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Abstract

In this work, we present Berkeley Open MOS dataBase (BOMB), the first ever open source
database of un-annotated transistor characterization data that can be used for technology repre-
sentation learning. BOMB was created by running large scale transistor characterization scripts
on various device flavors and technology nodes. Each data point in BOMB is essentially a multi-
dimensional array capturing I-V and Y-V characterization of transistors. The meta-information
revealing the technology is removed to maintain confidentiality such that the dataset to be used
by a greater community of researchers. Additionally, we present an API with which the data can
be accessed and visualized, as well as a framework with which additional data can be collected
and added to the dataset. Finally, we provide statistics about the distribution of datapoints
and visualizations which demonstrate the inherent structure of the dataset. Plans for future
work involving downstream machine learning tasks are also discussed.
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1 Introduction

The semiconductor industry owes its rapid progress in the last century to the scaling of silicon process
technology which has constantly allowed designers to fit more processing power into the same area
footprint and make today’s digital processing capabilities a reality. However, this comes at a great
cost of re-design efforts for making integrated circuits (ICs) into production as the technology scales.
Recent attention has been made to shortening the design cycle by utilizing advances made in machine
learning on automating some manual pieces of this endeavor such as high-level synthesis [1], logic
synthesis [2,3], placement and routing [4–6], analog mixed signal design and layout exploration [7–10],
manufacturing [11,12], .etc 1.

One thing that still remains an issue with these deep learning solutions is their capability to
transfer their knowledge across technologies i.e. if a NN is trained on a particular circuit task in a
given technology, it will only work in that process node and to reuse it in a new unseen technology, the
training has to be done from scratch with a new data collected consistent with the target technology
node. This problem is of special importance in analog mixed signal (AMS) design automation where
the impact of technology changes on performance is much more than their digital counterparts. Also
digital design has enjoyed a plethora of automation tools that facilitate the technology migration.

Typically, the data in this domain comes from simulations that are expensive to run and therefore
large scale data collection is prohibitively expensive, making data-hungry machine learning meth-
ods impractical. Such limitation poses a serious challenge when considering transferring to new
technologies. Ideally, the machine learning system trained on several technologies should have built
enough prior knowledge about the circuit design procedure, transferring the knowledge in a few-shot
/ zero-shot manner. The motivation for this work is to see if we can learn a representation of silicon
technologies that can be used during training of circuit design models and enable transferring design
knowledge to new unseen technologies? To this end, we will present a dataset, a data collection
procedure and suggest an exemplar ML algorithm for learning such representation.

The transistor is the basic building block of all modern electronic circuits, usually configured
as switch in digital circuits or an as amplifier in analog circuits. Of particular interest to analog
circuit designers are so-called “Y-parameters”, which capture the behavior of a transistor when
linearized around a chosen operating point. These parameters describe a mathematical model of
the computations done by transistors abstracting away the physical phenomena that fundamentally
explain the movement of charge carriers in silicon 2. An understanding of how these small signal
parameters behave under various process, temperature and voltage conditions is informative about
the technology and performance of the circuit.

In this work, we present Berkeley Open Mos dataBase (BOMB), the first ever open source
database of un-annotated transistor characterization data that can be used for technology repre-
sentation learning. BOMB was created by running large scale transistor characterization scripts
on various device flavors and technology nodes. Each data point in BOMB is essentially a multi-
dimensional array capturing I-V (current vs. voltage) and Y-V characterization of transistors. Since
the confidentiality of the technology information is of special importance we have removed the
meta-information revealing the technology identity so that it can be used by a greater community
of researchers.

We hope that with the development of this dataset we can fuel the research direction of employing
deep learning approaches for chip design. We summarize the contribution of our work as follows:

1. We present BOMB, the first large scale open source database for silicon technology with 96,600
transistor characterizations.

2. We provide statistical studies of the distribution of the data points within BOMB and explain
what kind of technology specific information can be inferred from them.

