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Abstract

Reliable Machine Learning in Feedback Systems

by

Sarah Ankaret Anderson Dean

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Benjamin Recht, Chair

Machine learning is a promising tool for processing complex information, but it remains an

unreliable tool for control and decision making. Applying techniques developed for static

datasets to realworldproblems requires grapplingwith the effects of feedback and systems

that change over time. In these settings, classic statistical and algorithmic guarantees do

not always hold. How do we anticipate the dynamical behavior of machine learning

systems before we deploy them? Towards the goal of ensuring reliable behavior, this

thesis takes steps towards developing an understanding of the trade-offs and limitations

that arise in feedback settings.

In Part I, we focus on the application of machine learning to automatic feedback control.

Inspired by physical autonomous systems, we attempt to build a theoretical foundation

for the data-driven design of optimal controllers. We focus on systems governed by linear

dynamics with unknown components that must be characterized from data. We study

unknown dynamics in the setting of the Linear Quadratic Regulator (LQR), a classical

optimal control problem, and show that a procedure of least-squares estimation followed

by robust control design guarantees safety and bounded sub-optimality. Inspired by the

use of cameras in robotics, we also study a setting in which the controller must act on

the basis of complex observations, where a subset of the state is encoded by an unknown

nonlinear and potentially high dimensional sensor. We propose using a perception map,

which acts as an approximate inverse, and show that the resulting perception-control loop

has favorable properties, so long as either a) the controller is robustly designed to account

for perception errors or b) the perception map is learned from sufficiently dense data.

In Part II, we shift our attention to algorithmic decision making systems, where machine

learning models are used in feedback with people. Due to the difficulties of measure-

ment, limited predictability, and the indeterminacy of translating human values into

mathematical objectives, we eschew the framework of optimal control. Instead, our goal

is to articulate the impacts of simple decision rules under one-step feedback models. We
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first consider consequential decisions, inspired by the example of lending in the presence

of credit score. Under a simple model of impact, we show that several group fairness

constraints, proposed to mitigate inequality, may harm the groups they aim to protect.

In fact, fairness criteria can be viewed as a special case of a broader framework for de-

signing decision policies that trade off between private and public objectives, in which

notions of impact and wellbeing can be encoded directly. Finally, we turn to the setting of

recommendation systems, which make selections from a wide array of choices based on

personalized relevance predictions. We develop a novel perspective based on reachability

that quantifies agency and access. While empirical audits show that models optimized

for accuracy may limit reachability, theoretical results show that this is not due to an in-

herent trade-off, suggesting a path forward. Broadly, this work attempts to re-imagine the

goals of predictive models ubiquitous in machine learning, moving towards new design

principles that prioritize human values.
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Chapter 1

Introduction

Manymodern digital systems—fromautomotive vehicles to socialmedia platforms—have

unprecedented abilities tomeasure, store, and process data. Optimism about the potential

to benefit from this data is driven by parallel progress in machine learning, where huge

datasets and vast computational power have led to advances in complex tasks like image

recognition and machine translation. However, many applications go beyond processing

complex information to acting on the basis of it—moving from classifying, categorizing,

and translating to making decisions and taking actions. Applying techniques developed

for static datasets to real world problems requires grappling with the effects of feedback

and systems that change over time. In these settings, classic statistical and algorithmic

guarantees do not always hold. Even rigorously evaluating performance can be difficult.

How do we anticipate the behavior of machine learning systems before we deploy them?

Can we design them to ensure good outcomes? What are the fundamental limitations

and trade-offs?

In this thesis, we develop principled techniques for a variety of dynamical settings,

towards a vision of reliablemachine learning. Thiswork draws on tools and concepts from

control theory, which has a long history of formulating guarantees about the behavior

of dynamical systems, optimization, which provides a language to articulate goals and

tradeoffs, and of course machine learning, which uses data to understand and act on the

world. Machine learning models are designed to make accurate predictions, whether

about the trajectory of an autonomous vehicle, the likelihood of a loan repayment, or the

level of engagement with a news article. Traditionally concieved of in the framework of

static supervised learning, these models become part of a dynamical system as soon as

they are used to take actions that affect the environment (Figure 1.1). Whether the context

is steering an autonomous vehicle, approving a loan, or recommending a piece of content,

incorporating the learned model into policy gives rise to a feedback loop.

There are problems associated with the use of static models in dynamic environments.

Whether due to distribution shift, partial observability, or error accumulation, their pre-

dictive abilities may fail in feedback settings. Supervised learning is usually designed

to guaranteed good average case performance, but a lane detector that works well on
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predictionobservation model

training 
data
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predictionobservation model
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data

Figure 1.1: Though machine learning models are often trained with a static supervised

learning framing in mind (left), when deployed, they become part of a feedback loop

(right).

average may still misclassify a particular image and cause a crash. Furthermore, the sta-

tistical correlations exploited to make accurate predictions may in fact contain biases or

other harmful patterns that we wish to avoid propagating. Considering an applicant’s

zip code in a lending decision may be statistically optimal, but lead to practices of redlin-

ing. Recommending videos with objectionable content might increase engagement, but

at a detriment to the viewer’s mental health. Contending with these challenges requires

thinking carefully about how machine learning models are used, and designing policies

that ensure desirable outcomes and are robust to errors.

In the following chapters, we consider several settings, broadly categorized into two

parts: data-driven optimal control and feedback in social-digital systems. In Part I,

we show how to combine machine learning and robust control to design data-driven

policies with non-asymptotic performance and safety guarantees. Chapter 2 reviews a

framework that enables policy analysis and synthesis for systemswith uncertain dynamics

and measurement errors. In Chapter 3, we consider the setting of a linear system with

unknown dynamics and study the sample complexity of a classic optimal control problem

with safety constraints. In Chapter 4, we look instead to challenges presented by complex

sensing modalities and develop guarantees for perception-based control. Turning from

the dynamics of physical systems to impact in social ones, in Part II, we consider learning

algorithms that interact with people. In Chapter 5, we characterize the relationship

between fairness andwellbeing in consequential decisionmaking. We focus on the setting

of content recommendation in Chapter 6, and develop a method for characterizing user

agency in interactive systems. In the remainder of this chapter, we introduce andmotivate

the settings for the chapters to follow.
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1.1 Data-Driven Optimal Control
Having surpassedhumanperformance in video games [MKS+15] andGo [SHM+16], there

has been a renewed interest in applying machine learning techniques to planning and

control. In particular, there has been a considerable amount of effort in developing new

techniques for continuous control where an autonomous system interacts with a physical

environment [DCHSA16; LFDA16]. Despite some impressive results in domains like

manipulation [ABC+20], recent years have seen both driver and pedestrian fatalities due

to malfunctions in automated vehicle control systems [Boa17; Boa20; Nat17]. Contending

with errors arising from learned models is different from traditional notions of process

andmeasurement noise. How canwe ensure that our newdata-driven automated systems

are safe and robust?

In Part I of this thesis, we attempt to build a foundation for the theoretical understand-

ing of how machine learning interfaces with control by analyzing simple optimal control

problems. We develop baselines delineating the possible control performance achievable

given a fixed amount of data collected from a system with an unknown component. The

standard optimal control problem aims to find a control sequence that minimizes a given

cost. We assume a dynamical systemwith state GC ∈ R= can be acted on by a control DC ∈ R<
and obeys the dynamics

GC+1 = 5C(GC , DC , FC) (1.1.1)

where FC is the process noise. The control action is allowed to depend on observations

HC ∈ R3 of the system state, which may be partial and imperfect: HC = 6C(GC , EC) where EC
is the measurement noise. Optimal control then seeks to minimize

minimize 2(G0, D0, G1, . . . , G)−1, D)−1, G))
subject to GC+1 = 5C(GC , DC , FC)

HC = 6C(GC , EC)
. (1.1.2)

Here, 2(·) denotes a cost function which depends on the trajectory, and the input DC is

allowed to depend on all previous measurements and actions. In this generality, prob-

lem (1.1.2) encapsulates many of the problems considered in the reinforcement learning

literature. It is also a difficult problem to solve generally, but for restricted settings, classic

approaches in control theory offer tractable solutions when the dynamics and measure-

ment models are known.

We study this problem when components of it are unknown and must be estimated

from data. Even in the case of linear dynamics, it is challenging to reason about the

effects of machine learning errors on the evolution of an uncertain system. Chapter 2

covers background on linear systems and controllers that is crucial to our investigations.

It presents an overview of System Level Synthesis, a recently developed framework for

optimal control that allows us to handle uncertainty in a transparent and analytically

tractable manner.
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In Chapter 3, we study howmachine learning interfaceswith control when the dynam-

ics of the system are unknown and the state can be observed exactly. We analyze one of

the most well-studied problems in classical optimal control, the Linear Quadratic Regulator
(LQR). In this setting, the system to be controlled obeys linear dynamics, and we wish

to minimize some quadratic function of the system state and control action. We further

investigate tradeoffs with safety by considering the additional requirement that both the

state and input satisfy linear constraints. This problem has been studied for decades in

control. The unconstrained version has a simple, closed form solution on the infinite

time horizon and an efficient, dynamic programming solution on finite time horizons.

The constrained version has received much attention within the Model Predictive Control

(MPC) community. By combining linear regression with robust control, we bound the

number of samples necessary to guarantee safety and performance.

In Chapter 4, we turn to a setting inspired by the fact that incorporating rich, perceptual

sensing modalities such as cameras remains a major challenge in controlling complex

autonomous systems. We focus on the practical scenario where the underlying dynamics

of a system are well understood, and it is the interaction with a complex sensor that is

the limiting factor. Specifically, we consider controlling a known linear dynamical system

for which partial state information can only be extracted from nonlinear and potentially

high dimensional observations. Our approach is to design a virtual sensor by learning a

perception map, i.e., a map from complex observations to a subset of the state. Showing

that errors in the perception map do not accumulate and lead to instability requires

generalization guarantees stronger than are typical in machine learning. We show that

either robust control or sufficiently dense data can guarantee the closed-loop stability and

performance of such a vision based control system.

1.2 Feedback in Social-Digital Systems
From credit scores to video recommendations, manymachine learning systems that inter-

act with people have a temporal feedback component, reshaping a population over time.

Lending practices, for example, can shift the distribution of debt and wealth in the popu-

lation. Job advertisements allocate opportunity. Video recommendations shape interests.

Machine learning algorithms used in these contexts are mostly trained to optimize a sin-

gle metric of performance. The decisions made by such algorithms can have unintended

adverse side effects: profit-maximizing loans can have detrimental effects on borrowers

[ST19] and fake news can undermine democratic institutions [Per17].

However, it is difficult to explicitly model or plan around the dynamical interactions

between populations and algorithms. Unlike in physical systems, there are difficulties

of measurement, limited predictability [SLK+20], and the indeterminacy of translating

human values into mathematical objectives. Actions are usually discrete: an acceptance

or a rejection, choosing a particular piece of content to recommend. Rather than attempt

to design a policy that optimizes a questionable objective subject to incorrect dynamical
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models, our goal is to develop a framework for articulating the impacts of simple decision

rules. We therefore investigate methods for quantifying and incorporating considerations

of impact without using the full framing of optimal control. This work attempts to re-

imagine the goals of predictive models ubiquitous in machine learning, moving towards

new design principles that prioritize human values.

Chapter 5 focuses on consequential decision making. From medical diagnosis and

criminal justice to financial loans and humanitarian aid, consequential decisions increas-

ingly rely on data-driven algorithms. Existing scholarship on fairness in automated

decision making criticizes unconstrained machine learning for its potential to harm his-

torically underrepresented or disadvantaged groups in the population [Exe16; BS16].

Consequently, a variety of fairness criteria have been proposed as constraints on standard

learning objectives. Even though these constraints are clearly intended to protect the dis-

advantaged group by an appeal to intuition, a rigorous argument to that effect is often

lacking. In Chapter 5, we contextualize group fairness criteria by characterizing their

delayed impact. By framing the problem in terms of a temporal measure of wellbeing,

we see that static criteria alone cannot ensure favorable outcomes. We then consider

an alternate framework: dual optimization of institutional (e.g. profit) and individual

(e.g. welfare) objectives directly. Decisions constrained to obey fairness criteria can be

equivalently viewed through the dual objective lens by defining welfare in a particular

group-dependent way. This insight, arising from the equivalence between constrained

and regularized optimization, shows that fairness constraints can be viewed as a special

case of balancing multiple objectives.

Chapter 6 focuses on recommendation systems, which offer a distinct set of challenges.

Through recommendation systems, personalized preference models mediate access to

many types of information on the internet. Aiming to surface content that will be con-

sumed, enjoyed, and highly rated, these models are primarily designed to accurately

predict individuals’ preferences. The focus on improving model accuracy favors systems

in which human behavior becomes as predictable as possible—effects which have been

implicated in unintended consequences like polarization or radicalization. In Chapter 6,

we attempt to formalize some of the values at stake by considering notions of user control

and access. We investigate reachability as a way to characterize user agency in interactive

systems. We develop a metric that is computationally tractable and can be used to audit

dynamical properties of a recommender system prior to deployment. Our experimental

results show that accurate predictive models, when used to sort information, can un-

intentionally make portions of the content library inaccessible. Our theoretical results

show that there is no inherent trade-off, suggesting that it is possible to design learning

algorithms which provide agency while maintaining accuracy.

Ultimately, the integration of data-driven automation into important domains requires

us to understand and guarantee properties like safety, equity, agency, and wellbeing. This

is a challenge in dynamic and uncertain systems. The work presented in Part I takes a

step towards building a theoretical foundation for what it takes to guarantee safety in

data-driven optimal control. There is a further challenge in formally defining important
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properties as tractable technical specifications. This is especially true for qualitative and

contextual concepts like agency and wellbeing. The work presented in Part II takes a step

towards evaluating proposed technical formalisms and articulating new ones. Progress

along both of these thrusts is necessary to enable reliable machine learning in feedback

systems.
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Part I

Data-Driven Optimal Control
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Chapter 2

System Level Analysis and Synthesis

2.1 Introduction
It is difficult to reason about the trajectory of uncertain dynamical systems. One source

of uncertainty is noise: process noise perturbs the evolution of the system, measurement

noise corrupts measurements of the system state. Another source of uncertainty arises

when the dynamics or measurement models are not fully known. The behavior of the

system depends on not only on the values of the unknown components, be they noise

processes or models, but on the control inputs. Designing control laws that are safe and

stable requires accounting for all possible trajectories of an uncertain system.

Of course, control theoryhas longdealtwith these challenges. Theproblemof feedback

control is to mitigate the perturbation of process noise based on measurements of the

system state, noisy though they may be. The field of robust control has developed an

abundance of design methods for systems with uncertain dynamics and measurement

models. Despite this rich history, classical methods do not readily offer an accounting for

how the magnitude of the uncertainty degrades the optimality of the controller, or how

much uncertainty is tolerable when needing to keep a system safe.

In this section, we review a recently developed framework for linear control synthesis

that allows us to grapple with uncertainty in a transparent and analytically tractable

manner. The machinery that we review plays an important role in Chapters 3 and 4. This

chapter uses material first presented in papers coauthored with Horia Mania, Nikolai

Matni, BenjaminRecht, StephenTu, andVickieYe [DMMRT20; DTMR19; DMRY20; DR21].

2.2 From Linear Controllers to System Responses
The evolution of a linear system is determined by its initial condition G0 and the dynamics

equation

GC+1 = �GC + �DC + FC (2.2.1)



CHAPTER 2. SYSTEM LEVEL ANALYSIS AND SYNTHESIS 9

where � ∈ R=×= and � ∈ R=×< are the state transition matrices, DC ∈ R< is the control input,

and FC ∈ R= is the process noise, also called the disturbance. The process noise is often

assumed to be stochastic, zero mean, and independent over time. It can alternatively be

modeled as bounded and adversarial; both can be handled in a straightforward manner.

Measurements, or system outputs, take the form

HC = �GC + EC (2.2.2)

where � ∈ R3×= is the measurement matrix and EC ∈ R3 is the measurement noise. As

before, this noise process is often assumed to be stochastic, but bounded and adversarial

models can be handled as well.

We now show that when linear systems are in feedback with linear controllers, the

trajectory can be written as a linear function of the process and measurement noise.

State Feedback
A state feedback controller relies on perfect measurements of the system state. As a moti-

vating example, a static state feedback control policy  , i.e., let DC =  GC . Then, the closed

loop map from the disturbance process (F0, F1, . . . ) to the state GC and control input DC at

time C is given by

GC = (� + � )CG0 +
∑C−1

:=0
(� + � ):−1FC−: ,

DC =  (� + � )CG0 +
∑C−1

:=0
 (� + � ):−1FC−: .

(2.2.3)

This follows by substituting the static control policy and unrolling the recursion in (2.2.1).

Letting F−1 = G0, ΦG(:) := (� + � ):−1
, and ΦD(:) :=  (� + � ):−1

, we can rewrite (2.2.3)

as [
GC
DC

]
=

C+1∑
:=1

[
ΦG(:)
ΦD(:)

]
FC−: , (2.2.4)

where (ΦG(:),ΦD(:)) are called the closed-loop system response elements induced by the static

controller  . For any stable closed-loop system, i.e. the spectral radius �(�+ � ) < 1, the

matrix powers decay,

lim

C→∞
(� + � )C = 0 .

Therefore, as long as  stabilizes the system (�, �), the system response elements are well

defined on infinite horizons.

Though more difficult to write in closed-form, a similar argument can be made for

any controller which is a linear function of the state and its history. Therefore, the

expression (2.2.4) is valid for any linear dynamic controller. Though we conventionally

think of the control policy as a functionmapping states to input, whenever such amapping

is linear, both the control input and the state can be written as linear functions of the
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disturbance signal (FC)C≥0. This immediately makes transparent the effect of the process

noise on the system trajectories.

With such an identification, the linear dynamics require that the system response

variables (ΦG(:),ΦD(:))must obey the constraints

ΦG(1) = � , ΦG(: + 1) = �ΦG(:) + �ΦD(:) , ∀: ≥ 1 . (2.2.5)

As we describe in detail in Section 2.4, these constraints are in fact both necessary and

sufficient. Therefore, designing linear controllers is equivalent to designing system re-

sponses to noise. This is useful because the state feedback parameterization generally

leads to non-convex expressions. Inspecting (2.2.3), it is clear that convex expressions

of GC and DC will be non-convex in  . On the other hand, since the relation in (2.2.4) is

linear, convex constraints on state and input translate to convex constraints on the system

response elements.

Output Feedback
An output feedback controller must compute control inputs on the basis of measurements.

Whenever this controller is a linear function of themeasurements, it is also a linear function

of the states and measurement noise variables. Therefore, like in the state feedback case,

it will be possible to view the closed-loop system in terms of linear system response

variables. The main difference is that there are two sources of noise driving the system,

and therefore four system response variables of interest.

As an illustrative example, consider the classic Luenberger observer combined with a

static feedback policy. The observer uses measurements to update a state estimate

ĜC+1 = �ĜC + �DC + !(HC − �ĜC) , (2.2.6)

where ! is the static gain matrix and Ĝ0 is the initial estimate. The static controller is

DC =  ĜC . By defining the auxiliary state variable 4C = ĜC − GC the closed-loop dynamics

can be written as [
GC+1

4C+1

]
=

[
� + � � 

0 � − !�

] [
GC
4C

]
+

[
� 0

0 !

] [
F:

E:

]
.

Therefore, we can unroll the recursion in a similar manner to the state feedback case

and write the trajectory in terms of a convolution with the system response variables[
GC
DC

]
=

C+1∑
:=1

[
ΦGF(:) ΦGE(:)
ΦDF(:) ΦDE(:)

] [
FC−:
EC−:

]
. (2.2.7)

As long as the controller and observer are both stable, i.e. �(�+� ) < 1 and �(�−!�) < 1,

the system response elements are well-defined on infinite horizons.
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The expression (2.2.7) holds for any controller that is a linear function of the history of

system outputs. Therefore, for linear output feedback control, the trajectory can bewritten

as a linear function of the process and measurement noise. This makes transparent the

effect of these two noise processes on the system trajectories.

The dynamics and measurement model require that the system responses obey the

constraints

ΦGF(1) = � ,
[
ΦGF(: + 1) ΦGE(: + 1)

]
= �

[
ΦGF(:) ΦGE(:)

]
+ �

[
ΦDF(:) ΦDE(:)

]
,[

ΦGF(: + 1)
ΦDF(: + 1)

]
=

[
ΦGF(:)
ΦDF(:)

]
� +

[
ΦGE(: + 1)
ΦDE(: + 1)

]
� . (2.2.8)

As in the state feedback case, these constraints are in fact both necessary and sufficient.

Therefore, designing linear controllers is equivalent to designing system responses, and

because the relation in (2.2.7) is linear, convex constraints on state and input translate to

convex constraints on the system response elements.

Signals and Transfer Functions
To make guarantees about the behavior of systems on arbitrarily long time horizons, it

is necessary to reason about their infinitely long trajectories (G0, G1, . . . ). As the previous

subsections illustrate, these trajectories are the result of a convolution between system

response variables and noise signals. It is therefore pertinent to develop notation and

machinery for dealing with these objects.

First, for notational convenience, we turn to themore compact representation of transfer
functions. The signal (G0, G1, . . . ) that results from the convolution between the operator

(Φ(1),Φ(2), . . . ) and the signal (F−1, F0, F1, . . . ) is written as

x = Φw .

One way to obtain this representation is by definition. We can directly define the

notation of signals x = (G0, G1, . . . ) and linear operators Φ = (Φ(1),Φ(2), . . . ). Then, define
the multiplication operation between these objects to correspond to a linear convolution,

so that

x = Φw ⇐⇒ GC =

C+1∑
:=1

Φ(:)FC−: ∀C ≥ 0 .

An alternative is to take a I-transform and work in the frequency domain. The fre-

quency domain variable I can informally be thought of as a time-shift operator act-

ing on signals, i.e., I(GC , GC+1, . . . ) = (GC+1, GC+2, . . . ). We define Φ(I) = ∑∞
C=1

I−CΦ(C),
x(I) = ∑∞

C=0
I−CGC and similarly for w(I). By manipulating summations and polynomials,

we have

x(I) =
( ∞∑
:=1

I−:Φ(:)
) ( ∞∑

:=−1

I−:F:

)
=

∞∑
C=0

C+1∑
:=1

I−CΦ(:)FC−: ,
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as desired. The argument I of the transfer function and signals is often dropped. This

representation is common in the controls literature.

Finally, it can be convenient to alternatively represent these objects as semi-infinite

vectors and block Toeplitz matrices. Here, we define

x =

G0

G1

...

 , Φ =


Φ(0) 0 0 . . .

Φ(1) Φ(0) 0 . . .

Φ(2) Φ(1) Φ(0)
...

...
. . .

 .
Then the convolution follows by matrix-vector multiplication. This representation makes

some properties evident by analogy to matrices. It can also be useful for implementation

and computation when considering finite horizons or truncations of signals and system

responses.

The three representations above are in some sense equivalent (see, e.g. the introductory

chapters of the textbook by Dahleh and Diaz-Bobillo [DD94]). In the remainder of this

chapter, Chapter 3, and Chapter 4, we use letters such as G and � to denote vectors and

matrices, and boldface letters such as x and G to denote infinite horizon signals and linear

convolution operators. We write G0:C = (G0, G1, . . . , GC) for the history of signal x up to time

C. For a function GC ↦→ 5C(GC), we write f(x) to denote the signal

(
5C(GC)

)∞
C=0

. We will denote

the Cth element as G[C] = �(C) and x[C] = GC . We will also denote �[C : 1] as the block row

vector of system response elements of G

�[C : 1] =
[
�(C) . . . �(1)

]
,

and similarly for �[1 : C] with indices reversed. Linear dynamic controllers can also be

written in this notation, i.e. u = Ky. We use the shorthand DC = K(H0:C) to indicate the

dependence between inputs and measurements at the Cth time step.

Under this notation, we have for state and output feedback respectively,[
x
u

]
=

[
Φx
Φu

]
w or

[
x
u

]
=

[
Φxw Φxv
Φuw Φuv

] [
w
v

]
. (2.2.9)

The affine realizability constraints can be rewritten for state feedback as[
I� − � −�

] [
Φx
Φu

]
= � ,

and for output feedback as[
I� − � −�

] [
Φxw Φxv
Φuw Φuv

]
=

[
� 0

]
,

[
Φxw Φxv
Φuw Φuv

] [
I� − �
−�

]
=

[
�

0

]
.
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This follows from (2.2.5) and (2.2.7). I can also been derived from writing the linear

dynamics in signal notation and then rearranging the expressions,

Ix = �x + �u +w, y = �x + v .

We finish this discussion by introducing norms and normed spaces on signals and

transfer functions. For a thorough introduction to the functional analysis commonly used

in control theory, see the text by Zhou, Doyle, and Glover [ZDG96]. As is standard, we

let ‖G‖? denote the ℓ?-norm of a vector G. For a matrix ", we let ‖"‖? denote its ℓ? → ℓ?
operator norm. We will consider the ℋ2, ℋ∞, and ℒ1 norms, which are infinite horizon

analogs of the Frobenius, spectral, and ℓ∞→ ℓ∞ operator norms of a matrix, respectively:

‖G‖ℋ2
=

√√ ∞∑
:=0

‖�(:)‖2
�
, ‖G‖ℋ∞ = sup

‖w‖2=1

‖Gw‖2, ‖G‖ℒ1
= sup

‖w‖∞=1

‖Gw‖∞ .

As theℋ∞ and ℒ1 norms are induced norms, they satisfy the sub-multiplicative property

‖GH‖ ≤ ‖G‖‖H‖. Theℋ2 norm satisfies

‖GH‖ℋ2
≤ ‖G‖ℋ∞ ‖H‖ℋ2

.

We remark that it is also possible to define the ℋ∞ system norm in terms of the power

norm [YG14], defined as ‖x‖?>F := (lim)→∞ 1

)

∑)
:=0
‖G: ‖2

2
)1/2.

In this thesis,we restrict our attention to the function spaceℛℋ∞, consistingofdiscrete-
time stable matrix-valued transfer functions. We use

1

Iℛℋ∞ to denote the set of transfer

functions G such that IG ∈ ℛℋ∞. A linear time-invariant transfer function is stable if

and only if it is exponentially stable. Therefore, we further define for positive values �

and � ∈ [0, 1)

ℛℋ∞(�, �) :=

{
G =

∞∑
:=0

�(:)I−: | ‖�(:)‖2 ≤ ��: , : = 0, 1, 2, ...
}
. (2.2.10)

This set contains transfer functions that satisfy a specified decay rate in the spectral norm

of their impulse response elements.

2.3 Optimal Linear Control
We now turn to optimal control. While the previous section developed machinery use-

ful for understanding the general behavior of linear systems in feedback with linear

controllers, this section focuses on the design of linear controllers. Putting aside our

discussion of system responses for now, we introduce optimal control problems written
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in terms of state and control signals. In particular we consider

minimizeK 2(x, u)
subject to GC+1 = �GC + �DC + FC

HC = �GC + EC
DC = K(H0:C),

(2.3.1)

for GC the state, DC the control input, FC the process noise, EC the measurement noise, K a

linear time-invariant operator, and 2(x, u) a suitable cost function.
Control design depends on how the disturbance w and measurement error v are

modeled, as well as performance objectives. Table 2.1 summarizes several common cost

functions that arise from different system desiderata and different classes of disturbances

and measurement errors ��� := (w, v). By modeling the disturbance and sensor noise as

being drawn from different signal spaces, and by choosing correspondingly suitable cost

functions, we can incorporate practical performance, safety, and robustness considerations

into the design process. We now review prominent examples of optimal control problems

that we revisit in Chapters 3 and 4.

Example 2.1 (Linear Quadratic Regulator). Suppose that the cost function is given by

2(x, u) = Ew

[
lim

)→∞

1

)

)∑
C=0

G>C &GC + D>C 'DC

]
,

for some specified positive definite matrices & and ' and FC
i.i.d.∼ N(0, �). Further suppose

that the controller is given full information about the system, i.e. � = � and EC = 0 such

that the measurement model collapses to HC = GC . Then the optimal control problem

reduces to the familiar Linear Quadratic Regulator (LQR) problem

minimize EF

[
lim

)→∞

1

)

)∑
C=0

G>C &GC + D>C 'DC

]
subject to GC+1 = �GC + �DC + FC .

(2.3.2)

For stabilizable (�, �), and detectable (�, &), this problem has a closed-form stabilizing

controller based on the solution of the discrete algebraic Riccati equation (DARE) [ZDG96].

This optimal control policy is linear, and given by

D
LQR

C = −(�>%� + ')−1�>%�GC =:  LQRGC , (2.3.3)

where % is the positive-definite solution to the DARE defined by (�, �, &, ').

Example 2.2 (Linear Quadratic Gaussian Control). Suppose that we have the same setup

as the previous example, but that now the measurement is instead given by HC = �GC + EC
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for some � such that the pair (�, �) is detectable, and that EC
i.i.d.∼ N(0, �). Then the optimal

control problem reduces to the Linear Quadratic Gaussian (LQG) control problem, the

solution to which is:

D
LQG

C =  LQRĜC , (2.3.4)

where ĜC is the Kalman filter estimate of the state at time C. The steady state update rule

for this estimate also linear, and is given by

ĜC+1 = �ĜC + �DC + !LQG(HC+1 − �(�ĜC + �DC)) ,

for filter gain !LQG = −%�>(�%�> + �)−1
where % is the solution to the DARE defined

by (�>, �>, � , �). This optimal output feedback controller satisfies the separation principle,
meaning that the optimal controller  LQR is computed independently of the optimal

estimator gain !LQG.

The LQR and LQG problems best model sensor noise, aggregate behavior, and natural

processes arising from statical-mechanical systems. The robust version of these problems

considers instead the worst-case quadratic cost for ℓ2 or power-norm bounded noise. This

is theℋ∞ optimal control problem, which has a rich history [ZDG96].

In our final example, we consider robustness in the sense of worst-case deviations

and ℓ∞ bounded noise. In particular, the ℒ1 control problem [DP87] minimizes the cost

function

2(x, u) = sup

w,v
C≥0

&1/2GC
'1/2DC


∞

for FC and EC such that ‖FC ‖∞ ≤ 1, ‖EC ‖∞ ≤ 1 for all :. The optimal controller does not

obey the separation principle, and as such, there is no clear notion of an estimated state.

This formulation best accommodates real-time safety constraints and actuator saturation,

which we motivate in the following example.

Example 2.3 (Reference Tracking). Consider a reference tracking problem where it is

known that both the distances between waypoints and sensor errors are instantaneously

ℓ∞ bounded, and we want to ensure that the system remains within a bounded distance

of the waypoints. Denoting the system state as ��� and the waypoint sequence as r, the cost
function is

2(���, u) = sup

‖AC+1−AC ‖∞≤1,
‖EC ‖∞≤1,C≥0

&1/2(�C − AC)
'1/2DC


∞
.

If we specify costs by & = diag(1/12

G,8
) and ' = diag(1/12

D,8
), then as long as the optimal

cost is less than 1, we can guarantee bounded tracking error |�8 ,C− A8 ,: | ≤ 1G,8 and actuation

|D8 ,C | ≤ 1D,8 for all possible realizations of the waypoint and sensor error processes. Con-

sidering the one-step lookahead case, we can define an augmented state, i.e. GC := [�C ; AC],
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Name Disturbance class Cost function Use cases

LQR/ℋ2

E[���] = 0,

E[���4] < ∞, �C i.i.d.
E�

[
lim

)→∞

)∑
C=0

1

)
G>C &GC + D>C 'DC

]
Sensor noise,

aggregate behavior,

natural processes

ℋ∞
‖���‖?>F ≤ 1,

or ‖���‖2 ≤ 1

sup

‖���‖?>F≤1

lim

)→∞

1

)

)∑
C=0

G>C &GC + D>C 'DC ,

or sup

‖���‖2≤1

∞∑
C=0

G>C &GC + D>C 'DC

Modeling error,

energy/power

constraints

ℒ1 ‖���‖∞ ≤ 1 sup

‖���‖∞≤1,C≥0

&1/2GC
'1/2DC


∞

Real-time safety

constraints, actuator

saturation/limits

Table 2.1: Different noise model classes induce different cost functions, and can be used

to model different phenomenon, or combinations thereof. See texts by Zhou, Doyle, and

Glover [ZDG96] and Dahleh and Pearson [DP87] for more details.

and model waypoints as bounded disturbances, i.e. FC := AC+1 − AC . A similar formulation

exists for any )-step lookahead of the reference trajectory.

We can then formulate the following ℒ1 optimal control problem,

minimize sup‖�‖∞≤1,C≥0

&̄1/2GC
'1/2DC


∞

subject to GC+1 = �̄GC + �̄DC + �̄FC ,
HC = �̄GC + EC ,

(2.3.5)

where

�̄ =

[
� 0

0 �

]
, �̄ =

[
�

0

]
, �̄ =

[
� 0

]
, �̄ =

[
0

�

]
, &̄1/2 =

[
&1/2 −&1/2] .

2.4 System Level Synthesis
We now formally discuss the System Level Synthesis (SLS) framework, which shows that

optimal control problems can be equivalently cast in terms of system response variables.

To motivate the state feedback case, consider an arbitrary transfer function K denoting

the map from state to control action, u = Kx. Then the closed-loop transfer matrices from

the process noise w to the state x and control action u satisfy[
x
u

]
=

[
(I� − � − �K)−1

K(I� − � − �K)−1

]
w. (2.4.1)

This expression is non-convex in K, posing a problem for efficiently solving optimal

control problems. Therefore, we turn to an alternate parametrization. The following
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theorem parameterizes the set of stable closed-loop transfer matrices that are achievable

by some stabilizing controller K.

Theorem 2.4.1 (state feedback Parameterization [WMD19]). The following are true:

• The affine subspace defined by[
I� − � −�

] [
Φx
Φu

]
= � , Φx,Φu ∈

1

I
ℛℋ∞ (2.4.2)

parameterizes all system responses (2.4.1) from w to (x, u), achievable by an internally
stabilizing state feedback controller K.

• For any transfer matrices (Φx,Φu) satisfying (2.4.2), the controller K = ΦuΦ−1

x is internally
stabilizing and achieves the desired system response (2.4.1).

In the output feedback case, for u = Ky, closed-loop transfer matrices from the process

w and measurement noise v to the state x and control action u satisfy[
x
u

]
=

[
(I� − � − �K�)−1 (I� − � − �K�)−1�K

K�(I� − � − �K)−1 K�(I� − � − �K�)−1�K

] [
w
v

]
. (2.4.3)

Again, this expression is non-convex in K, so we turn to the system level parametrization.

Theorem 2.4.2 (output feedback Parameterization [WMD19]). The following are true:

• The affine subspace defined by Φxw,Φxv,Φuw ∈ 1

Iℛℋ∞, Φuv ∈ ℛℋ∞,[
I� − � −�

] [
Φxw Φxv
Φuw Φuv

]
=

[
� 0

]
,

[
Φxw Φxv
Φuw Φuv

] [
I� − �
−�

]
=

[
�

0

]
(2.4.4)

parameterizes all system responses (2.4.3) from (w, v) to (x, u), achievable by an internally
stabilizing state feedback controller K.

• For any transfer matrices (Φxw,Φxv,Φuw,Φuv) satisfying (2.4.2), the controller K = Φuv −
ΦuwΦ−1

xwΦxv is internally stabilizing and achieves the desired system response (2.4.3).

Theorem 2.4.1 and 2.4.2 make formal the intuition that linear controllers are equivalent

to systemresponses constrained to lie in an affine space. As a result, optimizationproblems

over stabilizing linear controllers can be reparameterized into optimization problems over

system response variables. We will sometimes denote that a system response Φ satisfies

the realizability constraints in (2.4.2) or (2.4.4) as Φ ∈ A, where A denotes affine space

defined by (�, �) or (�, �, �) depending on the context. Theorem 2.4.1 and 2.4.2 also

describe how to recover the control law from the system responses. This controller can be

implemented via a state-space realization [AM17] or as an interconnection of the system

response elements [WMD19].
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Control Costs as System Norms
In this SLS framework, many control costs (including those in Table 2.1) can be written

as system norms. We first consider the ℋ∞ and ℒ1 costs, which can be written in signal

notation as

2(x, u) = sup

‖w‖≤�F
‖v‖≤�E

[&1/2x
'1/2u

] ,
where �F and �E respectively bound the norms of w and v and we allow ‖ · ‖ to represent

the ℓ2/power norm or ℓ∞ norm and associated induced norm. Then by substituting the

identity (2.2.9), the cost can be written as

sup

‖w‖≤�F
‖v‖≤�4

[&1/2

'1/2

] [
Φxw Φxv
Φuw Φuv

] [
w
v

] = [&1/2

'1/2

] [
Φxw Φxv
Φuw Φuv

] [
�F�

�E�

] .
For LQR and LQG control, the control objective is equivalent to a system ℋ2 norm, a

fact that we now derive. From the expression (2.2.7), we have that

G>C &GC =
C+1∑
:=1

C+1∑
ℓ=1

[
FC−:
EC−:

]> [
ΦGF(:)>
ΦGE(:)>

]
&

[
ΦGF(ℓ ) ΦGE(ℓ )

] [
FC−ℓ
EC−ℓ

]
. (2.4.5)

Then as long as the process and measurement noise are zero mean, independent from

each other and across time, and have variances �2

F and �2

E respectively,

E
[
G>C &GC

]
=

C+1∑
:=1

Tr
( [
�FΦGF(:)>
�EΦGE(:)>

]
&

[
�FΦGF(:) �EΦGE(:)

] )
.

A similar expression holds for the input term. We can then write

lim

)→∞

1

)

)∑
C=1

E
[
G>C &GC + D>C 'DC

]
=

∞∑
C=1

Tr
( [
�FΦGF(C)>
�EΦGE(C)>

]
&

[
�FΦGF(C) �EΦGE(C)

] )
+ Tr

( [
�FΦDF(C)>
�EΦDE(C)>

]
&

[
�FΦDF(C) �EΦDE(C)

] )
=

∞∑
C=1

[& 1

2 0

0 '
1

2

] [
ΦGF(C) ΦGE(C)
ΦDF(C) ΦDE(C)

] [
�F� 0

0 �E�

]2

�

=

[& 1

2 0

0 '
1

2

] [
Φxw Φxv
Φuw Φuv

] [
�F� 0

0 �E�

]2

ℋ2

.
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This derivation requires only fairly general assumptions about the noise processes.

However, using system response variables implicitly assumes a linear (possibly dynamic)

controller. Thus, the equivalence between the ℋ2 norm and the LQR/LQG cost only

holds under this restricted policy class. The optimal controller is in fact a linear dynamic

controller a) in the state feedback case and b) when the noise processes are Gaussian (as

in Example 2.1 and 2.2). However, the optimal filtering procedure for more general noise

processes will not be a Kalman filter, and it may not be linear [Ber95].

Robustness to Unknown Dynamics
So far we have seen that System Level Synthesis provides a convenient parametrization

that makes transparent the effects of noise signals and allows for convex optimization.

Neither of these properties is entirely unique to SLS, and other approaches to control

synthesis are possible. However, a major benefit is in how SLS handles misspecification

in the dynamics model. In this section, we show how uncertainty in the dynamics can be

handled in a transparent manner. This allows for the computation of robust controllers

that stabilize all systems within an uncertainty set.

Althoughclassicmethods exist for computing robust controllers [Fer97; Pag95; SAPT02;

WP95], they typically require solving non-convex optimization problems, and it is not

readily obvious how to extract interpretable measures of controller performance as a

function of the size of the uncertainty. By lifting the system description into a higher di-

mensional space, SLS makes it tractable to reason analytically about uncertain dynamics.

The robust variant of Theorem 2.4.1 traces the effects of misspecification.

Theorem 2.4.3 (Robust Stability [MWA17]). Let Φx and Φu be two transfer matrices in 1

Iℛℋ∞
such that [

I� − � −�
] [

Φx
Φu

]
= � + ∆. (2.4.6)

Then the controller K = ΦuΦ−1

x stabilizes the system described by (�, �) if and only if (� + ∆)−1 ∈
ℛℋ∞. Furthermore, the resulting system response is given by[

x
u

]
=

[
Φx
Φu

]
(� + ∆)−1w. (2.4.7)

Corollary 2.4.4. Under the assumptions of Theorem 2.4.3, if ‖∆‖ < 1 for any induced norm ‖ · ‖,
then the controller K = ΦuΦ−1

x stabilizes the system described by (�, �).
The proof of the corollary follows immediately from the small gain theorem.

To see why these results are useful, suppose that some estimate (�̂, �̂) is used for

synthesis. Then,[
I� − �̂ −�̂

] [
Φx
Φu

]
= � ⇐⇒

[
I� − � −�

] [
Φx
Φu

]
= � +

[
�̂ − � �̂ − �

] [
Φx
Φu

]
.
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Therefore Theorem 2.4.3 allows us to write a closed-form expression for the trajectory of

the uncertain system in terms of the designed response (Φx,Φu), and uncertainties � − �̂
and � − �̂.

A similar result holds for output feedback controllers which makes transparent the

effect of uncertainty in the measurement matrix � (see e.g. work by Boczar, Matni, and

Recht [BMR18]).

2.5 Finite Dimensional Approximations
The System Level Synthesis framework introduced in Section 2.4 shows that optimal

control problems like (2.3.1) can be cast in terms of system response variables. However,

system responses are semi-infinite, so it is not clear how to solve the resulting optimization

problem efficiently. An elementary approach to reducing the semi-infinite program to a

finite dimensional one is to only optimize over the first ! elements of the transfer functions,

effectively taking a finite impulse response (FIR) approximation. Since these are stable

maps, we expect the effects of such an approximation to be negligible as long as the

optimization horizon ! is chosen to be sufficiently large. Later in this section, we show

that this is indeed the case.

Wefirst outlinehowtheoptimizationvariables andconstraints admitfinite-dimensional

representations. To derive the finite expressions, it is useful to consider the (truncated)

Toeplitz matrix representation of the transfer functions. The FIR approximation optimizes

over ((ΦG(C),ΦD(C))!C=1
in the state feedback case and ((ΦGF(C),ΦDF(C),ΦGE(C),ΦDE(C))!C=1

in

the output feedback case. The affine realizability constraints reduce to a finite number

of linear equality constraints in the form of (2.2.5) or (2.2.8). The ℋ2 norm can be cast

as a second order cone constraint. The ℋ∞ norm can be reduced to a compact SDP as

in Theorem 5.8 of Dumitrescu [Dum07], described explicitly for SLS in Appendix G.3

of Dean et al. [DMMRT18]. The ℒ1 norm becomes an ℓ∞ → ℓ∞ operator norm on the

horizontal concatenation of system response elements, Φ[! : 1]. Finally, the controller

given by K = ΦuΦ−1

x or K = Φuv − ΦuwΦ−1

xwΦxv can be written in an equivalent state-space

realization (� , � , � , � ) via Theorems 2 and 3 of Anderson and Matni [AM17].

In the interest of clarity, for the remainder of this thesis we will present the infinite

horizon version of the optimization problems, with the understanding that finite horizon

approximations are necessary in practice. The sub-optimality results presented in Chap-

ters 3 and 4 hold up to constant factors for these approximations. We now make precise

that for sufficiently long horizons !, the effects of the approximation are negligible.
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Sub-optimality of Finite Approximation
Consider a general state feedback optimal control problem cast in system response vari-

ables:

minimize

[&1/2

'1/2

] [
Φx
Φu

]
subject to

[
I� − � −�

] [
Φx
Φu

]
= � ,

Φx,Φu ∈ 1

Iℛℋ∞

(2.5.1)

where ‖·‖ is any induced norm. We define cost(K) to be the norm of the system response

generated by applying the controller K = Φ−1

u Φx to the systemwith linear dynamics (�, �).
The finite approximation to this problem optimizes over only the first ! impulse re-

sponse elements:

min

0≤�<1

min

Φx ,Φu ,+

1

1 − �

[&1/2

'1/2

] [
Φx
Φu

]
subject to

[
I� − � −�

] [
Φx
Φu

]
= � + I−!+,

Φx =
∑!
C=1

I−CΦG(C), Φu =
∑!
C=1

I−CΦD(C) ,
‖+ ‖ ≤ � .

