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Abstract
Formally Verifying Trusted Execution Environments with UCLID5
by
Pranav Gaddamadugu
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Hardware enclaves provide integrity and confidentiality guarantees of a remote execution
on a machine owned by an untrusted third party using hardware-enforced isolation and
attestation mechanisms. Although the sophistication of enclave designs has been increasing,
few are formally verified. In this work, we use a formal tool, called UCLID5, to model
and verify an abstract enclave platform. We then extend our standard model to encompass
a novel extension of the Keystone enclave platform called Cerberus, which enables secure
and efficient multiprocessing inside enclaves and reduces enclave initialization latency. We
use UCLID5 to formally verify that Cerberus provides strong integrity and confidentiality
guarantees to enclave programs.
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Chapter 1

Background and Motivation

In this chapter, we familiarize the reader with a number of concepts associated with formal
methods and secure program execution. The first section describes UCLID5, a formal veri-
fication tool with which we encode and verify a number of security properties. The second
and third sections introduce trusted execution environments and motivate an extension to
the Keystone enclave design. The fourth section introduces our verification methodology
and our notion of security for enclave programs.

1.1 UCLID5 Primer

Formal methods for system design often require reasoning about both hardware and soft-
ware. UCLID5 [24] is a software toolkit for formal modeling, specification, verification, and
synthesis of computational systems. UCLID5 is an evolution of the earlier UCLID modeling
and verification system [7]. At a high level, UCLID5 is designed with the following goals:

e Enable compositional modeling of finite and infinite state transition systems across a
range of concurrency models and background logical theories.

e Verify a range of properties, including assertions, invariants, and temporal properties.
e Integrate modeling and verification with algorithmic and inductive synthesis.

Using UCLIDb5, a user can naturally model hardware as a transition system and verify
properties using induction or bounded model checking. At the same time, a user can also
model sequential software and verify assertions via Floyd-Hoare style program verification.
The UCLID5 compiler translates a UCLID5 model into an SMT [3] specification and invokes
a solver to run the verification query. This section provides a lightweight introduction to the
modeling and verification techniques we use in this thesis. For a more detailed overview, we
invite the reader to refer to the tutorial * or the original UCLID5 paper [24].

Thttps://github.com/uclid-org/uclid /blob/master/tutorial /tutorial.pdf
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Figure 1.1: Model of the Fibonacci sequence as a transition system

module main {

var X, y : integer;
init {
x = 0;
y = 1
}
next {
x' = vy;
y'o=x oy
}
property ind_strengthen : x >= 0 && y >= 0;

property y_le_x : y <= x;

control {
v = induction;
check;
print_results;

Modeling Transition Systems

Figure 1.1 contains a UCLID5 model of the Fibonacci sequence as a transition system. In
this toy problem, the primary property we wish to verify is that y < x. On line 1, we
declare a module that encloses the verification context. On line 2, we declare two variables,
x and y, both of which are integers. UCLID5 supports several types, including integers,
bit-vectors, and arrays. Lines 4-7 contain the init block, which initializes the state of the
transition system. Lines 9-12 contain the next block, which describes the transition relation
of the transition system. Note that in the next block, we have variables followed by a single
quotation; these primed variables refer to the state of the transition system after one step of
the transition relation is executed. Lines 14, 15 contain properties over the transition system
that we wish to verify. Finally, lines 17-21 contain a control consisting of a sequence of
commands that drive the verification of our properties. In this model, we use induction to
verify our properties. In this case, we must add strengthening invariants (e.g. line 14) to
prove our desired property (e.g. line 15).
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Figure 1.2: Model of array search as a sequential procedure

module main

var numbers: [integer]

var tail : integer;

procedure search(search_value:

{

}

integer;

returns (found : boolean)

requires (tail >= 0)
ensures (exists (idx

idx] == search_value)
var i : integer;

i = 0;

found = false;

while (i < tail)

5
integer)
<==> found;

invariant (i >= 0 && i <= tail);

invariant (exists
idx] == search_value)
{
if (numbers[i] ==
found = false;
}
i

=i + 1;

control {

}

v = verify(search);
check;
print_results;

(idx : integer)
<==> found;

search_value) {

integer)

idx >= 0 && idx < tail && numbers/|

idx >=

0 && idx < i && numbers[
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Modeling Sequential Code

Figure 1.2 contains a UCLID5 model of linear search. On line 6, we declare our procedure
search, which takes in search_value as a parameter. The procedure returns a boolean value,
found, if search value exists in numbers. In this problem, we are focused on verifying that
the postcondition on line 9 is satisfied. The body of the procedure, on lines 11-23, contains
the actual specification of the search code. When we specify the procedure, we must add
invariants (e.g. lines 16,17) which allow us to reason about the behavior of the while loop.
One of the main differences from the Fibonacci example is that we use the verify command
instead of induction to check our postcondition. By invoking the verify, UCLID5 uses
Floyd-Hoare style program verification to check our properties.