1For a comprehensive survey on using machine learning in electronic design automation see [13].
2To read more about Y-parameters see [14]
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Figure 1: This figure shows two phases: 1) pretraining the representation learning using BOMB
dataset 2) using the learned representation for technology conditioned downstream circuit task
prediction

3. We suggest how a pre-existing unsupervised learning procedure (VAE) can be used to learn
representations that enable learning technology conditioned circuit models in a sample efficient
manner.
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Figure 2: High level figure describing the structure of BOMB and how it was generated.

2 BOMB: Structure and Framework

Each datapoint in the BOMB dataset consists of multi-dimensional arrays capturing Ibias and
Y-parameters across the three transistor terminal voltages Vbs, Vgs and Vds. The datapoints are
collected over Monte Carlo, process, temperature, and device variations. The result is a dataset
that encapsulates all the information about a given CMOS technology. Our vision is that this
dataset will be used to learn a representation of the silicon technology that can be used during
training of circuit design models and enable transferring design knowledge between technologies.
The dataset will first be used in a pre-training phase, where the representation is learned. This
representation can then be used to downstream circuit design tasks.

This data has been collected for two state-of-the-art CMOS technologies so far. The sweep ranges
for each input variable are:

• Monte Carlo: 100 randomly generated Monte Carlo variations. These are generally used to
model imperfections and mismatches in the manufacturing process.

• Temperature: -20C, 27C, 120C

• Process: Depends on the technology. A range of typical, fast and slow process corners.

• Device: Depends on the technology. A range of device types provided by the foundry for the
given technology.

• Terminal voltages: Voltages are swept from 0 to the supply voltage in 11 uniformly spaced
steps.

The end result is a Python dictionary of multidimensional Numpy arrays for each of Ibias and
the Y-parameters, stored in HDF5 file format. The dictionary is organized as follows:

1 bomb.data = {

2 "ibias": np.ndarray ([montecarlo , temperature , process , device , Vbs , Vgs , Vds]),

3 "y11": np.ndarray ([montecarlo , temperature , process , device , Vbs , Vgs , Vds]),

4 ...

5 "y33": np.ndarray ([montecarlo , temperature , process , device , Vbs , Vgs , Vds])

6 }

The HDF5 files can be loaded into a SimData object using the API provided in the BOMB
repository. A full description of the SimData class is provided in the following section. Below is an
example of the code used to load the data.
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1 >> bomb = SimData.load("Technology_A_data.hdf5")

2 >> data = bomb.data["ibias"]

3 >> print(data.shape)

4 >> (100, 5, 3, 9, 11, 11, 11)

2.1 SimData Class: An API to work with BOMB

The SimData class has the following instance variables:
SimData.data: Dictionary containing multi-dimensional arrays for each of Ibias and Y-parameters

formatted as shown above. Note that each array consists of seven dimensions, with each dimension
corresponding to Monte Carlo, process corner (tt, ss, ff etc), temperature (usually -20C, 27C, 120C),
device type (depends on the technology node) and the bias voltages Vbs, Vgs and Vds respectively.

SimData.sweep_params: List of sweep variables that correspond to each dimension in the Sim-
Data.data. Hard coded as: [‘montecarlo’, ‘process’, ‘temp’, ‘vbs’, ‘vgs’, ‘vds’]

SimData.reshaped_data: Populated with a single Numpy array (dim=[-1, 19, 11, 11, 11])
of reshaped data when the corresponding getter method is called. We treat each [19, 11, 11, 11]

array as a single datapoint, carrying information about Ibias and the real and imaginary parts of all
nine Y-parameters and corresponding to a single combination of Monte Carlo, process, temperature
and device. The number of datapoints then is equal to the product of the number of Monte Carlo,
process, temperature and device variations.

SimData.ss_params: Populated with small signal parameters calculated from y-parameters when
the corresponding getter method is called.