(2.5.2)

The slack term + accounts for the error introduced by truncating the infinite response

transfer functions. This allows us to optimize over controllers that don’t necessarily force

the system to have a finite impulse response. We remark that it is possible to enforce that

the system is FIR by setting + = 0 and � = 0; the problem remains feasible whenever

(�, �) is controllable and ! is large enough. While that makes for a cruder approximation,

it avoids the additional complexity of searching over the scalar variables �.
Intuitively, if the truncated tail captured by + is sufficiently small, then the finite

approximation has near optimal performance. The next result formalizes this intuition.

It shows that the cost penalty incurred decays exponentially in the horizon ! over which

the approximation is taken.

Theorem 2.5.1. Let K★ = Φ★
u(Φ★

x )−1 be the controller resulting from the optimal control prob-
lem (2.5.1) and suppose that Φ★

x ∈ ℛℋ∞(�★, �★). Let K! = Φ!
u(Φ!

x )−1 be controller resulting
from the finite approximation (2.5.2). Then for any 0 < � < 1, as long as

! ≥ log(2�★/�)/log(1/�★) + 1 ,

the relative sub-optimality of the finite approximation is bounded by �

cost(K!) − cost(K★)
cost(K★) ≤ � .
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Proof. First, notice that since the affine realizability constraint is not exactly met, by the

robustness result in Theorem 2.4.3

cost (K!) =
[&1/2

'1/2

] [
Φ!

x
Φ!

u

]
(� + I−!+!)−1

 .
The expression can be further simplified using the properties of induced norms,

cost (K!) ≤
[&1/2

'1/2

] [
Φ!

x
Φ!

u

] 1

1 − ‖+!‖
≤

[&1/2

'1/2

] [
Φ!

x
Φ!

u

] 1

1 − �!
,

where the final inequality holds due to the inequality constraint ‖+ ‖ ≤ �.
Next, we construct a feasible solution to (2.5.2):

Φ̃x =

!∑
C=1

I−CΦ★
G (C), Φ̃u =

!∑
C=1

I−CΦ★
D(C), +̃ = −Φ★

G (! + 1), �̃ = �★�
!+1

★ . (2.5.3)

Because (Φ★
x ,Φ★

u) is a solution to the original optimal control problem, the infinite system

response satisfies the affine realizability constraint for (�, �). It is straightforward to check

that the under the definition of +̃ , the truncated affine constraints are satisfied as well.

We also have that ‖+̃ ‖ = ‖Φ★
G (! + 1)‖ ≤ �★�!+1

★ = �̃ by the definition of �★ and �★. By the

assumption on ! and �, �★�!+1

★ < 1.

Then by the optimality of (Φ!
x ,Φ!

u, �!),

1

1 − �!

[&1/2

'1/2

] [
Φ!

x
Φ!

u

] ≤ 1

1 − �̃

[&1/2

'1/2

] [
Φ̃x
Φ̃u

] .
Notice that Φ̃x = Φ★

x +
∑∞
C=!+1

I−CΦ★
G (C) and Φ̃u = Φ★

u +
∑∞
C=!+1

I−CΦ★
D(C). Therefore, by

triangle inequality, [&1/2

'1/2

] [
Φ̃x
Φ̃u

] ≤ [&1/2

'1/2

] [
Φ★

x
Φ★

u

] .
Combining this chain of inequalities,

cost(K!) ≤ 1

1 − � ★ �!+1

★

cost

(
K★) ≤ (

1 + 2� ★ �!+1

★

)
cost

(
K★) .

where the final inequality holds by the observation that
1

1−G ≤ 1 + 2G whenever G ≤ 1/2,
which is implied by the assumption on �.

A nearly identical result also holds for the ℋ2 norm, where in the finite problem, the

constraint on + is in terms of the ℓ2 → ℓ2 operator norm. Similar results hold when the

optimal control problem has additional constraints so long as care is taken to incorporate

the variable+ into them analogously. Finally, it is possible to generalize this to the output

feedback case, though the analogous truncated synthesis problem will search over two

auxiliary variables.
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Chapter 3

Learning to Control the Linear Quadratic
Regulator

3.1 Introduction
In this chapter, we attempt to build a foundation for the theoretical understanding of

how machine learning interfaces with control by analyzing one of the most well-studied

problems in classical optimal control, the Linear Quadratic Regulator (LQR). This chapter

uses material first presented in papers coauthored with Horia Mania, Nikolai Matni,

Benjamin Recht, and Stephen Tu [DTMR19; DMMRT20; DMMRT18].

We assume that the system to be controlled obeys linear dynamics, and we wish to

minimize some quadratic function of the system state and control action. The optimal

control problem can be written as

minimize E
[

1

)

∑)
C=1

G>C &GC + D>C−1
'DC−1

]
subject to GC+1 = �GC + �DC + FC

. (3.1.1)

In what follows, we will be concerned with the infinite time horizon variant of the LQR

problem where we let the time horizon ) go to infinity. When the dynamics are known,

this problem has a celebrated closed form solution based on the solution of matrix Riccati

equations [ZDG96].

We will further consider the constrained version of the LQR problem, in which the

system state and control actions are linearly constrained. Wedefine the polytopic constraint

sets:

X := {G : �GG ≤ 1G}, U := {D : �DD ≤ 1D} . (3.1.2)

The incorporation of such constraints can ensure system safety (by avoiding unsafe re-

gions of the state space) and reliability (by preventing controller saturation). This richer

modeling comes at a cost: the constrained LQR problem does not have a simple closed

form solution. Nevertheless, by restricting the policy class to linear controllers, we will

develop a framework in which the problem becomes tractable.
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We analyze the LQR problem when the dynamics of the system are unknown, and we

can measure the system’s response to varied inputs. We will assume that we can conduct

experiments of the following form: given some initial state G0, we can evolve the dynamics

for ) time steps using any control sequence (D0, . . . , D)−1), measuring the resulting output

(G1, . . . , G)). Is it possible to keep the system safe using only the data collected?

We propose a method that couples our uncertainty in estimation with the control

design. Our main approach uses the following framework of Coarse-ID control to solve the

problem of LQR with unknown dynamics:

1. Use supervised learning to learn a coarse model of the dynamical system to be

controlled. We refer to the system estimate as the nominal system.

2. Build probabilistic guarantees about the distance between the nominal system and

the true, unknown dynamics.

3. Solve a robust optimization problem over controllers that optimizes performance of

the nominal system while penalizing signals with respect to the estimated uncer-

tainty, ensuring safe and robust execution.

For a sufficient amount of data, this approach is guaranteed to return a control policy with

small relative cost which guarantees the safety and asymptotic stability of the closed-loop

system. Though simple to state, the analysis of this procedure will take the remainder of

the chapter: Section 3.2 focus on the estimation in the second step, Section 3.3 develops a

method for synthesizing robust controllers in the third step, and Section 3.4 provides end-

to-end performance guarantees. We present numerical experiments demonstrating the

capability of this procedure in Section 3.5, and offer concluding remarks and an accounting

of open problems in Section 3.6.

Problem Setting
We fix an underlying linear dynamical system with full state observation,

GC+1 = �GC + �DC + FC , (3.1.3)

where we have initial condition G0 ∈ R= , sequence of inputs (D0, D1, . . . ) ⊆ R< , and dis-

turbance process (F0, F1, . . . ) ⊆ R= . We consider the expected infinite horizon quadratic

cost for the system (�, �) in feedback with a linear controller K:

�(�, �,K)2 :=
1

�2

F

lim

)→∞

1

)

)−1∑
C=0

EF[G>C &GC + D>C 'DC] .

We assume that the disturbance process is generated by any distribution which satisfies

E[FC] = 0, E[FCF>C ] = �2

F�, and independence across time, i.e., FC ⊥ F; for C ≠ :. Note that
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any distribution satisfying these constraints induces the same expected quadratic cost, so

it is unnecessary to specify a specific distribution. We further assume that the disturbance

is norm bounded so that it satisfies ‖FC ‖∞ ≤ AF for all : ≥ 0. This assumption makes it

possible to reason about constraints on the system state and control input on infinite time

horizons. We require that the constraints (3.1.2) are satisfied for any possible disturbance

sequence.

Putting the cost and the constraints together, the optimal control problem that acts as

our baseline is:

minimizeK �(�, �,K)
subject to G0 fixed, DC = K(G0:C) ,

GC+1 = �GC + �DC + FC ,
�GGC ≤ 1G , �DDC ≤ 1D ∀C ,∀{FC : ‖FC ‖∞ ≤ AF} .

(3.1.4)

Above, we search over linear dynamic stabilizing feedback controllers for (�, �) of the
form u = Kx. This is made possible by the system level synthesis framework described in

the previous chapter.

As will we show, the optimal control problem given in (3.1.4) is a convex, but infinite-

dimensional problem. It is an idealized baseline to compare our actual solutions to;

our sub-optimality guarantees will be with respect to the optimal cost achieved by this

problem. It is a relevant baseline, since it optimizes for average case performance but

ensures safety for the worst-case behavior, consistent with literature on Model Predictive

Control (MPC) [MSR05; OJM08]. We remark that an alternative to (3.1.4) is to replace the

worst case constraints with probabilistic chance constraints [FGS16]. We do not workwith

chance constraints because they are generally difficult to directly enforce on an infinite

horizon; arguments around recursive feasibility using robust invariant sets are common

in the literature to deal with this issue. When the system is unconstrained, i.e. when

X = R= andU = R< , this baseline is the widely-studied classical LQR problem.

Related Work
We first describe related work in the estimation of unknown linear systems and then turn to

connections in the literature on robust control with uncertain models and the satisfaction of
safety constraints. We then end this review with a discussion of recent works that directly

address the LQR problem and related variants.

Estimation of unknown linear systems. Estimation of unknown linear dynamical sys-

tems has a long history in the system identification subfield of control theory. Classical

results focus on asymptotic guarantees and/or frequency domain methods [Lju99; CG00;

HJN91; Gol98]. Ourgoal is to analyze the optimality of controllers constructed fromafinite

amount of data, so we focus on non-asymptotic guarantees for state space identification.

Early results on non-asymptotic rates for parameter identification featured conservative
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bounds exponential in the system degree [CW02; VK08]. In the past decade, the first

polynomial time guarantees were presented in terms of predictive output performance

of the model [PIM10; HMR18]. Recently, Hazan, Singh, and Zhang [HSZ17] and Hazan

et al. [HLSZZ18] proposed a novel spectral filtering algorithm and showed that one can

compete in a regret setting in terms of prediction error. It is not clear how such prediction

error bounds can be used in a downstream robust synthesis procedure or converted into

a sub-optimality result.

In parallel to the system identification community, identification of auto-regressive

time series models is a widely studied topic in the statistics literature [BJRL15; GZ01;

KM17; MSS17; MR10]. Many of these works studied generalization for data which is not

independent over time, extending the standard learning theory guarantees. At the crux

of these arguments lie various mixing assumptions [Yu94], which limits the analysis to

stable dynamical systems. Furthermore, results from this line of research suggest that

systems with smaller mixing time (i.e. systems that are more stable) are easier to identify

(i.e. take less samples). This does not align with our empirical testing, which suggests

that identification benefits from more easily excitable systems.

Our results rely on recent work by Simchowitz et al. [SMTJR18] who take a step

towards reconciling this issue for stable systems. Since the work presented in this chapter

was published, there has been a renewed interest in providing finite data guarantees for

classic system identification procedures. For partially observed linear systems, Oymak

andOzay [OO19] andSarkar, Rakhlin, andDahleh [SRD21] present non-asymptotic results

for a Ho-Kalman-like procedure and Simchowitz, Boczar, and Recht [SBR19] propose a

semi-parametric least squares method that is consistent for marginally stable systems. In

the state observation setting, Sarkar andRakhlin [SR19] show that least-squares estimation

is consistent for a restricted class of unstable systems. Developing consistent estimators

for arbitrary unstable systems remains an open problem.

Robust controller design. For end-to-end guarantees, parameter estimation is only half

the picture. It is necessary to ensure that the computed controller guarantees stability and

performance for the entire family of systemmodels described by a nominal estimate and a

set of unknown but boundedmodel errors. This problem has a rich history in the controls

community. Whenmodeling errors are arbitrarynormbounded linear time-invariant (LTI)

operators in feedback with the nominal plant, traditional small gain theorems and robust

synthesis techniques exactly solve the problem [DD94; ZDG96]. For more structured

errors, there are sophisticated techniques based on structured singular values like �-
synthesis [Doy82; FTD91; PD93; YND91] or integral quadratic constraints (IQCs) [MR97].

While theoretically appealing andmuch less conservative, the resulting synthesismethods

are both computationally intractable (although effective heuristics do exist) and difficult

to interpret analytically.

In order to bound the degradation in performance of controlling an uncertain system

in terms of the size of the perturbations affecting it, we leverage a novel parameterization
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of robustly stabilizing controllers based on the SLS framework [WMD19] that is reviewed

in Chapter 2. Originally developed to allow for scaling optimal and robust controller

synthesis techniques to large-scale systems, the SLS framework can be viewed as a gener-

alization of the celebrated Youla parameterization [YJB76]. We use SLS because it allows

us to account for model uncertainty in a transparent and analytically tractable way.

Since the work presented in this chapter was published, there has been a renewed

interest in robust synthesis procedures for the types of uncertainty sets that result from

estimation [US18; UFSH19; US20].

Safety constraints. Thedesign of controllers that guarantee robust constraint satisfaction

has long been considered in the context of model predictive control [BM99], including

methods that model uncertainty in the dynamics directly [KBM96], or model it as an

enlarge disturbance process [MSR05; GKM06]. These traditional works do not usually

consider identifying the unknown dynamics. Strategies for incorporating safety with

estimation of thedynamics include experiment-design inspired costs [LRH11], decoupling

learning from constraint satisfaction [AGST13], and set-membership methods rather than

parameter estimation [TFSM14; LAC17]. Due to the receding horizon nature of model

predictive controllers, this literature relies on set invariance theory for infinite horizon

guarantees [Bla99]. In this chapter, we consider the infinite horizon problem directly, and

therefore we do not require computation of invariant sets.

Themachine-learning community has begun to consider safety in reinforcement learn-

ing, where much work positions itself as ensuring safety for arbitrary dynamical systems

in lieu of providing statistical guarantees [BS15; BTSK17; DDV+18; CNDG18]. One line

of work proposes methods for modifying potentially unsafe inputs generated by arbitrary

reinforcement learning algorithms, building on ideas from robust MPC [WZ18; KBTK18].

Despite good empirical results, it remains to show whether the modified inputs success-

fully excite the system, allowing for a statistical learning rate. Most similar to our work

is that of Lu et al. [LZBRS17], who propose a method to allow excitation on top of a safe

controller, but consider only finite-time safety and require non-convex optimization to

obtain formal guarantees. Later follow-up work by Ahmadi et al. [ACST21] guarantees

safety and excitation on the basis of planning over one and two step horizons.

PAC learning and reinforcement learning. There is a body of work that focuses on

the unconstrained LQR problem from the perspective of probably-approximately-correct

(PAC) and reinforcement learning. In terms of end-to-end guarantee, our work is most

comparable to that of Fiechter [Fie97], who analyzes an identify-then-control scheme

similar to the one we propose. There are several key differences. First, our probabilistic

bounds on identification aremuch sharper, sincewe leveragemoremodern tools fromhigh

dimensional statistics. Second, Fiechter implicitly assumes that the estimated controller

induces a closed-loop that is not only stable but also contractive. While this is a very

strongassumption, contractive closed-loopassumptions are actuallypervasive throughout
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the early literature, as we describe below. Finally, Fiechter proposes to directly solve

the discounted LQR problem with the identified model, and takes a certainty equivalent
approach to controller synthesis, which does not take into account any uncertainty. This is

problematic for two reasons: the optimal solution to the discounted LQR problem does not

guarantee stabilization (see e.g. [PBND17]) and even if the optimal solution does stabilize

the underlying system, the certainty equivalent controller may not. Our experiments

demonstrate this behavior.

There is a body of related efforts in RL and online learning. In a seminal work,

Abbasi-Yadkori and Szepesvári [AS11] propose to use the optimism in the face of uncer-

tainty (OFU) principle for the LQR problem, by maintaining confidence ellipsoids on the

true parameter, and using the controller which, in feedback, minimizes the cost objective

the most among all systems in the confidence ellipsoid. They show that the regret of

this approach scales as Õ(
√
)), where Õ(·) hides problem dependent constants and poly-

logarithmic factors. However, the method is computationally intractable, and the analysis

makes the very strong assumption that the optimal closed-loop systems are contractive

for every �, � in the confidence ellipsoid. The regret bound is improved by Ibrahimi,

Javanmard, and Roy [ĲR12] under additional sparsity constraints on the dynamics. More

recently, Cohen, Koren, and Mansour [CKM19] and Abeille and Lazaric [AL20] propose

computationally tractable approximations to the OFU principle based on semidefinite

programming and Lagrangian relaxation, respectively. They improve the analysis, relax-

ing some of the more restrictive assumptions, and show that the approximate methods

achieve the same regret scaling.

An alternative online approach is to use Thompson sampling [RVKOW18] for ex-

ploration. This method has been shown to achieve Õ(
√
)) regret for one dimensional

systems [AL17; AL18] or within a Bayesian framework of expected regret [OGJ17]. These

works also make the same restrictive assumption that the optimal closed-loop systems

are uniformly contractive over some known set. Recent work shows that a naive &-greedy
exploration scheme in combination with the certainty equivalent controller achieves opti-

mal regret [MTR19; SF20]. In fact, the regret of this scheme does not depend directly on

the state dimension; Perdomo et al. [PSAB21] show that rather than requiring consistent

parameter recovery, the performance of certainty equivalent control scales with the pre-

diction error of the estimates. The success of the certainty equivalent controller in online

settings hinges on large enough horizons ) to guarantee small enough estimation errors.

In our framework, we construct controllers with stability and performance guarantees

even in moderate error regimes.

Many of the aforementioned works assume enough knowledge to construct an initial

stabilization controller. In recent work, Treven et al. [TCMK21] propose a data-driven

method for constructing a controller for potentially unstable systems under a Bayesian

prior.

Since the work presented in this chapter was published, additional variants of the

LQR problem have been investigated, including the partially observed setting [TMP20;
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LAHA20] and non-stochastic noise models [ABHKS19; HD19]. There has also been a

resurgence of interest in model-free methods, which do not rely on estimating the dynam-

ics model directly. Fazel et al. [FGKM18] show that randomized search algorithms similar

to policy gradient can learn the optimal controller with a polynomial number samples.

These ideas have also been applied to continuous time settings [MZSJ21]. Approaches

based on characterizing the value function and & function are also popular: Yang et al.

[YCHW19] study the actor critic algorithm and Krauth, Tu, and Recht [KTR19] investigate

least square temporal differences and policy improvement. Tu and Recht [TR19] present

a class of dynamics models for which there is a gap in the sample complexity of model

free and model based methods, suggesting that model based methods, such as the one

investigated here, aremore efficient, at least when it is known that the dynamics are linear.

3.2 System Identification through Least-Squares
To estimate a coarse model of the unknown system dynamics, we turn to the simple

method of linear least squares. By running experiments in which the system starts at G0

and the dynamics evolvewith a given input, we can record the resulting state observations.

The set of inputs and outputs from each such experiment will be called a rollout, and the

resulting dataset is {(GC , DC) : 0 ≤ C ≤ )}. Therefore, we can estimate the systemdynamics

by

(�̂, �̂) ∈ arg min

(�,�)

)−1∑
C=0

1

2

‖�GC + �DC − GC+1‖2
2
. (3.2.1)

For the Coarse-ID control setting, a good estimate of error is just as important as the

estimate of the dynamics. Statistical theory allows us to quantify the error of the least

squares estimator. First, we present an illustrative theoretical analysis of the error in a

simplified setting. Then, we present results that apply in full generality.

Least Squares Estimation as a RandomMatrix Problem
Webegin by explicitly writing the form of the least squares estimator. First, fixing notation

to simplify the presentation, let Θ :=
[
� �

]> ∈ R(=+<)×= and let IC :=

[
GC
DC

]
∈ R=+< . Then

the system dynamics can be rewritten, for all C ≥ 0,

G>C+1
= I>C Θ + F>C .
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Then in a rollout, we will collect

-) :=


G>

1

G>
2

...

G>
)

 , /) :=


I>

0

I>
1

...

I>
)−1

 , ,) :=


F>

0

F>
1

...

F>
)−1

 . (3.2.2)

The system dynamics give the identity

-) = /)Θ +,) .

The least squares estimator for Θ is (assuming for now invertibility of />
)
/)),

Θ̂ = (/>)/))
−1/>)-) = Θ + (/

>
)/))

−1/>),) . (3.2.3)

Then the estimation error is given by

� := Θ̂ − Θ = (/>)/))
−1/>),) . (3.2.4)

The magnitude of this error is the quantity of interest in determining confidence sets

around estimates (�̂, �̂). However, since,) and /) are not independent, this estimator

is difficult to analyze using standard methods. We therefore begin with a simplified

procedure using Gaussian noise injection and system resets to recover an independent

data estimator in the following subsection. After that, we consider estimation from

dependent data collected during closed-loop system operation, and present results that

rely on recently developed statistical results for linear system estimation.

Simplified Gaussian Setting
To sidestep issues of data dependence, we suppose the ability to reset the system to

G0 = 0 and perform multiple system rollouts. Having the ability to reset the system to a

state independent of past observations is important for this analysis, and it could also be

Algorithm 1 Estimation of linear dynamics with independent data

1: for ℓ from 1 to # do
2: G

(ℓ )
0
= 0

3: for C from 0 to ) − 1 do
4: G

(ℓ )
C+1

= �G
(ℓ )
C + �D

(ℓ )
C + F

(ℓ )
C with F

(ℓ )
C

i.i.d.∼ N(0, �2

F�=) and D
(ℓ )
C

i.i.d.∼ N(0, �2

D�<).
5: end for
6: end for
7: (�̂, �̂) ∈ arg min(�,�)

∑#
ℓ=1

1

2
‖�G(ℓ )

)−1
+ �D(ℓ )

)−1
− G(ℓ )

)
‖2

2
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practically important for potentially unstable systems. We excite the systemwithGaussian

noise for # rollouts, each of length ). The resulting dataset is {(G(ℓ )C , D
(ℓ )
C ) : 1 ≤ ℓ ≤ #, 0 ≤

C ≤ )}, where C indexes the time in one rollout and ℓ indexes independent rollouts.

We now show the statistical rate for the least squares estimator which uses just the last

sample of each trajectory: (G(ℓ )
)
, G
(ℓ )
)−1

, D
(ℓ )
)−1
). This estimation procedure is made precise in

Algorithm 1. Our analysis ideas are analogous to those used to prove statistical rates for

standard linear regression, and they leverage tools in non-asymptotic analysis of random

matrices.

The fact that this strategy results in independent data can be seen by defining the

estimator matrix directly. The previous estimator (3.2.3) is amended to rely on -# =[
G
(1)
)

G
(2)
)

. . . G
(#)
)

]>
, /# , and ,# , which are similarly defined. The matrices in the

estimator thus contain independent rows. To see this, define the matrices

�) =
[
�)−2� �)−3� . . . �

]
and �) =

[
�)−2 �)−3 . . . �=

]
. (3.2.5)

We can unroll the system dynamics and see that

G)−1 = �)


D0

D1

...

D)−2

 + �)

F0

F1

...

F)−2

 . (3.2.6)

Using Gaussian excitation, DC ∼ N(0, �2

D�<) and assuming Gaussian process noise FC ∼
N(0, �2

F�=) gives [
G)−1

D)−1

]
∼ N

(
0,

[
�2

D�)�
>
)
+ �2

F�)�
>
)

0

0 �2

D�<

] )
. (3.2.7)

Since �)�
>
)
� 0, as long as both �D , �F are positive, this is a non-degenerate distribution.

Therefore, bounding the estimation error can be achieved via proving a result on the

error in randomdesign linear regressionwithvector valuedobservations. First, wepresent

a standard lemma which bounds the spectral norm of the product of two independent

Gaussian matrices.

Lemma 3.2.1. Fix a � ∈ (0, 1) and # ≥ 2 log(1/�). Let 5: ∈ R< , 6: ∈ R= be independent
random vectors 5: ∼ N(0,Σ 5 ) and 6: ∼ N(0,Σ6) for 1 ≤ : ≤ # . With probability at least 1− �, #∑

:=1

5: 6
>
:


2

≤ 4‖Σ 5 ‖1/2
2
‖Σ6 ‖1/2

2

√
#(< + =) log(9/�) .

Lemma 3.2.1 shows that if - is =1 × # with i.i.d. N(0, 1) entries and . is # × =2 with

i.i.d. N(0, 1) entries, and - and . are independent, then with probability at least 1− � we
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have

‖-.‖2 ≤ 4

√
#(=1 + =2) log(9/�) .

Next, we state a standard non-asymptotic bound on the minimum singular value of a

standard Wishart matrix (see e.g. Corollary 5.35 of [Ver10]).

Lemma 3.2.2. Let - ∈ R#×= have i.i.d. N(0, 1) entries. With probability at least 1 − �,√
�min(->-) ≥

√
# −
√
= −

√
2 log(1/�) .

We combine the previous lemmas into a statement on the error of random design

regression.

Lemma 3.2.3. Let I1, ..., I# ∈ R= be i.i.d. from N(0,Σ) with Σ invertible. Let /> :=[
I1 ... I#

]
. Let , ∈ R#×? with each entry i.i.d. N(0, �2

F) and independent of /. Let
� := (/>/)†/>, , and suppose that

# ≥ 8= + 16 log(2/�) . (3.2.8)

For any fixed matrix &, we have with probability at least 1 − �,

‖&�‖2 ≤ 16�F ‖&Σ−1/2‖2

√
(= + ?) log(18/�)

#
.

Proof. First, observe that / is equal in distribution to -Σ1/2
, where - ∈ R#×= has i.i.d.

N(0, 1) entries. By Lemma 3.2.2, with probability at least 1 − �/2,√
�min(->-) ≥

√
# −
√
= −

√
2 log(2/�) ≥

√
#/2 .

The last inequality uses (3.2.8) combined with the inequality (0 + 1)2 ≤ 2(02 + 12). Fur-

thermore, by Lemma 3.2.1 and (3.2.8), with probability at least 1 − �/2,

‖->, ‖2 ≤ 4�F

√
#(= + ?) log(18/�) .

Let ℰ denote the event which is the intersection of the two previous events. By a union

bound, P(ℰ) ≥ 1− �. We continue the rest of the proof assuming the event ℰ holds. Since

->- is invertible,

&� = &(/>/)†/>, = &(Σ1/2->-Σ1/2)†Σ1/2->, = &Σ−1/2(->-)−1->, .

Taking operator norms on both sides,

‖&�‖2 ≤ ‖&Σ−1/2‖2‖(->-)−1‖2‖->, ‖2 = ‖&Σ−1/2‖2
‖->, ‖2

�min(->-)
.
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Combining the inequalities above,

‖->, ‖2
�min(->-)

≤ 16�F

√
(= + ?) log(18/�)

#
.

The result now follows.

This lemma, in combination with the error decomposition in 3.2.4, allows us to show

a bound on the estimation errors.

Proposition 3.2.4. Assume we collect data from the linear, time-invariant system initialized at
G0 = 0, using inputs DC

i.i.d.∼ N(0, �2

D�<) for C = 0, . . . , ) − 1, with ) ≥ 2. Suppose that the process
noise is FC

i.i.d.∼ N(0, �2

F�=) and that

# ≥ 8(= + <) + 16 log(4/�) .

Then, with probability at least 1− �, the least squares estimator using only the final sample of each
trajectory satisfies both the inequality

‖�̂ − �‖2 ≤
16�F√

�min(�2

D�)�
>
)
+ �2

F�)�
>
)
)

√
(= + 2<) log(36/�)

#
, (3.2.9)

and the inequality

‖�̂ − �‖2 ≤
16�F
�D

√
(= + 2<) log(36/�)

#
. (3.2.10)

Proof. Consider the least squares estimation error (3.2.4) with modified single-sample-

per-rollout matrices. Recall that rows of the design matrix /# are distributed as indepen-

dent normals, as in (3.2.7). Then applying Lemma 3.2.3 with &� =
[
�= 0

]
so that &��

extracts only the estimate for �, we conclude that with probability at least 1 − �/2, the
expression (3.2.9) holds as long as # ≥ 8(=+<)+16 log(4/�). Now applying Lemma 3.2.3

under the same condition on # with &� =
[
0 �<

]
, we have with probability at least

1−�/2, that the expression in (3.2.10) holds. The result follows by application of the union

bound.

There are several interesting points to make about the guarantees offered by Proposi-

tion 3.2.4. First, there are =(= +<) parameters to learn and our bound states that we need

$(= + <) measurements, each measurement providing = values. Hence, this appears to

be an optimal dependence with respect to the parameters = and <. Second, this propo-

sition illustrates that not all linear systems are equally easy to estimate. The matrices

�)�
>
)
and �)�

>
)
are finite time controllability Gramians for the control and noise inputs,

respectively. These are standard objects in control: each eigenvalue/vector pair of such
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a Gramian characterizes how much input energy is required to move the system in that

particular direction of the state-space. Therefore �min(�2

D�)�
>
)
+ �2

F�)�
>
)
) quantifies the

least controllable, and hence most difficult to excite and estimate, mode of the system.

This property is captured nicely in our bound, which indicates that for systems for which

all modes are easily excitable (i.e., all modes of the system amplify the applied inputs and

disturbances), the identification task becomes easier.

Estimation in Closed-Loop
While the bound in Proposition 3.2.4 provides interpretable insights, the procedure in

Algorithm 1 may not be practically possible. Injecting Gaussian noise into a system will

likely cause violations of state and input constraints. Instead, is necessary to simultane-

ously excite and regulate the system. We propose to learn by additively injecting bounded

noise to the control inputs computed by a safe controller. In what follows, we describe

how a controller that guarantees that the closed-loop system remains within the specified

constraint set can also ensure that enough noise is injected into the system to obtain a

statistical guarantee on learning.

We bound the errors of the least squares estimator when the system is controlled by

u = Kx + ��� , (3.2.11)

where each ��� = (�0, �1, . . . ) is stochastic, independent across time, and ℓ∞-bounded with

‖�C ‖∞ ≤ A�.
The bulk of the proof for the statistical rate comes from a general theorem regarding

linear-response time series data from Simchowitz et al. [SMTJR18]. We assume that w and

��� are both zero-mean sequenceswith independent coordinates and finite fourthmoments,

assumptions which are quickly verified for common distributions such as uniform on a

compact interval or over a discrete set of points. Before stating the main estimation result,

we introduce the notation: 0 . 1 (resp. 0 & 1) denotes that there exists an absolute

constant � > 0 such that 0 ≤ �1 (resp. 0 ≥ �1).

Theorem 3.2.5. Fix a failure probability � ∈ (0, 1). Suppose the disturbance (FC)C≥0 and the
excitation (�C)C≥0 are zero-mean sequences with independent coordinates and

EFC [FC(8)2] = �2

F , EFC [F:(8)4] . �4

F , E�C [�C(8)2] = �2

� , E�C [�C(8)4] . �4

� .

Assume for simplicity that �� ≤ �F , and that the stabilizing controller K in (3.2.11) achieves a
SLS response Φx ∈ 1

Iℛℋ∞(�G , �),Φu ∈ 1

Iℛℋ∞(�D , �). Let �2

 
:= =�2

G + 3�2

D . Then as long as
the trajectory length ) satisfies the condition:

) & (= + <) log

(
<�2

D

�
+ �2

F

�2

�

�2�2

D�
2

 

�(1 − �2)

(
1 + ‖�‖2

2
+
‖G0‖2

2

�2

F)

) )
, (3.2.12)
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we have the following bound on the least-squares estimation errors that holds with probability at
least 1 − �,

max{‖Δ�‖2, ‖Δ�‖2} .
�F�D
��

√
= + <
)

√
log

(
<�D

�
+ �F

��

��D� 
�(1 − �2)

(
1 + ‖�‖2 +

‖G0‖2
�F
√
)

))
.

Wemake several observations about the guarantee offered by Theorem 3.2.5. First, we

emphasize that this result relies on K being a stabilizing controller, unlike in the indepen-

dent data case. This closed-loop stability assumption is pervasive in the literature on least

squares estimation from linear time series. Like Proposition 3.2.4, there appears to be an

optimal dependence with respect to the parameters = and <. Though the dependence

on problem parameters is somewhat less transparent than in the independent data case,

there are two main insights to be had. First, the bound on estimation errors decreases

with the size of the excitation, and increases with the size of the process noise, illustrating

an inverse dependence on the signal-to-noise ratio. Second, the bound increases propor-

tionally to �D , a constant which bounds the gain from disturbance to control inputs under

the stabilizing controller K. This indicates that when the closed-loop system has larger

transients, the dynamics matrices are easier to estimate.

We remark on the interpretation of statistical learning bounds. A priori guarantees,

like the one presented here, depend on quantities related to the underlying true sys-

tem. Statistical bounds in terms of data-dependent quantities can also be worked out;

however, modern methods like bootstrapping generally provide tighter statistical guar-

antees [Efr92]. Though a priori guarantees like this one are not directly useful when the

system is unknown, they yield insights about qualities of systems that make them easier

or harder to estimate.

We now turn to the proof of Theorem 3.2.5, which hinges on a result on the estimation

of linear response time-series by Simchowitz et al. [SMTJR18]. We thus present that result

in the context of our problem. Recall that Θ> = [�, �], Θ̂> = [�̂, �̂], and IC = [G>C , H>C ]>.
We denote the filtration ℱC = �(G0, �0, F0 . . . , �C−1, FC−1, �C). It is clear that the process

(IC)C≥0 is (ℱC)C≥0-adapted. The process (IC)C≥0 is said to satisfy the (:, �, �)-block martingale
small-ball (BMSB) condition if for any 9 ≥ 0 and E ∈ R=+< , one has that

1

:

:∑
8=1

P
(
|〈E, I 9+8〉| ≥ �

)
≥ � almost surely.

This condition is used for characterizing the size of the minimum eigenvalue of the

covariance matrix

∑)−1

C=0
ICI
>
C . A larger � guarantees a larger lower bound of the minimum

eigenvalue. In the context of our problem the result by Simchowitz et al. [SMTJR18]

translates as follows.
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Theorem 3.2.6 (Simchowitz et al. [SMTJR18]). Fix � ∈ (0, 1). For every ), :, �, and � such
that {IC}C≥0 satisfies the (:, �, �)-BMSB and⌊

)

:

⌋
&
= + <
�2

log

(
1 +

∑)−1

C=0
Tr(EICI>C )

:b)/:c�2�2�

)
,

the estimate Θ̂ defined in (3.2.1) satisfies the following statistical rate

P
©«‖Θ̂ − Θ‖2 > O(1)�F��

√√√
= + <
:b)/:c log

(
1 +

∑)−1

C=0
Tr(EICI>C )

:b)/:c�2�2�

)ª®¬ ≤ �.

Therefore, in order to apply this result, there are two necessary ingredients. The first is

:, �, and � such that (IC)C≥0 satisfies the (:, �, �)-BMSB condition. The second is an upper

bound on the trace of the covariance of IC . Before addressing these two issues directly, we

begin with a simple small-ball result for random variables with finite fourth moments.

Lemma 3.2.7. Let - ∈ R be a zero-mean random variable with finite fourth moment, which
satisfies the conditions

E[-4] ≤ �(E[-2])2 .
Let 0 ∈ R be a fixed scalar and � ∈ (0, 1). We have that

P{|0 + - | ≥
√
�E[-2]} ≥ (1 − �)2/max{4, 3�} .

Wedefer the proof, and proofs of the following lemmas, to Section 3.7. The next lemma

addresses the BMSB condition.

Lemma 3.2.8. Let G0 be any initial state in R= and let (DC)C≥0 be the sequence of inputs generated
according to (3.2.11), and assume �� ≤ �F . Then, the process IC = [G>C , D>C ]> satisfies the(

1,
��

2�D
,

1

� · �F

)
BMSB condition,

where � is an absolute constant, and �F = max1≤8≤3 E[F4

8
]/(E[F2

8
])2. In particular, we can take

� = 192.

The next lemma provides an upper bound on the trace of the covariance of IC .

Lemma 3.2.9. Let �� ≤ �F . Then, the process (IC)C≥0 satisfies
)−1∑
C=0

Tr
(
EICI

>
C

)
≤ �2

�<) + �2

F

�2�2

 
)

(1 − �2)

(
1 + ‖�‖2 +

‖G0‖2
2

�2

F)

)
.

The estimation result in Theorem 3.2.5 follows from Theorem 3.2.6, Lemma 3.2.8,

Lemma 3.2.9, and simple algebra.
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3.3 Robust Synthesis

With estimates of the system (�̂, �̂) and operator norm error bounds (�� , ��) in hand,

we now turn to control design. We will make use of tools from System Level Synthesis

introduced in Chapter 2. Using the SLS framework, as opposed to traditional techniques

from robust control, allows us to (a) compute robust and constraint-satisfying controllers

using semidefinite programming, and (b) provide sub-optimality guarantees in terms of

the size of the uncertainties on our system estimates.

In this section, we first show how to represent the LQR problem in the SLS framework.

Then, we return to the problem setting of model estimates with error bounds to develop

a robust synthesis procedure.

System Level Approach to LQR
Before proceeding, wemust formulate the LQR problem in terms of the system responses.

As developed in the previous chapter, the LQR cost can be equivalentlywritten as a system

ℋ2 norm weighted by the cost matrices & and '.

�(�, �,K)2 =
[& 1

2 0

0 '
1

2

] [
Φx
Φu

]2

ℋ2

(3.3.1)

where Φx and Φu satisfy the constraint

[
I� − � −�

] [
Φx
Φu

]
= �.

It remains to reformulate the inequality constraints. First, making use of the identity

GC = ΦG(C + 1)G0 +
∑C
:=1

ΦG(:)FC−: we can write the robust constraint as

�GΦG(C + 1)G0 + max

(FC)C≥0

�G

C∑
:=1

ΦG(:)FC−: ≤ 1G .

Then considering elements in the second term with each 9 indexing the rows of �G ,

max

(FC)C≥0

�>G,9

C∑
:=1

ΦG(:)FC−: =
C∑
:=1

max

‖F‖∞≤AF
�>G,9ΦG(:)F

=

C∑
:=1

AF ‖�>G,9ΦG(:)‖1 = AF ‖�>G,9ΦG[C : 1]‖1 .

We can perform similar manipulations with the input constraints. This inspires the

definition of the vector valued constraint functions

�G(Φx; C)9 := �>G,9ΦG(C + 1)G0 + AF ‖�>G,9ΦG[C : 1]‖1 ,
�D(Φu; C)9 := �>D,9ΦD(C + 1)G0 + AF ‖�>D,9ΦD[C : 1]‖1 ,
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with 9 indexing the rows of �G and �D and entries of �G and �D .

Thus, the worst-case polytopic constraints on state and input become closed-form

polytopic constraints on the system response: �G(Φx; :) ≤ 1G and �D(Φu; :) ≤ 1D . The

appearance of the row-wise ℓ1 norm over the multiplication of the the system response

elements with the constraint matrix can be understood as an analog to the ℓ∞ → ℓ∞
operator norm, mediated by the shape of the polytope. In the next section when we

introduce robustness to unknown dynamics, the ℒ1 system norm will come into play

for similar reasons. It is also possible to consider worst-case constraints for disturbances

from arbitrary bounded convex sets. Chen and Anderson [CA19] show that in the SLS

framework, the representation of such worst-case constraints remains convex.

Combining the re-parametrized cost and the constraints, we have the following convex

optimization problem over system response variables:

min

Φx ,Φu∈ 1

Iℛℋ∞

[&1/2

'1/2

] [
Φx
Φu

]
ℋ2

(3.3.2)

s.t.
[
I� − � −�

] [
Φx
Φu

]
= � ,

�G(Φx; C) ≤ 1G , �D(Φu; C) ≤ 1D ∀ C ≥ 1 .

By the state feedback parameterization result Theorem 2.4.1, the SLS parametrization

encompasses all internally stabilizing state feedback controllers acting on the true system

(�, �) [WMD19]. Therefore, the equivalence between (3.3.2) and (3.1.4) follows by the

consistency between the parameterizations.

Robust LQR Synthesis

We return to the problem setting where estimates (�̂, �̂) of a true system (�, �) satisfy

‖Δ�‖2 ≤ �� , ‖Δ�‖2 ≤ ��

whereΔ� := �̂−� andΔ� := �̂−�. In light of this, it is natural to pose the following robust

variant of the LQR optimal control problem (3.1.4), which computes a robustly stabilizing

and constraint-satisfying controller. The controller seeks to minimize performance and

guarantee safety of the system in theworst case, given the (high-probability) norm bounds

on the perturbations Δ� and Δ�:

minimize sup

‖Δ�‖2≤��
‖Δ�‖2≤��

lim)→∞ 1

)

∑)
C=1
E

[
G>C &GC + D>C−1

'DC−1

]
subject to GC+1 = (�̂ + Δ�)GC + (�̂ + Δ�)DC + FC ,

�GGC ≤ 1G , �DDC ≤ 1D ∀C ,∀{FC : ‖FC ‖∞ ≤ AF} ,
∀{(Δ� ,Δ�) : ‖Δ�‖2 ≤ �� , ‖Δ�‖2 ≤ ��}.

(3.3.3)
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Towards developing a tractable formulation, we make use of the ability for SLS to

trace the effects of unknown dynamics on closed-loop behavior. The following lemma

describes the behavior of the true system in terms of the estimated system. It also presents

a condition under which which any controller K that stabilizes (�̂, �̂) also stabilizes the

true system (�, �).

Lemma 3.3.1. Let the controller K stabilize (�̂, �̂) and (Φx,Φu) be its corresponding system
response on system (�̂, �̂). Let

∆̂ :=
[
Δ� Δ�

] [
Φx
Φu

]
. (3.3.4)

Then if K stabilizes (�, �), it results in the following system trajectory

x = Φx(� + ∆̂)−1w, u = Φu(� + ∆̂)−1w . (3.3.5)

Therefore, it achieves the following LQR cost

�(�, �,K) =
[& 1

2 0

0 '
1

2

] [
Φx
Φu

] (
� + ∆̂

)−1


ℋ2

. (3.3.6)

A sufficient condition for K to stabilize (�, �) is that ‖∆̂‖ℋ∞ < 1.

Proof. Follows immediately from Theorems 2.4.1, 2.4.3 and Corollary 2.4.4 by noting that

for system responses (Φx,Φu) satisfying[
I� − �̂ −�̂

] [
Φx
Φu

]
= � ,

it holds that [
I� − � −�

] [
Φx
Φu

]
= � + ∆̂

for ∆̂ as defined in equation (3.3.4).

We therefore recast the robust LQR problem (3.3.3) in the following equivalent form

minimize sup

‖Δ�‖2≤��
‖Δ�‖2≤��

[& 1

2 0

0 '
1

2

] [
Φx
Φu

] (
� + ∆̂

)−1


ℋ2

subject to

[
I� − �̂ −�̂

] [
Φx
Φu

]
= � , Φx,Φu ∈ 1

Iℛℋ∞,

�G(Φx(� + ∆̂)−1
; C) ≤ 1G , �D(Φu(� + ∆̂)−1

; C) ≤ 1D ∀ C ≥ 1,

∆̂ =
[
Δ� Δ�

] [
Φx
Φu

]
.

(3.3.7)
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This robust control problem is one subject to real parametric uncertainty, a class of prob-

lems known to be computationally intractable even in the absence of state and input

constraints [BYDM94]. Although effective computational heuristics (e.g., DK iteration

[ZDG96]) exist for unconstrained LQR, the performance of the resulting controller on the

true system is difficult to characterize analytically in terms of the size of the perturbations.

To circumvent this issue and to deal with safety constraints, we take a slightly conser-

vative approach. We find an upper-bound to the cost �(�, �,K) and develop sufficient

conditions for constraint satisfaction that depend only on the norm of the uncertainties

Δ� and Δ�. First, note that if ‖∆̂‖ℋ∞ < 1, we can write

�(�, �,K) ≤ ‖(� + ∆̂)−1‖ℋ∞ �(�̂, �̂,K) ≤
1

1 − ‖∆̂‖ℋ∞
�(�̂, �̂,K). (3.3.8)

Because �(�̂, �̂,K) captures the performance of the controller K on the nominal system

(�̂, �̂), it is not subject to any uncertainty.

