
Computer-Based Testing using PrairieLearn in BJC

Bojin Yao
Dan Garcia, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-156

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-156.html

May 21, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Computer-Based Testing using PrairieLearn in BJC

by

Bojin Yao

A technical report submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Teaching Professor Dan Garcia, Chair
Professor Armando Fox

Spring 2021

Computer-Based Testing using PrairieLearn in BJC

Copyright 2021
by

Bojin Yao

Computer-Based Testing using PrairieLearn

by Author Bojin (Max) Yao

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Dan Garcia
Research Advisor

(Date)

* * * * * * *

Professor Armando Fox
Second Reader

(Date)

1

Abstract

Computer-Based Testing using PrairieLearn in BJC

by

Bojin Yao

Master of Science in Computer Science

University of California, Berkeley

Teaching Professor Dan Garcia, Chair

Starting in the spring of 2019, Professor Dan Garcia turned the focus of his computer sci-
ence education research and development group to proficiency-based learning for CS10: The
Beauty and Joy of Computing (BJC) [1]. The long-term goal was for students to have the
opportunity to achieve proficiency through formative assessments that they could practice
over and over (and perhaps even summative assessments they could take, and continue to
retake until they were above threshold), rather than only being able to showcase their abili-
ties during a few high-stress, high-stakes exams. To achieve this goal, we looked to Question
Generators (QG), implemented on the PrairieLearn (PL) platform [2] from the University
of Illinois at Urbana Champaign. Question Generators (QG) are computer programs that
randomly generate different variants of a question based on predefined parameters. Accord-
ing to [3], randomization is an effective tool to deter collaborative cheating for assessments.
This became especially important for the remote-learning environment during the recent
pandemic when all assessments had to be conducted online, making exam proctoring a chal-
lenging issue.

As one of the technical leads of the group, I was among the first students to dive deep into
PL to set up foundational infrastructure for CS10. I assisted in creating and documenting
many of the subsequent QGs, best practices, and tools; later, I also led the first contribu-
tions to PL’s codebase and collaborated with PL’s development team. One of the research
contributions during that time was advocacy of a better way to formally categorize QGs,
into conceptual and numerical variants [4].

As a result of this work, all of the lectures in CS10 had become video-based with randomly
generated quizzes that students had access to the entire semester. This helped us to accom-
modate schedules of all students and free up the usual lecture times for office hours. The
randomized quiz questions incentivized students to pay attention to the contents of the video
lectures instead of getting answers from their classmates. The fully auto-graded quizzes also
came at no additional cost to staff hours.

2

Additionally, for the first time ever, CS10 was able to introduce a long-exam format to
alleviate exam pressure and accommodate the needs of all students. This was possible
partly because the randomized questions made collaborative cheating more difficult, and
we devised new strategies to detect cheating using comprehensive logs. Furthermore, the
entire exams were auto-graded with scores and statistics released minutes after the exams’
conclusion that saved many hours of handgrading or scanning the exam papers.

The purpose of this master’s report is to document and share results from three aspects of
my program working with PL: (1) software development, (2) CS10 curricular development
using QGs, and (3) student mentorship. I will detail many of the things I’ve learned, best
practices, challenges we faced while working on this project, and how we resolved these
challenges. Additionally, I will also mention some important research work related to CS10’s
PL project that might be informative for others looking to transition to computer-based
testing. It is hoped that future PL-course TAs, QG authors, PL developers, and others
interested in computer-based testing will benefit from the information presented in this
report.

i

Acknowledgments

This work would not have been possible without the support of many incredible and kind
people in my academic life. I’d like to give special thanks to the following individuals:

• My research advisor and mentor, Professor Dan Garcia, for his passion and dedication
to his mission to provide world class computer-science education to every student. It
is without a doubt that his introductory class, CS10: Beauty and Joy of Computing,
inspired me to pursue computer science as a career and completely changed the trajec-
tory of my life. His continued support and influence throughout my academic career
largely contribute to my achievements so far, and surely my future achievements as
well.

• Professor Armando Fox, the second reader to my program report, for the countless
opportunities, immeasurable amount of time, and invaluable feedback he had provided
that made parts of this project possible.

• Matthew West, Nicolas Nytko, Mariana Silva and the rest of PrairieLearn (PL) devel-
opers from University of Illinois at Urbana-Champaign, Neal Terrell from California
State University at Long Beach, and developers from other colleges and universities for
their timely answers and assistance with our endless PL related questions and requests.
Their advice and support from thousands of miles away made many things possible.

• Erik Rogers and Finsen Chiu for their time and help with deploying and managing
ACE Lab’s PrairieLearn instances, and always providing (often last-minute) technical
assistance.

• My fellow graduate students Qitian Liao and Connor McMahon for their assistance
and advice with many parts of the project.

• The entire CS10 staff, especially Yolanda Shen, Lam Pham, and Shannon Hearn, for
supporting various tasks relating to my project.

• Members of the ACE Lab, especially Irene Ortega, for assisting with many of the tasks
and discussions around PL and Question Generators.

• My family and friends who have been supporting me every step of the way in my
pursuit of knowledge, it is thanks to them that all of this is possible.

Some components of this work were partially funded by the California Governor’s Office
of Planning and Research and the UC Berkeley College of Engineering.

ii

Contents

Contents ii

List of Figures iv

Listings vi

1 Introduction 1

2 Related Work 4

3 Background 5

4 Development of PrairieLearn Elements 9
4.1 Changes to pl-multiple-choice Element 10
4.2 Changes to pl-checkbox Element . 14
4.3 Changes to pl-figure . 16

5 Computer-Based Testing in CS10 18
5.1 Course Repository . 18
5.2 Numerical versus Conceptual Variants . 20
5.3 Content Delivery and Assessments . 23

6 Survey Results 29

7 Leadership Development 37
7.1 QG Team . 37
7.2 CS169 Student Group . 38

8 Future Work 40

9 Conclusion 41

Bibliography 42

iii

A Onboarding new QG authors 45

B PL Element Guide 47

C Example infoAssessment.json 48

D Personal Reflections 50

iv

List of Figures

3.1 Snap! layout1, blocks of various types and shapes inside the palette can be
drag-and-dropped to the scripting area to form code-blocks. These code-blocks
are run when clicked by a mouse. The blue blocks (shown above) are used to
programmatically control sprites in the stage area. 6

3.2 Snap! blocks1 snap together to form executable code-blocks. The yellow block
shown above functions as the main function in some programming languages, and
the green pen down block lets the sprite start drawing on stage. 6

3.3 The sprite will say “Hello!” for 1 second, 10 times. 7

4.1 A question that has “All of the above” and “None of the above” enabled. “All
of the above” is displayed below all regular choices, and “None of the above” is
displayed at the very bottom. The question is configured to display 5 choices,
and pl-multiple-choice randomly picks 3 from a list of choices supplied by a
user. 10

4.2 This is an example question. Correctness badge displayed next to student-selected
options, giving away the answer. 15

4.3 help text for pl-checkbox. 16

5.1 CS10 QG metadata tags describe (i) the type of assessment (formative or sum-
mative) the QG is intended for, (ii) exam level it is based on, (iii) difficulty level,
iv) question format, v) whether the QG is ready for release, (vi) GitHub user-
name of the creator of the QG, (vii) the school the question comes from, (viii)
the semester the question is based on, ix) conceptual vs. numerical variants, and
x) other useful metadata. 19

5.2 CS10’s concept map. The goal was to make the map visually pleasing and in-
teractive for students in the future, so that students would have a clear idea of
the direction of the course, and more importantly, a visual representation of their
progression through the course. 21

1https://snap.berkeley.edu/snap/help/SnapManual.pdf

v

5.3 If a QG has N different numerical variants for each conceptual variant, instead
of checking every single combination of conceptual and numerical variants, the
QA team can test the first few numerical variants (in green) and skip the rest (in
red) for each conceptual variant; thus, saving valuable time. 22

5.4 A question we authored that appeared in Fall 2020 Midterm 2. The question has
no numerical variant, and these are the only two conceptual variants. The only
difference is in the recursive call, everything else is the same. 238 students took
the exam, the average for the variant on the left is 78.58%, on the right is 81.93%,
the question itself is worth 8 points and has 5 subparts (only first 2 subparts are
shown), the 3.35% difference translated to less than 0.3 points for an exam worth
100 points. 23

5.5 A question we authored that appeared in CS10’s Fall 2020 first Midterm,. There
are 2 conceptual variants (whether the student was moving from compound ex-
pression to nested subexpressions, or vice-versa), each with 5,120 numerical vari-
ants (the individual three functions listed at the top). Combined, this QG had
over 10 thousand unique variants. The two conceptual variants are, in a sense,
inverses of each other, the one on the left had an average of 90.26%, the one on
the right 87.38%. This question was worth 2 points, so the difference translates
to less than 0.06 points for an exam worth 20 points. 24

5.6 A question authored by a small group of new members of the R&D Group in
spring 2021, under our supervision. There are 2 conceptual variants, each has 62
numerical variants, with a combined 124 unique variants. The variant on the left
appeared on the spring 2021 final exam. The reason the variant on the right was
not chosen was that it was felt students could too easily re-code the script and
immediately see the answer on the Snap! stage. 25

5.7 Video 2 of Lecture 8 from Fall 2020 semester . 26

6.1 Students rate test-taking experience on PrairieLearn. 1 for “Worst” experience, 5
for “Best” experience . 30

6.2 Students’ preference for PL compared to paper testing 30
6.3 Students’ preference for long vs. regular length exam 31
6.4 Students’ perception of part one of the exam . 31
6.5 Students’ perception of part two of the exam . 32
6.6 Students’ guesses on whether each question was randomized 33
6.7 Normalized Number of Unique Variants vs. Normalized Percent Vote 34
6.8 Students’ confidence level in cheating prevention. 1 for “No confidence”, 5 for

