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Chapter 1: INTRODUCTION

Abstract
Characterizing Circuits with Deep Embeddings
By
Arjun Mishra
Master of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

In recent years, the use of machine learning for solving complex problems

has spread like wildfire. Specifically, machine learning has proved to be
very effective in generating embeddings, both for tasks related to simple
words/images and for those involving complex data arising in the domains
of biology and chemistry. Inspired by these breakthroughs, we look at the
problem of generating embeddings from an underlying dataset of circuits

and prove their utility on several posterior tasks.
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Chapter 1
Introduction

There has been growing interest in the application of machine learning to less traditional datasets. This is
both due to the proliferation of such datasets, but also a result of improvements in the ability to encode
information. Encoding information into embeddings, lower dimensional representations of high
dimensional data, is useful in allowing raw data to be used for computational tasks. These encodings have
been shown to be useful in several domains. The traditional techniques for encoding were PCA and T-SNE;
these have some key limitations[1, 2]. In general, linear dimensionality reduction techniques, such as PCA,
tend to be extremely fast to run and deterministic. However, by virtue of the linear assumption — they
struggle to encode information from difficult datasets. These limitations and the inability to generate good
representations have led researchers to investigate generating embeddings using online machine learning
techniques. Deep Learning has proven to be a very effective one of these techniques.

Deep learning took a major step in 2012 with the development of AlexNet on the ImageNet benchmark [3].
One of the key advantages of deep learning is that the feature detection is not only automatic but also
extremely effective. In a deep learning model, similar inputs to the network, such as say different images of
a cat, activate very similar feature maps within the neural network. This then immediately suggests that the
networks used for classification and regression could also be used for generating representations.

e ™
I A

Smile: 0.99

Skin tone: 0.85

Gender: -0.73

encoder decoder
Beard: 0.85

Glasses: 0.002

Hair color: 0.68

\ /
N _/

Latent attributes

Figure 1: Embeddings correspond to intuitive features [4]

The technique of encoding inputs and outputting lower-dimensional vectors is referred to as Representation
Learning. Representation Learning is an example of unsupervised learning as explicit labels are not needed
to generate representations.

In this paper, we explore the use of Representation Learning to characterizing “circuits”, using the open
BOMB dataset. Specifically, we aim to show that training embeddings on the BOMB dataset is both
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feasible and useful [5]. We achieve this goal by training many flavors of Variational Auto Encoders
(VAES) on top of the BOMB dataset and then comparing these VAESs both quantitively and qualitatively:
e visually inspecting the clustering of high-level information within the latent space
e measuring outright loss
e using the encodings to feed a downstream Square Law prediction task

The major contributions of this paper are:
e We demonstrate that a VAE algorithm can converge on the BOMB dataset

e We show that that representation learning leads to better performance for low-data downstream
tasks

e We find that using the embeddings can lead to a major improvement in computing latency on
downstream tasks given a reduction in dimensionality by over 2500x
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Chapter 2
Background

2.1 Naive Autoencoders

Autoencoders are computational models used to encode and decode information. Figure 2 illustrates a
model architecture for an autoencoder. Note that both the encoder and decoder can be any function which
maps from an input dimension to the latent dimension for the encoder and from the latent dimension to the
input dimension for the decoder. The reason that the input dimension of the encoder must match the output
dimension of the decoder is because in the most naive example of an autoencoder the loss function would
optimize the reconstruction loss. [5, 6]

1. To formalize this let us define variable input x € R* = X,which is mapped to h €
RP =F

2. The transition of the encoderas ¢: X - F
3. The transition of the decoder as ¢: F = X

. 2
4. ¢,p = argmin||X— (¢ $)X||
.0

Purely minimizing reconstruction loss is flawed due to a tendency to overfit and therefore instead in this
paper we chose to primarily focus on using Variational Auto Encoders (VAES).