Next, we derive a sufficient condition for the state and input constraints. Notice that

as long as the inverse exists,

Φx(� + ∆̂)−1 = Φx

(
� − ∆̂(� + ∆̂)−1

)
= Φx − Φx∆̂(� + ∆̂)−1 .

Therefore, each state constraint (indexed by 9) is satisfied at time C as long as

1G,9 ≥ max

w
�>G,9(Φxw)[C] − �>G,9(Φx∆̂(� + ∆̂)−1w)[C] .

The first term reduces to �G(Φx; C) as above. We resort to a sufficient condition to bound

the second term,

|�>G,9(Φx∆̂(� + ∆̂)−1w)[C]| ≤ ‖�>G,9ΦG[C + 1 : 1]‖1‖∆̂(� + ∆̂)−1w‖∞
≤ ‖�>G,9ΦG[C + 1 : 1]‖1‖∆̂‖ℒ1

‖(� + ∆̂)−1‖ℒ1
‖w‖∞

≤ ‖�>G,9ΦG[C + 1 : 1]‖1
‖∆̂‖ℒ1

1 − ‖∆̂‖ℒ1

max(AF , ‖G0‖∞)

The first inequality is generalized Cauchy-Schwarz and the second holds by the sub-

multiplicative property of the operator norm. A similar computation can be performed for

input constraints. Recently work by Chen et al. [CWMPM20] shows that the conservatism

of these robust constraint sets with respect to the initial condition G0 can be ameliorated at

the expense of increase complexity in the resulting synthesis procedure. Their approach

results in an optimization problem requiring a search over an additional scalar parameter.
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It therefore remains to compute a tractable bound for ‖∆̂‖ℋ∞ and ‖∆̂‖ℒ1
. Define ��,∞

and ��,∞ to be ℓ∞ bounds on the estimates,

‖Δ�‖∞ ≤ ��,∞, ‖Δ�‖2 ≤ ��,∞ .

Then we have the following fact.

Proposition 3.3.2. For ∆̂ as defined in (3.3.4)

‖∆̂‖ℋ∞ ≤
√

2

[��Φx
��Φu

]
ℋ∞

, ‖∆̂‖ℒ1
≤ 2

[��,∞Φx
��,∞Φu

]
ℒ1

. (3.3.9)

Proof. Note that for any block matrix of the form

[
"1 "2

]
, we have["1 "2

]
2
≤

(
‖"1‖22 + ‖"2‖22

)
1/2

. (3.3.10)

To verify this assertion, note that["1 "2

]2

2
= �max("1"

∗
1
+"2"

∗
2
) ≤ �max("1"

∗
1
) + �max("2"

∗
2
) = ‖"1‖22 + ‖"2‖22 .

With (3.3.10) in hand, we have[Δ� Δ�
] [

Φx
Φu

]
ℋ∞

=

[ 1

��
Δ�

1

��
Δ�

] [
��Φx
��Φu

]
ℋ∞

≤
[ 1

��
Δ�

1

��
Δ�

]
2

[��Φx
��Φu

]
ℋ∞
≤
√

2

[��Φx
��Φu

]
ℋ∞

.

Noting that the matrix ℓ∞→ ℓ∞ operator norm is the maximum ℓ1 norm of a row,["1 "2

]
∞ ≤ ‖"1‖∞ + ‖"2‖∞ . (3.3.11)

The ℒ1 bound follows similarly.

Applying Proposition 3.3.2 in conjunction with the bound (3.3.8), we arrive at the

following upper bound to the cost function of the robust LQR problem (3.3.3), which is

independent of the perturbations (Δ� ,Δ�):

sup

‖Δ�‖2≤��
‖Δ�‖2≤��

�(�, �,K) ≤ �(�̂, �̂,K)

1 −
√

2

[��Φx
��Φu

]
ℋ∞

. (3.3.12)
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We remark that the bound (3.3.12) is of interest independent of the synthesis procedure for

K. For example, it can be applied to static controllers, including the optimal unconstrained

LQR controller K̂ computed using the nominal system (�̂, �̂).
Motivated by this bound and the sufficient conditions for constraint satisfaction, we

introduce the auxiliary variables 0 ≤ �, � < 1 anddefine the following robust optimization

problem:

�̂(�, �) := min

Φx ,Φu∈ 1

Iℛℋ∞

1

1 − � �(�̂, �̂,K) (3.3.13)

s.t.
[
I� − �̂ −�̂

] [
Φx
Φu

]
= � ,

√
2

[��Φx
��Φu

]
ℋ∞
≤ �, 2

[��,∞Φx
��,∞Φu

]
ℒ1

≤ �,

��
G(Φx; C) ≤ 1G , ��

D(Φu; C) ≤ 1D ∀ C ≥ 1 .

The vector valued robust constraint functions are defined at each index 9 as

��
G(Φx; C)9 := �G(Φx; C)9 +

�
1 − � max(AF , ‖G0‖∞)‖�>G,9ΦG[C + 1 : 1]‖1 ,

and similarly for ��
D(Φu; C)9 .

Theorem 3.3.3. For a system with true dynamics (�, �) and estimates (�̂, �̂) satisfying ‖� −
�̂‖2 ≤ �� and ‖� − �̂‖2 ≤ ��, then any controller designed from a feasible solution to the robust
control problem (3.3.13) for any 0 ≤ �, � < 1 will stabilize the true system. Furthermore, the state
and input constraints will be satisfied.

In this problem, � determines the increase in the ℋ2 cost due to the dynamics uncer-

tainty, while � determines the increase in the state and input values with respect to the

constraints. Bothvalues canbeviewedasboundinganenlargenoiseprocess w̃ = (�+∆̂)−1w
driving the system. Viewing the effects of the errors in the dynamicsmodel as an enlarged

noise signal allows us to make connections to the MPC literature, where the additive dis-

turbance approximation is common. This literature often considers the enlarged noise

process F̃C = FC + Δ�GC + Δ�DC , or equivalently w̃ = w + Δ�x + Δ�u. Then the norm

‖w̃‖∞ can be bounded using the state and input constraint sets. This strategy is overly

conservative for large constraint sets because this bound degrades as the constraint sets

increase in size. On the other hand, our approach does not depend on the constraint set.

However, it is affected by the size of the initial condition. Further comparison between

the two approaches is presented in the Appendix of [DTMR19].

The robust synthesis problem (3.3.13) is convex, albeit infinite dimensional. As dis-

cussed in Section 2.5, a simple finite impulse response truncation yields a finite dimen-

sional problemwith similar guarantees. Even if the solution is approximated, as long as it
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is feasible, the resulting controller will be stabilizing and guarantee constraint satisfaction.

As we show in the next section, for sufficiently small estimation error bounds �� and ��,
we can further bound the sub-optimality of the performance achieved by our robustly

stabilizing controller relative to that achieved by the optimal LQR controller.

3.4 Sub-Optimality Guarantees
We now return to analyzing the Coarse-ID control framework. How much is control

performance degraded by uncertainties about the dynamics? In this section, we derive a

sub-optimality boundwhich answers this question for the LQRproblem. For this purpose,

we consider the addition of an outer minimization over the auxiliary variables:

min

0≤�<1

0≤�<1

�̂(�, �) .
(3.4.1)

The existence of state and input constraints results in increased complexity, both in the

sub-optimality argument and in the optimization problem above. We therefore begin by

outlining the argument in the unconstrained case. After, we present the full result and

remark on the adjustments necessary when state and input constraints are present.

Unconstrained LQR
When the problem is unconstrained, i.e. when X = R= andU = R< , the variable � does

not play a role. Therefore (3.4.1) can be efficiently optimized considering just one auxiliary

variable:

min

�∈[0,1)
min

Φx ,Φu∈ 1

Iℛℋ∞

1

1 − � �(�̂, �̂,K) (3.4.2)

s.t.
[
I� − �̂ −�̂

] [
Φx
Φu

]
= � ,

√
2

[��Φx
��Φu

]
ℋ∞
≤ �

The objective is jointly quasi-convex in (�,Φx,Φu). Hence, as a function of � alone the

objective is quasi-convex, and furthermore is smooth in the feasible domain. Therefore,

the outer optimizationwith respect to � can effectively be solvedwithmethods like golden

section search. The inner optimization is a convexproblem, though an infinite dimensional

one.

For sufficiently small estimation error bounds �� and ��, we can bound the sub-

optimality of the performance achieved by our robustly stabilizing controller relative to

that achieved by the optimal LQR controller. Denote the solution to the true optimal

control problem as (Φ★
x ,Φ★

u), then define K★ = Φ★
uΦ★

x
−1

and �★ = �(�★, �★,K★). In the

unconstrained setting, the optimal controller is static, and can thus also be written as  ★.
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We use the notationℜ" = (I� −")−1

for the transfer function induced by the closed-loop

matrix ".

Proposition 3.4.1. Let �★ denote the minimal LQR cost achievable by any controller for the
dynamical system with transition matrices (�, �), and let  ★ denote the optimal contoller. Let
(�̂, �̂) be estimates of the transition matrices such that ‖Δ�‖2 ≤ ��, ‖Δ�‖2 ≤ ��. Then, if K is
synthesized via (3.4.2), the relative error in the LQR cost is

�(�, �,K) − �★
�★

≤ 5(�� + ��‖ ★‖2)‖ℜ�+� ★‖ℋ∞ , (3.4.3)

as long as (�� + ��‖ ★‖2)‖ℜ�+� ★‖ℋ∞ ≤ 1/5.
This result offers a guarantee on the performance of the robust controller regardless of

the estimation procedure used to estimate the transitionmatrices. Togetherwith our result

on system identification, Proposition 3.4.1 yields a sample complexity upper bound on

the performance of the robust SLS controller K when (�, �) are not known; we later make

this guarantee precise. The rest of the section is dedicated to proving Proposition 3.4.1.

Recall that  ★ is the optimal LQR static state feedback matrix for the true dynamics

(�, �), and let ∆ := − [Δ� + Δ� ★]ℜ�+� ★. We begin with a technical result.

Lemma 3.4.2. Define � := (��+ ��‖ ★‖2)‖ℜ�+� ★‖ℋ∞ , and suppose that � < (1+
√

2)−1. Then
(�0, Φ̃G , Φ̃D) is a feasible solution of (3.4.2), where

�0 =

√
2�

1 − � , Φ̃G = ℜ�+� ★(� + ∆)−1, Φ̃D =  ★ℜ�+� ★(� + ∆)−1. (3.4.4)

Proof. Note that ‖∆‖ℋ∞ ≤ (�� + ��‖ ★‖2)‖ℜ�+� ★‖ℋ∞ = � < 1. Then by construction

Φ̃G , Φ̃D ∈ 1

Iℛℋ∞. Therefore, we are left to check three conditions:

�0 < 1,

[
I� − �̂ −�̂

] [
Φ̃G

Φ̃D

]
= � , and

[��Φ̃G

��Φ̃D

]
ℋ∞
≤
√

2�
1 − � . (3.4.5)

The first two conditions follow by simple algebraic computations. For the final condition,[��Φ̃G

��Φ̃D

]
ℋ∞

=
√

2

[ ��ℜ�+� ★
�� ★ℜ�+� ★

]
(� + ∆)−1


ℋ∞

≤
√

2‖(� + ∆)−1‖ℋ∞
[ ��ℜ�+� ★
�� ★ℜ�+� ★

]
ℋ∞

≤
√

2

1 − ‖∆‖ℋ∞

[ ���
�� ★

]
ℜ�+� ★


ℋ∞

≤
√

2(�� + ��‖ ★‖2)‖ℜ�+� ★‖ℋ∞
1 − ‖∆‖ℋ∞

≤
√

2�
1 − � .
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With the feasible solution in hand, we turn to the proof of the sub-optimality result.

Proof of Proposition 3.4.1. Let (�★,Φ★
G ,Φ★

D) be an optimal solution to problem (3.4.2) and

let K = Φ★
u(Φ★

G )−1
. We can then write

�(�, �,K) ≤ 1

1 − ‖∆̂‖ℋ∞
�(�̂, �̂,K) ≤ 1

1 − �★
�(�̂, �̂,K),

where the first inequality follows from the bound (3.3.8), and the second follows from

the fact that ‖∆̂‖ℋ∞ ≤ �★ due to Proposition 3.3.2 and the constraint in optimization

problem (3.4.2).

FromLemma3.4.2weknow that (�0, Φ̃G , Φ̃D)defined in equation (3.4.4) is also a feasible

solution. Therefore, because  ★ = Φ̃DΦ̃−1

G , we have by optimality,

1

1 − �★
�(�̂, �̂,K) ≤ 1

1 − �0

�(�̂, �̂,  ★) ≤
�(�, �,  ★)

(1 − �0)(1 − ‖∆‖ℋ∞)
=

�★

(1 − �0)(1 − ‖∆‖ℋ∞)
,

where the second inequality follows by the argument used to derive (3.3.8) with the

true and estimated transition matrices switched. Recall that ‖∆‖ℋ∞ ≤ � and that �0 =√
2�/(1 + �). Therefore

�(�, �,K) − �★
�★

≤ 1

1 − (1 +
√

2)�
− 1 =

(1 +
√

2)�
1 − (1 +

√
2)�
≤ 5� ,

where the last inequality follows because � < 1/5 < 1/(2 + 2

√
2). The conclusion follows.

Constrained LQR
We now return to the LQR problem with state and input constraints. In this section, we

present a general result and outline the necessary changes to the sub-optimality argument.

Proofs are deferred to Section 3.7.

Recall the robust control synthesis problem which minimizes �̂(�, �) given in (3.3.13)

over 0 ≤ �, � < 1. This outer minimization can be achieved by searching over the box

[0, 1) × [0, 1). It is possible to reduce the computational complexity by minimizing over

only a single variable: max(�, �). The sub-optimality bound would retain the same flavor,

but the norm distinctions between cost and constraints would be less clear.

Before we can present a bound on the sub-optimality of robust controllers synthesized

using estimated dynamics, there is some care to be taken relating to the constraints. In

the previous subsection, our sub-optimality proof hinged on the construction of a feasible

solution to the optimization problem. However, because the robust problem tightens the

state and input constraints, constructing this feasible solution is more delicate.
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Therefore, we define a constraint-tightened version of the optimal controller. Define

� =

[��Φ★
x

��Φ★
u

]
ℋ∞

, �∞ =

[��,∞Φ★
x

��,∞Φ★
u

]
ℒ1

.

Then the doubly robust constraint functions are defined at each index 9 as

�̄�
G(Φx; C)9 = �>G,9Φ(C + 1)G0 +

AF

1 − 2�∞
‖�>G,9ΦG[C : 1]‖1

+ 4�∞max(AF , ‖G0‖∞)
1 − 4�∞

‖�>G,9ΦG[C + 1 : 1]‖1 ,

and similarly for �̄�
D(Φu; C). These doubly robust constraints take the form of the robust

constraints with � = 4�∞ and an enlarged noise process where AF is replaced by
AF

1−2�∞
.

Then the optimal robustly constrained controller is defined as

(Φ2
x,Φ2

u) ∈ argmin

Φx ,Φu∈ 1

Iℛℋ∞

[&1/2

'1/2

] [
Φx
Φu

]
ℋ2

(3.4.6)

s.t.
[
I� − � −�

] [
Φx
Φu

]
= � ,[��Φx

��Φu

]
ℋ∞
≤ �,

[��,∞Φx
��,∞Φu

]
ℒ1

≤ �∞,

�̄�
G(Φx; C) ≤ 1G , �̄�

D(Φu; C) ≤ 1D ∀ C ≥ 1 .

with K2 = Φ2
u(Φ2

x)−1
. This optimization problem designs a controller which satisfies more

stringent state and input constraints than the optimal controller, without increasing the

norms of the system response (as controlled by � and �∞). The relative robustness cost gap
is defined as

"� =
�(�, �,K2) − �(�, �,K★)

�(�, �,K★)
. (3.4.7)

Nowwe are ready to state a bound on the sub-optimality of robust controllers synthesized

on estimated dynamics.

Theorem 3.4.3. Suppose that the robust optimal constrained controller problem (3.4.6) is feasible.
As long as � ≤ 1

4

√
2

and �∞ ≤ 1

4
, the cost achieved by K̂ = Φ̂uΦ̂−1

x synthesized from the minimizers
of (3.4.1) satisfies

�(�, �, K̂) − �★
�★

≤ 4

√
2(1 +"�)

[��Φ★
x

��Φ★
u

]
ℋ∞
+"� .
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This result is stated in terms of quantities depending only on the true unknown system

It therefore highlights properties that make systems easier or harder to robustly control.

We see that the bound grows with the ℋ∞ norm of the closed-loop responses Φ★
x and

Φ★
u. It also grows with the robustness cost gap "�. This cost gap is be difficult to

characterize analytically; in general, it requires checking the boundaries of the robust

polytopic constraints. Once errors �� and �� are small enough that the optimal system

response (Φ★
x ,Φ★

u) satisfies the doubly robust constraints, we will have zero cost gap,

"� = 0. If the optimal controller saturates its constraints, then the cost gap will be

nonzero for any nonzero estimation errors. In Section 3.5, we numerically characterize

this optimality gap for a double integrator example (Figure 3.5).

As in the unconstrained case, proving Theorem 3.4.3 relies on the construction of a

feasible solution to (3.3.13), which we present in the following lemma.

Lemma 3.4.4. Under the conditions of Theorem 3.4.3, we have that the following is a feasible
solution to (3.4.1)

Φx = Φ2
x(� − ∆)−1, Φu = Φ2

u(� − ∆)−1, �̃ =

√
2�

1 −
√

2�
, �̃ =

2�∞
1 − 2�∞

.

where the (Φ2
x,Φ2

u) is defined as in (3.4.6) and we define ∆ := −
[
Δ� Δ�

] [
Φ2

x
Φ2

u

]
.

The proof of Theorem 3.4.3 follows a similar argument to the proof of Proposition 3.4.1

above, except that there is an extra step to account for the difference between the optimal

solution (Φ★
x ,Φ★

u) and the robustly constrained one (Φ2
x,Φ2

u). This step gives rise to the

term "� that appears in the bound.

End-to-End Guarantees
We now combine our estimation and synthesis results to provide end-to-end guarantees

on the Coarse-ID control framework. We begin with the first step: data collection. By

designing the controller used during data collection (3.2.11) with the robust synthesis

procedure, it is possible to guarantee safety during the estimation process. We therefore

have a computationally tractable algorithm which returns a controller that (a) guarantees

the closed-loop system remains within the specified constraint set and (b) ensures that

enough noise can be injected into the system to obtain a statistical guarantee on learning.

To proceed, define an expanded noise process F̃C = ��C + FC . Then synthesize K0

according to (3.3.13) with initial system estimates (�0, �0), initial dynamics uncertainties

(�0

�
, �0

�
) and (�0

�,∞, �
0

�,∞), noise bound AF replaced with

A�‖�‖∞ + AF ≤ A�(‖�0‖∞ + �0

�,∞) + AF ,
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and input constraints 1D,9 replaced with 1D,9 − A�‖�D,9 ‖1. As long as the synthesis problem

is feasible, the control law u = K0x + ��� stabilizes the true system, satisfies state and input

constraints, and allows for learning at the rate given in Theorem 3.2.5.

Finally, we connect the sub-optimality result to the statistical learning bound for an

end-to-end sample complexity bound on the constrained LQR problem. Define

num = <�D +
�F
��

��D� 
(1 − �2)

(
1 + ‖�‖2 +

‖G0‖2
�F
√
)

)
.

Further define ") to be the value of "� when the definition determined by (3.4.6) has

values set as

� = �

[Φ★
x

Φ★
u

]
ℋ∞

, �∞ = �
√
= + <

[Φ★
x

Φ★
u

]
ℒ1

, � &
�F�D
��

√
= + <
)

√
log(num/�) .

Corollary 3.4.5. Under the assumptions of Theorem 3.2.5, for a trajectory of length

) & (= + <) log (num/�) �
2

F�
2

D

�2

�

max

{
(= + <)

[Φ★
x

Φ★
u

]2

ℒ1

,

[Φ★
x

Φ★
u

]2

ℋ∞

}
, (3.4.8)

the cost achieved by K̂ = Φ̂u(Φ̂x)−1 synthesized from (3.3.13) on the least-squares estimates �̂, �̂
satisfies with probability at least 1 − �,

�(�, �, K̂) − �★
�★

.
�F�D
��

√
= + <
)
(1 +"))

[Φ★
x

Φ★
u

]
ℋ∞

√
log (num/�) +") .

Proof Sketch. This result follows by combining the statistical guarantee in Theorem 3.2.5

with the sub-optimality bound in Theorem 3.4.3. Note that we use the naïve bound

��,∞ ≤
√
=�� and similarly ��,∞ ≤

√
<��; this results in an extra factor of (= + <)

appearing in (3.4.8) and in the definition of ") .

Our final result depends both on the true system and the initial system estimates by

way of the data collecting controller, which affects constants �G , �D , and �. The largest

possible excitation covariance �� also depends on the initial system estimates through the

feasibility of the robust control problem. There is a trade-off here: for fast estimation,

larger excitation �� and transients �D are beneficial. However, the safety constraints

will preclude these values from being too large. The constraints also have an effect on

sub-optimality through ") .

3.5 Numerical Experiments
We demonstrate the utility of our framework and illustrate our results on estimation,

controller synthesis, and LQR performance with numerical experiments of the end-to-

end Coarse-ID control scheme.
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Unconstrained LQR
The least squares estimation procedure (3.2.1) is carried out on a simulated system in

Python. The synthesis and performance experiments are run in MATLAB. We make

use of the YALMIP package for prototyping convex optimization [Löf04] and use the

MOSEK solver under an academic license [ApS15]. In particular, when using the FIR

approximation described in Section 2.5, we find it effective to make use of YALMIP’s

dualize function, which considerably reduces the computation time.

We focus experiments on a particular example system. Consider the LQR problem

instance specified by

� =


1.01 0.01 0

0.01 1.01 0.01

0 0.01 1.01

 , � = � , & = 10
−3� , ' = � . (3.5.1)

The dynamics correspond to a marginally unstable graph Laplacian system where

adjacent nodes are weakly connected, each node receives direct input, and input size

is penalized relatively more than state. Dynamics described by graph Laplacians arise

naturally in consensus and distributed averaging problems. For this system, we collect

data using inputs with variance �2

D = 1 and noise with variance �2

F = 1. The rollout length

is fixed to ) = 6, and the number of rollouts used in the estimation is varied. The system

estimates are constructed with all collected data rather than just the final time step.

We synthesize robust controllerswith twodifferent approaches: the FIR approximation

with filters of length ! = 32 and slack variable + set to 0, and a common Lyapunov

(CL) relaxation of the static synthesis problem described in [DMMRT20]. Once the FIR

responses (ΦG(C))!C=1
and (ΦD(C))!C=1

are found, we represent the dynamic controller K =

ΦuΦ−1

x by finding an equivalent state-space realization (� , � , � , � ) via Theorem 2

of [AM17]. In what follows, we compare the performance of these controllers with the

nominal LQR controller (the solution to (3.1.1) with �̂ and �̂ as model parameters), and

explore the trade-off between robustness, complexity, and performance.

The relative performance of the nominal controller is compared with robustly syn-

thesized controllers in Figure 3.1. For both robust synthesis procedures, two controllers

are compared: one using the true errors on � and �, and the other using the bootstrap

estimates of the errors (as described in [DMMRT20]). The robust static controller gen-

erated via the common Lyapunov approximation performs slightly worse than the more

complex FIR controller, but it still achieves reasonable control performance. Moreover,

the conservative bootstrap estimates also result in worse control performance, but the

degradation of performance is again modest.

Furthermore, the experiments show that the nominal controller often outperforms

the robust controllers when it is stabilizing. On the other hand, the nominal controller is

not guaranteed to stabilize the true system, and as shown in Figure 3.1, it only does so

in roughly 80 of the 100 instances after # = 60 rollouts. It is also important to note a
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distinction between stabilization for nominal and robust controllers. When the nominal

controller is not stabilizing, there is no indication or warning (though sufficient conditions

for stability can be checked using our result in Corollary 3.3.1 or structured singular value

methods [QBR+95]). On the other hand, the robust synthesis procedure will return as

infeasible, giving a warning by default that the uncertainties are too high.

Figure 3.2 explores the trade-off between performance and complexity for the compu-

tational approximations, both for FIR truncation and the common Lyapunov relaxation.

We examine the trade-off both in terms of the bound on the LQR cost (given by the value

of the objective) as well as the actual achieved value. It is interesting that for smaller

numbers of rollouts (and therefore larger uncertainties), the benefit of using more com-

plex FIR models is negligible, both in terms of the actual costs and the upper bound. This

trend makes sense: as uncertainties decrease to zero, the best robust controller should

approach the nominal controller, which is associated with infinite impulse response (IIR)

transfer functions. Furthermore, for the experiments presented here, FIR length of ! = 32

seems to be sufficient to characterize the performance of the robust synthesis procedure

in (3.4.2). Additionally, we note that static controllers are able to achieve costs of a similar

magnitude.

The SLS framework guarantees a stabilizing controller for the true system provided

that the computational approximations are feasible for any value of � between 0 and 1, as

long as the system errors (�� , ��) are upper bounds on the true errors. Figure 3.3 displays

the controller performance for robust synthesis when � is set to 0.999. Simply ensuring a

stable model and neglecting to optimize the nominal cost yields controllers that perform

nearly an order of magnitude better than those where we search for the optimal value of

�. This observation aligns with common practice in robust control: constraints ensuring

stability are only active when the cost tries to drive the system up against a safety limit.

We cannot provide end-to-end sample complexity guarantees for this method and leave

such bounds as an enticing challenge for future work.

Constrained LQR
We now turn to a constrained LQR problem. In this case, we consider true dynamics are

given by a double integrator

GC+1 =

[
1 0.1

0 1

]
GC +

[
0

1

]
DC + FC .

Because the double integrator is under-actuated (having fewer control inputs than states),

it is a challenging control task when safety constraints must be satisfied. We consider

constraints that require states to be bounded between −8 and 8, and inputs to be bounded

in between−4 and 4. The process noise is uniformly distributed on [−0.1, 0.1]×[−0.1, 0.1].
Our initial estimate comes from a randomly generated initial perturbation of the true

system with ��,∞ = ��,∞ = 0.1. Safe controllers are generated with finite truncation
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(a) LQR Cost Suboptimality
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(b) Frequency of Finding Stabilizing Controller
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Figure 3.1: The performance of controllers synthesized on the results of 100 identification experi-

ments is plotted against the number of rollouts. Controllers are synthesized nominally, using FIR

truncation, and using the common Lyapunov (CL) relaxation. In (a), the median sub-optimality

of nominal and robustly synthesized controllers are compared, with shaded regions displaying

quartiles, which go off to infinity in the case that a stabilizing controller was not found. In (b), the

frequency that the synthesis methods found stabilizing controllers.

(a) LQR Cost Suboptimality Bound
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(b) LQR Cost Suboptimality
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Figure 3.2: The performance of controllers synthesized with varying FIR filter lengths on the

results of 10 of the identification experiments using true errors. The median sub-optimality of

robustly synthesized controllers does not appear to change for FIR lengths greater than 32, and the

common Lyapunov (CL) synthesis tracks the performance in both upper bound and actual cost.
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LQR Cost Sub-optimality
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Figure 3.3: The performance of controllers synthesized on the results of 100 identification exper-

iments is plotted against the number of rollouts. The plot compares the median sub-optimality of

nominal controllers with fixed-� robustly synthesized controllers (� = 0.999).
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Figure 3.4: Safe learning trajectories synthesized with coarse initial estimates (a), then

robust execution with reduced model errors (b).

length ! = 15, and for larger initial conditions, the system is warm-started with a finite-

time robust controller with horizon 20 to reduce the initial condition.

Figure 3.4 displays safe trajectories and input sequences for several example initial

conditions. Figure 3.4a plots trajectories that we use for learning: the controller both

regulates and excites the system (�C is uniform on [−0.5, 0.5]), and is robust to initial

uncertainties. Figure 3.4b demonstrates an ability to operate closer to the constraints

when there is less uncertainty: in this case, there is no input excitation (�C = 0) and the

system estimates are better specified (�∞ = 0.001), so larger initial conditions are feasible.
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(c) Robust Optimal Cost Suboptimality Gap

Figure 3.5: Over time, estimation errors decrease (a). As safety requirements increase,

the maximum feasible excitation decreases (b). The robust cost sub-optimality gap "�

displays an abrupt transition from feasibility to near-optimality with error size (c).

Figure 3.5a displays the decreasing estimation errors over time, demonstrating learn-

ing. Shaded areas represent quartiles over 400 trials. Figure 3.5b displays the trade-off

between safety and exploration by showing the largest value of A� for which the robust

synthesis is feasible, given constraint sets of the form

X = {G | ‖G‖∞ ≤ AG} .

We leave G0 = 0 and examine a variety of sizes of estimation error in the dynamics. As

the uncertainties in the dynamics decrease, higher levels of both safety and exploration

are achievable. Finally, Figure 3.5c shows the value of the relative robust sub-optimality

gap "� for the given example. We see a sharp transition from infeasibility for � ≥ 0.05

to near-optimality for � ≤ 0.03. This indicates that the gap may be most significant as a

feasibility condition for our sub-optimality guarantees to hold.

3.6 Conclusion and Open Problems
Coarse-ID control is a straightforward approach to merging non-asymptotic methods

from system identification with contemporary approaches to robust control. Indeed,

many of the principles of Coarse-ID control were well established in the 90s [CG00;

CN93; HJN91], but fusing together an end-to-end result required contemporary analysis

of random matrices and a new system level perspective on controller synthesis. Another

benefit of our SLS approach is that it handles constraints on the state and input in a

straightforwardmanner, allowing for the design of linear controllers that guarantee safety

during and after data collection. Our results can be extended in a variety of directions,
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and we close this chapter with a discussion of some of the short-comings of our approach

and of several open questions.

Is it possible to reduce the conservatism? We use a very coarse characterization of the

uncertainty to bound the quantity ∆̂ to yield a tractable optimization problem. In fact, the

only property we use about the error between our nominal system and the true system is

that the maps

G ↦→ (� − �̂)G and D ↦→ (� − �̂)D
are contractions. Stronger bounds that account for the fact that these are static linear op-

erators could be engineered, for example, using the theory of IQCs [MR97]. Alternatively,

incorporating known problem structure, like sparsity, could allow us to characterize the

uncertainty ∆̂ with more precision than just a norm bound. Such tighter bounds could

yield considerably less conservative control schemes in both theory and practice.

Furthermore, our numerical experiments suggest that optimizing a nominal cost sub-

ject to robust stability constraints, as opposed to directly optimizing the cost upper bound,

leads to better empirical performance. Is this a phenomenological observation specific to

the systems used in our experiments, or is there a deeper principle at play?

Follow-up work on the unconstrained LQR problem suggests that the conservatism

in robust control is detrimental once enough data has been collected. For small enough

estimation errors �, Riccati perturbation theory can guarantee that the sub-optimality of

the nominal controller scales as Õ(�2) [MTR19]. Our robust synthesis, on the other hand,

guarantees a scaling of Õ(�). This is advantageous when errors are moderate to large,

meaning that robust control is more valuable in low data regimes, as suggested by our

numerical experiments. A similar understanding of this trade-off does not yet exist for

systems that are required to satisfy safety constraints on the states and inputs.

What is the most efficient way to collect data? It would be of interest to determine

system identification algorithms that are tuned to particular control tasks. In the Coarse-

ID control approach, the estimation and control are completely decoupled. However, it

may be beneficial to inform the identification algorithm about the desired cost, resulting in

improved sample complexity. One direction would be to connect this work to experiment

design literature, perhaps by replacing the objective in the synthesis problem (3.3.13)

with an exploration inspired cost function for the data collecting controller K0. Recent

investigation byWagenmaker, Simchowitz, and Jamieson [WSJ21] along this line suggests

that the certainty equivalent controller is in some sense optimal for the unconstrained

LQR problem. However, we know of no such work on the constrained LQR problem.

Analternativeway to reasonaboutdata collection is the throughexploration-exploitation

trade-offs studied in the setting of online learning. Casting LQR in this setting, one seeks

to minimize cost at all times, including during learning. Recent work has shown that a

simple &-greedy extension of the certainty equivalent controller achieves optimal scaling
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for unconstrained LQR [MTR19; SF20]. Developing an online algorithm for constrained

LQR would require an analysis of recursive feasibility, to understand the transition that

occurs when controllers are updated based on refined system estimates. It would also

likely require a finer analysis on the performance loss characterized by by the constraints

cost gap "�.

Can we quantify the difficulty of constraints? The nature of the unconstrained and

constrained LQR problems are vastly different. While the optimal policy for uncon-

strained LQR is a static linear controller that can be efficiently computed, the optimal

policy in the presence of constraints is piecewise affine and suffers from the curse of di-

mensionality [BMDP02]. Our results develop sub-optimality guarantees with respect to

linear baselines; it would be interesting to characterize the performance gap between the

optimal linear and nonlinear controllers.

We suspect that the nature of exploration is different for constrained problems as

well. While certainty equivalent control is efficient in the online setting [MTR19; SF20],

achieving a regret bounded by Õ(
√
)), it is unlikely that such an approach would be

valid when constraint satisfaction is required. Follow up work extending our robust

Coarse-ID control framework to the online setting results in a regret bounded by Õ()2/3)
for unconstrained LQR [DMMRT18]. Robustness is necessary to guarantee constraint

satisfaction. Is it possible to achieve Õ(
√
)) regret for constrained LQR?

To answer such questions, it is necessary to find lower bounds for constrained control

problemswhen themodel is unknown. Such boundswould offer a reasonable benchmark

for how well one could ever expect to do.

Can these tools be extended to nonlinear control? Even when the underlying system

is linear, when state and input constraints are present, the optimal control strategy is

nonlinear. For example, inModel PredictiveControl (MPC), controller synthesis problems

are approximately solved on finite time horizons, one step is taken, and then this process

is repeated [BBM17]. MPC is an effective solution which substitutes fast optimization

solvers for clever, complex control design. The Coarse-ID paradigm has been successfully

extended to MPC [CWMPM20], although for finite-time control problems, many other

methods for incorporating robustness are possible [BZTB20; BRSB21].

Providing sample complexity results like the ones presented here is challenging for

nonlinear control. Once the controller is nonlinear, the closed-loop system obeys non-

linear dynamics, and therefore many of the properties that enabled our sub-optimality

analysis no longer apply. Recent work by Ho [Ho20] extends the SLS framework to non-

linear dynamics, which could be a promising way forward. However, even when the

dynamics are fully known, optimality guarantees are scarce in nonlinear control due to

the nonconvex nature of the problem. It may thus be more fruitful to turn away from

optimality towards goals like ensuring stability and safety [SRSSP20; TDD+20].
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3.7 Omitted Proofs

Estimation Proofs
Proof of Lemma 3.2.7. Recall that we want to show

P{|0 + - | ≥
√
�E[-2]} ≥ (1 − �)2/max{4, 3�} .

for - ∈ R zero-mean with E[-4] ≤ �(E[-2])2, 0 a fixed scalar, and and � ∈ (0, 1).
First, we note thatwe can assume 0 ≥ 0without loss of generality, sincewe can perform

a change of variables- ← −-. We have thatE[(0+-)4] = 04+602E[-2]+40E[-3]+E[-4].
Therefore, by the Paley-Zygmund inequality and Young’s inequality, we have that

P{|0 + - | ≥
√
�E[-2]} ≥ P{|0 + - | ≥

√
�E[(0 + -)2]}

= P{(0 + -)2 ≥ �E[(0 + -)2]}

≥ (1 − �)2 (E[(0 + -)
2])2

E[(0 + -)4]

= (1 − �)2 0
4 + 202E[-2] + (E[-2])2
04 + 802E[-2] + 3E[-4] .

Now define the function 5 (0) for 0 ≥ 0 as

5 (0) =
04 + 202� + �2

04 + 802� + 3�
.

Clearly 5 (0) = �2/(3�) and 5 (∞) = 1. Since by Jensen’s inequality we know that �2 ≤ �,
this means 5 (0) < 5 (∞). On the other hand,

3

30
5 (0) =

40
(
02 + �

) (
�

(
302 − 4�

)
+ 3�

)(
04 + 802� + 3�

)
2

.

Assume that � ≠ 0 (otherwise the claim is trivially true). The only critical points of the

function 5 on non-negative reals is at 0 = 0 and 0 =

√
4�2−3�

3� if 4�2 ≥ 3�. If 4�2 < 3�, then

0 = 0 is the only critical point of 5 , so 5 (0) ≥ 5 (0) = �2/(3�) ≥ 1/(3�). On the other hand,

if 4�2 ≥ 3� holds, Some algebra yields that

5 (
√
(4�2 − 3�)/(3�)) =

7�2 − 3�

16�2 − 3�
≥ inf

�∈[3,4]

7 − �
16 − � = 1/4 .

The inequality above holds since 3� ∈ [3�2, 4�2]. Hence,

5 (0) ≥ min{1/4, 1/(3�)} = 1/max{4, 3�} .
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Proof of Lemma 3.2.8. Recall that we want to show that IC = [G>C , D>C ]> satisfies the(
1,

��

2�D
,

1

� · �F

)
BMSB condition.

For all C ≥ 1, denote

�C = DC − �C −ΦD(1)FC−1

= ΦD(C + 1)G0 +
C−2∑
:=0

ΦD(C − :)(��: + F:) +ΦD(1)��C−1.

Therefore, we have [
GC+1

DC+1

]
=

[
�GC + �DC

�C+1

]
︸         ︷︷         ︸

�I,C

+
[
�= 0

ΦD(1) �<

]
︸         ︷︷         ︸

"I

[
FC
�C+1

]
.

Notice that � =
[
F>C �>

C+1

]> ∈ R=+< is a random vector with a finite fourth moment and

each coordinate �8 is independent and zero-mean. Then for any @ ∈ R=+< , by Rosenthal’s

inequality, we have that E[|〈@, �〉|4] ≤ � · ��E[|〈@, �〉|2]2 for an absolute constant—we can

take � = 4 (see e.g. [IS02]).

We now apply Lemma 3.2.7 with 0 = 〈E, �I,C〉, - = 〈">I E, �〉, � = 4��, and � = 1/2.
Then, for any fixed E ∈ R=+< ,

P�

(
|〈E, �I,C +"I�〉| ≥

√
�min("IΣ�"

>
I )/2

)
≥ 1

� · ��
.

Recall that we denote IC = [G>C , D>C ]> and define

ΣI :=

[
�2

F�= �2

FΦD(1)>
�2

FΦD(1) �2

FΦD(1)ΦD(1)> + �2

��<

]
.

Then we can write the expression as

P
(
|〈E, IC〉| ≥

√
�min(ΣI)

)
≥ 1

� · ��
.

Since ΦD ∈ 1

Iℛℋ∞(�D , �) we have ‖ΦD(1)‖ ≤ �D . Then, by a simple argument based

on a Schur complement it follows that

�min(ΣI) ≥ �2

� min

(
1

2

,
�2

F

2�2

F�
2

D + �2

�

)
.

The conclusion follows since �D ≥ 1.
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Proof of Lemma 3.2.9. Recall that wewant to bound the covariance

∑)−1

C=0
Tr

(
EICI

>
C

)
. Note

that

EICI
>
C =

[
ΦG(C + 1)
ΦD(C + 1)

]
G0G
>
0

[
ΦG(C + 1)
ΦD(C + 1)

]>
+

[
0 0

0 �2

��<

]
+

C−1∑
:=0

[
ΦG(C − :)
ΦD(C − :)

]
(�2

���
> + �2

F�=)
[
ΦG(C − :)
ΦD(C − :)

]
.

Since for all : ≥ 1 we have ‖ΦG(:)‖ ≤ �G�: and ‖ΦD(:)‖ ≤ �D�: , we obtain

TrEICI>C ≤ <�2

� + (=�2

G + <�2

D)
(
�2C+2‖G0‖2

2
+ (�2

F + �2

�‖�‖2)
C∑
:=1

�2:

)
.

Therefore, we get that

)−1∑
C=0

TrEICI>C ≤ <�2

�) +
�2)

1 − �2

(=�2

G + <�2

D)(�2

F + �2

�‖�‖2) +
�2

1 − �2

(=�2

G + <�2

D)‖G0‖2
2
,

and the conclusion follows by simple algebra.

Sub-optimality Proofs
Proof of Lemma 3.4.4. The proposed feasible solution is

Φ̃x = Φ2
x(� − ∆)−1, Φ̃u = Φ2

u(� − ∆)−1, �̃ =

√
2�

1 −
√

2�
, �̃ =

2�∞
1 − 2�∞

,

where ∆ = −
[
Δ� Δ�

] [
Φ2

x
Φ2

u

]
. First, notice that ‖∆‖ℋ∞ ≤

√
2� < 1 and ‖∆‖ℒ1

≤ 2�∞ < 1

by Proposition 3.3.2 and the assumptions on � and �∞. Then by construction, Φ̃x and Φ̃u
satisfy the equality constraints.

Checking theℋ∞ norm constraint,

√
2

[��Φ̃x
��Φ̃u

]
ℋ∞

=
√

2

[��Φ2
x

��Φ2
x

]
(� − ∆)−1


ℋ∞
≤
√

2�
1

1 − ‖∆‖ℋ∞
≤
√

2�

1 −
√

2�
= �̃ .

Similarly, for the ℒ1 norm constraint,

2

[��,∞Φ̃x
��,∞Φ̃u

]
ℒ1

≤ 2�∞
1

1 − ‖∆‖ℒ1

≤ 2�∞
1 − 2�∞

= �̃ .
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Then it remains to show that the tightened state and input constraints are satisfied.

For compactness we will write 20 = max(1, 1

AF
‖G0‖∞). Recall that the robust constraint

functions have the form

��
G(Φ̃x; C)9 = �>G,9Φ̃G(C + 1)G0 + AF ‖�>G,9Φ̃G[C : 1]‖1 +

�AF20

1 − � ‖�
>
G,9Φ̃G[C + 1 : 1]‖1 .

We have that Φ̃G = Φ2
x + Φ2

x∆(� − ∆)−1
. Define the frequency response elements of

∆(�−∆)−1
by�(C) and the notation�(1 : C) to be the vertical concatenation of�(1), . . . , �(C)

in a matrix and

ToepC(�) :=


�(1)
...

. . .

�(C) . . . �(1)

 .
Then, by manipulating system response variables, we can show that

Φ̃(C) = Φ2G(C) +Φ2G[C : 1]�(1 : C) , Φ̃[C : 1] = Φ2G[C : 1] +Φ2G[C : 1]ToepC(�) .

Before considering the constraint functions, we show a general fact for any vector E,

‖E>Toep:(�)‖1 ≤
2�∞

1 − 2�∞
‖E‖1 . (3.7.1)

This is true by the following manipulations:

‖E>Toep:(�)‖1 = ‖Toep:(�)>E‖1 ≤ ‖Toep:(�)>‖1‖E‖1 = ‖Toep:(�)‖∞‖E‖1

≤ ‖∆(1 − ∆)−1‖ℒ1
‖E‖1 ≤

2�∞
1 − 2�∞

‖E‖1 .

Above, we make use of the fact that the ℓ1 and ℓ∞ norms are duals, and therefore ‖�‖∞ =
‖�>‖1. The second inequality holds because Toep:(�) is a truncation of the semi-infinite

Toeplitz matrix associated with the operator ∆(1 − ∆)−1
. The final decomposition is valid

because ‖∆‖ℒ1
≤ 2�∞ < 1.

Now we are ready to consider the state constraint indexed by 9 and C,

��̃
G(Φ̃x; C)9 = �>G,9(Φ2G(C + 1) +Φ2G[C + 1 : 1]�(1 : C + 1))G0

+ AF ‖�>G,9Φ2G[C : 1](� + ToepC(�))‖1

+ �̃
1 − �̃ AF20‖�>G,9Φ2G[C + 1 : 1](� + ToepC+1

(�))‖1 .

Considering each term individually,

�>G,9(Φ2G(C + 1) +Φ2G[C + 1 : 1]�(1 : C + 1))G0

= �>G,9Φ
2
G(C + 1)G0 + �>G,9Φ2G[C + 1 : 1]�(1 : C + 1)G0 .
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Then defining �1 to contain an identity in the first block and zeros elsewhere,

�>G,9Φ
2
G[C + 1 : 1]�(1 : C + 1)G0 ≤ ‖�>G,9Φ2G[C + 1 : 1]ToepC+1

(�)�1‖1‖G0‖∞

≤ ‖�>G,9Φ2G[C + 1 : 1]‖1
2�∞

1 − 2�∞
‖G0‖∞ .

