
Compartmentalizing State Machine Replication

Michael Whittaker

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-172

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-172.html

August 5, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Compartmentalizing State Machine Replication

by

Michael Whittaker

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph Hellerstein, Chair
Assistant Professor Natacha Crooks

Assistant Professor Barna Saha
Professor Ion Stoica

Summer 2021

Compartmentalizing State Machine Replication

Copyright 2021
by

Michael Whittaker

1

Abstract

Compartmentalizing State Machine Replication

by

Michael Whittaker

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph Hellerstein, Chair

State machine replication is at the heart of almost every strongly consistent distributed
system. In this thesis, we introduce a novel technique called compartmentalization that in-
volves decoupling a protocol into its simplest components and then scaling each component
independently. Compartmentalization is simple yet effective. It can be used to increase the
throughput of a protocol, to simplify an exiting protocol, or to design new functionality
for a protocol. In this thesis specifically, we apply compartmentalization to state machine
replication protocols in a number of different ways. We compartmentalize MultiPaxos and
increase its throughput by over an order of magnitude. We then compartmentalize a family
of complex state machine protocols called generalized multi-leader protocols. The compart-
mentalization simplifies the protocols and brings clarity to a family of protocols that were
previously extremely difficult to understand. Finally, we use compartmentalization to de-
sign a new reconfiguration protocol based on Vertical Paxos that state machine replication
protocols can use to replace failed machines with new machines without any downtime.

i

To my friends and family

ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Introduction 1

2 Background 4
2.1 System Model . 4
2.2 Paxos . 4
2.3 MultiPaxos . 8
2.4 Flexible Paxos . 9

3 Compartmentalization 10
3.1 MultiPaxos Does Not Scale? . 11
3.2 Compartmentalizing MultiPaxos . 12
3.3 Batching . 26
3.4 Mencius . 30
3.5 S-Paxos . 33
3.6 Evaluation . 35
3.7 Related Work . 44

4 Quoracle 48
4.1 Definitions . 49
4.2 Practical Refinements in Quoracle . 51
4.3 Case Study . 58
4.4 Lessons Learned . 60

5 Bipartisan Paxos 62
5.1 Conflict Graphs . 63
5.2 Simple BPaxos . 68
5.3 Fast Paxos . 77

iii

5.4 Fast BPaxos . 81
5.5 Tension Avoidance . 85
5.6 Tension Resolution . 90
5.7 Related Work . 95
5.8 Conclusion . 97

6 Matchmaker Paxos 101
6.1 Matchmaker Paxos . 103
6.2 Matchmaker MultiPaxos . 113
6.3 Reconfiguring Matchmakers . 118
6.4 Theoretical Insights . 121
6.5 Evaluation . 128
6.6 Related Work . 133

7 Conclusion and Lessons Learned 137

Bibliography 139

iv

List of Figures

2.1 An example execution of Paxos (f = 1). 5
2.2 At time t = 0, no state machine commands are chosen. At time t = 1 command

x is chosen in slot 0. At times t = 2 and t = 3, commands z and y are chosen in
slots 2 and 1. Executed commands are shaded green. Note that all state machines
execute the commands x, y, z in log order. 8

2.3 An example execution of MultiPaxos (f = 1). The leader is adorned with a crown. 9

3.1 An example execution of Compartmentalized MultiPaxos with three proxy leaders
(f = 1). Throughout the chapter, nodes and messages that were not present in
previous iterations of the protocol are highlighted in green. 13

3.2 An execution of Compartmentalized MultiPaxos with a 2 × 3 grid of acceptors
(f = 1). The two read quorums—{a1, a2, a3} and {a4, a5, a6}—are shown in solid
red rectangles. The three write quorums—{a1, a4}, {a2, a5}, and {a3, a6}—are
shown in dashed blue rectangles. 16

3.3 An example execution of Compartmentalized MultiPaxos with three replicas as
opposed to the minimum required two (f = 1). 17

3.4 An example execution of Compartmentalized MultiPaxos’ read and write path
(f = 1) with a 2×2 acceptor grid. The write path is shown using solid blue lines.
The read path is shown using red dashed lines. 19

3.5 . 20
3.6 An execution that is not linearizable . 21
3.7 A history, Hpending, with a pending invocation 21
3.8 Hwwr | c1 . 22
3.9 Hwrw . 22
3.10 Swrw . 23
3.11 A motivating example of history extension . 23
3.12 An example history G. Responses are not shown, as they are not important for

this example. 24
3.13 A linearization SG of the history in G Figure 3.12 24

v

3.14 An example execution of Compartmentalized MultiPaxos with batching (f = 1).
Messages that contain a batch of commands, rather than a single command, are
drawn thicker. Note how replica r2 has to send multiple messages after executing
a batch of commands. 27

3.15 An example execution of Compartmentalized MultiPaxos with batchers (f = 1). 28
3.16 An example execution of Compartmentalized MultiPaxos with unbatchers (f =

1). 29
3.17 A Mencius log round robin partitioned among three leaders. 30
3.18 An example of using noops to deal with a slow leader. Leader l3 is slower than

leaders l1 and l2, so the log has holes in l3’s slots. l3 fills its holes with noops to
allow commands in the log to be executed. 31

3.19 An example execution of Mencius. 31
3.20 An example execution of decoupled Mencius. Note that every proposer is a leader. 32
3.21 An execution of Mencius with proxy leaders, acceptor grids, and an increased

number of replicas. 33
3.22 An example execution of S-Paxos. Messages that include client commands (as

opposed to ids) are bolded. 34
3.23 An example execution of decoupled S-Paxos. Messages that include client com-

mands (as opposed to ids) are bolded. Note that the MultiPaxos leader does not
send or receive any messages that include a command, only messages that include
command ids. 35

3.24 An example execution of S-Paxos with stabilizer grids, proxy leaders, acceptor
grids, and an increased number of replicas. Messages that include client com-
mands (as opposed to ids) are bolded. 36

3.25 The latency and throughput of MultiPaxos, Compartmentalized MultiPaxos, and
an unreplicated state machine. 37

3.26 The latency and throughput of Compartmentalized MultiPaxos and an unrepli-
cated state machine without batching and with larger value sizes. 39

3.27 An ablation study. Standard deviations are shown using error bars. 39
3.28 Peak throughput vs the number of replicas . 40
3.29 Analytical throughput vs the number of replicas. 42
3.30 Peak throughput vs the number of replicas . 43
3.31 The effect of skew on Compartmentalized MultiPaxos and CRAQ. 44

4.1 The 2 by 3 grid quorum system Q2×3. 50
4.2 Quorum systems, capacity, and fault tolerance. 52
4.3 Heterogeneous nodes with different capacities. 53
4.4 A distribution of read fractions. 54
4.5 Strategy capacities with respect to read fraction 54
4.6 0-resilient and 1-resilient strategies. 56
4.7 Finding a latency-optimal strategy with capacity and network load constraints. 57
4.8 Searching the space of quorum systems. 58

vi

4.9 Nodes and workload distribution. 58
4.10 The read quorums of the staggered grid and paths quorum systems. The optimal

set of complementary write quorums is chosen automatically. 59
4.11 Quorum systems and their capacities. 59
4.12 Searching for a load-optimal quorum system. 59
4.13 Latencies with a capacity constraint. 60
4.14 A stacked histogram of the throughput of a simple majority quorum system with

a naive uniform strategy. Write quorums are in blue, and read quorums are in red. 61
4.15 A stacked histogram of the throughput of the quorum system found by our heuris-

tic search (i.e., the quorum system with read quorums (c+ bd)(a+ e)). 61

5.1 If two commands commute, replicas can safely execute them in either order. . . 64
5.2 A log and corresponding conflict graph. 65
5.3 In subfigures (a) - (e), we see a conflict graph constructed over time. The most

recently chosen vertex is drawn in red. The executed commands are shaded
green. (a) The command a=b is chosen in vertex v0 without any dependencies.
The command is executed immediately. (b) The command a=2 is chosen in vertex
v1 with a dependency on v0. The command is executed immediately. (c) The
command b=a is chosen in vertex v3 with dependencies on v0, v1, v2, and v4.
No commands have been chosen in v2 and v4 yet, so v3 cannot be executed.
(d) The command b=1 is chosen in vertex v2 with a dependency on v0. The
command is executed immediately. (e) The command a=3 is chosen in vertex v4
with dependencies on v0, v1, and v3. Now v3 and v4 are executed. In subfigures
(f) - (j), we see an analogous execution for a log. 66

5.4 An example execution of Simple BPaxos (f = 1). 68
5.5 In subfigures (a) – (e), we see the execution of a dependency service node di. (a)

di receives command w in vertex vw. di adds this vertex to its conflict graph and
because there are no other vertices, it returns the dependencies deps(vw) = ∅. (b)
di receives command x in vertex vx. di adds this vertex to its conflict graph. x
conflicts with w, so di adds an edge from vx to vw and returns the dependencies
deps(vx) = {vw}. (c) di receives command y in vertex vy. di adds this vertex to
its conflict graph. y conflicts with w and x, so di adds an edge from vy to vw and
from vy to vx. It returns the dependencies deps(vy) = {vw, vx}. (d) di receives
command z in vertex vz. di adds this vertex to its conflict graph. z conflicts
with w and x, so di adds an edge from vz to vw and from vz to vx. It returns the
dependencies deps(vz) = {vw, vx}. (e) di receives command x in vertex vx. di’s
graph already contains vertex vx, so di returns the dependencies deps(vx) = {vw}
and does not modify its graph. 70

5.6 An example execution of Simple BPaxos (f = 1). 72
5.7 An example execution of Simple BPaxos recovery (f = 1). 73
5.8 An example of dependency compaction . 76

vii

5.9 Example executions of Fast Paxos (f = 2). The leader of round 0 is adorned with
a crown. Client requests are drawn in red. Phase 1 messages are drawn in blue.
Phase 2 messages are drawn in green. 79

5.10 An example execution of Fast BPaxos (f = 1). The four network delays are
drawn in red. 82

5.11 A Fast BPaxos bug (f = 2). Conflicting commands x and y are executed in
different orders by different replicas. 84

5.12 An example execution of Unanimous BPaxos (f = 2) with the Basic EPaxos
optimization. The messages introduced by the optimization are drawn in red. . 88

5.13 A non-exhaustive taxonomy of state machine replication protocols. The gener-
alized multi-leader protocols that we discuss in this chapter are shaded green.
. 96

6.1 Matchmaker Paxos (f = 1). 104
6.2 A matchmaker’s log over time. (a) Initially, the matchmaker’s log is empty. (b)

Then, the matchmaker receives MatchA〈0, C0〉. It inserts C0 in log entry 0
and returns MatchB〈0, ∅〉 since the log does not contain any configuration in
any round less than 0. (c) The matchmaker then receives MatchA〈2, C2〉. It
inserts C2 in log entry 2 and returns MatchB〈2, {(0, C0)}〉. (d) It then receives
MatchA〈3, C3〉, inserts C3 in log entry 3, and returns MatchB〈3, {(0, C0), (2, C2)}〉.
At this point, if the matchmaker were to receive MatchA〈1, C1〉, it would ignore
it. 105

6.3 A leader’s knowledge of the log after Phase 1. 113
6.4 An example Matchmaker MultiPaxos reconfiguration without Phase 1 bypassing.

The leader p1 reconfigures from the acceptors a1, a2, a3 to the acceptors b1, b2,
b3. Client commands are drawn as gray dashed lines. Note that every subfigure
shows one phase of a reconfiguration using solid colored lines, but the dashed
lines show the complete execution of a client request that runs concurrently with
the reconfiguration. For simplicity, we assume that every proposer also serves as
a replica. 115

6.5 An example of merging three matchmaker logs (L0, L1, and L2) during a match-
maker reconfiguration. Garbage collected log entries are shown in red. 119

6.6 A MultiPaxos log during reconfiguration (α = 4). 121
6.7 Matchmaker MultiPaxos’ latency and throughput (f = 1). Median latency is

shown using solid lines, while the 95% latency is shown as a shaded region above
the median latency. The vertical black lines show reconfigurations. The vertical
dashed red line shows an acceptor failure. 129

6.8 The latency and throughput of MultiPaxos with horizontal reconfiguration (f =
1). 130

6.9 Violin plots of Figure 6.7 latency and throughput during the first 10 seconds and
between 10 and 20 seconds. 131

viii

6.10 Violin plots of Figure 6.8 latency and throughput during the first 10 seconds and
between 10 and 20 seconds. 132

6.11 Matchmaker MultiPaxos’ latency and throughput (f = 1). The dashed red line
denotes a leader failure. 134

6.12 The latency and throughput of Horizontal MultiPaxos with f = 1. 135
6.13 The latency and throughput of Matchmaker MultiPaxos (f = 1). The dotted

blue, dashed red, and vertical black lines show matchmaker reconfigurations, a
matchmaker failure, and an acceptor reconfiguration respectively. 136

ix

List of Tables

3.1 A summary of the compartmentalizations presented in this chapter. 12

5.1 The differences between protocols like MultiPaxos and Raft that organize com-
mands in logs and protocols like EPaxos, Caesar, and Atlas that organize com-
mands in graphs. 67

5.2 A summary of generalized multi-leader state machine replication protocols. . . 100

6.1 Figure 6.7 median, interquartile range, and standard deviation of latency and
throughput. 133

6.2 Figure 6.13 median, interquartile range, and standard deviation of latency and
throughput. 136

x

Acknowledgments

I am immensely grateful to Joseph Hellerstein, my advisor. Joe, you are one of the biggest
reasons I came to Berkeley, and I am so happy I did. You know so much about so much,
and you grok things so quickly. You have always been in my corner and have always had
my back. You put your full faith and confidence in me and motivated me throughout my
PhD. You were a mentor and a friend to whom I could always turn. From the bottom of my
heart, thank you Joe!

I was so fortunate to work closely with Ion Stoica. Ion, you have always been so sharp,
always able to predict what I’m going to say before I say it. I’ve benefited tremendously from
your experience and insights. From paper advice to career advice to life advice, I always
relish the opportunity to learn from you. Thank you Ion!

Natacha Crooks, we missed each other at Cornell and overlapped for only a year during
a quarantine at Berkeley. I really wish we had more overlap because collaborating with you
has been amazing. You are such a friendly and uplifting mentor, and I always felt like you
were looking out for me. I hope we cross paths again in the future.

Barna Saha, thank you for serving on my qual and dissertation committee. Your feedback
is always insightful.

Neil Giridharan, we’ve been working together since the day I started working on consen-
sus. You have been an absolute dream of a collaborator, and I can’t imagine doing any of
the research without you. Three years ago, we used to talk about vanilla Paxos, and now
you’re inventing Byzantine consensus protocols with the world’s leading experts. I am so
proud of what you have already achieved and will continue to achieve, and I wish you the
best of luck in grad school!

Heidi Howard, you are in my opinion the world’s leading expert on consensus and state
machine replication. Heidi, your effect on me started before we even met. Your work on Raft
in OCaml, your conversations with Diego online, and your videos on Paxos on YouTube all
encouraged me to research state machine replication. It was an honor being able to meet
and work with you. Your input has been absolutely critical to most of the work I’ve done
during grad school. You led me towards optimizing reads in Compartmentalized Paxos, you
guided Quoracle to becoming a fully fleshed idea, you gave valuable insights into Matchmaker
Paxos, and so on. Thank you Heidi!

Thank you to the trio of Aleksey Charapko, Murat Demirbas, and Eddie Ailijiang. Your
work on Paxos quorum reads is a huge component of Compartmentalized Paxos, and Pig-
Paxos has a major influence on Compartmentalized Paxos as well. Working together has
been an absolute joy, and attending your reading group was always the highlight of my week.
Aleksey, we also went on to work on Quoracle together, which was amazing. I cherish every
opportunity we have to work together. Your knowledge on Paxos is unparalleled, and you’ve
been a big inspiration for me.

I had the opportunity to collaborate with Irene Zhang, Dan Ports, Adriana Szekeres,
Naveen Sharma, and Jialin Li at the University of Washington on TAPIR and Meerkat. You
all welcomed me into your lab with such sincerity, and I learned so much from working with

xi

all of you. Adriana, my friend, we went on to collaborate on most of the work I did during
my PhD. You are one of the most positive and friendliest people I have ever met, and you
were such a good mentor to me for so many years. Thank you so much!

Faisal Nawab, I remember sending you a question about one of your papers over email,
and you helped grow that into an amazing collaboration and research project. You visited
Berkeley to give a talk and we went on a small walk. Even though that was the first time
I had spent any real time with you in person, you were so friendly, it felt like we had been
friends for years. I’m very happy we had the chance to work together.

Peter Alvaro, my academic older brother, I remember watching your job talk when I was
still an undergraduate at Cornell and being blown away. I was so lucky to have worked with
you as a young grad student. You were a role model in how to conduct research, how to
give good talks, and how to be an overall good dude. I still remember my first talk as a
grad student was at SOCC 2018, and we sat in your hotel room, skipping other talks, as you
helped get ready for my talk. Thank you Peter!

In the summer of 2018, I interned at Google with an amazing group of colleagues. Ulti-
mately, I published a paper on my intern project with Nick Edmonds, Sandeep Tata, James
B. Wendt, and Marc Najork. This paper was a major team effort and would never have
happened without everyone’s contributions. In particular, Nick, you put in a tremendous
amount of work taking my toy intern project and making it production ready. We wouldn’t
have even come close to a paper without your enormous contributions. And Sandeep, you
helped me at every step of the project. You taught me how to be a kind and effective leader
that empowers everyone around them. Thank you to the Juicer team!

Nate Foster, my undergraduate advisor, I can say in a very literal sense that without
you, I would not have made it to grad school. Even though I had absolutely no research
experience at the time, you led me and a group of other undergraduates to publish within
six months. You helped me at every single step of applying to grad school. You inspired me
to pursue a PhD and continue to inspire me to help others. Thank you Nate!

I am so grateful for all of my labmates. My academic siblings, Charles, Chenggang,
David, Johann, Larry, Rolando, Vikram, and Yifan, you have always been an amazing
support system. Yifan, you are such a friendly and genuine person. I think I still owe you
a hot pot. David and Kaushik, working with you on your research has been a blast. I’m
confident the work is going to be very successful. Stephanie, I couldn’t have asked for a
better person to start the PhD with. You have done so much to bring the lab together. The
Tahoe trip was simply amazing. Lisa, I always look forward to Friday board games. Thank
you for organizing that and welcoming everyone. The lab is so lucky to have you. Peter,
my neighbor and one time bunkmate, I’ll miss sitting next to you. Eyal, keep representing
Cornell proudly! You are such a chill dude, and I always enjoyed staying in lab late with you.
Paras, I’m happy our paths crossed again after high school. Zongheng, when I first met you,
I thought that you were a genius and that you were so intimidating. As I got to know you
and learn how friendly of a person you are, I realized that only one of those things is true.
Jeongseok, I enjoyed our time at the Monterey Bay Aquarium together, and I’m excited
for our paths to cross in industry. And thank you to all the other labmates who influenced

xii

me throughout grad school: Alexey, Amir, Anand, Ankur, Anurag, Audrey, Ben, Bobby,
Dan, Daniel, Devin, Doris, Doris, Eric, Frank, Gabe, Ionel, Jean-Luc, Joao, Jose, Justin,
Lily, Matthew, Melih, Michael, Milano, Moustafa, Nathan, Nilesh, Philipp, Qifan, Richard,
Rishabh, Robert, Romil, Sagar, Sam, Samvit, Samy, Samyu, Sanjay, Sarah, Stephen, Sukrit,
Vinamra, Vlad, Wenting, and many others.

A huge thank you to the RISE staff, Boban, Dave, Jon, Kattt, and Shane. You are the
backbone of the lab, and I would have been lost without all of your help.

Finally, my partner Ava, you have been my rock. Without you, I definitely would not
have made it through grad school. Ava, I love you and appreciate all that you do for me.
You’ve listened to me talk about Paxos for three years straight and haven’t left me yet, so
it must be true love.

1

Chapter 1

Introduction

Imagine deploying a service—like a key-value store, for example—on a single server. If that
server fails, then the service becomes completely unavailable, and all of the data stored in
the system becomes irreparably lost. To handle failures more gracefully, we deploy services
as distributed systems that are replicated redundantly on multiple servers. Rather than
deploying one copy of a key-value store on one server, we deploy multiple copies, or replicas,
on multiple servers. But, to avoid anomalous behavior, we must make sure that the replicas
stay in sync. State machine replication is the de facto solution to this problem [78]. State
machine replication protocols model services, like a key-value store, as deterministic state
machines and ensure that every replica of the state machine is always in sync.

Thus, state machine replication protocols—like MultiPaxos [45, 87] and Raft [68]—are
crucial components of almost every strongly consistent distributed system and database [18,
86, 11, 83, 27, 1, 72, 52]. However, despite their importance, these protocols are often
viewed as a necessary evil that should be avoided if possible. People think these protocols
are too slow [62, 97], too complicated [87, 68, 59], and too hard to implement [12, 54]. This
thesis tackles many aspects of consensus and state machine replication, showing that these
protocols do not have to be slow, complicated, or hard to implement. The thesis focuses
on four main pieces of work: Compartmentalized Paxos, Quoracle, Bipartisan Paxos, and
Matchmaker Paxos.

Compartmentalized Paxos

MultiPaxos is notoriously slow [44, 87, 68]. Ideally, we could scale up the protocol to increase
its throughput. However, state machine replication is fundamentally sequential and there
are no immediately obvious opportunities for parallelization or scaling. In fact, naively
scaling up MultiPaxos decreases the protocol’s throughput. We introduce a design principle
and optimization technique called compartmentalization and apply it to MultiPaxos to
significantly increase its throughput. The main idea behind compartmentalization is to first
decouple protocol components into subcomponents and then independently scale up the
subcomponents. Through this decoupling, we disentangle the components of state machine

CHAPTER 1. INTRODUCTION 2

replication that are fundamentally sequential from those that are embarrassingly parallel.
This enables us to scale up a majority of the protocol while isolating the fundamentally
unscalable components.

Quoracle

Imagine we have n replicas of a piece of state and that clients write to w replicas and read
from r replicas. If r + w > n, then the set of replicas from which a client reads overlaps
the set of replicas to which a client writes, so clients are guaranteed to read the latest write.
This idea of overlapping sets of machines, formalized as quorum systems, are a key part of
almost every state machine replication protocol and become even more important once we
introduce compartmentalization. The quorum system a protocol uses can have a big impact
on its performance. As a result, researchers have invented a lot of quorum systems [70, 2,
26, 24, 15, 56, 39, 16, 64]. There is a body of theory that underlies and subsumes these
quorum systems [64, 34], but this theory is inaccessible for a number of reasons. First, it
is dense and relatively unknown. Second, it is too theoretical and ignores many practical
considerations. Third, there is no tooling to apply the theory in practice. We address all three
shortcomings. We revisit and refine the theory with a number of practical considerations
(e.g. latency, network load, heterogeneous deployments) that cannot be overlooked in a real-
world deployment. We also implement the refined theory in a Python utility called Quoracle
that can automatically construct, analyze, optimize, and select quorum systems using cost-
based optimization. Industry practitioners can use this utility to optimize their distributed
systems. The tool makes a large body of theory accessible to practitioners for the first time.

Bipartisan Paxos

We can compartmentalize a protocol to make it faster, but we can also compartmentalize
a protocol to make it easier to understand. There is a family of state machine replication
protocols called generalized multi-leader protocols [62, 21, 6]. The protocols deploy multiple
leaders to avoid being bottlenecked by a single leader, and they maintain a partial order
of state machine commands rather than a total order. These protocols are extremely com-
plicated. Through personal conversations, we found that even experts on consensus admit
to not understanding these protocols fully. As a result, all of these protocols start to look
equally impenetrable. It is hard to answer questions like “how are the protocols different?”,
“what are the strengths and weaknesses of the protocols?”, and “which areas of the trade-off
space are still unexplored?” We use compartmentalization to dissect this class of protocols
into its simplest components and understand each component in isolation. We then put the
pieces back together in various ways to construct the existing protocols in the space. In doing
so, we present a comprehensive architectural breakdown on this class of protocols. We also
discover some interesting and counterintuitive takeaways along the way. For example, some
protocols introduce sophisticated mechanisms to eliminate throughput bottlenecks, but af-

CHAPTER 1. INTRODUCTION 3

ter compartmentalizing other aspects of these protocols, these mechanisms become the very
bottlenecks they try to eliminate.

Matchmaker Paxos

Machines fail, and when they do, they need to be replaced. Because state machine replication
protocols are long running processes, the failed machines running the protocol have to be
replaced as the protocol runs, a process known as reconfiguration. We propose a novel
reconfiguration protocol called Matchmaker Paxos that is based on Vertical Paxos [49]. We
introduce a new set of nodes called matchmakers that act as a source of truth for the current
configuration. Nodes contact the matchmakers to learn about prior configurations and to
register the current configuration. Reconfiguration is an absolutely essential part of state
machine replication, but despite this, there is very little research on reconfiguration. Our
protocol takes a step towards filling this void. Matchmaker Paxos is simple and fully proven,
something that is surprisingly rare in the space. It also leads to a number of novel theoretical
insights and can be used by many replication protocols that do not have a reconfiguration
protocol.

Previous Publications

Compartmentalized Paxos was previously published in VLDB 2021 [95]. Quoracle was pre-
viously published in PaPoC 2021 [94]. At the time of writing, Bipartisan Paxos and Match-
maker Paxos were both under submission to JSys 2021. My previous work on invariant
confluence [91, 90], wat-provenance [92], and Juicer [93] are not included in this dissertation.

4

Chapter 2

Background

In this chapter, we survey all of the background material that is needed for the remainder of
the thesis. We start by clarifying the system model and assumptions we use throughout the
thesis. We then introduce Single Decree Paxos [45], MultiPaxos [44], and Flexible Paxos [31].
This family of state machine replication protocols is arguably the oldest, most popular, and
most widely used. We design a number of Paxos, MultiPaxos, and Flexible Paxos variants
throughout the paper.

2.1 System Model

Throughout the thesis, we assume an asynchronous network model in which messages can be
arbitrarily dropped, delayed, and reordered. We assume machines can fail by crashing but
do not act maliciously. We assume that machines operate at arbitrary speeds, and we do not
assume clock synchronization. Every protocol discussed in this thesis assumes (for liveness)
that at most f machines will fail for some configurable f . All the protocols discussed in
this thesis are safe, but due to the FLP impossibility result [23], none of the protocols are
guaranteed to be fully live in a fully asynchronous network. Liveness is only guaranteed
given partial synchrony.

2.2 Paxos

A consensus protocol is a protocol that selects a single value from a set of proposed values.
The protocol must select a value that was proposed (non-triviality) and can only select a
single value (consistency) [42]. Single Decree Paxos [45, 44], abbreviated Paxos, is one of
the oldest and most popular consensus protocols. A Paxos deployment that tolerates f faults
consists of an arbitrary number of clients, at least f + 1 nodes called proposers, and 2f + 1
nodes called acceptors, as illustrated in Figure 2.1.1 To reach consensus on a value, an

1It is also common for Paxos to include a set of learners, nodes that learn which value is chosen. In
this thesis, we omit this role.

CHAPTER 2. BACKGROUND 5

execution of Paxos is divided into a number of rounds (also known as ballots, epochs, terms,
views, etc. [33]). Every round has two phases, Phase 1 and Phase 2, and is orchestrated by
a single pre-determined proposer. The set of rounds can be any unbounded, totally ordered
set (e.g., the set of natural numbers). In practice, it is common to let the set of rounds
be the set of lexicographically ordered integer pairs (r, id) where r is an integer and id is a
unique proposer id, where a proposer is responsible for executing every round that contains
its id. For simplicity though, we often use natural numbers as rounds throughout the thesis.

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f + 1

Proposers
2f + 1

Acceptors

1 2

2
3

3

1 v

2 Phase1A〈i〉
3 Phase1B〈i, vr, vv〉

(a) Phase 1

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f + 1

Proposers
2f + 1

Acceptors

4

4
5

5

6

4 Phase2A〈i, v〉
5 Phase2B〈i〉

6 v chosen

(b) Phase 2

Figure 2.1: An example execution of Paxos (f = 1).

When a proposer executes a round, say round i, it attempts to get some value x chosen
in that round. Paxos is a consensus protocol, so it must only choose a single value. Thus,
Paxos must ensure that if a value x is chosen in round i, then no other value besides x can
ever be chosen in any round less than i. This is the purpose of Paxos’ two phases. In Phase
1 of round i, the proposer contacts the acceptors to (a) learn of any value that may have
already been chosen in any round less than i and (b) prevent any new values from being
chosen in any round less than i. In Phase 2, the proposer proposes a value to the acceptors,
and the acceptors vote on whether or not to choose it. In Phase 2, the proposer will only
propose a value x if it learned through Phase 1 that no other value has been or will be chosen
in a previous round.

More concretely, Paxos executes as follows, as illustrated in Figure 2.1. When a client
wants to propose a value x, it sends x to a proposer p. Upon receiving x, p begins executing
one round of Paxos, say round i. First, it executes Phase 1. It sends Phase1A〈i〉 messages
to the acceptors. An acceptor ignores a Phase1A〈i〉 message if it has already received a
message in a larger round. Otherwise, it replies with a Phase1B〈i, vr, vv〉 message con-

CHAPTER 2. BACKGROUND 6

taining the largest round vr in which the acceptor voted and the value it voted for, vv. If
the acceptor hasn’t voted yet, then vr = −1 and vv = null. When the proposer receives
Phase1B messages from a majority of the acceptors, Phase 1 ends and Phase 2 begins.

At the start of Phase 2, the proposer uses the Phase1B messages that it received in
Phase 1 to select a value x such that no value other than x has been or will be chosen in any
round less than i. Specifically x is the vote value associated with the largest received vote
round, or any value if no acceptor had voted (see [44] for details). Then, the proposer sends
Phase2A〈i, x〉 messages to the acceptors. An acceptor ignores a Phase2A〈i, x〉 message if
it has already received a message in a larger round. Otherwise, it votes for x and sends back
a Phase2B〈i〉 message to the proposer. If a majority of acceptors vote for the value, then
the value is chosen, and the proposer informs the client.

If the proposer does not receive sufficiently many Phase1B or Phase2B responses from
the acceptors (e.g., because of network partitions or dueling proposers), then the proposer
restarts the protocol in a larger round.

Note that it is safe for the leader of round 0 (the smallest round) to skip Phase 1 and
proceed directly to Phase 2. Recall that the leader of round i executes Phase 1 to learn of
any value that may have already been chosen in any round less than i and to prevent any
new values from being chosen in any round less than i. There are no rounds less than 0, so
these properties are satisfied vacuously.

Safety Proof

Algorithm 1 Paxos Proposer Pseudocode

State: a value v, initially null
State: a round i, initially −1
1: upon receiving a value x from a client do
2: i← the next largest round owned by this proposer
3: v ← x
4: Send Phase1A〈i〉 messages to the acceptors

5: upon receiving Phase1B〈i, vr, vv〉 messages from f + 1 acceptors do
6: k ← the largest vr in any Phase1B〈i, vr, vv〉
7: if k 6= −1 then
8: v ← the corresponding value vv in round k

9: send Phase2A〈i, v〉 messages to the acceptors

10: upon receiving Phase2B〈i〉 messages from f + 1 acceptors do
11: v is chosen, notify the client

Paxos proposer and Paxos acceptor pseudocode is given in Algorithm 1 and Algorithm 2
respectively. For brevity, we omit details surrounding resending messages and retrying pro-
posals in larger rounds. We now prove that Paxos is safe, using the proof from [41].

CHAPTER 2. BACKGROUND 7

Algorithm 2 Paxos Acceptor Pseudocode

State: the largest seen round r, initially −1
State: the largest round vr voted in, initially −1
State: the value vv voted for in round vr, initially null
1: upon receiving a Phase1A〈i〉 message from proposer p with i > r do
2: r ← i
3: send a Phase1B〈i, vr, vv〉 message to p

4: upon receiving a Phase2A〈i, x〉 message from proposer p with i ≥ r do
5: r, vr, vv ← i, i, x
6: send a Phase2B〈i〉 message to p

Proof. We prove, for every round i, the statement P (i): “if a proposer proposes a value v
in round i (i.e. sends a Phase2A message for value v in round i), then no value other than
v has been or will be chosen in any round less than i.” At most one value is ever proposed
in a given round, so at most one value is ever chosen in a given round. Thus, P (i) suffices
to prove that Paxos is safe for the following reason. Assume for contradiction that Paxos
chooses distinct values x and y in rounds j and i with j < i. Some proposer must have
proposed y in round i, so P (i) ensures us that no value other than y could have been chosen
in round j. But, x was chosen, a contradiction.

We prove P (i) by strong induction on i. P (0) is vacuous because there are no rounds
less than 0. For the general case P (i), we assume P (0), . . . , P (i − 1). We perform a case
analysis on the proposer’s pseudocode (Algorithm 1). Either k is −1 or it is not (line 6).
First, assume it is not (line 7). In this case, the proposer proposes v, the value proposed in
round k (line 8). We perform a case analysis on round j to show that no value other than v
has been or will be chosen in any round j < i.

• Case 1: j > k. The proposer sent Phase1A〈i〉 messages to all of the acceptors.
f + 1 of these acceptors, say Q, all received Phase1A〈i〉 messages and replied with
Phase1B messages. Thus, every acceptor in Q set its round r to i, and in doing so,
promised to never vote in any round less than i. Moreover, none of the acceptors in
Q had voted in any round greater than k. So, every acceptor in Q has not voted and
never will vote in round j. For a value v′ to be chosen in round j, it must receive votes
from some set Q′ of f + 1 acceptors in round j. But, Q and Q′ necessarily intersect,
so this is impossible. Thus, no value has been or will be chosen in round j.

• Case 2: j = k. In a given round, at most one value is proposed, let alone chosen. v
is the value proposed in round k, so no other value could be chosen in round k.

• Case 3: j < k. By induction, P (k) states that no value other than v has been or will
be chosen in any round less than k. This includes round j.

CHAPTER 2. BACKGROUND 8

Finally, if k is −1, then we are in the same situation as in Case 1. No value has or will
be chosen in a round j < i, so the proposer is free to propose any value. Specifically, it can
propose the value x it received from the client (line 3).

2.3 MultiPaxos

While consensus is the act of choosing a single value, state machine replication is the
act of choosing a sequence (a.k.a. log) of values [78]. A state machine replication protocol
manages a number of replicas of a deterministic state machine. Over time, the protocol
constructs a growing log of state machine commands, and replicas execute the commands in
log order. By beginning in the same initial state, and by executing commands in the same
order, all state machine replicas are kept in sync. This is illustrated in Figure 2.2.

0 1 2

(a) t = 0

x

0 1 2

(b) t = 1

x

0 1

z

2

(c) t = 2

x

0

y

1

z

2

(d) t = 3

Figure 2.2: At time t = 0, no state machine commands are chosen. At time t = 1 command
x is chosen in slot 0. At times t = 2 and t = 3, commands z and y are chosen in slots 2 and 1.
Executed commands are shaded green. Note that all state machines execute the commands
x, y, z in log order.

MultiPaxos [45, 87] is one of the most widely used state machine replication protocols.
MultiPaxos uses one instance of Paxos for every log entry, choosing the command in the ith
log entry using the ith instance of Paxos. A MultiPaxos deployment that tolerates f faults
consists of an arbitrary number of clients, at least f +1 proposers, and 2f +1 acceptors (like
Paxos), as well as at least f + 1 replicas, as illustrated in Figure 2.3.

Initially, one of the proposers is elected leader in round i and runs Phase 1 of Paxos for
every log entry. When a client wants to propose a state machine command x, it sends the
command to the leader (1). The leader assigns the command a log entry j and then runs
Phase 2 of the jth Paxos instance to get the value x chosen in entry j. That is, the leader
sends Phase2A〈i, x〉 messages to the acceptors to vote for value x in slot j (2). In the
normal case, the acceptors all vote for x in slot j and respond with Phase2B〈i〉 messages
(3). Once the leader learns that a command has been chosen in a given log entry (i.e. once
the leader receives Phase2B〈i〉 messages from a majority of the acceptors), it informs the
replicas (4). Replicas insert commands into their logs and execute the logs in prefix order.

Note that the leader assigns log entries to commands in increasing order. The first
received command is put in entry 0, the next command in entry 1, the next command in
entry 2, and so on. Also note that even though every replica executes every command, for
any given state machine command x, only one replica needs to send the result of executing

CHAPTER 2. BACKGROUND 9

c1

c2

c3

p1

p2

a1

a2

a3

r1

r2

Clients
f + 1

Proposers
2f + 1

Acceptors
f + 1

Replicas

1 2

2
3

3
4

4

5

1 x proposed

2 Phase2A〈i, x〉
3 Phase2B〈i〉
4 x chosen

5 the result of executing x

Figure 2.3: An example execution of MultiPaxos (f = 1). The leader is adorned with a
crown.

x back to the client (5). For example, log entries can be round-robin partitioned across the
replicas.

2.4 Flexible Paxos

Paxos deploys a set of 2f + 1 acceptors, and proposers communicate with at least a majority
of the acceptors in Phase 1 and in Phase 2. While this is sufficient to ensure safety, it is not
necessary. Flexible Paxos [31] is a Paxos variant that generalizes the notion of a majority
to that of a quorum. Specifically, Flexible Paxos uses the notion of a read-write quorum
system [64]. Given a set A = {a1, . . . , an} of acceptors, a read-write quorum system over
A is a pair Q = (R,W) where

1. R is a set of subsets of A called read quorums (or Phase 1 quorums),

2. W is a set of subsets of W called write quorums (or Phase 2 quorums), and

3. every read quorum intersects every write quorum. That is, for every r ∈ R and w ∈ W ,
r ∩ w 6= ∅

Flexible Paxos is identical to Paxos with the exception that proposers now communicate
with an arbitrary Phase 1 quorum in Phase 1 and an arbitrary Phase 2 quorum in Phase 2.
This suffices for safety. Flexible MultiPaxos is identical to MultiPaxos, except that it uses
Flexible Paxos instead of Paxos. Note that in order for a configuration to tolerate f failures,
there must exist some Phase 1 quorum and some Phase 2 quorum of non-failed machines
despite an arbitrary set of f failures.

10

Chapter 3

Compartmentalization

In many state machine replication protocols, a single node has multiple responsibilities. For
example, a Raft [68] leader acts as a batcher, a sequencer, a broadcaster, and a state machine
replica. These overloaded nodes are often a throughput bottleneck, which can be disastrous
for systems that rely on state machine replication.

Many databases, for example, rely on state machine replication to replicate large data
partitions of tens of gigabytes [79, 27]. These databases require high-throughput state ma-
chine replication to handle all the requests in a partition. However, in such systems, it
is not uncommon to exceed the throughput budget of a partition. For example, Cosmos
DB will split a partition if it experiences high throughput even if the paritition is under-
utilizing memory and disk. The split, aside from costing resources, may have additional
adverse effects on applications, as Cosmos DB provides strongly consistent transactions only
within the partition. Eliminating state machine replication bottlenecks can help avoid such
unnecessary partition splits and improve performance, consistency, and resource utilization.

Researchers have studied how to eliminate throughput bottlenecks, often by inventing
new state machine replication protocols that eliminate a single throughput bottleneck [62,
6, 57, 4, 42, 41, 13, 32, 98, 85, 10]. However, eliminating a single bottleneck is not enough
to achieve the best possible throughput. When you eliminate one bottleneck, another arises.
To achieve the best possible throughput, we have to repeatedly eliminate bottlenecks as they
arise.

The key to eliminating these throughput bottlenecks is scaling, but it is widely believed
that state machine replication protocols do not scale [37, 97, 57, 62, 6]. In this chapter,
we show that this is not true. State machine replication protocols can indeed scale. As
a concrete illustration, we analyze the throughput bottlenecks of MultiPaxos [44] and sys-
tematically eliminate them using a combination of decoupling and scaling, a technique we
call compartmentalization. For example, consider the MultiPaxos leader, a notorious
throughput bottleneck. The leader has two distinct responsibilities. First, it sequences state
machine commands into a log. It puts the first command it receives into the first log entry,
the next command into the second log entry, and so on. Second, it broadcasts the commands
to the set of MultiPaxos acceptors, receives their responses, and then broadcasts the com-

CHAPTER 3. COMPARTMENTALIZATION 11

mands again to a set of state machine replicas. To compartmentalize the MultiPaxos leader,
we first decouple these two responsibilities. There is no fundamental reason that the leader
has to sequence commands and broadcast them. Instead, we have the leader sequence com-
mands and introduce a new set of nodes, called proxy leaders, to broadcast the commands.
Second, we scale up the number of proxy leaders. We note that broadcasting commands
is embarrassingly parallel, so we can increase the number of proxy leaders to avoid them
becoming a bottleneck. Note that this scaling was not possible when sequencing and broad-
casting were coupled on the leader since sequencing is not scalable. Compartmentalization
has three key strengths.

(1) Fast Without Strong Assumptions. We compartmentalize MultiPaxos and in-
crease its throughput by over an order of magnitude. Moreover, we achieve our strong
performance without the strong assumptions made by other state machine replication pro-
tocols with comparable performance [85, 98, 88, 84, 35]. For example, we do not assume a
perfect failure detector [88], we do not assume the availability of specialized hardware [98,
84, 35], we do not assume uniform data access patterns [85, 98], we do not assume clock
synchrony [98], and we do not assume key-partitioned state machines [85, 98].

(2) General and Incrementally Adoptable. Compartmentalization is not a pro-
tocol. Rather, it is a technique that can be systematically applied to existing protocols.
Industry practitioners can incrementally apply compartmentalization to their current proto-
cols without having to throw out their battle-tested implementations for something new and
untested. We demonstrate the generality of compartmentalization by applying it to three
other protocols [57, 10, 20] in addition to MultiPaxos.

