
How to Train Your Robot: Techniques for Enabling

Robotic Learning in the Real World

Abhishek Gupta

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-191

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-191.html

August 13, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to acknowledge my advisors - Pieter Abbeel and Sergey
Levine, my committee - Ken Goldberg, Hannah Stuart, Trevor Darrell and
my friends and family for their support.

How to Train Your Robot: Techniques for Enabling Robotic Learning in the Real World

by

Abhishek Gupta

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Sergey Levine, Co-chair
Pieter Abbeel, Co-chair

Ken Goldberg

Summer 2021

The dissertation of Abhishek Gupta, titled How to Train Your Robot: Techniques for Enabling
Robotic Learning in the Real World, is approved:

Co-chair Date

Co-chair Date

Date

University of California, Berkeley

How to Train Your Robot: Techniques for Enabling Robotic Learning in the Real World

Copyright 2021
by

Abhishek Gupta

1

Abstract

How to Train Your Robot: Techniques for Enabling Robotic Learning in the Real World

by

Abhishek Gupta

Doctor of Philosophy in Computer Science

University of California, Berkeley

Sergey Levine, Co-chair

Pieter Abbeel, Co-chair

Reinforcement learning has been a powerful tool for building continuously improving systems in
domains like video games and animated character control, but has proven relatively more challenging
to apply to problems in real world robotics. In this talk, I will argue that this challenge can be
attributed to a mismatch in assumptions between typical RL algorithms and what the real world
actually provides, making data collection and utilization difficult. In this talk, I will discuss how
to build algorithms and systems to bridge these assumptions and allow robotic learning systems
to operate under the assumptions of the real world - under realistic and practical assumptions
on non-determinism, uncertainty and human supervision. In particular, I will describe how we
can develop algorithms to ensure easily scalable supervision from humans, perform safe, directed
exploration in practical time scales and enable uninterrupted autonomous data collection at scale. I
will show how these techniques can be applied to real world robotic systems. Lastly, I will provide
some perspectives on how this opens the door towards future deployment of robots into unstructured
human-centric environments such as our homes, hospitals and shopping malls.

i

Acknowledgments

I first recall mentioning I wanted to pursue a Ph.D and become a professor back in the 12th grade.
A lot has happened since then, and I owe it all to the many people who have been such a crucial part
of my journey and supported me through it all. I truly believe that the outcomes in your life are
a product of the doors that have been opened for you, whether it be by your parents, advisors or
friends but I have been blessed with a wonderful support system that has kept me going through the
last 6 years and has taught me everything.

First of all I would like to thank the members of my committee. The advice and guidance of
Trevor Darrell, Hannah Stuart and Ken Goldberg has helped reshape the way I think about research
problems and I feel very grateful to have been a beneficiary of their time and guidance.

If I were to name two people who have changed my life the most in the last 10 years, it would be
Sergey Levine and Pieter Abbeel. It is hard for me to express in words how they’ve both impacted
me in their own unique ways. Being advised by both of them has been an amazing privilege and I
owe them both a tremendous debt of gratitude for all they have taught me about research, mentorship
and life. Pieter was one of the first people to take a chance on me, as a freshman back in 2012. He
has continued to push me to be a better researcher, a more visionary thinker and to be independent
in all my endeavors. I am grateful to him for being my foremost advocate, and being a wonderful
friend. Sergey has been my closest collaborator, sounding board and mentor over the last 6 years.
No one has pushed me more than him, whether it be in terms of technical expertise, mentorship
or taking risks, and I have grown immensely from our interactions. Both Pieter and Sergey have
my heartfelt gratitude for all that they have done for me, I know we will continue to be friends and
collaborators for many years to come.

Besides my advisors I have been fortunate to have excellent mentors along the way who have
taught me how to approach research the right way and have shown me how to be an excellent mentor
and collaborator. Particularly, I would like to thank Karol Hausman, Chelsea Finn and Vikash
Kumar, Alex Lee for their friendship and mentorship. They have guided me through the rough
times and celebrated the good ones with me and I am lucky to have had the opportunity to work
with them.

I would also like to thank my collaborators who have made the work in this thesis possible -
Coline Devin, Clemens Eppner, YuXuan Liu, Aravind Rajeswaran, Giulia Vezzanni, Siddhartha
Srivastava, Ben Eysenbach, Russell Mendonca, Chelsea Finn, Karol Hausman, Vikash Kumar, JD
Co-Reyes, Michael Chang, Dibya Ghosh, Nick Altieri, Jacob Andreas, Henry Zhu, Justin Yu, Tony
Zhao, Corey Lynch, Ashwin Reddy, Justin Fu, Allan Jabri, Kyle Hsu, Tianhe Yu, Saurabh Kumar,
Aviral Kumar, Dhruv Shah, Avi Singh, Kristian Hartikainen, Ashvin Nair, Murtaza Dalal, Glen
Berseth, Charles Sun, Brandon Kinman, Garrett Peake, Kelvin Xu, Marvin Zhang, Suvansh Sanjeev,
Michael Ahn, Olivia Watkins, Kate Rakelly, Colin Li and many others. Each collaboration has
been a wonderful learning experience and I am thankful to have met each of you during my time at
Berkeley.

I also want to thank my lab-mates both in RAIL and RLL, and the larger BAIR community for
making walking into SDH such a joyful experience. I will greatly miss our Thursday afternoon chats
and just laying on the floor at 3am right before a paper deadline. In particular, I would like to thank

ii

friends from the 7th floor of SDH - Alex Lee, Marvin Zhang, Sandy Huang, Chelsea Finn, Greg
Kahn, Coline Devin, Rocky Duan, Haoran Tang, Tuomas Haarnoja, Carlos Florensa, Adam Stooke,
Thanard Kurutach, Vitchyr Pong, JD Co-Reyes, Anusha Nagabandi, Justin Fu, Sid Reddy, Ashvin
Nair, Kelvin Xu, Erin Grant, Pulkit Agrawal, Deepak Pathak, Parsa Mahmoudieh, David Held, Aviv
Tamar, Joshua Achiam, Bradly Stadie, Rowan McCallister, Frederik Ebert, Ignasi Clavera, Aviral
Kumar, Xinyang Geng, Kate Rakelly, Somil Bansal for making SDH seem like home and for all the
wonderful memories. I want to give special thanks to Greg Kahn, Coline Devin, Anusha Nagabandi
and Marvin Zhang - I’m grateful for the dark humor, the commiseration, the brainstorming sessions,
the words of encouragement, the evening NBA games, the LeConte parties and the late night La
Burrita runs, you all are like family to me. And a very special shout out to Ignasi Clavera, keeping
me sane through the long and stressful times, calling me out when I need it, pushing me to be the
best version of myself. You’ve been an inspiration to me and I couldn’t have asked for a better
partner in crime.

I have been lucky to have an amazing group of friends who have supported me throughout my
PhD journey, right from 2011. I’m grateful they have not given up on me despite me constantly
being buried in work and busy with paper deadlines. In particular, I want to thank Aayush Dawra,
Apratim Gupta, Rohan Bhasin, Ashmi Chakraborty, Siddhanth Puri, Kush Agrawal, William Wu,
Garrett Gordon, Cody Holik, Shiv Sundram, Srijit Ghosh, Tanay Jaeel, Sahithi Rani, Jesar Shah,
Daniel Machado, Sukriti Gandhi, Rabia Shah, Navneet Kahlon, Prithi Polavarapu, Shruti Dubey,
Aashik Sekharan, Vishnu Jayaprakash, Antonia Acquistapace, Ronald Lee, Sidharth Gupta, Pranav
Kaundinya, Prashanth Nambiar, Vinit Nayak, Sanat Daga, Saveen Sahni, Ramandeep Dhillon,
Sneha Singh, Kate Rakelly, Mostafa Rohaninejad, Nikhil Mishra, Kunsel Tenzin, Erin Grant for
being a constant source of support and encouragement.

Last but not least I want to thank my family for being my biggest supporters. My family -
Madhurima Ghose, Satyanarayan Gupta and Anubha Ghose taught me how to pursue excellence
without compromising ideals, how to push yourself to be better while helping others, how to question
the little details and take nothing for granted. They have provided me with so much opportunity,
supporting me at every step of my life and have been a constant source of energy, support and love.
I want to thank my aunt and uncle - Mitali Biswas and Prasenjit Biswas for being second parents
to me, supporting me through various ups and downs and being a consistent voice of reason. I
want to thank my paternal grandparents - Kamala Devi and B.L Gupta for the many sacrifices they
have made to bring our family to this point. I want to thank the Grewal family - especially Sukhbir
Grewal for showing me kindness, love and compassion beyond the ordinary. I’m grateful to have all
of you in my life. And most importantly, I want to thank Sabina Grewal for being the light in my
life and providing me unwavering and constant support in every step of my journey.

iii

Contents

Contents iii

1 Introduction 1
1.1 Why Care About Robotic Learning? . 1
1.2 What Learning Methodology should be used? . 2
1.3 Reinforcement Learning . 3
1.4 Real World Reinforcement Learning . 4
1.5 Where does this work fit into the bigger picture of robotic learning? 7

I Supervision 9

2 Supervision from Human Videos 11
2.1 Why Should We Learn from Raw Human Videos? 11
2.2 Relationship to Prior Work . 13
2.3 Problem Formulation and Overview . 14
2.4 Learning to Translate Between Contexts . 15
2.5 Learning Policies via Context Translation . 17
2.6 Experiments . 18
2.7 Discussion and Future Work . 23

3 Supervision from Outcome Examples 25
3.1 Why Should we Study Uncertainty-Aware Outcome Driven RL? 25
3.2 Relationship to Prior Work . 27
3.3 Preliminaries . 27
3.4 Bayesian Success Classifiers for Reward Inference 29
3.5 MURAL: Training Uncertainty-Aware Success Classifiers for Outcome Driven RL

via Meta-Learning and CNML . 32
3.6 Experimental Evaluation . 34
3.7 Discussion . 37

4 Supervision from Language Corrections 38
4.1 Why Should We Use Language Feedback to Supervise RL algorithms? 38

iv

4.2 Relationship to Prior Work . 39
4.3 Problem Formulation . 41
4.4 The Language-Guided Policy Learning Model . 41
4.5 Meta-Training the GPL Model to Learn From Corrections 42
4.6 Learning New Tasks with The GPL Model . 44
4.7 Experiments . 44

5 Learning Skills Without Reward Supervision 51
5.1 Why Is Unsupervised Skill Discovery Important? 51
5.2 Related Work . 52
5.3 Diversity is All You Need . 53
5.4 Experiments . 56
5.5 Conclusion . 61

6 Unsupervised Pre-Training for Quick Reinforcement Learning 62
6.1 Motivating a General Unsupervised Meta-RL Framework 62
6.2 Related Work . 63
6.3 Unsupervised Meta-RL . 64
6.4 Experimental Evaluation . 73
6.5 Discussion and Future Work . 75

7 Relationship to Other Work on Supervision in Reinforcement Learning 76
7.1 Connections to Prior Work . 76
7.2 Related Work Subsequent to Publishing . 77

II Distributions 78

8 Bootstrapping On-Policy Reinforcement Learning with Human Demonstrations 81
8.1 Why Does Complex Dexterous Manipulation Require Demonstration Bootstrapped

RL? . 81
8.2 Related Work . 83
8.3 Dexterous Manipulation Tasks . 85
8.4 Demo Augmented Policy Gradient (DAPG) . 89
8.5 Results and Discussion . 91
8.6 Conclusion . 95

9 Applying Bootstrapped On-Policy RL to Real World Robotic Systems 96
9.1 Contributions . 96
9.2 Hardware Setup . 97
9.3 Tasks . 98
9.4 Experimental Results and Analysis . 100
9.5 Discussion and Future Work . 107

v

10 Bootstrapping Hierarchical Reinforcement Learning with Human Demonstrations
for Long Horizon Reasoning 108
10.1 How Can Demonstration Bootstrapped RL Solve Long Horizon Tasks? 108
10.2 Relationship to Prior Work . 109
10.3 Relay Policy Learning . 110
10.4 Experimental Results . 114
10.5 Conclusion and Future Work . 118

11 Bootstrapping Off-Policy Reinforcement Learning with Offline Datasets and On-
line Finetuning 119
11.1 Why Should We Care About Bootstrapped Off-Policy RL? 119
11.2 Preliminaries . 121
11.3 Challenges in Offline RL with Online Fine-tuning 122
11.4 Advantage Weighted Actor Critic: A Simple Algorithm for Fine-tuning from Offline

Datasets . 125
11.5 Related Work . 127
11.6 Experimental Evaluation . 129
11.7 Discussion and Future Work . 133

12 Relationship to Other Work on Bootstrapping Reinforcement Learning 134

IIIContinual Data Collection 135

13 Instrumentation Free Learning Systems for Real World Reinforcement Learning 137
13.1 Motivation . 137
13.2 The Structure of a Real-World RL System . 138
13.3 The Challenges of Real World RL . 141
13.4 A Real-world Robotic Reinforcement Learning System 142
13.5 Related Work . 144
13.6 Algorithm details . 145
13.7 Experiments . 146
13.8 Discussion . 150

14 Building Reset-Free Reinforcement Learning Algorithms via Multi-Task Learning 151
14.1 Introduction . 151
14.2 Learning Dexterous Manipulation Behaviors Reset-Free via Multi-Task RL 153
14.3 Task and System Setup . 155
14.4 Experimental Evaluation . 158
14.5 Discussion . 162

15 Bootstrapping Reset-Free Reinforcement Learning Algorithms with Human Data 164
15.1 Introduction . 164

vi

15.2 Preliminaries and Problem Statement . 166
15.3 Demonstration Augmented Autonomous Practicing for Multi-Task Reinforcement

Learning . 166
15.4 System Description . 169
15.5 Experimental Evaluation . 170
15.6 Discussion . 173

16 Relationship to Other Work on Continual Data Collection in Reinforcement Learning174

17 Conclusion 175

Bibliography 178

18 Appendices 213
18.1 Appendix A: Appendix for Chapter 3 . 214
18.2 Appendix B: Appendix for Chapter 4 . 234
18.3 Appendix C: Appendix for Chapter 5 . 239
18.4 Appenix D: Appendix for Chapter 6 . 254
18.5 Appendix E: Appendix for Chapter 10 . 258
18.6 Appendix F: Appendix for Chapter 11 . 261
18.7 Appendix G: Appendix for Chapter 13 . 272
18.8 Appendix H: Appendix for Chapter 14 . 281
18.9 Appendix I: Appendix for Chapter 15 . 290

1

Chapter 1

Introduction

1.1 Why Care About Robotic Learning?
The ultimate goal for many roboticists is to build robotic systems that are able to master complex
skills involving object interaction, contact rich manipulation and unmapped navigation in complex,
unstructured real world environments. The challenge with complex real world environments is the
fact that these environments introduce a massive amount of diversity, complexity and variability that
are significantly different from the environments that most robots find use in today —warehouses
and very controlled navigation problems. The question becomes - what perception and control
techniques for robotics can actually scale to these kinds of unstructured real world environments?
For instance, can we build a robotic learning agent that is able to actually operate in someone’s ever
changing home?

A variety of techniques in control theory [1]–[3], motion planning [4]–[6], state machine driven
robotic control [7], [8] and task and motion planning [9] have seen a lot of success in a variety of
different problems like grasping and table-top rearrangement for instance. However, while these
techniques have seen success in these types of problems in controlled settings, they often have
prohibitively expensive requirements such as a known model of the world [6] or assume that there
is minimal to no interaction with objects in the scene. These requirements are certainly fulfilled in
many of the domains where robots are currently applied - bin picking, warehouse navigation, flat
terrain navigation and so on. However, for the most general case discussed above, in unstructured
open-world environments like a home, hospital or shopping mall, these algorithms struggle to scale
without very significant human engineering and careful robot programming.

An alternative that has significant potential is using a learning based paradigm for robotic
perception and control. Machine learning techniques [10]–[12] have shown tremendous potential in
extracting features and being able to process high dimensional, unstructured data in domains like
computer vision [10], [12] and natural language processing [13], [14]. These successes are a product
of large amounts of data, powerful computational tools, expressive predictive models and powerful
optimization tools [15]. Given the success of machine learning tools in these domains and their
ability to scale more gracefully than rule based or expert systems to complex but data rich domains,

CHAPTER 1. INTRODUCTION 2

we posit that these types of tools have the potential to scale well to unstructured, open world,
environments like the home or a hospital with relatively little human engineering. This hypothesis
is tangentially based on the success of machine learning systems in dealing with unstructured data
in domains like computer vision, natural language and domains like protein folding.

Figure 1.1: The goal of this thesis is to enable a variety of real world robotic systems to learn behaviors via reinforcement
learning by training directly in the real world. Note that this is in contrast to the paradigm of training in simulation and
transferring to the real world, as discussed in detail in Section 1.5

1.2 What Learning Methodology should be used?
Given that we want to apply a learning based algorithm to the aforementioned robotics problems,
the question becomes —what type of learning algorithm should be utilized for robotic perception
and control in unstructured environments? The answer to this question lies in the desiderata for
a real world learning system; we want to be able to build continually improving learning systems
that can keep improving as they collect more and more data in the real world. Given that the world
is incredibly complex and unstructured, it’s unlikely a model will be perfect when deployed in
a new environment. In these scenarios, a continually improving learning system is able to adapt
to new scenarios and deal with the variety of scenarios encountered in the real world. A typical
supervised machine learning system [12] would assume access to a large labeled dataset, use it to
learn a suitable model via techniques for maximum likelihood estimation and then simply deploy

CHAPTER 1. INTRODUCTION 3

this model into the desired application. On the other hand, a continually improving learning system
continues to collect data in a directed way on deployment, improving it’s behavior as it is able to
collect more and more experience in the environment. For instance, given a robotic home assistant,
we’d want it to keep getting better the longer it actually spends in someone’s home practicing
different tasks.

Given the goal of building continually learning systems, reinforcement learning is a powerful
paradigm for actually building systems that can keep improving by collecting their own data.
Typically the paradigms of supervised or unsupervised learning rely on provided datasets, but
reinforcement learning systems collect their own data and use this data to continue improving their
behavior. While certain applications of supervised [16] or unsupervised learning [17] have also
been explored in the continual setting where they are exposed to different tasks one after another,
these techniques do not actually collect their own data with an embodied system and rely on this
continuum of data to be provided by a human supervisor. To build systems that can collect their
own data to keep improving autonomously, we delve deeper into reinforcement learning next.

1.3 Reinforcement Learning
Reinforcement learning can most intuitively be understood as the process of learning behaviors
through repeated trial and error interactions with an environment, with the goal of maximizing some
notion of reward in the environment. An example of this in our day to day interactions includes
the mechanisms through which dogs are taught new tricks, through repeated interaction and tricks
and the mechanisms through which babies (and even adults!) learn new motor and higher order
skills. More formally, reinforcement learning usually operates in the formalism of Markov decision
processes (MDP), with a MDP being denoted asM = (S,A, T ,R, γ, ρ,H), where S represents
the state space, A represents the action space, T represents the transition likelihood (often referred
to as the dynamics of the world),R refers to the reward function, γ the discount factor, ρ the initial
state distribution, and H the episode horizon. Under this notation, the goal of a reinforcement
learning agent is to utilize interactions in the MDP to learn a policy π(a|s) that learns how to
command actions a at a state s, such that it maximizes the expected sum of discounted rewards.

π ← arg max
π

Es0∼ρ,at∼π(at|st),st+1∼T (st+1|st,at)

[
H∑
t=0

γtr(st, at)

]
(1.1)

This framework is particularly appealing because it simply requires sampling from the dynamics
model T and reward function R, rather than an actual analytic model of the world. This allows
reinforcement learning agents to operate with minimal pre-provided knowledge, instead obtaining
an understanding of the dynamics of the world T , the reward function R through interaction with
the environment. While this formalism is very succinct and convenient, as we will discuss next,
there arise some challenges when the real world is represented under this formalism.

Very briefly, there are three major classes of solutions to problems in reinforcement learning -
model free policy-gradient algorithms [18]–[20], model free dynamic programming algorithms [21]–

CHAPTER 1. INTRODUCTION 4

[23] and model-based algorithms [24]–[26]. While each of these techniques aim to maximize the
expected return, they do so in very different ways. The policy gradient aims to directly learn the
policy by performing gradient ascent on the expected return objective, model-based algorithms aim
to learn an explicit model of transition dynamics T and reward function R, which can then be used
to obtain an optimal policy, and dynamic programming algorithms make use of the famed notion of
Bellman consistency in order to learn representative models of expected future return. The focus of
this thesis is less on building better optimizers for the reinforcement learning objective and more on
actually bridging the gap between the formalism as described here and the conditions present in real
world robotics problems. Let us try and understand this gap next.

1.4 Real World Reinforcement Learning
The reinforcement learning formalism under the MDP framework is ideal for analytic problems [27],
certain types of games [11], [28], simulated domains [29], and has seen tremendous success in
these domains. However, the success of reinforcement learning in actually enabling “real-world"
reinforcement learning has been relatively limited, either being restricted to very simplistic tasks [30],
[31], tasks with significant instrumentation [32], [33], or domains which require large amounts
of human engineering and intervention. This is not for lack of trying on the algorithmic front,
algorithms for RL are constantly getting better at optimizing the RL objective. This thesis posits the
limiting factor that has kept RL algorithms from widespread adoption in the domain of real world
robotic learning, is the mismatch between the assumptions made by the typical RL formulation
described above and what is actually available in the real world.

Figure 1.2: Mismatched assumptions between ATARI games and real world robotics

This is perhaps best illustrated by an example —let us consider the difference between a domain
where the RL formalism is easy to satisfy, the ATARI video game domain, and domains where
this is more challenging, for instance a robot operating in a kitchen. As we can see in Fig 1.2, the

CHAPTER 1. INTRODUCTION 5

video game domain has naturally and easily available rewards in terms of the score, it allows for
the collection of unlimited amounts of data for free, and it provides essentially complete control
over game state to reset whenever needed to keep attempting the task over and over. On the other
hand, a robot operating in a kitchen does not have a clearly defined notion of reward, it is limited
to a finite amount of experience based on the system’s physical constraints, and there is no oracle
control over the state of the world to automatically provide resets and such. In addition, a real world
environment faces a variety of other conditions such as. uncertainty in state, non-determinism in
dynamics and complex physics that is often ignored in simulation or video games. There is clearly a
significant mismatch between the assumptions across these domains, how can this be characterized
more formally?

One way of thinking about this problem is through the lens of data. The mismatch be-
tween typical RL algorithms and the real world lies in how data is collected and utilized by
these algorithms. In RL, unlike supervised learning or unsupervised learning, there is no fixed
dataset that is provided to the agent; this has to be collected by the agent through interaction
with the environment. This dataset can be represented as a set of state-action-next state tuples
D = {(s0, a0, s1, r0), (s0, a0, s1, r0), · · · (sN , aN , sN+1, rN)}. For the sake of notation, let us also
denote the (potentially non stationary) joint distribution that these tuples are drawn from by p. p
is obviously a product of the transition dynamics of the world T and the current policy π. This
notation is illustrated more clearly in Fig 1.4.

Figure 1.3: An overview of the different
components of this thesis. In order to en-
able real world robotic learning and over-
come mismatched assumptions between
most RL algorithms and the real world,
we require a combination of robust con-
tinually learning robotic learning systems,
techniques for inferring suitable reward
supervision and algorithms for utilizing
these systems and rewards while boot-
strapping from small amounts of human
provided data.

Given this form of data collected in RL, the mismatch in
assumption lies in assumptions how the agent obtains the right
supervision r (i.e. the right rewards), collects data from the
right distribution p safely and efficiently, and finally ensuring
that these systems are able to autonomously collect enough data
N without unreasonable amounts of human effort. Most RL
algorithms as they stand now make unreasonable assumptions
about how r, p and N are obtained and these can often be
difficult to actually satisfy in the real world. In this thesis, we
argue that by dividing the real world RL problem into three
different sub-problems - obtaining the right supervision (r),
collecting data from the right distributions (p)and building
systems for large scale data collection (N), we can actually
start to deploy large scale deep reinforcement learning systems
into real world environments. Throughout the rest of this thesis,
I will provide a detailed account of different ways of tackling
these problems - supervision in Part I, distributions in Part II
and continual data collection in Part III.

Under Part I, in Section 2 we provide an overview of what
supervision signifies in the context of real world RL. Following
this in Section 3 we discuss techniques for learning rewards from raw human video, in Section 4 we
discuss how to infer rewards from examples of successful outcomes, in Section 5 we discuss how
we can infer reward functions from language feedback and in Section 6, 7 we discuss how we can

CHAPTER 1. INTRODUCTION 6

actually learn behaviors unsupervised without any task-specific rewards. Through this discussion
we show how moving reward inference towards a data driven process allows for scaling to real
world scenarios, inferring rewards under realistic assumptions.

Figure 1.4: Data in the context of RL algorithms

Under Part II, in Section 10, we discuss an algo-
rithm for collecting data efficiently and in a directed
way by combining on-policy RL and human demon-
strations. Following this, in Section 11 we show how
this can be applied on dexterous manipulation tasks
in the real world. We then discuss how this paradigm
can be extended to long horizon behaviors with hi-
erarchical policy representations in Section 12. We
then discuss how we can move from on-policy algo-
rithms to significantly more efficient off-policy ones
in Section 13. Through this discussion, we show
how bootstrapping from a small amount of human
provided data can allow for much more directed data collection and learning, scaling to much more
complex tasks than was previously possible.

Under Part III, we largely study the problem of instrumentation free, reset-free learning. In
Section 17 we discuss a system for reset-free learning from visual inputs without any human
intervention for simple dexterous manipulation problems. We then show how this paradigm can be
extended to solve much more complex tasks via multi-task RL in Section 18. And finally, in Section
19 we discuss how the ideas from Part II can aid in improving the efficiency of the multi-task RL
algorithm described in Section 18. Through this lens, we show that it is important to think about
the systems problem for large scale robotic learning and we show that robotic learning systems
constructed with these principles in mind can leverage large amounts of autonomously collected
data to learn complex behaviors. In particular, this thesis covers content from the following papers
with the listed co-authors and venues.

1. Y. Liu∗, A. Gupta∗, P. Abbeel, and S. Levine, “Imitation from observation: Learning to imitate
behaviors from raw video via context translation,” International Conference on Robotics and
Automation (ICRA) 2018

2. K. Li∗, A. Gupta∗, A. Reddy, V. Pong, A. Zhou, J. Yu, S. Levine, ”MURAL: Meta-Learning
Uncertainty-Aware Rewards for Outcome-Driven," International Conference on Machine
Learning (ICML) 2021

3. JD. Co-Reyes, A. Gupta, S. Sanjeev, N. Altieri, J. Andreas, J. DeNero, P. Abbeel, S. Levine,
“Guiding Policies with Language via Meta-Learning," International Conference on Learning
Representations (ICLR) 2018

4. B. Eysenbach, A. Gupta, J. Ibarz, S. Levine, “Diversity is All You Need: Learning Skills
without a Reward Function", International Conference on Learning Representations (ICLR)
2018

CHAPTER 1. INTRODUCTION 7

5. A. Gupta∗, B. Eysenbach∗, C. Finn, S. Levine, “Unsupervised Meta-Learning for Reinforce-
ment Learning", arXiv preprint 2020

6. A. Rajeswaran∗, V. Kumar∗, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, S. Levine,
“Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demon-
strations," Robotics Science and Systems (RSS) 2018

7. H. Zhu∗, A. Gupta∗, A. Rajeswaran, S. Levine, V. Kumar, “Dexterous Manipulation with
Deep Reinforcement Learning: Efficient, General, and Low-Cost," International Conference
on Robotics and Automation (ICRA) 2018

8. A. Gupta, V. Kumar, C. Lynch, S. Levine, K. Hausman, “Relay Policy Learning: Solving
Long-Horizon Tasks via Imitation and Reinforcement Learning," Conference on Robot
Learning (CoRL) 2019

9. A. Nair∗, A. Gupta∗, M. Dalal, S. Levine, “AWAC: Accelerating Online Reinforcement
Learning with Offline Datasets," arXiv preprint 2020

10. H. Zhu∗, J. Yu∗, A. Gupta∗, D. Shah, K. Hartikainen, A. Singh, V. Kumar, S. Levine, “The
Ingredients of Real-World Robotic Reinforcement Learning," International Conference on
Learning Representations (ICLR) 2020

11. A. Gupta∗, J. Yu∗, Z. Zhao∗, V. Kumar∗, A. Rovinsky, K. Xu, T. Devlin, S. Levine, “Reset-Free
Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behav-
iors without Human Intervention," International Conference on Robotics and Automation
(ICRA) 2021

12. A. Gupta, C. Lynch, B. Kinman, G. Peake, S. Levine, K. Hausman, “Demonstration-
Augmented Autonomous Practicing via Multi-Task Reinforcement Learning," under review
2021

These co-authors really were tremendous and all the credit goes to them for putting together
some amazing work.

1.5 Where does this work fit into the bigger picture of robotic
learning?

It is important to understand how this thesis fits into the broader context of robotic learning. The
techniques described in this thesis are largely techniques for enabling end to end deep reinforcement
learning systems to solve robotic manipulation tasks. In the broader literature, end-to-end algorithms
for robotic learning have been explored for manipulation [31], [34]–[37] as well as locomotion and
navigation [38]–[40]. While many of these techniques are able to use reinforcement learning as
a tool to learn how to solve certain tasks effectively, they have been restricted to relatively small

CHAPTER 1. INTRODUCTION 8

amounts of training time [31], [33] or controlled training setups [31], [32], [35]. This thesis aims
to remove those limitations and allow robotic learning agents to operate in natural environments,
with minimal amounts of human instrumentation or intervention.

An alternative paradigm that is often quite popular is the paradigm of simulation to reality
transfer for robotic learning [41]–[46]. In simulation to reality (sim2real) transfer algorithms, the
agent is first trained in simulation using suitable robustness or adaptation techniques [41]–[43],
following which the agent is deployed into the real world to perform a task at test time. The
convenient part about this paradigm is that it is able to avoid the various training wheels needed for
real world robotic learning and can utilize simulations in parallel [46], but it is challenging to scale
to many new environments and tasks (especially those which are hard to simulate [47], [48]), not to
mention the challenging transfer learning problem. For every new environment that the agent is
deployed in, the simulation must be accurately created, tested and designed. This becomes tedious
and impractical as robots are deployed at huge scale in homes, hospitals and shopping malls. This
thesis argues that with suitable algorithmic and system developments, real world RL will scale
significantly better than simulation to realty transfer. We would like to acknowledge the possibility
that simulators drastically improve and improved inverse graphics techniques [49] make it easy to
generate simulated environments just via images of the real world. In this scenario, the. applicability
of simulation will probably be significantly increased but there is still likely to be some level of
model mis-specification and uncertainty in this process. This will need real world finetuning, with
actual real world data collection, making the ideas in this thesis very applicable even under this
training paradigm.

Lastly, it is important to also consider algorithms for non “end-to-end" robotic learning. These
techniques adopt a modular approach, where representations or state estimates are first extracted
for the purposes of perception, following which an explicit control or planning algorithm can be
deployed to command the robots actions [6], [9], [50]–[54]. Learning is often deployed in solving
perception in these cases [50], [52], [54] identifying object types and poses, which allows for
planning algorithms to solve high dimensional problems accordingly. While these techniques can be
effective in simple scenarios, as scenes get more complex the burden of actually providing labels and
supervision for a modular approach can become prohibitive. However, even more fundamentally,
for large scale problems, the choice of modular abstraction chosen by an algorithm designer may
not be the most effective given the data and can lead to poorly propagating errors between modules
if not designed properly [55]. On the flip-side, some amount of structure can indeed make the
learning process significantly easier, for instance imposing structure on the state and action space
can make learning significantly more efficient. Answering the question of what structure is best,
and how much structure is useful is out of scope of this thesis but forms a fascinating topic of study.
In this thesis, we particularly focus on what it takes to actually enable (mostly) end to end learning
systems to scale. As we discuss in Part 2 and Part 3, this does not mean we begin tabula rasa,
it simply means that we are not imposing very particular modular abstractions onto the learning
process. We also want to acknowledge that this thesis shares its name with an excellent children’s
science book by Blooma Goldberg, Ken Goldberg, Ashley Chase [56].

9

Part I

Supervision

CHAPTER 1. INTRODUCTION 10

To start off our investigation, we think about the role of supervision in robotic reinforcement
learning. Reinforcement learning as described in Chapter 1 requires a well defined reward function
to optimize. While this is trivially available in games [11], [21] in terms of the score and certain
simulation domains [29], it is typically much more challenging to provide for robots in the real
world. What makes it so challenging is the fact that reward functions don’t simply exist in the real
world and must either be provided by hand or somehow inferred from the robots own observations,
both of which can be challenging in natural uninstrumented environments.

The typical pipeline as it stands now for most robotic RL applications is to first have a hand
engineering state estimation or tracking system, use this to identify entities and objects in the world.
These state estimates are then used in a hand defined reward function to provide reward for the
optimization. The challenge with this pipeline is that every new task and environment requires
considerable human effort to actually set up the reward provision mechanism, making it impractical
for large scale robot learning.

An alternative paradigm is to move the design of reward functions from a hand designed one
to a more data driven process. Given a small amount of human data, indicating the task to be
solved, we can try and learn reward inference models that are able to extract reward r from sensory
observations s, without actually requiring significant instrumentation or hand specification. This
data driven paradigm can come in several different forms —in this thesis we consider inferring
rewards from easy to provide and natural sources of supervision like learning from raw videos
of human performing tasks, learning from examples of successful outcomes only, learning from
language corrections and we even take this to its logical extreme, learning skills without any reward
functions at all. Through this investigation of data driven reward inference, we show that the
supervision problem can be tackled by utilizing human provided task specifications in a directed
way to infer rewards.

11

Chapter 2

Supervision from Human Videos

As we described in Chapter 2, this work aims to make a move from programmatic rewards to a
more data driven approach for reward design. Raw video supervision from human experts is a
form of supervision that is relatively easy to provide, while still providing a significant amount of
guidance on how to perform tasks. We start our investigation into supervision in reinforcement
learning through a consideration of how we can actually infer rewards and learn from raw human
videos with reinforcement learning.

2.1 Why Should We Learn from Raw Human Videos?
Learning can enable autonomous agents, such as robots, to acquire complex behavioral skills that
are suitable for a variety of unstructured environments. In order for autonomous agents to learn such
skills, they must be supplied with a supervision signal that indicates the goal of the desired behavior.
This supervision typically comes from one of two sources: a reward function in reinforcement
learning that specifies which states and actions are desirable, or expert demonstrations in imitation
learning that provide examples of successful behaviors. Both modalities have been combined with
high-capacity models such as deep neural networks to enable learning of complex skills with raw
sensory observations [21], [31], [57], [58]. One major advantage of reinforcement learning is that
the agent can acquire a skill through trial and error with only a high-level description of the goal
provided through the reward function. However, reward functions can be difficult to specify by
hand, particularly when the success of the task can only be determined from complex observations
such as camera images [59].

Imitation learning bypasses this issue by using examples of successful behavior. Popular
approaches to imitation learning include direct imitation learning via behavioral cloning [58] and
reward function learning through inverse reinforcement learning [60]. Both settings typically
assume that an agent receives examples that consist of sequences of observation-action tuples, and
try to learn either a function that maps observations to actions from these example sequences or a
reward function to explain this behavior while generalizing to new scenarios. However, this notion
of imitation is quite different from the kind of imitation carried out by humans and animals: when

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 12

Figure 2.1: Imitation from Observation using Context-Aware Translation. We collect a number of videos of expert
demonstrations from a human demonstrator, and use them to train a context translation model. At learning time, the
robot sees the context of the task it needs to perform. Then, the model predicts what an expert would do in the robot
context. This predicted sequence is used to define a cost function for reinforcement learning thus enabling imitation
from observation. The task shown here is illustrative of a wide range of tasks that we evaluate.

we learn new skills from observing other people, we do not receive egocentric observations and
ground truth actions. The observations are obtained from an alternate viewpoint and the actions
are not known. Furthermore, humans are not only capable of learning from live observations of
demonstrated behavior, but also from video recordings of behavior provided in settings considerably
different than their own. Can we design imitation learning methods that can succeed in such
situations? A solution to this problem would be of considerable practical value in robotics, since
the resulting imitation learning algorithm could directly make use of natural videos of people
performing the desired behaviors obtained, for instance, from the Internet.

We term this problem imitation-from-observation. The goal in imitation-from-observation is
to learn policies only from a sequence of observations (which can be extremely high dimensional
such as camera images) of the desired behavior, with each sequence obtained under differences in
context. Differences in context might include changes in the environment, changes in the objects
being manipulated, and changes in viewpoint, while observations might consist of sequences of
images. We define this problem formally in Section 2.3.

Our imitation-from-observation algorithm is based on learning a context translation model that
can convert a demonstration from one context (e.g., a third person viewpoint and a human demonstra-

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 13

tor) to another context (e.g., a first person viewpoint and a robot). By training a model to perform this
conversion, we acquire a feature representation that is suitable for tracking demonstrated behavior.
We then use deep reinforcement learning to optimize for the actions that optimally track the translated
demonstration in the target context. As we illustrate in our experiments, this method is significantly
more robust than prior approaches that learn invariant feature spaces [61], perform adversarial
imitation learning [62], or directly track pre-trained visual features [63]. Our translation method is
able to provide useful perceptual reward functions, and performs well on a number of simulated and
real manipulation tasks, including tasks that require a robot to emulate human tool use. Videos can
be found on https://sites.google.com/site/imitationfromobservation/

2.2 Relationship to Prior Work
Imitation learning is usually thought of as the problem of learning an expert policy that generalizes to
unseen states, given a number of expert state-action demonstration trajectories [64], [65]. Imitation
learning has enabled the successful performance of tasks in a number of complex domains such as
helicopter flight through apprenticeship learning [66], learning how to put a ball in a cup and playing
table tennis [67], performing human-like reaching motions [68] among others. These methods
have been very effective however typically require demonstrations provided through teleoperation
or kinesthetic teaching, unlike our work which aims to learn from observed videos of other agents
performing the task. Looking at the imitation learning literature from a more methodological
standpoint, imitation learning algorithms can largely be divided into two classes of approaches:
behavioral cloning and inverse reinforcement learning.

Behavioral cloning casts the problem of imitation learning as supervised learning, where the
policy is learned from state(or observation)-action tuples provided by the expert. In imitation-from-
observation, the expert does not provide actions, and only provides observations of the state in
a different context, so direct behavioral cloning cannot be used. Inverse reinforcement learning
(IRL) methods instead learn a reward function from the expert demonstrations [60], [69]–[71]. This
reward function can then be used to recover a policy by running standard reinforcement learning
[72], [73], though some more recent IRL methods alternate between steps of forward and inverse
RL [62], [74]–[76]. While IRL methods can in principle learn from observations, in practice using
them directly on high-dimensional observations such as images has proven difficult.

Aside from handling high-dimensional observations such as raw images, our method is also
designed to handle differences in context. Context refers to changes in the observation function
between different demonstrations and between the demonstrations and the learner. These may
include changes in viewpoint, object positions, surroundings, etc. Along similar lines, [61] directly
address learning under domain shift. However, this method has a number of restrictive requirements,
including access to expert and non-expert policies, directly optimizing for invariance between
only two contexts (whereas in practice demonstrations may come from several different contexts),
and performs poorly on the more complex manipulation tasks that we consider, as illustrated in
Section 13.7. [63] proposes to address differences in context by using pretrained visual features, but
does not provide for any mechanism for context translation, as we do in our work, relying instead on

https://sites.google.com/site/imitationfromobservation/

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 14

the inherent invariance of visual features for learning. Follow-up work proposes to further increase
the invariance of the visual features through multi-viewpoint training [77]. [78] propose to learn
robotic skills from first person videos of humans by using explicit hand detection and a carefully
engineered vision pipeline. In contrast, our approach is trained end-to-end, and does not require any
prior visual features, detectors, or vision systems. [79] proposed to use demonstrations as input
to policies by training on paired examples of state sequences, however our method operates on
raw observations and does not require any actions in the demonstrations, while this prior method
operates only on low-dimensional state variables and does not deal with context shift like our
method.

Our technical approach is related to work in visual domain adaptation and image translation.
Several works have proposed pixel level domain adaptation [80]–[82], as well as translation of visual
style between domains [83], by using generative adversarial networks (GANs). The applications
of these methods have been in computer vision, rather than robotic control. Our focus is instead
on translating demonstrations from one context to another, conditioned on the first observation in
the target context, so as to enable an agent to physically perform the task. Although we do not
use GANs, these prior methods are complementary to ours, and incorporating a GAN loss could
improve the performance of our method further.

In our work we consider tasks like sweeping, pushing, ladling(similar to pouring) and striking.
Several prior methods have looked at performing tasks like these although typically with significantly
different methods. Tasks involving cleaning with a brush, similar to our sweeping tasks was studied
in [84] but is done using a low cost tool attachment and kinesthetic programming by demonstration.
Besides [63], tasks involving pouring were also studied in [85] using a simple PID controller with
a specified objective volume rather than inferring the objective from demonstrations. Similar flavors
of tasks were also considered in [86], [87], but we leave those specific tasks to future work. Other
work [88] also considers tasks of pushing objects on a table-top but uses predictive models on
point-cloud data and uses a significantly different intuitive physics model with depth data.

2.3 Problem Formulation and Overview
In the imitation-from-observation setting that we consider in this work, an agent observes demon-
strations of a task in a variety of contexts, and must then execute the demonstrated behavior
in its own context. We use the term context to refer to properties of the environment and
agent that can vary across demonstrations, which may include the viewpoint, the background,
the positions and identities of objects in the environment, and so forth. The demonstrations
{D1, D2,Dn} = {[o1

0, o
1
1,o

1
T], [o2

0, o
2
1,o

2
T],, [on0 , o

n
1 ,o

n
T]} consist of observations ot

that are produced by a partially observed Markov process governed by an observation distribution
p(ot|st, ω), dynamics p(st+1|st, at, ω), and the expert’s policy p(at|st, ω), with each demonstration
being produced in a different context ω. Here, st represents the unknown Markovian state, at
represents the action (which is not observed in the demonstrations), and ω represents the context.
We assume that ω is sampled independently from p(ω) for each demonstration, and that the imitation
learner has some fixed ωl from the same distribution. Throughout the technical section, we use oit to

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 15

refer to the observation at time t from a context ωi.
While a practical real-world imitation-from-observation application might also have to contend

with systematic domain shift where, e.g., the learner’s embodiment differs systematically from
that of the demonstrator, and therefore the learner’s context ω cannot be treated as a sample from
p(ω), we leave this challenge to prior work, and instead focus on the basic problem of imitation-
from-observation. This means that the context can vary between the demonstrations and the learner,
but the learner’s context still comes from the same distribution. We elaborate on the practical
implications of this assumption in Section 13.7, and discuss how it might be lifted in future work.

Any algorithm for imitation-from-observation must contend with two challenges: first, it must
be able to determine what information from the observations to track in its own context ωl, which
may differ from those of the demonstrations, and second, it must be able to determine which actions
will allow it to track the demonstrated observations. Reinforcement learning (RL) offers a tool
for addressing the latter problem: we can use some measure of distance to the demonstration
as a reward function, and learn a policy that takes actions to minimize this distance. But which
distance to use? If the observations correspond, for example, to raw image pixels, a Euclidean
distance measure may not give a well-shaped objective: roughly matching pixel intensities does
not necessarily correspond to a semantically meaningful execution of the task, unless the match is
almost perfect. Fortunately, the solution to the first problem – context mismatch – naturally lends us
a solution to the problem of choosing a distance metric. In order to address context mismatch, we
can train a model that explicitly translates demonstrations from one context into another, by using
the different demonstrations as training data. The internal representation learned by such a model
provides a much more well-structured space for evaluating distances between observations, since
proper context translation requires understanding the underlying factors of variation in the scene.
As we empirically illustrate in our experiments, we can use squared Euclidean distances between
features of the context translation model as a reward function to learn the demonstrated task, while
using the model itself to translate these features from the demonstration context to the learner’s
context. We first describe the translation model, and then show how it can be used to create a reward
function for RL.

2.4 Learning to Translate Between Contexts
Since each demonstration Dk is generated from an unknown context ωk, the learner cannot directly
track these demonstrations in its own context ωl. However, since we have demonstrations from
multiple unknown but different contexts, we can learn a context translation model on these demon-
strations without any explicit knowledge of the context variables themselves. We only assume that
the first frame ok0 of a demonstration in a particular context ωk can be used to implicitly extract
information about the context ωk.

Our translation model is trained on pairs of demonstrations Di = [oi0, o
i
1..., o

i
T] and Dj =

[oj0, o
j
1..., o

j
T], where Di comes from a context ωi (the source context) and Dj comes from a context

ωj (the target context). The model must learn to output the observations in Dj conditioned on Di

and the first observation oj0 in the target context ωj . Thus, the model looks at a single observation

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 16

from a target context, and predicts what future observations in that context will look like by
translating a demonstration from a source context. Once trained, this model can be provided with
any demonstration Dk to translate it into the learner’s context ωl for tracking, as discussed in the
next section.

Figure 2.2: Context translation model: The source observa-
tion oit is translated to give the prediction of the observation
in the target context (ôjt)trans, given the context image oj0
from the target context. The convolutional encoders are
Enc1 and Enc2, while the deconvolutional decoder Dec de-
codes features back into observations. Colors indicate tied
weights.

The model (Fig 5.1), assumes that the
demonstrations Di and Dj are aligned in time,
though this assumption could be relaxed in fu-
ture work by using iterative time alignment [89].
The goal is to learn the overall translation func-
tion M(oit, o

j
0) such that its output M(oit, o

j
0) =

(ôjt)trans closely matches ojt for all t and each pair
of training demonstrations Di and Dj . That is,
the model translates observations from Di into
the context ωj , conditioned on the first observa-
tion oj0 in Dj .

The model consists of four components: a
source observation encoder Enc1(oit) and a tar-
get initial observation encoder Enc2(oj0) that en-
code the observations into source and target
features, referred to as z1 and z2, a translator
z3 = T (z1, z2) that translates the features z1

into features for the context of z2, which are
denoted z3, and finally a target context decoder Dec(z3), which decodes these features into ôjt .
We will use F (oit, o

j
0) = z3 to denote the feature extractor that generates the features z3 from an

input observation and a context image. The encoders Enc1 and Enc2 can have either different
weights or tied weights depending on the diversity of the demonstration scenes. To deal with the
complexities of pixel-level reconstruction, we include skip connections from Enc2 to Dec. The
model is supervised with a squared error loss Ltrans = ‖(ôjt)trans − ojt‖2

2 on the output ojt and trained
end-to-end.

However, we need the features z3 to carry useful information, in order to provide an informative
distance metric between demonstrations for feature tracking. To ensure that the translated features
z3 form a representation that is internally consistent with the encoded image features z1, we jointly
train the translation model encoder Enc1 and decoder Dec as an autoencoder, with a reconstruction
loss Lrec = ‖Dec(Enc1(ojt)) − o

j
t‖2

2. We simultaneously regularize the feature representation of
this autoencoder to align it with the features z3, using the loss Lalign = ‖z3 − Enc1(ojt)‖2

2. This
forces the encoder Enc1 and decoder Dec to adopt a consistent feature representation, so that the
observation from the target context ojt is encoded into features that are similar to the translated
features z3. The training objective for the entire model is then given by the combined loss function
L =

∑
(i,j)(Ltrans +λ1Lrec +λ2Lalign), with Di and Dj being a pair of expert demonstrations chosen

randomly from the training set, and λ1 and λ2 being hyperparameters. If we don’t regularize the
encoded features of learning trajectories and translated features of experts to lie in the same feature
space, the reward function described in Section 2.5 is not effective since we are tracking features

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 17

which have no reason to be in the same space. Examples of translated demonstrations are shown in
Section 13.7 and the project website.

2.5 Learning Policies via Context Translation
The model described in the previous section can translate observations and features from the
demonstration context into the learner’s context ωl. However, in order for the learning agent to
actually perform the demonstrated behavior, it must be able to acquire the actions that track the
translated features. We can choose between a number of deep reinforcement learning algorithms
to learn to output actions that track the translated demonstrations given the reward function we
describe below.

Reward Functions for Feature Tracking
The first component of the feature tracking reward function is a penalty for deviations from the
translated features. At each time step, the translation function F (which gives us z3) can be used
to translate each of the demonstration observations oit into the learner’s context ωl. The reward
function then corresponds to minimizing the squared Euclidean distance between the encoding of
the current observation to all of these translated demonstration features, which is approximately
tracking their average, resulting in

R̂feat(o
l
t) = −‖Enc1(olt)−

1

n

n∑
i

F (oit, o
l
0)‖2

2,

where Enc1(olt) computes the features of the learner’s observation at time step t, given by olt, and
F (oit, o

j
0) computes translated features of experts.

Unfortunately, feature tracking by itself may be insufficient to successfully imitate complex
behaviors. The reason for this is that the distribution of observations fed into Enc1 during policy
learning may not match the distribution from the demonstrations that are seen during training:
although a successful policy will closely track the translated policy, a poor initial policy might
produce observations that are very different. In these cases, the encoder Enc1 must contend with
out-of-distribution samples, which may not be encoded properly. In fact, the model will be biased
toward predicting features that are closer to the expert, since it only saw expert data during training.
To address this, we also introduce a weak image tracking reward. This reward directly penalizes
the policy for experiencing observations that differ from the translated observations, using the full
observation translation model M :

R̂img(o
l
t) = −‖olt −

1

n

n∑
i

M(oit, o
l
0)‖2

2

The final reward is then the weighted combination R̂(olt) = R̂feat(o
l
t) +wrecR̂img(o

l
t), where wrec is a

small constant (tuned as a hyperparameter in our implementation).

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 18

Reinforcement Learning Algorithms for Feature Tracking
With the reward described in Section 2.5, we perform reinforcement learning in order to learn control
policies in our learning environment. Our method can be used with any reinforcement learning
algorithm. We use trust region policy optimization (TRPO) [90] for our simulated experiments
but not for real world experiments because of it’s high sample complexity. For the real-world
robotic experiments, we use the trajectory-centric RL method used for local policy optimization in
guided policy search (GPS) [31], which is based on fitting locally linear dynamics and performing
LQR-based updates. We compute image features z3, and include these as part of the state. The cost
function for GPS is then a squared Euclidean distance in state space, and we omit the image tracking
cost described in Section 2.5. For simulated striking and real robot pushing, this cost function is
also weighted by a quadratic ramp function weighting squared Euclidean distances at later time
steps higher than initial ones.

Figure 2.3: Four simulated tasks, from left to right: reaching (goal is to reach the red circle), pushing (goal is to push
the white can to the red goal), sweeping (goal is to sweep grey balls into the pan), and striking (goal is to strike the
white ball to the red goal).

2.6 Experiments
Our experiments aim to evaluate whether our context translation model can enable imitation-from-
observation, and how well representative prior methods perform on this type of imitation learning
task. The specific questions that we aim to answer are: (1) Can our context translation model
handle raw image observations, changes in viewpoint, and changes in the appearance and positions
of objects between contexts? (2) How well do prior imitation learning methods perform in the
presence of such variation, in comparison to our approach? (3) How well does our method perform
on real-world images, and can it enable a real-world robotic system to learn manipulation skills?
All results, including illustrative videos, video translations and further experiment details can be
found on: https://sites.google.com/site/imitationfromobservation/

In order to provide detailed comparisons with alternative prior methods for imitation learning,
we set up four simulated manipulation tasks using the MuJoCo simulator [91]. To provide expert
demonstrations, we hand-specified a reward function for each task and used a prior policy optimiza-
tion algorithm [90] to train an expert policy. We collected video demonstrations of rollouts from the
final expert policy acting in a number of randomly generated contexts.

https://sites.google.com/site/imitationfromobservation/

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 19

Reach Push Simulation Sweep Strike
Experiment

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Oracle
Ours
Pretrained Visual Features
Third Person Imitation
Learning (Stadie et al)
Generative Adversarial
Imitation Learning (Ho et al)

Figure 2.4: Comparisons with prior methods on the reaching, pushing, sweeping, and striking tasks. The results show
that our method successfully learned each task, while the prior methods struggled to perform the reaching, pushing
and striking tasks, and only the pretrained visual features approach was able to make a reasonable improvement on the
sweeping task. Third person imitation learning [61] and generative adversarial imitation [62] learning are both at 0%
success rate on the graph.

The tasks are illustrated in Fig. 18.11. The first task requires a robotic arm to reach varying
goal positions indicated by a red disk, in the presence of variation in color and appearance. The
second task requires pushing a white cylinder onto a red coaster, both with varying position, in the
presence of varied distractor objects. The third task requires the simulated robot to sweep five grey
balls into a dustpan, under variation in viewpoint. The fourth task involves using a 4 DoF arm to
strike a white ball toward a red target which varies in position. The project website illustrates the
variability in appearance and object positioning in the tasks, and also presents example translations
of individual demonstration sequences.

Network Architecture and Training
For encoders Enc1 and Enc2 in simulation we perform four 5× 5 stride-2 convolutions with filter
sizes 64, 128, 256, and 512 followed by two fully-connected layers of size 1024. We use LeakyReLU
activations with leak 0.2 for all layers. The translation module T (z1, z2) consists of one hidden
layer of size 1024 with input as the concatenation of z1 and z2. For the decoder Dec in simulation
we use a fully connected layer from the input to four fractionally-strided convolutions with filter
sizes 256, 128, 64, 3 and stride 1

2
. We have skip connections from every layer in the context encoder

Enc2 to its corresponding layer in the decoder Dec by concatenation along the filter dimension. For
real world images, the encoders perform 4 convolutions with filter sizes 32, 16, 16, 8 and strides 1,
2, 1, 2 respectively. All fully connected layers and feature layers are size 100 instead of 1024. The
decoder uses fractionally-strided convolutions with filter sizes 16, 16, 32, 3 with strides 1

2
, 1, 1

2
, 1

respectively. For the real world model only, we apply dropout for every fully connected layer with
probability 0.5, and we tie the weights of Enc1 and Enc2.

We train using the ADAM optimizer with learning rate 10−4. We train using 3000 videos for
reach, 4500 videos for simulated push, 894 videos for sweep, 3500 videos for strike, 135 videos
for real push, 85 videos for real sweep with paper, 100 videos for real sweep with almonds, and 60
videos for ladling almonds. We downsample videos to 36× 64 pixels for simulated sweeping and
48× 48 for all other videos.

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 20

Comparative Evaluation of Context Translation
Results for the comparative evaluation of our approach are presented in Fig 2.4. Performance is
evaluated in terms of the final distance of the target object to the goal during testing. In the reaching
task, this is the distance of the robot’s hand from the goal, in the pushing task, this is the distance of
the cylinder from the goal, in the sweeping task, this corresponds to the mean distance of the balls
from the inside of the dustpan, and in the striking task this is the final distance of the ball from the
goal position. All distances are normalized by dividing by the initial distance at the start of the task,
and success is measured as a thresholding of the normalized distance. We evaluate each task on 10
randomly generated environment conditions, each time performing 100 iterations of reinforcement
learning with 12,500 samples per iteration.

Our comparisons include our method with TRPO for policy learning, an oracle that trains a
policy with TRPO on the ground truth reward function in simulation, which represents an upper
bound on performance, and three prior imitation learning methods. The first prior method learns
a reward using pre-trained visual features, similar to the work of [63]. In this method, features
from an Inception-v3 network trained on ImageNet classification [92] are used to encode the goal
image from the demonstration, and the reward function corresponds to the distance to these features
averaged over all the training demonstrations. We experimented with several different feature
layers from the Inception-v3 network and chose the one that performed best. The second prior
method, third person imitation learning (TPIL), is an IRL algorithm that explicitly compensates
for domain shift using an adversarial loss [61], and the third is an adversarial IRL-like algorithm
called generative adversarial imitation learning (GAIL) [62], using a convolutional model to process
images as suggested by [93]. Among these, only TPIL explicitly addresses changes in domain or
context.

The results, shown in Fig 2.4, indicate that our method was able to successfully learn each
of the tasks when the demonstrations were provided from random contexts. Notably, none of the
prior methods were actually successful on the reaching, pushing or striking tasks, and struggled
to perform the sweeping task. This indicates that imitation-from-observation in the presence of
context differences is an exceedingly challenging problem.

Source Video Context Image Translated Video

Figure 2.5: Translations from a video in the holdout set to a new context for the reaching task (top) and paper sweeping
task (bottom).

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 21

Reach Push Simulation
Experiment

0.00

0.25

0.50

0.75

1.00
Su

cc
es

s R
ate

ours
without Rfeat

without Rimg

without trans

without rec

without rec, align

Figure 2.6: Ablations on model losses and reward functions for the simulated reaching and pushing tasks.Our method
with all components does consistently the best across tasks. Note: for the Push Simulation task, we did not perform
ablations "without Ltrans", "without Lrec", and "without Lrec,Lalign"

Sweep AlmondsPush Cooking Almonds

Human
Demonstration

Robot
Execution

Figure 2.7: Top Row: Demonstrations by a human demonstrator showing the robot how to perform the pushing,
sweeping and ladling almonds task in the real world. Bottom Row: Execution of the robot successfully performing the
pushing, sweeping and ladling almonds tasks.

Ablation Study
To evaluate the importance of different loss functions while training our translation model, and the
different components for the reward function while performing imitation, we performed ablations
by removing these components one by one during model training or policy learning. To understand
the importance of the translation cost, we remove cost Ltrans, to understand whether features z3 need
to be properly aligned we remove model losses Lrec and Lalign. In Fig 2.6 we see that the removal of
each of these losses significantly hurts the performance of subsequent imitation. On removing the
feature tracking loss R̂feat or the image tracking loss R̂image we see that overall performance across
tasks is worse.

Natural Images and Real-World Robotic Manipulation
To evaluate whether our method is able to scale to real-world images and robots, we focus on
manipulation tasks involving tool use, where object positions and camera viewpoints differ between
contexts. All demonstrations were provided by a human, while the learned skills were performed
by a robot. Since our method assumes that the contexts of the demonstrations and the learner are
sampled from the same distribution, the human and the robot both used the same tool to perform the

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 22

tasks, avoiding any systematic domain shift that might result from differences in the appearance
of the human or robot arm. To this end, we apply a cropping of each video around task-relevant
areas of each demonstration. Investigating domain shift is left for future work, and could be
done, for example, using domain adaptation [94]. In the present experiments, we assume that the
demonstration and test contexts come from the same distribution, which is a reasonable assumption
in settings such as tool use and navigation, or tasks where the focus is on the objects in the scene
rather than the arm or end-effector.

Push Sweep
Paper

Sweep
Almonds

Ladling
Almonds

Experiment

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

ours
pretrained
visual
features
joint
angle

Figure 2.8: Plot depicting success rate for our method versus other baselines on the real world tasks with the Sawyer
robot. Success metrics differ per task as described in Section 2.6. As is seen clearly, our method consistently performs
well on all the real world tasks, and outperforms the baseline methods.

Pushing

In the first task, the goal is to push a cylinder to a marked goal position. The success metric is
defined as whether the final distance between the cylinder and goal is within a predefined threshold.
We evaluate our method in the setting where real-world demonstrations are provided by a human
and imitation is done by a robot in the real world.

We evaluated how our method can be used to learn a pushing behavior with a real-world robotic
manipulator, using a 7-DoF Sawyer robot. Since the TRPO algorithm is too data intensive to learn
on real-world physical systems, we use GPS for policy learning (Section 2.5).

For comparison, we also test GPS with a reward that involves tracking pre-trained visual features
from the Inception-v3 network (Section 2.6), as well as a baseline reward function that attempts
to reach a fixed set of joint angles, specified through kinesthetic demonstration. Note that our
method itself does not use any kinesthetic demonstrations, only video demonstrations provided by
the human. In order to include the high-dimensional visual features in the state for guided policy
search, we apply PCA to reduce their dimensionality from 221952 to 100, while our method uses
all 100 dimensions of z3 as part of the state. We found that our method could successfully learn the
skill using demonstrations from different viewpoints, and outperforms the pre-trained features and
kinesthetic baseline, as shown in Fig 2.8.

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 23

Sweeping

The pushing task illustrates the basic capability of our method to learn skills involving manipulation
of rigid objects. However, one major advantage of learning visual reward functions from demonstra-
tion is the ability to acquire representations that can be used to manipulate scenes that are harder
to represent analytically, such as granular media. In this next experiment, we study how well our
method can learn two variants of a sweeping task: in the first, the robot must sweep crumpled paper
into a dustpan, and in the second it must sweep a pile of almonds. We used almonds in place of dirt
or fluids to avoid damaging the robot. Quantitative results are summarized in Fig 2.8.

On the easier crumpled paper task, both our method and the kinesthetic teaching approach works
well, but the reward that uses pre-trained visual features is insufficient to accomplish the task. On
the almond sweeping task (Fig 2.7), our method achieves a higher success rate than the alternative
approaches. The success metric is defined as the average percentage of almonds or paper pieces that
end up inside the dustpan.

Ladling Almonds

Our last task combines granular media (almonds) and a more dynamic behavior. In this task, the
robot must ladle almonds into a cooking pan (Fig 2.7). This requires keeping the ladle upright until
over the pan, and then dumping them into the pan by turning the wrist. The success metric is the
average fraction of almonds that were ladled into the pan. Learning from only raw videos of the
task being performed by a human in different contexts, our method achieved a success rate of 66%
, while the alternative approaches generally could not perform this task. An insight into why the
joint angles approach wouldn’t work on this task is that the spoon has to remain upright until just
the right position over the pan after which it should rotate and pour into the pan. The joint angle
baseline can simply interpolate between the final turned spoon position and the initial position and
pour the almonds in the wrong location. Quantitative results and comparisons are summarized in
Fig 2.8.

2.7 Discussion and Future Work
We investigated how imitation-from-observation can be performed by learning to translate demon-
stration observation sequences between different contexts, such as differences in viewpoint. After
translating observations into a target context, we can track these observations with RL, allowing
the learner to reproduce the observed behavior. The translation model is trained by translating
between the different contexts observed in the training set, and generalizes to the unseen context of
the learner. Our experiments show that our method can be used to perform a variety of manipulation
skills, and can be used for real-world robotic control on a diverse range of tasks patterned after
common household chores.

Although our method performs well on real-world tasks and several tasks in simulation, it
has a number of limitations. First, it requires a substantial number of demonstrations to learn the
translation model. Training an end-to-end model from scratch for each task may be inefficient in

CHAPTER 2. SUPERVISION FROM HUMAN VIDEOS 24

practice, and combining our method with higher level representations proposed in prior work would
likely lead to more efficient training [63], [77]. Second, we require observations of demonstrations
from multiple contexts in order to learn to translate between them. In practice, the number of
available contexts may be scarce. Future work would explore how multiple tasks can be combined
into a single model, where different tasks might come from different contexts. Finally, it would be
exciting to explore explicit handling of domain shift in future work, so as to handle large differences
in embodiment and learn skills directly from videos of human demonstrators obtained, for example,
from the Internet.

We will place this work into the broader context and discuss connections to other work post
publication in Chapter 8.

25

Chapter 3

Supervision from Outcome Examples

In the previous chapter, we considered how to learn from raw videos of humans demonstrating
particular tasks. While this technique can enable solving of several robotic tasks, it can still be
expensive to provide entire demonstrations, as opposed to just examples of what a successful
outcome would look like. In this chapter, we explore this paradigm, investigating whether we can
supervised RL algorithms, simply by utilizing examples of successful outcomes.

3.1 Why Should we Study Uncertainty-Aware Outcome
Driven RL?

While reinforcement learning (RL) has been shown to successfully solve problems with careful
reward design [95], RL in its most general form, with no assumptions on the dynamics or reward
function, requires solving a challenging uninformed search problem in which rewards are sparsely
observed. Techniques that explicitly provide “reward-shaping” [96], or modify the reward function
to guide learning, can help take some of the burden off of exploration, but shaped rewards are often
difficult to provide without significant domain knowledge. Moreover, in many domains of practical
significance, actually specifying rewards in terms of high dimensional observations can be extremely
difficult, making it infeasible to directly apply RL to problems with challenging exploration.

Can the RL problem be made more tractable if the agent is provided with examples of successful
outcomes instead of an uninformative reward function? Such examples are often easier to provide
than, for example, entire demonstrations or a hand-designed reward function. However, they can
still provide considerable guidance on how to successfully accomplish a task, potentially alleviating
exploration challenges if the agent can successfully recognize similarities between visited states
and the provided examples. In this paper, we study such a problem setting, where instead of a
hand-designed reward function, the RL algorithm is provided with a set of successful outcome
examples: states in which the desired task has been accomplished successfully. Prior work [97], [98]
aims to solve tasks in this setting by estimating the distribution over these states and maximizing the
probability of reaching states that are likely under this distribution. While this can work well in some
domains, it has largely been limited to settings without significant exploration challenges. In our

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 26

Figure 3.1: MURAL: Our method trains an uncertainty-aware classifier based on user-provided examples of successful
outcomes. Appropriate uncertainty in the classifier, obtained via a meta-learning based estimator for the normalized
maximum likelihood (NML) distribution, automatically incentivizes exploration and provides reward shaping for RL.

work, we focus on the potential for this mode of task specification to enable RL algorithms to solve
more challenging tasks without the need for manual reward shaping. Intuitively, the availability
of extra information in the form of explicit success examples can provide the algorithm more
directed information for exploration, rather than having to simply rely on uninformed task agnostic
exploration methods. This allows us to formulate a class of more tractable problems, which we refer
to as outcome-driven RL.

However, in order to attain improved exploration, an outcome-driven RL agent must be able
to estimate some notion of similarity between the visited states and successful outcomes, so as to
utilize this similarity as a kind of automatic reward shaping. Our method addresses this challenge
by training a classifier to distinguish successful states, provided by the user, from those generated
by the current policy, analogously to generative adversarial networks [99] and previously proposed
methods for inverse reinforcement learning [100]. In general, such a classifier may not provide
effective reward shaping for learning the policy, since it does not explicitly quantify uncertainty
about success probabilities and can be overly pessimistic in providing reward signal for learning.
We discuss how Bayesian classifiers incorporating a particular form of uncertainty quantification
based on the normalized maximum likelihood (NML) distribution can incentivize exploration in
outcome-driven RL problems. To understand its benefits, we connect our approach to count-based
exploration methods, while also showing that it improves significantly over such methods when
the classifier exhibits good generalization properties, due to its ability to utilize success examples.
Finally, we propose a practical algorithm to train NML-based success classifiers in a computationally
efficient way using meta-learning, and show experimentally that our method can more effectively
solve a range of challenging navigation and robotic manipulation tasks.

Concretely, this work illustrates the challenges of using standard success classifiers [97] for
outcome-driven RL, and proposes a novel technique for training uncertainty aware classifiers with
normalized maximum likelihood, which is able to both incentivize the exploration of novel states and
provide reward shaping that guides exploration towards successful outcomes. We present a tractable
algorithm for learning these uncertainty aware classifiers in practice by leveraging concepts from

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 27

meta-learning. We analyze our proposed technique for reward inference experimentally across a
number of navigation and robotic manipulation domains and show benefits over prior classifier-based
RL methods as well as goal-reaching methods.

3.2 Relationship to Prior Work
While a number of methods have been proposed to improve exploration, it remains a challenging
open problem in RL [101]. Standard exploration methods either add bonuses to the reward function
that encourage a policy to visit novel states in a task-agnostic manner [102]–[111], or approximate
Thompson sampling from a posterior over value functions [112]–[114]. Whereas these techniques
are uninformed about the actual task, we consider a constrained, yet still widely applicable, set
of problems where the desired outcome can be specified by success examples, allowing for more
efficient task-directed exploration.

Designing well-shaped reward functions can also make exploration easier, but often requires
significant domain knowledge [41], access to privileged information [31] or a human in the
loop providing rewards [115], [116]. Prior work has considered specifying rewards by providing
example demonstrations and inferring rewards with inverse RL [62], [66], [71], [100]. This requires
expensive expert demonstrations to be provided to the agent. In contrast, our work has the minimal
requirement of successful outcome states, which can be provided more cheaply and intuitively. This
subclass of problems is also related to goal-conditioned RL [30], [39], [117]–[125] but is more
general, since it allows for the notion of success to be more abstract than reaching a single state.

A core idea behind our method is using a Bayesian classifier to learn a suitable reward function.
Bayesian inference with expressive models and high dimensional data can often be intractable,
requiring strong assumptions on the form of the posterior [126]–[128]. In this work, we build on
the concept of normalized maximum likelihood [129], [130], or NML, to learn Bayesian classifiers
that can impose priors over the space of outcomes. Although NML is typically considered from
the perspective of optimal coding [131], [132], we show how it can be used for success classifiers,
and discuss connections to exploration in RL. We propose a novel technique for making NML
computationally tractable based on meta-learning, which more directly optimizes for quick NML
computation as compared to prior methods like [133] which learn an amortized posterior.

3.3 Preliminaries
In this section, we discuss background on RL using successful outcome examples as well as
conditional normalized maximum likelihood.

Reinforcement Learning with Outcome Examples
We follow the framework proposed by [97] and assume that we are provided with a Markov
decision process (MDP) without a reward function, given byM = (S,A, T , γ, µ0), as well as
successful outcome examples S+ = {sk+}Kk=1, which is a set of states in which the desired task

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 28

Figure 3.2: Comparison of rewards given by various classifier training schemes on a 2D maze example. Typical
maximum likelihood (MLE) classifiers commonly suffer from either a lack of useful learning signal (if trained to
convergence) or misleading local optima (if regularized using standard methods such as weight decay or early stopping),
whereas CNML produces accurate and well-shaped rewards.

has been accomplished. This formalism is easiest to describe in terms of the control as inference
framework [134]. The relevant graphical model (refer to [97]) consists of states and actions, as
well as binary success variables et ∈ {0, 1} that represent the occurrence of a particular event. The
agent’s objective is to cause this event to occur (e.g., a robot that is cleaning the floor must cause
the “floor is clean” event to occur). Formally, we assume that the states in S+ are sampled from the
distribution p(st|et = 1) — that is, states where the desired event has taken place — and try to infer
the distribution p(et = 1|st) to use as a reward function. In this work, we focus on efficient methods
for solving this reformulation of the RL problem by utilizing a novel uncertainty quantification
method to represent p(et|st).

In practice, prior methods that build on this formulation of the RL problem [97] derive an
algorithm where the reward function in RL is produced by a classifier that estimates p(et = 1|st).
Following the derivation in [100], it is possible to show that the correct source of negative examples
is the state distribution of the policy itself, π(s). This insight results in a simple algorithm: at
each iteration of the algorithm, the policy is updated to maximize the current reward, given by
log p(et = 1|st), then samples from the policy are added to the set of negative examples S−, and
the classifier is retrained on the original positive set S+ and the updated negative set S−. As noted
in prior work [97], this process is closely connected to GANs and inverse reinforcement learning,
where the classifier plays the role of the discriminator and the policy that of the generator. However,
as we will discuss, this strategy can often face significant exploration challenges.

Conditional Normalized Maximum Likelihood
Our work utilizes the principle of conditional normalized maximum likelihood (CNML) [131],
[132], [135], which we review briefly. CNML is a method for performing k-way classification, given
a model class Θ and a dataset D = {(x0, y0), (x1, y1), ..., (xn, yn)}, and has been shown to provide
better calibrated predictions and uncertainty estimates with minimax regret guarantees [136]. More
specifically, the CNML distribution can be shown to provably minimize worst-case regret against an
oracle learner that has access to the true labels, but does not know which point it will be tested on.
We refer the reader to [132], [133] for a more complete consideration of the theoretical properties
of the CNML distribution.

To predict the class of a query point xq, CNML constructs k augmented datasets by adding xq
with a different label in each dataset, which we write as D ∪ (xq, y = i), i ∈ (1, 2, ..., k). CNML

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 29

then defines the class distribution by solving the maximum likelihood estimation problem at query
time for each of these augmented datasets to convergence, and normalizes the likelihoods as follows:

pCNML(y = i|xq) =
pθi(y = i|xq)∑k
j=1 pθj(y = j|xq)

(3.1)

θi = argmax
θ∈Θ

E(x,y)∼D∪(xq ,y=i)[log pθ(y|x)] (3.2)

If xq is close to other datapoints in D, the model will struggle to assign a high likelihood to labels
that differ substantially from those of nearby points. However, if xq is far from all datapoints
in D, then the different augmented maximum likelihood problems can easily classify xq as any
arbitrary class, providing us with likelihoods closer to uniform. We refer readers to [131] for
an in-depth discussion of CNML and its connections to minimum description length and regret
minimization. Intuitively, the CNML classifier provides a way to impose a uniform prior for
uncertainty quantification, where we predict the uniform distribution on unseen inputs since they
are maximally uncertain, and defer more to the maximum likelihood solution on frequently seen
inputs since they are minimally uncertain.

3.4 Bayesian Success Classifiers for Reward Inference
As discussed in Section 3.3, a principled way of approaching outcome-driven RL is to train a
classifier to determine whether a particular state is a successful outcome or not. However, while
such a technique would eventually converge to the correct solution, it frequently suffers from
uninformative or incorrect rewards during the learning process. For example, Figure 3.2 depicts
a simple 2D maze scenario where the agent starts at the top left corner and the positive outcomes
are at the bottom right corner of the environment. Without suitable regularization, the decision
boundary may take on the form of a sharp boundary anywhere between the positive and negative
examples in the early stages of training. As a result, the classifier might provide little to no reward
signal for the policy, since it can assign arbitrarily small probabilities to the states sampled from the
policy. Given that the classifier-based RL process is essentially equivalent to training a GAN (as
described in Section 3.3), this issue is closely related to the challenges of GAN training as noted by
[137], where an ideal maximum likelihood discriminator provides no gradient signal for training
the generator.