The SimData class also defines the following methods:
SimData.__getitem__(item_key): Defined such that SimData[‘montecarlo’] returns list of

Monte Carlo values in dataset, SimData[‘process’] returns list of process values in dataset, etc.
and SimData[‘ibias’] returns multi-dimensional array containing Ibias data, SimData[‘y11’]

returns multi-dimensional array containing y11 data etc.
SimData.load(hdf5_file): Load dataset into SimData object from HDF5 file
SimData.save(hdf5_file): Save dataset into HDF5 file from SimData object
SimData.concat(objs, axis): Concatenate list of SimData objects across given axis (monte-

carlo, process, temp, etc)
SimData.get_reshaped_data(): Getter method to populate SimData.reshaped data with re-

shaped data (dim=[-1, 19, 11, 11, 11])
SimData.get_ss_params(): Getter method to populate SimData.ss params with small signal

parameters
SimData.PCA(filter): Plot PCA for reshaped dataset of stacked Ibias and Y-parameters, and

color clusters according to filter (montecarlo, process, temp, or device)
SimData.TSNE(filter): Plot TSNE for reshaped dataset of stacked Ibias and Y-parameters,

and color clusters according to filter (montecarlo, process, temp, or device)
SimData.sanity_plot(): Plot real(y21), -real(y31), both of which equal gm and also plot ibias

for 0th and 1st MC indices. Use as a sanity check to ensure data looks reasonable

SimDataWrapper is an additional class that adds functionality when handling multiple HDF5
files representing multiple datasets from different technologies.

The only instance variable is SimData_objs, a list of SimData objects. It defines the following
methods. Note that x, y are defined as the index of SimData object in self.SimData_objs list and
the index of datapoint in reshaped data.

SimDataWrapper.get_data(x, y): Get data corresponding to x, y
SimDataWrapper.get_metadata(x, y): Get metadata (montecarlo, process, temp and device)

corresponding to x, y
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SimDataWrapper.search(mc, process, temp, device): Search for the specified metadata
SimDataWrapper.advanced_search(search_slice): Search for all datapoints with the specific

search slice, where each search slice can be a specific Monte Carlo, process, temperature, or device

2.2 Abstracting away SimData Class: Using main.py to view dataset

While the SimData class provides a useful framework with which to view and manipulate the dataset,
it is part of the source code of the repository and may take some groundwork before it can be used
effectively. With this in mind, the BOMB repository also provides an ”out-of-the-box” way of
viewing and visualizing the dataset, through command line arguments. The user can simply run

1 python main.py data --load_hdf5 <path_to_hdf5_file >

This will load the HDF5 file and open an interactive prompt from where various commands can
be entered to examine and visualize the data.

Figure 3: This figure shows an example of using main.py to interactively view the dataset
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3 How was BOMB created?

Figure 2 describes, from a high level how the BOMB dataset was created. We will demonstrate this
process in more detail with the help of an example, generating a dataset from scratch based on the
cds ff mpt technology (a Cadence generic PDK for FinFET and multi-patterned technology).

3.1 Example: Generate dataset using BOMB repository framework

In order to run MOS characterization to create a new dataset (or add onto an existing daatset),
this repository needs to be added to a working bag setup for a given technology, since it relies on a
certain folder structure format. The idea is that the user creates a customized yaml from the given
template, then generates the ocn scripts that can be run in the Cadence CIW. Here is a step by step
guide, using the creation of a dataset on the cds ff mpt technology as an example:

1. Clone a BAG (Berkeley Analog Generator) workspace for the desired technology, cd into the
BAG workspace, follow its own instructions, and then clone the BOMB repo.

2. Open up Cadence library manager. Under bag_testbenches/bag3_testbenches, make a
copy of mos_tb_sp named mos_tb_sp_<device>. Replace the DUT with the appropriate
device from the PDK library.

ex. We replace the DUT with the ‘n1svt’ device (NMOS 1V standard voltage threshold) and
name the schematic mos tb sp n1svt.