“Very confident” . 35
6.9 Students’ confidence level in cheating detection. 0 for 0%, 10 for 100% 35
6.10 Do you know anyone who cheated? . 36

7.1 Configuration page for students’ project. This is one of the three pages the
students implemented. 39

vi

Listings

3.1 Python code to generate numerical ranges. This creates 9 unique variants. . 8
4.1 example multiple choice question from PL’s official repository2. Correct op-

tions are marked as True. 13
4.2 example multiple choice question from PL’s official repository3. This is the

same as Listing 4.1, but all the options are stored in a JSON file. 13
C.1 an example infoAssessment.json file similar to what we might use for an

exam. 48

2https://github.com/PrairieLearn/PrairieLearn/blob/master/exampleCourse/questions/
element/multipleChoice/question.html

3https://github.com/PrairieLearn/PrairieLearn/blob/master/exampleCourse/questions/
element/multipleChoice/serverFilesQuestion/sky-color.json

https://github.com/PrairieLearn/PrairieLearn/blob/master/exampleCourse/questions/element/multipleChoice/question.html
https://github.com/PrairieLearn/PrairieLearn/blob/master/exampleCourse/questions/element/multipleChoice/question.html
https://github.com/PrairieLearn/PrairieLearn/blob/master/exampleCourse/questions/element/multipleChoice/serverFilesQuestion/sky-color.json
https://github.com/PrairieLearn/PrairieLearn/blob/master/exampleCourse/questions/element/multipleChoice/serverFilesQuestion/sky-color.json

1

Chapter 1

Introduction

It has always been frustrating when students did poorly in our non-majors introductory
course, the Beauty and Joy of Computing (BJC), so we have been exploring ways to resolve
it. We believe it is time to move from a “fixed time variable learning” (i.e., A-F grades in
one semester) mode to a “fixed learning, variable time” environment (i.e., only A grades in
which the students take as long as they want). There are a lot of pieces to put in place to get
there, but technically we needed a system that would be able to let a student practice with
questions on a particular topic over and over without needing a 1-on-1 tutor to generate those
problems for them [5]. We adopted PrairieLearn to write our QGs in hopes of delivering
various course content and assessments in the coming semesters.

Since spring 2019, Professor Dan Garcia’s CS Education Research and Development
Group has been studying and experimenting with Computer Based Testing (CBT) using
Question Generators (QG), which are computer programs that randomly generate differ-
ent variants of a question based on predefined parameters. PrairieLearn (PL) [2] is an
open-source, online platform developed and maintained by University of Illinois Urbana-
Champaign (UIUC). PL was designed for randomized assessments; these might consist of
homework, exams, quizzes, etc., and are often different from class to class. Randomization
in assessments is an effective way to deter collaborative cheating [3]; this became especially
relevant when courses like CS10 had to transition to remote-learning during the pandemic,
which made exam proctoring a challenging issue.

Besides cheating prevention, in CS10, we also believe that QGs are important tools to
promote mastery of learning. Thanks to the ability to create different question variants,
students have the opportunity to practice concepts until they have achieved understanding.
Additionally, when reviewing old concepts, instructors and students will have a clearer scope
of students’ recall of concepts by assessing students with questions they haven’t seen before.
Combined, these features of QG can help students master learned materials as they progress
through the course.

Over the summer of 2020, student researchers from prospective classes studied and ex-
perimented with PL to understand its functionalities to discover potential use cases for the
respective classes. I was responsible for the group working for CS10, and during this time, we

CHAPTER 1. INTRODUCTION 2

identified various problems when transitioning CS10’s contents to PL. Some of the problems
lie with PL’s implementation, others were unique to CS10. I later led the first contributions
to PL’s source code to help fix some of the issues related to implementation (see Chapter 4).
Issues that were unique to CS10 were more difficult to resolve. For example, Snap! is a large
part of CS10, but it lacked the APIs to be compatible with PL, which made authoring Snap!
based QGs in PL particularly difficult and time-consuming (see Chapter 3). Fortunately, by
the end of the summer, we had explored and decided on various ways PL should be used in
CS10 and established many of the best practices that the course still used to this day (see
Chapter 5).

When fall semester started, I took the responsibility to oversee the integration and real-
ization of the team’s work from summer, and more importantly, fill in any gaps required to
deliver the seamless online experience to students. Notably, I assisted in creating many of
the lecture "quiz" questions (we call them clicker questions) and ported them to PL as QGs;
additionally, I wrote/debugged many of the exam questions as well. In the end, I designed
and set up most of the PL infrastructure that the course continued to use in the spring 2021
semester, and likely beyond.

The fall semester also saw some major changes in course policy. We were aware of the
incredible stress and anxiety students were facing during the global pandemic, and we wanted
to do everything we could to alleviate some of it without sacrificing quality of learning. As a
result, we completely changed the policy and delivery-format of lecture contents and exams
to be as student-friendly as possible thanks to our work with QGs1. Section 5.3 covers
more details relating to these two aspects of the course. In short, all lectures became video-
based; each video had a corresponding quiz question generated by its QG that students were
required to answer correctly to receive credit. The quizzes encouraged students to watch and
pay attention to these videos and not simply get answers from their classmates. Furthermore,
we made these quizzes due at the end of the semester, so students had complete flexibility
when to watch the videos and complete the quizzes. We introduced a long-exam format to
all students where we gave every student days for exams that were designed to take a couple
hours. This was possible partly because of randomization with exam questions; if every
student had the same exam, it would be too easy to cheat. The exams were also graded
with scores and statistics published minutes after. Based on our survey results in Chapter 6,
students really liked this new exam format, and we plan on continuing this policy for the
future.

In the spring semester, I took up more mentorship and leadership roles relating to the
future PL. I took charge of a small group of new members of the research team to learn and
create QGs for CS10 and delivered a couple of amazing questions for the final. I also led a
small team of students from CS169: Software Engineering, to create a new tool to configure
PL assessments as part of their class project.

The purpose of this master’s report is to document and share results from three aspects
1There were also various small changes relating to assignments and labs that are outside the scope of

this report.

CHAPTER 1. INTRODUCTION 3

of my program working with PL: (1) software development, (2) CS10 curricular development
using QGs, and (3) student mentorship. I will detail many of the things I’ve learned, best
practices, challenges we faced while working on this project, and how we resolved these
challenges. Additionally, I will also mention some important research work related to CS10’s
PL project that might be informative for others looking to transition to computer-based
testing. It is hoped that future PL-course TAs, QG authors, PL developers, and others
interested in computer-based testing will benefit from information presented in this report.

4

Chapter 2

Related Work

PrairieLearn’s [2] core philosophy is based around the revolutionary idea proposed by Ben-
jamin Bloom in 1968 "Learning For Mastery" [6], that most, if not all, students are fully
capable of understanding and achieve a level of mastery of materials taught in school, es-
pecially when provided with a good tutor. In his original paper, Bloom also touched on
many aspects of education relating to formative and summative assessments, and their role
in feedback to both instructors and students of the student’s level of mastery. Thanks to his
ideas, there have been many automated, Intelligent Tutoring Systems (ITS) used in class-
rooms, that also includes programming classes [7, 8, 9, 10]. In fact, there are many different
ITS for programming classes out there, each with different purposes and approaches; studies
have been conducted to evaluate these systems’ overall effectiveness [11, 12]. The actual
number of different ITS being used in classrooms is likely much higher than what’s been
studied, considering not all organizations have published results of their own systems. For
example, student developers within our own EECS Department have authored their own
online assessment platform called examtool [13]. This assessment system is very new, and
does not have any publications yet; however, it is already being used by huge classes with
thousands of students.

The report documents some of CS10’s experiences using PL, this builds on similar work
from UIUC as well [14, 15]. Additionally, PL was used as the research tool for many studies
on cheating in the online environment [16, 17, 18].

5

Chapter 3

Background

CS10: Beauty and Joy of Computing (BJC) is non-majors introductory Computer Science
(CS) course at UC Berkeley and was one of the five national pilots for the College Board
AP CS Principles course [19]. The class is designed for students who have little to no prior
programming experience. By the end of the class, students learn all the fundamentals of CS
Principles, and much more, including recursion, higher-order functions, and concurrency

Historically, CS10 relies heavily on Multiple Choice Questions (MCQ) for its assessment,
such as lecture quiz questions and exams. It is well known that well-designed MCQs are
good tools for measuring competencies [20, 21, 22], and CS10 uses MCQs in creative ways.
The two most common formats of MCQs that CS10 uses are Multiple Choice Single Select
where one option can be chosen from a list of options and Multiple Choice Multiple Select
where multiple options can be selected.

The first QGs we wrote were based on MCQs and PL had built-in support for the two
main types of MCQs we used; however, PL lacked features for a few common patterns in our
MCQs. For example, in many of our MCQs, we presented “All of the above” and “None of the
above” at the bottom of the options that would persist for all variants. Due to the shuffling
feature of PL, keeping specific options at designated positions was not trivial to override.
After communicating with PL’s development team, we decided to contribute directly to their
codebase to support this feature for all PL users. Later, we added a few other features that
PL developers and us believed were useful for others too. Chapter 4 discusses these changes.

In CS10, students learn to program via a block-based programming language called Snap!,
as shown in Figure 3.1 and Figure 3.2 [23], that allows users to drag and drop blocks of code
rather than type with a keyboard.