We note that this issue is not pathological: our experiments in Section 13.7 show that this
phenomenon of poor reward shaping happens in practice. In addition, introducing naïvely chosen
forms of regularization such as weight decay, as is common in prior works, may actually provide
incorrect reward shaping to the algorithm, making it more challenging to actually accomplish the
task (as illustrated in Figure 3.2). This often limits classifier-based RL techniques to tasks with
trivial exploration challenges. In this section, we will discuss how a simple change to the procedure
for training a classifier, going from standard maximum likelihood estimation to an approach based
on the principle of normalized maximum likelihood, allows for an appropriate consideration of
uncertainty quantification that can solve problems with non-trivial exploration challenges.

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 30

Algorithm 1: RL with CNML-Based Success Classifiers
1: User provides success examples S+

2: Initialize policy π, replay buffer S−, and reward classifier parameters θR
3: for iteration i = 1, 2, ... do
4: Add on-policy examples to S− by executing π.
5: Sample ntest points from S+ (label 1) and ntest points from S− (label 0) to construct a dataset

D
6: Assign state rewards as r(s) = pCNML(e = 1|s,D)
7: Train π with RL algorithm
8: end for

Regularized Success Classifiers via Normalized Maximum Likelihood
It is important to note that for effective exploration in reinforcement learning, the rewards

should not just indicate whether a state is a successful outcome (since this will be 0 everywhere
but successful outcomes), but should instead provide a sense of whether a particular state may
be on the path to a successful outcome and should be explored further. The standard maximum
likelihood classifier described in Section 15.2 is overly pessimistic in doing so, setting the likelihood
of all intermediate states to 0 in the worst case, potentially mislabeling promising states to explore.
To avoid this, we want to use a classification technique that minimizes this worst-case regret,
maintaining some level of uncertainty about whether under-visited states are on the path to successful
outcomes. As discussed in Section 3.3, the technique of conditional normalized maximum likelihood
provides us a straightforward way to obtain such a classifier. CNML is particularly well suited to
this problem since, as discussed in [138], it essentially imposes a uniform prior over the space of
outcomes. It thus avoids pathological collapse of rewards by maintaining a measure of uncertainty
over whether a state is potentially promising to explore further, rather than immediately bringing its
likelihood to 0 as maximum likelihood solutions would.

To use CNML for reward inference, the procedure is similar to the one described in Section 15.2.
We construct a dataset using the provided successful outcomes as positives and on-policy samples
as negatives. However, the label probabilities for RL are instead produced by the CNML procedure
to obtain rewards r(s) = pCNML(e = 1|s) as follows:

r(s) =
pθ1(e = 1|s)

pθ1(e = 1|s) + pθ0(e = 0|s)
(3.3)

θ0 = arg max
θ∈Θ

E(sj ,ej)∼D∪(s,e=0)[log pθ(ej|sj)] (3.4)

θ1 = arg max
θ∈Θ

E(sj ,ej)∼D∪(s,e=1)[log pθ(ej|sj)] (3.5)

This reward is then used to perform policy updates, new data is collected with the updated
policy, and the process is repeated. A full description can be found in Algorithm 1.

To illustrate how this change affects reward assignment during learning, we visualize a potential
assignment of rewards with a CNML-based classifier on the problem described earlier in Fig 3.2.

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 31

When the success classifier is trained with CNML instead of standard maximum likelihood, interme-
diate unseen states would receive non-zero rewards rather than simply having vanishing likelihoods
like the maximum likelihood solution, thereby incentivizing exploration. In fact, the CNML likeli-
hood has a strong connection to count-based exploration, as we show next. Additionally, we also
see that CNML is able to provide more directed shaping towards the successful outcomes when
generalization exists across states, as explained below.

Relationship to Count-Based Exploration
In this section we relate the success likelihoods obtained via CNML to commonly used exploration
methods based on counts. Formally, we prove that the success classifier trained with CNML is
equivalent to a version of count-based exploration in the absence of any generalization across states
(i.e., a fully tabular setting).

Theorem 1. Suppose we are estimating success probabilities p(e = 1|s) in the tabular setting,
where we have an independent parameter for each state. Let N(s) denote the number of times state
s has been visited by the policy, and let G(s) be the number of occurrences of state s in the set of
positive examples. Then the CNML success probability pCNML(e = 1|s) is equal to G(s)+1

N(s)+G(s)+2
. For

states that are not represented in the positive examples, i.e. G(s) = 0, we then recover inverse counts
1

N(s)+2
.

Refer to Appendix A.1 for a full proof. While CNML has a strong connection with counts as
described above, it is important to note two advantages. First, the rewards are estimated without
an explicit generative model, simply by using a standard discriminative model trained via CNML.
Second, in the presence of generalization via function approximation, the exploration behavior from
CNML can be significantly more task directed, as described next.

In most problems, when the classifier is parameterized by a function approximator with non-
trivial generalization, the structure of the state space actually provides more information to guide the
agent towards the successful examples than simply using counts. In most environments [29], [139]
states are not completely uncorrelated, but instead lie in a representation space where generalization
correlates with the dynamics structure in the environment. For instance, states from which successful
outcomes can be reached more easily (i.e., states that are “close” to successful outcomes) are likely
to have similar representations. Since the uncertainty-aware classifier described in Section 3.4 is
built on top of such features and is trained with knowledge of the desired successful outcomes,
it is able to incentivize more task-aware directed exploration than simply using counts. This
phenomenon is illustrated intuitively in Fig 3.2, and demonstrated empirically in our experimental
analysis in Section 13.7.

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 32

2nn

Figure 3.3: Diagram of using meta-NML to train a classifier. Meta-NML learns an initialization that can quickly adapt
to new datapoints with arbitrary labels. At evaluation time, it approximates the NML probabilities (right) fairly well
with a single gradient step.

3.5 MURAL: Training Uncertainty-Aware Success Classifiers
for Outcome Driven RL via Meta-Learning and CNML

In Section 15.3, we discussed how success classifiers trained via CNML can incentivize exploration
and provide reward shaping to guide RL. However, the reward inference technique via CNML
described in Section 3.4 is in most cases computationally intractable, as it requires optimizing
separate maximum likelihood estimation problems to convergence on every data point we want to
query. In this section, we describe a novel approximation that allows us to apply this method in
practice.

Meta-Learning for CNML
We adopt ideas from meta-learning to amortize the cost of obtaining the CNML distribution. As
noted in Section 3.4, computing the CNML distribution involves repeatedly solving maximum
likelihood problems. While computationally daunting, these problems share a significant amount
of common structure, which we can exploit to estimate the CNML distribution more efficiently.
Meta-learning uses a distribution of training problems to explicitly meta-train models that can
quickly adapt to new problems and, as we show next, can be directly used to accelerate CNML.

To apply meta-learning to computing the CNML distribution, we can formulate each of the
maximum likelihood problems described in Equation 3.2 as a separate task for meta-learning,
and apply a standard meta-learning technique to obtain a model capable of few-shot adaptation
to the maximum likelihood problems required for CNML. While any meta-learning algorithm is
applicable, we found model agnostic meta-learning (MAML) [140] to be effective. MAML aims
to meta-train a model that can quickly adapt to new tasks via a few steps of gradient descent by
explicitly performing a bi-level optimization. We refer readers to [140] for a detailed overview.

The meta-training procedure to enable quick querying of CNML likelihoods can be described
as follows. Given a dataset D = {(x0,y0), (x1,y1), ..., (xn,yn)}, we construct 2n different tasks
τi, each corresponding to performing maximum likelihood estimation on the original dataset D
combined with an additional point (xi,y

′), where y′ is a proposed label of either 0 or 1 and xi

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 33

is a point from the dataset D. Given these constructed tasks S(τ), we perform meta-training as
described by [140]:

max
θ

Exi∼D,y′.∈{0,1}[L(D ∪ (xi,y
′), θ′i)], (3.6)

s.t θ′i = θ − α∇θL(D ∪ (xi,y
′), θ). (3.7)

This training procedure produces a set of parameters θ that can then be quickly adapted to provide
the CNML distribution with a step of gradient descent. The model can be queried for the CNML
distribution by starting from the meta-learned θ and taking one step of gradient descent for the
dataset augmented with the query point, each with a different potential label. These likelihoods are
then normalized to provide the CNML distribution as follows:

pmeta-NML(y|x;D) =
pθy(y|x)∑
y∈Y pθy(y|x)

(3.8)

θy = θ − α∇θE(xi,yi)∼D∪(x,y)[L(xi, yi, θ)]. (3.9)

This process is illustrated in Fig 3.3, which shows how the meta-NML procedure can be used to
obtain approximate CNML likelihoods with just a single gradient step.

This scheme for amortizing the computational challenges of NML (which we call meta-NML)
allows us to obtain normalized likelihood estimates without having to retrain maximum likelihood to
convergence at every single query point. A complete description, runtime analysis and pseudocode
of this algorithm are provided in Appendix A.2 and A.3. Crucially, we find that meta-NML is able
to approximate the CNML outputs well with just one or a few gradient steps, making it several
orders of magnitude faster than standard CNML.

(a) Zigzag
Maze (b) Spiral Maze

(c) Sawyer
Push

(d) Sawyer
Pick

(e) Sawyer
Door (f) Locomotion (g) Dex. Hand

Figure 3.4: We evaluate on two mazes, three robotic arm manipulation tasks, one locomotion task and one dexterous
manipulation task: (a) the agent must navigate around an S-shaped corridor, (b) the agent must navigate a spiral corridor,
(c) the robot must push a puck to location, (d) the robot must raise a randomly placed tennis ball to location, (e) the
robot must open the door a specified angle. (f) the quadruped ant must navigate the maze to a particular location (g) the
dexterous robotic hand must reposition an object on the table.

Applying Meta-NML to Success Classification
We apply the meta-NML algorithm described previously to learning uncertainty-aware success

classifiers for providing rewards for RL in our proposed algorithm, which we call MURAL. Similarly

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 34

Algorithm 2: MURAL: Meta-learning Uncertainty-aware Rewards for Automated
Outcome-driven RL

1: User provides success examples S+

2: Initialize policy π, replay buffer S−, and reward classifier parameters θR
3: for iteration i = 1, 2, ... do
4: Add on-policy samples to S− by executing π.
5: if iteration i mod k == 0 then
6: Sample ntrain states from S− to create 2ntrain meta-training tasks
7: Sample ntest total test points equally from S+ (label 1) and S− (label 0)
8: Meta-train θR via meta-NML using Equation 3.7
9: end if

10: Assign state rewards via Equation 3.5
11: Train π with RL algorithm
12: end for

to [97], we can train our classifier by first constructing a dataset D for binary classification, using
success examples as positives, and on-policy samples as negatives, balancing the number of sampled
positives and negatives in the dataset. Given this dataset, the classifier parameters θR can be trained
via meta-NML as described in Equation 3.7. The classifier can then be used to directly and quickly
assign rewards to a state s according to its probabilities r(s) = pmeta-NML(e = 1|s), and perform
standard reinforcement learning, as noted in Algorithm 2. Further details are in Appendix A.2.

3.6 Experimental Evaluation
In our experimental evaluation we aim to answer the following questions: (1) Can MURAL make
effective use of successful outcome examples to solve challenging exploration tasks? (2) Does
MURAL scale to dynamically complex tasks? (3) What are the impacts of different design decisions
on the effectiveness of MURAL?

Further details, videos, and code can be found at https://sites.google.com/view/mural-rl

Experimental Setup
We first evaluate our method on maze navigation problems, which require avoiding several local
optima. Then, we consider three robotic manipulation tasks that were previously covered in [116]
with a Sawyer robot arm: door opening, tabletop object pushing, and 3D object picking. We also
evaluate on a previously considered locomotion task [125] with a quadruped ant navigating to a
target, as well as a dexterous manipulation problem with a robot repositioning an object with a
multi-fingered hand. In the hand manipulation experiments, the classifier is provided with access
to only the object position, while in the other tasks the classifier is provided the entire Markovian
state. As we show in our results, exploration in these environments is challenging, and using naïvely
chosen reward shaping often does not solve the problem at hand.

https://sites.google.com/view/mural-rl

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 35

Figure 3.5: MURAL outperforms prior goal-reaching and exploration methods on all our evaluation environments,
including ones with high-dimensional state and action spaces. MURAL also performs comparably to or better than a
heuristically shaped hand-designed reward that uses Euclidean distance (black line), demonstrating that designing a
well-shaped reward is not trivial in these domains. Shading indicates a standard deviation across 5 seeds. For details on
the success metrics used, see Appendix A.4.

We compare with a number of prior algorithms. To provide a comparison with a previous
method that uses standard success classifiers, we include the VICE algorithm [97]. Note that
this algorithm is quite related to MURAL, but it uses a standard maximum likelihood classifier
rather than a classifier trained with CNML and meta-learning. We also include a comparison with
DDL, a technique for learning dynamical distances [141]. We additionally include comparisons to
algorithms for task-agnostic exploration to show that MURAL performs more directed exploration
and reward shaping. To provide a direct comparison, we use the same VICE method for training
classifiers, but combine it with novelty-based exploration based on random network distillation [110]
for the robotic manipulation tasks, and oracle inverse count bonuses for maze navigation. We also
compare to prior task-agnostic exploration techniques which use intrinsic curiosity [106] and
density estimates [142]. Finally, to demonstrate the importance of shaped rewards, we compare to
running Soft Actor-Critic [23] with two naïve reward functions: a sparse reward, and a heuristic
reward which uses L2 distance. More details are included in Appendix A.4 and A.6.

Comparisons with Prior Algorithms
We compare with prior algorithms on the domains described above. As we can see in Fig 3.5,
MURAL is able to very quickly learn how to solve these challenging exploration tasks, often
reaching better asymptotic performance than most prior methods, and doing so more efficiently than
VICE [97] or DDL [141]. This suggests that MURAL is able to provide directed reward shaping
and exploration that is substantially better than standard classifier-based methods. We provide a
more detailed analysis of the shaping behavior of the learned reward in Section 3.6.

To isolate whether the benefits purely come from exploration or also from task-aware reward

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 36

shaping, we compare with methods that only perform task-agnostic exploration. From these com-
parisons, it is clear that MURAL significantly outperforms methods that only use novelty-seeking
exploration. We also compare to a heuristically-designed reward function based on Euclidean
distance. MURAL generally outperforms simple manual shaping in terms of sample complexity
and asymptotic performance, indicating that the learned shaping is non-trivial and adapted to the
task. Of course, with sufficient domain knowledge, it is likely that this would improve. In addition,
we find that MURAL scales up to tasks with challenging exploration in higher dimensional state
and action spaces such as quadruped locomotion and dexterous manipulation, as seen in Fig 3.5.

Analysis of MURAL
MURAL and reward shaping. To better understand how MURAL provides reward shaping, we
visualize the rewards for various slices along the z axis on the Sawyer Pick-and-Place task, an
environment which presents a significant exploration challenge. In Fig 3.6 we see that the MURAL
rewards clearly correlate with the distance to the mean object position in successful outcomes,
shown as a white star, thus guiding the robot to raise the ball to the desired location even if it has
never reached this before. In contrast, the maximum likelihood classifier has a sharp, poorly-shaped
decision boundary.

Figure 3.6: Visualization of reward shaping for 3D Pick-and-Place at various z values (heights). MURAL learns rewards
that provide a smooth slope toward the successful outcomes, while the MLE classifier learns a sharp and poorly shaped
decision boundary.

MURAL and exploration. Next, to illustrate the connection between MURAL and exploration,
we compare the states visited by MURAL and by VICE [97] in Figure 3.7. We see that MURAL
naturally incentivizes the agent to visit novel states, allowing it to navigate around local minima.
In contrast, VICE learns a misleading reward function that prioritizes closeness to the success
outcomes in xy space, causing the agent to get stuck.

Interestingly, despite incentivizing exploration, MURAL does not simply visit all possible
states; at convergence, it has only covered around 70% of the state space. In fact, in Figure 3.7,
MURAL prioritizes states that bring it closer to the success outcomes and ignores ones that don’t,
making use of the positive examples provided to it. This suggests that MURAL benefits from both
novelty-seeking behavior and effective reward shaping.

CHAPTER 3. SUPERVISION FROM OUTCOME EXAMPLES 37

Figure 3.7: Plots of visitations and state coverage over time for MURAL vs. VICE. MURAL explores a significantly
larger portion of the state space and is able to avoid local optima.

3.7 Discussion
In this work, we consider a subclass of RL problems where examples of successful outcomes specify
the task. We analyze how solutions via standard success classifiers suffer from shortcomings, and
training classifiers via CNML allows for better exploration to solve challenging problems. To make
learning tractable, we propose a novel meta-learning approach to amortize the CNML process.
While this work has shown the effectiveness of Bayesian classifiers for reward inference for tasks in
simulation, it would be interesting to scale this solution to real world problems.

We will place this work into the broader context and discuss connections to other work post
publication in Chapter 7.

38

Chapter 4

Supervision from Language Corrections

In the previous two chapters, we studied how we can infer supervision signal from raw human videos
as well as examples of successful outcomes. As we move to more scalable learning techniques, it is
prudent to wonder whether we can actually use very natural forms of supervision such as natural
language feedback in order to actually guide the learning of behaviors in reinforcement learning.
This chapter aims to study this question in detail.

4.1 Why Should We Use Language Feedback to Supervise RL
algorithms?

Behavioral skills or policies for autonomous agents are typically specified in terms of reward
functions (in the case of reinforcement learning) or demonstrations (in the case of imitation learn-
ing). However, both reward functions and demonstrations have downsides as mechanisms for
communicating goals. Reward functions must be engineered manually, which can be challenging
in real-world environments, especially when the learned policies operate directly on raw sensory
perception. Sometimes, simply defining the goal of the task requires engineering the very perception
system that end-to-end deep learning is supposed to acquire. Demonstrations sidestep this challenge,
but require a human demonstrator to actually be able to perform the task, which can be cumbersome
or even impossible. When humans must communicate goals to each other, we often use language.
Considerable research has also focused on building autonomous agents that can follow instructions
provided via language ([143], [144]). However, a single instruction may be insufficient to fully
communicate the full intent of a desired behavior. For example, if we would like a robot to position
an object on a table in a particular place, we might find it easier to guide it by telling it which way
to move, rather than verbally defining a coordinate in space. Furthermore, an autonomous agent
might be unable to deduce how to perform a task from a single instruction, even if it is very precise.
In both cases, interactive and iterative corrections can help resolve confusion and ambiguity, and
indeed humans often employ corrections when communicating task goals to each other.

In this paper, our goal is to enable an autonomous agent to accept instructions and then iteratively
adjust its policy by incorporating interactive corrections (illustrated in Figure 13.1). This type

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 39

of in-the-loop supervision can guide the learner out of local optima, provide fine-grained task
definition, and is natural for humans to provide to the agent. As we discuss in Section 4.2, iterative
language corrections can be substantially more informative than simpler forms of supervision, such
as preferences, while being substantially easier and more natural to provide than reward functions
or demonstrations.

In order to effectively use language corrections, the agent must be able to ground these correc-
tions to concrete behavioral patterns. We propose an end-to-end algorithm for grounding iterative
language corrections by using a multi-task setup to meta-train a model that can ingest its own
past behavior and a correction, and then correct its behavior to produce better actions. During a
meta-training phase, this model is iteratively retrained on its own behavior (and the corresponding
correction) on a wide distribution of known tasks. The model learns to correct the types of mistakes
that it actually tends to make in the world, by interpreting the language input. At meta-test time, this
model can then generalize to new tasks, and learn those tasks quickly through iterative language
corrections.

The main contributions of our work are the formulation of guided policies with language (GPL)
via meta-learning, as well as a practical GPL meta-learning algorithm and model. We train on
English sentences sampled from a hand-designed grammar as a first step towards real human-
in-the-loop supervision. We evaluate our approach on two simulated tasks - multi-room object
manipulation and robotic object relocation. The first domain involves navigating a complex world
with partial observation, seeking out objects and delivering them to user-specified locations. The
second domain involves controlling a robotic gripper in a continuous state and action space to
move objects to precise locations in relation to other objects. This requires the policy to ground the
corrections in terms of objects and places, and to control and correct complex behavior.

4.2 Relationship to Prior Work
Tasks for autonomous agents are most commonly specified by means of reward functions [27] or
demonstrations [65]. Prior work has studied a wide range of different techniques for both imitation
learning [69], [71] and reward specification, including methods that combine the two to extract
reward functions and goals from user examples [97], [145] and demonstrations [100], [146]. Other
works have proposed modalities such as preferences [147] or numerical scores [148]. Natural
language presents a particularly appealing modality for task specification, since it enables humans
to communicate task goals quickly and easily. Unlike demonstrations, language commands do
not require being able to perform the task. Unlike reward functions, language commands do not
require any manual engineering. Finally, in comparison to low-bandwidth supervision modalities,
such as examples of successful outcomes or preferences, language commands can communicate
substantially more information, both about the goals of the task and how it should be performed.

A considerable body of work has sought to ground natural language commands in meaningful
behaviors. These works typically use a large supervised corpus in order to learn policies that are
conditioned on natural language commands [143], [144], [149]–[157]. Other works consider using
a known reward function in order to learn how to ground language into expert behaviors [154],

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 40

Figure 4.1: An example where corrections disambiguate an instruction. The agent is unable to fully deduce the user’s
intent from the instruction alone and iterative language corrections guide the agent to the correct position. Our method
is concerned with meta-learning policies that can ground language corrections in their environment and use them to
improve through iterative feedback.

[158]. Most of these works consider the case of instruction following. However, tasks can often be
quite difficult to specify with a single language description, and may require interactive guidance in
order to be achieved. We focus on this setting in our work, where the agent improves its behavior
via iterative language corrections.

While the focus in our work is on incorporating language corrections, several prior works have
also studied reinforcement learning and related problems with in-the-loop feedback of other forms
[148], [159]–[164]. In contrast, we study how to incorporate language corrections, which are more
natural for humans to specify and can carry more information about the task. However, language
corrections also present the challenge that the agent must learn how to ground them in behavior. To
this end, we introduce an end-to-end algorithm that directly associates language with changes in
behavior without intermediate supervision about object identities or word definitions.

Our approach to learning to learn from language corrections is based on meta-reinforcement
learning. In meta-reinforcement learning, a meta-training procedure is used to learn a procedure
(represented by initial network weights or a model that directly ingests past experience) [165]
that can adapt to new tasks at meta-test time. However, while prior work has proposed meta-
reinforcement learning for model-free RL [140], [163], [166], [167], model-based RL [168], a wide
range of supervised tasks [169]–[172], as well as goal specification [173], [174], to our knowledge
no prior work has proposed meta-training of policies that can acquire new tasks from iterative
language corrections.

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 41

4.3 Problem Formulation
In this work, the agent’s goal is specified by a language instruction L. This instruction describes what
the general objective of the task is, but may be insufficient to fully communicate the intent of a de-
sired behavior. The agent can attempt the task multiple times, and after each attempt, the agent is pro-
vided with a language correction. Each attempt results in a trajectory τ = (s0, a0, s1, a1,, sT , aT),
the result of the agent executing its policy πθ(a|s, L) in the environment. After each attempt, the user
generates a correction according to some unknown stochastic function of the trajectory c ∼ F(τ).
Here, cis a language phrase that indicates how to improve the current trajectory τ to bring it closer
to accomplishing the goal. This process is repeated for multiple trials, and we will use τi to denote
the trajectory on the ith trial, and ci to denote the corresponding correction. An effective model
should be able to incorporate these corrections to come closer to achieving the goal. This process is
illustrated in Figure 13.1.

In the next section, we will describe a model that can incorporate iterative corrections, and then
describe a meta-training procedure that can train this model to incorporate corrections effectively.

4.4 The Language-Guided Policy Learning Model
As described in Section 4.3, our model for guiding policies with language (GPL) must take in an
initial language instruction, and then iteratively incorporate corrections after each attempt at the
task. This requires the model to ground the contents of the correction in the environment, and also
interpret it in the context of its own previous trajectory so as to decide which actions to attempt
next. To that end, we propose a deep neural network model, shown in Figure 5.1, that can accept the
instruction, correction, previous trajectory, and state as input. The model consists of three modules:
an instruction following module, a correction module, and a policy module.

The instruction following module interprets the initial language instruction. The instructions are
provided as a sequence of words which is converted into a sequence of word-embeddings. A 1D
CNN processes this sequence to generate an instruction embedding vector zim which is fed into the
policy module.

The correction module interprets the previous language corrections cn = (c0, . . . , cn) in the
context of the previous trajectories τn = (τ0. . . . , τn). Each previous trajectory is processed by a
1D CNN to generate a trajectory embedding. The correction ci, similar to the language description,
is converted into a sequence of word-embeddings which is then fed through a 1D CNN. The
correction and trajectory embeddings are then concatenated and transformed by a MLP to form
a single tensor. These tensors are then averaged to compute the full correction history tensor
zcm = 1

n

∑n
j=0 MLP(1dCNN(τj), 1dCNN(cj)).

The policy module has to integrate the high level description embedded into zim, the actionable
changes from the correction module zcm, and the environment state s, to generate the right action.
This module inputs zcm, zim and s and generates an action distribution p(a|s) that determine how
the agent should act. Specific architecture details are described in the appendix.

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 42

Figure 4.2: The architecture of our model. The instruction module embeds the initial instruction L, while the correction
modules embed the trajectory τi and correction ci from each previous trial. The features from these corrections are
pooled and provided to the policy, together with the current state s and the embedded initial instruction.

Note that, by iteratively incorporating language corrections, such a model in effect implements
a learning algorithm, analogously to meta-reinforcement learning recurrent models proposed in
prior work that read in previous trajectories and rewards [163], [166]. However, in contrast to
these methods, our model has to use the language correction to improve, essentially implementing
an interactive, user-guided reinforcement learning algorithm. As we will demonstrate in our
experiments, iterative corrections cause this model to progressively improve its performance on the
task very quickly. In the next section, we will describe a meta-learning algorithm that can train this
model such that it is able to adapt to iterative corrections effectively at meta-test time.

4.5 Meta-Training the GPL Model to Learn From Corrections
In order for the GPL model to be able to learn behaviors from corrections, it must be meta-trained
to understand both instructions and corrections properly, put them in the context of its own previous
trajectories, and associate them with objects and events in the world. For clarity of terminology, we
will use the term “meta-training” to denote the process of training the model, and “meta-testing” to
denote its use for solving a new task with language corrections.

During meta-training, we assume access to samples from a distribution of meta-training tasks
T ∼ p(T). The tasks that the model will be asked to learn at meta-test time are distinct from the
meta-training tasks, though we assume them to be drawn from the same distribution, which is
analogous to the standard distribution assumption in supervised learning. The tasks have the same
state space S and action space A, but each task has a distinct goal, and each task T can be described

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 43

Figure 4.3: Left: Overall training procedure. We collect data for each task [1, 2, . . . , N] using DAgger, storing it in the
data buffer. This is used to train a GPL policy with supervised learning. The trained policy is then used to collect data
for individual tasks again, repeating the process until convergence. Right: Individual data collection procedure for a
single task. The GPL policy is initially executed to obtain a trajectory τ1. This trajectory is corrected by an expert π∗ to
generate data to be added to the buffer. The trajectory is then used to generate a correction, which is fed back into π,
along with τ1 to generate a new trajectory τ2. This repeats until a maximum number of corrections is given, adding data
to the buffer at each step.

by a different language instruction LT . In general, more than one instruction could describe a single
task, and the instructions might contain ambiguity.

Each of the tasks during meta-training has a ground truth objective provided by a reward
function. We can use the reward function with any existing reinforcement learning algorithm to
train a near-optimal policy. Therefore, we derive the algorithm for the case where we have access
to a near-optimal policy π∗T (a|s) for each task T . In our experiments, π∗T (a|s) is obtained via
reinforcement learning from ground truth rewards. For each meta-training task, we also assume that
we can sample from the corresponding correction function FT (c|τ), which generates a correction c
for the trajectory τ in the context of task T . In practice, these corrections might be provided by a
human annotator, though we use a computational proxy in our experiments. The key point is that we
can use rewards to transform a collection of task-specific policies learned offline into a fast online
learner during test time.

By using π∗T (a|s), LT , and FT (τ), we can train our model for each task by using a variant of the
DAgger algorithm [175], which was originally proposed for single-task imitation learning, where a
learner policy is trained to mimic a near-optimal expert. We extend this approach to the setting of
meta-learning, where we use it to meta-train the GPL model. Starting from an initialization where
the previous trajectory τ0 and correction c0 are set to be empty sequences, we repeat the following
process: first, we run the policy corresponding to the current learned model π(a|s, LT , τ0, c0) to
generate a new trajectory τ1 for the task T . Every state along τ1 is then labeled with near-optimal
actions by using π∗T (a|s) to produce a set of training tuples (LT , τ0, c0, s, a

∗). These tuples are
appended to the training setD. Then, a correction c1 is sampled from FT (c|τ1), and a new trajectory
is sampled from π(a|s, LT , τ1, c1). This trajectory is again labeled by the expert and appended to
the dataset. In the same way, we iteratively populate the training set D with the states, corrections,
and prior trajectories observed by the model, all labeled with near-optimal actions. This process is

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 44

repeated for a fixed number of corrections or until the task is solved, for each of the meta-training
tasks. The model is then trained to maximum the likelihood of the samples in the dataset D. Then,
following the DAgger algorithm, the updated policy is used to again collect data for each of the
tasks, which is appended to the dataset and used to train the policy again, until the process converges
or a fixed number of iterations. This algorithm is summarized in Algorithm 3 and Figure 4.3.

4.6 Learning New Tasks with The GPL Model
Using a GPL model meta-trained as described in the previous section, we can solve new “meta-
testing” tasks Ttest ∼ p(T) drawn from the same distribution of tasks with interactive language
corrections. An initial instruction LT is first provided by the user, and the procedure for adapting
with corrections follows the illustration in Figure 13.1. The learned policy is initially rolled out in
the environment conditioned on LT , and with the previous trajectory τ0 and correction c0 initialized
to the empty sequence. Once this policy generates a trajectory τ1, we can use the correction function
FT to generate a correction c1 = FT (τ1). The trajectory τ1, along with the correction c1 gives us a
new improved policy which is conditioned on LT , τ1, and c1. This policy can be executed in the
environment to generate a new trajectory τ2, and the process repeats until convergence, thereby
learning the new task. We provide the policy with the previous corrections as well but omit in the
notation for clarity. This procedure is summarized in Algorithm 4.

This procedure is similar to meta-reinforcement learning [140], [166], but uses grounded natural
language corrections in order to guide learning of new tasks with feedback provided in the loop. The
advantage of such a procedure is that we can iteratively refine behaviors quickly for tasks that are
hard to describe with high level descriptions. Additionally, providing language feedback iteratively
in the loop may reduce the overall amount of supervision needed to learn new tasks. Using easily
available natural language corrections in the loop can change behaviors much more quickly than
scalar reward functions.

4.7 Experiments
Our experiments analyze GPL in a partially observed object manipulation environment and a block
pushing environment. The first goal of our evaluation is to understand where GPL can benefit from
iterative corrections – that is, does the policy’s ability to succeed at the task improve as each new
correction provided. We then evaluate our method comparatively, in order to understand whether
iterative corrections provide an improvement over standard instruction-following methods, and also
compare GPL to an oracle model that receives a much more detailed instruction, but without the
iterative structure of interactive corrections. We perform further experiments including ablations to
evaluate the importance of each module and additional experiments with more varied corrections.
We also compare our method to state of the art instruction following methods, other baselines
which use intermediate rewards instead of corrections, and pretraining with language. Our code and

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 45

Algorithm 3: GPL meta-
training algorithm.

1: Initialize data buffer D;
2: for iteration j do
3: for task T do
4: Initialize τ0 = 0 and c0 = 0 ;
5: for corr iter i ∈ {0, ..., cmax}

do
6: Execute π(a|s, LT , τi, ci)

on T to collect τi+1;
7: Obtain ci+1 ∼ FT (τi+1) ;
8: Label a? ∼ π?T (a|s),

∀ s ∈ τi+1;
9: Add all (LT , τi, ci, s, a

?) to
D;

10: end for
11: end for
12: Train π on D.
13: end for

Algorithm 4: Meta-testing:
learning new tasks with the
GPL model.

1: Given new task Ti, with
instruction LT ;

2: Initialize τ0 = 0 and c0 = 0 ;
3: for corr iter i ∈ {0, ..., cmax} do
4: Execute π(a|s, LT , τi, ci) on T

to collect τi+1 ;
5: Obtain ci+1 ∼ FT (τi+1) ;
6: end for

supplementary material will be available at https://sites.google.com/view/lgpl/
home

Experimental Setup
We describe the two experimental domains that we evaluate this method on. The first task is
underspecified while the second task is ambiguous so each task lends itself to the use of corrections.

Multi-room Object Manipulation

Our first environment is discrete and represents the floor-plan of a building with six rooms (Fig-
ure 4.4), based on [176]. The task is to pickup a particular object from one room and bring it to
a goal location in another room. Each room has a uniquely colored door that must be opened to
enter the room, and rooms contain objects with different colors and shapes. Actions are discrete and
allow for cardinal movement and picking up and dropping objects. The environment is partially
observed: the policy only observes the contents of an ego-centric 7x7 region centered on the present
location of the agent, and does not see through walls or closed doors. The contents of a room can
only be observed by first opening its door.

This environment allows for the natural language instruction which specifies the task to be
underspecified. The instruction is given as "Move <goal object color> <goal object shape> to <goal
square color> square". Since the agent cannot see into closed rooms, it does not initially know the

https://sites.google.com/view/lgpl/home
https://sites.google.com/view/lgpl/home

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 46

locations of the goal object or goal square. It must either explore or rely on external corrections
which guide the agent to the appropriate rooms.

Figure 4.4: The multi-room object
manipulation environment with la-
beled components.

Environments are generated by sampling a goal object color,
goal object shape, and goal square color which are placed at random
locations in different random rooms. There are 6 possible colors
and 3 possible object shapes. Decoy objects and goals are placed
randomly among the six rooms. The only shared aspect between
tasks are the color of the doors so the agent must learn to generalize
across a variety of different objects across different locations.

To generate the corrections, we describe a task as a list of sub-
goals that the agent must complete. For example, the instruction
in Figure 4.4 is "Move green triangle to green square", and the
subgoals are "enter the blue room", "pick up the green triangle",
"exit the blue room", "enter the purple room", and "go to the green
goal". The correction for a given trajectory is then the first subgoal
that the agent failed to complete. The multistep nature of this task
also makes it challenging, as the agent must remember to solve previously completed subgoals
while incorporating the corrections to solve the next subgoal.

The training and test tasks are generated such that for any test task, its list of all five subgoals
does not exist in the training set. There are 3240 possible lists of all five subgoals. We train on 1700
of these environments and reserve a separate set for testing.

Robotic Object Relocation

Figure 4.5: The robotic object re-
location environment. The agent
must push the red block right of
the magenta block.

The second environment is a robotic object relocation task built in
Mujoco [91] shown in Figure 4.5. The task is to apply force on a
gripper to push one of three blocks to a target location. Five immov-
able blocks scattered in the environment act as obstacles. States are
continuous and include the agent and block positions. Actions are
discrete and apply directional forces on the gripper.

The instruction is given as "Move <goal block color> close to
<obstacle block color>," where the closest or 2nd closest obstacle
block to the target location is randomly chosen. This instruction is
ambiguous, as it does not describe the precise location of the target.
Corrections will help guide the agent to the right location relative to
the obstacles and previous actions of the agent. Environments are
generated by sampling one of the three movable blocks to push and sampling a random target
location. We generate 1000 of these environments and train on 750 of them. There are three types
of corrections, and feedback is provided by stochastically choosing between these types. The
correction types are directional ("Move a little left", "Move a lot down right"), relational ("Move
left of the white block", "Move closer to the pink block"), or indicate the correct block to push
("Touch the red block").

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 47

This environment was chosen because of its continuous state space and configuration of objects
which allows for spatial relations between objects. It is more natural and convenient for a user to
specify a goal with language, e.g., "close to the pink block," than using exact spatial coordinates.
Furthermore, because the corrections can be relative to other blocks, the policy must learn to
contextualize the correction in relation to other objects and its own previous behavior.

Comparisons
We compare our method to two types of alternative methods - 1) alternative methods for instruction
following 2) methods using rewards for finetuning on new tasks.

We first compare our method to a standard instruction following method using our architecture,
a method that receives full information, and to an instruction following architecture from [155]
which we call MIVOA. We test MIVOA with both the instruction and full information. All methods
are trained with DAgger. The instruction following methods only receive the instruction, which
is ambiguous and does not contain the precise locations of objects or target positions. The full
information methods receive the exact information the agent needs but for which a human may not
always want to provide or have access to. For the multi-room environment the full information
method receives all the subgoals that are needed to solve the task, but does not receive them
interactively. The full information method for the robotic object relocation task receives which
block to move and the exact coordinates of the goal and so is an oracle. We measure the performance
of an agent on the task by computing the completion rate: the fraction of subgoals (max 5) that the
agent has successfully completed. The completion rate for the robotic domain is 1− final block dist

initial block dist .
We expect our model to perform better than the instruction following baseline as it can receive the
missing information through the corrections and we expect it to come close to performing as well
as the full information method. The results for this comparison is shown in Table 4.1.

In the second set of comparisons, we compare the sample complexity of learning new tasks with
GPL against other baselines which utilize the reward function for learning new tasks (Figure 4.6).
We compare against a reinforcement learning (RL) baseline that trains a separate policy per task
using the reward. In addition, we run a baseline that does pretraining with DAgger on the training
tasks and then finetunes on the test tasks with RL, thereby following a similar procedure as [156].
In both domains, the pretrained policy receives the instruction. For RL and finetuning we use the
same algorithm [18] and reward function used to train the expert policies. Additionally, in order
to evaluate if the language corrections provide more information than just a scalar correction we
also run a version of our method called GPR (Guiding Policies with Reward) which replaces the
language correction with the reward. The correction for a trajectory is the sum of rewards of that
trajectory. The performance of all of these methods is shown in Figure 4.6.

Learning New Tasks Quickly with Language Corrections
As described above, we consider two domains - multi-room object manipulation and a robotic object
relocation task. In the object relocation domain, the test tasks here consist of new configurations of

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 48

objects and goals. For the robotic domain, the test tasks consist of pushing to new target locations.
Details on the meta-training complexity of our method are in appendix 18.2.

In the first set of comparisons mentioned in Section 4.7, we measure the completion rate of
our method for various numbers of corrections on the test tasks. The instruction baseline does
not have enough information and is unable to effectively solve the task. As expected, we see
increasing completion rates as the number of corrections increases and the agent incrementally
gets further in the task. For the multi-room domain our method matches the full information
baseline with 3 corrections and outperforms it with 4 or more corrections. Since the full information
baseline receives all 5 subgoals, this means our method performs better with less information. The
interactive nature of our method allows it to receive only the information it needs to solve the task.
Furthermore, our model must learn to map corrections to changes in behavior which may be more
modular, disentangled, and easier to generalize compared to mapping a long list of instructions to a
single policy that can solve the task. For the robotic domain, our model exceeds the performance
of the instruction baseline with just 1 correction. With more corrections it comes close to the full
information method which receives the exact goal coordinates.

In the second set of comparisons mentioned in Section 4.7, we compare against a number of
baselines that use the task reward (Fig 4.6). We see that our method can achieve high completion
rate with very few test trajectories. While GPL only receives up to five trajectories on the test
task, the RL baseline takes more than 1000 trajectories to reach similar levels of performance.
The RL baseline is able to achieve better final performance but takes orders of magnitude more
training examples and has access to the test task reward. The pretraining baseline has better sample
complexity than the RL baseline but still needs more than 1000 test trajectories. The reward guided
version of our method, GPR, performs poorly on the multi-room domain but obtains reasonable
performance for the robotic domain. This may indicate that language corrections in the multi-room
domain provide much more information than just scalar rewards. However, using scalar rewards or
binary preferences may be an alternative to language corrections for continuous state space domains
such as ours.

Env Instruction Full Info MIVOA (Instr.) MIVOA (Full Info) c0 c1 c2 c3 c4 c5

Multi-room 0.075 0.73 0.067 0.63 0.066 0.46 0.65 0.73 0.77 0.82
Obj Relocation 0.64 0.96 0.65 - 0.65 0.80 0.84 0.85 0.88 0.90

Table 4.1: Mean completion rates on test tasks for baseline methods and ours across 5 random seeds. ci denotes that
the agent has received i corrections. GPL is able to quickly incorporate corrections to improve agent behavior over
instruction following with fewer corrections than full information on the multi-room domain. MIVOA is an architecture
from [155].

Analyzing the Behavior of GPL
To understand GPL better, we perform a number of different analyses - model ablations, extrapola-
tion to more corrections, more varied corrections and generalization to out of distribution tasks.

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 49

Figure 4.6: Sample complexity on test tasks. The mean completion rate is plotted against the number of trajectories
using during training per task. Our method (GPL) is shown in green.

Ablations c0 c1 c2 c3 c4 c5

Base 0.066 0.46 0.65 0.73 0.77 0.82
No instruction 0.059 0.45 0.62 0.72 0.78 0.79
No trajectory 0.077 0.44 0.62 0.70 0.76 0.77
Only immediate correction 0.067 0.49 0.44 0.58 0.59 0.63

Table 4.2: Ablation Experiments analyzing the importance of various components of the model on the multi-room env.
We see that removing previous corrections (only ci) performs the worst, while removing instruction L is less impactful.

We perform ablations on the multi-room domain to analyze the importance of each component
of our model in Figure 18.50. For the three ablations, we remove the instruction L, remove the
previous trajectory τi, and provide only the immediate previous correction ci instead of all previous
corrections. We find that removing the instruction hurts the performance the least. This makes sense
because the model can receive the information contained in the instruction through the corrections.
Removing the previous corrections hurts the performance the most. Qualitatively, the agent that does
not have access to the previous tends to forget what it had done previously and erases the progress it
made. This explains the dip in performance from c1 to c2 for the only immediate correction.

Env c5 c7 c10

Multi-room 0.82 0.83 0.86
Obj Relocation 0.90 0.91 0.95

Table 4.3: Mean completion rates on
test tasks for 5, 7, 10 corrections. Only
up to 5 corrections are seen during train-
ing.

We also investigate if performance continues to increase
if we provide more corrections at meta-testing time than seen
during training. In Table 4.3, we provide up to 10 corrections
during test time while only up to 5 corrections are seen during
training. We see that completion rate increases from 0.82 to 0.86
for the multi-room domain and from 0.90 to 0.95 for the object
relocation domain. These are small gains in performance and we
expect to see diminishing returns as the number of corrections
increases even further.

In Table 4.4 we investigate what happens if we give an agent
more varied corrections in the multi-room environment. We add two new correction types. The first
is directional and specifies which of the eight cardinal direction the next goal is in, e.g. "goal room

CHAPTER 4. SUPERVISION FROM LANGUAGE CORRECTIONS 50

is southwest." The second type is binary and consists of simple "yes/no" type information such as
"you are in the wrong room".

Type c1 c2 c3 c4 c5

Directional 0.242 0.343 0.43 0.51 0.56
Binary 0.073 0.078 0.08 0.089 0.09
All 0.236 0.363 0.44 0.538 0.606

Table 4.4: Experiments investigating different correction types and effect on performance (mean completion). The
experiments agree with intuition that binary carries little information and results in a small increase of the completion
rate. Directional corrections which gives an intermediate amount of information result in a fair increase in performance,
but less than fully specified correction.

We also experiment with if our method can generalize to unseen objects in the multi-room
domain. We holdout specific objects during training and test on these unseen objects. For example,
the agent will not see green triangles but will see other green objects and non-green triangles during
training and must generalize to the unseen combination at test time. In Table 4.5, we see that our
method achieves a lower completion rate compared to when specific objects are not held out but is
still able to achieve a high completion rate and outperforms the baselines.

Env Full Info MIVOA (Full Info) c0 c1 c2 c3 c4 c5

Multi-room 0.57 0.62 0.073 0.44 0.58 0.65 0.73 0.75

Table 4.5: Experiments on holding out specific objects during training to see if our method can generalize to unseen
objects at test time.

Discussion and Future Work
We presented meta-learning for guided policies with language (GPL), a framework for interactive
learning of tasks with in-the-loop language corrections. In GPL , the policy attempts successive
trials in the environment, and receives language corrections that suggest how to improve the next
trial over the previous one. The GPL model is trained via meta-learning, using a dataset of other
tasks to learn how to ground language corrections in terms of behaviors and objects. While our
method currently uses fake language, future work could incorporate real language at training time.

51

Chapter 5

Learning Skills Without Reward
Supervision

In this chapter, we discuss how we can actually move from supervising RL systems using things like
raw video or natural language to actually learning skills without any task directed reward functions.
In this chapter, we discuss a technique for unsupervised skill discovery which is able to propose and
learn a set of tasks without any human provided reward functions, and we then discuss how this
framework can be incorporated into a broader framework for pre-training reinforcement learning
agents with unsupervised reinforcement learning using ideas from meta-reinforcement learning in
the following chapter. In this chapter, we start by describing a procedure for unsupervised skill
discovery.

5.1 Why Is Unsupervised Skill Discovery Important?
Deep reinforcement learning (RL) has been demonstrated to effectively learn a wide range of reward-
driven skills, including playing games [11], [177], controlling robots [35], [178], and navigating
complex environments [39], [179]. However, intelligent creatures can explore their environments
and learn useful skills even without supervision, so that when they are later faced with specific
goals, they can use those skills to satisfy the new goals quickly and efficiently.

Learning skills without reward has several practical applications. Environments with sparse
rewards effectively have no reward until the agent randomly reaches a goal state. Learning useful
skills without supervision may help address challenges in exploration in these environments. For
long horizon tasks, skills discovered without reward can serve as primitives for hierarchical RL,
effectively shortening the episode length. In many practical settings, interacting with the environ-
ment is essentially free, but evaluating the reward requires human feedback [147]. Unsupervised
learning of skills may reduce the amount of supervision necessary to learn a task. While we
can take the human out of the loop by designing a reward function, it is challenging to design a
reward function that elicits the desired behaviors from the agent [180]. Finally, when given an
unfamiliar environment, it is challenging to determine what tasks an agent should be able to learn.

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 52

Unsupervised skill discovery partially answers this question.1

Autonomous acquisition of useful skills without any reward signal is an exceedingly challenging
problem. A skill is a latent-conditioned policy that alters the state of the environment in a consistent
way. We consider the setting where the reward function is unknown, so we want to learn a set of
skills by maximizing the utility of this set. Making progress on this problem requires specifying a
learning objective that ensures that each skill individually is distinct and that the skills collectively
explore large parts of the state space. In this paper, we show how a simple objective based on mutual
information can enable RL agents to autonomously discover such skills. These skills are useful for
a number of applications, including hierarchical reinforcement learning and imitation learning.

We propose a method for learning diverse skills with deep RL in the absence of any rewards.
We hypothesize that in order to acquire skills that are useful, we must train the skills so that they
maximize coverage over the set of possible behaviors. While one skill might perform a useless
behavior like random dithering, other skills should perform behaviors that are distinguishable from
random dithering, and therefore more useful. A key idea in our work is to use discriminability
between skills as an objective. Further, skills that are distinguishable are not necessarily maximally
diverse – a slight difference in states makes two skills distinguishable, but not necessarily diverse
in a semantically meaningful way. To combat this problem, we want to learn skills that not only
are distinguishable, but also are as diverse as possible. By learning distinguishable skills that are
as random as possible, we can “push” the skills away from each other, making each skill robust
to perturbations and effectively exploring the environment. By maximizing this objective, we can
learn skills that run forward, do backflips, skip backwards, and perform face flops (see Figure 5.3).

Our paper makes five contributions. First, we propose a method for learning useful skills
without any rewards. We formalize our discriminability goal as maximizing an information theoretic
objective with a maximum entropy policy. Second, we show that this simple exploration objective
results in the unsupervised emergence of diverse skills, such as running and jumping, on several
simulated robotic tasks. In a number of RL benchmark environments, our method is able to solve
the benchmark task despite never receiving the true task reward. In these environments, some of
the learned skills correspond to solving the task, and each skill that solves the task does so in a
distinct manner. Third, we propose a simple method for using learned skills for hierarchical RL
and find this methods solves challenging tasks. Four, we demonstrate how skills discovered can
be quickly adapted to solve a new task. Finally, we show how skills discovered can be used for
imitation learning.

5.2 Related Work
Previous work on hierarchical RL has learned skills to maximize a single, known, reward function
by jointly learning a set of skills and a meta-controller (e.g., [181]–[186]). One problem with joint
training (also noted by [187]) is that the meta-policy does not select “bad” options, so these options
do not receive any reward signal to improve. Our work prevents this degeneracy by using a random
meta-policy during unsupervised skill-learning, such that neither the skills nor the meta-policy are

1See videos here: https://sites.google.com/view/diayn/

https://sites.google.com/view/diayn/

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 53

aiming to solve any single task. A second importance difference is that our approach learns skills
with no reward. Eschewing a reward function not only avoids the difficult problem of reward design,
but also allows our method to learn task-agnostic.

Related work has also examined connections between RL and information theory [71], [188]–
[190] and developed maximum entropy algorithms with these ideas [23], [190]. Recent work
has also applied tools from information theory to skill discovery. [191] and [192] use the mutual
information between states and actions as a notion of empowerment for an intrinsically motivated
agent. Our method maximizes the mutual information between states and skills, which can be
interpreted as maximizing the empowerment of a hierarchical agent whose action space is the set of
skills. [193], [186], and [194] showed that a discriminability objective is equivalent to maximizing
the mutual information between the latent skill z and some aspect of the corresponding trajectory.
[193] considered the setting with many tasks and reward functions and [186] considered the setting
with a single task reward. Three important distinctions allow us to apply our method to tasks
significantly more complex than the gridworlds in [194]. First, we use maximum entropy policies
to force our skills to be diverse. Our theoretical analysis shows that including entropy maximization
in the RL objective results in the mixture of skills being maximum entropy in aggregate. Second,
we fix the prior distribution over skills, rather than learning it. Doing so prevents our method from
collapsing to sampling only a handful of skills. Third, while the discriminator in [194] only looks at
the final state, our discriminator looks at every state, which provides additional reward signal. These
three crucial differences help explain how our method learns useful skills in complex environments.

Prior work in neuroevolution and evolutionary algorithms has studied how complex behaviors
can be learned by directly maximizing diversity [195]–[201]. While this prior work uses diversity
maximization to obtain better solutions, we aim to acquire complex skills with minimal supervision
to improve efficiency (i.e., reduce the number of objective function queries) and as a stepping stone
for imitation learning and hierarchical RL. We focus on deriving a general, information-theoretic
objective that does not require manual design of distance metrics and can be applied to any RL task
without additional engineering.

Previous work has studied intrinsic motivation in humans and learned agents. [106], [109],
[202]–[206]. While these previous works use an intrinsic motivation objective to learn a single
policy, we propose an objective for learning many, diverse policies. Concurrent work [207] draws
ties between learning discriminable skills and variational autoencoders. We show that our method
scales to more complex tasks, likely because of algorithmic design choices, such as our use of an
off-policy RL algorithm and conditioning the discriminator on individual states.

5.3 Diversity is All You Need
We consider an unsupervised RL paradigm in this work, where the agent is allowed an unsupervised
“exploration” stage followed by a supervised stage. In our work, the aim of the unsupervised stage
is to learn skills that eventually will make it easier to maximize the task reward in the supervised
stage. Conveniently, because skills are learned without a priori knowledge of the task, the learned
skills can be used for many different tasks.

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 54

Sample one skill per
episode from fixed
skill distribution.

SKILL

DISCRIMINATOR

ENVIRONMENT

Discriminator estimates skill
from state. Update discriminator
to maximize discriminability.

Update skill to maximize
discriminability.

Learned

Fixed

Algorithm 5: DIAYN
while not converged do

Sample skill z ∼ p(z) and initial state
s0 ∼ p0(s)

for t← 1 to steps_per_episode do
Sample action at ∼ πθ(at | st, z) from

skill.
Step environment:
st+1 ∼ p(st+1 | st, at).

Compute qφ(z | st+1) with discriminator.
Set skill reward
rt = log qφ(z | st+1)− log p(z)

Update policy (θ) to maximize rt with
SAC.

Update discriminator (φ) with SGD.

Figure 5.1: DIAYN Algorithm: We update the discriminator to better predict the skill, and update the skill to visit
diverse states that make it more discriminable.

How it Works
Our method for unsupervised skill discovery, DIAYN (“Diversity is All You Need”), builds off of
three ideas. First, for skills to be useful, we want the skill to dictate the states that the agent visits.
Different skills should visit different states, and hence be distinguishable. Second, we want to use
states, not actions, to distinguish skills, because actions that do not affect the environment are not
visible to an outside observer. For example, an outside observer cannot tell how much force a robotic
arm applies when grasping a cup if the cup does not move. Finally, we encourage exploration and
incentivize the skills to be as diverse as possible by learning skills that act as randomly as possible.
Skills with high entropy that remain discriminable must explore a part of the state space far away
from other skills, lest the randomness in its actions lead it to states where it cannot be distinguished.

We construct our objective using notation from information theory: S and A are random
variables for states and actions, respectively; Z ∼ p(z) is a latent variable, on which we condition
our policy; we refer to a the policy conditioned on a fixed Z as a “skill”; I(·; ·) and H[·] refer
to mutual information and Shannon entropy, both computed with base e. In our objective, we
maximize the mutual information between skills and states, I(S;Z), to encode the idea that the skill
should control which states the agent visits. Conveniently, this mutual information dictates that we
can infer the skill from the states visited. To ensure that states, not actions, are used to distinguish
skills, we minimize the mutual information between skills and actions given the state, I(A;Z | S).
Viewing all skills together with p(z) as a mixture of policies, we maximize the entropyH[A | S] of
this mixture policy. In summary, we maximize the following objective with respect to our policy

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 55

parameters, θ:

F(θ) , I(S;Z) +H[A | S]− I(A;Z | S) (5.1)
= (H[Z]−H[Z | S]) +H[A | S]− (H[A | S]−H[A | S,Z])

= H[Z]−H[Z | S] +H[A | S,Z] (5.2)

We rearranged our objective in Equation 5.2 to give intuition on how we optimize it.2 The first term
encourages our prior distribution over p(z) to have high entropy. We fix p(z) to be uniform in our
approach, guaranteeing that it has maximum entropy. The second term suggests that it should be
easy to infer the skill z from the current state. The third term suggests that each skill should act as
randomly as possible, which we achieve by using a maximum entropy policy to represent each skill.
As we cannot integrate over all states and skills to compute p(z | s) exactly, we approximate this
posterior with a learned discriminator qφ(z | s). Jensen’s Inequality tells us that replacing p(z | s)
with qφ(z | s) gives us a variational lower bound G(θ, φ) on our objective F(θ) (see [208] for a
detailed derivation):

F(θ) = H[A | S,Z]−H[Z | S] +H[Z]

= H[A | S,Z] + Ez∼p(z),s∼π(z)[log p(z | s)]− Ez∼p(z)[log p(z)]

≥ H[A | S,Z] + Ez∼p(z),s∼π(z)[log qφ(z | s)− log p(z)] , G(θ, φ)

Implementation
We implement DIAYN with soft actor critic (SAC) [23], learning a policy πθ(a | s, z) that is
conditioned on the latent variable z. Soft actor critic maximizes the policy’s entropy over actions,
which takes care of the entropy term in our objective G. Following [23], we scale the entropy
regularizer H[a | s, z] by α. We found empirically that an α = 0.1 provided a good trade-off
between exploration and discriminability. We maximize the expectation in G by replacing the task
reward with the following pseudo-reward:

rz(s, a) , log qφ(z | s)− log p(z) (5.3)

We use a categorical distribution for p(z). During unsupervised learning, we sample a skill z ∼ p(z)
at the start of each episode, and act according to that skill throughout the episode. The agent is
rewarded for visiting states that are easy to discriminate, while the discriminator is updated to better
infer the skill z from states visited. Entropy regularization occurs as part of the SAC update.

Stability
Unlike prior adversarial unsupervised RL methods (e.g., [209]), DIAYN forms a cooperative game,
which avoids many of the instabilities of adversarial saddle-point formulations. On gridworlds,

2While our method uses stochastic policies, note that for deterministic policies in continuous action spaces,
I(A;Z | S) = H[A | S]. Thus, for deterministic policies, Equation 5.2 reduces to maximizing I(S;Z).

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 56

we can compute analytically that the unique optimum to the DIAYN optimization problem is to
evenly partition the states between skills, with each skill assuming a uniform stationary distribution
over its partition (proof in Appendix 18.3). In the continuous and approximate setting, convergence
guarantees would be desirable, but this is a very tall order: even standard RL methods with
function approximation (e.g., DQN) lack convergence guarantees, yet such techniques are still
useful. Empirically, we find DIAYN to be robust to random seed; varying the random seed does not
noticeably affect the skills learned, and has little effect on downstream tasks (see Fig.s 5.4, 5.5, and
18.19).

5.4 Experiments
In this section, we evaluate DIAYN and compare to prior work. First, we analyze the skills
themselves, providing intuition for the types of skills learned, the training dynamics, and how we
avoid problematic behavior in previous work. In the second half, we show how the skills can be
used for downstream tasks, via policy initialization, hierarchy, imitation, outperforming competitive
baselines on most tasks. We encourage readers to view videos3 and code4 for our experiments.

Analysis of Learned Skills

(a) 2D Navigation (b) Overlapping Skills (c) Training Dynamics
Figure 5.2: (Left) DIAYN skills in a simple navigation environment; (Center) skills can overlap if they eventually
become distinguishable; (Right) diversity of the rewards increases throughout training.

Question 1. What skills does DIAYN learn?
We study the skills learned by DIAYN on tasks of increasing complexity, ranging from point

navigation (2 dimensions) to ant locomotion (111 dimensions). We first applied DIAYN to a simple
2D navigation environment. The agent starts in the center of the box, and can take actions to directly
move its (x, y) position. Figure 5.2a illustrates how the 6 skills learned for this task move away
from each other to remain distinguishable. Next, we applied DIAYN to two classic control tasks,

3https://sites.google.com/view/diayn/
4https://github.com/ben-eysenbach/sac/blob/master/DIAYN.md

https://sites.google.com/view/diayn/
https://github.com/ben-eysenbach/sac/blob/master/DIAYN.md

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 57

Figure 5.3: Locomotion skills: Without any reward, DIAYN discovers skills for running, walking, hopping, flipping,
and gliding. It is challenging to craft reward functions that elicit these behaviors.
inverted pendulum and mountain car. Not only does our approach learn skills that solve the task
without rewards, it learns multiple distinct skills for solving the task. (See Appendix 18.3 for further
analysis.)

Finally, we applied DIAYN to three continuous control tasks [29]: half cheetah, hopper, and
ant. As shown in Figure 5.3, we learn a diverse set of primitive behaviors for all tasks. For half
cheetah, we learn skills for running forwards and backwards at various speeds, as well as skills
for doing flips and falling over; ant learns skills for jumping and walking in many types of curved
trajectories (though none walk in a straight line); hopper learns skills for balancing, hopping forward
and backwards, and diving. See Appendix 18.3 for a comparison with VIME.

Question 2. How does the distribution of skills change during training?

Figure 5.4: Why use a fixed prior? In contrast to prior
work, DIAYN continues to sample all skills throughout
training.

While DIAYN learns skills without a reward
function, as an outside observer, can we evaluate
the skills throughout training to understand the
training dynamics. Figure 5.2 shows how the
skills for inverted pendulum and mountain car
become increasingly diverse throughout training
(Fig. 18.19 repeats this experiment for 5 random
seeds, and shows that results are robust to ini-
tialization). Recall that our skills are learned
with no reward, so it is natural that some skills
correspond to small task reward while others
correspond to large task reward.

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 58

Question 3. Does discriminating on single states restrict DIAYN to learn skills that visit disjoint
sets of states?

Our discriminator operates at the level of states, not trajectories. While DIAYN favors skills
that do not overlap, our method is not limited to learning skills that visit entirely disjoint sets of
states. Figure 5.2b shows a simple experiment illustrating this. The agent starts in a hallway (green
star), and can move more freely once exiting the end of the hallway into a large room. Because RL
agents are incentivized to maximize their cumulative reward, they may take actions that initially
give no reward to reach states that eventually give high reward. In this environment, DIAYN learns
skills that exit the hallway to make them mutually distinguishable.

Question 4. How does DIAYN differ from Variational Intrinsic Control (VIC) [194]?
The key difference from the most similar prior work on unsupervised skill discovery, VIC, is our

decision to not learn the prior p(z). We found that VIC suffers from the “Matthew Effect” [210]:
VIC’s learned prior p(z) will sample the more diverse skills more frequently, and hence only those
skills will receive training signal to improve. To study this, we evaluated DIAYN and VIC on the
half-cheetah environment, and plotting the effective number of skills (measured as exp(H[Z]))
throughout training (details and more figures in Appendix 18.3). The figure to the right shows how
VIC quickly converges to a setting where it only samples a handful of skills. In contrast, DIAYN
fixes the distribution over skills, which allows us to discover more diverse skills.

Harnessing Learned Skills
The perhaps surprising finding that we can discover diverse skills without a reward function creates
a building block for many problems in RL. For example, to find a policy that achieves a high reward
on a task, it is often sufficient to simply choose the skill with largest reward. Three less obvious
applications are adapting skills to maximize a reward, hierarchical RL, and imitation learning.

Using Skills for Hierarchical RL

In theory, hierarchical RL should decompose a complex task into motion primitives, which may be
reused for multiple tasks. In practice, algorithms for hierarchical RL can encounter many problems:
(1) each motion primitive reduces to a single action [181], (2) the hierarchical policy only samples a
single motion primitive [194], or (3) all motion primitives attempt to do the entire task. In contrast,
DIAYN discovers diverse, task-agnostic skills, which hold the promise of acting as a building block
for hierarchical RL.

Question 5. Are skills discovered by DIAYN useful for hierarchical RL?
We propose a simple extension to DIAYN for hierarchical RL, and find that simple algorithm

outperforms competitive baselines on two challenging tasks. To use the discovered skills for
hierarchical RL, we learn a meta-controller whose actions are to choose which skill to execute for
the next k steps (100 for ant navigation, 10 for cheetah hurdle). The meta-controller has the same
observation space as the skills.

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 59

Figure 5.5: Hierarchical RL

As an initial test, we applied the hierarchical
RL algorithm to a simple 2D point navigation
task (details in Appendix 18.3). Figure 5.5 il-
lustrates how the reward on this task increases
with the number of skills; error bars show the
standard deviation across 5 random seeds. To
ensure that our goals were not cherry picked, we
sampled 25 goals evenly from the state space,
and evaluated each random seed on all goals. We also compared to Variational Information Maxi-
mizing Exploration (VIME) [105]. Note that even the best random seed from VIME significantly
under-performs DIAYN. This is not surprising: whereas DIAYN learns a set of skills that effectively
partition the state space, VIME attempts to learn a single policy that visits many states.

Figure 5.6: Challenging tasks for hierarchical RL: (Left)
Cheetah Hurdle; (Right) Ant Navigation

Next, we applied the hierarchical algorithm
to two challenging simulated robotics environ-
ment. On the cheetah hurdle task, the agent
is rewarded for bounding up and over hurdles,
while in the ant navigation task, the agent must
walk to a set of 5 waypoints in a specific order,
receiving only a sparse reward upon reaching
each waypoint. The sparse reward and obstacles
in these environments make them exceedingly
difficult for non-hierarchical RL algorithms. Indeed, state of the art RL algorithms that do not use
hierarchies perform poorly on these tasks. Figure 5.7 shows how DIAYN outperforms state of the
art on-policy RL (TRPO [90]), off-policy RL (SAC [23]), and exploration bonuses (VIME). This
experiment suggests that unsupervised skill learning provides an effective mechanism for combating
challenges of exploration and sparse rewards in RL.

Figure 5.7: DIAYN for Hierarchical RL: By learning a meta-controller to compose skills learned by DIAYN, cheetah
quickly learns to jump over hurdles and ant solves a sparse-reward navigation task.

Question 6. How can DIAYN leverage prior knowledge about what skills will be useful?
If the number of possible skills grows exponentially with the dimension of the task observation,

one might imagine that DIAYN would fail to learn skills necessary to solve some tasks. While we
found that DIAYN does scale to tasks with more than 100 dimensions (ant has 111), we can also

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 60

use a simple modification to bias DIAYN towards discovering particular types of skills. We can
condition the discriminator on only a subset of the observation space, or any other function of the
observations. In this case, the discriminator maximizes E[log qφ(z | f(s))]. For example, in the
ant navigation task, f(s) could compute the agent’s center of mass, and DIAYN would learn skills
that correspond to changing the center of mass. The “DIAYN+prior” result in Figure 5.7 (right)
shows how incorporating this prior knowledge can aid DIAYN in discovering useful skills and boost
performance on the hierarchical task. (No other experiments or figures in this paper used this prior.)
The key takeaway is that while DIAYN is primarily an unsupervised RL algorithm, there is a simple
mechanism for incorporating supervision when it is available. Unsurprisingly, we perform better on
hierarchical tasks when incorporating more supervision.

Imitating an Expert

Expert
trajectories

DIAYN
imitations

Figure 5.8: Imitating an expert: DIAYN imitates an expert standing upright, flipping, and faceplanting, but fails to
imitate a handstand.

Question 7. Can we use learned skills to imitate an expert?
Aside from maximizing reward with finetuning and hierarchical RL, we can also use learned

skills to follow expert demonstrations. One use-case is where a human manually controls the
agent to complete a task that we would like to automate. Simply replaying the human’s actions
fails in stochastic environments, cases where closed-loop control is necessary. A second use-case
involves an existing agent with a hard coded, manually designed policy. Imitation learning replaces
the existing policy with a similar yet differentiable policy, which might be easier to update in
response to new constraints or objectives. We consider the setting where we are given an expert
trajectory consisting of states, without actions, defined as τ ∗ = {(si)}1≤i≤N . Our goal is to obtain
a feedback controller that will reach the same states. Given the expert trajectory, we use our
learned discriminator to estimate which skill was most likely to have generated the trajectory.
This optimization problem, which we solve for categorical z by enumeration, is equivalent to an
M-projection [211]:

ẑ = arg max
z

Πst∈τ∗qφ(z | st)

CHAPTER 5. LEARNING SKILLS WITHOUT REWARD SUPERVISION 61

We qualitatively evaluate this approach to imitation learning on half cheetah. Figure 5.8 (left) shows
four imitation tasks, three of which our method successfully imitates. We quantitatively evaluate
this imitation method on classic control tasks in Appendix 18.3.

Accelerating Learning with Policy Initialization

Given that the skills learned by DIAYN are often meaningful and semantically interesting, it stands
to reason that these skills can also help accelerate the learning of skills when a reward function
is actually provided. In fact, we will show how DIAYN can be incorporated into a broader meta-
learning framework for this very purpose in the following chapter, providing an effective way of
pre-training RL agents for rapid skill acquisition.

5.5 Conclusion
In this chapter, we present DIAYN, a method for learning skills without reward functions. We show
that DIAYN learns diverse skills for complex tasks, often solving benchmark tasks with one of the
learned skills without actually receiving any task reward. We further proposed methods for using
the learned skills (1) to solve complex tasks via hierarchical RL, and (2) to imitate an expert, and as
we will show next, can also accelerate the learning of new tasks.

62

Chapter 6

Unsupervised Pre-Training for Quick
Reinforcement Learning

In the previous chapter, we showed how we can learn skills without any reward functions, often
resulting in semantically meaningful and interesting behaviors. However, these behaviors are still
task-agnostic and not quite geared towards solving a specific task that a human may want to solve.
In order to actually accomplish goal directed behaviors, the unsupervised pre-training resulting from
a technique like DIAYN must be combined with a task directed finetuning scheme with rewards
specified using a technique like the ones described in Section 3, 4. In this chapter, we show that the
ideas from unsupervised skill discovery can be combined with the framework of meta-reinforcement
learning to enable very quick learning of new tasks. In this way, we show that we can design
a general purpose procedure for pre-training RL algorithms without any human defined reward
functions. We start by motivating this idea from first principles.

6.1 Motivating a General Unsupervised Meta-RL Framework
Reusing past experience for faster learning of new tasks is a key challenge for machine learning.
Meta-learning methods achieve this by using past experience to explicitly optimize for rapid
adaptation [140], [163], [165], [169], [212]–[214]. In the context of reinforcement learning (RL),
meta-reinforcement learning (meta-RL) algorithms can learn to solve new RL tasks more quickly
through experience on past tasks [140], [166], [213]. Typical meta-RL algorithms assume the ability
to sample from a pre-specified task distribution, and these algorithms learn to solve new tasks
drawn from this distribution very quickly. However, specifying a task distribution is tedious and
requires a significant amount of supervision [79], [166] that may be difficult to provide for large,
real-world problem settings. The performance of meta-learning algorithms critically depends on the
meta-training task distribution, and meta-learning algorithms generalize best to new tasks which are
drawn from the same distribution as the meta-training tasks [140]. In effect, meta-RL offloads the
design burden from algorithm design to task design. While meta-RL acquires representations for
fast adaptation to the specified task distribution, specifying this task distribution is often tedious

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 63

and challenging. Can we automate the process of task design, thereby doing away with human
supervision entirely?

In this chapter, we take a step towards unsupervised meta-RL: meta-learning from a task
distribution that is acquired automatically, rather than requiring manual design of the meta-training
tasks. While unsupervised meta-RL does not make any assumptions about the reward functions on
which it will be evaluated at test time, it does assume that the environment dynamics remain the
same. This allows an unsupervised meta-RL agent to utilize environment interactions to meta-train
a model that is optimized to be effective for learning from previously unseen reward functions in
that environment at meta-test time. Our method can also be thought of as automatically acquiring
an environment-specific learning procedure for deep neural network policies, somewhat related to
data-driven initialization procedures explored in supervised learning [215], [216].

The primary contribution of our work is a framework for unsupervised meta-RL. We describe a
family of unsupervised meta-RL algorithms and provide analysis to show that unsupervised meta-
RL methods based on mutual information can be optimal, in a minimax sense. Our experiments
shows that, for a variety of robotic control tasks, unsupervised meta-RL can effectively acquire RL
procedures. These procedures not only learn faster than standard RL approaches that learn from
scratch, but also outperform prior methods that do pure exploration and then fine-tuning at test time.
Our results even approach the performance of an oracle method that relies on hand-designed task
distributions.

6.2 Related Work
Our work lies at the intersection of meta-RL, goal generation, and unsupervised exploration.
Meta-learning algorithms use data from multiple tasks to learn how to learn, acquiring rapid
adaptation procedures from experience [140], [165], [170], [217]–[223]. These approaches have
been extended into the setting of RL [140], [163], [166], [168], [172], [213], [224]–[227]. In
practice, the performance of meta-learning algorithms depends on the user-specified meta-training
task distribution. We aim to lift this limitation and provide a general recipe for avoiding manual task
engineering for meta-RL. A handful of prior meta-learning methods have used self-proposed task
distributions for learning supervised learning procedures [216], [228]–[230]. In contrast, our work
deals with the RL setting, where the environment dynamics provides a rich inductive bias that our
meta-learner can exploit. In the RL setting, task distributions can be obtained in a variety of ways,
including adversarial goal generation [209], [231], information-theoretic methods [194], [207],
[232], [233]. The most similar work is [234], which also considers the unsupervised application of
meta-learning to RL tasks. We build upon this work by proving that an optimal meta-learner can be
acquired using mutual information-based task proposal.

Exploration methods that seek out novel states are also closely related to goal generation
methods [106], [108], [109], [235], but do not by themselves aim to generate new tasks or learn to
adapt more quickly to new tasks, only to achieve wide coverage of the state space. Model-based RL
methods [24], [26], [236]–[239] use unsupervised experience to learn a dynamics model but do not
learn how to efficiently use this model to explore to solve new tasks.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 64

environment
Unsupervised Meta-RL

Meta-learned
environment-specific

RL algorithm

reward-maximizing
policy

reward
function

Unsupervised
Task Acquisition Meta-RL

Fast
Adaptation

Figure 6.1: Unsupervised meta-reinforcement learning: Given an environment, unsupervised meta-RL produces an
environment-specific learning algorithm that quickly acquire new policies that maximize any task reward function.

Goal-conditioned RL [118], [119], [240] is also related to our work, and our analysis will study
this special case first before generalizing to the general case of arbitrary tasks. As we discuss
in Section 6.3, goal-reaching itself is not enough, as goal-reaching agents are not optimized to
efficiently explore to determine which goal they should reach, relying instead on a hand-specified
goal parameterization that doesn’t allow these algorithms to work with arbitrary reward functions.

6.3 Unsupervised Meta-RL
We consider the problem of learning a reinforcement learning algorithm that can quickly solve new
tasks in a given environment. This meta-RL process could, for example, tune the hyperparameters of
another RL algorithm, or could replace the RL update rule itself with a learned update rule. Unlike
prior work, we aim to do so without depending on any human supervision or information about the
tasks that will be provided for meta-testing. A task reward is provided at meta-test time, and the
learned RL procedure should adapt to this task reward as quickly as possible. We assume that all
test-time tasks have the same dynamics, and differ only in their reward functions. Our algorithm
will therefore need to utilize unsupervised environment interaction to learn an RL algorithm. In
effect, the dynamics themselves will be the supervision for our learning algorithm.