1.2 Trusted Execution Environments

In the last decade, a new paradigm of secure computing, hardware enclave, has been intro-
duced and proliferated. Enclaves provide integrity and confidentiality guarantees for remote
execution on a machine owned by an untrusted third party using hardware-enforced isolation
and attestation mechanisms. These mechanisms allow an enclave to protect a user program
even against highly privileged attackers such as compromised operating systems. Several
studies have proposed various enclave designs on different platforms such as Intel SGX [14],
Sanctum [10], and Komodo [11]. Such systems enable many secure applications including
privacy-preserving machine learning [21], privacy-preserving smart contracts [9], and so on.

Keystone Security Monitor

Keystone [15] is an open-source enclave platform based on RISC-V. Keystone runs on open
cores such as Rocket [2] and BOOM [8], or any other standard RISC-V core.

Similar to Sanctum [10], Keystone relies on a high-privilege software called security mon-
itor (SM) for isolating the enclave memory (Figure 1.3). The SM runs in machine mode
(M-mode), allowing it to use physical memory protection (PMP) to configure the access
permissions of low-privilege software (e.g., OS or user) to certain memory regions. Keystone
uses multiple PMP registers to dynamically control memory accessibility as shown in Fig-
ure 1.4. PMP controls the access permissions to a specified physical memory region by using
a set of control status registers (CSR) in RISC-V. Each core may have 0-16 PMP registers,
each of which consists of a configuration (pmpcfg) and an address register (pmpaddr) to de-
fine a PMP entry. As shown in Figure 1.4, the pmpcfg register defines the addressing mode
and permission bits, and pmpaddr specifies the address range by encoding the address using
a selected addressing mode. By default, PMP entries act as an allowlist, which means that
the memory is inaccessible if none of the PMP entries is defined. PMP entries are statically
prioritized, such that the lowest-numbered PMP entry that matches any byte of an access
determines whether the access succeeds or fails.
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Figure 1.3: The overview of Keystone system.
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Figure 1.4: How Keystone uses RISC-V PMP for dynamic memory isolation. The SM uses
a few PMP entries to guard its own memory (SM) and enclave memories (E1, E2). Upon
enclave entry, the SM will reconfigure the PMP such that the enclave can only access its
own memory (E1) and the untrusted buffer (U1).
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When the system boots, the security monitor uses the first PMP register to protect its
own memory region by setting all permission bits to zero and configuring the address to
cover the entire image as well as the stack (Figure 1.4). Then, it sets the last PMP register
to let the OS access the remaining part of the memory. Upon the creation of an enclave, the
security monitor allocates an available PMP register to seal and isolate the enclave memory.

The security monitor implements memory isolation by switching the permission bits
when the context changes. Before the enclave starts to run, the security monitor flips the
permission bits in the enclave’s PMP entry to allow computation on its isolated memory. In
addition, the security monitor invalidates the last PMP register to deny the enclave access
to the operating system’s memory.

1.3 Supporting Novel Enclave Applications

Enclave platforms have a few limitations that make them hard to adopt, especially in the
case of server applications. One of the limitations, which we highlight in this thesis, is that
an enclave lacks the ability to clone itself. Cloning is one of the most common programming
primitives implemented with process creation (e.g., fork, vfork, or clone) system calls. The
address space of an enclave is always exclusive, which entirely limits such functionality. To
the best of our knowledge, no enclave platform [14, 15] natively supports such functionality.

Admittedly, the advantages of cloning processes are less relevant these days. For example,
concurrency in multi-process servers can be effectively handled by threads, and fork and
exec could be replaced by posix spawn [4]. Although this is true for normal applications,
we argue that cloning is still very useful in the context of TEEs. In this section, we motivate
our work by introducing a few example cases that need cloning of enclaves.