After having learned the CS fundamentals like abstraction, recursion, and higher-order
functions using Snap!, students learn Python and apply the same knowledge, while being
introduced to a few new concepts, such as object-oriented programming, tree recursion, and
data processing [22]. The fact that CS10 has a large component of Snap! programming
turned out to be challenging when creating QGs for the class.

In a nutshell, PL QGs use results returned by Python’s random functions as the random
elements for a question. If the question needs a random number between 1 and 10, it can

CHAPTER 3. BACKGROUND 6

Figure 3.1: Snap! layout1, blocks of various types and shapes inside the palette can be drag-
and-dropped to the scripting area to form code-blocks. These code-blocks are run when
clicked by a mouse. The blue blocks (shown above) are used to programmatically control
sprites in the stage area.

Figure 3.2: Snap! blocks1 snap together to form executable code-blocks. The yellow block
shown above functions as the main function in some programming languages, and the green
pen down block lets the sprite start drawing on stage.

CHAPTER 3. BACKGROUND 7

Figure 3.3: The sprite will say “Hello!” for 1 second, 10 times.

be done with a simple Python call: random.randint(1, 10), that’s it! Similarly, to generate
a random lowercase alphabet, a slightly complicated option might look something like: chr(
random.randint(0, 25) + ord('a')), and there are many different ways to do it using various
packages. More concretely, let’s say we have a Python-based multiple choice question that
asks students to identify a list comprehension that would produce a list with numbers ranging
from x to y, in order to vary the values for x and y, we can do it with two different calls
to: x = random.randint(1, 3); y = random.randint(5, 7), then the values of x and y can be
displayed to students as part of the question’s page. The variable x would be a number
between 1 and 3, whereas y would be a variable between 5 and 7. This way, x would always
be smaller than y, to avoid possible confusions. As pointed out in [24] “special considerations
are necessary when computers are used for tests.” Since PL can convert any Python string
to HTML in its questions page, creating text-based randomization is relatively convenient.
Once a question is created after all the randomizing function calls are completed, a new
question variant (or simply, variant) is created. A variant is a question created with any
combination of random parameters defined by its QG2. For the list-comprehension example
above, the question would have at least 3× 3 = 9 unique variants3.

However, Snap! is not a text-based language, and at the time of this writing, it doesn’t
have any built-in support for generating random code blocks, nor well-documented APIs
for connecting to its runtime environment. As a result, there doesn’t exist an easy way to
generate random code blocks in Snap!. In order to achieve a similar effect of having “different
variations” of the same question, one would need to (i) manually create all the variations of
the code blocks, (ii) export them as images, (iii) carefully name each one of them, then (iv)
write QG code to randomly choose from a list of these images that are named with the same
naming convention, that might still require retyping many of the image names. This process
takes lots of human labor and is error-prone, worst of all, this way of “generating” question
variants is not scalable in any way.

If we want to create a question that asks students how many times “Hello!” will be said
2There doesn’t seem to be any formal definition of “variants” in literature; thus, this definition is derived

from our own practice, but it should be consistent with the general understanding within the context of PL.
3The “uniqueness” refers to the appearance of a question from a student’s point of view, not necessarily

a unique combination of random parameters (see Section 5.2).

CHAPTER 3. BACKGROUND 8

as defined by a loop, in Figure 3.3, “Hello!” will be said ten times. We would like to create
variants based on the numerical ranges in the for-i block, so that different students may have
a different correct response. In Python, this would be a fairly easy task, in fact, we can just
use the double random.randint() call presented earlier in this section to represent the two
variables x and y, as shown below.

1 def generate(data):
2 x = random.randint(1, 3)
3 y = random.randint(5, 7)
4 data['params ']['x'] = x
5 data['params ']['y'] = y
6 data['correct_answers ']['question '] = y - x

Listing 3.1: Python code to generate numerical ranges. This creates 9 unique variants.

In Snap!, we would have to manually create and save images for all these variants (in
the earlier example, 9 different images), and that number can quickly increase for more
complicated QGs. In reality, we might also vary the duration, so students would need to
identify the correct time in addition to the number of times “Hello!” would be said. In
CS10, we have had many QGs with dozens of different images, and a few ones with over
a hundred. This shortcoming with integrating Snap! questions into PL wasted countless
hours and hindered development of Snap! QGs; past and current members of the research
group had dedicated a huge amount of time exploring different ways to resolve this problem.

9

Chapter 4

Development of PrairieLearn Elements

This chapter describes our contribution to PL’s code base in order to transition CS10 to
computer-based testing more easily.

In CS10, lots of questions are delivered in Multiple Choice Question (MCQ) formats, that
includes Multiple Choice Single Select (MCSS) or Multiple Choice Multiple Select (MCMS).
PL has built-in elements1 that already handle core logic and some functionalities of these
two types of multiple choice questions, called pl-multiple-choice2 and pl-checkbox3.
When the CS10 team started using these elements, we realized they were missing certain
functionalities that we frequently use. This led to our first contributions to PL’s source
code. These contributions were all modifications to existing PL elements in the form of
HTML attributes4, and some had been made widely available to all users of PL. All the
features mentioned in this section can be found either in PL’s official documentation[25] or
GitHub repository[26].

Throughout our modifications to PL’s source code, we received lots of help and feedback
from PL’s developers at UIUC, especially Matthew West, the creator of PL, Nicolas Nytko
and Mariana Silva, core maintainers of PL’s repository. Additionally, Neal Terrell at CSU,
Long Beach, provided valuable feedback and discussions on our implementations described
below.

Note: throughout this chapter, “option” and “choice” are used interchangeably. In this
context, they both refer to the possible statements students can see and choose from in a
typical MCQ.

1Elements in PL are custom HTML tags for common logic already implemented for QG writers that
allows one to write HTML code instead of Python: https://prairielearn.readthedocs.io/en/latest/
elements

2https://prairielearn.readthedocs.io/en/latest/elements/#pl-multiple-choice-element
3https://prairielearn.readthedocs.io/en/latest/elements/#pl-checkbox-element
4https://www.w3schools.com/html/html_attributes.asp

https://prairielearn.readthedocs.io/en/latest/elements
https://prairielearn.readthedocs.io/en/latest/elements
https://prairielearn.readthedocs.io/en/latest/elements/#pl-multiple-choice-element
https://prairielearn.readthedocs.io/en/latest/elements/#pl-checkbox-element
https://www.w3schools.com/html/html_attributes.asp

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 10

Figure 4.1: A question that has “All of the above” and “None of the above” enabled. “All
of the above” is displayed below all regular choices, and “None of the above” is displayed at
the very bottom. The question is configured to display 5 choices, and pl-multiple-choice
randomly picks 3 from a list of choices supplied by a user.

4.1 Changes to pl-multiple-choice Element

All of the Above and None of the Above

The pl-multiple-choice element is used to create randomized MCSS questions that allow
students to choose one option from a list of (often randomly selected) options. The original
element already handled randomly choosing from a list of possible options, some simple
configurations, grading, and rendering. However, the CS10 team quickly realized that we
had lots of MCSS questions that contained “All of the above” and/or “None of the above”
options, like Figure 4.1, and pl-multiple-choice didn’t have built-in support for these
options. Even though logic for these options can be implemented in individual QGs, the
CS10 team believed that a native implementation of this feature would be valuable to other
organizations using PL, I took upon the task to investigate and coordinate with PL developers
at UIUC to implement these features.

Before starting development, I noted pl-multiple-choice had some built-in features
already, namely answers-name, weight, inline, number-answers, fixed-order, and hide-
letter-keys. If we wanted to have “All of the above” and/or “None of the above” as options,
we would need to provide them as one of the possible options. Depending on the number of
displayed options, PL would shuffle the order of them to present to students, so these two
options might end up anywhere among the displayed options. If we wanted to have these
two options at the bottom of all the options for better visibility (which is usually the case),
we could configure fixed-order to True and have all options fixed in place; however, this

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 11

approach would lose the benefit of shuffling. Without shuffling of options, as far as MCQs
are concerned, other platforms have similar features as PL, such as Gradescope and Canvas,
making PL less distinctive for those who rely heavily on MCQs. According to PL developers
at the time, to fix these two choices at the bottom of all options, and keep the shuffling
feature of pl-multiple-choice, we would need to override the mechanism that generated
new variants, involving the following steps:

1. Randomly pick from a pool of possible options.

2. Shuffle the order of picked options.

3. Append “All of the above” and/or “None of the above” to the shuffled list.

4. Declare the correct option.

However, this would not be correct because of the special semantic meanings of “All of
the above” and “None of the above”. If the correct choice were “All of the above”, all other
choices would have to be correct statements. If the correct choice were “None of the above”,
all other choices would have to be incorrect statements. As a result, the correctness of either
choice would have an influence on the correctness of the rest of the choices. Additionally,
when both “All of the above” and “None of the above” are enabled, “All of the above” should
be displayed below the regular choices, and “None of the above” should be displayed below
“All of the above” as the last choice for logical consistency. In summary, the right way to do
this would look like:

1. Check if either “All of the above” or “None of the above” are enabled and do some
sanity checks.

• Toss a coin to determine if either of these two should be correct based on some
probability.

• Check the outcome of the toss, it could be either of them is correct, or neither is
correct.

