users still prefer our results.
Effectiveness of the SPADE. For quantifying importance of the SPADE, we
introduce a strong baseline called pix2pixHD++, which combines all the techniques we
find useful for enhancing the performance of pix2pixHD except the SPADE. We also
train models that receive the segmentation mask input at all the intermediate layers
via feature concatenation in the channel direction, which is termed as pix2pixHD++
w/ Concat. Finally, the model that combines the strong baseline with the SPADE is
denoted as pix2pixHD++ w/ SPADE.

As shown in Table 2.3, the architectures with the proposed SPADE consistently
outperforms its counterparts, in both the decoder-style architecture described in
Figure 2.4 and more traditional encoder-decoder architecture used in the pix2pixHD.
We also find that concatenating segmentation masks at all intermediate layers, a
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Figure 2.9: Our model attains multimodal synthesis capability when trained with the
image encoder. During deployment, by using different random noise, our model synthesizes
outputs with diverse appearances but all having the same semantic layouts depicted in the
input mask. For reference, the ground truth image is shown inside the input segmentation
mask.
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Method #param COCO. ADE. City.
decoder w/ SPADE (Ours) 96M 35.2 38.5 62.3

compact decoder w/ SPADE 61M 35.2 38.0 62.5
decoder w/ Concat 79M 31.9 33.6 61.1

pix2pixHD++ w/ SPADE 237M 34.4 39.0 62.2
pix2pixHD++ w/ Concat 195M 32.9 38.9 57.1

pix2pixHD++ 183M 32.7 38.3 58.8
compact pix2pixHD++ 103M 31.6 37.3 57.6

pix2pixHD [22] 183M 14.6 20.3 58.3
Table 2.3: The mIoU scores are boosted when the SPADE is used, for both the decoder
architecture (Figure 2.4) and encoder-decoder architecture of pix2pixHD++ (our improved
baseline over pix2pixHD [22]). On the other hand, simply concatenating semantic input at
every layer fails to do so. Moreover, our compact model with smaller depth at all layers
outperforms all the baselines.

Method COCO ADE20K Cityscapes
segmap input 35.2 38.5 62.3
random input 35.3 38.3 61.6
kernelsize 5x5 35.0 39.3 61.8

kernelsize 3x3 35.2 38.5 62.3
kernelsize 1x1 32.7 35.9 59.9

#params 141M 35.3 38.3 62.5
#params 96M 35.2 38.5 62.3
#params 61M 35.2 38.0 62.5

Sync BatchNorm 35.0 39.3 61.8
BatchNorm 33.7 37.9 61.8

InstanceNorm 33.9 37.4 58.7
Table 2.4: The SPADE generator works with different configurations. We change the
input of the generator, the convolutional kernel size acting on the segmentation map, the
capacity of the network, and the parameter-free normalization method. The settings used
in the paper are boldfaced.

reasonable alternative to the SPADE, does not achieve the same performance as
SPADE. Furthermore, the decoder-style SPADE generator works better than the
strong baselines even with a smaller number of parameters.
Variations of SPADE generator. Table 2.4 reports the performance of several
variations of our generator. First, we compare two types of input to the generator
where one is the random noise while the other is the downsampled segmentation
map. We find that both of the variants render similar performance and conclude
that the modulation by SPADE alone provides sufficient signal about the input mask.
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Second, we vary the type of parameter-free normalization layers before applying
the modulation parameters. We observe that the SPADE works reliably across
different normalization methods. Next, we vary the convolutional kernel size acting
on the label map, and find that kernel size of 1x1 hurts performance, likely because
it prohibits utilizing the context of the label. Lastly, we modify the capacity of
the generator by changing the number of convolutional filters. We present more
variations and ablations in the appendix.
Multi-modal synthesis. In Figure 2.9, we show the multimodal image synthesis
results on the Flickr Landscape dataset. For the same input segmentation mask, we
sample different noise inputs to achieve different outputs. More results are included
in the appendix.
Semantic manipulation and guided image synthesis. In Figure 2.1, we show
an application where a user draws different segmentation masks, and our model
renders the corresponding landscape images. Moreover, our model allows users to
choose an external style image to control the global appearances of the output image.
We achieve it by replacing the input noise with the embedding vector of the style
image computed by the image encoder.

2.5 Conclusion
We have proposed the spatially-adaptive normalization, which utilizes the input

semantic layout while performing the affine transformation in the normalization
layers. The proposed normalization leads to the first semantic image synthesis model
that can produce photorealistic outputs for diverse scenes including indoor, outdoor,
landscape, and street scenes. We further demonstrate its application for multi-modal
synthesis and guided image synthesis.

2.6 Additional Implementation Details

Generator. The architecture of the generator consists of a series of the proposed
SPADE ResBlks with nearest neighbor upsampling. We train our network using
8 GPUs simultaneously and use the synchronized version of the BatchNorm. We
apply the Spectral Norm [63] to all the convolutional layers in the generator. The
architectures of the proposed SPADE and SPADE ResBlk are given in Figure 2.10 and
Figure 2.11, respectively. The architecture of the generator is shown in Figure 2.12.
Discriminator. The architecture of the discriminator follows the one used in the
pix2pixHD method [22], which uses a multi-scale design with the InstanceNorm
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(IN). The only difference is that we apply the Spectral Norm to all the convolutional
layers of the discriminator. The details of the discriminator architecture is shown in
Figure 2.13.
Image Encoder. The image encoder consists of 6 stride-2 convolutional layers
followed by two linear layers to produce the mean and variance of the output
distribution as shown in Figure 2.14.
Learning objective. We use the learning objective function in the pix2pixHD
work [22] except that we replace its LSGAN loss [61] term with the Hinge loss
term [26,62,63]. We use the same weighting among the loss terms in the objective
function as that in the pix2pixHD work.

When training the proposed framework with the image encoder for multi-modal
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Figure 2.10: SPADE Design. The term 3x3-Conv-k denotes a 3-by-3 convolutional layer
with k convolutional filters. The segmentation map is resized to match the resolution of
the corresponding feature map using nearest-neighbor downsampling.

SPADE

ReLU

3x3-Conv-k

SPADE

ReLU

3x3-Conv-k

SPADE

ReLU

3x3-Conv-k

SPADE ResBlk(k)

Figure 2.11: SPADE ResBlk. The residual block design largely follows that in Mescheder et
al. [35] and Miyato et al. [34]. We note that for the case that the number of channels
before and after the residual block is different, the skip connection is also learned (dashed
box in the figure).
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Linear(256, 16384) 

Reshape(1024, 4, 4)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(512), Upsample(2)

SPADE ResBlk(256), Upsample(2)

SPADE ResBlk(128), Upsample(2)

SPADE ResBlk(64), Upsample(2)

3x3Conv-3, Tanh

Figure 2.12: SPADE Generator. Different from prior image generators [20,22], the semantic
segmentation mask is passed to the generator through the proposed SPADE ResBlks in
Figure 2.11.

4x4-↓2-Conv-64, LReLU

4x4-↓2-Conv-128, IN, LReLU

4x4-↓2-Conv-256, IN, LReLU

4x4-Conv-512, IN, LReLU

4x4-Conv-1

Concat

Figure 2.13: Our discriminator design largely follows that in the pix2pixHD [22]. It takes
the concatenation the segmentation map and the image as input. It is based on the
PatchGAN [20]. Hence, the last layer of the discriminator is a convolutional layer.

synthesis and style-guided image synthesis, we include a KL Divergence loss:

LKLD = DKL(q(z|x)||p(z))

where the prior distribution p(z) is a standard Gaussian distribution and the varia-
tional distribution q is fully determined by a mean vector and a variance vector [32].
We use the reparamterization trick [32] for back-propagating the gradient from the
generator to the image encoder. The weight for the KL Divergence loss is 0.05.

In Figure 2.15, we overview the training data flow. The image encoder encodes a
real image to a mean vector and a variance vector. They are used to compute the
noise input to the generator via the reparameterization trick [32]. The generator also
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3x3-↓2-Conv-64, IN, LReLU

3x3-↓2-Conv-128, IN, LReLU

3x3-↓2-Conv-256, IN, LReLU

3x3-↓2-Conv-512, IN, LReLU

3x3-↓2-Conv-512, IN, LReLU

3x3-↓2-Conv-512, IN, LReLU

Linear(256)

Reshape(8192, 1, 1)

Linear(256)

𝜇 𝜎𝟐

Figure 2.14: The image encoder consists a series of convolutional layers with stride 2
followed by two linear layers that output a mean vector µ and a variance vector σ.

takes the segmentation mask of the input image as input with the proposed SPADE
ResBlks. The discriminator takes concatenation of the segmentation mask and the
output image from the generator as input and aims to classify that as fake.
Training details. We perform 200 epochs of training on the Cityscapes and
ADE20K datasets, 100 epochs of training on the COCO-Stuff dataset, and 50 epochs
of training on the Flickr Landscapes dataset. The image sizes are 256× 256, except
the Cityscapes at 512× 256. We linearly decay the learning rate to 0 from epoch 100

Image

Encoder

Generator

Discriminator

Concat

Figure 2.15: The image encoder encodes a real image to a latent representation for
generating a mean vector and a variance vector. They are used to compute the noise
input to the generator via the reparameterization trick [32]. The generator also takes the
segmentation mask of the input image as input via the proposed SPADE ResBlks. The
discriminator takes concatenation of the segmentation mask and the output image from
the generator as input and aims to classify that as fake.
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to 200 for the Cityscapes and ADE20K datasets. The batch size is 32. We initialize
the network weights using thes Glorot initialization [72].
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2.7 Additional Ablation Study

Method COCO. ADE. City.
Ours 35.2 38.5 62.3
Ours w/o Perceptual loss 24.7 30.1 57.4
Ours w/o GAN feature matching loss 33.2 38.0 62.2
Ours w/ a deeper discriminator 34.9 38.3 60.9
pix2pixHD++ w/ SPADE 34.4 39.0 62.2
pix2pixHD++ 32.7 38.3 58.8
pix2pixHD++ w/o Sync BatchNorm 27.4 31.8 51.1
pix2pixHD++ w/o Sync BatchNorm, 26.0 31.9 52.3

and w/o Spectral Norm
pix2pixHD [22] 14.6 20.3 58.3

Table 2.5: Additional ablation study results using the mIoU metric: the table shows that
both the perceptual loss and GAN feature matching loss terms are important. Making
the discriminator deeper does not lead to a performance boost. The table also shows
that all the components (Synchronized BatchNorm, Spectral Norm, TTUR, the Hinge
loss objective, and the SPADE) used in the proposed method helps our strong baseline,
pix2pixHD++.

Table 2.5 provides additional ablation study results analyzing the contribution
of individual components in the proposed method. We first find that both of the
perceptual loss and GAN feature matching loss inherited from the learning objective
function of the pix2pixHD [22] are important. Removing any of them leads to a
performance drop. We also find that increasing the depth of the discriminator by
inserting one more convolutional layer to the top of the pix2pixHD discriminator
does not improve the results.

In Table 2.5, we also analyze the effectiveness of each component used in our
strong baseline, the pix2pixHD++ method, derived from the pix2pixHD method.
We found that the Spectral Norm, synchronized BatchNorm, TTUR [66], and the
hinge loss objective all contribute to the performance boost. Adding the SPADE to
the strong baseline further improves the performance. Note that the pix2pixHD++
w/o Sync BatchNorm and w/o Spectral Norm still differs from the pix2pixHD in
that it uses the hinge loss objective, TTUR, a large batch size, and the Glorot
initialization [72].
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2.8 Additional Results
In Figure 2.16, 2.17, and 2.18, we show additional synthesis results from the

proposed method on the COCO-Stuff and ADE20K datasets with comparisons to
those from the CRN [21] and pix2pixHD [22] methods.

In Figure 2.19 and 2.20, we show additional synthesis results from the proposed
method on the ADE20K-outdoor and Cityscapes datasets with comparison to those
from the CRN [21], SIMS [65], and pix2pixHD [22] methods.

In Figure 2.21, we show additional multi-modal synthesis results from the proposed
method. As sampling different z from a standard multivariate Gaussian distribution,
we synthesize images of diverse appearances.

In the accompanying video, we demonstrate our semantic image synthesis inter-
face. We show how a user can create photorealistic landscape images by painting
semantic labels on a canvas. We also show how a user can synthesize images of
diverse appearances for the same semantic segmentation mask as well as transfer the
appearance of a provided style image to the synthesized one.

https://github.com/NVlabs/SPADE
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Label Ground Truth CRN pix2pixHD Ours

Figure 2.16: Additional results with comparison to those from the CRN [21] and
pix2pixHD [22] methods on the COCO-Stuff dataset.
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Label Ground Truth CRN pix2pixHD Ours

Figure 2.17: Additional results with comparison to those from the CRN [21] and
pix2pixHD [22] methods on the COCO-Stuff dataset.
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Label Ground Truth CRN pix2pixHD Ours

Figure 2.18: Additional results with comparison to those from the CRN [21] and
pix2pixHD [22] methods on the ADE20K dataset.
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Label Ground Truth CRN SIMS pix2pixHD Ours

Figure 2.19: Additional results with comparison to those from the CRN [21], SIMS [65],
and pix2pixHD [22] methods on the ADE20K-outdoor dataset.
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Label Ground Truth Ours

CRN SIMS pix2pixHD

Label Ground Truth Ours

CRN SIMS pix2pixHD

Label Ground Truth Ours

CRN SIMS pix2pixHD

Figure 2.20: Additional results with comparison to those from the CRN [21], SIMS [65],
and pix2pixHD [22] methods on the Cityscapes dataset.
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Label Ground Truth Multi-modal results

Figure 2.21: Additional multi-modal synthesis results on the Flickr Landscapes Dataset.
By sampling latent vectors from a standard Gaussian distribution, we synthesize images of
diverse appearances.
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Chapter 3

Discovering Structure and Style
from Unpaired Examples

While the per-pixel supervision provided a conceptually simple yet powerful
method that directly learns controllable generation of style and content, its method
cannot be used in many scenarios. For example, let’s say the user would like to
transform a horse in a picture into a zebra in the same pose. To utilize per-pixel
supervision of the last chapter, one needs to prepare pairs of horse and zebra photos
with the same pose, camera angle, background and illumination, but this would be
impossible. As such, there are many cases in which a source image of one category
should be translated into another category, but providing explicit examples of the
input and output pairs is very difficult. Still, we can still provide a class label per
each image, and prepare a dataset of unpaired examples.

We present an approach for learning to translate an image from a source domainX
to a target domain Y in the absence of paired examples. Our goal is to learn a mapping
G : X → Y such that the distribution of images from G(X) is indistinguishable
from the distribution Y using an adversarial loss. Note that this mapping is highly
under-constrained, as there are combinatorial number of mappings |Y ||X | that satisfy
this constraint. In particular, we would like to construct a mapping that avoids
unnecessary modification to the input image: a horse must be changed into a zebra,
but the pose and background should be preserved.

We assume there is some underlying relationship between the domains – for
example, that they are two different renderings of the same underlying scene – and
seek to learn that relationship. Although we lack supervision in the form of paired
examples, we can exploit supervision at the level of sets: we are given one set of
images in domain X and a different set in domain Y . We may train a mapping
G : X → Y such that the output ŷ = G(x), x ∈ X, is indistinguishable from images
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⋯ ⋯⋯

Paired Unpaired

Figure 3.1: Paired training data (left) consists of training examples {xi, yi}Ni=1, where the
correspondence between xi and yi exists [73]. We instead consider unpaired training data
(right), consisting of a source set {xi}Ni=1 (xi ∈ X) and a target set {yj}Mj=1 (yj ∈ Y ), with
no information provided as to which xi matches which yj .

y ∈ Y by an adversary trained to classify ŷ apart from y. In theory, this objective
can induce an output distribution over ŷ that matches the empirical distribution
pdata(y) (in general, this requires G to be stochastic) [12]. The optimal G thereby
translates the domain X to a domain Ŷ distributed identically to Y . However, such
a translation does not guarantee that an individual input x and output y are paired
up in a meaningful way – there are infinitely many mappings G that will induce
the same distribution over ŷ. Moreover, in practice, we have found it difficult to
optimize the adversarial objective in isolation: standard procedures often lead to
the well-known problem of mode collapse, where all input images map to the same
output image and the optimization fails to make progress [74].

These issues call for adding more structure to our objective. We present two
frameworks in this direction. In Section 3.2, we exploit the property that translation
should be “cycle consistent", in the sense that if we translate, e.g., a sentence from
English to French, and then translate it back from French to English, we should arrive
back at the original sentence [75]. Mathematically, if we have a translator G : X → Y
and another translator F : Y → X, then G and F should be inverses of each other,
and both mappings should be bijections. We apply this structural assumption by
training both the mapping G and F simultaneously, and adding a cycle consistency
loss [76] that encourages F (G(x)) ≈ x and G(F (y)) ≈ y. Combining this loss with
adversarial losses on domains X and Y yields our full objective for unpaired image-
to-image translation. In Section 3.3, we constrain the image translation function by
simultaneously finding an embedding space that is invariant to domain differences,
but is sensitive to the differences among patches of the same image. We enforce
that a visual patch after translation should be the most similar to the corresponding
input patch, compared to all the other patches of the same input image.
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We apply our method to a wide range of applications, including collection style
transfer, object transfiguration, season transfer and photo enhancement. We also
compare against previous approaches that rely either on hand-defined factorizations
of style and content, or on shared embedding functions, and show that our method
outperforms these baselines.

3.1 Related work
Generative Adversarial Networks (GANs) [12,77] have achieved impressive

results in image generation [78,79], image editing [80], and representation learning [79,
81, 82]. Recent methods adopt the same idea for conditional image generation
applications, such as text2image [37], image inpainting [83], and future prediction [84],
as well as to other domains like videos [85] and 3D data [86]. The key to GANs’
success is the idea of an adversarial loss that forces the generated images to be,
in principle, indistinguishable from real photos. This loss is particularly powerful
for image generation tasks, as this is exactly the objective that much of computer
graphics aims to optimize. We adopt an adversarial loss to learn the mapping such
that the translated images cannot be distinguished from images in the target domain.

Paired Image-to-Image Translation The idea of image-to-image translation
goes back at least to Hertzmann et al.’s Image Analogies [4], who employ a non-
parametric texture model [3] on a single input-output training image pair. More recent
approaches use a dataset of input-output examples to learn a parametric translation
function using CNNs (e.g., [87]). Our approach builds on the “pix2pix" framework
of Isola et al. [73], which uses a conditional generative adversarial network [12] to
learn a mapping from input to output images. Similar ideas have been applied to
various tasks such as generating photographs from sketches [88] or from attribute and
semantic layouts [40]. However, unlike the above prior work, we learn the mapping
without paired training examples.