The first inequality is Hölder’s inequality and the second by (3.7.1). Next, the second term:

AF ‖�>G,9Φ2G[C : 1](� + Toep:(�))‖1 ≤ AF
1

1 − 2�∞
‖�>G,9Φ2G[C : 1]‖1 .

Finally, the last term,

�̃
1 − �̃ AF20‖�>G,9Φ2G[C + 1 : 1](� + ToepC+1

(�))‖1 ≤
2�∞

1 − 4�∞
AF20

1

1 − 2�∞
‖�>G,9Φ2G[C + 1 : 1]‖1

where we use (3.7.1) and plug in the definition of �̃:

�̃
1 − �̃ =

2�∞

(1 − 2�∞)(1 − 2�∞
1−2�∞

)
=

2�∞
1 − 4�∞

.

The resulting sum is

��̃
G(Φ̃G ; C)9 ≤ �>G,9Φ2G(C + 1)G0 +

AF

1 − 2�∞
‖�>G,9Φ2G[C : 1]‖1

+
(

2�∞
1 − 2�∞

‖G0‖∞ +
2�∞

1 − 4�∞

20AF

1 − 2�∞

)
‖�>G,9Φ2G[C + 1 : 1]‖1 .

Then considering constants around the final term,

2�∞
1 − 2�∞

‖G0‖∞ +
2�∞

1 − 4�∞

20AF

1 − 2�∞
≤ 1

1 − 2�∞

(
2�∞ +

2�∞
1 − 4�∞

)
20AF =

4�∞
1 − 4�∞

20AF .

Thus, we see that ��̃
G(Φ̃x; C)9 ≤ �̄�

G(Φ2
x; C)9 ≤ 1 9 due to the constraints on Φ2

x. A similar

computation with the input constraints shows the same result. Therefore, the proposed

solution is feasible.

Proof of Theorem 3.4.3. Using (3.3.8) along with the bound in Proposition 3.3.2 and the

constraints in optimization problem (3.4.1),

�(�, �, K̂) ≤ 1

1 − �̂ �(�̂, �̂, K̂) .
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Next, we connect the optimal system response to the estimated system using the feasible

solution to the robust optimization problem, constructed in Lemma 3.4.4:

1

1 − �̂ �(�̂, �̂, K̂) ≤
1

1 − �̃ �(�̂, �̂,K2) .

This is true because (K̂, �̂) is the optimal solution to (3.4.1), so objective function with

feasible (Φ̃DΦ̃−1

G = K2 , �̃) is an upper bound. Then we have

�(�, �, K̂) ≤ 1

1 − �̃ �(�̂, �̂,K2)

≤ 1

1 − �̃
1

1 − ‖∆‖2
�(�★, �★,K2)

≤ 1

1 −
√

2�

1−
√

2�

1

1 −
√

2�
(1 +")�(�★, �★,K★)

≤
(
1 + 4

√
2�(1 +") +"

)
�(�★, �★,K★) .

The second inequality follows follows by the argument used to derive (3.3.8) with the roles

of the nominal and true systems switched. The final follows from bounding ‖∆‖2 by
√

2�
and noticing that

G
1−G ≤ 2G for 0 ≤ G ≤ 1

2
, where we set G = 2

√
2�. Finally, we note that

� =

[ ���
��K★

]
Φ★
G


ℋ∞
≤ (�� + ��‖K★‖ℋ∞)‖Φ★

G ‖ℋ∞ .
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Chapter 4

Perception-Based Control for Complex
Observations

4.1 Introduction
In this chapter, we examine the problem of using perceptual information in feedback con-

trol loops. Whereas the previous chapter was devoted to proving safety and performance

guarantees for learning-based controllers applied to systemswith unknown dynamics, we

now focus on the practical scenario where the underlying dynamics of a system are well

understood, and it is instead the interaction with a perceptual sensor that is the limiting

factor. This chapter usesmaterial first presented in papers coauthoredwithNikolaiMatni,

Benjamin Recht, and Vickie Ye [DMRY20; DR21].

We consider controlling a known linear dynamical system for which partial state

information can only be extracted from high dimensional observations. Our approach is

to design a virtual sensor by learning a perception map, i.e., a map from high dimensional

observations to a subset of the state, and crucially to quantify its errors. The analysis

of this approach combines contemporary techniques from statistical learning theory and

robust control. To characterize the closed-loop behavior, it is necessary to bound the errors

of the perception map pointwise to guarantee robustness. We consider two settings in

which pointwise bounds can be derived: robust and certainty equivalent.

In the robust setting, we show that under suitable smoothness assumptions, bounded

errors can be guaranteed within a neighborhood of the training data. This model of

uncertainty allows us to synthesize a robust controller that ensures that the system does

not deviate too far from states visited during training. Our main result shows that the

perception and robust control loop is able to robustly generalize under adversarial noise

models. In the certainty equivalent setting, we analyze a non-parametric approach to

learning the perception map. Under a dynamically feasible dense sampling scheme and

stochastic noise, the learned map converges uniformly. This allows us to show that

certainty equivalent control, which treats the perception map as if it is true, has bounded
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sub-optimality.

Problem Setting
Consider the dynamical system

GC+1 = �GC + �DC + �FC , (4.1.1)

IC = @(GC) , (4.1.2)

with system state GC ∈ R= , control input DC ∈ R< , disturbance FC ∈ RF , and observation

IC ∈ R# . We take the dynamics matrices (�, �, �) to be known. The observation process

is determined by the unknown generative model or appearance map @, which is nonlinear

and potentially quite high dimensional. As an example, consider a camera affixed to

the dashboard of a car tasked with driving along a road. Here, the observations z are

the captured images and the map @ generates these images as a function of position

and velocity. We remark that a nondeterministic appearance map @ may be of interest

for modeling phenomena like noise and environmental uncertainty. While this chapter

focuses on the deterministic case, many of the results can be extended in a straightforward

manner to any noise class for which the perception map has a bounded response. For

example, many computer vision algorithms are robust to random Gaussian pixel noise,

gamma corrections, or sparse scene occlusions.

Motivated by such vision based control systems, our goal is to solve the optimal control

problem

minimize(�C)C≥0
2(x, u)

subject to dynamics (4.1.1) and measurement (4.1.2)

DC = �C(I0:C),
(4.1.3)

where 2(x, u) is a suitably chosen cost function and �C is a measurable function of the

image history I0:C . This problem is made challenging by the nonlinear, high dimensional,

and unknown generative model.

Suppose instead that there exists a perception map ? that imperfectly predicts partial

state information; that is ?(IC) = �GC + 4C for � ∈ R3×= a known matrix and error 4C ∈ R3.
Such a matrix � might be specified to encode, for example, that camera images provide

good signal on position, but not velocity or acceleration. We therefore define a new

measurement model in which the map ? plays the role of a noisy sensor:

HC = ?(IC) = �GC + 4C . (4.1.4)

This allows us to reformulate problem (4.1.3) as a linear optimal control problem, where

themeasurements are defined by (4.1.4) and the control law DC = K(H0:C) is a linear function
of the outputs of past measurements H0:C :

minimizeK 2(x, u)
subject to GC+1 = �GC + �DC + �FC

HC = �GC + 4C
DC = K(H0:C).

(4.1.5)
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Figure 4.1: (Left) A diagram of the proposed perception-based control pipeline. (Right)

The conceptual rearrangement of the closed-loop system permitted through our percep-

tion error characterization.

As illustrated in Figure 4.1, guarantees of performance, safety, and robustness require

designing a controller which suitably responds to system disturbance and sensor error.

For linear optimal control problems, a variety of cost functions and noise models have

well understood solutions; recall those reviewed in Chapter 2. Perhaps the most well

known is the combination of Kalman filtering with static state feedback, which arises as

the solution to the linear quadratic Gaussian (LQG) problem. However, the perception

errors edonot necessarily obey assumptions aboutmeasurement noisemade in traditional

optimal control, and must be handled carefully.

In what follows, we overload the norm ‖·‖ so that it applies equally to elements GC ,

signals x, and linear operators Φ. For any element norm, we define the signal and linear

operator norms as

‖x‖ = sup

C≥0

‖GC ‖ , ‖Φ‖ = sup

‖w‖≤1

‖Φw‖

We primarily focus on the triple (‖G: ‖∞, ‖x‖∞, ‖Φ‖ℒ1
), though many of our results could

be extended.

Related Work
Vision based estimation, planning, and control. There is a rich body of work, spanning

several research communities, that integrates complex sensing modalities into estimation,

planning, and control loops. The robotics community has focused mainly on integrating

camera measurements with inertial odometry via an Extended Kalman Filter (EKF) [JS11;

KS11; HKBR14]. Similar approaches have also been used as part of Simultaneous Local-

ization andMapping (SLAM) algorithms in both ground [LSB+15] and aerial [LAWCS13]

vehicles. We note that these works focus solely on the estimation component, and do

not consider downstream use of the state estimate in control loops. In contrast, work

by Loianno et al. [LBMK16], Tang, Wüest, and Kumar [TWK18], and Lin et al. [LGQ+18]
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demonstrate techniques that use camera measurements to aid inertial position estimates

in order to enable aggressive control maneuvers in unmanned aerial vehicles.

Themachine learning community has taken amore data-driven approach. The earliest

such example is likely [Pom89], in which a 3-layer neural-network is trained to infer road

direction from images. Modern approaches to vision based planning, typically relying

on deep neural networks, include learning maps from image to trail direction [GGC+15],

learningQ-functions for indoornavigationusing 3DCADimages [SL17], andusing images

to specify waypoints for indoor robotic navigation [BTGMT20]. Moving from planning to

low-level control, end-to-end learning for vision based control has been achieved through

imitation learning from training data generated via human [BDD+16] and model predic-

tive control [PCS+18]. The resulting policies map raw image data directly to low-level

control tasks. Codevilla et al. [CMLKD18] propose a method for mapping high level

navigational commands, images, and other sensor measurements to control actions via

imitation learning. Similarly, Williams et al. [WDGRT18] map image and inertial data to

a cost landscape, which is then optimized via a path integral based sampling algorithm.

More closely related to our approach is from work by Lambert et al. [LSRLB18], where

a deep neural network is used to learn a map from image to system state—we note that

such a perception module is naturally incorporated into our proposed pipeline. To the

best of our knowledge, none of the aforementioned results provide safety or performance

guarantees.

The observation of a linear system through a static nonlinearity is classically studied

in the controls community as aWeiner systemmodel [ST17]. While there are identification

results for Weiner systems, they apply only to single-input-single-output systems, and

often require assumptions that do not apply to the motivation of cameras [Has87; Wig94;

Gre97; TS14]. More flexible identification schemes have been proposed [LB01; SK16], but

they lack theoretical guarantees. Furthermore, these approaches focus on identifying the

full forward model, rather than an inverse model as we do here.

Learning, robustness, and control. There is much related and recent work at the in-

tersection of learning and control theory. Similar in spirit is a line of work on the

Linear Quadratic Regulator which focuses on issues of system identification and sub-

optimality [DMMRT20; DMMRT18; AS11]. This style of sample complexity analysis has

allowed for illuminating comparisons between model based and model free policy learn-

ing approaches [TR19; ALS19]. Mania, Tu, and Recht [MTR19] and Simchowitz and

Foster [SF20] show that the simple strategy of model based certainty equivalent control is

efficient, though the argument is specialized to linear dynamics and quadratic cost. For

nonlinear systems, analyses of learning often focus on ensuring safety over identification

or sub-optimality [TDLYA19; BTSK17; WZ18; COMB19], and rely on underlying smooth-

ness for their guarantees [LSCAY20; NLS+20]. An exception is a recent result by Mania,

Jordan, and Recht [MJR20] which presents finite sample guarantees for parametric non-

linear system identification.
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While the majority of work on learning for control focuses on settings with full state

observation, output feedback is receiving growing attention for linear systems [SBR19;

SSH20] and for safety-critical systems [LCT20]. Recent work in closely related problem

settings includes Mhammedi et al. [MFS+20], who develop sample complexity guaran-

tees for LQR with nonlinear observations and [MHKL20], who leverage representation

learning in Block MDPs. However, neither address issues of stability due to their focus

on finite horizon problems.

Our theoretical contributions in the robust setting are similar in spirit to those of the

online learning community, in that we provide generalization guarantees under adver-

sarial noise models [AHMS13; AHM15; KM16; HK01; YP18; ABHKS19]. The statistical

analysis used in the certainty equivalent setting focuses on nonparametric pointwise er-

ror bounds over a compact set. Distinct from mean-error generalization arguments most

common in learning theory, our analysis is directly related to classical statistical results

on uniform convergence [Dev78; Lie89; Han08].

4.2 Bounded Errors via Robust Generalization
While it is typical in the machine learning community to consider mean error general-

ization bounds, we show in the following example that it is necessary to quantify the

uncertainty pointwise to guarantee robustness. This motivating example shows how er-

rorswithin sets of vanishingly smallmeasure can cause systems to exit bounded regions of

well-characterized perception and lead to instability. For a simple setting, we construct a

disturbance sequence that leads to instability, illustrating that feedback control objectives

require very strong function approximation error bounds.

Example 4.1. Consider a one dimensional linear system that is open-loopunstable (|0 | > 1)

with an arbitrary linear controller and adversarial disturbances:

GC+1 = 0GC + DC + FC , DC =

C∑
:=0

 : ĜC−: .

Further suppose that the perception map has been characterized within the bounded

interval [−Γ, Γ] and is imperfect only around the point Ḡ ∈ [−Γ, Γ]:

Ĝ = ?(@(G)) =
{

0 |G | ≥ Γ or G = Ḡ

G otherwise

.

Then consider the disturbance sequence F0 = Ḡ − (0 +  0)G0, F1 = Γ − 0Ḡ −  1G0, and

FC = 0 for all C ≥ 2. The perception error at Ḡ causes the unstable system trajectory

|GC | = |0C−1Ḡ | → ∞ as C →∞ .

Furthermore, by carefully choosing G0 and Ḡ, it is possible to construct scenarios where

this instability occurs for disturbances of arbitrarily small norm.
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Data-dependent perception error
In this section, we consider a general class of perception maps and introduce a procedure

to estimate regions for which a the perception map can be used safely during operation.

We first suppose access to initial training data S = {(G8 , I8)})8=1
, used to learn a perception

map via any of the wide variety of traditional supervised methods. We then estimate safe

regions around the training data, under an assumption of slope boundedness.

Definition 4.1 (Slope boundedness). A fuction 5 is locally (-slope bounded for a radius

� around G0 if for G ∈ ��(G0), ‖ 5 (G) − 5 (G0)‖ ≤ (‖G − G0‖, where the ball ��(G0) =
{G : ‖G − G0‖ ≤ �}.

This allows us to characterize how quickly the learned perception map degrades as we

move away from the initial training data. We will describe the regions of the state space

within which the sensing is reliable using a safe set which approximates sub-level sets

of the error function 4(G) = ?(@(G)) − �G. We make this precise in the following lemma,

defining a safe set which is valid under an assumption that the error function is locally

slope bounded around training data.

Lemma 4.2.1 (Closeness implies generalization). Suppose that the error function ? ◦ @ − � is
locally (-slope bounded with a radius of � around training data points. Define the safe set

X� =
⋃

(G8 ,I8)∈S
{G ∈ ��(G8) : ‖?(I8) − �G8 ‖ + (‖G − G8 ‖ ≤ �} .

(4.2.1)

Then for any (G, I) with G ∈ X�, the perception error is bounded: ‖?(I) − �G‖ ≤ �.

Proof. The proof follows by a simple argument. For training data point (G8 , I8) such that

G8 ∈ ��(G),

‖?(I) − �G‖ = ‖?(@(G)) − �G − (?(@(G8)) − �G8) + ?(@(G8)) − �G8 ‖
≤ (‖G − G8 ‖ + ‖?(@(G8)) − �G8 ‖ .

The second line follows from the assumptionabout local slopeboundedness. Thenbecause

G ∈ ��(G8), by the definition of X�, we have

‖?(I) − �G‖ ≤ (‖G − G8 ‖ + ‖?(@(G8)) − �G8 ‖ ≤ � .

The safe set X� is defined in terms of a bound on the slope of the error function lo-

cally around the training data. Deriving the slope boundedness of the error function

relies on the learned perception map as well as the underlying generative model. It is

possible to also estimate a bound on ( using an additional dataset composed of samples

around each training data point [DMRY20]. However, the validity of this estimate will
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depend on further assumptions about the error function ? ◦ @ − �, like Lipschitz conti-

nuity. These assumptions are no more natural than assuming knowledge of the constant

of slope boundedness (. Therefore, in this chapter, we treat ( as a structural assumption

about the problem setting. We remark that this notion of slope boundedness has con-

nections to sector bounded nonlinearities, a classic setting for nonlinear system stability

analysis [DV75].

Robust control for generalization
The local generalization result in Lemma 4.2.1 is useful only if the system remains close

to states visited during training. We now show that robust control can ensure that the

system will remain close to training data so long as the perception map generalizes well.

By then enforcing that the composition of the two bounds is a contraction, a natural notion

of controller robustness emerges that guarantees favorable behavior and generalization.

In what follows, we adopt an adversarial noise model and exploit the fact that we can

design system behavior to bound how far the system deviates from states visited during

training.

Recall that for a state-observation pair (G, I), the perception error, defined as 4 :=

?(I) − �G, acts as additive noise to the measurement model H = ?(I). While standard

linear control techniques can handle uniformly bounded errors, more care is necessary to

further ensure that the system remains with a safe region of the state space, as determined

by the training data. Through a suitable convex reformulation of the safe region, this goal

could be addressed through receding horizon strategies (e.g. [WK02; MRFA06]). While

these methods are effective in practice, constructing terminal sets and ensuring a priori

that feasible solutions exist is not an easy task. To make explicit connections between

learning and control, we turn our analysis to a system level perspective on the closed-loop

to characterize its sensitivity to noise.

Once the control input to dynamical system (4.1.1) is defined to be a linear function of

the measurement (4.1.4), the closed-loop behavior is determined entirely by the process

noise w and the measurement noise e (as illustrated in Figure 4.1). Therefore, we can

write the system state and input directly as a linear function of the noise[
x
u

]
=

[
Φxw Φxv
Φuw Φuv

] [
�w

e

]
. (4.2.2)

Inwhat follows, wewill state results in terms of these system response variables. Recall

from Chapter 2 that the connection between these variables and the feedback control law

u = Ky that achieves the response (4.2.2) is formalized in the System Level Synthesis

(SLS) framework [WMD19]. SLS states that there exists a linear feedback controller K that

achieves the response Φ = (Φxw,Φxv,Φuw,Φuv) for any system response Φ constrained to

lie in the affine space A defined by the system dynamics. Finally, recall that the linear

optimal control problem (4.1.5) can be written as

minimizeΦ 2(Φ) subject to Φ ∈ A(�, �, �) , (4.2.3)
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where the cost function 2 is redefined to operate on system responses. Section 2.4 presents

examples of control costs that can be written as system norms.

In what follows, we specialize controller design concerns to our perception-based

setting, and develop further conditions on the closed-loop response Φ to incorporate into

the synthesis problem.

Lemma 4.2.2 (Generalization implies closeness). For a perception map ? with errors e =

?(z)−�x, let the system responses (Φxw,Φxv,Φuw,Φuv) lie in the affine space defined by dynamics
(�, �, �), and let K be the associated controller. Then the state trajectory x achieved by the control
law u = K?(z) and driven by noise process w, satisfies, for any target trajectory x̄,

‖x − x̄‖ ≤ ‖x̂ − x̄‖ + ‖Φxv‖‖e‖. (4.2.4)

where we define the nominal closeness ‖x̂ − x̄‖ = ‖Φxw�w − x̄‖ to be the deviation from the
target trajectory in the absence of measurement errors.

Proof. Notice that over the course of a trajectory, wehave systemoutputs y = ?(z) = �x+e.
Then recalling that the system responses are defined such that x = Φxw�w + Φxve, we

have that

‖x − x̄‖ = ‖Φxw�w + Φxve − x̄‖ ≤ ‖Φxw�w − x̄‖ + ‖Φxv‖‖e‖ .

Letting x̄ represent a trajectory of training data, the terms in bound (4.2.4) capture

different generalization properties. The first is small if we plan to visit states during

operation that are similar to those seen during training. The second term is a measure of

the robustness of the closed-loop system to the error e.
We are now in a position to state the main result on robust generalization and stability,

which shows that under an additional robustness condition, Lemmas 4.2.1 and 4.2.2

combine to define a control invariant set around the training data within which the

perception errors, and consequently the performance, are bounded.

Theorem 4.2.3. Let the assumptions of Lemmas 4.2.1 and 4.2.2 hold and, for simplicity of presen-
tation, suppose that the training error is bounded: ‖?(I8) − �G8 ‖ ≤ �S for all (G8 , I8) ∈ S. Define
the signal xS to have elements populated by states in the training dataset S. Then as long as

‖Φxv‖ ≤
1 − 1

� ‖x̂ − xS‖
( + �S

�

, (4.2.5)

the perception errors remain bounded

‖?(z) − �x‖ ≤ ‖x̂ − xS‖ + �S
1 − (‖Φxv‖

=: �, (4.2.6)

and the closed-loop trajectory lies within X�.
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Proof. Recall that as in the proof of Lemma 4.2.1, as long as GC ∈ ��(G8C ) for all C and some

G8C ∈ S,

‖4C ‖ ≤ (‖GC − G8C ‖ + ‖48C ‖ =⇒ ‖e‖ = max

C
‖4C ‖ ≤ (‖x − xS‖ + ‖eS‖ , (4.2.7)

where we define the data signal xS = (G8C )C≥0 and error signal eS = (48C )C≥0 corresponding

to (GC)C≥0.

By assumption, ‖eS‖ ≤ �S . Substituting this expression into the result of Lemma 4.2.2,

we see that as long as ‖GC − G8C ‖ ≤ � for all C,

‖x − xS‖ ≤ ‖x̂ − xS‖ + ‖Φxv‖((‖x − xS‖ + ‖eS‖) ⇐⇒ ‖x − xS‖ ≤
‖x̂ − xS‖ + �S‖Φxv‖

1 − (‖Φxv‖
.

Next, to ensure that the the radius � is bounded, first note that by the definition of the ℓ∞
norm, maxC ‖GC − G8C ‖ ≤ � if and only if ‖x − xS‖ ≤ �. A sufficient condition for this is

given by

‖x̂ − xS‖ + �S‖Φxv‖
1 − (‖Φxv‖

≤ � ⇐⇒ ‖Φxv‖ ≤
1 − 1

� ‖x̂ − xS‖
( + �S

�

,

and thus we arrive at the robustness condition. This validates the the bound on ‖x − xS‖,
which we now use to bound ‖e‖, starting with (4.2.7) and rearranging,

‖e‖ ≤ ‖x̂ − xS‖ + �S
1 − (‖Φxv‖

.

Theorem 4.2.3 shows that the bound (4.2.5) should be used during controller synthesis

to ensure generalization. Feasibility of the synthesis problem depends on the controlla-

bility and observability of the system (�, �, �), which impose limits on how small ‖Φxv‖
can be made to be, and on the planned deviation from training data as captured by the

quantity ‖x̂ − xS‖. In the following section, we show how to simplify this term for a

reference tracking problem.

4.3 Robust Perception-Based Control

Reference Tracking
We consider a reference tracking problemwith the goal of ensuring that the system tracks

a series of arbitrary waypoints that are sequentially revealed. Recall from Example 2.3

that the reference tracking objective is given by:

2(���, u) = sup

‖AC+1−AC ‖≤Δref
,

C≥0

&̄1/2(�C − AC)
'1/2DC

 ,
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for a reference signal AC and a linear system with state �C such that

�C+1 = �̄�C + �̄DC .

We suppose that observations are generated as IC = @(�C) and that the perception map

?(IC) = �̄�C + 4C satisfies the slope-bounded assumption.

Further recall that we can reformulate the problem by defining the state as the concate-

nation with the next waypoint, GC := [�C ; AC], the disturbance as the change in reference,

FC := AC+1 − AC , and

� =

[
�̄ 0

0 �

]
, � =

[
�̄

0

]
, � =

[
�̄ 0

]
, � =

[
0

�

]
, &1/2 =

[
&̄1/2 −&̄1/2] .

Under this formulation, the optimal control problem has the same form as (4.1.5) and can

therefore be written in terms of system response variables as in (4.2.3) with the cost 2(Φ)
given by a weighted ℒ1 system norm.

Robust Synthesis
We now show how to simplify the term ‖x̂ − xS‖ in the case of waypoint tracking. The

expression allows us to propose a robust control synthesis problem.

Proposition 4.3.1. Consider reference tracking problem and suppose that for all C = 0, 1, . . . , the
reference trajectory has bounded differences ‖AC+1 − AC ‖ ≤ Δref and is within a ball of radius �ref

from the training data:
min

�8∈S
‖AC − �8 ‖ ≤ �ref ∀ C ≥ 0 .

Then, the closed-loop deviation from training data is bounded by:

‖x̂ − xS‖ ≤ Δref‖
[
� −�

]
Φxw�‖ + �ref .

Proof. Because the appearance and perception maps depend on the augmented state GC
only through �C , the errors do not depend the reference signal AC . We can arbitrarily define

the second element of lifted training data so that

‖x̂ − xS‖ = ‖�̂�� − ���S‖ ≤ ‖��� − r‖ + ‖r − ���S‖ .

Therefore, noting that ��� − r =
[
� −�

]
x̂,

‖x̂ − xS‖ ≤ ‖
[
� −�

]
Φxww‖ + ‖r − ���S‖

≤ Δref‖
[
� −�

]
Φxw‖ + �ref .
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Using the expression in Proposition 4.3.1 it is possible to add the robustness condition

from Theorem 4.2.5 to a control synthesis problem as a constraint on the norm of system

response variables (
( + �S

�

)
‖Φxv‖ +

Δref

�
‖
[
� −�

]
Φxw�‖ +

�ref

�
≤ 1 .

This constraint immediately implies a trade-off between the size of different parts of the

system response: Φxv, which is the closed-loop response tomeasurements, andΦxw, which

is the response to waypoints. Because the system responses must lie in an affine space,

they cannot both become arbitrarily small. Therefore, the synthesis problem must trade

off between sensitivity to measurement errors and tracking fidelity. These trade-offs are

mediated by the quality of the perception map, the ambition of the control task, and the

comprehensiveness of the training data. High quality perception maps will have small

training error �S , small slope bound (, and large radius � within which the slope bound

holds. Ambitious control tasks will design for large jumps between waypoints Δref. Large

deviations from training data �ref will be required for more ambitious control tasks or less

comprehensive training datasets. Therefore, the higher quality the perception map and

the more comprehensive the training data, the more ambitious the control tasks that are

possible.

This robustness constraint is enough to guarantee a finite cost, but it does not guarantee

a small cost. To achieve this, we incorporate the constraint alongwith the perception error

bound from Theorem 4.2.5 to arrive at the following robust synthesis procedure:

minimizeΦ,�>0

[&1/2

'1/2

] [
Φxw Φxv
Φuw Φuv

] [
Δref�

��

]
subject to Φ ∈ A(�, �, �),

(( + �S
� )‖Φxv‖ + Δ

ref

� ‖
[
� 0

]
Φxw�‖ + �

ref

� ≤ 1

Δref‖
[
� 0

]
Φxw�‖ + �ref + �S ≤ �(1 − (‖Φxv‖) .

This can be formulated into a convex program for fixed �. There is some lower limit

�0 for which � < �0 will be infeasible. In the limit as � grows large, the cost is increasing

in �. Therefore, the full problem can be approximately solved via one-dimensional search

over a bounded range of values.

Necessity of Robustness
Robust control is notoriously conservative, and our main result in Theorem 4.2.3 relies

heavily on small gain-like arguments. Can the conservatism inherent in this approach

be generally reduced? In this section, we answer in the negative by describing a class of

examples for which the robustness condition in Theorem 4.2.3 is necessary. For simplicity,

we specialize to the goal of regulating a system to the origin, rather than an arbitrary
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waypoint tracking problem. Let I0 = @(0) and assume that (0, I0) is in the training set and

that the perception map is perfect at the origin: ?(I0) = 0.

We consider the following optimal control problem

minimizeΦ 2(Φ) subject to Φ ∈ A(�, �, �), ‖Φxv‖ ≤  .

and define Φ̄ as a minimizing argument in the absence of the inequality constraint. For

simplicity, we consider only systems in which the closed-loop is strictly proper and has a

state-space realization.

To avoid notational collisions while discussing frequency domain quantities, we use �
as the frequency domain variable (rather than I, as introduced in Chapter 2).

Proposition 4.3.2. Suppose that the frequency response at � = 1 satisfies

‖Φ̄xv‖ℒ1
= ‖Φ̄xv(1)‖∞→∞ .

Then there exists a differentiable error function with slope bound ( such that the origin G = 0 is an
asymptotically stable equilibrium if and only if  < 1

( .

Proof. Sufficiency follows from our main analysis, or alternatively from a simple applica-

tion of the small gain theorem. We therefore focus on showing necessity, which follows

by construction. We use a combination of classic nonlinear instability arguments with

properties of real stability radii.

Recall that HC = �GC + (?(@(GC)) − �GC). Define �C to represent the internal state of the

controller. Then we can write the closed-loop behavior of the system, ignoring the effect

of process noise because it does not affect the stability analysis, as the following nonlinear

recursion: [
GC+1

�C+1

]
= �CL

[
GC
�C

]
+ �CL4(GC) .

Suppose that the error function 4(G) = ?(@(G)) − �G is differentiable at G = 0 with

derivative �. Then the stability of the origin depends on the linearized closed-loop system

�CL(�) := �CL + �CL��CL where �CL = [� 0] picks out the relevant component of the

closed-loop state. If any eigenvalues of �CL(�) lie outside of the unit disk, then G = 0 is

not an asymptotically stable equilibrium.

Switching gears, we return to the system response variables to construct � that results

in a lack of stability. We set ( = 1/‖Φ̄xv‖ and notice that if  ≥ 1

( , then Φ̄ is also the solution

to the constrained problem. By assumption, ‖Φ̄xv‖ℒ1
= ‖Φ̄xv(1)‖∞→∞. Thus, there exist

real F, E such that E>Φ̄xv(1)F = ‖Φ̄xv‖ℒ1
. We set � = (FE>.

We now argue that for this choice of �, �CL(�) has an eigenvalue on the unit disk. Recall

that the frequency response Φ̄xv(�) = �CL(�� − �CL)−1�CL, so

Φ̄xv(1) = �CL(� − �CL)−1�CL
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This makes the connection between Φ̄xv(1) and the matrices making up �CL(�). Then by

a classic result for stability radii (e.g. Remark 4.2 and Corollary 4.5 in Hinrichsen and

Pritchard [HP90]), �CL((FE>) has an eigenvalue on the unit disk. Thus, for any error

function with derivative � = (FE> at zero, the robust condition is necessary as well as

sufficient. One such error function is simply 4(G) = �G.

We now present a simple example in which this condition is satisfied, and construct

the corresponding error function which results in an unstable system.

Example 4.2. Consider the double integrator

GC+1 =

[
1 3C

0 1

]
GC +

[
0

1

]
DC , HC = ?(IC) = GC + 4(GC) , (4.3.1)

and the control law resulting from the ℋ2 optimal control problem with identity weight

matrices along with the robustness constraint ‖Φxv‖ ≤ . Notice that the solution to

the unconstrained problem would be the familiar LQG combination of Kalman filtering

and static feedback on the estimated state. We denote the optimal unconstrained system

response by Φ̄.

Consider an error function with slope bounded by ( = 1/‖Φ̄xv‖ and derivative at G = 0

equal to

� =

[
−1/‖Φ̄xv‖ 0

−1/‖Φ̄xv‖ 0

]
,

Calculations confirm that theℒ1 norm satisfies the relevant property. Therefore, the origin

is not a stable fixed point if the synthesis constraint  ≥ 1

( .

4.4 Bounded Errors via Uniform Convergence
We now turn instead to perception maps learned via nonparametric regression, and

show how sufficiently dense data implies uniformly bounded errors. We make several

further assumptions to the problem setting introduced in Section 4.1. First, we assume

that (�, �, �) is output controllable, meaning that for any initial condition G0 ∈ R= and

arbitrary H ∈ R3, there exists a sequence of inputs D0, . . . , D=−1 that, when applied to the

noiseless system, ensure �G= = H. We also assume that for each C, the process noise FC
is zero mean, bounded by �F , and independent across time. Next, we assume that that

observations depend on the state only through �G, so that

IC = @(�GC) .

The matrix � therefore determines the state subspace that affects the observation, which

we will refer to as the measurement subspace. This emulates a natural setting in which

observations from the system (e.g. camera images) are complex but encode a subset of the
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state (e.g. position). We further assume that @ is continuous and that there is a continuous

inverse function ?★ : R# → R3 with ?★(@(H)) = H. For the example of a dashboard

mounted camera, such an inverse exists whenever each camera pose corresponds to a

unique image, which is a reasonable assumption in sufficiently feature rich environments.

We pose a learning problem focused on the unknown inverse function ?★. We suppose

that during the training phase, there is an additional system output,

Htrain

C = �GC + EC (4.4.1)

where for each C, the noise EC is zero mean and has independent entries bounded by

�E . This assumption corresponds to using a simple but noisy sensor for characterizing

the complex sensor. The noisy system output will both supervise the learning problem

and allow for the execution of a sampling scheme where the system is driven to sample

particular parts of the state space.

We suppose that the control cost 2 is given by the system ℒ1 norm. Notice that due to

its noisiness, using the training sensor would be suboptimal compared using transformed

observations.

Nonparametric Regression
Since uniform error bounds are necessary for robust guarantees, we now introduce a

method to learn perception maps with such bounds. For simplicity of analysis and

exposition, we focus on Nadarya-Watson estimators. We expect that our insights will

generalize to more complex techniques, and we demonstrate similarities with additional

regressors in simulation experiments presented in Section 4.6.

The Nadarya-Watson regression estimators with training data {(IC , Htrain

C )})
C=0

, band-

width � ∈ R+, and metric 3I : R# × R# → R+ have the form

?(I) =
)∑
C=0

��(IC , I)
B)(I)

Htrain

C , B)(I) =
)∑
C=0

�� (IC , I) , �� (IC , I) = �
(
3I(IC ,I)

�

)
, (4.4.2)

with ?(I) = 0 when B)(I) = 0 and � : R+→ [0, 1] is a kernel function. We assume that the

kernel function is Lipschitz with parameter !� and that �(D) = 0 for D > 1, and define the

quantity +� =
∫
R
?
+
�

(
‖H‖∞

)
3H.

Thus, predictions are made by computing a weighted average over the labels Htrain

C
of training data points whose corresponding observations IC are close to the current

observation, asmeasured by themetric 3I . We assume the functions @ and ?★ are Lipschitz

continuous with respect to 3I , i.e. for some !@ and !?

3I(@(H), @(H′)) ≤ !@ ‖H − H′‖ , ‖?★(I) − ?★(I′)‖ ≤ !?3I(I, I′) . (4.4.3)

While our final sub-optimality results depend on !@ and !? , the perception map and

synthesized controller do not need direct knowledge of these parameters.
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For an arbitrary I with B)(I) ≠ 0, the prediction error can be decomposed as

‖?(I) − ?★(I)‖ ≤
 )∑
C=0

��(IC , I)
B)(I)

(�GC − �G)
 +  )∑

C=0

��(IC , I)
B)(I)

EC

 . (4.4.4)

The first term is the approximation error due to finite sampling, even in the absence of

noisy labels. This term can be bounded using the continuity of the true perception map

?★. The second term is the error due to measurement noise. We use this decomposition

to state a pointwise error bound, which can be used to provide tight data-dependent

estimates on error.

Lemma 4.4.1. For a learned perception map of the form (4.4.2) with training data as in (4.4.1)

collected during closed-loop operation of a system with appearance map satisfying (4.4.3), we have
with probability at least 1 − � that for a fixed I with B)(I) ≠ 0,

‖?(I) − ?★(I)‖ ≤ �!? +
�E√
B)(I)

√
log

(
32

√
B)(I)/�

)
. (4.4.5)

We present the proof of this result in the Section 4.8.

The expression illustrates that there is a tension between having a small bandwidth �
and ensuring that the coverage term B)(I) is large. Notice thatmost of the quantities in this

upper bound can be readily computed from the training data; only !? , which quantifies

the continuity of themap from observation to state, is difficult tomeasure. We remark that

while useful for building intuition, the result in Lemma 4.4.1 is only directly applicable

for bounding error at a finite number of points. Since our main results handle stability

over infinite horizons, they rely on a modified bound introduced in Section 4.8 which is

closely tied to continuity properties of the estimated perception map ? and the sampling

scheme we propose in the next section.

Dense Sampling
We now propose a method for collecting training data and show a uniform, sample-

independent bound on perception errors under the proposed scheme. This strategy relies

on the structure imposed by the continuous and bĳective map @, which ensures that

driving the system along a dense trajectory in the measurement subspace corresponds to

collecting dense samples from the space of possible observations. In what follows, we

provide a method for driving the system along such a trajectory.

Weassume that during training, the systemstate can be reset according to adistribution

D0 whichhas has support boundedby �0. Wedonot assume that these states are observed.

Between resets, an affine control law drives the system to evenly sample the measurement

subspace with a combination of a stabilizing output feedback controller and affine inputs:

DC = Ktrain(Htrain

0:C ) + D
ref

C . (4.4.6)
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Algorithm 2 Uniform Sampling with Resets

1: Input systemmatrices � and �, stabilizing controller Ktrain and corresponding system

response Φtrain

xw , sampling radius Γ̄, target dataset size ).

2: for ℓ from 1 to ) do
3: reset G0,ℓ ∼ D0 and sample Href

ℓ
∼ Unif(�Γ̄(03))

4: design inputs Dref

0:=−1,ℓ
:= (�Φtrain

xw �)[1 : =]†Href

ℓ

5: for : from 0 to = − 1 do
6: apply D:,ℓ = Ktrain(Htrain

0::,C
) + Dref

:,ℓ

7: end for
8: end for
9: Return uniformly sampled training data {(I=,ℓ , Htrain

=,ℓ
)})
ℓ=1

=: {(IC , Htrain

C )})
C=1

The stabilizing feedback controller prevents the accumulation of errors resulting from the

process noise and the unobserved reset state. Recalling the SLS machinery developed

in Chapter 2, the closed-loop trajectories resulting from this controller can be written

as linear functions of the reference input Dref

C and the noise FC , EC in terms of the system

responsevariables

(
Φtrain

xw ,Φtrain

xv ,Φtrain

uw ,Φtrain

uv
)
, so longasK is stabilizing. Defining F̃−1 = G0

and F̃C = �FC + �Dref

C for C ≥ 0, we can write the trajectory of the system through the

measurement subspace as

�x = �Φtrain

xw w̃ + �Φtrain

xv v
Because the feedback control law K is chosen such that the closed-loop system is stable,

the system response variables decay. We therefore assume that for some " ≥ 1 and

0 ≤ � < 1, the projection of the system response elements into the measurement subspace

satisfies the decay condition

�Φtrain

xw , �Φtrain

xv ∈ ℛℋ∞(", �) . (4.4.7)

We are then free to design Dref

C to ensure even sampling. Since the triple (�, �, �) is
output controllable, these reference inputs can drive the system to any statewithin = steps.

Algorithm 2 leverages this fact to construct control sequences which drive the system to

points uniformly sampled from the measurement subspace. The use of system resets

ensures independent samples; we note that since the closed-loop system is stable, such a

“reset” can approximately be achieved by waiting long enough with zero control input.

As a result of the unobserved reset states, process noise, and the noisy sensor, the

states visited while executing Algorithm 2 do not exactly follow the desired uniform

distribution. They can be decomposed into two terms:

�G=,ℓ =

=∑
:=1

�ΦGF(:)�Dref

=−:,ℓ︸                   ︷︷                   ︸
Href

ℓ

+�ΦGF(= + 1)G0 +
=∑
:=1

�ΦGF(:)�F=−:,ℓ + �ΦG=(:)E=−:,ℓ︸                                                                    ︷︷                                                                    ︸
�ℓ
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where Href

ℓ
is uniformly sampled from �Γ̄(03), and the noise variable �ℓ is bounded:

‖�ℓ ‖ ≤ ‖�ΦGF(ℓ + 1)‖‖G0‖ +
=∑
ℓ=1

‖�ΦGF(ℓ )‖‖�F=−ℓ ‖ + ‖�ΦG=(ℓ )‖‖E=−ℓ ‖

≤ "
(
�0�

=+1 + (�F + �E)
=∑
ℓ=1

�ℓ
)
≤ "max{�0, �F , �E}

1 − � .

The following lemma shows that uniform samples corrupted with independent and

bounded noise ensure dense sampling of the measurement subspace. In particular, the

lemma provides a high probability lower bound on the coverage B)(I).

Lemma 4.4.2. Suppose training data satisfying (4.4.1) is collected by the sampling scheme in
Algorithm 2 with radius Γ̄ ≥ Γ + "max{�0 ,�F ,�E}

1−� + �
!@

and a stabilizing controller whose system
response variables satisfy (4.4.7). If the appearance map satisfies continuity properties (4.4.3), then
for all I observed from a state G satisfying ‖�G‖∞ ≤ Γ,

B)(I) ≥
1

2

√
)+�

(
�

Γ̄!@

) 3
2

with probability at least 1 − � as long as ) ≥ 8+−1

� log(1/�)(Γ̄!?!2

@)3�−3.

We use this coverage property of the training data and the error decomposition pre-

sented in (4.4.4) to show our main uniform convergence result.

Theorem 4.4.3. Suppose training data satisfying (4.4.1) is collected by the sampling scheme in
Algorithm 2 with radius Γ̄ =

√
2Γ and a stabilizing controller whose system response variables

satisfy (4.4.7). If the appearance map satisfies continuity properties (4.4.3), then as long as the state
remains within the set {G | ‖�G‖ ≤ Γ}, the Nadarya-Watson regressor (4.4.2) will have bounded
perception error for every observation I:

‖?(I) − ?★(I)‖ ≤�!? +
�E

)
1

4

(
!@
√

2Γ

�

) 3
4
(√
3 log ()2/�) + 1

)
(4.4.8)

with probability at least 1 − � as long as � ≤ !@((
√

2 − 1)Γ −"max{�0, �F , �E}(1 − �)−1) and

) ≥ max

{
83+−1

� (
√

2!?!
2

@)3(Γ/�)3 log()2/�), +−
1

3

� (24!�!?)
4

3!
3
3

@ (Γ/�)
3+4

3

}
.

Proofs are presented in Section 4.8.
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4.5 Certainty Equivalent Perception-Based Control
The previous section shows that nonparametric regression can be successful for learning

the perception map within a bounded region of the state space. We now show how to

translate these bounded errors into closed-loop performance guarantees.

Suppose that we apply a linear controller to our perception estimates,

u = �̂(z) = K?(z) . (4.5.1)

This is the certainty equivalent controller, which treats the learned perception map as

if it is true. We will compare this controller with �★(z) = K?★(z), the result of perfect

perception. We suppose that ‖�x‖ is bounded by Γmax(Φ) under the optimal control law

for all possible disturbance signals.

Proposition 4.5.1. Let (Φxw,Φxv,Φuw,Φuv) denote the system responses induced by the controller
K, and let 2(�★) denote the cost associated with the policy �★(z) = K?★(z). Then for a perception
component with error bounded by �? within the set {G | ‖�G‖∞ ≤ Γ}, the sub-optimality of the
certainty equivalent controller (4.5.1) is bounded by

2(�̂) − 2(�★) ≤ �?

[&1/2Φxv
'1/2Φuv

] .
as long as the sampled region is large enough and the errors are small enough, �? ≤ Γ−Γmax(Φ)

‖�Φxv‖ .

Proof. The main difference between the certainty equivalent and optimal closed-loop

systems is the measurement noise signal. For the certainty equivalent closed-loop, we

have the perception errors e. For the optimal closed-loop, there is no measurement noise.