(3) Easy to Understand. Researchers have invented new state machine replication
protocols to eliminate throughput bottlenecks, but these new protocols are often subtle
and complicated. As a result, these sophisticated protocols have been largely ignored in
industry due to their high barriers to adoption. Compartmentalization is based on the simple
principles of decoupling and scaling and is designed to be easily understood. Moreover, in
Chapter 5, we see how compartmentalization can be used to simplify existing protocols.

In this chapter, we introduce the technique of compartmentalization and use it to com-
partmentalize MultiPaxos, Mencius [57], and S-Paxos [10]. Later in Chapter 5, we compart-
mentalize more sophisticated state machine replication protocols like EPaxos [62].

3.1 MultiPaxos Does Not Scale?

It is widely believed that MultiPaxos does not scale [37, 97, 57, 62, 6]. Throughout this
chapter, we will explain that this is not true, but it first helps to understand why trying to
scale MultiPaxos in the straightforward and obvious way does not work. MultiPaxos consists
of proposers, acceptors, and replicas. We discuss each.

First, increasing the number of proposers does not improve performance because every
client must send its requests to the leader regardless of the number proposers. The non-leader
proposers are idle and do not contribute to the protocol during normal operation.

CHAPTER 3. COMPARTMENTALIZATION 12

Second, increasing the number of acceptors hurts performance. To get a value chosen, the
leader must contact a majority of the acceptors. When we increase the number of acceptors,
we increase the number of acceptors that the leader has to contact. This decreases through-
put because the leader—which is the throughput bottleneck—has to send and receive more
messages per command. Moreover, every acceptor processes at least half of all commands
regardless of the number of acceptors.

Third, increasing the number of replicas hurts performance. The leader broadcasts chosen
commands to all of the replicas, so when we increase the number of replicas, we increase
the load on the leader and decrease MultiPaxos’ throughput. Moreover, every replica must
execute every state machine command, so increasing the number of replicas does not decrease
the replicas’ load.

3.2 Compartmentalizing MultiPaxos

We now compartmentalize MultiPaxos. Throughout this chapter, we introduce six compart-
mentalizations, summarized in Table 3.1. For every compartmentalization, we identify a
throughput bottleneck and then explain how to decouple and scale it.

Table 3.1: A summary of the compartmentalizations presented in this chapter.

Bottleneck Decouple Scale

1 leader command sequencing and command broadcasting the number of proxy leaders
2 acceptors read quorums and write quorums the number of write quorums
3 replicas command sequencing and command broadcasting the number of replicas
4 leader and replicas read path and write path the number of read quorums
5 leader batch formation and batch sequencing the number of batchers
6 replicas batch processing and batch replying the number of unbatchers

Compartmentalization 1: Proxy Leaders

Bottleneck: leader
Decouple: command sequencing and broadcasting
Scale: the number of command broadcasters

Bottleneck The MultiPaxos leader is a well known throughput bottleneck for the following
reason. Refer again to Figure 2.3. To process a single state machine command from a client,
the leader must receive a message from the client, send at least f + 1 Phase2A messages
to the acceptors, receive at least f + 1 Phase2B messages from the acceptors, and send at
least f + 1 messages to the replicas. In total, the leader sends and receives at least 3f + 4
messages per command. Every acceptor on the other hand processes only 2 messages, and

CHAPTER 3. COMPARTMENTALIZATION 13

every replica processes either 1 or 2. Because every state machine command goes through
the leader, and because the leader has to perform disproportionately more work than every
other component, the leader is the throughput bottleneck.

Decouple To alleviate this bottleneck, we first decouple the leader. To do so, we note that
a MultiPaxos leader has two jobs. The first is sequencing. The leader sequences commands
by assigning each command a log entry. Log entry 0, then 1, then 2, and so on. The second
is broadcasting. The leader sends Phase2A messages, collects Phase2B responses, and
broadcasts chosen values to the replicas. Historically, these two responsibilities have both
fallen on the leader, but this is not fundamental. We instead decouple the two responsibilities.
We introduce a set of at least f + 1 proxy leaders, as shown in Figure 3.1. The leader
is responsible for sequencing commands, while the proxy leaders are responsible for getting
commands chosen and broadcasting the commands to the replicas.

c1

c2

c3

p1

p2

l1

l2

l3

a1

a2

a3

r1

r2

Clients
f + 1

Proposers
≥ f + 1

Proxy Leaders
2f + 1

Acceptors
f + 1

Replicas

1

2
3

3

4

4

5

5

6

1 x proposed 2 Phase2A〈i, x〉
3 Phase2A〈i, x〉 4 Phase2B〈i〉

5 x chosen 6 the result of executing x

Figure 3.1: An example execution of Compartmentalized MultiPaxos with three proxy lead-
ers (f = 1). Throughout the chapter, nodes and messages that were not present in previous
iterations of the protocol are highlighted in green.

More concretely, when a leader receives a command x from a client (1), it assigns the
command x a log entry i and then forms a Phase2A message that includes x and i. The
leader does not send the Phase2A message to the acceptors. Instead, it sends the Phase2A
message to a randomly selected proxy leader (2). Note that every command can be sent to a
different proxy leader. The leader balances load evenly across all of the proxy leaders. Upon
receiving a Phase2A message, a proxy leader broadcasts it to the acceptors (3), gathers a
quorum of f + 1 Phase2B responses (4), and notifies the replicas of the chosen value (5).
All other aspects of the protocol remain unchanged.

CHAPTER 3. COMPARTMENTALIZATION 14

Without proxy leaders, the leader processes 3f + 4 messages per command. With proxy
leaders, the leader only processes 2. This makes the leader significantly less of a throughput
bottleneck, or potentially eliminates it as the bottleneck entirely.

Scale The leader now processes fewer messages per command, but every proxy leader has to
process 3f+4 messages. Have we really eliminated the leader as a bottleneck, or have we just
moved the bottleneck into the proxy leaders? To answer this, we note that the proxy leaders
are embarrassingly parallel. They operate independently from one another. Moreover, the
leader distributes load among the proxy leaders equally, so the load on any single proxy
leader decreases as we increase the number of proxy leaders. Thus, we can trivially increase
the number of proxy leaders until they are no longer a throughput bottleneck.

Discussion Note that decoupling enables scaling. As discussed in Section 3.1, we cannot
naively increase the number of proposers. Without decoupling, the leader is both a sequencer
and broadcaster, so we cannot increase the number of leaders to increase the number of
broadcasters because doing so would lead to multiple sequencers, which is not permitted.
Only by decoupling the two responsibilities can we scale one without scaling the other.

Also note that the protocol remains tolerant to f faults regardless of the number of
machines. However, increasing the number of machines does decrease the expected time to
f failures (this is true for every protocol that scales up the number of machines, not just
our protocol). We believe that increasing throughput at the expense of a shorter time to f
failures is well worth it in practice because failed machines can be replaced with new machines
using a reconfiguration protocol [44, 68]. The time required to perform a reconfiguration is
many orders of magnitude smaller than the mean time between failures.

Compartmentalization 2: Acceptor Grids

Bottleneck: acceptors
Decouple: read quorums and write quorums
Scale: the number of write quorums

Bottleneck After compartmentalizing the leader, it is possible that the acceptors are the
throughput bottleneck. It is widely believed that acceptors do not scale: “using more than
2f + 1 [acceptors] for f failures is possible but illogical because it requires a larger quorum
size with no additional benefit” [97]. As explained in Section 3.1, there are two reasons why
naively increasing the number of acceptors is ill-advised.

First, increasing the number of acceptors increases the number of messages that the leader
has to send and receive. This increases the load on the leader, and since the leader is the
throughput bottleneck, this decreases throughput. This argument no longer applies. With
the introduction of proxy leaders, the leader no longer communicates with the acceptors.

CHAPTER 3. COMPARTMENTALIZATION 15

Increasing the number of acceptors increases the load on every individual proxy leader, but
the increased load will not make the proxy leaders a bottleneck because we can always scale
them up.

Second, every command must be processed by a majority of the acceptors. Thus, even
with a large number of acceptors, every acceptor must process at least half of all state
machine commands. This argument still holds.

Decouple We compartmentalize the acceptors by using non-majority read-write quorum
systems [31]. MultiPaxos—the vanilla version, not the compartmentalized version—requires
2f + 1 acceptors, and the leader communicates with f + 1 acceptors in both Phase 1 and
Phase 2 (a majority of the acceptors). As discussed in Section 2.4, this majority quorum
system is safe but not necessary. By using other read-write quorum systems, read quorums
do not have to intersect other read quorums, and write quorums do not have to intersect
other write quorums.

By decoupling read quorums from write quorums, we can reduce the load on the acceptors
by using a more efficient quorum system. Specifically, we arrange the acceptors into an r×w
rectangular grid, where r, w ≥ f + 1. This is called a grid quorum system. Every row
forms a read quorum, and every column forms a write quorum (r stands for row and for
read). That is, a leader contacts an arbitrary row of acceptors in Phase 1 and an arbitrary
column of acceptors for every command in Phase 2. Every row intersects every column, so
this is a valid set of quorums.

A 2 × 3 acceptor grid is illustrated in Figure 3.2. There are two read quorums (the
rows {a1, a2, a3} and {a4, a5, a6}) and three write quorums (the columns {a1, a4}, {a2, a5},
{a3, a6}). Because there are three write quorums, every acceptor only processes one third
of all the commands. This is not possible with majority quorums because with majority
quorums, every acceptor processes at least half of all the commands, regardless of the number
of acceptors.

Scale With majority quorums, every acceptor has to process at least half of all state
machines commands. With grid quorums, every acceptor only has to process 1

w
of the state

machine commands. Thus, we can increase w (i.e. increase the number of columns in the
grid) to reduce the load on the acceptors and eliminate them as a throughput bottleneck.

Discussion Note that, like with proxy leaders, decoupling enables scaling. With majority
quorums, read and write quorums are coupled, so we cannot increase the number of acceptors
without also increasing the size of all quorums. Acceptor grids allow us to decouple the
number of acceptors from the size of write quorums, allowing us to scale up the acceptors
and decrease their load.

Also note that increasing the number of write quorums increases the size of read quorums
which increases the number of acceptors that a leader has to contact in Phase 1. We believe

CHAPTER 3. COMPARTMENTALIZATION 16

c1

c2

c3

p1

p2

l1

l2

l3

a1 a2 a3

a4 a5 a6

r1

r2

Clients
f + 1

Proposers
≥ f + 1

Proxy Leaders
(≥f+1)× (≥f+1)

Acceptors
f + 1

Replicas

1

2 3

3

4

4

5

5

6

1 x proposed 2 Phase2A〈i, x〉
3 Phase2A〈i, x〉 4 Phase2B〈i〉

5 x chosen 6 the result of executing x

Figure 3.2: An execution of Compartmentalized MultiPaxos with a 2 × 3 grid of acceptors
(f = 1). The two read quorums—{a1, a2, a3} and {a4, a5, a6}—are shown in solid red rect-
angles. The three write quorums—{a1, a4}, {a2, a5}, and {a3, a6}—are shown in dashed blue
rectangles.

this is a worthy trade-off since Phase 2 is executed in the normal case and Phase 1 is only
run in the event of a leader failure.

In this chapter, we use the grid quorum system because it is simple to explain, but it is
not always the most efficient quorum system. In Chapter 4, we take a deep dive into read-
quorum systems. We can also use any of these sophisticated read-write quorum systems.

Compartmentalization 3: More Replicas

Bottleneck: replicas
Decouple: command sequencing and broadcasting
Scale: the number of replicas

Bottleneck After compartmentalizing the leader and the acceptors, it is possible that the
replicas are the bottleneck. Recall from Section 3.1 that naively scaling the replicas does
not work for two reasons. First, every replica must receive and execute every state machine
command. This is not actually true, but we leave that for the next compartmentalization.
Second, like with the acceptors, increasing the number of replicas increases the load on the
leader. Because we have already decoupled sequencing from broadcasting on the leader and

CHAPTER 3. COMPARTMENTALIZATION 17

introduced proxy leaders, this is no longer true, so we are free to increase the number of
replicas. In Figure 3.3, for example, we show MultiPaxos with three replicas instead of the
minimum required two.

Scale If every replica has to execute every command, does increasing the number of replicas
decrease their load? Yes. Recall that while every replica has to execute every state machine,
only one of the replicas has to send the result of executing the command back to the client.
Thus, with n replicas, every replica only has to send back results for 1

n
of the commands.

If we scale up the number of replicas, we reduce the number of messages that each replica
has to send. This reduces the load on the replicas and helps prevent them from becoming
a throughput bottleneck. In Figure 3.3 for example, with three replicas, every replica only
has to reply to one third of all commands. With two replicas, every replica has to reply to
half of all commands. In the next compartmentalization, we’ll see another major advantage
of increasing the number of replicas.

c1

c2

c3

p1

p2

l1

l2

l3

a1 a2 a3

a4 a5 a6

r1

r2

r3

Clients
f + 1

Proposers
≥ f + 1

Proxy Leaders
(≥f+1)× (≥f+1)

Acceptors
≥ f + 1
Replicas

1

2 3

3

4

4

5
5
5

6

1 x proposed 2 Phase2A〈i, x〉
3 Phase2A〈i, x〉 4 Phase2B〈i〉

5 x chosen 6 the result of executing x

Figure 3.3: An example execution of Compartmentalized MultiPaxos with three replicas as
opposed to the minimum required two (f = 1).

Discussion Again decoupling enables scaling. Without decoupling the leader and intro-
ducing proxy leaders, increasing the number of replicas hurts rather than helps performance.

CHAPTER 3. COMPARTMENTALIZATION 18

Compartmentalization 4: Leaderless Reads

Bottleneck: leader and replicas
Decouple: read path and write path
Scale: the number of read quorums

Bottleneck We have now compartmentalized the leader, the acceptors, and the replicas.
At this point, the bottleneck is in one of two places. Either the leader is still a bottleneck,
or the replicas are the bottleneck. Fortunately, we can bypass both bottlenecks with a single
compartmentalization.

Decouple We call commands that modify the state of the state machine writes and
commands that don’t modify the state of the state machine reads. The leader must process
every write because it has to linearize the writes with respect to one another, and every
replica must process every write because otherwise the replicas’ state would diverge (imagine
if one replica performs a write but the other replicas don’t). However, because reads do not
modify the state of the state machine, the leader does not have to linearize them (reads
commute), and only a single replica (as opposed to every replica) needs to execute a read.

We take advantage of this observation by decoupling the read path from the write path.
Writes are processed as before, but we bypass the leader and perform a read on a single
replica by using the ideas from Paxos Quorum Reads (PQR) [13]. Specifically, to perform a
read, a client sends a PreRead〈〉 message to a read quorum of acceptors. Upon receiving
a PreRead〈〉 message, an acceptor ai returns a PreReadAck〈〉 message where wi is the
index of the largest log entry in which the acceptor has voted (i.e. the largest log entry in
which the acceptor has sent a Phase2B message). We call this wi a vote watermark. When
the client receives PreReadAck messages from a read quorum of acceptors, it computes j
as the maximum of all received vote watermarks. It then sends a Read〈x, j〉 request to any
one of the replicas where x is an arbitrary read (i.e. a command that does not modify the
state of the state machine).

When a replica receives a Read〈x, j〉 request from a client, it waits until it has executed
the command in log entry j. Recall that replicas execute commands in log order, so if
the replica has executed the command in log entry j, then it has also executed all of the
commands in log entries less than j. After the replica has executed the command in log entry
j, it executes x and returns the result to the client. Note that upon receiving a Read〈x, j〉
message, a replica may have already executed the log beyond j. That is, it may have already
executed the commands in log entries j + 1, j + 2, and so on. This is okay because as long
as the replica has executed the command in log entry j, it is safe to execute x.

Scale The decoupled read and write paths are shown in Figure 3.4. Reads are sent to a
row (read quorum) of acceptors, so we can increase the number of rows to decrease the read
load on every individual acceptor, eliminating the acceptors as a read bottleneck. Reads are

CHAPTER 3. COMPARTMENTALIZATION 19

c1

c2

c3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients
f + 1

Proposers
≥ f + 1

Proxy Leaders
(≥f+1)× (≥f+1)

Acceptors
≥ f + 1
Replicas

1
1

2

2
3

4

1

2 3

3

4

4

5
5
5

6

1 x proposed 2 Phase2A〈i, x〉 3 Phase2A〈i, x〉
4 Phase2B〈i〉 5 x chosen 6 the result of executing x

1 PreRead〈〉 2 PreReadAck〈〉
3 Read〈x, j〉 4 the result of executing x

Figure 3.4: An example execution of Compartmentalized MultiPaxos’ read and write path
(f = 1) with a 2× 2 acceptor grid. The write path is shown using solid blue lines. The read
path is shown using red dashed lines.

also sent to a single replica, so we can increase the number of replicas to eliminate them as
a read bottleneck as well.

Discussion Note that read-heavy workloads are not a special case. Many workloads are
read-heavy [25, 66, 7, 62]. Chubby [11] observes that fewer than 1% of operations are writes,
and Spanner [18] observes that fewer than 0.3% of operations are writes.

Also note that increasing the number of columns in an acceptor grid reduces the write
load on the acceptors, and increasing the number of rows in an acceptor grid reduces the read
load on the acceptors. There is no throughput trade-off between the two. The number of
rows and columns can be adjusted independently. Increasing read throughput (by increasing
the number of rows) does not decrease write throughput, and vice versa. However, increasing
the number of rows does increase the size (but not number) of columns, so increasing the
number of rows might increase the tail latency of writes, and vice versa.

Correctness We now define linearizability and prove that our protocol implements lin-
earizable reads.

CHAPTER 3. COMPARTMENTALIZATION 20

Linearizability is a correctness condition for distributed systems [28]. Intuitively, a lin-
earizable distributed system is indistinguishable from a system running on a single machine
that services all requests serially. This makes a linearizable system easy to reason about.
We first explain the intuition behind linearizability and then formalize the intuition.

Consider a distributed system that implements a single register. Clients can send requests
to the distributed system to read or write the register. After a client sends a read or write
request, it waits to receive a response before sending another request. As a result, a client
can have at most one operation pending at any point in time.

c1

c2

w(0)
OK

w(1)
OK

r() 0

(a) An example execution

c1

c2

w(0)
OK

w(1)
OK

r() 0

(b) An incorrect linearization

c1

c2

w(0)
OK

w(1)
OK

r() 0

(c) A linearization

Figure 3.5

As a simple example, consider the execution illustrated in Figure 3.5a where the x-axis
represents the passage of time (real time, not logical time [46]). This execution involves two
clients, c1 and c2. Client c1 sends a w(0) request to the system, requesting that the value 0
be written to the register. Then, client c2 sends a w(1) request, requesting that the value 1
be written to the register. The system then sends acknowledgments to c1 and c2 before c1
sends a read request and receives the value 0.

For every client request, let’s associate the request with a point in time that falls between
when the client sent the request and when the client received the corresponding response.
Next, let us imagine that the system executes every request instantaneously at the point in
time associated with the request. This hypothetical execution may or may not be consistent
with the real execution.

For example, in Figure 3.5a, we have associated every request with a point halfway be-
tween its invocation and response. Thus, in this hypothetical execution, the system executes
c1’s w(0) request, then c2’s w(1) request, and finally c1’s r() request. In other words, it
writes 0 into the register, then 1, and then reads the value 1 (the latest value written). This
hypothetical execution is not consistent with the real execution because c1 reads 1 instead
of 0.

Now consider the hypothetical execution in Figure 3.5c in which we execute w(1), then
w(0), and then r(). This execution is consistent with the real execution. Note that c1
reads 0 in both executions. Such a hypothetical execution—one that is consistent with the
real execution—is called a linearization. Note that from the clients’ perspective, the real
execution is indistinguishable from its linearization. Maybe the distributed register really is
executing our requests at exactly the points in time that we selected? There’s no way for
the clients to prove otherwise.

CHAPTER 3. COMPARTMENTALIZATION 21

If an execution has a linearization, we say the execution is linearizable. Similarly, if a
system only allows linearizable executions, we say the system is linearizable. Note that not
every execution is linearizable. The execution in Figure 3.6, for example, is not linearizable.
Try to find a linearization. You’ll see that it’s impossible.

c1

c2

c3

w(0)
OK r() 1

w(1)
OK r() 1

w(0)
OK

Figure 3.6: An execution that is not linearizable

We now formalize our intuition on linearizability [28]. A history is a finite sequence of
operation invocation and response events. For example, the following history:

Hwwr = c1.w(0); c2.w(1); c1.OK; c2.OK; c1.r(); c1.0

is the history illustrated in Figure 3.5a. We draw invocation events in red, and response
events in blue. We call an invocation and matching response an operation. In Hwwr, every
invocation is followed eventually by a corresponding response, but this is not always the case.
An invocation in a history is pending if there does not exist a corresponding response. For
example, in the history Hpending below, c2’s invocation is pending:

Hpending = c1.w(0); c2.w(1); c1.OK; c1.r(); c1.0

Hpending is illustrated in Figure 3.7. complete(H) is the subhistory of H that only includes
non-pending operations. For example,

complete(Hpending) = c1.w(0); c1.OK; c1.r(); c1.0

c1

c2

w(0)
OK

· · ·
w(1)

r() 0

Figure 3.7: A history, Hpending, with a pending invocation

CHAPTER 3. COMPARTMENTALIZATION 22

A client subhistory, H | ci, of a history H is the subsequence of all events in H associ-
ated with client ci. Referring again to Hwwr above, we have:

Hwwr | c1 = c1.w(0); c1.OK; c1.r(); c1.0

Hwwr | c2 = c2.w(1); c2.OK

Hwwr | c1 is illustrated in Figure 3.8.

c1
w(0)

OK r() 0

Figure 3.8: Hwwr | c1

Two histories H and H ′ are equivalent if for every client ci, H | ci = H ′ | ci. For example,
consider the following history:

Hwrw = c1.w(0); c1.OK; c1.r(); c2.w(1); c1.0; c2.OK

Hwrw is illustrated in Figure 3.9. Hwwr is equivalent to Hwrw because

Hwwr | c1 = c1.w(0); c1.OK; c1.r(); c1.0 = Hwrw | c1
Hwwr | c2 = c2.w(1); c2.OK; = Hwrw | c2

c1

c2

w(0)
OK r() 0

w(1)
OK

Figure 3.9: Hwrw

A history H induces an irreflexive partial order <H on operations where o1 <H o2 if the
response of o1 precedes the invocation of o2 in H. If o1 <H o2, we say o1 happens before
o2. In Hwwr for example, c2’s operation happens before c1’s second operation. In Hwrw, on
the other hand, the two operations are not ordered by the happens before relation. This
shows that equivalent histories may not have the same happens before relation.

Finally, a history H is linearizable if it can be extended (by appending zero or more
response events) to some history H ′ such that (a) complete(H ′) is equivalent to some se-
quential history S, and (b) <S respects <H (i.e. if two operations are ordered in H, they
must also be ordered in S). S is called a linearization. The history Hwwr, for example, is
linearizable with the linearization

Swwr = c2.w(1); c2.OK; c1.w(0); c1.OK; c1.r(); c1.0

CHAPTER 3. COMPARTMENTALIZATION 23

c1

c2
w(1)

OK

w(0)
OK r() 0

Figure 3.10: Swrw

illustrated in Figure 3.10
We now prove that our protocol correctly implements linearizable reads.

Proof. Let H be an arbitrary history permitted by our protocol. To prove that our protocol
is linearizable, we must extend H to a history H ′ such that complete(H ′) is equivalent to a
sequential history that respects <H .

Recall that extending H to H ′ is sometimes necessary because of situations like the one
shown in Figure 3.11. This example involves a single register with an initial value of 0. c1
issues a request to write the value of 1, but has not yet received a response. c2 issues a read
request and receives the value 1. If we do not extend the history to include a response to
c1’s write, then there will not exist an equivalent sequential history.

c1

c2

· · ·
w(1)

r() 1

Figure 3.11: A motivating example of history extension

So, which operations should we include in H ′? Let k be the largest log index written
in or read from in complete(H). First note that for every index 0 ≤ i ≤ k, there exists a
(potentially pending) write in H that has been chosen in index i. Why? Well, our protocol
executes commands in log order, so a write at index k can only complete after all writes
with smaller indices have been chosen (and executed by some replica). Similarly, if a read
operation reads from slot k, then the write in slot k must have been executed, so again all
writes with smaller indices have also been chosen. We extend H to history H ′ by including
responses for all pending write invocations with indices 0 ≤ i ≤ k. The responses are formed
by executing the k + 1 commands in log order.

For example, consider the history G shown in Figure 3.12. wi represents a write chosen
in log index i, ri represents a read operation that reads from slot i, w? represents a pending
write which has not been chosen in any particular log index, and r? represents a pending
read. complete(G) includes w1 and r2, so here k = 2 and we must include all writes in indices

CHAPTER 3. COMPARTMENTALIZATION 24

0, 1, and 2. That is, we extend G to complete w0 and w2. w4 is left pending, as is w? and
r?. Also note that we could not complete w4 even if we wanted to because there is no w3.

c1

c2

c3

c4

c5

· · ·w0

w1
· · ·w2

r2 · · ·w4

r2 · · ·w?

· · ·r?

Figure 3.12: An example history G. Responses are not shown, as they are not important for
this example.

Now, we must prove that (1) complete(H ′) is equivalent to some legal sequential history
S, and (2) <S respects <H . We let S be the sequential history formed from executing all
writes in log order and from executing every read from index i after the write in index i.
If there are multiple reads from index i, the reads are ordered in an arbitrary way that
respects <H . For example, the history G in Figure 3.12 has the sequential history SG shown
in Figure 3.13. Note that c4’s read comes after c3’s read. This is essential because we must
respect <G. If the two reads were concurrent in G, they could be ordered arbitrarily in SG.

c1

c2

c3

c4

w0

w1 w2

r2

r2

Figure 3.13: A linearization SG of the history in G Figure 3.12

To prove (1) and (2), we show that if two distinct operations x and y that write to
(or read from) log indices i and j are related in H—i.e. x <H y, or x finishes before y
begins—then i ≤ j. We perform a case analysis on whether x and y are reads or writes.

• x and y are both writes: At the time x completes in index i, all commands in
indices less than i have been chosen because our protocol executes commands in log

CHAPTER 3. COMPARTMENTALIZATION 25

order. Thus, when y later begins, it cannot be chosen in a log entry less than i, since
every log entry implements consensus. Thus, i < j.

• x and y are both reads: When x completes, command i has been chosen. Thus,
some write quorum w of acceptors must have voted for the command in log entry i.
When y begins, it sends PreRead messages to some read quorum r of acceptors. r
and w intersect, so the client executing y will receive a PreReadAck〈wi〉 message
from some acceptor in r with wi ≥ i. Therefore, y is guaranteed to read from some
j ≥ i.

• x is a read and y is a write: When x completes, all commands in indices i and
smaller have been chosen. By the first case above, y must be chosen in some index
j > i.

• x is a write and y is a read: When x completes, command i has been chosen. As
with the second case above, when y begins it will contact an acceptor group with a
vote watermark at least as large as i and will subsequently read from at least i.

From this, (1) is immediate since every client’s operations are in the same order in H ′

and in S. (2) holds because S is ordered by log index with ties broken respecting <H , so if
x <H y, then i ≤ j and x <S y.

Non-Linearizable Reads Our protocol implements linearizable reads, the strongest form
of non-transactional consistency. However, we can extend the protocol to support reads
with better performance but weaker consistency. Notably, we can implement sequentially
consistent [43] and eventually consistent reads. Writes are always linearizable. The decision
of which consistency level to choose depends on the application.

Sequential consistency is a lot like linearizability but without the real-time ordering
requirements. Specifically, a history H is sequentially consistent if we can extend it to some
history H ′ such that complete(H ′) is equivalent to some sequential history S. Unlike with
linearizability, we do not require that <S respects <H .

To implement sequentially consistent reads, every client needs to (a) keep track of the
largest log entry it has ever written to or read from, and (b) make sure that all future
operations write to or read from a log entry as least as large. Concretely, we make the
following changes:

• Every client ci maintains an integer-valued watermark wi, initially −1.

• When a replica executes a write w in log entry j and returns the result of executing
w to a client ci, it also includes j. When ci receives a write index j from a replica, it
updates wi to the max of wi and j.

• To execute a sequentially consistent read r, a client ci sends a Read〈r, wi〉 message to
any replica. The replica waits until it has executed the write in log entry wi and then

CHAPTER 3. COMPARTMENTALIZATION 26

executes r. It then replies to the client with the result of executing r and the log entry
j from which r reads. Here, j ≥ wi. When a client receives a read index j, it updates
wi to the max of wi and j.

Note that a client can finish a sequentially consistent read after one round-trip of com-
munication (in the best case), whereas a linearizable read requires at least two. Moreover,
sequentially consistent reads do not involve the acceptors. This means that we can increase
read throughput by scaling up the number of replicas without having to scale up the number
of acceptors. Also note that sequentially consistent reads are also causally consistent.

Eventually consistent reads are trivial to implement. To execute an eventually consistent
read, a client simply sends the read request r directly to any replica. The replica executes
the read immediately and returns the result back to the client. Eventually consistent reads
do not require any watermark bookkeeping, do not involve acceptors, and never wait for
writes. Moreover, the reads are always executed against a consistent prefix of the log.

3.3 Batching

All state machine replication protocols, including MultiPaxos, can take advantage of batching
to increase throughput. The standard way to implement batching [77, 76] is to have clients
send their commands to the leader and to have the leader group the commands together into
batches, as shown in Figure 3.14. The rest of the protocol remains unchanged, with command
batches replacing commands. The one notable difference is that replicas now execute one
batch of commands at a time, rather than one command at a time. After executing a single
command, a replica has to send back a single result to a client, but after executing a batch
of commands, a replica has to send a result to every client with a command in the batch.

Compartmentalization 5: Batchers

Bottleneck: leader
Decouple: batch formation and batch sequencing
Scale: the number of batchers

Bottleneck We first discuss write batching and discuss read batching momentarily. Batch-
ing increases throughput by amortizing the communication and computation cost of process-
ing a command. Take the acceptors for example. Without batching, an acceptor processes
two messages per command. With batching, however, an acceptor only processes two mes-
sages per batch. The acceptors process fewer messages per command as the batch size
increases. With batches of size 10, for example, an acceptor processes 10× fewer messages
per command with batching than without.

Refer again to Figure 3.14. The load on the proxy leaders and the acceptors both decrease
as the batch size increases, but this is not the case for the leader or the replicas. We focus first

CHAPTER 3. COMPARTMENTALIZATION 27

c1

c2

c3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients
f + 1

Proposers
≥ f + 1

Proxy Leaders
(≥f+1)× (≥f+1)

Acceptors
≥ f + 1
Replicas

1

1

1

2 3

3

4

4

5
5
5

6

6

6

1 x, y, z proposed 2 Phase2A〈i, {x, y, z}〉
3 Phase2A〈i, {x, y, z}〉 4 Phase2B〈i〉

5 {x, y, z} chosen 6 the results of executing x, y, and z

Figure 3.14: An example execution of Compartmentalized MultiPaxos with batching (f = 1).
Messages that contain a batch of commands, rather than a single command, are drawn
thicker. Note how replica r2 has to send multiple messages after executing a batch of com-
mands.

on the leader. To process a single batch of n commands, the leader has to receive n messages
and send one message. Unlike the proxy leaders and acceptors, the leader’s communication
cost is linear in the number of commands rather than the number of batches. This makes
the leader a very likely throughput bottleneck.

Decouple The leader has two responsibilities. It forms batches, and it sequences batches.
We decouple the two responsibilities by introducing a set of at least f + 1 batchers, as
illustrated in Figure 3.15. The batchers are responsible for forming batches, while the leader
is responsible for sequencing batches.

More concretely, when a client wants to propose a state machine command, it sends the
command to a randomly selected batcher (1). After receiving sufficiently many commands
from the clients (or after a timeout expires), a batcher places the commands in a batch and
forwards it to the leader (2). When the leader receives a batch of commands, it assigns it a
log entry, forms a Phase 2a message, and sends the Phase2a message to a proxy leader
(3). The rest of the protocol remains unchanged.

Without batchers, the leader has to receive n messages per batch of n commands. With
batchers, the leader only has to receive one. This either reduces the load on the bottleneck
leader or eliminates it as a bottleneck completely.

CHAPTER 3. COMPARTMENTALIZATION 28

c1

c2

c3

b1

b2

b3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients
≥ f + 1
Batchers

f + 1
Proposers

≥ f + 1
Proxy
Leaders

(≥f+1)× (≥f+1)
Acceptors

≥ f + 1
Replicas

1

1

1

2

3 4

4

5

5

6
6
6

7

7

7

1 x, y, z proposed 2 {x, y, z}
3 Phase2A〈i, {x, y, z}〉 4 Phase2A〈i, {x, y, z}〉

5 Phase2B〈i〉 6 {x, y, z} chosen

7 the results of executing x, y, and z

Figure 3.15: An example execution of Compartmentalized MultiPaxos with batchers (f = 1).

Scale The batchers are embarrassingly parallel. We can increase the number of batchers
until they’re not a throughput bottleneck.

Discussion Read batching is very similar to write batching. Clients send reads to ran-
domly selected batchers, and batchers group reads together into batches. After a batcher
has formed a read batch X, it sends a PreRead〈〉 message to a read quorum of accep-
tors, computes the resulting watermark i, and sends a Read〈X, i〉 request to any one of the
replicas.

Compartmentalization 6: Unbatchers

Bottleneck: replicas
Decouple: batch processing and batch replying
Scale: the number of unbatchers

Bottleneck After executing a batch of n commands, a replica has to send n messages back
to the n clients. Thus, the replicas (like the leader without batchers) suffer communication
overheads linear in the number of commands rather than the number of batches.

CHAPTER 3. COMPARTMENTALIZATION 29

Decouple The replicas have two responsibilities. They execute batches of commands, and
they send replies to the clients. We decouple these two responsibilities by introducing a set
of at least f + 1 unbatchers, as illustrated in Figure 3.16. The replicas are responsible
for executing batches of commands, while the unbatchers are responsible for sending the
results of executing the commands back to the clients. Concretely, after executing a batch
of commands, a replica forms a batch of results and sends the batch to a randomly selected
unbatcher (7). Upon receiving a result batch, an unbatcher sends the results back to the
clients (8). This decoupling reduces the load on the replicas.

c1

c2

c3

b1

b2

b3

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

d1

d2

d3

Clients
≥ f + 1
Batchers

f + 1
Proposers

≥ f + 1
Proxy
Leaders

(≥f+1)× (≥f+1)
Acceptors

≥ f + 1
Replicas

≥ f + 1
Unbatchers

1

1

1

2

3 4

4

5

5

6
6
6

7

8

8

8

1 x, y, z proposed 2 {x, y, z}
3 Phase2A〈i, {x, y, z}〉 4 Phase2A〈i, {x, y, z}〉

5 Phase2B〈i〉 6 {x, y, z} chosen

7 the result of executing {x, y, z}
8 the results of executing x, y, and z

Figure 3.16: An example execution of Compartmentalized MultiPaxos with unbatchers (f =
1).

Scale As with batchers, unbatchers are embarrassingly parallel, so we can increase the
number of unbatchers until they are not a throughput bottleneck.

Discussion Read unbatching is identical to write unbatching. After executing a batch of
reads, a replica forms the corresponding batch of results and sends it to a randomly selected
unbatcher.

CHAPTER 3. COMPARTMENTALIZATION 30

3.4 Mencius

Background

As discussed previously, the MultiPaxos leader is a throughput bottleneck because all com-
mands go through the leader and because the leader performs disproportionately more work
per command than the acceptors or replicas. Mencius is a MultiPaxos variant that attempts
to eliminate this bottleneck by using more than one leader.

Rather than having a single leader sequence all commands in the log, Mencius round-
robin partitions the log among multiple leaders. For example, consider the scenario with
three leaders l1, l2, and l3 illustrated in Figure 3.17. Leader l1 gets commands chosen in
slots 0, 3, 6, etc.; leader l2 gets commands chosen in slots 1, 4, 7, etc.; and leader l3 gets
commands chosen in slots 2, 5, 8, etc.

0

l1

1

l2

2

l3

3

l1

4

l2

5

l3

6

l1

. . .

l1

l2

l3

0, 3, 6, . . .

1, 4, 7, . . .

2, 5, 8, . . .

Figure 3.17: A Mencius log round robin partitioned among three leaders.

Having multiple leaders works well when all the leaders process commands at the exact
same rate. However, if one of the leaders is slower than the others, then holes start appearing
in the log entries owned by the slow leader. This is illustrated in Figure 3.18a. Figure 3.18a
depicts a Mencius log partitioned across three leaders. Leaders l1 and l2 have both gotten
a few commands chosen (e.g., a in slot 0, b in slot 1, etc.), but leader l3 is lagging behind
and has not gotten any commands chosen yet. Replicas execute commands in log order, so
they are unable to execute all of the chosen commands until l3 gets commands chosen in its
vacant log entries.

If a leader detects that it is lagging behind, then it fills its vacant log entries with a
sequence of noops. A noop is a distinguished command that does not affect the state of
the replicated state machine. In Figure 3.18b, we see that l3 fills its vacant log entries with
noops. This allows the replicas to execute all of the chosen commands.

More concretely, a Mencius deployment that tolerates f faults is implemented with 2f+1
servers, as illustrated in Figure 3.19. Roughly speaking, every Mencius server plays the role
of a MultiPaxos leader, acceptor, and replica.

When a client wants to propose a state machine command x, it sends x to any of the
servers (1). Upon receiving command x, a server sl plays the role of a leader. It assigns the
command x a slot i and sends a Phase 2a message that includes x and i to the other servers

CHAPTER 3. COMPARTMENTALIZATION 31

a

0

l1

b

1

l2

2

l3

c

3

l1

d

4

l2

5

l3

e

6

l1

f

7

l2

8

l3

g

9

l1

. . .

(a) Before noops

a

0

l1

b

1

l2

no
op

2

l3

c

3

l1

d

4

l2

no
op

5

l3

e

6

l1

f

7

l2

no
op

8

l3

g

9

l1

. . .

(b) After noops

Figure 3.18: An example of using noops to deal with a slow leader. Leader l3 is slower
than leaders l1 and l2, so the log has holes in l3’s slots. l3 fills its holes with noops to allow
commands in the log to be executed.

c1

c2

c3

s1

s2

s3

Clients 2f + 1 Servers

1

23
4

234

4

Figure 3.19: An example execution of Mencius.

(2). Upon receiving a Phase 2a message, a server sa plays the role of an acceptor and replies
with a Phase 2b message (3).

In addition, sa uses i to determine if it is lagging behind sl. If it is, then it sends a skip
message along with the Phase 2b message. The skip message informs the other servers to
choose a noop in every slot owned by sa up to slot i. For example, if a server sa’s next
available slot is slot 10 and it receives a Phase 2a message for slot 100, then it broadcasts
a skip message informing the other servers to place noops in all of the slots between slots
10 and 100 that are owned by server sa. Mencius leverages a protocol called Coordinated
Paxos to ensure noops are chosen correctly. We refer to the reader to [57] for details.

Upon receiving Phase 2b messages for command x from a majority of the servers, server
sl deems the command x chosen. It informs the other servers that the command has been

CHAPTER 3. COMPARTMENTALIZATION 32

chosen and also sends the result of executing x back to the client.

Compartmentalization

Mencius uses multiple leaders to avoid being bottlenecked by a single leader. However,
despite this, Mencius still does not achieve optimal throughput. Part of the problem is
that every Mencius server plays three roles, that of a leader, an acceptor, and a replica.
Because of this, a server has to send and receive a total of roughly 3f + 5 messages for every
command that it leads and also has to send and receive messages acking other servers as
they simultaneously choose commands.

We can solve this problem by decoupling the servers. Instead of deploying a set of heavily
loaded servers, we instead view Mencius as a MultiPaxos variant and deploy it as a set of
proposers, a set of acceptors, and set of replicas. This is illustrated in Figure 3.20.

c1

c2

c3

p1

p2

p3

a1

a2

a3

r1

r2

Clients
≥ f + 1
Leaders

2f + 1
Acceptors

f + 1
Replicas

1
2

2

3

3

4

4

5

Figure 3.20: An example execution of decoupled Mencius. Note that every proposer is a
leader.

Now, Mencius is equivalent to MultiPaxos with the following key differences. First, every
proposer is a leader, with the log round-robin partitioned among all the proposers. If a
client wants to propose a command, it can send it to any of the proposers. Second, the
proposers periodically broadcast their next available slots to one another. Every server uses
this information to gauge whether it is lagging behind. If it is, it chooses noops in its vacant
slots, as described above.

This decoupled Mencius is a step in the right direction, but it shares many of the problems
that MultiPaxos faced. The proposers are responsible for both sequencing commands and
for coordinating with acceptors; we have a single unscalable group of acceptors; and we
are deploying too few replicas. Thankfully, we can compartmentalize Mencius in exactly the
same way as MultiPaxos by leveraging proxy leaders, acceptor grids, and more replicas. This
is illustrated in Figure 3.21.

CHAPTER 3. COMPARTMENTALIZATION 33

c1

c2

c3

p1

p2

p3

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients
≥ f + 1
Leaders

≥ f + 1
Proxy Leaders

(≥f+1)× (≥f+1)
Acceptors

≥ f + 1
Replicas

1

2
3

3

4

4

5

5

5

6

Figure 3.21: An execution of Mencius with proxy leaders, acceptor grids, and an increased
number of replicas.

This protocol shares all of the advantages of compartmentalized MultiPaxos. Proxy lead-
ers and acceptors both trivially scale so are not bottlenecks, while leaders and replicas have
been pared down to their essential responsibilities of sequencing and executing commands
respectively. Moreover, because Mencius allows us to deploy multiple leaders, we can also
increase the number of leaders until they are no longer a bottleneck. We can also intro-
duce batchers and unbatchers like we did with MultiPaxos and can implement linearizable
leaderless reads.