Unpaired Image-to-Image Translation Several other methods also tackle the
unpaired setting, where the goal is to relate two data domains: X and Y . Rosales et
al. [89] propose a Bayesian framework that includes a prior based on a patch-based
Markov random field computed from a source image and a likelihood term obtained
from multiple style images. More recently, CoGAN [90] and cross-modal scene
networks [91] use a weight-sharing strategy to learn a common representation across
domains. Concurrent to Chapter 3.2, Liu et al. [42] extends the above framework
with a combination of variational autoencoders [32] and generative adversarial
networks [12]. Another line of concurrent work [92–94] encourages the input and
output to share specific “content" features even though they may differ in “style“.
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These methods also use adversarial networks, with additional terms to enforce the
output to be close to the input in a predefined metric space, such as class label
space [94], image pixel space [92], and image feature space [93]. More recently,
many unpaired image-to-image translation methods were proposed by leveraging the
cycle-consistency constraint or preservation of relationship among images. Please
see below for more detailed discussion.

Unlike the above approaches, our formulation does not rely on any task-specific,
predefined similarity function between the input and output, nor do we assume
that the input and output have to lie in the same low-dimensional embedding space.
This makes our method a general-purpose solution for many vision and graphics
tasks. We directly compare against several prior and contemporary approaches in
Chapter 3.2.5.

Cycle Consistency The idea of using transitivity as a way to regularize struc-
tured data has a long history. In visual tracking, enforcing simple forward-backward
consistency has been a standard trick for decades [95, 96]. In the language do-
main, verifying and improving translations via “back translation and reconciliation”
is a technique used by human translators [75] (including, humorously, by Mark
Twain [97]), as well as by machines [98]. More recently, higher-order cycle con-
sistency has been used in structure from motion [99], 3D shape matching [100],
co-segmentation [101], dense semantic alignment [76,102], and depth estimation [103].
Of these, Zhou et al. [76] and Godard et al. [103] are most similar to our work, as
they use a cycle consistency loss as a way of using transitivity to supervise CNN
training. In this work, we are introducing a similar loss to push G and F to be
consistent with each other. Concurrent with our work, in these same proceedings,
Yi et al. [104] independently use a similar objective for unpaired image-to-image
translation, inspired by dual learning in machine translation [98].

Including our work of Chapter 3.2, the cycle-consistency has become the de
facto method for enforcing correspondence [41, 104, 105], which learns an inverse
mapping from the output domain back to the input and checks if the input can be
reconstructed. Alternatively, UNIT [42] and MUNIT [44] propose to learn a shared
intermediate “content” latent space. Recent works further enable multiple domains
and multi-modal synthesis [43, 106–109] and improve the quality of results [110–114].
In all of the above examples, cycle-consistency is used, often in multiple aspects,
between (a) two image domains [41,104,105] (b) image to latent [42–44,106,108], or (c)
latent to image [43, 44]. While effective, the underlying bijective assumption behind
cycle-consistency is sometimes too restrictive. Perfect reconstruction is difficult
to achieve, especially when images from one domain have additional information
compared to the other domain.

Neural Style Transfer [115–118] is another way to perform image-to-image
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translation, which synthesizes a novel image by combining the content of one image
with the style of another image (typically a painting) based on matching the Gram
matrix statistics of pre-trained deep features. Our primary focus, on the other hand,
is learning the mapping between two image collections, rather than between two
specific images, by trying to capture correspondences between higher-level appearance
structures. Therefore, our method can be applied to other tasks, such as painting→
photo, object transfiguration, etc. where single sample transfer methods do not
perform well. We compare these two methods in Chapter 3.2.6.

Relationship preservation. An interesting alternative approach is to encourage
relationships present in the input be analogously reflected in the output. For
example, perceptually similar patches within an input image should be similar in
the output [111], output and input images share similar content regarding a pre-
defined distance [119–121], vector arithmetic between input images is preserved
using a margin-based triplet loss [122], distances between input images should be
consistent in output images [123], the network should be equivariant to geometric
transformations [124]. Among them, TraVeLGAN [122], DistanceGAN [123] and
GcGAN [124] enable one-way translation and bypass cycle-consistency. However,
they rely on relationship between entire images, or often with predefined distance
functions. Here we seek to replace cycle-consistency by instead learning a cross-
domain similarity function between input and output patches through information
maximization, without relying on a pre-specified distance.

Emergent perceptual similarity in deep network embeddings. Defining a
“perceptual” distance function between high-dimensional signals, e.g., images, has
been a longstanding problem in computer vision and image processing. The majority
of image translation work mentioned uses a per-pixel reconstruction metric, such as
`1. Such metrics do not reflect human perceptual preferences and can lead to blurry
results. Recently, the deep learning community has found that the VGG classification
network [125] trained on ImageNet dataset [126] can be re-purposed as a “perceptual
loss” [116,127–131], which can be used in paired image translation tasks [14, 21,22],
and was known to outperform traditional metrics such as SSIM [132] and FSIM [133]
on human perceptual tests [130]. In particular, the Contextual Loss [131] boosts
the perceptual quality of pretrained VGG features, validated by human perceptual
judgments [134]. In these cases, the frozen network weights cannot adapt to the
data on hand. Furthermore, the frozen similarity function may not be appropriate
when comparing data across two domains, depending on the pairing. By posing our
constraint via mutual information, our method makes use of negative samples from
the data, allowing the cross-domain similarity function to adapt to the particular
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input and output domains, and bypass using a pre-defined similarity function.

Contrastive representation learning. Traditional unsupervised learning has
sought to learn a compressed code which can effectively reconstruct the input [135].
Data imputation – holding one subset of raw data to predict from another – has
emerged as a more effective family of pretext tasks, including denoising [136], context
prediction [83, 137], colorization [138, 139], cross-channel encoding [140], frame
prediction [141,142], and multi-sensory prediction [143,144]. However, such methods
suffer from the same issue as before — the need for a pre-specified, hand-designed
loss function to measure predictive performance.

Recently, a family of methods based on maximizing mutual information has
emerged to bypass the above issue [145–153]. These methods make use of noise
contrastive estimation [154], learning an embedding where associated signals are
brought together, in contrast to other samples in the dataset (note that similar ideas
go back to classic work on metric learning with Siamese nets [155]). Associated
signals can be an image with itself [146,153,156–158], an image with its downstream
representation [148, 149], neighboring patches within an image [147, 151, 159], or
multiple views of the input image [152], and most successfully, an image with a set
of transformed versions of itself [145,150]. The design choices of the InfoNCE loss,
such as the number of negatives and how to sample them, hyperparameter settings,
and data augmentations all play a critical role and need to be carefully studied. We
are the first to use InfoNCE loss for the conditional image synthesis tasks. As such,
we draw on these important insights, and find additional pertinent factors, unique
to image synthesis.

3.2 Pixel Cycle-Consistency Loss for Unpaired
Translation

1

Our goal is to learn mapping functions between two domains X and Y given
training samples {xi}N

i=1 where xi ∈ X and {yj}M
j=1 where yj ∈ Y 2. We denote the

data distribution as x ∼ pdata(x) and y ∼ pdata(y). As illustrated in Figure 3.2 (a),
our model includes two mappings G : X → Y and F : Y → X. In addition, we
introduce two adversarial discriminators DX and DY , where DX aims to distinguish
between images {x} and translated images {F (y)}; in the same way, DY aims to

1This work was first published as Unpaired image-to-image translation using cycle-consistent
adversarial networks in ICCV, 2017 [41].

2We often omit the subscript i and j for simplicity.
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Figure 3.2: (a) Our model contains two mapping functions G : X → Y and F : Y → X,
and associated adversarial discriminators DY and DX . DY encourages G to translate
X into outputs indistinguishable from domain Y , and vice versa for DX and F . To
further regularize the mappings, we introduce two cycle consistency losses that capture
the intuition that if we translate from one domain to the other and back again we should
arrive at where we started: (b) forward cycle-consistency loss: x→ G(x)→ F (G(x)) ≈ x,
and (c) backward cycle-consistency loss: y → F (y)→ G(F (y)) ≈ y

discriminate between {y} and {G(x)}. Our objective contains two types of terms:
adversarial losses [12] for matching the distribution of generated images to the data
distribution in the target domain; and cycle consistency losses to prevent the learned
mappings G and F from contradicting each other.

3.2.1 Adversarial Loss
We apply adversarial losses [12] to both mapping functions. For the mapping

function G : X → Y and its discriminator DY , we express the objective as:

LGAN(G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]
+ Ex∼pdata(x)[log(1−DY (G(x))], (3.1)

where G tries to generate images G(x) that look similar to images from domain Y ,
while DY aims to distinguish between translated samples G(x) and real samples y.
G aims to minimize this objective against an adversary D that tries to maximize
it, i.e., minG maxDY

LGAN(G,DY , X, Y ). We introduce a similar adversarial loss
for the mapping function F : Y → X and its discriminator DX as well: i.e.,
minF maxDX

LGAN(F,DX , Y,X).

3.2.2 Cycle Consistency Loss
Adversarial training can, in theory, learn mappings G and F that produce outputs

identically distributed as target domains Y and X respectively (strictly speaking,
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Input 𝑥 Output 𝐺(𝑥) Reconstruction F(𝐺 𝑥 )

Figure 3.3: The input images x, output images G(x) and the reconstructed images
F (G(x)) from various experiments. From top to bottom: photo↔Cezanne, horses↔zebras,
winter→summer Yosemite, aerial photos↔Google maps.

this requires G and F to be stochastic functions) [74]. However, with large enough
capacity, a network can map the same set of input images to any random permutation
of images in the target domain, where any of the learned mappings can induce an
output distribution that matches the target distribution. Thus, adversarial losses
alone cannot guarantee that the learned function can map an individual input xi to
a desired output yi. To further reduce the space of possible mapping functions, we
argue that the learned mapping functions should be cycle-consistent: as shown in
Figure 3.2 (b), for each image x from domain X, the image translation cycle should
be able to bring x back to the original image, i.e., x→ G(x)→ F (G(x)) ≈ x. We
call this forward cycle consistency. Similarly, as illustrated in Figure 3.2 (c), for each
image y from domain Y , G and F should also satisfy backward cycle consistency:
y → F (y)→ G(F (y)) ≈ y. We incentivize this behavior using a cycle consistency
loss:

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖1]
+ Ey∼pdata(y)[‖G(F (y))− y‖1]. (3.2)
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In preliminary experiments, we also tried replacing the L1 norm in this loss with an
adversarial loss between F (G(x)) and x, and between G(F (y)) and y, but did not
observe improved performance.

The behavior induced by the cycle consistency loss can be observed in Figure 3.3:
the reconstructed images F (G(x)) end up matching closely to the input images x.

3.2.3 Full Objective
Our full objective is:

L(G,F,DX , DY ) =LGAN(G,DY , X, Y )
+ LGAN(F,DX , Y,X)
+ λLcyc(G,F ), (3.3)

where λ controls the relative importance of the two objectives. We aim to solve:

G∗, F ∗ = arg min
G,F

max
Dx,DY

L(G,F,DX , DY ). (3.4)

Notice that our model can be viewed as training two “autoencoders" [135]: we
learn one autoencoder F ◦G : X → X jointly with another G◦F : Y → Y . However,
these autoencoders each have special internal structures: they map an image to
itself via an intermediate representation that is a translation of the image into
another domain. Such a setup can also be seen as a special case of “adversarial
autoencoders" [160], which use an adversarial loss to train the bottleneck layer of
an autoencoder to match an arbitrary target distribution. In our case, the target
distribution for the X → X autoencoder is that of the domain Y .

In Chapter 3.2.5, we compare our method against ablations of the full objective,
including the adversarial loss LGAN alone and the cycle consistency loss Lcyc alone,
and empirically show that both objectives play critical roles in arriving at high-quality
results. We also evaluate our method with only cycle loss in one direction and show
that a single cycle is not sufficient to regularize the training for this under-constrained
problem.

3.2.4 Implementation
Network Architecture We adopt the architecture for our generative networks
from Johnson et al. [116] who have shown impressive results for neural style transfer
and super-resolution. This network contains three convolutions, several residual
blocks [60], two fractionally-strided convolutions with stride 1

2 , and one convolution
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that maps features to RGB. We use 6 blocks for 128× 128 images and 9 blocks for
256× 256 and higher-resolution training images. Similar to Johnson et al. [116], we
use instance normalization [161]. For the discriminator networks we use 70 × 70
PatchGANs [73,162,163], which aim to classify whether 70× 70 overlapping image
patches are real or fake. Such a patch-level discriminator architecture has fewer
parameters than a full-image discriminator and can work on arbitrarily-sized images
in a fully convolutional fashion [73].

Training details We apply two techniques from recent works to stabilize our
model training procedure. First, for LGAN (Equation 3.1), we replace the negative log
likelihood objective by a least-squares loss [61]. This loss is more stable during training
and generates higher quality results. In particular, for a GAN loss LGAN(G,D,X, Y ),
we train the G to minimize Ex∼pdata(x)[(D(G(x))− 1)2] and train the D to minimize
Ey∼pdata(y)[(D(y)− 1)2] + Ex∼pdata(x)[D(G(x))2].

Second, to reduce model oscillation [74], we follow Shrivastava et al.’s strategy [92]
and update the discriminators using a history of generated images rather than the
ones produced by the latest generators. We keep an image buffer that stores the 50
previously created images.

For all the experiments, we set λ = 10 in Equation 3.3. We use the Adam
solver [164] with a batch size of 1. All networks were trained from scratch with a
learning rate of 0.0002. We keep the same learning rate for the first 100 epochs and
linearly decay the rate to zero over the next 100 epochs.

3.2.5 Results
We first compare our approach against recent methods for unpaired image-to-

image translation on paired datasets where ground truth input-output pairs are
available for evaluation. We then study the importance of both the adversarial
loss and the cycle consistency loss and compare our full method against several
variants. Finally, we demonstrate the generality of our algorithm on a wide range of
applications where paired data does not exist. For brevity, we refer to our method
as CycleGAN. The PyTorch and Torch code, models, and full results can be found at
our website.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/CycleGAN
https://junyanz.github.io/CycleGAN/
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Figure 3.4: Given any two unordered image collections X and Y , our algorithm learns to
automatically “translate” an image from one into the other and vice versa: (left) Monet
paintings and landscape photos from Flickr; (center) zebras and horses from ImageNet;
(right) summer and winter Yosemite photos from Flickr. Example application (bottom):
using a collection of paintings of famous artists, our method learns to render natural
photographs into the respective styles.

Evaluation

Input BiGAN CoGAN feature loss GAN SimGAN CycleGAN pix2pix Ground truth

Figure 3.5: Different methods for mapping labels↔photos trained on Cityscapes images.
From left to right: input, BiGAN/ALI [165, 166], CoGAN [90], feature loss + GAN,
SimGAN [92], CycleGAN (ours), pix2pix [73] trained on paired data, and ground truth.

Using the same evaluation datasets and metrics as “pix2pix” [73], we compare our
method against several baselines both qualitatively and quantitatively. The tasks
include semantic labels↔photo on the Cityscapes dataset [31], and map↔aerial
photo on data scraped from Google Maps. We also perform ablation study on the
full loss function.
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Input BiGAN CoGAN feature loss GAN SimGAN CycleGAN pix2pix Ground truth

Figure 3.6: Different methods for mapping aerial photos↔maps on Google Maps. From left
to right: input, BiGAN/ALI [165,166], CoGAN [90], feature loss + GAN, SimGAN [92],
CycleGAN (ours), pix2pix [73] trained on paired data, and ground truth.

Evaluation Metrics AMT perceptual studies On the map↔aerial photo
task, we run “real vs fake" perceptual studies on Amazon Mechanical Turk (AMT)
to assess the realism of our outputs. We follow the same perceptual study protocol
from Isola et al. [73], except we only gather data from 25 participants per algorithm
we tested. Participants were shown a sequence of pairs of images, one a real photo or
map and one fake (generated by our algorithm or a baseline), and asked to click on
the image they thought was real. The first 10 trials of each session were practice and
feedback was given as to whether the participant’s response was correct or incorrect.
The remaining 40 trials were used to assess the rate at which each algorithm fooled
participants. Each session only tested a single algorithm, and participants were only
allowed to complete a single session. The numbers we report here are not directly
comparable to those in [73] as our ground truth images were processed slightly
differently 3 and the participant pool we tested may be differently distributed from
those tested in [73] (due to running the experiment at a different date and time).
Therefore, our numbers should only be used to compare our current method against
the baselines (which were run under identical conditions), rather than against [73].

FCN score Although perceptual studies may be the gold standard for assessing
3We train all the models on 256× 256 images while in pix2pix [73], the model was trained on

256× 256 patches of 512× 512 images, and run convolutionally on the 512× 512 images at test
time. We choose 256× 256 in our experiments as many baselines cannot scale up to high-resolution
images, and CoGAN cannot be tested fully convolutionally.



3.2. PIXEL CYCLE-CONSISTENCY LOSS FOR UNPAIRED
TRANSLATION 43

graphical realism, we also seek an automatic quantitative measure that does not
require human experiments. For this, we adopt the “FCN score" from [73], and
use it to evaluate the Cityscapes labels→photo task. The FCN metric evaluates
how interpretable the generated photos are according to an off-the-shelf semantic
segmentation algorithm (the fully-convolutional network, FCN, from [87]). The FCN
predicts a label map for a generated photo. This label map can then be compared
against the input ground truth labels using standard semantic segmentation metrics
described below. The intuition is that if we generate a photo from a label map of
“car on the road", then we have succeeded if the FCN applied to the generated photo
detects “car on the road".

Semantic segmentation metrics To evaluate the performance of photo→labels,
we use the standard metrics from the Cityscapes benchmark [31], including per-
pixel accuracy, per-class accuracy, and mean class Intersection-Over-Union (Class
IOU) [31].

Baselines CoGAN [90] This method learns one GAN generator for domain
X and one for domain Y , with tied weights on the first few layers for shared latent
representations. Translation from X to Y can be achieved by finding a latent
representation that generates image X and then rendering this latent representation
into style Y .

SimGAN [92] Like our method, Shrivastava et al. [92] uses an adversarial loss
to train a translation from X to Y . The regularization term ‖x−G(x)‖1 i s used to
penalize making large changes at pixel level.

Feature loss + GAN We also test a variant of SimGAN [92] where the
L1 loss is computed over deep image features using a pretrained network (VGG-
16 relu4_2 [167]), rather than over RGB pixel values. Computing distances in
deep feature space, like this, is also sometimes referred to as using a “perceptual
loss" [116,127].

BiGAN/ALI [165,166] Unconditional GANs [12] learn a generator G : Z → X,
that maps a random noise z to an image x. The BiGAN [166] and ALI [165] propose
to also learn the inverse mapping function F : X → Z. Though they were originally
designed for mapping a latent vector z to an image x, we implemented the same
objective for mapping a source image x to a target image y.

pix2pix [73] We also compare against pix2pix [73], which is trained on paired
data, to see how close we can get to this “upper bound" without using any paired
data.