Therefore, we write the cost:

2(�̂) = sup

w

[&1/2

'1/2

] [
Φxw Φxv
Φuw Φuv

] [
�w

e

]
≤ sup

w

[&1/2

'1/2

] [
Φxw Φxv
Φuw Φuv

] [
�w

0

] + [&1/2

'1/2

] [
Φxv
Φuv

]
e


≤ 2(�★) + sup

w

[&1/2

'1/2

] [
Φxv
Φuv

]
e


≤ 2(�★) +
[&1/2

'1/2

] [
Φxv
Φuv

] · sup

w
‖?(z) − ?★(z)‖

Recall the uniform error bound on the learned perception map. As long as ‖�x‖ ≤ Γ,
we can guarantee that ‖?(z) − ?★(z)‖ ≤ �? . Notice that we have

‖�x‖ ≤ sup

w
‖�Φxw�w + �Φxve‖ ≤ Γmax(Φ) + �? ‖�Φxv‖ ,

by the definition of Γmax(Φ). Therefore, the result follows as long as �? ≤ Γ−Γmax(Φ)
‖�Φxv‖ .
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Thus, the optimal closed-loop system’s sensitivity to measurement noise is closely

related to the sub-optimality. We now state our main result. The proof is presented in

Section 4.8.

Corollary 4.5.2. Suppose that training data satisfying (4.4.1) is collected with a stabilizing
controller whose system response variables satisfy (4.4.7) according to Algorithm 2 with Γ̄ =

2Γmax(Φ) ≥ max{1, "max{�0 ,�F ,�E}
1−� } from a system with appearance map satisfying (4.4.3), and

that the Nadarya-Watson regressor (4.4.2) uses bandwidth � chosen to minimize the upper bound
in (4.4.8). Then the overall sub-optimality of the certainty equivalent controller (4.5.1) is bounded
by

2(�̂) − 2(�★) ≤ 4!@!?Γmax(Φ)
(
432�4

E

)

) 1

3+4

[&1/2Φxv
'1/2Φuv

]√
log()2/�) (4.5.2)

with probability greater than 1− � for large enough ) ≥ 432�4

E

(
10!@!? ‖�Φxv‖

√
log()2/�)

)3+4

.

4.6 Experiments
To illustrate our results and to probe their limits, we perform experiments in three sim-

ulated environments: a synthetic example, a simplified unmanned aerial vehicle (UAV)

with a downward facing camera, and an autonomous driving example with a dashboard

mounted camera. The latter two settings make use of complex graphics simulation. Code

necessary for reproducing experiments is available at:

• https://github.com/modestyachts/robust-control-from-vision
• https://github.com/modestyachts/certainty_equiv_perception_control
In all cases, system dynamics are defined using a hovercraft model, where positions

along east-west and north-south axes evolve independently according to double integrator

dynamics. The hovercraft model is specified by

� =


1 0.1 0 0

0 1 0 0

0 0 1 0.1

0 0 0 1

 , � =


0 0

1 0

0 0

0 1

 , � =

[
1 0 0 0

0 0 1 0

]
, (4.6.1)

so that G(1) and G(3) respectively represent position along east and north axes, while G(2)

and G(4) represent the corresponding velocities.

https://github.com/modestyachts/robust-control-from-vision
https://github.com/modestyachts/certainty_equiv_perception_control
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(a) (b)

Figure 4.2: In (a), visual inputs {IC} for the synthetic (left) and CARLA (right) examples.

In (b), the nominal trajectory the synthetic circle (left) and simulated vehicle (right) are

driven to follow.

Robust Controllers
We begin with an evaluation of robust control methods. Here, we compare a synthetic ex-

ample to a complex autonomous driving example. The synthetic example uses generated

64×64pixel images of amoving blurrywhite circle on a black background; the complex ex-

ample uses 800× 600 pixel dashboard camera images of a vehicle in the CARLA simulator

platform [DRCLK]. Figure 4.2(a) shows representative images seen by the controllers.

Training andvalidation trajectories are generatedbydriving the systemwith anoptimal

state feedback controller (i.e. where measurement y = x) to track a desired reference

trajectory r+���, where r is a nominal reference, and ��� is a random norm bounded random

perturbation satisfying ‖�C ‖ ≤ 0.1.

We consider three different perception maps: a linear map for the synthetic example

and both visual odometry and a convolutional neural net for the CARLA example. For

the CNN, we collect a dense set of training examples around the reference to train the

model. We use the approach proposed by Coates and Ng [CN12] to learn a convolutional

representation of each image: each resized and scaled image is passed through a single

convolutional, ReLU activation, and max pooling layer. We then fit a linear map of

these learned image features to position and heading of the camera pose. We require

approximately 30, 000 training points. During operation, pixel-data I is passed through

the CNN, and the position estimates H are used by the controller. We note that other more

sophisticated architectures for feature extraction would also be reasonable to use in our

control framework; we find that this one is conceptually simple and sufficient for tracking

around our fixed reference.

To perform visual odometry, we first collect images from known poses around the

desired reference trajectory. We then use ORB SLAM [MMT15] to build a global map of

visual features and adatabase of reference imageswith knownposes. This is the “training”

phase. We use one trajectory of 200 points; the reference database is approximately this

size. During operation, an image I is matched with an image I8 in the database. The

re-projection error between the matched features in I8 with known pose G8 and their

corresponding features in I is then minimized to generate a pose estimate. For more

details on standard visual odometry methods, see [SF11]. We highlight that modern
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Figure 4.3: (top) Test perception error ‖?(I)−�G‖ vs. distance to the nearest training point
‖G − G8 ‖; and (bottom) median tracking error for 200 rollouts using the (a) linear map on

synthetic images, (b) SLAM and (c) CNN on CARLA dashboard images. Error bars show

upper and lower quartiles.

visual SLAM algorithms incorporate sophisticated filtering and optimization techniques

for localization in previously unseen environments with complex dynamics; we use a

simplified algorithm under this training and testing paradigm in order to better isolate

the data dependence.

We then estimate safe regions for all threemaps. In the toppanels of Figure 4.3we show

the error profiles as a function of distance to the nearest training point for the linear (left),

SLAM (middle), and CNN (right) maps. We see that these data-dependent localization

schemes exhibit the local slope bounded property posited in Section 4.2.

We compare robust synthesis to the behavior of nominal controllers that do not take into

account the nonlinearity in themeasurementmodel. In particular, we compare the perfor-

mance of naively synthesized LQG and ℒ1 optimal controllers with controllers designed

with the robustness condition (4.2.5). To make the synthesis computationally tractable,

we take a finite approximation, restricting the system responses (Φxw,Φxv,Φuw,Φuv) to
be finite impulse response (FIR) transfer matrices of length ) = 200, i.e., we enforce that

Φ()) = 0. We then solve the resulting optimization problem with MOSEK under an

academic license [ApS19]. For further details on formulating control synthesis problems,

refer to Chapter 2.

The bottom panels of Figure 4.3 show that the robustly synthesized controllers remain

within a bounded neighborhood around the training data. On the other hand, the nominal

controllers drive the system away from the training data, leading to a failure of the

perception and control loop. We note that although visual odometry may not satisfy

smoothness assumptions when the feature detection and matching fails, we nevertheless

observe safe system behavior, suggesting that using our robust controller, no such failures

occur.
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Figure 4.4: Coverage of training data for (a) UAV and (c) autonomous driving settings. In

(b), example observations taken from positions indicated by yellow stars.

Certainty Equivalent Control
Wenow turn to an evaluation of certainty equivalent control. We compare theUAVand car

environments. In both cases, observations are 300×400 pixel RGB images generated using

the CARLA simulator [DRCLK]. For the UAV setting, we fix the height and orientation

of the camera so that it faces downward from an elevation of 40m. For the autonomous

driving setting, the height is fixed to ground level and the orientation is determined by

the car’s velocity. Figure 4.4b shows example observations.

For the UAV, the rendered image depends only on the position, with a scale factor of

20 to convert into meters in CARLA coordinates. For the car example, observations are

determined as a function of vehicle pose, and thus additionally depend on the heading

angle. We defined the heading to be arctan(G(4)/G(2)), so the rendered image depends on

the position as well as velocity state variables. For the driving setting, the scale factor is

11.

We construct training trajectories by applying a static reference tracking controller to

trace circles of varying radius. For the training phase, the noisy sensor as gives rise to

measurements Htrain

C = �GC+EC where EC is generated by clipping aGaussianwith standard

deviation 0.01 between −1 and 1. We use the static reference tracking controller:

DC =  (ĜC − �†Href

C ),
where the state estimate is computed as in (2.2.6). The feedback parameter  is generated

as the optimal LQR controller when costs are specified as & = �>� and ' = � while

the estimation parameter ! is generated as the optimal infinite horizon Kalman filter for

process noise with covariance, = � and measurement noise with covariance + = 0.1 · �.
We use the periodic reference

Href

C =
[
0C sin(2�C/100) 0C cos(2�C/100)

]>
, 0C = 1.75 + 0.125 (bC/100c mod 4)

which traces circles counterclockwise, ranging in radius from 1.75 to 2.25, or 35-45m

for the UAV and 19.25-24.75m for the car. We collect training data for 0 ≤ C ≤ ) =
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(a) Perception errors over region
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Figure 4.5: In (a), heatmaps illustrate perception errors. In (b), median and 99th percentile

errorswithin the inner (37-42m radius) and outer (25-55m radius, excluding inner) regions

of training data.

2, 000. Figure 4.4a and 4.4c display the positions from which training observations and

measurements are collected. Notice that for the car, this strategy results in a sparsely

sampled measurement subspace.

We consider four types of perception predictors:

• Nadarya-Watson (NW): The estimated position is computed based on training data

as in (4.4.2) where 3I(I, IC) = ‖I − IC ‖2 is the ℓ2 distance on raw pixels. The only

hyperparameter is the bandwidth �.

We investigated a few additional metrics based on ℓ2 distance between transformed
pixels, but did not observe any benefits. The transformations we considered were:

pretrained Resnet-18 features,1 Gaussian blur,2 and edge detection-type filters.3

• Kernel Ridge Regression (KRR): The estimated position is computed as

?(I) =
[
(Htrain

0
)> . . . (Htrain

)
)>

]
(�� +  )−1

[
:(I0, I) . . . :(I) , I)

]>
where the kernel matrix  is defined from the training data with  8 9 = :(I8 , I 9) and
we use the radial basis function kernel, :(I, I′) = 4−‖I−I

′‖2
2 . The hyperparameters

are regularization � and spread .

• Visual Odometry (VO): This structured method relies on a database of training

images with known poses, which we construct using ORB-SLAM [MMT15], and

calibrate to the world frame using position measurements {Htrain

C } which determine

scale and orientation. We use only the first 200 training data points to initialize this

database.

New observations I are matched with an image IC in the training data based on

“bag of words” image descriptor comparison. Then, the camera pose is estimated

1https://github.com/christiansafka/img2vec
2https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.

gaussian
3https://scikit-image.org/docs/stable/api/skimage.filters.html

https://github.com/christiansafka/img2vec
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.gaussian
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.gaussian
https://scikit-image.org/docs/stable/api/skimage.filters.html
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to minimize the re-projection error between matched features in I and IC , and from

this we extract the position estimate ?(I).

• Simultaneous Localization and Mapping (SLAM): This structured method pro-

ceeds very similarly to the VO method described above, with two key differences.

First, all new observations I are added to the database along with training images.

Second, pose estimates are initialized based on the previous frame, resulting in a

temporal component. We implement this method by running ORB-SLAM online.

These additional methods allow for comparison with a classical nonparametric approach,

a classical computer vision approach, and a non-static state-of-the-art approach.

We evaluate the learned perception maps on a grid of 2, 500 points, with −2.5 ≤
G(1), G(3) ≤ 2.5. For the car, we set the angle of the grid points as arctan(−G(1)/G(3)) to
mimic counter-clockwise driving, which results in a best-case evaluation of the learned

perception components. For SLAM evaluation, the ordering of each evaluated point mat-

ters. We visit the grid points by scanning vertically, alternating upwards and downwards

traversal. ForNWandKRR,we choose hyperparameters which result in low errorswithin

the region covered by training samples. In the UAV setting, we used � = 25, 000,  = 10
−9
,

and � = 0.111. In the car setting, we used � = 16666.67.

The resulting errors are displayed for the UAV in Figure 4.5a and for the car in Fig-

ure 4.6a. The error heat maps are relatively similar for the three static regressors, with

small errors within the training data coverage and larger errors outside of it. Though VO

has very small errors at many points, its heat map looks much noisier. The large errors

come from failures of feature matching within a database of key frames from the training

data; in contrast, NWandKRRpredictions are closely related to ℓ2 distance between pixels,

leading to smoother errors. Because SLAM performs mapping online, it can leverage the

unlabeled evaluation data to build out good perception away from training samples. In

the UAV setting, SLAM has high errors only due to a tall building obstructing the camera

view, visible in Figure 4.4b. Similarly, in the driving setting, a wall and a statue obstruct

the view in the locations that SLAM exhibits large errors. Figure 4.5b and 4.6b summarize

the evaluations by plotting the median and 99th percentile errors in the inner region of

training coverage compared with the outer region.
Finally, we evaluate the closed-loop performance of the predictors by using them for a

reference tracking task. We consider reference trajectories of the form

Href

C =
[
0 sin(2�:/100) 2 cos(2�:/100)

]>
(4.6.2)

and a static reference tracking controller which has the same parameters as the one used

to collect training data.

We first examine how changes to the reference trajectory lead to failures in Figure 4.7.

For the UAV setting, NW with dense sampling is sufficient to allow for good tracking of

the reference with 0 = 1.9, but tracking fails when trying to track a reference outside the

sampled region with 0 = 1.6. As the reference signal drives the system into a sparsely
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(a) Perception errors over region
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Figure 4.6: In (a), heatmaps illustrate perception errors. In (b), median and 99th percentile

errors within the inner (20.35-23.1m radius) and outer (13.75-30.25m radius, excluding

inner) regions of training data.

sampled region, errors increase until eventually the UAV exits the region covered by

training data. Once this occurs, the system loses stability due to the perception failure.

Despite briefly regaining perception, the system does not recover.

The autonomous driving setting illustrates failure modes that arise for nonparametric

predictors when training data is not dense. The trajectories in Figure 4.8 show that

even though the reference is contained within the well-sampled region (0 = 1.9), NW

experiences failures due to neglecting to densely sample with respect to angle. Errors

cause the system to deviate from the reference, and eventually the system exits the region

covered by training data, losing stability due to the perception failure. SLAM does not

have this problem.

4.7 Conclusion and Open Problems
Though standard practice is to treat the output of a perception module as an ordinary

signal, this may only be justifiable in high-data and low-error settings. We have demon-

strated both in theory and experimentally that accounting for the inherent uncertainty of

perception-based sensors can improve the performance of the resulting control loop. We
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Figure 4.7: Two different reference trajectories for the UAV with NW perception lead to a

success and a failure. Left, reference and actual trajectories. Right, predicted (solid) and

actual (dashed) positions for the failed tracking example.
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Figure 4.8: Two different predictors lead to a success and a failure of reference tracking for

the car. Left, reference and actual trajectories for NW and SLAM. Right, predicted (solid)

and actual (dashed) positions for NW.

developed a sample complexity bound for the case that the perception map is learned via

nonparametric regression, and showed that using it in a control loop without accounting

for its errors is valid for sufficiently dense training data. Our result depends exponen-

tially on the dimension of the measurement space, highlighting that closed-loop stability

requires onerous learning guarantees. The setting we consider incorporates both a lack of

direct state observation and nonlinearity, making it relevant to modern robotic systems.

We hope that future work will continue to probe this problem setting to rigorously

explore relevant trade-offs. One direction for future work is to contend with the sampling

burden by collecting data in a more goal-oriented manner, perhaps with respect to a

target task or the continuity of the observation map. It is also of interest to consider

extensions which do not rely on the supervision of a noisy sensor or make clearer use of

the structure induced by the dynamics on the observations. One path forwardwould be to

assume that the training labels were the result of a state estimation process. Making closer

connections with modern computer vision methods like SLAM could lead to insights

about unsupervised and semi-supervised learning, particularly when data has known

structure. Another direction is to relax the assumption that the dynamics are known a

priori, making use of recent results for linear system identification.

We further hope to highlight the challenges involved in adapting learning-theoretic

notions of generalization to the setting of controller synthesis. First note that if we collect

data using one controller, and then use this data to build a new controller, there will be

a distribution shift in the observations seen between the two controllers. Any statistical

generalization bounds on performance must necessarily account for this shift. Second,

from a more practical standpoint, most generalization bounds require knowing instance

specific quantities governing properties of the class of functions we use to fit a predictor.

Hence, they will include constants that are not measurable in practice. This issue can

perhaps be mitigated using some sort of bootstrap technique for post-hoc validation.

However, we note that the sort of bounds we aim to bootstrap are worst case, not average

case. Indeed, the bootstrap typically does not even provide a consistent estimate of the

maximumof independent randomvariables, see for instance [BF81], andCh 9.3 in [Che11].

Other measures such as conditional value at risk require billions of samples to guarantee

five 9s of reliability [RU+00]. We highlight these issues only to point out that adapting
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statistical generalization to robust control is an active area with many open challenges to

be considered in future work.

4.8 Omitted Proofs
In this section, we provide proofs and intermediate lemmas. To begin, recall the pointwise

error bound presented in Lemma 4.4.1. Its proof relies on the following concentration

result, which allows us to handle training data collected from the closed-loop system.

Care is needed because DC depends on H0:C , and a result, IC = 6(GC) will depend on

previous noise variables E: for : < C.

Lemma 4.8.1 (adapted fromCorollary 1 in [APS11]). Let (ℱC)C≥0 be a filtration, let (+C)C≥0 be a
real-valued stochastic process adapted to (ℱC), and let (,C)C≥1 be a real-valued martingale difference
process adapted to (ℱC). Assume that,C | ℱC−1 is conditionally sub-Gaussian with parameter �.
Then for all ) ≥ 0, with probability 1 − �,

 )∑
:=1

+C,C

2

2

≤ 2�2

log

©«
√∑)

C=1
+2

C

�

ª®®¬
(
1 +

)∑
C=1

+2

C

)
.

Proof of Lemma 4.4.1. Recall that the error can be bounded by an approximation term

and a noise term:

‖?(I) − ?★(I)‖ =
 )∑
C=0

��(IC , I)
B)(I)

(�GC + EC) − �G


≤
 )∑
C=0

��(IC , I)
B)(I)

(�GC − �G)
 +  )∑

C=0

��(IC , I)
B)(I)

EC

 .
The approximation error is bounded by the weighted average value of ‖�GC − �G‖ for

points in the training set that are close to the current observation. Using the continuity of

the map ? from observations to labels, we have that

��(IC , I) > 0 =⇒ 3I(IC , I) ≤ � =⇒ ‖�GC − �G‖ ≤ �!? .

This provides an upper bound on the average.

Turning to the measurement error term, we begin by noting that

%

( )∑
C=0

��(IC , I)
B)(I)

EC

 ≥ B) ≤ 3∑
8=1

%

(
1

B)(I)

��� )∑
C=0

��(IC , I)EC ,8
��� ≥ B) . (4.8.1)
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We then apply Lemma 4.8.1 with ℱC = G0:C , +C = ��(IC , I), and,C = EC ,8 . Note that EC ,8 is

�E/2 sub-Gaussian due to the fact that it is bounded. Therefore, with probability at least

1 − �/32
,

1

B)(I)

��� )∑
C=0

��(IC , I)EC ,8
��� ≤ �E

2B)(I)

√√√√√
2 log

©«3
2

�

√√√
)∑
:=0

��(IC , I)2
ª®¬ (1 +

)∑
:=0

��(IC , I)2)

(a)

≤ �E
2

√
2 log

(
32

�

√
B)(I)

) √
1 + B)(I)
B)(I)

(b)

≤ �E

√√√
log

(
32

√
B)(I)/�

)
B)(I)

,

where (a) holds since �� ≤ 1, and (b) since B)(I) ≥ 1 implies that

√
1+B) (I)
B) (I) ≤

√
2

B) (I) . Then

with probability 1 − �,

 )∑
C=0

��(IC − I)
B)(I)

EC

 ≤ �E

√√√
log

(
32

√
B)(I)/�

)
B)(I)

. (4.8.2)

Since Lemma 4.4.1 is only useful for bounding errors for a finite collection of points,

we now prove a similar bound that holds over all points. While it is possible to use the

following result in a data-driven way (with I8 = IC and � = )), we will use it primarily

for our data independent bound.

Lemma 4.8.2. Consider the setting of Lemma 4.4.1. Let {I8}�8=1
be any arbitrary set of observations

with B)(I8) ≠ 0. Then for all I, the learned perception map has bounded errors with probability at
least 1 − �:

‖?(I) − ?★(I)‖ ≤�!? +min

8

�E√
B)(I8)

√
log

(
32�

√
B)(I8)/�

)
+ 2�E)

B)(I8)
!�

�
3I(I, I8) . (4.8.3)

Proof. To derive a statement which holds for uncountably many points, we adapt the

proof of Lemma 4.4.1. Previously, we used the fact that the error can be bounded by an

approximation term and a noise term. Now, we additionally consider a continuity term
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so that for any 1 ≤ 8 ≤ �,

‖?(I) − ?★(I)‖ ≤
 )∑
C=0

��(IC , I)
B)(I)

(�GC − �G)
 +  )∑

C=0

��(IC , I8)
B)(I8)

EC


+

 )∑
C=0

��(IC , I)
B)(I)

EC −
��(IC , I8)
B)(I8)

EC


≤ �!? +

�E√
B)(I8)

√
log

(
32�

√
B)(I8)/�

)
+

 )∑
C=0

��(IC , I)
B)(I)

EC −
��(IC , I8)
B)(I8)

EC

 .
The final line holds for all I8 with probability at least 1 − � · �/�, following the logic of

the proof of Lemma 4.4.1 along with a union bound. Now, consider the third term and

the boundedness of the noise: )∑
C=0

��(IC , I)
B)(I)

EC −
��(IC , I8)
B)(I8)

EC

 ≤ �E

)∑
C=0

�����(IC , I)
B)(I)

−
��(IC , I8)
B)(I8)

��� .
Using the fact that each term in the expression is nonnegative,�����(IC , I)

B)(I)
−
��(IC , I8)
B)(I8)

��� = 1

B)(I8)

��� B)(I8)
B)(I)

��(IC , I) − ��(IC , I8)
���

≤ 1

B)(I8)
(����(IC , I) − ��(IC , I8)�� + ��� B) (I8)B) (I) − 1

�����(IC , I))
Using the smoothness of the kernel, we have that

|��(IC , I) − ��(IC , I8)| =
���� (

3I(IC ,I)
�

)
− �

(
3I(IC ,I8)

�

) ��� ≤ !���� 3I(IC ,I)−3I(IC ,I8)�

��� ≤ !�
�
3I(I, I8)

where the final inequality uses the fact that 3I is a metric. Additionally, we have that���1 − B) (I8)
B) (I)

��� = 1

B)(I)
|B)(I) − B)(I8)|

≤ 1

B)(I)

)∑
C=0

|��(IC , I) − ��(IC , I8)|

≤ 1

B)(I)
!�

�
)3I(I, I8)
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Therefore,
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−
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��� ≤ )∑
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1
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(
)
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�
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�
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3I(I, I8)

=
2)

B)(I8)
!�

�
3I(I, I8)

The result follows.

Proof of Lemma 4.4.2. We begin by establishing some properties of the training data gen-

erated by Algorithm 2.

ℎ(IC) = ℎ(I=,ℓ ) = �G=,ℓ

=

=∑
:=1

�ΦGF(:)�Dref

=−:,ℓ + �ΦGF(= + 1)G0 +
=∑
:=1

�ΦGF(:)�F=−:,ℓ + �ΦG=(:)�=−:,ℓ

=
[
�ΦGF(1)� . . . �ΦGF(=)

]
�

[
�ΦGF(1)� . . . �ΦGF(=)�

]†
Href

ℓ + �ℓ
= Href

ℓ + �ℓ

where in the second line, we use the fact that (�, �, �) is output controllable. In this

expression, Href

ℓ
is sampled by Algorithm 2 uniformly from {H | ‖H‖ ≤ Γ̄} and

‖�ℓ ‖ ≤ ‖�ΦGF(ℓ + 1)‖‖G0‖ +
=∑
ℓ=1

‖�ΦGF(ℓ )‖‖�F=−ℓ ‖ + ‖�ΦG=(ℓ )‖‖E=−ℓ ‖

≤ "
(
�0�

=+1 + (�F + �E)
=∑
ℓ=1

�ℓ
)
≤ "�

1 − � .

where we let � = max{�0, �F , �E}
Now, we reason about the density of the training data over the measurement sub-

space. Above, we see that �G=,ℓ = �GC are generated as the sum of two indepen-

dent random variables. The first is a uniform random variable which has density

5Unif(H) = (2Γ̄)−31{‖H‖ ≤ Γ̄}. The second is a bounded random variable, so the sup-

port of its density 5�(H) is contained within the set {‖H‖ ≤ "�
1−� }.
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We now upper and lower bound the density of each �GC , which we denote as 5 .

5 (H) =
∫ ∞

−∞
(2Γ̄)−31{‖D‖ ≤ Γ̄} 5�(D − H)3D

= (2Γ̄)−3
∫
‖D+H‖≤Γ̄

5�(D)3D

≤ (2Γ̄)−3 .

5 (H) = (2Γ̄)−3
∫
‖D+H‖≤Γ̄

5�(D)3D

≥ (2Γ̄)−31{‖H‖ ≤ Γ̄ − "�
1−� }

∫
‖D‖≤ "�

1−�

5�(D)3D

= (2Γ̄)−31{‖H‖ ≤ Γ̄ − "�
1−� } .

The inequality follows bynoting that {‖D‖ ≤ "�
1−� } ⊆ {‖D+H‖ ≤ Γ̄}whenever ‖H‖ ≤ Γ̄−"�

1−� .

We now turn our attention to finding a lower bound on B)(I) =
∑)
C=1

��(I, @(�GC)).
We will use Bennett’s inequality [Ben62], which requires computing the expectation and

second moment of each ��(I, @(�GC)). We begin by lower bounding the expected value.

E�GC [��(I, @(�GC))] =
∫

 
(
3I(@(H),@(D))

�

)
5 (?★(D))3D

(a)

≥ (2Γ̄)−3
∫
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1−� }
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)
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= (2Γ̄)−3
∫

�
(
!@ ‖?★(I)−D‖

�

)
3D

(d)

=
�3

(2Γ̄!@)3

∫
� (‖D‖) 3D

(e)

=

(
�

2Γ̄!@

)3
2
3+�

where (a) follows by the lower bound on 5 (H), (b) follows by the smoothness of 6, (c) holds

as long as ‖?★(I)‖ ≤ Γ̄ − "�
1−� −

�
!@

which is guaranteed for ‖?★(I)‖ ≤ Γ by assumption, (d)

is a result of a change of variables, and (e) follows by the assumption on �. Turning to the
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second moment,

E�GC [��(I, @(�GC))2] =
∫

�
(
3I(@(H),@(D))

�

)
2

5 (?★(D))3D

(a)

≤ (2Γ̄)−3
∫

�
(
3I(I,@(D))
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2

3D

(b)
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∫
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�!?
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)3 ∫
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(
�!?

Γ̄

)3
+�

where (a) follows by the upper bound on 5 (H), (b) follows by the smoothness of ?★ and

the fact that � ∈ [0, 1], and (c) by a change of variables.

We now bound the deviation

%

(
B)(I) ≤ )

(
�

Γ̄!@

)3
+� − �

)
= %

(
)∑
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((
�

Γ̄!@

)3
+� − ��(I, IC)

)
≥ �

)
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≤ %
(
)∑
C=1

E[��(I, IC)] − ��(I, IC) ≥ �

)
(b)

≤ 4−�2/(2)( �!?
Γ̄
)3+�)

where (a) follows by our lower bound on the expectation and (b) follows by a one-side

version of Bennet’s inequality for nonnegative random variables, which uses the fact that

��(I, IC) ⊥ ��(I, I:) for : ≠ C.
Therefore, with probability at least 1 − �,

B)(I) ≥ )+�

(
�

Γ̄!@

)3
−

√
2+�) log(1/�)

(
�!?
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) 3
2

≥ 1

2

√
)+�

(
�
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) 3
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,

where the second inequality holds under the assumption that ) ≥ 8+−1

� log(1/�)
(
Γ̄!?!

2

@

�

)3
.

Wearenowready to showthemain result by combiningLemma4.8.2withLemma4.4.2.



CHAPTER 4. PERCEPTION-BASED CONTROL 94

Proof of Theorem 4.4.3. Webegin by specifying the set of {I8} to be used in the application

of Lemma 4.8.2. By selecting I8 = @(H8) for {H8}�8=1
defined as an � grid of {H | ‖H‖ ≤ Γ},

we have that for any I, min8 3I(I, I8) ≤ min8 !? ‖?★(I) − H8 ‖ ≤ !?�. Then notice that an �

grid requires � ≥ (2Γ/�)3 points, or rearranging, that � ≤ 2Γ�−1/3
. Therefore, we have

that with probability at least 1 − �/2

‖?(I) − ?★(I)‖ ≤�!? +
�E√
B)(I8★)

√
log

(
232�

√
)/�

)
+ 4�E

)

B)(I8★)
!�

�
!?Γ�

−1/3 , (4.8.4)

where 8★ is the index of the closest element of {I8}�8=1
to I.

Next, we use Lemma 4.4.2 to show that each B)(I8★) is bounded below. First, notice

that for Γ̄ =
√

2Γ the condition in Lemma 4.4.2 is met by the assumption that � ≤ !@((
√

2−
1)Γ− "�

1−� ). Therefore for any 1 ≤ 8 ≤ �, with probability at least 1−� · �/(2�), as long as
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� log(2�/�)
(
Γ̄!?!

2
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,
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1

2

√
)+�

(
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) 3
2

=: B)�
3
2 . (4.8.5)

We can therefore select � to balance terms, with

�1/3 =
4)!�!?Γ

√
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√
2)3/4!�!?Γ

3+4
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. (4.8.6)

For this choice of �, we have by union bound that with probability at least 1 − �,
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log

(
232�
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Bounding the logarithmic term,
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where the first inequality follows because 32/3 ≤ 3/
√

2 and the final inequality follows

due to the assumption that (24!�!?)
4

3+
− 1

3

�

(
Γ
�

) 3+4

3

!
3
3

@ ≤ ).
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The result follows. It only remains to note that the condition on ) in Lemma 4.4.2 is

satisfied due to the assumption that

) ≥ 8+−1

� 3 log()2/�)
(
Γ̄!?!

2

@

�

)3
by noting that log(2�/�) ≤ log(232�

√
)/�) ≤ 3 log()2/�).

Proof of Corollary 4.5.2. To show this result, we combine the expressions inTheorem4.4.3

and Proposition 4.5.1 for a carefully chosen value of �. To balance the terms, we set

(recalling that Γ̄ =
√

2Γ = 2Γmax(Φ))

�(3+4)/4 =
31/2�E
!?
√
B)
=

√
231/2�E(2Γmax(Φ)!@)

3
4

!?()+�)
1

4

Returning to the unsimplified bound (4.8.7), this choice of � results in

‖?(I) − ?★(I)‖ ≤(2Γmax(Φ)!@!?)
3
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432�4
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1

3
log

(
232�

√
)/�

)
+ 1√

3
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)
. (4.8.8)

We begin by simplifying the first term. Note that since ?★ ◦ @ is an identity map, !?!@ ≥ 1,

so (2Γmax(Φ)!@!?)
3
3+4 ≤ 2Γmax(Φ)!@!? since Γmax(Φ) ≥ 1/2 by assumption.

Next, considering the the logarithmic term:

log
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√
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)
where the first inequality follows because 32/3−1/2 ≤ 1.5 and the final inequality is true as

long as (24!�!
2

?Γmax(Φ)�−1

E )2 ≤ ). Further simplifying,√
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The resulting error bound is

‖?(I) − ?★(I)‖ ≤ 4!@!?Γmax(Φ)
(
432�4

)

) 1

3+4
√

log()2/�) =: �? . (4.8.9)

Then the result follows by Proposition 4.5.1 as long as ) ≥ max{)1, )2, )3, )4}, where

we ensure that the simplification in the logarithm above is valid with

)1 = (24!�!
2

?Γmax(Φ)�−1

E )2,
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.

For large enough values of ), )4 will dominate.
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Part II

Feedback in Social-Digital Systems
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Chapter 5

Fairness and Wellbeing in Consequential
Decisions

5.1 Introduction
In this chapter, we turn our attention from the continuous control of linear systems

to making consequential decisions about individuals. We formally examine the impact
of these decisions on populations, and ask whether fairness criteria promote the long-

term well-being of disadvantaged groups as measured in terms of a temporal variable

of interest. Going beyond the standard classification setting, we introduce a one-step

feedback model of decision making that exposes how decisions change the underlying

population over time. We further consider welfare-aware machine learning as an inherently

multi-objective problem that requires explicitly balancing decision outcomes against the

primary objective. This chapter uses material first presented in papers coauthored with

Daniel Björkegren, Joshua Blumenstock, Moritz Hardt, Lydia T. Liu, Esther Rolf, and Max

Simchowitz [LDRSH18; RSD+20].

Our running example is a hypothetical lending scenario. There are two groups in the

population with features described by a summary statistic, such as a credit score, whose

distribution differs between the two groups. The bank can choose thresholds for each

group at which loans are offered. While group-dependent thresholds may face legal

challenges [RY06], they are generally inevitable for some of the criteria we examine. The

impact of a lending decision has multiple facets. A default event not only diminishes

profit for the bank, it also worsens the financial situation of the borrower as reflected in

a subsequent decline in credit score. A successful lending outcome leads to profit for the

bank and also to an increase in credit score for the borrower.

When thinking of one of the two groups as disadvantaged, it makes sense to ask what

lending policies (choices of thresholds) lead to an expected improvement in the score

distribution within that group. An unconstrained bank would maximize profit, choosing

thresholds that meet a break-even point above which it is profitable to give out loans. One



CHAPTER 5. FAIRNESS AND WELLBEING IN CONSEQUENTIAL DECISIONS 99

frequently proposed fairness criterion, sometimes called demographic parity, requires

the bank to lend to both groups at an equal rate [e.g. CKP09; ZVRG17]. Subject to this

requirement the bank would continue to maximize profit to the extent possible. Another

criterion, originally called equality of opportunity, equalizes the true positive rates between

the two groups, thus requiring the bank to lend in both groups at an equal rate among

individuals who repay their loan [HPS16]. Other criteria are natural, but for clarity we

restrict our attention to these three.

We further study a natural class of selection policies that balance multiple objectives

(e.g., private profit and public welfare). We show that this class of score-based policies

has a natural connection to classifiers constrained to satisfy demographic parity and its

&-fair analog [EJJ+19].

Related Work
A growing literature highlights the inability of any one fairness definition to solve more

general concerns of social equity [CG18]. The impossibility of satisfying all desirable

criteria [KMR17; Cho17] and the unintended consequences of enforcing parity constraints

based on sensitive attributes [KNRW18] indicate that existing approaches to fairness in

machine learning are not a panacea for these adverse effects. Recent work byHu andChen

[HC20] contend that while social welfare is of primary concern in many applications,

common fairness constraints may be at odds with the relevant notion of welfare.

A line of recent work considers long term outcomes in settings inspired by education

and the labor market [HC18a; MOS19; LWH+20]. The equilibrium analysis of the dynam-

ics arising from repeated decisions and adaptions allows for specific conclusions relating

fairness criteria to long term outcomes. This style of analysis is reminiscent of economic

arguments for affirmative action [FV92], setting which has also been extensively studied

in the social sciences [see e.g., KBSW85; KDK06]. Complementary to this type of domain

specific analysis, our framework is general: by focusing on a single decision, we avoid the

need to model dynamics.

Ensign et al. [EFNSV18] consider feedback loops in predictive policing, where the

police more heavily monitor high crime neighborhoods, thus further increasing the mea-

sured number of crimes in those neighborhoods. While the work addresses an important

temporal phenomenon using the theory of urns, it is rather different from our one-step

feedback model both conceptually and technically. A growing literature on fairness in the

“bandits” setting of learning [see JKMR16, et sequelae] deals with online decision making

that ought not to be confused with our one-step feedback setting. Fuster et al. [FGRW17]

consider the problem of fairness in credit markets from a different perspective. Their

goal is to study the effect of machine learning on interest rates in different groups at an

equilibrium, under a static model without feedback. Ultimately, we advocate for a view

towards long term outcomes and the design of decision policies that prioritize impact

from the outset.
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The definition and measurement of welfare is an important and complex problem

that has received considerable attention in the social science literature [cf. Dea80; Dea16;

SSF09]. There, a standard approach is to sum up individual measures of welfare, to obtain

an aggregate measure of societal welfare. The separability assumption (independent

individual scores) is a standard simplifying assumption [e.g. Flo14] that appears in the

foundational work of Pigou [Pig20], as well as Burk [Bur38], Samuelson [Sam47], Arrow

[Arr63] and Sen [Sen73]. However, alternative forms of social welfare functions exist [e.g.

CO96] and may be of interest for future work.

Problem Setting
We consider two groups A and B, which comprise a 6A and 6B = 1− 6A fraction of the total

population, and an institution which makes a binary decision for each individual in each

group, called selection. Individuals in each group are assigned scores in X := [�], and the

scores for group j ∈ {A,B} are distributed according Dj ∈ Simplex
�−1

. The institution

selects a policy � := (�A ,�B) ∈ [0, 1]2� , where �j(G) corresponds to the probability the

institution selects an individual in group j with score G. One should think of a score as an

abstract quantity which summarizes how well an individual is suited to being selected;

examples are provided at the end of this section.

We assume that the institution is utility-maximizing, but may impose certain con-

straints to ensure that the policy � is fair, in a sense described in Section 5.2. We assume

that there exists a function u : X → R, such that the institution’s expected utility for a

policy � is given by

U(�) = E[u(G)] = ∑
j∈{A,B} 6j

∑
G∈X �j(G)Dj(G)u(G). (5.1.1)

Institutions will design policies which maximizeU , subject to fairness constraints.

Novel to this work, we focus on the effect of the selection policy � on the groups A and

B. We quantify these outcomes in terms of an average effect that a policy �j has on group j.
Formally, for a function �(G) : X → R, we define the average change of the mean score �j
for group j

Δ�j(�) := Ej[�(G)] =
∑
G∈XDj(G)�j(G)�(G) . (5.1.2)

We remark that many of our results also go through if Δ�j(�) simply refers to an abstract

change in well-being, not necessarily a change in the mean score. Furthermore, it is

possible tomodify the definition ofΔ�j(�) such that it directly considers outcomes of those

who are not selected.1 Lastly, we assume that the success of an individual is independent

1
If we consider functions �1(G) : X → R and �0(G) : X → R to represent the average effect of

selection and non-selection respectively, then Δ�j(�) :=
∑
G∈XDj(G)

(
�j(G)�1(G) + (1 − �j(G))�0(G)

)
. This

model corresponds to replacing �(G) in the original outcome definition with �1(G) − �0(G), and adding

a offset

∑
G∈XDj(G)�0(G). Under the assumption that �1(G) − �0(G) increases in G, this model gives rise

to outcomes curves resembling those in Figure 5.1 up to vertical translation. All presented results hold

unchanged under the further assumption that Δ�(�MaxUtil) ≥ 0.
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of their group given the score; that is, the score summarizes all relevant information about

the success event, so there exists a function 1 : X → [0, 1] such that individuals of score G

succeed with probability 1(G).
We now introduce the specific domain of credit scores as a running example in the

rest of the chapter, after which we present two more examples showing the general

applicability of our formulation to many domains.

Example 5.1 (Credit scores). In the setting of loans, scores G ∈ [�] represent credit scores,
and the bank serves as the institution. The bank chooses to grant or refuse loans to

individuals according to a policy�. Both bank and personal utilities are given as functions

of loan repayment, and therefore depend on the success probabilities 1(G), representing
the probability that any individual with credit score G can repay a loan within a fixed time

frame. The expected utility to the bank is given by the expected return from a loan, which

can bemodeled as an affine function of 1(G): u(G) = D+1(G)+D−(1−1(G)), where D+ denotes
the profit when loans are repaid and D− the loss when they are defaulted on. Individual

outcomes of being granted a loan are based on whether or not an individual repays the

loan, and a simple model for �(G)may also be affine in 1(G): �(G) = 2+1(G) + 2−(1− 1(G)),
modified accordingly at boundary states. The constant 2+ denotes the gain in credit score

if loans are repaid and 2− is the score penalty in case of default.

Example 5.2 (Advertising). A second illustrative example is given by the case of advertis-

ing agencies making decisions about which groups to target. An individual with product

interest score G responds positively to an ad with probability 1(G). The ad agency expe-

riences utility u(G) related to click-through rates, which increases with 1(G). Individuals
who see the ad but are uninterested may react negatively (becoming less interested in

the product), and �(G) encodes the interest change. If the product is a positive good

like education or employment opportunities, interest can correspond to well-being. Thus

the advertising agency’s incentives to only show ads to individuals with extremely high

interest may leave behind groups whose interest is lower on average. A related historical

example occurred in advertisements for computers in the 1980s, where male consumers

were targeted over female consumers, arguably contributing to the current gender gap in

computing.

Example 5.3 (College Admissions). The scenario of college admissions or scholarship

allotments can also be considered within our framework. Colleges may select certain

applicants for acceptance according to a score G, which could be thought encode a “college

preparedness” measure. The students who are admitted might “succeed” (this could be

interpreted as graduating, graduating with honors, finding a job placement, etc.) with

some probability 1(G) depending on their preparedness. The college might experience a

utility u(G) corresponding to alumnidonations, or positive ratingwhena student succeeds;

they might also show a drop in rating or a loss of invested scholarship money when a

student is unsuccessful. The student’s success in college will affect their later success,

which could be modeled generally by �(G). In this scenario, it is challenging to ensure
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that a single summary statistic G captures enough information about a student; it may be

more appropriate to consider G as a vector as well as more complex forms of 1(G).

While a variety of applications are modeled faithfully within our framework, there

are limitations to the accuracy with which real-life phenomenon can be measured by

strictly binary decisions and success probabilities. Such binary rules are necessary for the

definition and execution of existing fairness criteria, (see Sec. 5.2) and as we will see, even

modeling these facets of decision making as binary allows for complex and interesting

behavior.

5.2 Delayed Impact of Fair Decisions

The Outcome Curve
We now introduce important outcome regimes, stated in terms of the change in average

group score. Apolicy (�A ,�B) is said to cause active harm to group j ifΔ�j(�j) < 0, stagnation
if Δ�j(�j) = 0, and improvement if Δ�j(�j) > 0. Under our model, MaxUtil policies can be

chosen in a standard fashion which applies the same threshold policy �MaxUtil for both
groups, and is agnostic to the distributionsDA andDB. Hence, if we define

Δ�MaxUtilj := Δ�j(�MaxUtil) (5.2.1)

we say that a policy causes relative harm to group j if Δ�j(�j) < Δ�MaxUtilj , and relative
improvement if Δ�j(�j) > Δ�MaxUtilj . In particular, we focus on these outcomes for a dis-

advantaged group, and consider whether imposing a fairness constraint improves their

outcomes relative to the MaxUtil strategy. From this point forward, we take A to be

disadvantaged group.

Figure 5.1 displays the important outcome regimes in terms of selection rates

�j :=

∑
G∈X
Dj(G)�j(G) .

This succinct characterization is possiblewhen considering decision rules based on (possi-

bly randomized) score thresholding, inwhich all individualswith scores above a threshold

are selected. In Section 5.4, we justify the restriction to such threshold policies by showing it

preserves optimality. We further show that the outcome curve is concave, thus implying

that it takes the shape depicted in Figure 5.1. To explicitly connect selection rates to de-

cision policies, we define the rate function AD(�j) which returns the proportion of group

j selected by the policy. We show that this function is invertible for a suitable class of

threshold policies, and in fact the outcome curve is precisely the graph of the map from

selection rate to outcome � ↦→ Δ�A(A−1

DA
(�)). Next, we define the values of � that mark

boundaries of the outcome regions.
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Figure 5.1: The above figure shows the outcome curve. The horizontal axis represents the

selection rate for the population; the vertical axis represents the mean change in score. (a)

depicts the full spectrum of outcome regimes, and colors indicate regions of active harm,

relative harm, and no harm. In (b): a group that has much potential for gain, in (c): a

group that has no potential for gain.