= mp lossless encoding
no information is lost
encoder decoder when reducing the
e d number of dimensions
= ®p lossyencoding

some information is lost
when reducing the
number of dimensions and
can't be recovered later

Figure 2: Autoencoder Architecture

There is great variability in the encoding or decoding architectures that autoencoders use. In a simple
design, one could use a fully connected network as both the encoder and decoder, but it is possible to mix
and match, for example to have the encoder be a Convolutional Neural Network (CNN) and the decoder be
a Fully Connected Neural Network. In this paper for all possible designs, we chose to use fully connected
layers as both the encoder and decoder and mirror the number of layers on either side of the information
bottleneck.
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2.2 Variational Autoencoders

VAEs are slightly different than traditional autoencoders. The key difference between a VAE and a classic
autoencoder is in the idea of “variational inference.” To develop some intuition, consider that there is an
observable variable x and a latent variable z.

Ideally, we want p(z|x) which is equal to % but computing the p(x) here is since computing

[ p(x|z)p(2) is intractable. We approximate the intractable distribution by defining a distribution g(z|x).
To find a good approximation, we want to ensure that the parameters of distribution g are similar to those
of the intractable distribution.

Mathematically we have the following optimization requirement min (KL(q(z | xX)||lp(z | x))). Through
further derivation, it turns out that we can minimize the earlier expression by maximizing

Eq(zjx) logp(x|z) —KL(q(z | x)||p(2)). The first term of this expression maps to reconstruction
likelihood while the second term captures how similar the learned distribution q is to the prior p.

Earlier we said that the optimization equation for naive auto encoder was

b9 = argmin||X— (¢ (l))X||2 which we call Z.
b0

Our loss function for our VAE isnow £ + ¥ KL(q;(z | x)||p(2)). B ,a key hyper-parameter, is the
regularization coefficient that impacts the reconstruction loss.
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Chapter 3
Related Work

3.1 GloVe Embeddings

Reducing the dimensionality of information to improve the performance of downstream algorithm has been
an important theme in machine learning research. This was famously explored in the original GloVe paper
[7]. GloVe sought to accomplish this reduction via an unsupervised algorithm which tried to optimize the
word-cooccurrence. Their insight was to use a matrix of word-cooccurrence; such a matrix would have the
ability to encode meaningful information about how various words might be related. GloVe directly
optimizes a training objective that stipulates that a word vector’s dot product equals the logarithm of the
word’s probability of co-occurrence. With this clever insight, GloVe paved the way for large improvements
in the field of neural machine translation as underlying encodings were much better. These embeddings
have been critical in applying GRU and LSTM technology [8].

3.2 Chemical Embeddings

The utility of Representation learning is not limited to the domain of words and images alone.
Representation learning has also proven to be extremely useful in other domains. For example, researchers
have explored the use of encodings to represent chemical molecules. These embeddings have successfully
captured properties of the molecules [9].

3.3 Broader Representation Learning

Representation Learning is a quickly evolving field with continual advances in the ability of deep neural-
networks to encode data. This technique was pioneered by Bengio [10]. Bengio’s insight was that the
feature extraction that deep learning models perform in their initial tasks of classification or regression are
themselves encoders. Since then, there has been an explosion in using representation learning techniques on
data that is derived from both digital and physical properties. Continual developments in creating image
and word embeddings have powered large advances in interdisciplinary uses of representation learning
such as bio-medical retrieval [11]. Representation learning has proved to be a crucial method of allowing
more data in the world to be digitized and operationalized. While in this paper we chose to use a variational
autoencoder, the overall trend of utilizing deep learning to allow for broader scale machine learning stands
to improve the world markedly.
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Chapter 4