For a fair comparison, we implement all the baselines using the same architecture
and details as our method, except for CoGAN [90]. CoGAN builds on generators
that produce images from a shared latent representation, which is incompatible with
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Map → Photo Photo → Map
Loss % Turkers labeled real % Turkers labeled real
CoGAN [90] 0.6% ± 0.5% 0.9% ± 0.5%
BiGAN/ALI [165,166] 2.1% ± 1.0% 1.9% ± 0.9%
SimGAN [92] 0.7% ± 0.5% 2.6% ± 1.1%
Feature loss + GAN 1.2% ± 0.6% 0.3% ± 0.2%
CycleGAN (ours) 26.8% ± 2.8% 23.2% ± 3.4%

Table 3.1: AMT “real vs fake" test on maps↔aerial photos at 256× 256 resolution.

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [90] 0.40 0.10 0.06
BiGAN/ALI [165,166] 0.19 0.06 0.02
SimGAN [92] 0.20 0.10 0.04
Feature loss + GAN 0.06 0.04 0.01
CycleGAN (ours) 0.52 0.17 0.11
pix2pix [73] 0.71 0.25 0.18

Table 3.2: FCN-scores for different methods, evaluated on Cityscapes labels→photo.

our image-to-image network. We use the public implementation of CoGAN instead.

Comparison against baselines

As can be seen in Figure 3.5 and Figure 3.6, we were unable to achieve compelling
results with any of the baselines. Our method, on the other hand, can produce
translations that are often of similar quality to the fully supervised pix2pix.

Table 3.1 reports performance regarding the AMT perceptual realism task. Here,
we see that our method can fool participants on around a quarter of trials, in both
the maps→aerial photos direction and the aerial photos→maps direction at 256×256
resolution4. All the baselines almost never fooled participants.

Table 3.2 assesses the performance of the labels→photo task on the Cityscapes
and Table 3.3 evaluates the opposite mapping (photos→labels). In both cases, our
method again outperforms the baselines.

4We also train CycleGAN and pix2pix at 512 × 512 resolution, and observe the comparable
performance: maps→aerial photos: CycleGAN: 37.5%± 3.6% and pix2pix: 33.9%± 3.1%; aerial
photos→maps: CycleGAN: 16.5%± 4.1% and pix2pix: 8.5%± 2.6%

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [90] 0.45 0.11 0.08
BiGAN/ALI [165,166] 0.41 0.13 0.07
SimGAN [92] 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16
pix2pix [73] 0.85 0.40 0.32

Table 3.3: Classification performance of photo→labels for different methods on cityscapes.

https://github.com/mingyuliutw/CoGAN


3.2. PIXEL CYCLE-CONSISTENCY LOSS FOR UNPAIRED
TRANSLATION 45

Ground truthInput GAN aloneCycle alone GAN+forward GAN+backward CycleGAN

Figure 3.7: Different variants of our method for mapping labels↔photos trained on
cityscapes. From left to right: input, cycle-consistency loss alone, adversarial loss alone,
GAN + forward cycle-consistency loss (F (G(x)) ≈ x), GAN + backward cycle-consistency
loss (G(F (y)) ≈ y), CycleGAN (our full method), and ground truth. Both Cycle alone
and GAN + backward fail to produce images similar to the target domain. GAN alone
and GAN + forward suffer from mode collapse, producing identical label maps regardless
of the input photo.

Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.22 0.07 0.02
GAN alone 0.51 0.11 0.08
GAN + forward cycle 0.55 0.18 0.12
GAN + backward cycle 0.39 0.14 0.06
CycleGAN (ours) 0.52 0.17 0.11

Table 3.4: Ablation study: FCN-scores for different variants of our method, evaluated on
Cityscapes labels→photo.

Analysis of the loss function
In Table 3.4 and Table 3.5, we compare against ablations of our full loss. Removing

the GAN loss substantially degrades results, as does removing the cycle-consistency
loss. We therefore conclude that both terms are critical to our results. We also
evaluate our method with the cycle loss in only one direction: GAN + forward cycle
loss Ex∼pdata(x)[‖F (G(x))−x‖1], or GAN + backward cycle loss Ey∼pdata(y)[‖G(F (y))−
y‖1] (Equation 3.2) and find that it often incurs training instability and causes mode
collapse, especially for the direction of the mapping that was removed. Figure 3.7
shows several qualitative examples.

Image reconstruction quality
In Figure 3.3, we show a few random samples of the reconstructed images F (G(x)).

We observed that the reconstructed images were often close to the original inputs
x, at both training and testing time, even in cases where one domain represents
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Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.10 0.05 0.02
GAN alone 0.53 0.11 0.07
GAN + forward cycle 0.49 0.11 0.07
GAN + backward cycle 0.01 0.06 0.01
CycleGAN (ours) 0.58 0.22 0.16

Table 3.5: Ablation study: classification performance of photo→labels for different losses,
evaluated on Cityscapes.

label → facade

facade → label

edges  → shoes

shoes  → edges

Input Output Input Output Input Output

Figure 3.8: Example results of CycleGAN on paired datasets used in “pix2pix” [73] such
as architectural labels↔photos and edges↔shoes.

significantly more diverse information, such as map↔aerial photos.

Additional results on paired datasets
Figure 3.8 shows some example results on other paired datasets used in “pix2pix” [73],

such as architectural labels↔photos from the CMP Facade Database [168], and
edges↔shoes from the UT Zappos50K dataset [169]. The image quality of our results
is close to those produced by the fully supervised pix2pix while our method learns
the mapping without paired supervision.

3.2.6 Applications
We demonstrate our method on several applications where paired training data

does not exist. We observe that translations on training data are often more appealing
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CycleGANInput CycleGAN+L"#$%&"&'

Figure 3.9: The effect of the identity mapping loss on Monet’s painting→ photos. From
left to right: input paintings, CycleGAN without identity mapping loss, CycleGAN with
identity mapping loss. The identity mapping loss helps preserve the color of the input
paintings.

than those on test data, and full results of all applications on both training and test
data can be viewed on our project website.

Collection style transfer (Figure 3.10 and Figure 3.11) We train the
model on landscape photographs downloaded from Flickr and WikiArt. Unlike recent
work on “neural style transfer" [115], our method learns to mimic the style of an
entire collection of artworks, rather than transferring the style of a single selected
piece of art. Therefore, we can learn to generate photos in the style of, e.g., Van
Gogh, rather than just in the style of Starry Night. The size of the dataset for each
artist/style was 526, 1073, 400, and 563 for Cezanne, Monet, Van Gogh, and Ukiyo-e.

Object transfiguration (Figure 3.13) The model is trained to translate one
object class from ImageNet [126] to another (each class contains around 1000 training
images). Turmukhambetov et al. [170] propose a subspace model to translate one
object into another object of the same category, while our method focuses on object
transfiguration between two visually similar categories.

Season transfer (Figure 3.13) The model is trained on 854 winter photos and
1273 summer photos of Yosemite downloaded from Flickr.

Photo generation from paintings (Figure 3.12) For painting→photo, we
find that it is helpful to introduce an additional loss to encourage the mapping to
preserve color composition between the input and output. In particular, we adopt the
technique of Taigman et al. [93] and regularize the generator to be near an identity
mapping when real samples of the target domain are provided as the input to the

https://junyanz.github.io/CycleGAN/
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generator: i.e., Lidentity(G,F ) = Ey∼pdata(y)[‖G(y)− y‖1] + Ex∼pdata(x)[‖F (x)− x‖1].
Without Lidentity, the generator G and F are free to change the tint of input

images when there is no need to. For example, when learning the mapping between
Monet’s paintings and Flickr photographs, the generator often maps paintings of
daytime to photographs taken during sunset, because such a mapping may be equally
valid under the adversarial loss and cycle consistency loss. The effect of this identity
mapping loss are shown in Figure 3.9.

In Figure 3.12, we show additional results translating Monet’s paintings to
photographs. This figure and Figure 3.9 show results on paintings that were included
in the training set, whereas for all other experiments in the paper, we only evaluate
and show test set results. Because the training set does not include paired data,
coming up with a plausible translation for a training set painting is a nontrivial
task. Indeed, since Monet is no longer able to create new paintings, generalization
to unseen, “test set", paintings is not a pressing problem.

Photo enhancement (Figure 3.14) We show that our method can be used
to generate photos with shallower depth of field. We train the model on flower
photos downloaded from Flickr. The source domain consists of flower photos taken
by smartphones, which usually have deep DoF due to a small aperture. The target
contains photos captured by DSLRs with a larger aperture. Our model successfully
generates photos with shallower depth of field from the photos taken by smartphones.

Comparison with Gatys et al. [115] In Figure 3.15, we compare our results
with neural style transfer [115] on photo stylization. For each row, we first use two
representative artworks as the style images for [115]. Our method, on the other
hand, can produce photos in the style of entire collection. To compare against neural
style transfer of an entire collection, we compute the average Gram Matrix across
the target domain and use this matrix to transfer the “average style" with Gatys et
al [115].

Figure 3.16 demonstrates similar comparisons for other translation tasks. We
observe that Gatys et al. [115] requires finding target style images that closely match
the desired output, but still often fails to produce photorealistic results, while our
method succeeds to generate natural-looking results, similar to the target domain.

3.2.7 Limitations and Discussion
Although our method can achieve compelling results in many cases, the results

are far from uniformly positive. Figure 3.17 shows several typical failure cases.
On translation tasks that involve color and texture changes, as many of those
reported above, the method often succeeds. We have also explored tasks that
require geometric changes, with little success. For example, on the task of dog→cat



3.2. PIXEL CYCLE-CONSISTENCY LOSS FOR UNPAIRED
TRANSLATION 49

transfiguration, the learned translation degenerates into making minimal changes to
the input (Figure 3.17). This failure might be caused by our generator architectures
which are tailored for good performance on the appearance changes. Handling more
varied and extreme transformations, especially geometric changes, is an important
problem for future work.

Some failure cases are caused by the distribution characteristics of the training
datasets. For example, our method has got confused in the horse → zebra example
(Figure 3.17, right), because our model was trained on the wild horse and zebra
synsets of ImageNet, which does not contain images of a person riding a horse or
zebra.

We also observe a lingering gap between the results achievable with paired training
data and those achieved by our unpaired method. In some cases, this gap may be very
hard – or even impossible – to close: for example, our method sometimes permutes
the labels for tree and building in the output of the photos→labels task. Resolving
this ambiguity may require some form of weak semantic supervision. Integrating
weak or semi-supervised data may lead to substantially more powerful translators,
still at a fraction of the annotation cost of the fully-supervised systems.

Nonetheless, in many cases completely unpaired data is plentifully available and
should be made use of. This paper pushes the boundaries of what is possible in this
“unsupervised" setting.
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Ukiyo-eMonetInput Van Gogh Cezanne

Figure 3.10: Collection style transfer I: we transfer input images into the artistic styles of
Monet, Van Gogh, Cezanne, and Ukiyo-e. Please see our website for additional examples.

https://junyanz.github.io/CycleGAN/
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Monet Ukiyo-eInput Van Gogh Cezanne

Figure 3.11: Collection style transfer II: we transfer input images into the artistic styles of
Monet, Van Gogh, Cezanne, Ukiyo-e. Please see our website for additional examples.

https://junyanz.github.io/CycleGAN/
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Input Output Input Output

Figure 3.12: Relatively successful results on mapping Monet’s paintings to a photographic
style. Please see our website for additional examples.

https://junyanz.github.io/CycleGAN/
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Input Input Input OutputOutputOutput

horse → zebra

zebra → horse

summer Yosemite → winter Yosemite 

apple → orange

orange → apple

winter Yosemite → summer Yosemite

Figure 3.13: Our method applied to several translation problems. These images are selected
as relatively successful results – please see our website for more comprehensive and random
results. In the top two rows, we show results on object transfiguration between horses and
zebras, trained on 939 images from the wild horse class and 1177 images from the zebra
class in Imagenet [126]. Also check out the horse→zebra demo video. The middle two rows
show results on season transfer, trained on winter and summer photos of Yosemite from
Flickr. In the bottom two rows, we train our method on 996 apple images and 1020 navel
orange images from ImageNet.

https://junyanz.github.io/CycleGAN/
https://youtu.be/9reHvktowLY
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Input Output Input Output Input Output Input Output

Figure 3.14: Photo enhancement: mapping from a set of smartphone snaps to professional
DSLR photographs, the system often learns to produce shallow focus. Here we show some
of the most successful results in our test set – average performance is considerably worse.
Please see our website for more comprehensive and random examples.

Input Gatys et al. (image I) CycleGANGatys et al. (image II) Gatys et al. (collection)

Photo → Van Gogh 

Photo → Ukiyo-e

Photo → Cezanne

Figure 3.15: We compare our method with neural style transfer [115] on photo stylization.
Left to right: input image, results from Gatys et al. [115] using two different representative
artworks as style images, results from Gatys et al. [115] using the entire collection of the
artist, and CycleGAN (ours).

https://junyanz.github.io/CycleGAN/
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Input Gatys et al. (image I) CycleGANGatys et al. (image II) Gatys et al. (collection)

apple → orange

horse  → zebra

Monet → photo

Figure 3.16: We compare our method with neural style transfer [115] on various applications.
From top to bottom: apple→orange, horse→zebra, and Monet→photo. Left to right: input
image, results from Gatys et al. [115] using two different images as style images, results
from Gatys et al. [115] using all the images from the target domain, and CycleGAN (ours).

Input Output Input Output

apple → orange zebra → horse

dog → cat cat → dog

winter → summer

Monet → photo

photo → Ukiyo-e photo → Van Gogh

Input Output

iPhone photo → DSLR photo

horse → zebra

ImageNet “wild horse” training images

Input Output

Figure 3.17: Typical failure cases of our method. Left: in the task of dog→cat transfigu-
ration, CycleGAN can only make minimal changes to the input. Right: CycleGAN also
fails in this horse → zebra example as our model has not seen images of horseback riding
during training. Please see our website for more comprehensive results.

https://junyanz.github.io/CycleGAN/
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3.3 Contrastive Loss for Unpaired Translation

Multilayer, Patchwise
Contrastive Loss

Discriminator

!!"!#$ !%$ !&$

'()*

Patchwise Contrastive Learning

'

Figure 3.18: Patchwise Contrastive Learning for one-sided translation. A generated
output patch should appear closer to its corresponding input patch, in comparison to
other random patches. We use a multilayer, patchwise contrastive loss, which maximizes
mutual information between corresponding input and output patches. This enables one-
sided translation in the unpaired setting.

Consider the image-to-image translation problem in Figure 3.18. We wish for
the output to take on the appearance of the target domain (a zebra), while retaining
the structure, or content, of the specific input horse. This is, fundamentally, a
disentanglement problem: separating the content, which needs to be preserved across
domains, from appearance, which must change. Typically, target appearance is
enforced using an adversarial loss [12, 20], while content is preserved using cycle-
consistency [41,104,105]. However, cycle-consistency assumes that the relationship
between the two domains is a bijection, which is often too restrictive. In this paper,
we propose an alternative, rather straightforward way of maintaining correspondence
in content but not appearance – by maximizing the mutual information between
corresponding input and output patches.

In a successful result, given a specific patch on the output, for example, the
generated zebra forehead highlighted in blue, one should have a good idea that
it came from the horse forehead, and not the other parts of the horse or the
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background vegetation. We achieve this by using a type of contrastive loss function,
InfoNCE loss [151], which aims to learn an embedding or an encoder that associates
corresponding patches to each other, while disassociating them from others. To do so,
the encoder learns to pay attention to the commonalities between the two domains,
such as object parts and shapes, while being invariant to the differences, such as
the textures of the animals. The two networks, the generator and encoder, conspire
together to generate an image such that patches can be easily traceable to the input.

Contrastive learning has been an effective tool in unsupervised visual representa-
tion learning [145, 146, 151, 153]. In this work, we demonstrate its effectiveness in
a conditional image synthesis setting and systematically study several key factors
to make it successful. We find it pertinent to use it on a multilayer, patchwise
fashion. In addition, we find that drawing negatives internally from within the input
image, rather than externally from other images in the dataset, forces the patches
to better preserve the content of the input. Our method requires neither memory
bank [146,153] nor specialized architectures [147,171].

Extensive experiments show that our faster, lighter model outperforms both
prior one-sided translation methods [123,124] and state-of-the-art models that rely
on several auxiliary networks and multiple loss functions. Furthermore, since our
contrastive representation is formulated within the same image, our method can
even be trained on single images. Our code and models are available at GitHub.5

3.3.1 Methods
We wish to translate images from input domain X ⊂ RH×W×C to appear like an

image from the output domain Y ⊂ RH×W×3. We are given a dataset of unpaired
instances X = {x ∈ X}, Y = {y ∈ Y}. Our method can operate even when X and
Y only contain a single image each.

Our method only requires learning the mapping in one direction and avoids using
inverse auxiliary generators and discriminators. This can largely simplify the training
procedure and reduce training time. We break up our generator function G into
two components, an encoder Genc followed by a decoder Gdec, which are applied
sequentially to produce output image ŷ = G(z) = Gdec(Genc(x)).

Adversarial loss. We use an adversarial loss [12], to encourage the output to be
visually similar to images from the target domain, as follows:

LGAN(G,D,X, Y ) = Ey∼Y logD(y) + Ex∼X log(1−D(G(x))). (3.5)
5This work was first published as Contrastive Learning for Unpaired Image-to-Image Translation

in ECCV, 2020 [172].

https://github.com/taesungp/contrastive-unpaired-translation
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Figure 3.19: Patchwise Contrastive Loss. Both images, x and ŷ, are encoded into
feature tensor. We sample a query patch from the output ŷ and compare it to the input
patch at the same location. We set up an (N+1)-way classification problem, where N
negative patches are sampled from the same input image at different locations. We reuse
the encoder part Genc of our generator and add a two-layer MLP network. This network
learns to project both the input and output patch to a shared embedding space.

Mutual information maximization. We use a noise contrastive estimation
framework [151] to maximize mutual information between input and output. The
idea of contrastive learning is to associate two signals, a “query” and its “positive”
example, in contrast to other points within the dataset, referred to as “negatives”. The
query, positive, and N negatives are mapped to K-dimensional vectors v,v+ ∈ RK

and v− ∈ RN×K , respectively. v−
n ∈ RK denotes the n-th negative. We normalize

vectors onto a unit sphere to prevent the space from collapsing or expanding. An
(N + 1)–way classification problem is set up, where the distances between the
query and other examples are scaled by a temperature τ = 0.07 and passed as
logits [146,153]. The cross-entropy loss is calculated, representing the probability of
the positive example being selected over negatives.
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`(v,v+,v−) = − log
 exp(v · v+/τ)

exp(v · v+/τ) +∑N
n=1 exp(v · v−

n /τ)

. (3.6)

Our goal is to associate the input and output data. In our context, query refers to
an output. positive and negatives are corresponding and noncorresponding input.
Below, we explore several important design choices, including how to map the images
into vectors and how to sample the negatives.