We formalize the meta-training setting as a controlled Markov process (CMP) – a Markov
decision process without a reward function, C = (S,A, P, γ, ρ), with state space S, action space
A, transition dynamics P , discount factor γ and initial state distribution ρ. The CMP, along with
a reward function r, produces a Markov decision processes M = (S,A, P, γ, ρ, r). We define a
learning algorithm f : D → π as a function that takes as input a dataset of experience from the MDP,
D = {(si, ai, ri, s′i)} ∼ M , and outputs a policy π(a | s). Evaluation of the learning procedure
f is carried out over a handful of episodes. In episode i, the learning procedure f observes all
previous data {τ1, · · · , τi−1} and outputs a policy to be used in iteration i. We evaluate the learning
procedure f by summing its cumulative reward across iterations:

R(f, rz) =
∑
i

Eπ=f({τ1,··· ,τi−1})
τ∼π

[∑
t

rz(st, at)

]
Our aim is to take this CMP and produce an environment-specific learning algorithm f that can
quickly learn an optimal policy π∗r(a | s) for any reward function r. We refer to this problem as
unsupervised meta-RL, and illustrate the problem setting in Fig. 6.1.

We now sketch a recipe for unsupervised meta-RL, analyze when this recipe is optimal, and
then instantiate a practical approximation to this theoretically-motivated approach by building upon
known meta-learning algorithms and unsupervised exploration methods.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 65

A General Recipe
To construct an unsupervised meta-RL algorithm, we leverage the insight that, to acquire a fast
learning algorithm without task supervision, we can simply leverage standard meta-learning tech-
niques, but with unsupervised task proposal mechanisms. Our unsupervised meta-RL framework
therefore consists of a task proposal mechanism and a meta-learning method. For reasons that will
become more apparent later, we will define the task distribution as a mapping from a latent variable
z ∼ p(z) to a reward function rz(s, a) : S ×A → R1. That is, for each value of the random variable
z, we have a different reward function rz(s, a). Under this formulation, learning a task distribution
amounts to optimizing a parametric form for the reward function rz(s, a) that maps each z ∼ p(z)
to a different reward function. The choice of this parametric form represents an important design
decision for an unsupervised meta-learning method, and the resulting set of tasks is often referred
to as a task or goal proposal procedure. In the following section, we will discuss a theoretical
framework that allows us to make this choice in the following section so as to minimize worst case
regret of the subsequently meta-learned learning algorithm f .

The second component is the meta-learning algorithm, which takes the family of reward
functions induced by p(z) and rz(s, a), along with the associated CMP, and meta-learns an RL
algorithm f that can quickly adapt to any task from the task distribution defined by p(z) and rz(s, a)
in the given CMP. The meta-learned algorithm f can then learn new tasks quickly at meta-test time,
when a user-specified reward function is actually provided. Fig. 6.1 summarizes this generic design
for an unsupervised meta-RL algorithm.

The “no free lunch theorem” [241], [242] might lead us to expect that a truly generic approach
to proposing a task distribution would not yield a learning procedure f that is effective on any
real tasks. However, the assumption that the dynamics remain the same across tasks affords us an
inductive bias with which we pay for our lunch. In the following sections, we will discuss how to
formulate acquiring the optimal unsupervised learning procedure, which minimizes regret on new
meta-test tasks in the absence of any prior knowledge. Since our analysis will focus on a restricted
class of learning procedures, our results are lower bounds for the performance of general learning
procedures. We first define an optimal meta-learner and then show how we can train one without
requiring task distributions to be hand-specified.

Optimal Meta-Learners
We begin our analysis by considering the optimal learning procedure when the task distribution is
known. For a task distribution p(rz), the optimal learning procedure f ∗ is given by

f ∗ , arg max
f

Ep(rz) [R(f, rz)] .

Other learning procedures f may achieve lower reward, and we define the regret incurred by using
a suboptimal learning procedure as the difference in expected reward, compared with the optimal
learning procedure:

REGRET(f, p(rz)) , Ep(rz) [R(f ∗, rz)]− Ep(rz) [R(f, rz)] .

1In most cases p(z) is chosen to be a uniform categorical so it is not challenging to specify

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 66

Minimizing this regret is equivalent to maximizing the expected reward objective used by most
meta-RL methods [140], [166]. Note that different task distributions p(rz) will have different
optimal learning procedures f ∗. For example, the optimal behavior for manipulation tasks involves
moving a robot’s arms, while the optimal behavior for locomotion tasks involves moving a robot’s
legs. Therefore, f ∗ depends on p(rz). We next define the notion of an optimal unsupervised
meta-learner, which does not require prior knowledge of p(rz).

In unsupervised meta-reinforcement learning, the reward distribution p(rz) is unknown. In
this setting, we evaluate a learning procedure f based on its regret against the worst-case task
distribution for CMP C:

REGRETWC(f, C) = max
p(rz)

REGRET(f, p(rz)). (6.1)

For a CMP C, we define the optimal unsupervised learning procedure as follows:

Definition 1. The optimal unsupervised learning procedure f ∗C for a CMP C is defined as

f ∗C , arg min
f

REGRETWC(f, C).

Note the optimal unsupervised learning procedure may be different for different CMPs. We can
also define the optimal unsupervised meta-learning algorithm F∗, which takes as input a CMP C
and returns the optimal unsupervised learning procedure f ∗C for that CMP:

Definition 2. The optimal unsupervised meta-learner F∗(C) = f ∗C is a function that takes as input
a CMP C and outputs the corresponding optimal unsupervised learning procedure f ∗C :

F∗ , arg min
F

REGRETWC(F(C), C)

Note that the optimal unsupervised meta-learner F∗ is universal – it does not depend on any
particular task distribution, or any particular CMP. The next sections discuss how to find the minimax
learning procedure, which minimizes the worst-case regret (Eq. 6.1).

Special Case: Goal-Reaching Tasks
We start by deriving an optimal unsupervised meta-learner for the special case where all tasks are
assumed to be goal state reaching tasks, and then generalize this approach to solve arbitrary tasks in
Section 6.3. We restrict our analysis to CMPs with deterministic dynamics, and consider episodes
with finite horizon T and a discount factor of γ = 1. Each tasks corresponds to reaching a goal
states sg at the last time step in the episode, so the reward function is

rg(st) , 1(t = T) · 1(st = g).

We first derive the optimal learning procedure for the case where p(sg) is known, and then derive
the optimal procedure for the case where p(sg) is unknown.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 67

The Optimal Learning Procedure for Known p(sg)

In the case of goal reaching tasks, the optimal fast learning procedure f searches through potential
goal states until it finds the goal and then navigates to that goal state in all subsequent episodes.
Define fπ as the learning procedure that uses policy π to explore until the goal is found, and then
always returns to the goal state. We will restrict our attention to the set of learning procedures
Fπ , {fπ} constructed in this fashion, so our theoretical results will be lower bound on the
performance of arbitrary learning procedures. The learning procedure fπ incurs one unit of regret
for each step before it has found the goal, and zero regret afterwards. The expected cumulative
regret is therefore the expectation of the hitting time. To compute the expected hitting time, we
define ρTπ (s) as the probability that policy π visits state s at time step t = T . If sg is the true goal,
then the event that the policy π reaches sg at the final step of an episode is a Bernoulli random
variable with parameter p = ρTπ (sg). Thus, the expected hitting time of this goal state is

HITTINGTIMEπ(sg) =
1

ρTπ (sg)
.

The regret of the learning procedure fπ is

REGRET(fπ, p(rg)) =

∫
HITTINGTIMEπ(sg)p(sg)dsg =

∫
p(sg)

ρTπ (sg)
dsg. (6.2)

To now compute the optimal learning procedure fπ, we can minimize the regret in Equation 6.2 w.r.t.
the marginal distribution ρTπ . Using the calculus of variations (for more details refer to Appendix C
in [243]), the exploration policy for the optimal meta-learner, π∗, satisfies:

ρTπ∗(sg) =

√
p(sg)∫ √
p(s′g)ds

′
g

. (6.3)

Thus, when the goal sampling distribution p(sg) is known, the optimal learning procedure is obtained
by finding π∗ satisfying Eq. 6.3 and then using fπ∗ as the learning procedure. The next section
considers the case where p(sg) is not known.

The Optimal Unsupervised Learning Procedure for Goal Reaching Tasks

In the case of goal-reaching tasks where the goal distribution p(sg) is not known, the optimal
unsupervised learning procedure can be constructed from a policy with a uniform marginal state
distribution (proof in Appendix 18.4):

Lemma 2. Let π be a policy for which ρTπ (s) is uniform. Then fπ is has lowest worst-case regret
among learning procedures in Fπ.

One route for constructing this optimal unsupervised learning procedure is to first acquire
a policy π for which ρTπ (s) is uniform and then return fπ. However, finding such a policy π is
challenging, especially in high-dimensional state spaces and in the absense of resets. Instead,

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 68

we will take an alternate route, acquiring fπ directly without every computing π. In addition to
sidestepping the requirement of computing π, this approach will also have the benefit of generalizing
beyond goal-reaching tasks to arbitrary task distributions.

Our approach for directly computing the optimal unsupervised learning procedure hinges on the
observation that the optimal unsupervised learning procedure is the optimal (supervised) learning
procedure for goals proposed from a uniform distribution. Thus, the optimal unsupervised learning
procedure will come not as a result of a careful construction, but rather as the output of the an
optimization procedure (i.e., meta-learning). Thus, we can obtain the optimal unsupervised learning
procedure by applying a meta-learning algorithm to a task distribution that samples goals uniformly.
To ensure that the resulting learning procedure f lies within the set Fπ, we will only consider
“memoryless” meta-learning algorithms that maintain no internal state before the true goal is found.2

While sampling goals uniform is itself a challenging problem, we can use the same trick as before:
instead of constructing this uniform goal distribution directly, we instead find an optimization
problem for which the solution is to sample goals uniformly.

The optimization problem that we use will involve two latent variables, the final state sT and an
auxiliary latent variable z sampled from a prior µ(z). The optimization problem will be to find a
conditional distribution µ(sT | z) such that the mutual information between z and sT is optimized:

max
µ(sT |z)

Iµ(sT ; z) (6.4)

The conditional distribution µ(sT | z) that optimizes Equation 6.4 is one with a uniform marginal
distribution over terminal states (proof in Appendix 18.4):

Lemma 3. Assume there exists a conditional distribution µ(sT | z) satisfying the following two
properties:

topsep=1pt,1temsep=1pt The marginal distribution over terminal states is uniform: µ(sT) =∫
µ(sT | z)µ(z)dz = UNIF(S); and

topsep=2pt,2temsep=2pt The conditional distribution µ(sT | z) is a Dirac: ∀z, sT ∃sz s.t. µ(sT |
z) = 1(sT = sz).

Then any solution µ(sT | z) to the mutual information objective (Eq. 6.4) satisfies the following:

µ(sT) = UNIF(S) and µ(sT | z) = 1(sT = sz).

Optimizing Mutual Information

To optimize the above mutual information objective, we note that a conditional distribution µ(sT | z)
can be defined implicitly via a latent-conditioned policy µ(a | s, z). This policy is not a meta-learned

2MAML satisfies this requirement, as the internal parameters are updated by policy gradient, which is zero because
the reward is zero before the true goal is found.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 69

model, but rather will become part of the task proposal mechanism. For a given prior µ(z) and
latent-conditioned policy µ(a | s, z), the joint likelihood is

µ(τ, z) = µ(z)p(s1)
∏
t

p(st+1 | st, at)µ(at | st, z),

and the marginal likelihood is simply given by

µ(sT , z) =

∫
µ(τ, z)ds1a1 · · · aT−1.

The purpose of our repeated indirection now becomes clear: prior work [207], [232] has proposed
efficient algorithms for maximizing the mutual information objective (Eq. 6.4) when the conditional
distribution µ(sT | z) is defined implicitly in terms of a latent-conditioned policy. At this point, we
finally can sample goals uniformly, by sampling z ∼ µ(z) followed by sT ∼ µ(sT | z).

Recall that we wanted to obtain a uniform goal distribution so that we could apply meta-learning
to obtain the optimal learning procedure. However, the input to meta-learning procedures is
not a distribution over goals but a distribution over reward functions. We then define our task
proposal distribution p(rz) by sampling z ∼ p(z) and using the corresponding reward function
rz(sT , aT) , log p(sT | z), resulting in a uniform distribution as described in Lemma 2.

General Case: Trajectory-Matching Tasks
To extend the analysis in the previous section to the general case, and thereby derive a framework
for optimal unsupervised meta-learning, we will consider “trajectory-matching” tasks. These tasks
are a trajectory-based generalization of goal reaching: while goal reaching tasks only provide a
positive reward when the policy reaches the goal state, trajectory-matching tasks only provide a
positive reward when the policy executes the optimal trajectory. The trajectory matching case is
more general because, while trajectory matching can represent different goal-reaching tasks, it can
also represent tasks that are not simply goal reaching, such as reaching a goal while avoiding a
dangerous region or reaching a goal in a particular way. Moreover, the trajectory matching case is
actually also a generalization of the typical reinforcement learning case with Markovian rewards,
because any such task can be represented by a trajectory reaching objective as well. Please refer to
Section 6.3 for a more complete discussion of the same.

As before, we will restrict our attention to CMPs with deterministic dynamics. These non-
Markovian tasks essentially amount to a problem where an RL algorithm must “guess” the optimal
policy, and only receives a reward if its behavior is perfectly consistent with that optimal policy.

We will show that optimizing the mutual information between z and trajectories to obtain a task
proposal distribution, and subsequently optimizing a meta-learner for this distribution will give us
the optimal unsupervised meta-learner for this class of reward functions. We subsequently show
that unsupervised meta-learning for the trajectory-matching task is at least as hard as unsupervised
meta-learning for general tasks. As before, let us begin within an analysis of optimal meta-learners
in the case where the distribution over trajectory matching tasks p(τ ∗) is known, and subsequently
direct our attention to formulating an optimal unsupervised meta-learner.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 70

Optimal meta-learner for known p(τ ∗)

Formally, we define a distribution of trajectory-matching tasks by a distribution over desired
trajectories, p(τ ∗). For each goal trajectory τ ∗, the corresponding trajectory-level reward function is

r∗τ (τ) , 1(τ = τ ∗)
Analysis from Section 6.3 can be repurposed here. As before, restrict our attention to learning
procedures fπ ∈ Fπ. After running the exploration policy to discover trajectories that obtain reward,
the policy will deterministically keep executing the desired trajectory. We can define the hitting
time as the expected number of episodes to match the target trajectory:

HITTINGTIMEπ(τ ∗) =
1

π(τ ∗)

We then define regret as the expected hitting time:

REGRET(fπ, p(rτ)) =

∫
HITTINGTIMEπ(τ)p(τ)dτ) =

∫
p(τ)

π(τ)
dτ. (6.5)

This definition of regret allows us to optimize for an optimal learning procedure, and we obtain an
exploration policy for the optimal learning procedure satisfying the requirement

π∗(τ) =

√
p(τ)∫ √
p(τ ′)dτ ′

.

Optimal unsupervised learning procedure for trajectory-matching tasks

As described in Section 6.3, obtaining such a policy requires knowing the trajectory distribution
p(τ), and we must resort to optimizing the worst-case regret. As argued in Lemma 1, the solution to
this min-max optimization is a learning procedure which has an exploration policy that is uniform
distribution over trajectories.

Lemma 4. Let π be a policy for which π(τ) is uniform. Then fπ has lowest worst-case regret
among learning procedures in Fπ.

We can acquire an unsupervised meta-learner of this form by proposing and meta-learning on a
task distribution that is uniform over trajectories. How might we actually propose a task distribution
that is uniform over trajectories? As argued for the goal reaching case, we can do so by optimizing
a trajectory-level mutual information objective:

I(τ ; z) = H[τ]−H[τ | z]

The optimal policy for this objective has a uniform distribution over trajectories that, conditioned
on a particular latent z, deterministically produces a single trajectory in a deterministic CMP.
The analysis for the case of stochastic dynamics is more involved and is left to future work.
By optimizing a task proposal distribution that maximizes trajectory-level mutual information,
and subsequently performing meta-learning on the proposed tasks, we can acquire the optimal
unsupervised meta-learner for trajectory matching tasks, under the definition in Section 6.3.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 71

Relationship to General Reward Maximizing Tasks

Now that we have derived the optimal meta-learner for trajectory-matching tasks, we observe that
trajectory-matching is a super-set of the problem of optimizing any possible Markovian reward
function at test-time. For a given initial state distribution, each reward function is optimized by
a particular trajectory. However, trajectories produced by a non-Markovian policy (i.e., a policy
with memory) are not necessarily the unique optimum for any Markovian reward function. Let
Rτ denote the set of trajectory-level reward functions, and Rs,a denote the set of all state-action
level reward functions. Bounding the worst-case regret on Rτ minimizes an upper bound on the
worst-case regret on Rs,a:

min
rτ∈Rτ

Eπ [rτ (τ)] ≤ min
r∈Rs,a

Eπ

[∑
t

r(st, at)

]
∀π.

This inequality holds for all policies π, including the policy that maximizes the LHS. While we aim
to maximize the RHS, we only know how to maximize the LHS, which gives us a lower bound on
the RHS. This inequality holds for all policies π, so it also holds for the policy that maximizes the
LHS. In general, this bound is loose, because the set of all Markovian reward functions is smaller
than the set of all trajectory-level reward functions (i.e., trajectory-matching tasks). However, this
bound becomes tight when considering meta-learning on the set of all possible (non-Markovian)
reward functions.

In the discussion of meta-learning thus far, we have restricted our attention to tasks where the
reward is provided at the last time step T of each episode and to the set of learning procedures Fπ
that maintain no internal state before the true goal or trajectory is found. In this restricted setting
case, the best that an optimal meta-learner can do is go directly to a goal or execute a particular
trajectory at every episode according to the optimal exploration policy as discussed previously,
essentially performing a version of posterior sampling. In the more general case with arbitrary
reward functions and arbitrary learning procedures, intermediate rewards along a trajectory may be
informative, and the optimal exploration strategy may be different from posterior sampling [163],
[166], [244].

Nonetheless, the analysis presented in this section provides us insight into the behavior of optimal
meta-learning algorithms and allows us to understand the qualities desirable for unsupervised task
proposals. The general proposed scheme for unsupervised meta-learning has a significant benefit
over standard universal value function and goal reaching style algorithms: it can be applied to
arbitrary reward functions going beyond simple goal reaching, and doesn’t require the goal to be
known in a parametric form beforehand.

Summary of Analysis
Through our analysis, we introduced the notion of optimal meta-learners and analyze their explo-
ration behavior and regret on a class of goal reaching problems. We showed that on these problems,
when the test-time task distribution is unknown, the optimal meta-training task distribution for
minimizing worst-case test-time regret is uniform over the space of goals. We also showed that this

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 72

Algorithm 6: Unsupervised Meta-RL Pseudocode
Input:M\R, an MDP without a reward function
Dφ ← DIAYN() or Dφ ← random
while not converged do

Sample latent task variables z ∼ p(z)
Define task reward rz(s) using Dφ(z|s)
Update f using MAML with reward rz(s)

end while
Return: a learning algorithm f : Dφ → π

optimal task distribution can be acquired by a simple mutual information maximization scheme.
We subsequently extend the analysis to the more general case of matching arbitrary trajectories, as a
proxy for the more general class of arbitrary reward functions. In the following section, we will
discuss how we can derive a practical algorithm for unsupervised meta-learning from this analysis.

A Practical Algorithm
Following the derivation in the previous section, we can instantiate a practical unsupervised meta-RL
algorithm by constructing a task proposal mechanism based on a mutual information objective. A
variety of different mutual information objectives can be formulated, including mutual information
between single states and z (referred to as DIAYN) [232], pairs of start and end states and z [194],
and entire trajectories and z [122], [207], [245]. We will use DIAYN and leave a full examination
of possible mutual information objectives for future work.

DIAYN optimizes mutual information by training a discriminator network Dφ(z|·) that predicts
which z was used to generate the states in a given rollout according to a latent-conditioned policy
π(a|s, z). Our task proposal distribution is thus defined by rz(s, a) = log(Dφ(z|s)). The complete
unsupervised meta-learning algorithm is as follows: first, we acquire rz(s, a) by running DIAYN,
which learns Dφ(z|s) and a latent-conditioned policy π(a|s, z) (which is discarded). Then, we use
z ∼ p(z) to propose tasks rz(s, a) to a standard meta-RL algorithm. This meta-RL algorithm uses
the proposed tasks to learn how to learn, acquiring a fast learn algorithm f which can then learn
new tasks quickly. While, in principle, any meta-RL algorithm could be used, we use MAML [140]
as our meta-learning algorithm. Note that the learning algorithm f returned by MAML is defined
simply as running gradient descent using the initial parameters found by MAML as initialization, as
discussed in prior work [246]. The method is summarized in Algorithm 6.

In addition to mutual information maximizing task proposals, we will also consider random task
proposals, where we also use a discriminator as the reward, according to r(s, z) = logDφrand(z|s),
but where the parameters φrand are chosen randomly (i.e., a random weight initialization for a neural
network). While such random reward functions are not optimal, we find that they can surprisingly
be used to acquire useful task distributions for simple tasks, though they are not as effective as the
tasks become more complicated.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 73

2D navigation Half-Cheetah Ant
Figure 6.2: Unsupervised meta-learning accelerates learning: After unsupervised meta-learning, our approach
(UML-DIAYN and UML-RANDOM) quickly learns a new task significantly faster than learning from scratch, especially
on complex tasks. Learning the task distribution with DIAYN helps more for complex tasks. Results are averaged
across 20 evaluation tasks, and 3 random seeds for testing. UML-DIAYN and random also significantly outperform
learning with DIAYN initialization or VIME.

2D Navigation Half-Cheetah Ant Navigation
Figure 6.3: Comparison with handcrafted tasks: Unsupervised meta-learning (UML-DIAYN) is competitive with
meta-training on handcrafted reward functions (i.e., an oracle). A misspecified, handcrafted meta-training task
distribution often performs worse, illustrating the benefits of learning the task distribution.

6.4 Experimental Evaluation
In our experiments, we aim to understand whether unsupervised meta-learning as described in
Section 6.3 can provide us with an accelerated RL procedure on new tasks. Whereas standard
meta-learning requires a hand-specified task distribution at meta-training time, unsupervised meta-
learning learns the task distribution through unsupervised interaction with the environment. A fair
baseline that likewise uses requires no reward supervision at training time, and only uses rewards at
test time, is learning via RL from scratch without any meta-learning. As an upper bound, we include
the unfair comparison to a standard meta-learning approach, where the meta-training distribution is
manually designed. This method has access to a hand-specified task distribution that is not available
to our method. We evaluate two variants of our approach: (a) task acquisition based on DIAYN
followed by meta-learning using MAML, and (b) task acquisition using a randomly initialized
discriminator followed by meta-learning using MAML.

Tasks and Implementation Details
Our experiments study three simulated environments of varying difficulty: 2D point navigation,
2D locomotion using the “HalfCheetah,” and 3D locomotion using the “Ant,” with the latter
two environments are modifications of popular RL benchmarks [247]. While the 2D navigation

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 74

environment allows for direct control of position, HalfCheetah and Ant can only control their center
of mass via feedback control with high dimensional actions (6D for HalfCheetah, 8D for Ant) and
observations (17D for HalfCheetah, 111D for Ant).

The evaluation tasks, shown in Figure 18.31, are similar to prior work [140], [240]: 2D
navigation and ant require navigating to goal positions, while the half cheetah must run at different
goal velocities. These tasks are not accessible to our algorithm during meta-training. Please refer to
Appendix C for details about hyperparameters for both MAML and DIAYN.

Fast Adaptation after Unsupervised Meta RL
The comparison between the two variants of unsupervised meta-learning and learning from scratch
is shown in Figure 6.2. We also add a comparison to VIME [105], a standard novelty-based
exploration method, where we pretrain a policy with the VIME reward and then finetune it on the
meta-test tasks. In all cases, the UML-DIAYN variant of unsupervised meta-learning produces
an RL procedure that outperforms RL from scratch and VIME-init, suggesting that unsupervised
interaction with the environment and meta-learning is effective in producing environment-specific
but task-agnostic priors that accelerate learning on new, previously unseen tasks. The comparison
with VIME shows that the speed of learning is not just about exploration but is indeed about fast
adaptation. In our experiments thus far, UML-DIAYN always performs better than learning from
scratch, although the benefit varies across tasks depending on the actual performance of DIAYN.
We also perform significantly better than a baseline of simply initializing from a DIAYN trained
contextual policy, and then finetuning the best skill with the actual task reward.

Interestingly, in many cases (in Figure 6.3) the performance of unsupervised meta-learning with
DIAYN matches that of the hand-designed task distribution. We see that on the 2D navigation
task, while handcrafted meta-learning is able to learn very quickly initially, it performs similarly
after 100 steps. For the cheetah environment as well, handcrafted meta-learning is able to learn
very quickly to start off, but is quickly matched by unsupervised meta-RL with DIAYN. On the ant
task, we see that hand-crafted meta-learning does do better than UML-DIAYN, likely because the
task distribution is challenging, and a better unsupervised task proposal algorithm would improve
performance.

The comparison between the two unsupervised meta-learning variants is also illuminating:
while the DIAYN-based variant of our method generally achieves the best performance, even the
random discriminator is often able to provide a sufficient diversity of tasks to produce meaningful
acceleration over learning from scratch in the case of 2D navigation and ant. This result has two
interesting implications. First, it suggests that unsupervised meta-learning is an effective tool for
learning an environment prior. Although the performance of unsupervised meta-learning can be
improved with better coverage using DIAYN (as seen in Figure 6.2), even the random discriminator
version provides competitive advantages over learning from scratch. Second, the comparison
provides a clue for identifying the source of the structure learned through unsupervised meta-
learning: though the particular task distribution has an effect on performance, simply interacting
with the environment (without structured objectives, using a random discriminator) already allows
meta-RL to learn effective adaptation strategies in a given environment.

CHAPTER 6. UNSUPERVISED PRE-TRAINING FOR QUICK REINFORCEMENT
LEARNING 75

6.5 Discussion and Future Work
We presented an unsupervised approach to meta-RL, where meta-learning is used to acquire an
efficient RL procedure without requiring hand-specified task distributions. This approach accelerates
RL without relying on the manual supervision required for conventional meta-learning algorithms.
We provide a theoretical derivation that argues that task proposals based on mutual information
maximization can provide a minimum worst-case regret meta-learner, under certain assumptions.
Our experiments indicate unsupervised meta-RL can accelerate learning on a range of tasks.

Our approach also opens a number of questions about unsupervised meta-learning algorithms.
One limitation of our analysis is that it only considers deterministic dynamics, and only considers
task distributions where posterior sampling is optimal. Extending our analysis to stochastic dynamics
and more realistic task distributions may allow unsupervised meta-RL to acquire learning algorithms
that can more effectively solve real-world tasks.

76

Chapter 7

Relationship to Other Work on Supervision
in Reinforcement Learning

Next we try and place this work in context of some related work both prior to and post publishing
of our work. Reward inference in reinforcement learning is a well studied problem, and there have
been a number of works in the space of inverse reinforcement learning, language conditioned RL
and intrinsic motivation that have been studied in the past. We describe some of these below.

7.1 Connections to Prior Work
Imitation learning has largely been studied previously in the context of learning from low level
state demonstrations obtained in the embodiment of the actual system being controlled. For
instance, prior work [248], [249] provides demonstrations using a teleoperation system while
other work [53], [250] uses a kinesthetic teaching system to provide these demonstrations. Given
these demonstrations, then techniques for inverse RL [71], [72] or apprenticeship learning [66],
[69] can be applied to learn behaviors. In contrast to these works, our work shows the ability to
learn behaviors directly from raw video, without requiring any low level demonstrations or state
tracking. This was one of the first works to show this kind of behavior from multiple viewpoints.
Concurrently, work from other groups [61], [63], [77] showed the ability to also learn from multiple
viewpoint aligned videos using a contrastive learning approach.

Learning from examples of outcomes is an easier form of supervision, however the fundamental
problem is quite related to the problem of inverse reinforcement learning [71], [72]. While work
in inverse RL aims to use entire demos, our work shows the ability to learn simply from outcome
states rather than entire trajectories. We build our work in Section 4 on the framework of classifier
based rewards, popularized in [97] and [37]. While these techniques train standard classifiers for
reward function provision, we show how these can be greatly improved by modeling uncertainty
appropriately. In many ways, this is also connected to works for exploration [109], [110], [203] but
conducting exploration in a task directed way instead.

Moving from videos and outcome examples to actually learning from abstract supervision like

CHAPTER 7. RELATIONSHIP TO OTHER WORK ON SUPERVISION IN REINFORCEMENT
LEARNING 77

language allows agents to learn with easy to provide and natural sources of supervision. While
most work in the space of language and RL lies in the realm of instruction following [143], [144],
[149]–[157] our work aims to develop a paradigm where an agent is not just following instructions
but actually using human in the loop guidance through the form of language to improve behavior
and learn how to solve new tasks. In this way, language is now not just a tool for contextualizing
which task to solve, but also how to solve it.

Finally, moving from supervised forms of RL to an unsupervised form of RL provides an
effective way of pre-training agents in an environment without task specific rewards. This work
builds on significant prior work dealing with intrinsic motivation [194], [251], [252], curiosity
[104], [106], empowerment [191], [253], [254] in order to provide RL agents with signal even in the
absence of rewards. Building on these works, our work shows the ability to use a mutual information
style objective, in conjunction with meta-learning as a provably good way of pre-training RL agents.
Concurrently, [255] showed the ability of a very similar algorithm to learn unsupervised behaviors
as well.

7.2 Related Work Subsequent to Publishing
Building on the work we published, several subsequent works studied the “Imitation from Ob-
servation" problem. In particular, [256] provides a useful overview of these techniques. Recent
work [257] shows the ability to learn across various embodiments via image to image translation,
[258] shows an adversarial framework for performing imitation from observation, [259] shows
the ability to estimate observation conditional Q-functions from video, [260] shows theoretical
results on state-only imitation learning, [261] extends these ideas into the realm of dexterous
manipulation, [262] shows the ability to learn from first person ego-centric videos as well. This
field is burgeoning and very much in its infancy and many exciting directions are to follow. Recent
work has been considering the interaction between language and RL as a guidance tool more closely
as well. A recent line of work [263], [264] has shown that language grounding and autonomous
skill acquisition can be decoupled, while still retaining the benefits of both language and large scale
autonomy. In a similar vein, [265] shows the efficacy of using language as an abstraction tool for
hierarchical RL and relabeling. [266], [267] show the ability of language agents to cooperatively
perform tasks using dialogue. And moving slightly away from language, [268] shows the ability
for RL agents to interactively learn how to assist a human in performing its own tasks using a very
related set of techniques.

Unsupervised reinforcement learning has seen a huge increase in attention in recent times.
This has happened both from the lens of exploration [269] as well as representation learning
[270]–[272] Recent work [245], [273] has shown the ability for agents to learn even more complex
tasks unsupervised like the Humanoid, while also being efficient enough to apply to the real world.
In a different vein, [274] has shown the ability of agents to learn how to set goals and accomplish
them in a natural curriculum to solve complex robotics tasks with minimal human supervision.
Unsupervised learning techniques [270]–[272] have also seen a huge uptick in enabling vision
based RL in recent years.

78

Part II

Distributions

CHAPTER 7. RELATIONSHIP TO OTHER WORK ON SUPERVISION IN REINFORCEMENT
LEARNING 79

In Part I, we discussed how we can actually go about supervising real world RL systems,
providing them reward functions through data driven reward inference. Once we actually know the
right objectives to optimize, the next question becomes how do we actually go about exploring the
environment to collect the right data needed to optimize the RL objective in an efficient, safe and
directed manner. The exploration problem in RL has been studied in great detail and in its most
general form is extremely difficult to tackle in practical time-scales. Moreover, exploration in the
context of standard RL can be arbitrarily unsafe, expensive and damaging to the environment. This
is reasonable in video games or simulated domains, but the same cannot be said about domains like
a robot operating in someone’s home. In these cases, data has a limiting cost, which requires us
to think carefully about how to guide exploration to collect the right data in a safe, efficient and
practical way.

Figure 7.1: Schematic illustration of the tradeoff between human effort and the cost of autonomous data collection in
RL

One way of moving from the hopelessly intractable, most general form of RL to a more tractable
problem formulation is to consider how a small amount of human provided data can significantly
bring down the cost of autonomous data collection. As seen from the schematic in Fig 7.1, a small
amount of human provided data can significantly offset how much autonomous data collection
costs, making it much more well directed, safe as well as efficient. In this part, we largely explore
this problem statement - we hope to understand how a small amount of (potentially suboptimal)
human provided data can bootstrap the process of reinforcement learning, encouraging safe, directed
and efficient data collection. In doing so, we show that we can go significantly beyond the types
of tasks that were possible before, and solve much more complicated problems in practical time
frames. In particular, in Section 10 we discuss an on-policy RL algorithm to bootstrap RL with
human demonstrations, followed by it’s application to real world robotics problems in Section 11.
In Section 12, we then discuss how to extend this paradigm to solve long horizon manipulation

CHAPTER 7. RELATIONSHIP TO OTHER WORK ON SUPERVISION IN REINFORCEMENT
LEARNING 80

tasks. In Section 13, we show how this process can be made much more efficient using off-policy
reinforcement learning algorithms and show how this results in efficient real world training as well.

81

Chapter 8

Bootstrapping On-Policy Reinforcement
Learning with Human Demonstrations

As discussed in chapter 9, bootstrapping RL from prior data can provide more efficient, safer and
more directed data collection for learning complex tasks. To this end, we develop a novel algorithm
for bootstrapping RL from human provided demonstration data, and show this actually enables us
to solve significantly more challenging dexterous manipulation tasks than was previously thought to
be possible. While the discussion in this chapter is largely limited to simulation, in the following
chapter we show how this algorithm can be implemented and trained on a real world hardware
system.

8.1 Why Does Complex Dexterous Manipulation Require
Demonstration Bootstrapped RL?

Multi-fingered dexterous manipulators are crucial for robots to function in human-centric environ-
ments, due to their versatility and potential to enable a large variety of contact-rich tasks, such as
in-hand manipulation, complex grasping, and tool use. However, this versatility comes at the price
of high dimensional observation and action spaces, complex and discontinuous contact patterns,
and under-actuation during non-prehensile manipulation. This makes dexterous manipulation with
multi-fingered hands a challenging problem.

Dexterous manipulation behaviors with multi-fingered hands have previously been obtained
using model-based trajectory optimization methods [275], [276]. However, these methods typically
rely on accurate dynamics models and state estimates, which are often difficult to obtain for contact
rich manipulation tasks, especially in the real world. Reinforcement learning provides a model
agnostic approach that circumvents these issues. Indeed, model-free methods have been used for
acquiring manipulation skills [35], [277], but so far have been limited to simpler behaviors with 2-3
finger hands or whole-arm manipulators, which do not capture the challenges of high-dimensional
multi-fingered hands.

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 82

Figure 8.1: We demonstrate a wide range of dexterous manipulation skills such as object relocation, in-hand manipula-
tion, tool use, and opening doors using DRL methods. By augmenting with human demonstrations, policies can be
trained in the equivalent of a few real-world robot hours.

DRL research has made significant progress in improving performance on standardized bench-
mark tasks, such as the OpenAI gym benchmarks [29]. However, the current benchmarks are
typically quite limited both in the dimensionality of the tasks and the complexity of the interactions.
Indeed, recent work has shown that simple linear policies are capable of solving many of the widely
studied benchmark tasks [20]. Thus, before we can develop DRL methods suitable for dexterous
manipulation with robotic hands, we must set up a suite of manipulation tasks that exercise the
properties that are most crucial for real-world hands: high dimensionality, rich interactions with
objects and tools, and sufficient task variety. To that end, we begin by proposing a set of 4 dexterous
manipulation tasks in simulation, which are illustrated in Figure 1. These tasks are representative of
the type of tasks we expect robots to be proficient at: grasping and moving objects, in-hand manipu-
lation, and tool usage among others. Using these representative tasks, we study how DRL can enable
learning of dexterous manipulation skills. Code, models, and videos accompanying this work can be
found at: http://sites.google.com/view/deeprl-dexterous-manipulation

We find that existing RL algorithms can indeed solve these dexterous manipulation tasks, but
require significant manual effort in reward shaping. In addition, the sample complexity of these
methods is very poor, thus making real world training infeasible, and the resulting policies exhibit
idiosyncratic strategies and poor robustness. To overcome this challenge, we propose to augment the
policy search process with a small number of human demonstrations collected in virtual reality (VR).
In particular, we find that pre-training a policy with behavior cloning, and subsequent fine-tuning
with policy gradient along with an augmented loss to stay close to the demonstrations, dramatically
reduces the sample complexity, enabling training within the equivalent of a few real-world robot
hours. The use of human demonstrations also provides additional desirable qualities such as human-
like smooth behaviors and robustness to variations in the environment. Although success remains to
be demonstrated on hardware, our results in this work indicate that DRL methods when augmented
with demonstrations are a viable option for real-world learning of dexterous manipulation skills.
Our contributions are:

• We demonstrate, in simulation, dexterous manipulation with high-dimensional human-like
five-finger hands using model-free DRL. To our knowledge, this is the first empirical result
that demonstrates model-free learning of tasks of this complexity.

• We show that with a small number of human demonstrations, the sample complexity can be

http://sites.google.com/view/deeprl-dexterous-manipulation

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 83

reduced dramatically and brought to levels which can be executed on physical systems.

• We also find that policies trained with demonstrations are more human-like as well as robust
to variations in the environment. We attribute this to human priors in the demonstrations
which bias the learning towards more robust strategies.

• We propose a set of dexterous hand manipulation tasks, which would be of interest to
researchers at the intersection of robotic manipulation and machine learning.

8.2 Related Work
Manipulation with dexterous hands represents one of the most complex and challenging motor
control tasks carried out by humans, and replicating this behavior on robotic systems has proven
extremely difficult. Aside from the technical challenges of constructing multi-fingered dexterous
hands, control of these manipulators has turned out to be exceedingly challenging. Many of the
past successes in dexterous manipulation have focused either on designing hands that mechanically
simplify the control problem [278], [279], at the expense of reduced flexibility, or on acquiring
controllers for relatively simple behaviors such as grasping [280] or rolling objects in the fin-
gers [277], often with low degree of freedom manipulators. Our work explores how a combination
of DRL and demonstration can enable dexterous manipulation with high-dimensional human-like
five-finger hands [281], [282], controlled at the level of individual joints. We do not aim to simplify
the morphology, and explore highly complex tasks that involve tool use and object manipulation.
Although our experiments are in simulation, they suggest that DRL might in the future serve as a
powerful tool to enable much more complex dexterous manipulation skills with complex hands.

Model-based trajectory optimization : Model-based trajectory optimization methods [275],
[276], [283] have demonstrated impressive results in simulated domains, particularly when the
dynamics can be adjusted or relaxed to make them more tractable (as, e.g., in computer animation).
Unfortunately, such approaches struggle to translate to real-world manipulation since prespecifying
or learning complex models on real world systems with significant contact dynamics is very difficult.
Although our evaluation is also in simulation, our algorithms do not make any assumption about
the structure of the dynamics model, requiring only the ability to generate sample trajectories. Our
approach can be executed with minimal modification on real hardware, with the limitation primarily
being the number of real-world samples required. As we will show, this can be reduced significantly
with a small number of demonstrations, suggesting the possibility of performing learning directly in
the real world.

Model-free reinforcement learning Model-free RL methods [284], [285] and versions with deep
function approximators [90], [286] do not require a model of the dynamics, and instead optimize the
policy directly. However, their primary drawback is the requirement for a large number of real-world
samples. Some methods like PoWER overcome this limitation through the use of simple policy

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 84

representations such as DMPs and demonstrate impressive results [287], [288]. However, more
complex representations may be needed in general for more complex tasks and to incorporate rich
sensory information. More recently, RL methods with rich neural network function approximators
have been studied in the context of basic manipulation tasks with 7-10 DoF manipulators, and have
proposed a variety of ways to deal with the sample complexity. Prior work has demonstrated model-
free RL in the real world with simulated pre-training [289] and parallelized data collection [35] for
lower-dimensional whole-arm manipulation tasks. Our work builds towards model-free DRL on
anthropomorphic hands, by showing that we can reduce sample complexity of learning to practical
levels with a small number of human demonstrations. Prior work has demonstrated learning of
simpler manipulation tasks like twirling a cylinder with a similar morphology [290] using guided
policy search [31], and extended this approach to also incorporate demonstrations [291]. However,
the specific tasks we demonstrate are substantially more complex featuring a large number of contact
points and tool use, as detailed in Section 9.3.

Imitation learning In imitation learning, demonstrations of successful behavior are used to train
policies that imitate the expert providing these successful trajectories [64]. A simple approach to
imitation learning is behavior cloning (BC), which learns a policy through supervised learning
to mimic the demonstrations. Although BC has been applied successfully in some instances like
autonomous driving [292], it suffers from problems related to distribution drift [175]. Furthermore,
pure imitation learning methods cannot exceed the capabilities of the demonstrator since they lack a
notion of task performance. In this work, we do not just perform imitation learning, but instead
use imitation learning to bootstrap the process of reinforcement learning. The bootstrapping helps
to overcome exploration challenges, while RL fine-tuning allows the policy to improve based on
actual task objective.

Combining RL with demonstrations Methods based on dynamic movement primitives (DMPs) [67],
[287], [293], [294] have been used to effectively combine demonstrations and RL to enable faster
learning. Several of these methods use trajectory-centric policy representations, which although
well suited for imitation, do not enable feedback on rich sensory inputs. Although such methods
have been applied to some dexterous manipulation tasks [277], the tasks are comparatively simpler
than those illustrated in our work. Using expressive function approximators allow for complex,
nonlinear ways to use sensory feedback, making them well-suited to dexterous manipulation.

In recent work, demonstrations have been used for pre-training a Q-function by minimizing TD
error [295]. Additionally demonstrations have been used to guide exploration through reward/policy
shaping but these are often rule-based or work on discrete spaces making them difficult to apply to
high dimensional dexterous manipulation [296]–[298]. The work most closely related to ours is
DDPGfD [299], where demonstrations are incorporated into DDPG [286] by adding them to the
replay buffer. This presents a natural and elegant way to combine demonstrations with an off-policy
RL method. In concurrent work [300], this approach was combined with hindsight experience
replay [119]. The method we propose in this work bootstraps the policy using behavior cloning,
and combines demonstrations with an on-policy policy gradient method. Off-policy methods, when

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 85

Figure 8.2: Object relocation – move the blue ball to the green target. Positions of the ball and target are randomized
over the entire workspace. Task is considered successful when the object is within epsilon-ball of the target.

successful, tend to be more sample efficient, but are generally more unstable [247], [301]. On-policy
methods on the other hands are more stable, and scale well to high dimensional spaces [247]. Our
experimental results indicate that with the incorporation of demonstrations, the sample complexity
of on-policy methods can be dramatically reduced, while retaining their stability and robustness.
Indeed, the method we propose significantly outperforms DDPGfD. Concurrent works with this
paper have also proposed to integrate demonstrations into reward functions [302], and there have
been attempts to learn with imperfect demonstrations [303]. Overall, we note that the general idea
of bootstrapping RL with supervised training is not new. However, the extent to which it helps with
learning of complex dexterous manipulation skills is surprising and far from obvious.

8.3 Dexterous Manipulation Tasks
The real world presents a plethora of interesting and important manipulation tasks. While solving
individual tasks via custom manipulators in a controlled setting has led to success in industrial
automation, this is less feasible in an unstructured settings like the home. Our goal is to pick
a minimal task-set that captures the technical challenges representative of the real world. We
present four classes of tasks - object relocation, in-hand manipulation, tool use, and manipulating
environmental props (such as doors). Each class exhibits distinctive technical challenges, and
represent a large fraction of tasks required for proliferation of robot assistance in daily activities –
thus being potentially interesting to researchers at the intersection of robotics and machine learning.
All our task environments expose hand (joint angles), object (position and orientation), and target
(position and orientation) details as observations, expect desired position of hand joints as actions,
and provides an oracle to evaluate success. We now describe the four classes in light of the technical
challenges they present.

Tasks
Object relocation (Figure 8.2)

Object relocation is a major class of problems in dexterous manipulation, where an object is
picked up and moved to a target location. The principal challenge here from an RL perspective is
exploration, since in order to achieve success, the hand has to reach the object, grasp it, and take it

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 86

Figure 8.3: In-hand manipulation – reposition the blue pen to match the orientation of the green target. The base of the
hand is fixed. The target is randomized to cover all configurations. Task is considered successful when the orientations
match within tolerance.

Figure 8.4: Door opening – undo the latch and swing the door open. The latch has significant dry friction and a bias
torque that forces the door to stay closed. Agent leverages environmental interaction to develop the understanding
of the latch as no information about the latch is explicitly provided. The position of the door is randomized. Task is
considered complete when the door touches the door stopper at the other end.

Figure 8.5: Tool use – pick up and hammer with significant force to drive the nail into the board. Nail position is
randomized and has dry friction capable of absorbing up to 15N force. Task is successful when the entire length of the
nail is inside the board.

to the target position – a feat that is very hard to accomplish without priors in the form of shaped
rewards or demonstrations.

In-hand Manipulation – Repositioning a pen (Figure 8.3)

In hand-manipulation maneuvers like re-grasping, re-positioning, twirling objects etc. involve
leveraging the dexterity of a high DOF manipulator to effectively navigate a difficult landscape
filled with constraints and discontinuities imposed by joint limits and frequently changing contacts.

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 87

Due to the large number of contacts, conventional model-based approaches which rely on accurate
estimates of gradients through the dynamics model struggle in these problem settings. The major
challenge in these tasks is representing the complex solutions needed for different maneuvers.
For these reason, sampling based DRL methods with rich neural network function approximators
are particularly well suited for this class of problems. Previous work on in-hand manipulation
with RL [290] has considered simpler tasks such as twirling a cylinder, but our tasks involve
omni-directional repositioning which involves significantly more contact use. Collecting human
demonstrations for this task was challenging due to lack of tactile feedback in VR. Instead, to
illustrate the effectiveness of our proposed algorithms, we used a computational expert trained using
RL on a well shaped reward for many iterations. This expert serves to give demonstrations which
are used to speed up training from scratch.

Manipulating Environmental Props (Figure 8.4)

Real-world robotic agents will require constant interaction and manipulation in human-centric
environments. Tasks in this class involve modification of the environment itself - opening drawers
for fetching, moving furniture for cleaning, etc. The solution is often multi-step with hidden
subgoals (e.g undo latch before opening doors), and lies on a narrow constrained manifold shaped
primarily by the inertial properties and the under actuated dynamics of the environment.

Tool Use – Hammer (Figure 8.5)

Humans use tools such as hammers, levers, etc. to augment their capabilities. These tasks involve
co-ordination between the fingers and the arm to apply the tool correctly. Unlike object relocation,
the goal in this class of tasks is to use the tool as opposed to just relocating it. Not all successful grasp
leads to effective tool use. Effective tool use requires multiple steps involving grasp reconfiguration
and careful motor co-ordination in order to impart the required forces. In addition, effective
strategies needs to exhibit robust behaviors in order to counter and recover from destabilizing
responses from the environment.

Further details about all the tasks, including detailed shaped reward functions, physics pa-
rameters etc. are available in the project website: http://sites.google.com/view/
deeprl-dexterous-manipulation.

Experimental setup
To accomplish the tasks laid out above, we use a high degree of freedom dexterous manipulator and
a virtual reality demonstration system which we describe below.

ADROIT hand

We use a simulated analogue of a highly dexterous manipulator – ADROIT [281], which is a
24-DoF anthropomorphic platform designed for addressing challenges in dynamic and dexterous
manipulation [276], [290]. The first, middle, and ring fingers have 4 DoF. Little finger and thumb

http://sites.google.com/view/deeprl-dexterous-manipulation
http://sites.google.com/view/deeprl-dexterous-manipulation

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 88

have 5 DoF, while the wrist has 2 DoF. Each DoF is actuated using position control and is equipped
with a joint angle sensor (Figure 8.6).

Simulator

Our experimental setup uses the MuJoCo physics simulator [91]. The stable contact dynamics of
MuJoCo [304] makes it well suited for contact rich hand manipulation tasks. The kinematics, the
dynamics, and the sensing details of the physical hardware were carefully modeled to encourage
physical realism. In addition to dry friction in the joints, all hand-object contacts have planar friction.
Object-fingertip contacts support torsion and rolling friction. Though the simulation supports tactile
feedback, we do not use it in this work for simplicity, but expect that its use will likely improve the
performance.

Figure 8.6: 24 degree of freedom ADROIT hand. The blue arrows mark the position of the joints and corresponding
position actuator.

Demonstrations
Accurate demonstrations data are required to help accelerate various learning algorithms. Standard
methods like kinesthetic teaching are impractical with complex systems like ones we study in this
work. We use an updated version of the Mujoco HAPTIX system [305]. The system uses the
CyberGlove III system for recording the fingers, HTC vive tracker for tracking the base of the hand
and HTC vive headset for stereoscopic visualization. This moves the process of demonstration data
collection from the real world to virtual reality, allowing for several high fidelity demonstrations
for tasks involving large number of contacts and dynamic phenomena such as rolling, sliding,
stick-slip, deformations and soft contacts. Since the demonstrations are provided in simulation,
physically consistent details of the movements can be easily recorded. We gathered 25 successful
demonstrations for all our tasks (with task randomization as outlined in captions of Figure 8.2,
8.3, 8.5, and 8.4), with each demonstration consisting of the state-action trajectories needed to
perform the task in simulation. To combat distribution drift, a small amount of noise (uniform

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 89

random [−0.1, 0.1] radians) is added to the actuators per timestep so that the policy can better
capture relevant statistics about the data.

8.4 Demo Augmented Policy Gradient (DAPG)
In this work, we use a combination of RL and imitation learning to solve complex dexterous
manipulation problems. To reduce sample complexity and help with exploration, we collect a few
expert demonstrations using the VR system described in Section 8.3, and incorporate these into the
RL process. We first present the base RL algorithm we use for learning, and finally describe our
procedure to incorporate demonstrations. The preliminaries and notation we use is the same one
introduced in Chapter 1.

Natural Policy Gradient
In this work, we primarily consider policy gradient methods, which are a class of model-free
RL methods. In policy gradient methods, the parameters of the policy are directly optimized to
maximize the objective, η(θ), using local search methods such as gradient ascent. In particular, for
this work we consider the NPG algorithm [20], [306], [307]. First, NPG computes the vanilla policy
gradient, or REINFORCE [19] gradient:

g =
1

NT

N∑
i=1

T∑
t=1

∇θ log πθ(a
i
t|sit)Âπ(sit, a

i
t, t). (8.1)

Secondly, it pre-conditions this gradient with the (inverse of) Fisher Information Matrix [306], [308]
computed as:

Fθ =
1

NT

N∑
i=1

∇θ log πθ(a
i
t|sit)∇θ log πθ(a

i
t|sit)T , (8.2)

and finally makes the following normalized gradient ascent update [20], [90], [307]:

θk+1 = θk +

√
δ

gTF−1
θk
g
F−1
θk
g, (8.3)

where δ is the step size choice. A number of pre-conditioned policy gradient methods have been
developed in literature [18], [20], [90], [306], [307], [309], [310] and in principle any of them could
be used. Our implementation of NPG for the experiments is based on Rajeswaran et al. [20].

Augmenting RL with demonstrations
Although NPG with an appropriately shaped reward can somewhat solve the tasks we consider,
there are several challenges which necessitate the incorporations of demonstrations to improve RL:

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 90

1. RL is only able to solve the tasks we consider with careful, laborious task reward shaping.

2. While RL eventually solves the task with appropriate shaping, it requires an impractical
number of samples to learn - in the order of a 100 hours for some tasks.

3. The behaviors learned by pure RL have unnatural appearance, are noisy and are not as robust
to environmental variations.

Combining demonstrations with RL can help combat all of these issues. Demonstrations
help alleviate the need for laborious reward shaping, help guide exploration and decrease sample
complexity of RL, while also helping produce robust and natural looking behaviors. We propose
the demonstration augmented policy gradient (DAPG) method which incorporates demonstrations
into policy gradients in two ways:

Pretraining with behavior cloning

Policy gradient methods typically perform exploration by utilizing the stochasticity of the action
distribution defined by the policy itself. If the policy is not initialized well, the learning process could
be very slow with the algorithm exploring state-action spaces that are not task relevant. To combat
this, we use behavior cloning (BC) [58], [292] to provide an informed policy initialization that
efficiently guides exploration. Use of demonstrations circumvents the need for reward shaping often
used to guide exploration. This idea of pretraining with demonstrations has been used successfully in
prior work [67], and we show that this can dramatically reduce the sample complexity for dexterous
manipulation tasks as well. BC corresponds to solving the following maximum-likelihood problem:

maximize
θ

∑
(s,a)∈ρD

lnπθ(a|s). (8.4)

The optimizer of the above objective, called the behavior cloned policy, attempts to mimic the actions
taken in the demonstrations at states visited in the demonstrations. In practice, behavior cloning
does not guarantee that the cloned policy will be effective, due to the distributional shift between
the demonstrated states and the policy’s own states [175]. Indeed, we observed experimentally that
the cloned policies themselves were usually not successful.

RL fine-tuning with augmented loss

Though behavior cloning provides a good initialization for RL, it does not optimally use the
information present in the demonstration data. Different parts of the demonstration data are useful in
different stages of learning, especially for tasks involving a sequence of behaviors. For example, the
hammering task requires behaviors such as reaching, grasping, and hammering. Behavior cloning
by itself cannot learn a policy that exhibits all these behaviors in the correct sequence with limited
data. The result is that behavior cloning produces a policy that can often pick up the hammer but
seldom swing it close to the nail. The demonstration data contains valuable information on how to
hit the nail, but is lost when the data is used only for initialization. Once RL has learned to pick up

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 91

0 20 40 60 80 100
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Object Relocation

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

In-hand Manipulation (Pen)

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Door Opening

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Tool Use (Hammer)
DDPG
DDPG (shaped)
NPG
NPG (shaped)

Figure 8.7: Performance of pure RL methods – NPG and DDPG, with sparse task completion reward and shaped reward.
Sparse reward setting is primarily ineffective in solving our task set (expect in-hand manipulation). In corporation of
human priors in-terms of reward shaping helps NPG get off the ground, but DDPG sill struggles to find success.

the hammer properly, we should use the demonstration data to provide guidance on how to hit the
nail. To capture all information present in the demonstration data, we add an additional term to the
gradient:

gaug =
∑

(s,a)∈ρπ

∇θ ln πθ(a|s)Aπ(s, a)+

∑
(s,a)∈ρD

∇θ lnπθ(a|s)w(s, a).
(8.5)

Here ρπ represents the dataset obtained by executing policy π on the MDP, and w(s, a) is a
weighting function. This augmented gradient is then used in eq. (4) to perform a co-variant update.
If w(s, a) = 0 ∀(s, a), then we recover the policy gradient in eq. (2). If w(s, a) = c ∀(s, a),
with sufficiently large c, it reduces to behavior cloning, as in eq. (5). However, we wish to
use both imitation and reinforcement learning, so we require an alternate weighting function.
The analysis in [311] suggests that eq. (2) is also valid for mixture trajectory distributions of
the form ρ = αρπ + (1− α)ρD. Thus, a natural choice for the weighting function would be
w(s, a) = Aπ(s, a) ∀(s, a) ∈ ρD. However, it is not possible to compute this quantity without
additional rollouts or assumptions [312]. Thus, we use the heuristic weighting scheme:

w(s, a) = λ0λ
k
1 max

(s′,a′)∈ρπ
Aπ(s′, a′) ∀(s, a) ∈ ρD,

where λ0 and λ1 are hyperparameters, and k is the iteration counter. The decay of the weighting
term via λk1 is motivated by the premise that initially the actions suggested by the demonstrations
are at least as good as the actions produced by the policy. However, towards the end when the
policy is comparable in performance to the demonstrations, we do not wish to bias the gradient.
Thus, we asymptotically decay the auxiliary objective. We empirically find that the performance of
the algorithm is not very sensitive to the choice of these hyperparameters. For all the experiments,
λ0 = 0.1 and λ1 = 0.95 was used.

8.5 Results and Discussion
Our results study how RL methods can learn dexterous manipulation skills, comparing several recent
algorithms and reward conditions. First, we evaluate the capabilities of RL algorithms to learn
dexterous manipulation behaviors from scratch on the tasks outlined in Section III. Subsequently,

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 92

we demonstrate the benefits of incorporating human demonstrations with regard to faster learning,
increased robustness of trained policies, and ability to cope with sparse task completion rewards.

Reinforcement Learning from Scratch
We aim to address the following questions in this experimental evaluation:

1. Can existing RL methods cope with the challenges presented by the high dimensional dexter-
ous manipulation tasks?

2. Do the resulting policies exhibit desirable properties like robustness to variations in the
environment?

3. Are the resulting movements safe for execution on physical hardware, and are elegant/nimble/human-
like?

Figure 8.8: Unnatural movements observed in the execution trace of behavior trained with pure reinforcement leaning.
From left to right: (a) unnatural, socially unacceptable, finger position during pick up. (b/c) unnatural grasp for hammer
(d) unnatural use of wrist for unlatching the door.

In order to benchmark the capabilities of DRL with regard to the dexterous manipulation tasks
outlined in Section 9.3, we evaluate the NPG algorithm described briefly in Section V, and the DDPG
algorithm [286], which has recently been used in a number of robotic manipulation scenarios [35],
[299], [300]. Both of these methods have demonstrated state of the art results in popular DRL
continuous control benchmarks, and hence serve as a good representative set. We score the different
methods based on the percentage of successful trajectories the trained policies can generate, using a
sample size of 100 trajectories. We find that with sparse task completion reward signals, the policies
with random exploration never experience success (except in the in-hand task) and hence do not
learn.

In order to enable these algorithms to learn, we incorporate human priors on how to accomplish
the task through careful reward shaping. With the shaped rewards, we find that NPG is indeed able
to achieve high success percentage on these tasks (Figure 8.7), while DDPG was unable to learn
successful policies despite considerable hyperparameter tuning. DDPG can be very sample efficient,
but is known to be very sensitive to hyperparameters and random seeds [301], which may explain
the difficulty of scaling it to complex, high-dimensional tasks like dexterous manipulation.

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 93

Table 8.1: Sample and robot time complexity of DAPG (ours) compared to RL (Natural Policy Gradient) from scratch
with shaped (sh) and sparse task completion reward (sp). N is the number of RL iterations needed to achieve 90%
success rate, Hours represent the robot hours needed to learn the task. Each iteration is 200 trajectories of length 2
seconds each.

Method DAPG (sp) RL (sh) RL (sp)

Task N Hours N Hours N Hours

Relocation 52 5.77 880 98 ∞ ∞
Hammer 55 6.1 448 50 ∞ ∞
Door 42 4.67 146 16.2 ∞ ∞
Pen 30 3.33 864 96 2900 322

Although incorporation of human knowledge via reward shaping is helpful, the resulting policies:
(a) often exhibit unnatural looking behaviors, and (b) are too sample inefficient to be useful for
training on the physical hardware. While it is hard to mathematically quantify the quality of
generated behaviors, Figure 8.8 and the accompanying video clearly demonstrate that the learned
policies produce behaviors that are erratic and not human-like. Such unnatural behaviors are
indeed quite prevalent in the recent DRL results [313]. Furthermore, we take the additional step of
analyzing the robustness of these policies to variations in environments that were not experienced
during training. To do so, we take into account the policy trained for the object relocation task and
vary the mass and size of the object that has to be relocated. We find that the policies tend to over-fit
to the specific objects they were trained to manipulate and is unable to cope with variations in the
environment as seen in Figure 9.16.

We attribute the artifacts and brittleness outlined above to the way in which human priors are
incorporated into the policy search process. The mental models of solution strategies that humans
have for these tasks are indeed quite robust. However it is challenging to distill this mental model
or intuition into a mathematical reward function. As we will show in the next section, using a data
driven approach to incorporate human priors, in the form of demonstrations, alleviates these issues
to a significant extent.

Reinforcement Learning with Demonstrations
In this section we aim to study the following questions:

1. Does incorporating demonstrations via DAPG reduce the learning time to practical timescales?

2. How does DAPG compare to other model-free methods that incorporate demonstrations, such
as DDPGfD [299]?

3. Does DAPG acquire robust and human-looking behaviors without reward shaping?

We employ the DAPG algorithm in Section 8.4 on the set of hand tasks and compare with the
recently proposed DDPGfD method [299]. DDPGfD builds on top of the DDPG algorithm, and

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 94

Mass

0.2
0.6

1.0
1.4

Size
0.02

0.03

0.04
0.05

Su
cc

es
s

0

20

40

60

80

100

Shaped Reward RL training

Mass

0.2
0.6

1.0
1.4

Size
0.02

0.03

0.04
0.05

Su
cc

es
s

0

20

40

60

80

100

DAPG training

Mass

0.2
0.6

1.0
1.4

Size
0.02

0.03

0.04
0.05

Su
cc

es
s

0

20

40

60

80

100

Shaped Reward RL (ensemble)

Mass

0.2
0.6

1.0
1.4

Size
0.02

0.03

0.04
0.05

Su
cc

es
s

0

20

40

60

80

100

DAPG (ensemble)

Figure 8.9: Robustness of trained policies to variations in the environment. The top two figures are trained on a single
instance of the environment (indicated by the star) and then tested on different variants of the environment. The policy
trained with DAPG is more robust, likely due to the intrinsic robustness of the human strategies which are captured
through use of demonstrations. We also see that RL from scratch is unable to learn when the diversity of the environment
is increased (bottom left) while DAPG is able to learn and produces even more robust policies.

0 2 4 6 8 10
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Object Relocation

0 2 4 6 8 10
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

In-hand Manipulation (Pen)

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Door Opening

0 2 4 6 8 10
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Tool Use (Hammer)
BC only
DDPGfD
BC init + NPG (ours)
DAPG (ours)

Figure 8.10: Performance of RL with demonstrations methods – DAPG(ours) and DDPGfD. DAPG significantly
outperforms DDPGfD

incorporates demonstrations to bootstrap learning by: (1) Adding demonstrations to the replay
buffer; (2) Using prioritzed experience replay; (3) Using n-step returns; (4) Adding regularizations
to the policy and critic networks. Overall, DDPGfD has proven effective on arm manipulation tasks
with sparse rewards in prior work, and we compare performance of DAPG against DDPGfD on our
dexterous manipulation tasks.

For this section of the evaluation we use only sparse task completion rewards, since we are

CHAPTER 8. BOOTSTRAPPING ON-POLICY REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS 95

using demonstrations. With the use of demonstrations, we expect the algorithms to implicitly learn
the human priors on how to accomplish the task. Figure 8.10 presents the comparison between
the different algorithms. DAPG convincingly outperforms DDPGfD in all the tasks well before
DDPGfD even starts showing signs of progress. Furthermore, DAPG is able to train policies for
these complex tasks in under a few robot hours Table 8.1. In particular, for the object relocation
task, DAPG is able to train policies almost 30 times faster compared to learning from scratch. This
indicates that RL methods in conjunction with demonstrations, and in particular DAPG, are viable
approaches for real world training of dexterous manipulation tasks.

When analyzing the robustness of trained policies to variations in the environment, we find
that policies trained with DAPG are significantly more robust compared to the policies trained
with shaped rewards (Figure 9.16). Furthermore, a detail that can be well appreciated in the
accompanying video is the human-like motions generated by the policy. The policies trained with
DAPG better capture the human priors from the demonstrations, and generate policies that are more
robust and exhibit qualities that are inherently expected but hard to mathematically specify.

In our final experiment, we also explore how robustness can be further improved by training on
a distribution (ensemble) of training environments, where each environment differs in terms of the
physical properties of the manipulated object (its size and mass). By training policies to succeed
on the entire ensemble, we can acquire policies that are explicitly trained for robustness, similar in
spirit to previously proposed model ensemble methods [314], [315]. Interestingly, we observe that
for difficult control problems like high dimensional dexterous manipulation, RL from scratch with
shaped rewards is unable to learn a robust policy for a diverse ensemble of environments in a time
frame comparable to the time it takes to master a single instance of the task. On the other hand,
DAPG is still able to succeed in this setting and generates even more robust policies, as shown in
Figure 9.16.

8.6 Conclusion
In this work, we developed a set of manipulation tasks representative of the types of tasks we
encounter in everyday life. The tasks involve the control of a 24-DoF five-fingered hand. We also
propose a method, DAPG, for incorporating demonstrations into policy gradient methods. Our
empirical results compare model-free RL from scratch using two state-of-the-art DRL methods,
DDPG and NPG, as well their demonstration-based counterparts, DDPGfD and our DAPG algo-
rithm. We find that NPG is able to solve these tasks, but only after significant manual reward
shaping. Furthermore, the policies learned under these shaped rewards are not robust, and produce
idiosyncratic and unnatural motions. After incorporating human demonstrations, we find that our
DAPG algorithm acquires policies that not only exhibit more human-like motion, but are also
substantially more robust. Furthermore, we find that DAPG can be up to 30x more sample efficient
than RL from scratch with shaped rewards. In the following chapter, we show how DAPG can be
easily applied to train dexterous manipulation tasks on real hardware.

96

Chapter 9

Applying Bootstrapped On-Policy RL to
Real World Robotic Systems

In the previous chapter, we introduced a novel on-policy reinforcement learning algorithm that is
able to bootstrap from human demonstrations to solve much more complex tasks than previously
possible in simulation, through a combination of reinforcement learning and imitation learning. In
this chapter, we discuss how this algorithm can be applied to real world dexterous manipulation
tasks, solving complex problems relatively quickly in the real world with a 3 fingered robotic hand.

9.1 Contributions

Figure 9.1: We demonstrate that DRL can learn a wide range of dexterous manipulation skills with multi-fingered
hands, such as opening door with flexible handle, rotating a cross-shaped valve, and rotating the same valve but with a
deformable foam handle, which presents an additional physical challenge, and box flipping.

In this work, we study how the model-free RL techniques we discussed in Chapter 8 can be
scaled up to learn a variety of manipulation behaviors with multi-fingered hands directly in the real
world, using general-purpose neural network policy representations and without manual controller
or policy class design. We conduct our experiments with low cost multi-fingered manipulators,
and show results on tasks such as rotating a valve, flipping a block vertically, and door opening.
Somewhat surprisingly, we find that successful neural network controllers for each of these tasks
can be trained directly in the real world in about 4-7 hours for most tasks.

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 97

We also show that we can further accelerate the learning process by incorporating a small
number of human demonstrations, building on the recently proposed DAPG [95] algorithm. Using
20 demonstrations obtained through kinesthetic teaching, the learning time can be brought down
to around 2 − 3 hours which corresponds to a 2x speedup. Together, these results establish that
model-free deep RL and demonstration-driven acceleration provide a viable approach for real-world
learning of diverse manipulation skills.

The main contribution of this work is to demonstrate that model-free deep reinforcement learning
can learn contact rich manipulation behaviors directly for low-cost multi-fingered hands directly
in the real world. We demonstrate this on two different low cost robotic hands, manipulating both
rigid and deformable objects, and performing three distinct tasks. We further demonstrate that a
small number of demonstrations can accelerate learning, and analyze a number of design choices
and performance parameters.

9.2 Hardware Setup

Figure 9.2: Left: 3 finger Dynamixel claw. Right: 4 finger
anthropomorphic Allegro hand

In order to demonstrate the generalizable na-
ture of the model-free deep RL algorithms, we
consider two different hardware platforms: a
custom built 3 fingered hand, referred to as the
Dynamixel claw (Dclaw), and a 4 fingered Alle-
gro hand. Both hands are relatively cheap, espe-
cially the Dclaw, which costs under $2, 500 to
build. For several experiments, we also mounted
the hands on a Sawyer robot arm to allow for a
larger workspace.

Dynamixel Claw The Dynamixel claw (Dclaw)
is custom built using Dynamixel servo motors.
It is a powerful, low latency, position controlled 9 DoF manipulator which costs under $2, 500
to construct. Dclaw is robust and is able to run up to 24 hours without intervention or hardware
damage.

Allegro Hand The Allegro hand is a 4 fingered anthropomorphic hand, with 16 degrees of
freedom, and can handle payloads of up to 5 kg. This hand uses DC motors for actuation and can be
either torque or position controlled using a low level PID. The Allegro hand costs on the order of
$15, 000.

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 98

9.3 Tasks
While the approach we describe for learning dexterous manipulation is general and broadly applica-
ble, we consider three distinct tasks in our experimental evaluation - valve rotation, box flipping, and
door opening. These tasks involve challenging contact patterns and coordination, and are inspired by
everyday hand manipulations. We approach these problems using reinforcement learning, modeling
them as Markov decision processes (MDPs), which provide a generic mathematical abstraction
to model sequential decision making problems. The goal in reinforcement learning is to learn a
control policy which maximizes a user-provided reward function. This reward function is defined
independently for each of our tasks as described below.

Valve Rotation This task involves turning a valve or faucet to a target position. The fingers must
cooperatively push and move out of the way, posing an exploration challenge. Furthermore the
contact forces with the valve complicate the dynamics. For our task, the valve must be rotated from
0◦ to 180◦.

Figure 9.3: Illustration of valve rotation

The state space consists of all the joint angles of the hand, the current angle of rotation of the
valve [θvalve], the distance to the goal angle [dθ], and the last action taken. The action space is joint
angles of the hand and the reward function is

r = −|dθ|+ 10 ∗ 1{|dθ|<0.1} + 50 ∗ 1{|dθ|<0.05}

dθ := θvalve − θgoal

We define a trajectory as a success if |dθ| < 20◦ for at least 20% of the trajectory.

Vertical box flipping This task involves rotating a rectangular box, which freely spins about its
long axis, from 0◦ to 180◦. This task also involves learning alternating coordinated motions of the
fingers such that while the top finger is pushing, the bottom two move out of the way, and vice
versa.

The state space consists of all the joint angles of the hand, the current angle of rotation of the
box [θbox], the distance in angle to the goal, and the last action taken. The action space consists of

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 99

Figure 9.4: Illustration of box flipping

the joint angles of the hand and the reward function is

r = −|dθ|+ 10 ∗ 1{|dθ|<0.1} + 50 ∗ 1{|dθ|<0.05}

dθ := θbox − θgoal

We define a trajectory as a success if |dθ| < 20◦ for at least 20% of the trajectory.

Door opening This task involves both the arm and the hand working in tandem to open a door.
The robot must learn to approach the door, grip the handle, and then pull backwards. This task has
more degrees of freedom given the additional arm, and involves the sequence of actions: going to
the door, gripping the door, and then pulling away.

Figure 9.5: Opening door with flexible handle

The state space is all the joint angles of the hand, the Cartesian position of the arm, the current
angle of the door, and last action taken. The action space is the position space of the hand and
horizontal position of the wrist of the arm. The reward function is provided as

r = −(dθ)2 − (xarm − xdoor)

dθ := θdoor − θclosed

We define a trajectory as a success if at any point dθ > 30◦.

Dynamixel Driven State Estimation
For these tasks, we solve both the problem of state estimation and resetting using a setup with
objects augmented with Dynamixel servo motors. These motors serve the dual purpose of resetting

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 100

objects (such as the valve, box, or door) to their original positions and measuring the state of the
object (angle of rotation or position).

Figure 9.6: Dynamixel driven sensing and reset mechanisms. Left to Right: rigid valve, box, door.

9.4 Experimental Results and Analysis
The goal of our experiments is to empirically address the following research questions:

• Can model-free deep RL provide a practical means for learning various dexterous manipula-
tion behaviors directly in the real world?

• Can model-free deep RL algorithms learn on different hardware platforms and on different
physical setups?

• Can we accelerate the learning process using a small number of demonstrations obtained
through kinesthetic teaching?

• How do particular design choices of the reward function and actuation space affect learning?

To do so, we utilize the tasks in Section 9.3. Additional details can be found at the supplementary
website https://sites.google.com/view/deeprl-handmanipulation

Model-Free Deep RL
First, we explore the performance of model-free deep reinforcement learning on our suite of
hardware tasks. The learning progress is depicted in Fig 9.10 and also in the accompanying video.
We find that, somewhat surprisingly, model-free deep RL can acquire coherent manipulation skills
in the time scales of a few hours (7 hours for turning a valve, 4 hours to flip a box, 16 hours for
opening a door). These training times are evaluated once the deterministic policy achieves 100%
success rate over 10 evaluation rollouts, according to the success metrics defined in Section 9.3
(Fig 9.15). The algorithm is robust and did not require extensive hyperparameter optimization.

https://sites.google.com/view/deeprl-handmanipulation

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 101

Figure 9.7: Visualization of Dclaw policy that has learned to turn a valve after 7 hours of training. The fingers learn to
alternately move in and out to turn the valve.

Figure 9.8: Visualization of Dclaw that has learned to flip a box after 4 hours of training. The Dclaw learns to extend its
bottom two fingers and push its top finger forwards, then lower its bottom two fingers while pushing downwards with
its top finger.

Figure 9.9: Visualization of a policy that has learned to open a door after 16 hours of training. The robot learns to move
towards the door, grasp the deformable handle, and then pull the door open.