System Overview

4.1 Dataset

For this project, the initial data used to characterize circuits is from the BOMB dataset. The BOMB dataset
is an open-source dataset which contains characterizations of various transistors from a variety of
manufacturing technologies. The dataset includes data points created by measuring ibias and other small-
signal parameters from transistors across a range of temperatures, Monte Carlo variations, process types,
etc. Thisisa [N x 10 x 11 x 11 x 11] dataset where N is the number of datapoints in usage, 10 is the
number of observed circuit characteristics, and each of the 11 dimensions corresponds to Vs, Vg5, Vips
value. The data can be clustered with PCA. For example, in Figure 3, we see that PCA shows clear
clustering by the process type. Process type refers to carrier mobilities for PMOS and NMOS transistors. In
Figure 4, we can see the effect of clustering by the device type, which refers to what voltage the transistor
prefers.

metadata
0.0004 A ® devl
e dev2
0.0003 ® dev3
® dev4
0.0002 A
0.0001
0.0000 A
—0.0001 A1
—0.0002 ~
—0.0003 {__ . i . .
—-0.0010 —-0.0005 0.0000 0.0005 0.0010

X

Figure 3: Clustering BOMB Dataset with PCA on Device Type. Dev I and Dev 4 are low-voltage, Devices 2 and 3 are
high-voltage.
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metadata
0.0004 - e t
e f
0.0003 - ® S
0.0002 A
0.0001 -
0.0000 A
—0.0001 -
—0.0002 -
-0.0003 4__ . . . .
—0.0010 —0.0005 0.0000 0.0005 0.0010

X

Figure 4. Clustering BOMB Dataset with PCA on Process Type. T refers to Typical, F to Fast, and S to slow

We segment the original dataset into a training set and test set. We want to test the ability of an embedding
to generalize knowledge about the original dataset, so our testing set only includes high voltage devices and
our training set contains only low and medium voltage devices. When we later perform a downstream
prediction task, we want to show that the downstream task can be achieved more accurately with the
embeddings as opposed to the raw data. Therefore, to ensure that we can show that the embeddings
generalize and therefore perform better, we need to ensure that the test set contains data, high voltage
devices, which neither the embeddings nor raw data have seen. To get a sense of how discernible voltage
diverse devices are, see the T-SNE clustering in Figure 5.
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metadata
nomvt

*;5 -vazO —-25 (; 2'5 5'0 7'5 11;0
x
Figure 4: HVT refers to High Voltage Transistor, LVT to Low Voltage Transistor, and Nom to Normal Voltage
Transistor

4.1 Encoding Flow

The training set is then fed into our variational-autoencoder (VAE). After the VAE is trained, all the
training data points can be encoded. We then feed the encoded data points into a downstream task and train
the downstream task’s model. The downstream task here is to predict standard properties of a transistor
using the Square Law. After the downstream task model has been trained using the encoded version of the
original training dataset, it can then be used to predict the ibias of the test dataset. In parallel to this flow,
there is another downstream task model that is trained off the raw, non-encoded, training data and is used to
predict the ibias of the test dataset. Therefore, we can compare the test loss of these two separate
downstream tasks and see whether the encodings improve the efficacy of the downstream model. A natural
question may be why the raw dataset should go through a slightly different model architecture than the
encoded dataset. This is because the dimensionality of the data entering the downstream model is different.
Since neural networks use matrix multiplications to function, the number of parameters in the two models
cannot be the same since the inner dimension of matrix multiplication must match. However, there is no
way around this and overall, this doesn’t impact experiment results. The overall flow can be seen in Figure
6 below.
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Square Law
Predictor - -

Baseline a

Downstream
Training Data

Square Law

Predictor

Figure 6

4.2 Training Process

The training process for the VAE was very standard and we performed normal hyperparameter
optimization such as adjusting the regularization parameters for the VAE and varying batch sizes. The
architecture of the VAE was discussed earlier, but the architecture of the downstream task is also
straightforward. The downstream task is a standard fully connected network, with one hidden layer with
size 200, and an input layer whose size depends on whether the input is the embeddings or the raw dataset.
If embeddings are the input then this layer’s dimension is 16, 32, and 64 but if it is the raw dataset then its
dimension will be 113 As a confirmation of understanding it should not be unexpected that the
dimensionality of output of the downstream network is [N x 11 x 11 x11] as the dimension of a single
datapoint in the original dataset is [N x 10 x 11 x 11 x11] of which Ibias is one of the 10 small signal
parameters so it should be [N x 1 x 11 x 11 x 11].