3.5 S-Paxos

Background

S-Paxos [10] is a MultiPaxos variant that, like Mencius, aims to avoid being bottlenecked by
a single leader. Recall that when a MultiPaxos leader receives a state machine command x
from a client, it broadcasts a Phase 2a message to the acceptors that includes the command x.
If the leader receives a state machine command that is large (in terms of bytes) or receives a
large batch of modestly sized commands, the overheads of disseminating the commands begin
to dominate the cost of the protocol, exacerbating the fact that command disseminating is
performed solely by the leader.

S-Paxos avoids this by decoupling command dissemination from command sequencing—
separating control from from data flow—and distributing command dissemination across all
nodes. More concretely, an S-Paxos deployment that tolerates f faults consists of 2f + 1
servers, as illustrated in Figure 3.22. Every server plays the role of a MultiPaxos proposer,
acceptor, and replica. It also plays the role of a disseminator and stabilizer, two roles
that will become clear momentarily.

CHAPTER 3. COMPARTMENTALIZATION 34

c1

c2

c3

s1

s2

s3

Clients 2f + 1 Servers

1

2

2

3

3

3

3

(a) Dissemination

c1

c2

c3

s1

s2

s3

Clients 2f + 1 Servers

45
6

456

7

(b) Ordering

Figure 3.22: An example execution of S-Paxos. Messages that include client commands (as
opposed to ids) are bolded.

When a client wants to propose a state machine command x, it sends x to any of the
servers. Upon receiving a command from a client, a server plays the part of a disseminator.
It assigns the command a globally unique id idx and begins a dissemination phase with
the goal of persisting the command and its id on at least a majority of the servers. This is
shown in Figure 3.22a. The server broadcasts x and idx to the other servers. Upon receiving
x and idx, a server plays the role of a stabilizer and stores the pair in memory. It then
broadcasts an acknowledgement to all servers. The acknowledgement contains idx but not
x.

One of the servers is the MultiPaxos leader. Upon receiving acknowledgements for idx
from a majority of the servers, the leader knows the command is stable. It then uses the
id idx as a proxy for the corresponding command x and runs the MultiPaxos protocol as
usual (i.e. broadcasting Phase 2a messages, receiving Phase 2b messages, and notifying the
other servers when a command id has been chosen) as shown in Figure 3.22b. Thus, while
MultiPaxos agrees on a log of commands, S-Paxos agrees on a log of command ids.

The S-Paxos leader, like the MultiPaxos leader, is responsible for ordering command ids
and getting them chosen. But, the responsibility of disseminating commands is shared by
all the servers.

Compartmentalization

We compartmentalize S-Paxos similar to how we compartmentalize MultiPaxos and Mencius.
First, we decouple servers into a set of at least f+1 disseminators, a set of 2f+1 stabilizers,
a set of proposers, a set of acceptors, and a set of replicas. This is illustrated in Figure 3.23.
To propose a command x, a client sends it to any of the disseminators. Upon receiving x, a
disseminator persists the command and its id idx on at least a majority of (and typically all

CHAPTER 3. COMPARTMENTALIZATION 35

of) the stabilizers. It then forwards the id to the leader. The leader gets the id chosen in a
particular log entry and informs one of the stabilizers. Upon receiving idx from the leader,
the stabilizer fetches x from the other stabilizers if it has not previously received it. The
stabilizer then informs the replicas that x has been chosen. Replicas execute commands in
prefix order and reply to clients as usual.

c1

c2

c3

d1

d2

s1

s2

s3

p1

p2

a1

a2

a3

r1

r2

Clients
≥ f + 1

Disseminators
2f + 1

Stabilizers

≥ f + 1
Proposers

2f + 1
Acceptors

f + 1
Replicas

1

2

2

2

3

3

3

4
5

5
6

6

7

8

8

9

Figure 3.23: An example execution of decoupled S-Paxos. Messages that include client
commands (as opposed to ids) are bolded. Note that the MultiPaxos leader does not send
or receive any messages that include a command, only messages that include command ids.

Though S-Paxos relieves the MultiPaxos leader of its duty to broadcast commands, the
leader still has to broadcast command ids. In other words, the leader is no longer a bottle-
neck on the data path but is still a bottleneck on the control path. Moreover, disseminators
and stabilizers are potential bottlenecks. We can resolve these issues by compartmentaliz-
ing S-Paxos similar to how we compartmentalized MultiPaxos. We introduce proxy leaders,
acceptor grids, and more replicas. Moreover, we can trivially scale up the number of dissem-
inators; we can deploy stabilizer grids; and we can implement linearizable leaderless reads.
This is illustrated in Figure 3.24. To support batching, we can again introduce batchers and
unbatchers.

3.6 Evaluation

Latency-Throughput

Experiment Description We call MultiPaxos with the six compartmentalizations de-
scribed in this chapter Compartmentalized MultiPaxos. We implemented MultiPaxos,
Compartmentalized MultiPaxos, and an unreplicated state machine in Scala using the Netty

CHAPTER 3. COMPARTMENTALIZATION 36

c1

c2

c3

d1

d2

d3

s1 s2

s3 s4

p1

p2

l1

l2

l3

a1 a2

a3 a4

r1

r2

r3

Clients ≥ f + 1
Disseminators

(≥f+1)× (≥f+1)
Stabilizers (≥f+1)× (≥f+1)

Acceptors
≥ f + 1
Proposers

≥ f + 1
Proxy
Leaders

≥ f + 1
Replicas

1

2

2

3

3

4 5
6

6

7

7

8

9
9

9

10

Figure 3.24: An example execution of S-Paxos with stabilizer grids, proxy leaders, acceptor
grids, and an increased number of replicas. Messages that include client commands (as
opposed to ids) are bolded.

networking library (see github.com/mwhittaker/frankenpaxos). MultiPaxos employs 2f + 1
machines with each machine playing the role of a MultiPaxos proposer, acceptor, and replica.
The unreplicated state machine is implemented as a single process on a single server. Clients
send commands directly to the state machine. Upon receiving a command, the state machine
executes the command and immediately sends back the result. Note that unlike MultiPaxos
and Compartmentalized MultiPaxos, the unreplicated state machine is not fault tolerant. If
the single server fails, all state is lost and no commands can be executed. Thus, the unrepli-
cated state machine should not be viewed as an apples-to-apples comparison with the other
two protocols. Instead, the unreplicated state machine sets an upper bound on attainable
performance.

We measure the throughput and median latency of the three protocols under workloads
with a varying numbers of clients. Each client issues state machine commands in a closed
loop. It waits to receive the result of executing its most recently proposed command before
it issues another. All three protocols replicate a key-value store state machine where the
keys are integers and the values are 16 byte strings. In this benchmark, all state machine
commands are writes. There are no reads. Note that multiple clients are run within a single
process, so the number of physical client processes can be significantly less than the number
of logical clients.

We deploy the protocols with and without batching for f = 1. Without batching, we
deploy Compartmentalized MultiPaxos with two proposers, ten proxy leaders, a two by two
grid of acceptors, and four replicas. With batching, we deploy two batchers, two proposers,
three proxy replicas, a simple majority quorum system of three acceptors, two replicas, and
three unbatchers. For simplicity, every node is deployed on its own machine, but in practice,

https://github.com/mwhittaker/frankenpaxos/

CHAPTER 3. COMPARTMENTALIZATION 37

0 50 100 150 200 250
Throughput (thousands of commands per second)

0.0

2.5

5.0

7.5

10.0

M
ed

ia
n

la
te

nc
y

(m
s)

MultiPaxos
Compartmentalized MultiPaxos
Unreplicated

(a) Without batching

0 200 400 600 800 1000
Throughput (thousands of commands per second)

0

5

10

15

M
ed

ia
n

la
te

nc
y

(m
s)

MultiPaxos
Compartmentalized MultiPaxos
Unreplicated

(b) With batching

Figure 3.25: The latency and throughput of MultiPaxos, Compartmentalized MultiPaxos,
and an unreplicated state machine.

nodes can be physically co-located. In particular, any two logical roles can be placed on the
same machine without violating fault tolerance constraints, so long as the two roles are not
the same.

We deploy the three protocols on AWS using a set of m5.xlarge machines within a single
availability zone. Every m5.xlarge instance has 4 vCPUs and 16 GiB of memory. Everything
is done in memory, and nothing is written to disk (because everything is replicated, data
is persistent even without writing it to disk). In our experiments, the network is never a
bottleneck. All numbers presented are the average of three executions of the benchmark. As
is standard, we implement MultiPaxos and Compartmentalized MultiPaxos with thriftiness
enabled [62]. For a given number of clients, the batch size is set empirically to optimize
throughput. For a fair comparison, we deploy the unreplicated state machine with a set of
batchers and unbatchers when batching is enabled.

Results The results of the experiment are shown in Figure 3.25. The standard deviation
of throughput measurements are shown as a shaded region. Without batching, MultiPaxos
has a peak throughput of roughly 25,000 commands per second, while Compartmentalized
MultiPaxos has a peak throughput of roughly 150,000 commands per second, a 6× increase.
The unreplicated state machine outperforms both protocols. It achieves a peak throughput
of roughly 250,000 commands per second. Compartmentalized MultiPaxos underperforms
the unreplicated state machine because—despite decoupling the leader as much as possible—
the single leader remains a throughput bottleneck. Note that after fully compartmentalizing
MultiPaxos, either the leader or the replicas are guaranteed to be the throughput bottle-

CHAPTER 3. COMPARTMENTALIZATION 38

neck because all other components (e.g., proxy leaders, acceptors, batchers, unbatchers) can
be scaled arbitrarily. Implementation and deployment details (e.g., what state machine is
being replicated) determine which component is the ultimate throughput bottleneck. All
three protocols have millisecond latencies at peak throughput. With batching, MultiPaxos,
Compartmentalized MultiPaxos, and the unreplicated state machine have peak throughputs
of roughly 200,000, 800,000 and 1,000,000 commands per second respectively.

Compartmentalized MultiPaxos uses 6.66× more machines than MultiPaxos. On the
surface, this seems like a weakness, but in reality it is a strength. MultiPaxos does not scale,
so it is unable to take advantage of more machines. Compartmentalized MultiPaxos, on the
other hand, achieves a 6× increase in throughput using 6.66× the number of resources. Thus,
we achieve 90% of perfect linear scalability. In fact, with the mixed read-write workloads
below, we are able to scale throughput superlinearly with the number of resources. This is
because compartmentalization eliminates throughput bottlenecks. With throughput bottle-
necks, non-bottlenecked components are underutilized. When we eliminate the bottlenecks,
we eliminate underutilization and can increase performance without increasing the number
of resources. Moreover, a protocol does not have to be fully compartmentalized. We can
selectively compartmentalize some but not all throughput bottlenecks to reduce the number
of resources needed. In other words, MultiPaxos and Compartmentalized MultiPaxos are
not two alternatives, but rather two extremes in a trade-off between throughput and resource
usage.

We also compared the unbatched performance of Compartmentalized MultiPaxos and
the unreplicated state machine with values being 100 bytes and 1000 bytes. The results are
shown in Figure 3.26. Expectedly, the protocols’ peak throughput decreases as we increase
the value size.

Ablation Study

Experiment Description We now perform an ablation study to measure the effect of each
compartmentalization. In particular, we begin with MultiPaxos and then decouple and scale
the protocol according to the six compartmentalizations, measuring peak throughput along
the way. Note that we cannot measure the effect of each individual compartmentalization
in isolation because decoupling and scaling a component only improves performance if that
component is a bottleneck. Thus, to measure the effect of each compartmentalization, we
have to apply them all, and we have to apply them in an order that is consistent with the
order in which bottlenecks appear. All the details of this experiment are the same as the
previous experiment unless otherwise noted.

Results The unbatched ablation study results are shown in Figure 3.27a. MultiPaxos has
a throughput of roughly 25,000 commands per second. When we decouple the protocol and
introduce proxy leaders (Section 3.2), we increase the throughput to roughly 70,000 com-
mands per second. This decoupled MultiPaxos uses the bare minimum number of proposers
(2), proxy leaders (2), acceptors (3), and replicas (2). We then scale up the number of proxy

CHAPTER 3. COMPARTMENTALIZATION 39

0 50 100 150 200
Throughput (thousands of commands per second)

0

2

4

6

8

10

M
ed

ia
n

la
te

nc
y

(m
s)

Compartmentalized MultiPaxos (100 bytes)
Unreplicated (100 bytes)
Compartmentalized MultiPaxos (1000 bytes)
Unreplicated (1000 bytes)

Figure 3.26: The latency and throughput of Compartmentalized MultiPaxos and an unrepli-
cated state machine without batching and with larger value sizes.

coupled

decoupled

3 proxy leaders

4 proxy leaders

5 proxy leaders

6 proxy leaders

7 proxy leaders

3 replicas

8 proxy leaders

9 proxy leaders

10 proxy leaders

0

50

100

150

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

(a) Without batching

coupled

decoupled

batch size 50

batch size 100

3 unbatchers

4 unbatchers

5 unbatchers

0

200

400

600

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

(b) With batching

Figure 3.27: An ablation study. Standard deviations are shown using error bars.

leaders from 2 to 7. The proxy leaders are the throughput bottleneck, so as we scale them
up, the throughput of the protocol increases until it plateaus at roughly 135,000 commands
per second. At this point, the proxy leaders are no longer the throughput bottleneck; the
replicas are. We introduce an additional replica (Section 3.2), though the throughput does
not increase. This is because proxy leaders broadcast commands to all replicas, so introduc-
ing a new replica increases the load on the proxy leaders making them the bottleneck again.

CHAPTER 3. COMPARTMENTALIZATION 40

We then increase the number of proxy leaders to 10 to increase the throughput to roughly
150,000 commands per second. At this point, we determined empirically that the leader was
the bottleneck. In this experiment, the acceptors are never the throughput bottleneck, so
increasing the number of acceptors does not increase the throughput (Section 3.2). However,
this is particular to our write-only workload. In the mixed read-write workloads discussed
momentarily, scaling up the number of acceptors is critical for high throughput.

The batched ablation study results are shown in Figure 3.27b. We decouple MultiPaxos
and introduce two batchers and two unbatchers with a batch size of 10 (Section 3.3, Sec-
tion 3.3). This increases the throughput of the protocol from 200,000 commands per second
to 300,000 commands per second. We then increase the batch size to 50 and then to 100.
This increases throughput to 500,000 commands per second. We then increase the number
of unbatchers to 3 and reach a peak throughput of roughly 800,000 commands per second.
For this experiment, two batchers and three unbatchers are sufficient to handle the clients’
load. With more clients and a larger load, more batchers would be needed to maximize
throughput.

Compartmentalization allows us to decouple and scale protocol components, but it doesn’t
automatically tell us the extent to which we should decouple and scale. Understanding this,
through ablation studies like the one presented here, must currently be done by hand. As a
line of future work, we are researching how to automatically deduce the optimal amount of
decoupling and scaling.

Read Scalability

2 3 4 5 6
Number of replicas

0

200

400

600

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

0% reads
60% reads
90% reads

100% reads
MultiPaxos

(a) Unbatched linearizable reads

2 3 4 5 6
Number of replicas

0

5

10

15

Th
ro

ug
hp

ut
(m

illi
on

s c
m

ds
/s

ec
on

d)

0% reads
60% reads
90% reads

100% reads
MultiPaxos

(b) Batched linearizable reads

Figure 3.28: Peak throughput vs the number of replicas

CHAPTER 3. COMPARTMENTALIZATION 41

Experiment Description Thus far, we have looked at write-only workloads. We now
measure the throughput of Compartmentalized MultiPaxos under a workload with reads and
writes. In particular, we measure how the throughput of Compartmentalized MultiPaxos
scales as we increase the number of replicas. We deploy Compartmentalized MultiPaxos
with and without batching; with 2, 3, 4, 5, and 6 replicas; and with workloads that have
0%, 60%, 90%, and 100% reads. For any given workload and number of replicas, proxy
leaders, and acceptors is chosen to maximize throughput. The batch size is 50. In the
batched experiments, we do not use batchers and unbatchers. Instead, clients form batches
of commands themselves. This has no effect on the throughput measurements. We did this
only to reduce the number of client machines that we needed to saturate the system. This
was not an issue with the write-only workloads because they had significantly lower peak
throughputs.

Results The unbatched results are shown in Figure 3.28a. We also show MultiPaxos’
throughput for comparison. MultiPaxos does not distinguish reads and writes, so there
is only a single line to compare against. With a 0% read workload, Compartmentalized
MultiPaxos has a throughput of roughly 150,000 commands per second, and the protocol
does not scale much with the number of replicas. This is consistent with our previous
experiments. For workloads with reads and writes, our results confirm two expected trends.
First, the higher the fraction of reads, the higher the throughput. Second, the higher the
fraction of reads, the better the protocol scales with the number of replicas. With a 100% read
workload, for example, Compartmentalized MultiPaxos scales linearly up to a throughput
of roughly 650,000 commands per second with 6 replicas. The batched results, shown in
Figure 3.28b, are very similar. With a 100% read workload, Compartmentalized MultiPaxos
scales linearly up to a throughput of roughly 17.5 million commands per second.

Our results also show two counterintuitive trends. First, a small increase in the fraction
of writes can lead to a disproportionately large decrease in throughput. For example, the
throughput of the 90% read workload is far less than 90% of the throughput of the 100%
read workload. Second, besides the 100% read workload, throughput does not scale linearly
with the number of replicas. We see that the throughput of the 0%, 60%, and 90% read
workloads scale sublinearly with the number of replicas. These results are not an artifact
of our protocol; they are fundamental. Any state machine replication protocol where writes
are processed by every replica and where reads are processed by a single replica [85, 98, 13]
will exhibit these same two performance anomalies.

We can explain this analytically. Assume that we have n replicas; that every replica can
process at most α commands per second; and that we have a workload with a fw fraction of
writes and a fr = 1−fw fraction of reads. Let T be peak throughput, measured in commands
per second. Then, our protocol has a peak throughput of fwT writes per second and frT
reads per second. Writes are processed by every replica, so we impose a load of nfwT writes
per second on the replicas. Reads are processed by a single replica, so we impose a load of
frT reads per second on the replicas. The total aggregate throughput of the system is nα,

CHAPTER 3. COMPARTMENTALIZATION 42

so we have nα = nfwT + frT . Solving for T , we find the peak throughput of our system is

nα

nfw + fr

This formula is plotted in Figure 3.29 with α = 100, 000. The limit of our peak throughput
as n approaches infinity is α

fw
. This explains both of the performance anomalies described

above. First, it shows that peak throughput has a 1
fw

relationship with the fraction of
writes, meaning that a small increase in fw can have a large impact on peak throughput.
For example, if we increase our write fraction from 1% to 2%, our throughput will half. A
1% change in write fraction leads to a 50% reduction in throughput. Second, it shows that
throughput does not scale linearly with the number of replicas; it is upper bounded by α

fw
.

For example, a workload with 50% writes can never achieve more than twice the throughput
of a 100% write workload, even with an infinite number of replicas.

The results for sequentially consistent and eventually consistent reads are shown in Fig-
ure 3.30. The throughput of these weakly consistent reads are similar to that of linearizable
reads, but they can be performed with far fewer acceptors.

5 10 15 20 25 30
Number of replicas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
ak

 th
ro

ug
hp

ut
(m

illi
on

s o
f c

om
m

an
ds

 p
er

 se
co

nd
)

100% reads
99% reads
98% reads
95% reads
90% reads
75% reads
0% reads

Figure 3.29: Analytical throughput vs the number of replicas.

Skew Tolerance

Experiment Description CRAQ [85] is a chain replication [88] variant with scalable
reads. A CRAQ deployment consists of at least f + 1 nodes arranged in a linked list, or
chain. Writes are sent to the head of the chain and propagated node-by-node down the chain
from the head to the tail. When the tail receives the write, it sends a write acknowledgement
to its predecessor, and this ack is propagated node-by-node backwards through the chain
until it reaches the head. Reads are sent to any node. When a node receives a read of key k,
it checks to see if it has any unacknowledged write to that key. If it doesn’t, then it performs
the read and replies to the client immediately. If it does, then it forwards the read to the
tail of the chain. When the tail receives a read, it executes the read immediately and replies
to the client.

CHAPTER 3. COMPARTMENTALIZATION 43

2 3 4 5 6
Number of replicas

0

200

400

600

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

0% reads
60% reads

90% reads
100% reads

(a) Unbatched eventually consistent reads

2 3 4 5 6
Number of replicas

0

200

400

600

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

0% reads
60% reads

90% reads
100% reads

(b) Unbatched sequentially consistent reads

Figure 3.30: Peak throughput vs the number of replicas

We now compare Compartmentalized MultiPaxos with our implementation of CRAQ. In
particular, we show that CRAQ (and similar protocols like Harmonia [98]) are sensitive to
data skew, whereas Compartmentalized MultiPaxos is not. We deploy Compartmentalized
MultiPaxos with two proposers, three proxy leaders, twelve acceptors, and six replicas, and
we deploy CRAQ with six chain nodes. Though, our results hold for deployments with a dif-
ferent number of machines as well, as long as the number of Compartmentalized MultiPaxos
replicas is equal to the number of CRAQ chain nodes. Both protocols replicate a key-value
store with 10,000 keys in the range 1, . . . , 10, 000. We subject both protocols to the following
workload. A client repeatedly flips a weighted coin, and with probability p chooses to read
or write to key 1. With probability 1 − p, it decides to read or write to some other key
2, . . . , 10, 000 chosen uniformly at random. The client then decides to perform a read with
95% probability and a write with 5% probability. As we vary the value of p, we vary the
skew of the workload. When p = 0, the workload is completely uniform, and when p = 1,
the workload consists of reads and writes to a single key. This artificial workload allows to
study the effect of skew in a simple way without having to understand more complex skewed
distributions.

Results The results are shown in Figure 3.31, with p on the x-axis. The throughput
of Compartmentalized MultiPaxos is constant; it is independent of p. This is expected
because Compartmentalized MultiPaxos is completely agnostic to the state machine that it
is replicating and is completely unaware of the notion of keyed data. Its performance is only
affected by the ratio of reads to writes and is completely unaffected by what data is actually
being read or written. CRAQ, on the other hand, is susceptible to skew. As we increase
skew from p = 0 to p = 1, the throughput decreases from roughly 300,000 commands per

CHAPTER 3. COMPARTMENTALIZATION 44

second to roughly 100,000 commands per second. As we increase p, we increase the fraction
of reads which are forwarded to the tail. In the extreme, all reads are forwarded to the tail,
and the throughput of the protocol is limited to that of a single node (i.e. the tail).

However, with low skew, CRAQ can perform reads in a single round trip to a single chain
node. This allows CRAQ to implement reads with lower latency and with fewer nodes than
Compartmentalized MultiPaxos. However, we also note that Compartmentalized MultiPaxos
outperforms CRAQ in our benchmark even with no skew. This is because every chain node
must process four messages per write, whereas Compartmentalized MultiPaxos replicas only
have to process two. CRAQ’s write latency also increases with the number of chain nodes,
creating a hard trade-off between read throughput and write latency. Ultimately, neither
protocol is strictly better than the other. For very read-heavy workloads with low-skew,
CRAQ will likely outperform Compartmentalized MultiPaxos using fewer machines, and for
workloads with more writes or more skew, Compartmentalized MultiPaxos will likely outper-
form CRAQ. For the 95% read workload in our experiment, Compartmentalized MultiPaxos
has strictly better throughput than CRAQ across all skews, but this is not true for workloads
with a higher fraction of reads.

0.0 0.2 0.4 0.6 0.8 1.0
Skew

0

100

200

300

400

Th
ro

ug
hp

ut
(th

ou
sa

nd
s c

m
ds

/s
ec

on
d)

Compartmentalized MultiPaxos
CRAQ

Figure 3.31: The effect of skew on Compartmentalized MultiPaxos and CRAQ.

3.7 Related Work

MultiPaxos Unlike state machine replication protocols like Raft [68] and Viewstamped
Replication [53], MultiPaxos [45, 44, 87] is designed with the roles of proposer, acceptor,
and replicas logically decoupled. This decoupling alone is not sufficient for MultiPaxos to
achieve the best possible throughput, but the decoupling allows for the compartmentaliza-
tions described in this chapter.

CHAPTER 3. COMPARTMENTALIZATION 45

PigPaxos PigPaxos [14] is a MultiPaxos variant that alters the communication flow be-
tween the leader and the acceptors to improve scalability and throughput. Similar to com-
partmentalization, PigPaxos realizes that the leader is doing many different jobs and is a
bottleneck in the system. In particular, PigPaxos substitutes direct leader-to-acceptor com-
munication with a relay network. In PigPaxos the leader sends a message to one or more
randomly selected relay nodes, and each relay rebroadcasts the leader’s message to the peers
in its relay-group and waits for some threshold of responses. Once each relay receives enough
responses from its peers, it aggregates them into a single message to reply to the leader. The
leader selects a new set of random relays for each new message to prevent faulty relays from
having a long-term impact on the communication flow. PigPaxos relays are comparable to
our proxy leaders, although the relays are simpler and only alter the communication flow. As
such, the relays cannot generally take over the other leader roles, such as quorum counting
or replying to the clients. Unlike PigPaxos, whose main goal is to grow to larger clusters,
compartmentalization is more general and improves throughput under different conditions
and situations.

Chain Replication Chain Replication [88] is a state machine replication protocol in which
the set of state machine replicas are arranged in a totally ordered chain. Writes are prop-
agated through the chain from head to tail, and reads are serviced exclusively by the tail.
Chain Replication has high throughput compared to MultiPaxos because load is more evenly
distributed between the replicas, but every replica must process four messages per command,
as opposed to two in Compartmentalized MultiPaxos. The tail is also a throughput bot-
tleneck for read-heavy workloads. Finally, Chain Replication is not tolerant to network
partitions and is therefore not appropriate in all situations.

Ring Paxos Ring Paxos [58] is a MultiPaxos variant that decouples control flow from data
flow (as in S-Paxos [10]) and that arranges nodes in a chain (as in Chain Replication). As a
result, Ring Paxos has the same advantages as S-Paxos and Chain Replication. Like S-Paxos
and Mencius, Ring Paxos eliminates some but not all throughput bottlenecks. Acceptors
are arranged in a chain, and Phase2B messages are forwarded through the chain much
like in Chain Replication. However, the leader is still responsible for sequencing commands
and broadcasting to the acceptors and replicas. Ring Paxos also does not optimize reads;
reads are processed the same as writes, making the replicas an unnecessary bottleneck in
read-heavy workloads.

NoPaxos NoPaxos [51] is a Viewstamped Replication [53] variant that depends on an
ordered unreliable multicast (OUM) layer. Each client sends commands to a centralized
sequencer that is implemented on a network switch. The sequencer assigns increasing IDs to
the commands and broadcasts them to a set of replicas. The replicas speculatively execute
commands and reply to clients. In this chapter, we describe how to use proxy leaders to avoid

CHAPTER 3. COMPARTMENTALIZATION 46

having a centralized leader. NoPaxos’ on-switch sequencer is a hardware based alternative
to avoid the bottleneck.

Scalable Agreement In [37], Kapritsos et al. present a protocol similar to Compart-
mentalized Mencius. The protocol round-robin partitions log entries among a set of replica
clusters co-located on a fixed set of machines. Every cluster has 2f + 1 replicas, with ev-
ery replica playing the role of a Paxos proposer and acceptor. The protocol can be viewed
as an application of compartmentalization. Compartmentalized Mencius extends the pro-
tocol with the compartmentalizations described in this chapter, particularly batching and
leaderless reads.

SEDA Architecture The SEDA architecture [89] is a server architecture in which func-
tionality is divided into a pipeline of multithreaded modules that communicate with one
another using queues. This architecture introduces pipeline parallelism and allows individ-
ual components to be scaled up or down to avoid becoming the bottleneck. Our work on
decoupling and scaling state machine replication protocols borrows these same ideas, except
that we apply them at a fine grain to distributed protocols rather than a single server.

Multithreaded Replication [75] and [8] both propose multithreaded state machine repli-
cation protocols. The protocol in [75] is implemented using a combination of actors and the
SEDA architecture [89]. A replica’s functionality is decoupled into a number of modules,
with each module run on its own thread. For example, a MultiPaxos leader has one module
to receive messages, one to sequence them, and one to send them. [8] argues for a Mencius-
like approach in which each thread has complete functionality (receiving, sequencing, and
sending), with slots round-robin partitioned across threads. Multithreaded protocols like
these are necessarily decoupled and scale within a single machine. This work is comple-
mentary to compartmentalization. Compartmentalization works at the protocol level, while
multithreading works on the process level. Both can be applied to a single protocol.

A Family of Leaderless Generalized Protocols In [55], Losa et al. propose a template
that can be used to implement state machine replication protocols that are both leaderless
and generalized. The template involves a module to compute dependencies between com-
mands and a module to choose and execute commands. The goal of this modularization
is to unify existing protocols like EPaxos [62], and Caesar [6]. However, the modularity
also introduces decoupling which can lead to performance gains. This is an example of
compartmentalization.

Read Leases A common way to optimize reads in MultiPaxos is to grant a lease to the
leader [12, 18, 11]. While the leader holds the lease, no other node can become leader. As a
result, the leader can perform reads locally without contacting other nodes. Leases assume
some degree of clock synchrony, so they are not appropriate in all circumstances. Moreover,

CHAPTER 3. COMPARTMENTALIZATION 47

the leader is still a read bottleneck. Raft has a similar optimization that does not require any
form of clock synchrony, but the leader is still a read bottleneck [68]. With Paxos Quorum
Leases [61], any set of nodes—not just the leader—can hold a lease for a set of objects. These
lease holders can read the objects locally. Paxos Quorum Leases assume clock synchrony and
are a special case of Paxos Quorum Reads [13] in which read quorums consist of any lease
holding node and write quorums consist of any majority that includes all the lease holding
nodes. Compartmentalized MultiPaxos does not assume clock synchrony and has no read
bottlenecks.

Harmonia Harmonia [98] is a family of state machine replication protocols that leverage
specialized hardware—specifically, a specialized network switch—to achieve high throughput
and low latency. Like CRAQ, Harmonia is sensitive to data skew. It performs extremely
well under low contention, but degrades in performance as contention grows. Harmonia also
assumes clock synchrony, whereas Compartmentalized MultiPaxos does not. FLAIR [84] is
replication protocol that also leverages specialized hardware, similar to Harmonia.

Sharding In this chapter, we have discussed state machine replication in its most general
form. We have not made any assumptions about the nature of the state machines themselves.
Because of this, we are not able to decouple the state machine replicas. Every replica must
execute every write. This creates a fundamental throughput limit. However, if we are able
to divide the state of the state machine into independent shards, then we can further scale
the protocols by sharding the state across groups of replicas. For example, in [9], Bezerra et
al. discuss how state machine replication protocols can take advantage of sharding.

Low Latency Replication Protocols While compartmentalization increases through-
put, it also increases the number of network delays required to get a state machine command
executed. For example, starting from a client, MultiPaxos can execute a state machine com-
mand and return a response to a client in four network delays, whereas Compartmentalized
MultiPaxos requires six. Within a single data center, this translates to a small increase in
latency, but when deployed on a wide area network, the latency is increased substantially.
Thus, if your goal is to minimize latency, you should choose latency optimized protocols like
CURP [69] or SpecPaxos [71] over a compartmentalized protocol.

48

Chapter 4

Quoracle

MultiPaxos is typically deployed with majority quorums. Given 2f + 1 acceptors, every set
of f + 1 acceptors is both a read quorum and a write quorum. Majority quorum systems are
widely used in practice because they are easy to understand, because they tolerate an optimal
number of faults (

⌊
n−1
2

⌋
with n machines), and because without compartmentalization, the

performance of majority quorum systems is good enough. When the leader is a throughput
bottleneck, we don’t need to optimize the acceptors.

However, after we compartmentalize MultiPaxos, simple majority quorum systems can
no longer hide behind bigger bottlenecks. We saw in Section 3.2 that we can eliminate the
acceptors as a throughput bottleneck by adopting more sophisticated quorum systems, and
we saw that sophisticated quorum systems allowed for huge increases in read throughput by
increasing the number of read quorums and leveraging leaderless reads. Thus, sophisticated
quorum systems are critical for compartmentalized protocols to achieve high throughput.

The academic literature has proposed quorum systems including Crumbling Walls [70],
Trees [2], weighted voting [26, 24], multi-dimensional voting [15], Finite Projective Planes [56],
Hierarchies [39], and Paths [64]. These sophisticated quorum systems are a big improvement
over simple majority quorum systems, but they have two drawbacks. First, the theory behind
these quorum systems ignores many practical considerations such as machine heterogeneity,
workload skew, latency, and network load. As we will see in Section 4.3, “theoretically op-
timal” quorum systems often underperform in practice. Second, understanding the various
quorum systems and choosing the one that is optimal for a given workload is difficult and
sensitive to workload parameters.

This chapter is a practical re-examination of read-write quorum systems. We revisit the
mathematical theory of quorum systems with a pragmatic lens and the ambition to make
less-frequently used quorum systems more broadly accessible to the engineering community.
More concretely, we make the following contributions:

1. We add a number of practical refinements to the theory of read-write quorum systems
(Section 4.1). We extend definitions to accommodate heterogeneous machines and
shifting workloads; we introduce the notion of f -resilient strategies to make it easier

CHAPTER 4. QUORACLE 49

to trade off performance for fault tolerance; and we integrate metrics of latency and
network load (Section 4.2).

2. We develop a Python library, called Quoracle (Quorum Oracle), that allows users
to model, analyze, and optimize read-write quorum systems (Section 4.2). We also
provide a heuristic search procedure to find quorum systems that are optimized with
respect to a number of user provided objectives and constraints. Given the complex
trade-off space, we believe that using an automated assistance library like ours is the
only realistic way to find good quorum systems. Quoracle and the associated scripts
needed to reproduce this chapter’s calculations are available at: https://github.com/
mwhittaker/quoracle.

3. We perform a case study showing how to use Quoracle to find quorum systems that
provide 2× higher throughput or 3× lower latency than naive majority quorums (Sec-
tion 4.3). These quorum systems can be plugged in to Compartmentalized MultiPaxos
to increase the protocol’s throughput when acceptors are the bottleneck.

4.1 Definitions

In this section, we present definitions adapted from the existing theory on quorum systems
from Naor et al. [64] and Ibaraki et al. [34].

Read-Write Quorum Systems

Given a set X = {x1, . . . , xn}, a read-write quorum system [64] over X is a pair Q =
(R,W) where

1. R is a set of subsets of X called read quorums,

2. W is a set of subsets of X called write quorums, and

3. every read quorum intersects every write quorum. That is, for every r ∈ R and w ∈ W ,
r ∩ w 6= ∅.

For example, the majority quorum system over the set X = {a, b, c} is Qmaj = (R,W)
where R = W = {{a, b}, {b, c}, {a, c}}. If every read quorum intersects every write quorum,
then any superset of a read quorum intersects any superset of a write quorum. Thus, if a set
r is a superset of any read quorum in R, we consider r a read quorum as well. Similarly, if a
set w is a superset of any write quorum in W , we consider w a write quorum. For example,
we consider the set {a, b, c} a read and write quorum of Qmaj even though the set {a, b, c} is
not listed explicitly in R or W .

There is a correspondence between sets of quorums and monotone boolean functions [34].
If we associate a boolean variable with every element x ∈ X, then we can express a set of

https://github.com/mwhittaker/quoracle
https://github.com/mwhittaker/quoracle

CHAPTER 4. QUORACLE 50

quorums over X as a monotone boolean expression over these variables. For example, we can
represent the set {{a, b}, {b, c}, {a, c}} as the expression (a∧ b)∨ (b∧ c)∨ (a∧ c), which we
abbreviate as ab+ bc+ac. Equivalently, we can express the set as a(b+ c) + bc, b(a+ c) +ac,
or c(a+ b) + ab.

A read-write quorum system, then, can be expressed as a pair of boolean expressions,
one for the read quorums and one for the write quorums. Consider the 2 by 3 grid quorum
system Q2×3 over the set X = {a, b, c, d, e, f} as shown in Figure 4.1. Every row is a read
quorum, and every column is a write quorum. Concretely, Q2×3 = (abc+ def , ad+ be+ cf).

a b c

d e f

(a) Read quorums abc+ def

a b c

d e f

(b) Write quorums ad+ be+ cf

Figure 4.1: The 2 by 3 grid quorum system Q2×3.

Given two boolean expressions e1 and e2, we say e1 dominates e2, written e2 ≤ e1, if
for any assignment of true and false to the variables in the expressions, if e2 is true, then
e1 is also true [34]. Intuitively, e1 dominates e2 if every quorum in e2 is also a quorum in
e1. In other words, e1 has all the quorums of e2 and potentially more. A read-write quorum
system (eR, eW) dominates another read quorum system (e′R, e

′
W) if eR dominates e′R and eW

dominates e′W . A read quorum system (eR, eW) is non-dominated if there does not exist
another quorum system (e′R, e

′
W) 6= (eR, eW) such that (e′R, e

′
W) dominates (eR, eW) [34].

Throughout the chapter, we focus on non-dominated read-write quorum systems because
any non-dominated read-write quorum system will be as good or better than any quorum
system it dominates.

In practice, X might be a set of machines, a set of locks, a set of memory locations, and
so on. In this chapter, we assume that X is a set of machines we call nodes. We assume
that protocols contact a read quorum of nodes to perform a read and contact a write quorum
of nodes to perform a write.

Fault Tolerance

Unfortunately machines fail, and when they do, some quorums become unavailable. For
example, if node a from the 2 by 3 grid quorum system Q2×3 fails, then the read quorum
{a, b, c} and the write quorum {a, d} are unavailable. The read fault tolerance of a quorum
system is the largest number f such that despite the failure of any f nodes, some read quorum
is still available [64]. Write fault tolerance is defined similarly, and the fault tolerance
of a quorum system is the minimum of its read and write fault tolerance. For example, the
read fault tolerance of Q2×3 is 1 and the write fault tolerance is 2, so the fault tolerance is 1.

CHAPTER 4. QUORACLE 51

Load & Capacity

A protocol uses a strategy to decide which quorums to contact when executing reads and
writes [64]. Formally, a strategy for a quorum system Q = (R,W) is a pair σ = (σR, σW)
where σR : R → [0, 1] and σW : W → [0, 1] are discrete probability distributions over the
quorums of R and W . σR(r) is the probability of choosing read quorum r, and σW (w) is the
probability of choosing write quorum w. A uniform strategy is one where each quorum is
equally likely to be chosen (i.e. σR(r) = 1

|R| , σW (w) = 1
|W | for every r and w).

For a node x ∈ X, let loadσR(x) be the probability that x is chosen by σR (i.e. the
probability that σR chooses a read quorum that contains x). This is called the read load
on x. Define loadσW (x), the write load, similarly. Given a workload with a read fraction
fr of reads, the load on x is the probability that x is chosen by strategy σ and is equal to
frloadσR(x) + (1− fr)loadσW (x).

The most heavily loaded node is a throughput bottleneck, and its load is what we call the
load of the strategy. The load of a quorum system is the load of the optimal strategy (i.e. the
strategy that achieves the lowest load) [64]. If a quorum system has load L, then the inverse
of the load, 1

L
, is called the capacity of the quorum system. The capacity of a quorum

system is directly proportional to the quorum system’s maximum achievable throughput.
For example, consider a 100% read workload (i.e. a workload with read fraction fr = 1)

and consider again the grid quorum system Q2×3 in Figure 4.1. The optimal strategy is a
uniform strategy that selects both read quorums equally likely. Thus, the load of Q2×3 is 1

2
,

and its capacity is 2. If every node can process α commands per second, then the quorum
system can process 2α commands per second in aggregate. Alternatively, consider a 100%
write workload with a read fraction fr = 0. The optimal strategy is again uniform. Because
there are three write quorums, the load is 1

3
, and the capacity is 3. The quorum system can

process 3α commands per second under this workload. Finally, with fr = 1
2

(i.e. a workload
with 50% reads and 50% writes), the quorum system’s capacity is 12

5
.

4.2 Practical Refinements in Quoracle

In this section, we augment the theory of read-write quorum systems with a number of
practical considerations and demonstrate their use in our Python library Quoracle.

Quorum Systems, Capacity, Fault Tolerance

Quoracle allows users to form arbitrary read-write quorum systems and compute their capac-
ity and fault tolerance. For example, in Figure 4.2, we construct and analyze the majority
quorum system on nodes {a, b, c}. As in Section 4.1, read-write quorum systems are con-
structed from a set of read or write quorums expressed as a boolean expression over the set
of nodes.

CHAPTER 4. QUORACLE 52

a, b, c = Node(’a’), Node(’b’), Node(’c’)

majority = QuorumSystem(reads=a*b + b*c + a*c)

print(majority.fault_tolerance()) # 1

print(majority.load(read_fraction=1)) # 2/3

print(majority.capacity(read_fraction=1)) # 3/2

Figure 4.2: Quorum systems, capacity, and fault tolerance.

Note that the user only has to specify one set of quorums rather than both because we
automatically construct the optimal set of complementary quorums using the existing body
of literature that relates read-write quorum systems to monotone boolean functions [34].
Specifically, given a boolean expression e, the dual of e, denoted dual(e) is the expression
formed by swapping logical and (∧) with logical or (∨) in e. For example, dual(ab) = a+ b,
dual(a + b) = ab, and dual(a(b + c) + de) = (a + bc)(d + e). As described in [34], given
a boolean expression eR representing a set of read quorums over a set X, the optimal set
of complementary write quorums is eW = dual(eR). Formally, (eR, eW) is non-dominated.
Similarly, given an expression eW representing a set of write quorums, the optimal set of
complementary read quorums is eR = dual(eW). This is how Quoracle computes write
quorums when only a set of read quorums is given (and vice versa).