Definition 5.1 (Selection rates of interest). Given the disadvantaged groupA, the following

selection rates are of interest in distinguishing between qualitatively different classes of

outcomes (Figure 5.1). We define:

• �MaxUtil as the selection rate for A under MaxUtil

• �0 as the harm threshold, such that Δ�A(A−1

DA
(�0)) = 0

• �∗ as the selection rate such that Δ�A is maximized

• � as theoutcome-complement of theMaxUtil selection rate,Δ�A(A−1

DA
(�)) = Δ�A(A−1

DA
(�MaxUtil))

with � > �MaxUtil

Decision Rules and Fairness Criteria
We will consider policies that maximize the institution’s total expected utility, potentially

subject to a constraint: � ∈ C ⊂ [0, 1]2� which enforces some notion of “fairness”. For-

mally, the institution selects�★ ∈ argmax U(�) s.t.� ∈ C. We consider the three following

constraints:

Definition 5.2 (Fairness criteria). Themaximum utility (MaxUtil) policy corresponds to the

null-constraint C = [0, 1]2� , so that the institution is free to focus solely on utility.



CHAPTER 5. FAIRNESS AND WELLBEING IN CONSEQUENTIAL DECISIONS 104

The demographic parity (DemParity) policy results in equal selection rates between both

groups. Formally, the constraint is C = {(�A ,�B) :

∑
G∈XDA(G)�A =

∑
G∈XDB(G)�B} .

The equal opportunity (EqOpt) policy results in equal true positive rates (TPR) between

both group, where TPR is defined as

TPRj(�) :=

∑
G∈XDj(G)1(G)�(G)∑
G∈XDj(G)1(G)

.

EqOpt ensures that the conditional probability of selection given that the individual will

be successful is independent of the population, formally enforced by the constraint

C = {(�A ,�B) : TPRA(�A) = TPRB(�B)} .

Just as the expectedoutcomeΔ� canbe expressed in termsof selection rate for threshold

policies, so can the total utility U . In the unconstrained cause, U varies independently

over the selection rates for group A and B; however, in the presence of fairness constraints

the selection rate for one group determines the allowable selection rate for the other. The

selection rates must be equal for DemParity, but for EqOptwe can define a transfer function,
�(A→B)

, which for every loan rate � in group A gives the loan rate in group B that has the

same true positive rate. Therefore, when considering threshold policies, decision rules

amount tomaximizing functions of single parameters. This idea is expressed in Figure 5.2,

and underpins the results to follow.

In order to clearly characterize the outcome of applying fairness constraints, we make

the following assumption.

Assumption 5.1 (Institution utilities). The institution’s individual utility function is more
stringent than the expected score changes, u(G) > 0 =⇒ �(G) > 0. (For the linear form presented
in Example 5.1, D−D+ <

2−
2+

is necessary and sufficient.)

This simplifying assumption quantifies the intuitive notion that institutions take a

greater risk by accepting than the individual does by applying. For example, in the credit

setting, a bank loses the amount loaned in the case of a default, but makes only interest in

case of a payback. Using Assumption 5.1, we can restrict the position of MaxUtil on the

outcome curve in the following sense.

Proposition 5.2.1 (MaxUtil does not cause active harm). Under Assumption 5.1,

0 ≤ Δ�MaxUtil ≤ Δ�∗ .

We defer the proof to Section 5.8, and the proofs of all subsequent results presented in

this section. The following results are corollaries to theorems presented in Section 5.5.

Prospects and Pitfalls of Fairness Criteria
We begin by characterizing general settings under which fairness criteria act to improve

outcomes over unconstrained MaxUtil strategies. For this result, we will assume that
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Figure 5.2: Both outcomes Δ� and institution utilities U can be plotted as a function of

selection rate for one group. The maxima of the utility curves determine the selection

rates resulting from various decision rules.

group A is disadvantaged in the sense that the MaxUtil acceptance rate for B is large

compared to relevant acceptance rates for A.

Corollary 5.2.2 (Fairness Criteria can cause Relative Improvement). (a) Under the assump-
tion that �MaxUtilA < � and �MaxUtilB > �MaxUtilA , there exist population proportions 60 < 61 < 1 such
that, for all 6A ∈ [60, 61], DemParity causes relative improvement, i.e. �MaxUtilA < �DemParityA < �.

(b) Under the assumption that there exist �MaxUtilA < � < �′ < � such that �MaxUtilB >

�(A→B)(�), �(A→B)(�′), there exist population proportions 62 < 63 < 1 such that, for all 6A ∈
[62, 63], EqOpt causes relative improvement, i.e. �MaxUtilA < �EqOptA < �.

This result gives the conditions under whichwe can guarantee the existence of settings

in which fairness criteria cause improvement relative to MaxUtil. Relying on machinery

proved in Section 5.5, the result follows from comparing the position of optima on the

utility curve to the outcome curve. Figure 5.2 displays a illustrative example of both

the outcome curve and the institutions’ utility U as a function of the selection rates in

group A. In the utility function (5.1.1), the contributions of each group are weighted by

their population proportions 6j, and thus the resulting selection rates are sensitive to these

proportions.

As we see in the remainder of this section, fairness criteria can achieve nearly any

position along the outcome curve under the right conditions. This fact comes from the

potential mismatch between the outcomes, controlled by�, and the institution’s utilityU ,

controlled by u.
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The next result implies that DemParity can be bad for long termwell-being of the disad-

vantaged group by being over-eager, under the mild assumption that Δ�A(�MaxUtilB ) < 0:

Corollary 5.2.3 (DemParity can cause harm by being over-eager). Fix a selection rate �.
Assume that �MaxUtilB > � > �MaxUtilA . Then, there exists a population proportion 60 such that,
for all 6A ∈ [0, 60], �DemParityA > �. In particular, when � = �0, DemParity causes active harm,
and when � = �, DemParity causes relative harm.

The assumptionΔ�A(�MaxUtilB ) < 0 implies that a policywhich selects individuals from

group A at the selection rate that MaxUtilwould have used for group B necessarily lowers

average score in A. This is one natural notion of disadvantaged group A’s ‘disadvantage’
relative to group B. In this case, DemParity penalizes the scores of group A even more

than a naive MaxUtil policy, as long as group proportion 6A is small enough. Again, small

6A is another notion of group disadvantage.

Using credit scores as an example, Corollary 5.2.3 tells us that an overly aggressive

fairness criterion will give too many loans to individuals in a disadvantaged group who

cannot pay them back, hurting the group’s credit scores on average. In the following

theorem, we show that an analogous result holds for EqOpt.

Corollary 5.2.4 (EqOpt can causeharmbybeingover-eager). Suppose that �MaxUtilB > �(A→B)(�)
and � > �MaxUtilA . Then, there exists a population proportion 60 such that, for all 6A ∈ [0, 60],
�EqOptA > �. In particular, when � = �0, EqOpt causes active harm, and when � = �, EqOpt
causes relative harm.

We remark that in Corollary 5.2.4, we rely on the transfer function, �(A→B)
, which for

every loan rate � in group A gives the loan rate in group B that has the same true positive

rate. Notice that if �(A→B)
were the identity function, Corollary 5.2.3 and Corollary 5.2.4

would be exactly the same. Indeed, our framework (detailed in Section 5.5) unifies the

analyses for a large class of fairness constraints that includes DemParity and EqOpt as

specific cases, and allows us to derive results about impact onΔ�using general techniques.

Fairness Under Measurement Error
Next, consider the implications of an institution with imperfect knowledge of scores.

Under a simple model in which the estimate of an individual’s score - ∼ D is prone to

errors 4(-) such that - + 4(-) =: -̂ ∼ D̂. Constraining the error to be negative results

in the setting that scores are systematically underestimated. In this setting, it is equivalent

to consider the CDF of underestimated distribution D̂ to be dominated by the CDF true

distribution D, that is

∑
G≥2 D̂(G) ≤

∑
G≥2D(G) for all 2 ∈ [�]. Then we can compare the

institution’s behavior under this estimation to its behavior under the truth.

Proposition 5.2.5 (Underestimation causes under-selection). Fix the distribution of B asDB
and let � be the acceptance rate of A when the institution makes the decision using perfect knowledge
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of the distribution DA. Denote �̂ as the acceptance rate when the group is instead taken as D̂A.
Then �MaxUtilA > �̂MaxUtilA and �DemParityA > �̂DemParityA . If the errors are further such that the true
TPR dominates the estimated TPR, it is also true that �EqOptA > �̂EqOptA .

Because fairness criteria encourage a higher selection rate for disadvantaged groups

(Corollary 5.2.2), systematic underestimation widens the regime of their applicability.

Furthermore, since the estimated MaxUtil policy under-loans, the region for relative im-

provement in the outcome curve (Figure 5.1) is larger, corresponding to more regimes

under which fairness criteria can yield favorable outcomes. Thus the potential for mea-

surement error should be a factor when motivating these criteria.

5.3 Impact-Aware Decisions

Outcome-Based Alternative
We have seen how fairness criteria may actively harm disadvantaged groups. It is thus

natural to consider a modified decision rule which involves the explicit maximization of

Δ�A. In this case, imagine that the institution’s primary goal is to aid the disadvantaged

group, subject to a limited profit loss compared to the maximum possible expected profit

UMaxUtil. The corresponding problem is as follows.

max

�A
Δ�A(�A) s.t. UMaxUtilA −UA(�) < � . (5.3.1)

Unlike the fairness constrained objective, this objective no longer depends on group B and

instead depends on our model of the mean score change in group A, Δ�A.

Proposition 5.3.1 (Outcome-based solution). In the above setting, the optimal policy �A is a
threshold policy with selection rate � = min{�∗, �max}, where �∗ is the outcome-optimal loan rate
and �max is the maximum loan rate under the bank’s “budget”.

The above formulation’s advantage over fairness constraints is that it directly opti-

mizes the outcome of A and can be approximately implemented given reasonable ability

to predict outcomes. Importantly, this objective shifts the focus to outcome modeling,

highlighting the importance of domain specific knowledge.

Welfare-Aware Decisions
We now briefly describe and examine a framework to more explicitly consider tradeoffs

between the profit gained by an institution and the impact of decisions on a population.

We will see that fairness constraints are a special case within this broader framework.

Consider two simultaneous objectives: tomaximize theprivate return, generically referred

to as profit; and to improve a measure of wellbeing (such as social welfare or user health),

referred to as welfare.
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Figure 5.3: Illustration of a Pareto curve (bottom left) and the decision boundaries induced

by three different trade-off parameters . Colored (darker in gray scale) points indicate

selected individuals.

This framework eschews the perspective based on groups, and instead associates to

each individual a value ? representing the expected profit to be garnered from approving

this individual and F encoding the change in welfare. The profit score ? generalizes the

individual utility u(G) and the welfare score F generalizes the change in wellbeing �(G).
Rather than relying on an underlying score G, we suppose that ? and F can be defined

within a population arbitrarily, so that their values can vary independently. The profit and

welfare objectives are thus expectations over the joint distribution of (?, F). We generalize

the notation ofU(�) and Δ�(�) toUP(�) andUW(�) to be explicit about this framing.

Given two objectives, one can no longer define a unique optimal policy �. Instead,

we focus on policies � which are Pareto-optimal [Par06], in the sense that they are not

strictly dominated by any alternative policy, i.e. there is no �′ such that both UP and

UW are strictly larger under �′. For a general set of policy classes, it is equivalent to

consider policies that maximize a weighted combination of both objectives. We can thus

parametrize the Pareto-optimal policies by  ∈ [0, 1]:

Definition 5.3 (Pareto-optimal policies). An -Pareto-optimal policy (for  ∈ [0, 1]) satis-
fies:

�★ ∈ argmax U(�),
U(�) := (1 − )UP(�) + UW(�).

In the definition above, the maximization of � is taken over the class of randomized

policies. This weighted optimization is analogous in some sense to the outcome-based

alternative described in the previous subsection. Supposing that the profit and welfare

scores are exactly known, the expected weighted contribution from accepted individuals

is (1 − )? + F. Therefore, one can show [RSD+20] that the optimal policy is given by a

threshold policy on this composite. We will write this Pareto-optimal policy as

�★(?, F) = 1{(1 − )? + F ≥ 0}. (5.3.2)
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Note that in general, some care should be taken to define a suitably randomized threshold

policy when the score distributions are discrete. Section 5.4 makes this precise. In the

remained of this section, we will suppose taht the score distributions are continuous to

simplify the exposition.

Though they are all Pareto-optimal, the policies �★ induce different trade-offs between

the two objectives. The parameter  determines this trade-off, tracing the Pareto frontier:

P := {(UP(�★),UW(�★)) :  ∈ [0, 1]}

Figure 5.3 plots an example of this curve (bottom-left panel) and the corresponding deci-

sion rules for three points along it. Wenote the concave shape of this curve, amanifestation

of diminishing marginal returns: as a decision policy forgoes profit to increase total welfare,

less welfare is gained for the same amount of profit forgone.

Rather than a fairness constraint, the weight  directly encodes the importance of a

secondary objective concerned with social welfare. Notice that the larger the value of ,
the more emphasis placed on the welfare objective, and the higher the achieved value of

UW. This framework rests heavily on the impact or welfare model which determines the

scoresF. Rolf et al. [RSD+20] examine the implications when thewelfare and profit scores

are not perfectly known.

Fairness as Welfare
Though itmay seem that theweighted optimization of profit andwelfare in this framework

is completely distinct from our previous discussions of policies constrained to be fair, we

now demonstrate that fairness can be represented as a special case. In particular, we show

that profit maximization with group fairness constraints corresponds to multi-objective

optimization over profit and welfare for an induced definition of welfare. This connection

illustrates that fairness constraints are, in some sense, a special case of a broader definition

of welfare-aware machine learning.

We begin with a general connection that applies to a wide class of constrained utility

maximization problems. Consider a population partitioned into subgroups j ∈ Ω and

a classifier which has access to the profit score ? of each individual. In this case, the

policies decompose over groups such that � = (�j)j∈Ω. The fairness-constrained problem

maximizesUP(�) subject to a fairness constraint.

For a large class of fairness criteria including DemParity and EqOpt, we can restrict

our attention to threshold policies �j(?) = 1{? ≥ Cj} where Cj are group-dependent thresh-
olds. Notice that the unconstrained solution would simply be �MaxUtil(?) = 1{? ≥ 0} for
all groups. For this reason, we consider groups with Cj < 0 as comparatively disadvan-
taged (since their threshold increases in the absence of fairness constraints) and Cj > 0 as

advantaged.
In this setting, there exist fixed welfare scores F such that a multi-objective framework

would arrive at the same solution policy for any population.
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Proposition 5.3.2. Any fairness-constrained threshold policy giving rise to thresholds (C★j )j∈Ω is
equivalent to a set of -Pareto policies for  ∈ (0, 1) in (5.3.2) with welfare scores fixed within each
group and defined as

Fj = −
1 − 


C★j .

In particular, Fj and C★j have opposite signs for all settings of  ∈ (0, 1), and any relative scale
between them achieved by some choice of .

Proof. The equivalence follows by comparing the policies

�(F, ?) = 1{F + (1 − )? ≥ 0} and �fair,j(?) = 1{? ≥ C★j } .

Restricting the choice to a fixed score within each group yields the expression

Fj = −
1 − 


C★j =: −2C★j .

Thus we have that Fj ∝ −C∗j for all j. Further, notice that for any 2 > 0 there exists some

 ∈ (0, 1) achieving that 2 with  = 1

1+2 .

Notice that disadvantaged groups (with negative thresholds) are assigned a positive

welfare weight, while advantaged groups (with positive thresholds) are assigned a neg-

ative welfare weight. This highlights a particular interpretation of fairness constraints as

assigning a social value to individuals of a group which is disadvantaged.

Tradeoffs Between Fairness and Profit
While the result presented above is valid for a wide class of policies, it does not shed light

on the trade-off between profit and fairness. We now consider soft fairness constraints,

restricting our attention to two groups under DemParity for simplicity:

�&
fair
∈ argmax

�=(�A ,�B)
�=(�A ,�B)

UP(�) (5.3.3)

s.t. Ej[�j(?)] = �j j ∈ {A,B}, |�A − �B | ≤ &

where Ej is the expectation taken over all members of group j. We note that with addi-

tional mild assumptions, our arguments extend naturally to other criteria, including equal

opportunity.

We now show how this inexact fairness setting can be modeled equivalently by the

multi-objective framework. Recall that we assume that the distribution of the profit score

? has continuous support within these populations. This is a departure from the previous
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setting, but it simplifies the argument considerably. The following proposition shows

that the that solution to the constrained profit maximization problem (5.3.3) changes

monotonically with the fairness parameter &. Its proof is deferred to Section 5.8.

Proposition 5.3.3. Suppose that the unconstrained selection rate in group A is less than or equal
to the unconstrained selection rate in group B. Then the policy �&

fair
= (�&

A ,�
&
B) that optimizes

eq. (5.3.3) is equivalent to randomized group-dependent threshold policies with thresholds C&A and
C&B satisfying the following:

• C&A ≤ 0 for all & ≥ 0 and C&A is increasing in & ,

• C&B ≥ 0 for all & ≥ 0 and C&B is decreasing in & .

Notice that the unconstrained selection rate in group A being less than the uncon-

strained selection rate in group B is equivalent to A being disadvantaged compared with

B. Thuswe see that as & increases, the group-dependent optimal thresholds shrink toward

the unconstrained profit maximizing solution, where CA = CB = 0. We present the proof of

this result in the next section.

We define the map &A(?) := & s.t. C&A = ? for ? ∈ [C0A , 0]. Proposition 5.3.3 implies that

&A(?) is increasing in ?.

Theorem 5.3.4. Under the conditions of Proposition 5.3.3, the family of policies�&
fair

parametrized
by & corresponds to a family of -Pareto policies for a fixed choice of group-dependent welfare
weightings. In particular, denoting the associated thresholds as C&A and C&B and defining for each
individual in A with profit score ?,

FA =

{
− ?

C
&A(?)
B

C0A ≤ ? ≤ 0

0 otherwise

and for all individuals in B,

FB =

{
−1 0 ≤ ? ≤ C0B
0 otherwise

,

then for each �&
fair

there exists an equivalent (&)-Pareto policy �(&) where the trade-off parameter
(&) decreases in &.

Proof. By Proposition 5.3.3, the policy �&
is equivalent to a threshold policy with group

dependent thresholds denoted C&A and C&B. The group dependent threshold policy 1{? ≥ C&j }
is equivalent to an -Pareto optimal policy (for some definition of welfare score F) if and

only if for all values of ?:

1{? ≥ C&j } = 1{(&)F + (1 − (&))? ≥ 0} .
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It is sufficient to restrict our attention to welfare scores F that depend on profit score

and group membership, which we denote as F
?

j . Starting with group B, we have that for

0 ≤ ? ≤ C0B, F
?

B = −1, so

�(&) = 1{−(&) + (1 − (&))? ≥ 0} = 1{? ≥ (&)
1 − (&) } .

Thus, equivalence is achieved for this case if
(&)

1−(&) = C
&
B, or equivalently,

(&) =
C&B

1 + C&B
. (5.3.4)

We will use this definition for (&)moving forward, and verify that the proposed welfare

score definitions work.

We now turn to group A in the case that C0A ≤ ? ≤ 0. We have F
?

A =
?

C
&A(?)
B

, so

�(&) = 1{−
C&B

C
&A(?)
B

?

1 + C&B
+

?

1 + C&B
≥ 0} .

Because 1 + C&B ≥ 0 and ? ≤ 0, the indicator will be one if and only if C&B ≥ C
&A(?)
B .

By Proposition 5.3.3, this is true if and only if & ≤ &A(?), which is true if any only if

C&A ≤ C
&A(?)
A = ?. This is exactly the condition for �&

fair,A, as desired.

Then finally we consider the remaining cases. In the case that ? ≤ C0A in A or ? ≤ 0 in

B, we have that �&
fair,j = 0 for all & by Proposition 5.3.3. Then as desired, 0+ (1− (&))? ≤ 0

in this case. In the case that ? ≥ 0 in A or ? ≥ C0B in B, we have that �&
fair,j = 1 for all &. Then

as desired, 0 + (1 − (&))? ≥ 0 in this case.

Finally, we remark on the form of (&) in (5.3.4). By proposition 5.3.3, C&B ≥ 0 and is

decreasing in &, so (&) is decreasing in &.

Note that the presented construction of induced welfare scores is not unique. In fact,

simply switching the roles of A and B in the proof verifies the alternate definitions,

FA =

{
1 C0A ≤ ? ≤ 0

0 otherwise

, FB =

{
− ?

C
&B(?)
A

0 ≤ ? ≤ C0B
0 otherwise

, (5.3.5)

in which case we define &B(?) to be the value of & such that ? = C&B. This construction

generalizes in a straightforward manner to multiple groups, where functions similar to

&B(?)would be defined for each group.

Theorem 5.3.4 shows that it is possible to define fixed welfare scores such that the

family of inexact fair policies parametrized by any & ≥ 0 in (5.3.3) corresponds to a family
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of Pareto-optimal policies parametrized by (&). The group-dependent welfare scores

are such that F ≥ 0 for all individuals in the disadvantaged group and F ≤ 0 in the

advantaged group. Furthermore, the induced trade-off parameter (&) increases as &
decreases.

Fairness constraints can be seen as encoding implicit group-dependent welfare scores

for individuals, where members of disadvantaged groups are assigned positive welfare

scores and members of advantaged groups assigned negative scores. This correspon-

dence is related to the analysis of welfare scores in Hu and Chen [HC18b], however, our

perspective focuses on trade-offs between welfare and profit objectives, in contrast to pure

welfare maximization. It is also related to the analysis by Kasy and Abebe [KA21], who

use this perspective to argue that fairness criteria suffer from limitations. While some

applications may directly call for statistical parity as a criterion, our results emphasize the

inevitability of fairness constraints as trade-offs between multiple objectives, and frames

these trade-offs explicitly in terms of welfare measures.

5.4 Optimality of Threshold Policies
Now, wemove towards statements of the main theorems underlying the results presented

in Section 5.2. We begin by establishing notation which we shall use throughout. Recall

that ◦ denotes the Hadamard product between vectors. We identify functions mapping

X → Rwith vectors in R� . We also define the group-wise utilities

Uj(�j) :=

∑
G∈X
Dj(G)�j(G)u(G) , (5.4.1)

so that for � = (�A ,�B),U(�) := 6AUA(�A) + 6BUB(�B).
First, we formally describe threshold policies, and rigorously justify why we may

always assume without loss of generality that the institution adopts policies of this form.

Definition 5.4 (Threshold selection policy). A single group selection policy � ∈ [0, 1]� is

called a threshold policy if it has the form of a randomized threshold on score:

�2,� =


1, G > 2

�, G = 2

0, G < 2

, for some 2 ∈ [�] and � ∈ (0, 1] . (5.4.2)

As a technicality, if nomembers of a population have a given score G ∈ X, there may be

multiple threshold policies which yield equivalent selection rates for a given population.

To avoid redundancy, we introduce the notation �j �Dj �
′
j to mean that the set of scores

on which �j and �′j differ has probability 0 under Dj. For any distribution Dj, �Dj is an

equivalence relation. Moreover, if �j �Dj �
′
j , then �j and �′j both provide the same utility

for the institution, induce the same outcomes for individuals in group j, and have the
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same selection and true positive rates. Hence, if (�A ,�B) is an optimal solution to any of

MaxUtil, EqOpt, or DemParity, so is any (�′A ,�
′
B) for which �A �DA �

′
A and �B �DB �

′
B.

For threshold policies in particular, their equivalence class under �Dj is uniquely

determined by the selection rate function,

ADj(�j) :=

∑
G∈X
Dj(G)�j(G) , (5.4.3)

which denotes the fraction of group j which is selected. Remark that the inverse A−1

Dj
(�j) is

an equivalence class rather than a single policy. However,Dj◦ A−1

Dj
(�j) is well defined, since

Dj◦�j = Dj◦�′j for any two policies in the same equivalence class. All quantities of interest

will only depend on policies �j through Dj ◦ �j, it does not matter which representative

of A−1

Dj
(�j) we pick. One choice is the set of all threshold policies �2,� such that, � = 1 if

Dj(2) = 0 andDj(2 − 1) > 0 if � = 1 and 2 > 1.

It turns out the policies which arise in this away are always optimal in the sense that,

for a given loan rate �j, the threshold policy A−1

Dj
(�j) is the (essentially unique) policy which

maximizes both the institution’s utility and the utility of the group. We have the following

result:

Proposition 5.4.1 (Threshold policies are preferable). Suppose that u(G) and �(G) are strictly
increasing in G. Given any loaning policy �j for population with distribution Dj, then the policy
�thresh

j := A−1

Dj
(ADj(�j)) ∈ Tthresh(Dj) satisfies

Δ�j(�thresh

j ) ≥ Δ�j(�j) andUj(�thresh

j ) ≥ Uj(�j) . (5.4.4)

Moreover, both inequalities hold with equality if and only if �j �Dj �
thresh

j .

The map �j ↦→ A−1

Dj
(ADj(�j)) can be thought of transforming an arbitrary policy �j into

a threshold policy with the same selection rate. In this language, the above proposition

states that this map never reduces institution utility or individual outcomes. We can also

show that optimal MaxUtil and DemParity policies are threshold policies, as well as all

EqOpt policies under an additional assumption:

Proposition 5.4.2 (Existence of optimal threshold policies under fairness constraints).
Suppose that u(G) is strictly increasing in G. Then all optimal MaxUtil policies (�A ,�B) satisfy
�j �Dj A

−1

Dj

(
ADj(�j)

)
for j ∈ {A,B}. The same holds for all optimal DemParity policies, and if in

addition u(G)/1(G) is increasing, the same is true for all optimal EqOpt policies.

To prove Proposition 5.4.1, we invoke the following general lemma which is proved

using standard convex analysis arguments (in Section 5.8):
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Lemma 5.4.3. Let v ∈ R� , and let w ∈ R�>0
, and suppose either that v(G) is increasing in

G, and v(G)/w(G) is increasing or, ∀G ∈ X , w(G) = 0. Let D ∈ Simplex
�−1 and fix C ∈

[0,∑G∈XD(G) ·w(G)]. Then any

�∗ ∈ arg max

�∈[0,1]�
〈v ◦ D ,�〉 s.t. 〈D ◦w ,�〉 = C (5.4.5)

satisfies �∗ �D A−1

D (AD(�
∗)). Moreover, at least one threshold policy maximizer �∗ exists.

Proof of Proposition 5.4.1. Wewill first prove Proposition 5.4.1 for the functionUj. Given

our nominal policy �j, let � 9 = ADj(�j). We now apply Lemma 5.4.3 with v(G) = u(G) and
w(G) = 1. For this choice of v and w, 〈v ,�〉 = Uj(�) and that 〈D9 ◦w ,� = ADj(�). Then,
if �j ∈ arg max�Uj(�) s.t. ADj(�) = �j, Lemma 5.4.5 implies that �j �Dj A

−1

Dj
(ADj(�j)).

On the other hand, assume that �j �Dj A
−1

Dj

(
ADj(�j)

)
. We show that A−1

Dj
(ADj(�j)) is a

maximizer; which will imply that �j is a maximizer since �j �Dj A
−1

Dj
(ADj(�j)) implies that

Uj(�j) = �j �Dj A
−1

Dj
(ADj(�j)). By Lemma 5.4.3 there exists a maximizer �∗j , which means

that �∗j = A−1

Dj
(ADj(�∗j )). Since �∗j is feasible, we must have ADj(�∗j ) = ADj(�j), and thus

�∗j = A−1

Dj
(ADj(�j)), as needed. The same argument follows verbatim if we instead choose

v(G) = �(G), and compute 〈v ,�〉 = Δ�j(�).

We now argue Proposition 5.4.2 for MaxUtil, as it is a straightforward application of

Lemma 5.4.3. We will prove Proposition 5.4.2 for DemParity and EqOpt separately in

Section 5.5.

Proof of Proposition 5.4.2 for MaxUtil. MaxUtil follows from lemma 5.4.3 with v(G) =
u(G), and C = 0 and w = 0.

Quantiles and Concavity of the Outcome Curve
To further our analysis, we now introduce left and right quantile functions, allowing us

to specify thresholds in terms of both selection rate and score cutoffs.

Definition 5.5 (Upper quantile function). Define Q to be the upper quantile function

corresponding toD, i.e.

Qj(�) = argmax{2 :

�∑
G=2

Dj(G) > �} and Q
+
j (�) := argmax{2 :

�∑
G=2

Dj(G) ≥ �} . (5.4.6)

Crucially Q(�) is continuous from the right, and Q
+(�) is continuous from the left.

Further, Q(·) and Q
+(·) allow us to compute derivatives of key functions, like the mapping

from selection rate � to the group outcome associatedwith a policy of that rate,Δ�(A−1

� (�)).
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Because we takeD to have discrete support, all functions in this work are piecewise linear,
so we shall need to distinguish between the left and right derivatives, defined as follows

%− 5 (G) := lim

C→0
−

5 (G + C) − 5 (G)
C

and %+ 5 (H) := lim

C→0
+

5 (H + C) − 5 (H)
C

. (5.4.7)

For 5 supported on [0, 1], we say that 5 is left- (resp. right-) differentiable if %− 5 (G) exists
for all G ∈ (0, 1] (resp. %+ 5 (H) exists for all H ∈ [0, 1)). We now state the fundamental

derivative computation which underpins the results to follow:

Lemma 5.4.4. Let eG denote the vector such that eG(G) = 1, and eG(G′) = 0 for G′ ≠ G. Then
Dj ◦ A−1

Dj
(�) : [0, 1] → [0, 1]� is continuous, and has left and right derivatives

%+
(
Dj ◦ A−1

Dj
(�)

)
= e

Q(�) and %−
(
Dj ◦ A−1

Dj
(�)

)
= e

Q
+(�) . (5.4.8)

We defer the proof to Section 5.8. Moreover, Lemma 5.4.4 implies that the outcome

curve is concave under the assumption that �(G) is monotone:

Proposition 5.4.5. Let D be a distribution over � states. Then � ↦→ Δ�(A−1

D (�)) is concave. In
fact, if w(G) is any non-decreasing map from X → R, � ↦→ 〈w , A−1

D (�)〉 is concave.

Proof. Recall that a univariate function 5 is concave (and finite) on [0, 1] if and only (a) 5

is left- and right-differentiable, (b) for all G ∈ (0, 1), %− 5 (G) ≥ %+ 5 (G) and (c) for any G > H,

%− 5 (G) ≤ %+ 5 (H).
Observe that Δ�(A−1

D (�)) = 〈�,D ◦ A
−1

D (�)〉. By Lemma 5.4.4, D ◦ A−1

D (�) has right and
left derivatives e

Q(�) and e
Q
+(�). Hence, we have that

%+Δ�(�B) = �(Q(�B)) and %−Δ�(�B) = �(Q+(�B)) . (5.4.9)

Using the fact that �(G) is monotone, and that Q ≤ Q
+
, we see that %+Δ�( 5 −1

D (�B)) ≤
%−Δ�( 5 −1

D (�B)), and that %Δ�( 5 −1

D (�B)) and %+Δ�( 5 −1

D (�B)) are non-increasing, from which

it follows that Δ�( 5 −1

D (�B)) is concave. The general concavity result holds by replacing

�(G)with w(G).

5.5 Main Characterization Results
We are now ready to present and prove theorems that characterize the selection rates

under fairness constraints, namely DemParity and EqOpt. These characterizations are

crucial for proving the results in Section 5.2. We also show that these computations

generalize readily to other linear constraints.
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Figure 5.4: Considering the utility as a function of selection rates, fairness constraints

correspond to restricting the optimization to one-dimensional curves. The DemParity
(DP) constraint is a straight line with slope 1, while the EqOpt (EO) constraint is a curve

given by the graph of the transfer function�(A→B)
. The derivatives considered throughout

Section 5.5 are taken with respect to the selection rate �A (horizontal axis); projecting the

EO and DP constraint curves to the horizontal axis recovers concave utility curves such

as those shown in the lower panel of Figure 5.2 (where MaxUtil in is represented by a

horizontal line through the MU optimal solution).

A Characterization Theorem for DemParity
In this section, we provide a theorem that gives an explicit characterization for the range

of selection rates �A for A when the bank loans according to DemParity. Observe that the

DemParity objective corresponds to solving the following linear program:

max

�=(�A ,�B)∈[0,1]2�
U(�) s.t. 〈DA ,�A〉 = 〈DB,�B〉 .

Let us introduce the auxiliary variable � := 〈DA ,�A〉 = 〈DB,�B〉 corresponding to the

selection rate which is held constant across groups, so that all feasible solutions lie on the

green DP line in Figure 5.4. We can then express the following equivalent linear program:

max

�=(�A ,�B)∈[0,1]2� ,
�∈[0,1]

U(�) s.t. � = 〈Dj,�j〉, j ∈ {A,B} .

This is equivalent because, for a given �, Proposition 5.4.2 says that the utility maximizing

policies are of the form �j = A
−1

Dj
(�). We now prove this:

Proof of Proposition 5.4.2 for DemParity. Noting that ADj(�j) = 〈Dj,�j〉, we see that, by

Lemma 5.4.3, under the special case where v(G) = u(G) andw(G) = 1, the optimal solution
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(�∗A(�),�
∗
B(�)) for fixed ADA(�A) = ADB(�B) = � can be chosen to coincidewith the threshold

policies. Optimizing over �, the global optimal must coincide with thresholds.

Hence, any optimal policy is equivalent to the threshold policy � = (A−1

DA
(�), A−1

DB
(�)),

where � solves the following optimization:

max

�∈[0,1]
U

((
A−1

DA
(�), A−1

DB
(�)

))
. (5.5.1)

We shall show that the above expression is in fact a concave function in �, and hence the set

of optimal selection rates can be characterized by first order conditions. This is presented

formally in the following theorem:

Theorem 5.5.1 (Selection rates for DemParity). The set of optimal selection rates �∗ satisfy-
ing (5.5.1) forms a continuous interval [�−DemParity, �+DemParity], such that for any � ∈ [0, 1], we
have

� < �−DemParity if 6Au
(
QA(�)

)
+ 6Bu

(
QB(�)

)
> 0 ,

� > �+DemParity if 6Au
(
Q
+
A(�)

)
+ 6Bu

(
Q
+
B(�)

)
< 0 .

Proof. Note that we can write

U
((
A−1

DA
(�), A−1

DB
(�)

))
= 6A〈u ,DA ◦ A−1

DA
(�)〉 + 6B〈u ,DB ◦ A−1

DB
(�)〉 .

Sinceu(G) is non-decreasing in G, Proposition5.4.5 implies that � ↦→ U
((
A−1

DA
(�), A−1

DB
(�)

))
is concave in �. Hence, all optimal selection rates �∗ lie in an interval [�−, �+]. To further

characterize this interval, let us us compute left- and right-derivatives.

%+U
((
A−1

DA
(�), A−1

DB
(�)

))
= %+6A〈u ,DA ◦ A−1

DA
(�)〉 + %+6B〈u ,DB ◦ A−1

DB
(�)〉

= 6A〈u , %+
(
DA ◦ A−1

DA
(�)

)
〉 + 6B〈u , %+

(
DB ◦ A−1

DB
(�)

)
〉

Lemma 5.4.4
= 6A〈u , eQA(�)〉 + 6B〈u , eQB(�)〉
= 6Au(QA(�)) + 6Bu(QB(�)) .

The same argument shows that

%−U((A−1

DA
(�), A−1

DB
(�))) = 6Au(Q+A(�)) + 6Bu(Q+B(�)).

By concavity of U
((
A−1

DA
(�), A−1

DB
(�)

))
, a positive right derivative at � implies that � < �∗

for all �∗ satisfying (5.5.1), and similarly, a negative left derivative at � implies that � > �∗

for all �∗ satisfying (5.5.1).
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With a result of the above form, we can now easily prove statements such as that in

Corollary 5.2.3 (see Section 5.8 for proofs), by fixing a selection rate of interest (e.g. �0)

and inverting the inequalities in Theorem 5.5.1 to find the exact population proportions

under which, for example, DemParity results in a higher selection rate than �0.

EqOpt and General Constraints
Next, we will provide a theorem that gives an explicit characterization for the range of

selection rates �A for A when the bank loans according to EqOpt. Observe that the EqOpt
objective corresponds to solving the following linear program:

max

�=(�A ,�B)∈[0,1]2�
U(�) s.t. 〈wA ◦ DA ,�A〉 = 〈wB ◦ DB,�B〉 , (5.5.2)

where w j =
1

〈1,Dj〉 . This problem is similar to the demographic parity optimization

in (5.5.1), except for the fact that the constraint includes the weights. Whereas we pa-

rameterized demographic parity solutions in terms of the acceptance rate � in equa-

tion (5.5.1), we will parameterize equation (5.5.2) in terms of the true positive rate (TPR),

C := 〈wA ◦ DA ,�A〉. Thus, (5.5.2) becomes

max

C∈[0,Cmax]
max

(�A ,�B)∈[0,1]2�

∑
9∈{A,B}

6jUj(�j) s.t. 〈w j ◦ Dj,�j〉 = C , j ∈ {A,B} , (5.5.3)

where Cmax = minj∈{A,B}{〈Dj,w j〉} is the largest possible TPR. The magenta EO curve in

Figure 5.4 illustrates that feasible solutions to this optimization problem lie on a curve

parametrized by C. Note that the objective function decouples for j ∈ {A,B} for the inner

optimization problem,

max

�j∈[0,1]�

∑
9∈{A,B}

6jUj(�j) s.t. 〈w j ◦ Dj,�j〉 = C . (5.5.4)

We will now show that all optimal solutions for this inner optimization problem are Dj-
a.e. equal to a threshold policy, and thus can be written as A−1

Dj
(�j), depending only on the

resulting selection rate.

Proof of Proposition 5.4.2 for EqOpt. We apply Lemma 5.4.3 to the inner optimization

in (5.5.4) with v(G) = u(G) and w(G) = 1(G)
〈1,Dj〉 . The claim follows from the assumption that

u(G)/1(G) is increasing by optimizing over C.

This selection rate �j is uniquely determined by the TPR C:

Lemma 5.5.2. Suppose that w(G) > 0 for all G. Then the function

)j ,w j(�) := 〈A−1

Dj
(�),Dj ◦w j〉

is a bĳection from [0, 1] to [0, 〈Dj,w〉].
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Hence, for any C ∈ [0, Cmax], the mapping from TPR to acceptance rate, )−1

j ,w j(C), is well

defined and any solution to (5.5.4) is Dj-a.e. equal to the policy A−1

Dj
()−1

j ,w j(C)). Thus (5.5.3)
reduces to

max

C∈[0,Cmax]

∑
9∈{A,B}

6jUj

(
A−1

Dj

(
)−1

j ,w j(C)
))

. (5.5.5)

The above expression parametrizes the optimization problem in terms of a single

variable. We shall show that the above expression is in fact a concave function in C, and

hence the set of optimal selection rates can be characterized by first order conditions. This

is presented formally in the following theorem:

Theorem 5.5.3 (Selection rates for EqOpt). The set of optimal selection rates �∗ for group A
satsifying (5.5.3) forms a continuous interval [�−EqOpt, �+EqOpt], such that for any � ∈ [0, 1], we have

� < �−EqOpt if 6A
u(QA(�))
wA(QA(�))

+ 6B
u(QB(�(A→B)

w (�)))
wB(QB(�(A→B)

w (�)))
> 0 ,

� > �+EqOpt if 6A
u(Q+A(�))
wA(Q+A(�))

+ 6B
u(Q+B(�

(A→B)
w (�)))

wB(Q+B(�
(A→B)
w (�)))

< 0 .

Here, �(A→B)
w (�) := )−1

B,wB
()−1

A,wA
(�)) denotes the (well-defined) map from selection rates �A for A

to the selection rate �B for B such that the policies �∗A := A−1

DA
(�A) and �∗B := A−1

DB
(�B) satisfy the

constraint in (5.5.2).

Proof. Starting with the equivalent problem in (5.5.5), we use the concavity result of

Lemma 5.8.2. Because the objective function is the positive weighted sum of two concave

functions, it is also concave. Hence, all optimal true positive rates C∗ lie in an interval

[C−, C+]. To further characterize [C−, C+], we can compute left- and right-derivatives, again

using the result of Lemma 5.8.2.

%+
∑

9∈{A,B}
6jUj

(
A−1

Dj
()−1

j ,w j(C))
)
= 6A%+UA

(
A−1

DA
()−1

A ,wA(C))
)
+ 6A%+UA

(
A−1

DA
()−1

A ,wA(C))
)

= 6A
u(QA()−1

A ,wA(C)))
wA(QA()−1

A ,wA(C)))
+ 6B

u(QB()−1

B ,wB(C)))
wB(QB()−1

B ,wB(C)))

The same argument shows that

%−
∑

9∈{A,B}
6jUj

(
A−1

Dj
()−1

j ,w j(C))
)
= 6A

u(Q+A()−1

A ,wA(C))
wA(Q+A()

−1

A ,wA(C)))
+ 6B

u(Q+B()−1

B ,wB(C)))
wB(Q+B()

−1

B ,wB(C)))
.
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By concavity, a positive right derivative at C implies that C < C∗ for all C∗ satisfying (5.5.5),

and similarly, a negative left derivative at C implies that C > C∗ for all C∗ satisfying (5.5.5).

Finally, by Lemma 5.5.2, this interval in C uniquely characterizes an interval of accep-

tance rates. Thus we translate directly into a statement about the selection rates � for

group A by seeing that )−1

A ,wA(C) = � and )−1

B ,wB(C) = �
(A→B)
w (�).

Lastly, we remark that the results derived in this section go through verbatim for any

linear constraint of the form 〈w ,DA◦�A〉 = 〈w ,DB◦�B〉, as long as u(G)/w(G) is increasing
in G, and w(G) > 0.

5.6 Simulations
We examine the outcomes induced by fairness constraints in the context of FICO scores for

two race groups. FICO scores are a proprietary classifier widely used in the United States

to predict credit worthiness. Our FICO data is based on a sample of 301,536 TransUnion

TransRisk scores from 2003 [US 07], preprocessed by Hardt, Price, and Srebro [HPS16].

These scores, corresponding to G in our model, range from 300 to 850 and are meant to

predict credit risk. Empirical data labeled by race allows us to estimate the distributions

Dj, where j represents race, which is restricted to two values: Black and White non-

Hispanic (labeled “White" in figures). In this dataset 12% of the population is Black while

88% is White.

Individuals were labeled as defaulted if they failed to pay a debt for at least 90 days

on at least one account in the ensuing 18-24 month period; we use this data to estimate

the success probability given score, 1j(G), which we allow to vary by group to match the

empirical data (see Figure 5.5). Our outcome curve framework allows for this relaxation;

however, this discrepancy can also be attributed to group-dependent mis-measurement

of score, and adjusting the scores accordingly would allow for a single 1(G). We use

the success probabilities to define the affine utility and score change functions defined in

Example 5.1. We model individual penalties as a score drop of 2− = −150 in the case of a

default, and in increase of 2+ = 75 in the case of successful repayment.

Delayed Impact of Fairness Criteria
In Figure 5.6, we display the empirical CDFs along with selection rates resulting from

different loaning strategies for two different settings of bank utilities. In the case that the

bank experiences a loss/profit ratio of
D−
D+
= −10, no fairness criteria surpass the active

harm rate �0; however, in the case of
D−
D+
= −4, DemParity over-loans, in line with the

statement in Corollary 5.2.3.

These results are further examined in Figure 5.7, which displays the normalized out-

come curves and the utility curves for both the Black and the White group. To plot the

MaxUtil utility curves, the group that is not on display has selection rate fixed at �MaxUtil.
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Figure 5.5: The empirical payback rates as a function of credit score and CDF for both

groups from the TransUnion TransRisk dataset.
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Figure 5.6: The empirical CDFs of both groups are plotted along with the decision thresh-

olds resulting from MaxUtil, DemParity, and EqOpt for a model with bank utilities set to

(a)
D−
D+
= −4 and (b)

D−
D+
= −10. The threshold for active harm is displayed; in (a) DemParity

causes active harm while in (b) it does not. EqOpt and MaxUtil never cause active harm.
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In this figure, the top panel corresponds to the average change in credit scores for each

group under different loaning rates �; the bottom panels shows the corresponding total
utility U (summed over both groups and weighted by group population sizes) for the

bank.