The only hyperparameter that was tuned was the initial variance of the policy for exploration. We
analyze specific design choices in the reward function and actuation scheme in Section 9.4.

We find that for the valve and the box flipping, the learning is able to monotonically improve
on the continuous reward signal, whereas for the door the learning is more challenging, given that
reward is only obtained when the door is actually opened. The agent has to consistently pull open
the door in order to see the reward, leading to the large spikes in learning as seen in Fig. 9.10.

The learned finger gaits that we observe do have interesting coordination patterns. The tasks
require that the fingers move quickly and in a coordinated way so as to rotate the objects and
then move out of the way. This behavior can be appreciated in the accompanying video on the
supplementary website.

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 102

Figure 9.10: Learning progress with model-free RL from scratch using the NPG algorithm. The policies reach 100%
average success rates after 7.4 hours for valve rotation and 4.1 hours for box flipping and 15.6 hours for door opening.

Learning on Different Hardware and Different Materials
To illustrate the ability of model-free RL algorithms to be applied easily to new scenarios and robots,
we evaluated the valve task using the exact same deep RL algorithm with a different hand – the
4-fingered Allegro hand. This hand has 16 DoFs and is also anthropomorphic. We find that the
Allegro hand was able to learn this task, as illustrated in Fig. 9.13, in comparable time as the Dclaw.

Figure 9.11: The Allegro hand learns to rotate a valve 180◦.

Both systems are able to quickly learn the right behavior with the same hyperparameters. While
morphology does indeed have an effect on rate of learning, we find that it is not a hindrance to
eventually learning the task. The easy adaptability of these algorithms is extremely important, since
we don’t need to construct an accurate simulation or model of each new robot, and can simply run
the same algorithm repeatedly to learn new behaviors.

Besides changing the robot’s morphology, we can also modify the object that is manipulated.
We evaluate whether model-free RL algorithms can be effective at learning with a different valve
material, such as soft foam (Fig. 9.12). The contact dynamics with such a deformable material are
hard to simulate and the hand can deform the valve in many different directions, making the actual
manipulation task challenging. We see that model-free RL is able to learn manipulation with the
foam valve effectively, even generating behaviors that exploit the deformable structure of the object.

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 103

Figure 9.12: DClaw learns to rotate a foam valve despite its deformable structure. The claw learns to focus its
manipulation on the center of the valve where there is more rigidity.

Figure 9.13: Left: learning progress of Allegro hand rotating rigid screw. Right: learning progress of Dclaw rotating
the foam valve. The rewards have been normalized such that a random policy achieves score of 0 and the final trained
policy achieves a score of 1.

Accelerating Learning with Demonstrations
While we find that model-free deep RL is generally practical in the real world, the number of
samples can be further reduced by employing demonstrations. In order to understand the role of
demonstrations, we collected 20 demonstrations for each task via kinesthetic teaching.

These demonstrations are slow and suboptimal, but can still provide guidance for exploration
and help guide the learning process. With only a few demonstrations, we see that demonstration
augmented policy gradient (DAPG) can speed up learning significantly, dropping learning time by
2x (Fig 9.14). We record training times across tasks using the previously defined success metrics in
(Fig 9.15).

The efficiency of DAPG comes from the fact that the behavior cloning initialization gives the
agent a rough idea of how to solve the task, and the augmented loss function guides learning through
several iterations. The behaviors learned are also more gentle and legible to humans than behaviors
learned via training from scratch, which is clearly displayed in the accompanying video.

To better understand the learned behaviors, we also evaluated the robustness of these behaviors
to variations in the initial position of the valve, and to noise injected into actions and observations
(Fig 9.16).

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 104

Figure 9.14: Learning progress with training from scratch using NPG and using DAPG. The performances have been
normalized such that a random policy achieves a score of 0 and the best DAPG policy gets a score of 1.

Figure 9.15: Training Times Across Tasks [hrs]. Training time is determined using the success metrics defined in
Section IV. A training run is complete once the deterministic policy achieves 100% success rate over 10 evaluation
rollouts.

Task From Scratch DAPG

Valve 7.4 3.0
Box 4.1 1.5
Door 15.6 —–

Figure 9.16: Plots showing robustness of DAPG vs learning from scratch for the valve rotation task. Left: Variation of
success with change in valve initial position (degrees). Right: Variation of success with x% uniformly random noise
injected into the observation and action space. DAPG is more robust with change in initial valve position, but is less
robust as we add more noise.

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 105

We also considered collecting demonstrations from a wider range of initial configurations of the
environment, and using this wider demo set for DAPG. The demonstrations were collected with
initial valve positions in the range [−π

4
, π

4
]. This paradigm also works well (Fig 9.17). Unsurprisingly,

it is not as effective as using a number of demonstrations in the same environment configuration,
but is still able to learn well. (Fig 9.14).

Figure 9.17: Training DClaw to turn a valve from
a single randomly sampled initial position between
[−45◦, 45◦]to180◦. DAPG was trained with 20 de-
mos that turned the valve from initial positions sam-
pled uniformly at random between [−45◦, 45◦] to
180◦.

Figure 9.18: Success rates using different sim2real
transfer strategies for valve turning with Dclaw. A: No
domain randomization. B: Randomization of position
control PID parameters and friction. C: Same as B,
but also including the previous action as part of the
state space.

Performance with Simulated Training
While the main goal of this work is to study how model-free RL can be used to learn complex
policies directly on real hardware, we also evaluated training in simulation and transfer, employing
randomization to allow for transfer [43], [315]. This requires modeling the task in a simulator and
manually choosing the parameters to randomize.

We see in Fig. 9.18 that the randomization of PID parameters and friction is crucial for effective
transfer.

While simulation to real transfer enabled by randomization is an appealing option, especially
for fragile robots, it has a number of limitations. First, the resulting policies can end up being overly
conservative due to the randomization, a phenomenon that has been widely observed in the field of
robust control. Second, the particular choice of parameters to randomize is crucial for good results,
and insights from one task or problem domain may not transfer to others. Third, increasing the
amount of randomization results in more complex models tremendously increasing the training
time and required computational resources, as discussed in Section 4.2. Directly training in the
real world may be more efficient and lead to better policies. Finally, and perhaps most importantly,
an accurate simulator must be constructed manually, with each new task modeled by hand in the
simulation, which requires substantial time and expertise. For tasks such as valve rotation with the
foam valve or door opening with a soft handle, creating the simulation itself is very challenging.

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 106

Design Choices
To understand the design choices needed to effectively train dexterous hand manipulation systems
with model-free RL, we analyzed different factors which contribute to learning. We performed this
analysis in simulation in order to choose the right schemes for real world training.

Choices of Action Space

The choice of actuation space often makes an impact on learning progress . For hand manipulation
it also greatly affects the smoothness, and hence sustainability, of the hardware. In our results, we
end up using position control since it induces the fewest vibrations and is easiest to learn with.

In order to better understand the rationale behind this, we consider a comparison between using
controlling position and torque controllers as well as their higher order derivatives. We compare the
vibrations induced by each of these control schemes by measuring the sum of the magnitudes of the
highest Fourier coefficients of sample trajectories (joint angles) induced by random trajectories.

Figure 9.19: Left: Analysis of vibrations induced by different actuation schemes in simulation. Higher metric indicates
lower vibrations. We find that position control is able to induce significantly lower vibrations than torque control,
making it safer to run on hardware. Right: Analysis of rewards attained in simulation after training using the control
scheme on Dclaw valve rotating task.

We see that position control has the lowest vibration amongst all the choices of control schemes,
and is also able to achieve significantly better performance. This is likely because we are using a
stabilizing PID control at the low level to do position control which reduces the load on the learning
algorithm. We also see that it is harder to learn a policy when controlling higher order derivatives,
and that it is easier to learn with position control than with torque control.

Impact of Reward Function

We also investigated the effect of the reward function on learning progress. To provide some intuition
about the different choice of reward functions, we show a comparison between 3 different reward

CHAPTER 9. APPLYING BOOTSTRAPPED ON-POLICY RL TO REAL WORLD ROBOTIC
SYSTEMS 107

functions for learning. We evaluate learning progress for these three types of reward functions in
simulation, as a means for choosing an appropriate form of reward for real world training.

1. r1 = −‖θ − θgoal‖2

2. r2 = r1 + 10 ∗ 1{r1<0.1} + 50 ∗ 1{r1<0.05}

3. r3 = r2 − ‖v‖2

Figure 9.20: Analysis of learning progress in simulation
with different reward functions.

We find that learning is most effective with
using either option 1 or 2, and is slower with a
control cost. The control cost ensures smoother
operation, but at the cost of efficiency in learn-
ing, since optimization of control penalties re-
sults in reduction of exploration. In real world
experiments we found that training without a
control cost still produced safe behaviors.

9.5 Discussion
and Future Work
In this work, we study real-world model-free
reinforcement learning as a means to learn com-
plex dexterous hand manipulation behaviors.
We show that model-free deep RL algorithms can provide a practical, efficient, and general method
for learning with high dimensional multi-fingered hands. Model-free RL algorithms can easily
be applied to a variety of low-cost hands, and solve challenging tasks that are hard to simulate
accurately. This kind of generality and minimal manual engineering may be a key ingredient in
endowing robots with the kinds of large skill repertoires they need to be useful in open-world
environments such as homes, offices, and hospitals. We also show that the sample complexity of
model-free RL can be substantially reduced with suboptimal kinesthetic demonstrations, while also
improving the resulting motion quality. In the following chapter, we show that the paradigm of
DAPG can be extended with hierarchical policy representations to solve long horizon manipulation
problems.

108

Chapter 10

Bootstrapping Hierarchical Reinforcement
Learning with Human Demonstrations for
Long Horizon Reasoning

In the previous two chapters, we introduced a novel algorithm for bootstrapping from human
demonstrations and showed the ability of this algorithm to solve complex dexterous manipulation
tasks both in simulation and in the real world. However, the tasks that are being solved are still
relatively short horizon, atomic tasks. Several tasks that we expect agents to perform in the real
world are long horizon tasks with multiple sub-steps, requiring temporally extended reasoning. In
this chapter we show that human data can also be used to enable agents to perform long horizon
behaviors, building on the ideas from DAPG with hierarchical policy representations and goal
conditioned reinforcement learning. We discuss the structure of this algorithm and show it’s ability
to solve complex long horizon tasks.

10.1 How Can Demonstration Bootstrapped RL Solve Long
Horizon Tasks?

Figure 10.1: RPL learns complex,
long-horizon manipulation tasks

Recent years have seen reinforcement learning (RL) successfully
applied to a number of robotics tasks such as in-hand manipula-
tion [290], grasping [316] and door opening [35]. However, these
applications have been largely constrained to relatively simple short-
horizon skills. Hierarchical reinforcement learning (HRL) [317]
has been proposed as a potential solution that should scale to chal-
lenging long-horizon problems, by explicitly introducing temporal
abstraction. However, HRL methods have traditionally struggled
due to various practical challenges such as exploration [318], skill
segmentation [319] and reward definition [232]. We can simplify
the above-mentioned problems by utilizing extra supervision in the

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 109

form of unstructured human demonstrations, in which case the question becomes: how should we
best use this kind of demonstration data to make it easier to solve long-horizon robotics tasks?

This question is one focus area of hierarchical imitation learning (HIL), where solutions [320],
[321] typically try to achieve two goals: i) learn a temporal task abstraction, and ii) discover a
meaningful segmentation of the demonstrations into subtasks. These methods have not traditionally
been tailored to further RL fine-tuning, making it challenging to apply them to a long-horizon
setting, where pure imitation is very likely to fail. To address this need, we devise a simple and
universally-applicable two-phase approach that in the first phase pre-trains hierarchical policies
using demonstrations such that they can be easily fine-tuned using RL during the second phase. In
contrast to HRL methods, our method takes advantage of unstructured demonstrations to bootstrap
further fine-tuning, and in contrast to conventional HIL methods, it does not focus on careful subtask
segmentation, making the method simple, general and very amenable to further reinforcement
fine-tuning. In particular, we show that we can develop an imitation and reinforcement learning
approach that while not necessarily perfect at imitation learning, is very amenable to improvement
via fine-tuning with reinforcement learning and that can be scaled to challenging long-horizon
manipulation tasks.

What are the advantages of using such an algorithm? First, the approach is very general, in that
it can be applied to any demonstration data, including easy to provide unsegmented, unstructured
and undifferentiated demonstrations of meaningful behaviors. Second, our method does not require
any explicit form of skill segmentation or subgoal definition, which otherwise would need to be
learned or explicitly provided. Lastly, and most importantly, since our method ensures that every
low-level trajectory is goal-conditioned (allowing for a simple reward specification) and of the
same, limited length, it is very amenable to reinforcement fine-tuning, which allows for continuous
policy improvement. We show that relay policy learning allows us to learn general, hierarchical,
goal-conditioned policies that can solve long-horizon manipulation tasks in a challenging kitchen
environment in simulation, while significantly outperforming hierarchical RL algorithms and
imitation learning algorithms.

10.2 Relationship to Prior Work
Typical solutions for solving temporally extended tasks have been proposed under the HRL frame-
work [317]. Solutions like the options framework [181], [319], HAM [322], max-Q [323], and
feudal networks [183], [324] present promising algorithmic frameworks for HRL. A particularly
promising approach was proposed in [325] and [326], using goal conditioned policies at multiple
layers of hierarchy for RL. Nevertheless, these algorithms still suffer from challenges in exploration
and optimization (as also seen in our experimental comparison with [325]), which have limited
their application to general robotic problems. In this work, we tackle these problems by using
additional supervision in the form of unstructured, unsegmented human demonstrations. Our work
builds on goal-conditioned RL [118], [119], [240], [327], which has been explored in the context of
reward-free learning [30], learning with sparse rewards [119], large scale generalizable imitation
learning [249], and hierarchical RL [325]. We build on this principle to devise a general-purpose

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 110

imitation and RL algorithm that uses data relabeling and bi-level goal conditioned policies to learn
complex skills.

There has a been a number of hierarchical imitation learning (HIL) approaches [321], [328]–
[331] that typically focus on extracting transition segments from the demonstrations. These methods
aim to perform imitation learning by learning low-level primitives [321], [331] or latent conditioned
policies [328] which meaningfully segment the demonstrations. Traditionally, these approaches
do not aim to and are not amenable to improving the learned primitives with subsequent RL,
which is necessary as we move towards multi-task, challenging long-horizon problems where pure
imitation might be insufficient. In this work, we specifically focus on utilizing both imitation and
RL, and devise a method that does not explicitly try to segment out individual primitives into
meaningful subtasks, but instead splits the demonstration data into fixed-length segments, amenable
to fine-tuning with reinforcement learning. This allows us to leverage relabeling across different
goals [118], [119], [240], [327]. We introduce a novel form of goal relabeling and demonstrate its
efficiency when applied to learning robust bi-level policies. A related idea is presented in [332],
where the authors assume that an expert provides labelled and segmented demonstrations at both
levels of the hierarchy, with an interactive expert for guiding RL. In contrast, we use a pool of
unlabelled demonstrations and apply our method to learn a policy to achieve various desired goals,
without needing interactive guidance or segmentation.

10.3 Relay Policy Learning

Unstructured
Demos

Relay Imitation
Learning

Relay Reinforcement
Fine-tuning

Env

Reward

Action

SubgoalRelay Data Relabeling

High level

Low level

Figure 10.2: Relay policy learning: the algorithm starts with relabelling unstructured demonstrations at both the high
and the low level of the hierarchical policy and then uses them to perform relay imitation learning. This provides a good
policy initialization for subsequent relay reinforcement fine-tuning. We demonstrate that learning such simple goal-
conditioned policies at both levels from demonstrations using relay data relabeling, combined with relay reinforcement
fine-tuning allows us to learn complex manipulation tasks.

In this section, we describe our proposed relay policy learning (RPL) algorithm, which leverages
unstructured demonstrations and reinforcement learning to solve challenging long-horizon tasks.

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 111

Our approach consists of two phases: relay imitation learning (RIL), followed by relay reinforcement
fine-tuning (RRF) described in Sec. 10.3 and 10.3 respectively. While RIL by itself is not able
to solve the most challenging tasks that we consider, it provides a very effective initialization for
fine-tuning.

Relay Policy Architecture

EnvEnv Env EnvEnv Env Env

High level goal

Figure 10.3: Relay policy architecture: A high level goal setter
πθ takes high level goal shg and sets goals slg for a lower level
policy πφ, which acts for a fixed time horizon before resampling
slg

We first introduce our bi-level hierarchi-
cal policy architecture (shown in Fig 10.3),
which enables us to leverage temporal ab-
straction. This architecture consists of a
high-level goal-setting policy and a low-
level subgoal-conditioned policy, which
together generate an environment action
for a given state. The high-level policy
πhθ (slg|st, shg) takes the current state st and a
long-term high-level goal shg and produces
a subgoal slg ∈ S which is then ingested by
a low-level policy πlφ(a|st, slg). The low-
level policy takes the current state st, and
the subgoal slg commanded by the high-
level policy and outputs an action at, which is executed in the environment.

Importantly, the goal setting policy πhθ makes a decision every H time steps (set to 30 in our
experiments), with each of its subgoals being kept constant during that period for the low-level
policy, while the low-level policy πlφ operates at every single time-step. This provides temporal
abstraction, since the high level policy operates at a coarser resolution than the low-level policy.
This policy architecture, while inspired by goal-conditioned HRL algorithms [325], requires a
novel learning algorithm to be applicable in the context of imitation learning, which we describe in
Sec. 10.3. Given a high-level goal shg , πhθ samples a subgoal slg0 , which is passed to πlθ to generate
action a0. For the subsequent H steps, the goal produced by πhθ is kept fixed, while πlθ generates an
action at at every time step.

Relay Imitation Learning
Our problem setting assumes access to a pool of unstructured, unlabeled “play" demonstrations
([249]) D, corresponding to demonstrations of meaningful activities provided by the user, without
any particular task in mind, e.g. opening cabinet doors, playing with different objects, or simply
tidying up the scene. We do not assume that this demonstration data actually accomplishes any of
the final task goals that we will need to solve at test-time, though we do need to assume that the
test-time goals come from the same distribution of goals as those accomplished in the demonstration
data. In order to take the most advantage of such data, we initialize our policy with our proposed
relay imitation learning (RIL) algorithm. RIL is a simple imitation learning procedure that builds

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 112

Algorithm 7: Relay Policy Learning
Require: Unstructured pool of demonstrations

D = {τ0, τ1, ...τN}
1: Relabel goals in demonstration trajectories

using Algorithm 8, 9 to extract Dl, Dh

2: Relay Imitation Learning: Train πhθ and πlφ
using Eqn 10.1

3: while not done do
4: Collect on-policy experience with πhθ and πlφ

for high level goals different shg
5: [Optional] Relabel this experience

(Sec. 10.3), and add to Dl, Dh

6: Update the policy via policy gradient update
using Eqn 10.2, 10.3.

7: end while
8: Distill fine-tuned policies into a single

multi-goal policy

Algorithm 8: Relay data relabeling for
RIL low level

Require: Demonstrations D = {τ0, τ1, ...τN}
1: for n = 1...N do
2: for t = 1...tn do
3: for w = 1...Wl do
4: Add (snt , a

n
t , s

n
t+w) to Dl

5: end for
6: end for
7: end for

Algorithm 9: Relay data relabeling for
RIL high level

Require: Demonstrations D = {τ0, τ1, ...τN}
1: for n = 1...N do
2: for t = 1...tn do
3: for w = 1...Wh do
4: Add (snt , s

n
t+min(w,Wl)

, snt+w) to Dh

5: end for
6: end for
7: end for

on the goal relabeling scheme described in [249] for the hierarchical setting, resulting in improved
handling of multi-task generalization and compounding error. RIL assumes access to the pool of
demonstrations consisting of N trajectories D = {τ i, τ j, τ k, ...}, where each trajectory consists of
state-action pairs τ i = {si0, ai0, . . . , siT , aiT}. Importantly, these demonstrations can be attempting to
reach a variety of different high level goals shg , but we do not require these goals to be specified
explicitly. To learn the relay policy from these demonstrations, we construct a low-level dataset
Dl, and a high-level dataset Dh from these demonstrations via “relay data relabeling", which is
described below, and use them to learn πhθ and πlθ via supervised learning at multiple levels.

We construct the low-level dataset by iterating through the pool of demonstrations and relabeling
them using our relay data relabelling algorithm. First, we choose a window size Wl and generate
state-goal-action tuples for Dl, (s, slg, a) by goal-relabeling within a sliding window along the
demonstrations, as described in detail below and in Algorithms 8, 9. The key idea behind relay data
relabeling is to consider all states that are actually reached along a demonstration trajectory within
Wl time steps from any state st to be goals reachable from the state st by executing action at. This
allows us to label all states st+1,, st+Wl

along a valid demonstration trajectory as potential goals
that are reached from state st, when taking action at. We repeat this process for all states st along
all the demonstration trajectories being considered. This procedure ensures that the low-level policy
is proficient at reaching a variety of goals from different states, which is crucial when the low-level
policy is being commanded potentially different goals generated by the high-level policy.

We employ a similar procedure for the high level, generating the high-level state-goal-action
dataset Dh. However, the actions at the high level are subgoal states that are provided to the
low-level policy, so they must be chosen as states along the demonstration trajectories. We start by

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 113

choosing a high-level window size Wh, which encompasses the high-level goals we would like to
eventually reach. We then generate state-goal-action tuples for Dh, via relay data relabeling within
the high-level window being considered, as described in Algorithm 8, 9. We also label all states
st+1,, st+Wh

along a valid trajectory as potential high-level goals that are reached from state st
by the high level policy, but we set the high-level action for a goal j steps ahead st+j , as st+min(Wl,j)

choosing a sufficiently distant subgoal as the high-level action.
Given these relay-data-relabeled datasets, we train πlθ and πhθ by maximizing the likelihood of

the actions taken given the corresponding states and goals:

max
φ,θ

E(s,a,slg)∼Dl [log πφ(a|s, slg)] + E(s,slg ,s
h
g)∼Dh [log πθ(s

l
g|s, shg)]. (10.1)

This procedure gives us an initialization for both the low-level and the high-level policies, without
the requirement for any explicit goal labeling from a human demonstrator. As we show in our
experiments, this bi-level initialization is significantly more amenable to RRF than learning the
high level from scratch as described in [232], [249], [325], and allows us to avoid the expensive
goal labeling that is required in [332]. Relay data relabeling not only allows us to learn hierarchical
policies without explicit labels, but also provides algorithmic improvements to imitation learning:
(i) it generates more data through the relay-data-relabelling augmentation, and (ii) it improves
generalization since it is trained on a large variety of goals.

Relay Reinforcement Fine-tuning
The procedure described in Sec. 10.3 allows us to extract an effective policy initialization via relay
imitation learning. However, this policy is often unable to perform well across all temporally
extended tasks, due to the well-known compounding errors stemming from imitation learning [175].
Reinforcement learning provides a solution to this challenge, by enabling continuous improvement
of the learned policy directly from experience. We can use RL to improve RIL policies via
fine-tuning on different tasks. We employ a goal-conditioned HRL algorithm that is a variant
of natural policy gradient (NPG) with adaptive step size [90], where both the high-level and the
low-level goal-conditioned policies πhθ and πlφ are being trained with policy gradient in a decoupled
optimization.

Given a low-level goal-reaching reward function rl(st, at, slg), we can optimize the low-level
policy by simply augmenting the state of the agent with the goal commanded by the high-level
policy and then optimizing the policy to effectively reach the commanded goals by maximizing
the sum of its rewards. For the high-level policy, given a high-level goal-reaching reward function
rh(st, gt, s

h
g), we can optimize it by running a similar goal-conditioned policy gradient optimization

to maximize the sum of high-level rewards obtained by commanding the current low-level policy.
To effectively incorporate demonstrations into this reinforcement learning procedure, we lever-

age our method via: (1) initializing both πlθ and πhθ with the policies learned via RIL, and (2)
encouraging policies at both levels to stay close to the behavior shown in the demonstrations. To
incorporate (2), we augment the NPG objective with a max-likelihood objective that ensures that
policies at both levels take actions that are consistent with the relabeled demonstration pools Dl and

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 114

Dh from Section 10.3, as described in Eqn 10.2 and 10.3:

∇φJl = E[∇φ log πlφ(a|s, slg)
∑
t

rl(st, at, s
l
g)] + λlE(s,a,slg)∼Dl [∇φ log πlφ(a|s, slg)] (10.2)

∇θJh = E[∇θ log πhθ (slg|s, shg)
∑
t

rh(st, s
l
g, s

h
g)] + λhE(s,slg ,s

h
g)∼Dh [∇θ log πhθ (slg|s, shg)]. (10.3)

While a similar objective has been described in [95], [300], it is yet to be explored in the hierarchical,
goal-conditioned scenarios, which makes a significant difference as indicated in our experiments.

In addition, since we are learning goal-conditioned policies at both the low and high level, we
can leverage relay data relabeling as described in Sec. 10.3 to also enable the use of off-policy data
for fine-tuning. Suppose that at a particular iteration i, we sampled N trajectories according to the
scheme proposed in Sec. 10.3. While these trajectories did not necessarily reach the goals that were
originally commanded, and therefore cannot be considered optimal for those goals, they do end
up reaching the actual states visited along the trajectory. Thus, they can be considered as optimal
when the goals that they were intended for are relabeled to states along the trajectory via relay data
relabeling described in Algorithm 8, 9. This scheme generates a low-level dataset Dil and a high
level dataset Dih by relabeling the trajectories sampled at iteration i. Since these are considered
“optimal” for reaching goals along the trajectory, they can be added to the buffer of demonstrations
Dl and Dh, thereby contributing to the objective described in Eqn 10.2 and Eqn 10.3 and allowing
us to leverage off-policy data during RRF. We experiment with three variants of the fine-tuning
update in our experimental evaluation: IRIL-RPL (fine-tuning with Eqn 10.2, 10.3 and iterative
relay data relabeling to incorporate off-policy data as described above), DAPG-RPL (fine-tuning the
policy with the update in Eqn 10.2, 10.3 without the off-policy addition) and NPG-RPL (fine-tuning
the policy with the update in Eqn 10.2, 10.3, without the off-policy addition or the second maximum
likelihood term). The overall method is described in Algorithm 7.

As described in [333], it is often difficult to learn multiple tasks together with on-policy
policy gradient methods, because of high variance and conflicting gradients. To circumvent these
challenges, we use RPL to fine-tune on a number of different high level goals individually, and then
distill all of the learned behaviors into a single policy as described in [334]. This allows us to learn
a single policy capable of achieving multiple high level goals, without dealing with the challenges
of multi-task optimization.

10.4 Experimental Results
Our experiments aim to answer the following questions: (1) Does RIL improve imitation learning
with unstructured and unlabelled demonstrations? (2) Is RIL more amenable to RL fine-tuning than
its flat, non-hierarchical alternatives? (3) Can we use RPL to accomplish long-horizon manipulation
tasks? Videos and further experimental details are available at https://relay-policy-learning.github.io/

Environment Setup To evaluate our algorithm, we utilize a challenging robotic manipulation
environment modeled in MuJoCo, shown in Fig. 10.1. The environment consists of a 9 DoF position-

https://relay-policy-learning.github.io/

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 115

controlled Franka robot interacting with a kitchen scene that includes an openable microwave, four
turnable oven burners, an oven light switch, a freely movable kettle, two hinged cabinets, and a
sliding cabinet door. We consider reaching different goals in the environment, as shown in Fig. 10.4,
each of which may require manipulating many different components. For instance, in Fig. 10.4
(a), the robot must open the microwave, move the kettle, turn on the light, and slide open the
cabinet. While the goals we consider are temporally extended, the setup is fully general. We collect
a set of unstructured and unsegmented human demonstrations described in Sec. 10.3, using the
PUPPET MuJoCo VR system [305]. We provide the algorithm with 400 sequences containing
various unstructured demonstrations that each manipulate four different elements of the scene in
sequence.

(a) (b) (c) (d)
Figure 10.4: Examples of compound goals in the kitchen environment. Each goal has different elements manipulated,
requiring multiple stages to solve: (a) microwave, kettle, light, slider, (b) kettle, burner, slider, cabinet, (c) burner, top
burner, slide hinge, (d) kettle, microwave, top burner, lights

Evaluation and Comparisons Since each of our tasks consist of compound goals that involve
manipulating four elements in the environment, we evaluate policies based on the number of steps
that they complete out of four, which we refer to as step-completion score. A step is completed
when the corresponding element in the scene is moved to within ε distance of its desired position.

We compare variants of our RPL algorithm to a number of ablations and baselines, including
prior algorithms for imitation learning combined with RL and methods that learn from scratch.
Among algorithms which utilize imitation learning combined with RL, we compare with several
methods that utilize flat behavior cloning with additional finetuning. Specifically, we compare with
(1) flat goal-conditioned behavior cloning followed by finetuning (BC), (2) flat goal-conditioned
behavior cloning trained with data relabeling followed by finetuning (GCBC) [249], and variants
of these algorithms that augment the BC and GCBC fine-tuning with losses as described in [95] -
(3) DAPG-BC and (4) DAPG-GCBC. We also compare RPL to (5) hierarchical imitation learning
+ finetuning with an oracle segmentation scheme, which performs hierarchical goal conditioned
imitation learning by using a hand-specified oracle to segment the demonstrations for imitation
learning, followed by RRF style fine-tuning. Details of this scheme can be found in Appendix 3.
For comparisons with methods that learn from scratch we compare with (6) an on-policy variant
of HIRO [325] trained from scratch with natural policy gradient [90] instead of Q-learning and (7)
a baseline (Pre-train low level) that learns low-level primitives from the demonstration data, and
learns the high-level goal-setting policy from scratch with RL. The last baseline is representative of
a class of HIL algorithms [328], [329], [331], which are difficult to fine-tune because it is not clear

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 116

how to provide rewards for improving low-level primitives. Lastly, we compare RPL with a baseline
(7) (Nearest Neighbor) which uses a nearest neighbor strategy to choose the demonstration which
has the achieved goal closest to the commanded goal and subsequently executes actions open-loop.

Relay Imitation Learning from Unstructured Demonstrations
We start by aiming to understand whether RIL improves imitation learning over standard methods.
We compare the step-wise completion scores averaged over 17 different compound goals with
RIL as compared to flat BC variants. We find that, while none of the variants are able to achieve
near-perfect completion scores via just imitation, the average stepwise completion score is higher
for RIL as compared to both flat variants (see Table 10.1, first row). Additionally, we find that the
flat policy with data augmentation via relabeling performs better than without relabeling. When we
analyze the proportion of compound goals that are actually fully achieved (see Table 10.1, bottom
row), RIL shows significant improvement over other methods. This indicates that, even for imitation
learning, we see benefits from introducing the simple RIL scheme described in Sec. 10.3.

RIL (ours) GCBC relabeling GCBC no relabeling
Success Rate (%) 21.7 8.8 7.6

Average Step Completion (of 4) 2.4 ± 1.13 2.2± 0.95 1.78± 1.0

Table 10.1: Comparison of RIL to goal-conditioned behavior cloning with and without relabeling in terms success and
step-completion rate averaged across 17 tasks. RIL outperforms the non-hierarchical methods

Relay Reinforcement Fine-tuning of Imitation Learning Policies
Although pure RIL does succeed at times, its performance is still relatively poor. In this section, we
study the degree to which RIL-based policies are amenable to further reinforcement fine-tuning.
Performing reinforcement fine-tuning individually on 17 different compound goals seen in the
demonstrations, we observe a significant improvement in the average success rate and stepwise
completion scores over all the baselines when using any of the variants of RPL (see Fig. 10.5). In
our experiments, we found that it was sufficient to fine-tune the low-level policy, although we could
also fine-tune both levels, at the cost of more non-stationarity. Although the large majority of the
benefit is from RRF, we find a slight additional improvement from the DAPG-RPL and IRIL-RPL
schemes, indicating that including the effect of the demonstrations throughout the process helps.

When compared with HRL algorithms that learn from scratch (on-policy HIRO [325]), we
observe that RPL is able to learn much faster and reach a much higher success rate, showing the
benefit of demonstrations. Additionally, we notice better fine-tuning performance when we compare
RPL with flat-policy fine-tuning. This can be attributed to the fact that the credit assignment and
reward specification problems are much easier for the relay policies, as compared to fine-tuning
flat policies, where a sparse reward is rarely obtained. The RPL method also outperforms the pre-
train-low-level baseline, which we hypothesize is because we are not able to search very effectively

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 117

Figure 10.5: Comparison of the RPL algorithm with a number of baselines averaged over 17 compound goals and 2
(baseline methods) or 3 (our approach) random seeds. Fine-tuning with all three variants of our method outperforms
fine-tuning using flat policies. RIL initialization at both levels improves the performance over HIRO [325] and over
learning only the high-level policy from scratch. If we use policy distillation, we are able to get a successful, multi-task
goal-conditioned policy.in the goal space without further guidance. We also see a significant benefit over using the oracle
scheme described in Appendix 3, since the segments become longer making the exploration problem
more challenging. The comparison with the nearest neighbor baseline also suggests that there is a
significant benefit from actually learning a closed-loop policy rather than using an open-loop policy.
While plots in Fig. 10.5 show the average over various goals when fine-tuned individually, we can
also distill the fine-tuned policies into a single, multi-task policy, as described in Sec. 10.5, that is
able to solve almost all of the compound goals that were fine-tuned. While the success rate drops
slightly, this gives us a single multi-task policy that can achieve multiple temporally-extended goals
(Fig 10.5).

Ablations and Analysis
To understand design choices, we consider the role of using different window sizes for RPL as
well as the role of reward functions during fine-tuning. In Fig 10.6 (left), we observe that the
window size for RPL plays a major role in algorithm performance. As window size increases,
both imitation learning and fine-tuning performance decreases since the behaviors are now more
temporally extended.

Figure 10.6: Left: Role of low level window size in RPL. As the window size increases, imitation learning and
fine-tuning become less effective. Right: Role of fine-tuning reward function in RPL. We see that the sparse reward
function is most effective once exploration is sufficiently directed.

Next, we consider the role of the chosen reward function in fine-tuning with RRF. We evaluate the
relative performance of using different types of rewards for fine-tuning - sparse reward, euclidean
distance, element-wise reward (refer to Appendix A for details). When each is used as a goal

CHAPTER 10. BOOTSTRAPPING HIERARCHICAL REINFORCEMENT LEARNING WITH
HUMAN DEMONSTRATIONS FOR LONG HORIZON REASONING 118

conditioned reward for fine-tuning the low-level, sparse reward works much better. This indicates
that when exploration is sufficient, sparse reward functions are less prone to local optima than
alternatives.

10.5 Conclusion and Future Work
We proposed relay policy learning, a method for solving long-horizon, multi-stage tasks by lever-
aging unstructured demonstrations to bootstrap a hierarchical learning procedure. We showed
that we can learn a single policy capable of achieving multiple compound goals, each requiring
temporally extended reasoning. In addition, we demonstrated that RPL significantly outperforms
other baselines that utilize hierarchical RL from scratch, as well as imitation learning algorithms.
While this paradigm can be quite effective in simulation, improving on challenging tasks through
autonomous interaction, it is still quite expensive in terms of the number of samples required to
learn. To really scale to real world settings, we need to move towards more efficient algorithms for
bootstrapping. In the following chapter, we show how we can move from on-policy bootstrapped
RL algorithms to off-policy bootstrapped RL algorithms, providing much more efficient learning as
well as the ability to incorporate sub-optimal data. We then show that this paradigm can solve long
horizon tasks in a real world kitchen in Section 18.

119

Chapter 11

Bootstrapping Off-Policy Reinforcement
Learning with Offline Datasets and Online
Finetuning

In the previous three chapters, we showed how to construct on-policy RL algorithms that can be
bootstrapped with prior human data, and demonstrated the ability of these algorithms to solve
both long horizon manipulation tasks and be applied to dexterous manipulation tasks in the real
world. However, these algorithms are still on-policy, wasting a significant portion of the samples
they collect since they can only use their latest batch of collected experience. In this chapter, we
show that the paradigm of demonstration bootstrapped RL can actually be extended to off-policy
RL algorithms, which are significantly more efficient. Additionally, these off-policy algorithms
can bootstrap RL using not just optimal demonstration data but also sub-optimal data or data of
mixed quality. We introduce the formalism of our off-policy bootstrapped RL algorithm and then
show how we can apply it to complex tasks both in simulation and the real world, significantly
outperforming the on-policy technique in chapter 10.

11.1 Why Should We Care About Bootstrapped Off-Policy
RL?

Learning models that generalize effectively to complex open-world settings, from image recogni-
tion [12] to natural language processing [335], relies on large, high-capacity models as well as large,
diverse, and representative datasets. Leveraging this recipe of pre-training from large-scale offline
datasets has the potential to provide significant benefits for reinforcement learning (RL) as well,
both in terms of generalization and sample complexity. But most existing RL algorithms collect
data online from scratch every time a new policy is learned, which can quickly become impractical
in domains like robotics where physical data collection has a non-trivial cost. In the same way
that powerful models in computer vision and NLP are often pre-trained on large, general-purpose
datasets and then fine-tuned on task-specific data, practical instantiations of reinforcement learning

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 120

Figure 11.1: Utilizing prior data for online learning allows us to solve challenging real-world robotics tasks, such as
this dexterous manipulation task where the learned policy must control a 4-fingered hand to reposition an object.

D = {(s, a, s0, r)j}

⇡✓(a|s)

Update

⇡✓

p(s0|s, a)

(s, a, s0, r)

Q� Update

⇡✓ Q��

- off-policy data
- expert demos
- prior runs of RL

1. O✏ine Learning 2. Online Fine-tuning

�
Figure 11.2: We study learning policies by offline learning on a prior dataset D and then fine-tuning with online
interaction. The prior data could be obtained via prior runs of RL, expert demonstrations, or any other source of
transitions. Our method, advantage weighted actor critic (AWAC) is able to learn effectively from offline data and
fine-tune in order to reach expert-level performance after collecting a limited amount of interaction data.

for real world robotics problems will need to be able to incorporate large amounts of prior data
effectively into the learning process, while still collecting additional data online for the task at hand.
Doing so effectively will make the online data collection process much more practical while still
allowing robots operating in the real world to continue improving their behavior.

For data-driven reinforcement learning, offline datasets consist of trajectories of states, actions
and associated rewards. This data can potentially come from demonstrations for the desired
task [336], [337], suboptimal policies [303], demonstrations for related tasks [338], or even just
random exploration in the environment. Depending on the quality of the data that is provided, useful
knowledge can be extracted about the dynamics of the world, about the task being solved, or both.
Effective data-driven methods for deep reinforcement learning should be able to use this data to
pre-train offline while improving with online fine-tuning.

Since this prior data can come from a variety of sources, we would like to design an algorithm
that does not utilize different types of data in any privileged way. For example, prior methods that
incorporate demonstrations into RL directly aim to mimic these demonstrations [300], which is
desirable when the demonstrations are known to be optimal, but imposes strict requirements on the
type of offline data, and can cause undesirable bias when the prior data is not optimal. While prior
methods for fully offline RL provide a mechanism for utilizing offline data [339], [340], as we will
show in our experiments, such methods generally are not effective for fine-tuning with online data

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 121

as they are often too conservative. In effect, prior methods require us to choose: Do we assume prior
data is optimal or not? Do we use only offline data, or only online data? To make it feasible to learn
policies for open-world settings, we need algorithms that learn successfully in any of these cases.

In this work, we study how to build RL algorithms that are effective for pre-training from
off-policy datasets, but also well suited to continuous improvement with online data collection. We
systematically analyze the challenges with using standard off-policy RL algorithms [23], [340], [341]
for this problem, and introduce a simple actor critic algorithm that elegantly bridges data-driven
pre-training from offline data and improvement with online data collection. Our method, which uses
dynamic programming to train a critic but a supervised learning style update to train a constrained
actor, combines the best of supervised learning and actor-critic algorithms. Dynamic programming
can leverage off-policy data and enable sample-efficient learning. The simple supervised actor
update implicitly enforces a constraint that mitigates the effects of distribution shift when learning
from offline data [339], [340], while avoiding overly conservative updates.

We evaluate our algorithm on a wide variety of robotic control tasks, using a set of simulated
dexterous manipulation problems as well as three separate real-world robots: drawer opening with
a 7-DoF robotic arm, picking up an object with a multi-fingered hand, and rotating a valve with
a 3-fingered claw. Our algorithm, AWAC, is able to quickly learn successful policies for these
challenging tasks, in spite of high dimensional action spaces and uninformative, sparse reward
signals. We show that AWAC finetunes much more efficiently after offline pretraining as compared
to prior methods and, given a fixed time budget, attains significantly better performance on the
real-world tasks. Moreover, AWAC can utilize different types of prior data without any algorithmic
changes: demonstrations, suboptimal data, or random exploration data. The contribution of this
work is not just another RL algorithm, but a systematic study of what makes offline pre-training with
online fine-tuning unique compared to the standard RL paradigm, which then directly motivates a
simple algorithm, AWAC, to address these challenges. We additionally discuss the design decisions
required for applying AWAC as a practical tool for real-world robotic skill learning.

11.2 Preliminaries
The optimal policy can be learned directly (e.g., using policy gradient to estimate ∇J(π) [19]), but
this is often ineffective due to high variance of the estimator. Many algorithms attempt to reduce
this variance by making use of the value function V π(s) = Epπ(τ)[Rt|s], action-value function
Qπ(s, a) = Epπ(τ)[Rt|s, a], or advantage Aπ(s, a) = Qπ(s, a)− V π(s). The action-value function
for a policy can be written recursively via the Bellman equation:

Qπ(s, a) = r(s, a) + γEp(s′|s,a)[V
π(s′)] (11.1)

= r(s, a) + γEp(s′|s,a)[Eπ(a′|s′)[Q
π(s′, a′)]]. (11.2)

Instead of estimating policy gradients directly, actor-critic algorithms maximize returns by alter-
nating between two phases [342]: policy evaluation and policy improvement. During the policy
evaluation phase, the critic Qπ(s, a) is estimated for the current policy π. This can be accom-
plished by repeatedly applying the Bellman operator B, corresponding to the right-hand side of

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 122

Equation 11.2, as defined below:

BπQ(s, a) = r(s, a) + γEp(s′|s,a)[Eπ(a′|s′)[Q
π(s′, a′)]]. (11.3)

By iterating according to Qk+1 = BπQk, Qk converges to Qπ [343]. With function approximation,
we cannot apply the Bellman operator exactly, and instead minimize the Bellman error with respect
to Q-function parameters φk:

φk = arg min
φ

ED[(Qφ(s, a)− y)2], (11.4)

y = r(s, a) + γEs′,a′ [Qφk−1
(s′, a′)]. (11.5)

During policy improvement, the actor π is typically updated based on the current estimate of Qπ.
A commonly used technique [23], [286], [344] is to update the actor πθk(a|s) via likelihood ratio
or pathwise derivatives to optimize the following objective, such that the expected value of the
Q-function Qπ is maximized:

θk = arg max
θ

Es∼D[Eπθ(a|s)[Qφk(s, a)]] (11.6)

Actor-critic algorithms are widely used in deep RL [23], [286], [344], [345]. With a Q-function
estimator, they can in principle utilize off-policy data when used with a replay buffer for storing
prior transition tuples, which we will denote β, to sample previous transitions, although we show
that this by itself is insufficient for our problem setting.

11.3 Challenges in Offline RL with Online Fine-tuning
In this section, we study the unique challenges that exist when pre-training using offline data,
followed by fine-tuning with online data collection. We first describe the problem, and then analyze
what makes this problem difficult for prior methods.

Problem Definition
A static dataset of transitions, D = {(s, a, s′, r)j}, is provided to the algorithm at the beginning
of training. This dataset can be sampled from an arbitrary policy or mixture of policies, and may
even be collected by a human expert. This definition is general and encompasses many scenarios:
learning from demonstrations, random data, prior RL experiments, or even from multi-task data.
Given the dataset D, our goal is to leverage D for pre-training and use a small amount of online
interaction to learn the optimal policy π∗(a|s), as depicted in Fig 11.2. This setting is representative
of many real-world RL settings, where prior data is available and the aim is to learn new skills
efficiently. We first study existing algorithms empirically in this setting on the HalfCheetah-v2
Gym environment1. The prior dataset consists of 15 demonstrations from an expert policy and 100

1We use this environment for analysis because it helps understand and accentuate the differences between different
algorithms. More challenging environments like the ones shown in Fig 11.4 are too hard to solve to analyze variants of
different methods.

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 123

A
ve

ra
ge

R
et

ur
ns

0K 50K 100K 150K 200K
Timesteps

0

2500

5000

7500

1. Data Efficiency from Prior Data

AWAC (Ours)
AWR [41]

DAPG [46]
MARWIL [55]

0K 50K 100K 150K 200K
Timesteps

2. Actor-Critic Methods

AWAC (Ours)
SACfD-pretrain

SACfD-prior [54]
SAC-scratch [18]

0K 50K 100K 150K 200K
Timesteps

3. Policy Constraint Methods

BEAR [30]
BEAR-loose

Offline Training

Offline data
Online data

Figure 11.3: Analysis of prior methods on HalfCheetah-v2 using offline RL with online fine-tuning. (1) On-policy
methods (DAPG, AWR, MARWIL) learn relatively slowly, even with access to prior data. We present our method,
AWAC, as an example of how off-policy RL methods can learn much faster. (2) Variants of soft actor-critic (SAC) with
offline training (performed before timestep 0) and fine-tuning. We see a “dip” in the initial performance, even if the
policy is pretrained with behavioral cloning. (3) Offline RL method BEAR [340] on offline training and fine-tuning,
including a “loose” variant of BEAR with a weakened constraint. Standard offline RL methods fine-tune slowly, while
the “loose” BEAR variant experiences a similar dip as SAC. (4) We show that the fit of the behavior models π̂β used by
these offline methods degrades as new data is added to the buffer during fine-tuning, potentially explaining their poor
fine-tuning performance.

suboptimal trajectories sampled from a behavioral clone of these demonstrations. All methods for
the remainder of this paper incorporate the prior dataset, unless explicitly labeled “scratch”.

Data Efficiency
One of the simplest ways to utilize prior data such as demonstrations for RL is to pre-train a
policy with imitation learning, and fine-tune with on-policy RL [95], [346]. This approach has
two drawbacks: (1) prior data may not be optimal; (2) on-policy fine-tuning is data inefficient
as it does not reuse the prior data in the RL stage. In our setting, data efficiency is vital. To
this end, we require algorithms that are able to reuse arbitrary off-policy data during online RL
for data-efficient fine-tuning. We find that algorithms that use on-policy fine-tuning [95], [346],
or Monte-Carlo return estimation [347]–[349] are generally much less efficient than off-policy
actor-critic algorithms, which iterate between improving π and estimating Qπ via Bellman backups.
This can be seen from the results in Figure 11.3 plot 1, where on-policy methods like DAPG [95]
and Monte-Carlo return methods like AWR [349] and MARWIL [348] are an order of magnitude
slower than off-policy actor-critic methods. Actor-critic methods, shown in Figure 11.3 plot 2, can
in principle use off-policy data. However, as we will discuss next, naïvely applying these algorithms
to our problem suffers from a different set of challenges.

Bootstrap Error in Offline Learning with Actor-Critic Methods
When standard off-policy actor-critic methods are applied to this problem setting, they perform
poorly, as shown in the second plot in Figure 11.3: despite having a prior dataset in the replay buffer,
these algorithms do not benefit significantly from offline training. We evaluate soft actor critic [23],
a state-of-the-art actor-critic algorithm for continuous control. Note that “SAC-scratch,” which does
not receive the prior data, performs similarly to “SACfD-prior,” which does have access to the prior
data, indicating that the off-policy RL algorithm is not actually able to make use of the off-policy
data for pre-training. Moreover, even if the SAC is policy is pre-trained by behavior cloning, labeled

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 124

“SACfD-pretrain”, we still observe an initial decrease in performance, and performance similar to
learning from scratch.

This challenge can be attributed to off-policy bootstrapping error accumulation, as observed
in several prior works [339], [340], [343], [350], [351]. In actor-critic algorithms, the target value
Q(s′, a′), with a′ ∼ π, is used to update Q(s, a). When a′ is outside of the data distribution,
Q(s′, a′) will be inaccurate, leading to accumulation of error on static datasets.

Offline RL algorithms [339], [340], [350] propose to address this issue by explicitly adding
constraints on the policy improvement update (Equation 11.6) to avoid bootstrapping on out-of-
distribution actions, leading to a policy update of this form:

arg max
θ

Es∼D[Eπθ(a|s)[Qφk(s, a)]] s.t. D(πθ, πβ) ≤ ε. (11.7)

Here, πθ is the actor being updated, and πβ(a|s) represents the (potentially unknown) distribution
from which all of the data seen so far (both offline data and online data) was generated. In the case
of a replay buffer, πβ corresponds to a mixture distribution over all past policies. Typically, πβ is
not known, especially for offline data, and must be estimated from the data itself. Many offline
RL algorithms [339], [340], [352] explicitly fit a parametric model to samples for the distribution
πβ via maximum likelihood estimation, where samples from πβ are obtained simply by sampling
uniformly from the data seen thus far: π̂β = maxπ̂β Es,a∼πβ [log π̂β(a|s)]. After estimating π̂β , prior
methods implement the constraint given in Equation 11.7 in various ways, including penalties on
the policy update [340], [350] or architecture choices for sampling actions for policy training [339],
[352]. As we will see next, the requirement for accurate estimation of π̂β makes these methods
difficult to use with online fine-tuning.

Excessively Conservative Online Learning
While offline RL algorithms with constraints [339], [340], [350] perform well offline, they struggle
to improve with fine-tuning, as shown in the third plot in Figure 11.3. We see that the purely offline
RL performance (at “0K” in Fig. 11.3) is much better than the standard off-policy methods shown
in Section 11.3. However, with additional iterations of online fine-tuning, the performance increases
very slowly (as seen from the slope of the BEAR curve in Fig 11.3). What causes this phenomenon?

This can be attributed to challenges in fitting an accurate behavior model as data is collected
online during fine-tuning. In the offline setting, behavior models must only be trained once via
maximum likelihood, but in the online setting, the behavior model must be updated online to track
incoming data. Training density models online (in the “streaming” setting) is a challenging research
problem [353], made more difficult by a potentially complex multi-modal behavior distribution
induced by the mixture of online and offline data. To understand this, we plot the log likelihood of
learned behavior models on the dataset during online and offline training for the HalfCheetah task.
As we can see in the plot, the accuracy of the behavior models (log πβ on the y-axis) reduces during
online fine-tuning, indicating that it is not fitting the new data well during online training. When the
behavior models are inaccurate or unable to model new data well, constrained optimization becomes
too conservative, resulting in limited improvement with fine-tuning. This analysis suggests that,

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 125

in order to address our problem setting, we require an off-policy RL algorithm that constrains the
policy to prevent offline instability and error accumulation, but not so conservatively that it prevents
online fine-tuning due to imperfect behavior modeling. Our proposed algorithm, which we discuss
in the next section, accomplishes this by employing an implicit constraint, which does not require
any explicit modeling of the behavior policy.

11.4 Advantage Weighted Actor Critic: A Simple Algorithm
for Fine-tuning from Offline Datasets

In this section, we will describe the advantage weighted actor-critic (AWAC) algorithm, which trains
an off-policy critic and an actor with an implicit policy constraint. We will show AWAC mitigates
the challenges outlined in Section 11.3. AWAC follows the design for actor-critic algorithms as
described in Section 11.2, with a policy evaluation step to learn Qπ and a policy improvement
step to update π. AWAC uses off-policy temporal-difference learning to estimate Qπ in the policy
evaluation step, and a policy improvement update that is able to obtain the benefits of offline RL
algorithms at training from prior datasets, while avoiding the overly conservative behavior described
in Section 11.3. We describe the policy improvement step in AWAC below, and then summarize the
entire algorithm.

Policy improvement for AWAC proceeds by learning a policy that maximizes the value of the
critic learned in the policy evaluation step via TD bootstrapping. If done naively, this can lead to the
issues described in Section 11.3, but we can avoid the challenges of bootstrap error accumulation by
restricting the policy distribution to stay close to the data observed thus far during the actor update,
while maximizing the value of the critic. At iteration k, AWAC therefore optimizes the policy to
maximize the estimated Q-function Qπk(s, a) at every state, while constraining it to stay close to
the actions observed in the data, similar to prior offline RL methods, though this constraint will
be enforced differently. Note from the definition of the advantage in Section 11.2 that optimizing
Qπk(s, a) is equivalent to optimizing Aπk(s, a). We can therefore write this optimization as:

πk+1 = arg max
π∈Π

Ea∼π(·|s)[A
πk(s, a)] (11.8)

s.t. DKL(π(·|s)||πD(·|s)) ≤ ε. (11.9)

As we saw in Section 11.3, enforcing the constraint by incorporating an explicit learned behavior
model [339], [340], [350], [352] leads to poor fine-tuning performance. Instead, we enforce
the constraint implicitly, without learning a behavior model. We first derive the solution to the
constrained optimization in Equation 11.8 to obtain a non-parametric closed form for the actor. This
solution is then projected onto the parametric policy class without any explicit behavior model. The
analytic solution to Equation 11.8 can be obtained by enforcing the KKT conditions [347], [349],
[354]. The Lagrangian is:

L(π, λ) = Ea∼π(·|s)[A
πk(s, a)] + λ(ε−DKL(π(·|s)||πβ(·|s))), (11.10)

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 126

and the closed form solution to this problem is π∗(a|s) ∝ πD(a|s) exp
(

1
λ
Aπk(s, a)

)
. When using

function approximators, such as deep neural networks as we do, we need to project the non-
parametric solution into our policy space. For a policy πθ with parameters θ, this can be done by
minimizing the KL divergence of πθ from the optimal non-parametric solution π∗ under the data
distribution ρπD(s):

arg min
θ

E
ρπD (s)

[DKL(π∗(·|s)||πθ(·|s))] (11.11)

= arg min
θ

E
ρπD (s)

[
E

π∗(·|s)
[− log πθ(·|s)]

]
(11.12)

Note that the parametric policy could be projected with either direction of KL divergence. Choosing
the reverse KL results in explicit penalty methods [350] that rely on evaluating the density of a
learned behavior model. Instead, by using forward KL, we can compute the policy update by
sampling directly from β:

θk+1 = arg max
θ

E
s,a∼D

[
log πθ(a|s) exp

(
1

λ
Aπk(s, a)

)]
. (11.13)

This actor update amounts to weighted maximum likelihood (i.e., supervised learning), where the
targets are obtained by re-weighting the state-action pairs observed in the current dataset by the
predicted advantages from the learned critic, without explicitly learning any parametric behavior
model, simply sampling (s, a) from the replay buffer β. See Appendix 18.6 for a more detailed
derivation and Appendix 18.6 for specific implementation details.
Avoiding explicit behavior modeling. Note that the update in Equation 11.13 completely avoids
any modeling of the previously observed data β with a parametric model. By avoiding any explicit
learning of the behavior model AWAC is far less conservative than methods which fit a model
π̂β explicitly, and better incorporates new data during online fine-tuning, as seen from our results
in Section 13.7. This derivation is related to AWR [349], with the main difference that AWAC
uses an off-policy Q-function Qπ to estimate the advantage, which greatly improves efficiency and
even final performance (see results in Section 11.6). The update also resembles ABM-MPO, but
ABM-MPO does require modeling the behavior policy which, as discussed in Section 11.3, can
lead to poor fine-tuning. In Section 11.6, AWAC outperforms ABM-MPO on a range of challenging
tasks.
Policy evaluation. During policy evaluation, we estimate the action-value Qπ(s, a) for the current
policy π, as described in Section 11.2. We utilize a temporal difference learning scheme for policy
evaluation [23], [344], minimizing the Bellman error as described in Equation 11.3. This enables us
to learn very efficiently from off-policy data. This is particularly important in our problem setting
to effectively use the offline dataset, and allows us to significantly outperform alternatives using

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 127

Monte-Carlo evaluation or TD(λ) to estimate returns [349].
Algorithm 10: Advantage Weighted Actor Critic (AWAC)

1: Dataset D = {(s, a, s′, r)j}
2: Initialize buffer β = D
3: Initialize πθ, Qφ

4: for iteration i = 1, 2, ... do
5: Sample batch (s, a, s′, r) ∼ β
6: y = r(s, a) + γEs′,a′ [Qφk−1

(s′, a′)]
7: φ← arg minφ ED[(Qφ(s, a)− y)2]
8: θ ← arg maxθ Es,a∼D

[
log πθ(a|s) exp

(
1
λ
Aπk(s, a)

)]
9: if i > num_offline_steps then

10: τ1, . . . , τK ∼ pπθ(τ)
11: β ← β ∪ {τ1, . . . , τK}
12: end if
13: end for

Algorithm summary. The full AWAC algorithm for offline RL with online fine-tuning is summa-
rized in Algorithm 12. In a practical implementation, we can parameterize the actor and the critic
by neural networks and perform SGD updates from Eqn. 11.13 and Eqn. 11.4. Specific details
are provided in Appendix 18.6. AWAC ensures data efficiency with off-policy critic estimation
via bootstrapping, and avoids offline bootstrap error with a constrained actor update. By avoiding
explicit modeling of the behavior policy, AWAC avoids overly conservative updates.

While AWAC is related to several prior RL algorithms, we note that there are key differences
that make it particularly amenable to the problem setting we are considering – offline RL with
online fine-tuning – that other methods are unable to tackle. As we show in our experimental
analysis with direct comparisons to prior work, every one of the design decisions being made in
this work are important for algorithm performance. As compared to AWR [349], AWAC uses
TD bootstrapping for significantly more efficient and even asymptotically better performance. As
compared to offline RL techniques like ABM [352], MPO [341], BEAR [340] or BCQ [339] this
work is able to avoid the need for any behavior modeling, thereby enabling the online fine-tuning
part of the problem much better. As shown in Fig 11.4, when these seemingly ablations are made to
AWAC, the algorithm performs significantly worse.

11.5 Related Work
Off-policy RL algorithms are designed to reuse off-policy data during training, and have been
studied extensively [23], [310], [342], [344], [345], [355]–[359]. While standard off-policy methods
are able to benefit from including data seen during a training run, as we show in Section 11.3
they struggle when training from previously collected offline data from other policies, due to error
accumulation with distribution shift [339], [340]. Offline RL methods aim to address this issue,
often by constraining the actor updates to avoid excessive deviation from the data distribution [339],

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 128

Su
cc

es
s

R
at

e

0K 200K 400K 600K 800K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 pen-binary-v0

0K 200K 400K 600K 800K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 door-binary-v0

0M 1M 2M 3M 4M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 relocate-binary-v0

AWAC (Ours)
ABM [49]

AWR [41]
MARWIL [55]

BEAR [30]
BRAC [59]

DAPG [46]
SACfD [54]

SAC+BC [39]

Figure 11.4: Comparative evaluation on the dexterous manipulation tasks. These tasks are difficult due to their high
action dimensionality and reward sparsity. We see that AWAC is able to learn these tasks with little online data collection
required (100K samples ≈ 16 minutes of equivalent real-world interaction time). Meanwhile, most prior methods are
not able to solve the harder two tasks: door opening and object relocation.

[340], [351], [352], [360]–[368]. One class of these methods utilize importance sampling [355],
[361], [364], [367]–[369]. Another class of methods perform offline reinforcement learning via
dynamic programming, with an explicit constraint to prevent deviation from the data distribution
[339], [340], [350], [360], [370]. While these algorithms perform well in the purely offline settings,
we show in Section 11.3 that such methods tend to be overly conservative, and therefore may not
learn efficiently when fine-tuning with online data collection. In contrast, our algorithm AWAC is
comparable to these algorithms for offline pre-training, but learns much more efficiently during
subsequent fine-tuning.

Our method builds on algorithms that implement a maximum likelihood objective for the actor,
based on an expectation-maximization formulation of RL [285], [341], [347]–[349], [354], [371].
Most closely related to our method in this respect are the algorithms proposed by [349] (AWR)
and [352] (ABM). Unlike AWR, which estimates the value function of the behavior policy, V πβ

via Monte-Carlo estimation or TD−λ, our algorithm estimates the Q-function of the current policy
Qπ via bootstrapping, enabling much more efficient learning, as shown in our experiments. Unlike
ABM, our method does not require learning a separate function approximator to model the behavior
policy πβ , and instead directly samples the dataset. As we discussed in Section 11.3, modeling πβ
can be a major challenge for online fine-tuning. While these distinctions may seem somewhat subtle,
they are important and we show in our experiments that they result in a large difference in algorithm
performance. Finally, our work goes beyond the analysis in prior work, by studying the issues
associated with pre-training and fine-tuning in Section 11.3. Closely to our work, [372] proposed
critic regularized regression for offline RL, which uses off-policy Q-learning and an equivalent
policy update. In contrast to this concurrent work, we specifically study the offline pretraining
online fine-tuning problem, which this prior work does not address, analyze why other methods
are ineffective in this setting, and show that our approach enables strong fine-tuning results on
challenging dextrous manipulation tasks and real-world robotic systems.

The idea of bootstrapping learning from prior data for real-world robotic learning is not a new
one; in fact, it has been extensively explored in the context of providing initial rollouts to bootstrap
policy search [287], [288], [373], initializing dynamic motion primitives [53], [373], [374] in the
context of on-policy reinforcement learning algorithms [95], [375], inferring reward shaping [376]
and even for inferring reward functions [69], [71]. Our work shows how we can generalize the idea

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 129

Figure 11.5: Illustration of dexterous manipulation tasks in simulation. These tasks exhibit sparse rewards, high-
dimensional control, and complex contact physics.

of bootstrapping robotic learning from prior data to include arbitrary sub-optimal data rather than
just demonstration data and shows the ability to continue improving beyond this data as well.

11.6 Experimental Evaluation
In our experimental evaluation we aim to answer the following question:

1. Does AWAC effectively combine prior data with online experience to learn complex robotic
control tasks more efficiently than prior methods?

2. Is AWAC able to learn from sub-optimal or random data?

3. Does AWAC provide a practical way to bootstrap real-world robotic reinforcement learning?

In the following sections, we study these questions using several challenging and high-dimensional
simulated robotic tasks, as well as three separate real-world robotic platforms. Videos of all
experiments are available at awacrl.github.io

Simulated Experiments
We study the first two questions in challenging simulation environments.

Comparative Evaluation When Bootstrapping From Prior Data

We study tasks in simulation that have significant exploration challenges, where offline learning and
online fine-tuning are likely to be effective. We begin our analysis with a set of challenging sparse
reward dexterous manipulation tasks proposed by [95] in simulation. These tasks involve complex
manipulation skills using a 28-DoF five-fingered hand in the MuJoCo simulator [91] shown in
Figure 11.4: in-hand rotation of a pen, opening a door by unlatching the handle, and picking up a
sphere and relocating it to a target location. The reward functions in these environments are binary

https://awacrl.github.io/

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 130

A
ve

ra
ge

R
et

ur
n

5000 10000 15000 20000
Timesteps

100

80

60

40

RobelTurnFixed-v0

10000 20000 30000 40000
Timesteps

100

95

90

85

SawyerDrawerOpening-v0

0 10000 20000 30000 40000 50000
Timesteps

225

200

175

150

125

100
SawyerDHandReposition-v0

AWAC (Ours)
SACfD [39]
SAC+BC [54]
BC

Figure 11.6: Algorithm comparison on three real-world robotic environments. Images of real world robotic tasks are
pictured above. Left: a three fingered D’claw must rotate a valve 180◦. Middle: a Sawyer robot must slide open a
drawer using a hook attachment. Right: a dexterous hand attached to a Sawyer robot must re-position an object to to the
center of the table. On each task, AWAC trained offline achieves reasonable performance (shown at timestep 0) and
then steadily improves from online interaction. Other methods, which also all have access to prior data, fail to utilize
the prior data effectively offline and therefore exhibit slow or no online improvement. Videos of all experiments are
available at awacrl.github.io

0-1 rewards for task completion. 2 [95] provide 25 human demonstrations for each task, which
are not fully optimal but do solve the task. Since this dataset is small, we generated another 500
trajectories of interaction data by constructing a behavioral cloned policy, and then sampling from
this policy.

First, we compare our method on these dexterous manipulation tasks against prior methods for
off-policy learning, offline learning, and bootstrapping from demonstrations. Specific implementa-
tion details are discussed in Appendix 18.6. The results are shown in Fig. 11.4. Our method is able
to leverage the prior data to quickly attain good performance, and the efficient off-policy actor-critic
component of our approach fine-tunes much more quickly than demonstration augmented policy
gradient (DAPG), the method proposed by [95]. For example, our method solves the pen task
in 120K timesteps, the equivalent of just 20 minutes of online interaction. While the baseline
comparisons and ablations make some amount of progress on the pen task, alternative off-policy RL
and offline RL algorithms are largely unable to solve the door and relocate task in the time-frame
considered. We find that the design decisions to use off-policy critic estimation allow AWAC
to outperform AWR [349] while the implicit behavior modeling allows AWAC to significantly
outperform ABM [352], although ABM does make some progress. [95] show that DAPG can solve
variants of these tasks with more well-shaped rewards, but requires considerably more samples.

Additionally, we evaluated all methods on the Gym MuJoCo locomotion benchmarks, similarly
providing demonstrations as offline data. The results plots for these experiments are included in
Appendix 18.6 in the supplementary materials. These tasks are substantially easier than the sparse
reward manipulation tasks described above, and a number of prior methods also perform well.
SAC+BC and BRAC perform on par with our method on the HalfCheetah task, and ABM performs
on par with our method on the Ant task, while our method outperforms all others on the Walker2D
task. However, our method matches or exceeds the best prior method in all cases, whereas no other

2[95] use a combination of task completion factors as the sparse reward. For instance, in the door task, the sparse
reward as a function of the door position d was r = 101d>1.35 + 81d>1.0 + 21d>1.2 − 0.1||d− 1.57||2. We only use
the fully sparse success measure r = 1d>1.4, which is substantially more difficult.

https://awacrl.github.io/

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 131

single prior method attains good performance on all tasks.

Fine-Tuning from Random Policy Data

0K 20K 40K 60K 80K 100K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Learning From Random Data

AWAC
BEAR

BRAC
ABM

SAC
SAC+BC

Figure 11.7: Comparison of fine-tuning from an initial dataset of suboptimal data on a Sawyer robot pushing task.

An advantage of using off-policy RL for reinforcement learning is that we can also incorporate
suboptimal data, rather than demonstrations. In this experiment, we evaluate on a simulated
tabletop pushing environment with a Sawyer robot pictured in Fig 11.4 and described further in
Appendix 18.6. To study the potential to learn from suboptimal data, we use an off-policy dataset of
500 trajectories generated by a random process. The task is to push an object to a target location in
a 40cm x 20cm goal space. The results are shown in Figure 11.7. We see that while many methods
begin at the same initial performance, AWAC learns the fastest online and is actually able to make
use of the offline dataset effectively.

Real-World Robot Learning with Prior Data
We next evaluate AWAC and several baselines on a range of real-world robotic systems, shown
in the top row of Fig 11.6. We study the following tasks: rotating a valve with a 3-fingered claw,
repositioning an object with a 4-fingered hand, and opening a drawer with a Sawyer robotic arm.
The dexterous manipulation tasks involve fine finger coordination to properly reorient and reposition
objects, as well as high dimensional state and action spaces. The Sawyer drawer opening task
requires accurate arm movements to properly hook the end-effector into the handle of the drawer.
To ensure continuous operation, all environments are fitted with an automated reset mechanism
that executes before each trajectory is collected, allowing us to run real-world experiments without
human supervision. Since real-world experiments are significantly more time-consuming, we could
not compare to the full range of prior methods in the real world, but we include comparisons with

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 132

the following methods: direct behavioral cloning (BC) of the provided data (which is reasonable in
these settings, since the prior data includes demonstrations), off-policy RL with soft actor-critic
(SAC) [23], where the prior data is included in the replay buffer and used to pretrain the policy
(which refer to as SACfD), and a modified version of SAC that includes an added behavioral
cloning loss (SAC+BC), which is analogous to [300] or an off-policy version of [95]. Further
implementation details of these algorithms are provided in Appendix 18.6 in the supplementary
materials.

Next, we describe the experimental setup for hardware experiments. Precise details of the
hardware setup can be found in Appendix 18.6 in the supplementary materials.
Dexterous Manipulation with a 3-Fingered Claw. This task requires controlling a 3-fingered,
9 DoF robotic hand, introduced by [377], to rotate a 4-pronged valve object by 180 degrees. To
properly perform this task, multiple fingers need to coordinate to stably and efficiently rotate the
valve into the desired orientation. The state space of the system consists of the joint angles of all
the 9 joints in the claw, and the action space consists of the joint positions of the fingers, which are
followed by the robot using a low-level PID controller. The reward for this task is sparse: −1 if the
valve is rotated within 0.25 radians of the target, and 0 otherwise. Note that this reward function
is significantly more difficult than the dense, well-shaped reward function typically used in prior
work [377]. The prior data consists of 10 trajectories collected using kinesthetic teaching, combined
this with 200 trajectories obtained through executing a policy trained via imitation learning in the
environment.
Drawer Opening with a Sawyer Arm. This task requires controlling a Sawyer arm to slide open a
drawer. The robot uses 3-dimensional end-effector control, and is equipped with a hook attachment
to make the drawer opening possible. The state space is 4-dimensional, consisting of the position
of the robot end-effector and the linear position of the drawer, measured using an encoder. The
reward is sparse: −1 if the drawer is open beyond a threshold and 0 otherwise. For this task, the
prior data consists of 10 demonstration trajectories collected using via teleoperation with a 3D
mouse, as well as 500 trajectories obtained through executing a policy trained via imitation learning
in the environment. This task is challenging because it requires very precise insertion of the hook
attachment into the opening, as pictured in Fig 11.6, before the robot can open the drawer. Due to
the sparse reward, making learning progress on this task requires utilizing prior data to construct an
initial policy that at least sometimes succeeds.
Dexterous Manipulation with a Robotic Hand. This task requires controlling a 4-fingered robotic
hand mounted on a Sawyer robotic arm to reposition an object [378]. The task requires careful
coordination between the hand and the arm to manipulate the object accurately. The reward for this
task is a combination of the negative distance between the hand and the object and the negative
distance between the object and the target. The actions are 19-dimensional, consisting of 16-
dimensional finger control and 3-dimensional end effector control of the arm. For this task, the prior
data of 19 trajectories were collected using kinesthetic teaching and combined with 50 trajectories
obtained by executing a policy trained with imitation learning on this data.

The results on these tasks are shown in Figure 11.6. We first see that AWAC attains performance
that is comparable to the best prior method from offline training alone, as indicated by the value
at time step 0 (which corresponds to the beginning of online finetuning). This means that, during

CHAPTER 11. BOOTSTRAPPING OFF-POLICY REINFORCEMENT LEARNING WITH
OFFLINE DATASETS AND ONLINE FINETUNING 133

online interaction, AWAC collects data that is of higher quality, and improves more quickly. The
prior methods struggle to improve from online training on these tasks, likely because the sparse
reward function and challenging dynamics make progress very difficult from a bad initialization.
These results suggest that AWAC is effectively able to leverage prior data to bootstrap online
reinforcement learning in the real world, even on tasks with difficult and uninformative reward
functions.

11.7 Discussion and Future Work
We have discussed the challenges existing RL methods face when fine-tuning from prior datasets,
and proposed an algorithm, AWAC, for this setting. The key insight in AWAC is that an implicitly
constrained actor-critic algorithm is able to both train offline and continue to improve with more
experience. We provide detailed empirical analysis of the design decisions behind AWAC, showing
the importance of off-policy learning, bootstrapping and the particular form of implicit constraint
enforcement. To validate these ideas, we evaluate on a variety of simulated and real world robotic
problems.

While AWAC is able to effectively leverage prior data for significantly accelerating learning, it
does run into some limitations. Firstly, it can be challenging to choose the appropriate threshold
for constrained optimization. Resolving this would involve exploring adaptive threshold tuning
schemes. Secondly, while AWAC is able to avoid over-conservative behavior empirically, in future
work, we hope to analyze theoretical factors that go into building a good finetuning algorithm. And
lastly, in the future we plan on applying AWAC to more broadly incorporate data across different
robots, labs and tasks rather than just on isolated setups. By doing so, we hope to enable an even
wider array of robotic applications. We end this part with a brief discussion of how this line of work
connects to the broader space of related works and what the resulting implications are.

134

Chapter 12

Relationship to Other Work on
Bootstrapping Reinforcement Learning

Next we try and place this work in context of some related work both prior to and post publishing
of our work. Please refer to the detailed related works in each section for a more comprehensive
consideration. Bootstrapping reinforcement learning from prior data is a well studied problem
in the literature, and we build heavily on this literature. Prior to our work, several works based
on dynamic motion primitives [67], [287], [293], [294] were used to enable faster learning but
have been restricted to particular policy representations and somewhat simpler sets of problems.
More recent work has shown the ability to incorporate demonstrations into off-policy algorithms by
adding this data to the replay buffer [295], [299], [300]. However, as we showed in our work in
chapter 13, this strategy can be prone to distribution shift and dips in performance. Our work on
on-policy algorithms showed the ability to actually scale bootstrapped learning methods to complex
dexterous manipulation tasks, while work on off-policy RL showed how we can make this efficient
enough for real world application at scale. Since the publishing of our work, significant work has
been done in the realm of dexterous manipulation, particularly in terms of simulation to reality
transfer [41], [379], and extending these results to unique and different tasks [380].