Quoracle computes the load of a quorum system using linear programming [64]. Specifi-
cally, given a read-write quorum system Q = (R,W) over a set X with read fraction fr, we
introduce a load variable L, a variable pr for every r ∈ R, and a variable pw for every w ∈ W .
The linear program computes the optimal strategy σ∗ = (σ∗R, σ

∗
W). L represents the load of

σ∗, pr represents σ∗R(r), and pw represents σ∗W (w). The linear program minimizes L with the
following constraints. First, 0 ≤ pr, pw ≤ 1 for every pr and pw. Second,

∑
r∈R pr = 1 and∑

w∈W pw = 1. These two constraints ensure that strategies σ∗R and σ∗W are valid probability
distributions. Third, for every x ∈ X,

fr

 ∑
{r∈R |x∈r}

pr

+ (1− fr)

 ∑
{w∈W |x∈w}

pw

 ≤ L

This constraint ensures that the load on node x is less than or equal to L.
Quoracle computes the fault tolerance of a quorum system using integer programming.

First, we form an integer program to compute read fault tolerance. We introduce a variable
vx ∈ {0, 1} for every x ∈ X. Intuitively, if vx = 1, it means node x has failed, and if vx = 0,
it means node x is alive. We minimize

∑
x∈X vx with the constraint that for every r ∈ R,∑

x∈r vx ≥ 1. By minimizing
∑

x∈X vx, we try to fail as few nodes as possible. The constraint∑
x∈r vx ≥ 1 ensures that at least one node from r has failed. We then compute the read

fault tolerance as f = (
∑

x∈X vx)− 1. f + 1 is the minimum number of nodes we can fail to
eliminate all read quorums, so the quorum system can tolerate as many as f failures. We

CHAPTER 4. QUORACLE 53

solve for the write fault tolerance in the same way. The fault tolerance is the minimum of
the read and write fault tolerance.

Heterogeneous Nodes

Quorum system theory implicitly assumes that all nodes are equal. In reality, nodes are
often heterogeneous. Some are fast, and some are slow. Moreover, nodes can often process
more reads per second than writes per second. We revise the theory by associating every
node x with its read and write capacity, i.e. the maximum number of reads and writes the
node can process per second. We redefine the read load imposed by a strategy σ = (σR, σW)
on a node x as the probability that σR chooses x divided by the read capacity of x. We
redefine the write load similarly. By normalizing a node’s load with its capacity, we get
a more intuitive definition of a quorum system’s capacity. Now, the capacity of a quorum
system is the maximum throughput that it can support.

Quoracle allows users to annotate nodes with read and write capacities. For example, in
Figure 4.3, we construct a 2 by 2 grid quorum system where nodes a and b can process 100
writes per second, but nodes c and d can only process 50 writes per second. We also specify
that every node can process reads twice as fast as writes. With a read fraction of 1, the
quorum system has a capacity of 300 commands per second using a strategy that picks the
read quorum {a, b} twice as often as the read quorum {c, d}. As we decrease the fraction of
reads, the capacity decreases since the nodes process reads faster than writes.

a = Node(’a’, write_cap=100, read_cap=200)

b = Node(’b’, write_cap=100, read_cap=200)

c = Node(’c’, write_cap=50, read_cap=100)

d = Node(’d’, write_cap=50, read_cap=100)

grid = QuorumSystem(reads=a*b + c*d)

print(grid.capacity(read_fraction=1)) # 300

print(grid.capacity(read_fraction=0.5)) # 200

print(grid.capacity(read_fraction=0)) # 100

Figure 4.3: Heterogeneous nodes with different capacities.

To compute the load and capacity of a read-write quorum systems with different read
and write capacities, Quoracle modifies its linear program by normalizing every node’s load
by its capacity. Specifically, for every node x ∈ X, it uses the following constraint where
capR(x) and capW (x) are the read and write capacities of node x: fr

capR(x)

∑
{r∈R |x∈r}

pr

+

 1− fr
capW (x)

∑
{w∈W |x∈w}

pw

 ≤ L

CHAPTER 4. QUORACLE 54

Workload Distributions

Capacity is defined with respect to a fixed read and write fraction, but in reality, workloads
skew. To accommodate workload skew, we consider a discrete probability distribution over
a set of read fractions and redefine the capacity of a quorum system to be the capacity of
the strategy σ that maximizes the expected capacity with respect to the distribution. For
example, in Figure 4.4, we construct the quorum system with read quorums ac+ bd, and we
define a workload that has 0% reads 10

18
th of the time, 25% reads 4

18
th of the time, and so

on. In Figure 4.4, we see the optimal strategy σ has an expected capacity of 159 commands
per second.

grid = QuorumSystem(reads=a*c + b*d)

fr = {0.00: 10/18, 0.25: 4/18, 0.50: 2/18,

0.75: 1/18, 1.00: 1/18}

sigma = grid.strategy(read_fraction=fr)

print(sigma.capacity(read_fraction=fr)) # 159

Figure 4.4: A distribution of read fractions.

In Figure 4.5, we plot strategy σ’s capacity as a function of read fraction. We also plot the
capacities of strategies σ0.0, σ0.25, σ0.50, σ0.75, and σ1.0 where σfr is the strategy optimized for
a fixed workload with a read fraction of fr. We see that strategy σ does not always achieve
the maximum capacity for any individual read fraction, but it achieves the best expected
capacity across the distribution.

0.00 0.25 0.50 0.75 1.00
Read Fraction

50

100

150

200

Ca
pa

cit
y

(c
om

m
an

ds
 p

er
 se

co
nd

)

0.0

0.25

0.5

0.75

1.0

Figure 4.5: Strategy capacities with respect to read fraction

Note that strategy σ performs well across all workloads drawn from the distribution
without having to know the current read fraction. Alternatively, if we are able to monitor

CHAPTER 4. QUORACLE 55

the workload and deduce the current read fraction, we can pre-compute a set of strategies
that are optimized for various read fractions and dynamically select the one that is best for
the current workload.

To compute the load and capacity of a read-write quorum system with a distribution of
read fractions, Quoracle again modifies its linear program. Rather than minimizing a single
load variable L, we have one load variable Lfr for every possible value of fr and minimize
their sum, weighted according to their distribution. For every node x ∈ X and every value
of read fraction fr, the linear program has the constraint: fr

capR(x)

∑
{r∈R |x∈r}

pr

+

 1− fr
capW (x)

∑
{w∈W |x∈w}

pw

 ≤ Lfr

f-resilient Strategies

Many protocols that deploy read-write quorum systems actually contact more nodes than
is strictly necessary when executing a read or a write. Rather than contacting a quorum to
perform a read or write, these protocols contact every node. Contacting every node leads to
suboptimal capacity, but it is less sensitive to stragglers and node failures. For example, if
we contact only a quorum of nodes and one of the nodes in the quorum fails, then we have
to detect the failure and contact a different quorum. This can be slow and costly. Typically,
industry practitioners have chosen between these two extremes: either send messages to
every node or send messages to the bare minimum number of nodes (i.e. a quorum) [80, 58,
50, 36, 40, 11]. We introduce the notion of f -resilient strategies to show that this is not a
binary decision, but rather a continuous trade-off.

Given a quorum system (R,W), we say a read quorum r ∈ R is f -resilient for some
integer f if despite removing any f nodes from r, r is still a read quorum. We define f -
resilience for write quorums similarly. We say a strategy σ is f-resilient if it only selects
f -resilient read and write quorums. An f -resilient strategy can tolerate any f failures or
stragglers. The value of f captures the continuous trade-off between capacity and resilience.
As we increase f , we decrease capacity but increase resilience.

Quoracle allows users to compute optimal f -resilient strategies and their corresponding
capacities. For example, in Figure 4.6, we compute the f -resilient capacity of a grid quorum
system for f = 0 and f = 1. Its 0-resilient capacity is 300, but its 1-resilient capacity is only
100. We then compute the f -resilient capacities for the “read 2, write 3” quorum system. For
this quorum system, every set of two nodes is a read quorum, and every set of three nodes
is a write quorum. This quorum system has the same 0-resilient capacity as the grid but a
higher 1-resilient capacity, showing that some quorum systems are naturally more resilient
than others.

Quoracle computes f -resilient quorums using a brute-force backtracking algorithm with
pruning. Given a set of nodes X, Quoracle enumerates every subset of X and checks whether
it is an f -resilient quorum. However, once an f -resilient quorum is found, all supersets of
the quorum are pruned from consideration.

CHAPTER 4. QUORACLE 56

grid = QuorumSystem(reads=a*b + c*d)

print(grid.capacity(read_fraction=1, f=0)) # 300

print(grid.capacity(read_fraction=1, f=1)) # 100

read2 = QuorumSystem(reads=choose(2, [a,b,c,d]))

print(read2.capacity(read_fraction=1, f=0)) # 300

print(read2.capacity(read_fraction=1, f=1)) # 200

Figure 4.6: 0-resilient and 1-resilient strategies.

Latency and Network Load

Quorum system theory focuses on capacity and fault tolerance. We introduce two new
practically important metrics. First, we introduce latency. We associate every node with
a latency that represents the time required to contact the node. The latency of a quorum
q is the time required to form a quorum of responses after contacting the nodes in q. The
latency of a strategy is the expected latency of the quorums that it selects. The lower the
latency, the better. Note that if a quorum is f -resilient, we only need to collect responses
from at most all but f of the nodes in order to form a quorum, so the latency of a quorum
can be less than the latency required to hear back from every node in the quorum.

Second, we introduce network load. When a protocol executes a read or write, it sends
messages over the network to every node in a quorum, so as the sizes of quorums increase,
the number of network messages increases. The network load of a strategy is the expected
size of the quorums it chooses. The lower the network load, the better.

In isolation, optimizing for latency or network load is trivial, but balancing capacity,
fault tolerance, latency, and network load simultaneously is very complex. Quoracle allows
users to find strategies that are optimal with respect to capacity, latency, or network load
with constraints on the other metrics. For example, in Figure 4.7, we specify the latencies of
the nodes in our 2 by 2 grid quorum system and then find the latency optimal strategy with
a capacity no less than 150 and with a network load of at most 2. The optimal strategy has
a latency of 3 seconds.

Quoracle again uses linear programming to optimize latency and network load. The
latency of a quorum system is computed as follows where latency(r) and latency(w) are the
latencies of read quorum r and write quorum w:

fr

(∑
r∈R

pr · latency(r)

)
+ (1− fr)

(∑
w∈W

pw · latency(w)

)
The network load is computed as

fr

(∑
r∈R

pr · |r|

)
+ (1− fr)

(∑
w∈W

pw · |w|

)

CHAPTER 4. QUORACLE 57

a = Node(’a’, write_cap=100, read_cap=200, latency=4)

b = Node(’b’, write_cap=100, read_cap=200, latency=4)

c = Node(’c’, write_cap=50, read_cap=100, latency=1)

d = Node(’d’, write_cap=50, read_cap=100, latency=1)

grid = QuorumSystem(reads=a*b + c*d)

sigma = grid.strategy(read_fraction = 1,

optimize = ’latency’,

capacity_limit = 150,

network_limit = 2)

print(sigma.latency(read_fraction=1)) # 3 seconds

Figure 4.7: Finding a latency-optimal strategy with capacity and network load constraints.

Note that in reality, the relationships between load, latency, and network load are com-
plex. For example, as the load on a node increases, the latencies of the requests sent to it
increase. Moreover, the clients that communicate with the nodes in a quorum system may
experience different latencies based on where they are physically located. We leave these
complexities to future work.

Quorum System Search

Thus far, we have demonstrated how Quoracle makes it easy to model, analyze, and optimize
a specific hand-chosen quorum system. Quoracle also implements a heuristic based search
procedure to find good quorum systems. For example, in Figure 4.8, we search for a quorum
system over the nodes {a, b, c, d} optimized for latency with a capacity of at least 150 and
a network load of at most 2. The search procedure returns the quorum system with read
quorums a+ b+ c+ d and write quorums abcd, and with the read strategy that picks c one
third of the time and d two thirds of the time.

Given a list of expressions ē = e1, . . . , en, let choose(k; ē) be the disjunction of the con-
junction of every set of k expressions in ē. For example, choose(2; a, b, c) = ab + ac + bc,
and choose(1; a, b, c) = a + b + c. Given a boolean expression e representing a set of quo-
rums, we say e is duplicate free if e can be expressed using logical or, logical and, and
choose with every variable in e appearing exactly once. For example a + bc is duplicate
free. ab + ac = a(b + c) is duplicate free. ab + ac + bc = choose(2; a, b, c) is duplicate free.
ab+ ace+ de+ dcb is not duplicate free.

Our search procedure exhaustively searches the space of all quorum systems that have
read quorums expressible by a duplicate free expression. The search procedure heuristically
explores simpler expressions first. Specifically, it enumerates expressions in increasing order
of their depth when represented as an abstract syntax tree. Because the search space is
enormous, users can specify a timeout.

CHAPTER 4. QUORACLE 58

qs, sigma = search(nodes = [a, b, c, d],

read_fraction = 1,

optimize = ’latency’,

capacity_limit = 150,

network_limit = 2)

print(qs) # reads=a+b+c+d, writes=a*b*c*d

print(sigma) # c: 1/3, d: 2/3

print(sigma.latency(read_fraction=1)) # 1 second

print(sigma.capacity(read_fraction=1)) # 150

Figure 4.8: Searching the space of quorum systems.

4.3 Case Study

In this section, we present a hypothetical case study that demonstrates how to use Quoracle
in a realistic setting. Assume we have five nodes. Nodes a, c, and e can process 2,000 writes
per second, while nodes b and d can only process 1,000 writes per second. All nodes process
reads twice as fast as writes. Nodes a and b have a latency of 1 second; nodes c, d, and e
have latencies of 3, 4, and 5 seconds. We observe a workload with roughly equal amounts of
reads and writes with a slight skew towards being read heavy. In Figure 4.9, we use Quoracle
to model the nodes and workload distribution.

Assume we have already deployed a majority quorum system with a uniform strategy,
which has a capacity of 2,292 commands per second. We want to find a more load optimal
quorum system. We consider three candidates. The first is the majority quorum system.
The second is a staggered grid quorum system, illustrated in Figure 4.10a. The third is a
quorum system based on paths through a two-dimensional grid illustrated in Figure 4.10b.
This quorum system has theoretically optimal capacity [64]. In Figure 4.11, we construct
these three quorum systems and print their capacities.

a = Node(’a’, write_cap=2000, read_cap=4000, latency=1)

b = Node(’b’, write_cap=1000, read_cap=2000, latency=1)

c = Node(’c’, write_cap=2000, read_cap=4000, latency=3)

d = Node(’d’, write_cap=1000, read_cap=2000, latency=4)

e = Node(’e’, write_cap=2000, read_cap=4000, latency=5)

fr = {0.9: 10/470, 0.8: 20/470, 0.7: 100/470,

0.6: 100/470, 0.5: 100/470, 0.4: 60/470,

0.3: 30/470, 0.2: 30/470, 0.1: 20/470}

Figure 4.9: Nodes and workload distribution.

CHAPTER 4. QUORACLE 59

a b

d e f

(a) Staggered grid quorum system

a b
c

d e

(b) Paths quorum system

Figure 4.10: The read quorums of the staggered grid and paths quorum systems. The optimal
set of complementary write quorums is chosen automatically.

maj = QuorumSystem(reads=majority([a, b, c, d, e]))

grid = QuorumSystem(reads=a*b + c*d*e)

paths = QuorumSystem(reads=a*b + a*c*e + d*e + d*c*b)

print(maj.capacity(reads_fraction=fr)) # 3,667

print(grid.capacity(reads_fraction=fr)) # 4,200

print(paths.capacity(reads_fraction=fr)) # 4,125

Figure 4.11: Quorum systems and their capacities.

The capacities are 3,667, 4,200, and 4,125 commands per second respectively, making the
grid quorum system the most attractive. However, the grid quorum system is not necessarily
optimal. In Figure 4.12, we perform a search for a quorum system optimized for capacity
that is tolerant to one failure. The search takes 7 seconds on a laptop.

qs, sigma = search(nodes=[a, b, c, d, e],

fault_tolerance=1,

read_fraction=fr)

print(qs.capacity(read_fraction=fr)) # 5,005

Figure 4.12: Searching for a load-optimal quorum system.

The search procedure finds the quorum system with read quorums (c+bd)(a+e) which has
a capacity of 5,005 commands per second. This is 1.19× better than the grid quorum system,
and 2.18× better than the majority quorum system with a naive uniform strategy. Assume
hypothetically that we deploy this strategy to production. Months later, we introduce a
component into our system that bottlenecks our throughput at 2,000 commands per second.
Now, any capacity over 2,000 is wasted, so we search for a quorum system optimized for
latency with a capacity of at least 2,000. We again consider our three quorum systems in
Figure 4.13.

CHAPTER 4. QUORACLE 60

for qs in [maj, grid, paths]:

print(qs.latency(read_fraction=fr,

optimize=’latency’,

capacity_limit=2000))

Figure 4.13: Latencies with a capacity constraint.

The quorum systems have latencies of 3.24, 1.95, and 2.43 seconds respectively, making
the grid quorum system the most attractive. We again perform a search and find the quorum
system with read quorums ab+acde+ bcde achieves a latency of 1.48 seconds. This is 1.32×
better than the grid and 3.04× better than a naive uniform strategy over a majority quorum
system. The search again completes in 7 seconds. We hypothetically deploy this quorum
system to production.

4.4 Lessons Learned

Naive Majority Quorums Underperform

Industry practitioners often use majority quorums because they are simple and have strong
fault tolerance. Our case study shows that majority quorum systems with uniform strate-
gies almost always underperform more sophisticated quorum systems in terms of capacity,
latency, and network load. In Figure 4.14, we plot a stacked histogram of the throughput
that every node in a majority quorum system obtains using a naive uniform strategy, with
throughput broken down by quorums. We contrast this in Figure 4.15 with the strategy
found in Figure 4.12. The sophisticated quorum system assigns more work to machines with
higher capacities, leading to a 2.18× increase in aggregate throughput. Moreover, the per-
formance benefits of more sophisticated quorum systems do not sacrifice correctness, unlike
alternatives like sloppy quorums [19].

“Optimal” Is Not Always Best.

There is a large body of research on constructing “optimal” quorum systems [24, 56, 2,
39, 16, 64, 70]. For example, the paths quorum system is theoretically optimal, but in our
case study, it has lower capacity and higher latency than the simpler grid quorum system.
There are two reasons for this mismatch between theoretical and practical optimality. First,
existing quorum system theory does not account for node heterogeneity and workload skew.
Second, these quorum systems are only optimal in the limit, as the number of nodes tends
to infinity.

CHAPTER 4. QUORACLE 61

a b c d e
Node

0

250

500

750

1000

1250

Th
ro

ug
hp

ut
(c

om
m

an
ds

 p
er

 se
co

nd
)

abc abc abc
abd abd

abd
abe abe

abe

acd
acd acd

ace
ace

ace

ade

ade ade
bcd bcd bcd
bce bce

bce
bde

bde bde
cde cde cde

abc abc abc
abd abd

abd
abe abe

abe

acd
acd acd

ace
ace

ace

ade

ade ade
bcd bcd bcd
bce bce

bce
bde

bde bde
cde cde cde

Figure 4.14: A stacked histogram of the throughput of a simple majority quorum system
with a naive uniform strategy. Write quorums are in blue, and read quorums are in red.

a b c d e
Node

0

1000

2000

Th
ro

ug
hp

ut
(c

om
m

an
ds

 p
er

 se
co

nd
)

ac ac

ce

cebde bde
bde

bc

bc
cd

cd

ae ae

Figure 4.15: A stacked histogram of the throughput of the quorum system found by our
heuristic search (i.e., the quorum system with read quorums (c+ bd)(a+ e)).

The Trade-Off Space Is Complex

Constructing a quorum system of homogeneous nodes that is optimal in the limit for a fixed
workload is difficult but doable. When nodes operate at different speeds and workloads
skew, finding an optimal quorum system that satisfies constraints on capacity, fault toler-
ance, latency, and network load becomes nearly impossible to do by hand. Moreover, small
perturbations in any of these parameters can change the landscape of the optimal quorum
systems. In our case study, for example, the search procedure finds two different quorum
systems when optimizing for load and when optimizing for latency. We believe that using an
automated assistance library like ours is the only realistic way to find good quorum systems.

62

Chapter 5

Bipartisan Paxos

In Chapter 3, we saw how to use compartmentalization to make state machine replication
protocols faster without making them more complicated. Now, we show how to use compart-
mentalization to make complicated state machine replication protocols easier to understand
without making them slower.

There is a family of generalized multi-leader state machine replication protocols, including
EPaxos [62], Caesar [6], and Atlas [21]. These protocols are multi-leader, which means that
they have multiple simultaneous leaders. This avoids having a single bottlenecked leader.
They are also generalized [42, 55], which means that every replica executes non-commuting
commands in the exact same order, but are otherwise free to execute commuting commands
in any order. In other words, these protocols execute a partially ordered graph of commands
rather than a totally ordered log of commands.

These generalized multi-leader protocols are extremely complicated. Paxos has a well
known reputation for being complex [44, 87, 68], and these generalized multi-leader protocols
are significantly more complex than that. They require a strong understanding of more
sophisticated Paxos variants like Fast Paxos [41] and are overall less intuitive and more
nuanced. It is hard to measure this complexity precisely, but there are indications that the
protocols are complicated. EPaxos, for example, had several bugs go undiscovered for years
despite the popularity of the protocol [81].

This complexity has negative consequences in industry and academia. Generalized multi-
leader protocols have little to no industry adoption. We postulate that this is largely due to
their complexity. The engineers in [12] explain that implementing a state machine replication
protocol requires making many small changes to the protocol to match the environment in
which it is deployed. Making these changes without a strong understanding of the protocol is
infeasible. Academically, it is challenging to understand the novelty of each protocol because
the protocols have not been cleanly factored. The protocols are all very similar, yet they also
have lots of small differences between them, some novel and some inconsequential. Without
a clean factoring of the protocols’ designs, it is difficult to understand where each protocol
is novel. This makes it difficult to extend the protocols with further innovations, as it is
unclear which ideas have already been explored and which have yet to be examined.

CHAPTER 5. BIPARTISAN PAXOS 63

In this chapter, we use compartmentalization as a tool to understand these protocols.
Rather than presenting a monolithic, nuanced, and highly optimized protocol, we present a
fully compartmentalized and completely unoptimized generalized multi-leader protocol that
is designed to be simple to understand. We then slowly reassemble the components and
introduce optimizations to recreate existing protocols like EPaxos, Caesar, and Atlas. In
doing so, we create a framework for understanding generalized multi-leader protocols.

The tutorial has four parts, and in each part, we introduce a new protocol. First, we
present a fully compartmentalized generalized multi-leader protocol, which we called Simple
BPaxos (Section 5.2). Simple BPaxos sacrifices performance for simplicity and is designed
with the sole goal of being easy to understand. Simple BPaxos is the kernel from which all
other generalized multi-leader protocols can be constructed. It encapsulates all the mecha-
nisms and invariants that are common to the other protocols.

Second, we introduce a purely pedagogical protocol called Fast BPaxos (Section 5.4).
Fast BPaxos achieves higher performance than Simple BPaxos, but it is unsafe. The protocol
does not properly implement state machine replication. Why study a broken protocol?
Because understanding why Fast BPaxos does not work leads to a fundamental insight on
why other protocols do. Specifically, we discover that generalized multi-leader protocols
encounter a fundamental tension between agreeing on commands and ordering commands.
In isolation, reaching consensus on what command to execute is easy, and determining how
the command should be ordered with respect to other commands is easy, but doing both at
the same time is hard. This is where the tension arises. The way in which a protocol handles
this tension is its key distinguishing feature. We taxonomize the protocols into those that
avoid the tension and those that resolve the tension.

Third, we introduce Unanimous BPaxos, a simple tension avoiding protocol (Sec-
tion 5.5). We describe how tension avoiding protocols carefully enlarge quorum sizes to
sidestep the tension. We also explain how Basic EPaxos [62] and Atlas [21] can be expressed
as optimized variants of Unanimous BPaxos.

Fourth, we introduce Majority Commit BPaxos, a tension resolving protocol (Sec-
tion 5.6). We describe how tension resolving protocols perform detective work to resolve the
tension without enlarging quorum sizes. We also discuss the relationship between Majority
Commit BPaxos and the tension resolving protocols EPaxos [60] and Caesar [6]. A full tax-
onomy of these protocols and other related protocols is shown in Figure 5.13 at the end of
this chapter.

5.1 Conflict Graphs

Defining Conflict Graphs

By totally ordering state machine commands into a log, state machine replication protocols
like MultiPaxos ensure that every replica executes every command in exactly the same order.
This is a simple way to ensure that replicas are always in sync, but it is sometimes unnec-

CHAPTER 5. BIPARTISAN PAXOS 64

essary [42]. For example, consider the log shown at the top of Figure 5.1. The command
a=2 (i.e. set the value of variable a to 2) is chosen in log entry 1, and the command b=1 is
chosen in log entry 2. With MultiPaxos, every replica would execute these two commands in
exactly the same order, but this is not necessary because the commands commute. It is safe
for some replicas to execute a=2 before b=1 while other replicas execute b=1 before a=2. The
execution order of the two commands has no effect on the final state of the state machine,
so they can be safely reordered, as shown in Figure 5.1.

x

0

a=2

1

b=1

2

y

3

b=1

2

z

4

· · ·

x

0

b=1

1

a=2

2

y

3

a=2

2

z

4

· · ·

Figure 5.1: If two commands commute, replicas can safely execute them in either order.

More formally, we say two commands x and y conflict if there exists a state in which
executing x and then y does not produce the same responses or final state as executing y
and then x. We say two commands commute if they do not conflict. If two commands
conflict (e.g., a=1 and a=2), then they need to be executed by every state machine replica in
the same order. But, if two commands commute (e.g., a=2 and b=1), then they do not need
to be totally ordered. State machine replicas can execute them in either order.

Generalized Multi-leader state machine replication protocols like EPaxos, Caesar, Atlas,
and all the BPaxos variants presented in this chapter take advantage of command commu-
tativity. Rather than totally ordering commands into a log, these protocols partially order
commands into a directed graph such that every pair of conflicting commands has an edge
between them. We call these graphs conflict graphs. An example log and corresponding
conflict graph is illustrated in Figure 5.2. A log consists of a number log entries, and every
log entry has a unique log index (e.g., 4). A conflict graph consists of a number of vertices,
and every vertex has a unique vertex id (e.g., v4).

Moreover, a vertex v can have directed edges to other vertices. These are called the
dependencies of v, denoted deps(v). For example, if vertex vi depends on vertex vj, then
there is an edge from vi to vj. Note that if a pair of commands conflict, then they must
have an edge between them. This ensures that every replica executes the two commands in
the same order. For example in Figure 5.2, the commands a=b (v0) and a=2 (v1) conflict,
so they have an edge between them. If two commands commute, then they do not have
an edge between them. This allows replicas to execute the commands in either oder. For
example, the commands a=2 (v1) and b=1 (v2) commute, so there is no edge between them.
Finally note that some conflicting commands (e.g., b=a (v3) and a=3 (v4)) have edges in

CHAPTER 5. BIPARTISAN PAXOS 65

a=b

0

a=2

1

b=1

2

b=a

3

a=3

4

(a)

a=b
v0

a=2
v1

b=1
v2

b=a
v3

a=3
v4

(b)

Figure 5.2: A log and corresponding conflict graph.

both directions, forming a cycle. Ideally, conflict graphs would be acyclic, but cycles are
sometimes unavoidable. The reason for this will become clear soon.

Executing Conflict Graphs

We now explain how to execute a static conflict graph. In the next subsection, we explain
how to execute a dynamic conflict graph that grows over time. Replicas execute logs in
prefix order. Replicas execute conflict graphs in reverse topological order, one strongly con-
nected component at a time. The order of executing commands within a strongly connected
component is not important, but every replica must choose the same order. For example,
replicas can execute commands within a component sorted by their vertex id. The conflict
graph in Figure 5.2 has four strongly connected components, each shaded a different color.
Vertices v0, v1, and v2 are each in their own components, and commands v3 and v4 are in
their own component. Replicas execute these four strongly connected components in reverse
topological order as follows:

• First, replicas execute a=b (v0).

• Next, replicas either execute a=2 (v1) then b=1 (v2) or b=1 (v2) then a=2 (v1). There
are no edges between vertex v1 and vertex v2, so every replica can execute the two
vertices in either order.

• Finally, replicas execute b=a (v3) and a=3 (v4) in some arbitrary but fixed order. For
example, if replicas execute commands sorted by their vertex ids, then the replicas
would all execute v3 and then v4.

Executing commands in this way, state machine replicas are guaranteed to remain in sync.
Every replica executes conflicting commands in the same order, but are free to execute
commuting commands in any order.

CHAPTER 5. BIPARTISAN PAXOS 66

a=b
v0

(a)

a=b
v0

a=2
v1

(b)

a=b
v0

a=2
v1

v2

b=a
v3 v4

(c)

a=b
v0

a=2
v1

b=1
v2

b=a
v3 v4

(d)

a=b
v0

a=2
v1

b=1
v2

b=a
v3

a=3
v4

(e)

a=b

0

(f)

a=b

0

a=2

1

(g)

a=b

0

a=2

1 2

b=a

3

(h)

a=b

0

a=2

1

b=1

2

b=a

3

b=1

2

(i)

a=b

0

a=2

1

b=1

2

b=a

3

a=3

4

(j)

Figure 5.3: In subfigures (a) - (e), we see a conflict graph constructed over time. The
most recently chosen vertex is drawn in red. The executed commands are shaded green.
(a) The command a=b is chosen in vertex v0 without any dependencies. The command is
executed immediately. (b) The command a=2 is chosen in vertex v1 with a dependency on
v0. The command is executed immediately. (c) The command b=a is chosen in vertex v3
with dependencies on v0, v1, v2, and v4. No commands have been chosen in v2 and v4 yet,
so v3 cannot be executed. (d) The command b=1 is chosen in vertex v2 with a dependency
on v0. The command is executed immediately. (e) The command a=3 is chosen in vertex v4
with dependencies on v0, v1, and v3. Now v3 and v4 are executed. In subfigures (f) - (j), we
see an analogous execution for a log.

Constructing Conflict Graphs

In the previous subsection, we explained how to execute a static conflict graph. In reality,
graphs are dynamic and grow over time. MultiPaxos constructs one log entry at a time. It
uses one instance of consensus for every log entry i to choose which command should be
placed in log entry i. Analogously, generalized multi-leader protocols construct a conflict
graph one vertex at a time. They use one instance of consensus for every vertex v to choose
which command should be placed in vertex v and what dependencies, or outbound edges, v
should have.

In Figure 5.3, we illustrate an example execution of how the conflict graph from Figure 5.2
could be constructed over time. Figure 5.3 also shows an analogous execution in which a
log is constructed over time. Note that a vertex v can be chosen with dependencies deps(v)
before every vertex in deps(v) has itself been chosen. For example in Figure 5.3c, v3 is chosen
with deps(v3) = {v0, v1, v2, v4} before vertices v2 and v4 are chosen. This is analogous to how
a command is chosen in log entry 3 in Figure 5.3h before a command is chosen in entry 2.

A summary of the differences between logs and graphs is given in Table 5.1.

CHAPTER 5. BIPARTISAN PAXOS 67

Table 5.1: The differences between protocols like MultiPaxos and Raft that organize com-
mands in logs and protocols like EPaxos, Caesar, and Atlas that organize commands in
graphs.

Logs Graphs

data structure log conflict graph
log entry vertex
log index (e.g., 4) vertex id (e.g., v4)
total order partial order

execution order log order reverse topological order
what’s chosen? commands commands & dependencies

Two Key Invariants

Protocols like EPaxos, Caesar, Atlas, and the BPaxos protocols in this chapter all differ in
how they assign commands to vertices, how they compute dependencies, how they implement
consensus, and so on. Despite the differences, all the protocols construct conflict graphs one
vertex at a time, choosing a command and a set of dependencies (x, deps(v)) for every vertex
v. The protocols all rely on the following two key invariants for correctness. We call these
the consensus invariant (Invariant 1) and the dependency invariant (Invariant 2).

Invariant 1 (Consensus Invariant). Consensus is implemented for every vertex v. That is,
at most one value (x, deps(v)) is chosen for every vertex v.

Invariant 2 (Dependency Invariant). If (x, deps(vx)) is chosen in vertex vx and (y, deps(vy))
is chosen in instance vy, and if x and y conflict, then either vx ∈ deps(vy) or vy ∈ deps(vx)
or both. That is, if two chosen commands conflict, there is an edge between them.

The consensus invariant ensures that replicas always agree on the state of the conflict
graph. It makes it impossible, for example, for two replicas to disagree on which command
is in a vertex or disagree on what dependencies a vertex has. The dependency invariant
ensures that replicas execute conflicting commands in the same order but does not require
that replicas execute commuting commands in the same order. These two invariants are
sufficient to ensure linearizable execution. Intuitively, the history of command execution
is equivalent to a serial history following any reverse topological ordering of the conflict
graph. In fact, replicas literally do execute commands serially according to one of the reverse
topological orderings. For a more formal proof, refer to [42] and [60].

CHAPTER 5. BIPARTISAN PAXOS 68

5.2 Simple BPaxos

In this section, we introduce Simple BPaxos, an inefficient protocol that is designed to
be easy to understand. By understanding Simple BPaxos, we will understand of the core
mechanisms and invariants that are common to all generalized multi-leader protocols.

Overview

c1

c2

p1 p2

d1 d2 d3 a1 a2 a3

r1 r2

Clients

f + 1
Proposers

2f + 1
Dependency Service

Nodes
2f + 1

Acceptors

f + 1
Replicas

1

2 2 23 3 3 4 4 4
5 5 5

6 6
7

Figure 5.4: An example execution of Simple BPaxos (f = 1).

As illustrated in Figure 5.4, a Simple BPaxos deployment consists of a number of clients,
a set of at least f + 1 Paxos proposers, a set of 2f + 1 dependency service nodes, a set of
2f + 1 Paxos acceptors, and a set of at least f + 1 replicas. These nodes have the following
responsibilities.

• The dependency service nodes, collectively called the dependency service, compute
dependencies and maintain the dependency invariant (Invariant 2).

• The proposers and acceptors implement one instance of Paxos for every vertex and
maintain the consensus invariant (Invariant 1).

• The replicas construct and execute conflict graphs and send the results of executing
commands back to the clients.

CHAPTER 5. BIPARTISAN PAXOS 69

More concretely, Simple BPaxos executes as follows. The numbers here correspond to
the numbered arrows in Figure 5.4.

• (1) When a client wants to propose a state machine command x, it sends x to any of
the proposers. Note that with MultiPaxos, only one proposer is elected leader, but in
Simple BPaxos, every proposer is a leader.

• (2) and (3) When a proposer pi receives a command x, from a client, it places x
in a vertex with globally unique vertex id vx = (pi,m) where m is a monotonically
increasing integer local to pi. For example, proposer pi places the first command that
it receives in vertex (pi, 0), the next command in vertex (pi, 1), the next in (pi, 2), and
so on. The proposer then performs a round trip of communication with the dependency
service. It sends vx and x to the dependency service, and the dependency service replies
with the dependencies deps(vx). For now, we leave this process abstract. We’ll explain
how the dependency service computes dependencies in Section 5.2.

• (4) and (5) The proposer pi then executes Phase 2 of Paxos with the acceptors,
proposing that the value (x, deps(vx)) be chosen in the instance of Paxos associated
with vertex vx = (pi,m). This is analogous to a MultiPaxos leader running Phase 2,
proposing the command x be chosen in the instance of Paxos associated with log entry
m.

Recall from Section 2.2 that the Paxos proposer executing round 0 can safely bypass
Phase 1. By design, we predetermine that the proposer pi leads round 0 for vertices of
the form (pi,m). This is why pi can safely bypass Phase 1 and immediately execute
Phase 2.

In the normal case, pi gets the value (x, deps(vx)) chosen in vertex vx. It is also possible
that some other proposer erroneously concluded that pi had failed and proposed some
other value in vertex vx, but we discuss this scenario later.

• (6) The proposer pi broadcasts vx, x, and deps(vx) to all of the replicas. The replicas
add vertex vx to their conflict graph with command x and with edges to the vertices
in deps(vx). The replicas execute their conflict graphs as described in Section 5.1.

• (7) Once a replica executes command x, it sends the result of executing command x
back to the client.

Dependency Service

The dependency service consists of 2f + 1 dependency service nodes d1, . . . , d2f+1. Every
dependency service node maintains an acyclic conflict graph. These conflict graphs are
similar but not equal to the conflict graph that Simple BPaxos ultimately executes.

When a proposer sends a vertex vx with command x to the dependency service, it sends
vx and x to every dependency service node. When a dependency service node di receives vx

CHAPTER 5. BIPARTISAN PAXOS 70

wvw

(a) wvw

x

vx

(b)

wvw

x

vx

y
vy

(c)

wvw

x

vx

y
vy

z vz

(d)

wvw

x

vx

y
vy

z vz

(e)

Figure 5.5: In subfigures (a) – (e), we see the execution of a dependency service node di. (a) di
receives command w in vertex vw. di adds this vertex to its conflict graph and because there
are no other vertices, it returns the dependencies deps(vw) = ∅. (b) di receives command x
in vertex vx. di adds this vertex to its conflict graph. x conflicts with w, so di adds an edge
from vx to vw and returns the dependencies deps(vx) = {vw}. (c) di receives command y in
vertex vy. di adds this vertex to its conflict graph. y conflicts with w and x, so di adds an
edge from vy to vw and from vy to vx. It returns the dependencies deps(vy) = {vw, vx}. (d)
di receives command z in vertex vz. di adds this vertex to its conflict graph. z conflicts with
w and x, so di adds an edge from vz to vw and from vz to vx. It returns the dependencies
deps(vz) = {vw, vx}. (e) di receives command x in vertex vx. di’s graph already contains
vertex vx, so di returns the dependencies deps(vx) = {vw} and does not modify its graph.

and x, it performs one of the following two actions depending on whether di’s graph already
contains vertex vx.

• If di’s conflict graph does not contain vertex vx, then di adds vertex vx to its graph
with command x. di adds an edge from vx to every other vertex vy with command y
if x and y conflict. Letting out(vx) be the set of vertices to which vx has an edge, di
then returns out(vx) to the proposer.

• Otherwise, if di’s conflict graph already contains vertex vx, then di does not modify its
conflict graph. It immediately returns out(vx) to the proposer.

An example execution of a dependency service node is given in Figure 5.5.
When a proposer receives replies from f + 1 dependency service nodes, it takes the union

of these responses as the value of deps(vx). For example, imagine f = 1 and a proposer
receives dependencies {vw, vy} from d1 and dependencies {vw, vz} from d2. The proposer
computes deps(vx) = {vw, vy, vz}. The dependency service maintains Invariant 3.

Invariant 3. If two conflicting commands x and y in vertices vx and vy yield dependencies
deps(vx) and deps(vy) from the dependency service, then either vx ∈ deps(vy) or vy ∈
deps(vx) or both.

CHAPTER 5. BIPARTISAN PAXOS 71

Proof. Consider conflicting commands x and y in vertices vx and vy with dependencies
deps(vx) and deps(vy) computed by the dependency service. deps(vx) is the union of depen-
dencies computed by f + 1 dependency service nodes Dx. Similarly, deps(vy) is the union of
dependencies computed by f + 1 dependency service nodes Dy. Because f + 1 is a majority
of 2f + 1, Dx and Dy necessarily intersect. That is, there is some dependency service node
di that is in Dx and Dy. di either received vx or vy first. If it received vx first, then it returns
vx as a dependency of vy, so vx ∈ deps(vy). If it received vy first, then it returns vy as a
dependency of vx, so vy ∈ deps(vx).

Note that the dependency service may process a vertex more than once, yielding differ-
ent dependencies each time. For example, a proposer may sent vx and x to the dependency
service and get back dependencies {vw, vy}. The proposer might resend vx and x to the
dependency service and get a different set of dependencies {vy, vz}. Even though the de-
pendency service may compute different dependencies for the same vertex, the dependency
service still maintains Invariant 3 for every possible pair of computed dependencies.

An Example

An example execution of Simple BPaxos with f = 1 is illustrated in Figure 5.6.

• In Figure 5.6a, proposer p1 receives command x from a client, while proposer p2 receives
command y from a client. The commands are placed in vertices vx and vy respectively.

• In Figure 5.6b, p1 sends x in vx to the dependency service, while p2 concurrently sends
y in vy. Dependency service nodes d1 and d2 receive x and then y, so they compute
deps(vx) = ∅ and deps(vy) = {vx}. d3, on the other hand, receives y and then x and
computes deps(vx) = {vy} and deps(vy) = ∅
p1 receives ∅ from d2 and {vy} from d3. Two dependency service nodes form a majority,
so p1 computes deps(vx) = {vy} ∪ ∅ = {vy}. Similarly, p2 receives {vx} from d2 and
∅ from d3, so p2 computes deps(vy) = {vx} ∪ ∅ = {vx}. Note that p1 and p2 also
receive responses from d1, but proposers form dependencies from the first set of f + 1
dependency service nodes they hear from.

• In Figure 5.6c, p1 executes Phase 2 of Paxos to get the value (x, {vy}) chosen in vertex
vx. p2 likewise gets the value (y, {vx}) chosen in vertex vy.

• In Figure 5.6d, the proposers broadcast their commands to the replicas. The replicas
add vx and vy to their conflict graphs and execute the commands once they have
received both. One or more of the replicas also sends the results of executing x and y
back to the clients.

Note that the replicas’ conflict graphs contain a cycle. This is because the dependency
service nodes do not receive every command in the same order. In Figure 5.6, dependency
service nodes d2 and d3 receive x and y in opposite orders, leading to the two commands

CHAPTER 5. BIPARTISAN PAXOS 72

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x
y

(a) p1 receives command x; p2 receives
command y.

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

(b) The proposers contact the dependency
service.

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

(c) The proposers contact the acceptors.

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

(d) The proposers notify the replicas.

Figure 5.6: An example execution of Simple BPaxos (f = 1).

depending on each other. It is tempting to enforce that every dependency service node receive
every command in exactly the same order, but unfortunately, this would be tantamount to
solving consensus [12].

CHAPTER 5. BIPARTISAN PAXOS 73

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x

x
vx

x
vx

x
vx

(a) p1 receives x, talks to the dependency
service, and fails.