Multilayer, patchwise contrastive learning. In the unsupervised learning
setting, contrastive learning has been used both on an image and patch level [147,171].
For our application, we note that not only should the whole images share content, but
also corresponding patches between the input and output images. For example, given
a patch showing the legs of an output zebra, one should be able to more strongly
associate it to the corresponding legs of the input horse, more so than the other
patches of the horse image. Even at the pixel level, the colors of a zebra body (black
and white) can be more strongly associated to the color of a horse body than to
the background shades of grass. Thus, we employ a multilayer, patch-based learning
objective.

Since the encoder Genc is computed to produce the image translation, its feature
stack is readily available, and we take advantage. Each layer and spatial location
within this feature stack represents a patch of the input image, with deeper layers
corresponding to bigger patches. We select L layers of interest and pass the feature
maps through a small two-layer MLP network Hl, as used in SimCLR [145], producing
a stack of features {zl}L = {Hl(Gl

enc(x))}L, where Gl
enc represents the output of the

l-th chosen layer. We index into layers l ∈ {1, 2, ..., L} and denote s ∈ {1, ..., Sl},
where Sl is the number of spatial locations in each layer. We refer to the corresponding
feature as zs

l ∈ RCl and the other features as zS\s
l ∈ R(Sl−1)×Cl , where Cl is the

number of channels at each layer. Similarly, we encode the output image ŷ into
{ẑl}L = {Hl(Gl

enc(G(x)))}L.
We aim to match corresponding input-output patches at a specific location. We

can leverage the other patches within the input as negatives. For example, a zebra
leg should be more closely associated with an input horse leg than the other patches
of the same input, such as other horse parts or the background sky and vegetation.
We name it as the PatchNCE loss, as illustrated in Figure 3.19.

LPatchNCE(G,H,X) = Ex∼X

L∑
l=1

Sl∑
s=1

`(ẑs
l , z

s
l , z

S\s
l ). (3.7)

Alternatively, we can also leverage image patches from the rest of the dataset. We
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encode a random negative image from the dataset x̃ into {z̃l}L, and use the following
external NCE loss. In this variant, we maintain a large, consistent dictionary of
negatives using an auxiliary moving-averaged encoder, following MoCo [146]. MoCo
enables negatives to be sampled from a longer history, and performs more effective
than end-to-end updates [147,151] and memory bank [153].

Lexternal(G,H,X) = Ex∼X,z̃∼Z−

L∑
l=1

Sl∑
s=1

`(ẑs
l , z

s
l , z̃l), (3.8)

where dataset negatives z̃l are sampled from an external dictionary Z− from the
source domain, whose data are computed using a moving-averaged encoder Ĥl

and moving-averaged MLP Ĥ. We refer our readers to the original work for more
details [146].

In Chapter 3.3.2, we show that our encoder Genc learns to capture domain-
invariant concepts, such as animal body, grass, and sky for horse → zebra, while
our decoder Gdec learns to synthesize domain-specific features such as zebra stripes.
Interestingly, through systematic evaluations, we find that using internal patches
only outperforms using external patches. We hypothesize that by using internal
statistics, our encoder does not need to model large intra-class variation such as
white horse vs. brown horse, which is not necessary for generating output zebras.
Single image internal statistics has been proven effective in many vision tasks such
as segmentation [173], super-resolution, and denoising [174,175].

Final objective. Our final objective is as follows. The generated image should
be realistic, while patches in the input and output images should share correspon-
dence. Figure 3.18 illustrates our minimax learning objective. Additionally, we may
utilize PatchNCE loss LPatchNCE(G,H, Y ) on images from domain Y to prevent the
generator from making unnecessary changes. This loss is essentially a learnable,
domain-specific version of the identity loss, commonly used by previous unpaired
translation methods [41,121].

LGAN(G,D,X, Y ) + λXLPatchNCE(G,H,X) + λYLPatchNCE(G,H, Y ). (3.9)

We choose λX = 1 when we jointly train with the identity loss λY = 1, and choose
a larger value λX = 10 without the identity loss (λY = 0) to compensate for the
absence of the regularizer. We find that the former configuration, named Contrastive
Unpaired Translation (CUT) hereafter, achieves superior performance to existing
methods, whereas the latter, named FastCUT, can be thought as a faster and lighter
version of CycleGAN. Our model is relatively simple compared to recent methods
that often use 5-10 losses and hyper-parameters.
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Discussion. Li et al. [176] has shown that cycle-consistency loss is the upper
bound of conditional entropy H(X|Y ) (and H(Y |X)). Therefore, minimizing cycle-
consistency loss encourages the output ŷ to be more dependent on input x. This is
related to our objective of maximizing the mutual information I(X, Y ), as I(X, Y ) =
H(X)−H(X|Y ). As entropy H(X) is a constant and independent of the generator G,
maximizing mutual information is equivalent to minimizing the conditional entropy.
Notably, using contrastive learning, we can achieve a similar goal without introducing
inverse mapping networks and additional discriminators. In the unconditional
modeling scenario, InfoGAN [68] shows that simple losses (e.g., L2 or cross-entropy)
can serve as a lower bound for maximizing mutual information between an image and
a low-dimensional code. In our setting, we maximize the mutual information between
two high-dimensional image spaces, where simple losses are no longer effective. Liang
et al. [114] proposes an adversarial loss based on Siamese networks that encourages
the output to be closer to the target domain than to its source domain. The above
method still builds on cycle-consistency and two-way translations. Different from
the above work, we use contrastive learning to enforce content consistency, rather
than to improve the adversarial loss itself. To measure the similarity between two
distributions, the Contextual Loss [131] used softmax over cosine disntances of
features extracted from pre-trained networks. In contrast, we learn the encoder with
the NCE loss to associate the input and output patches at the same location.

3.3.2 Experiments
We test across several datasets. We first show that our method improves upon

baselines in unpaired image translation. We then show that our method can extend
to single-image training. Full results are available at our website.

Training details. We follow the setting of CycleGAN [41], except that the `1 cycle-
consistency loss is replaced with our contrastive loss. In detail, we used LSGAN [61]
and Resnet-based generator [116] with PatchGAN [20]. We define our encoder as
the first half of the generator, and accordingly extract our multilayer features from
five evenly distributed points of the encoder. For single image translation, we use
a StyelGAN2-based generator [177]. To embed the encoder’s features, we apply a
two-layer MLP with 256 units at each layer. We normalize the vector by its L2 norm.

To show the effect of the proposed patch-based contrastive loss, we intentionally
match the architecture and hyperparameter settings of CycleGAN, except the loss
function. This includes the ResNet-based generator [116] with 9 residual blocks,
PatchGAN discriminator [20], Least Square GAN loss [61], batch size of 1, and Adam
optimizer [67] with learning rate 0.002.

https://taesungp.github.io/ContrastiveUnpairedTranslation
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Figure 3.20: Results. We compare our methods (CUT and FastCUT) with existing
methods on the horse→zebra, cat→dog, and Cityscapes datasets. CycleGAN [41], MU-
NIT [42], and DRIT [108], are two-sided methods, while SelfDistance, DistanceGAN [123],
and GcGAN [124] are one-sided. We show successful cases above the dotted lines. Our
full version CUT is able to add the zebra texture to the horse bodies. Our fast variant
FastCUT can also generate competitive results at the least computational cost of training.
The final rows show failure cases. In the first, we are unable to identify the unfamiliar
pose of the horse and instead add texture to the background. In the second, the method
hallucinates a tongue.
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CUTInput CycleGAN MUNIT DRIT SelfDistGANDistanceGAN GcGANFastCUT

Figure 3.21: Randomly selected Horse→Zebra and Cat→Dog results.
Our full model CUT is trained up to 400 epochs, while the fast variant FastCUT is

trained up to 200 epochs, following CycleGAN. Moreover, inspired by GcGAN [124],
FastCUT is trained with flip-equivariance augmentation, where the input image to
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CycleGANInput Ours(idt) CycleGANInput Ours(idt)

Figure 3.22: Apple→Orange and Summer→Winter Yosemite. CycleGAN models
were downloaded from the authors’ public code repository. Apple→Orange shows that
CycleGAN may suffer from color flipping issue.
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Method Cityscapes Cat→Dog Horse→Zebra

mAP↑ pixAcc↑ classAcc↑ FID↓ FID↓ FID↓ sec/iter↓ Mem(GB)↓

CycleGAN [41] 20.4 55.9 25.4 76.3 85.9 77.2 0.40 4.81
MUNIT [42] 16.9 56.5 22.5 91.4 104.4 133.8 0.39 3.84
DRIT [108] 17.0 58.7 22.2 155.3 123.4 140.0 0.70 4.85
Distance [123] 8.4 42.2 12.6 81.8 155.3 72.0 0.15 2.72
SelfDistance [123] 15.3 56.9 20.6 78.8 144.4 80.8 0.16 2.72
GCGAN [124] 21.2 63.2 26.6 105.2 96.6 86.7 0.26 2.67
CUT 24.7 68.8 30.7 56.4 76.2 45.5 0.24 3.33
FastCUT 19.1 59.9 24.3 68.8 94.0 73.4 0.15 2.25

Table 3.6: Comparison with baselines We compare our methods across datasets
on common evaluation metrics. CUT denotes our model trained with the identity loss
(λX = λY = 1), and FastCUT without it (λX = 10, λY = 0). We show FID, a measure of
image quality [66] (lower is better). For Cityscapes, we show the semantic segmentation
scores (mAP, pixAcc, classAcc) to assess the discovered correspondence (higher is better
for all metrics). Based on quantitative measures, CUT produces higher quality and more
accurate generations with light footprint in terms of training speed (seconds per sample)
and GPU memory usage. Our variant FastCUT also produces competitive results with
even lighter computation cost of training.

the generator is horizontally flipped, and the output features are flipped back before
computing the PatchNCE loss. Our encoder Genc is the first half of the CycleGAN
generator [41]. In order to calculate our multi-layer, patch-based contrastive loss,
we extract features from 5 layers, which are RGB pixels, the first and second
downsampling convolution, and the first and the fifth residual block. The layers we
use correspond to receptive fields of sizes 1×1, 9×9, 15×15, 35×35, and 99×99. For
each layer’s features, we sample 256 random locations, and apply 2-layer MLP to
acquire 256-dim final features. For our baseline model that uses MoCo-style memory
bank [146], we follow the setting of MoCo, and used momentum value 0.999 with
temperature 0.07. The size of the memory bank is 16384 per layer, and we enqueue
256 patches per image per iteration.

Unpaired image translation
Datasets We conduct experiments on the following datasets.
• Cat→Dog contains 5,000 training and 500 val images from AFHQ Dataset [178].
• Horse→Zebra contains 2,403 training and 260 zebra images from ImageNet [126]

and was introduced in CycleGAN [41].
• Cityscapes [31] contains street scenes from German cities, with 2,975 training and

500 validation images. We train models at 256×256 resolution. Unlike previous
datasets listed, this does have corresponding labels. We can leverage this to
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Ours(idt)Input

Figure 3.23: GTA→Cityscapes results at 1024× 512 resolution. The model was trained
on 512× 512 crops.

.
measure how well our unpaired algorithm discovers correspondences.
In Figure 3.22 and Figure 3.23, we show qualitative results on additional datasets,

compared against baseline method CycleGAN [41]. Our method provides better or
comparable results, demonstrating its flexibility across a variety of datasets.
• Apple→Orange contains 996 apple and 1,020 orange images from ImageNet and

was introduced in CycleGAN [41].
• Yosemite Summer→Winter contains 1,273 summer and 854 winter images of

Yosemite scraped using the FlickAPI was introduced in CycleGAN [41].
• GTA→Cityscapes GTA contains 24,966 images [179] and Cityscapes [31] contains

19,998 images of street scenes from German cities. The task was originally used
in CyCADA [180].

Evaluation protocol. We adopt the evaluation protocols from [41,66], aimed at
assessing visual quality and discovered correspondence. For the first, we utilize the
widely-used Fréchet Inception Distance (FID) metric, which empirically estimates
the distribution of real and generated images in a deep network space and computes
the divergence between them. Intuitively, if the generated images are realistic, they
should have similar summary statistics as real images, in any feature space. For
Cityscapes specifically, we have ground truth of paired label maps. If accurate
correspondences are discovered, the algorithm should generate images that are
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recognizable as the correct class. Using an off-the-shelf network to test “semantic
interpretability” of image translation results has been commonly used [20,139]. We
use the pretrained semantic segmentation network DRN [71]. We train the DRN at
256x128 resolution, and compute mean average precision (mAP), pixel-wise accuracy
(pixAcc), and average class accuracy (classAcc).

Fréchet Inception Distance (FID [66]) throughout this paper is computed by
resizing the images to 299-by-299 using bilinear sampling of PyTorch framework,
and then taking the activations of the last average pooling layer of a pretrained
Inception V3 [181] using the weights provided by the TensorFlow framework. We
use the default setting of https://github.com/mseitzer/pytorch-fid. All test
set images are used for evaluation, unless noted otherwise.

Semantic segmentation metrics on the Cityscapes dataset are computed as
follows. First, we trained a semantic segmentation network using the DRN-D-22 [71]
architecture. We used the recommended setting from https://github.com/fyu/
drn, with batch size 32 and learning rate 0.01, for 250 epochs at 256x128 resolution.
The output images of the 500 validation labels are resized to 256x128 using bicubic
downsampling, passed to the trained DRN network, and compared against the ground
truth labels downsampled to the same size using nearest-neighbor sampling.

Comparison to baselines. In Table 3.6, we show quantitative measures of our
and Figure 3.20, we compare our method to baselines. We present two settings of our
method in Equation 3.9: CUT with the identity loss (λX = λY = 1), and FastCUT
without it (λX = 10, λY = 0). On image quality metrics across datasets, our methods
outperform baselines. In addition, our Cityscapes semantic segmentation scores are
higher, suggesting that our method is able to find correspondences between output
and input.

Speed and memory. Since our model is one-sided, our method is memory-efficient
and fast. For example, our method with the identity loss was 40% faster and 31%
more memory-efficient than CycleGAN at training time, using the same architectures
as CycleGAN (Table 3.6). Furthermore, our faster variant FastCUT is 63% faster
and 53% lighter, while achieving superior metrics to CycleGAN. Table 3.6 contains
the speed and memory usage of each method measured on NVIDIA GTX 1080Ti,
and shows that FastCUT achieves competitive FIDs and segmentation scores with a
lower time and memory requirement. Therefore, our method can serves as a practical,
lighter alternative in scenarios, when an image translation model is jointly trained
with other components [180,182].

https://github.com/mseitzer/pytorch-fid
https://github.com/fyu/drn
https://github.com/fyu/drn
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Method
Training settings Testing datasets

Id Negs Layers Int Ext
Horse→
Zebra Cityscapes

FID� FID� mAP�

CUT (default) 3 255 All 3 7 45.5 56.4 24.7
no id 7 255 All 3 7 39.3 68.5 22.0
no id, 15 neg 7 15 All 3 7 44.1 59.7 23.1
no id, 15 neg, last 7 15 Last 3 7 38.1 114.1 16.0
last 3 255 Last 3 7 441.7 141.1 14.9
int and ext 3 255 All 3 3 56.4 64.4 20.0
ext only 3 255 All 7 3 53.0 110.3 16.5
ext only, last 3 255 Last 7 3 60.1 389.1 5.6
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Figure 3.24: Ablations. The PatchNCE loss is trained with negatives from each layer
output of the same (internal) image, with the identity preservation regularization. (Left)
We try removing the identity loss [Id], using less negatives [Negs], using only the last layer
of the encoder [Layers], and varying where patches are sampled, internal [Int] vs external
[Ext]. (Right) We plot the FIDs on horse→zebra and Cityscapes dataset. Removing the
identity loss (no id) and reducing negatives (no id, 15 neg) still perform strongly. In
fact, our variant FastCUT does not use the identity loss. However, reducing number of
layers (last) or using external patches (ext) hurts performance.

Ablation study and analysis

We find that in the image synthesis setting, similarly to the unsupervised learning
setting [145–147], implementation choices for contrastive loss are important. Here,
try various settings and ablations of our method, summarized in Figure 3.24. By
default, we use the ResNet-based generator used in CycleGAN [41], with patchNCE
using (a) negatives sampled from the input image, (b) multiple layers of the encoder,
and (c) a PatchNCE loss LPatchNCE(G,H, Y ) on domain Y . In Figure 3.24, we show
results using several variants and ablations, taken after training for 400 epochs. We
show qualitative examples in Figure 3.25.

Internal negatives are more effective than external. By default, we sample
negatives from within the same image (internal negatives). We also try adding
negatives from other images, using a momentum encoder [146]. However, the external
negatives, either as addition (int and ext) or replacement of internal negatives
(ext only), hurts performance. In Figure 3.25, we see a loss of quality, such as
repeated texture in the Cityscapes dataset, indicating that sampling negatives from
the same image serves as a stronger signal for preserving content.

Importance of using multiple layers of encoder. Our method uses multiple
layers of the encoder, every four layers from pixels to the 16th layer. This is consistent
with the standard use of `1+VGG loss, which uses layers from the pixel level up
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Input CUT no id last layer only external only

Figure 3.25: Qualitative ablation results of our full method (CUT) are shown: without
the identity loss LPatchNCE(G,H, Y ) on domain Y (no id), using only one layer of the
encoder (last layer only), and using external instead of internal negatives (external
only). The ablations cause noticeable drop in quality, including repeated building or
vegetation textures when using only external negatives or the last layer output.
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Figure 3.26: Identity loss LPatchNCE(G,H, Y ) on domain Y adds stability. This
regularizer encourages an image from the output domain y to be unchanged by the generator.
Using it (shown in bold, black curves), we observe better stability in comparison to other
variants. On the left, our variant without the regularizer, no id, achieves better FID.
However, we see higher variance in the training curve. On the right, training without the
regularizer can lead to collapse.

to a deep convolutional layer. On the other hand, many contrastive learning-based
unsupervised learning papers map the whole image into a single representation. To
emulate this, we try only using the last layer of the encoder (last), and try a variant
using external negatives only (ext only, last). Performance is drastically reduced
in both cases. In unsupervised representation learning, the input images are fixed.
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For our application, the loss is being used as a signal for synthesizing an image. As
such, this indicates that the dense supervision provided by using multiple layers of
the encoder is important when performing image synthesis.

LPatchNCE(G,H, Y ) regularizer stabilizes training. Given an image from the
output domain y ∈ Y , this regularizer encourages the generator to leave the image
unchanged with our patch-based contrastive loss. We also experiment with a variant
without this regularizer, no id. As shown in Figure 3.24, removing the regularizer
improves results for the horse→zebra task, but decreases performance on Cityscapes.
We further investigate by showing the training curves in Figure 3.26, across 400
epochs. In the Cityscapes results, the training can collapse without the regularizer
(although it can recover). We observe that although the final FID is sometimes
better without, the training is more stable with the regularizer.