Our work is closely connected to methods for offline RL [339], [340], [351], [381]. Offline
RL algorithms have shown the ability to train from large offline datasets, requiring no online
data collection. Most of these methods use a form of constrained optimization [340], [350] or
conservative learning [381]–[383] as the subroutine for offline learning. Our work uses an implicit
constrained optimization (similar to [349], [372]) to actually enable both offline training and online
finetuning. We are amongst the first to show that this paradigm is able to scale to robotics problems
and quick learning in the real world. Since our work has been published, many algorithms for
offline RL have been studied [365], [384]–[386] and even in the finetuning case [387], [388]. [37]
has shown the ability for these systems to scale up to large scale multi-task scenarios as well.

135

Part III

Continual Data Collection

CHAPTER 12. RELATIONSHIP TO OTHER WORK ON BOOTSTRAPPING
REINFORCEMENT LEARNING 136

In Part I we discussed how to actually supervise robotic learning systems, and in Part II we
discussed how to get these algorithms to collect the right type of data efficiently and safely. However,
as seen from the task setups in both Part I and II, most of these setups still require some amount of
human instrumentation or intervention. While the techniques from Part I and II aim to alleviate some
of these requirements, especially in the context of inferring reward functions, they largely require
the involvement of human supervisors to ensure continual data collection and provide episodic
resets very frequently.

The problem of continual data collection is important to ensure that learning systems are able
to obtain data at the scale needed to actually leverage powerful deep learning techniques. If
a human supervisor is constantly needed to babysit the learning process or construct elaborate
instrumentation for providing resets, this becomes very hard to scale to collect large amounts of data
across environments and tasks. In this part, we take a systems perspective on the problem and show
how we can build largely instrumentation free, reset free learning systems that can collect large
amounts of data with minimal human intervention to learn complex skills. In Section 17, we show
how we can construct vision based reset free RL systems for simple dexterous manipulation tasks.
In Section 18, we show how this paradigm can be extended to more complex tasks using multi-task
RL and in Section 19 we show how this process can be made much more efficient by leveraging
ideas from Part II to bootstrap from small amounts of human provided data. In doing so, we show
that we can construct robotic learning systems that can learn complex behaviors, autonomously,
collecting data at scale.

137

Chapter 13

Instrumentation Free Learning Systems for
Real World Reinforcement Learning

In this chapter, we start our study of continual data collection systems by first discussing what
ingredients are crucial for real world reinforcement learning at scale. We then instantiate a particular
version of these ingredients that allows us to solve dexterous manipulation tasks with large scale,
uninterrupted and uninstrumented real world training. In subsequent chapters, we discuss how this
paradigm can be scaled to more complex tasks and manipulators.

13.1 Motivation
Reinforcement learning (RL) can in principle enable autonomous systems, such as robots, to acquire
a large repertoire of skills automatically. Perhaps even more importantly, reinforcement learning
can enable such systems to continuously improve the proficiency of their skills from experience.
However, realizing this in reality has proven challenging: even with reinforcement learning methods
that can acquire complex behaviors from high-dimensional low-level observations, such as images,
the assumptions of the reinforcement learning problem setting do not fit cleanly into the constraints
of the real world. For this reason, most successful robotic learning experiments have employed
various kinds of environmental instrumentation in order to define reward functions, reset between
trials, and obtain ground truth state [23], [31], [33], [41], [279], [290], [389], [390]. In order to
practically and scalably deploy autonomous learning systems that improve continuously through
real-world operation, we must lift these limitations and design algorithms that can learn under the
constraints of real-world environments, as illustrated in Figure 13.2.

We propose that overcoming these challenges in a scalable way requires designing robotic
systems that possess three capabilities: they are able to (1) learn from their own raw sensory inputs,
(2) assign rewards to their own trials without hand-designed perception systems or instrumentation,
and (3) learn continuously in non-episodic settings without requiring human intervention to manually
reset the environment. A system with these capabilities can autonomously collect large amounts of
real world data – typically crucial for effective generalization – without significant instrumentation

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 138

Figure 13.1: Illustration of our proposed instrumentation-free system requiring minimal human engineering. Human
intervention is only required in the goal collection phase (1). The robot is left to train unattended (2) during the learning
phase and can be evaluated from arbitrary initial states at the end of training (3). We show sample goal and intermediate
images from the training process of a real hardware system

in each training environment, an example of which is shown in Figure 13.1. If successful, this would
lift a major constraint that stands between current reinforcement learning algorithms and the ability
to learn scalable, generalizable, and robust real-world behaviors. Such a system would also bring
us significantly closer to the goal of embodied learning-based systems that improve continuously
through their own real-world experience.

Having laid out these requirements, we propose a practical instantiation of such a learning
system. While prior works have studied many of these issues in isolation, combining them into a
complete real-world learning system presents a number of challenges, as we discuss in Section 13.3.
We provide an empirical analysis of these issues, both in simulation and on a real-world robotic
system, and propose a number of simple but effective solutions that together produce a complete
robotic learning system. This system can autonomously learn from raw sensory inputs, learn
reward functions from easily available supervision, and learn without manually designed reset
mechanisms. We show that this system can learn dexterous robotic manipulation tasks in the real
world, substantially outperforming ablations and prior work.

13.2 The Structure of a Real-World RL System
The standard reinforcement learning paradigm assumes that the controlled system is represented as
a Markov decision process with a state space S, action space A, unknown transition dynamics T ,
unknown reward function R, and a (typically) episodic initial state distribution ρ. The goal is to
learn a policy that maximizes the expected sum of rewards via interactions with the environment.

Although this formalism is simple and concise, it does not capture all of the complexities of
real-world robotic learning problems. If a robotic system is to learn continuously and autonomously
in the real world, we must ensure that it can learn under the actual conditions that are imposed
by the real world. To move from the idealized MDP formulation to the real world, we require a
system that has the following properties. First, all of the information necessary for learning must
be obtained from the robot’s own sensors. This includes information about the state and necessitates

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 139

that the policy must be learned from high-dimensional and low-level sensory observations, such
as camera images. Second, the robot must also obtain the reward signal itself from its own sensor
readings. This is exceptionally difficult for all but the simplest tasks (e.g., reward functions that
depend on interactions with specific objects require perceiving those objects explicitly). Third, we
must be able to learn without access to episodic resets. A setup with explicit resets quickly becomes
impractical in open-world settings, due to the requirement for significant human engineering of the
environment, or direct human intervention during learning. While this list may not exhaustively
enumerate all the components necessary for an effective real-world learning system, we posit that
the properties listed here are fundamental to building such systems.

While some of the components discussed above can be tackled in isolation by current algorithms,
there are considerable challenges inherent to assembling all these components into a complete
learning system for real world robotic learning. In the rest of this section, we outline the challenges
associated with each component, then discuss the challenges associated with combining these
components in Section 13.3, and then proceed to address these challenges in Section 13.4.

Figure 13.2: We draw a comparison between current real world learning systems which rely on instrumentation versus
a system that learns in an environment more representative of the real world, free of instrumentation. While all three
prior works utilize instrumentation for resets, state estimation, and reward, the motion capture system of [279], sensor
attached to the door in [389], and auxiliary robot which picks up fallen balls in [33] are good examples of engineered
state estimation, reward estimation, and reset mechanisms respectively.

Learning from Raw Sensory Input
To enable learning without complex state estimation systems or environment instrumentation, we
require our robotic systems to be able to learn from their own raw sensory observations. Typically,
these sensory observations are raw camera images from a camera mounted on the robot, as well as
proprioceptive sensory inputs such as the joint angles. These observations do not directly provide the
poses of the objects in the scene, which is the typical assumption in simulated robotic environments
– any such information must be extracted by the learning system.

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 140

While in principle many RL frameworks can support learning from raw sensory inputs [21],
[31], [90], [286], it is important to consider the practicalities of this approach. For instance, we can
instantiate vision-based RL with policy gradient algorithms such as TRPO [90] and PPO [18], but
these have high sample complexities which make them unsuited for real world robotic learning [23].
In our work, we consider adopting the general framework of off-policy actor-critic reinforcement
learning, using a version of the soft actor critic (SAC) algorithm described by [391]. This algorithm
effectively uses off-policy data and has been shown to learn some tasks directly from visual inputs.
However, while SAC can learn directly from images, we find in our experiments that, as the task
complexity increases, the efficiency of direct end-to-end learning (particularly without resets and
with learned rewards) still degrades substantially. However, as we will discuss in Section 13.3,
augmenting end-to-end learning with unsupervised representation learning substantially alleviates
such challenges.

Reward Functions without Reward Engineering
Vision-based RL algorithms, such as SAC, rely on a reward function being provided to the system,
which is typically manually programmed by a user. While this can be simple to do in simulation
by using ground truth state information, it is significantly harder to implement in uninstrumented
real world environments. In the real world, the robot must obtain the reward signal itself from its
own sensor readings. A few options for tackling this challenge have been discussed in prior work:
design complete computer vision systems to detect objects and extract the reward signals [33],
[392], engineer reward functions that use various task-specific heuristics to obtain rewards from
pixels [85], [393], or instrument every environment [32]. Many of these solutions are manual and
tedious, and a more general approach is needed to scale real-world robotic learning gracefully.

Learning Without Resets
While the components described in Section 13.2 and 13.2 are essential to building continuously
learning RL systems in the real world, they have often been implemented with the assumption of
episodic learning [97], [391]. However, natural open-world settings do not provide any such reset
mechanism, and in order to enable scalable and autonomous real-world learning we need systems
that do not require an episodic formulation of the learning problem.

To devise a system that requires minimal human engineering for providing rewards, we must
use algorithms that are able to assign themselves rewards, using learned models that operate on the
same raw sensory inputs as the policy. One candidate is for a user to specify intended behavior
beforehand through examples of desired outcomes (i.e., images). The algorithm can then assign
itself rewards based on a measure of how well it is accomplishing the specified goals, with no
additional human supervision. This approach can scale well in principle, since it requires minimal
human engineering, and goal images are easy to provide.

In principle, algorithms such as SAC do not actually require episodic learning; however, in
practice, most instantiations use explicit resets, even in simulation, and removing resets has resulted
in failure to solve challenging tasks. In our experiments in Section 13.3 as well, we see that

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 141

actor-critic methods applied naïvely to the reset free setting do not learn the intended behaviors.
Introducing visual observations and classifier based rewards exacerbates these challenges.

We propose that these three components – vision-based RL with actor-critic algorithms, vision-
based goal classifier for rewards, and reset-free learning – are the fundamental pieces that we need
to build a real world robotic learning system. However, when we actually combine the individual
components in Sections 13.3 and 13.7, we find that learning effective policies is quite challenging.
We provide insight into these challenges in Section 13.3. Based on these insights, we propose
simple but important changes in Section 13.4 to build a system, R3L , that can learn effectively and
autonomously in the real world without human intervention.

13.3 The Challenges of Real World RL

Figure 13.3: Our object reposition-
ing task. The goal is to move the
object from any starting configura-
tion to a particular goal position and
orientation.

The system design outlined in Section 13.2 in principle gives us
a complete system to perform real world reinforcement learning
without instrumentation. However, when utilized for robotic learn-
ing problems, we find this basic design to be largely ineffective.
To study this, we present results for a simulated robotic manipula-
tion task that requires repositioning a free-floating objects with a
three-fingered robotic hand, shown in Fig 13.3. We use this task for
our investigative analysis and show that the same insights extend
to several other tasks, including real world tasks, in Section 13.7.
The goal in this task is to reposition the object to a target pose
from any initial pose in the arena. When the system is instantiated
with vision-based soft actor-critic, rewards from goal images using
VICE, and run without episodic resets, we see that the algorithm
fails to make progress (Fig 13.4). Although it might appear that this
setup fits within the assumptions of all of the components that are
used, the complete system is ineffective. Which particular components of this problem make it so
difficult?

To investigate this issue, we perform experiments investigating the combination of the three
main ingredients: varying observation type (visual vs. low-dimensional state), reward structure
(VICE vs. hand-defined rewards that utilize ground-truth object state), and the ability to reset
(episodic resets vs. reset-free, non-episodic learning). We start by considering the training time
reward under each combination of factors as shown in Fig 13.4, which reveals several trends. First,
the results in Fig 13.4 show that learning with resets achieves high training time reward from both
vision and state, while reset-free only achieves high training time reward with low-dimensional
state. Second, we find that the policy is able to pass the threshold for training time reward in a
non-episodic setting when learning from low-dimensional state, but it is not able to do the same
using image observations. This suggests that combining the reset-free learning problem with visual
observations makes it significantly more challenging.

However, the table in Fig 13.4 paints an incomplete picture. These numbers are related to

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 142

Figure 13.4: We report the approximate number of sam-
ples needed for a policy learned with a prior off-policy
RL algorithm (SAC) to achieve average training perfor-
mance of less than 0.15 in pose distance (defined in Ap-
pendix 18.7) across 3 seeds on the re-positioning task. We
compare training performance after varying three axes:
ground truth rewards vs. learned rewards, with vs. with-
out episodic resets, low-level state vs. images as inputs.
We observe learning without resets is harder than with
resets and is much harder when combined with visual
inputs.

0 100 200 300 400 500 600 700
Samples [x1000 timesteps]

0.0

0.2

0.4

0.6

Po
se

 D
ist

an
ce

 [r
ad

 /
pi

 +
 m

]

Testing
Training

Figure 13.5: We observe that when training reset free to
reach a single goal, while the pose distance at training
time is quite low, the pose errors obtained at test-time
with the learned policy are very high. This indicates that
while the object is getting close to the goal at training
time, the policies being learned are still not effective.

the performance of the policies at training time, not how effective the learned policies are when
being evaluated. When we consider the test-time performance (Fig 13.5) of the policies that are
learned under reset free conditions, we obtain a different set of conclusions. While learning from
low-dimensional state in the reset free setting achieves high reward at training time, the test-time
performance of the corresponding learned policies is very poor. This can likely be attributed to
the fact that when the agent spends all its time stuck at the goal, and sees very little diversity of
data in other parts of the state space, which significantly reduces the efficacy of the actual policies
being learned. In a sense, the reset encodes some prior information about the task: it tells the policy
about what types of states it might be required to succeed from at test time. Without this knowledge,
performance is substantially worse. This makes it very challenging to learn policies with completely
reset-free schemes, which has prompted prior work to consider schemes such as learning reset
controllers [394]. As we discuss in the following section and in our experiments, these schemes are
often insufficient for learning effective policies in the real world without any resets.

13.4 A Real-world Robotic Reinforcement Learning System
To address the challenges identified in Section 13.3, we present two improvements, which we
found to be essential for uninstrumented real-world training: randomized perturbation controllers
and unsupervised representation learning. Incorporating these components into the system in
Section 13.2 results in a system that can learn successfully in uninstrumented environments, as we
will show in Section 13.7, and attains good performance both at training time and at test time.

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 143

Randomized Perturbation Controller
Prior works in addressing the reset free setting problem have considered converting the problem
into a more standard episodic problem, by learning a “reset controller,” which is trained to reset the
system to a particular initial state [394], [395]. This scheme has been thought to make the learning
problem easier by reducing the variance of the resulting initial state distribution. However, as we
will show in our experiments in Section 13.7, this still results in policies whose success depends
heavily on a narrow range of initial states. Indeed, prior reset controller methods all reset to a single
initial state [394], [395].

We take a different approach to learning in a reset-free setting. Rather than attributing the
problem to the variance of the initial state distribution, we hypothesize that a major problem with
reset-free learning is that the support of the distribution of states visited by the policy is too narrow,
which makes the learning problem challenging and doesn’t allow the agent to learn how to perform
the desired task from any state it might find itself in. In this view, the goal should not be to reduce
the variance of the initial state distribution, but instead to increase it.

To this end, we utilize what we call random perturbation controllers: controllers that introduce
perturbations intermittently into the system through a policy that is trained to explore the environ-
ment. The standard actor π(a|s) is executed for H time-steps, following which we executed the
perturbation controller πp(a|s) for H steps, and repeat. The policy π is trained with the VICE-based
rewards for reaching the desired goals, while the perturbation controller πp is trained only with an
intrinsic motivation objective that encourages visiting under-explored states. In our implementation,
we use the random network distillation (RND) objective for training the perturbation controller [110],
but any effective exploration method can be used for the same. This procedure is described in
detail in Appendix 13.6, and is evaluated on the tasks we consider in Fig 18.11. The perturbation
controller ensures that the support of the training distribution grows and as a result the policies can
learn the desired behavior much more effectively, as shown in Fig 13.7.

Goal Classifier
To design a system that requires minimal human engineering for providing reward, we use a
data-driven reward specification framework called variational inverse control with events (VICE)
introduced by [97]. VICE learns rewards in a task-agnostic way: we provide the algorithm with
success examples in the form of images where the task is accomplished, and learn a discriminator
that is capable of distinguishing successes from failures. This discriminator can then be used to
provide a learning signal to nudge the reinforcement learning agent towards success. This algorithm
has been previously considered in the context of learning tasks from raw sensory observations in
the real world by [116] but we show that it presents unique challenges when used in conjunction
with learning without episodic resets. Details and specifics of the algorithms being considered are
described in Appendix 13.6 and also discussed by [116].

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 144

Unsupervised Representation Learning
The perturbation controller discussed above allows us to learn policies that can succeed at the
task from a variety of starting states. However, learning from visual observations still present a
challenge. Our experiments in Fig 13.4 show that learning without resets from low-dimensional
states is comparatively easier. We therefore aim to convert the vision-based learning problem into
one that more closely resembles state-based learning, by training a variational autoencoder (VAE,
[396]) and sharing the latent-variable representation across the actor and critic networks (refer to
Appendix 18.7 for more details). Note that we use a VAE as an instantiation of representation
learning techniques that works well in the domains we considered, but other more sophisticated
density models proposed in prior work may also be substituted in place of the VAE [397]–[399].

While several works have also sought to incorporate unsupervised learning into reinforcement
learning to make learning from images easier [30], [397], we note that this becomes especially
critical in the vision-based, reset-free setting, as motivated by the experiments in Section 13.3,
which indicate that it is precisely this combination of factors – vision and no resets – that presents
the most difficult learning problem. Therefore, although the particular solution we use in our system
has been studied in prior work, it is brought to bare to address a challenge that arises in real-world
learning that we believe has not been explored in prior studies.

These two improvements – the perturbation controller and unsupervised learning – combined
with the general system described above, give us a complete practical system for real world rein-
forcement learning. The overall method uses soft-actor critic for learning with visual observations
and classifier based rewards with VICE, introduces auxiliary reconstruction objectives or pretrains
encoders for unsupervised representation learning, and uses a perturbation controller during training
to ensure that the support of visited states grows sufficiently. We term this full system for real-world
robotic reinforcement learning R3L. Further implementation details can be found in Appendix 13.6.

13.5 Related Work
The primary contribution of this work is to propose a paradigm for continual instrumentation-free
real world robotic learning and a practical instantiation of such a system. A number of prior works
have studied reinforcement learning in the real world for acquiring robotic skills [31], [33], [35],
[238], [290], [389], [391], [393]. Much of the focus in prior work has been on improving the effi-
ciency and generalization of RL algorithms to make real-world training feasible, or else on utilizing
simulation and transferring policies into the real world [94], [400]–[402]. The simulation-based
methods typically require considerable effort in terms of both simulator design and overcoming the
distributional shift between simulated and real-experience, while prior real-world training methods
typically require additional instrumentation for either reward function evaluation [403] or resetting
between trials [32], [35], [389], or both. In contrast, our work is primarily focused on lifting these
requirements, rather than devising more efficient RL methods. We show that removing the need for
instrumentation (i.e., for reward evaluation and resets) introduces additional challenges, which in
turn require a careful set of design choices. Our complete R3L method is able to learn completely

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 145

autonomously, without manual resets or reward design.
A key component of our system involves learning from raw visual inputs. This has proven to

be difficult for policy gradient style algorithms [404] due to challenging representation learning
problems. This has been made easier in simulated domains by using modified objectives, such as
auxiliary losses [405], or by using more efficient algorithms [23]. We show that reinforcement
learning on raw visual input, while possible in standard RL settings, becomes significantly more
challenging when considered in conjunction with non-episodic, reset-free scenarios.

Reward function design is crucial for any RL system, and is non-trivial to provide in the
real world. Prior works have considered instrumenting the environment with additional sensors
to evaluate rewards [32], [35], [389], which is a highly manual process, using demonstrations,
which require manual effort to collect [60], [146], [299], or using interactive supervision from the
user [147]. In this work, we leverage the algorithm introduced by [97] to assign rewards based on
the likelihood of a goal classifier. While prior work also applied this method to robotic tasks [116],
this was done in a setting where manual resets were provided by hand, while we demonstrate that
we can use learned rewards in a fully uninstrumented, reset-free setup.

Learning without resets has been considered in prior works [394], [395], although in different
contexts – safe learning and learning compound controllers, respectively. [394] provide an algorithm
to learn a reset controller with the goal of ensuring safe operation, but makes several assumptions
that make it difficult to use in the real world: it assumes access to a ground truth reward function,
it assumes access to an oracle function that can detect if an attempted reset by the reset policy
was successful or not, and it assumes the ability to perform manual resets if the reset policy fails
a certain number of times. In contrast, we propose an algorithm that allows for fully automated
reinforcement learning in the real world. We compare to an ablation of our method that uses a reset
controller similar to [394], and show that our method performs substantially better. Our perturbation
controller also resembles the adversarial RL setup [209], [406]. However, while these prior methods
explicitly aim to train policies that are robust to perturbations [406] or explore effectively [209], we
are concerned with learning without access to resets.

While this line of work has connections to developmental robotics [407], [408] and its subfields,
such as continual [409] and lifelong [410] learning, the goal of our work is to handle the practicali-
ties of enabling reinforcement learning systems to learn in the real world without instrumentation or
interruption, even for a single task setting. Though our work does not directly study continual life-
long learning, nor all facets of developmental robotics, it relates to continual learning [409], intrinsic
motivation [235] and sensory-motor development involving proprioceptive manipulation [411].

13.6 Algorithm details

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 146

Algorithm 11: Real-World Robotic Reinforcement Learning (R3L)
1: N ← number of training epochs
2: H ← trajectory length (horizon)
3: nVICE ← number of VICE classifier training iterations per epoch
4: Initialize forward and perturbing policies π0, π1

5: Obtain goal states sEi and initialize as a goal pool G
6: Initialize RND target and predictor networks f(s), f̂(s)
7: Initialize VICE reward classifier rVICE(s)
8: Initialize replay buffer D
9: Collect initial exploration data and add to D

10: for i = 1 to 2N do
11: k ← i % 2
12: for t = 1 to H do
13: Sample at ∼ πk(st)
14: Sample st+1 ∼ p(st+1|st, at)
15: Sample batch from D
16: Update πk with batch according to SAC
17: Update RND predictor network with batch
18: Update running estimate of standard deviations of classifier and RND reward
19: end for
20: Add experience to the replay buffer with D ← D ∪ τi
21: Sample an equal number of goal examples from G and negative examples from D
22: for t = 1 to nVICE do
23: Train the VICE classifier on this batch with binary labels
24: end for
25: end for

13.7 Experiments
In our experimental evaluation, we study how well the R3L system, described in Sections 13.2 and
13.4, can learn under realistic settings – visual observations, no hand-specified rewards, and no
resets. We consider the following hypotheses:

1. Can we use R3L to learn complex robotic manipulation tasks without instrumentation? Does
this system learn skills in both simulation and the real world?

2. Do the solutions proposed in Section 13.4 actually enable R3L to perform tasks without
instrumentation that would not have been otherwise possible?

Experimental Setup
We consider the task of dexterous manipulation with a three fingered robotic hand, the D’Claw [377],
[389], on a number of simulated and real world tasks. These tasks involve complex coordination

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 147

of three fingers with 3 DoF each in order to manipulate objects. Prior works that used this robot
utilized explicit resets and low-dimensional true state observations, while we consider settings with
visual observations, no hand-specified rewards, and no resets.

Figure 13.6: Visualizations of the goal configurations of the simulated and real world tasks being considered. From left
to right we depict valve rotation, bead manipulation and free object repositioning in simulation, as well as valve rotation
and bead manipulation manipulation in the real world.

The tasks in our experiments are shown in Fig 18.11: manipulating beads on an abacus row,
valve rotation, and free object repositioning. These tasks represent a wide class of problems that
robots might encounter in the real world. For each task, we consider the problem of reaching the
depicted goal configuration: moving the abacus beads to a particular position, rotating the valve
to a particular angle, and repositioning the free object to a particular goal position. For each task,
policies are evaluated from a wide selection of initial configurations. Additional details about the
tasks and evaluation procedures are provided in Appendix 18.7. Videos and additional details can
be found at https://sites.google.com/view/realworld-rl/

Learning in Simulation without Instrumentation
We compare our entire proposed system implementation (Section 13.4) with a number of baselines
and ablations. Importantly, all methods must operate under the same assumptions: none of the
algorithms have access to system instrumentation for state estimation, reward specification, or
episodic resets. Firstly, we compare the performance of R3L to a system which uses SAC for
vision-based RL from raw pixels, VICE for providing rewards and running reset-free (denoted as
“VICE"). This corresponds to the vanilla version of R3L (Section 13.2), with none of the proposed
insights and changes. We then compare with prior reset-free RL algorithms [394] that explicitly
learn a reset controller to alternate goals in the state space (“Reset Controller + VAE"). Lastly, we
compare algorithm performance with two ablations: running R3L without the perturbation controller
(“VICE + VAE") and without the unsupervised learning (“R3L w/o VAE"). This highlights the
significance of each of the components of R3L .

From the experimental results in Fig 13.7, it is clear that R3L is able to reach the best perfor-
mance across tasks, while none of the other methods are able to solve all of the tasks. Different
prior methods and ablations fail for different reasons: (1) methods without the reconstruction
objective struggle at parsing the high-dimensional input and are unable to solve the harder task; (2)
methods without the perturbation controller are ineffective at learning how to reach the goal from

https://sites.google.com/view/realworld-rl/

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 148

Figure 13.7: Quantitative evaluation of performance in simulation for bead manipulation, valve rotation and free object
repositioning (left to right) run with 10 random seeds. The error bars show 95% bootstrap confidence intervals for
average performance. While other variants are sufficient to get good evaluation performance on easier tasks, harder
tasks like free object repositioning require random perturbations and unsupervised representation learning to learn skills
reset-free. See Appendix 18.7 for details of evaluation procedures.

novel initialization positions for the more challenging object repositioning tasks, as discussed in
Section 13.4.

We note that an explicit reset controller, which can be viewed as a softer version of our pertur-
bation controller with goal-directedness, learns to solve the easier tasks due to the reset controller
encouraging exploration of the state space. In our experiments for free object repositioning, perfor-
mance was reported across 3 choices of reset states. The high variance in evaluation performance
indicates that the performance of such a controller (or a goal conditioned variant of it) is highly
sensitive to the choice of reset states. A poor choice of reset states, such as two that are very
close together, may yield poor exploration leading to performance similar to the single goal VICE
baseline. Furthermore, the choice of reset states is highly task dependent and it is often not clear
what choice of goals will yield the best performance. On the contrary, our method does not require
such task-specific knowledge and uses random perturbations to “reset” while training without any
explicit reset states: this allows for a robust, instrumentation-free controller while also ensuring fast
convergence.

Learning in the Real World without Instrumentation
Since the aim of R3L is to enable uninstrumented training in the real world, we next evaluate our
method on a real-world robotic system, providing evidence that our insights generalize to the real
world without any instrumentation. After providing the initial outcome examples for learning the
reward function with VICE, we leave the robot unattended, and the algorithm learns the desired
behavior through interaction. The experiments are performed on the D’Claw robotic hand with an
RGB camera as the only sensory input. Intermediate policies are saved at regular intervals, and
evaluations of all policies is performed after training has completed. For valve rotation, we declare
an evaluation rollout a success if the final orientation is within within 15◦ of the goal. For bead
manipulation, we declare success if all the beads are within 2cm of the goal state. Fig 13.8 compares
the performance of our method without supervised learning (“R3L w/o VAE") in the real world

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 149

against a baseline that uses SAC for vision-based RL from raw pixels, VICE for providing rewards,
and running reset-free (denoted as “VICE"). We see that our method learns policies that succeed
from nearly all the initial configurations, whereas VICE alone fails from most initial configurations.
Fig 13.9 depicts sample evaluation rollouts of the policies learned using our method. For further
details about real world experiments see Appendix 18.7.

Figure 13.8: Quantitative evaluation of performance in real-world for valve rotation and bead manipulation. Policies
trained with perturbation controllers have effectively learned behaviors after 17 and 5 hours of training, respectively.
For more fine-grained reporting of results see Figs 18.45-18.48.

Figure 13.9: Evaluation rollouts of R3L on the real world tasks for policies trained without instrumentation. Successful
evaluation rollouts for bead manipulation (top) and valve rotation (bottom) are shown here.

CHAPTER 13. INSTRUMENTATION FREE LEARNING SYSTEMS FOR REAL WORLD
REINFORCEMENT LEARNING 150

13.8 Discussion
We presented the design and instantiation of a system for real world reinforcement learning. We
identify and investigate the various ingredients required for such a system to scale gracefully with
minimal human engineering and supervision. We show that this system must be able to learn
from raw sensory observations, learn from very easily specified reward functions without reward
engineering, and learn without any episodic resets. We describe the basic elements that are required
to construct such a system, and identify unexpected learning challenges that arise from interplay
of these elements. We propose simple and scalable fixes to these challenges through introducing
unsupervised representation learning and a randomized perturbation controller.

The ability to train robots directly in the real world with minimal instrumentation opens a
number of exciting avenues for future research. Robots that can learn unattended, without resets
or hand-designed reward functions, can in principle collect very large amounts of experience
autonomously, which may enable very broad generalization in the future. However, there are also
a number of additional challenges, including sample complexity, optimization and exploration
difficulties on more complex tasks, safe operation, communication latency, sensing and actuation
noise, and so forth, all of which would need to be addressed in future work in order to enable truly
scalable real-world robotic learning. In the next chapters, we try to address some of these challenges
by showing how to scale to more complex families of tasks via multi-task RL and bootstrapping
from human demonstrations.

151

Chapter 14

Building Reset-Free Reinforcement
Learning Algorithms via Multi-Task
Learning

In the previous chapter, we showed how we can build a system for dexterous manipulation with
uninterrupted and large scale data collection. However, the tasks that are actually being solved are
still somewhat simplistic and to scale to a more complex set of problems becomes challenging with
a simple perturbation controller. In this section, we show that the reset-free learning paradigm can
actually scale particularly well when considered in a multi-task learning framework rather than
solving single tasks in isolation. We show that this allows us to solve significantly more complex
tasks in the real world than the previous section, while still requiring minimal human interventions.

14.1 Introduction
Reinforcement learning algorithms have shown promise in enabling robotic tasks in simulation
[95], [302], and even some tasks in the real world [412], [413]. RL algorithms in principle can
learn generalizable behaviors with minimal manual engineering, simply by collecting their own data
via trial and error. This approach works particularly well in simulation, where data is cheap and
abundant. Success in the real world has been restricted to settings where significant environment
instrumentation and engineering is available to enable autonomous reward calculation and episodic
resets [33], [41], [98], [316]. To fully realize the promise of robotic RL in the real world, we need
to be able to learn even in the absence of environment instrumentation.

In this work, we focus specifically on reset-free learning for dexterous manipulation, which
presents an especially clear lens on the reset-free learning problem. For instance, a dexterous hand
performing in-hand manipulation, as shown in Figure 14.1 (right), must delicately balance the
forces on the object to keep it in position. Early on in training, the policy will frequently drop
the object, necessitating a particularly complex reset procedure. Prior work has addressed this
manually by having a human involved in the training process [289], [290], [414], instrumenting a

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 152

Figure 14.1: Reset-free learning of dexterous manipulation behaviors by leveraging multi-task learning. When multiple
tasks are learned together, different tasks can serve to reset each other, allowing for uninterrupted continuous learning
of all of the tasks. This allows for the learning of dexterous manipulation tasks like in-hand manipulation and pipe
insertion with a 4-fingered robotic hand, without any human intervention, with over 60 hours of uninterrupted training

reset in the environment [389], [390], or even by programming a separate robot to place the object
back in the hand [33]. Though some prior techniques have sought to learn some form of a “reset”
controller [98], [209], [377], [394], [415], [416], none of these are able to successfully scale to
solve a complex dexterous manipulation problem without hand-designed reset systems due to the
challenge of learning robust reset behaviors.

However, general-purpose robots deployed in real-world settings will likely be tasked with
performing many different behaviors. While multi-task learning algorithms in these settings have
typically been studied in the context of improving sample efficiency and generalization [139],
[334], [417]–[420], in this work we make the observation that multi-task algorithms naturally lend
themselves to the reset-free learning problem. We hypothesize that the reset-free RL problem can
be addressed by reformulating it as a multi-task problem, and appropriately sequencing the tasks
commanded and learned during online reinforcement learning. As outlined in Figure 14.6, solving a
collection of tasks simultaneously presents the possibility of using some tasks as a reset for others,
thereby removing the need of explicit per task resets. For instance, if we consider the problem of
learning a variety of dexterous hand manipulation behaviors, such as in-hand reorientation, then
learning and executing behaviors such as recenter and pickup can naturally reset the other tasks
in the event of failure (as we describe in Section 15.3 and Figure 14.6). We show that by learning
multiple different tasks simultaneously and appropriately sequencing behavior across different tasks,
we can learn all of the tasks without episodic resets required at all. This allows us to effectively learn
a “network” of reset behaviors, each of which is easier than learning a complete reset controller, but
together can execute and learn more complex behavior.

The main contribution of this work is to propose a learning system that can learn dexterous
manipulation behaviors without the need for episodic resets. We do so by leveraging the paradigm
of multi-task reinforcement learning to make the reset free problem less challenging. The system

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 153

accepts a diverse set of tasks that are to be learned, and then trains reset-free, leveraging progress
in some tasks to provide resets for other tasks. To validate this algorithm for reset-free robotic
learning, we perform both simulated and hardware experiments on a dexterous manipulation system
with a four fingered anthropomorphic robotic hand. To our knowledge, these results demonstrate
the first instance of a combined hand-arm system learning dexterous in-hand manipulation with
deep RL entirely in the real world with minimal human intervention during training, simultaneously
acquiring both the in-hand manipulation skill and the skills needed to retry the task. We also show
the ability of this system to learn other dexterous manipulation behaviors like pipe insertion via
uninterrupted real world training, as well as several tasks in simulation.

Figure 14.2: Depiction of some steps of reset-free training for the in-hand manipulation task family on hardware.
Reset-free training uses the task graph to choose which policy to execute and train at every step. For executions that are
not successful (e.g., the pickup in step 1), other tasks (recenter in step 2) serve to provide a reset so that pickup can be
attempted again. Once pickup is successful, the next task (flip up) can be attempted. If the flip-up policy is successful,
then the in-hand reorientation task can be attempted and if this drops the object then the re-centering task is activated to
continue training.

14.2 Learning Dexterous Manipulation Behaviors Reset-Free
via Multi-Task RL

One of the main advantages of dexterous robots is their ability to perform a wide range of different
tasks. Indeed, we might imagine that a real-world dexterous robotic system deployed in a realistic
environment, such as a home or office, would likely need to perform a repertoire of different
behaviors, rather than just a single skill. While this may at first seem like it would only make
the problem of learning without resets more difficult, the key observation we make in this work
is that the multi-task setting can actually facilitate reset-free learning without manually provided
instrumentation. When a large number of diverse tasks are being learned simultaneously, some tasks
can naturally serve as resets for other tasks during learning. Learning each of the tasks individually
without resets is made easier by appropriately learning and sequencing together other tasks in the
right order. By doing so, we can replace the simple forward, reset behavior dichotomy with a more
natural “network” of multiple tasks that can perform complex reset behaviors between each other.

Let us ground this intuition in a concrete example. Given a dexterous table-top manipulation
task, shown in Fig 14.6 and Fig 14.2 , our reset-free RL procedure might look like this: let us say
the robot starts with the object in the palm and is trying to learn how to manipulate it in-hand so that
it is oriented in a particular direction (in-hand reorient). While doing so, it may end up dropping the
object. When learning with resets, a person would need to pick up the object and place it back in
the hand to continue training. However, since we would like the robot to learn without such manual

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 154

interventions, the robot itself needs to retrieve the object and resume practicing. To do so, the robot
must first re-center and the object so that it is suitable for grasping, and then actually lift and the
flip up so it’s in the palm to resume practicing. In case any of the intermediate tasks (say lifting
the object) fails, the recenter task can be deployed to attempt picking up again, practicing these
tasks themselves in the process. Appropriately sequencing the execution and learning of different
tasks, allows for the autonomous practicing of in-hand manipulation behavior, without requiring
any human or instrumented resets.

Algorithm Description
In this work, we directly leverage this insight to build a dexterous robotic system that learns in the
absence of resets. We assume that we are provided with K different tasks that need to be learned
together. These tasks each represent some distinct capability of the agent. As described above,
in the dexterous manipulation domain the tasks might involve re-centering, picking up the object,
and reorienting an object in-hand. Each of these K different tasks is provided with its own reward
function Ri(st, at), and at test-time is evaluated against its distinct initial state distribution µi0.

Our proposed learning system, which we call Multi-Task learning for Reset-Free RL (MTRF),
attempts to jointly learn K different policies πi, one for each of the defined tasks, by leveraging off-
policy RL and continuous data collection in the environment. The system is initialized by randomly
sampling a task and state s0 sampled from the task’s initial state distribution. The robot collects a
continuous stream of data without any subsequent resets in the environment by sequencing the K
policies according to a meta-controller (referred to as a “task-graph”)G(s) : S → {0, 1, . . . , K−1}.
Given the current state of the environment and the learning process, the task-graph makes a decision
once every T time steps on which of the tasks should be executed and trained for the next T time
steps. This task-graph decides what order the tasks should be learned and which of the policies
should be used for data collection. The learning proceeds by iteratively collecting data with a policy
πi chosen by the task-graph for T time steps, after which the collected data is saved to a task-specific
replay buffer Bi and the task-graph is queried again for which task to execute next, and the whole
process repeats.

We assume that, for each task, successful outcomes for tasks that lead into that task according
to the task graph (i.e., all incoming edges) will result in valid initial states for that task. This
assumption is reasonable: intuitively, it states that an edge from task A to task B implies that
successful outcomes of task A are valid initial states for task B. This means that, if task B is
triggered after task A, it will learn to succeed from these valid initial states under µB0 . While this
does not always guarantee that the downstream controller for task B will see all of the initial states
from µB0 , since the upstream controller is not explicitly optimizing for coverage, in practice we
find that this still performs very well. However, we expect that it would also be straightforward to
introduce coverage into this method by utilizing state marginal matching methods [243]. We leave
this for future work.

The individual policies can continue to be trained by leveraging the data collected in their
individual replay buffers Bi via off-policy RL. As individual tasks become more and more successful,
they can start to serve as effective resets for other tasks, forming a natural curriculum. The proposed

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 155

framework is general and capable of learning a diverse collection of tasks reset-free when provided
with a task graph that leverages the diversity of tasks. This leaves open the question of how to
actually define the task-graph G to effectively sequence tasks. In this work, we assume that a
task-graph defining the various tasks and the associated transitions is provided to the agent by the
algorithm designer. In practice, providing such a graph is simple for a human user, although it could
in principle be learned from experiential data. We leave this extension for future work.

Practical Instantiation
To instantiate the algorithmic idea described above as a deep reinforcement learning framework that
is capable of solving dexterous manipulation tasks without resets, we can build on the framework
of actor-critic algorithms. We learn separate policies πi for each of the K provided tasks, with
separate critics Qi and replay buffers Bi for each of the tasks. Each of the policies πi is a deep
neural network Gaussian policy with parameters θi, which is trained using a standard actor-critic
algorithm, such as soft actor-critic [23], using data sampled from its own replay buffer Bi. The task
graph G is represented as a user-provided state machine, as shown in Fig 14.6, and is queried every
T steps to determine which task policy πi to execute and update next. Training proceeds by starting
execution from a particular state s0 in the environment, querying the task-graph G to determine
which policy i = G(s0) to execute, and then collecting T time-steps of data using the policy πi,
transitioning the environment to a new state sT (Fig 14.6). The task-graph is then queried again and
the process is repeated until all the tasks are learned.

Algorithm 12: MTRF
1: Given: K tasks with rewards Ri(st, at), along with a task graph mapping states to a task index
G(s) : S → {0, 1, . . . , K − 1}

2: Let î represent the task index associated with the forward task that is being learned.
3: Initialize πi, Qi, Bi ∀i ∈ {0, 1, . . . , K − 1}
4: Initialize the environment in task î with initial state sî ∼ µî(sî)
5: for iteration n = 1, 2, ... do
6: Obtain current task i to execute by querying task graph at the current environment state

i = G(scurr)
7: for iteration j = 1, 2, ..., T do
8: Execute πi in environment, receiving task-specific rewards Ri storing data in the buffer Bi
9: Train the current task’s policy and value functions πi, Qi by sampling a batch from the

replay buffer containing this task’s experience Bi, according to SAC [23].
10: end for
11: end for

14.3 Task and System Setup
To study MTRF in the context of challenging robotic tasks, such as dexterous manipulation, we
designed an anthropomorphic manipulation platform in both simulation and hardware. Our system

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 156

(Fig 14.5) consists of a 22-DoF anthropomorphic hand-arm system. We use a self-designed and
manufactured four-fingered, 16 DoF robot hand called the D’Hand, mounted on a 6 DoF Sawyer
robotic arm to allow it to operate in an extended workspace in a table-top setting. We built this
hardware to be particularly amenable to our problem setting due it’s robustness and ease of long
term operation. The D’Hand can operate for upwards of 100 hours in contact rich tasks without any
breakages, whereas previous hand based systems are much more fragile. Given the modular nature
of the hand, even if a particular joint malfunctions, it is quick to repair and continue training. In our
experimental evaluation, we use two different sets of dexterous manipulation tasks in simulation
and two different sets of tasks in the real world. Details can be found in Appendix A and at
https://sites.google.com/view/mtrf

Simulation Domains

Figure 14.3: Tasks and transitions for lightbulb insertion
in simulation. The goal is to recenter a lightbulb, lift it,
flip it over, and then insert it into a lamp.

Figure 14.4: Tasks and transitions for basketball domain
in simulation. The goal here is to reposition a basketball
object, pick it up and then dunk it in a hoop.

Lightbulb insertion tasks. The first family of tasks involves inserting a lightbulb into a lamp in
simulation with the dexterous hand-arm system. The tasks consist of centering the object on the
table, pickup, in-hand reorientation, and insertion into the lamp. The multi-task transition task graph
is shown in Fig 14.3. These tasks all involve coordinated finger and arm motion and require precise
movement to insert the lightbulb.
Basketball tasks. The second family of tasks involves dunking a basketball into a hoop. This
consists of repositioning the ball, picking it up, positioning the hand over the basket, and dunking
the ball. This task has a natural cyclic nature, and allows tasks to reset each other as shown in Fig
14.4, while requiring fine-grained behavior to manipulate the ball midair.

Hardware Tasks

https://sites.google.com/view/mtrf

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 157

Figure 14.5: Real-world hand-arm manipulation platform.
The system comprises a 16 DoF hand mounted on a 6 DoF
Sawyer arm. The goal of the task is to perform in-hand
reorientation, as illustrated in Fig 14.10 or pipe insertion as
shown in Fig 14.11

We also evaluate MTRF on the real-world hand-
arm robotic system, training a set of tasks in the
real world, without any simulation or special
instrumentation. We considered 2 different task
families - in hand manipulation of a 3 pronged
valve object, as well as pipe insertion of a cylin-
drical pipe into a hose attachment mounted on
the wall. We describe each of these setups in
detail below:

In-Hand Manipulation: For the first task
on hardware, we use a variant of the in-hand
reorienting task, where the goal is to pick up
an object and reorient it in the palm into a de-
sired configuration, as shown in Fig 14.6. This
task not only requires mastering the contacts
required for a successful pickup, but also fine-
grained finger movements to reorient the object in the palm, while at the same time balancing it so
as to avoid dropping. The task graph corresponding to this domain is shown in Fig 14.6. A frequent
challenge in this domain stems from dropping the object during the in-hand reorientation, which
ordinarily would require some sort of reset mechanism (as seen in prior work [33]).

However, MTRF enables the robot to utilize such “failures” as an opportunity to practice the
tabletop re-centering, pickup, and flip-up tasks, which serve to “reset” the object into a pose where
the reorientation can be attempted again.1 The configuration of the 22-DoF hand-arm system mirrors
that in simulation. The object is tracked using a motion capture system. Our policy directly controls
each joint of the hand and the position of the end-effector. The system is set up to allow for extended
uninterrupted operation, allowing for over 60 hours of training without any human intervention. We
show how our proposed technique allows the robot to learn this task in the following section.

Pipe insertion: For the second task on hardware, we set up a pipe insertion task, where the goal
is to pick up a cylindrical pipe object and insert it into a hose attachment on the wall, as shown in
Fig 14.7. This task not only requires mastering the contacts required for a successful pickup, but
also accurate and fine-grained arm motion to insert the pipe into the attachment in the wall. The
task graph corresponding to this domain is shown in Fig 14.7. In this domain, the agent learns to
pickup the object and then insert it into the attachment in the wall. If the object is dropped, it is
then re-centered and picked up again to allow for another attempt at insertion. 2 As in the previous
domain, our policy directly controls each joint of the hand and the position of the end-effector.
The system is set up to allow for extended uninterrupted operation, allowing for over 30 hours of
training without any human intervention.

1For the pickup task, the position of the arm’s end-effector is scripted and only D’Hand controls are learned to
reduce training time.

2For the pickup task, the position of the arm’s end-effector is scripted and only D’Hand controls are learned to
reduce training time. For the insertion task, the fingers are frozen since it is largely involving accurate motion of the
arm.

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 158

Figure 14.6: Tasks and transitions for the in-hand
manipulation domain on hardware. The goal here
is to rotate a 3 pronged valve object to a particular
orientation in the palm of the hand, picking it up if it
falls down to continue practicing.

Figure 14.7: Tasks and transitions for pipe insertion
domain on hardware. The goal here is to reposition
a cylindrical pipe object, pick it up and then insert it
into a hose attachment on the wall.

14.4 Experimental Evaluation

Figure 14.8: Comparison of MTRF with baseline methods in simulation when run without resets. In comparison to the
prior reset-free RL methods, MTRF is able to learn the tasks more quickly and with higher average success rates, even
in cases where none of the prior methods can master the full task set. MTRF is able to solve all of the tasks without
requiring any explicit resets.

We focus our experiment on the following questions:

1. Are existing off-policy RL algorithms effective when deployed under reset-free settings to
solve dexterous manipulation problems?

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 159

2. Does simultaneously learning a collection of tasks under the proposed multi-task formulation
with MTRF alleviate the need for resets when solving dexterous manipulation tasks?

3. Does learning multiple tasks simultaneously allow for reset-free learning of more complex
tasks than previous reset free algorithms?

4. Does MTRF enable real-world reinforcement learning without resets or human interventions?

Figure 14.9: Visualization of task frequency in the basketball task Family. While initially recentering and pickup are
common, as these get better they are able to provide resets for other tasks.

Baselines and Prior Methods
We compare MTRF (Section 15.3) to three prior baseline algorithms. Our first comparison is to a
state-of-the-art off-policy RL algorithm, soft actor-critic [23] (labeled as SAC). The actor is executed
continuously and reset-free in the environment, and the experienced data is stored in a replay pool.
This algorithm is representative of efficient off-policy RL algorithms. We next compare to a version
of a reset controller [394] (labeled as Reset Controller), which trains a forward controller to perform
the task and a reset controller to reset the state back to the initial state. Lastly, we compare with the
perturbation controller technique [98] introduced in prior work, which alternates between learning
and executing a forward task-directed policy and a perturbation controller trained purely with
novelty bonuses [110] (labeled as Perturbation Controller). For all the experiments we used the
same RL algorithm, soft actor-critic [23], with default hyperparameters. To evaluate a task, we
roll out its final policy starting from states randomly sampled from the distribution induced by all
the tasks that can transition to the task under evaluation, and report performance in terms of their

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 160

success in solving the task. Additional details, videos of all tasks and hyperparameters can be found
at [https://sites.google.com/view/mtrf].

Figure 14.10: Film strip illustrating partial training trajectory of hardware system for in-hand manipulation of the valve
object. This shows various behaviors encountered during the training - picking up the object, flipping it over in the hand
and then in-hand manipulation to get it to a particular orientation. As seen here, MTRF is able to successfully learn how
to perform in-hand manipulation without any human intervention.

Figure 14.11: Film strip illustrating partial training trajectory of hardware system for pipe insertion. This shows various
behaviors encountered during the training - repositioning the object, picking it up, and then inserting it into the wall
attachment. As seen here, MTRF is able to successfully learn how to do pipe insertion without any human intervention.

Reset-Free Learning Comparisons in Simulation
We present results for reset-free learning, using our algorithm and prior methods, in Fig 14.8,
corresponding to each of the tasks in simulation in Section 14.3. We see that MTRF is able
to successfully learn all of the tasks jointly, as evidenced by Fig 14.8. We measure evaluation
performance after training by loading saved policies and running the policy corresponding to the
“forward” task for each of the task families (i.e. lightbulb insertion and basketball dunking). This
indicates that we can solve all the tasks, and as a result can learn reset free more effectively than
prior algorithms.

In comparison, we see that the prior algorithms for off-policy RL – the reset controller [394]
and perturbation controller [98] – are not able to learn the more complex of the tasks as effectively
as our method. While these methods are able to make some amount of progress on tasks that are
constructed to be very easy such as the pincer task family shown in Appendix B, we see that they
struggle to scale well to the more challenging tasks (Fig 14.8). Only MTRF is able to learn these
tasks, while the other methods never actually reach the later tasks in the task graph.

To understand how the tasks are being sequenced during the learning process, we show task
transitions experienced during training for the basketball task in Fig 14.9. We observe that early in
training the transitions are mostly between the recenter and perturbation tasks. As MTRF improves,
the transitions add in pickup and then basketball dunking, cycling between re-centering, pickup and
basketball placement in the hoop.

https://sites.google.com/view/mtrf

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 161

Learning Real-World Dexterous Manipulation Skills
Next, we evaluate the performance of MTRF on the real-world robotic system described in Sec-
tion 14.3, studying the dexterous manipulation tasks described in Section 14.3.

In-Hand Manipulation Let us start by considering the in-hand manipulation tasks shown in
Fig 14.6. This task is challenging because it requires delicate handling of finger-object contacts
during training, the object is easy to drop during the flip-up and in-hand manipulation, and the
reorientation requires a coordinated finger gait to rotate the object. In fact, most prior work
that aims to learn similar in-hand manipulation behaviors either utilizes simulation or employs
a hand-designed reset procedure, potentially involving human interventions [33], [290], [389].
To the best of our knowledge, our work is the first to show a real-world robotic system learning
such a task entirely in the real world and without any manually provided or hand-designed reset
mechanism. We visualize a sequential execution of the tasks (after training) in Fig 14.10, and
encourage the reader to watch a video of this task, as well as the training process, on the project
website: [https://sites.google.com/view/mtrf]. Over the course of training, the
robot must first learn to recenter the object on the table, then learn to pick it up (which requires
learning an appropriate grasp and delicate control of the fingers to maintain grip), then learn to flip
up the object so that it rests in the palm, and finally learn to perform the orientation. Dropping the
object at any point in this process requires going back to the beginning of the sequence, and initially
most of the training time is spent on re-centering, which provides resets for the pickup. The entire
training process takes about 60 hours of real time, learning all of the tasks simultaneously. Although
this time requirement is considerable, it is entirely autonomous, making this approach scalable even
without any simulation or manual instrumentation. The user only needs to position the objects for
training, and switch on the robot.

For a quantitative evaluation, we plot the success rate of sub-tasks including re-centering, lifting,
flipping over, and in-hand reorientation. For lifting and flipping over, success is defined as lifting
the object to a particular height above the table, and for reorient success is defined by the difference
between the current object orientation and the target orientation of the object. As shown in Fig 14.12,
MTRF is able to autonomously learn all tasks in the task graph in 60 hours, and achieves an 70%
success rate for the in-hand reorient task. This experiment illustrates how MTRF can enable a
complex real-world robotic system to learn an in-hand manipulation behavior while at the same time
autonomously retrying the task during a lengthy unattended training run, without any simulation,
special instrumentation, or manual interventions. This experiment suggests that, when MTRF is
provided with an appropriate set of tasks, learning of complex manipulation skills can be carried
out entirely autonomously in the real world, even for highly complex robotic manipulators such as
multi-fingered hands.

Pipe Insertion We also considered the second task variant which involves manipulating a cylindri-
cal pipe to insert it into a hose attachment on the wall as shown in Fig 14.7. This task is challenging
because it requires accurate grasping and repositioning of the object during training in order to
accurately insert it into the hose attachment, requiring coordination of both the arm and the hand.

https://sites.google.com/view/mtrf

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 162

Training this task without resets requires a combination of repositioning, lifting, insertion and
removal to continually keep training and improving. We visualize a sequential execution of the
tasks (after training) in Fig 14.11, and encourage the reader to watch a video of this task, as well as
the training process, on the project website: [https://sites.google.com/view/mtrf].
Over the course of training, the robot must first learn to recenter the object on the table, then learn
to pick it up (which requires learning an appropriate grasp), then learn to actually move the arm
accurately to insert the pipe to the attachment, and finally learn to remove it to continue training and
practicing. Initially most of the training time is spent on re-centering, which provides resets for the
pickup, which then provides resets for the insertion and removal. The entire training process takes
about 25 hours of real time, learning all of the tasks simultaneously.

Figure 14.12: Success rate of various tasks on dexterous manipulation task families on hardware. Left: In-hand
manipulation We can see that all of the tasks are able to successfully learn with more than 70% success rate. Right:
Pipe insertion We can see that the final pipe insertion task is able to successfully learn with more than 60% success
rate.

14.5 Discussion
In this work, we introduced a technique for learning dexterous manipulation behaviors reset-free,
without the need for any human intervention during training. This was done by leveraging the
multi-task RL setting for reset-free learning. When learning multiple tasks simultaneously, different
tasks serve to reset each other and assist in uninterrupted learning. This algorithm allows a dexterous
manipulation system to learn manipulation behaviors uninterrupted. Our experiments show that
this approach can enable a real-world hand-arm robotic system to learn an in-hand reorientation
task, including pickup and repositioning as well as a pipe insertion task without human intervention
or special instrumentation. One major drawback of the approach as stated is the fact that it still

https://sites.google.com/view/mtrf

CHAPTER 14. BUILDING RESET-FREE REINFORCEMENT LEARNING ALGORITHMS
VIA MULTI-TASK LEARNING 163

requires human specification of how the different tasks are sequenced one after another through the
task graph. This gets hard to scale as the number of tasks increases and the interaction between
them gets more complex. In the following section, we show that this task graph can be inferred
from data by leveraging a small amount of human data.

164

Chapter 15

Bootstrapping Reset-Free Reinforcement
Learning Algorithms with Human Data

As alluded to in the previous section, multi-task RL can provide a good way to bootstrap continual
autonomy. However, the question when learning in a multi-task framework, without human
intervention becomes —how do we know how to sequence the tasks to learn continually, with
minimal human intervention. In this section, we show that with a small amount of human data
provided upfront, we can actually learn not just how to bootstrap low level policies but also the
autonomous practicing scheme itself. In doing so, we show that we can actually practice for
extended periods of time with directed data collection, learning how to perform long horizon tasks
in a realistic kitchen.

15.1 Introduction Teaser FINAL.png

Figure 15.1: Robot setup for real world training in a kitchen.
The agent needs to manipulate multiple different elements
to accomplish complex goals.

Reinforcement learning (RL) algorithms are a
promising tool for robotic learning, in princi-
ple providing a straightforward technique for
acquiring complex behaviors, simply through
trial and error interaction. The framework of
RL is particularly appealing for robotics in that
it allows an agent to collect its own experience,
improving autonomously in new environments.
However, many current real-world examples of
RL are quite far from this promise of autonomy,
often requiring considerable amounts of human
effort and engineering to enable the learning process to proceed. One of such requirements – a
resettable initial state distribution, while easy to satisfy in simulation, do not actually exist in the
real world, i.e. providing episodic resets can often be tedious and time-consuming and requires a
constant supervision of a human operator. Alleviating some of these requirements would allow us

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 165

to explore the full potential of RL methods to build plug-and-play learning systems where agents
are dropped into environments and continue improving.

To illustrate this more concretely, imagine a robot that is deployed in a previously unseen kitchen,
such as the one shown in Fig. 15.1. Since this is an unfamiliar environment, in which a robot
could damage its surroundings, the agent could prompt a user to provide a set of easy-to-collect,
continuous demonstrations, illustrating example behaviors and goal states that the robot should be
able to acquire and robustly achieve. Given a small number of such examples, the robot should be
able to extract all the necessary information required to continually practice a wide range of tasks in
the kitchen so that it can perfect them entirely on its own, with minimal human intervention.

Although there are a number of challenges that are preventing us from making this scenario a
reality such as access to reward functions, difficulties with safe exploration or the resettability of
the environment, in this paper we focus on the latter two. While several prior works have studied
continual reset-free training by utilizing auxiliary reset controllers [98] and multiple scaffolding
tasks [378] to enable a skill to be learned autonomously from scratch, our focus in this work is
on enabling easy-to-specify autonomous reset-free training of multi-skill repertoires by utilizing
the multi-task nature of the problem and a small amount of human-provided data. We show that,
in exchange for a small amount of supervision, we can lift two major constraints on real-world
unattended learning: bootstrapping exploration and selecting which tasks to practice so as to enable
reset-free training. More concretely, let us again consider a robotic arm operating in a kitchen
as shown in Fig. 15.1. In this environment, we can specify different tasks by the ability to reach
different goal states that can be extracted from human-provided data, such as the two example
images in Fig. 15.1 (cabinet and slider closed or cabinet and slider open). Given this definition of a
task, reset-free demonstration-augmented multi-task RL can obtain initial behaviors by utilizing
the human-provided demonstrations with offline reinforcement learning. Moreover, it can utilize
the same data to learn how to sequence different tasks one after the other so as to practice all of
them together with minimal number of resets, with some tasks providing resets for others, in the
process improving behavior on all the tasks. For instance, if the robot is trying to practice opening
and closing the cabinet, it may start in a state where the cabinet is closed and command the task to
open it. Even if this task does not succeed and the cabinet is partially open, the agent can continue
practicing any of the remaining tasks including closing or opening the cabinet so as to minimize
the requirement for resets, naturally resetting the environment by just solving different tasks. One
of our observations is that the mechanism needed to reset the environment to facilitate practicing
during unattended training is the same as the mechanism we need to sequence multiple subgoals for
completing long-horizon tasks. Informed by this observation, we also show how this system is able
to accomplish long-horizon behaviors by sequencing multiple tasks.

In this paper, we present a novel robotic learning system, which we call demonstration boot-
strapped autonomous practicing (DBAP), that is able to incorporate a small amount of human
data provided up front to bootstrap long periods of autonomous learning with just a few human
interventions, using some tasks to reset others. We show that just a few hours of easily provided
“play” style [249], [346] multi-task demonstrations can make the entire learning process more
efficient, bootstrapping both policy learning and autonomous practicing of behaviors. Moreover, we
demonstrate that the provided data can also aid in the acquisition of goal-directed high-level con-

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 166

trollers that can solve multi-step long horizon problems at evaluation time by sequencing individual
tasks. Our experiments indicate that this paradigm allows us to efficiently solve complex multi-task
robotics problems both in simulation and in the real world, with an order of magnitude less human
intervention needed during learning.

15.2 Preliminaries and Problem Statement
In this work, we focus on a special case of multi-task RL, where the task can be represented
as a state goal sg that the policy has to reach to obtain the reward, which is often referred to as
goal-conditioned RL. We assume to be given a set of N goal states that are of particular interest:
Sgi = {sig}Ni=1 that the agent is expected to be able to reach from any other state of interest, that is,
the agent has the following objective: Es0=sig ,at∼π(at|st,sjg)

∑T
t=1 r(st, at, s

j
g) ∀sig ∈ Sgi , sjg ∈ Sgi .

For example, given two goal states of interest: s1
g corresponding to the state where both a microwave

and a cabinet are closed and and s2
g where the microwave and cabinet are open, our goal is to

learn a policy that transitions between these two goal states by manipulating the cabinet and the
microwave. We often refer to reaching these goals of interests as tasks since reaching such states
usually corresponds to accomplishing a meaningful task such as opening a cabinet.

In addition, since we are operating in the real world, it is cumbersome for a human supervisor to
provide resets after every episode. Instead, to allow for more autonomous and scalable learning,
we assume that a reset can be provided every n episodes. Our objective is to operate in this
non-stationary setting and learn how to practice tasks mostly autonomously with only occasional
resets.

15.3 Demonstration Augmented Autonomous Practicing for
Multi-Task Reinforcement Learning

Our method, Demonstration-Bootstrapped Autonomous Practicing (DBAP), leverages the human-
provided demonstration data in two ways: to bootstrap a multi-task policy that eventually learns to
perform the full repertoire of the demonstrated behaviors, and to enable a graph-based sequencing
mechanism, which chooses which tasks to command in order to attain uniform coverage over
possible behaviors and thus practice the full repertoire of tasks during autonomous reset-free
reinforcement learning. Furthermore, this same sequencing mechanism can also enable the robot to
accomplish long-horizon tasks at test-time, by sequencing the subgoals needed to perform those
tasks. An overview is presented in Figure 15.2. Next, we describe our reset-free reinforcement
learning procedure, followed by a discussion of how tasks can be sequenced via graph search for
both autonomous practicing and performing long-horizon tasks.

Bootstrapping Reset-Free Multi-Task Learning with Prior Data
Our goal is to use multi-task learning to enable reset-free learning, bootstrapping from human pro-
vided prior data. We learn a single goal-conditioned policy for all tasks, denoted πθ(a|s, sg), where
sg is a goal state. To learn this goal-conditioned policy, we instantiate a goal-conditioned version of

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 167

Figure 15.2: Overview of our method. Given a set of human provided unstructured demonstrations, the system
bootstraps a multi-task RL policy via offline RL and builds a task graph that models transitions between different tasks.
The system then practices autonomously with small number of resets by leveraging multi-task RL, using the learned
task graph to command the appropriate next task. The resulting multi-task policy and estimated task graph can then be
used to solve long-horizon problems at test-time.

AWAC [421], where the policy is provided with the state goal sg alongside the current state s, yield-
ing the following policy update: θk+1 = arg maxθ Es,a,sg

[
log πθ(a|s, sg) exp

(
1
λ
Aπθ(s, a, sg)

)]
,

where Aπθ is an advantage function for the current, goal-conditioned policy πθ.
To enable autonomous practicing to collect the data needed to improve the goal-conditioned

policy πθ(a|s, sg) in a reset-free manner, we also require a task-sequencing policy that determines
how the goals are sequenced one after another. To accomplish that, we introduce a task-sequencing
policy q(sg|s, sdesired

g) that decides which goal of interest sg to command next from the current state.
On closer inspection, we see that this resembles high-level policies used in hierarchical RL that are
commonly used to sequence individual subgoals for accomplishing long-horizon goals. However,
in this scenario, q(sg|s, sdesired

g) is not just used to accomplish long-horizon goals but also to enable
autonomous practicing. In the following sections we will often refer to the multi-task policy
πθ(a|s, sg) as the low-level policy, and the task sequencer q(sg|s, sdesired

g) as the high-level policy
since it commands what task should be executed next for autonomous practicing or long-horizon
goal reaching. Next, we describe how we can instantiate and utilize q(sg|s, sdesired

g) for autonomous
learning.

Task Sequencing via Graph Search
To learn a task sequencer policy q that would allow for autonomous practicing of the low-level
multi-task policy πθ and facilitate long-horizon goal reaching, we propose a simple model-based
graph search algorithm. The key idea in our approach is to leverage prior data to learn which low-
level task transitions are possible and can be sequenced, and then use this knowledge to optimize
for autonomous practicing and goal sequencing. In particular, we utilize the provided data to build a
directed task graph G, with vertices as different goal states of interest sig, s

j
g, and an adjacency matrix

A with A(i, j) = 1 if there exists a transition between particular states of interest sig and sjg in the
demonstration data, and A(i, j) = 0 otherwise. This graph can be thought of as a discrete high-level
model, which represents how different goal states of interest are connected to each other. Given
this graph G acquired from the prior data, we can then utilize it for both autonomous practicing of

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 168

Algorithm 13: PracticeGoalSelect:
High Level Task Selection via
Graph Search

Input: task-graph G, goal-states
{s0

g, .., s
N
g }, density over goals

ρ(sig), current state s
Output: Next goal snext

g to command

// Initialize maximum entropy value
Hmax = −∞
for sig ∈ {s1

g, . . . , s
N
g } do

τ ← Dijkstra(s, sig,G)
ρ′ = ρ+ τ // Compute updated density
ifH(ρ′) ≥ Hmax then
Hmax = H(ρ′)
snext
g ← τ [1] // First step of path to sig

end if
end for
return snext

g

Algorithm 14: Overview of
DBAP

Input: Human provided multi-task
demonstrations D

Output: Multi-task policy
πθ(a|s, sg) and task-graph G

Estimate task graph G via counting
Initialize πθ(a|s, sg) via AWAC [421]
Initialize current density ρ = 0
for t = 0, . . . , N steps do

// Select next goal via graph search
snext
g ← PracticeGoalSelect(s, ρ)

Rollout πθ(a|s, snext
g)

Add collected data to replay buffer β
Update πθ via AWAC.

end for
return πθ(a|s, sg), G

low-level tasks and for sequencing multiple low-level tasks to achieve multi-step goals.
Autonomous practicing. The task graph G can be used to direct autonomous practicing by

explicitly optimizing to command goals that bring the overall coverage over states close to the
uniform distribution, when operating with minimal resets. More concretely, for goal selection
during practicing, the algorithm iterates through all possible goal states of interest, determines the
shortest path to the goal state via Dijkstra’s algorithm [422] from the current state, and computes
the resulting densities over goal states if that path was chosen. The path that results in bringing
the density closest to uniform (maximum entropy) is then picked, and the first step in the path is
commanded as the next goal state. This is done to ensure that the algorithm maintains roughly
uniform coverage over different goal states of interest in the environment, so that all tasks can
be practiced equally. This process repeats at the next step, thereby performing receding horizon
control to maintain the density over potential goal states of interest to be as close to uniform as
possible. Formally, the objective being optimized to select which goal to sequence next is given by:
maxsig∈Sig H(U , ρ+ Djikstra(s, sig)), where ρ is the current marginal distribution (represented as a
categorical distribution) over goal states of interest, Dijkstra(s, sig) computes the shortest distances
between current state s and sig and the goal is to bring the updated density as close to uniform U as
possible1. A detailed description of the task sequencing algorithm via graph search can be found in
Algorithm 13.

Task sequencing for multi-step tasks. While the scheme for autonomous practicing aims to
choose goals that maintain uniform coverage over states so as to improve performance on all tasks,

1We overload the + operator here to denote an update to the density ρ when accounting for new states

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 169

it can also be used to accomplish long-horizon goals. When the agent is tasked with reaching a
particularly distant goal at evaluation time, which standard RL algorithms tend to struggle with, we
note that the same graph can be reused to sequence appropriate sub-goals to reach the specific goal
state.

In particular, given a target goal of interest sjg, when the agent is at a particular state s, we
can use the estimated graph G to compute the shortest path between goal states of interest τ =[
s, s1

g, s
2
g, . . . , s

j
g

]
to the goal via Dijkstra’s algorithm. The next goal state of interest in the path s1

g

is then chosen as the next goal commanded to the multi task policy π(a|s, s1
g) and executed for a

single episode till the agent reaches s1. This procedure is then repeated till the agent accomplishes
sjg. This procedure allows the agent to not just practice short horizon problems but also sequence
multiple short-horizon goals to solve long-horizon ones. Further details on these procedures can be
found in Algorithm 13 and Algorithm 14.

15.4 System Description
We evaluate our method on a set of manipulation tasks in both a simulated and real world kitchen
environment. In this section, we describe both these setups.

Real World Environment
To evaluate DBAP in the real world, we built a physical kitchen environment based on the kitchen
manipulation benchmark described by [346].

Figure 15.3: Elements, tasks and goal states in the real world kitchen environment. The agent is manipulating the
cabinet, slider and knob to accomplish particular configurations of the environment as shown from goal 0 to 7 here. The
dotted lines represent individual transitions that are feasible within the length of an episode, toggling one element at
a time between it’s extreme positions. The goal of the agent is to learn a policy and a graph controller that is able to
transition between goal states.

Tasks. In this environment, we task a 7 DoF Franka Emika robotic arm with manipulating three
distinct elements: a sliding door that can be slid open or closed, a cabinet door that can be open

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 170

or closed and a knob that can rotate to control the stove burners, as shown in Fig 15.3. The arm is
controlled with low-level end-effector pose commands at 5 Hz. At each time step, the policy chooses
a position and orientation for the end effector, as well as a command for opening and closing the
gripper. These three elements represent distinct types of motion, each of which require different
control strategies. The goal states of interest sig are defined as various combinations of the elements
being opened or closed (or in the case of the knob, turned by 0or90), resulting in 23 = 8 goal states
based on various combinations of the elements being open or closed (Fig 15.3). As described in
Sections 15.2, 15.3, the agent must practice reaching the goals of interest autonomously in the
environment to master going from any combination of element configurations to any other. The
agent is said to be in one of the goal states of interest if the current state of the elements in the scene
are within ε distance of the particular goal state of interest. Tasks.png

Figure 15.4: Simulation environment and tasks.
2 elements —the slider and the cabinet are being
manipulated

Data collection. We make use of a teleoperation sys-
tem to provide a continuous sequence of multi-task demon-
strations. We collect “play-style” [249], [346] demonstra-
tions, where different tasks are attempted successfully one
after the other, indicating both how tasks are solved and
how they may be sequenced. While prior work [249],
[346] assumes that we are provided with unsegmented
demonstrations, we make a simple change to the data col-
lection procedure where the user indicates when a particu-
lar goal state of interest is completed before transitioning
over to demonstrating a different goal. This allows the
algorithm to easily determine the goals of interest as the
transition points between these human-provided demon-
strations. We provide around 500 demonstrations in the
real world, requiring 2.5 hours of data collection time.

Simulation Environment
To provide thorough quantitative comparisons, we also
evaluate our method on a simulated version of the above task, based on the MuJoCo kitchen
manipulation environment described out by [346]. The purpose of this evaluation is to study
the behavior of different components of the system in more detail and more systematically run
comparisons. In particular, in simulation we consider tasks with 2 elements (Fig 15.4): the cabinet
and the slider. The goal states correspond to combinations of the cabinet and slider being open and
closed.

15.5 Experimental Evaluation
In our experimental evaluation, we aim to answer the following questions: (1) Does DBAP enable
improvement with a small amount of human intervention, and how does it compare to prior methods
for reset-free or demonstration-augmented RL? (2) Is DBAP able to bootstrap effectively from

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 171

prior data both at the low-level policy execution and at the high level practicing behavior? (3) Does
DBAP allow agents to learn how to perform long horizon behaviors in the real world?

To understand the decisions made in DBAP , we compare to a number of baselines in simulation:
Non-pretrained, graph search task selection: This is a version of our algorithm, where the

human provided data is not used to bootstrap low level policies, but only the high level graph. This
is roughly related to ideas from [378], where multiple policies are learned from scratch, but unlike
that work this baselne uses a learned high level graph.

Pretrained low-level, random high level controller: This is a multi-task analogue to the
perturbation controller [98]. The low-level policy is pre-trained from human demonstrations, but
the high-level practicing chooses randomly which task to execute.

Pretrained low-level, BC task selection: This is a version of the method by [346], modified
for the reset-free setting. Rather than using random task selection for practicing, tasks are sequenced
using a high level policy trained with supervised learning (behavior cloning) on the collected data
to command tasks.

Pretrained low-level, reset controller: This baseline is similar to a reset controller [394],
[395], and alternates between commanding a random task and commanding a return to a single
fixed start state during practicing. In this case, the high-level policy is simply a random controller.

For real world experiments, we compare the performance of DBAP to standard imitation
learning (behavior cloning) without any finetuning (labeled as “Imitation" in Table 15.2), standard
offline RL with AWAC without any finetuninig (labeled as “Offline RL" in Table 15.2) and the
no pre-training baseline described above. The policies and models used in this work operate
on a low-level state and they are represented with multi-layer perceptrons using 3 layers of 256
units each. We use the standard set of hyperparameters available in the open-source AWAC [421]
implementation. More details can be found in the supplementary materials and on the website
https://sites.google.com/view/dbap/

Evaluation metrics. We explicitly evaluate on 2 different metrics. The first metric captures the
ability to solve short horizon single-step tasks, using the low-level multi-task policy π(a|s, sg) to
reach a specific goal sg. For instance, in Fig 15.3, we can evaluate the success rate on reaching
goal 0 from goal 1 or goal 1 from goal 3 and so on, each of which involves manipulating a single
element in the environment. We report the average success rate across all the possible single-step
tasks, and refer to this as “short horizon success”. Secondly, we evaluate the ability of the task
sequencer q to chain multiple low-level goal reaching behaviors to accomplish a long-horizon goal.
For instance in Fig 15.3, we can measure the success of the task sequencer at reaching goal 7 from
goal 0, goal 6 from goal 1, and so on. This requires manipulating multiple elements. We report the
average success rate across all the possible 3-step tasks in the real environment as the “long horizon
success” rate.