The downstream task despite being a simple neural network is complex in that its training loop seeks to
optimize the loss of the Square Law which allows for accurate estimates of a transistors ibias. The Square
Law has the following equation steps:

1. logisat = log0.5 +logk, + log(1+ Vs * 1) +logn  threshold (Vs — V;, €)
2. logilin = logK, + log(1 + Vg A1) + threshold((Vys—V¢) * Vs — 0.5 * Vg2, €)
3. Ibias = elogisat 4 ellin
The downstream task is explicitly learning the following 4 parameters {log A, logn, log V¢, log K,,} which

can be used to estimate ibias. The loss is then computed by finding the square loss between the actual ibias
and the estimated ibias.

However, we did have some trouble getting the downstream networks to converge to a global minimum, so
we helped the convergence process by initializing the first few steps of gradient descent so that the training
of the downstream network can fine-tune and find the optimal values.
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Chapter 5

Use Cases

5.1 Circuit Transfer

The primary benefit of the technology developed in this project is the ability for better prediction of circuit
characteristics when adopting new manufacturing process technologies. Today, when new transistors are
developed very little of the existing tools and knowledge can be leveraged.

5.2 Circuit Characterization

When circuits are designed, consisting of multiple transistors, we still rely mainly on human intuition to
predict the behavior of these circuits - such as the gain or the current consumption. However, in a world
where we can map individual circuit elements to embeddings, it becomes possible to predict the circuit
characteristics, which improves circuit design iteration speed tremendously. Therefore, this technology has
large potential for assistive debugging. Moreover, in scenarios where the circuit behavior does not map to
the designer’s intuition, these machine learning based technologies also aid with circuit comprehension.

5.3 Data and Computation Limitations

When datasets are forced to be size limited (e.g., due to storage constraints), embeddings are useful as a
summarized form of the original dataset. Moreover, computations on the embeddings-based data
representations are much less taxing than on the original datasets. For example any model which uses the
raw data from BOMB versus embeddings will incur a penalty of 10*113/(embedding size) per operation if
a fully connected network was a consumer of this data - this ends up being around a factor of 1000 more
expensive in computation and memory overhead. The exact overhead depends on the dimensionality of the
original data; but as the example above shows, in the circuit domain this impact is huge.
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Chapter 6

Implementation

6.1 Model Implementation

In this project, there are some novel implementations of machine learning code to integrate with the BOMB
dataset.

The first is our implementation of being able to read the BOMB dataset into a format compatible with our
VAE model. The PyTorch code used to achieve this is shown in the figure below [12].

class MosCharData (Dataset) :

def init (self, data path: str, last idx: int = -3, stats=None):
# last idx = 2 means vgs, vds and last idx = 3 means vbs, vgs, vds
self.last idx = last idx

self.computed mean, self.computed std = None, None
self.sim data = SimData.load(data path)

# self.ss params = self.sim data.get ss params()
self.dataset norm, self.dataset = self.process simdata ()

if stats is not None:

self.dataset norm = (self.dataset - stats[0]) / stats[1l]
self. vgs = torch.tensor(self.sim data['vgs'])
self. vbs = torch.tensor(self.sim data['vbs'])
self. vds = torch.tensor(self.sim data['vds'])