Visualizing learned similarity by encoder Genc To further understand why
our encoder network Genc has learned to perform horse→ zebra task, we study the
output space of the 1st residual block for both horse and zebra features. As shown in
Figure 3.27. Given an input and output image, we compute the distance between a
query patch’s feature vector v (highlighted as red or blue dot) to feature vectors v−

of all the patches in the input using exp(v · v−/τ) (Equation 3.6). Additionally, we
perform a PCA dimension reduction on feature vectors from both horse and zebra
patches. In (d) and (e), we show the top three principal components, which looks
similar before and after translation. This indicates that our encoder is able to bring
the corresponding patches from two domains into a similar location in the feature
embedding space.

Distribution matching In Figure 3.28, we show an interesting phenomenon of
our method, caused by the training set imbalance of the horse→zebra set. We use
an off-the-shelf DeepLab model [68] trained on COCO-Stuff [28], to measure the
percentage of pixels that belong to horses and zebras6. The training set exhibits
dataset bias [183]. On average, zebras appear in more close-up pictures than horses
and take up about twice the number of pixels (37% vs 18%). To perfectly satisfy
the discriminator, a translation model should attempt to match the statistics of
the training set. Our method allows the flexibility for the horses to change the
size, and the percentage of output zebra pixels (31%) better matches the training
distribution (37%) than the CycleGAN baseline (19%). On the other hand, our fast
variant FastCUT uses a larger weight (λX = 10) on the Patch NCE loss and flip-
equivariance augmentation, and hence behaves more conservatively and more similar

6Pretrained model from https://github.com/kazuto1011/deeplab-pytorch

https://github.com/kazuto1011/deeplab-pytorch
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Figure 3.27: Visualizing the learned similarity by Genc. Given query points (blue or
red) on an output image (a) and input (b), we visualize the learned similarity to patches
on the input image by computing exp(v · v−/τ) in (c). Here v is the query patch in
the output and v− denotes patches from the input. This suggests that our encoder may
learn cross-domain correspondences implicitly. In (d) and (e), we visualize the top 3 PCA
components of the shared embedding.

to CycleGAN. The strong distribution matching capacity has pros and cons. For
certain applications, it can create introduce undesired changes (e.g., zebra patterns
on the background for horse→zebra). On the other hand, it can enable dramatic
geometric changes for applications such as Cat→Dog.

Additional Ablation studies Here we present additional ablation studies on
more subtle design choices. We run all the variants on horse2zebra datasets [41].
The FID of our original model is 46.6. We compare it to the following two variants
of our model:
• Ours without weight sharing for the encoder Genc and MLP projection network H:

for this variant, when computing features {zl}L = {Hl(Gl
enc(x))}L, we use two

separate encoders and MLP networks for embedding input images (e.g., horse)
and the generated images (e.g., zebras) to feature space. They do not share any
weights. The FID of this variant is 50.5, worse than our method. This shows that
weight sharing helps stabilize training while reducing the number of parameters
in our model.

• Ours without updating the decoder Gdec using PatchNCE loss: in this variant,
we exclude the gradient propagation of the decoder Gdec regarding PatchNCE
loss LPatchNCE. In other words, the decoder Gdec only gets updated through the
adversarial loss LGAN. The FID of this variant is 444.2, and the results contain
severe artifacts. This shows that our LPatchNCE not only helps learn the encoder



3.3. CONTRASTIVE LOSS FOR UNPAIRED TRANSLATION 72

CUTInput CycleGAN

horse 17.9% zebra 36.8%zebra 30.8% zebra 25.9% zebra 19.1%

FastCUT Source training set Target training set

detected pixels:

Figure 3.28: Distribution matching. We measure the percentage of pixels belonging
to the horse/zebra bodies, using a pre-trained semantic segmentation model. We find a
distribution mismatch between sizes of horses and zebras images – zebras usually appear
larger (36.8% vs. 17.9%). Our full method CUT has the flexibility to enlarge the horses,
as a means of better matching of the training statistics than CycleGAN [41]. Our faster
variant FastCUT, trained with a higher PatchNCE loss (λX = 10) and flip-equivariance
augmentation, behaves more conservatively like CycleGAN.

Genc, as done in previous unsupervised feature learning methods [146], but also
learns a better decoder Gdec together with the GAN loss. Intuitively, if the
generated result has many artifacts and is far from realistic, it would be difficult
for the encoder to find correspondences between the input and output, producing
a large PatchNCE loss.

Additional applications . Figure 3.29 shows additional results: Parisian street
→ Burano’s brightly painted houses and Russian Blue cat → Grumpy cat.

OutputInput Input Output

Parisian Street → Burano’s painted houses

OutputInput Input Output

Russian blue cat → Grumpy cat

Figure 3.29: Additional applications on Parisian street → Burano’s colored houses and
Russian Blue cat → Grumpy cat.
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High-resolution single image translation

Finally, we conduct experiments in the single image setting, where both the
source and target domain only have one image each. Here, we transfer a Claude
Monet’s painting to a natural photograph. Recent methods [184,185] have explored
training unconditional models on a single image. Bearing the additional challenge of
respecting the structure of the input image, conditional image synthesis using only
one image has not been explored by previous image-to-image translation methods.
Our painting → photo task is also different from neural style transfer [116, 128]
(photo → painting) and photo style transfer [186,187] (photo → photo).

Since the whole image (at HD resolution) cannot fit on a commercial GPU, at
each iteration we train on 16 random crops of size 128×128. We also randomly
scale the image to prevent overfitting. Furthermore, we observe that limiting the
receptive field of the discriminator is important for preserving the structure of the
input image, as otherwise the GAN loss will force the output image to be identical
to the target image. Therefore, the crops are further split into 64×64 patches before
passed to the discriminator. Lastly, we find that using gradient penalty [13, 35]
stabilizes optimization. We call this variant SinCUT.

Figure 3.30 shows a qualitative comparison between our results and baseline meth-
ods including two neural style transfer methods (Gatys et al. [128] and STROTSS [188]),
one leading photo style transfer method WCT2 [187], and a CycleGAN baseline [41]
that uses the `1 cycle-consistency loss instead of our contrastive loss at the patch level.
The input paintings are high-res, ranging from 1k to 1.5k. We observe that Gatys et
al. [128] fails to synthesize realistic textures. Existing photo style transfer methods
such as WCT2 can only modify the color of the input image. Our method SinCUT
outperforms CycleGAN and is comparable to a leading style transfer method [188],
which is based on optimal transport and self-similarity. Interestingly, our method
is not originally designed for this application. This result suggests the intriguing
connection between image-to-image translation and neural style transfer.

In Figure 3.31 and Figure 3.32, we show additional comparison results for our
method, Gatys et al. [128], STROTSS [188], WCT2 [187], and CycleGAN baseline [41].
Note that the CycleGAN baseline adopts the same augmentation techniques as well as
the same generator/discriminator architectures as our method. The image resolution
is at 1-2 Megapixels. Please zoom in to see more visual details.

Both figures demonstrate that our results look more photorealistic compared to
CycleGAN baseline, Gatys et al [128], and WCT2. The quality of our results is on
par with results from STROTSS [188]. Note that STROTSS [188] compares to and
outperforms recent style transfer methods (e.g., [131,189]).
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WCT2Input Style Input Content SinCUT Gatys et al. STROTSS CycleGAN

Figure 3.30: High-res painting to photo translation. We transfer Claude Monet’s
paintings to reference natural photographs. The training only requires a single image from
each domain. We compare our results (SinCUT) to recent style and photo transfer methods
including Gatys et al. [128], WCT2 [187], STROTSS [188], and patch-based CycleGAN [41].
Our method generates can reproduce the texture of the reference photo while retaining
structure of input painting. Our generation is at 1k ∼ 1.5k resolution.

Training details. At each iteration, the input image is randomly scaled to a width
between 384 to 1024, and we randomly sample 16 crops of size 128× 128. To avoid
overfitting, we divide crops into 64×64 tiles before passing them to the discriminator.
At test time, since the generator network is fully convolutional, it takes the input
image at full size.

We found that adopting the architecture of StyleGAN2 [177] instead of CycleGAN
slightly improves the output quality, although the difference is marginal. Our
StyleGAN2-based generator consists of one downsampling block of StyleGAN2
discriminator, 6 StyleGAN2 residual blocks, and one StyleGAN2 upsampling block.
Our discriminator has the same architecture as StyleGAN2. Following StyleGAN2,
we use non-saturating GAN loss [190] with R1 gradient penalty [35]. Since we do
not use style code, the style modulation layer of StyleGAN2 was removed.

3.3.3 Discussion
We propose a straightforward method for encouraging content preservation in

unpaired image translation problems – by maximizing the mutual information between
input and output with contrastive learning. The objective learns an embedding to
bringing together corresponding patches in input and output, while pushing away
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Figure 3.31: High-res painting to photo translation (I). We transfer Monet’s paintings
to reference natural photos shown as insets at top-left corners. The training only requires a
single image from each domain. We compare our results to recent style and photo transfer
methods including Gatys et al. [128], WCT2 [187], STROTSS [188], and our modified
patch-based CycleGAN [41]. Our method can reproduce the texture of the reference photos
while retaining structure of the input paintings. Our results are at 1k ∼ 1.5k resolution.
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Figure 3.32: High-res painting to photo translation (II). We transfer Monet’s
paintings to reference natural photos shown as insets at top-left corners. The training only
requires a single image from each domain. We compare our results to recent style and
photo transfer methods including Gatys et al. [128], WCT2 [187], STROTSS [188], and
our modified patch-based CycleGAN [41]. Our method can reproduce the texture of the
reference photos while retaining structure of the input paintings. Our results are at 1k ∼
1.5k resolution.
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noncorresponding “negative” patches. We study several important design choices.
Interestingly, drawing negatives from within the image itself, rather than other
images, provides a stronger signal. Our method learns a cross-domain similarity
function and is the first image translation algorithm, to our knowledge, to not use
any pre-defined similarity function (such as `1 or perceptual loss). As our method
does not rely on cycle-consistency, it can enable one-sided image translation, with
better quality than established baselines. In addition, our method can be used for
single-image unpaired translation.
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3.4 Applying Image Translation for Domain Adap-
tation

The versatility of unpaired image translation opens up applications other than
image editing. In this section, we show that CycleGAN [41] can be used in domain
adaptation, by reducing the visual gap between two domains.7

3.4.1 Related Work
The problem of visual domain adaptation was introduced along with a pairwise

metric transform solution by [191] and was further popularized by the broad study
of visual dataset bias [192]. Early deep adaptive works focused on feature space
alignment through minimizing the distance between first or second order feature
space statistics of the source and target [193,194]. These latent distribution alignment
approaches were further improved through the use of domain adversarial objectives
whereby a domain classifier is trained to distinguish between the source and target
representations while the domain representation is learned so as to maximize the
error of the domain classifier. The representation is optimized using the standard
minimax objective [195], the symmetric confusion objective [196], or the inverted
label objective [197]. Each of these objectives is related to the literature on generative
adversarial networks [198] and follow-up work for improved training procedures for
these networks [199,200].

The feature-space adaptation methods described above focus on modifications
to the discriminative representation space. In contrast, other recent methods have
sought adaptation in the pixel-space using various generative approaches. One
advantage of pixel-space adaptation, as we have shown, is that the result may be
more human interpretable, since an image from one domain can now be visualized
in a new domain. CoGANs [201] jointly learn a source and target representation
through explicit weight sharing of certain layers while each source and target has
a unique generative adversarial objective. [202] uses an additional reconstruction
objective in the target domain to encourage alignment in the unsupervised adaptation
setting.

In contrast, another approach is to directly convert the target image into a
source style image (or visa versa), largely based on Generative Adversarial Networks
(GANs) [198]. Researchers have successfully applied GANs to various applications
such as image generation [77–79], image editing [80] and feature learning [81,165].

7This work was first published as CyCADA: Cycle-consistent adversarial domain adaptation at
ICML, 2018 [180].
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Recent work [40, 73, 88] adopt conditional GANs [203] for these image-to-image
translation problems [73], but they require input-output image pairs for training,
which is in general not available in domain adaptation problems.

There also exist lines of work where such training pairs are not given. [204] learns a
source to target encoder-decoder along with a generative adversarial objective on the
reconstruction which is is applied for predicting the clothing people are wearing. The
Domain Transfer Network [205] trains a generator to transform a source image into
a target image by enforcing consistency in the embedding space. [206] instead uses
an L1 reconstruction loss to force the generated target images to be similar to their
original source images.This works well for limited domain shifts where the domains
are similar in pixel-space, but can be too limiting for settings with larger domain
shifts. [207] use a content similarity loss to ensure the generated target image is similar
to the original source image; however, this requires prior knowledge about which
parts of the image stay the same across domains (e.g. foreground). Our method does
not require pre-defining what content is shared between domains and instead simply
translates images back to their original domains while ensuring that they remain
identical to their original versions. BiGAN [165] and ALI [166] take an approach of
simultaneously learning the transformations between the pixel and the latent space.
More recently, Cycle-consistent Adversarial Networks (CycleGAN) [208] produced
compelling image translation results such as generating photorealistic images from
impressionism paintings or transforming horses into zebras at high resolution using
the cycle-consistency loss. This loss was simultaneously proposed by [104] and
[209] to great effect as well. Our motivation comes from such findings about the
effectiveness of the cycle-consistency loss.

Few works have explicitly studied visual domain adaptation for the semantic
segmentation task. Adaptation across weather conditions in simple road scenes
was first studied by [210]. More recently, a convolutional domain adversarial based
approached was proposed for more general drive cam scenes and for adaptation
from simulated to real environments [211]. [212] learns a multi-source model through
concatenating all available labeled data and learning a single large model and then
transfers to a sparsely labeled target domain through distillation [213]. [214] use an
adversarial objective to align both global and class-specific statistics, while mining
additional temporal data from street view datasets to learn a static object prior. [215]
instead perform segmentation adaptation by aligning label distributions both globally
and across superpixels in an image.
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Figure 3.33: Cycle-consistent adversarial adaptation of pixel-space inputs. By directly
remapping source training data into the target domain, we remove the low-level differences
between the domains, ensuring that our task model is well-conditioned on target data. We
depict here the image-level GAN loss (green), the feature level GAN loss (orange), the
source and target semantic consistency losses (black), the source cycle loss (red), and the
source task loss (purple). For clarity the target cycle is omitted.

3.4.2 Cycle-Consistent Adversarial Domain Adaption
We consider the problem of unsupervised adaptation, where we are provided

source data XS, source labels YS, and target data XT , but no target labels. The goal
is to learn a model f that can correctly predict the label for the target data XT .

We can begin by simply learning a source model fS that can perform the task on
the source data. For K-way classification with a cross-entropy loss, this corresponds
to

Ltask(fS, XS, YS) = −E(xs,ys)∼(XS ,YS)

K∑
k=1

1[k=ys] log
(
σ(f (k)

S (xs))
)

(3.10)

where σ denotes the softmax function. However, while the learned model fS will
perform well on the source data, typically domain shift between the source and target
domain leads to reduced performance when evaluating on target data. To mitigate
the effects of domain shift, we follow previous adversarial adaptation approaches
and learn to map samples across domains such that an adversarial discriminator is
unable to distinguish the domains. By mapping samples into a common space, we
enable our model to learn on source data while still generalizing to target data.

To this end, we introduce a mapping from source to target GS→T and train it to
produce target samples that fool an adversarial discriminator DT . Conversely, the
adversarial discriminator attempts to classify the real target data from the source
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target data. This corresponds to the loss function

LGAN(GS→T , DT , XT , XS) = Ext∼XT
[logDT (xt)] + Exs∼XS

[log(1−DT (GS→T (xs)))]
(3.11)

This objective ensures that GS→T , given source samples, produces convincing target
samples. In turn, this ability to directly map samples between domains allows us
to learn a target model fT by minimizing Ltask(fT , GS→T (XS), YS) (see Figure 3.33
green portion).

However, while previous approaches that optimized similar objectives have shown
effective results, in practice they can often be unstable and prone to failure. Although
the GAN loss in Equation 3.11 ensures that GS→T (xs) for some xs will resemble data
drawn from XT , there is no way to guarantee that GS→T (xs) preserves the structure
or content of the original sample xs.

In order to encourage the source content to be preserved during the conversion
process, we impose a cycle-consistency constraint on our adaptation method [104,
208, 209] (see Figure 3.33 red portion). To this end, we introduce another map-
ping from target to source GT→S and train it according to the same GAN loss
LGAN(GT→S, DS, XS, XT ). We then require that mapping a source sample from
source to target and back to the source reproduces the original sample, thereby
enforcing cycle-consistency. In other words, we want GT→S(GS→T (xs)) ≈ xs and
GS→T (GT→S(xt)) ≈ xt. This is done by imposing an L1 penalty on the reconstruction
error, which is referred to as the cycle-consistency loss:

Lcyc(GS→T , GT→S, XS, XT ) = Exs∼XS
[||GT→S(GS→T (xs))− xs||1] (3.12)

+ Ext∼XT
[||GS→T (GT→S(xt))− xt||1] .

Optionally, as we have access to source labeled data, we explicitly encourage high
semantic consistency before and after image translation. We pretrain a source task
model fS, fixing the weights, we use this model as a noisy labeler by which we
encourage an image to be classified in the same way after translation as it was before
translation according to this classifier. Let us define the predicted label from a fixed
classifier, f , for a given input X as p(f,X) = argmax(f(X)). Then we can define
the semantic consistency before and after image translation as follows:

Lsem(GS→T , GT→S, XS, XT , fS) = Ltask(fS, GT→S(XT ), p(fS, XT )) (3.13)
+ Ltask(fS, GS→T (XS), p(fS, XS))

See Figure 3.33 black portion. This can be viewed as analogously to content losses in
style transfer [128] or in pixel adaptation [216], where the shared content to preserve
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is dictated by the source task model fS. However, utilizing the semantic consistency
loss in the training loop is hard in practice, because of the memory overhead of
loading the semantic information as well as the classifier f . For this reason, the
semantic consistency loss was left as an idea, and not used in our experiments.

Taken together, these loss functions form our complete objective:

LCyCADA(fT , XS, XT , YS, GS→T , GT→S, DS, DT ) (3.14)
= Ltask(fT , GS→T (XS), YS)
+ LGAN(GS→T , DT , XT , XS) + LGAN(GT→S, DS, XS, XT )
+ Lcyc(GS→T , GT→S, XS, XT ).

This ultimately corresponds to solving for a target model fT according to the
optimization problem

f∗T = arg min
fT

min
GS→T
GT→S

max
DS ,DT

LCyCADA(fT , XS , XT , YS , GS→T , GT→S , DS , DT ). (3.15)

We have introduced a method for unsupervised adaptation which generalizes
adversarial objectives to be viewed as operating at the pixel. In addition, we introduce
the use of cycle-consistency together with semantic transformation constraints to
guide the mapping from one domain to another. In this work, we apply CyCADA
to semantic segmentation. We implement G as a pixel-to-pixel convnet, f as a
convnet classifier or a Fully-Convolutional Net (FCN) and D as a convnet with
binary outputs.