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

vx

y
vy

vx

y
vy

y

(b) p2 receives y, gets it chosen with a
dependency on vx.

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

vx

y
vy

vx

y
vy

(c) A replica notifies p2 that vx is uncho-
sen.

d1 d2 d3

p1
p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

noop
vx

y
vy

noop
vx

y
vy

(d) p2 gets a noop chosen in vx.

Figure 5.7: An example execution of Simple BPaxos recovery (f = 1).

Recovery

Imagine a proposer receives a command x from a client, places the command x in vertex vx,
sends vx and x to the dependency service, and then crashes. Because a command and a set of
dependencies have not been chosen in vertex vx yet, we call vx unchosen. It is possible that a
command y chosen in vertex vy depends on an unchosen vertex vx. If vertex vx remains forever

CHAPTER 5. BIPARTISAN PAXOS 74

unchosen, then the command y will never be executed. To avoid this liveness violation, if
any replica notices that vertex vx has been unchosen for some time, it notifies a proposer.
The proposer then executes Phase 1 and Phase 2 of Paxos with the acceptors to get a noop
chosen in vertex vx without any dependencies. noop is a distinguished command that does
not affect the state machine and does not conflict with any other command. An example of
this execution is given in Figure 5.7.

• In Figure 5.7a, proposer p1 receives command x from a client. It places x in vertex vx
and sends vx and x to the dependency service. Shortly after, it fails.

• In Figure 5.7b, proposer p2 receives command y from a client. It places y in vy and
contacts the dependency service. The dependency service nodes have already received
x in vx, so they compute deps(vy) = {vx}. p2 then gets y chosen in vertex vy with a
dependency on vx and broadcasts it to the replicas.

• In Figure 5.7c, the replicas cannot execute vertex vy because it depends on the unchosen
vertex vx. After a timeout expires, replica r1 notifies p2 that the vertex has been
unchosen for some time.

• In Figure 5.7d, p2 executes Phase 1 and Phase 2 of Paxos in some round r > 0 with the
acceptors to get the command noop chosen in vertex vx without any dependencies. p2
notifies the replicas, and the replicas place the noop in vertex vx. The replicas execute
their conflict graphs in reverse topological order. They execute the noop first (which
has no effect) and then execute y.

Note that p2 must execute both phases of Paxos because it is not in round 0. This is
necessary to ensure that no other value could have been chosen in vx.

Note that a Simple BPaxos proposer recovers a command and proposes a noop by exe-
cuting Paxos as normal. Simple BPaxos does not require an additional recovery protocol.
Rather, commands and noops are proposed in the exact same way. This simplifies the
protocol.

Safety

To ensure that Simple BPaxos is safe, we must ensure that it maintains the consensus
invariant and the dependency invariant. Simple BPaxos maintains the consensus invariant
because it implements Paxos. The dependency invariant follows immediately from Invariant 3
and the fact that noops don’t conflict with any other command.

Practical Considerations

We discuss a few practical considerations that are important when implementing Simple
BPaxos and the other BPaxos variants in this chapter.

CHAPTER 5. BIPARTISAN PAXOS 75

Ensuring Exactly Once Semantics If a client proposes a command but does not hear
back quickly enough, it re-proposes the command to make sure that the command eventually
gets executed. Thus, Simple BPaxos might receive a command more than once, but it has
to guarantee that it never executes the command more than once. Executing a command
more than once would violate exactly once semantics.

Non-generalized protocols like MultiPaxos [87], Viewstamped Replication [53], and Raft [68]
all employ the following technique to avoid executing a command more than once. First,
before a client proposes a command to a replication protocol, it annotates the command
with a monotonically increasing integer-valued id. Moreover, clients only send one command
at a time, waiting to receive a response from one command before sending another. Second,
every replica maintains a client table, like the one illustrated below. A client table has one
entry per client. The entry for a client records the largest id of any command that the replica
has executed for that client, along with the result of executing the command with that id.
A replica only executes commands for a client if it has a larger id than the one recorded in
the client table. If it receives a command with the same id as the one in the client table, it
replies with the recorded output instead of executing the command a second time.

Client Id Output
10.31.14.41 2 “foo”
10.54.13.123 1 “bar”

Naively applying this same trick to Simple BPaxos (or any generalized protocol) is unsafe.
For example, imagine a client issues command x with id 1. The command gets chosen and
is executed by replica 1. Then, the client issues non-conflicting command y with id 2. The
command gets chosen and is executed by replica 2. Because y has a larger id than x, replica
2 will never execute x.

To fix this bug, a replica must record the ids of all commands that it has executed for a
client, along with the output corresponding to the largest of these ids. Replicas only execute
commands they have not previously executed, and relay the cached output if they receive a
command with the corresponding id.

Dependency Compaction Upon receiving a command x in vertex vx, a dependency
service node returns the set of all previously received vertices with commands that conflict
with x. Over time, as the dependency service receives more and more commands, these
dependency sets get bigger and bigger. As the dependency sets get bigger, Simple BPaxos’
throughput decreases because more time is spent sending these large dependency sets, and
less time is spent doing useful work.

To combat this, a dependency service node has to compact dependencies in some way.
Recall that proposer pi creates vertex ids (pi, 0), (pi, 1), (pi, 2), and so on. Thus, vertex ids
across all the leaders form a two-dimensional array with one column for every leader index
and one row for every monotonically increasing id.

CHAPTER 5. BIPARTISAN PAXOS 76

b d

a e

c

p0 p1 p2

0

1

2

3

proposer

id

Figure 5.8: An example of dependency compaction

For example, consider a dependency service node that has received commands a, b, c, d,
and e in vertices (p0, 1), (p0, 0), (p1, 2), (p1, 0), and (p2, 1) as shown in Figure 5.8. Without
dependency compaction, if the dependency service node receives a command that conflicts
with commands a, b, c, d, and e, it would return the vertex ids of these five commands.
In our example, the dependency service node returns only five dependencies, but in a real
deployment, the node could return hundreds of thousands of dependencies.

With dependency compaction on the other hand, the dependency service node instead
artificially adds more dependencies. In particular, for every proposer pi, it computes the
largest id j for which a dependency (pi, j) exists. Then, it adds {(pi, k) | k ≤ j} to the
dependencies. In other words, it finds the largest dependency in each column and then adds
all of the vertex ids below it as dependencies. In Figure 5.8, the inflated set of dependencies
is highlighted in blue. Even though more dependencies have been added, the set of inflated
dependencies can be represented more compactly, with a single integer for every leader (i.e.,
the id of the largest command for that leader). Thus, every BPaxos dependency set can be
succinctly represented with n integers (for n proposers).

Scaling Following the design pattern of compartmentalization, we can scale up each com-
ponent of Simple BPaxos because the protocol is fully decoupled. We could introduce proxy
leaders, but because Simple BPaxos is a multi-leader protocol, there is no need. Instead, we
can scale up the number of proposers directly. We can scale up the acceptors using acceptor
grids or any other read-write quorum system. We can scale up the dependency service using
an arbitrary quorum system, as the dependency service’s correctness only relies on intersect-
ing quorums. Note that we use a quorum system—a system in which every pair of quorums
intersect—rather than a read-write quorum system. We can also scale up the number of
replicas to reduce the number of replies the replicas have to send to the clients.

An interesting phenomenon happens when we fully scale up Simple BPaxos. The only
component of the protocol that is not scalable is the replicas executing writes. Every replica
has to execute every write no matter what. Executing writes is bottlenecked on executing the
conflict graphs in reverse topological order. This process is significantly slower than executing
commands in a simple log. This means that without compartmentalization, generalized

CHAPTER 5. BIPARTISAN PAXOS 77

multi-leader protocols are often faster than simpler log-based protocols like MultiPaxos.
But, after compartmentalization, the simpler log-based protocols are faster. Generalized
protocols introduced graphs as a way to avoid bottlenecks, but after compartmentalization,
the graphs become the bottlenecks.

5.3 Fast Paxos

Algorithm 3 Fast Paxos Proposer

State: a value v, initially null
State: a round i, initially −1
1: upon receiving Phase2B〈0, v′〉 from f + maj(f + 1)

acceptors as the proposer of round 0 with i = 0 do
2: if every value of v′ is the same then
3: v′ is chosen, notify the learners
4: else
5: i← 1
6: proceed to line 11 viewing every Phase2B〈0, v′〉

as a Phase1B〈1, 0, v′〉
7: upon recovery do
8: i← next largest round owned by this proposer
9: send Phase1A〈i〉 to the acceptors

10: upon receiving Phase1B〈i, vr, vv〉 from f + 1 acceptors do
11: k ← the largest vr in any Phase1B〈i, vr, vv〉
12: if k = −1 then
13: v ← an arbitrary value
14: else if k > 0 then
15: v ← the corresponding vv in round k
16: else if k = 0 then
17: if there are maj(f + 1) Phase1B〈i, 0, v′〉

messages for some value v′ then
18: v ← v′

19: else
20: v ← an arbitrary value

21: send Phase2A〈i, v〉 to the acceptors

22: upon receiving Phase2B〈i〉 from f + 1 acceptors do
23: v is chosen, notify the learners

Simple BPaxos is designed to be easy to understand, but as shown in Figure 5.6, it takes
seven network delays (in the best case) between when a client proposes a command x and

CHAPTER 5. BIPARTISAN PAXOS 78

Algorithm 4 Fast Paxos Acceptor

State: the largest seen round r, initially −1
State: the largest round vr voted in, initially −1
State: the value vv voted for in round vr, initially null
1: upon receiving value v from client do
2: if r = −1 then
3: r, vr, vv ← 0, 0, v
4: send Phase2B〈0, v〉 to proposer of round 0

5: upon receiving Phase1A〈i〉 from p with i > r do
6: r ← i
7: send Phase1B〈i, vr, vv〉 to p

8: upon receiving Phase2A〈i, v〉 from p with i ≥ r do
9: r, vr, vv ← i, i, v
10: send Phase2B〈i〉 to p

when a client receives the result of executing x. Call this duration of time the commit time.
Generalized multi-leader protocols like EPaxos, Caesar, and Atlas all achieve a commit time
of only four network delays in the best case. They do so by leveraging Fast Paxos [41].

Fast Paxos is a Paxos variant that allows clients to propose values directly to the acceptors
without having to initially contact a proposer. Fast Paxos is an optimistic protocol. If all
of the acceptors happen to receive the same command from the clients, then Fast Paxos
has a commit time of only three network delays. This is called the fast path. However, if
multiple clients concurrently propose different commands, and not all of the acceptors receive
the same command, then the protocol reverts to a slow path and introduces two additional
network delays to the commit time. In this section, we review a slightly simplified version
of Fast Paxos.

Overview

Like Paxos, a Fast Paxos deployment consists of some number of clients, f + 1 proposers,
and 2f + 1 acceptors. We also include a set of f + 1 learners. These nodes are notified
of the value chosen by Fast Paxos. Note that we use the term learner rather than replica
because Fast Paxos is a consensus protocol and not a state machine replication protocol, so
there are no state machine replicas. A Fast Paxos deployment is illustrated in Figure 5.9.
Proposer and acceptor pseudocode are given in Algorithm 3 and Algorithm 4.

Like Paxos, Fast Paxos is divided into a number of integer valued rounds. The key
difference is that round 0 of Fast Paxos is a special “fast round.” A client can propose a
value directly to an acceptor in round 0 without having to contact a proposer first. The
normal case execution of Fast Paxos is illustrated in Figure 5.9a. The execution proceeds as
follows:

CHAPTER 5. BIPARTISAN PAXOS 79

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f + 1
Proposers

2f + 1
Acceptors

f + 1
Learners

1

1

1

1

2

2

2

2

3

3

3

(a) Normal case execution.

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f + 1
Proposers

2f + 1
Acceptors

f + 1
Learners

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

(b) Recovery.

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f + 1
Proposers

2f + 1
Acceptors

f + 1
Learners

1

1

1

1

2

2

2

2

3

3

3

4

4

4

5

5

5

(c) Coordinated recovery.

Figure 5.9: Example executions of Fast Paxos (f = 2). The leader of round 0 is adorned
with a crown. Client requests are drawn in red. Phase 1 messages are drawn in blue. Phase
2 messages are drawn in green.

• (1) When a client wants to propose a value v, it sends v to all of the acceptors.

• (2) When an acceptor receives a value v from a client, the acceptor ignores v if it has
already received a message in some round i ≥ 0. Otherwise, it votes for v by updating
its state and sending a Phase2B〈0, v〉 message to the proposer that leads round 0.
This is shown in Algorithm 4 line 1 – line 4.

• (3) Let maj(n) = dn+1
2
e be a majority of n. If the proposer that leads round 0 receives

Phase2B〈0, v′〉 messages from f +maj(f + 1) acceptors for the same value v′, then v′

is chosen, and the proposer notifies the learners. This is shown in Algorithm 3 line 1
– line 3. We consider what happens when not every value is the same in Section 5.3.

Recovery

Note that in Paxos, a value is chosen when f + 1 acceptors vote for it in some round i. In
round 0 of Fast Paxos, a value is chosen when f+maj(f+1) acceptors vote for it. The larger
number of required votes is needed to ensure the safety of recovery, which we now describe.

CHAPTER 5. BIPARTISAN PAXOS 80

Let p be the proposer leading round 0. Recovery is the process by which a proposer other
than p gets a value chosen. For example, if p fails, some other proposer must take over and
get a value chosen. Recovery is illustrated in Figure 5.9b.

• (1) and (2) A recovering proposer performs Phase 1 of Paxos with at least f + 1
acceptors in some round i > 0. This is shown in Algorithm 3 line 7 – line 9 and
Algorithm 4 line 5 – line 7.

• (3) and (4) The recovering proposer receives Phase1B〈i, vr, vv〉 messages from f +1
acceptors. Call this quorum of acceptors A. The proposer computes k as the largest
received vr (line 11). This is the largest round in which any acceptor in A has voted.
If k = −1 (line 12), then none of the acceptors have voted in any round less than i,
so the proposer is free to propose an arbitrary value. This is the same as in Paxos.
If k > 0 (line 14), then the proposer must propose the value vv proposed in round
k. Again, this is the same as in Paxos. vv may have been chosen in round k, so the
proposer is forced to propose it as well. If k = 0 (line 16), then there are two cases to
consider.

First, if maj(f + 1) of the acceptors in A have all voted for some value v′ in round 0,
then it’s possible that v′ was chosen in round 0 (line 17). Specifically, if all f of the
acceptors not in A voted for v′ in round 0, then along with the maj(f + 1) of acceptors
in A who also voted for v′ in round 0, there is a quorum of f+maj(f+1) acceptors who
voted for v′ in round 0. In this case, the proposer must propose v′ as well since it might
have been chosen. Second, if there does not exist maj(f + 1) votes for any value v′,
then the proposer concludes that no value was chosen or every will be chosen in round
0, so it is free to propose an arbitrary value (line 19). Once the recovering proposer
determines which value to propose, it gets the value chosen with the acceptors using
the normal Phase 2 of Paxos.

Note that a value must receive at least f + maj(f + 1) votes in round 0 to be chosen.
If this number were any smaller, it would be possible for a recovering proposer to find
two distinct values v′ and v′′ that both could have been chosen in round 0. In this case,
the proposer cannot make progress. It cannot propose v′ because v′′ might have been
chosen, and it cannot propose v′′ because v′ might have been chosen

More concretely, imagine an Fast Paxos deployment with f = 2 and five acceptors a1,
a2, . . ., a5. Further imagine that a value is considered chosen after receiving votes from
only 3 (i.e. f + 1) acceptors rather than the correct number of 4 (i.e. f + maj(f + 1)).
Consider a proposer executing Phase 1 in round 1. It contacts a3, a4, and a5. a3 voted
for value x in round 0; a4 voted for value y in round 0; and a5 didn’t vote in round
0. What value should the proposer propose in Phase 2? Well, x was maybe chosen in
round 0 (if a1 and a2 both voted for x in round 0), so the proposer has to propose x.
However, y was also maybe chosen in round 0 (if a1 and a2 both voted for y in round
0), so the proposer also has to propose y. The proposer can only propose one value,

CHAPTER 5. BIPARTISAN PAXOS 81

so the protocol gets stuck. By requiring f + maj(f + 1) votes rather than f + 1 votes,
we eliminate these situations. It’s not possible for two values to both potentially have
received f + maj(f + 1) votes. There isn’t enough acceptors for this to be possible.

• (5) The proposer notifies the learners of the chosen value.

Coordinated Recovery

Finally, we consider what happens when the proposer of round 0 receives f + maj(f + 1)
Phase1B messages from the acceptors, but without all of them containing the same value
v′. Naively, the proposer could simply perform a recovery, executing both phases of Paxos is
some round r > 0. However, if we assign rounds to proposers in such a way that the proposer
of round 0 is also the proposer of round 1, then we can take advantage of an optimization
called coordinated recovery. This is illustrated in Figure 5.9c and proceeds as follows:

• (1) Multiple clients send distinct commands directly to the acceptors.

• (2) The acceptors receive and vote for the commands and send Phase2B messages
to the leader of round 0. However, not every acceptor receives the same value first, so
not all the acceptors vote for the same value.

• (3) and (4) The proposer receives Phase2B messages from f +maj(f + 1) acceptors,
but the acceptors have not all voted for the same value. At this point, the proposer
could naively perform a recovery in round 1 by executing Phase 1 and then Phase 2 of
Paxos. But, executing Phase 1 in round 1 is redundant, since the Phase2B messages
in round 0 contain exactly the same information as the Phase1B messages in round
1. Specifically, the proposer can view every Phase2B〈0, v′〉 message as a proxy for a
Phase1B〈1, 0, v′〉 message. Thus, the proposer instead jumps immediately to Phase
2 in round 1 to get a value chosen (line 4 – line 6).

• (5) Finally, the proposer notifies the learners of the chosen value.

5.4 Fast BPaxos

In this section, we present a purely pedagogical protocol called Fast BPaxos. Fast BPaxos
achieves a commit time of four network delays (compared to Simple BPaxos’ seven), but
Fast BPaxos is unsafe. It does not properly implement state machine replication. To un-
derstand why more complex protocols like EPaxos, Caesar, and Atlas work the way they
do, it helps to understand why simpler protocols like Fast BPaxos don’t work in the first
place. Understanding why Fast BPaxos is unsafe leads to fundamental insights into these
other protocols.

CHAPTER 5. BIPARTISAN PAXOS 82

c1

c2

d1 d2 d3

a1 a2 a3

p1 p2 p3

r1 r2 r3

Clients

2f + 1 Dependency

Service Nodes

2f + 1 Acceptors

2f + 1 Proposers

2f + 1 Replicas

Server 1 Server 2 Server 3

1

2 2

2
3 3 3

4 4 4

5 5 5
6

Figure 5.10: An example execution of Fast BPaxos (f = 1). The four network delays are
drawn in red.

The Protocol

Fast BPaxos is largely identical to Simple BPaxos with one key observation. Rather than
implementing Paxos, Fast BPaxos implements Fast Paxos. This allows the protocol to reduce
the commit time by overlapping communication with the dependency service (to compute
dependencies) and communication with the acceptors (to implement consensus).

As shown in Figure 5.10, a Fast BPaxos deployment consists of 2f+1 dependency service
nodes, 2f + 1 Fast Paxos acceptors, 2f + 1 Fast Paxos proposers, and 2f + 1 replicas. These
logical nodes are co-located on a set of 2f + 1 servers, where every physical server executes
one dependency service node, one acceptor, one proposer, and one replica. For example, in
Figure 5.10, server 2 executes d2, a2, p2, and r2. As illustrated in Figure 5.10, the protocol
executes as follows:

• (1) When a client wants to propose a state machine command x, it sends x to any of
the proposers.

• (2) When a proposer pi receives a command x, from a client, it places x in a vertex
with globally unique vertex id vx = (pi,m) where m is a monotonically increasing
integer local to pi. pi then sends vx and x to all of the dependency service nodes. Note
that we predetermine that proposer pi is the leader of round 0 and 1 of the Fast Paxos
instance associated with vertex vx = (pi,m).

• (3) When a dependency service node dj receives a command x in vertex vx, it com-
putes a set of dependencies deps(vx) in the exact same way as in Simple BPaxos (i.e. dj
maintains an acyclic conflict graph). Unlike Simple BPaxos however, dj does not send

CHAPTER 5. BIPARTISAN PAXOS 83

deps(vx) back to the proposer. Instead, it proposes to the co-located Fast Paxos accep-
tor aj that the value (x, deps(vx)) be chosen in the instance of Fast Paxos associated
with vertex vx in round 0.

• (4) Fast BPaxos acceptors are unmodified Fast Paxos acceptors. In the normal case,
when an acceptor aj receives value (x, deps(vx)) in vertex vx = (pi,m), it votes for the
value and sends the vote to pi.

• (5) Fast BPaxos proposers are unmodified Fast Paxos proposers. In the normal case,
pi receives f + maj(f + 1) votes for value (x, deps(vx)) in vertex vx, so (x, deps(vx)) is
chosen. The proposer broadcasts the command and dependencies to the replicas. If
pi receives f + maj(f + 1) votes, but they are not all for the same value, the proposer
executes coordinate recovery (see Algorithm 3 line 4 – line 6).

• (6) Fast BPaxos replicas are identical to Simple BPaxos replicas. Replicas maintain
and execute conflict graphs, returning the results of executing commands to the clients.

Note that Figure 5.10 illustrates six steps of execution, but the commit time is only
four network delays (drawn in red). Communication between co-located components (e.g.,
between d1 and a1 and between p1 and r1) does not involve the network and therefore does
not contribute to the commit time.

Recovery

As with Simple BPaxos, it is possible that a command y chosen in vertex vy depends on an
unchosen vertex vx that must be recovered for execution to proceed. Fast BPaxos performs
recovery in the same way as Simple BPaxos. If a replica detects that a vertex vx has been
unchosen for some time, it notifies a proposer. The proposer then executes a Fast Paxos
recovery to get a noop chosen in vertex vx with no dependencies.

Lack of Safety

We now demonstrate why Fast BPaxos is unsafe. Consider the execution of Fast BPaxos
(f = 2) illustrated in Figure 5.11.

• In Figure 5.11a, proposer p1 receives command x from a client. It places x in vertex
vx and sends vx and x to the dependency service. d1 and d2 receive the message. They
place x in their conflict graphs without any dependencies, and send the value (x, ∅) to
their co-located acceptors. a1 and a2 vote for (x, ∅) in vertex vx, but p1 crashes before
it receives any of these votes. The messages sent to d3, d4, and d5 are dropped by the
network.

• Similarly in Figure 5.11a, proposer p5 receives a conflicting command y, p5 sends vy
and y to d4 and d5, d4 and d5 propose (y, ∅) to a4 and a5, a4 and a5 vote for the
proposed values, and p5 fails.

CHAPTER 5. BIPARTISAN PAXOS 84

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

p1 p2 p3 p4 p5

r1 r2 r3 r4 r5

x y

x
vx

x
vx

y
vy

y
vy

(a) p1 receives x, talks to the dependency
service, and fails. p2 receives y, talks to the
dependency service, and fails.

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

p1 p2 p3 p4 p5

r1 r2 r3 r4 r5

x
vx

x
vx

y
vy

y
vy

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

(b) p2 recovers vx with command x and no
dependencies. p4 recovers vy with command
y and no dependencies.

Figure 5.11: A Fast BPaxos bug (f = 2). Conflicting commands x and y are executed in
different orders by different replicas.

• In Figure 5.11b, p2 recovers vertex vx. To recover vx, p2 executes Phase 1 of Fast Paxos
with acceptors a1, a2, and a3. p2 observes that a1 and a2 both voted for the value (x, ∅)
in round 0. Therefore, p2 concludes that (x, ∅) may have been chosen in round 0, so it
proceeds to Phase 2 and gets the value (x, ∅) chosen in vertex vx (Algorithm 3 line 17).
p2 cannot propose any other value (e.g., a noop) because (x, ∅) may have already been
chosen. From our omniscient view of the execution, we know that (x, ∅) was never
chosen, but from p2’s myopic view, it cannot make this determination and so is forced
to propose (x, ∅). This is a critical point in the execution, which we will discuss
further in a moment.

• In Figure 5.11b, proposer p4 recovers vertex vy in much the same way as p2 recovers
vx. p4 observes that a4 and a5 voted for (y, ∅) in round 0, so it is forced to get the
value (y, ∅) chosen.

• Finally in Figure 5.11b, proposers p2 and p4 broadcast (x, ∅) and (y, ∅) to all of the
replicas. The replicas place x and y in their conflict graphs without edges between
them. This violates the dependency invariant. x and y conflict, so there must be an
edge between them. Without an edge, the replicas can execute x and y in different
orders, causing their states to diverge.

What went wrong? When p2 was recovering vx, Fast Paxos forced it to choose (x, ∅).
However, the dependencies deps(vx) = ∅ were not computed by a majority of the dependency

CHAPTER 5. BIPARTISAN PAXOS 85

service nodes. They were computed only by d1 and d2. This is what allowed conflicting
commands x and y to be chosen without a dependency on each other.

This example illustrates a fundamental tension between preserving the consensus in-
variant (Invariant 1) and preserving the dependency invariant (Invariant 2). Maintaining the
consensus invariant in isolation is easy (e.g., use Paxos), and maintaining the dependency
invariant in isolation is also easy (e.g., use the dependency service). But, maintaining both
invariants simultaneously is tricky.

When performing a recovery, like the one in our example above, a proposer is sometimes
forced to propose a particular value (e.g., (x, ∅)) in order to properly implement consensus
and simultaneously forced not to propose the value in order to correctly compute depen-
dencies. Resolving the tension between the consensus and dependency invariants during
recovery is the single most important and the single most challenging aspect of generalized
multi-leader protocols like EPaxos, Caesar, and Atlas. All of these protocols have a similar
structure and execution on the normal path. They all compute dependencies from a ma-
jority of servers, and they all execute Fast Paxos variants to get these dependencies chosen.
If you understand the normal case execution of one of these protocols, it is not difficult to
understand the others. The key feature that distinguishes the protocols is how they resolve
the fundamental tension between implementing consensus and computing dependencies.

These protocols all take different approaches to resolving the tension. In the next two
sections, we broadly categorize the approaches into two main techniques: tension avoidance
and tension resolution. Tension avoidance involves cleverly manipulating quorum sizes to
avoid the tension entirely. This approach is used by Basic EPaxos [60] and Atlas [21]. The
second technique, tension resolution, is significantly more complicated and involves detecting
and resolving the tension through various means.

5.5 Tension Avoidance

In this section, we explain how to implement a generalized multi-leader state machine repli-
cation protocol using tension avoidance. The key idea behind tension avoidance is to
avoid the tension between the consensus and dependency invariants entirely. By manipu-
lating quorum sizes in clever ways, we can ensure that whenever a proposer is forced to
propose a set of dependencies deps(vx), this set of dependencies is guaranteed to satisfy the
dependency invariant.

We first introduce Unanimous BPaxos, a simple protocol that implements tension avoid-
ance. We then explain how Basic EPaxos and Atlas can be expressed as two optimized
variants of Unanimous BPaxos.

Unanimous BPaxos

A Fast BPaxos deployment consists of 2f + 1 servers. A proposer communicates with f + 1
acceptors in Phase 1 called a Phase 1 quorum, f + maj(f + 1) acceptors in Phase 2 of

CHAPTER 5. BIPARTISAN PAXOS 86

round 0 called a fast Phase 2 quorum, and f + 1 acceptors in Phase 2 of rounds greater
than 0 called a classic Phase 2 quorum. If we adjust the sizes of these quorums, we can
avoid the tension between implementing consensus and computing dependencies. In [30],
Howard et. al prove that Fast Paxos is safe so long as the following two conditions are met.

1. Every Phase 1 quorum and every classic Phase 2 quorum intersect. That is, for every
Phase 1 quorum Q and for every classic Phase 2 quorum Q′, Q ∩Q′ 6= ∅.

2. Every Phase 1 quorum and every pair of fast Phase 2 quorums intersect. That is, for
every Phase 1 quorum Q and for every pair of fast Phase 2 quorum Q′, Q′′, Q∩Q′∩Q′′ 6=
∅.

Unanimous BPaxos takes advantage of this result and increases the size of fast Phase 2
quorums. Specifically, Unanimous BPaxos is identical to Fast BPaxos except with fast Phase
2 quorums of size 2f + 1. Unanimous BPaxos proposer pseudocode is given in Algorithm 5.
It is identical to the pseudocode of a Fast Paxos proposer (Algorithm 3) except for a couple
small changes highlighted in red.

Unlike Fast BPaxos, Unanimous BPaxos is safe. The critical change is on line 18. With
fast Phase 2 quorums of size 2f +1 (line 1), a recovering proposer knows that a value v′ may
have been chosen in round 0 only if all f + 1 acceptors that it communicates with in Phase
1 voted for v′ in round 0. If even a single acceptor did not vote for v′ in round 0, then v′

could not have received a unanimous vote and therefore was not chosen in round 0.
With Fast BPaxos, a proposer executing line 17 of Algorithm 3 is forced to propose a

value (x, deps(vx)) if maj(f + 1) acceptors voted for it in round 0, but the dependencies
deps(vx) may have only been computed by maj(f + 1) dependency service nodes, violating
the dependency invariant. This is exactly what happened in Figure 5.11. Unanimous BPaxos
avoids the tension entirely because a proposer is only forced to propose a value (x, deps(vx))
if f+1 acceptors voted for it in round 0. Now, we are guaranteed that deps(vx) was computed
by a majority (i.e. f + 1) of the dependency service nodes. Thus, Unanimous BPaxos safely
maintains the consensus and dependency service invariants.

The obvious disadvantage of Unanimous BPaxos is the protocol’s large quorum sizes. In
order to get a command chosen, a proposer has to perform a round trip of communication
with every acceptor. This not only slows down the protocol in the normal case, it also
decreases the protocol’s ability to remain live in the face of faults. If even a single acceptor
fails, the protocol grinds to a halt. This problem can be partially fixed by using more flexible
quorums (like what Atlas [21] does) or by using a tension resolving protocol (see Section 5.5).

We now present two independent optimizations that improve the performance of Unani-
mous BPaxos. These optimizations were introduced in EPaxos [62] and Atlas [21].

Basic EPaxos Optimization

Unanimous BPaxos has a lower commit time than Simple BPaxos (4 network delays instead
of 7), but has larger fast Phase 2 quorums (2f + 1 acceptors instead of f + 1). We now

CHAPTER 5. BIPARTISAN PAXOS 87

Algorithm 5 Unanimous BPaxos Proposer. Changes to Algorithm 3 are highlighted in red.

State: a value v, initially null
State: a round i, initially −1
1: upon receiving Phase2B〈0, v′〉 from all 2f + 1

acceptors as the proposer of round 0 with i = 0 do
2: if every value of v′ is the same then
3: v′ is chosen, notify the learners
4: else
5: i← 1
6: v ← an arbitrary value satisfying the dependency

invariant
7: send Phase2A〈i, v〉 to the acceptors

8: upon recovery do
9: i← next largest round owned by this proposer
10: send Phase1A〈i〉 to the acceptors

11: upon receiving Phase1B〈i, vr, vv〉 from f + 1 acceptors do
12: k ← the largest vr in any Phase1B〈i, vr, vv〉
13: if k = −1 then
14: v ← an arbitrary value satisfying the dependency

invariant
15: else if k > 0 then
16: v ← the corresponding vv in round k
17: else if k = 0 then
18: if all f + 1 messages are of the form

Phase1B〈i, 0, v′〉 for some value v′ then
19: v ← v′

20: else
21: v ← an arbitrary value satisfying the

dependency invariant

22: send Phase2A〈i, v〉 to the acceptors

23: upon receiving Phase2B〈i〉 from f + 1 acceptors do
24: v is chosen, notify the learners

discuss an optimization, used by Basic EPaxos [62], to reduce the fast Phase 2 quorum size
to 2f .

An execution of Unanimous BPaxos with the Basic EPaxos optimization is shown in
Figure 5.12. We walk through the execution, highlighting the optimization’s key changes.
We assume f > 1 for now. Later, we discuss the case when f = 1.

• (1) When a client wants to propose a state machine command x, it sends x to any of

CHAPTER 5. BIPARTISAN PAXOS 88

d1

a1

p1

r1

d2

a2

p2

r2

d3

a3

p3

r3

d4

a4

p4

r4

d5

a5

p5

r5

c1

c2

Server 1 Server 2 Server 3 Server 4 Server 5

1

2

3 3 3 3

4 4 4 4 4

5
5 5 5 5

6 7

8 8 8 8 8
9

Figure 5.12: An example execution of Unanimous BPaxos (f = 2) with the Basic EPaxos
optimization. The messages introduced by the optimization are drawn in red.

the proposers.

• (2) When a proposer pi receives a command x, from a client, it places x in a vertex
with globally unique vertex id vx = (pi,m). Change: pi then sends vx and x to the
co-located dependency service node di. It does not yet communicate with the other
dependency service nodes.

• (3) Change: When di receives vx and x, it computes the dependencies deps(vx)i as
usual using its acyclic conflict graph. di then sends vx, x, and deps(vx)i to all the other
dependency service nodes.

• (4) When a dependency service node dj receives vx, x, and deps(vx)i, it computes
the dependencies deps(vx)j as usual using its acyclic conflict graph. Change: Then,
dj proposes to its co-located acceptor aj that the value (x, deps(vx)i ∪ deps(vx)j) be
chosen in vertex vx in round 0. dj combines the dependencies that it computed with
the dependencies computed by di.

• (5) The acceptors are unchanged. In the normal case, when an acceptor aj receives
value (x, deps(vx)) in vertex vx = (pi,m), it votes for the value and sends the vote to
pi.

• (6) and (7) Change: In Unanimous BPaxos, a value v = (x, deps(vx)) is considered
chosen in round 0 if all 2f + 1 acceptors vote for v in round 0. With the Basic EPaxos
optimization, we only require 2f votes, and the act of choosing a value in round 0 is

CHAPTER 5. BIPARTISAN PAXOS 89

made more explicit. Specifically, if pi receives 2f votes for value v = (x, deps(vx)) in
round 0, including a vote from ai, then it sends v to the co-located acceptor ai. When
ai receives v and is still in round 0 (i.e. r = 0 on Algorithm 4 line 0), then it records
v as chosen and responds to pi. The value v is considered chosen precisely when it is
recorded by the acceptor. In the future ai responds to every Phase1A and Phase2A
message with a notification that v is chosen. If ai receives v but is already in a round
larger than 0 (i.e. r > 0), then it ignores v and sends a negative acknowledgement back
to pi. Note that these messages are all performed locally on the server hosting pi and
do not incur any network delay.

• (8) In the normal case, pi learns that v was successfully chosen by ai and it broadcasts v
to all the acceptors. If pi receives a negative acknowledgement, it performs coordinated
recovery as in Unanimous BPaxos.

• (9) The replicas are unchanged. They maintain and execute conflict graphs, returning
the results of executing commands to the clients.

In addition to these changes made to the normal path of execution, the Basic EPaxos
optimization also introduces a key change to the recovery procedure. Specifically, we replace
line 18 – line 21 in Algorithm 5 with the following procedure.

Assume that proposer p is recovering vertex vx = (pj,m) in round i > 0. Either p received
a message from aj or it did not. We consider each case separately. First, assume that p does
receive a message from aj. If p receives a message indicating that some value v′ has already
been chosen in round 0, then p can terminate the recovery immediately. Otherwise, p receives
a Phase1B message from aj. From this, p can conclude that aj is in a round at least as
large as i and therefore did not and will not record any value v′ chosen in round 0. Because
of this, p is safe to propose any value that satisfies the dependency invariant (e.g., (noop, ∅)).

Otherwise, p does not receive a message from aj. If p receives f Phase1B〈i, 0, v′〉
messages for the same value v′ = (x, deps(vx)), then v′ may have been chosen in round
0, so p must propose v′ in order to maintain the consensus invariant. Note that deps(vx)
also satisfies the dependency invariant despite the fact that p only received deps(vx) from
f , as opposed to f + 1, dependency service nodes. This is because the dependency service
nodes that are not co-located with dj all propose dependencies that include the dependencies
computed by dj. Therefore, p determines that deps(vx) is the union of f + 1 dependencies
and maintains the dependency invariant. If p does not receive f Phase1B〈i, 0, v′〉 for the
same value v′, then p concludes no value was chosen or will be chosen in round 0, so p is safe
to propose any value that satisfies the dependency invariant.

Note that when f = 1 and n = 3, Phase 1 quorums, classic Phase 2 quorums, and fast
Phase 2 quorums are all of size 2. This does not satisfy the conditions outlined by Howard
et. al [30]. As a result, our protocol as stated is not safe for f = 1. The reason is that
a recovering proposer may receive two different values in two separate Phase1B messages
from the two non-leader acceptors with values v′ and v′′. In this situation, the proposer

CHAPTER 5. BIPARTISAN PAXOS 90

is unable to determine which value to propose. Thankfully, we can avoid this situation by
having the leader send only to 2f acceptors rather than to all 2f + 1 acceptors.

Ignoring some minor cosmetic differences, Unanimous BPaxos with the Basic EPaxos
optimization is roughly equivalent to Basic EPaxos [62].

Atlas Optimization

In the best case, also called the fast path, Unanimous BPaxos achieves a commit time of
four network delays. As shown in line 2 of Algorithm 5, a proposer executes the fast path
only when every single acceptor votes for the exact same set of dependencies. As we saw in
Figure 5.11, if any two dependency service nodes receive conflicting commands in different
orders, their computed dependencies will not be the same. If a proposer does not receive a
unanimous vote, it executes coordinated recovery, adding two more network delays to the
commit time.

Atlas [21] introduces the following optimization to relax the requirement of a unanimous
vote and increase the probability of a proposer executing the fast path. Let X1, . . . , X2f+1

be 2f + 1 sets. Let popular(X1, . . . , X2f+1) = {x |x appears in at least f + 1 of the sets}.
We change line 2 as follows. When a proposer receives dependencies deps(vx)1, . . .,

deps(vx)2f+1 from the 2f+1 acceptors, it executes the fast path with dependencies deps(vx) =
deps(vx)1∪· · ·∪deps(vx)2f+1 if deps(vx) = popular(deps(vx)1, . . . , deps(vx)2f+1). That is, the
proposer takes the fast path only if every dependency vy computed by any of the dependency
service nodes was computed by a majority of the dependency service nodes.

We also simplify line 18 – line 21. If a recovering proposer receives f + 1 sets of de-
pendencies, it proposes their union. Otherwise, it proposes an arbitrary value. This is safe
because a set of dependencies deps(vx) can be chosen in round 0, only if every dependency
in deps(vx) was computed by a majority of the dependency service nodes. Thus, every such
element will appear in at least one of the f + 1 dependency sets. Thus, the recovering
proposer is sure to propose a dependency set if it was previously chosen (maintaining the
consensus invariant), and it also proposes the union of f + 1 dependency sets (maintaining
the dependency invariant).

Atlas [21] is roughly equivalent to Unanimous BPaxos with the Basic EPaxos optimiza-
tion, the Atlas optimization, and the flexible constraints on quorum sizes outlined in [30].

5.6 Tension Resolution

The advantage of tension avoidance is that it is simple. The disadvantage is that it requires
large fast Phase 2 quorums. In this section, we explain how to implement a generalized multi-
leader state machine replication protocol using tension resolution. Tension resolution is
significantly more complicated than tension avoidance, but it does not require large fast
Phase 2 quorums.

CHAPTER 5. BIPARTISAN PAXOS 91

Instead of avoiding the tension between the consensus and dependency invariant, tension
resolution uses additional machinery to resolve it when it arrives. Consider a scenario where
a proposer p is forced to propose a set of deps(vx) in round i to maintain the consensus
invariant because deps(vx) may have been chosen in a previous round. Simultaneously, p
is forced not to propose deps(vx) because it cannot guarantee that deps(vx) was computed
by a majority of the dependency service nodes. This is the moment of tension that tension
avoidance avoids. Tension resolution, on the other hand, allows this to happen. When it
does, the proposer p leverages additional machinery built into the protocol to determine
either that (a) deps(vx) was not chosen or (b) deps(vx) was computed by a majority of
dependency service nodes.

We introduce Majority Commit BPaxos, a protocol that implements tension resolution.
We then discuss the protocol’s relationship with EPaxos [62] and Caesar [21].

Pruned Dependencies

Before we discuss Majority Commit BPaxos, we introduce the notion of pruned dependencies.
Imagine a proposer p sends command x to the dependency service in vertex vx, and the
dependency service computes the dependencies deps(vx). Let vy ∈ deps(vx) be one of vx’s
dependencies. To maintain the dependency invariant, all of the protocols that we have
discussed thus far would get vx chosen with a dependency on vy, but this is not always
necessary.

Assume that that the proposer p knows that vy has been chosen with command y and
dependencies deps(vy). Further assume that vx ∈ deps(vy). That is, vy has already been
chosen with a dependency on vx. In this case, there is no need for vx to depend on vy.
The dependency invariant asserts that if two vertices va and vb are chosen with conflicting
commands a and b, then either va ∈ deps(vb) or vb ∈ deps(va). Thus, in our example, if vy
has already been chosen with a dependency on vx, then there is no need to propose vx with
a dependency on vy. Similarly, if vy has been chosen with noop as part of a recovery, then
there is no need to propose vx with a dependency on vy because x and noop do not conflict.

Let deps(vx) be a set of dependencies computed by the dependency service. Let P ⊆
deps(vx) be a set of vertices vy such that vy has been chosen with noop or vy has been chosen
with vx ∈ deps(vy). We call deps(vx)− P the pruned dependencies of vx with respect to
P . Majority Commit BPaxos maintains Invariant 4, the pruned dependency invariant.
The pruned dependency invariant is a relaxation of the dependency invariant. If a protocol
maintains the pruned dependency invariant, it is guaranteed to maintain the dependency
invariant.