2. Depending on the outcome of the toss, adjust how many correct and incorrect options
are chosen.

3. Make the selection, shuffle the order of the options.

4. Append “All of the above” and/or “None of the above” to the shuffled list, in that order.

5. Depending on the outcome of the toss, declare the correct option.

A nuanced detail with this feature is the probability that either “All of the above” or “None
of the above” is correct in any given variant. When these two features were implemented, the
priority was to make testing easy for QG authors, and since PL lacked the ability for a tester

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 12

to quickly go through all unique variants5, the probability favored going through all correct
statements when randomly generating variants. When using pl-multiple-choice, the user
basically supplies a list of possible options marked as correct or incorrect; the element itself
parses this list to generate a list of correct statements and a list of incorrect statements, so
that the rest of the code can handle randomization. The current implementation hinges on
the following formula:

1

NumCorrect+ AllOfTheAbove+NoneOfTheAbove

It is worth noting that the value for AllOfTheAbove and NoneOfTheAbove would be
1 if enabled, else 0.

The formula basically treats “All of the above” and “None of the above” as potentially
correct options when they’re enabled, making them equally as likely to be chosen as other
correct options. If NumCorrect is 0, the implementation defaults “None of the above” as
correct for logical consistency. If AllOfTheAbove is enabled, the implementation also makes
sure at least 2 correct options are provided because if only one correct option is provided,
technically both that option and “All of the above” would be correct, causing confusion.
Following this formula, all correct options have an equal chance to be picked as the right
answer when a new variant is generated. The intention is to make sure testers can cycle
through all variants where each correct option is chosen as correct to make testing faster.
However, as Neal Terrell6 later pointed out, it might be better in practice to make these two
options equally as likely to be true as the number of displayed options, so the probability
either option is true would be: 1

NumAnswers
, where NumberAnswers is one of pl-multiple-

choice’s attributes that configure the number of display options from the pool. In other
words, if the question is configured to display 5 different options, then either “All of the
above” or “None of the above” should be selected with probability 1

5
. This way, students

would have no advantage or disadvantage to select any of the options; whereas in the current
implementation, if the total number of correct options exceeds the number of displayed
options, it’d be statistically advantageous not to select one of “All of the above” or “None of
the above”. I’m convinced that Neal is right and will be making adjustments to the current
implementation to follow the probability model he proposed7.

External JSON

The pl-multiple-choice element allows one to declare correct and incorrect options by
wrapping each option inside a custom HTML element, pl-answer, and configure the state-
ment as correct or incorrect. This is fine if only a few options are needed. However, in CS10,
we have MCQ based QGs that have dozens of options, especially the lecture based questions,
that would result in massive HTML files.

5See Chapter 8.
6https://www.csulb.edu/college-of-engineering/neal-terrell
7For safety and stability, PL maintainers refrain from making releases during regular semesters.

https://www.csulb.edu/college-of-engineering/neal-terrell

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 13

1 <pl-question -panel>
2 <p>
3 Here , the <code>pl -multiple -choice </code> element displays "All of the

above" and "None of the above" as options below the correct and
incorrect options provided.

4
5 Both of these options could be correct with the same probability as

all of the individual correct options. The number of options displayed
is also consistent across

6 all variants , and is determined automatically if <code>number -answers <
/code> is not set.

7 </p>
8
9 <p> What is the color of the sky? </p>

10 </pl-question -panel>
11
12 <pl-multiple -choice answers -name="sky -color5" none -of -the -above="true" all

-of -the -above="true">
13 <pl-answer correct="true">Blue</pl -answer >
14 <pl-answer correct="true">Dark Blue</pl -answer >
15 <pl-answer correct="true">Light Blue</pl -answer >
16 <pl-answer correct="true">Clear Blue</pl -answer >
17 <pl-answer >Pink</pl -answer >
18 <pl-answer >Purple </pl -answer >
19 <pl-answer >Orange </pl -answer >
20 <pl-answer >Yellow </pl -answer >
21 <pl-answer >Brown</pl -answer >
22 <pl-answer >Red</pl -answer >
23 </pl-multiple -choice >

Listing 4.1: example multiple choice question from PL’s official repository8. Correct options
are marked as True.

Looking at the code above, it is immediately apparent the pl-answer tag is repeated for
every single option. This makes the question statements less portable and doesn’t adhere to
the Computer Science maxim: “Don’t repeat yourself” (here the formatting is duplicated and
“baked” into every possible choice). For situations like this, we wanted to have a dedicated,
easily-parsable file to store these options, and simply inform the element to use that file.
This led to a new attribute to this element called external-json where the user can specify
a path to a JSON file that stores all correct and incorrect options in their own separate lists.

The implementation of this feature was more straightforward, once I figured out the file
path configuration of PL, I wrote code to read options from a JSON file besides parsing
through an HTML file; thus, this attribute is compatible for scenarios where options are
split between the JSON file and the HTML file. Thanks to this implementation, questions
with many options are quite condensed, as shown in below:

1 {
2 "correct": [
3 "Blue", "Dark Blue", "Light Blue", "Clear Blue"

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 14

4],
5 "incorrect_choices": [
6 "Pink", "Purple", "Orange", "Yellow", "Brown", "Red"
7]
8 }

Listing 4.2: example multiple choice question from PL’s official repository9. This is the same
as Listing 4.1, but all the options are stored in a JSON file.

4.2 Changes to pl-checkbox Element
The pl-checkbox element is for MCMS questions, where students can choose more than
one option from a list of selected options. In CS10, this element is usually used for lecture
video questions10, where students are expected to choose all the correct answers to receive
full credit, and students have unlimited tries with no penalty.

hide-score-badge

Early on, we discovered that pl-checkbox would display correctness badge next to the
student-selected options after each submission, as shown in Figure 4.2.

This behavior would allow students to discover the correct options by submitting once
with all options checked; thus, defeating our best intentions. I modified this behavior by
adding a new attribute to pl-checkbox called hide-score-badge, that will suppress the
display of the badges. Students would still be able to tell when they finished the question
because the percentage badge would read “100%”, noting that they had received full credit
for the question.

allow-none-correct

The previous implementation of pl-checkbox asked students to check at least 1 box, oth-
erwise it would raise an error11. In CS10, this made it impossible to create certain QGs.
For example, a boolean-based question that asked students to check variables that would be
true, this constraint prevented us from having variants where all variables would be false.
PL developers suggested adding the option “None of above to the list of correct options and
overriding the variant generation logic similar to pl-multiple-choice. However, this ap-
proach suffered the same issues mentioned in Section 4.1, and we believed this was a common
need for other developers of PL. As of this writing, my implementation hadn’t been merged

10Clicker questions are like lecture quizzes. During in-person lectures, students would participate by
answering questions with their iClickers, provided free of charge by CS10.

11It was actually more advanced. The element could be configured to have a minimum and/or maximum
number of correct options (≥ 1) and raise an error when a student selected too few/many choices.

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 15

Figure 4.2: This is an example question. Correctness badge displayed next to student-
selected options, giving away the answer.

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 16

Figure 4.3: help text for pl-checkbox.

to master branch yet, but was similar to the solution presented in Section 4.1, where a prob-
ability model based on 1

NumCorrect+1
determined whether all the options would be incorrect.

With this attribute enabled, if a student believed all the options were incorrect for their
particular variant, they would simply click “submit” directly, and no error would be raised.

Looking at the current implementation, I believe it suffers the same issue as the current
implementation in Section 4.1; additionally, it might be a bad design to allow students to
submit without selecting any option. I think a better design would be to add it as an option
like “None of the above” that students can check; and once it is checked, raise an error when
any other options are checked. As to the probability of it being correct, I think it can default
to 1

NumberAnswers
but allow the users to configure it via an additional attribute.

Bug in help-text

pl-checkbox has the option to display help text at the bottom of a question to inform
students of the range of options to choose.

In Figure 4.3, the help text displayed two numbers that should be consistent across all
variants of the same question. If this range was different for different variants, it could provide
unfair advantage to some students. I discovered that when min-correct and detailed-
help-text attributes were set to True, the second number would always display the actual
number of correct options. Consequently, for students that received variants where all the
options were correct, they’d immediately know and receive full credit.

4.3 Changes to pl-figure

In PL, QGs can display figures such as images. As explained in Chapter 3, images are very
commonly used in the context of CS10 to accommodate practically all Snap! questions. The
original pl-figure displayed all figures as block-level elements in HTML12, but CS10 had
a lot of small Snap! -code images that should be displayed as inline elements. To provide a

12https://www.w3schools.com/html/html_blocks.asp

https://www.w3schools.com/html/html_blocks.asp

CHAPTER 4. DEVELOPMENT OF PRAIRIELEARN ELEMENTS 17

solution to this, I implemented a new attribute to pl-figure called inline that when set
to True, would override the HTML to display the figure as an inline-level element.

18

Chapter 5

Computer-Based Testing in CS10

This chapter will describe our experiences developing and delivering CS10 curriculum using
PL. This work had many components and was a collaborative effort that involved many
passionate and hardworking individuals. Notably, Erik Rogers deployed and maintained
our PL instance where all the assessments were hosted; Shannon Hearn and Irene Ortega
had significant contributions to CS10’s course repository; Qitian Liao, Connor McMahon,
and Professor Dan Garcia co-authored our poster to SIGCSE 2021. The following sections
document how we set up the course, categorized QGs, and delivered course content and
assessments on PL; as well as some of the things we’ve learned in retrospect.

5.1 Course Repository
By default, PL handles different courses by parsing through directories at the root that
contain a file called infoCourse.json, through which PL would load contents from these
directories1. In production deployment, PL can sync up directly with a remote repository,
so that course maintainers only need to make changes to the remote repository, like GitHub,
to update their respective course(s). Additionally, PL allows maintainers to define instances
of the same course (for example, CS10 has fall and spring offerings), and have an instance
for each offering in a course repository. These instances consist mostly of JSON files that
define assessments because QGs are all shared across course instances, making each course
instance relatively small in terms of disk space. For most users of PL, these resources should
already be set up by course repository maintainers.