3.4.3 Experiments
We evaluate CyCADA on the task of semantic image segmentation, using the

SYNTHIA [217], GTA [218] and CityScapes [219] datasets.
The task is to assign a semantic label to each pixel in the input image, e.g. road,

building, etc. We limit our evaluation to the unsupervised adaptation setting, where
labels are only available in the source domain, but we are evaluated solely on our
performance in the target domain.

For each experiment, we use three metrics to evaluate performance. Let nij be the
number of pixels of class i predicted as class j, let ti = ∑

j nij be the total number of
pixels of class i, and let N be the number of classes. Our three evaluation metrics are,
mean intersection-over-union (mIoU), frequency weighted intersection-over-union
(fwIoU), and pixel accuracy, which are defined as follows:
mIoU = 1

N
·

∑
i

nii

ti+
∑

j
nji−nii

, fwIoU = 1∑
k

tk
·

∑
i

nii

ti+
∑

j
nji−nii

, pixel acc. =
∑

i
nii∑

i
ti
.
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Cycle-consistent adversarial adaptation is general and can be applied at any
layer of a network. Since optimizing the full CyCADA objective in Equation 3.14
end-to-end is memory-intensive in practice, we train our model in stages. First, we
perform image-space adaptation and map our source data into the target domain.
Next, using the adapted source data with the original source labels, we learn a task
model that is suited to operating on target data. We do not use the semantic loss for
the segmentation experiments as it would require loading generators, discriminators,
and an additional semantic segmenter into memory all at once for two images. We
did not have the required memory for this at the time of submission, but leave it to
future work to deploy model parallelism or experiment with larger GPU memory.

For our first evaluation, we consider the SYNTHIA dataset [217], which contains
synthetic renderings of urban scenes. We use the SYNTHIA video sequences, which
are rendered across a variety of environments, weather conditions, and lighting
conditions. This provides a synthetic testbed for evaluating adaptation techniques.
For comparison with previous work, in this work we focus on adaptation between
seasons. We use only the front-facing views in the sequences so as to mimic dashcam
imagery, and adapt from fall to winter. The subset of the dataset we use contains 13
classes and consists of 10,852 fall images and 7,654 winter images.

To further demonstrate our method’s applicability to real-world adaptation
scenarios, we also evaluate our model in a challenging synthetic-to-real adaptation
setting. For our synthetic source domain, we use the GTA5 dataset [218] extracted
from the game Grand Theft Auto V, which contains 24966 images. We consider
adaptation from GTA5 to the real-world Cityscapes dataset [219], from which we
used 19998 images without annotation for training and 500 images for validation.
Both of these datasets are evaluated on the same set of 19 classes, allowing for
straightforward adaptation between the two domains.

Image-space adaptation also affords us the ability to visually inspect the results
of the adaptation method. This is a distinct advantage over opaque feature-space
adaptation methods, especially in truly unsupervised settings—without labels, there
is no way to empirically evaluate the adapted model, and thus no way to verify that
adaptation is improving task performance. Visually confirming that the conversions
between source and target images are reasonable, while not a guarantee of improved
task performance, can serve as a sanity check to ensure that adaptation is not
completely diverging. This process is diagrammed in Figure 3.33.

Cross-season adaptation

We start by exploring the abilities of pixel space adaptation alone (using FCN8s
architecture) for the setting of adapting across seasons in synthetic data. For this
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(a) Fall (b) Fall → Winter (c) Winter (d) Winter → Fall

Figure 3.34: Cross Season Image Translation. Example image-space conversions for
the SYNTHIA seasons adaptation setting. We show real samples from each domain (Fall
and Winter) alongside conversions to the opposite domain.
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Source only 91.7 80.6 79.7 12.1 71.8 44.2 26.1 42.8 49.0 38.7 45.1 41.3 24.5 49.8 71.7 82.3
FCNs in the wild 92.1 86.7 91.3 20.8 72.7 52.9 46.5 64.3 50.0 59.5 54.6 57.5 26.1 59.6 — —
CyCADA pixel-only 92.5 90.1 91.9 79.9 85.7 47.1 36.9 82.6 45.0 49.1 46.2 54.6 21.5 63.3 85.7 92.1

Oracle (Train on target) 93.8 92.2 94.7 90.7 90.2 64.4 38.1 88.5 55.4 51.0 52.0 68.9 37.3 70.5 89.9 94.5

Table 3.7: Adaptation between seasons in the SYNTHIA dataset. We report IoU for each
class and mean IoU, freq-weighted IoU and pixel accuracy. Our CyCADA method achieves
state-of-the-art performance on average across all categories. ∗FCNs in the wild is by [211].

we use the SYNTHIA dataset and adapt from fall to winter weather conditions.
Typically in unsupervised adaptation settings it is difficult to interpret what causes
the performance improvement after adaptation. Therefore, we use this setting as an
example where we may directly visualize the shift from fall to winter and inspect
the intermediate pixel level adaptation result from our algorithm. In Figure 3.34
we show the result of pixel only adaptation as we generate a winter domain image
(b) from a fall domain image (a), and visa versa (c-d). We may clearly see the
changes of adding or removing snow. This visually interpretable result matches our
expectation of the true shift between these domains and indeed results in favorable
final semantic segmentation performance from fall to winter as shown in Table 3.7.
We find that CyCADA achieves state-of-the-art performance on this task with image
space adaptation alone, however does not recover full supervised learning performance
(train on target). Some example errors includes adding snow to the sidewalks, but
not to the road, while in the true winter domain snow appears in both locations.
However, even this mistake is interesting as it implies that the model is learning
to distinguish road from sidewalk during pixel adaptation, despite the lack of pixel
annotations.
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(a) Test Image (b) Source Prediction (c) CyCADA Prediction (d) Ground Truth

Figure 3.35: GTA5 to CityScapes Semantic Segmentation. Each test CityScapes
image (a) along with the corresponding predictions from the source only model (b) and our
CyCADA model (c) are shown and may be compared against the ground truth annotation
(d).

Cycle-consistent adversarial adaptation achieves state-of-the-art adaptation per-
formance. We see that under the fwIoU and pixel accuracy metrics, CyCADA
approaches oracle performance, falling short by only a few points, despite being en-
tirely unsupervised. This indicates that CyCADA is extremely effective at correcting
the most common classes in the dataset. This conclusion is supported by inspection
of the individual classes in Table 3.7, where we see the largest improvement on
common classes such as road and sidewalk.

GTA5 → Cityscapes
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Source only A 26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9 41.9 54.0
FCNs [211] A 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1 — —
CyCADA A 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8 73.1 82.8

Oracle A 96.4 74.5 87.1 35.3 37.8 36.4 46.9 60.1 89.0 54.3 89.8 65.6 35.9 89.4 38.6 64.1 38.6 40.5 65.1 60.3 87.6 93.1

Source only B 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7 47.4 62.5
CyCADA B 63.7 24.7 69.3 21.2 17.0 30.3 33.0 32.0 80.5 25.3 62.3 62.0 15.1 73.1 19.8 23.6 5.5 16.2 28.7 37.0 63.8 75.4

Oracle B 97.3 79.8 88.6 32.5 48.2 56.3 63.6 73.3 89.0 58.9 93.0 78.2 55.2 92.2 45.0 67.3 39.6 49.9 73.6 67.4 89.6 94.3

Table 3.8: Adaptation between GTA5 and Cityscapes, showing IoU for each class and mean
IoU, freq-weighted IoU and pixel accuracy. CyCADA significantly outperforms baselines,
nearly closing the gap to the target-trained oracle on pixel accuracy. ∗FCNs in the wild is
by [211]. We compare our model using two base semantic segmentation architectures (A)
VGG16-FCN8s [220] base network and (B) DRN-26 [221].
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(a) GTA5 (b) GTA5 → Cityscapes (c) CityScapes (d) CityScapes → GTA5

Figure 3.36: GTA5 to CityScapes Image Translation. Example images from the
GTA5 (a) and Cityscapes (c) datasets, alongside their image-space conversions to the
opposite domain, (b) and (d), respectively. Our model achieves highly realistic domain
conversions.

Synthetic to real adaptation

To evaluate our method’s applicability to real-world adaptation settings, we
investigate adaptation from synthetic to real-world imagery. The results of this
evaluation are presented in Table 3.8 with qualitative results shown in Figure 3.35.
Once again, CyCADA achieves state-of-the-art results, recovering approximately
40% of the performance lost to domain shift. CyCADA also improves or maintains
performance on all 19 classes. Examination of fwIoU and pixel accuracy as well
as individual class IoUs reveals that our method performs well on most of the
common classes. Although some classes such as train and bicycle see little or no
improvement, we note that those classes are poorly represented in the GTA5 data,
making recognition very difficult. We compare our model against [206] for this
setting, but found this approach did not converge and resulted in worse performance
than the source only model.

We visualize the results of image-space adaptation between GTA5 and Cityscapes
in Figure 3.36. The most obvious difference between the original images and the
adapted images is the saturation levels—the GTA5 imagery is much more vivid than
the Cityscapes imagery, so adaptation adjusts the colors to compensate. We also
observe texture changes, which are perhaps most apparent in the road: in-game,
the roads appear rough with many blemishes, but Cityscapes roads tend to be
fairly uniform in appearance, so in converting from GTA5 to Cityscapes, our model
removes most of the texture. Somewhat amusingly, our model has a tendency to
add a hood ornament to the bottom of the image, which, while likely irrelevant to
the segmentation task, serves as a further indication that image-space adaptation is
producing reasonable results.
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3.5 Conclusion
We explored how an image of one domain can be transformed into a another

domain, by utilizing the GAN framework [12] to ensure the output looks indistin-
guishable to members of the target domain, while constraining the mapping function
via the pixel-based cycle consistency loss (Section 3.2) or the patch-based contrastive
loss (Section 3.3). The image translation model can be trained on many interesting
domains and applications, including turning paintings into photographs, photographs
into style of an artist, one object class to another, or computer graphics to realistic
images, all maintaining the overall structure of the input. Furthermore, we pre-
sented a cycle-consistent adversarial domain adaptation method (Section 3.4) that
utilizes cycle-consistency loss at pixel level to enhance perception modules trained in
synthetic environment.
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Chapter 4

Learning Structure and Texture
without Per-Image Labels

The methods proposed in the previous chapters still rely on either per-pixel
(Chapter 2) or per-image (Chapter 3) supervision. In this chapter, we explore if
similarly disentangled representation can be discovered without any labels. In this
regard, we propose the Swapping Autoencoder, a deep model designed for image
manipulation that can be trained on a collection of unlabeled images. The key idea is
to encode an image into two independent components and enforce that any swapped
combination maps to a realistic image. In particular, we encourage the components to
represent structure and texture, by enforcing one component to encode co-occurrent
patch statistics across different parts of the image. As our method is trained with
an encoder, finding the latent codes for a new input image becomes trivial, rather
than cumbersome. As a result, our method enables us to manipulate real input
images in various ways, including texture swapping, local and global editing, and
latent code vector arithmetic. Experiments on multiple datasets show that our
model produces better results and is substantially more efficient compared to recent
generative models. 1

4.1 Introduction
Traditional photo-editing tools, such as Photoshop, operate solely within the

confines of the input image, i.e. they can only “recycle” the pixels that are already
there. The promise of using machine learning for image manipulation has been

1This work was first published as Swapping Autoencoder for Deep Image Manipulation at
NeurIPS, 2020 [1].
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Figure 4.1: Our Swapping Autoencoder learns to disentangle texture from structure for
image editing tasks. One such task is texture swapping, shown here. Please see our project
webpage for a demo video of our editing method.

to incorporate the generic visual knowledge drawn from external visual datasets
into the editing process. The aim is to enable new class of editing operations, such
as inpainting large image regions [83, 222, 223], synthesizing photorealistic images
from layouts [14, 20, 22], replacing objects [41, 224], or changing the time photo is
taken [46,225].

However, learning-driven image manipulation brings in its own challenges. For
image editing, there is a fundamental conflict: what information should be gleaned
from the dataset versus information that must be retained from the input image? If
the output image relies too much on the dataset, it will retain no resemblance to the
input, so can hardly be called “editing”, whereas relying too much on the input lessens
the value of the dataset. This conflict can be viewed as a disentanglement problem.
Starting from image pixels, one needs to factor out the visual information which is
specific to a given image from information that is applicable across different images
of the dataset. Indeed, many existing works on learning-based image manipulation,
though not always explicitly framed as learning disentanglement, end up doing so,
using paired supervision [14, 20, 22, 226], domain supervision [41, 44, 109, 225], or
inductive bias of the model architecture [227,228].

In our work, we aim to discover a disentanglement suitable for image editing in
an unsupervised setting. We argue that it is natural to explicitly factor out the visual
patterns within the image that must change consistently with respect to each other.
We operationalize this by learning an autoencoder with two modular latent codes,
one to capture the within-image visual patterns, and another to capture the rest of
the information. We enforce that any arbitrary combination of these codes map to a
realistic image. To disentangle these two factors, we ensure that all image patches
with the same within-image code appear coherent with each other. Interestingly,
this coincides with the classic definition of visual texture in a line of works started

https://taesungp.github.io/SwappingAutoencoder
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by Julesz [229–235]. The second code captures the remaining information, coinciding
with structure. As such, we refer to the two codes as texture and structure codes.

A natural question to ask is: why not simply use unconditional GANs [12]
that have been shown to disentangle style and content in unsupervised settings [13,
177, 228]? The short answer is that these methods do not work well for editing
existing images. Unconditional GANs learn a mapping from an easy-to-sample
(typically Gaussian) distribution. Some methods [177,227,236] have been suggested
to retrofit pre-trained unconditional GAN models to find the latent vector that
reproduces the input image, but we show that these methods are inaccurate and
magnitudes slower than our method. The conditional GAN models [14, 20, 41, 44]
address this problem by starting with input images, but they require the task to be
defined a priori. In contrast, our model learns an embedding space that is useful
for image manipulation in several downstream tasks, including synthesizing new
image hybrids (see Figure 4.1), smooth manipulation of attributes or domain transfer
by traversing latent directions (Figure 4.7), and local manipulation of the scene
structure (Figure 4.8).

To show the effectiveness of our method, we evaluate it on multiple datasets, such
as LSUN churches and bedrooms [237], FlickrFaces-HQ [13], and newly collected
datasets of mountains and waterfalls, using both automatic metrics and human
perceptual judgments. We also present an interactive UI (please see our video in the
project webpage) that showcases the advantages of our method.

4.2 Related Work
Conditional generative models , such as image-to-image translation [20, 41],
learn to directly synthesize an output image given a user input. Many applications
have been successfully built with this framework, including image inpainting [83,223,
238,239], photo colorization [139,240–242], texture and geometry synthesis [243–245],
sketch2photo [88], semantic image synthesis and editing [14, 21, 22, 246]. Recent
methods extent it to multi-domain and multi-modal setting [43, 44, 109, 247, 248].
However, it is challenging to apply such methods to on-the-fly image manipulation,
because for each new application and new user input, a new model needs to be
trained. We present a framework for both image synthesis and manipulation, in
which the task can be defined by one or a small number of examples at run-time.
While recent works [184,185] propose to learn a single-image GANs for image editing,
our model can be quickly applied to a test image without extensive computation of
single-image training.

https://taesungp.github.io/SwappingAutoencoder
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Deep image editing via latent space exploration modifies the latent vector
of a pre-trained, unconditional generative model (e.g., a GAN [12]) according to
the desired user edits. For example, iGAN [80] obtains the latent code using an
encoder-based initialization followed by Quasi-Newton optimization, and updates
the code according to new user constraints. Similar ideas have been explored in
other tasks like image inpainting, face editing, and deblurring [249–252]. More
recently, instead of using the input latent space, GANPaint [236] adapts layers of
a pre-trained GAN for each input image and updates layers according to a user’s
semantic control [253]. Image2StyleGAN [227] and StyleGAN2 [177] reconstruct the
image using an extended embedding space and noise vectors. Our work differs in that
we allow the code space to be learned rather than sampled from a fixed distribution,
thus making it much more flexible. In addition, we train an encoder together with
the generator, which allows for significantly faster reconstruction.

Disentanglement of content and style generative models. Deep generative
models learn to model the data distribution of natural images [12, 32, 254–257],
many of which aim to represent content and style as independently controllable
factors [13, 177, 258–260]. Of special relevance to our work are models that use
code swapping during training [13,82,259,261–263]. Our work differs from them in
three aspects. First, while most require human supervision, such as class labels [82],
pairwise image similarity [262], images pairs with same appearances [259], or object
locations [263], our method is fully unsupervised. Second, our decomposable structure
and texture codes allow each factor be extracted from the input images to control
different aspects of the image, and produce higher-quality results when mixed. Note
that for our application, image quality and flexible control are critically important, as
we focus on image manipulation rather than unsupervised feature learning. Recent
image-to-image translation methods also use code swapping but require ground
truth domain labels [108, 264, 265]. In concurrent work, Anokhin et al. [225] and
ALAE [266] propose models very close to our code swapping scheme for image editing
purposes.

Style transfer. Modeling style and content is a classic computer vision and
graphics problem [4,226]. Several recent works revisited the topic using modern neural
networks [115–117,267], by measuring content using perceptual distance [115,127],
and style as global texture statistics, e.g., a Gram matrix. These methods can transfer
low-level styles such as brush strokes, but often fail to capture larger scale semantic
structures. Photorealistic style transfer methods further constrain the result to be
represented by local affine color transforms from the input image [186,187,268], but
such methods only allow local color changes. In contrast, our learned decomposition
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can transfer semantically meaningful structure, such as the architectural details of a
church, as well as perform other image editing operations.

4.3 Method

Auto-

encode

Swap

𝐸

𝐸 𝐺

Reconstruction

𝐺

𝐷

Reference patches Real/fake?

Patch co-occurrence discriminator 𝐷patch

𝐷

Figure 4.2: Swapping Autoencoder consists of autoencoding (top) and swapping (bottom)
operation. (Top) An encoder E embeds an input (Notre-Dame) into two codes. The
structure code ( ) is a tensor with spatial dimensions; the texture code ( ) is a 2048-
dimensional vector. Decoding with generator G should produce a realistic image (enforced
by discriminator D) matching the input (reconstruction loss). (Bottom) Decoding with
the texture code from a second image (Saint Basil’s Cathedral) should look realistic (via D)
and match the texture of the image, by training with a patch co-occurrence discriminator
Dpatch that enforces the output and reference patches look indistinguishable.

What is the desired representation for image editing? We argue that such
representation should be able to reconstruct the input image easily and precisely.
Each code in the representation can be independently modified such that the resulting
image both looks realistic and reflects the unmodified codes. The representation
should also support both global and local image editing.

To achieve the above goals, we train a swapping autoencoder (shown in Figure 4.2)
consisting of an encoder E and a generator G, with the core objectives of 1) accurately
reconstructing an image, 2) learning independent components that can be mixed to
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create a new hybrid image, and 3) disentangling texture from structure by using a
patch discriminator that learns co-occurrence statistics of image patches.