Figure 4: (Step 2) Open up Cadence library manager.
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Figure 5: (Step 2) Replace the DUT with the appropriate device from the PDK library.

3. Make a copy of template.yaml and enter technology specific sweep parameters. The device
name should match the device name of the schematic (mos_tb_sp_<device>). It’s good prac-
tice to keep the total number of simulations under 200k to avoid stack overflow messages from
Virtuoso. The number can be adjusted by creating sub yamls; for example sweep 5 corners in
one yaml and 4 corners in another yaml. We will merge the data collected later.

Figure 6: (Step 3) Make a copy of template.yaml and enter technology specific sweep parameters.

4. cd into bomb, source .bashrc and run python main.py ocean --yaml <path_to_yaml>.
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Figure 7: (Step 4) Run python main.py ocean --yaml <path_to_yaml>.

5. Follow the printed output from main.py to run the generated_monte_carlo_*.ocn in Cadence
CIW. This will generate a csv for each of Ibias and the Y-parameters in the output directory
specified in the yaml file.

Figure 8: (Step 5) Run the generated_monte_carlo_*.ocn in Cadence CIW.
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Figure 9: (Step 5) Cadence CIW after completion of the sweeps.

Figure 10: (Step 5) Data from the completed Cadence sweeps.

Once the Cadence sweeps have been run, there exists another script to convert the outputted
csv’s into HDF5 file format. Simply run

python main.py csv --sim_datadir <path_to_output_csvs_directory>

--save_hdf5 <path_to_desired_HDF5_file_save_location>

This will extract all the relevant information from the csv’s and store it in a single SimData
object. The data will also be stored in HDF5 file format which can then be loaded into a SimData
object quickly. The API for loading from HDF5 files and working with SimData objects has been
discussed above.

It is also possible to merge two HDF5 files together along a given axis (Monte Carlo, process,
temperature or device) with the following command:

python main.py concat --hdf5_list <path_to_HDF5_A> <path_to_HDF5_B>

--concat_axis <montecarlo/process/temp/device>

--save_hdf5 <path_to_desired_HDF5_file_save_location>.
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4 BOMB Repository

By now, the functionality of the BOMB repository in accessing the dataset and creating new datasets
has been introduced. Now we show in detail how the code in the BOMB repository is organized.

• src:

– scripts:

∗ ocean.py: uses jinja templates to generate Ocean script which is run in Cadence
CIW to collect data

∗ csv.py: parse csv outputs from Cadence sweeps and return SimData object

∗ data.py: defines SimData class which enables parsing and visualization of dataset,
as well as saving to loading from hdf5 files

– templates: contains templates necessary for ocean.py to run

• data: data from Cadence sweeps should be saved here, as well as hdf5 files storing the data

• main.py:

– defines 4 functions and uses argparser to determine which function to call:

∗ ocean: calls src/scripts/ocean.py to generate ocean script for Cadence sweep
based on input yaml

· example usage: python main.py ocean --yaml <path_to_yaml>

∗ csv: calls src/scripts/csv.py to parse data generated by Cadence sweep into Sim-
Data object. Can also optionally provide an argument to save SimDarta object into
hdf5 file

· example usage:
python main.py csv --sim_datadir <path_to_sim_data_directory>

--save_hdf5 <path_to_hdf5_file>

∗ data: calls src/scripts/data.py to load SimData object from hdf5 file

· example usage: python main.py data --load_hdf5 <path_to_hdf5_file>

∗ concat: calls src/scripts/data.py to concat multiple hdf5 files together along a
given axis. Can also optionally provide an argument to save concatenated object into
hdf5 file

· example usage:
python main.py concat --hdf_list <path_to_hdf5_file_1> <path_to_hdf5_file_2>

--concat_axis device --save_hdf5 <path_to_hdf5_file>

– python main.py -h to see argument options

• template.yaml:

– template yaml file that defines sweep parameters (general and technology specific)

– make your own copy and enter technology specific sweep parameters
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5 Dataset Properties

The intent of designing BOMB dataset is to capture a diverse set of transistor characteristics across a
variety of technologies, process corners, temperatures, and device types. To this end, the initial ver-
sion of BOMB includes 96K device characterizations collected via simulation on various dimensions
of variability.