For CS10, Erik Rogers2 managed the deployment and maintenance of its production PL
instances, I was in charge of maintaining the course repository on GitHub. One of the
very important lessons we learned early on was the importance of coordination between
PL-instance and course-repository maintainers. At the time of this writing, PL course ad-

1PL instances can also be customized with a configuration file: https://prairielearn.readthedocs.
io/en/latest/configJson

2https://eecs.berkeley.edu/people/staff/it-staff

https://prairielearn.readthedocs.io/en/latest/configJson
https://prairielearn.readthedocs.io/en/latest/configJson

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 19

Figure 5.1: CS10 QG metadata tags describe (i) the type of assessment (formative or sum-
mative) the QG is intended for, (ii) exam level it is based on, (iii) difficulty level, iv) question
format, v) whether the QG is ready for release, (vi) GitHub username of the creator of the
QG, (vii) the school the question comes from, (viii) the semester the question is based on,
ix) conceptual vs. numerical variants, and x) other useful metadata.

ministrators had limited access to its database and certain configurations, and there were a
few times we needed some last-minute changes that only Erik could accomplish. Erik also
managed scaling of our PL instances, especially around exam times, so it was generally a
good idea to keep him informed about important upcoming events that might impact our
PL instances.

Metadata in CS103

At the course-level, PL lets users define colorful custom tags4 as metadata for QGs. When
we started transitioning to PL, we realized the importance of metadata as we knew we
were going to have hundreds of QGs; these metadata would be helpful for organizing and
searching for QGs. The CS10 team spent a lot of time indexing all of its course concepts and
discussing tags we needed to help us organize all the QGs. All of this was documented in
our internal documentation for future users. So far, our tagging scheme has made organizing
and searching convenient since we can quickly glance at useful information for each QG, see
Figure 5.1 for an example.

When correctly used, our tagging scheme is a very useful form of documentation; in fact,
it would be a good idea to have a strict rule requiring correct tags for reusable QGs. In
Figure 5.1, the third to last row was a QG specifically written for a final exam, so it wasn’t
a big deal that the tags weren’t complete. In our experience, it was very difficult to go back

3This work was mostly done by Irene Ortega and Shannon Hearn.
4https://prairielearn.readthedocs.io/en/latest/course/#colors

https://prairielearn.readthedocs.io/en/latest/course/#colors

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 20

and correct tags for past QGs due to lapse in time, so it would be a better practice to update
tags as the QG is developed.

CS10 Concept Map5

Concept maps are graphical tools for organizing and representing knowledge. They include
concepts, usually enclosed in circles or boxes of some type, and relationships between con-
cepts indicated by a connecting line linking two concepts [27]. In order to provide students
with a better view of their learning trajectory as well as promoting mastery of learning,
Shannon’s team painstakingly compiled all the concepts in CS10 and constructed CS10’s
first ever concept map, as shown in Figure 5.2. Using this map, we were able to identify spe-
cific concepts that we needed to create QG(s) for and make sure we had good exam coverage
for midterms and finals. At the moment, the concept map is one of the internal documents
that CS10 staff references. This is an active area of development for the CS10 CBT team.

5.2 Numerical versus Conceptual Variants
An important contribution we have made to the computer-based testing space is a formal
categorization of QG variants that we believe can be informative to others utilizing QGs.

For context, after authoring many QGs, we realized two common problems that arose
over and over again.

1. How many variants do we have?

2. How do we test all the variants?

The first problem concerns the chance a student will have a different answer than their
neighbor, and generally the more variants we can create for a QG the better. The second
problem concerns the process we take to ensure good test coverage of all variants.

In our poster to SIGCSE 2021 [4], we advocated for two categories of variants for QGs:
numerical and conceptual variants. We think of numerical variants as variants that vary
(easy) question parameters; these tend to be the low-hanging fruit when creating random-
ization to a question. On the other hand, conceptual variants vary significant parts of a
question, such as the question setup. Using a mathematical question as a small example, if
the question asks students to determine the value of y given the equation y = x+ 1and the
value of x. Numerical variants might simply vary the value of x, so that students would have
different answers for the value of y. Conceptual variants might change the equation itself to
something like: y = x×2, y = x3, y = x

4
etc. so that given the same value of x, the value for

y will still be different. However, one important consideration when creating any variants is
maintaining the same difficulty level across all possible variants. In the previous examples,

5This work is mostly done by Shannon Hearn and her team.

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 21

Figure 5.2: CS10’s concept map. The goal was to make the map visually pleasing and
interactive for students in the future, so that students would have a clear idea of the direction
of the course, and more importantly, a visual representation of their progression through the
course.

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 22

Figure 5.3: If a QG has N different numerical variants for each conceptual variant, instead
of checking every single combination of conceptual and numerical variants, the QA team can
test the first few numerical variants (in green) and skip the rest (in red) for each conceptual
variant; thus, saving valuable time.

raising x to the power of 3, or dividing by 4 are quite different conceptually from just adding
1. Instructors are encouraged to beta-test conceptual variants with their teaching staff to
assure they are of equal difficulty.

It is worth noting that the term “variant” in our description of these categories has a
“uniqueness” property attached to it, in terms of the resulting question. Sometimes, different
combinations of parameters can produce the same question as far as students can tell; as
QG authors, we care only that the questions look different to students.

After a QG is completed, before it is used on an exam, the QG is always tested to ensure
that the unique variants are working as expected, such as the display of the prompt, images,
and choices, as well as the grading. Depending on the number of possible unique variants, this
could be a daunting task; taking forever to cycle through all possible combinations of a QG’s
parameters. Fortunately, our proposed categories of variants can provide a methodology for
testing efficiently.

We believe that when testing a QG, after having checked the correctness of a few numer-
ical variants, we can be very confident about the correctness of the rest. After all, numerical
variants should be generated with the same solution model and should be relatively easy
to reason about. On the other hand, conceptual variants should be checked individually
because of the more complex variability. Figure 5.3 illustrates this process.

Figures 5.4, 5.5, 5.6 are some real examples of conceptual variants in CS10. Applications
of conceptual and numerical variants can be different for other classes. For example, a
QG that tests students on Depth-First Search (DFS) can have different tree-node values as
numerical variants, since these values have no effect on the traversing order; the QG can use
different DFS orders as conceptual variants, such as pre-order, in-order, and post-order. In
testing, the QA team can check a few numerical variants’ correctness for different orders of
traversal to conclude the QG’s overall correctness.

In CS10, we added metadata tags “CvN” to designate the number of conceptual and

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 23

Figure 5.4: A question we authored that appeared in Fall 2020 Midterm 2. The question has
no numerical variant, and these are the only two conceptual variants. The only difference is
in the recursive call, everything else is the same. 238 students took the exam, the average
for the variant on the left is 78.58%, on the right is 81.93%, the question itself is worth 8
points and has 5 subparts (only first 2 subparts are shown), the 3.35% difference translated
to less than 0.3 points for an exam worth 100 points.

numerical variants to our QGs, see Figure 5.1. This made it convenient to select which
QGs to be included in the assessments, without having to check out the source code. The
categorization also simplified counting the number of unique variants when documenting
existing QGs. We recommend following a similar approach when documenting the QGs;
additionally, other categorization methods with varying granularity are possible. We welcome
and look forward to new categories being added to our list.

5.3 Content Delivery and Assessments
In CS10, we were able to integrate lectures and assessments into PL with modifications to
policies of each. This section details our approach and results.

Lectures

Due to COVID-driven online learning, CS10 changed its lecture format completely. Instead
of having live lectures, Professor Dan Garcia recorded and uploaded high-quality, short clips

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 24

Figure 5.5: A question we authored that appeared in CS10’s Fall 2020 first Midterm,. There
are 2 conceptual variants (whether the student was moving from compound expression to
nested subexpressions, or vice-versa), each with 5,120 numerical variants (the individual
three functions listed at the top). Combined, this QG had over 10 thousand unique variants.
The two conceptual variants are, in a sense, inverses of each other, the one on the left had
an average of 90.26%, the one on the right 87.38%. This question was worth 2 points, so the
difference translates to less than 0.06 points for an exam worth 20 points.

of videos that students could watch any time on their own. Each video usually covers a
single topic and is between 5 to 10 minutes long; a typical one-hour lecture would consist
of 4 to 5 videos. Students were recommended to finish watching the videos corresponding
to each lecture before the usual lecture times; and the usual lecture times were turned into
Dan’s office hours that were always recorded, with recordings made available afterwards.

To ensure students paid attention to lecture videos, each video came with its own quiz
known as a “clicker question” below the embedded video itself. A lecture with 5 short videos
would have 5 different clicker questions. These questions were all constructed using the pl-
checkbox element where 5 correct and incorrect options were supplied, and only 5 options
were displayed6 where any number of them could be correct. The options range from matter-
of-fact to simple-concept, all based on the corresponding video7. Figure 5.7 is an example of
a lecture video.

Students were also told that they had an unlimited number of tries, without penalty for
6This yielded on average 1000 unique variants, given that the pool of correct and incorrect statements

averaged around 10
7The instructor and I typically collaborated in writing these questions.