4.3.1 Accurate and realistic reconstruction
In a classic autoencoder [135], the encoder E and generator G form a mapping

between image x ∼ X ⊂ RH×W×3 and latent code z ∼ Z. As seen in the top
branch of Figure 4.2, our autoencoder also follows this framework, using an image
reconstruction loss:

Lrec(E,G) = Ex∼X‖x−G(E(x))‖1. (4.1)

In addition, we wish for the image to be realistic, enforced by a discriminator
D. The non-saturating adversarial loss [12] for the generator G and encoder E is
calculated as:

LGAN,rec(E,G,D) = Ex∼X− log (D(G(E(x)))). (4.2)

4.3.2 Decomposable latent codes
We divide the latent space Z into two components, z = (zs, zt), and enforce that

swapping components with those from other images still produces realistic images,
using the GAN loss [12].

LGAN,swap(E,G,D) = Ex1,x2∼X ,x1 6=x2− log (D(G(z1
s , z

2
t ))), (4.3)

where z1
s , z2

t are the first and second components of E(x1), E(x2), respectively.
Furthermore, as shown in Figure 4.2, we design the shapes of zs and zt asymmetrically
such that zs is a tensor with spatial dimensions, while zt is a vector. In our model, zs

and zt are intended to encode structure and texture information, and hence named
structure and texture code, respectively, for convenience. At each training iteration,
we randomly sample two images x1 and x2, and enforce Lrec and LGAN,rec on x1,
and LGAN,swap on the hybrid image of x1 and x2.

A majority of recent deep generative models [13,177,255,256,269–271], such as
in GANs [12] and VAEs [32], attempt to make the latent space Gaussian to enable
random sampling. In contrast, we do not enforce such constraint on the latent space
of our model. Our swapping constraint focuses on making the “distribution” around
a specific input image and its plausible variations well-modeled.

Under ideal convergence, the training of the Swapping Autoencoder encourages
several desirable properties of the learned embedding space Z. First, the encoding
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function E is optimized toward injection, due to the reconstruction loss, in that
different images are mapped to different latent codes. Also, our design choices
encourage that different codes produce different outputs via G: the texture code
must capture the texture distribution, while the structure code must capture location-
specific information of the input images (see Section 4.4.7 for more details). Lastly,
the joint distribution of the two codes of the swap-generated images is factored by
construction, since the structure codes are combined with random texture codes.

4.3.3 Co-occurrent patch statistics
While the constraints above are sufficient for our swapping autoencoder to learn a

factored representation, the resulting representation will not necessarily be intuitive
for image editing, with no guarantee that zs and zt actually represent structure
and texture. To address this, we encourage the texture code zt to maintain the
same texture in any swap-generated images. We introduce a patch co-occurrence
discriminator Dpatch, as shown in the bottom of Figure 4.2. The generator aims to
generate a hybrid image G(z1

s , z
2
t ), such that any patch from the hybrid cannot be

distinguished from a group of patches from input x2.

LCooccurGAN(E,G,Dpatch) = Ex1,x2∼X− log
(
Dpatch

(
crop(G(z1

s , z
2
t )), crops(x2)

))
,

(4.4)
where crop selects a random patch of size 1/8 to 1/4 of the full image dimension on
each side (and crops is a collection of multiple patches). Our formulation is inspired
by Julesz’s theory of texture perception [229,230] (long used in texture synthesis [232,
234]), which hypothesizes that images with similar marginal and joint feature statistics
appear perceptually similar. Our co-occurence discriminator serves to enforce that
the joint statistics of a learned representation be consistently transferred. Similar
ideas for modeling co-occurences have been used for propagating a single texture in a
supervised setting [245], self-supervised representation learning [272], and identifying
image composites [273].

4.3.4 Overall training and architecture
Our final objective function for the encoder and generator is Ltotal = Lrec +

0.5LGAN,rec + 0.5LGAN,swap + LCooccurGAN. The discriminator objective and design
follows StyleGAN2 [177]. The co-occurrence patch discriminator first extracts features
for each patch, and then concatenates them to pass to the final classification layer.
The encoder consists of 4 downsampling ResNet [60] blocks to produce the tensor zs,
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and a dense layer after average pooling to produce the vector zt. As a consequence,
the structure code zs, is limited by its receptive field at each location, providing
an inductive bias for capturing local information. On the other hand, the texture
code zt, deprived of spatial information by the average pooling, can only process
aggregated feature distributions, forming a bias for controlling global style. The
generator is based on StyleGAN2, with weights modulated by the texture code.
Please see Section 4.4.7 for a detailed specification of the architecture, as well as
details of the discriminator loss function.

4.4 Experiments
The proposed method can be used to efficiently embed a given image into a

factored latent space, and to generate hybrid images by swapping latent codes. We
show that the disentanglement of latent codes into the classic concepts of “style” and
“content” is competitive even with style transfer methods that address this specific
task [187,188], while producing more photorealistic results. Furthermore, we observe
that even without an explicit objective to encourage it, vector arithmetic in the learned
embedding space Z leads to consistent and plausible image manipulations [13,274,275].
This opens up a powerful set of operations, such as attribute editing, image translation,
and interactive image editing, which we explore.

We first describe our experimental setup. We then evaluate our method on:
(1) quickly and accurately embedding a test image, (2) producing realistic hybrid
images with a factored latent code that corresponds to the concepts of texture and
structure, and (3) editability and usefulness of the latent space. We evaluate each
aspect separately, with appropriate comparisons to existing methods.

4.4.1 Experimental setup
Datasets.

For existing datasets, our model is trained on LSUN Churches, Bedrooms [237],
Animal Faces HQ (AFHQ) [248], Flickr Faces HQ (FFHQ) [13], all at resolution of
256px except FFHQ at 1024px. In addition, we introduce new datasets, which are
Portrait2FFHQ, a combined dataset of 17k portrait paintings from wikiart.org
and FFHQ at 256px, Flickr Mountain, 0.5M mountain images from flickr.com,
and Waterfall, of 90k 256px waterfall images. Flickr Mountain is trained at 512px
resolution, but the model can handle larger image sizes (e.g., 1920×1080) due to the
fully convolutional architecture. We describe the datasets in details.

wikiart.org
flickr.com
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LSUN Church [237] consists of 126,227 images of outdoor churches. The images
are in the dataset are 256px on the short side. During training, 256×256 cropped
images are used. A separate validation set of 300 images is used for comparisons
against baselines.

LSUN Bedroom [237] consists of 3,033,042 images of indoor bedrooms. Like
LSUN Church, the images are trained at 256×256 resolution. The results are shown
with the validation set.

Flickr Faces HQ [13] consists of 70,000 high resolution aligned face images from
flickr.com. Our model is initially trained at 512×512 resolution, and finetuned at
1024 resolution. The dataset designated 10,000 images for validation, but we train
our model on the entire 70,000 images, following the practice of StyleGAN [13] and
StyleGAN2 [177]. For evaluation, we used randomly selected 200 images from the
validation set, although the models are trained with these images.

Animal Faces HQ [248] contains a total of 15,000 images equally split between
cats, dogs, and a wildlife category. Our method is trained at 256×256 resolution on
the combined dataset without domain labels. The results are shown with a separate
validation set.

Portrait2FFHQ consists of FFHQ [13] and a newly collected 19,863 portrait
painting images from wikiart.org. The model is trained at 512×512 resolution
on the combined dataset. The results of the paper are generated from separately
collected sample paintings. We did not check if the same painting belongs in the
training set. The test photographs are from CelebA [276]. All images are aligned to
match the facial landmarks of FFHQ dataset.

Flickr Waterfall is a newly collected dataset of 90,345 waterfall images. The
images are downloaded from the user group “Waterfalls around the world” on flickr.
com. The validation set is 399 images collected from the user group “*Waterfalls*”.
Our model is trained at 256×256 resolution.

Flickr Mountains is a newly collected dataset of 517,980 mountain images from
Flickr. The images are downloaded from the user group “Mountains Anywhere” on
flickr.com. For testing, separately downloaded sample images were used. Our
model is trained at 512×512 resolution.

flickr.com
wikiart.org
flickr.com
flickr.com
flickr.com
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Input Ours StyleGAN2 Im2StyleGAN

Method Runtime
(sec) (�)

LPIPS Reconstruction (�)

Church FFHQ Waterfall Average

Ours 0.101 0.227 0.074 0.238 0.180

Im2StyleGAN 495 0.186 0.174 0.281 0.214

StyleGAN2 96 0.377 0.215 0.384 0.325

Figure 4.3: Embedding examples and reconstruction quality. We project images into
embedding spaces for our method and baseline GAN models, Im2StyleGAN [13,227] and
StyleGAN2 [177]. Our reconstructions better preserve the detailed outline (e.g., doorway,
eye gaze) than StyleGAN2, and appear crisper than Im2StyleGAN. This is verified on
average with the LPIPS metric [130]. Our method also reconstructs images much faster
than recent generative models that use iterative optimization.

Baselines.

To use a GAN model for downstream image editing, one must embed the im-
age into its latent space [80]. We compare our approach to two recent solutions.
Im2StyleGAN [227] present a method for embedding into StyleGAN [13], using itera-
tive optimization into the “W+-space” of the model. The StyleGAN2 model [177]
also includes an optimization-based method to embed into its latent space and noise
vectors. One application of this embedding is producing hybrids. StyleGAN and
StyleGAN2 present an emergent hierarchical parameter space that allows hybrids to
be produced by mixing parameters of two images. We additionally compare to image
stylization methods, which aim to mix the “style” of one image with the “content”
from another. STROTSS [188] is an optimization-based framework, in the spirit of
the classic method of Gatys et al. [115]. We also compare to WCT2 [187], a recent
state-of-the-art photorealistic style transfer method based on a feedforward network.

4.4.2 Image embedding
The first step of manipulating an image with a generative model is projecting

it into its latent spade. If the input image cannot be projected with high fidelity,
the embedded vector cannot be used for editing, as the user would be editing a
different image. Figure 4.3 illustrates both example reconstructions and quantitative
measurement of reconstruction quality, using LPIPS [130] between the original
and embedded images. Note that our method accurately preserves the doorway
pattern (top) and facial features (bottom) without blurriness. Averaged across
datasets and on 5 of the 6 comparisons to the baselines, our method achieves better
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texture texture

structurestructure

Figure 4.4: Image swapping. Each row shows the result of combining the structure code
of the leftmost image with the texture code of the top image (trained on LSUN Church
and Bedroom). Our model generates realistic images that preserve texture (e.g., material
of the building, or the bedsheet pattern) and structure (outline of objects).

reconstruction quality than the baselines. An exception is on the Church dataset,
where Im2StyleGAN obtains a better reconstruction score. Importantly, as our
method is designed with test-time embedding in mind, it only requires a single
feedforward pass, at least 1000× faster than the baselines that require hundreds to
thousands of optimization steps. Next, we investigate how useful the embedding is
by exploring manipulations with the resulting code.

4.4.3 Swapping to produce image hybrids
In Figure 4.4, we show example hybrid images with our method, produced by

combining structure and texture codes from different images. Note that the textures
of the top row of images are consistently transferred; the sky, facade, and window
patterns are mapped to the appropriate regions on the structure images on the
churches, and similarly for the bedsheets.

Realism of image hybrids. In Table 4.1, we show results of comparison to
existing methods. As well as generative modeling methods [13,177,227]. For image
hybrids, we additionally compare with SOTA style transfer methods [187, 188],
although they are not directly applicable for controllable editing by embedding
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Method Runtime
(sec) (�)

Human Perceptual Study (AMT Fooling Rate) (�)
Church FFHQ Waterfall Average

Swap Autoencoder (Ours) 0.113 31.3±2.4 19.4±2.0 41.8±2.2 31.0±1.4
Im2StyleGAN [13,227] 990 8.5±2.1 3.9±1.1 12.8±2.4 8.4±1.2

StyleGAN2 [177] 192 24.3±2.2 13.8±1.8 35.3±2.4 24.4±1.4
STROTSS [188] 166 13.7±2.2 3.5±1.1 23.0±2.1 13.5±1.2

WCT2 [187] 1.35 27.9±2.3 22.3±2.0 35.8±2.4 28.6±1.3

Table 4.1: Realism of swap-generated images We study how realistic our swap-
generated swapped appear, compared to state-of-the-art generative modeling approaches
(Im2StyleGAN and StyleGAN2) and stylization methods (STROTSS and WCT2). We run
a perceptual study, where each method/dataset is evaluated with 1000 human judgments.
We bold the best result per column and bold+italicize methods that are within the
statistical significance of the top method. Our method achieves the highest score across all
datasets. Note that WCT2 is a method tailored especially for photorealistic style transfer
and is within the statistical significance of our method in the perceptual study. Runtime is
reported for 1024×1024 resolution.

StyleGAN2 Im2StyleGAN STROTSSStructure Texture OursWCT2

Figure 4.5: Comparison of image hybrids. Our approach generates realistic results
that combine scene structure with elements of global texture, such as the shape of the
towers (church), the hair color (portrait), and the long exposure (waterfall).
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Figure 4.6: Style and content. (Left) Results of our perceptual study where we asked
users on AMT to choose which image better reflects the “style” or “content” of a provided
reference image, given two results (ours and a baseline). Our model is rated best for
capturing style, and second-best for preserving content, behind WCT2 [187], a photorealistic
style transfer method. Most importantly, our method was rated strictly better in both
style and content matching than both image synthesis models Im2StyleGAN [13,227] and
StyleGAN2 [177]. (Right) Using the self-similarity distance [188] and SIFID [184], we
study variations of the co-occurrence discriminator’s patch size in training with respect to
the image size. As patch size increases, our model tends to make more changes in swapping
(closer to the target style and further from input structure). In addition, we gradually
interpolate the texture code, with interpolation ratio α, away from a full swapping α = 1.0,
and observe that the transition is smooth.

images (Chapter 4.4.5). We run a human perceptual study, following the test setup
used in [20, 139, 184]. A real and generated image are shown sequentially for one
second each to Amazon Mechanical Turkers (AMT), who choose which they believe to
be fake. We measure how often they fail to identify the fake. An algorithm generating
perfectly plausible images would achieve a fooling rate of 50%. We gather 15,000
judgments, 1000 for each algorithm and dataset. Our method achieves more realistic
results across all datasets. The nearest competitor is the WCT2 [187] method, which
is designed for photorealistic style transfer. Averaged across the three datasets, our
method achieves the highest fooling rate (31.0± 1.4%), with WCT2 closely following
within the statistical significance (28.6± 1.3%). We show qualitative examples in
Figure 4.5.

Style and content. Next, we study how well the concepts of content and style
are reflected in the structure and texture codes, respectively. We employ a Two-
alternative Forced Choice (2AFC) user study to quantify the quality of image hybrids
in content and style space. We show participants our result and a baseline result,
with the style or content reference in between. We then ask a user which image is
more similar in style, or content respectively. Such 2AFC tests were used to train the
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LPIPS perceptual metric [130], as well as to evaluate style transfer methods in [188].
As no true automatic perceptual function exists, human perceptual judgments remain
the “gold standard” for evaluating image synthesis results [20,21,139,184]. Figure 4.6
visualizes the result of 3,750 user judgments over four baselines and three datasets,
which reveal that our method outperforms all baseline methods with statistical
significance in style preservation. For content preservation, our method is only
behind WCT2, which is a photorealistic stylization method that makes only minor
color modifications to the input. Most importantly, our method achieves the best
performance with statistical significance in both style and content among models
that can embed images, which is required for other forms of image editing.

4.4.4 Analysis of our method
Next we analyze the behavior of our model using automated metrics. Self-

similarity Distance [188] measures structural similarity in deep feature space based
on the self-similarity map of ImageNet-pretrained network features. Single-Image
FID [184] measures style similarity by computing the Fréchet Inception Distance
(FID) between two feature distributions, each generated from a single image. SIFID
is similar to Gram distance, a popular metric in stylization methods [115,234], but
differs by comparing the mean of the feature distribution as well as the covariance.

Specifically, we vary the size of cropped patches for the co-occurrence patch
discriminator in training. In Figure 4.6 (right), the max size of random cropping
is varied from 1/8 to 3/4 of the image side length, including the default setting
of 1/4. We observe that as the co-occurrence discriminator sees larger patches, it
enforces stronger constraint, thereby introducing more visual change in both style
and content. Moreover, instead of full swapping, we gradually interpolate one texture
code to the other. We observe that the SIFID and self-similarity distance both
change gradually, in all patch settings. Such gradual visual change can be clearly
observed in Figure 4.7, and the metrics confirm this.

4.4.5 Image editing via latent space operations
Even though no explicit constraint was enforced on the latent space, we find that

modifications to the latent vectors cause smooth and predictable transformations to
the resulting images. This makes such a space amenable to downstream editing in
multiple ways. First, we find that our representation allows for controllable image
manipulations by vector arithmetic in the latent space. Figure 4.7 shows that
adding the same vector smoothly transforms different images into a similar style,
such as gradually adding more snow (top). Such vectors can be conveniently derived



4.4. EXPERIMENTS 102

more snowless snow input image

dogspainting photo wildlife

Figure 4.7: Continuous interpolation. (top) A manipulation vector for snow is
discovered by taking mean difference between 10 user-collected photos of snowy and
summer mountain. The vector is simply added to the texture code of the input image
(red) with some gain. (bottom) Multi-domain, continuous transformation is achieved by
applying the average vector difference between the texture codes of two domains, based on
annotations from the training sets. We train on Portrait2FFHQ and AFHQ [248] datasets.

by taking the mean difference between the embeddings of two groups of images.
In a similar mechanism, the learned embedding space can also be used for image-

to-image translation tasks (Figure 4.7), such as transforming paintings to photos.
Image translation is achieved by applying the domain translation vector, computed
as the mean difference between the two domains. Compared to most existing image
translation methods, our method does not require that all images are labeled, and
also allows for multi-domain, fine-grained control simply by modifying the vector
magnitude and members of the domain at test time. Finally, the design of the
structure code zs is directly amenable local editing operations, due to its spatial
nature.
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4.4.6 Interactive user interface for image editing
Based on the proposed latent space exploration methods, we built a sample user

interface for creative user control over photographs. Figure 4.8 shows three editing
modes that our model supports. Please see a demo video on our webpage. We
demonstrate three operations: (1) global style editing: the texture code can be
transformed by adding predefined manipulation vectors that are computed from PCA
on the train set. Like GANSpace [228], the user is provided with knobs to adjust the
gain for each manipulation vector. (2) region editing: the structure code can also
be manipulated the same way of using PCA components, by treating each location
as individual, controllable vectors. In addition, masks can be automatically provided
to the user based on the self-similarity map at the location of interest to control the
extent of structural manipulation. (3) cloning: the structure code can be directly
edited using a brush that replaces the code from another part of the image, like the
Clone Stamp tool of Photoshop.

global style editingregion editing with self-similarity mask

brush stroke visualization 1. remove road 2. draw mountainUI with input image

1

2

Figure 4.8: Example Interactive UI. (top, cloning) using an interactive UI, part of
the image is “redrawn” by the user with a brush tool that extracts structure code from
user-specified location. (left, region editing) the bottom region is transformed to lake,
snow, or different vegetation by adding a manipulation vector to the structure codes of
the masked region, which is auto-generated from the self-similarity map at the specified
location. (right, global style editing) the overall texture and style can be changed using
vector arithmetic with principal directions of PCA, controlled by the sliders on the right
pane of the UI. (best viewed zoomed in)

https://taesungp.github.io/SwappingAutoencoder
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4.4.7 Architecture
The encoder maps the input image to structure and texture codes, as shown in

Figure 4.9 (left). For the structure code, the network consists of 4 downsampling
residual blocks [60], followed by two convolution layers. For the texture code, the
network branches off and adds 2 convolutional layers, followed by an average pooling
(to completely remove spatial dimensions) and a dense layer. The asymmetry of the
code shapes is designed to impose an inductive bias and encourage decomposition
into orthogonal tensor dimensions. Given an 256× 256 image, the structure code is
of dimension 16× 16× 8 (large spatial dimension), and texture code is of dimension
1× 1× 2048 (large channel dimension).