Figure 5.7 highlights that the position of the utility optima in the lower panel deter-

mines the loan (selection) rates. In this specific instance, the utility and change ratios are

fairly close,
D−
D+
= −4, and

2−
2+
= −2, meaning that the bank’s profit motivations align with

individual outcomes to some extent. Here, we can see that EqOpt loans much closer to

optimal than DemParity.
Although one might hope for decisions made under fairness constraints to positively

affect the Black group, we observe the opposite behavior. The MaxUtil policy (solid

orange line) and the EqOpt policy result in similar expected credit score change for the

Black group. However, DemParity (dashed green line) causes a negative expected credit

score change in the Black group, corresponding to active harm. For the White group, the

bank utility curve has almost the same shape under the fairness criteria as it does under

MaxUtil, the main difference being that fairness criteria lowers the total expected profit

from this group.

This behavior stems from a discrepancy in the outcome and profit curves for each

population. While incentives for the bank and positive results for individuals are some-

what aligned for the majority group, under fairness constraints, they are more heavily

misaligned in the minority group, as seen in graphs (left) in Figure 5.7. We remark that

in other settings where the unconstrained profit maximization is misaligned with individ-

ual outcomes (e.g., when
D−
D+
= −10), fairness criteria may perform more favorably for

the minority group by pulling the utility curve into a shape consistent with the outcome

curve.

Connections to Welfare
We demonstrate the induced welfare scores in the context of a credit lending scenario. In

this context, we define the profit score as the expected gain from lending to an individual,

? = D+ · 1 + D− · (1 − 1) ,

where 1 is the individual’s probability of repayment and we set D+ = 1 and D− = −4. The

empirical cumulative density functions are displayed in Figure 5.8a.

We solve the relaxed fairness problem (5.3.3) using a two dimensional grid over thresh-

olds. Figure 5.8b shows the thresholds (C&A , C
&
B) for various values of &. As predicted by

Proposition 5.3.3, they are generally shrinking in magnitude towards ? = 0, and the

threshold is negative for the Black group and positive for the White group. Due to the

discrete support of the empirical distributions, the monotonicity of these thresholds is not

perfect.

Lastly, we use these threshold values to compute induced welfare scores using the

construction given in Theorem 5.3.4. Figure 5.8c shows how welfare scores are assigned
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Figure 5.7: The outcome and utility curves are plotted for both groups against the group

selection rates. The relative positions of the utility maxima determine the position of the

decision rule thresholds. We hold
D−
D+
= −4 as fixed.
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Figure 5.8: Empirical example of how trade-offs between profit and fairness in lending

can be equivalently encoded by amulti-objective framework. In (a), cumulative density of

profit scores groupby race,where 88%of thepopulation isWhitewhile 12% is Black. In (b),

thresholds for &-fair policies. As & increases, the magnitude of the thresholds decrease.

In (c), distribution of profit and induced welfare scores. Marker size corresponds to

population sizes. In (d), the fairness parameter & determines the profit trade-off and

corresponds to the welfare weight .
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depending on group and on profit score. The fact that only some individuals have nonzero

welfare scores highlights the limitations of fairness criteria to affect only individualswithin

a bounded interval of themax profit solution. Individualswith sufficiently low repayment

probabilities will never be considered by “fair” policies. Figure 5.8d shows the welfare

weight (&), which is generally decreasing in &, though not monotonically.

5.7 Conclusion and Discussion
We focus on the impact of a selection policy over a single epoch. The motivation is that

the designer of a system usually has an understanding of the time horizon after which

the system is evaluated and possibly redesigned. Formally, nothing prevents us from

repeatedly applying our model and tracing changes over multiple epochs. Indeed, follow

up work by D’Amour et al. [DSA+20] analyzes the equilibrium behavior of the model

we propose. In reality, however, it is plausible that over greater time periods, economic

background variables might dominate the effect of selection.

In this chapter, we advocate for a view toward long-term outcomes in the discussion of

“fair” machine learning. We argue that without a careful model of delayed outcomes, we

cannot foresee the impact a fairness criterion would have if enforced as a constraint on a

classification system. However, if such an accurate outcome model is available, we show

that there aremore direct ways to optimize for positive outcomes than via existing fairness

criteria. The extent to which such a solution could form the basis of successful regulation

depends on the accuracy of the available outcomemodel. We further draw connections to

a more general framework, in which the simultaneous optimization of profit and welfare

are considered. This allows us to more broadly frame the goals of decisions, illustrating

how to design policies that prioritize the social impact of an algorithmic decision from the

outset, rather than as an afterthought.

A pertinent question is whether our model of outcomes is rich enough to faithfully

capture realistic phenomena. By focusing on the impact that selection has on individuals

at a given score, wemodel the effects for those not selected as zero-mean. For example, not

getting a loan in ourmodel has no negative effect on the credit score of an individual. This

does not mean that wrongful rejection (i.e., a false negative) has no visible manifestation

in our model. If a classifier has a higher false negative rate in one group than in another,

we expect the classifier to increase the disparity between the two groups (under natural

assumptions). In other words, in our outcome-based model, the harm of denied opportu-

nity manifests as growing disparity between the groups. The cost of a false negative could

also be incorporated directly into the outcome-based model by a simple modification (see

Footnote 1). This may be fitting in some applications where the immediate impact of a

false negative to the individual is not zero-mean, but significantly reduces their future

success probability.

In essence, the formalismwepropose requires us to understand the two-variable causal

mechanism that translates decisions to outcomes. This can be seen as relaxing the require-
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ments compared with recent work on avoiding discrimination through causal reasoning

that often required stronger assumptions [KLRS17; NS18; KRP+17]. In particular, these

works required knowledge of how sensitive attributes (such as gender, race, or proxies

thereof) causally relate to various other variables in the data. Our model avoids the del-

icate modeling step involving the sensitive attribute, and instead focuses on an arguably

more tangible economic mechanism. Nonetheless, depending on the application, such an

understanding might necessitate greater domain knowledge and additional research into

the specifics of the application. This is consistent with much scholarship that points to

the context-sensitive nature of fairness in machine learning.

5.8 Omitted Proofs

Proofs of Main Results
We remark that the proofs in this section rely crucially on the characterizations of the

optimal fairness-constrained policies developed in Section 5.5. We first define the notion

of CDF domination, which is referred to in a few of the proofs. Intuitively, it means that

for any score, the fraction of group B above this is higher than that for group A. It is

realistic to assume this if we keep with our convention that group A is the disadvantaged

group relative to group B.

Definition 5.6 (CDFdomination). DA is said to be dominated byDB if∀0 ≥ 1,
∑
G>0DA(G) <∑

G>0DB(G). We denote this asDA ≺ DB.

Frequently, we shall use the following lemma:

Lemma 5.8.1. Suppose that DA ≺ DB. Then, for all � > 0, it holds that QA(�) ≤ QB(�) and
u(QA(�)) ≤ u(QA(�))

Proof. The fact that QA(�) ≤ QB(�) follows directly from the definition of monotonicty of

u implies that u(QA(�)) ≤ u(QB(�)).

Proof of Proposition 5.2.1. The MaxUtil policy for group j solves the optimization

max

�j∈[0,1]�
Uj(�j) = max

�j∈[0,1]
Uj(A−1

Dj
(�j)) .

Computing left and right derivatives of this objective yields

%+Uj(A−1

Dj
(�j)) = u(Qj(�)), %−Uj(A−1

Dj
(�j)) = u(Q+j (�)) .

By concavity, solutions �∗ satisfy

� < �∗ if u(Qj(�)) > 0 ,

� > �∗ if u(Q+j (�)) < 0 .
(5.8.1)
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Therefore, we conclude that the MaxUtil policy loans only to scores G s.t. u(G) > 0, which

implies �(G) > 0 for all scores loaned to. Therefore we must have that 0 ≤ Δ�MaxUtil. By
definition Δ�MaxUtil ≤ Δ�∗.

Proof of Corollary 5.2.2. We begin with proving part (a), which gives conditions under

which DemParity cases relative improvement. Recall that � is the largest selection rate for

which Δ�(�) = Δ�(�MaxUtilA ). First, we derive a condition which bounds the selection rate

�DemParityA from below. Fix an acceptance rate � such that �MaxUtilA < � < min{�MaxUtilB , �}.
By Theorem 5.5.1, we have that DemParity selects to group A with rate higher than � as

long as

6A ≤ 61 :=
1

1 − u(QA(�))
u(QB(�))

.

By (5.8.1) and the monotonicity of u, u(QA(�)) < 0 and u(QB(�)) > 0, so 0 < 61 < 1.

Next, we derive a condition which bounds the selection rate �DemParityA from above.

First, consider the case that �MaxUtilB < �, and fix �′ such that �MaxUtilB < �′ < �. Then

DemParity selects group A at a rate �A < �′ for any proportion 6A. This follows from

applying Theorem 5.5.1 since we have that u(Q+A(�′)) < 0 and u(Q+B(�′)) < 0 by (5.8.1) and

the monotonicity of u.
Instead, in the case that �MaxUtilB > �, fix �′ such that � < �′ < �MaxUtilB . Then DemParity

selects group A at a rate less than �′ as long as

6A ≥ 60 :=
1

1 − u(Q+A(�′))
u(Q+B(�′))

.

By (5.8.1) and the monotonicity of u, 0 < 60 < 61. Thus for 6A ∈ [60, 61], the DemParity
selection rate for group A is bounded between � and �′, and thus DemParity results in

relative improvement.

Next, we prove part (b), which gives conditions under which EqOpt cases relative

improvement. First, we derive a condition which bounds the selection rate �EqOptA from

below. Fix an acceptance rate � such that �MaxUtilA < � and �MaxUtilB > �(A→B)(�). By

Theorem 5.5.3, EqOpt selects group A at a rate higher than � as long as

6A > 63 :=
1

1 − 1

� ·
1(QB(�(A→B)(�)))
u(QB(�(A→B)(�)))

u(QA(�))
1(QA(�))

.

By (5.8.1) and the monotonicity of u, u(QA(�)) < 0 and u(QB(�(A→B)(�))) > 0, so 63 > 0.

Next, we derive a condition which bounds the selection rate �EqOptA from above. First,

consider the case that there exists �′ such that �′ < � and �MaxUtilB < �(A→B)(�′) . Then

EqOpt selects group A at a rate less than this �′ for any 6A. This follows from Theorem 5.5.3
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sincewehave that u(Q+A(�′)) < 0 and u(Q+B(�(A→B)(�′))) < 0 by (5.8.1) and themonotonicity

of u.
In the other case, fix �′ such that � < �′ < � and �MaxUtilB > �(A→B)(�′). ByTheorem5.5.3,

EqOpt selects group A at a rate lower than �′ as long as

6A > 62 :=
1

1 − 1

� ·
1(Q+B(�(A→B)(�′)))
u(Q+B(�(A→B)(�′)))

u(Q+A(�′))
1(Q+A(�′))

.

By (5.8.1) and the monotonicity of u, 0 < 62 < 63. Thus for 6A ∈ [62, 63], the EqOpt
selection rate for group A is bounded between � and �′, and thus EqOpt results in relative

improvement.

Proof of Corollary 5.2.3. Recall our assumption that � > �MaxUtilA and �MaxUtilB > �. As

argued in the above proof of Corollary 5.2.2, by (5.8.1) and the monotonicity of u,
u(QA(�)) < 0 and u(QB(�)) > 0. ApplyingTheorem5.5.1, DemParity selects at a higher rate

than � for any population proportion 6A ≤ 60, where 60 = 1/(1 − u(QA(�))
u(QB(�))) ∈ (0, 1). In par-

ticular, if � = �0, which we defined as the harm threshold (i.e. Δ�A(A−1

DA
(�0)) = 0 and Δ�A

is decreasing at �0), then by the concavity of Δ�A, we have that Δ�A(A−1

DA
(�DemParityA )) < 0,

that is, DemParity causes active harm.

Proof of Corollary 5.2.4. By Theorem 5.5.3, EqOpt selects at a higher rate than � for any

population proportion 6A ≤ 60, where 60 = 1/(1 − 1

� ·
1(QB(�(A→B)(�)))
u(QB(�(A→B)(�)))

u(QA(�))
1(QA(�)) ). Using our

assumptions �MaxUtilB > �(A→B)(�) and � > �MaxUtilA , we have that u(QB(�(A→B)(�))) > 0

and u(QA(�)) < 0, by (5.8.1) and the monotonicity of u. This verifies that 60 ∈ (0, 1). In

particular, if � = �0, then by the concavity of Δ�A, we have that Δ�A(A−1

DA
(�EqOptA )) < 0, that

is, EqOpt causes active harm.

Proof of Proposition 5.2.5. Denote the upper quantile function under D̂ as Q̂. Since

D̂ ≺ D, we have Q̂(�) ≤ Q(�). The conclusion follows for MaxUtil and DemParity from
Theorem 5.5.1 by the monotonicity of u.

If we have that TPRA(�) > T̂PRA(�) ∀�, that is, the true TPR dominates estimated TPR,

then by the monotonicity of u(G)/1(G) and Theorem 5.5.3, we have that the conclusion

follows for EqOpt.

Proof of Proposition 5.3.1. ByProposition5.4.5, �∗ = argmax� Δ�A(�) exists and isunique.

�max = max{� ∈ [�MaxUtilA , 1] :U(�MaxUtilA ) − UA(�) ≤ �} exists and is unique, by the conti-

nuity of Δ�A and Proposition 5.4.5. Either �∗ is feasible, or �∗ > �max
.
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Characterization of Fairness Solutions
Derivative computation for EqOpt. In this section, we prove Lemma 5.5.2. Wewill prove

Lemma 5.5.2 in tandem with the following derivative computation which we applied in

the proof of Theorem 5.5.3.

Lemma 5.8.2. The function

Uj(C;w j) :=Uj

(
A−1

Dj

(
)−1

j ,w j(C)
))

is concave in C and has left and right derivatives

%+Uj(C;w j) =
u(Qj()−1

j ,w j(C)))
w j(Qj()−1

j ,w j(C)))
and %−Uj(C;w j) =

u(Q+j ()−1

j ,w j(C)))
w j(Q+j ()−1

j ,w j(C)))
.

Proof of Lemmas 5.5.2 and 5.8.2. Consider a � ∈ [0, 1]. Then, Dj ◦ A−1

Dj
(�) is continuous

and left and right differentiable by Lemma 5.4.4, and its left and right derivatives are

indicator vectors e
Qj(�) and e

Q
+
j (�), respectively. Consequently, � ↦→ 〈w j,Dj ◦ A−1

Dj
(�)〉 has

left and right derivatives w j(Q(�)) and w j(Q+(�)), respectively; both of which are both

strictly positive by the assumption w(G) > 0. Hence, )j ,w j(�) = 〈w j,Dj ◦ A−1

Dj
(�)〉 is strictly

increasing in �, and so the map is injective. It is also surjective because � = 0 induces the

policy �j = 0 and � = 1 induces the policy �j = 1 (up to Dj-measure zero). Hence, )j ,w j(�)
is an order preserving bĳection with left- and right-derivatives, and we can compute the

left and right derivatives of its inverse as follows:

%+)
−1

j ,w j(C) =
1

%+)j ,w j(�)
��
�=)−1

j ,wj (C)
=

1

w j(Qj()−1

j ,w j(C)))
,

and similarly, %−)−1

j ,w j(C) =
1

w j(Q+()−1

j ,wj (C)))
. Then we can compute that

%+Uj(ADj()−1

j ,w j(C))) = %+U(ADj(�))
��
�=)−1

j ,wj (C))
· %+)j ,w j(sup(C))

=
u(Qj()−1

j ,w j(C)))
w j(Qj()−1

j ,w j(C)))
.

and similarly %−Uj(ADj()j ,w j(C))) =
U(Q+j ()−1

j ,wj (C)))
w j(Q+j ()−1

j ,wj (C)))
. One can verify that for all C1 < C2, one

has that %+Uj(ADj()−1

j ,w j(C1))) ≥ %−Uj(ADj()−1

j ,w j(C2))), and that for all C, %+Uj(ADj()−1

j ,w j(C))) ≤
%−Uj(ADj()−1

j ,w j(C))). These facts establish that the mapping C ↦→ Uj(ADj()−1

j ,w j(C))) is concave.
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Optimality of Threshold Policies
Proof of Lemma 5.4.3. Given � ∈ [0, 1]� , we define the normal cone at � as NC(�) :=

ConicalHull{z : � + z ∈ [0, 1]�}. We can describe NC(�) explicitly as:

NC(�) := {z ∈ R� : z 8 ≤ 0 if �8 = 0, z 8 ≥ 0 if �8 = 1} .

Immediately from the above definition, we have the following useful identity, which is

that for any vector g ∈ R� ,

〈g , z〉 ≤ 0 ∀z ∈ NC(�), if and only if ∀G ∈ X ,


�(G) = 0 g(G) < 0

�(G) = 1 g(G) > 0

�(G) ∈ [0, 1] g(G) = 0

. (5.8.2)

Now consider the optimization problem (5.4.5). By the first order KKT conditions, we

know that for any optimizer �∗ of the above objective, there exists some �̂ ∈ R such that,

for all z ∈ NC(�∗)

〈z, v ◦ D + �̂D ◦w〉 ≤ 0 .

By (5.8.2), we must have that

�∗(G) =


0 D(G)(v(G) + �̂w(G)) < 0

1 D(G)(v(G) + �̂w(G)) > 0

∈ [0, 1] D(G)(v(G) + �̂w(G)) = 0

.

Now �∗(G) is not necessarily a threshold policy. To conclude the theorem, it suffices to

exhibit a threshold policy �̃∗ such that �∗(G) �D �̃∗. (Note that �̃∗(G) will also be feasible

for the constraint, and have the same objective value; hence �̃∗ will be optimal as well.)

Given �∗ and �̂, let 2∗ = min{2 ∈ X : v(G) + �̂w(G) ≥ 0}. If either (a) w(G) = 0 for

all G ∈ X and v(G) is strictly increasing or (b) v(G)/w(G) is strictly increasing, then the

modified policy

�̃∗(G) =


0 G < 2∗
�∗(G) G = 2∗
1 G > 2∗

,

is a threshold policy, and�∗(G) �D �̃∗. Moreover, 〈w , �̃∗〉 = 〈w , �̃∗〉 and 〈D , �̃∗〉 = 〈D , �̃∗〉,
which implies that �̃∗ is an optimal policy for the objective in Lemma 5.4.3.

Proof of Lemma 5.4.4 . We shall prove

%+
(
Dj ◦ A−1

Dj
(�)

)
= e

Qj(�) , (5.8.3)
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where the derivative is with respect to �. The computation of the left-derivative is anal-

ogous. Since we are concerned with right-derivatives, we shall take � ∈ [0, 1). Since

Dj ◦ A−1

Dj
(�) does not depend on the choice of representative for A−1

Dj
, we can choose a can-

nonical representation for A−1

Dj
. The threshold policy�

Qj(�),�(�) has acceptance rate �, where

we define

�+ =
�∑

G=Qj(�)
D(G) and �− =

�∑
G=Qj(�)+1

D(G) , (5.8.4)

�(�) =
� − �−
�+ − �−

. (5.8.5)

Note then that for each G, �
Qj(�),�(�)(G) is piece-wise linear, and thus admits left and right

derivatives. We first claim that

∀G ∈ X \ {Qj(�)}, %+�Qj(�),�(�)(G) = 0 . (5.8.6)

To see this, note that Qj(�) is right continuous, so for all & sufficiently small, Qj(� + &) =
Qj(�). Hence, for all & sufficiently small and all G ≠ Q(�), we have �

Qj(�+&),�(�+&)(G) =
�

Qj(�+&),�(�+&)(G), as needed. Thus, Equation (5.8.6) implies that %+Dj ◦ A−1

Dj
(�) is supported

on G = Qj(�), and hence

%+Dj ◦ A−1

Dj
(�) = %+Dj(G)�Qj(�),�(�)(G)

��
G=Qj(�) · eQj(�) .

To conclude, we must show that %+Dj(G)�Qj(�),�(�)(G)
��
G=Qj(�) = 1. To show this, we have

1 = %+(�)
= %+(ADj(�Qj(�),�(�))) since ADj(�Qj(�),�(�)) = � ∀� ∈ [0, 1)

= %+

(∑
G∈X
D(G) · �

Qj(�),�(�)(G)
)

= %+D(G) · �Qj(�),�(�)(G)
��
G=Qj(�) , as needed.

Connections to Welfare
We begin with the definition of important quantities. Recall that demographic parity

constrains the selection rates of policies. Further recall that the rate function for each

group Aj(�). Because we focus on threshold policies, with some abuse of notation, we will

write Aj(C) := Aj(1{? ≥ C}). This function is monotonic in the threshold C, and therefore

its inverse maps acceptance rates to thresholds which achieve that rate, i.e. A−1

j (�) = Cj.
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Define 5A(�) and 5B(�) to be components of the objective function in (5.3.3) due to each

group, that is,

5j(�) = 6jUj(A−1

j (�)) .

By Proposition 5.4.5, the functions 5j are concave. Therefore, the combined objective

function is concave in each argument,

UP(�A , �B) =
∑

j∈{A,B}
5j(�j) . (5.8.7)

We restrict our attention to the case that ? has continuous support. In this case, the

functions 5j are differentiable.

Lemma 5.8.3. If the distribution of exact profit scores for groups A and B are such that that
maximum profit selection rates �MaxUtilA = AA(0) and �MaxUtilB = AB(0) and AA(0) ≤ AA(0), then for
any & ≥ 0, the selection rates �& maximizing the optimization problem (5.3.3) under demographic
parity satisfy the following:

�MaxUtilA ≤ �&A ≤ �&B ≤ �MaxUtilB .

Proof of Proposition 5.8.3. First, we argue that �&A ≤ �MaxUtilB . If it were that �&A > �MaxUtilB ,

then the alternate solution �A = �MaxUtilB and �B = �MaxUtilB would be feasible for (5.3.3) and

achieve a higher objective value by the concavity of (5.8.7).

Next we show that �&B ≤ �MaxUtilB . Assume for the sake of contradiction that �&B >
�MaxUtilB . Then since �&A ≤ �MaxUtilB , setting �B = �MaxUtilB achieves higher objective value

without increasing |�B−�&A |, and thus would be feasible for (5.3.3). By a similar argument,

�&A ≥ �MaxUtilA .

Lastly, we show that for any optimal selection rates, �&A ≤ �&B for all & ≥ 0. Suppose for

the sake of contradiction that �&A > �&B. In this case, we can equivalently write that

�MaxUtilB − �&B > �MaxUtilB − �&A and/or �&A − �
MaxUtil
A > �&B − �

MaxUtil
A .

In either case, setting �&A = �&B would be a feasible solution which would achieve a higher

objective function value, by the concavity of (5.8.7). This contradicts the assumption that

�&A > �&B, and thus it must be that �&A ≤ �&B.

Lemma 5.8.4. Under the conditions of Lemma 5.8.3, the maximizer (�&A , �
&
B) of the &-demographic

parity constrained problem in (5.3.3) is either satisfied with the maximum profit selection rates
(�MaxUtilA , �MaxUtilB ), or �&B − �

&
A = & (or the two conditions coincide).

Proof of Lemma 5.8.4. Suppose that the MaxUtil selection rates are not feasible. If it were

that |�&A − �
&
B | = � < & then we could construct an alternative solution using the remaining

& − � slack in the constraint. This would achieve a higher objective function value, since

the functions 5j are concave. Therefore, |�&A − �
&
B | = &. Furthermore, by Lemma 5.8.3, we

have that |�&A − �
&
B | = �&B − �

&
A .
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This result implies that the complexity of the maximization (5.3.3) can be reduced to a

single variable search:

�★ = argmax

�
5A(�) + 5B(� + &), �&

fair
= (1{? ≥ A−1

j (�★)}, 1{? ≥ A−1

j (�★ + &}}) (5.8.8)

This expression holds when |�MaxUtilA − �MaxUtilB | > &, and otherwise the solution is given

by (�MaxUtilA , �MaxUtilB ) .

Lemma 5.8.5. Under the conditions of Lemma 5.8.3, as & ≥ 0 decreases, the group-dependent
selection rates �&A and �&B become closer to the profit maximizing selection rates for each group. That
is, the functions |�&A − �

MaxUtil
A | and |�&B − �

MaxUtil
B | are both increasing in &.

Proof of Lemma 5.8.5. We show that for any &′ ≥ & ≥ 0, it must be that |�&j − �MaxUtilj | ≤
|�&′j −�MaxUtilj |. First, we remark that if |�MaxUtilA −�MaxUtilB | ≤ & or if & ≤ |�MaxUtilA −�MaxUtilB | ≤
&′, the claim holds by application of Lemma 5.8.3.

Otherwise, let the &-demographic parity constrained solution be optimized by (�, �+&)
and the &′-demographic parity constrained solution be optimized by (�′, �′ + &′). This is
valid by Lemma5.8.4. Equivalently, � ∈ argmax{ 5A(�)+ 5B(�+&)} and �′ ∈ argmax{ 5A(�′)+
5B(�′ + &′)}. Since 5A and 5B are concave and differentiable,

5 ′A(�) + 5
′
B(� + &) = 0 and 5 ′A(�

′) + 5 ′B(�
′ + &′) = 0 .

Assume for sake of contradiction that � < �′ and recall that by Lemma 5.8.3 we further

have �′ > � ≥ �MaxUtilA , so by the concavity of 5A,

5A(�) ≥ 5A(�′) and 5 ′A(�
′) ≤ 5 ′A(�) .

Analogously, we must have that �MaxUtilB ≥ �′ + &′ > � + &, so that

5B(�′ + &′) ≥ 5B(� + &) and 5 ′B(�
′ + &′) ≥ 5 ′B(� + &) .

Using the equations above, we have that

5 ′B(� + &) = − 5
′
A(�)

≤ − 5 ′A(�
′)

= 5 ′B(�
′ + &′)

Since 5B is concave and thus its derivative is decreasing, this statement implies that �+ & ≥
�′ + &′, which is a contradiction. Thus, it must be that � ≥ �′, i.e. �&A ≥ �&

′
A . With an

analogous proof by contradiction, one can show that �&
′

B ≥ �&B.
Combining these two inequalities in Lemma 5.8.3 completes the proof of Lemma 5.8.5.
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Proof of Proposition 5.3.3. The proof makes use of Proposition 5.8.3 and Lemma 5.8.5.

First, we show that C&A ≤ 0 for all & ≥ 0. This is a consequence of Lemma 5.8.3,

which shows that �&A ≥ �MaxUtilA . Since AA is a decreasing function (and thus, A−1

A is also a

decreasing function), this implies that

C&A = A
−1

A (�
&
A) ≤ A

−1

A (�
MaxUtil
A ) = 0

A similar argument holds to show that C&B ≥ 0 for all & ≥ 0.

Now we show that C&A is increasing in & and C&B is decreasing in & to show that both

are shrinking toward 0 as & increases. Since Cj = A−1

j (�) is decreasing in �, Lemma 5.8.5

implies that the functions |C&A | = |C
&
A − C

MaxUtil
A | and |C&B | = |C

&
�
− CMaxUtilB | are also decreasing

in & toward the max profit thresholds of CMaxUtilA = CMaxUtilB = 0. Since C&A ≤ 0 and C&B ≥ 0 for

all & ≥ 0, this concludes the proof of Proposition 5.3.3.
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Chapter 6

Reachability in Recommender Systems

6.1 Introduction
In this chapter, we consider the setting of recommendation systems. Rather than a single

consequential decision, these systems make algorithmic selections from an overabun-

dance of choices and characterized by their interactivity. This chapter uses material

first presented in papers coauthored with Mihaela Curmei, Benjamin Recht, and Sarah

Rich [DRR20; CDR21].

Recommendation systems influence the way information is presented to individuals

for a wide variety of domains including music, videos, dating, shopping, and advertising.

On one hand, the near-ubiquitous practice of filtering content by predicted preferences

makes the digital information overload possible for individuals to navigate. By exploiting

the patterns in ratings or consumption across users, preference predictions are useful in

surfacing relevant and interesting content. On the other hand, this personalized curation

is a potential mechanism for social segmentation and polarization. The exploited patterns

across users may in fact encode undesirable biases which become self-reinforcing when

used in feedback to make recommendations.

Recent empiricalwork shows that personalization on the Internet has a limited effect on

political polarization [FGR16], and in fact it can increase the diversity of content consumed

by individuals [NHHTK14]. However, these observations follow by comparison to non-

personalized baselines of cable news orwell knownpublishers. In a digitalworldwhere all

content is algorithmically sorted by default, how do we articulate the trade-offs involved?

In the past year, YouTube has come under fire for promoting disturbing children’s content

and working as an engine of radicalization [Tuf18; Nic18; Bri17]. This comes after a push

on algorithm development towards the goal of reaching 1 billion hours of watchtime per

day; over 70% of views now come from the recommended videos [Sol18].

The Youtube controversy is an illustrative example of potential pitfalls when putting

large scale machine learning-based systems in feedback with people, and highlights the

importance of creating analytical tools to anticipate and prevent undesirable behavior.
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Such tools should seek to quantify the degree to which a recommender system will meet

the information needs of its users or of society as a whole, where these “information

needs” must be carefully defined to include notions like relevance, coverage, and di-

versity. An important approach involves the empirical evaluation of these metrics by

simulating recommendations made by models once they are trained [ETA+18]. In this

chapter, we develop a complementary approach which differs in two major ways: First,

we investigate properties of the predictive model analytically, making it possible to un-

derstand underlying mechanisms. Second, our evaluation considers a range of possible

user behaviors rather than a static snapshot.

Drawing conclusions about the likely effects of recommendations involves treating

humans as a component within the system, and the validity of these conclusions hinges

onmodeling humanbehavior. Wepropose an alternative evaluation that favors the agency

of individuals over the limited perspective offered by behavioral predictions. Our main

focus is on questions of possibility and access: to what extent can someone be pigeonholed

by their viewing history? What videos may they never see, even after a drastic change in

viewing behavior? And how might a recommender system encode biases in a way that

effectively limits the available library of content?

This perspective brings user agency into the center, prioritizing the the ability for

models to be as adaptable as they are accurate, able to accommodate arbitrary changes

in the interests of individuals. We adopt an interventional lens, which considers arbitrary

and strategic user actions. This chapter develops a notion of reachability, which measures

the ability of an individual to influence a recommender model to select a certain piece of

content. Reachability provides an upper bound on the ability of individuals to discover

specific content, thus isolating unavoidable biases within preference models from those

due to user behavior. While there are many system-level or post-hoc approaches to

incorporating user feedback, we focus directly on themachine learningmodel that powers

recommendations.

Weuse reachability to define ofmetricswhich capture the possible outcomes of a round

of system interactions, including the availability of content and discovery possibilities for

individuals. In Section 6.3, we show that they can be computed by solving a convex

optimization problem for a class of relevant recommenders. In Section 6.4, we draw

connections between the stochastic and deterministic settings. This perspective allows us

to describe the relationship between agency and stochasticity and further to argue that

there is not an inherent trade-off between reachability and model accuracy. Finally, we

present an audit of recommendation systems using a variety of datasets and preference

models. We explore how design decisions influence reachability and the extent to which

biases in the training datasets are propagated.

Related Work
Much work on recommender systems focuses on the accuracy of the model. This en-

codes an implicit assumption that the primary information needs of users or society are
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Figure 6.1: Conceptual framings of recommendation systems consider user behaviors to

varying degrees. In this chapter we focus on evaluating interventional properties.

described by predictive performance. The recommender systems literature has long pro-

posed a variety of other metrics for evaluation, including notions of novelty, serendipity,

diversity, and coverage [HKTR04; VC11]. Alternative metrics are useful both for diagnos-

ing biases and as objectives for post-hoc mitigating techniques such as calibration [Ste18]

and re-ranking [SJ18]. There is also a long history of measuring and mitigating bias in

recommendation systems [CDW+20]. Empirical investigations have found evidence of

popularity and demographic bias in domains including movies, music, books, and ho-

tels [AMBM19; ETA+18; ETKMK18; JLKJ15]. A inherent limitation of these approaches

is that they focus on observational bias induced by preference models, i.e. examining the

result of a single round of recommendations without considering individuals’ behav-

iors. While certainly useful, they fall short of providing further understanding into the

interactive nature of recommendation systems.

The behavior of recommendation systems over time and in closed-loop is still an

open area of study. It is difficult to definitively link anecdotal evidence of radicaliza-

tion [ROWAM20; FCF20] to proprietary recommendation algorithms. Empirical studies

of human behavior find mixed results on the relationship between recommendation and

content diversity [NHHTK14; FGR16]. Simulation studies [CSE18; YHT+21; KDZ+20]

and theoretical investigations [DGL13] shed light on phenomena in simplified settings,

showing how homogenization, popularity bias, performance, and polarization depend

on assumed user behavior models. Even ensuring accuracy in sequential dynamic set-

tings requires contending with closed-loop behaviors. Recommendation algorithmsmust

mitigate biased sampling in order to learn underlying user preference models, using

causal inference based techniques [SSSCJ16; YCX+18] or by balancing exploitation and

exploration [KBKTC15; MGP15]. Reinforcement Learning algorithms contend with these

challenges while considering a longer time horizon [CBC+19; ĲW+19], implicitly using

data to exploit user behavior.

Our work eschews behavior models in favor of an interventional framing which consid-

ers a variety of possible user actions (Figure 6.1). Giving users control over their recom-

mendations has been found to have positive effects, while reducing agency has negative

effects [HXK+15; LLZ+21]. Most similar to our work is a handful of papers focusing on

decision systems through the lens of the agency of individuals. This chapter extends the

notion of recourse proposed by Ustun, Spangher, and Liu [USL19] to multiclass classifica-
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Figure 6.2: We audit recommender systems under a user action model (A), which rep-

resents possibilities for system interaction; a learned preference model (B), which scores

items based on data and updates based on interactions; and a stochastic selection rule (C),

which selects the next recommendation.

tion settings and specializes to concerns most relevant for information retrieval systems.

Recourse in consequential decision making focuses on binary decisions, where users seek

to change negative classification through modifications to their features. [KBSV20]. This

work has connections to concepts in explainability and transparency via the idea of coun-
terfactual explanations [Rus19;WMR17], which provide statements of the form: if a user had

features -, then they would have been assigned alternate outcome .. Work in strategic

manipulation studies nearly the same problemwith the goal of creating a decision system

that is robust to malicious changes in features [HMPW16; MMDH19].

Applying these ideas to recommender systems is complex because while they can be

viewed as classifiers or decision systems, there are as many outcomes as pieces of content.

Computing precise action sets for recourse for every user-item pair is unrealistic; we

don’t expect a user to even become aware of the majority of items. Instead, we consider

the “reachability” of items by users, drawing philosophically from the fields of formal

verification and dynamical system analysis [BCHT17; OF06].

6.2 Recommenders and Reachability

Stochastic Recommender Setting
We consider systems composed of = individuals as well as a collection of < pieces of

content. For consistencywith the recommender systems literature, we refer to individuals

as users, pieces of content as items, and expressed preferences as ratings. Wewill denote a

rating by user D of item 8 as AD8 ∈ ℛ, whereℛ ⊆ Rdenotes the space of valueswhich ratings

can take. For example, ratings corresponding to the percentage of a video watched would

have ℛ = [0, 1] while discrete star ratings would have ℛ = {1, 2, 3, 4, 5}. The number of

observed ratings will generally be much smaller than the total number of possible ratings,

and we denote by ΩD ⊆ {1, . . . , <} the set of items seen by the user D. The goal of

a recommendation system is to understand the preferences of users and recommend

relevant content.
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In this work, we focus on the common setting in which recommenders are the compo-

sition of a scoring function ) with selection rule � (Figure 6.2). The scoring function models

the preferences of users. It is constructed based on historical data (e.g. observed ratings,

user/item features) and returns a score for each user and item pair. For a given user D

and item 8, we denote BD8 ∈ R to be the associated score, and for user D we will denote by

sD ∈ R< the vector of scores for all items. A common example of a scoring function is a

machine learning model which predicts future ratings based on historical data.

We will focus on the way that scores are updated after a round of user interaction. For

example, if a user consumes and rates several new items, the recommender system should

update the scores in response. Therefore, we define the score function as an update rule

which takes as its argument the user action. The new score vector is s+D = )D(a), where

a ∈ AD represents actions taken by user D andAD represents the set of all possible actions.

Thus )D encodes the historical data, the preferencemodel class, and the update algorithm.

The action spaceAD represents possibilities for system interaction, encoding for example

limitations due to user interface design. We define the form of the score update function

and discuss the action space in more detail in Section 6.3.

The selection rule� is a policywhich, for given user D and scores sD , selects one ormore

items from a set of specified target itemsΩC
D ⊆ {1, . . . , <} as the next recommendation. The

simplest selection rule is a top-1 policy, which is a deterministic rule that selects the item

with the highest score for each user. A simple stochastic rule is the &-greedy policy which

with probability 1 − & selects the top scoring item and with probability & chooses uni-

formly from the remaining items. Many additional approaches to recommendation can

be viewed as the composition of a score function with a selection policy. This setting also

encompasses implicit feedback scenarios, where clicks or other behaviors are defined as or

aggregated into “ratings.” Many recommendation algorithms, even those not specifically

motivated by regression, include an intermediate score prediction step, e.g. point-wise

approaches to ranking. Further assumptions in Section 6.3 will not capture the full com-

plexity of other techniques such as pairwise ranking and slate-based recommendations.

We leave such extensions to future work.

In this work, we are primarily interested in stochastic policies which select items

according to a probability distribution on the scores sD parametrized by a exploration

parameter. Policies of this form are often used to balance exploration and exploration in

online or sequential learning settings. A stochastic selection rule recommends an item 8

according to P
(
�(sD ,ΩC

D) = 8
)
, which is 0 for all non-target items 8 ∉ ΩC

D . For example,

to select among items that have not yet been seen by the user, the target items are set as

ΩC
D = Ωc

D (recalling that ΩD denotes the set of items seen by the user D). Deterministic

policies are a special case of stochastic policies, with a degenerate distribution.

Stochastic policies have been proposed in the recommender system literature to im-

prove diversity [CPNB15] or efficiently explore in a sequential setting [KBKTC15]. By

balancing exploitation of items with high predicted ratings against explorations of items

with lower predictions, preferences can be estimated so that future predicted ratings

are more accurate. However, our work decidedly does not take a perspective based on
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accuracy. Rather than supposing that users’ reactions are predictable, we consider a

perspective centered on agency and access.

Reachability
We define an item 8 to be deterministically reachable by a user D if there is some allowable

action a that causes item to be recommended. In the setting where recommendations

are made stochastically, we define an item 8 to be � reachable by a user D if there is some

allowable action a such that the updated probability that item 8 is recommended after

applying the actionP(�()D(a),ΩC
D) = 8) is larger than �. The maximum � reachability for

a user-item pair is defined as the solution to the following optimization problem:

�★(D, 8) = max

a∈AD

%(�()D(a),ΩC
D) = 8). (6.2.1)

Wewill also refer to �★(D, 8) as “max reachability.” For example, in the case of top-1 recom-

mendation, �★(D, 8) is a binary indicator of whether item 8 is deterministically reachable

to user D. In the case of �-greedy policy, �★(D, 8) = 1 − � if item 8 is deterministically

reachable by user D, and is �/(|ΩC
D | − 1) otherwise.

By measuring the maximum achievable probability of recommending an item to a

user, we are characterizing a granular metric of access within the recommender system.

It can also be viewed as an upper bound on the likelihood of recommendation with

minimal assumptions about user behavior. It may be illuminating to contrast this measure

with a notion of expected reachability. Computing expected reachability would require

specifying the distribution over user actions, which would amount to modeling human

behavior. In contrast, max reachability requires specifying only the constraints arising

from system design choices to define AD (e.g. the user interface). By computing max

reachability, we focus our analysis on the design of the recommender system, and avoid

conclusions which are dependent on behavioral modeling choices.

Two related notions of user agency with respect to a target item 8 are lift and rank gain.
The lift measures the ratio between the maximum achievable probability of recommenda-

tion and the baseline:

�★(D, 8) =
�★(D, 8)
�0(D, 8)

(6.2.2)

where the baseline �0(D, 8) is defined to capture the default probability of recommendation

in the absence of strategic behavior, e.g. %
(
�

(
sD ,ΩC

D

)
= 8

)
for initial scores sD .

The rank gain for an item 8 is the difference in the ranked position of the item within

the original list of scores sD and its rank within the updated list of scores s+D .
Lift and rank gain are related concepts, but ranked position is combinatorial in nature

and thusdifficult to optimize fordirectly. Theybothmeasure agencybecause they compare

the default behavior of a system to its behavior under a strategic intervention by the user.
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Given that recommenders are designed with personalization in mind, we view the ability

of users to influence the model in a positive light. This is in contrast to much recent work

in robust machine literature where strategic manipulation is undesirable.

Diagnosing System Limitations
The analysis of stochastic reachability can be used to audit recommender systems and

diagnose systemic biases from an interventional perspective (Figure 6.1). Unlike studies

of observational bias, these analyses take into account system interactivity. Unlike studies

of closed-loop bias, there is no dependence on a behaviormodel. Becausemax reachability

considers the best case over possible actions, it isolates structural biases from those caused

in part by user behavior.

Max reachability is a metric defined for each user-item pair, and disparities across

users and items can be detected through aggregations. Aggregating over target items

gives insight into a user’s ability to discover content, thus detecting users who have been

“pigeonholed” by the algorithm. Aggregations over users can be used to compare how

the system makes items available for recommendation.

We define the following user- and item-based aggregations:

�D =

∑
8∈ΩC

D

1{�D8 > �C}
|ΩC

D |
, �8 =

∑
D �D81{8 ∈ ΩC

D}∑
D 1{8 ∈ ΩC

D} (6.2.3)

The discovery �D is the proportion of target items that have a high chance of being

recommended, as determined by the threshold �C . A natural threshold is the better-than-

uniform threshold, �C = 1/|ΩC
D |, recalling that ΩC

D is the set of target items. When �D8 =
�0(D, 8), baseline discovery counts the number of items that will be recommended with

better-than-uniform probability and is determined by the spread of the recommendation

distribution. For deterministic top-1 recommendation, we have that �D = 1. When

�D8 = �★(D, 8), discovery counts the number of items that a user could be recommended

with better-than-uniform probability in the best case. In the deterministic case, this is the

proportion of target items deterministically reachable by the user. Lowbest-case discovery

means that the recommender system inherently limits user access to content.

The item availability�8 is the average likelihood of recommendation over all userswho

have item 8 as a target. It can be thought of as the chance that a uniformly selected user

will be recommended item 8. When �D8 = �0(D, 8), the baseline availability measures the

prevalence of the item in the recommendations. When �D8 = �★(D, 8), availabilitymeasures

the prevalence of an item in the best case. For deterministic top-1 recommendation, it is

the proportion of eligible users who can reach the item. Low best-case availability means

that the recommender system inherently limits the distribution of a given item.
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Observed scores Predicted scores

History edits Future edits

Goal item

User action

Figure 6.3: User action space: The shade represents the magnitude of historical (purple)

or predicted (green) rating. The action items are marked with diagonal lines; they can be

strategically modified to maximize the recommendation probability of the goal item (star).

The value of the user action is shaded in blue.

6.3 Computation via Convex Optimization

Affine Recommendation
In this section, we consider a restricted class of recommender systems for which the max

reachability problem can be efficiently solved via convex optimization.

User action model. We suppose that users interact with the system through expressed

preferences, and thus actions are updates to the vector rD ∈ ℛ< , a sparse vector of observed
ratings. For each user, the action model is based on distinguishing between action and

immutable items.

Let ΩAD denote the set of items for which the ratings can be strategically modified by

the user D. Then the action set AD = ℛ |Ω
A
D | corresponds to changing or setting the value

of these ratings. Figure 6.3 provides an illustration. The action set should be defined to

correspond to the interface through which a user interacts with the recommender system.

For example, it could correspond to a display panel of “previously viewed” or “up next”

items.

The updated rating vector r+D ∈ ℛ< is equal to rD at the indices corresponding to

immutable items and equal to the action a at the action items. Note the partition into action

and immutable is distinct from earlier partition of items into observed and unobserved;

action items can be both seen (history edits) and unseen (future reactions), as illustrated in

Figure 6.2A. For the reachabilityproblem,wewill consider a set of target itemsΩC
D that does

not intersect with the action itemsΩAD . Depending on the specifics of the recommendation
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setting, we may also require that it does not intersect with the previously rated items ΩD .

We remark that additional user or item features used for scoring and thus recom-

mendations could be incorporated into this framework as either mutable or immutable

features. The only computational difficulty arises when mutable features are discrete or

categorical.