Invariant 4 (Pruned Dependency Invariant). For every vertex vx, either (noop, ∅) is chosen
in vx or (x, deps(vx)− P) is chosen in vx where deps(vx) are dependencies computed by the
dependency service and where deps(vx)− P are the pruned dependencies of vx with respect
to some set P .

CHAPTER 5. BIPARTISAN PAXOS 92

Majority Commit BPaxos

For clarity of exposition, we first introduce a version of Majority Commit BPaxos that can
sometimes deadlock. Later, we modify the protocol to eliminate the possibility of deadlock.

Majority Commit BPaxos is identical to Fast BPaxos except for the following two mod-
ifications. First, every Fast Paxos acceptor maintains a conflict graph in exactly the same
way as the replicas do. That is, when an acceptor learns that a vertex vx has been chosen
with command x and dependencies deps(vx)), it adds vx to its conflict graph with command
x and with edges to every vertex in deps(vx). We will see momentarily that whenever a
Majority Commit BPaxos proposer sends a Phase2A message to the acceptors with value
v = (x, deps(vx)−P), the proposer also sends P and all of the commands and dependencies
chosen in in the vertices in P . Thus, when an acceptor receives a Phase2A message, it
updates its conflict graph with the values chosen in P . Second and more substantially, a
proposer executes a significantly more complex recovery procedure. This is shown in Algo-
rithm 6.

As with Fast BPaxos, if k = −1 (line 3), if k > 1 (line 6), or if k = 0 and there does not
exist maj(f + 1) matching values (line 29), recovery is straightforward.

Otherwise, there does exist a v′ = (x, deps(vx)) voted for by at least maj(f+1) acceptors in
round 0 (line 9). As with Fast BPaxos, v′ may have been chosen in round 0, so the proposer
must propose v′ in order to maintain the consensus invariant. But deps(vx) may not be
the union of dependencies computed by f + 1 dependency service nodes, so the proposer
is simultaneously forced not to propose v′ in order to maintain the dependency invariant.
Unanimous BPaxos avoided this tension by increasing the size of fast Phase 2 quorums.
Majority Commit BPaxos instead resolves the tension by performing a more sophisticated
recovery procedure. In particular, the proposer does a bit of detective work to conclude
either that v′ was definitely not chosen in round 0 (in which case, the proposer can propose a
different value) or that deps(vx) happens to be a pruned set of dependencies (in which case,
proposer is safe to propose v′).

On line 11 and line 12, the proposer sends vx and x to the dependency service nodes
co-located with the acceptors in A (i.e. the f + 1 acceptors from which the proposer received
Phase1B messages). The proposer then computes the union of the returned dependen-
cies, called deps(vx)A. Note that this communication can be piggybacked on the Phase1A
messages that the proposer previously sent to avoid the extra round trip of communication.
Also note that deps(vx) was returned by maj(f + 1) nodes in A, so deps(vx) is a subset of
deps(vx)A.

Next, the proposer enters a for loop in an attempt to prune deps(vx)A until it is equal to
deps(vx). That is, the proposer attempts to construct a set of vertices P such that deps(vx) =
deps(vx)A − P is a set of pruned dependencies. For every, vy ∈ deps(vx)A − deps(vx), the
proposer first recovers vy if it does not know if a value has been chosen in vertex vy (line 17).
After recovering vy, assume the proposer learns that vy is chosen with command y and
dependencies deps(vy). If y = noop or if vx ∈ deps(vy), then the proposer can safely prune
vy from deps(vx)A, so it adds vy to P (line 19).

CHAPTER 5. BIPARTISAN PAXOS 93

Otherwise, the proposer contacts some quorum A′ of acceptors (line 21). If any acceptor
aj in A′ knows that vertex vx has already been chosen, then the proposer can abort the
recovery of vx and retrieve the chosen value directly from aj (line 23). Otherwise, the
proposer concludes that no value was chosen in vx in round 0 and is free to propose any
value that maintains the dependency invariant (line 25). We will explain momentarily why
the proposer is able to make such a conclusion. It is not obvious. Note that the proposer
can piggyback its communication with A′ on its Phase1A messages.

Finally, if the proposer exits the for loop, then it has successfully pruned deps(vx)A into
deps(vx)A−P = deps(vx) and can safely propose it without violating the consensus or pruned
dependency invariant (line 28). As described above, when the proposer sends a Phase2A
message with value v′, it also includes the values chosen in every vertex in P .

We now return to line 25 and explain how the proposer is able to conclude that v′ was not
chosen in round 0. On line 25, the proposer has already concluded that vy was not chosen with
noop and that vx /∈ deps(vy). By the pruned dependency invariant, deps(vy) = deps(vy)D−P ′
is a set of pruned dependencies where deps(vy)D is a set of dependencies computed by a set
D of f + 1 dependency service nodes. Because vx /∈ deps(vy)D − P ′, either vx /∈ deps(vy)D
or vx ∈ P ′.

vx cannot be in P ′ because if vy were chosen with dependencies deps(vy)D−P ′, then some
quorum of acceptors would have received P ′ and learned that vx was chosen. But, when the
proposer contacted the quorum A′ of acceptors, none knew that vx was chosen, and any two
quorums intersect.

Thus, vx /∈ deps(vy)D. Thus, every dependency service node in D processed instance vy
before instance vx. If not, then a dependency service node in D would have computed vx as
a dependency of vy. However, if every dependency service node in D processed vy before vx,
then there cannot exist a fast Phase 2 quorum of dependency service nodes that processed
vx before vy. In this case, v′ = (x, deps(vx)) could not have been chosen in round 0 because
it necessitates a fast Phase 2 quorum of dependency service nodes processing vx before vy
because vy /∈ deps(vx).

Ensuring Liveness

Majority Commit BPaxos is safe, but it is not very live. There are certain failure-free
situations in which Majority Commit BPaxos can permanently deadlock. The reason for this
is line 17 in which a proposer defers the recovery of one vertex for the recovery of another.
There exist executions of Majority Commit BPaxos with a chain of vertices v1, . . . , vm where
the recovery of every vertex vi depends on the recovery of vertex vi+1 mod m.

We now modify Majority Commit BPaxos to prevent deadlock. First, we change the
condition under which a value is considered chosen on the fast path. A proposer considers
a value v = (x, deps(vx)) chosen on the fast path if a fast Phase 2 quorum F of acceptors
voted for v in round 0 and for every vertex vy ∈ deps(vx), there exists a quorum A ⊆ F
of f + 1 acceptors that knew vy was chosen at the time of voting for v. Second, when an
acceptor ai sends a Phase2B vote in round 0 for value v = (x, deps(vx)), ai also includes

CHAPTER 5. BIPARTISAN PAXOS 94

the subset of vertices in deps(vx) that ai knows are chosen, as well as the values chosen in
these vertices. Third, proposers execute Algorithm 6 but with the lines of code shown in
Algorithm 7 inserted after line 10.

We now explain Algorithm 7. On line 11, the proposer computes the subset M ⊆ A of
acceptors that voted for v′ in round 0. On line 12, the proposer determines whether there
exists some instance vy ∈ deps(vx) such that no acceptor in M knows that vy is chosen. If
such an vy exists, then v′ was not chosen in round 0. To see why, assume for contradiction
that v′ was chosen in round 0. Then, there exists some fast Phase 2 quorum F of acceptors
that voted for v′ in round 0, and there exists some quorum A′ ⊆ F of acceptors that know
vy has been chosen. However, A and A′ intersect, but no acceptor in A both voted for v′ in
round 0 and knows that vy was chosen. This is a contradiction. Thus, the proposer is free
to propose any value satisfying the dependency invariant.

Next, it’s possible that the proposer was previously recovering instance vz with value
(z, deps(vz)) and executed line 17 of Algorithm 6, deferring the recovery of instance vz until
after the recovery of instance vx. If so and if vz ∈ deps(vx), then some acceptor aj ∈M knows
that vz is chosen. Thus, the proposer can abort the recovery of instance vz and retrieve the
chosen value directly from aj (line 16). Otherwise, vz /∈ deps(vx). In this case, no value was
chosen in round 0 of instance vz, so the proposer is free to propose any value satisfying the
pruned dependency invariant in instance vz. Here’s why. vz /∈ deps(vx), so every dependency
service node co-located with an acceptor in M processed vx before vz. |M | ≥ maj(f + 1), so
there strictly fewer than f +maj(f + 1) remaining dependency service nodes that could have
processed vz before vx (see 6WrKTnQuDWbJhuW2n/elg.smrof//:sptth). If the proposer
was recovering instance vz but deferred to the recovery of instance vx, then vx /∈ deps(vz).
In order for vz to have been chosen in round 0 with vx /∈ deps(vy), it requires that at least
f + maj(f) dependency service nodes processed vz before vx, which we just concluded is
impossible. Thus, vz was not chosen in round 0.

Majority Commit BPaxos is deadlock free for the following reason. If a proposer is
recovering instance vz and defers to the recovery of instance vx, then either the proposer will
recover vx using line 12 of Algorithm 7 or the proposer will recover vz using line 16 or line 18
of Algorithm 7. In either case, any potential deadlock is avoided.

EPaxos and Caesar

EPaxos [62] and Caesar [6] are two generalized multi-leader protocols that implement tension
resolution. EPaxos is very similar Majority Commit BPaxos with the Basic EPaxos opti-
mization from Section 5.5 used to reduce fast Phase 2 quorum sizes by 1. Majority Commit
BPaxos and EPaxos both prune dependencies and perform a recursive recovery procedure
with extra machinery to avoid deadlocks. Caesar improves on EPaxos in two dimensions.
First, much like Atlas, a Caesar proposer does not require that a fast Phase 2 quorum of
acceptors vote for the exact same value in order to take the fast path. Second, Caesar avoids
a recursive recovery procedure. Caesar accomplishes this using a combination of logical
timestamps and carefully placed barriers in the protocol.

CHAPTER 5. BIPARTISAN PAXOS 95

5.7 Related Work

A Family of Leaderless Generalized Consensus Algorithms In [55], Losa et al.
propose a generic generalized consensus algorithm that is structured as the composition of
a generic dependency-set algorithm and a generic map-agreement algorithm. The invariants
of the dependency-set and map-agreement algorithm are very similar to the consensus and
dependency invariants, and the example implementations of these two algorithms in [55] form
an algorithm similar to Simple BPaxos. Like Simple BPaxos, the example implementations
are simple but unoptimized. Our thesis builds on this body of work by introducing Fast
BPaxos, Unanimous BPaxos, and Majority Commit BPaxos. We also identify the tension
between the two invariants as the key distinguishing feature of most protocols and taxonimize
existing protocols by how they handle the tension. The protocols we develop and their
classification based on how they handle tension brings clarity to the existing multi-leader
generalized protocols. The example implementation from [55] does not correspond directly
to an existing protocol.

Generalized Paxos and GPaxos Generalized Paxos [42] and GPaxos [81] are general-
ized protocols but are not fully multi-leader. Clients send commands directly to acceptors,
behaving very much like a leader. However, in the face of collisions, Generalized Paxos
and GPaxos rely on a single leader to resolve the collision. This single leader becomes a
bottleneck in high contention workloads and prevents scaling.

SpecPaxos, NOPaxos, CURP SpecPaxos [71] and NOPaxos [51] combine speculative
execution and ideas from Fast Paxos in order to reduce commit delay as low as two network
delays. CURP [69] further introduces generalization, allowing commuting commands to be
executed in any order. These protocols represent yet another point in the design space of
state machine replication protocols. As the commit delay decreases, the complexity of the
protocols generally increases. We think this is an exciting avenue of research and hope that
an improved understanding of generalized multi-leader protocols can accelerate research in
this direction.

Mencius Mencius [57] is a multi-leader, non-generalized protocol in which MultiPaxos
log entries are round-robin partitioned among a set of leaders. Because Mencius is not
generalized, a log entry cannot be executed until all previous log entries have been executed.
To ensure log entries are being filled in appropriately, Mencius leaders perform all-to-all
communication between each other. Mencius is significantly less complex that generalized
multi-leader protocols like EPaxos, Caesar, and Atlas. This demonstrates that much of the
complexity of these protocols come from being generalized rather than being multi-leader,
though both play a role.

CHAPTER 5. BIPARTISAN PAXOS 96

Chain Replication Chain Replication [88] is a state machine replication protocol in which
the set of state machine replicas are arranged in a totally ordered chain. Writes are prop-
agated through the chain from head to tail, and reads are serviced exclusively by the tail.
Chain Replication has high throughput compared to MultiPaxos because load is more evenly
distributed between the replicas. This shows that the leader bottleneck can be addressed
without necessarily having multiple leaders.

Scalog Scalog [20] is a replicated shared log protocol that achieves high throughput using
a sophisticated form of batching. A client does not send values directly to a centralized
leader for sequencing in the log. Instead, the client sends its values to one of a number of
batchers. Periodically, the batchers’ batches are sealed and assigned an id. This id is then
sent to a state machine replication protocol, like MultiPaxos, for sequencing. Like Mencius,
Scalog represents a way to avoid a leader bottleneck without needing multiple leaders.

PQR, Harmonia, and CRAQ PQR [13], Harmonia [98], and CRAQ [85] all implement
optimizations so that reads (i.e. state machine commands that do not modify the state of the
state machine) can be executed without contacting a leader, while writes are still processed
by the leader. An interesting direction of future work could explore whether or not these
read optimizations could be applied to generalized multi-leader protocols.

number of
leaders?

generalized? generalized?

commit
time?

tension
handling?

MultiPaxos [45]
Raft [68]
VRR [53]
Chain Replication [88]

Generalized Paxos [42]
GPaxos [81]

Mencius [57]

Simple BPaxos (§5.2)

Unanimous BPaxos (§5.5)
Basic EPaxos [62]
Atlas [21]

Maj. Commit BPaxos (§5.6)
EPaxos [60]
Caesar [6]

one many

no yes no yes

> 4 ≤ 4

avoiding resolving

Figure 5.13: A non-exhaustive taxonomy of state machine replication protocols. The gener-
alized multi-leader protocols that we discuss in this chapter are shaded green.

CHAPTER 5. BIPARTISAN PAXOS 97

5.8 Conclusion

In this chapter, we explained, analyzed, and taxonomized generalized multi-leader state
machine replication protocols. Our taxonomy of state machine replication protocols is sum-
marized in Figure 5.13, and a summary of the generalized multi-leader protocols that we
discuss in this chapter is given in Table 5.2.

CHAPTER 5. BIPARTISAN PAXOS 98

Algorithm 6 Majority Commit BPaxos Proposer. Pseudocode for initiating recovery and
handling Phase2B messages is ommitted because it is identical to the pseudocode in Algo-
rithm 3.
State: a value v, initially null
State: a round i, initially −1
1: upon receiving Phase1B〈i, vr, vv〉 from f + 1 acceptors A do
2: k ← the largest vr in any Phase1B〈i, vr, vv〉
3: if k = −1 then
4: v ← an arbitrary value satisfying the dependency invariant
5: send Phase2A〈i, v〉 to the acceptors
6: else if k > 0 then
7: v ← the corresponding vv in round k
8: send Phase2A〈i, v〉 to the acceptors
9: else if there are maj(f + 1) Phase1B〈i, 0, v′〉 messages for some value v′ then
10: (x,deps(vx))← v′

11: send vx and x to the dependency service nodes co-located with the acceptors in A
12: deps(vx)A ← the union of the dependencies returned by these dependency service nodes

13:

14: P ← ∅
15: for vy ∈ deps(vx)A − deps(vx) do
16: if we don’t know if vy is chosen then
17: recover vy, blocking until vy is recovered

18: if vy chosen with noop or with vx ∈ deps(vy) then
19: P ← P ∪ {vy}
20: else
21: contact a quorum A′ of acceptors
22: if an acceptor in A′ knows vx is chosen then
23: abort recovery; vx has already been chosen
24: else
25: v ← an arbitrary value satisfying the dependency invariant
26: send Phase2A〈i, v〉 to the acceptors

27: v ← v′

28: send Phase2A〈i, v〉 and the values chosen in P to at least f + 1 acceptors
29: else
30: v ← an arbitrary value satisfying the dependency invariant
31: send Phase2A〈i, v〉 to the acceptors

CHAPTER 5. BIPARTISAN PAXOS 99

Algorithm 7 Majority Commit BPaxos proposer modification to prevent deadlock.

11: M ← the set of acceptors in A that voted for v′ in round 0
12: if ∃vy ∈ deps(vx) such that no acceptor in M knows

that vy is chosen then
13: send any value satisfying the dependency invariant

14: if the proposer was recovering vz and deferred to the
recovery of vx then

15: if vz ∈ deps(vx) then
16: abort recovery of vz; vz has already been chosen
17: else
18: in vertex vz, send any value satisfying the

dependency invariant

CHAPTER 5. BIPARTISAN PAXOS 100

T
ab

le
5.

2:
A

su
m

m
ar

y
of

ge
n
er

al
iz

ed
m

u
lt

i-
le

ad
er

st
at

e
m

ac
h
in

e
re

p
li
ca

ti
on

p
ro

to
co

ls
.

C
o
m
m
it

T
en

si
on

N
u
m
b
er

of
P
h
as
e
1

C
la
ss
ic

P
h
as
e
2

F
as
t
P
h
a
se

2
P
ro
to
co
l

S
af
e

T
im

e
H
an

d
li
n
g

N
o
d
es

Q
u
or
u
m

S
iz
e

Q
u
o
ru
m

S
iz
e

Q
u
o
ru
m

S
iz
e

S
im

p
le

B
P
ax

o
s
(§
5
.2
)

ye
s

7
N
/A

2
f
+
1

f
+
1

f
+
1

N
/
A

F
a
st

B
P
a
x
os

(§
5
.4
)

n
o

4
N
/A

2f
+
1

f
+
1

f
+
1

f
+

m
aj
(f

+
1
)

U
n
an

im
o
u
s
B
P
a
x
o
s
(§
5.
5)

ye
s

4
av
oi
d
an

ce
2f

+
1

f
+
1

f
+
1

2
f
+
1

B
a
si
c
E
P
ax

os
[6
2
]

ye
s

4
av
oi
d
an

ce
2
f
+
1

f
+
1

f
+
1

2
f

A
tl
a
s
[2
1
]

ye
s

4
av
oi
d
an

ce
n

f
+
1

n
−
f

bn 2
c+

f
M
a
j.

C
o
m
m
it
B
P
a
x
o
s
(§
5
.6
)

ye
s

4
re
so
lu
ti
on

2f
+
1

f
+
1

f
+
1

f
+

m
aj
(f

+
1
)

E
P
ax

o
s
[6
0]

y
es

4
re
so
lu
ti
on

2f
+
1

f
+
1

f
+
1

f
+

m
aj
(f

+
1
)
−
1

C
a
es
a
r
[6
]

ye
s

4
re
so
lu
ti
on

2
f
+
1

f
+
1

f
+
1

f
+

m
aj
(f

+
1
)

101

Chapter 6

Matchmaker Paxos

In Chapter 3, we saw how to use compartmentalization to make state machine replication
protocols faster, and in Chapter 5 we saw how to use compartmentalization to make state
machine replication protocols easier to understand. Now, we see how to use compartmental-
ization to implement new features in a state machine replication protocol. Specifically, we
design a reconfiguration protocol.

Over time, machines fail, and if too many machines in a state machine replication protocol
fail, the protocol grinds to a halt. Thus, state machine replication protocols have to replace
failed machines with new machines as the protocol runs, a process known as reconfiguration.

Reconfiguration is an essential component of state machine replication. It is not an
optimization or an afterthought. Without a reconfiguration protocol in place, a state ma-
chine replication protocol will inevitably stop working. Despite this, reconfiguration has
largely been neglected by current academic literature. Researchers have invented dozens of
state machine replication protocols, yet many papers either discuss reconfiguration briefly
with no evaluation [62, 71, 74, 73], propose theoretically safe but inefficient reconfiguration
protocols [42, 53], or do not discuss reconfiguration at all [41, 57, 58, 10, 6].

Ignoring reconfiguration has never been ideal, but we have largely been able to do so
without consequence. Historically, state machine replication protocols were deployed on a
fixed set of machines, and reconfiguration was used only to replace failed machines with new
machines – an infrequent occurrence. This made it easy to ignore reconfiguration. Recently
however, systems have become increasingly elastic, and the need for frequent reconfigura-
tion has grown. These elastic systems do not just perform reconfigurations reactively when
machines fail; they reconfigure proactively. For example, cloud databases can proactively re-
quest more resources to handle workload spikes, and orchestration tools like Kubernetes [38]
are making it easier to build these types of elastic systems. Similarly, in environments with
short-lived cloud instances—as with serverless computing and spot instances—and in mobile
edge and Internet of Things settings, protocols must adapt to a changing set of machines
much more frequently. This frequent need for reconfiguration makes it hard to ignore recon-
figuration any longer.

In this chapter, we present a reconfigurable consensus protocol and a reconfigurable

CHAPTER 6. MATCHMAKER PAXOS 102

state machine replication protocol: Matchmaker Paxos and Matchmaker MultiPaxos. In a
nutshell, our protocols work by leveraging two key compartmentalizations.

• The first is to decouple reconfiguration from the standard processing path. Many repli-
cation protocols [47, 67, 62, 53] have machines that are responsible for both processing
commands and for orchestrating reconfigurations. By contrast, Matchmaker Paxos
introduces a set of distinguished matchmaker machines that are solely responsible for
managing reconfigurations and operate off of the critical path. These matchmakers act
as a source of truth; they always know the current configuration.

Decoupling reconfiguration from the standard processing path has a number of ad-
vantages. For example, because the matchmakers are a separate entity that is off the
critical path, we can reconfigure them without impacting normal case performance at
all. Similarly, the matchmakers are often idle and experience very light load even in
the worst case. Thus, the matchmakers can be deployed on very inexpensive machines.
The decoupling also allows us to understand the standard processing path and the
reconfiguration path in isolation and prove them correct separately.

• The second design point is to reconfigure across rounds, a technique known as vertical
reconfiguration [49] and originally used by Vertical Paxos. With vertical reconfigura-
tion, every round of consensus can execute using a different configuration. In other
words, we decouple the configurations used across rounds. This is in contrast to the
other commonly used technique of horizontal reconfiguration [87] in which the config-
urations used across log entries are decoupled.

At the beginning of every round, the Paxos leader queries the matchmakers to discover
the older configurations that were used in previous rounds, and it simultaneously sends the
matchmakers the configuration it intends to use in the current round. In this way, the
matchmakers act as a registry for configurations. Leaders simultaneously query the past and
update the present. This matchmaking phase requires a single round trip of communication
and happens rarely. We also introduce a number of novel protocol optimizations to perform
the matchmaking completely off the critical path to avoid degrading performance. Moreover,
the protocol employs a garbage collection protocol to delete old configurations stored on the
matchmakers. Our protocols have the following desirable properties.

• Little to No Performance Degradation. Matchmaker MultiPaxos can perform a
reconfiguration without significantly degrading the throughput or latency of processing
client commands. For example, we show that reconfiguration has less than a 4% effect
on the median of throughput and latency measurements (Section 6.5). Note that
Matchmaker MultiPaxos is not the first protocol to achieve this [54].

• Quick Reconfiguration. Matchmaker MultiPaxos can perform a reconfiguration
quickly. Reconfiguring to a new set of machines takes one round trip of communication
in the normal case (Section 6.2). Empirically, this requires only a few milliseconds

CHAPTER 6. MATCHMAKER PAXOS 103

within a single data center (Section 6.5). It takes slightly longer to shut down the
old machines, but empirically this takes only five milliseconds within a data center
(Section 6.5).

• Generality Replication protocols based on classical MultiPaxos assume a totally or-
dered log of chosen commands and reconfigure across log entries, known as horizon-
tal reconfiguration. However, many state machine replication protocols, like those of
Chapter 5, do not replicate a log [42, 62, 6, 74, 97, 82]. These protocols cannot use hor-
izontal reconfiguration. However, while none of these protocols have logs, they all have
rounds and can implement vertical reconfiguration. This allows Matchmaker Paxos
and Matchmaker MultiPaxos to serve as a foundation on top of which reconfiguration
protocols can be built for these other non-log based protocols.

• Theoretical Insights. Matchmaker Paxos generalizes Vertical Paxos [49], it is the
first protocol to achieve the theoretical lower bound on Fast Paxos [41] quorum sizes,
and it corrects errors in DPaxos [65] (Section 6.4).

• Proven Safe. We describe Matchmaker Paxos and Matchmaker MultiPaxos precisely
and prove that both are safe (Sections 6.1, 6.2, 6.3). Unfortunately, this is not often
done for all reconfiguration protocols [60, 71, 74, 73].

6.1 Matchmaker Paxos

We now present Matchmaker Paxos. To ease understanding, we first describe a simplified
version of Matchmaker Paxos that is easy to understand but is also naively inefficient. We
then upgrade the protocol to the complete, efficient version by way of a number of optimiza-
tions.

Overview and Intuition

Matchmaker Paxos is largely identical to Paxos. Like Paxos, a Matchmaker Paxos deploy-
ment includes an arbitrary number of clients, a set of at least f+1 proposers, and some set of
acceptors, as illustrated in Figure 6.1. Paxos assumes that a single, fixed read-write quorum
system, which we’ll call a configuration throughout the chapter, of acceptors is used for
every round. The big difference between Paxos and Matchmaker Paxos is that Matchmaker
Paxos allows every round to have a different configuration of acceptors. Round 0 may use
some configuration C0, while round 1 may use some completely different configuration C1.
This idea was first introduced by Vertical Paxos [49].

Recall from Section 2.2 that a Paxos proposer in round i executes Phase 1 in order to
(1) learn of any value that may have been chosen in a round less than i and (2) prevent
any new values from being chosen in any round less than i. To do so, the proposer contacts
the fixed set of acceptors. A Matchmaker Paxos proposer must also execute Phase 1 to

CHAPTER 6. MATCHMAKER PAXOS 104

c1

c2

c3

p1

p2

m1
m2

m3

a1

a2

a3

b1
b2

b3

Clients
f + 1

Proposers
2f + 1

Matchmakers

C0 Acceptors

C1 Acceptors

1

8

2
23

3

4

4
5

5

6
6

7
7

2/3 Matchmaking Phase

4/5 Phase 1 6/7 Phase 2

Figure 6.1: Matchmaker Paxos (f = 1).

establish that these two properties hold. The difference is that there is no longer a single
fixed configuration of acceptors to contact. Instead, a Matchmaker Paxos proposer has to
contact all of the configurations used in rounds less than i.

However, every round can use a different configuration of acceptors, so how does the
proposer of round i know which acceptors to contact in Phase 1? To resolve this question, a
Matchmaker Paxos deployment also includes a set of 2f + 1 matchmakers. The protocol
executes as follows, as illustrated in Figure 6.1.

(1) A client proposes a value x by sending it to a proposer (p1 in Figure 6.1).

(2,3) When a proposer receives a value x, it begins executing the protocol in some round
i. It selects a configuration Ci and sends Ci to the matchmakers. The matchmakers
reply with the configurations used in previous rounds. We call this the Matchmaking
phase. In Figure 6.1, the proposer executes in round 1 and selects configuration C1

consisting of acceptors b1, b2, and b3. The matchmakers reply with the configuration
C0 consisting of acceptors a1, a2, and a3.

CHAPTER 6. MATCHMAKER PAXOS 105

(4,5) The proposer then executes Phase 1 of Paxos with the prior configurations that it
received during the Matchmaking Phase. In Figure 6.1, the proposer executes Phase
1 with configuration C0.

(6,7) The proposer then executes Phase 2 with the configuration Ci to get the value x chosen.
In Figure 6.1, the proposer executes Phase 2 with configuration C1.

(8) Finally, the proposer informs the client that x was chosen.

At first, the extra round trip of communication with the matchmakers and the large
number of configurations in Phase 1 make Matchmaker Paxos look slow. This is for ease of
explanation. Later, we will eliminate these costs (Section 6.1 – Section 6.1).

Details

Every matchmaker maintains a log L of configurations indexed by round. That is, L[i]
stores the configuration of round i. When a proposer receives a request x from a client and
begins executing round i, it first selects a configuration Ci to use in round i. It then sends
a MatchA〈i, Ci〉 message to all of the matchmakers.

When a matchmaker receives a MatchA〈i, Ci〉 message, it checks to see if it had pre-
viously received a MatchA〈j, Cj〉 message for some round j ≥ i. If so, the matchmaker
ignores the MatchA〈i, Ci〉 message. Otherwise, it inserts Ci in log entry i and computes
the set Hi of previous configurations in the log: Hi = {(j, Cj) | j < i, Cj ∈ L}. It then
replies to the proposer with a MatchB〈i,Hi〉 message. Matchmaker pseudocode is given in
Algorithm 8. An example execution of a matchmaker is illustrated in Figure 6.2.

0

1

2

3

(a)

C00

1

2

3

(b)

C00

1

C22

3

(c)

C00

1

C22

C33

(d)

Figure 6.2: A matchmaker’s log over time. (a) Initially, the matchmaker’s log is empty. (b)
Then, the matchmaker receives MatchA〈0, C0〉. It inserts C0 in log entry 0 and returns
MatchB〈0, ∅〉 since the log does not contain any configuration in any round less than 0.
(c) The matchmaker then receives MatchA〈2, C2〉. It inserts C2 in log entry 2 and returns
MatchB〈2, {(0, C0)}〉. (d) It then receives MatchA〈3, C3〉, inserts C3 in log entry 3, and
returns MatchB〈3, {(0, C0), (2, C2)}〉. At this point, if the matchmaker were to receive
MatchA〈1, C1〉, it would ignore it.

CHAPTER 6. MATCHMAKER PAXOS 106

Algorithm 8 Matchmaker Pseudocode

State: a log L indexed by round, initially empty
1: upon receiving MatchA〈i, Ci〉 from proposer p do
2: if ∃ a configuration Cj in round j ≥ i in L then
3: ignore the MatchA〈i, Ci〉 message
4: else
5: Hi ← {(j, Cj) |Cj ∈ L}
6: L[i]← Ci
7: send MatchB〈i,Hi〉 to p

When the proposer in round i receives MatchB〈i,H1
i 〉, . . ., MatchB〈i,Hf+1

i 〉 from
f + 1 matchmakers, it computes Hi = ∪f+1

j=1H
j
i . For example, with f = 1 and i = 2, if the

proposer in round 2 receives MatchB〈2, {(0, C0)}〉 and MatchB〈2, {(1, C1)}〉, it computes
H2 = {(0, C0), (1, C1)}. Note that every round is statically assigned to a single proposer
and that a proposer selects a single configuration for a round, so if two matchmakers return
configurations for the same round, they are guaranteed to be the same.

The proposer then ends the Matchmaking phase and begins Phase 1. It sends Phase1A
messages to every acceptor in every configuration in Hi and waits to receive Phase1B
messages from a Phase 1 quorum from every configuration. Using the previous example, the
proposer sends Phase1A messages to every acceptor in C0 and C1 and waits for Phase1B
messages from a Phase 1 quorum of C0 and a Phase 1 quorum of C1. The proposer then
runs Phase 2 with Ci.

Acceptor and proposer pseudocode are shown in Algorithm 9 and Algorithm 10 respec-
tively. To keep things simple, we assume that round numbers are integers, but generalizing
to an arbitrary totally ordered set is straightforward. A Matchmaker Paxos acceptor is iden-
tical to a Paxos acceptor. A Matchmaker Paxos proposer is nearly identical to a Flexible
Paxos proposer with the exception of the Matchmaking phase and the configurations used in
Phase 1 and Phase 2. For clarity of exposition, we omit straightforward details surrounding
re-sending dropped messages and nacking ignored messages.

Algorithm 9 Acceptor Pseudocode

State: the largest seen round r, initially −1
State: the largest round vr voted in, initially −1
State: the value vv voted for in round vr, initially null
1: upon receiving Phase1A〈i〉 from p with i > r do
2: r ← i
3: send Phase1B〈i, vr, vv〉 to p

4: upon receiving Phase2A〈i, x〉 from p with i ≥ r do
5: r, vr, vv ← i, i, x
6: send Phase2B〈i〉 to p

CHAPTER 6. MATCHMAKER PAXOS 107

Algorithm 10 Proposer Pseudocode. Modifications to a Paxos proposer are underlined and
shown in blue.
State: a value x, initially null
State: a round i, initially −1
State: the configuration Ci for round i, initially null
State: the prior configurations Hi for round i, initially null
1: upon receiving value y from a client do
2: i← next largest round owned by this proposer
3: x← y
4: Ci ← an arbitrary configuration
5: send MatchA〈i, Ci〉 to all of the matchmakers

6: upon receiving MatchB〈i,H1
i 〉, . . . ,MatchB〈i,Hf+1

i 〉 from f + 1 matchmakers do

7: Hi ←
⋃f+1
j=1 H

j
i

8: send Phase1A〈i〉 to every acceptor in Hi

9: upon receiving Phase1B〈i,−,−〉 from a Phase 1 quorum from every configuration in
10: Hi do
11: k ← the largest vr in any Phase1B〈i, vr, vv〉
12: if k 6= −1 then
13: x← the corresponding vv in round k

14: send Phase2A〈i, x〉 to every acceptor in Ci

15: upon receiving Phase2B〈i〉 from a Phase 2 quorum do
16: x is chosen, inform the client

Proof of Safety

We now prove that Matchmaker Paxos is safe; i.e. every execution of Matchmaker Paxos
chooses at most one value.

Proof. Our proof is based on the Paxos safety proof in [41]. We prove, for every round i, the
statement P (i): “if a proposer proposes a value v in round i (i.e. sends a Phase2A message
for value v in round i), then no value other than v has been or will be chosen in any round
less than i.” At most one value is ever proposed in a given round, so at most one value is
ever chosen in a given round. Thus, P (i) suffices to prove that Matchmaker Paxos is safe
for the following reason. Assume for contradiction that Matchmaker Paxos chooses distinct
values x and y in rounds j and i with j < i. Some proposer must have proposed y in round
i, so P (i) ensures us that no value other than y could have been chosen in round j. But, x
was chosen, a contradiction.

We prove P (i) by strong induction on i. P (0) is vacuous because there are no rounds
less than 0. For the general case P (i), we assume P (0), . . . , P (i − 1). We perform a case
analysis on the proposer’s pseudocode (Algorithm 10). Either k is −1 or it is not (line 11).

CHAPTER 6. MATCHMAKER PAXOS 108

First, assume it is not. In this case, the proposer proposes x, the value proposed in round
k (line 12). We perform a case analysis on round j to show that no value other than x has
been or will be chosen in any round j < i. That is, we show P (i).

Case 1: j > k. We show that no value has been or will be chosen in round j. Recall
that at the end of the Matchmaking phase, the proposer computed the set Hi of prior
configurations using responses from a set Mi of f + 1 matchmakers. Either Hi contains a
configuration Cj in round j or it doesn’t.

First, suppose it does. Then, the proposer sent Phase1A〈i〉 messages to all of the
acceptors in Cj. A Phase 1 quorum of these acceptors, say Q, all received Phase1A〈i〉
messages and replied with Phase1B messages. Thus, every acceptor in Q set its round r to
i, and in doing so, promised to never vote in any round less than i. Moreover, none of the
acceptors in Q had voted in any round greater than k. So, every acceptor in Q has not voted
and never will vote in round j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q and Q′ necessarily intersect, so
this is impossible. Thus, no value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for round j. Hi is the union of
f + 1 MatchB messages from the f + 1 matchmakers in Mi. Thus, if Hi does not contain
a configuration for round j, then none of the MatchB messages did either. This means
that for every matchmaker m ∈ Mi, when m received MatchA〈i, Ci〉, it did not contain a
configuration for round j in its log. Moreover, by processing the MatchA〈i, Ci〉 request, the
matchmaker is guaranteed to never process a MatchA〈j, Cj〉 request in the future. Thus,
every matchmaker in Mi has not processed a MatchA request in round j and never will.
For a value to be chosen in round j, the proposer executing round j must first receive replies
from f + 1 matchmakers, say Mj, in round j. But, Mi and Mj necessarily intersect, so this
is impossible. Thus, no value has been or will be chosen in round j.

Case 2: j = k. In a given round, at most one value is proposed, let alone chosen. x is
the value proposed in round k, so no other value could be chosen in round k.

Case 3: j < k. By induction, P (k) states that no value other than x has been or will
be chosen in any round less than k. This includes round j.

Finally, if k is −1, then we are in the same situation as in Case 1. No value has or will
be chosen in a round j < i.

Garbage Collection (How)

We’ve discussed how a proposer can change its round and introduce a new configuration.
Now, we explain how to shut down old configurations. At the beginning of round i, a proposer
p executes the Matchmaking phase and computes a set Hi of configurations in rounds less
than i. The proposer then executes Phase 1 with the acceptors in these configurations.
Assume Hi contains a configuration Cj for a round j < i. If we prematurely shut down the
acceptors in Cj, then proposer p will get stuck in Phase 1, waiting for Phase1B messages
from a quorum of nodes that have been shut down. Therefore, we cannot shut down the

CHAPTER 6. MATCHMAKER PAXOS 109

acceptors in a configuration Cj until we are sure that the matchmakers will never again
return Cj during the Matchmaking phase.

Thus, we extend Matchmaker Paxos to allow matchmakers to garbage collect configura-
tions from their logs, ensuring that the garbage collected configurations will not be returned
during any future Matchmaking phase. More concretely, a proposer p can now send a
GarbageA〈i〉 command to the matchmakers informing them to garbage collect all config-
urations in rounds less than i. When a matchmaker receives a GarbageA〈i〉 message, it
deletes log entry L[j] for every round j < i. It then updates a garbage collection watermark
w to the maximum of w and i and sends back a GarbageB〈i〉 message to the proposer.
See Algorithm 11.

Algorithm 11 Matchmaker Pseudocode (with GC). Changes to Algorithm 8 are underlined
and shown in blue.
State: a log L indexed by round, initially empty
State: a garbage collection watermark w, initially 0
1: upon receiving GarbageA〈i〉 from proposer p do
2: delete L[j] for all j < i.
3: w ← max(w, i)
4: send GarbageB〈i〉 to p

5: upon receiving MatchA〈i, Ci〉 from proposer p do
6: if i < w or ∃ Cj in round j ≥ i in L then
7: ignore the MatchA〈i, Ci〉 message
8: else
9: Hi ← {(j, Cj) |Cj ∈ L}
10: L[i]← Ci
11: send MatchB〈i, w,Hi〉 to p

We also update the Matchmaking phase in three ways. First, a matchmaker ignores a
MatchA〈i, Ci〉 message if i has been garbage collected (i.e. if i < w). Second, a matchmaker
returns its garbage collection watermark w in every MatchB that it sends. Third, when a
proposer receives MatchB〈i, w1, H

1
i 〉, . . ., MatchB〈i, wf+1, H

f+1
i 〉 from f+1 matchmakers,

it again computes Hi = ∪f+1
j=1H

j
i . It then computes w = maxf+1

j=1 wj and prunes every
configuration in Hi in a round less than w. In other words, if any of the f + 1 matchmakers
have garbage collected round j, then the proposer also garbage collects round j.

Once a proposer receives GarbageB〈i〉 messages from at least f +1 matchmakers M , it
is guaranteed that all future Matchmaking phases will not include any configuration in any
round less than i. Why? Consider a future Matchmaking phase run with f +1 matchmakers
M ′. M and M ′ intersect, so some matchmaker in the intersection has a garbage collection
watermark at least as large as i. Thus, once a configuration has been garbage collected by
f + 1 matchmakers, we can shut down the acceptors in the configuration.

CHAPTER 6. MATCHMAKER PAXOS 110

Garbage Collection (When)

Once a configuration has been garbage collected, it is safe to shut it down, but when is it
safe to garbage collect a configuration? It is not always safe. For example, if we prematurely
garbage collect configuration Cj in round j, a future proposer in round i > j may not learn
about a value v chosen in round j and then erroneously get a value other than v chosen in
round i. There are three situations in which it is safe for a proposer pi in round i to issue
a GarbageA〈i〉 command. We first explain the three situations and provide intuition on
why they are safe before proving they are safe. Later, we’ll see that all three scenarios are
important for Matchmaker MultiPaxos.

Scenario 1. If the proposer pi gets a value x chosen in round i, then it can safely issue
a GarbageA〈i〉 command. Why? When a proposer pj in round j > i executes Phase 1, it
will learn about the value x and propose x in Phase 2. But first, it must establish that no
value other than x has been or will be chosen in any round less than j. This is P (j) from
the safety proof in Section 6.1. The proposer pi already established this fact for all rounds
less than i (this is P (i)), so any communication with the configurations in these rounds is
redundant. Thus, we can garbage collect them.

Scenario 2. If the proposer pi executes Phase 1 in round i and finds k = −1 (see
Algorithm 10), then it can safely issue a GarbageA〈i〉 command. Recall that if k = −1,
then no value has been or will be chosen in any round less than i. This situation is similar to
Scenario 1. Any future proposer pj in round j > i does not have to redundantly communicate
with the configurations in rounds less than i since pi already established that no value has
been chosen in these rounds.

Scenario 3. If the proposer pi learns that a value x has already been chosen and has
been stored on f + 1 non-acceptor machines (e.g., f + 1 proposers), then the proposer can
safely issue a GarbageA〈i〉 command after it informs a Phase 2 quorum of acceptors in Ci
of this fact. Any future proposer pj in round j > i will contact a Phase 1 quorum of Ci and
encounter at least one acceptor that knows the value x has already been chosen. When this
acceptor informs pj that a value x has already been chosen, pj stops executing the protocol
entirely and simply fetches the value x from one of the f + 1 machines that store the value.
Note that storing the value on f+1 machines ensures that some machine will store the value
despite f failures. The decision of exactly which f + 1 machines is not important.

To prove that these three scenarios are safe, we repeat the safety proof above. The new
bits are shown in blue.

Proof. We prove, for every round i, the statement P (i): “if a proposer proposes a value v
in round i (i.e. sends a Phase2A message for value v in round i), then no value other than
v has been or will be chosen in any round less than i.” At most one value is ever proposed
in a given round, so at most one value is ever chosen in a given round. Thus, P (i) suffices
to prove that Matchmaker Paxos is safe for the following reason. Assume for contradiction
that Matchmaker Paxos chooses distinct values x and y in rounds j and i with j < i. Some

CHAPTER 6. MATCHMAKER PAXOS 111

proposer must have proposed y in round i, so P (i) ensures us that no value other than y
could have been chosen in round j. But, x was chosen, a contradiction.