The texture code is designed to be agnostic to positional information by using
reflection padding or no padding (“valid”) in the convolutional layers (rather than
zero padding) followed by average pooling. On the other hand, each location of the
structure code has a strong inductive bias to encode information in its neighborhood,
due to its fully convolutional architecture and limited receptive field.

The generator maps the codes back to an image, as shown in Figure 4.9 (right).
The network uses the structure code in the main branch, which consists of 4 residual
blocks and 4 upsampling residual blocks. The texture code is injected using the
weight modulation/demodulation layer from StyleGAN2 [177]. We generate the
output image by applying a convolutional layer at the end of the residual blocks.
This is different from the default setting of StyleGAN2, which uses an output skip,
but more similar to the residual net setting of StyleGAN2 discriminator. Lastly,
to enable isolated local editing, we avoid normalizations such as instance or batch
normalization [48,161].

The discriminator architecture is identical to StyleGAN2, except with no
minibatch discrimination, to enable easier fine-tuning at higher resolutions with
smaller batch sizes.

The co-occurrence patch discriminator architecture is shown in Figure 4.10
and is designed to determine if a patch in question (“real/fake patch”) is from the
same image as a set of reference patches. Each patch is first independently encoded
with 5 downsampling residual blocks, 1 residual block, and 1 convolutional layer.
The representations for the reference patches are averaged together and concatenated
with the representation of the real/fake patch. The classification applies 3 dense
layers to output the final prediction.

The detailed design choices of the layers in all the networks follow StyleGAN2 [177],
including weight demodulation, antialiased bilinear down/upsampling [277], equalized
learning rate, noise injection at every layer, adjusting variance of residual blocks by
the division of

√
2, and leaky ReLU with slope 0.2.
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Figure 4.9: Encoder and generator architecture. The encoder network first applies 4
downsampling residual blocks [60] to produce an intermediate tensor, which is then passed
to two separate branches, producing the structure code and texture code. The structure
code is produced by applying 1-by-1 convolutions to the intermediate tensor. The texture
code is produced by applying strided convolutions, average pooling, and then a dense layer.
Given an H×H image, the shapes of the two codes are H/16×H/16× 8, and 1× 1× 2048,
respectively. The case for a 512×512 image is shown. To prevent the texture code from
encoding positional information, we apply reflection padding for the residual blocks, and
then no padding for the conv blocks. The generator consists of 4 residual blocks and then 4
upsampling residual blocks, followed by 1-by-1 convolution to produce an RGB image. The
structure code is given in the beginning of the network, and the texture code is provided
at every layer as modulation parameters. We use zero padding for the generator. The
detailed architecture follows StyleGAN2 [177], including weight demodulation, bilinear
upsampling, equalized learning rate, noise injection at every layer, adjusting variance of
residual blocks by the division of

√
2, and leaky ReLU with slope 0.2.
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Figure 4.10: Co-occurrence patch discriminator architecture. The co-occurrence
patch discriminator consists of the feature extractor, which applies 5 downsampling residual
blocks, 1 residual block, and 1 convolutional layer with valid padding to each input patch,
and the classifier, which concatenates the flattened features in channel dimension and then
applies 3 dense layers to output the final prediction. Since the patches have random sizes,
they are upscaled to the same size before passed to the co-occurrence discriminator. All
convolutions use kernel size 3×3. Residual blocks use the same design as those of the image
discriminator. For the reference patches, more than one patch is used, so the extracted
features are averaged over the batch dimension to capture the aggregated distribution of
the reference texture.
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4.4.8 Training details
At each iteration, we sample a minibatch of size N and produce N/2 reconstructed

images and N/2 hybrid images. The reconstruction loss is computed using N/2
reconstructed images. The loss for the image discriminator is computed on the
real, reconstructed, and hybrid images, using the adversarial loss E− log (D(x)) +
E− log (1−D(xfake)), where x and xfake are real and generated (both reconstructed
and hybrid) images, respectively. For the details of the GAN loss, we follow the
setting of StyleGAN2 [177], including the non-saturating GAN loss [12] and lazy
R1 regularization [35, 177]. In particular, R1 regularization is also applied to the
co-occurrence patch discriminator. The weight for R1 regularization was 10.0 for the
image discriminator (following the setting of [35,177]) and 1.0 for the co-occurrence
discriminator. Lastly, the co-occurrence patch discriminator loss is computed on
random crops of the real and swapped images. The size of the crops are randomly
chosen between 1/8 and 1/4 of the image dimensions for each side, and are then
resized to 1/4 of the original image. For each image (real or fake), 8 crops are made.
For the query image (the first argument to Dpatch), each crop is used to predict co-
occurrence, producing 8N predictions at each iteration. For the reference image (the
second argument to Dpatch), the feature outputs are averaged before concatenated
with the query feature. Both discriminators use the binary cross-entropy GAN loss.

We use ADAM [67] with 0.002 learning rate, β1 = 0.0 and β2 = 0.99. We use
the maximum batch size that fits in memory on 8 16GB Titan V100 GPUs: 64 for
images of 256×256 resolution, 16 for 512×512 resolution, and 16 for 1024×1024
resolution (with smaller network capacity). Note that only the FFHQ dataset was
trained at 1024×1024 resolution; for the landscape datasets, we take advantage of
the fully convolutional architecture and train with cropped images of size 512×512,
and test on the full image. The weights on each loss term are simply set to be all 1.0
among the reconstruction, image GAN, and co-occurrence GAN loss.

4.4.9 Additional visual results
In Figure 4.1, 4.4, and 4.7, we have shown our results of swapping the texture

and structure codes as well as manipulation results of the latent space. Here we
show additional swapping and editing results.

Swapping. Here we show additional results of swapping on FFHQ (Figure 4.11),
Mountains (Figure 4.13), and LSUN Church and Bedroom (Figure 4.16) dataset.
For test images, the input images for the models trained on FFHQ (Figure 4.11,
4.12, and 4.14) and Mountains (Figure 4.13 and 4.15) are separately downloaded
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from pixabay.com using relevant keywords. The results on LSUN (Figure 4.16) are
from the validation sets [237].

Editing. The latent space of our method can be used for image editing. For
example, in Figure 4.14 and 4.15, we show the result of editing the texture code
using an interactive UI that performs vector arithmetic using the PCA components.
Editing the texture code results in changing global attributes like age, wearing glasses,
lighting, and background in the FFHQ dataset (Figure 4.14), and time of day and
grayscale in the Mountains dataset (Figure 4.15). On the other hand, editing the
structure code can manipulate locally isolated attributes such as eye shape, gaze
direction (Figure 4.12), or texture of the grass field (Figure 4.15). These results
are generated by performing vector arithmetic in the latent space of the flattened
structure code, masked by the region specified by the user in the UI, similar to region
editing of Figure 4.8. In addition, the pond of Figure 4.15 is created by overwriting
the structure code with the code of a lake from another image (cloning of Figure 4.8).
More editing results of using the interactive UI can be found on our project webpage:
https://taesungp.github.io/SwappingAutoencoder.

User-guided image translation. In Figure 4.18, we show the results of user-
guided image translation, trained on Portrait2FFHQ and Animal Faces HQ [248].
For each dataset, the results are produced using the model trained on the mix of
all domains and hence without any domain labels. By adjusting the gains on the
principal components of the texture code with the interactive UI, the user controls
the magnitude and style of translation. Interestingly, we found that the first principal
axis of the texture code largely corresponds to the domain translation vector in the
case of Portrait2FFHQ and AFHQ dataset, with the subsequent vectors controlling
more fine-grained styles. Therefore, our model is suitable for the inherent multi-
modal nature of image translation. For example, in Figure 4.18, the input cat and
dog images are translated into six different plausible outputs.

4.4.10 Additional comparison to existing methods
In Table 4.2, we report the FIDs of the swapping results of our model and

baselines on LSUN Church, FFHQ, and Waterfall datasets using the validation set.
More visual comparison results that extend Figure 4.3 and 4.5 of the main paper are
in Figure 4.17. Note that using FID to evaluate the results of this task is not sufficient,
as it does not capture the relationship to input content and style images. For example,
a low FID can be achieved simply by not making large changes to the input content
image. Our model achieves the second-best FID, behind the photorealistic style

pixabay.com
https://taesungp.github.io/SwappingAutoencoder
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transfer method WCT2 [187]. However, the visual results of Figure 4.17 and human
perceptual study of Figure 4.6 reveal that our method better captures the details of
the reference style. In Table 4.3, we compare the FIDs of swapping on the training
set with unconditionally generated StyleGAN and StyleGAN2 outputs. Note that
randomly sampled images of StyleGAN and StyleGAN2 are not suitable for image
editing, as it ignores the input image. The FID of swap-generated images of our
method is placed between the FID of unconditionally generated StyleGAN and
StyleGAN2 images.

Method Church FFHQ Waterfall Mean
Swap Autoencoder (Ours) 52.34 59.83 50.90 54.36

Im2StyleGAN [13,227] 219.50 123.13 267.25 203.29
StyleGAN2 [177] 57.54 81.44 57.46 65.48
STROTSS [188] 70.22 92.19 108.41 83.36

WCT2 [187] 35.65 39.02 35.88 36.85

Table 4.2: FID of swapping on the validation set. We compare the FIDs of content-
style mixing on the validation sets. Note the utility of FID is limited in our setting, since
it does not capture the quality of embedding or disentanglement. Our method achieves
second-lowest FID, behind WCT2 [187], a photorealistic style transfer method. Note
that the values are not directly comparable to different datasets or to the training splits
(Table 4.3), since the number of samples are different. Please see Figure 4.17 for visual
results.

Method Church FFHQ Waterfall Mean
Swap Autoencoder (Ours) 3.91 3.48 3.04

StyleGAN [13] 4.21 4.40∗ 6.09
StyleGAN2 [177] 3.86∗ 2.84∗ 2.67

Table 4.3: FID of swapping on the training set, in the context of unconditional
GAN. We compute the FID of swapped images on the training set, and compare it with
FIDs of unconditionally generated images of StyleGAN [13] and StyleGAN2 [177]. The
result conveys how much realism the swap-generated images convey. Note that randomly
sampled images of StyleGAN [13] and StyleGAN2 [177] models are not suitable for image
editing. Asterisk(∗) denotes FIDs reported in the original papers.
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Figure 4.11: Swapping results of our FFHQ model (photos from pixabay.com).

structure

input

texture

bigger eyes gaze direction more smile 5 o’clock shadow

Figure 4.12: Region editing. The results are generated with vector arithmetic on the
structure code. The vectors are discovered by a user with our UI, with each goal in mind.

pixabay.com
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structure

texture

Figure 4.13: Swapping results of our method trained on Flickr Mountains. The
model is trained and tested at 512px height.
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texture

input bigger eyes gaze direction more smile 5 o’clock shadow

input age glasses lighting background

Figure 4.14: Global editing. The results are generated using vector arithmetic on the
texture code. The vectors are discovered by a user with our UI, with each goal in mind.

structure

texture

Figure 4.15: User editing results of our method trained on Flickr Mountains. For
the input image in red, the top and bottom rows show examples of editing the structure
and texture code, respectively. Please refer to Figure 4.8 on how editing is performed. The
image is of 1536×1020 resolution, using a model trained at 512px resolution.
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structure

texture

structure

texture

Figure 4.16: Swapping results of LSUN Churches (top) and Bedrooms (bottom)
validation set. The model is trained with 256px-by-256px crops and tested at 256px
resolution on the shorter side, keeping the aspect ratio.
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Figure 4.17: Comparison to existing methods. Random results on LSUN Churches and
Flickr Waterfall are shown. In each block, we show both the reconstruction and swapping
for ours, Im2StyleGAN [13,227], and StyleGAN2 [177], as well as the style transfer results
of STROTSS [188] and WCT2 [187]. Im2StyleGAN has a low reconstruction error but
performs poorly on the swapping task. StyleGAN2 generates realistic swappings, but fails
to capture the input images faithfully. Both style transfer methods makes small changes
to the input structure images.
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Figure 4.18: User-guided image translation. Using the interactive UI, the user controls
the magnitude and style of the translated image. We show the edit results of turning
paintings into photo (top) on the model trained on the Portrait2FFHQ dataset, and
translating within the Animal Faces HQ dataset (bottom). The input images are marked
in red. For the animal image translation, 6 different outputs are shown for the same input
image.

4.4.11 Corruption study of Self-Similarity Distance and
SIFID

In Figure 4.19, we validate our usage of Self-Similarity Matrix Distance [188]
and Single-Image FID (SIFID) [184] as automated metrics for measuring distance
in structure and style. Following FID [66], we study the change in both metrics
under predefined corruptions. We find that the self-similarity distance shows a larger
variation for image translation and rotation than blurring or adding white noise.
In contrast, SIFID is more sensitive to blurring or white noise than translation
or rotation. This confirms that the self-similarity captures structure, and SIFID
captures style.
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Figure 4.19: Validating the Self-Similarity Matrix Distance and Single-Image
FID. We apply different types of corruptions and study the variation in the Self-Similarity
Distance [188] and Single-Image FID [184]. SIFID shows higher sensitivity to overall style
changes, such as Gaussian noise or blurring, than structural changes, such as shift and
rotation. On the other hand, Self-Similarity Distance shows higher variation for structural
changes. This empirically confirms our usage of the two metrics as measuring distance in
structure and style.

4.5 Discussion
The main question we would like to address, is whether unconditional random

image generation is required for high-quality image editing tasks. For such approaches,
projection becomes a challenging operation, and intuitive disentanglement still
remains a challenging question. We show that our method based on an auto-encoder
model has a number of advantages over prior work, in that it can accurately embed
high-resolution images in real-time, into an embedding space that disentangles texture
from structure, and generates realistic output images with both swapping and vector
arithmetic. We performed extensive qualitative and quantitative evaluations of our
method on multiple datasets. Still, structured texture transfer remains challenging,
such as the striped bedsheet of Figure 4.4. Furthermore, extensive analysis on the
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nature of disentanglement, ideally using reliable, automatic metrics will be beneficial
as future work.

4.5.1 Discussion on broader social impact
From the sculptor’s chisel to the painter’s brush, tools for creative expression

are an important part of human culture. The advent of digital photography and
professional editing tools, such as Adobe Photoshop, has allowed artists to push
creative boundaries. However, the existing tools are typically too complicated to
be useful by the general public. Our work is one of the new generation of visual
content creation methods that aim to democratize the creative process. The goal is
to provide intuitive controls (see Chapter 4.4.6) for making a wider range of realistic
visual effects available to non-experts.

While the goal of this work is to support artistic and creative applications, the
potential misuse of such technology for purposes of deception – posing generated
images as real photographs – is quite concerning. To partially mitigate this concern,
we can use the advances in the field of image forensics [278], as a way of verifying the
authenticity of a given image. In particular, Wang et al. [279] recently showed that a
classifier trained to classify between real photographs and synthetic images generated
by ProGAN [280], was able to detect fakes produced by other generators, among
them, StyleGAN [13] and StyleGAN2 [177]. We take a pretrained model of [279]
and report the detection rates on several datasets in Table 4.4. Our swap-generated
images can be detected with an average rate greater than 90%, and this indicates
that our method shares enough architectural components with previous methods
to be detectable. However, these detection methods do not work at 100%, and
performance can degrade as the images are degraded in the wild (e.g., compressed,
rescanned) or via adversarial attacks. Therefore, the problem of verifying image
provenance remains a significant challenge to society that requires multiple layers of
solutions, from technical (such as learning-based detection systems or authenticity
certification chains), to social, such as efforts to increase public awareness of the
problem, to regulatory and legislative.
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Method Task Dataset
Church FFHQ Waterfall Average

Im2StyleGAN [13,227] reconstruct 99.3 100.0 92.4 97.2
swap 100.0 100.0 97.7 99.2

StyleGAN2 [177] reconstruct 99.7 100.0 94.4 98.0
swap 99.8 100.0 96.6 98.8

Swap Autoencoder (Ours) reconstruct 93.6 95.6 73.9 87.7
swap 96.6 94.7 80.4 90.5

Table 4.4: Detectability. We run the CNN-generated image detector fromWang et al. [279]
and report average precision (AP); chance is 50%. The CNN classifier is trained from
ProGAN [280], the predecessor to StyleGAN [13]. Because our method shares architectural
components, a classifier trained to detect a different method can also generalize to ours,
with some dropoff, especially for the waterfall class. Notably, the performance on FFHQ
faces remains high. However, performance is not reliably at 100% across all methods,
indicating that future detection methods could potentially benefit from training on our
method.
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Chapter 5

Conclusions and Discussion

In this thesis, we discussed how machine learning could be utilized for image
editing. While the existing photo editing tools focus on low-level operations, the
proposed approaches based on machine learning can perform new high level operations
such as synthesizing new realistic objects or transforming the input image into a
entirely new style. We explored three different settings, with varying amounts of
supervision provided in training our models, and observed that each has its own
strengths and applications. I hope the confluence of image editing and machine
learning opens up new possibilities in our imagination.

Nevertheless, the proposed approaches come with limitations. I see two oppor-
tunities that would further improve the utility of the proposed frameworks. First
is embedding a notion of object constancy and physics into the model. Currently,
neither the supervisory signal or the formulation convey concept about the underlying
world represented by the input image. Because of this, there is no explicit way to
maintain the underlying scene in the editing process. For example, the swapping
results of Figure 4.13 often changes the mountain ridgeline. By incorporating 3D
vision, the user may benefit from having an option to maintain the 3D scene shown by
the image. Secondly, the expressiveness of structural editing can be further improved.
In many settings discussed in this thesis, the structure of an image was deemed
as the features that need to be maintained in the editing process. In Swapping
Autoencoder, we briefly investigated how local editing could be performed with the
structure code (Chapter 4.4.5, Figure 4.8, and Figure 4.12), and expanding further
in this direction could enable useful modes of image editing.
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