Figure 5: Loading Data from the BOMB Open Dataset

The second is our implementation of the forward pass loop of the downstream task which predicts Ibias
from the embeddings or the raw data.
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def forward(self, x in):
X in = torch.zeros like(x in)

oﬁtput = self.nn(x in)
output dict = dict(zip(self.output inits.keys(), output.T))
output dict = {k: v.unsqueeze(-1) for k, v in output dict.items()}

vgs list = self.vgs list.to(output) [None]
vds list = self.vds list.to(output)

ibias hat = torch.zeros(x in.shape[0], vgs list.shape[-1],
len(vds list)) .to(output)

threshold fn = nn.Threshold(self.eps, self.eps)
for vds_idx, vds in enumerate(vds list):
vov = vgs_list - output dict['log vt'].exp() # (Nx11)

log isat
# (Nx1)

log isat = log isat + (1 + output dict['log lambda'].exp() *
vds) .log () # (Nx11)

log isat = log isat + output dict['log eta'].exp() *
threshold fn(vov) .log()

isat = log isat.exp() * (vov > 0) * (vds > vov)

torch.log(torch.tensor (0.5)) + output dict['log kp']

log ilin = output dict['log kp'] + (1 +
output dict['log lambda'].exp() * vds).log() # (Nx1)

log ilin = log ilin + threshold fn(vov * vds - vds ** 2 / 2).log()
# (Nx11)

ilin = log ilin.exp() * (vov > 0) * (vds <= vov)

ibias hat[..., vds idx] = ilin + isat
return ibias hat

Figure 6: Computing the loss for a given loop iteration. Note that this is the code implementation of the formula
described earlier.
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Chapter 7
Evaluation

7.1 Model Evaluation

As described earlier, our objective is to show that embedding-based downstream learning has better
performance than non-embedding based downstream learning. After training our models and performing
some test trials we found that our embedding based models did perform better than the raw data. By
looking at Figure 8 below, this is apparent.

Baseline vs Latent Test Loss

1.00E-06 @® baseline
® latent

1.00E-07 ®
2 < g ®
o
|
f:
l_

1.00E-08 ®

®
@
1.00E-09
0.2 0.4 0.6 0.8

Size of downstream training set

Figure 7: Comparing test performance of embedding models vs the baseline

As shown in the chart, the latent values have lower test error across all the various scenarios upon which
we ran the downstream data. The reason we tried with different sized downstream training sets was to
investigate how summative the embeddings could be. Interestingly, the difference between the performance
of the embedding based models and the baseline models stays consistent on almost all the variations of size
in the downstream training set.

A number which may stand out is that the test loss seems incredibly low, but it’s important to calibrate the
test loss in the chart with what the maximum possible loss is in this predictive task. The maximum error in
this predictive task is around 1e-6, so the percentage errors that are obtained are reasonable ~10% error or
less.
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Chapter 8

Future Work
8.1 Model Evaluation

In the future, we want to expand to testing performance and generalizability across different technologies
as the BOMB dataset matures, as well as discovering and benchmarking other useful downstream
applications. There are other circuit tasks and characteristics which can be interesting downstream tasks
such as training on one technology and testing on an explicitly different technology. If embeddings proved
to be useful in this technology transfer process, that would be an immense contribution to the state of the
art.

8.2 Model Training

Moreover, there can be improvements in how we train the embeddings. Currently this happens implicitly
through manually tuning hyperparameters for a model which performs well on the downstream task.
However, we could automatically tune the embeddings by including the downstream task in the loss
function for the VAE as a form of regularization. This is a well-established method to improve model
performance as seen in GANs [13]. There is also opportunity for further work in creating more complex
network architectures to generate the embeddings that still use the general VAE loss function. One
weakness of our encoding model is that we just stack the complex portion of the circuit dataset and extract
their real values, but further improvement could be made if the complex portion of the circuits was
maintained. Moreover, in the network architecture we did not use convolutions or any method to link the
real and imaginary portions of the complex number once we separated them, which seems like a great
opportunity to improve the encoding process.
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Chapter 9
Conclusion

This project sought to prove that generating circuit embeddings using deep learning technologies was not
only tenable but also useful. We have shown promise in both the BOMB dataset and the ability for machine
learning to be used in the circuit domain. We have paved the way for more research to determine the extent
to which technology transfer and circuit characterization is possible from embeddings generated from the
BOMB dataset.
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