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 25

Figure 5.6: A question authored by a small group of new members of the R&D Group in
spring 2021, under our supervision. There are 2 conceptual variants, each has 62 numerical
variants, with a combined 124 unique variants. The variant on the left appeared on the
spring 2021 final exam. The reason the variant on the right was not chosen was that it was
felt students could too easily re-code the script and immediately see the answer on the Snap!
stage.

incorrect attempts, for each clicker question; and the questions were all-or-nothing comple-
tion points that they could access any time until the end of the semester. We also set up
a Piazza thread for each lecture where we answered student questions to the best of our
abilities. The intention was to incentivize students to pay attention while watching these
videos and deter cheating, without causing unnecessary stress or frustration. At the end of
the Fall semester, average scores on all lectures were over 96% with the exception of a couple
lectures that had averages in the lower 90s. The clicker questions had a combined worth of
11 points out of 500 total points.

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 26

Figure 5.7: Video 2 of Lecture 8 from Fall 2020 semester

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 27

Assessments

One of the unique challenges with remote exams is accommodating time zones and special
needs requests. Another challenge is the prevention of cheating. The remote setting made
it difficult for classes to come up with ways to promote fair exams, and some classes opted
for some form of online proctoring.

CS10 had the benefit of not being one of the required classes for major declaration and
has traditionally had a low rate of cheating in the past; students normally over-collaborate
on individual projects or plagiarize when writing their essay. Sometimes students give in to
pressure and share code during our “in-lab, with-computer” exams, but that is quite rare –
once every other year or so (four semesters). For the Fall 2020 semester, we decided that
we were going to trust the students and introduced non-proctored, open-book, take-home
exams. These exams were all offered using PL, and I assisted in writing many of the QGs.
For Midterm 1, known as the Quest, students were given 24 hours to complete an exam
designed to take less than 1 hour. Students could (i) work on the exam at any time in
those 24 hours, (ii) leave in the middle of it, then come back later, and (iii) use all resources
offered on CS10’s website (including lecture videos), just not open Snap! or search online
for answers. For Midterm 2, the testing format was mostly the same, and the exam was
designed to take less than 4 hours, but students were given 48 hours to complete it from the
moment they started. We kept the exam open for 72 hours because the exam spanned over
a weekend, so some students could choose to allocate half of their time for Monday. For the
Final, we gave students 72 hours to complete the exam that was designed to take less than
5 hours.

For Midterm 2 and the Final, there were programming components to the assessments
in which students were allowed to use live instances of Snap! and Python. Since students
were not allowed to have these during some parts of the exams, we divided both exams into
two parts: the first part consisted of regular questions (mirroring a traditional, on-paper
exam), and the second part consisted of questions that required the live instances. Before
students started the first part, we had them sign a pledge stating that they would not open
any instances of Snap! or Python while working on the first part.

In Spring 2021, the same testing formats were followed, and we believe this reduced a
lot of the unnecessary stress from exams. Students seemed to like these formats as shown in
Chapter 6. Additionally, the exam statistics remained consistent with past semesters, and
there was no indication of widespread collaborative cheating in any of the exams so far.

Cheating Cases

At the end of the fall semester, the CS10 course staff caught a few (6) cases of collaborative
cheating. At the time of this writing, PL didn’t have a built-in cheating detection tool (see
Chapter 8); however, it did have logs of student activities based on button click events, such
as the opening, closing, submitting a question, etc. The course staff looked through logs

CHAPTER 5. COMPUTER-BASED TESTING IN CS10 28

of students who submitted within minutes of each other and was able to identify groups of
students who worked on the exam together based on their activity timestamps.

As mentioned in the previous section, students were allowed to use live instances of Snap!
and Python for part two of Midterm 2 and Final. Unlike part one of the exams that were
generated and automatically graded on PL, part two were only generated on PL, then hand
graded by course staff. This was because there wasn’t an integrated tool to automatically
grade Snap! code; however, this did allow course staff to give generous amounts of partial
credits. Some students that collaborated on this part of the exam did not realize the ques-
tions were randomized, and submitted solutions not meant for the variants they received.
Additionally, when hand-grading coding questions, course staff sometimes noticed similar
patterns in solutions among students, which also helped catching collaborative cheaters.

29

Chapter 6

Survey Results

For the Spring 2021 semester, with the help of CS10’s course staff, especially Lam Pham and
Yolanda Shen, we sent out a course-wide post-Midterm 2 survey that focused on students’
test-taking experiences on PL. Students were incentivized with 1 extra-credit for completing
the survey. Of the 138 enrolled students, 60 completed the survey.

Based on the responses received from students, the examination experience on PL was
overwhelmingly positive with no reported negative experience. The long-exam format was
very much preferred by students even though they didn’t need all the extra time to finish
the exam. Most students also expressed a belief that this form of exam would prevent
cheating; coupled with the fact very few cheating cases were found, the exam format we
have introduced might be worth experimenting with in similar classes.

Figure 6.1 and Figure 6.2 indicate that students had an overall positive test-taking ex-
perience using PL. It is generally important to ensure that students are comfortable with
the technologies the class uses; in this case, it seems safe to conclude that students preferred
using PL and that we should continue to use it for assessments, even when we return to
face-to-face instruction.

Figure 6.3 shows that students liked the longer exam format. This was expected, and it
was nice to confirm our hypothesis. Many students in the survey noted that the longer exam
format was less stressful, more flexible and accommodating. Some students noted that the
longer exam format caused them to spend more time because they felt pressured to double
check their answers to avoid simple mistakes; whereas with the normal exam format, they
would only double check their answers if they had time left. Understandably, this was one
of the drawbacks of the longer exam format; however, we believe the significantly lessened
anxiety is worth the tradeoff, and this question seemed to confirm that.

Figure 6.4 and Figure 6.5 indicate that for the vast majority of students, the long exam
format was more than enough time in students’ opinion to complete both parts of the exam.
It also reveals that there is a long tail, and that some students used far more hours than they
would normally have been allowed to take. If they needed those hours, great, and this model
of assessment is a real win for them. They also might have just burned hours making sure
every answer was perfect (possibly at the detriment of their other classes). Either way, the

CHAPTER 6. SURVEY RESULTS 30

Figure 6.1: Students rate test-taking experience on PrairieLearn. 1 for “Worst” experience,
5 for “Best” experience

Figure 6.2: Students’ preference for PL compared to paper testing

CHAPTER 6. SURVEY RESULTS 31

Figure 6.3: Students’ preference for long vs. regular length exam

Figure 6.4: Students’ perception of part one of the exam

CHAPTER 6. SURVEY RESULTS 32

Figure 6.5: Students’ perception of part two of the exam

overwhelming evidence presented in Figure 6.3 says we should continue untimed, take-home
exams.

When writing the exam, we spent many hours coming up with ways to create more
variants and for some questions we couldn’t create any variant at all, so we were interested
to learn if students could tell when a question had no variation; or more specifically, does
having more/less variants make a question easier/harder for students to identify it as having
more than one unique variant.

In Figure 6.6, we reminded students that PL can randomize questions for different stu-
dents, then we asked them to try to identify questions that were different for other students.
Of all the questions on the exam, some of them had no randomization at all, some had thou-
sands of unique variants. We hypothesized that there would be some positive correlation
between a question’s number of unique variants, and number of students to identify that
question for having randomization.

The vertical axis in Figure 6.6 is the normalized number of unique variants the horizontal
axis shows the normalized percent of students who thought that question was different for
others1. The second-to-last choice said “Other: everyone has the same questions”, the last
choice says “Other: I’m not sure”. Of the 60 students who answered, 7 of them (11.6%)
thought that the entire exam had no randomization; 24 of them chose to not identify any of
the questions.

Of the 14 questions, 4 questions had no randomization at all, 6 of them had less than or
equal to 24 unique variants, 2 of them had hundreds of unique variants, lastly, 2 of them had
thousands of variants. Based on the R-Squared analysis of a linear regression in Figure 6.7,

1Full names of the questions were displayed on the actual survey, here, the names are condensed.

CHAPTER 6. SURVEY RESULTS 33

Figure 6.6: Students’ guesses on whether each question was randomized

there was very little correlation between a question’s number of unique variants, and the
percentage of students who were able to identify that question for having randomization.
This was surprising to us since from QG authors’ perspective, it seemed intuitive the more
“entropy” (number of unique variants) a QG has, the easier it is to identify its variability,
but this was not the case. For certain questions, a QG author could easily imagine different
ways to create randomization, so it is possible that we had developed a sense of “smell” for
randomizable questions. This finding could be helpful because it showed that QG authors
had a “home field” advantage, and this could be an opportunity to mix-in more complex
questions with no or few variants as long as the students don’t find out.

We were also interested in whether students were confident the exam format would be
able to prevent cheating.

In Figure 6.8 and Figure 6.9, it seems that students were generally trusting that PL would
prevent cheating but had mixed opinions about its ability to catch cheaters. Figure 6.9 is
especially interesting in that the histograms resemble a tri-modal distribution. Some students
noted that it would be very difficult to detect students who used live instances of Snap! or
Python when they were not supposed to; others believed that PL had advanced tracking
techniques to detect cases like these (it doesn’t). Even though individual cheating detection

CHAPTER 6. SURVEY RESULTS 34

Figure 6.7: Normalized Number of Unique Variants vs. Normalized Percent Vote

is not the main goal of PL, it would be worth investigating whether some existing techniques
could be integrated into it (see Chapter 8).

We also simply asked the students if they knew anyone who cheated (Figure 6.10). It
was good to know that of the students who participated in the survey, no one claimed to
know anyone that cheated.

CHAPTER 6. SURVEY RESULTS 35

Figure 6.8: Students’ confidence level in cheating prevention. 1 for “No confidence”, 5 for
“Very confident”

Figure 6.9: Students’ confidence level in cheating detection. 0 for 0%, 10 for 100%

CHAPTER 6. SURVEY RESULTS 36

Figure 6.10: Do you know anyone who cheated?