Multiprocessing

Although multithreading (MT) provides thread-level parallelism, it allows multiple threads to
share data such that bytes written by one thread can be seen by another thread (Figure 1.5).
This is undesirable if each thread handles data that is required to be confidential to each
other. Moreover, one thread may break the entire program such that it affects the integrity
of other threads. Thus, isolating the data of each task is necessary. As we will discuss in
Related Work, task isolation can be implemented in many ways.

Snapshot and Rollback

We can use cloning as a security primitive, by checkpointing to a known machine state,
and then resume execution from the state. Whenever the system falls into a stale state,
we can rollback to the known state. Similar ideas have been introduced by many previous
papers [18, 30, 5]. In addition, one can easily implement a stateless server enclave that clones
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Enclave Enclave: Enclave Enclave Enclave: Enclave
task || task task |||[ task task || [ task } ;astk i | } ;astk i
| |
data data ||I|| data data : data a.a | a.a
| | | shim ] |i|[ shim |
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. . : , z Snapshot
shim shim |{I{ shim shim [ data |[ code |
(a) MT (b) EIP (c) SIP (d) Cerberus

Figure 1.5: Comparing different task isolation mechanisms with enclaves: (a) Multithreading
(MT), (b) Enclave-Isolated Process (EIP) [29, 20], (¢) SFI-Isolated Process (SIP) [25],and
(d) Cerberus (this work)

itself whenever there is a new request such that each of the enclaves starts from a known,
secure state.

Cloning is also very useful in applications that want to take a snapshot of a virtual address
space without having to block the entire application. Redis [23] uses fork to implement per-
sistence. When Redis forks, the child process will be a snapshot of the in-memory database.
The child then writes the database into the file without having to pause the parent. An
efficient cloning mechanism should be also available if we run such applications in enclaves.

Related Work

A few frameworks such as Graphene [29] and Asylo [20], which are built on top of the en-
clave implementation, support enclave-isolated process (EIP) creation inside enclaves (Fig-
ure 1.5b). Both encapsulate a user application with a shim layer (e.g., LibOS) such that it
runs inside an enclave. They implement process creation system calls by creating an enclave
and transferring the entire state of the application to the new enclave. To be specific, when
such system calls are invoked, @ the parent enclave coordinates with the host and creates an
enclave with the same initial state; @ the parent attests the child enclave and exchanges a
key to construct a secure channel; @ the parent enclave takes a snapshot of the application
memory, encrypts it, and transfers it over the secure channel; @ the child enclave receives
the snapshot, decrypts it, and restores the application memory.

Although this provides the functional correctness of cloning, it is suboptimal in terms
of performance and resource usage for a few reasons. First, the creation time of an enclave
linearly increases as the size of the enclave increases. When an enclave is created, all initial
pages need to be copied into the protected physical memory. Then, the initial pages are
measured with a cryptographic hash function. Thus, a larger initial enclave size will result
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MT EIP [29,20] SIP [25] Cerberus*
Task Isolation no isolation enclave MMDSFI enclave
App. Pages shared isolated isolated  write-isolated
Shim Pages shared isolated shared write-isolated
Init. Latency very low very high low low
Exec. Overhead no no high low

Table 1.1: Characteristics of different task isolation mechanisms

6 B Others
N Il Create
v i Transfer
>4
O
C
9
o2

0 100 200 300 400
Enclave Memory Size (MB)

Figure 1.6: The latency breakdown of fork() system call in an enclave hosted by Graphene-
SGX, running on an Intel i7-9750H processor. fork() was called after malloc() with dif-
ferent sizes where the initial enclave size was fixed to 512 MB.

in a longer latency. Second, the initialization time of the user application also linearly
increases with the size of the active application memory. Because all allocated memory will
be transferred via the encrypted channel, any large objects will make the latency prohibitively
long. As an example, a neural network model in a deep learning application can easily go
over a few MBs, which could take a few seconds to transfer. Figure 1.6 shows that the overall
latency is an order of seconds and increases proportionally to the allocated memory size.
Shen et al. [25] address the problem by proposing Occlum, which enables multipro-
cessing inside the enclave using their intra-enclave isolation mechanism called MPX-based
Multi-domain Software Fault Isolation (MMDSFT). The memory isolation within the enclave
is enforced by SFI, which sanitizes every memory access instruction with Intel Memory Pro-
tection Extension (MPX). This allows Occlum to implement process creation within a single
enclave. We compare SFI-isolated process (SIP) with others in Figure 1.5c. We highlight a
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few limitations as shown in Table 1.1. First, the isolation relies solely on the implementation
of MMDSFI, which was not formally specified and verified. Thus, it is hard to verify that Oc-
clum provides the same or stronger isolation than EIP. Moreover, cache side-channel attacks
are out-of-scope of Occlum, and it will require additional software mechanisms for cache
side-channel attacks. Second, although the application data and code are isolated, tasks
share the same LibOS, which means that they technically can interfere with each other. For
example, stale global variables or cached file of LibOS may result in different behaviors for
the same task. Third, since Occlum relies on binary instrumentation, it incurs about 36%
execution overhead. In addition, Intel has removed MPX in 2019 and onward hardware, so
Occlum will not be able to use the same mechanism in newer processors.