We prove P (i) by strong induction on i. P (0) is vacuous because there are no rounds
less than 0. For the general case P (i), we assume P (0), . . . , P (i − 1). We perform a case
analysis on the proposer’s pseudocode (Algorithm 10). Either k is −1 or it is not (line 11).
First, assume it is not. In this case, the proposer proposes x, the value proposed in round
k (line 12). We perform a case analysis on round j to show that no value other than x has
been or will be chosen in any round j < i.

Case 1: j > k. We show that no value has been or will be chosen in round j. Recall
that at the end of the Matchmaking phase, the proposer computed the set Hi of prior
configurations using responses from a set Mi of f + 1 matchmakers. Either Hi contains a
configuration Cj in round j or it doesn’t.

First, suppose it does. Then, the proposer sent Phase1A〈i〉 messages to all of the
acceptors in Cj. A Phase 1 quorum of these acceptors, say Q, all received Phase1A〈i〉
messages and replied with Phase1B messages. Thus, every acceptor in Q set its round r to
i, and in doing so, promised to never vote in any round less than i. Moreover, none of the
acceptors in Q had voted in any round greater than k. So, every acceptor in Q has not voted
and never will vote in round j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q and Q′ necessarily intersect, so
this is impossible. Thus, no value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for round j. Either a configuration
Cj was garbage collected from Hi or it wasn’t. First, assume it wasn’t. Then, Hi is the
union of f + 1 MatchB messages from the f + 1 matchmakers in Mi. Thus, if Hi does not
contain a configuration for round j, then none of the MatchB messages did either. This
means that for every matchmaker m ∈ Mi, when m received MatchA〈i, Ci〉, it did not
contain a configuration for round j in its log and never did. Moreover, by processing the
MatchA〈i, Ci〉 request and inserting Ci in log entry i, the matchmaker is guaranteed to
never process a MatchA〈j, Cj〉 request in the future. Thus, every matchmaker in Mi has
not processed a MatchA request in round j and never will. For a value to be chosen in
round j, the proposer executing round j must first receive replies from f + 1 matchmakers,
say Mj, in round j. But, Mi and Mj necessarily intersect, so this is impossible. Thus, no
value has been or will be chosen in round j.

Otherwise, a configuration Cj was garbage collected from Hi. Note that none of the
matchmakers in Mi had received a GarbageA〈i′〉 command for a round i′ > i when
they responded with their MatchB messages. If they had, they would have ignored our
MatchA〈i, Ci〉 message. Let i′ be the largest round j < i′ < i such that a matchmaker in Mi

had received a GarbageA〈i′〉 message before responding to our MatchA〈i, Ci〉 message.
If i′ was garbage collected because of Scenario 1, then k would be at least as large as i′

since we would have intersected the Phase 2 quorum of Ci′ used in round i′ to get a value
chosen. But k < j < i′, a contradiction. If i′ was garbage collected because of Scenario 2,
then we know no value has been or will be chosen in round j. If i′ was garbage collected
because of Scenario 3, then we would have intersected the Phase 2 quorum of Ci′ that knows

CHAPTER 6. MATCHMAKER PAXOS 112

a value was already chosen, and we would have not proposed a value in the first place. But,
we proposed x, a contradiction.

Case 2: j = k. In a given round, at most one value is proposed, let alone chosen. x is
the value proposed in round k, so no other value could be chosen in round k.

Case 3: j < k. By induction, P (k) states that no value other than x has been or will
be chosen in any round less than k. This includes round j.

Finally, if k is −1, then we are in the same situation as in Case 1. No value has or will
be chosen in a round j < i.

Later, we’ll extend this garbage collection protocol to Matchmaker MultiPaxos (Sec-
tion 6.2) and see empirically that matchmakers usually return just a single configuration
(Section 6.5).

Optimizations

We now present a couple of protocol optimizations. First, note that a proposer can proac-
tively run the Matchmaking phase in round i before it hears from a client. This is similar
to proactively executing Phase 1, a standard optimization [29]. We call this optimization
proactive matchmaking.

Second, assume that the proposer in round i has executed the Matchmaking phase and
Phase 1. Through Phase 1, it finds that k = −1 and thus learns that no value has been
chosen in any round less than i (see the safety proof above). Assume that before executing
Phase 2 in round i, the proposer decides to perform a reconfiguration. To perform the
reconfiguration, the proposer stops executing round i and begins executing the next round
i + 11. Typically to perform the reconfiguration, the proposer would have to execute the
Matchmaking phase, Phase 1, and Phase 2 in round i + 1. However, in this case, after
executing the Matchmaking phase in round i+1, the proposer can skip Phase 1 and proceed
directly to Phase 2. Why? The proposer established in round i that no value has been or
will be chosen in any round less than i. Moreover, because it did not run Phase 2 in round
i, it also knows that no value has been or will be chosen in round i. Together, these imply
that no value has been or will be chosen in any round less than i+1. Normally, the proposer
would run Phase 1 in round i+1 to establish this fact, but since it has already established it,
it can instead proceed directly to Phase 2. We call this optimization Phase 1 bypassing.

Phase 1 Bypassing depends on a proposer being the leader of round i and the leader of
the next round i + 1. We can construct a set of rounds such that this is always the case.
Let the set of rounds be the set of lexicographically ordered tuples (r, id, s) where r and s
are both integers and id is a proposer id. A proposer is responsible for all the rounds that
contain its id. With this set of rounds, the proposer p in round (r, p, s) always owns the next
round (r, p, s+ 1). For example given two proposers a and b, we have the following ordering

1Note that given a round i, we denote the next largest round in the total ordered set of rounds i + 1.
We call this the “next round”.

CHAPTER 6. MATCHMAKER PAXOS 113

on rounds:

(0, a, 0) < (0, a, 1) < (0, a, 2) < (0, a, 3) < · · ·
(0, b, 0) < (0, b, 1) < (0, b, 2) < (0, b, 3) < · · ·
(1, a, 0) < (1, a, 1) < (1, a, 2) < (1, a, 3) < · · ·

We assume this round scheme throughout the rest of the chapter. In the next section, we’ll
see that this optimization is essential for implementing Matchmaker MultiPaxos with good
performance. Also note that this optimization is not particular to Matchmaker Paxos. Paxos
and MultiPaxos can both take advantage of this optimization.

6.2 Matchmaker MultiPaxos

MultiPaxos

In Section 2.3, we discussed the normal case execution of Paxos. Now, we elaborate on
MultiPaxos leader changes and the execution of Phase 1. Assume a proposer is elected
leader in some round, say round i. We assume the leader knows that log entries up to and
including log entry kc have already been chosen (e.g., by communicating with the replicas).
We call this log entry the commit index. The leader then runs Phase 1 of Paxos in round i
for every log entry. Note that even though there are an infinite number of log entries larger
than kc, the leader can execute Phase 1 using a finite amount of information. In particular,
the leader sends a single Phase1A〈i〉 message that acts as the Phase1A message for every
log entry larger than kc. Also, an acceptor replies with a Phase1B〈i, vr, vv〉 message only
for log entries in which the acceptor has voted. The infinitely many log entries in which the
acceptor has not yet voted do not yield an explicit Phase1B message.

a

0

b

1

c

kc

d?

3 4

e?

kp 6 7 8

· · ·

Region 1:
(already chosen)

Region 2:
(maybe chosen)

Region 3:
(not chosen)

Figure 6.3: A leader’s knowledge of the log after Phase 1.

The leader’s knowledge about the log after Phase 1 can be characterized by the commit
index kc and a pending index kp with kc ≤ kp, as shown in Figure 6.3. The commit index
and pending index divide the log into three regions: a prefix of chosen log entries (Region
1), a suffix of unchosen log entries (Region 3), and a middle region of pending log entries
(Region 2). More specifically:

CHAPTER 6. MATCHMAKER PAXOS 114

• Region 1 [0, kc]: The leader knows that a command has been chosen in every log entry
less than or equal to kc.

• Region 3 [kp+1,∞): The leader knows that no command has been chosen (in any round
less than i) in any log entry larger than kp.

• Region 2 [kc + 1, kp]: If there is a command that may have already been chosen, then
it appears between kc and kp. Region 2 may also contain some log entries in which the
leader knows (from executing a previous round) that a value has already been chosen, and
it may contain some log entries in which the leader knows (from counting votes in Phase
1) that no value has been chosen (we call these “holes”).

After Phase 1, the leader sends a Phase2A message for every unchosen log entry in
Region 2, proposing a “no-op” command for the holes. Simultaneously, the leader begins
accepting client requests. When a client wants to propose a state machine command, it
sends the command to the leader. The leader assigns log entries to commands in increasing
order, beginning at kp+ 1. It then runs Phase 2 of Paxos to get the command chosen in that
entry in round i. Once the leader learns that a command has been chosen in a given log
entry, it informs the replicas. Replicas insert chosen commands into their logs and execute
the logs in prefix order, sending the results of execution back to the clients.

It is critical to note that a leader performs Phase 1 of Paxos only once per round, not
once per command. In other words, Phase 1 is not performed during normal operation. It
is performed only when the leader fails and a new leader is elected in a larger round, an
uncommon occurrence.

Matchmaker MultiPaxos

We first extend Matchmaker Paxos to Matchmaker MultiPaxos with proactive matchmaking
but without Phase 1 bypassing or garbage collection. We’ll see how to incorporate these two
momentarily. The extension from Matchmaker Paxos to Matchmaker MultiPaxos is analo-
gous to the extension of Paxos to MultiPaxos. Matchmaker MultiPaxos reaches consensus
on a totally ordered log of state machine commands, one log entry at a time, using one
instance of Matchmaker Paxos for every log entry.

More concretely, a Matchmaker MultiPaxos deployment consists of an arbitrary number
of clients, at least f + 1 proposers, a set of 2f + 1 matchmakers, a dynamic set of acceptors
(one configuration per round which can tolerate f failures), and a set of at least f + 1
state machine replicas. We assume, as is standard, that a leader election algorithm is used
to select one of the proposers as a stable leader in some round, say round i. The leader
selects a configuration Ci of acceptors that it will use for every log entry. The mechanism
by which the configuration is chosen is an orthogonal concern. A system administrator, for
example, could send the configuration to the leader, or the configuration could be read from
an external service.

CHAPTER 6. MATCHMAKER PAXOS 115

The leader then executes the Matchmaking phase in the same way as in Matchmaker
Paxos (i.e. it sends MatchA〈i, Ci〉messages to the matchmakers and awaits MatchB〈i,Hi〉
responses). After the Matchmaking phase completes, the leader executes Phase 1 for every
log entry. This is identical to MultiPaxos, except that the leader uses the configurations
returned by the matchmakers rather than assuming a fixed configuration. Note that proac-
tive matchmaking allows the leader to execute the Matchmaking phase and Phase 1 before
receiving any client requests.

The leader then enters Phase 2 and operates exactly as it would in MultiPaxos. It
executes Phase 2 with Ci for the log entries in Region 2. Moreover, when it receives a state
machine command from a client, it assigns the command a log entry in Region 3, runs Phase
2 with the acceptors in Ci, and informs the replicas when the command is chosen. Replicas
execute commands in log order and send the results of executing commands back to the
clients.

c1

c2

c3

p1

p2

m1 m2 m3

a1

a2

a3

b1
b2

b3

1 12
2a

b

b
c

c

d

(a) Matchmaking

c1

c2

c3

p1

p2

m1 m2 m3

a1

a2

a3

b1
b2

b3

3

3
4

4

a

(b) Phase 1

c1

c2

c3

p1

p2

m1 m2 m3

a1

a2

a3

b1
b2

b3

5
5

6 6

a

b

b

c

c

d

(c) Phase 2

Figure 6.4: An example Matchmaker MultiPaxos reconfiguration without Phase 1 bypassing.
The leader p1 reconfigures from the acceptors a1, a2, a3 to the acceptors b1, b2, b3. Client
commands are drawn as gray dashed lines. Note that every subfigure shows one phase of a
reconfiguration using solid colored lines, but the dashed lines show the complete execution of
a client request that runs concurrently with the reconfiguration. For simplicity, we assume
that every proposer also serves as a replica.

Discussion

To reconfigure from some old configuration Cold in round i to some new configuration Cnew,
the Matchmaker MultiPaxos leader of round i simply advances to round i+1 and selects the
new configuration Cnew. The new configuration is active immediately after the Matchmaking
phase, a one round trip delay. Note that the acceptors in the new configuration Cnew do not
have to undergo any sort of warm up or bootstrapping and do not have to contact any other
acceptors in any other configuration.

CHAPTER 6. MATCHMAKER PAXOS 116

The new configuration is active immediately, but it is not safe to deactivate the acceptors
in the old configuration immediately, as we saw in Section 6.1. We extend Matchmaker
Paxos’s garbage collection to Matchmaker MultiPaxos momentarily.

Also note that Matchmaker MultiPaxos does not perform the Matchmaking phase or
Phase 1 on the critical path of normal execution. Similar to how MultiPaxos executes Phase
1 only once per leader change (and not once per command), Matchmaker MultiPaxos runs
the Matchmaking phase and Phase 1 only when a new leader is elected or when a leader
changes its round (e.g., when a leader transitions from round i to round i + 1 as part of
a reconfiguration). In the normal case (i.e. during Phase 2), Matchmaker MultiPaxos and
MultiPaxos are identical, and Matchmaker MultiPaxos does not introduce any overheads. In
the normal case, Matchmaker MultiPaxos deploys a single stable leader that changes rounds
only to perform a reconfiguration. Changing from one leader to another only happens after
a leader has failed.

Furthermore, configurations do not have to be unique across rounds. The leader in round
i is free to re-use a configuration Cj that was used in some round j < i.

Optimization

Ideally, Matchmaker MultiPaxos’ performance would be unaffected by a reconfiguration. The
latency of every client request and the protocol’s overall throughput would remain constant
throughout a reconfiguration. Matchmaker MultiPaxos as we’ve described it so far, however,
does not meet this ideal. During a reconfiguration, a leader must temporarily stop processing
client commands and wait for the reconfiguration to finish before resuming normal operation.

This is illustrated in Figure 6.4. Figure 6.4 shows a leader p1 reconfiguring from a
configuration of acceptors Cold consisting of acceptors a1, a2, and a3 in round i to a new
configuration of acceptors Cnew consisting of acceptors b1, b2, and b3 in round i + 1. While
the leader performs the reconfiguration, clients continue to send state machine commands to
the leader. We consider such a command and perform a case analysis on when the command
arrives at the leader to see whether or not the command has to be stalled.

Case 1: Matchmaking (Figure 6.4a). If the leader receives a command during the
Matchmaking phase, then the leader can process the command as normal in round i using
the acceptors in Cold. Even though the leader is executing the Matchmaking phase in round
i+ 1 and is communicating with the matchmakers, the acceptors in Cold are oblivious to this
and can process commands in Phase 2 in round i.

Case 2: Phase 1 (Figure 6.4b). If the leader receives a command during Phase 1,
then the leader cannot process the command. It must delay the processing of the command
until Phase 1 finishes. Here’s why. Once an acceptor in Cold receives a Phase1A〈i + 1〉
message, it will reject any future commands in rounds less than i+ 1, so the leader is unable
to send the command to Cold. The leader also cannot send the command to Cnew in round
i+ 1 because it has not yet finished executing Phase 1.

Case 3: Phase 2 (Figure 6.4c). If the leader receives a command during Phase 2,
then the leader can send the command to the new acceptors in Cnew in round i+ 1. This is

CHAPTER 6. MATCHMAKER PAXOS 117

the normal case of execution.
In summary, any commands received during Phase 1 of a reconfiguration are delayed.

Fortunately, we can eliminate this problem by using Phase 1 bypassing. Consider a leader
performing a reconfiguration from Ci in round i to Ci+1 in round i + 1. At the end of the
Matchmaking phase and at the beginning of Phase 1 (in round i+1), let k be the largest log
entry that the leader has assigned to a command. That is, all log entries after entry k are
empty. These log entries satisfy the preconditions of Phase 1 bypassing, so it is safe for the
leader to bypass Phase 1 in round i + 1 for these log entries in the following way. When a
leader receives a command after the Matchmaking phase, it assigns the command a log entry
larger than k, skips Phase 1, and executes Phase 2 in round i+ 1 with Cnew immediately.

With this optimization and the round scheme described in Section 6.1, no state machine
commands are delayed. Commands received during the Matchmaking phase or earlier are
chosen in round i by Cold in log entries up to and including k. Commands received during
Phase 1, Phase 2, or later are chosen in round i + 1 by Cnew in log entries k + 1, k + 2,
k + 3, and so on. With this optimization Matchmaker MultiPaxos can be reconfigured with
minimal performance degradation.

Garbage Collection

Recall that the Matchmaker MultiPaxos leader pi in round i uses a single configuration Ci for
every log entry. The leader pi can safely issue a GarbageA〈i〉 command to the matchmakers
once it ensures that every log entry satisfies one of the three scenarios described in Section 6.1.
Recall from Figure 6.3 that at the end of Phase 1 and at the beginning of Phase 2, the log
can be divided into three regions. Each of the three garbage collection scenarios applies to
one of the regions.

Scenario 2 applies to Region 3. These are the log entries for which k = −1. Scenario
1 applies to Region 2, once the leader has successfully chosen commands in all of the log
entries in Region 2. Scenario 3 applies to Region 1 if we make the following adjustments.
First, we deploy 2f + 1 replicas instead of f + 1. Second, the leader ensures that the prefix
of previously chosen log entries is stored on at least f + 1 of the 2f + 1 replicas. Third,
the leader informs a Phase 2 quorum of Ci acceptors that these commands have been stored
on the replicas. Every replica maintains a copy of the log of state machine commands and
cannot discard a command after execution. The log must also be garbage collected over time,
for example, by using snapshots [67]. Note that garbage collecting the log is an orthogonal
(but also complicated) issue from garbage collecting old configurations. It must be done
regardless of reconfigurations and is outside of the scope of this thesis.

In summary, the leader pi of round i executes as follows. It executes the Matchmaking
phase to get the prior configurations Hi. It executes Phase 1 with the configurations in Hi.
It enters Phase 2 and chooses commands in Region 2. It informs a Phase 2 quorum of Ci
acceptors once the commands in Region 1 have been stored on f + 1 replicas. It issues a
GarbageA〈i〉 command to the matchmakers and awaits f + 1 GarbageB〈i〉 responses.
At this point, all previous configurations can be shut down.

CHAPTER 6. MATCHMAKER PAXOS 118

Note that the leader can begin processing state machine commands from clients as soon
as it enters Phase 2. It does not have to stall commands during garbage collection. Note
also that during normal operation, old configurations are garbage collected very quickly. In
Section 6.5, we show that Hi almost always contains a single configuration (i.e. Ci−1).

6.3 Reconfiguring Matchmakers

We’ve discussed how Matchmaker MultiPaxos allows us to reconfigure the set of acceptors.
In this section, we discuss how to reconfigure proposers, replicas, and matchmakers (them-
selves).

Reconfiguring proposers and replicas is straightforward. In fact, Matchmaker MultiPaxos
reconfigures proposers and replicas in exactly the same way as MultiPaxos [87], so we do
not discuss it at length. In short, a proposer can be safely added or removed at any time.
Replicas can also be safely added or removed at any time so long as we ensure that commands
replicated on f + 1 replicas remain replicated on f + 1 replicas. This is a difficult, yet
orthogonal challenge. Existing approaches can be adopted by Matchmaker MultiPaxos [68].
For performance, a newly introduced proposer should contact an existing proposer or replica
to learn about the prefix of already chosen commands, and a newly introduced replica should
copy the log from an existing replica.

Reconfiguring matchmakers is a bit more involved, but still relatively straightforward.
Recall that proposers perform the Matchmaking phase only during a change in round. Thus,
for the vast majority of the time—specifically, when there is a single, stable leader—the
matchmakers are completely idle. This means that the way we reconfigure the matchmakers
has to be safe, but it doesn’t have to be efficient. The matchmakers can be reconfigured at
any time between round changes without any impact on the performance.

Thus, we use the simplest approach to reconfiguration: we shut down the old matchmak-
ers and replace them with new ones, making sure that the new matchmakers’ initial state is
the same as the old matchmakers’ final state. More concretely, we reconfigure from a set Mold

of matchmakers to a new set Mnew as follows. First, a proposer (or any other node) sends a
StopA〈〉 message to the matchmakers in Mold. When a matchmaker mi receives a StopA〈〉
message, it stops processing messages (except for other StopA〈〉 messages) and replies with
StopB〈Li, wi〉 where Li is mi’s log and wi is its garbage collection watermark. When the
proposer receives StopB messages from f + 1 matchmakers, it knows that the matchmakers
have effectively been shut down. It computes w as the maximum of every returned wi. It
computes L as the union of the returned logs, and removes all entries of L that appear in a
round less than w. An example of this log merging is illustrated in Figure 6.5.

The proposer then sends L and w to all of the matchmakers in Mnew. Each matchmaker
adopts these values as its initial state. At this point, the matchmakers in Mnew cannot begin
processing commands yet. Naively, it is possible that two different nodes could simultane-
ously attempt to reconfigure to two disjoint sets of matchmakers, say Mnew and M ′

new.

CHAPTER 6. MATCHMAKER PAXOS 119

C0(w) 0

C11

2

3

C44

L0

×0

×1

C2(w) 2

3

4

L1

×0

C1(w) 1

C22

3

4

L2

×0

×1

C2(w) 2

3

C44

Figure 6.5: An example of merging three matchmaker logs (L0, L1, and L2) during a match-
maker reconfiguration. Garbage collected log entries are shown in red.

To avoid this, every matchmaker in Mold doubles as a Paxos acceptor. A proposer
attempting to reconfigure to Mnew acts as a Paxos proposer and gets the value Mnew chosen
by the matchmakers (which are acting as Paxos acceptors). Once Mnew is chosen, the
proposer notifies the matchmakers in Mnew that the reconfiguration is complete and that
they are free to start processing commands.

If a proposer contacts a stale set of matchmakers (e.g., Mold), the matchmakers inform
the proposer of their successors (e.g., Mnew). This newer set of matchmakers may also be
stale, so the proposer repeatedly polls stale matchmakers until it finds the active set of
matchmakers. In this way, the matchmakers form a chain, with each set of matchmakers
pointing to its successor.

Before a set of matchmakers can be shut down, the identity of its successors must be
persisted in some name service (e.g., DNS). Ideally for performance, the name service would
always point to the active set of matchmakers, but this is not required for safety.

We now prove that Matchmaker MultiPaxos is still safe, even with matchmaker recon-
figurations. The new bits are shown in blue.

Proof. We prove, for every round i, the statement P (i): “if a proposer proposes a value v
in round i (i.e. sends a Phase2A message for value v in round i), then no value other than
v has been or will be chosen in any round less than i.” At most one value is ever proposed
in a given round, so at most one value is ever chosen in a given round. Thus, P (i) suffices
to prove that Matchmaker Paxos is safe for the following reason. Assume for contradiction
that Matchmaker Paxos chooses distinct values x and y in rounds j and i with j < i. Some
proposer must have proposed y in round i, so P (i) ensures us that no value other than y
could have been chosen in round j. But, x was chosen, a contradiction.

We prove P (i) by strong induction on i. P (0) is vacuous because there are no rounds
less than 0. For the general case P (i), we assume P (0), . . . , P (i − 1). We perform a case
analysis on the proposer’s pseudocode (Algorithm 10). Either k is −1 or it is not (line 11).

CHAPTER 6. MATCHMAKER PAXOS 120

First, assume it is not. In this case, the proposer proposes x, the value proposed in round
k (line 12). We perform a case analysis on round j to show that no value other than x has
been or will be chosen in any round j < i.

Case 1: j > k. We show that no value has been or will be chosen in round j. Recall
that at the end of the Matchmaking phase, the proposer computed the set Hi of prior
configurations using responses from a set Mi of f + 1 matchmakers. Either Hi contains a
configuration Cj in round j or it doesn’t.

First, suppose it does. Then, the proposer sent Phase1A〈i〉 messages to all of the
acceptors in Cj. A Phase 1 quorum of these acceptors, say Q, all received Phase1A〈i〉
messages and replied with Phase1B messages. Thus, every acceptor in Q set its round r to
i, and in doing so, promised to never vote in any round less than i. Moreover, none of the
acceptors in Q had voted in any round greater than k. So, every acceptor in Q has not voted
and never will vote in round j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q and Q′ necessarily intersect, so
this is impossible. Thus, no value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for round j. Either a configuration
Cj was garbage collected from Hi or it wasn’t. First, assume it wasn’t. Then, Hi is the
union of f + 1 MatchB messages from the f + 1 matchmakers in Mi. Thus, if Hi does
not contain a configuration for round j, then none of the MatchB messages did either.
This means that for every matchmaker m ∈ Mi, when m received MatchA〈i, Ci〉, it did
not contain a configuration for round j in its log and never did. Moreover, no majority in
any previous set of matchmakers contained a configuration in round j. If any majority did
have a configuration in round j, then all subsequent matchmakers would as well since a set
of matchmakers is initialized from a majority of the previous matchmakers. Moreover, by
processing the MatchA〈i, Ci〉 request and inserting Ci in log entry i, the matchmaker is
guaranteed to never process a MatchA〈j, Cj〉 request in the future. Moreover, no future
set of matchmakers will either. A majority of matchmakers have a configuration in entry i,
so all subsequent configurations will as well. Therefore, they will all reject a configuration
in round j. Thus, every matchmaker in Mi has not processed a MatchA request in round
j and never will. For a value to be chosen in round j, the proposer executing round j must
first receive replies from f+1 matchmakers, say Mj, in round j. But, Mi and Mj necessarily
intersect, so this is impossible. This argument holds for every set of matchmakers. Thus, no
value has been or will be chosen in round j.

Otherwise, a configuration Cj was garbage collected from Hi. Note that none of the
matchmakers in Mi had received a GarbageA〈i′〉 command for a round i′ > i when
they responded with their MatchB messages. If they had, they would have ignored our
MatchA〈i, Ci〉 message. Similarly, none of the matchmakers in Mi were initialized with a
garbage collection watermark w > i. Let i′ be the largest round j < i′ < i that a matchmaker
in Mi garbage collected before responding to our MatchA〈i, Ci〉 message.

If i′ was garbage collected because of Scenario 1, then k would be at least as large as i′

since we would have intersected the Phase 2 quorum of Ci′ used in round i′ to get a value
chosen. But k < j < i′, a contradiction. If i′ was garbage collected because of Scenario 2,

CHAPTER 6. MATCHMAKER PAXOS 121

then we know no value has been or will be chosen in round j. If i′ was garbage collected
because of Scenario 3, then we would have intersected the Phase 2 quorum of Ci′ that knows
a value was already chosen, and we would have not proposed a value in the first place. But,
we proposed x, a contradiction.

Case 2: j = k. In a given round, at most one value is proposed, let alone chosen. x is
the value proposed in round k, so no other value could be chosen in round k.

Case 3: j < k. We can apply the inductive hypothesis to get P (k) which states that no
value other than x has been or will be chosen in any round less than k. This includes round
j, which is exactly what we’re trying to prove.

Finally, if k is −1, then we are in the same situation as in Case 1.

6.4 Theoretical Insights

MultiPaxos To reconfigure from a set of nodes N to a new set of nodes N ′, a MultiPaxos
leader gets the value N ′ chosen in the log at some index i. All commands in the log starting
at position i+α are chosen using the nodes in N ′ instead of the nodes in N , where α is some
configurable parameter. This protocol is called Horizontal MultiPaxos.

a

0

b

1

c

2

N ′

3

d

4

no-
op

5

no-
op

6

e

7

f

8

· · ·

α

chosen with N chosen with N ′

Figure 6.6: A MultiPaxos log during reconfiguration (α = 4).

Matchmaker MultiPaxos has the following advantages over Horizontal MultiPaxos. First,
the core idea behind Horizontal MultiPaxos seems simple, but the protocol has a number
of hidden subtleties [54]. For example, a newly elected Horizontal MultiPaxos leader with
a stale log may not know the latest configuration of nodes. It may not even know which
configuration of nodes to contact to learn the latest configuration of nodes. This makes it
unclear when it is safe to shut down old configurations because a newly elected Horizontal
MultiPaxos leader can be arbitrarily out of date. These subtleties and the many others
described in [54] makes Horizontal MultiPaxos significantly more complicated that it initially
seems. Matchmaker Paxos addresses these subtleties directly. The matchmakers can always
be used to learn the latest configuration, and our garbage collection protocol details exactly
when and how to shut down old configurations safely.

Second, horizontal reconfiguration is not generally applicable. It is fundamentally in-
compatible with replication protocols that do not replicate a log. Moreover, researchers are
finding that avoiding a log can often be advantageous [42, 62, 6, 74, 97, 82, 21]. For example,

CHAPTER 6. MATCHMAKER PAXOS 122

protocols like Generalized Paxos [42], EPaxos [62], Atlas [21], and Caesar [6] arrange com-
mands in a partially ordered graph instead of a totally ordered log to exploit commutativity
between commands. CASPaxos [74] maintains a single value, instead of a log or graph,
for simplicity. Databases like TAPIR [97] avoid ordering transactions in a log for improved
performance, and databases like Meerkat [82] do the same to improve scalability. Even some
protocols with logs cannot use the ideas behind Horizontal MultiPaxos. For example, Raft
cannot safely perform Horizontal MultiPaxos’ reconfiguration [67].

Because these protocols do not replicate logs, they cannot use MultiPaxos’ horizontal
reconfiguration protocol. However, while none of the protocols replicate logs, all of them
have rounds. This means that the protocols can either use Matchmaker Paxos directly, or
at least borrow ideas from Matchmaker Paxos for reconfiguration. For example, we are
developing a protocol called BPaxos that is an EPaxos [62] variant which partially orders
commands into a graph. BPaxos is a modular protocol that uses Paxos as a black box
subroutine. Due to this modularity, we can directly replace Paxos with Matchmaker Paxos
to support reconfiguration. The same idea can also be applied to EPaxos. CASPaxos [74]
is similar to Paxos and can be extended to Matchmaker CASPaxos in the same way we
extended Paxos to Matchmaker Paxos. These are two simple examples, and we don’t claim
that extending Matchmaker Paxos to some of the other more complicated protocols is always
easy. But, the universality of rounds makes Matchmaker Paxos an attractive foundation on
top of which other non-log based protocols can build their own reconfiguration protocols.

One could argue that these other protocols are not used as much in industry, so it’s not
that important for them to have reconfiguration protocols, but we think the causation is in
the reverse direction! Without reconfiguration, these protocols cannot be used in industry.

Third, optimizing Horizontal MultiPaxos is not easy. A MultiPaxos leader can process
at most α unchosen commands at a time. This makes α an important parameter to tune.
If we set α too low, then we limit the protocol’s pipeline parallelism and the throughput
suffers. Note that a small α reduces the normal case throughput of Horizontal MultiPaxos,
not just the throughput during reconfiguration. If we set α too high, then we have to
wait a long time for a reconfiguration to complete. If we are reconfiguring because of a
failed node, then we might have to endure a long reconfiguration with reduced throughput.
Matchmaker MultiPaxos has no α parameter to tune. Note that Horizontal MultiPaxos
can be implemented with an optimization in which we select a very large α and then get
a sequence of α noops in the log to force a quick reconfiguration. This optimization helps
avoid the difficulties of finding a good value of α, but the optimization introduces a new
set of subtleties into the protocol. For example, the leader cannot process client requests
while it is executing Phase 2 for the α noops. The protocol has to implement additional
mechanisms to avoid this one round trip stall.

Foruth, Horizontal MultiPaxos requires a Phase 1 and Phase 2 quorum of acceptors
from an old configuration in order to perform a reconfiguration after a leader failure, but
Matchmaker MultiPaxos only requires a Phase 1 quorum. Some read optimized MultiPaxos
variants perform reads against Phase 1 quorums [13]. These protocols benefit from having
very small Phase 1 quorums and very large Phase 2 quorums, requiring Horizontal Multi-

CHAPTER 6. MATCHMAKER PAXOS 123

Paxos to contact far more nodes that Matchmaker MultiPaxos during a reconfiguration.
Finally, we clarify that if Horizontal MultiPaxos is implemented with all of its subtleties

ironed out, is deployed with a good choice of α, and is run with small Phase 2 quorums, then
it can perform a reconfiguration without performance degradation. In this case, Horizontal
MultiPaxos and Matchmaker MultiPaxos both reconfigure, in some sense, “optimally”.

Vertical Paxos Matchmaker MultiPaxos significantly improves the practicality of Verti-
cal Paxos [49] in a number of ways. First, Vertical Paxos is a consensus protocol, not a
state machine replication protocol, and it’s not easy to extend Vertical Paxos’ garbage col-
lection protocol to a state machine replication protocol. Vertical Paxos garbage collects old
configurations in situations similar to Scenario 1 and Scenario 2 from Section 6.1. It does
not include Scenario 3. Without this, old configurations cannot be garbage collected, which
means that it is never safe to shut down old configurations.

Second, Vertical Paxos requires an external master but does not describe how to imple-
ment the master in an efficient way. We could implement the master using another state
machine replication protocol like MultiPaxos, but this would be both slow and overly com-
plex. Plus, we would have to implement a reconfiguration protocol for the master as well.
Our matchmakers are analogous to the external master but show that such a master does
not require a nested invocation of state machine replication.

Third, Vertical Paxos requires that a proposer execute Phase 1 in order to perform a
reconfiguration. Thus, Vertical Paxos cannot be extended to MultiPaxos without causing
performance degradation during reconfiguration. This is not the case for matchmakers thanks
to Phase 1 bypassing.

Fourth, Vertical Paxos does not describe how proposers learn the configurations used in
previous rounds and instead assumes that configurations are fixed in advance by an oracle.
Matchmaker Paxos shows that this assumption is not necessary, as the matchmakers store
every configuration.

Fast Paxos While Paxos quorums consist of f + 1 out of 2f + 1 acceptors, Fast Paxos
requires larger quorums. Many protocols have reduced Fast Paxos quorum sizes a bit, but to
date, Fast Paxos quorum sizes have remained larger than classic Paxos quorum sizes [62, 21].
Using matchmakers, we can implement Fast Paxos with a fixed set of f + 1 acceptors (and
hence with f + 1-sized quorums). Specifically, we deploy Fast Paxos with f + 1 acceptors,
with a single unanimous Phase 2 quorum, and with singleton Phase 1 quorums.

Fast Paxos proposer pseudocode is given in Algorithm 12. We do not modify the Fast
Paxos acceptor or the matchmakers. For simplicity, we assume that we deploy Fast Paxos
with f + 1 acceptors, with a single unanimous Phase 2 quorum, and with singleton Phase
1 quorums. Generalizing to arbitrary configurations that satisfy Fast Paxos’ quorum in-
tersection requirements is straightforward. Note that Fast Paxos cannot leverage Phase 1
Bypassing. Also note while both MultiPaxos and our Fast Paxos variant both have quorums
of size f + 1, our Fast Paxos variant has a fixed set of f + 1 acceptors, while MultiPaxos can

CHAPTER 6. MATCHMAKER PAXOS 124

Algorithm 12 Fast Paxos Proposer Pseudocode

State: a round i, initially −1
State: the configuration Ci for round i, initially null
State: the prior configurations Hi for round i, initially null
1: i← next largest round owned by this proposer
2: Ci ← an arbitrary configuration
3: send MatchA〈i, Ci〉 to all of the matchmakers
4: upon receiving MatchB〈i,H1

i 〉, . . . ,MatchB〈i,Hf+1
i 〉 from f + 1 matchmakers do

5: Hi ←
⋃f+1
j=1 H

j
i

6: send Phase1A〈i〉 to every acceptor in Hi

7: upon receiving Phase1B〈i,−,−〉 from a Phase 1 quorum from every configuration in
Hi do

8: k ← the largest vr in any Phase1B〈i, vr, vv〉
9: V ← the corresponding vv’s in round k
10: if k = −1 then
11: send Phase2A〈i, any〉 to every acceptor in Ci
12: else if V = {v} then
13: send Phase2A〈i, v〉 to every acceptor in Ci
14: else
15: send Phase2A〈i, any〉 to every acceptor in Ci

choose any set of f + 1 acceptors from all 2f + 1 acceptors. This has some disadvantages in
terms of tail latency and fault tolerance.

We now prove that our modifications to Fast Paxos are safe. For simplicity, we ignore
garbage collection and matchmaker reconfiguration. Introducing those two features and
proving them correct is pretty much identical to what we did with Matchmaker Paxos.

Proof. We prove, for every round i, the statement P (i) which states that if a an acceptor
votes for a value v in round i (i.e. sends a Phase2B message for value v in round i), then no
value other than v has been or will be chosen in any round less than i. P (i) suffices to prove
that Matchmaker Paxos is safe. Why? Well, assume for contradiction that Matchmaker
Paxos chooses distinct values x and y in rounds i and j with i < j. Some acceptor must
have voted for y in round j, so P (j) ensures us that no value other than y could have been
chosen in round i. But, x was chosen, a contradiction.

We prove P (i) by strong induction on i. P (0) is vacuous because there are no rounds
less than 0. For the general case P (i), we assume P (0), . . . , P (i − 1). We perform a case
analysis on the proposer’s pseudocode. Either k is −1 or it is not (line 8). First, assume it
is not. We perform a case analysis on rounds j < i.

Case 1: j > k. Recall that at the end of the Matchmaking phase, the proposer computed
the set Hi of prior configurations using responses from a set M of f+1 matchmakers. Either
Hi contains a configuration Cj in round j or it doesn’t.

CHAPTER 6. MATCHMAKER PAXOS 125

First, suppose it does. Then, the proposer sent Phase1A〈i〉 messages to all of the
acceptors in Cj. A Phase 1 quorum of these acceptors, say Q, all received Phase1A〈i〉
messages and replied with Phase1B messages. Thus, every acceptor in Q set its round r to
i, and in doing so, promised to never vote in any round less than i. Moreover, none of the
acceptors in Q had voted in any round greater than k. So, every acceptor in Q has not voted
and never will vote in round j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q and Q′ necessarily intersect, so
this is impossible. Thus, no value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for round j. Hi is the union of
f + 1 MatchB messages from the f + 1 matchmakers in M . Thus, if Hi does not contain
a configuration for round j, then none of the MatchB messages did either. This means
that for every matchmaker m ∈ M , when m received MatchA〈i, Ci〉, it did not contain a
configuration for round j in its log. Moreover, by processing the MatchA〈i, Ci〉 request and
inserting Ci in log entry i, the matchmaker is guaranteed to never process a MatchA〈j, Cj〉
request in the future. Thus, every matchmaker in M has not processed a MatchA request
in round j and never will. For a value to be chosen in round j, the proposer executing round
j must first receive replies from f + 1 matchmakers, say M ′, in round j. But, M and M ′

necessarily intersect, so this is impossible. Thus, no value has been or will be chosen in
round j.

Case 2: j = k. If V = {v}, then the proposer proposes v. We must prove that no value
other than v has been or will be chosen in round k. For a value to be chosen in round k,
every acceptor must vote for it in round k. Some acceptor voted for v in round k, so it is
the only value with the possibility of receiving a unanimous vote.

Otherwise V contains multiple distinct elements, and the proposer proposes any. We
must prove that no value has been or will be chosen in round k. This is immediate since no
value can receive a unanimous vote in round k, if two different values have received votes in
round k.

Case 3: j < k. If V = {v}, then the proposer proposes v, and we must prove that no
value other than v has been or will be chosen in any round less than k. This is immediate
from P (k). Otherwise, V = {v1, v2, . . .}, and the proposer proposes any. We must prove that
no value has been or will be chosen in any round less than k. P (k) tells us that no value
other than v1 has been or will be chosen in any round less than k. P (k) also tells us that no
value other than v2 has been or will be chosen in any round less than k. Thus, no value has
been or will be chosen in any round less than k.

Finally, if k is −1, then we are in the same situation as in Case 1. No value has been or
will be chosen in any round less than i.

DPaxos DPaxos is a Paxos variant that allows every round to use a different subset of
acceptors from some fixed set of acceptors. Matchmaker Paxos obviates the need for a
fixed set of nodes. DPaxos’ scope is limited to a single instance of consensus, whereas
Matchmaker MultiPaxos shows how to efficiently reconfigure across multiple instances of

CHAPTER 6. MATCHMAKER PAXOS 126

consensus simultaneously. We also discovered that DPaxos’ garbage collection algorithm is
unsafe. Matchmaker MultiPaxos fixes the bug.

Consider a DPaxos deployment with fd = 1, fz = 0, three zones, three nodes per zone,
and delegate quorums. Thus, a replication quorum consists of two nodes in one zone, and a
leader election quorum consists of two nodes in two zones. We name the nodes A through
I. Beside each node, we display its ballot, vote ballot, vote value, and intents [44].

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

Proposer 1 initiates the leader election phase in ballot 0 for value x. It selects {A,B,D,E}
as its leader election quorum and {B,C} as its intent. It sends prepare messages to the
leader election quorum, and the leader election quorum replies. Proposer 1 doesn’t receive
any intents, so it does not expand its leader election quorum. It also learns that no value
has been chosen yet, so it proposes value x to B and C. Both accept the value.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, {0 : {B,C}}

0, 0, x, {0 : {B,C}}

0, 0, x, ∅

0,−1,⊥, {0 : {B,C}}

0,−1,⊥, {0 : {B,C}}

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

−1,−1,⊥, ∅

Next, proposer 2 initiates the leader election phase in ballot 1 for value y. It selects
{E,F,H, I} as its leader election quorum and {G,H} as its intent. It sends prepare messages
to the leader election quorum, and the leader election quorum replies. Proposer 2 receives
the intent {B,C} in ballot 0 from E, so it expands its leader election quorum and sends a
prepare message to C. Proposer 2 learns that value x was chosen in ballot 0, so it ditches y
and proposes x to G and H. G accepts, but the propose message to H is dropped.