Autonomous Demonstration-Bootstrapped Practicing in Simulation
First, we evaluate the ability of DBAP to learn how to perform tasks in the environment in simulation
as described in Section 15.4, with a minimal amounts of automatically provided resets. In this
work, we assume access to one human reset every 10 episodes, reducing the amount of human

https://sites.google.com/view/dbap/

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 172

Figure 15.5: Performance of DBAP on the simulated environment in Fig 15.4 (Left) Success rate averaged across 3
seeds each on long horizon goal reaching (Middle) Average number of sub-goals commanded to reach a long horizon
goal (Right) Success rate on short horizon goal reaching. We can see that DBAP performs better than several prior
methods, improving with minimal amounts of human intervention to solve multi-step problems.supervision by an order of magnitude as compared to standard RL. We can see from Fig 15.5 that
autonomous practicing via DBAP is able to improve the short horizon success rate from 50%
to 85% in simulation. This performance is significantly better than not using the prior data for
bootstrapping. This suggests that the important part for improving the performance of single step
tasks is that the practicing, especially in its initial phases, is bootstrapped from human-provided
data as described in Section 15.3.

In the next experiment, we study how well a robotic agent is able to accomplish multi-step
goal reaching. As we find in Fig 15.5 (left), our method is able to successfully reach a variety of
multi-step goals and shows improvement over time with minimal human involvement, improving
from a success rate of 50% to around 90% on the long horizon success rate. While other techniques
are able to occasionally succeed, they take significantly longer to get to the goal, often resulting
in roundabout paths to achieve the goal. This leads to the extended path length of trajectories
in Fig 15.5 (middle). In particular, training a high level policy via goal relabeling and behavior
cloning (the “pretrained low-level, BC task selection” baseline in Fig 15.5. can inherit the biases of
the human provided data. If the play data demonstrates sub-optimal paths to reach long horizon
goals, this is also reflected in the performance of the high-level behavioral cloning. In contrast, our
graph-based search method is able to find and practice shorter paths than the baselines. Importantly,
this improvement is acquired with a minimal requirement for human effort in the process.

Autonomous Demonstration-Bootstrapped Practicing in the Real World
Success Rate Path Length

Offline RL 0.83± 0.058 3.5± 0.17

DBAP (Ours) 0.95± 0.05 3.37± 0.3

Imitation 0.62± 0. 4.3± 0.15

No Pretraining 0.0± 0.0 6.0± 0.0

Table 15.1: Success rates and path lengths (in number of
steps) in the real world for reaching long horizon goals.

Success Rate

Offline RL 0.708± 0.058

DBAP (Ours) 0.94± 0.019

Imitation 0.763± 0.051

No Pretraining 0.0± 0.0

Table 15.2: Success rates for reaching short horizon goals
in the real world.

CHAPTER 15. BOOTSTRAPPING RESET-FREE REINFORCEMENT LEARNING
ALGORITHMS WITH HUMAN DATA 173

Figure 15.6: Film strip of multi-step behavior in the kitchen environment. We see a successful execution of multi-step
behavior transitioning between having all elements in the kitchen closed to all open, by first having the graph search
command the agent to open the cabinet, then turn the knob and finally open the slider.

Next, we evaluate the ability of DBAP to learn multiple goal-reaching tasks in the real world.
Bootstrapped from the human-provided trajectories, we trained the robot for over 25 hours to learn
the tasks described in Section 15.4. As seen from the evaluation performance of offline RL on long
horizon success in Table 15.1, DBAP starts off doing well even during pre-training, achieving a
83% success rate, but improves significantly during autonomous practicing to around a 95% success
rate, indicating the importance of online finetuning. In Fig. 15.6, we show an example where the
robot must reach a goal with slider, cabinet, and microwave door all open, from a state where all
three are closed. The graph search automatically commands the low-level policy to reach each of
the subgoals for the complete task: opening the cabinet, turning the knob, and opening the slider.

In comparison, we see that the no-pretraining baseline that trains from scratch does very poorly,
resulting in 0% success rate. DBAP also significantly outperforms standard imitation learning in
terms of long horizon goal-reaching performance. We additionally compare the number of tasks
commanded to accomplish the multi-step goals and we can observe that the average path length
is significantly lower for our method than the alternatives. We can see that a similar trend is also
reflected in the success percentages of short horizon goals in Table 15.2.

15.6 Discussion
We described the design principles behind a novel system for learning behaviors autonomously
using RL. We leverage small amounts of human-provided data to bootstrap a multi-task RL system,
using some tasks to provide resets for others when learning autonomously. We show that our scheme
allows for a robot to not only use prior data to bootstrap low-level policies but also facilitate the
autonomous practicing behavior itself. This allows for improvement on individual tasks as well as
sequencing of these tasks to reach multi-step, long-horizon goals. We demonstrated this algorithm
on both simulated and real-world kitchen manipulation problems. We finally place this work in the
context of the broader space of related work and show how this ties into the bigger picture of real
world robotic learning.

174

Chapter 16

Relationship to Other Work on Continual
Data Collection in Reinforcement Learning

Next we try and place this work in context of some related work both prior to and post publishing
of our work.

Building large scale continual data collection systems with RL is a challenging problem both
from a systems and an algorithms standpoint. Some examples of excellent large scale RL systems
that we used as inspiration include [34], [35], [38], [316], [413], [415], [423], [424], which show
the ability for real world grasping and manipulation tasks to scale up to many many hours of real
world learning. Our work aims to build systems that can do a broader set of dexterous manipulation
tasks, with a similar mindset of large scale data collection. Our work builds on prior work on
reset-free RL as well [394], [395]. These works try to learn explicit reset controllers to reset the
environment to a particular state so that a task can be attempted again. We show that this notion
can be generalized, both through the lens of the perturbation controller, which resets to arbitrarily
random states rather than a single state, and the idea of multi-task RL as a solution to reset-free RL.
Our line of work is closely connected to that shown by [425] in the context of locomotion, solving
tasks with minimal effort using multi-task RL. Since the publishing of our work, recent work has
shown that the ideas of reset-free RL can be extended to a framework for adversarial reset task
selection [426], and for automatic curriculum generation [427]. We hope that this work provides
some design principles for the construction of other large scale RL systems in the future.

175

Chapter 17

Conclusion

Through the course of this thesis, we studied the mismatch between the assumptions made by most
reinforcement learning algorithms and what is actually available in the real world. By analyzing this
through the lens of data, we showed that the challenge can be broken down into that of obtaining the
right supervision, that of ensuring safe and efficient collection of data from the right distribution and
the challenge of ensuring large scale, continual data collection with minimal human intervention.
We showed that through a combination of data driven reward inference, bootstrapping from small
amounts of human provided data and multi-task algorithms for reset-free reinforcement learning,
we were able to move towards systems that can actually learn and continually improve in the
real world. We demonstrated these techniques on a variety of real world platforms, ranging from
dexterous manipulation to kitchen manipulation to tabletop manipulation and even to tasks in mobile
manipulation. In doing so, we showed the versatility of the classes of approaches we introduced
and the potential to scale to the robots of the future in our homes, hospitals and shopping malls.

Besides the work covered in detail in this thesis, I was fortunate to be able to explore several other
directions that are likely to be crucial when deploying robots into truly unstructured environments.
One direction that is particularly compelling is that of multi-task RL and meta-learning to transfer
policies [224], [419] or exploration strategies [213] across different tasks and environments. The
future is likely to move towards generalist agents, and being able to actually train agents to solve
multiple tasks, using shared data, policies and representations is likely to be crucial. In the spirit
of transfer learning, we also explored a series of work on actually transferring behavior across
different robot embodiments [89], [428]. The future of robotics is likely to be widely heterogenous,
so learning behaviors that can transfer across robots and tasks is likely to be very important.

While the work we discussed in this thesis represents important steps towards real world
deployment of agents, it is important to recognize that the agents are still largely being trained in
a lab setting and not the truly “real" world, like someone’s home. The training setups that were
actually used had to be somewhat carefully constructed and restricted, and these algorithms are
unlikely to be directly applicable when a robot is deployed directly in the “wild". In order to actually
scale up the current techniques to deal with the diversity and variability of the real world, a number
of fundamentally new research directions would be exciting to explore going forward:

CHAPTER 17. CONCLUSION 176

1. Human-in-the-loop RL: As agents get deployed around human centric environments, the
ability to learn from, about and around humans will become increasingly important. Building
teachable agents that infer explicit beliefs about human intent and explore safely around
humans, even leveraging them actively to guide their own learning process will be very
important. This area of research has a number of rich problems - how to build safely exploring
RL agents, how to build RL agents that display a common sense understanding of what
human supervisors are specifying, how to build communication interfaces between human
supervisors and learning agents that enable the communication of maximal information with
minimal human effort, just to name a few. The goal of building human in the loop RL systems
is to construct systems that can naturally operate in the presence of human supervisors,
leveraging them as tools and collaborators in the learning process rather than impediments.

2. Continual, multi-task RL: The unstructured real world is not cleanly divided into multiple
different tasks experienced in isolation, but is instead a continuous stream of ever changing
tasks performed sequentially. For instance a robot deployed in someone’s living room may
have to continually deal with new appliances and objects that are introduced into a living
room, necessitating the learning of many different skills. These tasks may potentially be
quite different from each other, even being drawn from different distributions, as opposed
to the typical assumptions that most ML methods make that data is drawn IID from a fixed
training distribution. For building flexible and scalable RL systems, it is important for us to
start building agents that are robust to these types of distributional shifts, quickly and robustly
adapting to new scenarios, collecting the appropriate data to do so. This may involve building
on the framework of online learning, building algorithms that are both able to deal with
catastrophic forgetting problems but more importantly becomes better and better at dealing
with unknown scenarios as they collect more data. Specific problems that may be of interest
in this direction would include building better calibrated models for uncertainty, developing
RL algorithms that adapt their exploration space as they continue to explore new tasks, and
developing RL algorithms that are explicitly trained to be robust or adaptive to distribution
shift, rather than just to be good on the training MDP.

3. Generalization in RL: Lastly, much of the work in this thesis has dealt with a single object,
scene or task. For truly harnessing the power of learning, we need to build algorithms that
widely generalize across different scenarios. Studying how appropriate inductive biases,
causal mechanisms and choice of representations affect generalization in RL will be crucial
in getting general purpose robotic agents for the real world. First and foremost, this requires
us to develop a proper formalism and definition for generalization in RL, answering the
question of “what" an agent should be generalizing over. Given this formalism, a number of
problems are open and fascinating to explore. For instance it would be very interesting to
understand how function approximation and generalization plays a role in the optimization
process of model based and off-policy RL algorithms, even without considering out-of-support
generalization. Thinking about extrapolation further, it is also exciting to consider what the
right medium is for human supervisors to provide inductive biases, and developing formalism

CHAPTER 17. CONCLUSION 177

to solicit the right types of inductive bias from the algorithm designer. Another direction
that is particularly exciting is understanding whether the broader class of robotic learning
problems share common structure that can be encoded as inductive bias into these models,
allowing for broader generalization just as convolutions did for image based learning.

While there are a number of really exciting future directions that we just described, there are
also a number of important lessons that were learned over the course of the work in this Ph.D. Here
are a select few:

1. There is a huge delta between systems that learn in simulation and systems that learn in the
real world. When training at scale in the real world, any crutch that is leveraged while training
in simulation becomes a limiting factor. Often our intuition on how to actually build these
systems is not actually correct, and building robotic systems early and with future iterations
in mind is important.

2. Algorithms benefit very significantly from the use of prior data, and this can often make
the difference between a system being useful versus being impractically slow. Thinking
about where this data actually comes from and how to enable data scaling is likely to be very
important going forward.

3. Often the focus of the reinforcement learning community has been on sample efficiency and
the so-called “small-data" regime. However, I believe that the really interesting questions in
robotic learning actually lie beyond that frontier, when we operate in the medium to large
data regime. The challenges of generalization, distributions and optimization become much
more important in this regime, rather than a skewed focus on sample efficiency. In future
work, I hope researchers consider this regime of robotic learning more deeply.

* * *

We hope the work presented in this thesis serves as a springboard for continuing work on
building robotic learning systems with RL in the real world. Even if not the exact techniques being
proposed, we hope the design principles outlined here have an impact on the construction of robotic
learning systems in the future.

178

Bibliography

[1] D. J. Braun and M. Goldfarb, “A control approach for actuated dynamic walking in biped
robots,” IEEE Trans. Robotics, vol. 25, no. 6, pp. 1292–1303, 2009. DOI: 10.1109/TRO.
2009.2028762. [Online]. Available: https://doi.org/10.1109/TRO.2009.
2028762.

[2] N. J. Kong, G. Council, and A. M. Johnson, “Ilqr for piecewise-smooth hybrid dynamical
systems,” CoRR, vol. abs/2103.14584, 2021. arXiv: 2103.14584. [Online]. Available:
https://arxiv.org/abs/2103.14584.

[3] H. Delavari, R. Ghaderi, N. A. Ranjbar, S. H. HosseinNia, and S. Momani, “Adaptive
fractional PID controller for robot manipulator,” CoRR, vol. abs/1206.2027, 2012. arXiv:
1206.2027. [Online]. Available: http://arxiv.org/abs/1206.2027.

[4] J. Scholz and M. Stilman, “Combining motion planning and optimization for flexible
robot manipulation,” in 10th IEEE-RAS International Conference on Humanoid Robots,
Humanoids 2010, Nashville, TN, USA, December 6-8, 2010, IEEE, 2010, pp. 80–85. DOI:
10.1109/ICHR.2010.5686849. [Online]. Available: https://doi.org/10.
1109/ICHR.2010.5686849.

[5] M. Saha and P. Isto, “Motion planning for robotic manipulation of deformable linear objects,”
in Proceedings of the 2006 IEEE International Conference on Robotics and Automation,
ICRA 2006, May 15-19, 2006, Orlando, Florida, USA, IEEE, 2006, pp. 2478–2484. DOI:
10.1109/ROBOT.2006.1642074. [Online]. Available: https://doi.org/10.
1109/ROBOT.2006.1642074.

[6] J. Schulman, Y. Duan, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Gold-
berg, and P. Abbeel, “Motion planning with sequential convex optimization and convex
collision checking,” Int. J. Robotics Res., vol. 33, no. 9, pp. 1251–1270, 2014. DOI:
10.1177/0278364914528132. [Online]. Available: https://doi.org/10.
1177/0278364914528132.

[7] A. Mori, K. Hiramatsu, F. Naya, and N. Osato, “A robot-controlling agent description with
finite state machines,” in Distributed Autonomous Robotic Systems 3, Proceedings of the
4th International Symposium on Distributed Autonomous Robotic Systems, DARS 1998,
Karslruhe, Germany, 1998, T. C. Lueth, R. Dillmann, P. Dario, and H. Wörn, Eds., Springer,
1998, pp. 225–234. DOI: 10.1007/978-3-642-72198-4_22. [Online]. Available:
https://doi.org/10.1007/978-3-642-72198-4_22.

https://doi.org/10.1109/TRO.2009.2028762
https://doi.org/10.1109/TRO.2009.2028762
https://doi.org/10.1109/TRO.2009.2028762
https://doi.org/10.1109/TRO.2009.2028762
https://arxiv.org/abs/2103.14584
https://arxiv.org/abs/2103.14584
https://arxiv.org/abs/1206.2027
http://arxiv.org/abs/1206.2027
https://doi.org/10.1109/ICHR.2010.5686849
https://doi.org/10.1109/ICHR.2010.5686849
https://doi.org/10.1109/ICHR.2010.5686849
https://doi.org/10.1109/ROBOT.2006.1642074
https://doi.org/10.1109/ROBOT.2006.1642074
https://doi.org/10.1109/ROBOT.2006.1642074
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1007/978-3-642-72198-4_22
https://doi.org/10.1007/978-3-642-72198-4_22

BIBLIOGRAPHY 179

[8] P. Allgeuer and S. Behnke, “Hierarchical and state-based architectures for robot behavior
planning and control,” CoRR, vol. abs/1809.11067, 2018. arXiv: 1809.11067. [Online].
Available: http://arxiv.org/abs/1809.11067.

[9] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, “Combined Task and
Motion Planning Through an Extensible Planner-Independent Interface Layer,” in IEEE
International Conference on Robotics and Automation (ICRA), 2014. [Online]. Available:
https://people.eecs.berkeley.edu/{~}russell/papers/icra14-
planrob.pdf.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. Berg, and F. Li, “Imagenet large scale visual recognition
challenge,” International Journal of Computer Vision (IJCV), 2015.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go
with deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in Neural Information Processing Systems (NIPS),
2012, pp. 1097–1105.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning
to Align and Translate,” in International Conference on Learning Representations (ICLR),
2015. [Online]. Available: https://arxiv.org/pdf/1409.0473.pdf.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention Is All You Need,” in Advances in Neural Information Processing
Systems (NeurIPS), 2017. [Online]. Available: https://arxiv.org/pdf/1706.
03762.pdf.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.,” CoRR, vol. abs/1412.6980,
2014. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/
corr1412.html#KingmaB14.

[16] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning
with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71, 2019. DOI: 10.
1016/j.neunet.2019.01.012. [Online]. Available: https://doi.org/10.
1016/j.neunet.2019.01.012.

[17] D. Rao, F. Visin, A. A. Rusu, R. Pascanu, Y. W. Teh, and R. Hadsell, “Continual un-
supervised representation learning,” in Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 7645–7655. [On-
line]. Available: https://proceedings.neurips.cc/paper/2019/hash/
861578d797aeb0634f77aff3f488cca2-Abstract.html.

https://arxiv.org/abs/1809.11067
http://arxiv.org/abs/1809.11067
https://people.eecs.berkeley.edu/{~}russell/papers/icra14-planrob.pdf
https://people.eecs.berkeley.edu/{~}russell/papers/icra14-planrob.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://proceedings.neurips.cc/paper/2019/hash/861578d797aeb0634f77aff3f488cca2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/861578d797aeb0634f77aff3f488cca2-Abstract.html

BIBLIOGRAPHY 180

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” CoRR, vol. abs/1707.06347, 2017. arXiv: 1707.06347.

[19] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning,” Machine Learning, vol. 8, no. 3-4, pp. 229–256, May 1992, ISSN:
0885-6125. DOI: 10.1007/BF00992696. [Online]. Available: http://dx.doi.
org/10.1007/BF00992696.

[20] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade, “Towards Generalization and
Simplicity in Continuous Control,” in NIPS, 2017.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, 2015.

[22] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double Q-
learning,” in Association for the Advancement of Artificial Intelligence (AAAI), 2016, ISBN:
1509.06461v3. arXiv: 1509.06461v3. [Online]. Available: www.aaai.org.

[23] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochastic actor,” arXiv preprint arXiv:1801.01290,
2018.

[24] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 7559–7566.

[25] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa, “Learning continuous
control policies by stochastic value gradients,” in NIPS, 2015.

[26] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient approach to
policy search,” in Proceedings of the 28th International Conference on machine learning
(ICML-11), 2011, pp. 465–472.

[27] R. Sutton and A. Barto, Introduction to Reinforcement Learning. MIT Press, 1998, vol. 1.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing Atari with Deep Reinforcement Learning,” in NIPS Workshop on Deep
Learning, 2013, pp. 1–9, ISBN: 1476-4687 (Electronic) 0028-0836 (Linking). DOI: 10.
1038/nature14236. arXiv: 1312.5602. [Online]. Available: https://arxiv.
org/pdf/1312.5602.pdfhttp://arxiv.org/abs/1312.5602https:
//www.cs.toronto.edu/{~}vmnih/docs/dqn.pdf.

[29] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” CoRR, 2016. arXiv: 1606.01540.

[30] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement
learning with imagined goals,” in Advances in Neural Information Processing Systems,
2018, pp. 9191–9200.

https://arxiv.org/abs/1707.06347
https://doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696
https://arxiv.org/abs/1509.06461v3
www.aaai.org
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1312.5602
https://arxiv.org/pdf/1312.5602.pdf http://arxiv.org/abs/1312.5602 https://www.cs.toronto.edu/{~}vmnih/docs/dqn.pdf
https://arxiv.org/pdf/1312.5602.pdf http://arxiv.org/abs/1312.5602 https://www.cs.toronto.edu/{~}vmnih/docs/dqn.pdf
https://arxiv.org/pdf/1312.5602.pdf http://arxiv.org/abs/1312.5602 https://www.cs.toronto.edu/{~}vmnih/docs/dqn.pdf
https://arxiv.org/abs/1606.01540

BIBLIOGRAPHY 181

[31] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[32] Y. Chebotar, K. Hausman, M. Zhang, G. S. Sukhatme, S. Schaal, and S. Levine, “Combining
model-based and model-free updates for trajectory-centric reinforcement learning,” CoRR,
vol. abs/1703.03078, 2017. [Online]. Available: http://arxiv.org/abs/1703.
03078.

[33] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar, “Deep Dynamics Models for Learning
Dexterous Manipulation,” in Conference on Robot Learning (CoRL), 2019.

[34] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection,” CoRR, vol. abs/1603.02199,
2016. arXiv: 1603.02199. [Online]. Available: http://arxiv.org/abs/1603.
02199.

[35] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates,” in Robotics and Automation (ICRA),
2017 IEEE International Conference on, IEEE, 2017, pp. 3389–3396.

[36] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg, “Learning by playing solving sparse reward tasks from scratch,” in
International Conference on Machine Learning, PMLR, 2018, pp. 4344–4353.

[37] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine,
and K. Hausman, “Mt-opt: Continuous multi-task robotic reinforcement learning at scale,”
arXiv preprint arXiv:2104.08212, 2021.

[38] G. Kahn, P. Abbeel, and S. Levine, “Badgr: An autonomous self-supervised learning-based
navigation system,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1312–1319,
2021.

[39] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, “Target-
driven visual navigation in indoor scenes using deep reinforcement learning,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[40] H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, and M. Ardani, “Deep rein-
forcement learning for real autonomous mobile robot navigation in indoor environments,”
CoRR, vol. abs/2005.13857, 2020. arXiv: 2005.13857. [Online]. Available: https:
//arxiv.org/abs/2005.13857.

[41] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous in-hand manipulation,” The
International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[42] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization
for transferring deep neural networks from simulation to the real world,” ArXiv e-prints,
2017. arXiv: 1703.06907.

http://arxiv.org/abs/1703.03078
http://arxiv.org/abs/1703.03078
https://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199
https://arxiv.org/abs/2005.13857
https://arxiv.org/abs/2005.13857
https://arxiv.org/abs/2005.13857
https://arxiv.org/abs/1703.06907

BIBLIOGRAPHY 182

[43] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real image,”
arXiv preprint arXiv:1611.04201, 2016.

[44] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova,
and D. Batra, “Are we making real progress in simulated environments? measuring the
sim2real gap in embodied visual navigation,” CoRR, vol. abs/1912.06321, 2019. arXiv:
1912.06321. [Online]. Available: http://arxiv.org/abs/1912.06321.

[45] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak, “Auto-tuned sim-to-real transfer,”
CoRR, vol. abs/2104.07662, 2021. arXiv: 2104.07662. [Online]. Available: https:
//arxiv.org/abs/2104.07662.

[46] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox,
“Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World
Experience,” in International Conference on Robotics and Automation (ICRA), 2019. arXiv:
1810.05687v4. [Online]. Available: https://arxiv.org/pdf/1810.05687.
pdf.

[47] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine, “Ving: Learning open-world
navigation with visual goals,” CoRR, vol. abs/2012.09812, 2020. arXiv: 2012.09812.
[Online]. Available: https://arxiv.org/abs/2012.09812.

[48] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep reinforcement
learning for deformable object manipulation,” CoRR, vol. abs/2011.07215, 2020. arXiv:
2011.07215. [Online]. Available: https://arxiv.org/abs/2011.07215.

[49] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. B. Tenenbaum, “Deep convolutional inverse
graphics network,” in Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett, Eds., 2015, pp. 2539–2547. [Online]. Available: https://proceedings.
neurips.cc/paper/2015/hash/ced556cd9f9c0c8315cfbe0744a3baf0-
Abstract.html.

[50] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep object
pose estimation for semantic robotic grasping of household objects,” in 2nd Annual Confer-
ence on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceed-
ings, ser. Proceedings of Machine Learning Research, vol. 87, PMLR, 2018, pp. 306–316.
[Online]. Available: http://proceedings.mlr.press/v87/tremblay18a.
html.

[51] L. Manuelli, Y. Li, P. R. Florence, and R. Tedrake, “Keypoints into the future: Self-
supervised correspondence in model-based reinforcement learning,” CoRR, vol. abs/2009.05085,
2020. arXiv: 2009.05085. [Online]. Available: https://arxiv.org/abs/2009.
05085.

https://arxiv.org/abs/1912.06321
http://arxiv.org/abs/1912.06321
https://arxiv.org/abs/2104.07662
https://arxiv.org/abs/2104.07662
https://arxiv.org/abs/2104.07662
https://arxiv.org/abs/1810.05687v4
https://arxiv.org/pdf/1810.05687.pdf
https://arxiv.org/pdf/1810.05687.pdf
https://arxiv.org/abs/2012.09812
https://arxiv.org/abs/2012.09812
https://arxiv.org/abs/2011.07215
https://arxiv.org/abs/2011.07215
https://proceedings.neurips.cc/paper/2015/hash/ced556cd9f9c0c8315cfbe0744a3baf0-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ced556cd9f9c0c8315cfbe0744a3baf0-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ced556cd9f9c0c8315cfbe0744a3baf0-Abstract.html
http://proceedings.mlr.press/v87/tremblay18a.html
http://proceedings.mlr.press/v87/tremblay18a.html
https://arxiv.org/abs/2009.05085
https://arxiv.org/abs/2009.05085
https://arxiv.org/abs/2009.05085

BIBLIOGRAPHY 183

[52] T. Schmidt, R. A. Newcombe, and D. Fox, “Self-supervised visual descriptor learning for
dense correspondence,” IEEE Robotics Autom. Lett., vol. 2, no. 2, pp. 420–427, 2017. DOI:
10.1109/LRA.2016.2634089. [Online]. Available: https://doi.org/10.
1109/LRA.2016.2634089.

[53] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and generalize striking
movements in robot table tennis,” Int. J. Robotics Res., vol. 32, no. 3, pp. 263–279, 2013.
DOI: 10.1177/0278364912472380. [Online]. Available: https://doi.org/10.
1177/0278364912472380.

[54] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof grasping for target-
driven object manipulation in clutter,” in 2020 IEEE International Conference on Robotics
and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020, IEEE, 2020,
pp. 6232–6238. DOI: 10.1109/ICRA40945.2020.9197318. [Online]. Available:
https://doi.org/10.1109/ICRA40945.2020.9197318.

[55] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M.
Young, J. Crespo, and D. Dennison, “Hidden technical debt in machine learning systems,”
in Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 2503–
2511. [Online]. Available: https://proceedings.neurips.cc/paper/2015/
hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html.

[56] B. Goldberg, K. Goldberg, and A. Chase, “How to train your robot,” 2019.

[57] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and
M. Hebert, “Learning monocular reactive UAV control in cluttered natural environments,” in
2013 IEEE International Conference on Robotics and Automation, 2013. DOI: 10.1109/
ICRA.2013.6630809.

[58] D. Pomerleau, “ALVINN: an autonomous land vehicle in a neural network,” in NIPS, 1988.

[59] A. Edwards, C. Isbell, and A. Takanishi, “Perceptual reward functions,” arXiv preprint
arXiv: 1608.03824, 2016.

[60] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,” in Proceedings
of the Seventeenth International Conference on Machine Learning, ser. ICML ’00, 2000,
ISBN: 1-55860-707-2.

[61] B. C. Stadie, P. Abbeel, and I. Sutskever, “Third-person imitation learning,” in Proceedings
of the International Conference on Learning Representations, ICLR 2017.

[62] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in Neural
Information Processing Systems 29, 2016.

[63] P. Sermanet, K. Xu, and S. Levine, “Unsupervised perceptual rewards for imitation learning,”
in Robotics: Science and Systems (RSS) 2017.

https://doi.org/10.1109/LRA.2016.2634089
https://doi.org/10.1109/LRA.2016.2634089
https://doi.org/10.1109/LRA.2016.2634089
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1109/ICRA40945.2020.9197318
https://doi.org/10.1109/ICRA40945.2020.9197318
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://doi.org/10.1109/ICRA.2013.6630809
https://doi.org/10.1109/ICRA.2013.6630809

BIBLIOGRAPHY 184

[64] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in Cognitive Sciences,
vol. 3, no. 6, pp. 233–242, 1999.

[65] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning
from demonstration,” Robot. Auton. Syst., vol. 57, no. 5, pp. 469–483, May 2009, ISSN:
0921-8890. DOI: 10.1016/j.robot.2008.10.024.

[66] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics through ap-
prenticeship learning,” I. J. Robotics Res., vol. 29, no. 13, pp. 1608–1639, 2010. DOI:
10.1177/0278364910371999.

[67] J. Kober and J. Peters, “Learning motor primitives for robotics,” in 2009 IEEE International
Conference on Robotics and Automation, ICRA 2009, Kobe, Japan, May 12-17, 2009, IEEE,
2009, pp. 2112–2118. DOI: 10.1109/ROBOT.2009.5152577. [Online]. Available:
https://doi.org/10.1109/ROBOT.2009.5152577.

[68] A. Billard and M. J. Mataric, “Learning human arm movements by imitation: Evaluation
of a biologically inspired connectionist architecture,” Robotics and Autonomous Systems,
vol. 37, no. 2-3, pp. 145–160, 2001. DOI: 10.1016/S0921-8890(01)00155-5.

[69] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in
Proceedings of the Twenty-first International Conference on Machine Learning, ser. ICML
’04, Banff, Alberta, Canada: ACM, 2004. DOI: 10.1145/1015330.1015430.

[70] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement learning with
gaussian processes,” in Advances in Neural Information Processing Systems 24, 2011.

[71] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse
reinforcement learning.,” in AAAI, AAAI Press, 2008, ISBN: 978-1-57735-368-3.

[72] N. D. Ratliff, J. A. Bagnell, and M. Zinkevich, “Maximum margin planning,” in Machine
Learning, Proceedings of the Twenty-Third International Conference ICML, 2006. DOI:
10.1145/1143844.1143936.

[73] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learning,” in IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial Intelligence, 2007.

[74] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal control
via policy optimization,” in Proceedings of the 33nd International Conference on Machine
Learning, ICML, 2016.

[75] M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal, “Learning objective functions for
manipulation,” in 2013 IEEE International Conference on Robotics and Automation, 2013.
DOI: 10.1109/ICRA.2013.6630743.

[76] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse reinforcement learning,”
in Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS, 2011.

https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1177/0278364910371999
https://doi.org/10.1109/ROBOT.2009.5152577
https://doi.org/10.1109/ROBOT.2009.5152577
https://doi.org/10.1016/S0921-8890(01)00155-5
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1109/ICRA.2013.6630743

BIBLIOGRAPHY 185

[77] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain,
“Time-Contrastive Networks: Self-Supervised Learning from Video,” Proceedings - IEEE In-
ternational Conference on Robotics and Automation, pp. 1134–1141, 2018, ISSN: 10504729.
DOI: 10.1109/ICRA.2018.8462891. arXiv: 1704.06888.

[78] J. Lee and M. S. Ryoo, “Learning robot activities from first-person human videos using
convolutional future regression,” arXiv preprint arXiv:1703.01040, 2017.

[79] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and
W. Zaremba, “One-shot imitation learning,” in NIPS, 2017.

[80] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks,” in ICCV, 2017.

[81] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsupervised pixel-
level domain adaptation with generative adversarial networks,” in CVPR, 2017.

[82] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional
adversarial networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[83] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv
preprint arXiv:1508.06576, 2015.

[84] Z. Xu and M. Cakmak, “Enhanced robotic cleaning with a low-cost tool attachment,” in
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2014.
DOI: 10.1109/IROS.2014.6942916.

[85] C. Schenck and D. Fox, “Visual closed-loop control for pouring liquids,” in 2017 IEEE
International Conference on Robotics and Automation, ICRA, IEEE, 2017. DOI: 10.1109/
ICRA.2017.7989307.

[86] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep latent features for model
predictive control,” in Robotics: Science and Systems XI, 2015.

[87] J. Sung, S. H. Jin, I. Lenz, and A. Saxena, “Robobarista: Learning to manipulate novel
objects via deep multimodal embedding,” In International Symposium on Robotics Research
(ISRR), 2015,

[88] A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using deep neural networks,”
in ICRA, 2017.

[89] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant feature spaces to
transfer skills with reinforcement learning,” in Proceedings of the International Conference
on Learning Representations, ICLR, 2017.

[90] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region Policy
Optimization,” in International Conference on Machine Learning (ICML), 2015, ISBN:
0375-9687. DOI: 10.1063/1.4927398. arXiv: 1502.05477. [Online]. Available:
https://arxiv.org/pdf/1502.05477.pdfhttp://arxiv.org/abs/
1502.05477.

https://doi.org/10.1109/ICRA.2018.8462891
https://arxiv.org/abs/1704.06888
https://doi.org/10.1109/IROS.2014.6942916
https://doi.org/10.1109/ICRA.2017.7989307
https://doi.org/10.1109/ICRA.2017.7989307
https://doi.org/10.1063/1.4927398
https://arxiv.org/abs/1502.05477
https://arxiv.org/pdf/1502.05477.pdf http://arxiv.org/abs/1502.05477
https://arxiv.org/pdf/1502.05477.pdf http://arxiv.org/abs/1502.05477

BIBLIOGRAPHY 186

[91] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in
IROS, 2012. DOI: 10.1109/IROS.2012.6386109.

[92] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2016. DOI: 10.1109/CVPR.2016.308.

[93] Y. Li, J. Song, and S. Ermon, “Inferring the latent structure of human decision-making from
raw visual inputs,” arXiv preprint arXiv:1703.08840, 2017.

[94] E. Tzeng, C. Devin, J. Hoffman, C. Finn, P. Abbeel, S. Levine, K. Saenko, and T. Darrell,
“Adapting deep visuomotor representations with weak pairwise constraints,” in Workshop
on Algorithmic Robotics, 2016.

[95] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine,
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions, 2018. arXiv: 1709.10087 [cs.LG].

[96] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under reward transformations:
Theory and application to reward shaping,” in Proceedings of the Sixteenth International
Conference on Machine Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999, I. Bratko
and S. Dzeroski, Eds., Morgan Kaufmann, 1999, pp. 278–287.

[97] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine, “Variational inverse control with events:
A general framework for data-driven reward definition,” in Advances in Neural Information
Processing Systems, 2018, pp. 8547–8556.

[98] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine, “The
ingredients of real-world robotic reinforcement learning,” arXiv preprint arXiv:2004.12570,
2020.

[99] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative Adversarial Nets,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2014. [Online]. Available: https://arxiv.org/
pdf/1406.2661.pdf.

[100] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial inverse reinforce-
ment learning,” in International Conference on Learning Representations, 2018.

[101] D. Misra, M. Henaff, A. Krishnamurthy, and J. Langford, “Kinematic state abstraction and
provably efficient rich-observation reinforcement learning,” CoRR, vol. abs/1911.05815,
2019. arXiv: 1911.05815. [Online]. Available: http://arxiv.org/abs/1911.
05815.

[102] M. Wiering and J. Schmidhuber, “Efficient model-based exploration,” in Proceedings of
the Sixth International Conference on Simulation of Adaptive Behavior: From Animals to
Animats, MIT Press Cambridge, MA, 1998.

[103] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit
problem,” Machine learning, 2002.

https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/CVPR.2016.308
https://arxiv.org/abs/1709.10087
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/abs/1911.05815
http://arxiv.org/abs/1911.05815
http://arxiv.org/abs/1911.05815

BIBLIOGRAPHY 187

[104] T. Schaul, Y. Sun, D. Wierstra, F. Gomez, and J. Schmidhuber, “Curiosity-driven optimiza-
tion,” in 2011 IEEE Congress of Evolutionary Computation (CEC), 2011.

[105] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel, “Variational
Information Maximizing Exploration,” in Advances in Neural Information Processing
Systems (NIPS), 2016. arXiv: 1605.09674.

[106] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by self-
supervised prediction,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2017, pp. 16–17.

[107] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman, F. DeTurck,
and P. Abbeel, “# exploration: A study of count-based exploration for deep reinforcement
learning,” in Advances in neural information processing systems, 2017, pp. 2753–2762.

[108] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforcement learning
with deep predictive models,” arXiv preprint arXiv:1507.00814, 2015.

[109] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos, “Unifying
count-based exploration and intrinsic motivation,” CoRR, vol. abs/1606.01868, 2016. arXiv:
1606.01868. [Online]. Available: http://arxiv.org/abs/1606.01868.

[110] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random network
distillation,” in International Conference on Learning Representations, 2018.

[111] B. O’Donoghue, “Variational bayesian reinforcement learning with regret bounds,” arXiv
preprint arXiv:1807.09647, 2018.

[112] M. Strens, “A bayesian framework for reinforcement learning,” in ICML, 2000.

[113] I. Osband, D. Russo, and B. Van Roy, “(more) efficient reinforcement learning via posterior
sampling,” in Advances in Neural Information Processing Systems, 2013, pp. 3003–3011.

[114] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via bootstrapped
dqn,” in Advances in neural information processing systems, 2016.

[115] W. B. Knox and P. Stone, “Interactively shaping agents via human reinforcement: The tamer
framework,” in Proceedings of the fifth international conference on Knowledge capture,
2009, pp. 9–16.

[116] A. Singh, L. Yang, C. Finn, and S. Levine, “End-to-end robotic reinforcement learning
without reward engineering,” in Robotics: Science and Systems XV, University of Freiburg,
Freiburg im Breisgau, Germany, June 22-26, 2019, A. Bicchi, H. Kress-Gazit, and S.
Hutchinson, Eds., 2019.

[117] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI, 1993.

[118] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function approximators,”
in International conference on machine learning, 2015, pp. 1312–1320.

[119] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight experience replay,” in Advances in
neural information processing systems, 2017.

https://arxiv.org/abs/1605.09674
https://arxiv.org/abs/1606.01868
http://arxiv.org/abs/1606.01868

BIBLIOGRAPHY 188

[120] V. Veeriah, J. Oh, and S. Singh, “Many-goals reinforcement learning,” arXiv preprint
arXiv:1806.09605, 2018.

[121] P. Rauber, A. Ummadisingu, F. Mutz, and J. Schmidhuber, “Hindsight policy gradients,” in
International Conference on Learning Representations, 2018.

[122] D. Warde-Farley, T. Van de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih,
“Unsupervised control through non-parametric discriminative rewards,” in International
Conference on Learning Representations, 2018.

[123] C. Colas, P. Fournier, M. Chetouani, O. Sigaud, and P.-Y. Oudeyer, “Curious: Intrinsically
motivated modular multi-goal reinforcement learning,” in International conference on
machine learning, 2019, pp. 1331–1340.

[124] D. Ghosh, A. Gupta, and S. Levine, “Learning actionable representations with goal condi-
tioned policies,” in International Conference on Learning Representations, 2019.

[125] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine, “Skew-fit: State-covering
self-supervised reinforcement learning,” in International Conference on Machine Learning
(ICML), 2020.

[126] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” The
Journal of Machine Learning Research, vol. 14, no. 1, pp. 1303–1347, 2013.

[127] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural
network,” in International Conference on Machine Learning, 2015, pp. 1613–1622.

[128] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson, “A simple baseline
for bayesian uncertainty in deep learning,” in Advances in Neural Information Processing
Systems, 2019, pp. 13 153–13 164.

[129] J. J. Rissanen, “Fisher information and stochastic complexity,” IEEE transactions on
information theory, vol. 42, no. 1, pp. 40–47, 1996.

[130] Y. M. Shtar’kov, “Universal sequential coding of single messages,” Problemy Peredachi
Informatsii, vol. 23, no. 3, pp. 3–17, 1987.

[131] P. D. Grünwald, The minimum description length principle. MIT press, 2007.

[132] Y. Fogel and M. Feder, “Universal batch learning with log-loss,” in 2018 IEEE International
Symposium on Information Theory (ISIT), IEEE, 2018, pp. 21–25.

[133] A. Zhou and S. Levine, “Amortized conditional normalized maximum likelihood,” CoRR,
vol. abs/2011.02696, 2020. arXiv: 2011.02696.

[134] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and
review,” CoRR, vol. abs/1805.00909, 2018. arXiv: 1805.00909.

[135] J. Rissanen and T. Roos, “Conditional NML universal models,” in 2007 Information Theory
and Applications Workshop, 2007, pp. 337–341.

[136] K. Bibas, Y. Fogel, and M. Feder, “Deep pnml: Predictive normalized maximum likelihood
for deep neural networks,” CoRR, vol. abs/1904.12286, 2019. arXiv: 1904.12286.

https://arxiv.org/abs/2011.02696
https://arxiv.org/abs/1805.00909
https://arxiv.org/abs/1904.12286

BIBLIOGRAPHY 189

[137] M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial
networks,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[138] J. Zhang, “Model selection with informative normalized maximum likelihood: Data prior
and model prior,” 2011.

[139] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning, 2019. arXiv:
1910.10897 [cs.LG].

[140] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of
deep networks,” in International Conference on Machine Learning (ICML), 2017.

[141] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine, “Dynamical distance learning for
unsupervised and semi-supervised skill discovery,” CoRR, vol. abs/1907.08225, 2019. arXiv:
1907.08225.

[142] G. Vezzani, A. Gupta, L. Natale, and P. Abbeel, “Learning latent state representation for
speeding up exploration,” arXiv preprint arXiv:1905.12621, 2019.

[143] S. Branavan, H. Chen, L. Zettlemoyer, and R. Barzilay, “Reinforcement learning for
mapping instructions to actions,” in ACL, 2009.

[144] D. Chen and R. Mooney, “Learning to interpret natural language navigation instructions
from observations,” in AAAI, 2011.

[145] A. L. Thomaz, G. Hoffman, and C. Breazeal, “Reinforcement learning with human teachers:
Understanding how people want to teach robots,” in RO-MAN, 2006.

[146] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation: Learning to imitate
behaviors from raw video via context translation,” CoRR, vol. abs/1707.03374, 2017. arXiv:
1707.03374.

[147] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei, “Deep rein-
forcement learning from human preferences,” in NIPS, 2017.

[148] G. Warnell, N. R. Waytowich, V. Lawhern, and P. Stone, “Deep TAMER: interactive
agent shaping in high-dimensional state spaces,” CoRR, vol. abs/1709.10163, 2017. arXiv:
1709.10163.

[149] M. MacMahon, B. Stankiewicz, and B. Kuipers, “Walk the talk: Connecting language,
knowledge, and action in route instructions,” in AAAI, 2006.

[150] A. Vogel and D. Jurafsky, “Learning to follow navigational directions,” in ACL, 2010.

[151] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy, “Under-
standing natural language commands for robotic navigation and mobile manipulation,” in
AAAI, 2011.

[152] Y. Artzi and L. Zettlemoyer, “Weakly supervised learning of semantic parsers for mapping
instructions to actions,” in TACL, 2013.

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1907.08225
https://arxiv.org/abs/1707.03374
https://arxiv.org/abs/1709.10163

BIBLIOGRAPHY 190

[153] J. Kim and R. Mooney, “Adapting discriminative reranking to grounded language learning,”
in ACL, 2013.

[154] J. Andreas and D. Klein, “Alignment-based compositional semantics for instruction follow-
ing,” in EMNLP, 2015.

[155] D. Misra, J. Langford, and Y. Artzi, “Mapping instructions and visual observations to actions
with reinforcement learning,” in EMNLP, 2017.

[156] J. Andreas, D. Klein, and S. Levine, “Learning with latent language,” in NAACL, 2018.

[157] J. Oh, S. P. Singh, H. Lee, and P. Kohli, “Zero-shot task generalization with multi-task deep
reinforcement learning,” CoRR, vol. abs/1706.05064, 2017. arXiv: 1706.05064.

[158] M. Janner, K. Narasimhan, and R. Barzilay, “Representation learning for grounded spatial
reasoning,” in ACL, 2018.

[159] R. Akrour, M. Schoenauer, and M. Sebag, “Preference-based policy learning,” in ECML/P-
KDD, 2011.

[160] P. Pilarski, M. Dawson, T. Degris, F. Fahimi, J. Carey, and R. Sutton, “Online human
training of a myoelectric prosthesis controller via actor-critic reinforcement learning,” in
IEEE ICORR, 2011.

[161] R. Akrour, M. Schoenauer, and M. Sebag, “APRIL: active preference-learning based
reinforcement learning,” CoRR, vol. abs/1208.0984, 2012. arXiv: 1208.0984.

[162] L. El Asri, J. He, and K. Suleman, “A sequence-to-sequence model for user simulation in
spoken dialogue systems,” in arXiv preprint arXiv:1607.00070, 2016.

[163] J. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Leibo, R. Munos, C. Blundell, D. Ku-
maran, and M. Botvinick, “Learning to reinforcement learn,” arXiv preprint arXiv:1611.05763,
2016.

[164] S. Reddy, S. Levine, and A. D. Dragan, “Shared autonomy via deep reinforcement learning,”
CoRR, vol. abs/1802.01744, 2018. arXiv: 1802.01744. [Online]. Available: http:
//arxiv.org/abs/1802.01744.

[165] J. Schmidhuber, “Evolutionary principles in self-referential learning,” Diploma thesis,
Institut f. Informatik, Tech. Univ. Munich, 1987.

[166] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “Rl$ˆ2$: Fast
reinforcement learning via slow reinforcement learning,” CoRR, vol. abs/1611.02779, 2016.
arXiv: 1611.02779.

[167] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “Meta-learning with temporal convo-
lutions,” CoRR, vol. abs/1707.03141, 2017. arXiv: 1707.03141.

[168] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn, “Learning
to adapt in dynamic, real-world environments through meta-reinforcement learning,” arXiv
preprint arXiv:1803.11347, 2018.

https://arxiv.org/abs/1706.05064
https://arxiv.org/abs/1208.0984
https://arxiv.org/abs/1802.01744
http://arxiv.org/abs/1802.01744
http://arxiv.org/abs/1802.01744
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1707.03141

BIBLIOGRAPHY 191

[169] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-shot learning,” CoRR,
vol. abs/1703.05175, 2017. arXiv: 1703.05175.

[170] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with
memory-augmented neural networks,” in International Conference on Machine Learning
(ICML), 2016.

[171] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching networks
for one shot learning,” in Advances in Neural Information Processing Systems (NIPS), 2016.

[172] F. Sung, L. Zhang, T. Xiang, T. M. Hospedales, and Y. Yang, “Learning to learn: Meta-
critic networks for sample efficient learning,” CoRR, vol. abs/1706.09529, 2017. arXiv:
1706.09529.

[173] K. Xu, E. Ratner, A. D. Dragan, S. Levine, and C. Finn, “Learning a prior over intent via
meta-inverse reinforcement learning,” CoRR, vol. abs/1805.12573, 2018.

[174] A. Xie, A. Singh, S. Levine, and C. Finn, “Few-shot goal inference for visuomotor learning
and planning,” in CoRL, 2018.

[175] S. Ross, G. J. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA,
April 11-13, 2011, 2011, pp. 627–635. [Online]. Available: http://www.jmlr.org/
proceedings/papers/v15/ross11a/ross11a.pdf.

[176] M. Chevalier-Boisvert and L. Willems, Minimalistic gridworld environment for openai gym,
https://github.com/maximecb/gym-minigrid, 2018.

[177] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[178] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous
control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[179] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex environments,” arXiv
preprint arXiv:1611.03673, 2016.

[180] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan, “Inverse reward
design,” in Advances in Neural Information Processing Systems, 2017, pp. 6768–6777.

[181] P. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” CoRR, vol. abs/1609.05140,
2016. arXiv: 1609.05140. [Online]. Available: http://arxiv.org/abs/1609.
05140.

[182] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and D. Silver, “Learning and
transfer of modulated locomotor controllers,” arXiv preprint arXiv:1610.05182, 2016.

[183] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Advances in neural infor-
mation processing systems, 1993, pp. 271–278.

https://arxiv.org/abs/1703.05175
https://arxiv.org/abs/1706.09529
http://www.jmlr.org/proceedings/papers/v15/ross11a/ross11a.pdf
http://www.jmlr.org/proceedings/papers/v15/ross11a/ross11a.pdf
https://github.com/maximecb/gym-minigrid
https://arxiv.org/abs/1609.05140
http://arxiv.org/abs/1609.05140
http://arxiv.org/abs/1609.05140

BIBLIOGRAPHY 192

[184] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman, “Meta learning shared hierarchies,”
arXiv preprint arXiv:1710.09767, 2017.

[185] S. Krishnan, R. Fox, I. Stoica, and K. Goldberg, “Ddco: Discovery of deep continuous
options for robot learning from demonstrations,” in Conference on Robot Learning, 2017,
pp. 418–437.

[186] C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for hierarchical reinforce-
ment learning,” arXiv preprint arXiv:1704.03012, 2017.

[187] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer,” arXiv preprint
arXiv:1701.06538, 2017.

[188] J. Schulman, P. Abbeel, and X. Chen, “Equivalence between policy gradients and soft
q-learning,” arXiv preprint arXiv:1704.06440, 2017.

[189] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap between value
and policy based reinforcement learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 2772–2782.

[190] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep energy-
based policies,” arXiv preprint arXiv:1702.08165, 2017.

[191] S. Mohamed and D. J. Rezende, “Variational information maximisation for intrinsically
motivated reinforcement learning,” in Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds., 2015, pp. 2125–2133. [Online]. Available: https://proceedings.
neurips.cc/paper/2015/hash/e00406144c1e7e35240afed70f34166a-
Abstract.html.

[192] T. Jung, D. Polani, and P. Stone, “Empowerment for continuous agent—environment
systems,” Adaptive Behavior, vol. 19, no. 1, pp. 16–39, 2011.

[193] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller, “Learning an
embedding space for transferable robot skills,” International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/forum?
id=rk07ZXZRb.

[194] K. Gregor, D. J. Rezende, and D. Wierstra, “Variational intrinsic control,” arXiv preprint
arXiv:1611.07507, 2016.

[195] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through the search for
novelty alone,” Evolutionary computation, vol. 19, no. 2, pp. 189–223, 2011.

[196] ——, “Evolving a diversity of virtual creatures through novelty search and local competition,”
2011.

https://proceedings.neurips.cc/paper/2015/hash/e00406144c1e7e35240afed70f34166a-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e00406144c1e7e35240afed70f34166a-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e00406144c1e7e35240afed70f34166a-Abstract.html
https://openreview.net/forum?id=rk07ZXZRb
https://openreview.net/forum?id=rk07ZXZRb

BIBLIOGRAPHY 193

[197] B. G. Woolley and K. O. Stanley, “On the deleterious effects of a priori objectives on
evolution and representation,” in Proceedings of the 13th annual conference on Genetic and
evolutionary computation, ACM, 2011, pp. 957–964.

[198] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topolo-
gies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[199] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, “Deep neuroevo-
lution: Genetic algorithms are a competitive alternative for training deep neural networks
for reinforcement learning,” arXiv preprint arXiv:1712.06567, 2017.

[200] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new frontier for evolutionary
computation,” Frontiers in Robotics and AI, vol. 3, p. 40, 2016.

[201] J.-B. Mouret and S. Doncieux, “Overcoming the bootstrap problem in evolutionary robotics
using behavioral diversity,” in Evolutionary Computation, 2009. CEC’09. IEEE Congress
on, IEEE, 2009, pp. 1161–1168.

[202] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic definitions and new
directions,” Contemporary educational psychology, vol. 25, no. 1, pp. 54–67, 2000.

[203] J. Fu, J. Co-Reyes, and S. Levine, “Ex2: Exploration with exemplar models for deep
reinforcement learning,” in Advances in Neural Information Processing Systems, 2017,
pp. 2574–2584.

[204] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motivation,” IEEE Transac-
tions on Autonomous Mental Development, vol. 2, no. 3, pp. 230–247, 2010.

[205] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation systems for autonomous
mental development,” IEEE transactions on evolutionary computation, vol. 11, no. 2,
pp. 265–286, 2007.

[206] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models with intrinsically moti-
vated goal exploration in robots,” Robotics and Autonomous Systems, vol. 61, no. 1, pp. 49–
73, 2013.

[207] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel, “Variational autoencoding learning of
options by reinforcement,” NIPS Deep Reinforcement Learning Symposium, 2017.

[208] D. B. F. Agakov, “The im algorithm: A variational approach to information maximization,”
Advances in Neural Information Processing Systems, vol. 16, p. 201, 2004.

[209] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus, “Intrinsic moti-
vation and automatic curricula via asymmetric self-play,” arXiv preprint arXiv:1703.05407,
2017.

[210] R. K. Merton, “The matthew effect in science: The reward and communication systems of
science are considered,” Science, vol. 159, no. 3810, pp. 56–63, 1968.

[211] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag New York,
2016.

BIBLIOGRAPHY 194

[212] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural attentive meta-
learner,” in NIPS 2017 Workshop on Meta-Learning, 2017.

[213] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-reinforcement learning of
structured exploration strategies,” arXiv preprint arXiv:1802.07245, 2018.

[214] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel, “Continuous
adaptation via meta-learning in nonstationary and competitive environments,” arXiv preprint
arXiv:1710.03641, 2017.

[215] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell, “Data-dependent initializations of
convolutional neural networks,” arXiv preprint arXiv:1511.06856, 2015.

[216] K. Hsu, S. Levine, and C. Finn, “Unsupervised learning via meta-learning,” in International
Conference on Learning Representations (ICLR), 2019.

[217] D. K. Naik and R. Mammone, “Meta-neural networks that learn by learning,” in Interna-
tional Joint Conference on Neural Netowrks (IJCNN), 1992.

[218] S. Thrun and L. Pratt, Learning to Learn. Springer Science & Business Media, 1998.

[219] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei, “On the optimization of a synaptic learning
rule,” in Optimality in Artificial and Biological Neural Networks, 1992.

[220] S. Hochreiter, A. Younger, and P. Conwell, “Learning to learn using gradient descent,” in
International Conference on Artificial Neural Networks (ICANN), 2001.

[221] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de
Freitas, “Learning to learn by gradient descent by gradient descent,” in Neural Information
Processing Systems (NIPS), 2016.

[222] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in International
Conference on Learning Representations (ICLR), 2017.

[223] T. Munkhdalai and H. Yu, “Meta networks,” International Conference on Machine Learning
(ICML), 2017.

[224] R. Mendonca, A. Gupta, R. Kralev, P. Abbeel, S. Levine, and C. Finn, “Guided meta-policy
search,” CoRR, vol. abs/1904.00956, 2019.

[225] R. Houthooft, R. Y. Chen, P. Isola, B. C. Stadie, F. Wolski, J. Ho, and P. Abbeel, “Evolved
policy gradients,” arXiv preprint arXiv:1802.04821, 2018.

[226] B. C. Stadie, G. Yang, R. Houthooft, X. Chen, Y. Duan, Y. Wu, P. Abbeel, and I. Sutskever,
“Some considerations on learning to explore via meta-reinforcement learning,” CoRR,
vol. abs/1803.01118, 2018. arXiv: 1803.01118. [Online]. Available: http://arxiv.
org/abs/1803.01118.

[227] K. Rakelly, A. Zhou, D. Quillen, C. Finn, and S. Levine, “Efficient off-policy meta-
reinforcement learning via probabilistic context variables,” arXiv preprint arXiv:1903.08254,
2019.

https://arxiv.org/abs/1803.01118
http://arxiv.org/abs/1803.01118
http://arxiv.org/abs/1803.01118

BIBLIOGRAPHY 195

[228] A. Antoniou and A. Storkey, “Assume, augment and learn: Unsupervised few-shot meta-
learning via random labels and data augmentation,” arXiv preprint arXiv:1902.09884, 2019.

[229] J. Lin, Y. Wang, Y. Xia, T. He, and Z. Chen, “Learning to transfer: Unsupervised meta
domain translation,” arXiv preprint arXiv:1906.00181, 2019.

[230] Z. Ji, X. Zou, T. Huang, and S. Wu, “Unsupervised few-shot learning via self-supervised
training,” arXiv preprint arXiv:1912.12178, 2019.

[231] D. Held, X. Geng, C. Florensa, and P. Abbeel, “Automatic goal generation for reinforcement
learning agents,” arXiv preprint arXiv:1705.06366, 2017.

[232] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need: Learning skills
without a reward function,” arXiv preprint arXiv:1802.06070, 2018.

[233] J. D. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel, and S. Levine, “Self-consistent
trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings,”
arXiv preprint arXiv:1806.02813, 2018.

[234] A. Jabri, K. Hsu, A. Gupta, B. Eysenbach, S. Levine, and C. Finn, “Unsupervised curricula
for visual meta-reinforcement learning,” in Advances in Neural Information Processing
Systems, 2019, pp. 10 519–10 530.

[235] J. Schmidhuber, “Driven by compression progress: A simple principle explains essential
aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity,
art, science, music, jokes,” in Computational Creativity: An Interdisciplinary Approach,
12.07. - 17.07.2009, 2009. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2009/2197/.

[236] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learning in a
handful of trials using probabilistic dynamics models,” in Advances in Neural Information
Processing Systems, 2018, pp. 4754–4765.

[237] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal planning networks,”
arXiv preprint arXiv:1804.00645, 2018.

[238] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 2786–2793.

[239] C. G. Atkeson and J. C. Santamaria, “A comparison of direct and model-based reinforcement
learning,” in Proceedings of International Conference on Robotics and Automation, IEEE,
vol. 4, 1997, pp. 3557–3564.

[240] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference models: Model-free deep rl
for model-based control,” arXiv preprint arXiv:1802.09081, 2018.

[241] D. H. Wolpert, W. G. Macready, et al., “No free lunch theorems for search,” Technical
Report SFI-TR-95-02-010, Santa Fe Institute, Tech. Rep., 1995.

[242] D. Whitley and J. P. Watson, Complexity theory and the no free lunch theorem, 2005.

http://drops.dagstuhl.de/opus/volltexte/2009/2197/
http://drops.dagstuhl.de/opus/volltexte/2009/2197/

BIBLIOGRAPHY 196

[243] L. Lee, B. Eysenbach, E. Parisotto, E. P. Xing, S. Levine, and R. Salakhutdinov, “Efficient
exploration via state marginal matching,” CoRR, vol. abs/1906.05274, 2019. arXiv: 1906.
05274. [Online]. Available: http://arxiv.org/abs/1906.05274.

[244] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel, “Promp: Proximal meta-policy
search,” in International Conference on Learning Representations, ICLR, 2019.

[245] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman, “Dynamics-aware unsupervised
discovery of skills,” arXiv preprint arXiv:1907.01657, 2019.

[246] C. Finn and S. Levine, “Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm,” CoRR, vol. abs/1710.11622, 2017. arXiv:
1710.11622. [Online]. Available: http://arxiv.org/abs/1710.11622.

[247] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep re-
inforcement learning for continuous control,” in International Conference on Machine
Learning, 2016, pp. 1329–1338.

[248] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, “Deep imita-
tion learning for complex manipulation tasks from virtual reality teleoperation,” in 2018
IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Aus-
tralia, May 21-25, 2018, IEEE, 2018, pp. 1–8. DOI: 10.1109/ICRA.2018.8461249.
[Online]. Available: https://doi.org/10.1109/ICRA.2018.8461249.

[249] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet,
“Learning latent plans from play,” CoRR, vol. abs/1903.01973, 2019. arXiv: 1903.01973.

[250] B. Akgün, M. Cakmak, J. W. Yoo, and A. L. Thomaz, “Trajectories and keyframes for
kinesthetic teaching: A human-robot interaction perspective,” in International Conference
on Human-Robot Interaction, HRI’12, Boston, MA, USA - March 05 - 08, 2012, H. A.
Yanco, A. Steinfeld, V. Evers, and O. C. Jenkins, Eds., ACM, 2012, pp. 391–398. DOI:
10.1145/2157689.2157815. [Online]. Available: https://doi.org/10.
1145/2157689.2157815.

[251] S. P. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, “Intrinsically motivated reinforcement
learning: An evolutionary perspective,” IEEE Trans. Auton. Ment. Dev., vol. 2, no. 2,
pp. 70–82, 2010. DOI: 10.1109/TAMD.2010.2051031. [Online]. Available: https:
//doi.org/10.1109/TAMD.2010.2051031.

[252] K. Baumli, D. Warde-Farley, S. Hansen, and V. Mnih, “Relative variational intrinsic con-
trol,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, AAAI Press, 2021, pp. 6732–6740. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/16832.

https://arxiv.org/abs/1906.05274
https://arxiv.org/abs/1906.05274
http://arxiv.org/abs/1906.05274
https://arxiv.org/abs/1710.11622
http://arxiv.org/abs/1710.11622
https://doi.org/10.1109/ICRA.2018.8461249
https://doi.org/10.1109/ICRA.2018.8461249
https://arxiv.org/abs/1903.01973
https://doi.org/10.1145/2157689.2157815
https://doi.org/10.1145/2157689.2157815
https://doi.org/10.1145/2157689.2157815
https://doi.org/10.1109/TAMD.2010.2051031
https://doi.org/10.1109/TAMD.2010.2051031
https://doi.org/10.1109/TAMD.2010.2051031
https://ojs.aaai.org/index.php/AAAI/article/view/16832
https://ojs.aaai.org/index.php/AAAI/article/view/16832

BIBLIOGRAPHY 197

[253] R. Zhao, K. Lu, P. Abbeel, and S. Tiomkin, “Efficient empowerment estimation for unsuper-
vised stabilization,” in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021. [Online]. Available:
https://openreview.net/forum?id=u2YNJPcQlwq.

[254] A. S. Klyubin, D. Polani, and C. L. Nehaniv, “Empowerment: A universal agent-centric
measure of control,” in Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, 2-4 September 2005, Edinburgh, UK, IEEE, 2005, pp. 128–135. DOI: 10.
1109/CEC.2005.1554676. [Online]. Available: https://doi.org/10.1109/
CEC.2005.1554676.

[255] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel, “Variational option discovery algorithms,”
arXiv preprint arXiv:1807.10299, 2018.

[256] F. Torabi, G. Warnell, and P. Stone, “Recent advances in imitation learning from observation,”
in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, S. Kraus, Ed., ijcai.org, 2019, pp. 6325–
6331. DOI: 10.24963/ijcai.2019/882. [Online]. Available: https://doi.
org/10.24963/ijcai.2019/882.

[257] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine, “AVID: learning multi-stage
tasks via pixel-level translation of human videos,” CoRR, vol. abs/1912.04443, 2019. arXiv:
1912.04443. [Online]. Available: http://arxiv.org/abs/1912.04443.

[258] F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation from observation,”
CoRR, vol. abs/1807.06158, 2018. arXiv: 1807.06158. [Online]. Available: http:
//arxiv.org/abs/1807.06158.

[259] A. D. Edwards, H. Sahni, R. Liu, J. Hung, A. Jain, R. Wang, A. Ecoffet, T. Miconi, C.
Isbell, and J. Yosinski, “Estimating q(s,s’) with deep deterministic dynamics gradients,” in
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, ser. Proceedings of Machine Learning Research, vol. 119, PMLR,
2020, pp. 2825–2835. [Online]. Available: http://proceedings.mlr.press/
v119/edwards20a.html.

[260] W. Sun, A. Vemula, B. Boots, and D. Bagnell, “Provably efficient imitation learning
from observation alone,” in Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, K. Chaudhuri and
R. Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research, vol. 97, PMLR,
2019, pp. 6036–6045. [Online]. Available: http://proceedings.mlr.press/
v97/sun19b.html.

[261] I. Radosavovic, X. Wang, L. Pinto, and J. Malik, “State-only imitation learning for dex-
terous manipulation,” CoRR, vol. abs/2004.04650, 2020. arXiv: 2004.04650. [Online].
Available: https://arxiv.org/abs/2004.04650.

https://openreview.net/forum?id=u2YNJPcQlwq
https://doi.org/10.1109/CEC.2005.1554676
https://doi.org/10.1109/CEC.2005.1554676
https://doi.org/10.1109/CEC.2005.1554676
https://doi.org/10.1109/CEC.2005.1554676
https://doi.org/10.24963/ijcai.2019/882
https://doi.org/10.24963/ijcai.2019/882
https://doi.org/10.24963/ijcai.2019/882
https://arxiv.org/abs/1912.04443
http://arxiv.org/abs/1912.04443
https://arxiv.org/abs/1807.06158
http://arxiv.org/abs/1807.06158
http://arxiv.org/abs/1807.06158
http://proceedings.mlr.press/v119/edwards20a.html
http://proceedings.mlr.press/v119/edwards20a.html
http://proceedings.mlr.press/v97/sun19b.html
http://proceedings.mlr.press/v97/sun19b.html
https://arxiv.org/abs/2004.04650
https://arxiv.org/abs/2004.04650

BIBLIOGRAPHY 198

[262] X. Pan, T. Zhang, B. Ichter, A. Faust, J. Tan, and S. Ha, “Zero-shot imitation learning from
demonstrations for legged robot visual navigation,” in 2020 IEEE International Conference
on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020, IEEE,
2020, pp. 679–685. DOI: 10.1109/ICRA40945.2020.9196602. [Online]. Available:
https://doi.org/10.1109/ICRA40945.2020.9196602.

[263] A. Akakzia, C. Colas, P. Oudeyer, M. Chetouani, and O. Sigaud, “Grounding language
to autonomously-acquired skills via goal generation,” in 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, Open-
Review.net, 2021. [Online]. Available: https://openreview.net/forum?id=
chPj_I5KMHG.

[264] C. Colas, A. Akakzia, P. Oudeyer, M. Chetouani, and O. Sigaud, “Language-conditioned
goal generation: A new approach to language grounding for RL,” CoRR, vol. abs/2006.07043,
2020. arXiv: 2006.07043. [Online]. Available: https://arxiv.org/abs/2006.
07043.

[265] Y. Jiang, S. Gu, K. Murphy, and C. Finn, “Language as an abstraction for hierarchi-
cal deep reinforcement learning,” in Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 9414–9426. [On-
line]. Available: https://proceedings.neurips.cc/paper/2019/hash/
0af787945872196b42c9f73ead2565c8-Abstract.html.

[266] J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer, “Vision-and-dialog navigation,”
in Conference on Robot Learning (CoRL), 2019. [Online]. Available: https://arxiv.
org/abs/1907.04957.

[267] J. Thomason, A. Padmakumar, J. Sinapov, N. Walker, Y. Jiang, H. Yedidsion, J. Hart, P.
Stone, and R. J. Mooney, “Improving grounded natural language understanding through
human-robot dialog,” in International Conference on Robotics and Automation (ICRA),
2019. [Online]. Available: https://arxiv.org/abs/1903.00122.

[268] M. Woodward, C. Finn, and K. Hausman, “Learning to interactively learn and assist,” in The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 2535–2543. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/5636.

[269] E. Hazan, S. M. Kakade, K. Singh, and A. V. Soest, “Provably efficient maximum entropy ex-
ploration,” in Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, K. Chaudhuri and R. Salakhutdinov,
Eds., ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 2681–2691.
[Online]. Available: http://proceedings.mlr.press/v97/hazan19a.html.

https://doi.org/10.1109/ICRA40945.2020.9196602
https://doi.org/10.1109/ICRA40945.2020.9196602
https://openreview.net/forum?id=chPj_I5KMHG
https://openreview.net/forum?id=chPj_I5KMHG
https://arxiv.org/abs/2006.07043
https://arxiv.org/abs/2006.07043
https://arxiv.org/abs/2006.07043
https://proceedings.neurips.cc/paper/2019/hash/0af787945872196b42c9f73ead2565c8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0af787945872196b42c9f73ead2565c8-Abstract.html
https://arxiv.org/abs/1907.04957
https://arxiv.org/abs/1907.04957
https://arxiv.org/abs/1903.00122
https://aaai.org/ojs/index.php/AAAI/article/view/5636
http://proceedings.mlr.press/v97/hazan19a.html

BIBLIOGRAPHY 199

[270] M. Laskin, A. Srinivas, and P. Abbeel, “CURL: contrastive unsupervised representations
for reinforcement learning,” in Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine
Learning Research, vol. 119, PMLR, 2020, pp. 5639–5650. [Online]. Available: http:
//proceedings.mlr.press/v119/laskin20a.html.

[271] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas, “Reinforcement learning
with augmented data,” in Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/e615c82aba461681ade82da2da38004a-Abstract.html.

[272] T. Lesort, M. Seurin, X. Li, N. D. Rodríguez, and D. Filliat, “Unsupervised state representa-
tion learning with robotic priors: A robustness benchmark,” CoRR, vol. abs/1709.05185,
2017. arXiv: 1709.05185. [Online]. Available: http://arxiv.org/abs/1709.
05185.

[273] A. Sharma, M. Ahn, S. Levine, V. Kumar, K. Hausman, and S. Gu, “Emergent real-world
robotic skills via unsupervised off-policy reinforcement learning,” CoRR, vol. abs/2004.12974,
2020. arXiv: 2004.12974. [Online]. Available: https://arxiv.org/abs/2004.
12974.

[274] OpenAI, M. Plappert, R. Sampedro, T. Xu, I. Akkaya, V. Kosaraju, P. Welinder, R. D’Sa,
A. Petron, H. P. de Oliveira Pinto, A. Paino, H. Noh, L. Weng, Q. Yuan, C. Chu, and W.
Zaremba, “Asymmetric self-play for automatic goal discovery in robotic manipulation,”
CoRR, vol. abs/2101.04882, 2021. arXiv: 2101.04882. [Online]. Available: https:
//arxiv.org/abs/2101.04882.

[275] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant optimization for hand manip-
ulation,” in Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer
animation, Eurographics Association, 2012.

[276] V. Kumar, Y. Tassa, T. Erez, and E. Todorov, “Real-time behaviour synthesis for dynamic
hand-manipulation,” in ICRA, 2014.

[277] H. van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot in-hand manipulation
with tactile features,” in Humanoid Robots (Humanoids), IEEE, 2015.

[278] R. Deimel and O. Brock, “A novel type of compliant and underactuated robotic hand
for dexterous grasping,” I. J. Robotics Res., vol. 35, no. 1-3, pp. 161–185, 2016. DOI:
10.1177/0278364915592961. [Online]. Available: https://doi.org/10.
1177/0278364915592961.

[279] A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning dexterous manipulation for a soft
robotic hand from human demonstrations,” in IROS, 2016.

[280] H. B. Amor, O. Kroemer, U. Hillenbrand, G. Neumann, and J. Peters, “Generalization of
human grasping for multi-fingered robot hands,” in IROS 2012.

http://proceedings.mlr.press/v119/laskin20a.html
http://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
https://arxiv.org/abs/1709.05185
http://arxiv.org/abs/1709.05185
http://arxiv.org/abs/1709.05185
https://arxiv.org/abs/2004.12974
https://arxiv.org/abs/2004.12974
https://arxiv.org/abs/2004.12974
https://arxiv.org/abs/2101.04882
https://arxiv.org/abs/2101.04882
https://arxiv.org/abs/2101.04882
https://doi.org/10.1177/0278364915592961
https://doi.org/10.1177/0278364915592961
https://doi.org/10.1177/0278364915592961

BIBLIOGRAPHY 200

[281] V. Kumar, Z. Xu, and E. Todorov, “Fast, strong and compliant pneumatic actuation for
dexterous tendon-driven hands,” in ICRA, 2013.

[282] Z. Xu, V. Kumar, and E. Todorov, “A low-cost and modular, 20-dof anthropomorphic
robotic hand: Design, actuation and modeling,” in Humanoids, 2013.

[283] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid
bodies through contact,” I. J. Robotics Res., vol. 33, no. 1, pp. 69–81, 2014. DOI: 10.
1177/0278364913506757. [Online]. Available: https://doi.org/10.1177/
0278364913506757.

[284] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 1, vol. 1.

[285] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral control approach to
reinforcement learning,” Journal of Machine Learning Research, vol. 11, pp. 3137–3181,
2010.

[286] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,
2015.

[287] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy gradients,”
Neural Networks, 2008.

[288] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” Machine Learning,
vol. 84, no. 1-2, pp. 171–203, 2011. DOI: 10.1007/s10994-010-5223-6. [Online].
Available: https://doi.org/10.1007/s10994-010-5223-6.

[289] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman, “Deep predictive policy training
using reinforcement learning,” CoRR, vol. abs/1703.00727, 2017. [Online]. Available:
http://arxiv.org/abs/1703.00727.

[290] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned local models: Appli-
cation to dexterous manipulation,” 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 378–383, 2016.

[291] V. Kumar, A. Gupta, E. Todorov, and S. Levine, “Learning Dexterous Manipulation Policies
from Experience and Imitation,” CoRR, vol. abs/1611.05095, 2016.

[292] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for
self-driving cars,” CoRR, vol. abs/1604.07316, 2016.

[293] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of motor skills in high
dimensions: A path integral approach,” in ICRA, 2010.