To address the limitations, we first formally model Cerberus and verify that it does
not break the security properties of TEEs. As we will see, Cerberus inherits all isolation
guarantees the TEE provides, because we still isolate each task with an enclave. Thus, if the
enclave provides defense against cache side-channel attacks [15], enclaves in Cerberus will
also have the defense. Furthermore, Cerberus has a different sharing model than the other
isolation mechanisms. We define write-isolation as the requirement that write operations
invoked by enclaves are isolated from each other. Cerberus’ isolation mechanism allows
enclaves to share data via reads while ensuring that writes are restricted to an enclave’s
own memory region, enabling a number of new enclave applications while also maintaining
security. We prototype Cerberus in RISC-V Keystone, but also argue that a similar scheme
can be applied to other TEEs such as Intel SGX. We show that Cerberus has very low
initialization latency for creating a new task as well as very low execution overhead.

Example: Function-as-a-Service (FaaS)

Function-as-a-Service is a new cloud computing paradigm, which allows developers to write
a function and deploy it on the server without having to manage the underlying server
infrastructure. The function can be executed by external triggers such as HT'TP requests,
and the cost is charged based on the number of function invocations. The cloud provider is
in charge of providing reliable and scalable servers that can execute the function.

As prior work [1, 6, 28] motivated, FaaS can also take advantage of the isolation of
enclaves when each function invocation may process sensitive data from different users.
Furthermore, the end user may want to attest the function before it provisions the secret
data. For example, let us say a function analyzes a DNA sequence and returns whether the
DNA is susceptible to a certain disease. The user does not want to disclose their DNA data
to the cloud provider nor the service provider, but trusts the function implementation. The
service provider can provision the function in an enclave, and allow the user to construct a
secure channel to the enclave backed by remote attestation (e.g., RA-TLS [16]). However,
the existing enclaves are inefficient to support FaaS workloads.

Initialization Latency As we discuss in Section 1.3, enclave initialization latency is pro-
hibitive for cloud applications. This is because when the enclave is created, every initial
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page needs to be copied into the protected memory region and then measured using a cryp-
tographic hash function. For example, SGXv1 requires all heap pages to be initialized prior
to entering the enclave. This increases the start-up latency up to a few seconds as the peak
memory usage of the application increases. Trach et al. [28] try to address this by using
dynamic memory allocation in SGXv2 [19]. However, dynamic memory allocation in SGXv2
does not remove the cost; it only delays the page initialization until the enclave actually uses

the page. Keystone [15] also reports a few million cycles overhead just for hashing a single
page with SHA3.

Memory Footprint Using enclaves in the FaaS workers significantly amplifies the memory
footprint. In FaaS, many functions can share the identical language runtime (e.g., a specific
version of Python), thus they can share some of the physical pages. This is not possible
when each function is isolated in an enclave. Since physical memory is a limited resource,
the throughput is limited by the memory usage of the entire language runtime, not by the
memory usage of each function.

1.4 Trusted Abstract Platform and Secure Remote
Execution

Formal verification of enclave platforms is crucial due to the strong threat model of hardware
enclaves. In many cases, the security of an enclave system usually relies on the small trusted
computing base (TCB) implemented with a combination of hardware and highly privileged
software. Any bugs or vulnerabilities in the TCB could break the security not only of an
enclave, but also of the entire system. For these reasons, several studies have formally verified
either the abstract model [27] or the implementation [11] of enclave systems.

Previous work [27] uses formal methods to verify Intel SGX and Sanctum. The work
introduces the Trusted Abstract Platform (TAP), which is a formal specification for hard-
ware enclave systems. TAP is proven to provide confidentiality, integrity, and measurement
against formally-defined adversary models. Using TAP as a basis of verification, a verifica-
tion engineer can construct formal models of their enclave platform and show that they are
refinements of the TAP model. In doing so, the security properties that hold over TAP also
hold over the model of the enclave platform. Subramanyan et al. [27] use this technique to
show that SGX and Sanctum satisfy a desired set of security properties. In this section, we
dive deeper into the TAP model and the security properties it guarantees.