The dataset consists of N and P type transistors from two modern CMOS processes, for a total
of four different sources of variations: Device type, temperature, process corner, and Monte Carlo.
Both technologies are categorized into three different device types. Note that similarly labeled
devices from the two technologies are not necessarily related, since they correspond to different
manufacturing procedures. Besides varying the device type and temperature during simulation, we
also include coarse and fine variations introduced during manufacturing that are modeled by process
corner and Monte Carlo simulations, respectively. Process corners can be loosely categorized into
typical, slow, or fast. Some circuits may run slower or faster than nominal specifications, depending
on the process corner at which they are fabricated. The Monte Carlo variation is typically modeled
via statistical distributions that can be sampled during simulation, allowing designers to account for
these variations during their designs. Table 1 summarizes the sources of variations and Figure 11
illustrates the number different datapoints per each split.

Table 1: Sources of variations in the BOMB dataset

Data Subset Size of Dimension

Technology CMOS Monte Carlo Process Temperature Device Num. Datapoints

A NMOS 100 5 3 3 10500
A PMOS 100 5 3 3 10500
B NMOS 100 9 3 3 37800
B PMOS 100 9 3 3 37800

0

2000

4000

6000

8000

1 2 3

Technology A - N/P (10.5K)

fast typical slow

(a)

0

5000

10000

15000

20000

1 2 3

Technology B - N/P (37.8K)

fast typical slow

(b)

Figure 11: The histogram of the dataset according to different splits of device type and process
corner.
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Figure 12: The distribution of the dataset projected to two dimensions using PCA. We can see clear
structure in the data that can be compressed to a lower dimensional representation
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Figure 13: Projection of technology A and B on to the same space.

These inherent technology dependent categorizations lend themselves naturally to interesting
training/test splits for experimental machine learning tasks. For example it would be interesting
to see if a predictive model pretrained on diverse set of fast and slow corners can be efficiently
fine-tuned for predictions on typical corners, in a few-shot manner. The inherent structure of the
dataset can be visualized by applying PCA or t-SNE on the dataset. Figure 12 is an example of
one such visualization, performing PCA on the Technology A and B NMOS subsets.

We observe that for both technologies A and B, the clearest clustering is by device, indicating that
the largest principal component is very informative about the device type. The information about
temperature and process on the other hand, is slightly blended for technology A, which motivates
learning a better non-linear representation for transistor characterization data that can capture this
high level information.

Finally, we can compute the principal components of technology B and project technology A
onto the basis vectors given by the PCA of technology B. The result is shown in Figure 13. The
clear separation of the two technologies indicates that the generalization across different technology
nodes will be non-trivial.
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6 Conclusion and Future Direction

In this work we have presented Berkeley Open MOS dataBase (BOMB), the first ever open source
database of transistor characterization data that can be used for technology representation learning.
We have described the structure of the dataset and how it can be accessed using the SimData class
provided in the BOMB repository. With the help of an example, we have shown how the framework
in the repository can be used to create a new dataset on a different silicon technology, or to create
more data to add tot he existing dataset. Finally, we provided statistical studies of the distribution
of datapoints within BOMB and visualizations using PCA to demonstrate an inherent structure to
the dataset that can be taken advantage of for later downstream machine learning tasks.

In future work, we would be interested in understanding the usefulness of BOMB for unsupervised
representation learning of CMOS technologies and how it can be utilized to facilitate generalization
to downstream circuit predictive model across technologies. To this end we plan to consider in-
vestigation of the following questions: 1) Can we use variational auto-encoders (VAEs) to learn a
continuous embedding that preserves important properties of transistors? 2) Can we use the pre-
trained embedding encoder to learn a circuit predictive model that can generalize to unseen device
types?
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