[294] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynamical
systems in humanoid robots,” in ICRA, 2002.

https://doi.org/10.1177/0278364913506757
https://doi.org/10.1177/0278364913506757
https://doi.org/10.1177/0278364913506757
https://doi.org/10.1177/0278364913506757
https://doi.org/10.1007/s10994-010-5223-6
https://doi.org/10.1007/s10994-010-5223-6
http://arxiv.org/abs/1703.00727

BIBLIOGRAPHY 201

[295] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, G. Dulac-Arnold, J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep
q-learning from demonstrations,” in Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, 2018. [Online].
Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16976.

[296] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforcement learning with human
demonstrations of varying ability,” in AAMAS, 2011.

[297] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé, “Reinforce-
ment learning from demonstration through shaping,” in IJCAI, 2015.

[298] K. Subramanian, C. L. I. Jr., and A. L. Thomaz, “Exploration from demonstration for
interactive reinforcement learning,” in AAMAS, ACM, 2016, pp. 447–456.

[299] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T.
Lampe, and M. A. Riedmiller, “Leveraging demonstrations for deep reinforcement learning
on robotics problems with sparse rewards,” CoRR, vol. abs/1707.08817, 2017. [Online].
Available: http://arxiv.org/abs/1707.08817.

[300] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcoming ex-
ploration in reinforcement learning with demonstrations,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 6292–6299.

[301] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep reinforce-
ment learning that matters,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[302] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills,” in ACM SIGGRAPH, 2018.

[303] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell, “Reinforcement learning from
imperfect demonstrations,” CoRR, vol. abs/1802.05313, 2018. [Online]. Available: http:
//arxiv.org/abs/1802.05313.

[304] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based robotics: Comparison
of bullet, havok, mujoco, ode and physx,” in ICRA, 2015.

[305] V. Kumar and E. Todorov, “Mujoco haptix: A virtual reality system for hand manipulation,”
in Humanoids, 2015.

[306] S. Kakade, “A natural policy gradient,” in NIPS, 2001.

[307] J. Peters, “Machine learning of motor skills for robotics,” PhD Dissertation, University of
Southern California, 2007.

[308] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol. 10,
pp. 251–276, 1998.

[309] J. A. Bagnell and J. G. Schneider, “Covariant policy search,” in IJCAI, 2003.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976
http://arxiv.org/abs/1707.08817
http://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1802.05313

BIBLIOGRAPHY 202

[310] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,

[311] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement learning,”
in ICML, vol. 2, 2002, pp. 267–274.

[312] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell, “Deeply aggrevated:
Differentiable imitation learning for sequential prediction,” in ICML, 2017.

[313] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,
S. M. A. Eslami, M. A. Riedmiller, and D. Silver, “Emergence of locomotion behaviours
in rich environments,” CoRR, vol. abs/1707.02286, 2017. [Online]. Available: http:
//arxiv.org/abs/1707.02286.

[314] I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, and E. Todorov, “Interactive Control of
Diverse Complex Characters with Neural Networks,” in NIPS, 2015.

[315] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “EPOpt: Learning Robust Neural
Network Policies Using Model Ensembles,” in ICLR, 2017.

[316] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M.
Kalakrishnan, V. Vanhoucke, and S. Levine, “QT-Opt: Scalable Deep Reinforcement Learn-
ing for Vision-Based Robotic Manipulation,” in Conference on Robot Learning (CoRL),
2018. arXiv: 1806.10293v3. [Online]. Available: https://goo.gl/ykQn6g..

[317] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforcement learning,”
Discrete Event Dynamic Systems, 2003.

[318] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep rein-
forcement learning: Integrating temporal abstraction and intrinsic motivation,” in NeurIPS
2016.

[319] R. S. Sutton, D. Precup, and S. P. Singh, “Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning,” Artif. Intell., 1999.

[320] S. Krishnan, A. Garg, R. Liaw, B. Thananjeyan, L. Miller, F. T. Pokorny, and K. Gold-
berg, “SWIRL: A sequential windowed inverse reinforcement learning algorithm for
robot tasks with delayed rewards,” I. J. Robotics Res., vol. 38, no. 2-3, 2019. DOI: 10.
1177/0278364918784350. [Online]. Available: https://doi.org/10.1177/
0278364918784350.

[321] R. Fox, S. Krishnan, I. Stoica, and K. Goldberg, “Multi-level discovery of deep options,”
CoRR, vol. abs/1703.08294, 2017. arXiv: 1703.08294. [Online]. Available: http:
//arxiv.org/abs/1703.08294.

[322] R. Parr and S. J. Russell, “Reinforcement learning with hierarchies of machines,” in Ad-
vances in Neural Information Processing Systems 10, [NIPS Conference, Denver, Colorado,
USA, 1997], 1997, pp. 1043–1049. [Online]. Available: http://papers.nips.
cc/paper/1384-reinforcement-learning-with-hierarchies-of-
machines.

http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1806.10293v3
https://goo.gl/ykQn6g.
https://doi.org/10.1177/0278364918784350
https://doi.org/10.1177/0278364918784350
https://doi.org/10.1177/0278364918784350
https://doi.org/10.1177/0278364918784350
https://arxiv.org/abs/1703.08294
http://arxiv.org/abs/1703.08294
http://arxiv.org/abs/1703.08294
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines

BIBLIOGRAPHY 203

[323] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value function
decomposition,” J. Artif. Intell. Res., vol. 13, pp. 227–303, 2000. DOI: 10.1613/jair.
639. [Online]. Available: https://doi.org/10.1613/jair.639.

[324] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K.
Kavukcuoglu, “FeUdal Networks for Hierarchical Reinforcement Learning,” in Interna-
tional Conference on Machine Learning (ICML), 2017. arXiv: 1703.01161. [Online].
Available: https://arxiv.org/pdf/1703.01161.pdfhttp://arxiv.org/
abs/1703.01161.

[325] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-Efficient Hierarchical Reinforcement
Learning,” in Advances in Neural Information Processing Systems (NeurIPS), 2018. arXiv:
arXiv:1805.08296v2. [Online]. Available: https://sites.google.com/
view/efficient-hrl.

[326] A. Levy, R. Platt, and K. Saenko, “Hierarchical Actor-Critic,” arXiv preprint arXiv:1712.00948,
2017.

[327] L. P. Kaelbling, M. L. Littman, and A. P. Moore, “Reinforcement learning: A survey,”
Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[328] K. Hausman, Y. Chebotar, S. Schaal, G. S. Sukhatme, and J. J. Lim, “Multi-modal imitation
learning from unstructured demonstrations using generative adversarial nets,” in NeurIPS
2017.

[329] P. Henderson, W. Chang, P. Bacon, D. Meger, J. Pineau, and D. Precup, “Optiongan:
Learning joint reward-policy options using generative adversarial inverse reinforcement
learning,” in AAAI 2018.

[330] A. Sharma, M. Sharma, N. Rhinehart, and K. M. Kitani, “Directed-info GAIL: learning
hierarchical policies from unsegmented demonstrations using directed information,” CoRR,
vol. abs/1810.01266, 2018. arXiv: 1810.01266.

[331] T. Kipf, Y. Li, H. Dai, V. F. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and
P. Battaglia, “Compile: Compositional imitation learning and execution,” in ICML 2019.

[332] H. M. Le, N. Jiang, A. Agarwal, M. Dudík, Y. Yue, and H. D. III, “Hierarchical imitation
and reinforcement learning,”

[333] D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine, “Divide-and-conquer rein-
forcement learning,” CoRR, vol. abs/1711.09874, 2017. arXiv: 1711.09874. [Online].
Available: http://arxiv.org/abs/1711.09874.

[334] A. A. Rusu, S. G. Colmenarejo, Ç. Gülçehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V.
Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy distillation,” in 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available: http:
//arxiv.org/abs/1511.06295.

https://doi.org/10.1613/jair.639
https://doi.org/10.1613/jair.639
https://doi.org/10.1613/jair.639
https://arxiv.org/abs/1703.01161
https://arxiv.org/pdf/1703.01161.pdf http://arxiv.org/abs/1703.01161
https://arxiv.org/pdf/1703.01161.pdf http://arxiv.org/abs/1703.01161
https://arxiv.org/abs/arXiv:1805.08296v2
https://sites.google.com/view/efficient-hrl
https://sites.google.com/view/efficient-hrl
https://arxiv.org/abs/1810.01266
https://arxiv.org/abs/1711.09874
http://arxiv.org/abs/1711.09874
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1511.06295

BIBLIOGRAPHY 204

[335] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding,” in Association for Compuational
Linguistics (ACL), 2019. arXiv: 1810.04805. [Online]. Available: http://arxiv.
org/abs/1810.04805.

[336] S. Schaal, “Learning from demonstration,” in Advances in Neural Information Processing
Systems (NeurIPS), 1997, pp. 1040–1046, ISBN: 1558604863. DOI: 10.1016/j.robot.
2004.03.001. [Online]. Available: http://www.cc.gatech.edulfachttp:
//wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-
robotlearning.pdfhttp://www.cc.gatech.edulfac/Stefan.Schaal.

[337] C. G. Atkeson and S. Schaal, “Robot Learning From Demonstration,” in International
Conference on Machine Learning (ICML), 1997. [Online]. Available: http://www.cc.
gatech.edu/fac/fChris..

[338] A. Zhou, E. Jang, D. Kappler, A. Herzog, M. Khansari, P. Wohlhart, Y. Bai, M. Kalakrishnan,
S. Levine, and C. Finn, “Watch, try, learn: Meta-learning from demonstrations and reward,”
CoRR, vol. abs/1906.03352, 2019. arXiv: 1906.03352. [Online]. Available: http:
//arxiv.org/abs/1906.03352.

[339] S. Fujimoto, D. Meger, and D. Precup, “Off-Policy Deep Reinforcement Learning without
Exploration,” in International Conference on Machine Learning (ICML), 2019. arXiv:
1812.02900. [Online]. Available: http://arxiv.org/abs/1812.02900.

[340] A. Kumar, J. Fu, G. Tucker, and S. Levine, “Stabilizing Off-Policy Q-Learning via Boot-
strapping Error Reduction,” in Neural Information Processing Systems (NeurIPS), 2019.
arXiv: 1906.00949. [Online]. Available: http://arxiv.org/abs/1906.00949.

[341] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller,
“Maximum a Posteriori Policy Optimisation,” in International Conference on Learning
Representations (ICLR), 2018, pp. 1–19.

[342] V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,” in Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2000.

[343] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. 1998. [Online].
Available: http://incompleteideas.net/sutton/book/bookdraft2016sep.
pdfhttps://webdocs.cs.ualberta.ca/{~}sutton/book/bookdraft2016sep.
pdf.

[344] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation Error in
Actor-Critic Methods,” International Conference on Machine Learning (ICML), 2018.

[345] V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D.
Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning,”
in International Conference on Machine Learning (ICML), 2016. [Online]. Available:
https://arxiv.org/pdf/1602.01783.pdf.

https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.robot.2004.03.001
https://doi.org/10.1016/j.robot.2004.03.001
http://www.cc.gatech.edulfac http://wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-robotlearning.pdf http://www.cc.gatech.edulfac/Stefan.Schaal
http://www.cc.gatech.edulfac http://wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-robotlearning.pdf http://www.cc.gatech.edulfac/Stefan.Schaal
http://www.cc.gatech.edulfac http://wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-robotlearning.pdf http://www.cc.gatech.edulfac/Stefan.Schaal
http://www.cc.gatech.edu/fac/fChris.
http://www.cc.gatech.edu/fac/fChris.
https://arxiv.org/abs/1906.03352
http://arxiv.org/abs/1906.03352
http://arxiv.org/abs/1906.03352
https://arxiv.org/abs/1812.02900
http://arxiv.org/abs/1812.02900
https://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949
http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf https://webdocs.cs.ualberta.ca/{~}sutton/book/bookdraft2016sep.pdf
http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf https://webdocs.cs.ualberta.ca/{~}sutton/book/bookdraft2016sep.pdf
http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf https://webdocs.cs.ualberta.ca/{~}sutton/book/bookdraft2016sep.pdf
https://arxiv.org/pdf/1602.01783.pdf

BIBLIOGRAPHY 205

[346] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay policy learning: Solving
long horizon tasks via imitation and reinforcement learning,” Conference on Robot Learning
(CoRL), 2019.

[347] J. Peters and S. Schaal, “Reinforcement Learning by Reward-weighted Regression for
Operational Space Control,” in International Conference on Machine Learning, 2007.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.79.6266{\&}rep=rep1{\&}type=pdf.

[348] Q. Wang, J. Xiong, L. Han, P. Sun, H. Liu, and T. Zhang, “Exponentially Weighted Imitation
Learning for Batched Historical Data,” in Neural Information Processing Systems (NeurIPS),
2018.

[349] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-Weighted Regression: Simple
and Scalable Off-Policy Reinforcement Learning,” 2019. arXiv: 1910.00177. [Online].
Available: http://arxiv.org/abs/1910.00177.

[350] Y. Wu, G. Tucker, and O. Nachum, “Behavior Regularized Offline Reinforcement Learning,”
2020. arXiv: 1911.11361. [Online]. Available: http://arxiv.org/abs/1911.
11361.

[351] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline Reinforcement Learning: Tutorial,
Review, and Perspectives on Open Problems,” Tech. Rep., 2020. arXiv: 2005.01643v1.

[352] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, N. Heess, and M. Riedmiller, Keep doing what worked: Behavioral modelling
priors for offline reinforcement learning, 2020. arXiv: 2002.08396 [cs.LG].

[353] J. Ramapuram, M. Gregorova, and A. Kalousis, “Lifelong Generative Modeling,” Neuro-
computing, 2017. arXiv: 1705.09847. [Online]. Available: http://arxiv.org/
abs/1705.09847.

[354] J. Peters, K. Mülling, and Y. Altün, “Relative Entropy Policy Search,” in AAAI Confer-
ence on Artificial Intelligence, 2010, pp. 1607–1612. [Online]. Available: https://pdfs.
semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.
pdfhttp://www-clmc.usc.edu/publications/P/Peters{_}POTTNCOAIPGAT{_
}2010.pdf.

[355] T. Degris, M. White, and R. S. Sutton, “Off-Policy Actor-Critic,” in International Conference
on Machine Learning (ICML), 2012. arXiv: 1205.4839. [Online]. Available: http:
//arxiv.org/abs/1205.4839.

[356] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor-critic algorithms,”
Autom., vol. 45, no. 11, pp. 2471–2482, 2009. DOI: 10.1016/j.automatica.2009.
07.008. [Online]. Available: https://doi.org/10.1016/j.automatica.
2009.07.008.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.6266{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.6266{\&}rep=rep1{\&}type=pdf
https://arxiv.org/abs/1910.00177
http://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1911.11361
http://arxiv.org/abs/1911.11361
http://arxiv.org/abs/1911.11361
https://arxiv.org/abs/2005.01643v1
https://arxiv.org/abs/2002.08396
https://arxiv.org/abs/1705.09847
http://arxiv.org/abs/1705.09847
http://arxiv.org/abs/1705.09847
https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf http://www-clmc.usc.edu/publications/P/Peters{_}POTTNCOAIPGAT{_}2010.pdf
https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf http://www-clmc.usc.edu/publications/P/Peters{_}POTTNCOAIPGAT{_}2010.pdf
https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf http://www-clmc.usc.edu/publications/P/Peters{_}POTTNCOAIPGAT{_}2010.pdf
https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf http://www-clmc.usc.edu/publications/P/Peters{_}POTTNCOAIPGAT{_}2010.pdf
https://arxiv.org/abs/1205.4839
http://arxiv.org/abs/1205.4839
http://arxiv.org/abs/1205.4839
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1016/j.automatica.2009.07.008

BIBLIOGRAPHY 206

[357] S. Zhang, W. Boehmer, and S. Whiteson, “Generalized off-policy actor-critic,” in Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d´ Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 2001–2011.
[Online]. Available: http://papers.nips.cc/paper/8474-generalized-
off-policy-actor-critic.pdf.

[358] P. Wawrzynski, “Real-time reinforcement learning by sequential actor-critics and experience
replay,” Neural Networks, vol. 22, no. 10, pp. 1484–1497, 2009. DOI: 10.1016/j.
neunet.2009.05.011. [Online]. Available: https://doi.org/10.1016/j.
neunet.2009.05.011.

[359] D. Balduzzi and M. Ghifary, “Compatible value gradients for reinforcement learning
of continuous deep policies,” CoRR, vol. abs/1509.03005, 2015. arXiv: 1509.03005.
[Online]. Available: http://arxiv.org/abs/1509.03005.

[360] S. Lange, T. Gabel, and M. A. Riedmiller, “Batch reinforcement learning,” in Reinforcement
Learning, ser. Adaptation, Learning, and Optimization, M. Wiering and M. van Otterlo,
Eds., vol. 12, Springer, 2012, pp. 45–73. DOI: 10.1007/978-3-642-27645-3_2.
[Online]. Available: https://doi.org/10.1007/978-3-642-27645-3_2.

[361] P. S. Thomas and E. Brunskill, “Data-efficient off-policy policy evaluation for reinforcement
learning,” in Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, M. Balcan and K. Q. Weinberger, Eds.,
ser. JMLR Workshop and Conference Proceedings, vol. 48, JMLR.org, 2016, pp. 2139–
2148. [Online]. Available: http://proceedings.mlr.press/v48/thomasa16.
html.

[362] A. Hallak, F. Schnitzler, T. Mann, and S. Mannor, “Off-policy Model-based Learning under
Unknown Factored Dynamics,” in International Conference on Machine Learning (ICML),
2015.

[363] A. Hallak, A. Tamar, R. Munos, and S. Mannor, “Generalized Emphatic Temporal Differ-
ence Learning: Bias-Variance Analysis,” in Association for the Advancement of Artificial
Intelligence (AAAI), 2016. arXiv: 1509.05172v2.

[364] A. Hallak and S. Mannor, “Consistent On-Line Off-Policy Evaluation,” in International
Conference on Machine Learning (ICML), 2017. arXiv: 1702.07121v1.

[365] R. Agarwal, D. Schuurmans, and M. Norouzi, “An Optimistic Perspective on Offline
Reinforcement Learning,” in International Conference on Machine Learning (ICML), 2019.
arXiv: 1907.04543v2.

[366] R. Fakoor, P. Chaudhari, and A. J. Smola, “P3O: Policy-on Policy-off Policy Optimiza-
tion,” in Conference on Uncertainty in Artificial Intelligence (UAI), 2019. arXiv: 1905.
01756v2. [Online]. Available: https://github.com/rasoolfa/P3O..

http://papers.nips.cc/paper/8474-generalized-off-policy-actor-critic.pdf
http://papers.nips.cc/paper/8474-generalized-off-policy-actor-critic.pdf
https://doi.org/10.1016/j.neunet.2009.05.011
https://doi.org/10.1016/j.neunet.2009.05.011
https://doi.org/10.1016/j.neunet.2009.05.011
https://doi.org/10.1016/j.neunet.2009.05.011
https://arxiv.org/abs/1509.03005
http://arxiv.org/abs/1509.03005
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
http://proceedings.mlr.press/v48/thomasa16.html
http://proceedings.mlr.press/v48/thomasa16.html
https://arxiv.org/abs/1509.05172v2
https://arxiv.org/abs/1702.07121v1
https://arxiv.org/abs/1907.04543v2
https://arxiv.org/abs/1905.01756v2
https://arxiv.org/abs/1905.01756v2
https://github.com/rasoolfa/P3O.

BIBLIOGRAPHY 207

[367] O. Nachum, Y. Chow, B. Dai, and L. Li, “DualDICE: Behavior-Agnostic Estimation
of Discounted Stationary Distribution Corrections,” in Advances in Neural Information
Processing Systems (NeurIPS), 2019. arXiv: 1906.04733. [Online]. Available: http:
//arxiv.org/abs/1906.04733.

[368] R. Zhang, B. Dai, L. Li, and D. Schuurmans, “GenDICE: Generalized Offline Estimation of
Stationary Values,” in International Conference on Learning Representations (ICLR), 2020.
arXiv: 2002.09072. [Online]. Available: http://arxiv.org/abs/2002.09072.

[369] N. Jiang and L. Li, “Doubly Robust Off-policy Value Evaluation for Reinforcement Learn-
ing,” in International Conference on Machine Learning (ICML), 2016. arXiv: 1511.
03722v3.

[370] N. Jaques, A. Ghandeharioun, J. H. Shen, C. Ferguson, À. Lapedriza, N. Jones, S. Gu,
and R. W. Picard, “Way off-policy batch deep reinforcement learning of implicit human
preferences in dialog,” CoRR, vol. abs/1907.00456, 2019. arXiv: 1907.00456. [Online].
Available: http://arxiv.org/abs/1907.00456.

[371] G. Neumann and J. Peters, “Fitted Q-iteration by Advantage Weighted Regression,” in
Advances in Neural Information Processing Systems (NeurIPS), 2008.

[372] Z. Wang, A. Novikov, K. Zołna, J. T. Springenberg, S. Reed, B. Shahriari, N. Siegel, J.
Merel, C. Gulcehre, N. Heess, and N. De Freitas, “Critic Regularized Regression,” 2020.
arXiv: 2006.15134v1.

[373] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill coordination with
em-based reinforcement learning,” in IROS, IEEE, 2010.

[374] D. C. Bentivegna, G. Cheng, and C. G. Atkeson, “Learning from observation and from
practice using behavioral primitives,” in Robotics Research, The Eleventh International Sym-
posium, ISRR, October 19-22, 2003, Siena, Italy, P. Dario and R. Chatila, Eds., ser. Springer
Tracts in Advanced Robotics, vol. 15, Springer, 2003, pp. 551–560. DOI: 10.1007/
11008941_59. [Online]. Available: https://doi.org/10.1007/11008941\
_59.

[375] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexterous Manipulation
with Deep Reinforcement Learning: Efficient, General, and Low-Cost,” in Proceedings
- IEEE International Conference on Robotics and Automation, vol. 2019-May, Institute
of Electrical and Electronics Engineers Inc., 2019, pp. 3651–3657. arXiv: 1810.06045.
[Online]. Available: http://arxiv.org/abs/1810.06045.

[376] Y. Wu, M. Mozifian, and F. Shkurti, Shaping rewards for reinforcement learning with
imperfect demonstrations using generative models, 2020. arXiv: 2011.01298 [cs.RO].

[377] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and V. Kumar, “ROBEL:
Robotics Benchmarks for Learning with Low-Cost Robots,” in Conference on Robot Learn-
ing (CoRL), arXiv, 2019. arXiv: 1909.11639. [Online]. Available: http://arxiv.
org/abs/1909.11639.

https://arxiv.org/abs/1906.04733
http://arxiv.org/abs/1906.04733
http://arxiv.org/abs/1906.04733
https://arxiv.org/abs/2002.09072
http://arxiv.org/abs/2002.09072
https://arxiv.org/abs/1511.03722v3
https://arxiv.org/abs/1511.03722v3
https://arxiv.org/abs/1907.00456
http://arxiv.org/abs/1907.00456
https://arxiv.org/abs/2006.15134v1
https://doi.org/10.1007/11008941_59
https://doi.org/10.1007/11008941_59
https://doi.org/10.1007/11008941_59
https://doi.org/10.1007/11008941_59
https://arxiv.org/abs/1810.06045
http://arxiv.org/abs/1810.06045
https://arxiv.org/abs/2011.01298
https://arxiv.org/abs/1909.11639
http://arxiv.org/abs/1909.11639
http://arxiv.org/abs/1909.11639

BIBLIOGRAPHY 208

[378] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine,
“Reset-free reinforcement learning via multi-task learning: Learning dexterous manipulation
behaviors without human intervention,” arXiv preprint arXiv:2104.11203, 2021.

[379] P. Mandikal and K. Grauman, Dexterous robotic grasping with object-centric visual affor-
dances, 2020. arXiv: 2009.01439 [cs.RO].

[380] H. Xu, Y. Luo, S. Wang, T. Darrell, and R. Calandra, “Towards learning to play piano
with dexterous hands and touch,” CoRR, vol. abs/2106.02040, 2021. arXiv: 2106.02040.
[Online]. Available: https://arxiv.org/abs/2106.02040.

[381] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-Learning for Offline
Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS),
2020. arXiv: 2006.04779v1.

[382] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma, “MOPO: model-
based offline policy optimization,” in Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html.

[383] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel: Model-based offline
reinforcement learning,” in Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/f7efa4f864ae9b88d43527f4b14f750f-Abstract.html.

[384] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,
R. Julian, C. Finn, and S. Levine, “Actionable models: Unsupervised offline reinforce-
ment learning of robotic skills,” CoRR, vol. abs/2104.07749, 2021. arXiv: 2104.07749.
[Online]. Available: https://arxiv.org/abs/2104.07749.

[385] X. Chen, Z. Zhou, Z. Wang, C. Wang, Y. Wu, and K. Ross, “BAIL: best-action imita-
tion learning for batch deep reinforcement learning,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.
neurips.cc/paper/2020/hash/d55cbf210f175f4a37916eafe6c04f0d-
Abstract.html.

[386] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, “Provably good batch off-policy
reinforcement learning without great exploration,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.

https://arxiv.org/abs/2009.01439
https://arxiv.org/abs/2106.02040
https://arxiv.org/abs/2106.02040
https://arxiv.org/abs/2006.04779v1
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f7efa4f864ae9b88d43527f4b14f750f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f7efa4f864ae9b88d43527f4b14f750f-Abstract.html
https://arxiv.org/abs/2104.07749
https://arxiv.org/abs/2104.07749
https://proceedings.neurips.cc/paper/2020/hash/d55cbf210f175f4a37916eafe6c04f0d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d55cbf210f175f4a37916eafe6c04f0d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d55cbf210f175f4a37916eafe6c04f0d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0dc23b6a0e4abc39904388dd3ffadcd1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0dc23b6a0e4abc39904388dd3ffadcd1-Abstract.html

BIBLIOGRAPHY 209

neurips.cc/paper/2020/hash/0dc23b6a0e4abc39904388dd3ffadcd1-
Abstract.html.

[387] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine, “Cog: Connecting new skills
to past experience with offline reinforcement learning,” arXiv preprint arXiv:2010.14500,
2020.

[388] T. Matsushima, H. Furuta, Y. Matsuo, O. Nachum, and S. Gu, “Deployment-efficient
reinforcement learning via model-based offline optimization,” CoRR, vol. abs/2006.03647,
2020. arXiv: 2006.03647. [Online]. Available: https://arxiv.org/abs/2006.
03647.

[389] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexterous manipulation
with deep reinforcement learning: Efficient, general, and low-cost,” in 2019 International
Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 3651–3657.

[390] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and S. Levine, “Path integral
guided policy search,” CoRR, vol. abs/1610.00529, 2016.

[391] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine, “Soft actor-critic algorithms and applications,” arXiv preprint
arXiv:1812.05905, 2018.

[392] C. Devin, P. Abbeel, T. Darrell, and S. Levine, “Deep object-centric representations for
generalizable robot learning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2018, pp. 7111–7118.

[393] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine, “Scalable deep reinforcement learning for
vision-based robotic manipulation,” in Proceedings of The 2nd Conference on Robot Learn-
ing, A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., ser. Proceedings of Machine
Learning Research, vol. 87, PMLR, 2018. [Online]. Available: http://proceedings.
mlr.press/v87/kalashnikov18a.html.

[394] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine, “Leave no trace: Learning to reset for
safe and autonomous reinforcement learning,” in International Conference on Learning
Representations (ICLR), 2018.

[395] W. Han, S. Levine, and P. Abbeel, “Learning compound multi-step controllers under un-
known dynamics,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2015, pp. 6435–6442.

[396] D. Kingma and M. Welling, “Auto-encoding variational Bayes,” in International Conference
on Learning Representations (ICLR), 2014.

[397] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine, “Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model,” CoRR, vol. abs/1907.00953, 2019.

https://proceedings.neurips.cc/paper/2020/hash/0dc23b6a0e4abc39904388dd3ffadcd1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0dc23b6a0e4abc39904388dd3ffadcd1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0dc23b6a0e4abc39904388dd3ffadcd1-Abstract.html
https://arxiv.org/abs/2006.03647
https://arxiv.org/abs/2006.03647
https://arxiv.org/abs/2006.03647
http://proceedings.mlr.press/v87/kalashnikov18a.html
http://proceedings.mlr.press/v87/kalashnikov18a.html

BIBLIOGRAPHY 210

[398] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler,
and Y. Bengio, “Learning deep representations by mutual information estimation and
maximization,” in International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Bklr3j0cKX.

[399] A. Anand, E. Racah, S. Ozair, Y. Bengio, M. Côté, and R. D. Hjelm, “Unsupervised state
representation learning in atari,” arXiv, 2019. eprint: 1906.08226.

[400] J. Tobin, W. Zaremba, and P. Abbeel, “Domain randomization and generative models for
robotic grasping,” arXiv preprint arXiv:1710.06425, 2017.

[401] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Transfer of
Robotic Control with Dynamics Randomization,” in International Conference on Robotics
and Automation (ICRA), 2018, ISBN: 9781538630815. [Online]. Available: https://
xbpeng.github.io/projects/SimToReal/2018{_}SimToReal.pdf.

[402] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, “Generalization through Simula-
tion: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-
Based Autonomous Flight,” arXiv e-prints, arXiv:1902.03701, arXiv:1902.03701, 2019.
arXiv: 1902.03701 [cs.LG].

[403] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of The 30th International
Conference on Machine Learning, 2013.

[404] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, “Asymmetric actor
critic for image-based robot learning,” arXiv preprint arXiv:1710.06542, 2017.

[405] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu,
“Reinforcement learning with unsupervised auxiliary tasks,” arXiv preprint arXiv:1611.05397,
2016.

[406] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust Adversarial Reinforcement
Learning,” in International Conference on Machine Learning (ICML), 2017. [Online].
Available: https://arxiv.org/pdf/1703.02702.pdf.

[407] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental robotics: A survey,”
Connection Science, vol. 15, no. 4, pp. 151–190, 2003. DOI: 10.1080/09540090310001655110.

[408] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, and C.
Yoshida, “Cognitive developmental robotics: A survey,” IEEE Trans. Autonomous Mental
Development, vol. 1, no. 1, pp. 12–34, 2009. DOI: 10.1109/TAMD.2009.2021702.
[Online]. Available: https://doi.org/10.1109/TAMD.2009.2021702.

[409] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez, “Con-
tinual learning for robotics: Definition, framework, learning strategies, opportunities and
challenges,” Information Fusion, vol. 58, pp. 52–68, 2020.

[410] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Robotics and Autonomous Systems,
vol. 15, no. 1-2, pp. 25–46, 1995. DOI: 10.1016/0921-8890(95)00004-Y. [Online].
Available: https://doi.org/10.1016/0921-8890(95)00004-Y.

https://openreview.net/forum?id=Bklr3j0cKX
1906.08226
https://xbpeng.github.io/projects/SimToReal/2018{_}SimToReal.pdf
https://xbpeng.github.io/projects/SimToReal/2018{_}SimToReal.pdf
https://arxiv.org/abs/1902.03701
https://arxiv.org/pdf/1703.02702.pdf
https://doi.org/10.1080/09540090310001655110
https://doi.org/10.1109/TAMD.2009.2021702
https://doi.org/10.1109/TAMD.2009.2021702
https://doi.org/10.1016/0921-8890(95)00004-Y
https://doi.org/10.1016/0921-8890(95)00004-Y

BIBLIOGRAPHY 211

[411] A. Stoica, “Robot fostering techniques for sensory-motor development of humanoid robots,”
Robotics and Autonomous Systems, vol. 37, no. 2-3, pp. 127–143, 2001. DOI: 10.1016/
S0921-8890(01)00154-3. [Online]. Available: https://doi.org/10.1016/
S0921-8890(01)00154-3.

[412] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manipulation skills with
guided policy search,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on, IEEE, 2015.

[413] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours,” in ICRA, 2016.

[414] K. Ploeger, M. Lutter, and J. Peters, High acceleration reinforcement learning for real-world
juggling with binary rewards, 2020. arXiv: 2010.13483 [cs.RO].

[415] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to Poke by Poking:
Experiential Learning of Intuitive Physics,” in Advances in Neural Information Processing
Systems (NIPS), 2016. arXiv: 1606.07419. [Online]. Available: http://arxiv.
org/abs/1606.07419.

[416] C. Richter and N. Roy, “Safe visual navigation via deep learning and novelty detection,”
in Robotics: Science and Systems XIII, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, July 12-16, 2017, N. M. Amato, S. S. Srinivasa, N. Ayanian, and S.
Kuindersma, Eds., 2017. DOI: 10.15607/RSS.2017.XIII.064. [Online]. Available:
http://www.roboticsproceedings.org/rss13/p64.html.

[417] Y. W. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess, and
R. Pascanu, “Distral: Robust multitask reinforcement learning,” in Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017,
pp. 4496–4506. [Online]. Available: http://papers.nips.cc/paper/7036-
distral-robust-multitask-reinforcement-learning.

[418] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic: Deep multitask and transfer
reinforcement learning,” in Proc. International Conference on Learning Representations,
2016.

[419] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradient surgery for
multi-task learning,” CoRR, vol. abs/2001.06782, 2020. arXiv: 2001.06782. [Online].
Available: https://arxiv.org/abs/2001.06782.

[420] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” CoRR,
vol. abs/1810.04650, 2018. arXiv: 1810.04650. [Online]. Available: http://arxiv.
org/abs/1810.04650.

[421] A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerating online reinforcement learning
with offline datasets,” arXiv preprint arXiv:2006.09359, 2020.

https://doi.org/10.1016/S0921-8890(01)00154-3
https://doi.org/10.1016/S0921-8890(01)00154-3
https://doi.org/10.1016/S0921-8890(01)00154-3
https://doi.org/10.1016/S0921-8890(01)00154-3
https://arxiv.org/abs/2010.13483
https://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419
https://doi.org/10.15607/RSS.2017.XIII.064
http://www.roboticsproceedings.org/rss13/p64.html
http://papers.nips.cc/paper/7036-distral-robust-multitask-reinforcement-learning
http://papers.nips.cc/paper/7036-distral-robust-multitask-reinforcement-learning
https://arxiv.org/abs/2001.06782
https://arxiv.org/abs/2001.06782
https://arxiv.org/abs/1810.04650
http://arxiv.org/abs/1810.04650
http://arxiv.org/abs/1810.04650

BIBLIOGRAPHY 212

[422] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathematik,
vol. 1, no. 1, pp. 269–271, 1959.

[423] D. Gandhi, L. Pinto, and A. Gupta, “Learning to Fly by Crashing,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017. [Online]. Available: https:
//arxiv.org/pdf/1704.05588.pdf.

[424] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised Learning for Physical Interaction
through Video Prediction,” in Advances in Neural Information Processing Systems (NIPS),
2016. arXiv: 1605.07157. [Online]. Available: http://arxiv.org/abs/1605.
07157.

[425] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the real world with minimal
human effort,” arXiv preprint arXiv:2002.08550, 2020.

[426] K. Xu, S. Verma, C. Finn, and S. Levine, “Continual learning of control primitives :
Skill discovery via reset-games,” in Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/hash/3472ab80b6dff70c54758fd6dfc800c2-Abstract.html.

[427] A. Sharma, A. Gupta, K. Hausman, S. Levine, and C. Finn, “Persistent reinforcement
learning via subgoal curricula,” ICLR Workshop on Never Ending RL, 2021.

[428] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning modular neural network
policies for multi-task and multi-robot transfer,” arXiv preprint arXiv:1609.07088, 2016.

[429] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[430] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4RL: Datasets for Deep Data-
Driven Reinforcement Learning,” 2020. arXiv: 2004.07219. [Online]. Available: http:
//arxiv.org/abs/2004.07219.

[431] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical risk
minimization,” in International Conference on Learning Representations, 2018.

https://arxiv.org/pdf/1704.05588.pdf
https://arxiv.org/pdf/1704.05588.pdf
https://arxiv.org/abs/1605.07157
http://arxiv.org/abs/1605.07157
http://arxiv.org/abs/1605.07157
https://proceedings.neurips.cc/paper/2020/hash/3472ab80b6dff70c54758fd6dfc800c2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3472ab80b6dff70c54758fd6dfc800c2-Abstract.html
https://arxiv.org/abs/2004.07219
http://arxiv.org/abs/2004.07219
http://arxiv.org/abs/2004.07219

213

Chapter 18

Appendices

CHAPTER 18. APPENDICES 214

18.1 Appendix A: Appendix for Chapter 3

Proof of Theorem 1 connecting NML and inverse counts
We provide the proof of Theorem 1 here for completeness.

Theorem 5. Suppose we are estimating success probabilities p(e = 1|s) in the tabular setting,
where we have a separate parameter independently for each state. Let N(s) denote the number of
times state s has been visited by the policy, and let G(s) be the number of occurrences of state s in
the successful outcomes. Then the CNML probability pCNML(e = 1|s) is equal to G(s)+1

N(s)+G(s)+2
. For

states that are never observed to be successful, we then recover inverse counts 1
N(s)+2

.

Proof. In the fully tabular setting, our MLE estimates for p(O|s) are simply given by finding the
best parameter ps for each state. The proof then proceeds by simple calculation.

For a state with n = N(s) negative occurrences and g = G(s) positive occurrences, the MLE
estimate is simply given by g

n+g
.

Now for evaluating CNML, we consider appending another instance for each class. The new
parameter after appending a negative example is then g

n+g+1
, which then assigns probability n+1

n+g+1

to the negative class. Similarly, after appending a positive example, the new parameter is g+1
n+g+1

, so
we try to assign probability g+1

n+g+1
to the positive class. Normalizing, we have

pCNML(O = 1|s) =
g + 1

n+ g + 2
. (18.1)

When considering states that have only been visited on-policy, and are not included in the set of
successful outcomes, then the likelihood reduces to

pCNML(O = 1|s) =
1

n+ 2
. (18.2)

Detailed Description of Meta-NML
We provide a detailed description of the meta-NML algorithm described in Section 3.5, and the
details of the practical algorithm.

Given a dataset D = {(x0, y0), (x1, y1), .., (xn, yn)}, the meta-NML procedure proceeds by first
constructing k ∗ n tasks from these data points, for a k shot classification problem. We will keep
k = 2 for simplicity in this description, in accordance with the setup of binary success classifiers in
RL. Each task τi is constructed by augmenting the dataset with a negative label D ∪ (xi, y = 0) or
a positive label D ∪ (xi, y = 1). Now that each task consists of solving the maximum likelihood
problem for its augmented dataset, we can directly apply standard meta-learning algorithms to this
setting. Building off the ideas in MAML [140], we can then train a set of model parameters θ such

CHAPTER 18. APPENDICES 215

Figure 18.1: Figure illustrating the meta-training procedure for meta-NML.

that after a single step of gradient descent it can quickly adapt to the optimal solution for the MLE
problem on any of the augmented datasets. This is more formally written as

max
θ

Eτ∼S(τ)[L(τ, θ′)], s.t θ′ = θ − α∇θL(τ, θ) (18.3)

where L represents a standard classification loss function, α is the learning rate, and the
distribution of tasks p(τ) is constructed as described above. For a new query point x, these initial
parameters can then quickly be adapted to provide the CNML distribution by taking a gradient step
on each augmented dataset to obtain the approximately optimal MLE solution, and normalizing
these as follows:

pmeta-NML(y|x;D) =
pθy(y|x)∑
y∈Y pθy(y|x)

θy = θ − α∇θE(xi,yi)∼D∪(x,y)[L(xi, yi, θ)]

This algorithm in principle can be optimized using any standard stochastic optimization method
such as SGD, as described in [140], backpropagating through the inner loop gradient update. For

CHAPTER 18. APPENDICES 216

the specific problem setting that we consider, we additionally employ some optimization tricks in
order to enable learning:

Importance Weighting on Query Point

Since only one datapoint is augmented to the training set at query time for CNML, stochastic
gradient descent can ignore this datapoint with increasing dataset sizes. For example, if we train
on an augmented dataset of size 2048 by cycling through it in batch sizes of 32, then only 1 in 64
batches would include the query point itself and allow the model to adapt to the proposed label,
while the others would lead to noise in the optimization process, potentially worsening the model’s
prediction on the query point.

In order to make sure the optimization considers the query point, we include the query point
and proposed label (xq, y) in every minibatch that is sampled, but downweight the loss computed
on that point such that the overall objective remains unbiased. This is simply doing importance
weighting, with the query point downweighted by a factor of d b−1

N
e where b is the desired batch size

and N is the total number of points in the original dataset.
To see why the optimization objective remains the same, we can consider the overall loss over

the dataset. Let fθ be our classifier, L be our loss function, D′ = {(xi, yi)}Ni=1 ∪ (xq, y) be our
augmented dataset, and Bk be the kth batch seen during training. Using standard SGD training that
cycles through batches in the dataset, the overall loss on the augmented dataset would be:

L(D′) =

(
N∑
i=0

L(fθ(xi), yi)

)
+ L(fθ(xq), y)

If we instead included the downweighted query point in every batch, the overall loss would be:

L(D′) =

d b−1
N
e∑

k=0

∑
(xi,yi)∈Bk

(
L(fθ(xi), yi) +

1

d b−1
N
e
L(fθ(xq), y)

)

=

d b−1
N
e∑

k=0

∑
(xi,yi)∈Bk

L(fθ(xi), yi)

+

db− 1

N
e 1

d b−1
N
e
L(fθ(xq), y)

=

(
N∑
i=0

L(fθ(xi), yi)

)
+ L(fθ(xq), y)

which is the same objective as before.
This trick has the effect of still optimizing the same maximum likelihood problem required by

CNML, but significantly reducing the variance of the query point predictions as we take additional
gradient steps at query time. As a concrete example, consider querying a meta-CNML classifier

CHAPTER 18. APPENDICES 217

on the input shown in Figure 18.2. If we adapt to the augmented dataset without including the
query point in every batch (i.e. without importance weighting), we see that the query point loss is
significantly more unstable, requiring us to take more gradient steps to converge.

Figure 18.2: Comparison of adapting to a query point (pictured on left with the original dataset) at test time for CNML
with and without importance weighting. The version without importance weighting is more unstable both in terms of
overall batch loss and the individual query point loss, and thus takes longer to converge. The spikes in the red lines
occur when that particular batch happens to include the query point, since that point’s proposed label (y = 1) is different
than those of nearby points (y = 0). The version with importance weighting does not suffer from this problem because
it accounts for the query point in each gradient step, while keeping the optimization objective the same.

Kernel Weighted Training Loss

The augmented dataset consists of points from the original dataset D and one augmented point
(xq, y). Given that we mostly care about having the proper likelihood on the query point, with an
imperfect optimization process, the meta-training can yield solutions that are not very accurately
representing true likelihoods on the query point. To counter this, we introduce a kernel weighting
into the loss function in Equation 18.3 during meta-training and subsequently meta-testing. The
kernel weighting modifies the training loss function as:

max
θ

Eτ∼S(τ)[E(x,y)∼τK(x, xτ)L(x, y, θ′)]

s.t θ′ = θ − α∇θE(x,y)∼τK(x, xτ)L(x, y, θ)

where xτ is the query point for task τ and K is a choice of kernel. We typically choose
exponential kernels centered around xτ . Intuitively, this allows the meta-optimization to mainly
consider the datapoints that are copies of the query point in the dataset, or are similar to the query
point, and ensures that they have the correct likelihoods, instead of receiving interfering gradient
signals from the many other points in the dataset. To make hyperparameter selection intuitive,
we designate the strength of the exponential kernel by a parameter λdist, which is the Euclidean
distance away from the query point at which the weight becomes 0.1. Formally, the weight of a
point x in the loss function for query point xτ is computed as:

K(x, xτ) = exp {− 2.3

λdist
||x− xτ ||2} (18.4)

CHAPTER 18. APPENDICES 218

Meta-Training at Fixed Intervals

While in principle meta-NML would retrain with every new datapoint, in practice we retrain meta-
NML once every k epochs. (In all of our experiments we set k = 1, but we could optionally increase
k if we do not expect the meta-task distribution to change much between epochs.) We warm-start
the meta-learner parameters from the previous iteration of meta-learning, so every instance of
meta-training only requires a few steps. We find that this periodic training is a reasonable enough
approximation, as evidenced by the strong performance of MURAL in our experimental results in
Section 13.7.

Meta-NML Visualizations
Meta-NML with Additional Gradient Steps

Below, we show a more detailed visualization of meta-NML outputs on data from the Zigzag Maze
task, and how these outputs change with additional gradient steps. For comparison, we also include
the idealized NML rewards, which come from a discrete count-based classifier.

Meta-NML is able to resemble the ideal NML rewards fairly well with just 1 gradient step,
providing both an approximation of a count-based exploration bonus and better shaping towards the
goal due to generalization. By taking additional gradient steps, meta-NML can get arbitrarily close
to the true NML outputs, which themselves correspond to inverse counts of 1

n+2
as explained in

Theorem 4.1. While this would give us more accurate NML estimates, in practice we found that
taking one gradient step was sufficient to achieve good performance on our RL tasks.

Figure 18.3: Comparison of idealized (discrete) NML and meta-NML rewards on data from the Zigzag Maze Task.
Meta-NML approximates NML reasonably well with just one gradient step at test time, and converges to the true values
with additional steps.

CHAPTER 18. APPENDICES 219

Figure 18.4: Average absolute difference between MLE and meta-NML goal probabilities across the entire maze state
space from Figure 18.3 above. We see that meta-NML learns a model initialization whose parameters can change
significantly in a small number of gradient steps. Additionally, most of this change comes from the first gradient step
(indicated by the green arrow), which justifies our choice to use only a single gradient step when evaluating meta-NML
probabilities for MURAL.

Comparison of Reward Classifiers

In Fig 18.5, we show the comparison between different types of reward. classifiers in the 2D maze
navigation problem.

Figure 18.5: A comparison of the rewards given by various classifier training schemes on the 2D Zigzag maze. From
left to right: (1) An MLE classifier when trained to convergence reduces to an uninformative sparse reward; (2) An
MLE classifier trained with regularization and early stopping has smoother contours, but does not accurately identify
the goal; (3) The idealized NML rewards correspond to inverse counts, thus providing a natural exploration objective in
the absence of generalization; (4) The meta-NML rewards approximate the idealized rewards well in visited regions,
while also benefitting from better shaping towards the goal due to generalization.

CHAPTER 18. APPENDICES 220

Runtime Comparisons

We provide the runtimes for feedforward inference, naive CNML, and meta-NML on each of our
evaluation domains. We list both the runtimes for evaluating a single input (Table 18.1), and for
completing a full epoch of training during RL (Table 18.2).

These benchmarks were performed on an NVIDIA Titan X Pascal GPU. Per-input runtimes are
averaged across 100 samples, and per-epoch runtimes are averaged across 10 epochs.

Feedforward Meta-NML Naive CNML

Mazes (zigzag, spiral) 0.0004s 0.0090s 15.19s

Sawyer 2D Pusher 0.0004s 0.0092s 20.64s

Sawyer Door 0.0004s 0.0094s 20.68s

Sawyer 3D Pick 0.0005s 0.0089s 20.68s

Ant Locomotion 0.0004s 0.0083s 17.26s

Dexterous Manipulation 0.0004s 0.0081s 17.58s

Table 18.1: Runtimes for evaluating a single input point using feedforward, meta-NML, and naive CNML classifiers.
Meta-NML provides anywhere between a 1600x and 2300x speedup compared to naive CNML, which is crucial to
making our NML-based reward classifier scheme feasible on RL problems.

Feedforward Meta-NML Naive CNML

Mazes (zigzag, spiral) 23.50s 39.05s 4hr 13min 34s

Sawyer 2D Pusher 24.91s 43.81 5hr 44min 25s

Sawyer Door 19.77s 38.52s 5hr 45min 00s

Sawyer 3D Pick 20.24s 40.73s 5hr 45min 00s

Ant Locomotion 37.15s 73.72s 4hr 47min 40s

Dexterous Hand Manipulation 48.37s 69.97s 4hr 53min 00s

Table 18.2: Runtimes for completing a single epoch of RL according to Algorithm 2. We collect 1000 samples in the
environment with the current policy for each epoch of training. The naive CNML runtimes are extrapolated based on
the per-input runtime in the previous table, while the feedforward and meta-NML runtimes are averaged over 10 actual
epochs of RL. These times indicate that naive CNML would be computationally infeasible to run in an RL algorithm,
whereas meta-NML is able to achieve performance much closer to that of an ordinary feedforward classifier and make
learning possible.

CHAPTER 18. APPENDICES 221

Experimental Details

Figure 18.6: Performance of MURAL, VICE, and SAC with sparse rewards on a double-sided maze where some sparse
reward states are not provided as goal examples. MURAL is still able to find the sparse rewards, thus receiving higher
overall reward, whereas ordinary classifier methods (i.e. VICE) move only towards the provided examples and thus are
never able to find the additional rewards. Standard SAC with sparse rewards, also included for comparison, is generally
unable to find the goals. The dashed gray line represents the location of the goal examples initially provided to both
MURAL and VICE.

Environments

Zigzag Maze and Spiral Maze: These two navigation tasks require moving through long corridors
and avoiding several local optima in order to reach the goal. For example, on Spiral Maze, the agent
must not get stuck on the other side of the inner wall, even though that position would be close in L2
distance to the desired goal. On these tasks, a sparse reward is not informative enough for learning,
while ordinary classifier methods get stuck in local optima due to poor shaping near the goal.

Both of these environments have a continuous state space consisting of the (x, y) coordinates of
the agent, ranging from (−4,−4) to (4, 4) inclusive. The action space is the desired velocity in the
x and y directions, each ranging from −1 to 1 inclusive.

Sawyer 2D Pusher: This task involves using a Sawyer arm, constrained to move only in the xy
plane, to push a randomly initialized puck to a fixed location on a table. The state space consists of
the (x, y, z) coordinates of the robot end effector and the (x, y) coordinates of the puck. The action
space is the desired x and y velocities of the arm.

Sawyer Door Opening: In this task, the Sawyer arm is attached to a hook, which it must use to
open a door to a desired angle of 45 degrees. The door is randomly initialized each time to be at a
starting angle of between 0 and 15 degrees. The state space consists of the (x, y, z) coordinates of
the end effector and the door angle (in radians); the action space consists of (x, y, z) velocities.

Sawyer 3D Pick and Place: The Sawyer robot must pick up a ball, which is randomly placed
somewhere on the table each time, and raise it to a fixed (x, y, z) location high above the table. This
represents the biggest exploration challenge out of all the manipulation tasks, as the state space is
large and the agent would normally not receive any learning signal unless it happened to pick up the
ball and raise it, which is unlikely without careful reward shaping.

CHAPTER 18. APPENDICES 222

The state space consists of the (x, y, z) coordinates of the end effector, the (x, y, z) coordinates
of the ball, and the tightness of the gripper (a continuous value between 0 and 1). The robot can
control its (x, y, z) arm velocity as well as the gripper value.

Ant Locomotion: In this task, the quadruped ant robot has to navigate from one end of a
maze to the other. This represents a high dimensional action space of 8 dimensions, and a high
dimensional state space of 15 dimensions as well. The state space consists of the center of mass of
the object as well as the positions of the various joints of the ant, and the action space controls the
torques on all the joints.

Hand Manipulation: In this task, a 16 DoF robotic hand is mounted on a robot arm and has to
reposition an object on a table. The task is challenging due to high dimensionality of the state and
action spaces. The state space consists of the arm position, hand joint positions and object positions.
In this task, we allow the classifier privileged access to the object position only, but provide the
full state space as input to the policy. All the other baseline techniques are provided this same
information as well (e.g. the classifier for VICE receives the object position as input).

Ground Truth Distance Metrics

In addition to the success rate plots in Figure 3.5, we provide plots of each algorithm’s distance to
the goal over time according to environment-specific distance metrics. The distance metrics and
success thresholds, which were used to compute the success rates in Figure 3.5, are listed in the
table on the next page.

Environment Distance Metric Used Success Threshold

Zigzag Maze Maze distance to goal 0.5

Spiral Maze Maze distance to goal 0.5

Sawyer 2D Pusher Puck L2 distance to goal 0.05

Sawyer Door Opening Angle difference to goal (radians) 0.035

Sawyer 3D Pick-and-Place Ball L2 distance to goal 0.06

Ant Locomotion Maze distance to goal 5

Dexterous Manipulation Object L2 distance to goal 0.06

Additional Ablations
Learning in a Discrete, Randomized Environment

In practice, many continuous RL environments such as the ones we consider in section 13.7 have
state spaces that are correlated at least roughly with the dynamics. For instance, states that are

CHAPTER 18. APPENDICES 223

Figure 18.7: Performance of MURAL compared to other algorithms according to ground truth distance metrics. We
note that while other algorithms seem to be making progress according to these distances, they are often actually getting
stuck in local minima, as indicated by the success rates in Figure 3.5 and the visitation plots in Figure 3.7.

closer together dynamically are also typically closer in the metric space defined by the states. This
correlation does not need to be perfect, but as long as it exists, MURAL can in principle learn a
smoothly shaped reward towards the goal.

However, even in the case where states are unstructured and completely lack identity, such
as in a discrete gridworld environment, the CNML classifier would still reduce to providing an
exploration-centric reward bonus, as indicated by Theorem 1, ensuring reasonable worst-case
performance.

To demonstrate this, we evaluate MURAL on a variant of the Zigzag Maze task where states are
first discretized to a 16× 16 grid, then "shuffled" so that the xy representation of a state does not
correspond to its true coordinates and the states are not correlated dynamically. MURAL manages to
solve the task, while a standard classifier method (VICE) does not. Still, MURAL is more effective
in the original state space where generalization is possible, suggesting that both the exploration and
reward shaping abilities of the CNML classifier are crucial to its overall performance.

Figure 18.8: Comparison of MURAL, VICE, and SAC with sparse rewards on a discrete, randomized variant of the
Zigzag Maze task. MURAL is still able to solve the task on a majority of runs due to its connection to a count-based
exploration bonus, whereas ordinary classifier methods (i.e. VICE) experience significantly degraded performance in
the absence of any generalization across states.

Finding "Hidden" Rewards Not Indicated by Success Examples

The intended setup for MURAL (and classifier-based RL algorithms in general) is to provide a set
of success examples to learn from, thus removing the need for a manually specified reward function.

CHAPTER 18. APPENDICES 224

Figure 18.9: Visualization of the Double-Sided Maze environment. Only the goal examples in the bottom left corner
are provided to the algorithm.

Figure 18.10: Plot of visitations for MURAL vs. VICE on the double-sided maze task. MURAL is initially guided
towards the provided goals in the bottom left corner as expected, but continues to explore in both directions, thus
allowing it to find the hidden sparse rewards as well. Once this happens, it focuses on the right side of the maze instead
because those rewards are easier to reach. In contrast, VICE moves only towards the (incomplete) set of provided goals
on the left, ignoring the right half of the maze entirely and quickly getting stuck in a local optima.

However, here we instead consider the case where a ground truth reward function exists which
we do not fully know, and can only query through interaction with the environment. In this case,
because the human expert has limited knowledge, the provided success examples may not cover all
regions of the state space with high reward.

An additional advantage of MURAL is that it is still capable of finding these "unspecified" goals
because of its built-in exploration behavior, whereas other classifier methods would operate solely
based on the goal examples provided. To see this, we evaluate our algorithm on a two-sided variant
of the Zigzag Maze with multiple goals, visualized in Figure 18.9 to the right. The agent starts in
the middle and is provided with 5 goal examples on the far left side of the maze; unknown to it, the
right side contains 5 sparse reward regions which are actually closer from its initial position.

As shown in Figures 18.6 and 18.10, MURAL manages to find the sparse rewards while other
methods do not. MURAL, although initially guided towards the provided goal examples on the

CHAPTER 18. APPENDICES 225

left, continues to explore in both directions and eventually finds the "hidden" rewards on the right.
Meanwhile, VICE focuses solely on the provided goals, and gets stuck in a local optima near the
bottom left corner.

Hyperparameter and Implementation Details
We describe the hyperparameter choices and implementation details for our experiments here. We
first list the general hyperparameters that were shared across runs, then provide tables of additional
hyperparameters we tuned over for each domain and algorithm.

Goal Examples: For the classifier-based methods in our experiments (VICE and MURAL), we
provide 150 goal examples for each environment at the start of training. These are used as the pool
of positive examples when training the success classifier.

DDL Reward: We use the version of DDL proposed in [141] where we provide the algorithm
with the ground truth goal state g, then run SAC with a reward function of r(s) = −dπ(s,g), where
dπ is the learned dynamical distance function.

CHAPTER 18. APPENDICES 226

General Hyperparameters

SAC

Learning Rate 3× 10−4

Discount Factor γ 0.99

Policy Type Gaussian

Policy Hidden Sizes (512, 512)

Policy Hidden Activation ReLU

RL Batch Size 1024

Reward Scaling 1

Replay Buffer Size 500, 000

Q Hidden Sizes (512, 512)

Q Hidden Activation ReLU

Q Learning Rate 3× 10−4

Target Network τ 5× 10−3

MURAL

Adaptation batch size 64

Meta-training tasks per epoch 128

Meta-test set size 2048

VICE

Classifier Learning Rate 1× 10−4

Classifier Batch Size 128

RND

Hidden Layer Sizes (256, 256)

Output Units 512

Table 18.3: General hyperparameters used across all domains.

CHAPTER 18. APPENDICES 227

Zigzag Maze Hyperparameters

MURAL

Classifier Hidden Layers [(512, 512), (2048, 2048)]

λdist [0.5, 1]

kquery 1

VICE

nVICE [1, 2, 10]

Mixup α [0, 1]

Weight Decay λ [0,5× 10−3]

VICE+Count Bonus

nVICE [1, 2, 10]

Mixup α [0, 1]

Classifier reward scale [0.25, 0.5, 1]

Weight Decay λ [0, 5× 10−3]

DDL

Nd [2, 4]

Training frequency (every n
steps)

[16,64]

Table 18.4: Hyperparameters we tuned for the Zigzag Maze task. Bolded values are what we use for the final runs in
Section 6.

CHAPTER 18. APPENDICES 228

Spiral Maze Hyperparameters

MURAL

Classifier Hidden Layers [(512, 512), (2048, 2048)]

λdist [0.5, 1]

kquery 1

VICE

nVICE [1, 2, 10]

Mixup α [0, 1]

Weight Decay λ [0,5× 10−3]

VICE+Count Bonus

nVICE [1, 2, 10]

Mixup α [0, 1]

Classifier reward scale [0.25, 0.5, 1]

Weight Decay λ [0, 5× 10−3]

DDL

Nd [2, 4]

Training frequency (every n
steps)

[16,64]

Table 18.5: Hyperparameters we tuned for the Spiral Maze task. Bolded values are what we use for the final runs in
Section 6.

CHAPTER 18. APPENDICES 229

Ant Locomotion Hyperparameters

MURAL

Classifier Hidden Layers [(512, 512), (2048, 2048)]

λdist [0.5, 1, 1.5, 2]

kquery 1

VICE

nVICE [1, 2, 10]

Mixup α [0, 1]

Weight Decay λ [0,5× 10−3]

VICE+Count Bonus

nVICE [1, 2, 10]

Mixup α [0, 1]

Classifier reward scale [0.25, 0.5, 1]

Weight Decay λ 5× 10−3

DDL

Nd [2,4]

Training frequency (every n
steps)

[16, 64]

Table 18.6: Hyperparameters we tuned for the Ant Locomotion task. Bolded values are what we use for the final runs in
Section 6.

CHAPTER 18. APPENDICES 230

Sawyer Push Hyperparameters

MURAL

Classifier Hidden Layers [(512, 512), (2048, 2048)]

λdist [0.2, 0.6, 1]

kquery 1

VICE

nVICE [1, 2, 10]

Mixup α [0, 1]

Weight Decay λ [0, 5× 10−3]

VICE + RND

nVICE [1, 2, 10]

Mixup α [0, 1]

RND reward scale [1, 5, 10]

DDL

Nd [4, 10]

Training frequency (every n
steps)

[16, 64]

Table 18.7: Hyperparameters we tuned for the Sawyer Push task. Bolded values are what we use for the final runs in
Section 6.

CHAPTER 18. APPENDICES 231

Sawyer Pick-and-Place Hyperparameters

MURAL

Classifier Hidden Layers [(512, 512), (2048, 2048)]

λdist [0.2, 0.6, 1]

kquery 1

VICE

nVICE [1, 2, 10]

Mixup α [0, 1]

Weight Decay λ [0, 5× 10−3]

VICE + RND

nVICE [1, 2, 10]

Mixup α [0, 1]

RND reward scale [1, 5, 10]

DDL

Nd [4, 10]

Training frequency (every n
steps)

[16, 64]

Table 18.8: Hyperparameters we tuned for the Sawyer Pick-and-Place task. Bolded values are what we use for the final
runs in Section 6.

CHAPTER 18. APPENDICES 232

Sawyer Door Opening Hyperparameters

MURAL

Classifier Hidden Layers [(512, 512), (2048, 2048)]

λdist [0.05, 0.1, 0.25]

kquery [1, 2]

VICE

nVICE [1, 5, 10]

Mixup α [0, 1]

Weight Decay λ [0, 5× 10−3]

VICE + RND

nVICE [1, 5, 10]

Mixup α [0, 1]

RND reward scale [1, 5, 10]

DDL

Nd [4, 10]

Training frequency (every n
steps)

[16, 64]

Table 18.9: Hyperparameters we tuned for the Sawyer Door Opening task. Bolded values are what we use for the final
runs in Section 6.

CHAPTER 18. APPENDICES 233

Dexterous Hand Repositioning Hyperparameters

MURAL

Classifier Hidden Layers [(512, 512), (2048, 2048)]

λdist [0.2, 0.5, 1]

kquery 1

VICE

nVICE [1, 2, 10]

Mixup α [0, 1]

Weight Decay λ [0,5× 10−3]

VICE + RND

nVICE [1, 2, 10]

Mixup α [0, 1]

RND reward scale [1, 5, 10]

DDL

Nd [4, 10]

Training frequency (every n
steps)

[16, 64]

Table 18.10: Hyperparameters we tuned for the Dexterous Hand Repositioning task. Bolded values are what we use for
the final runs in Section 6.

CHAPTER 18. APPENDICES 234

18.2 Appendix B: Appendix for Chapter 4

Visualizing Behavior: Multi-Room Object Manipulation Environment

Figure 18.11: Example task with corrections. Instruction: The agent receives the initial instruction. Correction 1: The
agent mistakenly goes into the gray door, so it receives the correction to enter the green room, where the purple ball is
located. Correction 2: The agent successfully picks up the ball, but then mistakenly enters the blue room, so it receives
the correction to enter the red room, where the goal is located. Correction 3: The agent brings the object to the goal and
solves the task.

An example task with corrections in show in Figure 18.11.

Figure 18.12: Failure example. The orange arrow shows the task, the white arrows show the net trajectory.

It is possible to visualize failure cases, which illuminate the behavior of the algorithm on
challenging tasks. In the failure case in Figure 18.12, we note that the agent is able to successfully

CHAPTER 18. APPENDICES 235

enter the purple room, pickup the green ball, and exit. However, after it receives the fourth correction
telling it to go to the green goal, it forgets to pick up the green ball. This behavior can likely be
improved by varying corrections more at training time, and providing different corrections if an
agent is unable to comprehend the first one.

Figure 18.13: Success example. The orange arrow shows the task.

Additionally, we present a success case in Figure 18.13, where the agent successfully learns to
solve the task through iterative corrections, making further progress in each frame.

Visualizing Behavior: Robotic Object Relocation Environment
Similarly, we can again visualize failure cases for the robotic object relocation environment. In the
failure case in Figure 18.14, the agent pushes the correct object, and very nearly solves the task
after the first and second corrections. However, after it receives the third and fourth corrections
telling it to go near the green block, its trajectory changes such that its path to the goal is blocked by
the green block itself. This case is particularly challenging, as the combination of the bulky agent
body, angle of approach, and the proximity of the goal location to the obstacle near it make the goal
location inaccessible. Were the goal location a little further from the green block, or the agent of a
form lending itself to nimbler motion, this task may have been solved by the second correction.

We also present a success case in Figure 18.15, where the agent starts off pushing the wrong
block, but successfully learns to solve the task through iterative corrections, making further progress
in each frame.

CHAPTER 18. APPENDICES 236

Figure 18.14: Failure example. The orange arrow shows the task, the white arrows show the net trajectory.

Figure 18.15: Success example. The orange arrow shows the task.

Training and Architecture Details
We detail the training and architecture details for each environment. We use Adam for optimization
with a learning rate of 0.001. The data buffer size is 1e6. We train on the whole data buffer for five

CHAPTER 18. APPENDICES 237

epochs each time before adding more data to the buffer. Unless otherwise stated, we use ReLU
activations. MLP(32, 32) specifies a multilayer-perceptron with 2 layers each of size 32. CNN((4,
2x2, 1), (4, 2x2, 1)) specifies a 2 layer convolutional neural network where each layer has 4 filters,
2x2 kernels, and 1 stride.

To train the expert policies we use Proximal Policy Optimization with a dense reward function.
For the multi-room domain we keep track of the next subgoal the agent has to complete. The
reward is −0.01∗ Euclidian distance to the next subgoal where a grid is a distance of 1. If the agent
completes a previously uncompleted subgoal it gets a onetime reward of 100. For the robotic object
manipulation domain the reward is -(Euclidian distance of the gripper to the block + 5∗ Euclidian
distance of the block to the target location).

For the multi-room domain we meta-train on 1700 environments. Our method converges in
6 DAgger steps so it takes 30 corrections per environment for a total of 51,000 corrections. For
the robotic object relocation domain, we train on 750 environments. Our method converges in 9
DAgger steps so it takes 45 corrections per environment for a total of 33,750 corrections.

Multi-room object manipulation

The observation is a 7x7x4 grid centered on the agent. The 1st channel encode object types (empty,
wall, closed door, locked door, triangle, square, circle, goal). The 2nd channel encodes colors (none,
blue, green, gray, purple, red, yellow). The 3rd and 4th channels also encode object types and colors
respectively but only for objects the agent is currently holding. The observation also includes a
binary indicatory if the agent is currently holding an object. The action space is of size 6 and
consists of (move up, move left, move right, move down, pickup object, drop object). The length of
a trajectory is 100.

Correction Module Each previous trajectory is first subsampled every 25th state. Each obser-
vation is then processed by a 2D CNN((4, 2x2, 1), (4, 2x2, 1)) followed by a MLP(32, 32). This
trajectory of state embeddings is then processed by a 1D CNN(4, 2, 1) followed by a MLP(16, 4).

The language correction is converted into word embeddings of size 16 and processed by a 1D
CNN(4, 2, 1) followed by a MLP (16, 4). For a given correction iteration, the trajectory embedding
and the correction embedding are then concatenated and fed through a MLP(32 ,32). These tensors
are then averaged across the number of correction iterations.

Instruction Module The instruction is converted into word embeddings (the same embeddings
as the correction) of size 16 and processed by a 1D CNN(4, 2, 1) followed by a MLP(16, 32).

Policy Module The observation is processed by a 2D CNN((8, 2x2, 1), (8, 2x2, 1)) followed by
a MLP(32, 32). This state embedding, the correction module tensor, and the instruction module
tensor are concatenated and fed through a MLP (64, 64) to output an action distribution.

Robotic object relocation

The observation is of size 19 and includes the (x, y, orientation) of the gripper and the (x, y)
coordinates of the 3 movable blocks and 5 fixed blocks. The action space is of size 4 and consists of
applying force on the gripper in the cardinal directions. The length of a trajectory is 350.

CHAPTER 18. APPENDICES 238

Correction Module Each previous trajectory is first subsampled every 70th state. The trajectory
is then processed by a 1D CNN(8, 2, 1) followed by a MLP(16, 8).

The language correction is converted into word embeddings of size 16 and processed by a 1D
CNN(4, 2, 1) followed by a MLP(16, 16). For a given correction iteration, the trajectory embedding
and the correction embedding are then concatenated and fed through a MLP(32 ,32). These tensors
are then averaged across the number of correction iterations.

Instruction Module The instruction is converted into word embeddings (the same embeddings
as the correction) of size 16 and processed by a 1D CNN(4, 2, 1) followed by a MLP(16, 16).

Policy Module The observation, the correction module tensor, and the instruction module tensor
are concatenated and fed through a MLP(256, 256, 256) to output an action distribution.

CHAPTER 18. APPENDICES 239

18.3 Appendix C: Appendix for Chapter 5

Pseudo-Reward
The log p(z) term in Equation 5.3 is a baseline that does not depend on the policy parameters θ, so
one might be tempted to remove it from the objective. We provide a two justifications for keeping it.
First, assume that episodes never terminate, but all skills eventually converge to some absorbing
state (e.g., with all sensors broken). At this state, the discriminator cannot distinguish the skills,
so its estimate is log q(z | s) = log(1/N), where N is the number of skills. For practical reasons,
we want to restart the episode after the agent reaches the absorbing state. Subtracting log(z) from
the pseudo-reward at every time step in our finite length episodes is equivalent to pretending that
episodes never terminate and the agent gets reward log(z) after our “artificial” termination. Second,
assuming our discriminator qφ is better than chance, we see that qφ(z | s) ≥ p(z). Thus, subtracting
the log p(z) baseline ensures our reward function is always non-negative, encouraging the agent to
stay alive. Without this baseline, an optimal agent would end the episode as soon as possible.1

Optimum for Gridworlds
For simple environments, we can compute an analytic solution to the DIAYN objective. For example,
consider a N × N gridworld, where actions are to move up/down/left/right. Any action can be
taken in any state, but the agent will stay in place if it attempts to move out of the gridworld. We
use (x, y) to refer to states, where x, y ∈ {1, 2, · · · , N}.

For simplicity, we assume that, for every skill, the distribution of states visited exactly equals
that skill’s stationary distribution over states. To clarify, we will use πz to refer to the policy for
skill z. We use ρπz to indicate skill z’s stationary distribution over states, and ρ̂πz as the empirical
distribution over states within a single episode. Our assumption is equivalent to saying

ρπz(s) = ρ̂πz(s) ∀s ∈ S

One way to ensure this is to assume infinite-length episodes.
We want to show that a set of skills that evenly partitions the state space is the optimum of the

DIAYN objective for this task. While we will show this only for the 2-skill case, the 4 skill case is
analogous.

The optimum policies for a set of two skills are those which evenly partition the state space. We
will show that a top/bottom partition is one such (global) optima. The left/right case is analogous.

Lemma 6. A pair of skills with state distributions given below (and shown in Figure 18.16) are an
optimum for the DIAYN objective with no entropy regularization (α = 0).

ρπ1(x, y) =
2

N2
δ(y ≤ N/2) and ρπ2(x, y) =

2

N2
δ(y > N/2) (18.5)

1In some environments, such as mountain car, it is desirable for the agent to end the episode as quickly as possible.
For these types of environments, the log p(z) baseline can be removed.

CHAPTER 18. APPENDICES 240

SKILL 1

SKILL 2

(a) Optimum Skills for Gridworld with 2 Skills
(b) Policy for one of the optimal skills. The agent stays in
place when it attempts to leave the gridworld.

Figure 18.16: Optimum for Gridworlds: For gridworld environments, we can compute an analytic solution to the
DIAYN objective.

Before proving Lemma 6, we note that there exist policies that achieve these stationary distribu-
tions. Figure 18.16b shows one such policy, were each arrow indicates a transition with probability
1
4
. Note that when the agent is in the bottom row of yellow states, it does not transition to the green

states, and instead stays in place with probability 1
4
. Note that the distribution in Equation 18.5

satisfies the detailed balance equations [429].

Proof. Recall that the DIAYN objective with no entropy regularization is:

−H[Z | S] +H[Z]

Because the skills partition the states, we can always infer the skill from the state, soH[Z | S] = 0.
By construction, the prior distribution overH[Z] is uniform, soH[Z] = log(2) is maximized. Thus,
a set of two skills that partition the state space maximizes the un-regularized DIAYN objective.

Next, we consider the regularized objective. In this case, we will show that while an even
partition is not perfectly optimal, it is “close” to optimal, and its “distance” from optimal goes to
zero as the gridworld grows in size. This analysis will give us additional insight into the skills
preferred by the DIAYN objective.

Lemma 7. A pair of skills with state distributions given given in Equation 18.5 achieve an DIAYN
objective within a factor of O(1/N) of the optimum, where N is the gridworld size.

Proof. Recall that the DIAYN objective with no entropy regularization is:

H[A | S,Z]−H[Z | S] +H[Z]

We have already computed the second two terms in the previous proof: H[Z | S] = 0 and
H[Z] = log(2). For computing the first term, it is helpful to define the set of “border states” for a

CHAPTER 18. APPENDICES 241

particular skill as those that do not neighbor another skill. For skill 1 defined in Figure 18.16 (colored
yellow), the border states are: {(x, y) | y = 4}. Now, computing the first term is straightforward:

H[A | S,Z] =
2

N2

(
(N/2− 1)N︸ ︷︷ ︸
non-border states

log(4) + N︸︷︷︸
border states

3

4
log(4)

)

=
2 log(4)

N2

(
1

2
N2 − 1

4
N

)
= log(4)(1− 1

2N
)

Thus, the overall objective is within log(4)
2N

of optimum.

>
(a)

>
(b)

Figure 18.17: The DIAYN objective prefers skills that (Left) partition states into sets with short borders and (Right)
which correspond to bottleneck states.

Note that the term for maximum entropy over actions (H[A | S,Z]) comes into conflict with the
term for discriminability (−H[Z | S]) at states along the border between two skills. Everything else
being equal, this conflict encourages DIAYN to produce skills that have small borders, as shown
in Figure 18.17. For example, in a gridworld with dimensions N < M , a pair of skills that split
along the first dimension (producing partitions of size (N,M/2)) would achieve a larger (better)
objective than skills that split along the second dimension. This same intuition that DIAYN seeks to
minimize the border length between skills results in DIAYN preferring partitions that correspond to
bottleneck states (see Figure 18.17b).