37

Chapter 7

Leadership Development

In the Spring 2021 semester, I voluntarily took charge of two separate groups of students
that worked on PL-related projects. In the end, both groups were able to achieve their
respective goals. This chapter summarizes their work and details my experience mentoring
these students.

7.1 QG Team
With the R&D Group, there were many new members who joined our efforts in CS Education
research. New and old members were separated into smaller groups to work on topics that
interested them. As one of the most experienced authors of QGs, I took charge of the QG
Team that consisted of members who were interested in learning about authoring QGs in PL.
By the end of the semester, the subgroups were able to deliver two, brand new, final-level
QGs that were actually included in the Final. This also marked the first time new members
of the R&D Group contributed to one of CS10’s exams.

I found that having new members to start by writing some simple QGs modeled after
existing ones was very helpful for them to learn PL and discover potential confusions. In fact,
the learning process was similar to that of programming languages; by reading and under-
standing examples, they were able to gauge the capabilities of the system as well as learning
some new tricks. It is also worth noting that members with limited prior programming ex-
perience struggled a lot the entire semester; they were more likely to encounter roadblocks
so it was important to pay close attention to their progress.

Additionally, writing QGs for the first time could be frustrating since numerous revisions
were typically required before a QG was released to students; sometimes the QG might never
get accepted due to various reasons. As a mentor, it was important to actively re-engage a
group’s attention after it became obvious their implementation wasn’t going to be accepted
because the wasted efforts might very well cause members to lose interest in the project.

Based on my experience onboarding new members for the QG team, I have compiled a
short list of recommended steps to onboard new members in Appendix A.

CHAPTER 7. LEADERSHIP DEVELOPMENT 38

7.2 CS169 Student Group
CS169 (Software Engineering) has semester-long projects where groups of students help
clients to implement features or products. Students from one of the groups were interested
in working on a PL-related project, and I volunteered to design and advise them on imple-
menting a working prototype of a PL assessment configurator. For context, assessments on
PL are created and configured with a JSON file as shown in Appendix C.

PL has many parameters to customize aspects of its assessments, its official documen-
tation does a reasonably good job of outlining and explaining various parameters relating
to assessment configurations1. However, in our experience, configuration issues were very
common due to many details of typical assessments.

To make the assessment configuration process easier and less error-prone, the student
group from CS169 built a web application with an interactive graphical user interface that
syncs up with the course repository. The application allows users to browse, drag-and-drop
QGs, and make basic assessment configurations, then output the configurations as a JSON
file. I planned and designed all functionalities of the application; the team implemented the
application following the design decisions. We met every week to check on the progress of
the project, and I’d give advice on existing implementations, then, I’d plan out the next
steps and assign tasks for the team before our next meeting. By the end of the semester,
the group of students were able to deliver and present a working prototype to the class (see
Figure 7.1), and we had a new tool to help configure assessments.

1For more assessment configurations: https://prairielearn.readthedocs.io/en/latest/
assessment

https://prairielearn.readthedocs.io/en/latest/assessment
https://prairielearn.readthedocs.io/en/latest/assessment

CHAPTER 7. LEADERSHIP DEVELOPMENT 39

Figure 7.1: Configuration page for students’ project. This is one of the three pages the
students implemented.

40

Chapter 8

Future Work

Besides finishing merging pull requests related to elements mentioned in Chapter 4, there
are many much-needed improvements to PL that are important to its role in CS10. This
section briefly outlines some of the notable ones.

• A new feature to PL that will allow QG authors to quickly generate unique variants
in a controlled and predictable manner; instead of generating a random variant each
time.

• Score statistics across the unique variants generated for particular assessments, to help
identify possible unfair variants post-assessment.

• A better integration of conceptual variants in PL. Right now, conceptual variants are
sometimes mixed with numerical variants as a single QG or are saved as separate QGs.

• A (possibly) new PL element based on checkboxes that can be configured and displayed
as a grid. This will be useful for pattern-based questions.

• A new PL element for matching. The existing pl-drawing elements are too flexible
and general purpose to be used for matching questions.

• A new feature to PL that will generate a different variant after a student’s failed
attempt.

• A cheating, or collaboration detection tool to flag students during, or after an assess-
ment.

These items are just a few of a myriad of possible projects to improve PL further for the
purpose of CS10, and possibly other courses. Additionally, many existing elements, features,
and configurations of PL can be improved to become more powerful or user-friendly. For
those interested, it will not be difficult to find new projects to work on.

41

Chapter 9

Conclusion

This report documents my work relating to PrairieLearn (PL) in the context of CS10. In
the span of a year, I helped transition the course to this new platform, contributed back to
the Question Generator (QG) community, and grew as a mentor.

To future PL developers, I strongly recommend following the agile methodology1 when
contributing to PL and gathering feedback from a wide range of users. Additionally, don’t
be hesitant to propose and defend new feature ideas to PL’s core team. Some of the features
mentioned in Chapter 4 were not accepted by PL’s core team at first; however, we were able
to convince them after explaining our needs.

The lecture and exam formats for a non-majors course described in this report were
novel, and supported institutional resilience (and reduced student stress) in the COVID-
driven online learning format. The course staff enjoyed the convenience and streamlined
experience of autograded assessments, and we were proud to be able to offer substantial
flexibility to our students. Furthermore, based on results from Chapter 6, it appeared that
these course formats yielded better class experience for the students too. As a result, we
believe these changes are worth preserving for future iterations of the class.

We were pleasantly surprised by the lack of widespread academic dishonesty under our
relaxed policies; it might be due to the fact that CS10 was not a required course for majoring
in computer science. It’d be worth investigating if the randomized exams worked really well
to deter cheating or because of other factors.

1https://www.infoworld.com/article/3237508/what-is-agile-methodology-modern-software-
development-explained.html

https://www.infoworld.com/article/3237508/what-is-agile-methodology-modern-software-development-explained.html
https://www.infoworld.com/article/3237508/what-is-agile-methodology-modern-software-development-explained.html

42

Bibliography

[1] BJC. Cs10: Beauty and joy of computing.

[2] Matthew West, Geoffrey Herman, and Craig Zilles. Prairielearn: Mastery-based online
problem solving with adaptive scoring and recommendations driven by machine learning.
2015 ASEE Annual Conference and Exposition Proceedings, Jun 2015.

[3] Binglin Chen, Matthew West, and Craig Zilles. How much randomization is needed
to deter collaborative cheating on asynchronous exams? In Proceedings of the Fifth
Annual ACM Conference on Learning at Scale, L@S ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[4] Bojin Yao, Qitian Liao, Connor McMahon, and Daniel D. Garcia. Formal categorization
of variants for question generators in computer-based assessments. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education, SIGCSE ’21, page
1244, New York, NY, USA, 2021. Association for Computing Machinery.

[5] Ursula Wolz, Gail Carmichael, Dan Garcia, Bonnie MacKellar, and Nanette Veilleux.
To grade or not to grade. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, SIGCSE ’20, page 479–480, New York, NY, USA, 2020.
Association for Computing Machinery.

[6] Benjamin S. Bloom. Learning for mastery. instruction and curriculum. regional educa-
tion laboratory for the carolinas and virginia, topical papers and reprints, number 1.,
Apr 1968.

[7] J. R Anderson and E. Skwarecki. The automated tutoring of introductory computer
programming. Commun. ACM, 29(9):842–849, September 1986.

[8] P.l. Brusilovsky. Intelligent tutor, environment and manual for introductory program-
ming. Educational and Training Technology International, 29(1):26–34, 1992.

[9] Stephen Cooper, Yoon Jae Nam, and Luo Si. Initial results of using an intelligent
tutoring system with alice. In Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’12, page 138–143,
New York, NY, USA, 2012. Association for Computing Machinery.

BIBLIOGRAPHY 43

[10] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas Van Binsbergen. Ask-elle:
an adaptable programming tutor for haskell giving automated feedback. International
Journal of Artificial Intelligence in Education, 27(1):65–100, 2016.

[11] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. Intelligent tutoring sys-
tems for programming education: A systematic review. In Proceedings of the 20th
Australasian Computing Education Conference, ACE ’18, page 53–62, New York, NY,
USA, 2018. Association for Computing Machinery.

[12] John Nesbit, Li Liu, Qing Liu, and Olusola Adesope. Work in progress: Intelligent
tutoring systems in computer science and software engineering education. 2015 ASEE
Annual Conference and Exposition Proceedings, Jun 2015.

[13] Cal-CS-61A-Staff. Cal-cs-61a-staff/cs61a-apps.

[14] Craig Zilles, Robert Deloatch, Jacob Bailey, Bhuwan Khattar, Wade Fagen, Cinda
Heeren, David Mussulman, and Matthew West. Computerized testing: A vision and
initial experiences. 2015 ASEE Annual Conference and Exposition Proceedings, Jun
2015.

[15] Craig Zilles, Matthew West, and David Mussulman. Student behavior in selecting
an exam time in a computer-based testing facility. 2016 ASEE Annual Conference &
Exposition Proceedings, Jun 2016.

[16] George|Sottile Watson. Cheating in the digital age: Do students cheat more in online
courses?., Nov 2009.

[17] Donald L Mccabe. Cheating among college and university students: A north american
perspective. International Journal for Educational Integrity, 1(1), 2005.

[18] Curtis G. Northcutt, Andrew D. Ho, and Isaac L. Chuang. Detecting and pre-
venting "multiple-account" cheating in massive open online courses. Comput. Educ.,
100(C):71–80, September 2016.

[19] Ap computer science principles, Jan 2021.

[20] Steven M. Downing and Thomas M. Haladyna. Handbook of test development. Erlbaum,
2006.