Recommender model. The recommender model is composed of a scoring function )
and a selection function �, which we now specify. We consider affine score update functions
where for each user, scores are determined by an affine function of the action: s+D = )D(a) =
�Da + cD where �D ∈ R<×|Ω

A
D | and cD ∈ R< are model parameters determined in part by

historical data. Such a scoringmodel arises from a variety of preference models, as shown

in the examples later in this section.

Wenow turn to the selection component of the recommender,which translates the score

sD into a probability distribution over target items. The stochastic policy we consider is:

Definition 6.1 (Soft-max selection). For 8 ∈ ΩC
D , the probability of item selection is given

by

%(��(sD ,ΩC
D) = 8) =

4�BD8∑
9∈ΩC

D
4�BD9

.

This form of stochastic policy samples an item according to a Boltzmann distribution

defined by the predicted scores (Figure 6.2C). Distributions of this form are common in

machine learning applications, and are known as Boltzmann sampling in reinforcement

learning or online learning settings [WXLGC17; CGLN17].

Convex Optimization
We now show that under affine score update models and soft-max selection rules, the

maximum stochastic reachability problem can be solved by an equivalent convex problem.

First notice that for a soft-max selection rule with parameter �, we have that

log

(
%(��(sD ,ΩC

D) = 8)
)
= �BD8 − LSE

9∈ΩC
D

(
�BD9

)
where LSE is the log-sum-exp function.

Maximizing stochastic reachability is equivalent tominimizing its negative log-likelihood.

Letting bD8 ∈ R|Ω
A
D | denote the 8th row of the action matrix �D and substituting the form

of the score update rule, we have the equivalent optimization problem:

min

a∈AD

LSE

9∈ΩC
D

(
�(b>D9a + 2D9)

)
− �(b>D8a + 2D8) (6.3.1)

If the optimal value to (6.3.1) is �★(D, 8), then the optimal value for (6.2.1) is given by

�★(D, 8) = 4−�★(D,8).
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The objective in (6.3.1) is convex because log-sum-exp is a convex function, affine

functions are convex, and the composition of a convex and an affine function is convex.

Therefore, whenever the action space AD is convex, so is the optimization problem. The

size of the decision variable scales with the dimension of the action, while the objective

function relies on a matrix-vector product of size |ΩC
D | × |AD |. Being able to solve the

maximum reachability problem quickly is of interest, since auditing an entire system

requires computing �★ for many user and item pairs.

In particular, the optimization problem (6.3.1) can be solved as an optimization over

the exponential cone:

min

C ,a,u
C − �(b>D8a + 2D8)

s.t. a ∈ AD ,
∑
9∈ΩC

D

D9 ≤ 1,(
D9 , 1, �(b>D9a + 2D9) − C

)
∈ K4G? ∀ 9 ∈ ΩC

D

(6.3.2)

Examples
We review examples of common preferencemodels and show how the score updates have

an affine form.

Example 6.1 (MF-SGD). Matrix factorization models compute scores as rating predictions

so that ( = %&>, where % ∈ R=×3 and & ∈ R<×3 are respectively user and item factors for

some latent dimension 3. They are learned via the optimization

min

%,&

=∑
D−1

∑
8∈ΩD

‖p>Dq8 − AD8 ‖2
2
.

Under a stochastic gradient descent minimization scheme with step size , the one-step

update rule for a user factor is

p+D = pD − 
∑
8∈ΩAD

(q8q>8 pD − q8AD8) ,

Notice that this expression is affine in the action items. Therefore, we have an affine score

function:

)D(a) = &p+D = &
(
pD − &>A&ApD − &>Aa

)
where we define &A = &ΩAD

∈ R|ΩAD |×3. Therefore,

�D = −&&>A , cD = &
(
pD − &>A&ApD

)
.
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Example 6.2 (Item-KNN). Neighborhood models compute scores as rating predictions by

a weighted average, with:

BD8 =

∑
9∈N8 F8 9AD9∑
9∈N8 |F8 9 |

where F8 9 are weights representing similarities between items and N8 is a set of indices

of previously rated items in the neighborhood of item 8. Regardless of the details of how

these parameters are computed, the predicted scores are a linear function of observed

scores: sD =,rD .
Therefore, the score updates take the form

)D(a) =,r+D = ,rD︸︷︷︸
cD

+,�ΩAD︸ ︷︷ ︸
�D

a

where �ΩAD selects rows of, corresponding to action items.

Example 6.3 (SLIM and EASE). For both SLIM [NK11] and EASE [Ste19], scores are

computed as

BD8 = w>8 rD
for w8 the row vectors of a weight matrix, . For SLIM, the sparse weights are computed

as

min

,

1

2

‖' − ', ‖2� +
�

2

‖, ‖2� + �‖, ‖1
s.t., ≥ 0, diag(,) = 0

For EASE, the weights are computed as

min

,

1

2

‖' − ', ‖2� + �‖, ‖
2

�

s.t. diag(,) = 0

In both cases, the score updates take the form

)D(a) = ,rD︸︷︷︸
cD

+,�ΩAD︸ ︷︷ ︸
�D

a .

In all these examples, the action matrices can be decomposed into two terms. The first

is a term that depends only on the preference model (e.g. item factors & or weights,),

while the second is further dependent on the user action model (e.g. action item factors

&A or action selector �ΩAD ).

For simplicity of presentation, the examples above leave out model bias terms, which

are common in practice. Incorporating these model biases changes only the definition

of the affine term in the score update expression. We now present the full action model

derivation with biases.
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Example 6.4 (BiasedMF-SGD). Biasedmatrix factorizationmodels [KB15] compute scores

as rating predictions with

BD8 = p>Dq8 + 5D + 68 + �
% ∈ R=×3 and & ∈ R<×3 are respectively user and item factors for some latent dimension

3, f ∈ R= and g ∈ R< are respectively user and item biases, and � ∈ R is a global bias.

The parameters are learned via the regularized optimization

min

%,&,f,g,�

1

2

=∑
D=1

∑
8∈ΩD

‖p>Dq8 + 5D + 68 + � − AD8 ‖2
2
+ �

2

‖%‖2� +
�
2

‖&‖2� .

Under a stochastic gradient descent minimization scheme [Kor08] with step size , the
one-step update rule for a user factor is

p+D = pD − 
∑
8∈ΩAD

(q8q>8 pD + q8( 5D + 68 + �) − q8AD8) − �pD .

User bias terms can be updated in a similar manner, but because the user bias is equal

across items, it does not impact the selection of items.

Notice that this expression is affine in themutable ratings. Therefore, we have an affine

score function:

)D(a) = &p+D = &
(
(1 − �)pD − &>A(&ApD + gA + (� + 5D)1) + &>Aa

)
where we define &A = &ΩAD

∈ R|ΩAD |×3 and gA = gΩAD ∈ R
|ΩAD |. Therefore,

�D = &&>A , cD = &
(
(1 + �)pD − &>A(&ApD + gA + (� + 5D)1)

)
.

Example 6.5 (Biased MF-ALS). Rather than a stochastic gradient descent minimization

scheme,wemay insteadupdate themodelwith analternating least-squares strategy [ZWSP08].

In this case, the update rule is

p+D = arg min

p

∑
8∈ΩAD ∩ΩD

‖p>q8 + 5D + 68 + � − AD8 ‖2
2
+ �‖p‖2

2

= (&>D&D + ��)−1(&>rD +&>A(gA + (� + 5D)1) +&
>
Aa)

where we define &D = &ΩAD ∩ΩD
. Similar to in the SGD setting, this is an affine expression,

and therefore we end up with the affine score parameters

�D = &(&>D&D + ��)−1&>A , cD = &(&>D&D + ��)−1(&>rD +&>A(gA + (� + 5D)1)) .
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Example 6.6 (Biased Item-KNN). Biased neighborhoodmodels [DK11] compute scores as

rating predictions by a weighted average, with

BD8 = � + 5D + 68 +
∑
9∈N8 F8 9(AD9 − � − 5D − 68)∑

9∈N8 |F8 9 |

where F8 9 are weights representing similarities between items,N8 is a set of indices which

are in the neighborhood of item 8, and f, g, � are bias terms. Regardless of the details

of how these parameters are computed, the predicted scores are an affine function of

observed scores:

sD =,rD −,(g + (� + 5D)1) + g + (� + 5D)1
where we can define

,8 9 =

{ F8 9∑
9∈N8 |F8 9 |

9 ∈ N8
0 otherwise

Therefore, the score updates take the form

)D(a) =,(rD − g + (� + 5D)1) + g + (� + 5D)1)︸                                            ︷︷                                            ︸
cD

+,�ΩAD︸ ︷︷ ︸
�D

a .

6.4 Impact of Preference Model Geometry
In this section,we explore the connectionbetween stochastic anddeterministic reachability

to illustrate how both randomness and agency contribute to discovery as defined by the

max reachability metric. We make connections between agency and model geometry

for matrix factorization models. This allows us to argue by example that it is possible

to design preference models that guarantee deterministic reachability, and that doing so

does not induce accuracy trade-offs.

Connection to Deterministic Recommendation
We now explore how the softmax style selection rule is a relaxation of top-1 recom-

mendation. For larger values of �, the selection rule distribution becomes closer to the

deterministic top-1 rule. This also means that the stochastic reachability problem can be

viewed as a relaxation of the top-1 reachability problem.

In stochastic settings it is relevant to inquire the extent to which randomness impacts

discovery and availability. In the deterministic setting, the reachability of an item to a user

is closely tied to agency—the ability of a user to influence their outcomes. The addition

of randomness induces exploration, but not in a way that is controllable by users. In

the following result, we show how this trade-off manifests in the max reachability metric

itself.
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Proposition 6.4.1. Consider the stochastic reachability problem for a �-softmax selection rule as
� → ∞. Then if an item 8 ∈ ΩC

D is top-1 reachable by user D, �★(D, 8) → 1. In the opposite case
that item 8 is not top-1 reachable, we have that �★(D, 8) → 0.

Proof. Define

��(a) = LSE

9∈ΩC
D

(
�)D9(a)

)
− �)D8(a)

and see that �D8(a) = 4−��(a). Then we see that

lim

�→∞
1

�
��(a) = max

9∈ΩC
D

(
)D9(a)

)
− )D8(a)

yields a top-1 expression. If an item 8 is top-1 reachable for user D, then there is some

a such that the above expression is equal to zero. Therefore, as � → ∞, �★ → 0, hence

�★ → 1. In the opposite case when an item is not top-1 reachable we have that �★ → ∞,

hence �★→ 0.

This connection yields insight into the relationship betweenmax reachability, random-

ness, and agency in stochastic recommender systems. For itemswhich are top-1 reachable,

larger values of � result in larger �★, and in fact the largest possible max reachability is

attained as � → ∞, i.e. there is no randomness. On the other hand, if � is too large, then

items which are not top-1 reachable will have small �★. There is some optimal finite � ≥ 0

that maximizes �★ for top-1 unreachable items. Therefore, we see a delicate balance when

it comes to ensuring access with randomness.

Viewed in another light, this result says that for a fixed � � 1, deterministic top-1

reachability ensures that �★ will be close to 1. We now explore this perspective. Special-

izing to affine score update models, we now highlight how parameters of the preference

and action models play a role in determining max reachability.

Recall the definition of the convex hull.

Definition 6.2 (Convex hull). The convex hull of a set of vectorsV = {v8}=8=1
is defined as

conv (V) =
{

=∑
8=1

F8v8 | w ∈ R=+,
=∑
8=1

F8 = 1

}
.

A point v9 ∈ V is a vertex of the convex hull if

v9 ∉ conv

(
V \ {v9}

)
.

Proposition 6.4.2. Consider the stochastic reachability problem for a �-softmax selection rule and
affine score update model with action vectors {bD9}<9=1

. Fix an 8 ∈ ΩC
D . If bD8 is a vertex on the

convex hull of {bD9} 9∈ΩC
D
and actions are real-valued, then �★

D8
→ 1 as � → ∞ and the item 8 is

top-1 reachable.
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Proof. We begin by showing that if bD8 is a vertex on the convex hull of ℬ = {bD9} 9∈ΩC
D
,

then item 8 is top-1 reachable.

Item 8 is top-1 reachable if there exists some a ∈ R|ΩAD | such that b>
D8

a + 2D8 ≥ b>
D9

a + 2D9
for all 9 ≠ 8. Therefore, top-1 reachability is equivalent to the feasibility of the following

linear program

min 0
>a

s.t. �D8a ≥ fD8

where �D8 has rows given by bD8 − bD9 and fD8 has entries given by 2D9 − 2D8 for all 9 ∈ ΩC
D

with 9 ≠ 8. Feasibility of this linear program is equivalent to boundedness of its dual:

max f>D8�
s.t. �>D8� = 0, � ≥ 0.

We now show that if bD8 is a vertex on the convex hull of ℬ, then the dual is bounded

because the only feasible solution is � = 0. To see why, notice that

�>D8� = 0 ⇐⇒ bD8
∑
9∈ΩC

D
9≠8

� 9 =
∑
9∈ΩC

D
9≠8

� 9bD9 .

If this expression is true for some � ≠ 0, then we can write

bD8 =
∑
9∈ΩC

D
9≠8

F 9bD9 , F 9 =
� 9∑
9∈ΩC

D
9≠8

� 9
=⇒ bD8 ∈ conv (ℬ \ {bD8}) .

This is a contradiction, and therefore it must be that � = 0 and therefore the dual is

bounded and item 8 is top-1 reachable.

To finish the proof, we appeal to Proposition 6.4.1 to argue that since item 8 is top-1

reachable, then �★
D8
→ 1 as �→∞.

This result highlights how the geometry of the score model determines when it is

preferable for the system to haveminimal exploration, from the perspective of reachability.

Latent Geometry in MF Models
We now restrict our attention to top-1 recommendation policies with score models based

onmatrix factorization, as in Example 6.1. This allows for a re-interpretation of our results

so far in terms of the latent space of item and user factors. The action vectors specialized

to the matrix factorization case are given as, for each 8 ∈ {1, . . . , <}

bD8 = −&Aq8 .
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Figure 6.4: Left: Items in Latent Space. Right: Availability of Items to a User. An example

of item factors (indicted by colored points) in 3 = 2. In (a), the top-1 item regions are

indicated by color. The teal item is unavailable. In (b), reachability for a user who has

seen the blue and the green items (now in gray) with the blue item’s rating fixed. The

black line indicates how the user’s representation can change depending on their rating

of the green item. The red region indicates the constraining effect of requiring bounded

and integer-valued ratings, which affect the reachability of the yellow item.

The geometry of the action vectors is thus determined by the geometry of the item factors

and the set of action items. These two can be decomposed by re-interpreting the score

update model, described in Example 6.1, as consisting of two steps:

1. Update the user factor, depending on &A and actions a.

2. Recompute scores, depending on the target item factors {q9 | 9 ∈ ΩC
D}.

With this interpretation in mind, we can define the item-region for item 8 as

S8 = {p | q>8 p > q>9 p ∀ 9 ≠ 8 ∈ ΩC
D}

If a user’s latent vector lies within this set, then the user will be recommended item 8.

We can therefore interpret reachability as the search for an action a that brings the user’s

updated latent vector p+D into the item region S8 . There are thus two potential barriers

to reachability: first, the region S8 could be empty; second, the action space may not be

rich enough to allow for full movement. The first stems from the geometry of the learned

preference model parameters, while the second from user interface design. This idea is

illustrated in Figure 6.4 for a toy example with latent dimension 3 = 2.

User cold-start. Reachability yields a novel perspective on how to incorporate new users

into a recommender system. The user cold-start problem is the challenge of selecting items

to show a user who enters a system with no rating history from which to predict their

preferences. This is a major issue with collaboratively filtered recommendations, and

systems often rely on incorporating extraneous information [SPUP02]. These strategies
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focus onpresenting itemswhich aremost likely to be rated highly or to bemost informative

about user preferences [BLR17].

The idea of reachability offers an alternative point of view. Rather than evaluating a

potential “onboarding set” only for its contribution to model accuracy, we can choose a

set which additionally ensures that many types of items are reachable. We can evaluate

an onboarding set by the geometry of the action vectors in latent space. Inspired by

Proposition 6.4.2, in the case of matrix factorization, we should check for any candidate

set of action items ΩAD , what proportion of the elements {&Aq9 | 9 ∈ ΩC
D} are vertices

on the convex hull. Due to computational difficulties, we primarily propose this be used

to distinguish between candidate onboarding sets, based on the ways these sets provide

user agency. We leave to future work the task of generating candidate sets based on these

reachability properties.

Reachability Without Sacrificing Accuracy
We now consider whether geometric properties of the preference model relevant to reach-

ability are predetermined by the goal of accurate prediction. Is there a tension between

ensuring reachability and accuracy? We answer in the negative by presenting a construc-

tion for the case of matrix factorization models. Our result shows that the item and user

factors (% and &) can be slightly altered such that all items become top-1 reachable at no

loss of predictive accuracy. The construction expands the latent dimension of the user

and item factors by one and relies on a notion of sufficient richness for action items.

Definition 6.3 (Rich actions). For a set of item factors {q9}<9=1
, let � = max9 ‖q9 ‖2. Then a

set of action items ΩAD ⊆ {1, . . . , <} is sufficiently rich if the vertical concatenation of their

item factors and norms is full rank:

rank

( [
q>
8

√
�2 − ‖q8 ‖2

2

]
8∈ΩAD

)
= 3 + 1 .

Notice that this can only be true if |ΩAD | ≥ 3 + 1.

Proposition 6.4.3. Consider theMFmodel with user factors% ∈ R=×3 and item factors& ∈ R<×3.
Further consider any user D with a sufficiently rich set of at least 3+1 action items and real-valued
actions. Then there exist %̃ ∈ R=×3+1 and &̃ ∈ R<×3+1 such that %&> = %̃&̃> and under this
model, all target items 8 ∈ ΩC

D are top-1 reachable.

Proof. Let � be themaximum row norm of& and define v ∈ R< such that E2

8
= �2−‖q8 ‖2

2
.

Then we construct modified item and user factors as

&̃ =
[
& v

]
, %̃ =

[
% 0

]
.

Therefore, we have that %̃&̃> = %&>.
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Then notice that by construction, each row of &̃ has norm �, so each q̃8 is on the

boundary of an ℓ2 ball in R3+1
. As a result, each q̃8 is a vertex on the convex hull of {q̃9}=9=1

as long as all q9 are unique.
For an arbitrary user D, the score model parameters are given by b̃D8 = −&̃Aq̃8 . We

show by contradiction that as long as the action items are sufficiently rich, each b̃D8 is a
vertex on the convex hull of {b̃D9}=9=1

. Supposing this is not the case for an arbitrary 8,

b̃D8 =
=∑
9=1

9≠8

F 9b̃D9 ⇐⇒ &̃Aq̃8 =
=∑
9=1

9≠8

F 9&̃Aq̃8 =⇒ q̃8 =
=∑
9=1

9≠8

F 9q̃8

where the final implication follows because the fact that &̃A is full rank (due to richness)

implies that &̃>A&̃A is invertible. This is a contradiction, and thereforewehave that each b̃D8
must be a vertex on the convex hull of {b̃D9}=9=1

. Finally, we appeal to Proposition 6.4.2.

The existence of such a construction demonstrates that there is not an unavoidable

trade-off between accuracy and reachability in recommender systems.

6.5 Audit Demonstration

Experimental Setup
Code is available at www.github.com/modestyachts/stochastic-rec-reachability.

Datasets. We evaluate max � reachability in settings based on three popular recommen-

dation datasets: MovieLens 1M (ML-1M) [HK15], LastFM 360K [Cel10] and MIcrosoft

News Dataset (MIND) [WQC+20]. ML-1M is a dataset of 1 through 5 explicit ratings

of movies, containing over one million recorded ratings; we do not perform any ad-

ditional preprocessing. LastFM is an impliciGangnamt rating dataset containing the

number of times a user has listened to songs of an artist. We used the version of

the LastFM dataset preprocessed by Shakespeare et al. [SPGC20]. For computational

tractability, we select a random subset of 10% of users and 10% artists and define ratings

as AD8 = log(#listens(D, 8)+1) to ensure that rating matrices are well conditioned. MIND is

an implicit rating dataset containing clicks and impressions data. We use a subset of 50K

users and 40K news articles spanning 17 categories and 247 subcategories. We transform

news level click data into subcategory level aggregation and define the rating associated

with a user-subcategory pair as a function of the number of times that the user clicked

on news from that subcategory: AD8 = log(#clicks(D, 8) + 1). Table 6.1 provides summary

statistics and Section 6.7 contains further details about the datasets and preprocessing

steps.

www.github.com/modestyachts/stochastic-rec-reachability
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Table 6.1: Audit datasets

Data set ML 1M LastFM 360K MIND

Users 6040 13698 50000

Items 3706 20109 247

Ratings 1000209 178388 670773

Density (%) 4.47% 0.065% 5.54%

LibFM rmse 0.716 1.122 0.318

KNN rmse 0.756 1.868 -

Preference models. We consider two preference models: one based on matrix factor-

ization (MF) as well as a neighborhood based model (KNN). We use the LibFM SGD

implementation [Ren12] for the MF model and use the item-based k-nearest neighbors

model implemented by Krauth et al. [KDZ+20]. For each dataset and recommender

model we perform hyper-parameter tuning using a 10%-90% test-train split. We report

test performance in Table 6.1. See Section 6.7 for details about tuning. Prior to performing

the audit, we retrain the recommender models with the full dataset.

Reachability experiments. We solve the conic program (6.3.2) using theMOSEK Python

API under an academic license [ApS19]. To compute reachability, it is further necessary

to specify additional elements of the recommendation pipeline: the user action model,

the set of target items, and the soft-max selection parameter.

We consider three types of user action spaces: History Edits, Future Edits, andNext K in

which users can strategically modify the ratings associated to  randomly chosen items

from their history,  randomly chosen unobserved items, or the top- items according to

the baseline scores of the preference model. For each of the action spaces we consider a

range of  values. We further constrain actions to lie in an interval corresponding to the

rating range, using [1, 5] for movies and [0, 10] for music and news.

In the case of movies (ML-1M) we consider target items to be all items that are neither

seen nor action items. In the case of music and news recommendations (LastFM &

MIND), the target items are all the items with the exception of action items. This reflects

an assumption thatmusic created by a given artist or newswithin a particular subcategory

can be consumed repeatedly, while movies are viewed once.

For each dataset and recommendation pipeline, we compute max reachability for soft-

max selection rules parametrized by a range of � values. Due to the computational burden

of large densematrices, we computemetrics for a subset of users and target items sampled

uniformly at random. For details about runtime, see Section 6.7.
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Figure 6.5: Left: Histogram of log max reachability values for � = [1, 2, 4]. Black dotted

line denotes �★ for uniformly random recommender. Center: Histogram of �★ > 0.05 (red
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Random Future action space and a LibFM model.
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Impact of Recommender Pipeline
We begin by examining the role of recommender pipeline components: stochasticity

of item selection, user action models, and choice of preference model. All presented

experiments in this section use the ML-1M dataset.

These experiments show that more stochastic recommendations correspond to higher

average max reachability values, whereas more deterministic recommenders have a more

disparate impact, with a small number of items achieving higher �★. We also see that

the impact of the user action space differs depending on the preference model. For

neighborhood based preference models, strategic manipulations to the history are most

effective at maximizing reachability, whereas manipulations of the items most likely to be

recommended next are ineffective.

Role of stochasticity. We investigate the role of the � parameter in the item selection

policy. Figure 6.5 illustrates the relationship between the stochasticity of the selection

policy and max reachability. There are significantly more target items with better than

random reachability for low values of �. However, higher values of � yield more items

with high reachability potential (> 5% likelihood of recommendation). These items are

typically items that are top-1 or close to top-1 reachable. While lower � values provide

better reachability on average and higher � values provide better reachability at the “top”,

higher � uniformly out-performs lower � values in terms of the lift metric. This suggests

that larger � corresponds tomore user agency, since the relative effect of strategic behavior

is larger. However, note that for very large values of �, high lift values are not so much

the effect of improved reachability as they are due to very low baseline recommendation

probabilities.

Role of user actionmodel. Wenowconsider different action space sizes. In Figure 6.6we

plot max reachability for target items of a particular user over varying levels of selection

rule stochasticity and varying action space sizes. Larger action spaces correspond to

improved item reachability for all values of �. However, increases in the number of action

items have a more pronounced effect for larger � values.

While increasing the size of the action space uniformly improves reachability, the same

cannot be said about the type of action space. For each user, we compute the average lift

over target items as a metric for user agency in a recommender (Figure 6.7). For LibFM,

the choice of action space does not strongly impact the average user lift, though Next K
displays more variance across users than the other two. However, for Item KNN, there is

a stark difference between Next K and and random action spaces.

Role of preferencemodel. As Figure 6.7 illustrates, a systemusing LibFMprovidesmore

agency on average than one using KNN. We now consider how this relates to properties

of the preference models. First, consider the fact that for LibFM, there is higher variance

among user-level average lifts observed for Next K action space compared with random
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Figure 6.7: The distribution of average lifts (a notion of agency) over users. Colors indicate

different user action spaces for LibFM (left) and KNN (right) on ML-1M.

action spaces. This can be understood as resulting from the user-specific nature of Next K
recommended items. On the other hand, random action spaces are user independent, so

it is not surprising that there is less variation across users.

In a neighborhood-based model users have leverage to increase the � reachability only

for target items in the neighborhood of action items. In the case of KNN, the next items

up for recommendation are in close geometrical proximity to each other. This limits the

opportunity for discovery of more distant items for Next K action space. On the other

hand, the action items are more uniformly over space of item ratings in random action

models, thus contributing to much higher opportunities for discovery. Additionally, we

see that History Edits displays higher average lift values than Future Edits. We posit that

this is due to the fact that editing  items from the history leads to a larger ratio of strategic

to non-strategic items.

Bias in Movie, Music, and News Recommendation
We further compare aggregated stochastic reachability against properties of user and

items to investigate bias. We aggregate baseline and max reachability to compute user-

level metrics of discovery and item-level metrics of availability. The audit demonstrates

popularity bias for items with respect to baseline availability. This bias persists in the best

case for neighborhood based recommenders and is thus unavoidable, whereas it could be

mitigated for MF recommenders. User discovery aggregation reveals inconclusive results

with weak correlations between the length of users’ experience and their ability to access

content.

Popularity bias. In Figure 6.8, we plot the baseline and best case item availability (as

in (6.2.3)) to investigate popularity bias. We consider popularity defined by the average

rating of an item in a dataset. Another possible definition of popularity is rating frequency,
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Figure 6.8: Comparison of baseline and best case availability of content, across four

popularity categories for LibFM (left) and KNN (right) preference models. Reachability

evaluated on ML-1M for Next 10 action space with � = 2.

but for this definition we did not observe any discernible bias. For both LibFM and

KNN models, the baseline availability displays a correlation with item popularity, with

Spearman’s rank-order correlations of AB = 0.87 and AB = 0.95. This suggests that as

recommendations are made and consumed, more popular items will be recommended at

disproportionate rates.

Furthermore, the best case availability for KNN displays a similar trend (AB = 0.94),

indicating that the propagation of popularity bias can occur independent of user behavior.

This does not hold for LibFM, where the best case availability is less clearly correlated

with popularity (AB = 0.57). The lack of correlation for best case availability holds in the

additional settings of music artist and news recommendation with the LibFMmodel (Fig-

ure 6.9). Our audit does not reveal an unavoidable systemic bias for LibFM recommender,

meaning that any biases observed in deployment are due in part to user behavior. In

contrast, we see a systematic bias for the KNN recommender, meaning that regardless of

user actions, the popularity bias will propagate.

Experience bias. To consider the opportunities for discovery provided to users, we

perform user level aggregations of max reachability values as in (6.2.3). We investigate

experience bias by considering how the discovery metric changes as a function of the

number of different items a user has consumed so far, i.e. their experience. Figure 6.10

illustrates that experience is weakly correlated with baseline discovery for movie recom-

mendation (AB = 0.48), but not so much for news recommendation (AB = 0.05). The best

case discovery is much higher, meaning that users have the opportunity to discover many

of their target items. However, the weak correlation with experience remains for best case

discovery of movies (AB = 0.53).
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Figure 6.9: Comparison of baseline and best case availability of content for four popularity

categories for LastFM (left) and MIND (right) with Next 10 actions, LibFM model, and
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Figure 6.10: Comparison of baseline and best case fraction of items with better than

random �★, grouped across four levels of user history length. Reachability evaluated on

ML-1M (left) and MIND (right) for Next 10 action space, � = 2, and LibFM model.

6.6 Conclusion and Open Problems
In this chapter, we consider the effects of using predicted user preferences to recommend

content, a practice prevalent throughout the digital world today. By defining reachability

for deterministic and stochastic recommenders, we provide a way to evaluate the impact

of using these predictive models to mediate the discovery of content. In applying this

lens to linear preference models, we see several interesting phenomena. The first is

simple but worth stating: good predictive models, when used to moderate information,

can unintentionally make portions of the content library inaccessible to users. This is

illustrated in practice in our study of the MovieLens, LastFM, and MIND datasets. Our

experiments illustrate the impact of system design choices and historical data on the
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availability of content and users’ opportunities for discovery, highlighting instances in

which popularity bias is inevitable regardless of user behavior.

To some extent, the differences in the availability of items are related to their un-

popularity within training data. Popularity bias is a well known phenomenon in which

systems fail to personalize [Ste11], and instead over-recommend the most popular pieces

of content. Empirical work shows connections between popularity bias and undesirable

demographic biases, including the under-recommendation of female authors [ETKMK18].

YouTube was long known to have a popularity bias problem (known as the “Gangnam

Style Problem”), until the recommendations began optimizing for predicted “watch time”

over “number of views.” Their new model has been criticized for its radicalization and

political polarization [Tuf18; Nic18]. The choice of prediction target can have a large effect

on the types of content users can or are likely to discover, motivating the use of analytic

tools like the ones proposed here to reason about these trade-offs before deployment.

While the reachability criteriaproposed in thiswork forman important basis for reason-

ing about the availability of content within a recommender system, they do not guarantee

less biased behavior on their own. Because our audits primarily consider the feasibility,

we can only confirm possible outcomes rather than distinguish between probable ones.

This can illuminate limitations inherent in recommender systems for organizing and pro-

moting content. Consequently, a reachability audit can lead to actionable insights: system

designers can assess potential biases before releasing algorithmic updates into produc-

tion. Moreover, as reachability depends on the choice of action space, such system-level

insights might motivate user interface design: for example, a sidebar encouraging users

to re-rate  items from their history. However, reachability alone will not fix problems

of filter bubbles or toxic content. There is an important distinction between technically

providing reachability and the likelihood that people will actually avail themselves of it.

With these limitations in mind, wemention several ways to extend the ideas presented

in this work:

• Generative theory of reachability. Analyzing connections between training data

and the reachability properties of the resulting model would to give context to

empirical work showing how biases can be reproduces in the way items are recom-

mended [ETKMK18; ETA+18].

• Extended class of preferencemodels. Manymodels for rating predictions do not fall

into the linear class described here, especially those that incorporate implicit feed-

back or perform different online update strategies for users. Not all simple models

are linear—for example, subset based recommendations offer greater scrutability

and thus user agency by design [BRA19].

• Extended class of selection rules. Slate-based and top-# recommendation is com-

mon, but it is computationally difficult to evaluate the reachability properties of

these selection rules. One avenue for addressing more generic recommender poli-
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cies might be an approach based on sampling, which could apply to even black-box

recommender evaluation.

• Reachability by design. Our result on the lack of trade-off between accuracy and

reachability is encouraging. Minimum one-step reachability conditions could be ef-

ficiently incorporated into learning algorithms for preference models. Alternatively,

post-processing approaches to the recommender policy � could work with existing

models to modify their reachability properties. For example, Steck [Ste18] proposed

a method to ensure that the distribution of recommendations over genres remains

the same despite model predictions.

• Interaction over longhorizons. Directly consideringmultiple rounds of interactions

between users and recommendation systems would shed light on how these models

evolve over time. This is a path towardsunderstandingphenomena like filter bubbles

and polarization.

We highlight that the reachability lens presents a contrasting view to the popular line

of work on robustness in machine learning. When human behaviors are the subject of

classification and prediction, building “robustness” into a system may be at odds with

ensuring agency. Because the goal of recommendation is personalization more than

generalization, it would be appropriate to consider robust access over robust accuracy.

This calls for questioning the current normative stance and critically examining system

desiderata in light of usage context.

More broadly, we emphasize the importance of auditing systems with learning-based

components in ways that directly consider the models’ behavior when put into feedback

with humans. In the field of formal verification, making guarantees about the behavior

of complex dynamical systems over time has a long history. There are many existing

tools [ABDM00], though they are generally specialized to the case of physical systems

and suffer from the curse of dimensionality. We accentuate the abundance of opportunity

for developing novel approximations and strategies for evaluating large scale machine

learning systems.

6.7 Additional Experimental Details

Detailed Data Description
MovieLens1M. ML-1Mdatasetwasdownloaded fromGroupLens1 via theRecLab [KDZ+20]

interface2. It contains 1 through 5 rating data of 6040 users for 3706 movies. There are

a total of 1000209 ratings (4.47% rating density). The original data is accompanied by

additional user attributes such as age, gender, occupation and zip code. Our experiments

1https://grouplens.org/datasets/movielens/1m/
2https://github.com/berkeley-reclab/RecLab

https://grouplens.org/datasets/movielens/1m/
https://github.com/berkeley-reclab/RecLab
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Figure 6.11: Descriptive statistics for theMovieLens 1Mdataset split by user gender (28.3%

female). The mean ratings of both users and items are roughly normally distributed while

user’s history length and item popularity display power law distributions.

didn’t indicate observable biases across these attributes. We later show user discovery

results split by gender.

Figure 6.11 illustrates descriptive statistics for the ML-1M dataset.

LastFM 360K. The LastFM 360K dataset preprocessed3 by Shakespeare et al. [SPGC20]

was loaded via the RecLab interface. It contains data on the number of times users have

listened to various artists. We select a random subset of 10% users and a random subset of

10% items yielding 13698 users, 20109 items and 178388 ratings (0.056% rating density).

The item ratings are not explicitly expressed by users as in the MovieLens case. For a

user D and an artist 8 we define implicit ratings AD8 = log(#listens(D, 8) + 1). This data is

accompanied by artist gender, an item attribute.

Figure 6.12 illustrates descriptive statistics for the LastFM dataset.

MIcrosoft News Dataset (MIND). MIND is a recently published impression dataset

collected from logs of the Microsoft News website 4. We downloaded the MIND-small
dataset5, which contains behavior log data for 50000 randomly sampled users. There are

42416 unique news articles, spanning 17 categories and 247 subcategories. We aggregate

user interactions at the subcategory level and consider the problem of news subcategory

recommendation. The implicit rating of a user D for subcategory 8 is defined as: AD8 =

log(#clicks(D, 8) + 1). The resulting aggregated dataset contains 670773 ratings (5.54%

rating density).

Figure 6.13 illustrates descriptive statistics for the MIND dataset.

3https://zenodo.org/record/3964506#.XyE5N0FKg5n
4https://microsoftnews.msn.com/
5https://msnews.github.io/

https://zenodo.org/record/3964506#.XyE5N0FKg5n
https://microsoftnews.msn.com/
https://msnews.github.io/
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Figure 6.12: Descriptive statistics for the LastFM dataset split by artist gender (over 54% of

artists have unknown gender, 36% are male, 6.5% are female and 3.5% are mixed gender).

Unlike ML 1M, for the LastFM dataset the user history lengths are normally distributed

around a mean of around 12 artists.
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Figure 6.13: Descriptive statistics for the MIND dataset: The orange bars correspond to

either user or items that have been displayed but have not clicked/ have not been clicked

on. Unlike ML 1M and LastFM, the MIND ratings have strongly skewed distribution,

with most user-subcategory ratings corresponding to users clicking on a small number of

articles from the sub-category. There is a long tail of higher ratings that corresponds to

most popular subcategories. The leftmost plot illustrates the unequal distribution of news

articles across categories. The same qualitative behavior holds for sub-categories.
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Table 6.2: Tuning results

LibFM

Dataset LR Reg. Test RMSE Run time (s)

ML 1M 0.0112 0.0681 0.716 2.76 ± 0.32

LastFM 0.0478 0.2278 1.122 0.78 ± 0.13

MIND 0.09 0.0373 0.318 3.23 ± 0.37

KNN

Dataset Neigh. size Shrinkage Test RMSE Run time (s)

ML 1M 100 22.22 0.756 0.34 ± 0.07

Model Tuning
For each dataset and recommender model we perform grid search for progressively finer

meshes over the tunable hyper-parameters of the recommender. We use recommenders

implemented by the RecLab library. For each dataset and recommender we evaluate

hyperparameters on a 10% split of test data. The best hyper-parameters for each setting

are presented in Table 6.2.

LibFM. We performed hyper-parameter tuning to find suitable learning rate and regu-

larization parameter for each dataset. Following [DBCJ21] we consider lr ∈ (0.001, 0.5)
as the range of hyper-parameters for the learning rate and reg ∈ (10

−5, 10
0) for the regu-

larization parameter. In all experimental settings we follow the setup of [RZK19] and use

64 latent dimensions and train with SGD for 128 iterations.

KNN. Weperformhyperparameter tuningwith respect to neighborhood size and shrink-

age parameter. Following [DBCJ21] we consider the range (5, 1000) for the neighborhood
size and (0, 1000) for the shrinkage parameter. We tune KNN only for the ML-1M dataset.

Experimental Infrastructure and Computational Complexity
All experiments were performed on a 64 bit desktop machine equipped with 20 CPUs

(Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz) and a 62 GiB RAM. Average run times for

training an instance of each recommender can be found in Table 6.2.

Experimental Setup for Computing Reachability
The parameters �D and cD are computed for each user based on the recommendermodel as

described in the examples in Section 6.3. For the LibFMmodel, we consider user updates
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with  = 0.1 and � = 0. Average run times for computing reachability of a user-item pair

in various settings can be found in Table 6.3.

ML 1M. We compute max stochastic reachability for the LibFM and KNN preference

model. We consider three types of user action spaces: History Edits, Future Edits, andNext
K in which users can strategically modify the ratings associated to  randomly chosen

items from their history,  randomly chosen items from that they have not yet seen, or the

top- unseen items according to the baseline scores of the preference model. For each of

the action spaces we consider  ∈ {5, 10, 20}.
We perform reachability experiments on a random 3% subset of users (176). For each

choice of preference model, action space type and action space size we sample for each

user 500 random items that have not been previously rated and are not action items.

For each user-item pair we compute reachability for a range of stochasticity parameters

� ∈ {1, 2, 4, 10}. Note that across all experimental settings we compute reachability for

the same subset of users, but different subsets of randomly selected target items.

We use theML 1Mdataset to primarily gain insights in the role that preferencemodels,

item selection stochasticity and strategic action spaces play in determining the maximum

achievable degree of stochastic reachability in a recommender system.

LastFM. We run reachability experiment for LibFM recommender with Next K = 10
action model and stochasticity parameter � = 2. We compute �★ values for 100 randomly

sampled users and 500 randomly sampled items from the set of non-action items (target

items can include previously seen items). Unlike the ML 1M dataset, the set of target

items is shared among all users.

MIND. We run reachability experiments for LibFM recommender with Next K = 10
action model and stochasticity parameter � = 2. We compute reachability for all items

and users.

Reachability run times. In Table 6.3 we present the average clock time for computing

reachability for a user-item pair in the settings described above. Due to internal represen-

tation of action spaces as matrices the runtime dependence on the dimension of the action

space is fairly modest. We do not observe significant run time differences between dif-

ferent types of action spaces. We further add multiprocessing functionality to parallelize

reachability computations over multiple target items.

Detailed Results: Impact of Recommender Design
We present further insights in the experimental settings studied in Section 6.5. For ML-

1M, we replicate the log scale scatter plots of �★ against baseline � for all the action spaces

(Next K, Random Future, Random History), the full range of � ∈ {1, 2, 4, 10} and the two
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Table 6.3: Reachability run times (in seconds).

Num. actions ML 1M (LibFM) ML 1M (KNN) LastFM MIND

K = 5 0.82 ± 0.04 9.8 ± 3.4 - -

K = 10 0.87 ± 0.04 10.2 ± 6.1 4.91 ± 0.32 0.44 ± 0.01

K= 20 0.91 ± 0.05 11.4 ± 6.8 - -
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Figure 6.14: Log scale scatter plots of �★ against baseline � evaluated for the LibFM

preference model.

preference models: LibFM (Figure 6.14) and KNN (Figure 6.15). We observe that for both

KNN and LibFM, random history edits can lead to higher �★ values. We posit that this

increased agency is partly due to the fact that when editing  items from the history a

user edits a larger fraction of total ratings compared to editing  future items.

Themost striking feature of KNN reachability results is the strong correlation between

baseline � and �★. The correlations between baseline and max probability of recommen-

dation is less strong in the case of LibFM. These insights are corroborated by Figure 6.16

which compares the average LibFM and KNN user lifts for different choices of action

space, action size K, stochasticity parameter �.
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Figure 6.15: Log scale scatter plots of �★ against baseline � evaluated for the KNN prefer-

ence model.

Detailed Results: Bias
We present further results on the settings studied in Section 6.5. We replicate the popu-

larity bias results on ML-1M for different action spaces and plot the results in Figure 6.17.

We see that the availability bias for KNN is dependent on the action space, with Random
History displaying no or little correlation between popularity and max availability. This is

not surprising given the results in Figure 6.7.

To systematically study the popularity bias, we compute the Spearman rank-order

correlation coefficient to measure the presence of a monotonic relationship between pop-

ularity (as measured by average rating) and availability (either in the baseline or max

case). We also compute the correlation between the popularity and the prevalence in the

dataset, as measured by number of ratings.

The impact of user action spaces is displayed in Figure 6.18, which plots the correlation

between popularity and max availability for different action spaces. For comparison, the

correlation between popularity and baseline availability is just over 0.8 for all of these

settings6, while the correlation with dataset prevalence is 0.346. Table 6.4 shows these

correlation values across datasets for a fixed action model. In all cases with the LibFM

6
Due to variation in baseline actions, the baseline availability is not exactly the same.
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Figure 6.16: Side by side comparison of average user lifts for LibFM (top row)and

KNN(bottom row).
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Figure 6.17: Side by side comparison of baseline and best-case availability of content,

across fourpopularity categories. From left to right: LibFMpreferencemodelwithRandom
Future, KNNpreferencemodelwithRandom Future, LibFMpreferencemodelwithRandom
History, KNN preference model with Random History. Reachability evaluated on ML-1M

for with  = 10 and � = 2.
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Figure 6.18: Comparison of Spearman’s correlation between item popularity and max

availability for different action spaces and models. Reachability evaluated on ML-1M

with � = 2.

Table 6.4: Spearman’s correlation with popularity for Next K with  = 10 and � = 2.

corr. with corr. with corr. with

dataset model dataset prevalence baseline availability max availability

ml-1m libfm 0.346280 0.827492 0.501316

ml-1m knn 0.346280 0.949581 0.942986

mind libfm 0.863992 0.825251 0.435212

lastfm libfm 0.133318 0.671101 0.145949

model, the pattern that popularity is less correlated with max availability than baseline

availability holds; however, the correlation with dataset prevalence varies.

To investigate experience bias, we similarly compute the Spearman rank-order cor-

relation coefficient to measure the presence of a monotonic relationship between user

experience (as measured by number of items rated) and discovery (either in the baseline

or max case). We observe correlation values of varying sign across datasets and models,

and none are particularly strong (Table 6.5).

Finally, we investigate gender bias. We compare discovery across user gender for ML-

1M and availability across artist gender for LastFM (Figure 6.19). We do not observe any

trends in either baseline or max values.
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Table 6.5: Spearman’s correlation with experience for Next K with  = 10 and � = 2.

corr. with corr. with

dataset model baseline discovery max discovery

ml-1m libfm 0.475777 0.530359

ml-1m knn 0.206556 -0.031929

mind libfm 0.050961 0.112558

lastfm libfm -0.084130 -0.089226
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Figure 6.19: Side by side comparison of baseline and maximum discovery across user

gender (left 3 panels) and availability across artist gender (rightmost panel). Reachability

evaluated on ML-1M and LastFMwith LibFMmodel,  = 10, different action spaces, and

� = 2.
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