Experimental Details
In our experiments, we use the same hyperparameters as those in [23], with one notable exception.
For the Q function, value function, and policy, we use neural networks with 300 hidden units instead
of 128 units. We found that increasing the model capacity was necessary to learn many diverse
skills. When comparing the “skill initialization” to the “random initialization” in Section 5.4, we
use the same model architecture for both methods. To pass skill z to the Q function, value function,
and policy, we simply concatenate z to the current state st. As in [23], epochs are 1000 episodes
long. For all environments, episodes are at most 1000 steps long, but may be shorter. For example,
the standard benchmark hopper environment terminates the episode once it falls over. Figures 5.2
shows up to 1000 epochs, which corresponds to at most 1 million steps. We found that learning was

CHAPTER 18. APPENDICES 242

most stable when we scaled the maximum entropy objective (H[A | S,Z] in Eq. 5.1) by α = 0.1.
We use this scaling for all experiments.

Environments

Most of our experiments used the following, standard RL environments [29]: HalfCheetah-v1, Ant-
v1, Hopper-v1, MountainCarContinuous-v0, and InvertedPendulum-v1. The simple 2D navigation
task used in Figures 5.2a and 5.5 was constructed as follows. The agent starts in the center of the
unit box. Observations s ∈ [0, 1]2 are the agent’s position. Actions a ∈ [−0.1, 0.1]2 directly change
the agent’s position. If the agent takes an action to leave the box, it is projected to the closest point
inside the box.

The cheetah hurdle environment is a modification of HalfCheetah-v1, where we added boxes
with shape H = 0.25m,W = 0.1m,D = 1.0m, where the width dimension is along the same axis
as the cheetah’s forward movement. We placed the boxes ever 3 meters, start at x = −1m.

The ant navigation environment is a modification of Ant-v1. To improve stability, we fol-
low [240] and lower the gear ratio of all joints to 30. The goals are the corners of a square, centered
at the origin, with side length of 4 meters: [(2, 2), (2,−2), (−2,−2), (−2, 2), (2, 2)]. The ant starts
at the origin, and receives a reward of +1 when its center of mass is within 0.5 meters of the correct
next goal. Each reward can only be received once, so the maximum possible reward is +5.

Hierarchical RL Experiment

For the 2D navigation experiment shown in Figure 5.5, we first learned a set of skills on the point
environment. Next, we introduced a reward function rg(s) = −‖s− g‖2

2 penalizing the distance
from the agent’s state to some goal, and applied the hierarchical algorithm above. In this task, the
DIAYN skills provided sufficient coverage of the state space that the hierarchical policy only needed
to take a single action (i.e., choose a single skill) to complete the task.

CHAPTER 18. APPENDICES 243

More Analysis of DIAYN Skills
Training Objectives

Figure 18.18: Objectives: We plot the two terms from our objective (Eq. 1) throughout training. While the entropy
regularizer (blue) quickly plateaus, the discriminability term (orange) term continues to increase, indicating that our
skills become increasingly diverse without collapsing to deterministic policies. This plot shows the mean and standard
deviation across 5 seeds for learning 20 skills in half cheetah environment. Note that log2(1/20) ≈ −3, setting a lower
bound for log qφ(z | s).

To provide further intuition into our approach, Figure 18.18 plots the two terms in our objective
throughout training. Our skills become increasingly diverse throughout training without converging
to deterministic policies.

Figure 18.19: We repeated the experiment from Figure 5.2 with 5 random seeds to illustrate the robustness of our
method to random seed.

To illustrate the stability of DIAYN to random seed, we repeated the experiment in Figure 5.2
for 5 random seeds. Figure 18.19 illustrates that the random seed has little effect on the training
dynamics.

CHAPTER 18. APPENDICES 244

Effect of Entropy Regularization

Question 8. Does entropy regularization lead to more diverse skills?

α = 0.01 α = 1 α = 10

To answer this question, we apply our
method to a 2D point mass. The agent con-
trols the orientation and forward velocity of the
point, with is confined within a 2D box. We
vary the entropy regularization α, with larger
values of α corresponding to policies with more
stochastic actions. With small α, we learn skills
that move large distances in different directions but fail to explore large parts of the state space.
Increasing α makes the skills visit a more diverse set of states, which may help with exploration in
complex state spaces. It is difficult to discriminate skills when α is further increased.

Distribution over Task Reward

(a) Hopper (b) Half Cheetah (c) Ant
Figure 18.21: Task reward of skills learned without reward: While our skills are learned without the task reward
function, we evaluate each with the task reward function for analysis. The wide range of rewards shows the diversity of
the learned skills. In the hopper and half cheetah tasks, many skills achieve large task reward, despite not observing the
task reward during training. As discussed in prior work [247], [301], standard model-free algorithms trained directly on
the task reward converge to scores of 1000 - 3000 on hopper, 1000 - 5000 on cheetah, and 700 - 2000 on ant.

In Figure 18.21, we take the skills learned without any rewards, and evaluate each of them
on the standard benchmark reward function. We compare to random (untrained) skills. The wide
distribution over rewards is evidence that the skills learned are diverse. For hopper, some skills
hop or stand for the entire episode, receiving a reward of at least 1000. Other skills aggressively
hop forwards or dive backwards, and receive rewards between 100 and 1000. Other skills fall over
immediately and receive rewards of less than 100. The benchmark half cheetah reward includes
a control penalty for taking actions. Unlike random skills, learned skills rarely have task reward
near zero, indicating that all take actions to become distinguishable. Skills that run in place, flop on
their nose, or do backflips receive reward of -100. Skills that receive substantially smaller reward
correspond to running quickly backwards, while skills that receive substantially larger reward
correspond to running forward. Similarly, the benchmark ant task reward includes both a control
penalty and a survival bonus, so random skills that do nothing receive a task reward near 1000.
While no single learned skill learns to run directly forward and obtain a task reward greater than
1000, our learned skills run in different patterns to become discriminable, resulting in a lower task
reward.

CHAPTER 18. APPENDICES 245

Exploration

Question 9. Does DIAYN explore effectively in complex environments?
We apply DIAYN to three standard RL benchmark environments: half-cheetah, hopper, and

ant. In all environments, we learn diverse locomotion primitives, as shown in Figure 5.3. Despite
never receiving any reward, the half cheetah and hopper learn skills that move forward and achieve
large task reward on the corresponding RL benchmarks, which all require them to move forward
at a fast pace. Half cheetah and hopper also learn skills that move backwards, corresponding to
receiving a task reward much smaller than what a random policy would receive. Unlike hopper and
half cheetah, the ant is free to move in the XY plane. While it learns skills that move in different
directions, most skills move in arcs rather than straight lines, meaning that we rarely learn a single
skill that achieves large task reward on the typical task of running forward. In the appendix, we
visualize the objective throughout training.

Figure 18.22: Exploration: We take DIAYN skills learned without a reward function, and evaluate on three natural
reward functions: running, jumping, and moving away from the origin. For all tasks, DIAYN learns some skills that
perform well. In contrast, a single policy that maximizes an exploration bonus (VIME) performs poorly on all tasks.

In Figure 18.22, we evaluate all skills on three reward functions: running (maximize X coordi-
nate), jumping (maximize Z coordinate) and moving (maximize L2 distance from origin). For each
skill, DIAYN learns some skills that achieve high reward. We compare to single policy trained with
a pure exploration objective (VIME [105]). Whereas previous work (e.g., [105], [106], [109]) finds
a single policy that explores well, DIAYN optimizes a collection of policies, which enables more
diverse exploration.

Learning p(z)

We used our method as a starting point when comparing to VIC [194] in Section 5.4. While p(z)
is fixed in our method, we implement VIC by learning p(z). In this section, we describe how we
learned p(z), and show the effect of learning p(z) rather than leaving it fixed.

CHAPTER 18. APPENDICES 246

How to Learn p(z)

We choose p(z) to optimize the following objective, where pz(s) is the distribution over states
induced by skill s:

H[S,Z] = H[Z]−H[Z | S]

=
∑
z

−p(z) log p(z) +
∑
z

Es∼pz(s) [log p(z | s)]

=
∑
z

p(z)
(
Es∼pz(s) [log p(z | s)]− log p(z)

)
For clarity, we define ptz(s) as the distribution over states induced by skill z at epoch t, and define
`t(z) as an approximation of E[log p(z | s)] using the policy and discriminator from epoch t:

`t(z) , Es∼ptz(s)[log qt(z | s)]

Noting that p(z) is constrained to sum to 1, we can optimize this objective using the method of
Lagrange multipliers. The corresponding Lagrangian is

L(p) =
∑
z

p(z) (`t(z)− log p(z)) + λ

(∑
z

p(z)− 1

)

whose derivative is

∂L
∂p(z)

= ���p(z)

(
−1

�
��p(z)

)
+ `t(z)− log p(z) + λ

= `t(z)− log p(z) + λ− 1

Setting the derivative equal to zero, we get

log p(z) = `t(z) + λ− 1

and finally arrive at
p(z) ∝ e`t(z)

Effect of Learning p(z)

In this section, we briefly discuss the effect of learning p(z) rather than leaving it fixed. To study
the effect of learning p(z), we compared the entropy of p(z) throughout training. When p(z) is
fixed, the entropy is a constant (log(50) ≈ 3.9). To convert nats to a more interpretable quantity, we
compute the effective number of skills by exponentiation the entropy:

effective num. skills , eH[Z]

CHAPTER 18. APPENDICES 247

Figure 18.23: Effect of learning p(z): We plot the effective number of skills that are sampled from the skill distribution
p(z) throughout training. Note how learning p(z) greatly reduces the effective number on inverted pendulum and
mountain car. We show results from 3 random seeds for each environment.

Figure 18.24: Learning p(z) with varying number of skills: We repeat the experiment in Figure 5.4 for varying sizes
of z. Regardless of the size of z, learning p(z) causes the effective number of skills to drop to less than 10. The two
subplots show the same data (Left) on a linear scale and (Right) logarithmic scale. We plot the mean and standard
deviation across 3 random seeds.

Figure 18.23 shows the effective number of skills for half cheetah, inverted pendulum, and mountain
car. Note how the effective number of skills drops by a factor of 10x when we learn p(z). This ob-
servation supports our claim that learning p(z) results in learning fewer diverse skills. Figure 18.24
is a repeat of the experiment in Figure 18.23, where we varying the dimension of z. Note that the
dimension of z equals the maximum number of skills that the agent could learn. We observe that
the effective number of skills plummets throughout training, even when using a high-dimensional
vector for z.

Visualizing Learned Skills
Classic Control Tasks

In this section, we visualize the skills learned for inverted pendulum and mountain car without
a reward. Not only does our approach learn skills that solve the task without rewards, it learns
multiple distinct skills for solving the task. Figure 18.25 shows the X position of the agent across
time, within one episode. For inverted pendulum (Fig. 18.25a), we plot only skills that solve the
task. Horizontal lines with different X coordinates correspond to skills balancing the pendulum

CHAPTER 18. APPENDICES 248

(a) Inverted Pendulum (b) Mountain Car
Figure 18.25: Visualizing Skills: For every skill, we collect one trajectory and plot the agent’s X coordinate across
time. For inverted pendulum (top), we only plot skills that balance the pendulum. Note that among balancing skills,
there is a wide diversity of balancing positions, control frequencies, and control magnitudes. For mountain car (bottom),
we show skills that achieve larger reward (complete the task), skills with near-zero reward, and skills with very negative
reward. Note that skills that solve the task (green) employ varying strategies.

at different positions along the track. The periodic lines correspond to skills that oscillate back
and forth while balancing the pendulum. Note that skills that oscillate have different X positions,
amplitudes, and periods. For mountain car (Fig. 18.25b), skills that climb the mountain employ a
variety of strategies for to do so. Most start moving backwards to gather enough speed to summit
the mountain, while others start forwards, then go backwards, and then turn around to summit the
mountain. Additionally, note that skills differ in when the turn around and in their velocity (slope of
the green lines).

Simulated Robot Tasks

Figures 18.26, 18.27, and 18.28 show more skills learned without reward.

CHAPTER 18. APPENDICES 249

Figure 18.26: Half cheetah skills: We show skills learned by half-cheetah with no reward.

CHAPTER 18. APPENDICES 250

Figure 18.27: Hopper Skills: We show skills learned by hopper with no reward.

CHAPTER 18. APPENDICES 251

Figure 18.28: Ant skills: We show skills the ant learns without any supervision. Ant learns (top row) to move right,
(middle row) to move left, (bottom row, left to right) to move up, to move down, to flip on its back, and to rotate in place.

CHAPTER 18. APPENDICES 252

Figure 18.29: Imitating an expert: Across 600 imitation tasks, we find our method more closely matches the expert
than all baselines.

Imitation Learning
Given the expert trajectory, we use our learned discriminator to estimate which skill was most likely
to have generated the trajectory:

ẑ = arg max
z

Πst∈τ∗qφ(z | st)

As motivation for this optimization problem, note that each skill induces a distribution over states,
pz , p(s | z). We use p∗ to denote the distribution over states for the expert policy. With a fixed
prior distribution p(z) and a perfect discriminator qφ(z | s) = p(z | s), we have p(s | z) ∝ qφ(z | s)
as a function of z. Thus, Equation 18.3 is an M-projection of the expert distribution over states onto
the family of distributions over states, P = {pz}:

arg min
pz∈P

D(p∗ || pz) (18.6)

For clarity, we omit a constant that depends only on p∗. Note that the use of an M-projection,
rather than an I-projection, helps guarantee that the retrieved skill will visit all states that the expert
visits [211]. In our experiments, we solve Equation 18.6 by simply iterating over skills.

Imitation Learning Experiments

The “expert” trajectories are actually generated synthetically in these experiments, by running a
different random seed of our algorithm. A different seed is used to ensure that the trajectories are
not actually produced by any of the currently available skills. Of course, in practice, the expert
trajectories might be provided by any other means, including a human. For each expert trajectory,
we retrieve the closest DIAYN skill ẑ using Equation 5.4. Evaluating qφ(ẑ | τ ∗) gives us an estimate
of the probability that the imitation will match the expert (e.g., for a safety critical setting). This
quantity is useful for predicting how accurately our method will imitate an expert before executing
the imitation policy. In a safety critical setting, a user may avoid attempting tasks where this score
is low. We compare our method to three baselines. The “low entropy” baseline is a variant on our
method with lower entropy regularization. The “learned p(z)” baseline learns the distribution over
skills. Note that Variational Intrinsic Control [194] is a combination of the “low entropy” baseline
and the “learned p(z)” baseline. Finally, the “few skills” baseline learns only 5 skills, whereas all

CHAPTER 18. APPENDICES 253

other methods learn 50. Figure 18.29 shows the results aggregated across 600 imitation tasks. The
X-axis shows the discriminator score, our estimate for how well the imitation policy will match the
expert. The Y-axis shows the true distance between the trajectories, as measured by L2 distance
in state space. For all methods, the distance between the expert and the imitation decreases as the
discriminator’s score increases, indicating that the discriminator’s score is a good predictor of task
performance. Our method consistently achieves the lowest trajectory distance among all methods.
The “low entropy” baseline is slightly worse, motivating our decision to learn maximum entropy
skills. When imitating tasks using the “few skills” baseline, the imitation trajectories are even
further from the expert trajectory. This is expected – by learning more skills, we obtain a better
“coverage” over the space of skills. A “learn p(z)” baseline that learns the distribution over skills
also performs poorly. Recalling that [194] is a combination of the “low entropy” baseline and the
“learn p(z)” baseline, this plot provides evidence that using maximum entropy policies and fixing
the distribution for p(z) are two factors that enabled our method to scale to more complex tasks.

CHAPTER 18. APPENDICES 254

18.4 Appenix D: Appendix for Chapter 6

Proofs
Lemma 1 Let π be a policy for which ρTπ (s) is uniform. Then π has lowest worst-case regret.

Proof of Lemma 2. To begin, we note that all goal distributions p(sg) have equal regret for policies
where ρTπ (s) = 1/|S| is uniform:

REGRETp(π) =

∫
p(sg)

ρTπ (sg)
dsg =

∫
p(sg)

1/|S|
dsg = |S|

Now, consider a policy π′ for which ρTπ (s) is not uniform. For simplicity, we will assume that the
argmin is unique, though the proof holds for non-unique argmins as well. The worst-case goal
distribution will choose the state s− where that the policy is least likely to visit:

p−(sg) , 1(sg = arg min
s

ρTπ (s))

Thus, the worst-case regret for policy π′ is strictly greater than the regret for a uniform π:

max
p

REGRETp(π) = REGRETp−(π)

=

∫
1(sg = arg mins ρ

T
π (s))

ρTπ (sg)
dsg

=
1

mins ρTπ′(s)
> |S| (18.7)

Thus, a policy π′ for which ρTπ is non-uniform cannot be minimax, so the optimal policy has a
uniform marginal ρTπ .

Lemma 2: Mutual information I(sT ; z) is maximized by a task distribution p(sg) which is
uniform over goal states.

Proof of Lemma 3. We define a latent variable model, where we sample a latent variable z from a
uniform prior p(z) and sample goals from a conditional distribution p(sT | z). To begin, note that
the mutual information can be written as a difference of entropies:

Ip(sT ; z) = Hp[sT]−Hp[sT | z]

The conditional entropy Hp[sT | z] attains the smallest possible value (zero) when each latent
variable z corresponds to exactly one final state, sz. In contrast, the marginal entropyHp[sT] attains
the largest possible value (log |S|) when the marginal distribution p(sT) =

∫
p(sT | z)p(z)dz is

uniform. Thus, a task uniform distribution p(sg) maximizes I(sT ; z). Note that for any non-uniform
task distribution q(sT), we haveHq[sT] < Hp[sT]. Since the conditional entropyHp[sT | z] is zero,
no distribution can achieve a smaller conditional entropy. This, for all non-uniform task distributions
q, we have Iq(sT ; z) < Ip(sT ; z). Thus, the optimal task distribution must be uniform.

CHAPTER 18. APPENDICES 255

Ablations

Figure 18.30: Analysis of effect of additional meta-training on meta-test time learning of new tasks. For larger iterations
of meta-trained policies, we have improved test time performance, showing that additional meta-training is beneficial.

To understand the method performance more clearly, we also add an ablation study where we
compare the meta-test performance of policies at different iterations along meta-training. This
shows the effect that additional meta-training has on the fast learning performance for new tasks.
This comparison is shown in Figure 18.30. As can be seen here, at iteration 0 of meta-training
the policy is not a very good initialization for learning new tasks. As we move further along the
meta-training process, we see that the meta-learned initialization becomes more and more effective
at learning new tasks. This shows a clear correlation between additional meta-training and improved
meta test-time performance.

CHAPTER 18. APPENDICES 256

2D navigation Ant Half-Cheetah
Figure 18.31: Learned meta-training task distribution and evaluation tasks: We plot the center of mass for various
skills discovered by point mass and ant using DIAYN, and a blue histogram of goal velocities for cheetah. Evaluation
tasks, which are not provided to the algorithm during meta-training, are plotted as red ‘x’ for ant and pointmass, and as
a green histogram for cheetah. While the meta-training distribution is broad, it does not fully cover the evaluation tasks.
Nonetheless, meta-learning on this learned task distribution enables efficient learning on a test task distribution.

Analysis of Learned Task Distributions
We can analyze the tasks discovered through unsupervised exploration and compare them to tasks
we evaluate on at meta-test time. Figure 18.31 illustrates these distributions using scatter plots for
2D navigation and the Ant, and a histogram for the HalfCheetah. Note that we visualize dimensions
of the state that are relevant for the evaluation tasks – positions and velocities – but these dimensions
are not specified in any way during unsupervised task acquisition, which operates on the entire state
space. Although the tasks proposed via unsupervised exploration provide fairly broad coverage, they
are clearly quite distinct from the meta-test tasks, suggesting the approach can tolerate considerable
distributional shift. Qualitatively, many of the tasks proposed via unsupervised exploration such
as jumping and falling that are not relevant for the evaluation tasks. Our choice of the evaluation
tasks was largely based on prior work, and therefore not tailored to this exploration procedure. The
results for unsupervised meta-RL therefore suggest quite strongly that unsupervised task acquisition
can provide an effective meta-training set, at least for MAML, even when evaluating on tasks that
do not closely match the discovered task distribution.

Hyperparameter Details
For all our experiments, we used DIAYN to acquire the task proposals using 20 skills for half-
cheetah and for ant and 50 skills for the 2D navigation. We illustrate these half cheetah and
ant in Fig. 18.32. We ran the domains using the standard DIAYN hyperparameters described in
https://github.com/ben-eysenbach/sac to acquire task proposals. These proposals
were then fed into the MAML algorithm https://github.com/cbfinn/maml_rl, with
inner learning rate 0.1, meta learning rate 0.01, inner batch size 40, outer batch size, path length
100, using 2 layer networks with 300 units each with ReLu nonlinearities. We vary the meta-batch
size according to the number of skills: 50 for pointmass, 20 for cheetah, and 20 ant. The test time
learning is done with the same parameters for the UMRL variants, and done using REINFORCE

https://github.com/ben-eysenbach/sac
https://github.com/cbfinn/maml_rl

CHAPTER 18. APPENDICES 257

Half-Cheetah Ant
Figure 18.32: Environments: (Left) Half-Cheetah and (Right) Ant

with the Adam optimizer for the comparison with learning from scratch. We swept over learning
rates for learning from scratch via vanilla policy gradient, and found that using ADAM with adaptive
step size is the most stable and quick at learning.

CHAPTER 18. APPENDICES 258

18.5 Appendix E: Appendix for Chapter 10

Experimental Details
We use feed-forward MLPs for all our policies, with two layer neural networks with 256 units each
and ReLu nonlinearities used for both the high-level policy πθ and the low-level policy πφ in all
methods. Flat baselines use the same architecture as well and additional experimentation with the
architecture did not yield substantially different results. We train all imitation learning algorithms
with the ADAM optimizer using a batch size of 128 and a learning rate of 0.005. We choose Wl to
be 30 and Wh to be 260 in all experiments. Our ablations suggest that the larger the window, the
harder the learning problem becomes for both imitation and RL fine-tuning.

For reinforcement learning, we utilize a variant of Trust Region Policy Optimization (TRPO). We
fine-tune on 17 different compound goals individually, with a path length of 280 for every compound
goal, and the low-level horizon set to 30. We use 100 trajectories in each iteration of on-policy fine-
tuning, with a discount of 0.995. When using variants of augmenting the policy gradient objective
with demonstrations, we experimented with different weights λh and λl, but we found 0.0001 to
work well. We use a batch size of a 100 trajectories per iteration, and fairly standard parameters for
truncated natural policy gradient based on https://github.com/aravindr93/mjrl

The simulation environment has a 30-dimensional state space which consists of positions of the
arm and the objects in the scene. The action space is 9 dimensional with 7 DoF for the arm and 2
DoF for the gripper. The actions are represented as the joint velocity.

Reward Function Details
For the comparisons detailed in Section 5.3, the reward functions used for sparse, euclidean and
element-wise sparse reward functions are detailed below, with ε set to 0.3. For all our experimental
results in Fig 5, we use the sparse reward variant as the reward function for fine-tuning.

Rsparse(s, g) = 1(‖s− g‖2 < ε) (18.8)

Reuclidean(s, g) = −‖s− g‖2 (18.9)

Relementwise sparse(s, g) =
∑

idx∈element indices

1(‖s[idx]− g[idx]‖2 < ε) (18.10)

In the element-wise sparse reward case, idx is selected to be the indices of state corresponding
to different distinct elements of the scene such as the microwave, stove burners, light switch, sliding
cabinet, hinge cabinets and so on. The robot arm is excluded from these indices.

Oracle Baseline Details
For the oracle comparison described in Section 5, a hand-designed scheme is used to segment
the demonstration into segments corresponding to semantically meaningful components, thereby

https://github.com/aravindr93/mjrl

CHAPTER 18. APPENDICES 259

generating variable sized windows rather than fixed length ones. Specifically, we split a segment
any time one of [microwave, kettle, light switch, burners, slide cabinet, hinge cabinet] is moved
more than ε = 0.3. This leads to a variable segment generation scheme, which generates splits that
is shown in Fig 18.33.

Figure 18.33: Splits generated by the oracle segmentation scheme. Each color corresponds to a different split and
different demonstrations as plotted as different rows along the y-axis, with time-steps along the x-axis. We see that
the split of demonstrations is fairly variable in time-steps. This makes the imitation learning and fine-tuning quite
challenging.

Segments generated in this fashion can then be used for imitation learning both the low-level
and high-level policies. Specifically, the actions for the high level policies are chosen to be the
states at which the segments are broken, and the low level is trained via goal conditioned behavior
cloning with those states set as goals.

Visualization of Learned Behaviors
We show example visualizations of several successful learned behaviors for compound tasks, and
some failed behaviors to better understand the the method. These can be best appreciated by viewing
the accompanying videos on the supplementary website https://relay-policy-learning.github.io.

https://relay-policy-learning.github.io

CHAPTER 18. APPENDICES 260

Figure 18.34: Visualization of successful learned behavior for opening microwave, moving kettle, turning on light
switch, sliding the slider

Successful cases

Figure 18.35: Visualization of successful learned behavior for moving kettle, turning top knob, sliding the slider and
opening the hinge cabinet

Failure Cases

Figure 18.36: Visualization of failing learned behavior for moving kettle, turning the bottom knob, moving the slider
and turning on the oven light

CHAPTER 18. APPENDICES 261

18.6 Appendix F: Appendix for Chapter 11

Algorithm Derivation Details
The full optimization problem we solve, given the previous off-policy advantage estimate Aπk and
buffer distribution πβ , is given below:

πk+1 = arg max
π∈Π

Ea∼π(·|s)[A
πk(s, a)] (18.11)

s.t. DKL(π(·|s)||πD(·|s)) ≤ ε (18.12)∫
a

π(a|s)da = 1. (18.13)

Our derivation follows [354] and [349]. The analytic solution for the constrained optimization
problem above can be obtained by enforcing the KKT conditions. The Lagrangian is:

L(π, λ, α) =Ea∼π(·|s)[A
πk(s, a)] (18.14)

+ λ(ε−DKL(π(·|s)||πβ(·|s))) (18.15)

+ α(1−
∫
a

π(a|s)da). (18.16)

Differentiating with respect to π gives:

∂L
∂π

= Aπk(s, a)− λ log πβ(a|s) + λ log π(a|s) + λ− α. (18.17)

Setting ∂L
∂π

to zero and solving for π gives the closed form solution to this problem:

π∗(a|s) =
1

Z(s)
πD(a|s) exp

(
1

λ
Aπk(s, a)

)
, (18.18)

Next, we project the solution into the space of parametric policies. For a policy πθ with parameters
θ, this can be done by minimizing the KL divergence of πθ from the optimal non-parametric solution
π∗ under the data distribution ρπD(s):

arg min
θ

E
ρπD (s)

[DKL(π∗(·|s)||πθ(·|s))] (18.19)

= arg min
θ

E
ρπD (s)

[
E

π∗(·|s)
[− log πθ(·|s)]

]
(18.20)

Note that in the projection step, the parametric policy could be projected with either direction of
KL divergence. However, choosing the reverse KL direction has a key advantage: it allows us
to optimize θ as a maximum likelihood problem with an expectation over data s, a ∼ D, rather
than sampling actions from the policy that may be out of distribution for the Q function. In our
experiments we show that this decision is vital for stable off-policy learning.

CHAPTER 18. APPENDICES 262

Furthermore, assume discrete policies with a minimum probably density of πθ ≥ αθ. Then the
upper bound:

DKL(π∗||πθ) ≤
2

αθ
DTV(π∗, πθ)

2 (18.21)

≤ 1

αθ
DKL(πθ||π∗) (18.22)

holds by the Pinsker’s inequality, where DTV denotes the total variation distance between distribu-
tions. Thus minimizing the reverse KL also bounds the forward KL. Note that we can control the
minimum α if desired by applying Laplace smoothing to the policy.

Implementation Details
We implement the algorithm building on top of twin soft actor-critic [23], which incorporates the
twin Q-function architecture from twin delayed deep deterministic policy gradient (TD3) from [344].
All off-policy algorithm comparisons (SAC, BRAC, MPO, ABM, BEAR) are implemented from the
same skeleton. The base hyperparameters are given in Table 18.12. The policy update is replaced
with:

θk+1 = arg max
θ

E
s,a∼D

[
log πθ(a|s)

1

Z(s)
exp

(
1

λ
Aπk(s, a)

)]
. (18.23)

Env
Use
Z(s)

Omit
Z(s)

pen 84% 98%

door 0% 95%

relocate 0% 54%

Table 18.11: Success rates after online fine-tuning (after 800K steps for pen, door and 4M steps for relocate) using
AWAC with and without Z(s) weight. These results show that although we can estimate Z(s), weighting by Z(s)
actually results in worse performance.

Similar to advantage weight regression [349] and other prior work [348], [352], [371], we disre-
gard the per-state normalizing constantZ(s) =

∫
a
πθ(a|s) exp

(
1
λ
Aπk(s, a)

)
da = Ea∼πθ(·|s)[A

πk(s, a)].
We did experiment with estimating this expectation per batch element with K = 10 samples, but
found that this generally made performance worse, perhaps because errors in the estimation of Z(s)
caused more harm than the benefit the method derived from estimating this value. We report success
rate results for variants of our method with and without Z(s) estimation in Table 18.11.

While prior work [348], [349], [371] has generally ignored the omission of Z(s) without any
specific justification, it is possible to bound this value both above and below using the Cauchy-
Schwarz and reverse Cauchy-Schwarz (Polya-Szego) inequalities, as follows. Let f(a) = π(a|s)

CHAPTER 18. APPENDICES 263

and g(a) = exp(A(s, a)/λ). Note f(a) > 0 for stochastic policies and g(a) > 0. By Cauchy-

Schwarz, Z(s) =
∫
a
f(a)g(a)da ≤

√∫
a
f(a)2da

∫
a
g(a)2da = C1. To apply Polya-Szego, let

mf and mg be the minimum of f and g respectively and Mf ,Mg be the maximum. Then Z(s) ≥
2(
√

MfMg

mfmg
+

mfmg
MfMg

)−1C1 = C2. We therefore have C1 ≤ Z(s) ≤ C2, though the bounds are
generally not tight.

A further, more intuitive argument for why omitting Z(s) may be harmless in practice comes
from observing that this normalizing factor only affects the relative weight of different states in
the training objective, not different actions. The state distribution in β already differs from the
distribution over states that will be visited by πθ, and therefore preserving this state distribution
is likely to be of limited utility to downstream policy performance. Indeed, we would expect that
sufficiently expressive policies would be less affected by small to moderate variability in the state
weights. On the other hand, inaccurate estimates of Z(s) may throw off the training objective by
increasing variance, similar to the effect of degenerate importance weights.

The Lagrange multiplier λ is treated as a hyperparameter in our method. In this work we use
λ = 0.3 for the manipulation environments and λ = 1.0 for the MuJoCo benchmark environments.
One could adaptively learn λ with a dual gradient descent procedure, but this would require access
to πβ .

As rewards for the dextrous manipulation environments are non-positive, we clamp the Q value
for these experiments to be at most zero. We find this stabilizes training slightly.

Environment-Specific Details
We evaluate our method on three domains: dexterous manipulation environments, Sawyer manipu-
lation environments, and MuJoCo benchmark environments. In the following sections we describe
specific details.

Dexterous Manipulation Environments

These environments are modified from those proposed by [95].

pen-binary-v0. The task is to spin a pen into a given orientation. The action dimension is 24 and
the observation dimension is 45. Let the position and orientation of the pen be denoted by xp and
xo respectively, and the desired position and orientation be denoted by dp and do respectively. The
reward function is r = 1|xp−dp|≤0.0751|xo·do|≤0.95 - 1. In [95], the episode was terminated when the
pen fell out of the hand; we did not include this early termination condition.

door-binary-v0. The task is to open a door, which requires first twisting a latch. The action
dimension is 28 and the observation dimension is 39. Let d denote the angle of the door. The reward
function is r = 1d>1.4 - 1.

CHAPTER 18. APPENDICES 264

Hyper-parameter Value

Training Batches Per Timestep 1

Exploration Noise None (stochastic policy)

RL Batch Size 1024

Discount Factor 0.99

Reward Scaling 1

Replay Buffer Size 1000000

Number of pretraining steps 25000

Policy Hidden Sizes [256, 256, 256, 256]

Policy Hidden Activation ReLU

Policy Weight Decay 10−4

Policy Learning Rate 3× 10−4

Q Hidden Sizes [256, 256, 256, 256]

Q Hidden Activation ReLU

Q Weight Decay 0

Q Learning Rate 3× 10−4

Target Network τ 5× 10−3

Table 18.12: Hyper-parameters used for RL experiments.

relocate-binary-v0. The task is to relocate an object to a goal location. The action dimension is
30 and the observation dimension is 39. Let xp denote the object position and dp denote the desired
position. The reward is r = 1|xp−dp|≤0.1 - 1.

Sawyer Manipulation Environment

SawyerPush-v0. This environment is included in the Multiworld library. The task is to push a
puck to a goal position in a 40cm x 20cm, and the reward function is the negative distance between
the puck and goal position. When using this environment, we use hindsight experience replay for
goal-conditioned reinforcement learning. The random dataset for prior data was collected by rolling
out an Ornstein-Uhlenbeck process with θ = 0.15 and σ = 0.3.

https://github.com/vitchyr/multiworld

CHAPTER 18. APPENDICES 265

Off-Policy Data Performance

The performances of the expert data, behavior cloning (BC) on the expert data (1), and BC on the
combined expert+BC data (2) are included in Table 18.13. For Gym benchmarks we report average
return, and expert data is collected by a trained SAC policy. For dextrous manipulation tasks we
report the success rate, and the expert data consists of human demonstrations provided by [95].

Env Expert BC (1) BC (2)

cheetah 9962 2507 4524

walker 5062 2040 1701

ant 5207 687 1704

pen 1 0.73 0.76

door 1 0.10 0.00

relocate 1 0.02 0.01

Table 18.13: Performance of the off-policy data for each environment. BC (1) indicates BC on the expert data, while
BC (2) indicates BC on the combined expert+BC data used as off-policy data for pretraining.

Name Q̂ Policy Objective π̂β? Constraint

SAC Qπ DKL(πθ||Q̄) No None

SAC + BC Qπ Mixed No None

BCQ Qπ DKL(πθ||Q̄) Yes Support (`∞)

BEAR Qπ DKL(πθ||Q̄) Yes Support (MMD)

AWR Qβ DKL(Q̄||πθ) No Implicit

MPO Qπ DKL(Q̄||πθ) Yes∗ Prior

ABM-MPO Qπ DKL(Q̄||πθ) Yes Learned Prior

DAPG - J(πθ) No None

BRAC Qπ DKL(πθ||Q̄) Yes Explicit KL penalty

AWAC (Ours) Qπ DKL(Q̄||πθ) No Implicit

Figure 18.37: Comparison of prior algorithms that can incorporate prior datasets. See section 18.6 for specific
implementation details. We argue that avoiding estimating π̂β (i.e., π̂β is “No”) is important when learning with
complex datasets that include experience from multiple policies, as in the case of online fine-tuning, and maintaining a
constraint of some sort is essential for offline training. At the same time, sample-efficient learning requires using Qπ

for the critic. Our algorithm is the only one that fulfills all of these requirements.

Baseline Implementation Details
We used public implementations of prior methods (DAPG, AWR) when available. We implemented
the remaining algorithms in our framework, which also allows us to understand the effects of

CHAPTER 18. APPENDICES 266

changing individual components of the method. In the section, we describe the implementation
details. The full overview of algorithms is given in Figure 18.37.

Behavior Cloning (BC). This method learns a policy with supervised learning on demonstration
data.

Soft Actor Critic (SAC). Using the soft actor critic algorithm from [23], we follow the exact
same procedure as our method in order to incorporate prior data, initializing the policy with behavior
cloning on demonstrations and adding all prior data to the replay buffer.

Behavior Regularized Actor Critic (BRAC). We implement BRAC as described in [350] by
adding policy regularization log(πβ(a|s)) where πβ is a behavior policy trained with supervised
learning on the replay buffer. We add all prior data to the replay buffer before online training.

Advantage Weighted Regression (AWR). Using the advantage weighted regression algorithm
from [349], we add all prior data to the replay buffer before online training. We use the implementa-
tion provided by [349], with the key difference from our method being that AWR uses TD(λ) on the
replay buffer for policy evaluation.

Monotonic Advantage Re-Weighted Imitation Learning (MARWIL). Monotonic advantage
re-weighted imitation learning was proposed by [348] for offline imitation learning. MARWIL
was not demonstrated in online RL settings, but we evaluate it for offline pretraining followed
by online fine-tuning as we do other offline algorithms. Although derived differently, MARWIL
and AWR are similar algorithms and only differ in value estimation: MARWIL uses the on-policy
single-path advantage estimate A(s, a) = Qπβ(s, a)− V πβ(s) instead of TD(λ) as in AWR. Thus,
we implement MARWIL by modifying the implementation of AWR.

Maximum a Posteriori Policy Optimization (MPO). We evaluate the MPO algorithm pre-
sented by [341]. Due to a public implementation being unavailable, we modify our algorithm to be
as close to MPO as possible. In particular, we change the policy update in AWAC to be:

θi ←− arg max
θi

Es∼D,a∼π(a|s)[
log πθi(a|s) exp(

1

β
Qπβ(s, a))

]
. (18.24)

Note that in MPO, actions for the update are sampled from the policy and the Q-function is
used instead of advantage for weights. We failed to see offline or online improvement with this
implementation in most environments, so we omit this comparison in favor of ABM.

Advantage-Weighted Behavior Model (ABM). We evaluate ABM, the method developed in
[352]. As with MPO, we modify our method to implement ABM, as there is no public implementa-
tion of the method. ABM first trains an advantage model πθabm(a|s):

θabm = arg max
θi

Eτ∼D |τ |∑
t=1

log πθabm(at|st)f(R(τt:N)− V̂ (s))

 . (18.25)

CHAPTER 18. APPENDICES 267
A

ve
ra

ge
R

et
ur

n

0K 100K 200K 300K 400K 500K
Timesteps

0

2000

4000

6000

8000

10000 HalfCheetah-v2

0K 100K 200K 300K 400K 500K
Timesteps

2000

0

2000

4000

6000 Ant-v2

0K 100K 200K 300K 400K 500K
Timesteps

1000

0

1000

2000

3000

4000

5000 Walker2d-v2

AWAC (Ours)
ABM [49]

AWR [41]
MARWIL [55]

BEAR [30]
BRAC [59]

DAPG [46]
SACfD [54]

SAC+BC [39]

Figure 18.38: Comparison of our method and prior methods on standard MuJoCo benchmark tasks. These tasks are
much easier than the dexterous manipulation tasks, and allow us to better inspect the performance of methods in the
setting of offline pretraining followed by online fine-tuning. SAC+BC and BRAC perform on par with our method
on the HalfCheetah task, and ABM performs on par with our method on the Ant task, while our method outperforms
all others on the Walker2D task. Our method matches or exceeds the best prior method in all cases, whereas no other
single prior method attains good performance on all of the tasks.

where f is an increasing non-negative function, chosen to be f = 1+. In place of an advantage
computed by empirical returns R(τt:N) − V̂ (s) we use the advantage estimate computed per
transition by the Q value Q(s, a)− V (s). This is favorable for running ABM online, as computing
R(τt:N)− V̂ (s) is similar to AWR, which shows slow online improvement. We then use the policy
update:

θi ←− arg max
θi

Es∼D,a∼πabm(a|s)[
log πθi(a|s) exp

(
1

λ
(Qπi(s, a)− V πi(s))

)]
. (18.26)

Additionally, for this method, actions for the update are sampled from a behavior policy trained to
match the replay buffer and the value function is computed as V π(s) = Qπ(s, a) s.t. a ∼ π.

Demonstration Augmented Policy Gradient (DAPG). We directly utilize the code provided
in [95] to compare against our method. Since DAPG is an on-policy method, we only provide the
demonstration data to the DAPG code to bootstrap the initial policy from.

Bootstrapping Error Accumulation Reduction (BEAR). We utilize the implementation of
BEAR provided in rlkit. We provide the demonstration and off-policy data to the method together.
Since the original method only involved training offline, we modify the algorithm to include
an online training phase. In general we found that the MMD constraint in the method was too
conservative. As a result, in order to obtain the results displayed in our paper, we swept the MMD
threshold value and chose the one with the best final performance after offline training with offline
fine-tuning.

Gym Benchmark Results From Prior Data
In this section, we provide a comparative evaluation on MuJoCo benchmark tasks for analysis. These
tasks are simpler, with dense rewards and relatively lower action and observation dimensionality.

https://github.com/vitchyr/rlkit

CHAPTER 18. APPENDICES 268

Thus, many prior methods can make good progress on these tasks. These experiments allow us
to understand more precisely which design decisions are crucial. For each task, we collect 15
demonstration trajectories using a pre-trained expert on each task, and 100 trajectories of off-policy
data by rolling out a behavioral cloned policy trained on the demonstrations. The same data is made
available to all methods. The results are presented in Figure 18.38. AWAC is consistently the best or
on par with the best-performing method. No other single method consistently attains the best results
– on HalfCheetah, SAC + BC and BRAC are competitive, while on Ant-v2 ABM is competitive with
AWAC. We summarize the results according to the challenges in Section 11.3.

Data efficiency. The three methods that do not estimate Qπ are DAPG [95], AWR [349], and
MARWIL [348]. Across all three tasks, we see that these methods are somewhat worse offline
than the best performing offline methods, and exhibit steady but very slow improvement during
fine-tuning. In robotics, data efficiency is vital, so these algorithms are not good candidates for
practical real-world applications.

Bootstrap error in offline learning. For SAC [23], across all three tasks, we see that the offline
performance at epoch 0 is generally poor. Due to the data in the replay buffer, SAC with prior
data does learn faster than from scratch, but AWAC is faster to solve the tasks in general. SAC
with additional data in the replay buffer is similar to the approach proposed by [299]. SAC+BC
reproduces [300] but uses SAC instead of DDPG [286] as the underlying RL algorithm. We find that
these algorithms exhibit a characteristic dip at the start of learning. Although this dip is only present
in the early part of the learning curve, a poor initial policy and lack of steady policy improvement
can be a safety concern and a significant hindrance in real-world applications. Moreover, recall
that in the more difficult dextrous manipulation tasks, these algorithms do not show any significant
learning.

Conservative online learning. Finally, we consider conservative offline algorithms: ABM [352],
BEAR [340], and BRAC [350]. We found that BRAC performs similarly to SAC for working
hyperparameters. BEAR trains well offline – on Ant and Walker2d, BEAR significantly outperforms
prior methods before online experience. However, online improvement is slow for BEAR and the
final performance across all three tasks is much lower than AWAC. The closest in performance to
our method is ABM, which is comparable on Ant-v2, but much slower on other domains.

CHAPTER 18. APPENDICES 269

Extra Baseline Comparisons (CQL, AlgaeDICE)
In this section, we add comparisons to constrained Q-learning (CQL) [381] and AlgaeDICE [367].
For CQL, we use the authors’ implementation, modified for additionally online-finetuning instead
of only offline training. For AlgaeDICE, we use the publicly available implementation, modified to
load prior data and perform 25K pretraining steps before online RL. The results are presented in
Figure 18.39.

Figure 18.39: Comparison of our method (AWAC) with CQL and AlgaeDICE. CQL and AWAC perform similarly
offline, but CQL does not improve when fine-tuning online. AlgaeDICE does not perform well for offline pretraining.

Online Fine-Tuning From D4RL
In this experiment, we evaluate the performance of varied data quality (random, medium, medium-
expert, and expert) datasets included in D4RL [430], a dataset intended for offline RL. The results
are obtained by first by training offline and then fine-tuning online on each setting for 500,000
additional steps. The performance of BEAR [340] is attached as reference. We attempted to
fine-tune BEAR online using the same protocol as AWAC but the performance did not improve and

CHAPTER 18. APPENDICES 270

often decreased; thus we report the offline performance. All performances are scaled to 0 to 100,
where 0 is the average returns of a random policy and 100 is the average returns of an expert policy
(obtained by training online with SAC), as is standard for D4RL.

The results are presented in Figure 18.40. First, we observe that AWAC (offline) is competitive
with BEAR, a commonly used offline RL algorithm. Then, AWAC is able to make progress in
solving the tasks with online fine-tuning, even when initialized from random data or “medium”
quality data, as shown by the performance of AWAC (online). In almost all settings, AWAC (online)
is the best performing or tied with BEAR. In four of the six lower quality (random or medium) data
settings, AWAC (online) is significantly better than BEAR; it is reasonable that AWAC excels in the
lower-quality data regime because there is more room for online improvement, while both offline
RL methods often start at high performance when initialized from higher-quality data.

AWAC

(offline)

AWAC

(online)
BEAR

HalfCheetah random 2.2 52.9 25.5

medium 37.4 41.1 38.6

medium-expert 36.8 41.0 51.7

expert 78.5 105.6 108.2

Hopper random 9.6 62.8 9.5

medium 72.0 91.0 47.6

medium-expert 80.9 111.9 4.0

expert 85.2 111.8 110.3

Walker2D random 5.1 11.7 6.7

medium 30.1 79.1 33.2

medium-expert 42.7 78.3 10.8

expert 57.0 103.0 106.1
Figure 18.40: Comparison of our method (AWAC) fine-tuning on varying data quality datasets in D4RL [430]. AWAC
is able to improve its offline performance by further fine-tuning online.

Hardware Experimental Setup
Here, we provide further details of the hardware experimental setups, which are pictured in Fig 18.41.
Dexterous Manipulation with a 3 Fingered Claw.

CHAPTER 18. APPENDICES 271

Figure 18.41: Full views of the robot hardware setups. Videos are available at awacrl.github.io

• State space: 22 dimensions, consisting of joint angles of the robot and rotational position of
the object.

• Action space: 9 dimensions, consisting of desired joint angles of the robot.

• Reward: −1 if the valve is rotated within 0.25 radians of the target, and 0 otherwise.

• Prior data: 10 demonstrations collected by kinesthetic teaching and 200 trajectories of
behavior cloned data.

Drawer Opening with a Sawyer Arm.

• State space: 4 dimensions, end effector position of the robot and rotational position of the
motor attached to the drawer.

• Action space: 3 dimensions, for velocity control of end-effector position.

• Reward: −1 if the motor is rotated more than 15 radians of the reset position, and 0 otherwise.

• Prior data: 10 demonstrations collected using a 3DConnexion Spacemouse device and 500
trajectories of behavior cloning data.

Dexterous Manipulation with a Robotic Hand.

• State space: 25 dimensions, consisting of joint angles of the hand, end effector positions of
the arm, object position and target position.

• Action space: 19 dimensions, consisting of desired 16 joint angles of the hand and 3 dimen-
sions for end-effector control of the arm.

• Reward: let o be the position of the object, h be the position of the hand, and g be the target
location of the object. Then r = −||o− h|| − 3||o− g||.

• Prior data: 19 demonstrations obtained via kinesthetic teaching and 50 trajectories of behavior
cloned data.

https://awacrl.github.io/

CHAPTER 18. APPENDICES 272

18.7 Appendix G: Appendix for Chapter 13

Training details
Hyperparameters

General

Standard deviation
update coefficient

0.99

Image Sizes [(16, 16, 3), (32, 32, 3), (64,
64, 3)]

SAC

Learning Rate 3e-4

γ 0.99

Batch Size 256

Convnet Filters [(64, 64, 64), (16, 32, 64)]

Stride (2, 2)

Kernel Sizes (3, 3)

Pooling [MaxPool2D, None]

Actor/Critic FC
Layers

[(512, 512), (256, 256, 256)]

VICE

nVICE [1, 5, 10]

Batch Size 128

Learning Rate 1e-4

Mixup α Uniform(0, 1)

Convnet Filters [(64, 64, 64), (16, 32, 64)]

Stride (2, 2)

Kernel Sizes (3, 3)

Pooling [MaxPool2D, None]

FC Layers [(512, 512), (256, 256, 256)]

CHAPTER 18. APPENDICES 273

RND

Learning Rate 3e-4

Batch Size 256

Convnet Filters (16, 32, 64)

Stride (2, 2)

Kernel Sizes (3, 3)

Pooling [MaxPool2D, None]

FC Layers [(512, 512), (256, 256, 256)]

VAE

Learning Rate 1e-4

Batch Size 256

Encoder (Con-
vnet) Filters

(64, 64, 32)

Latent Dimension [8, 16, 32, 64]

β [1e-3, 0.1, 0.5, 1, 10]

Stride (2, 2)

Kernel Sizes (3, 3)

Pooling [MaxPool2D, None]
The ranges of values listed above represent the hyperparameters we searched over, and the

bolded values are what we use in the Section 13.7 experiments.

VICE

We use a variant of VICE which defines the reward as the logits of the classifier, notably omitting
the −log(π(a|s)) term. We also regularize our classifier with mixup [431]. We train all of our
experiments using 200 goal images, which takes under an hour to collect in the real world for each
task.

Random Network Distillation (RND)

We found it important to normalize the predictor errors, just as [110] did.

CHAPTER 18. APPENDICES 274

VAE

We train a standard beta-VAE to maximize the evidence lower bound, given by:

Ez∼qφ(z|x)[pθ(x|z)]− βDKL(qφ(z|x) || pθ(z))

To collect training data, we sampled random states in the observation space. In the real world,
this sampling can be replaced with training an exploratory policy (i.e. using the RND reward as the
policy’s only objective). The learned weights of the encoder of the VAE are frozen, and the latent
input is used to train the policy for reset-free RL.

Task details
Simulated Tasks

We evaluated our system across three tasks in simulation: bead manipulation, valve rotation, free
object repositioning.

Bead Manipulation The bead manipulation task involves an abacus rod with four beads that can
slide freely. The goal is to position two beads on each end from any initial configuration of beads.
This can take the form of sliding one bead over (if three beads start on one side), two beads over (if
all four beads start on one side), splitting beads apart (all four beads start in the middle), or some
intermediate combination of those. The true reward is defined as the mean goal distance of all
four beads. Policies are evaluated starting from the 8 initial configurations depicted in Fig 18.42.
Evaluation performance reported in Section 13.7 for this task is defined as the final reward averaged
across the 8 evaluation rollouts.

Figure 18.42: These are the 8 initial positions used for evaluating the performance of the bead manipulation policy. The
goal configuration (which is also an initial evaluation position) is highlighted in yellow.

CHAPTER 18. APPENDICES 275

Valve Rotation The claw is positioned above a three pronged valve (15 cm in diameter). The
objective is to turn the valve to a given orientation from any initial orientation. The "true reward" is
r = − log(|θstate − θgoal|). Policies are evaluated starting from the 8 initial configurations depicted
in Fig 18.43. Evaluation performance reported in Section 13.7 for this task is defined as the final
orientation distance averaged across the 8 evaluation rollouts.

Figure 18.43: These are the 8 initial positions used for evaluating the performance of the valve rotation policy. The goal
configuration (which is also an initial evaluation position) is highlighted in yellow.

Free Object Repositioning The claw is positioned atop a free (6 DoF) three pronged object
(15cm in diameter), which can translate and rotate within a 30cmx30cm box. The goal is specified
by a xy-position as well as a z-angle, where the xy-plane is the plane of the arena. The true reward is
defined as the weighted sum of the angular and translational distances, r = −2 log(||[xstate, ystate]−
[xgoal, ygoal]||2) − log(|θstate − θgoal|). In our experiments, (x, y, θ)goal = (0, 0,−π

2
), where the

origin is centered in the arena. Policies are evaluated starting from the 15 initial configurations
depicted in Figure 18.44. Evaluation performance reported in Section 13.7 for this task is defined as
the final pose distance (||[xfinal,yfinal]−[xgoal,ygoal]||2

0.25 m +
|θfinal−θgoal|

π rad) averaged across the 15 evaluation
rollouts.

In our reset controller experiments, we averaged evaluation performance over three different
choices of reset states, where the first reset state is always the goal:

1. (x, y, θ)reset,1 = (x, y, θ)goal, (x, y, θ)reset,2 = (0.05, 0.05, π
2
)

2. (x, y, θ)reset,1 = (x, y, θ)goal, (x, y, θ)reset,2 = (0, 0,−π
6
)

3. (x, y, θ)reset,1 = (x, y, θ)goal, (x, y, θ)reset,2 = (−0.04,−0.04,−π
2
)

Real World Tasks

For each setup we use an RGB camera to get images. We execute actions on the DClaw at 10Hz.
In order to operate at such a high frequency while also training from images we sample and train

CHAPTER 18. APPENDICES 276

Figure 18.44: These are the 15 initial positions used for evaluating the performance of the free object repositioning
policy. The goal configuration (x, y, θ)goal which is also an initial evaluation position is highlighted in yellow.

asynchronously, but limit training to not exceed two gradient steps per transition sampled in the
real world. Since direct performance metrics cannot be measured during training due to the lack of
object instrumentation, evaluations of performance are done post-training.

Valve Rotation The task is identical to the one in simulation. Evaluations were done post-training.
An evaluation trajectory was defined as a success if at the last step, the valve was within 15 degrees
of the goal. Each policy was evaluated over 8 rollouts, with initial configurations evenly spaced out
between at increments of 45 degrees. Results are reported in Figures 18.45, 18.46.

Bead Manipulation The rod is 22cm in length, and each bead measures 3.5cm in diameter.
Evaluations were done post-training, using the following procedure: the environment was manually
reset to each of the 8 specified configurations shown in Figures 18.47 and 18.48 (which cover a full
range of the state space) at the start of each evaluation rollout. An evaluation trajectory was defined
as a success if at the last time step, all beads were within 2cm of their goal positions. Performance
was evaluated at around 20 hours, at which point the policy achieved greater than 80% success on
the 10 evaluation rollouts (a random policy achieved a success rate of 10%). Results are reported in
Figs 18.47, 18.48.

CHAPTER 18. APPENDICES 277

Figure 18.45: These are the results of the evaluation rollouts on the valve rotation task in the real world using our
method (without the VAE). Trained policies were saved at regular intervals and evaluated post-training. Each row is a
different policy, and each column an evaluation rollout from a different initial configuration. The goal is highlighted in
yellow. Our method is able to achieve high success rates after 5 hours of training.

CHAPTER 18. APPENDICES 278

Figure 18.46: These are the results of evaluation rollouts on the valve rotation task in the real world using the VICE
single goal baseline. The policies fail to evaluate well, especially from initial positions far from the goal position.

CHAPTER 18. APPENDICES 279

Figure 18.47: These are the results of the evaluation rollouts on the valve rotation task in the real world using our
method (without the VAE). Trained policies were saved at regular intervals and evaluated post-training. Each row is a
different policy, and each column an evaluation rollout from a different initial configuration. The goal is highlighted in
yellow. Our method is able to achieve high success rates after 17 hours of training.

CHAPTER 18. APPENDICES 280

Figure 18.48: These are the results of evaluation rollouts on the valve rotation task in the real world using the VICE
single goal baseline. The policies fail to evaluate consistently, except when the initial configuration matches the goal
configuration.

CHAPTER 18. APPENDICES 281

18.8 Appendix H: Appendix for Chapter 14

Appendix A. Reward Functions and Additional Task Details
In-Hand Manipulation Tasks on Hardware

The rewards for this family of tasks are defined as follows. θx represent the Sawyer end-effector’s
wrist euler angle, x, y, z represent the object’s 3D position, and θ̂z represents the object’s z euler
angle. xgoal and others represent the task’s goal position or angle. The threshold for determining
whether the object has been lifted is subjected to the real world arena size. We set it to 0.1m in our
experiment.

Rrecenter = −3||

x
y

−
xgoal
ygoal

 || − ||

x

y

z

−

xhand

yhand

zhand

 ||

Rlift = −|z − zgoal|

Rflipup =− 5|θx − θxgoal| − 50(1
{
z < threshold

}
)+

10(1
{
|θx − θxgoal| < 0.15 AND z > threshold

}
)

Rreorient = −|θ̂z − θ̂zgoal|

A rollout is considered a success (as reported in the figures) if it reaches a state where the valve
is in-hand and flipped facing up:

z > threshold AND |θx − θxgoal| < 0.15

Pipe Insertion Tasks on Hardware

The rewards for this family of tasks are defined as follows. x, y, z represent the object’s 3D position,
and q represent the joint positions of the D’Hand. xgoal and others represent the task’s goal position
or angle. The threshold for determining whether the object has been lifted is subjected to the real
world arena size. We set it to 0.1m in our experiment. To reduce collision in real world experiments,
we have two tasks for insertion. One approaches the peg and the other attempts insertion.

CHAPTER 18. APPENDICES 282

Rrecenter = −3||

x
y

−
xgoal
ygoal

 || − ||

x

y

z

−

xhand

yhand

zhand

 ||

Rlift = −2|z − zgoal| − 2|q − qgoal|

RInsert1 = −d1 + 10(1
{
d1 < 0.1

}
)

RInsert2 = −d2 + 10(1
{
d2 < 0.1

}
)

where

d1 = ||


x

y

z

−

xgoal1

ygoal1

zgoal1

 ||

d2 = ||


x

y

z

−

xgoal2

ygoal2

zgoal2

 ||

RRemove = −||


x

y

z

−

xarena_center

yarena_center

zarena_center

 ||
A rollout is considered a success (as reported in the figures) if it reaches a state where the valve

is in-hand and pipe is inserted:

z > threshold AND d2 < 0.05

CHAPTER 18. APPENDICES 283

Lightbulb Insertion Tasks in Simulation

The rewards for this family of tasks includeRrecenter, Rpickup, Rflipup defined in the previous section,
as well as the following bulb insertion reward:

Rbulb =− ||

x
y

−
xgoal
ygoal

 || − 2(|z − zgoal|)+

1
{
||

x
y

−
xgoal
ygoal

 || < 0.1
}

+

10(1
{
||

x
y

−
xgoal
ygoal

 || < 0.1 AND |z − zgoal| < 0.1
}

)−

1
{
z < threshold

}
A rollout is considered a success (as reported in the figures) if it reaches a state where the bulb

is positioned very close to the goal position in the lamp:

||

x
y

−
xgoal
ygoal

 || < 0.1 AND |z − zgoal| < 0.1

Basketball Tasks in Simulation

The rewards for this family of tasks include Rrecenter, Rpickup defined in the previous section, as
well as the following basket dunking reward:

CHAPTER 18. APPENDICES 284

Rbasket =− ||


x

y

z

−

xgoal

ygoal

zgoal

 ||+

20(1
{
||


x

y

z

−

xgoal

ygoal

zgoal

 || < 0.2
}

)

+ 50(1
{
||


x

y

z

−

xgoal

ygoal

zgoal

 || < 0.1
}

)−

1
{
z < threshold

}
A rollout is considered a success (as reported in the figures) if it reaches a state where the ball is

positioned very close to the goal position above the basket:

||

x
y

−
xgoal
ygoal

 || < 0.1 AND |z − zgoal| < 0.15

Appendix B. Additional Domains
In addition to the test domains described in Section 14.3, we also tested our method in simulation
on simpler tasks such as a 2D “pincer” and a simplified lifting task on the Sawyer and “D’Hand”
setup. The pincer task is described in Figure 18.49. Figure 18.49 shows the performance of our
method as well as baseline comparisons.

Appendix C. Hyperparameter Details

Appendix D. Task Graph Details
We provide some details of the task graphs for every domain below.

CHAPTER 18. APPENDICES 285

0 50 100 150 200 250 300

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

Pincer Fill Task Success Rate Comparisons

Ours

Reset Controller

Perturbation

SAC

0 50 100 150 200 250 300

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

All Tasks Success Rate for Pincer Family

Fill Success

Pick Success

Pull Success

Figure 18.49: Pincer domain - object grasping, filling the drawer with the object, pulling open the drawer. These tasks
naturally form a cycle - once an object is picked up, it can be filled in the drawer, following which the drawer can be
pulled open and grasping and filling can be practiced again.

CHAPTER 18. APPENDICES 286

SAC

Learning Rate 3× 10−4

Discount Factor γ 0.99

Policy Type Gaussian

Policy Hidden
Sizes

(512, 512)

RL Batch Size 1024

Reward Scaling 1

Replay Buffer
Size

500, 000

Q Hidden Sizes (512, 512)

Q Hidden Activa-
tion

ReLU

Q Weight Decay 0

Q Learning Rate 3× 10−4

Target Network τ 5× 10−3

Table 18.14: Hyperparameters used across all domains.

Algorithm 15: n-Hand Manipulation Task Graph (Hardware)
Require: Euclidean coordinates of object q, Sawyer wrist angle θ, previous task φ

1: is_lifted = qz > 0.15
2: is_upright = |θ − θupright| < 0.1
3: not_centered = |q − qcenter| > 0.1
4: if is_upright and is_lifted then
5: return Inhand
6: else if is_lifted then
7: return Flipup
8: else if not_centered and φ = Recenter then
9: return Perturb

10: else if not_centered then
11: return Recenter
12: else
13: return Lift
14: end if

CHAPTER 18. APPENDICES 287

Algorithm 16: Pipe Insertion Task Graph (Hardware)
Require: Euclidean coordinates of object q, a waypoint close to peg qwaypoint, previous task φ

1: is_lifted = qz > 0.15
2: is_inserted = |q − qinserted| < 0.05
3: close_to_waypoint = |q − qwaypoint| < 0.05
4: not_centered = |q − qcenter| > 0.1
5: if is_inserted then
6: return Remove
7: else if close_to_waypoint then
8: return Insert2
9: else if is_lifted then

10: return Insert1
11: else if not_centered and φ = Recenter then
12: return Perturb
13: else if not_centered then
14: return Recenter
15: else
16: return Lift
17: end if

CHAPTER 18. APPENDICES 288

Algorithm 17: Lightbulb Insertion Task Graph (Simulation)

Require: Object position


x

y

z

, Sawyer wrist angle (its x Euler angle) θx, previous task φ

1: Let

xcenter
ycenter

 be the center coordinates of the arena (relative to the Sawyer base).

2: Let zthreshold be the height (in meters) above the arena that we consider the object to be “picked
up.”

3: is_centered = ||

x
y

−
xcenter
ycenter

 || < 0.1

4: is_lifted = z > zthreshold
5: is_facing_up = |θx − θxupright| < 0.1
6: if NOT is_centered and NOT is_lifted then
7: if φ = Recenter then
8: return Perturb
9: else

10: return Recenter
11: end if
12: else if is_centered and NOT is_lifted then
13: return Lift
14: else if is_lifted and NOT is_facing_up then
15: return Flip Up
16: else if is_lifted and is_facing_up then
17: return Lightbulb Insertion
18: end if

CHAPTER 18. APPENDICES 289

Algorithm 18: Basketball Task Graph (Simulation)

Require: Object position


x

y

z

, previous task φ

1: Let

xcenter
ycenter

 be the coordinates of the arena where we want to pick up the ball, such that it is

out of the way of the hoop (relative to the Sawyer base).
2: Let θxupright be the wrist angle (in radians) that we want the hand to be facing. (θxupright = π in

our instantiation).
3: Let zthreshold be the height (in meters) above the arena that we consider the object to be “picked

up.”

4: is_centered = ||

x
y

−
xcenter
ycenter

 || < 0.1

5: is_lifted = z > zthreshold
6: if NOT is_centered and NOT is_lifted then
7: if φ = Recenter then
8: return Perturb
9: else

10: return Recenter
11: end if
12: else if is_centered and NOT is_lifted then
13: return Lift
14: else if is_lifted then
15: return Basketball Dunking
16: end if

CHAPTER 18. APPENDICES 290

18.9 Appendix I: Appendix for Chapter 15

Hyperparameters and Model Architectures
Here we list a set of general hyperparameters and details of the model training. If indiciated as a list,
we performed a grid search over those values and the underlined value is the chosen one to report in
the paper.

As mentioned above, we use a standard 2 hidden layer MLP to represent policies and value
functions. The state space consists of the position of the end-effector, euler rotation of the end
effector, position of the various elements in the scene and a representation of the goal. In the
hardware experiments, the representation of the goals of interest is a continuous vector of the
position of the end-effector, euler rotation of the end effector, position of the various elements
in the scene for a particular goal of interest. In the simulation environments, this is a discrete
one-hot vector representing the ID of the particular goal of interest being commanded. Beyond
the experiments mentioned in the main paper, we also ran experiments resetting every 50 episodes
instead of 10, and achieved 96% success rate as well.

Reward Functions
We used a generic and simple reward function for different goals sg, as follows:

r(s, a, sg) = −20 ∗ ‖xee − xelement‖2 − 20 ∗ ‖θelement − θgoal‖2 (18.27)

Here xee corresponds to the position of the end effector, xelement corresponds to the position of
the particular element (cabinet, slider, knob) that has to be moved to accomplish the particular goal
sg, θelement is the current position of the above-mentioned element and θgoal is the goal position of the
element being manipulated. This reward function essentially encourages the arm to move towards
the element of interest and then manipulate it towards it’s goal position. This reward function is
suitable for articulated objects, but may have to be replaced by a more involved reward function for
scenes with more free objects.

Baseline Details
We provide some further details of the baseline methods below:

Non-pretrained, graph search task selection This baseline simply uses the exact same graph
search algorithm at the high level but starts the low level policy completely from scratch and trains
the algorithm exactly the same way as DBAP , using exactly the same hyperparameters.

Pretrained low-level, random high level controller This baseline uses completely random
goal selection both during practicing and long horizon task accomplishment. It simply samples a
goal of interest from the set of all possible goals of interest

Pretrained low-level, BC task selection This baseline uses a behavior cloned high level model
to select goals, where the high level task selector q(sg|s, sdesired

g) is trained using behavior cloning

CHAPTER 18. APPENDICES 291

AWAC

Learning Rate 3× 10−4

Discount Factor γ 0.99

Policy Type Gaussian

Policy Hidden Sizes (256, 256)

Policy Hidden Activation ReLU

Policy Weight Decay 10−4

Policy Learning Rate 3× 10−4

RL Batch Size 1024

Reward Scaling 1

Replay Buffer Size 500, 000

Q Hidden Sizes (512, 512)

Q Hidden Activation ReLU

Q Weight Decay 0

Q Learning Rate 3× 10−4

Target Network τ 5× 10−3

Temperature (β) 30.

Epoch Length 2000

Path Length 200

Max High Level Steps 6

Standard Deviation Lower
Bound

10−5

Pretraining Steps 30000

Behavior Cloning

Hidden Layer Sizes (256, 256)

Training Steps 30000

Table 18.15: Hyperparameters used for experiments

on human provided data, and goals are selected using this task selector. In particular, we relabel

CHAPTER 18. APPENDICES 292

sequences of goals of interest visited in the data within a particular window (as outlined in [346])
to generate (s, sg, s

desired
g) which can then be used to train q(sg|s, sdesired

g) via supervised learning.
During autonomous practicing, goals are chosen by choosing a sdesired

g at random and then sampling
a next goal from the behavior cloned q(sg|s, sdesired

g) conditioned on the chosen sdesired
g . At long

horizon execution time, the agent simply sets sdesired
g to the desired long horizon goal and sample

from q(sg|s, sdesired
g).

Pretrained low-level, reset controller This baseline alternates between setting the first goal of
interest as the goal and sampling a goal of interest at random and setting this at the goal at the high
level.

All of these baselines were implemented using exactly the same underlying algorithm and the
same hyperparameters as mentioned above.

Visualizations and Ablations
To better understand the behavior of our method, we next visualize the sequence of tasks proposed
by our graph search algorithm during evaluation time as compared to the behavior cloning baseline
mentioned above. The behavior cloning baseline trains the high level with goal conditioned behavior
cloning while graph search simply builds a graph of feasible edges and performs search. We find
that when we run an idealized experiment, where the multi-task policies are assumed to be perfect,
the effective path length obtained by BC is significantly higher than graph search. This suggests
that doing high level learning with relabeled BC as suggested in [249], [346] is prone to an issue of
cycles where it is not trained to take the shortest path if the training data is cyclic (as is common in
play data). Graph search on the other hand, avoids these issues and is able to find a shortest path to
the goal easily as seen in Fig 18.50.

Figure 18.50: Comparison of path length of BC vs graph
search for a simulated problem assuming perfect low
level. We see that high level BC can often be ineffective
at learning short paths to a goal

Figure 18.51: Visualization of entropy on a 32 state
chain MDP. We see that the entropy of the marginal
distribution over states is much higher with graph search
than a random walk.

To further understand the behavior of graph search based practicing autonomously, we ran an
isolated analysis experiment on a very simple chain MDP environment to understand the perfor-
mance of the graph search algorithm in terms of task visitations and entropy over the distribution
of tasks, as compared to simply performing a random walk on tasks. We visualize these results in

CHAPTER 18. APPENDICES 293

Fig 18.51, where entropy of the marginal distribution of states of interest is plotted against steps of
the training process. We find that while both have increasing entropy, graph based search has much
higher entropy as it maintains a uniform likelihood over states, providing the coverage needed to
achieve good performance in the evaluations in Fig 18.51.

	Contents
	Introduction
	Why Care About Robotic Learning?
	What Learning Methodology should be used?
	Reinforcement Learning
	Real World Reinforcement Learning
	Where does this work fit into the bigger picture of robotic learning?

	Supervision
	Supervision from Human Videos
	Why Should We Learn from Raw Human Videos?
	Relationship to Prior Work
	Problem Formulation and Overview
	Learning to Translate Between Contexts
	Learning Policies via Context Translation
	Experiments
	Discussion and Future Work

	Supervision from Outcome Examples
	Why Should we Study Uncertainty-Aware Outcome Driven RL?
	Relationship to Prior Work
	Preliminaries
	Bayesian Success Classifiers for Reward Inference
	MURAL: Training Uncertainty-Aware Success Classifiers for Outcome Driven RL via Meta-Learning and CNML
	Experimental Evaluation
	Discussion

	Supervision from Language Corrections
	Why Should We Use Language Feedback to Supervise RL algorithms?
	Relationship to Prior Work
	Problem Formulation
	The Language-Guided Policy Learning Model
	Meta-Training the GPL Model to Learn From Corrections
	Learning New Tasks with The GPL Model
	Experiments

	Learning Skills Without Reward Supervision
	Why Is Unsupervised Skill Discovery Important?
	Related Work
	Diversity is All You Need
	Experiments
	Conclusion

	Unsupervised Pre-Training for Quick Reinforcement Learning
	Motivating a General Unsupervised Meta-RL Framework
	Related Work
	Unsupervised Meta-RL
	Experimental Evaluation
	Discussion and Future Work

	Relationship to Other Work on Supervision in Reinforcement Learning
	Connections to Prior Work
	Related Work Subsequent to Publishing

	Distributions
	Bootstrapping On-Policy Reinforcement Learning with Human Demonstrations
	Why Does Complex Dexterous Manipulation Require Demonstration Bootstrapped RL?
	Related Work
	Dexterous Manipulation Tasks
	Demo Augmented Policy Gradient (DAPG)
	Results and Discussion
	Conclusion

	Applying Bootstrapped On-Policy RL to Real World Robotic Systems
	Contributions
	Hardware Setup
	Tasks
	Experimental Results and Analysis
	Discussion and Future Work

	Bootstrapping Hierarchical Reinforcement Learning with Human Demonstrations for Long Horizon Reasoning
	How Can Demonstration Bootstrapped RL Solve Long Horizon Tasks?
	Relationship to Prior Work
	Relay Policy Learning
	Experimental Results
	Conclusion and Future Work

	Bootstrapping Off-Policy Reinforcement Learning with Offline Datasets and Online Finetuning
	Why Should We Care About Bootstrapped Off-Policy RL?
	Preliminaries
	Challenges in Offline RL with Online Fine-tuning
	Advantage Weighted Actor Critic: A Simple Algorithm for Fine-tuning from Offline Datasets
	Related Work
	Experimental Evaluation
	Discussion and Future Work

	Relationship to Other Work on Bootstrapping Reinforcement Learning

	Continual Data Collection
	Instrumentation Free Learning Systems for Real World Reinforcement Learning
	Motivation
	The Structure of a Real-World RL System
	The Challenges of Real World RL
	A Real-world Robotic Reinforcement Learning System
	Related Work
	Algorithm details
	Experiments
	Discussion

	Building Reset-Free Reinforcement Learning Algorithms via Multi-Task Learning
	Introduction
	Learning Dexterous Manipulation Behaviors Reset-Free via Multi-Task RL
	Task and System Setup
	Experimental Evaluation
	Discussion

	Bootstrapping Reset-Free Reinforcement Learning Algorithms with Human Data
	Introduction
	Preliminaries and Problem Statement
	Demonstration Augmented Autonomous Practicing for Multi-Task Reinforcement Learning
	System Description
	Experimental Evaluation
	Discussion

	Relationship to Other Work on Continual Data Collection in Reinforcement Learning
	Conclusion
	Bibliography
	Appendices
	Appendix A: Appendix for Chapter 3
	Appendix B: Appendix for Chapter 4
	Appendix C: Appendix for Chapter 5
	Appenix D: Appendix for Chapter 6
	Appendix E: Appendix for Chapter 10
	Appendix F: Appendix for Chapter 11
	Appendix G: Appendix for Chapter 13
	Appendix H: Appendix for Chapter 14
	Appendix I: Appendix for Chapter 15