[21] Pedro Henriques Abreu, Daniel Castro Silva, and Anabela Gomes. Multiple-choice
questions in programming courses: Can we use them and are students motivated by
them? ACM Trans. Comput. Educ., 19(1), November 2018.

[22] Clark David. Testing programming skills with multiple choice questions. Informatics
in Education, 3(2):161–178, 2004.

BIBLIOGRAPHY 44

[23] Bernat Romagosa. Welcome to snap!

[24] Alan C. Bugbee. The equivalence of paper-and-pencil and computer-based testing.
Journal of Research on Computing in Education, 28(3):282–299, 1996.

[25] PrairieLearn. Prairielearn.

[26] PrairieLearn. Prairielearn/prairielearn.

[27] Joseph D. Novak and Alberto J. Cañas. The theory underlying concept maps and how
to construct and use them. Technical Report IHMC CmapTools 2006-01 Rev 01-2008,
2008.

45

Appendix A

Onboarding new QG authors

To onboard prospective QG authors, the process is relatively straightforward. First, the
maintainer of the respective course repository should give the proper permissions to the
authors. If the repository is part of ACE Lab, the maintainer can simply add the user to
the team corresponding to the course on GitHub. Existing QG authors should help the new
authors setting up their PL docker image and getting it running, simply follow the steps
outlined under Installing PL for local development1 in Installing and running PL locally
section2.

New QG authors should carefully read and understand contents in Question Configu-
ration3, Elements for writing questions4 (can skim), clientFiles and serverFiles5 sections in
PL’s documentation. More specifically, new QG authors should understand the following
key features of PL to get started with writing QGs:

1. Contents of info.json along with metadata the course uses.

2. Basics of HTML and preferably the Bootstrap library6 for question.html file.

3. Enough of Python to get started with server.py, and preferably Mustache 57 to help
customize the question.html file.

4. How to use common PL elements, such as pl-multiple-choice, pl-checkbox, pl-
figure etc. and checkout examples of them in PL’s exampleCourse8.

1https://prairielearn.readthedocs.io/en/latest/installing/#installing-pl-for-local-
development

2https://prairielearn.readthedocs.io/en/latest/installing
3https://prairielearn.readthedocs.io/en/latest/question
4https://prairielearn.readthedocs.io/en/latest/elements
5https://prairielearn.readthedocs.io/en/latest/clientServerFiles
6https://getbootstrap.com
7http://mustache.github.io/mustache.5.html
8https://github.com/PrairieLearn/PrairieLearn/tree/master/exampleCourse/questions/

element

 https://prairielearn.readthedocs.io/en/latest/installing/#installing-pl-for-local-development
 https://prairielearn.readthedocs.io/en/latest/installing/#installing-pl-for-local-development
https://prairielearn.readthedocs.io/en/latest/installing
https://prairielearn.readthedocs.io/en/latest/question
https://prairielearn.readthedocs.io/en/latest/elements
https://prairielearn.readthedocs.io/en/latest/clientServerFiles
https://getbootstrap.com
http://mustache.github.io/mustache.5.html
https://github.com/PrairieLearn/PrairieLearn/tree/master/exampleCourse/questions/element
https://github.com/PrairieLearn/PrairieLearn/tree/master/exampleCourse/questions/element

APPENDIX A. ONBOARDING NEW QG AUTHORS 46

5. Conditional Elements of PL, such as pl-question-panel, pl-submission-panel, pl-
answer-panel etc., especially their effects.

It seemed helpful to have the new authors try to write a simple QG first before moving
on to more ambitious QGs. Additionally, it is recommended for new authors to read and
understand some past QGs that might be similar to QGs they’re planning on writing.

47

Appendix B

PL Element Guide

Depending on the purpose of the PL element, the developer should obtain a local copy of
PL source code. The easiest way I found was following directions in installing with local
source section1 of PL’s developer documentation. Once the local instance works, the question
element writing section2 covers the inner workings of PL’s elements. It is best to read and
try to understand source code for existing elements before attempting to start writing a new
element. Additionally, it’d be a good idea to reach out to PL’s development team to express
your interest in writing or modifying elements; the developers can add you to their Slack
channel so you can ask questions and get help when you need it. PL developers are also
a good source of information for existing projects that could be related, and it is generally
courteous to keep the people maintaining the source code informed. This is a good idea
even if the element is private, PL developers might want to include it as one of its official
elements.

1https://prairielearn.readthedocs.io/en/latest/installingLocal
2https://prairielearn.readthedocs.io/en/latest/devElements

https://prairielearn.readthedocs.io/en/latest/installingLocal
https://prairielearn.readthedocs.io/en/latest/devElements

48

Appendix C

Example infoAssessment.json

1 {
2 "uuid": "c0576193 -3a56 -43b0 -abaa -25 fb4ff31523",
3 "type": "Exam",
4 "title": "Demo",
5 "set": "Practice Exam",
6 "number": "1",
7 "allowRealTimeGrading": false ,
8 "autoClose": false ,
9 "allowAccess": [

10 {
11 "role" : "TA",
12 "credit": 100,
13 "startDate" : "2020 -09 -11 T00 :00:01",
14 "endDate" : "2020 -12 -14 T23 :59:00"
15 },
16 {
17 "role" : "Student",
18 "credit": 100,
19 "password": "snap",
20 "startDate" : "2020 -09 -11 T00 :00:01",
21 "endDate" : "2020 -09 -13 T23 :59:00"
22 }
23],
24 "zones": [
25 {
26 "title": "Directions , READ FIRST!",
27 "questions": [
28 {"id": "PL-demo/DIRECTIONS", "points": 0}
29]
30 },
31 {
32 "title": "The pledge you will need to sign ...",
33 "questions": [
34 {"id": "PLEDGE", "points": 0}

APPENDIX C. EXAMPLE INFOASSESSMENT.JSON 49

35]
36 },
37 {
38 "title": "Example multiple -choice",
39 "questions": [
40 {"id": "PL-demo/demo -multiple -choice", "points": 1}
41]
42 },
43 {
44 "title": "Example checkbox",
45 "questions": [
46 {"id": "PL-demo/demo -checkbox", "points": 1}
47]
48 },
49 {
50 "title": "Example fill -in -blank",
51 "questions": [
52 {"id": "PL-demo/demo -fill -in -blank", "points": 1}
53]
54 }
55]
56 }

Listing C.1: an example infoAssessment.json file similar to what we might use for an
exam.

50

Appendix D

Personal Reflections

Throughout my journey, the most important thing I learned was the value of companionship.
All aspects of my work would not be possible without the support, help, and collaboration
of those around me. I was truly fortunate to have everyone to be part of my life. The rest
of this section summarizes my personal learnings that I believe are worth sharing.

When I took responsibility for quizzes and exams while working for CS10, my QGs
could have a significant impact on students’ grades. I was inclined to see concepts from
students’ perspectives and identify mis-conceptions to create questions that actually test
understanding. I believe working on exam questions made me a better teacher and helped
me gain a deeper appreciation for the process of writing exams. It was very helpful to
document things we did, whether it was how QGs worked, the number of variants, the
intended difficulty, etc., documentation was what allowed us to avoid careless mistakes and
made other people’s jobs easier. Additionally, whenever a bug was discovered with a QG,
it was paramount to fix it right away; instead of putting it off. There was a ton of work to
be done to keep the class running smoothly, and there would be a ton of work to make the
class better in the future. Whenever a mistake is found, fix it right away.

After mentoring two groups of students on separate projects, I realized the importance
of communicating deadlines and expectations. This might seem cliche, but it’s true. Men-
torship on projects posed challenges as well as pressure and anxiety to students. From their
perspective, the difficulty of upcoming tasks was never obvious, so their time-management
would typically be less ideal. However, as the mentor, I had a more realistic understanding
of potential challenges. I found it helpful to outline the exact steps students should take to
approach their problems and pointing out to them any potential problems that might arise,
and how to solve them. Additionally, it never hurts to repeat the same information over and
over, some of the “obvious” details might be quite nuanced to students, and the repetition of
information gives students time to process and realize these details to ask questions. Lastly,
it was important to demonstrate humility and understanding. Students could have various
problems outside of school, and they typically aren’t completely comfortable with sharing
their potential issues. It is important to demonstrate understanding, flexibility, and room
for error to make students’ lives not that much harder.

APPENDIX D. PERSONAL REFLECTIONS 51

At the end of my program and having had a few years of experience in CS education, I
consider myself an educator. From my perspective, besides the teaching of knowledge and
the completion of responsibilities, one of the most helpful and humane things an educator can
do for students is seeing things from their perspective. Teaching and my companionship with
my peers helped me realize the incredible privileges I’ve enjoyed in life. As a student myself, I
wouldn’t have gotten this far without tremendous luck and the loving people around me. As
a result, it is so important to try to understand students from their perspective because each
student is a unique human being. I was very glad CS10 was able to introduce the extended
exams format, and based on our survey results, it was obvious students loved it. I wish from
the bottom of my heart that those reading this report would try their best to accommodate
students and create an enjoyable learning environment for everyone.

	Contents
	List of Figures
	Listings
	Introduction
	Related Work
	Background
	Development of PrairieLearn Elements
	Changes to pl-multiple-choice Element
	Changes to pl-checkbox Element
	Changes to pl-figure

	Computer-Based Testing in CS10
	Course Repository
	Numerical versus Conceptual Variants
	Content Delivery and Assessments

	Survey Results
	Leadership Development
	QG Team
	CS169 Student Group

	Future Work
	Conclusion
	Bibliography
	Onboarding new QG authors
	PL Element Guide
	Example infoAssessment.json
	Personal Reflections