CHAPTER 6. MATCHMAKER PAXOS 127

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, {0 : {B,C}}

0, 0, x, {0 : {B,C}}

0, 0, x, {1 : {G,H}}

0,−1,⊥, {0 : {B,C}}

1,−1,⊥, {0 : {B,C}, 1 : {G,H}}

1,−1,⊥, {1 : {G,H}}

1, 1, x, ∅

1,−1,⊥, {1 : {G,H}}

1,−1,⊥, {1 : {G,H}}

Next, garbage collection is run. The garbage collector contacts G and sees that it has
accepted a value in ballot 1. It informs all the nodes to discard intents in ballots less than 1.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, ∅

0, 0, x, ∅

0, 0, x, {1 : {G,H}}

0,−1,⊥, ∅

1,−1,⊥, {1 : {G,H}}

1,−1,⊥, {1 : {G,H}}

1, 1, x, ∅

1,−1,⊥, {1 : {G,H}}

1,−1,⊥, {1 : {G,H}}

Next, proposer 3 initiates the leader election phase in ballot 2 for value z It selects
{D,E,H, I} as its leader election quorum and {E,F} as its intent. It sends prepare messages
to the leader election quorum, and the leader election quorum replies. Proposer 3 receives
intent {G,H} in ballot 1, but has already included H in its leader election quorum, so it
does not send any additional prepares. It learns that no value has been chosen (this is a bug,
x was chosen), so it proposes value z to E and G. Both accept the value, and z is chosen.
This is a bug since x was already chosen.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, ∅

0, 0, x, ∅

0, 0, x, {1 : {G,H}}

2,−1,⊥, ∅2 : {E,F}

2, 2, z, {1 : {G,H}, 2 : {E,F}}

2, 2, z, {1 : {G,H}}

1, 1, x, ∅

2,−1,⊥, {1 : {G,H}, 2 : {E,F}}

2,−1,⊥, {1 : {G,H}, 2 : {E,F}}

CHAPTER 6. MATCHMAKER PAXOS 128

6.5 Evaluation

We now evaluate Matchmaker MultiPaxos. Matchmaker MultiPaxos is implemented in Scala
using the Netty networking library. We deployed Matchmaker MultiPaxos on m5.xlarge AWS
EC2 instances within a single availability zone. We deploy Matchmaker MultiPaxos with
f = 1, f + 1 proposers, 2f + 1 acceptors, 2f + 1 matchmakers, and 2f + 1 replicas. For
simplicity, every node is deployed on its own machine, but in practice, nodes can be physically
co-located. In particular, any two logical roles can be placed on the same machine, so long
as the two roles are not the same. For example, we can co-locate a leader, an acceptor, a
replica, and a matchmaker, but we can’t co-locate two acceptors (without reducing the fault
tolerance of the system). For simplicity, we deploy Matchmaker MultiPaxos with a trivial
no-op state machine in which every state machine command is a one byte no-op. All of our
results generalize to more complex state machines as well (the choice of state machine is
orthogonal to reconfiguration).

Reconfiguration

Experiment Description. We run a benchmark with 1, 4, and 8 clients. Every client
executes in a closed loop. It repeatedly proposes a state machine command, waits to receive
a response, and then immediately proposes another command. Every benchmark runs for 35
seconds. During the first 10 seconds, we perform no reconfigurations. From 10 seconds to 20
seconds, the leader reconfigures the set of acceptors once every second. In practice, we would
reconfigure much less often. This is a worst case stress test for Matchmaker MultiPaxos. For
each of the ten reconfigurations, the leader selects a random set of 2f + 1 acceptors from a
pool of 2× (2f + 1) acceptors. At 25 seconds, we fail one of the acceptors. 5 seconds later,
the leader performs a reconfiguration to replace the failed acceptor. The delay of 5 seconds
is completely arbitrary. The leader can reconfigure sooner if desired.

We also perform this experiment with an implementation of MultiPaxos with horizontal
reconfiguration. As with Matchmaker MultiPaxos, we deploy MultiPaxos with f + 1 pro-
posers, 2f + 1 acceptors, and 2f + 1 replicas. We set α to 8. Because α is equal to the
number of clients, MultiPaxos never stalls because of an insufficiently large α. We do not
implement the noop optimization.

Results. The latency and throughput of Matchmaker MultiPaxos are shown in Fig-
ure 6.7. Throughput and latency are both computed using sliding one second windows.
Median latency is shown using solid lines, while the 95% latency is shown as a shaded re-
gion above the median latency. The black vertical lines denote reconfigurations, and the red
dashed vertical line denotes the acceptor failure.

The medians, interquartile ranges (IQR), and standard deviations of the latency and
throughput (a) during the first 10 seconds and (b) between 10 and 20 seconds are shown
in Table 6.1. Figure 6.10 includes violin plots of the same data. The white circles show
the median values, while the thick black rectangles show the 25th and 75th percentiles.
For latency, reconfiguration has little to no impact (roughly 2% changes) on the medians,

CHAPTER 6. MATCHMAKER PAXOS 129

1

2
La

te
nc

y
(m

s)

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35
Time

0

10000

20000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 6.7: Matchmaker MultiPaxos’ latency and throughput (f = 1). Median latency is
shown using solid lines, while the 95% latency is shown as a shaded region above the median
latency. The vertical black lines show reconfigurations. The vertical dashed red line shows
an acceptor failure.

IQRs, or standard deviations. The one exception is that the 8 client standard deviation
is significantly larger. This is due to a small number of outliers. Reconfiguration has little
impact on median throughput, with all differences being statistically insignificant. The IQRs
and standard deviations sometimes increase and sometimes decrease. The IQR is always less
than 1% of the median throughput, and the standard deviation is always less than 4%.

For every reconfiguration, the new acceptors become active within a millisecond. The old
acceptors are garbage collected within five milliseconds. This means that only one configu-
ration is ever returned by the matchmakers. We implement Matchmaker MultiPaxos with
an optimization called thriftiness [62]—where Phase2A messages are sent to a randomly
selected Phase 2 quorum—so the throughput and latency expectedly degrade after we fail
an acceptor. After we replace the failed acceptor, throughput and latency return to normal
within two seconds.

The latency and throughput of MultiPaxos is shown in Figure 6.8. As with Matchmaker
MultiPaxos, MultiPaxos can perform a horizontal reconfiguration without any performance
degradation. The difference in absolute throughput between the two protocols is due to minor

CHAPTER 6. MATCHMAKER PAXOS 130

1

2
La

te
nc

y
(m

s)

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40
Time

0

5000

10000

15000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 6.8: The latency and throughput of MultiPaxos with horizontal reconfiguration (f =
1).

implementation differences, but the variance in throughput (rather than the throughput
itself) is what is important for this evaluation. We include the comparison to MultiPaxos for
the sake of having some baseline against which we can compare Matchmaker MultiPaxos,
but the comparison is shallow. For this reason, we do not elaborate on the results much.

While Matchmaker MultiPaxos does provide performance benefits over MultiPaxos’ and
Raft’s reconfiguration protocols, our goal is not to replace these protocols. Rather, there are
dozens of other state machine replication protocols (e.g., EPaxos [62], CASPaxos [74], Cae-
sar [6], Atlas [21]) and distributed databases (e.g., TAPIR [97], Janus [63], Ocean Vista [22])
that do not have any reconfiguration protocol and cannot use the existing reconfiguration
protocols from MultiPaxos or Raft. Our hope is that the ideas in Matchmaker MultiPaxos
can be used to implement reconfiguration protocols for these other systems. For this reason,
it is difficult to compare Matchmaker MultiPaxos against some existing baseline because
they simply do not exist.

Summary. This experiment confirms that Matchmaker MultiPaxos’s throughput and
latency remain steady even during abnormally frequent reconfiguration. Moreover, it con-
firms that Matchmaker MultiPaxos can reconfigure to a new set of acceptors and retire the
old set of acceptors on the order of milliseconds.

CHAPTER 6. MATCHMAKER PAXOS 131

0s-10s 10s-20s

0.3

0.4

0.5

0.6

0.7

La
te

nc
y

(m
s)

1 client

0s-10s 10s-20s

0.3

0.4

0.5

0.6

4 clients

0s-10s 10s-20s

0.3

0.4

0.5

0.6

0.7
8 clients

0s-10s 10s-20s

2800

3000

3200

Th
ro

ug
hp

ut
 (c

om
m

an
ds

/s
ec

on
d) 1 client

0s-10s 10s-20s

11000

11500

12000

4 clients

0s-10s 10s-20s
17500

18000

18500

19000

19500

8 clients

Figure 6.9: Violin plots of Figure 6.7 latency and throughput during the first 10 seconds and
between 10 and 20 seconds.

Leader Failure

Experiment Description. We deploy Matchmaker MultiPaxos exactly as before. Now,
each benchmark runs for 20 seconds. During the first 7 seconds, there are no reconfigurations
and no failures. At 7 seconds, we fail the leader. 5 seconds later, a new leader is elected and
resumes normal operation. The 5 second delay is arbitrary; a new leader could be elected
quicker if desired.

Results. The latency and throughput of the benchmarks are shown in Figure 6.11.
During the first 7 seconds, throughput and latency are both stable. When the leader fails,
the throughput expectedly drops to zero. The throughput and latency return to normal
within two seconds after a new leader is elected. The results for the same experiment,
repeated with Horizontal MultiPaxos, are shown in Figure 6.12.

Summary. This experiment confirms that the extra latency of the Matchmaker phase
during a leader change is negligible.

Matchmaker Reconfiguration

Experiment Description. We deploy Matchmaker MultiPaxos as above. We again run
three benchmarks with 1, 4, and 8 clients. Each benchmark runs for 40 seconds. During the

CHAPTER 6. MATCHMAKER PAXOS 132

0s-10s 10s-20s
0.18

0.20

0.22

0.24

0.26

0.28

La
te

nc
y

(m
s)

1 client

0s-10s 10s-20s

0.20

0.25

0.30

0.35

4 clients

0s-10s 10s-20s
0.2

0.3

0.4

0.5

0.6

0.7 8 clients

0s-10s 10s-20s

4200

4300

4400

4500

Th
ro

ug
hp

ut
 (c

om
m

an
ds

/s
ec

on
d) 1 client

0s-10s 10s-20s

13000

13500

14000

4 clients

0s-10s 10s-20s
14000

15000

16000

17000

18000
8 clients

Figure 6.10: Violin plots of Figure 6.8 latency and throughput during the first 10 seconds
and between 10 and 20 seconds.

first 10 seconds, there are no reconfigurations and no failures. Between 10 and 20 seconds,
the leader reconfigures the set of matchmakers once every second. Every reconfiguration
randomly selects 2f+1 matchmakers from a set of 2×(2f+1) matchmakers. At 25 seconds,
we fail a matchmaker. At 30 we perform a matchmaker reconfiguration to replace the failed
matchmaker. At 35 seconds, we reconfigure the acceptors.

Results. The latency and throughput of Matchmaker MultiPaxos are shown in Fig-
ure 6.13. The latency and throughput of the protocol remain steady through the first ten
matchmaker reconfigurations, through the matchmaker failure and recovery, and through the
acceptor reconfiguration. This is confirmed by the medians, IQRs, and standard deviations
of the latency and throughput during the first 10 seconds and between 10 and 20 seconds,
which are shown in Table 6.2.

Summary. This benchmark confirms that matchmakers are off the critical path. The
latency and throughput of Matchmaker MultiPaxos remains steady during a matchmaker
reconfiguration and matchmaker failure. Moreover, a matchmaker reconfiguration does not
affect the performance of subsequent acceptor reconfigurations.

CHAPTER 6. MATCHMAKER PAXOS 133

Table 6.1: Figure 6.7 median, interquartile range, and standard deviation of latency and
throughput.

Latency (ms)

1 Client 4 Clients 8 Clients
0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 0.292 0.287 0.317 0.321 0.398 0.410
IQR 0.040 0.026 0.029 0.036 0.036 0.039
stdev 0.114 0.085 0.076 0.081 0.089 0.305

Throughput (commands/second)

1 Client 4 Clients 8 Clients
0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 2,995 3,177 11,874 11,478 19,146 18,446
IQR 152 53 175 145 140 373
stdev 157 111 298 307 358 520

6.6 Related Work

SMART. SMART [54] is a reconfiguration protocol that resolves many ambiguities in Mul-
tiPaxos’ horizontal approach (e.g., when it is safe to retire old configurations). Like Multi-
Paxos’ horizontal reconfiguration protocol, SMART can reconfigure a protocol with minimal
performance degradation. SMART differs from Matchmaker Paxos is a number of ways.
First, like MultiPaxos’ horizontal reconfiguration protocol, SMART is fundamentally log
based and is therefore incompatible with many sophisticated state machine replication pro-
tocols. Second, SMART assumes that acceptors and replicas are always co-located. This
prevents us from reconfiguring the acceptors without reconfiguring the replicas. This is not
ideal since we can reconfigure an acceptor without copying any state, but must transfer logs
from an old replica to a new replica. SMART’s garbage collection also has higher latency
that Matchmaker Paxos’ garbage collection. For Scenario 3, Matchmaker Paxos proposers
wait until a prefix of the log is stored on f + 1 replicas. SMART waits for the prefix of the
log to be executed and snapshotted by f + 1 replicas.

Cheap Paxos. Cheap Paxos [50] is a MultiPaxos variant that consists of a fixed set of
f + 1 main acceptors and f auxiliary acceptors. During failure-free execution (the normal
case), only the main acceptors are contacted. The auxiliary acceptors perform MultiPaxos’
horizontal reconfiguration protocol to replace failed main acceptors. As with Fast Paxos,
we can deploy Matchmaker MultiPaxos with only f + 1 acceptors, f fewer than Cheap
Paxos. Matchmaker Paxos does require 2f + 1 matchmakers, but matchmakers do not act
as acceptors and have to process only a single message (i.e. a MatchA message) to perform

CHAPTER 6. MATCHMAKER PAXOS 134

0.0
0.5
1.0
1.5
2.0

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20
Time

5000

10000

15000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 6.11: Matchmaker MultiPaxos’ latency and throughput (f = 1). The dashed red line
denotes a leader failure.

a reconfiguration.
Raft. Raft [68] uses a reconfiguration protocol called joint consensus. Like MultiPaxos’

horizontal reconfiguration, joint consensus is log-based and therefore incompatible with many
existing replication protocols. A simpler reconfiguration protocol for Raft was proposed
in [67] but requires more rounds of communication.

Viewstamped Replication (VR). VR [53] uses a stop-the-world approach to recon-
figuration. During a reconfiguration, the entire protocol stops processing commands. Thus,
while the reconfiguration is quite simple, it is inefficient. Stoppable Paxos [48] is similar to
MultiPaxos’ horizontal reconfiguration, but also uses a stop-the-world approach. VR’s stop-
the-world approach to reconfiguration is also adopted by databases built on VR, including
TAPIR [97] and Meerkat [82]. We use a similar approach to reconfigure matchmakers, but
because matchmakers are off the critical path, the performance overheads are invisible.

Fast Paxos Coordinated Recovery. Fast Paxos has an optimization called coordi-
nated recovery that is similar to Phase 1 Bypassing. The main difference is that in coordi-
nated recovery, a leader uses Phase 2 information in round i to skip Phase 1 in round i+ 1,
whereas with Phase 1 Bypassing, the leader instead uses Phase 1 information. Note that
coordinated recovery is not useful for Matchmaker MultiPaxos. It is subsumed by Phase 1
Bypassing. Coordinated recovery is only needed for Fast Paxos because the leader may not
know which values were proposed in a round it owns. Phase 1 Bypassing cannot be applied
to Fast Paxos for pretty much the same reason.

DynaStore. Vertical Paxos assumes its external master is implemented using state ma-

CHAPTER 6. MATCHMAKER PAXOS 135

0.0
0.5
1.0
1.5
2.0

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20
Time

5000

10000

15000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 6.12: The latency and throughput of Horizontal MultiPaxos with f = 1.

chine replication. MultiPaxos’ horizontal reconfiguration also depends on consensus. Match-
maker Paxos does not require consensus to implement matchmakers, but we are not the first
to notice this. DynaStore [3] showed that reconfiguring atomic storage does not require
consensus.

ZooKeeper. ZooKeeper, a distributed coordinated service, which uses ZooKeeper Atomic
Broadcast [36] is a protocol similar to MultiPaxos that can also reconfigure quickly after
leader failures.

CHAPTER 6. MATCHMAKER PAXOS 136

0.4

0.6

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35
Time

5000

10000

15000

20000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 6.13: The latency and throughput of Matchmaker MultiPaxos (f = 1). The dotted
blue, dashed red, and vertical black lines show matchmaker reconfigurations, a matchmaker
failure, and an acceptor reconfiguration respectively.

Table 6.2: Figure 6.13 median, interquartile range, and standard deviation of latency and
throughput.

Latency (ms)

1 Client 4 Clients 8 Clients
0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 0.297 0.292 0.314 0.313 0.404 0.398
IQR 0.032 0.024 0.031 0.030 0.035 0.028
stdev 0.077 0.061 0.093 0.098 0.383 0.067

Throughput (commands/second)

1 Client 4 Clients 8 Clients
0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 3019 3147 11631 11726 18569 19248
IQR 41 51 140 145 391 71
stdev 66 72 250 231 478 159

137

Chapter 7

Conclusion and Lessons Learned

In this thesis, we examined many facets of state machine replication. We compartmentalized
MultiPaxos to increase its throughput by over 10×. We enhanced and automated the under-
lying theory of read-write quorum systems. We provided insight on a class of multi-leader
generalized state machine replication protocols that were previously extremely challenging
to understand. We designed a new reconfiguration protocol that provides theoretical in-
sights and can be generalized to many protocols. Through this research, we have learned
the following lessons.

State machine replication does not have to be slow The throughput of state machine
replication protocols reported in the literature varies tremendously. You’ll find papers with
throughput in the hundreds [31], in the tens of thousands [61], in the tens of millions [98],
and in the billions [35] of commands per second. So while state machine replication protocols
like MultiPaxos can be slow if implemented in a straightforward way, our research and other
existing research has shown that there are straightforward protocols that can be adopted and
straightforward protocol optimizations that can be used to achieve high throughput state
machine replication.

Practical aspects of consensus need more attention MultiPaxos is an old protocol
and has received a lot of attention over many years, so naturally there are dozens of papers
focusing on improving very small details in the protocol. How can we shrink quorums by
one node? How can we increase the likelihood of taking the fast path? This research is
both interesting and important, so its abundance is justified. Surprisingly though, there
is very little research on many practical aspects of state machine replication. How can we
reconfigure a protocol? How do we garbage collect a protocol? What do we have to store on
disk and what can we store in memory? Answering these questions is vital for implementing
state machine replication in practice and deserves more attention.

Throughput and latency are very different goals Many state machine replication
protocols aim to achieve high throughput and low latency in both the local and wide area

CHAPTER 7. CONCLUSION AND LESSONS LEARNED 138

network. However, we think that attempting to accomplish all these goals simultaneously is
misguided. For example, we can use compartmentalization to achieve very high throughput
within a single data center. In performing these optimizations, we increase commit time,
but within a data center, this doesn’t have a significant impact on latency. In the wide
area, on the other hand, this increased commit time has a major impact on latency. In
this setting, decreasing commit time is key. Unfortunately, decreasing commit time is a
much much more challenging task that requires very clever protocols. Protocols like Fast
Paxos [46], NOPaxos [51], SpecPaxos [71], and CURP [69] all reduce commit time and are
all significantly more complicated than MultiPaxos. Ultimately, we believe that achieving
high throughput within a data center is actually relatively straightforward, but achieving low
latency in a wide area network is very complicated. Practitioners should pick the simplest
protocol that meets their needs.

Complex protocols can be understood given the right format and framing Pro-
tocols like EPaxos [61], Caesar [6], and Atlas [21] are complex protocols. Explaining these
protocols in a twelve page research paper is almost impossible. As a result, the protocols are
presented tersely and many explanations and proofs are pushed to appendices and technical
reports. The explanations are constrained by the publication format. Contrast this, for
example, with Lamport’s 36 page manuscript on Generalized Paxos [42]. Generalized Paxos
is also a very complicated protocol, but Lamport is able to describe the protocol carefully.
As another example, we believe our tutorial on generalized multi-leader protocols is the
clearest and most comprehensive to date, but it’s impossible to fit the tutorial in a standard
twelve page paper. In summary, we believe that many protocols that are considered “too
complicated” are more accurately “not able to be sufficiently explained given publishing
constraints.”

Automating compartmentalization The compartmentalizations performed in this dis-
sertation were all done manually. Compartmentalization is intentionally straightforward
to the point of being almost mechanical, which makes it an attractive target for automa-
tion. Distributed systems could be expressed in a high-level language like Bloom [5, 17] or
TLA+ [96], and then a compiler could automatically identify opportunities for compartmen-
talization. The optimizer could also determine the appropriate amount of decoupling and
scaling to meet a certain optimization objective.

Extending beyond state machine replication In this dissertation, we applied com-
partmentalization to state machine replication, but compartmentalization is a generally ap-
plicable technique and can be applied to many other types of protocols. For example, there is
ongoing work to apply compartmentalization to Byzantine state machine replication proto-
cols. Compartmentalization could also be applied to distributed model training, distributed
data processing systems, distributed databases, and so on.

139

Bibliography

[1] A Brief Introduction of TiDB. https://pingcap.github.io/blog/2017-05-23-
perconalive17/. Accessed: 2019-10-21.

[2] Divyakant Agrawal and Amr El Abbadi. “The Tree Quorum Protocol: An Efficient
Approach for Managing Replicated Data”. In: Proceedings of the 16th International
Conference on Very Large Data Bases. VLDB ’90. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1990, pp. 243–254. isbn: 155860149X.

[3] Marcos K Aguilera et al. “Dynamic atomic storage without consensus”. In: Journal of
the ACM (JACM) 58.2 (2011), pp. 1–32.

[4] Ailidani Ailijiang et al. “WPaxos: Wide Area Network Flexible Consensus”. In: IEEE
Transactions on Parallel and Distributed Systems (2019).

[5] Peter Alvaro et al. “Consistency Analysis in Bloom: a CALM and Collected Approach”.
In: CIDR. Citeseer. 2011, pp. 249–260.

[6] Balaji Arun et al. “Speeding up Consensus by Chasing Fast Decisions”. In: 2017
IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). IEEE.
2017, pp. 49–60.

[7] Berk Atikoglu et al. “Workload analysis of a large-scale key-value store”. In: Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on
Measurement and Modeling of Computer Systems. 2012, pp. 53–64.

[8] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. “Consensus-oriented paralleliza-
tion: How to earn your first million”. In: Proceedings of the 16th Annual Middleware
Conference. ACM. 2015, pp. 173–184.

[9] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse. “Scalable state-
machine replication”. In: 2014 IEEE/IFIP International Conference on Dependable
Systems & Networks (DSN). IEEE. 2014, pp. 331–342.

[10] Martin Biely et al. “S-paxos: Offloading the leader for high throughput state machine
replication”. In: 2012 IEEE 31st Symposium on Reliable Distributed Systems (SRDS).
IEEE. 2012, pp. 111–120.

[11] Mike Burrows. “The Chubby lock service for loosely-coupled distributed systems”. In:
7th USENIX Symposium on Operating Systems Design and Implementation (OSDI
06). 2006, pp. 335–350.

https://pingcap.github.io/blog/2017-05-23-perconalive17/
https://pingcap.github.io/blog/2017-05-23-perconalive17/

BIBLIOGRAPHY 140

[12] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. “Paxos made live: an
engineering perspective”. In: Proceedings of the 2007 ACM Symposium on Principles
of Distributed Computing. ACM. 2007, pp. 398–407.

[13] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. “Linearizable quorum
reads in Paxos”. In: 11th USENIX Workshop on Hot Topics in Storage and File Sys-
tems (HotStorage 19). 2019.

[14] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. “PigPaxos: Devouring
the communication bottlenecks in distributed consensus”. In: Proceedings of the 2021
International Conference on Management of Data. ACM. 2021, pp. 235–247.

[15] Shun Yan Cheung, Mustaque Ahamad, and Mostafa H. Ammar. “Multidimensional
voting: a general method for implementing synchronization in distributed systems”. In:
Proceedings of the 10th International Conference on Distributed Computing Systems.
May 1990, pp. 362–369. doi: 10.1109/ICDCS.1990.89304.

[16] Shun Yan Cheung, Mostafa H. Ammar, and Mustaque Ahamad. “The Grid Protocol:
A High Performance Scheme for Maintaining Replicated Data”. In: IEEE Trans. on
Knowl. and Data Eng. 4.6 (Dec. 1992), pp. 582–592. issn: 1041-4347. doi: 10.1109/
69.180609. url: https://doi.org/10.1109/69.180609.

[17] Neil Conway et al. “Logic and lattices for distributed programming”. In: Proceedings
of the Third ACM Symposium on Cloud Computing. 2012, pp. 1–14.

[18] James C Corbett et al. “Spanner: Google’s globally distributed database”. In: ACM
Transactions on Computer Systems (TOCS) 31.3 (2013), p. 8.

[19] Giuseppe DeCandia et al. “Dynamo: Amazon’s highly available key-value store”. In:
ACM SIGOPS operating systems review 41.6 (2007), pp. 205–220.

[20] Cong Ding et al. “Scalog: Seamless Reconfiguration and Total Order in a Scalable
Shared Log”. In: 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). 2020, pp. 325–338.

[21] Vitor Enes et al. “State-machine replication for planet-scale systems”. In: Proceedings
of the Fifteenth European Conference on Computer Systems. 2020, pp. 1–15.

[22] Hua Fan and Wojciech Golab. “Ocean vista: gossip-based visibility control for speedy
geo-distributed transactions”. In: Proceedings of the VLDB Endowment 12.11 (2019),
pp. 1471–1484.

[23] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Impossibility of dis-
tributed consensus with one faulty process”. In: Journal of the ACM (JACM) 32.2
(1985), pp. 374–382.

[24] Hector Garcia-Molina and Daniel Barbara. “How to Assign Votes in a Distributed
System”. In: J. ACM 32.4 (Oct. 1985), pp. 841–860. issn: 0004-5411. doi: 10.1145/
4221.4223. url: https://doi.org/10.1145/4221.4223.

http://dx.doi.org/10.1109/ICDCS.1990.89304
http://dx.doi.org/10.1109/69.180609
http://dx.doi.org/10.1109/69.180609
https://doi.org/10.1109/69.180609
http://dx.doi.org/10.1145/4221.4223
http://dx.doi.org/10.1145/4221.4223
https://doi.org/10.1145/4221.4223

BIBLIOGRAPHY 141

[25] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file system”.
In: Proceedings of the 19th Symposium on Operating Systems Principles. ACM. 2003,
pp. 29–43.

[26] David K. Gifford. “Weighted Voting for Replicated Data”. In: Proceedings of the Sev-
enth ACM Symposium on Operating Systems Principles. SOSP ’79. New York, NY,
USA: Association for Computing Machinery, 1979, pp. 150–162. isbn: 0897910095.
doi: 10.1145/800215.806583. url: https://doi.org/10.1145/800215.806583.

[27] Global data distribution with Azure Cosmos DB - under the hood. https://docs.
microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood. Ac-
cessed: 2019-10-21.

[28] Maurice P Herlihy and Jeannette M Wing. “Linearizability: A correctness condition for
concurrent objects”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 12.3 (1990), pp. 463–492.

[29] Heidi Howard. “Distributed consensus revised”. PhD thesis. University of Cambridge,
2019.

[30] Heidi Howard, Aleksey Charapko, and Richard Mortier. “Fast Flexible Paxos: Relax-
ing Quorum Intersection for Fast Paxos”. In: International Conference on Distributed
Computing and Networking 2021. 2021, pp. 186–190.

[31] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. “Flexible Paxos: Quorum
Intersection Revisited”. In: 20th International Conference on Principles of Distributed
Systems (OPODIS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

[32] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. “Flexible Paxos: Quorum
Intersection Revisited”. In: 20th International Conference on rinciples of Distributed
Systems (OPODIS 2016). Ed. by Panagiota Fatourou, Ernesto Jiménez, and Fernando
Pedone. Vol. 70. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 25:1–25:14. isbn:
978-3-95977-031-6. doi: 10.4230/LIPIcs.OPODIS.2016.25. url: http://drops.
dagstuhl.de/opus/volltexte/2017/7094.

[33] Heidi Howard and Richard Mortier. “Paxos vs Raft: Have we reached consensus on
distributed consensus?” In: Proceedings of the 7th Workshop on Principles and Practice
of Consistency for Distributed Data. 2020, pp. 1–9.

[34] Toshihide Ibaraki and Tiko Kameda. “A theory of coteries: Mutual exclusion in dis-
tributed systems”. In: IEEE Transactions on Parallel and Distributed Systems 4.7
(1993), pp. 779–794.

[35] Xin Jin et al. “Netchain: Scale-free sub-rtt coordination”. In: 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). 2018, pp. 35–49.

[36] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. “Zab: High-performance
broadcast for primary-backup systems”. In: 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems & Networks (DSN). IEEE. 2011, pp. 245–256.

http://dx.doi.org/10.1145/800215.806583
https://doi.org/10.1145/800215.806583
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.25
http://drops.dagstuhl.de/opus/volltexte/2017/7094
http://drops.dagstuhl.de/opus/volltexte/2017/7094

BIBLIOGRAPHY 142

[37] Manos Kapritsos and Flavio Paiva Junqueira. “Scalable Agreement: Toward Ordering
as a Service”. In: HotDep. 2010.

[38] Kubernetes. Kubernetes. https://kubernetes.io. accessed: 2020-03-01.

[39] Akhil Kumar. “Hierarchical Quorum Consensus: A New Algorithm for Managing Repli-
cated Data”. In: IEEE Trans. Comput. 40.9 (Sept. 1991), pp. 996–1004. issn: 0018-
9340. doi: 10.1109/12.83661. url: https://doi.org/10.1109/12.83661.

[40] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized structured stor-
age system”. In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–40.

[41] Leslie Lamport. “Fast paxos”. In: Distributed Computing 19.2 (2006), pp. 79–103.

[42] Leslie Lamport. “Generalized consensus and Paxos”. In: (2005).

[43] Leslie Lamport. “How to make a multiprocessor computer that correctly executes mul-
tiprocess progranm”. In: IEEE Transactions on Computers 9 (1979), pp. 690–691.

[44] Leslie Lamport. “Paxos made simple”. In: ACM Sigact News 32.4 (2001), pp. 18–25.

[45] Leslie Lamport. “The part-time parliament”. In: ACM Transactions on Computer Sys-
tems (TOCS) 16.2 (1998), pp. 133–169.

[46] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system”. In:
Concurrency: the Works of Leslie Lamport. 2019, pp. 179–196.

[47] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Reconfiguring a state machine.”
In: SIGACT News 41.1 (2010), pp. 63–73.

[48] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Stoppable paxos”. In: TechReport,
Microsoft Research (2008).

[49] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Vertical paxos and primary-backup
replication”. In: Proceedings of the 28th ACM symposium on Principles of distributed
computing. 2009, pp. 312–313.

[50] Leslie Lamport and Mike Massa. “Cheap paxos”. In: International Conference on De-
pendable Systems and Networks, 2004. IEEE. 2004, pp. 307–314.

[51] Jialin Li et al. “Just Say NO to Paxos Overhead: Replacing Consensus with Network
Ordering”. In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). 2016, pp. 467–483.

[52] Lightweight transactions in Cassandra 2.0. https://www.datastax.com/blog/2013/
07/lightweight-transactions-cassandra-20. Accessed: 2019-10-21.

[53] Barbara Liskov and James Cowling. “Viewstamped replication revisited”. In: (2012).

[54] Jacob R Lorch et al. “The SMART way to migrate replicated stateful services”. In:
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2006. 2006, pp. 103–115.

https://kubernetes.io
http://dx.doi.org/10.1109/12.83661
https://doi.org/10.1109/12.83661
https://www.datastax.com/blog/2013/07/lightweight-transactions-cassandra-20
https://www.datastax.com/blog/2013/07/lightweight-transactions-cassandra-20

BIBLIOGRAPHY 143

[55] Giuliano Losa, Sebastiano Peluso, and Binoy Ravindran. “Brief announcement: A fam-
ily of leaderless generalized-consensus algorithms”. In: Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing. ACM. 2016, pp. 345–347.

[56] Mamoru Maekawa. “A square root N Algorithm for Mutual Exclusion in Decentralized
Systems”. In: ACM Trans. Comput. Syst. 3.2 (May 1985), pp. 145–159. issn: 0734-2071.
doi: 10.1145/214438.214445. url: https://doi.org/10.1145/214438.214445.

[57] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo. “Mencius: building efficient
replicated state machines for WANs”. In: 8th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 08). 2008, pp. 369–384.

[58] Parisa Jalili Marandi et al. “Ring Paxos: A high-throughput atomic broadcast pro-
tocol”. In: 2010 IEEE/IFIP International Conference on Dependable Systems & Net-
works (DSN). IEEE. 2010, pp. 527–536.

[59] David Mazieres. “Paxos made practical”. In: Unpublished manuscript, Jan (2007).

[60] Iulian Moraru, David G Andersen, and Michael Kaminsky. A proof of correctness for
Egalitarian Paxos. Tech. rep. Technical report, Parallel Data Laboratory, Carnegie
Mellon University, 2013.

[61] Iulian Moraru, David G Andersen, and Michael Kaminsky. “Paxos quorum leases: Fast
reads without sacrificing writes”. In: Proceedings of the ACM Symposium on Cloud
Computing. 2014, pp. 1–13.

[62] Iulian Moraru, David G Andersen, and Michael Kaminsky. “There is more consensus in
egalitarian parliaments”. In: Proceedings of the 24th Symposium on Operating Systems
Principles. ACM. 2013, pp. 358–372.

[63] Shuai Mu et al. “Consolidating concurrency control and consensus for commits under
conflicts”. In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). 2016, pp. 517–532.

[64] Moni Naor and Avishai Wool. “The Load, Capacity, and Availability of Quorum Sys-
tems”. In: SIAM Journal on Computing 27.2 (1998). issn: 0097-5397. doi: 10.1137/
S0097539795281232. url: https://doi.org/10.1137/S0097539795281232.

[65] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. “Dpaxos: Managing data closer
to users for low-latency and mobile applications”. In: Proceedings of the 2018 Interna-
tional Conference on Management of Data. ACM. 2018, pp. 1221–1236.

[66] Rajesh Nishtala et al. “Scaling memcache at facebook”. In: 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13). 2013, pp. 385–398.

[67] Diego Ongaro. “Consensus: Bridging theory and practice”. PhD thesis. Stanford Uni-
versity, 2014.

[68] Diego Ongaro and John K Ousterhout. “In search of an understandable consensus
algorithm”. In: USENIX Annual Technical Conference. 2014, pp. 305–319.

http://dx.doi.org/10.1145/214438.214445
https://doi.org/10.1145/214438.214445
http://dx.doi.org/10.1137/S0097539795281232
http://dx.doi.org/10.1137/S0097539795281232
https://doi.org/10.1137/S0097539795281232

BIBLIOGRAPHY 144

[69] Seo Jin Park and John Ousterhout. “Exploiting commutativity for practical fast repli-
cation”. In: 16th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 19). 2019, pp. 47–64.

[70] David Peleg and Avishai Wool. “Crumbling Walls: A Class of Practical and Efficient
Quorum Systems”. In: Proceedings of the Fourteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing. PODC ’95. Ottowa, Ontario, Canada: Association for
Computing Machinery, 1995, pp. 120–129. isbn: 0897917103. doi: 10.1145/224964.
224978. url: https://doi.org/10.1145/224964.224978.

[71] Dan RK Ports et al. “Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks”. In: 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). 2015, pp. 43–57.

[72] Raft Replication in YugaByte DB. https://www.yugabyte.com/resources/raft-
replication-in-yugabyte-db/. Accessed: 2019-10-21.

[73] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. “Canopus: A scalable and mas-
sively parallel consensus protocol”. In: Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies. 2017, pp. 426–438.

[74] Denis Rystsov. “CASPaxos: Replicated State Machines without logs”. In: arXiv preprint
arXiv:1802.07000 (2018).

[75] Nuno Santos and André Schiper. “Achieving high-throughput state machine replication
in multi-core systems”. In: 2013 IEEE 33rd International Conference on Distributed
Computing Systems. Ieee. 2013, pp. 266–275.

[76] Nuno Santos and André Schiper. “Optimizing Paxos with batching and pipelining”.
In: Theoretical Computer Science 496 (2013), pp. 170–183.

[77] Nuno Santos and André Schiper. “Tuning paxos for high-throughput with batching and
pipelining”. In: International Conference on Distributed Computing and Networking.
Springer. 2012, pp. 153–167.

[78] Fred B Schneider. “Implementing fault-tolerant services using the state machine ap-
proach: A tutorial”. In: ACM Computing Surveys (CSUR) 22.4 (1990), pp. 299–319.

[79] William Schultz, Tess Avitabile, and Alyson Cabral. “Tunable Consistency in Mon-
goDB”. In: Proceedings of the VLDB Endowment 12.12 (2019), pp. 2071–2081.

[80] Rong Shi and Yang Wang. “Cheap and available state machine replication”. In: 2016
USENIX Annual Technical Conference (USENIXATC 16). 2016, pp. 265–279.

[81] Pierre Sutra and Marc Shapiro. “Fast genuine generalized consensus”. In: 2011 IEEE
30th Symposium on Reliable Distributed Systems (SRDS). IEEE. 2011, pp. 255–264.

[82] Adriana Szekeres et al. “Meerkat: Multicore-Scalable Replicated Transactions Follow-
ing the Zero-Coordination Principle”. In: Proceedings of the Fourteenth EuroSys Con-
ference 2020. 2020.

http://dx.doi.org/10.1145/224964.224978
http://dx.doi.org/10.1145/224964.224978
https://doi.org/10.1145/224964.224978
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/

BIBLIOGRAPHY 145

[83] Rebecca Taft et al. “CockroachDB: The Resilient Geo-Distributed SQL Database”.
In: Proceedings of the 2020 International Conference on Management of Data. ACM.
2020, pp. 1493–1509.

[84] Hatem Takruri et al. “FLAIR: Accelerating Reads with Consistency-Aware Network
Routing”. In: 17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). 2020, pp. 723–737.

[85] Jeff Terrace and Michael J Freedman. “Object Storage on CRAQ: High-Throughput
Chain Replication for Read-Mostly Workloads”. In: USENIX Annual Technical Con-
ference. June. San Diego, CA. 2009, pp. 1–16.

[86] Alexander Thomson et al. “Calvin: fast distributed transactions for partitioned database
systems”. In: Proceedings of the 2012 International Conference on Management of
Data. ACM. 2012, pp. 1–12.

[87] Robbert Van Renesse and Deniz Altinbuken. “Paxos made moderately complex”. In:
ACM Computing Surveys (CSUR) 47.3 (2015), p. 42.

[88] Robbert Van Renesse and Fred B Schneider. “Chain Replication for Supporting High
Throughput and Availability”. In: 6th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 04). Vol. 4. 91–104. 2004.

[89] Matt Welsh, David Culler, and Eric Brewer. “SEDA: an architecture for well-conditioned,
scalable internet services”. In: ACM SIGOPS Operating Systems Review. Vol. 35. 5.
ACM. 2001, pp. 230–243.

[90] Michael Whittaker and Joseph M Hellerstein. “Checking Invariant Confluence, In
Whole or In Parts”. In: ACM SIGMOD Record 49.1 (2020), pp. 7–14.

[91] Michael Whittaker and Joseph M Hellerstein. “Interactive checks for coordination
avoidance”. In: Proceedings of the VLDB Endowment 12.1 (2018), pp. 14–27.

[92] Michael Whittaker et al. “Debugging distributed systems with why-across-time prove-
nance”. In: Proceedings of the ACM Symposium on Cloud Computing. 2018, pp. 333–
346.

[93] Michael Whittaker et al. “Online template induction for machine-generated emails”.
In: Proceedings of the VLDB Endowment 12.11 (2019), pp. 1235–1248.

[94] Michael Whittaker et al. “Read-Write Quorum Systems Made Practical”. In: Proceed-
ings of the 8th Workshop on Principles and Practice of Consistency for Distributed
Data. 2021, pp. 1–8.

[95] Michael Whittaker et al. Scaling Replicated State Machines with Compartmentalization
[Technical Report]. 2020. arXiv: 2012.15762 [cs.DC].

[96] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. “Model checking TLA+ specifica-
tions”. In: Advanced Research Working Conference on Correct Hardware Design and
Verification Methods. Springer. 1999, pp. 54–66.

http://arxiv.org/abs/2012.15762

BIBLIOGRAPHY 146

[97] Irene Zhang et al. “Building consistent transactions with inconsistent replication”. In:
ACM Transactions on Computer Systems (TOCS) 35.4 (2018), p. 12.

[98] Hang Zhu et al. “Harmonia: Near-linear scalability for replicated storage with in-
network conflict detection”. In: Proceedings of the VLDB Endowment 13.3 (2019),
pp. 376–389.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	System Model
	Paxos
	MultiPaxos
	Flexible Paxos

	Compartmentalization
	MultiPaxos Does Not Scale?
	Compartmentalizing MultiPaxos
	Batching
	Mencius
	S-Paxos
	Evaluation
	Related Work

	Quoracle
	Definitions
	Practical Refinements in Quoracle
	Case Study
	Lessons Learned

	Bipartisan Paxos
	Conflict Graphs
	Simple BPaxos
	Fast Paxos
	Fast BPaxos
	Tension Avoidance
	Tension Resolution
	Related Work
	Conclusion

	Matchmaker Paxos
	Matchmaker Paxos
	Matchmaker MultiPaxos
	Reconfiguring Matchmakers
	Theoretical Insights
	Evaluation
	Related Work

	Conclusion and Lessons Learned
	Bibliography