Trusted Abstract Platform

The Trusted Abstract Platform is an abstraction of an enclave platform. As in the paper
by Subramanyan et al. [27], is modeled as a finite state transition system, (X, T init), with
the set of states 3, transition relation 7', and initial states init € . Figure 1.2 contains a
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summary of the state of the TAP model. Furthermore, Figure 1.3 shows the set of formally
specified primitive operations that are sufficient to model enclave execution.

State Var. Type Description

pc VA Program counter

regs N—-W Architectural registers; map from natural
numbers to words

mem PA - W Memory; map from physical addresses to
words

addr map VA — (ACL x PA) Map from virtual addresses to permissions and
physical addresses for current process

cache (Set x Way) — (Bx Tag) Cache: map from a tuple of cache sets and

ways to valid bits and cache tags

current_eid & Current enclave. current_eid = OS means
that no enclave is being executed

owner PA — &y Map from physical address to the enclave ad-
dress is allocated to

enc metadata Eia = Em Map from enclave ids to metadata record type

os_metadata Em Metadata record that stores a checkpoint of

privileged software state

Table 1.2: TAP state variables

Secure Remote Execution

Users of any given enclave platform require that the platform executes their enclave pro-
gram as intended. The Secure Remote Execution (SRE) property requires that the enclave
platform preserves the semantics of the enclave program and guarantees that an adversary
does not learn any more information that what is allowed. The semantics of an enclave e,
denoted [e], is the set of finite or infinite execution traces, containing an execution trace for
each input sequence, i.e. for each value of non-enclave memory and randomness at each step
of execution. In prior work [27], this is formulated as follows:

Definition 1 Secure Remote Execution of Enclaves. A remote platform performs secure
execution of an enclave program e if any execution trace of e on the platform is contained
within [e]. Furthermore, the platform must guarantee that a privileged software attacker only
observes a projection of the execution trace, as defined by the observation function obs.

Subramanyan et al. decompose this property into three separate properties which entails
stated below.
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Operation Description

fetch(v) Fetch /read /write from/to virtual address v. Fail if v is

load(v) not executable/readable/writeable respectively according to the

store(v) addr map or if owner[addr map[v].PA] # current_eid.

get_addr map(v) Get/set virtual to physical mapping and associated permissions

set_addr_map(v) for virtual address v.

launch(e,m,x,, x,,t) Initialize enclave e by allocating enc_metadatale.

destroy(e) Set mem[p| to O for each p such that owner[p] = e. Deallocate
enclave enc_metadatale.

enter(e), enter enters enclave e at entrypoint, while resume starts execu-

resume (e) tion of e from the last saved checkpoint.

exit(), pause() Exit enclave. pause also saves a checkpoint of pc and regs and
sets enc_metadatale].paused = true.

attest(e) Return hardware-signed message with operand d and enclave

measurement e: d||u(e)SK,.

Table 1.3: Description of TAP APIL.

e Secure Measurement. The platform must measure the enclave program to allow
the user to detect any changes to the program prior to execution, i.e., the user must
be able to verify that the platform is running an unmodified e.

e Integrity. The enclave program’s execution cannot be affected by a privileged software
attacker beyond providing inputs, i.e., the sequence of inputs uniquely determines the
enclave’s execution trace, and that trace must be allowed by the enclave’s semantics

[e]-

e Confidentiality. A privileged software attacker cannot distinguish between the exe-
cutions of two enclaves, besides what is already revealed by obs.

The model and associated proofs show that the specification guarantees Secure Remote
Execution under three adversary models: M, MC', and MCP. These classes of adversaries
differ by the state they are allowed to observe. Figure 1.4 details the differences between the
various adversary models. The adversary can either try to tamper or observe the enclave by
modifying its own state or invoking the enclave API.
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Adversary Observation

M

MC

MCP

Allows adversary to observe the contents of all
memory locations not private to the running
enclave.

Extends M to also observe whether locations
not private to the running enclave are cached
or not.

Extends MC to also observe the virtual to
physical mappings and access permission bits
for each address.

Table 1.4: Summary of adversary model observations

13
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Chapter 2

Verifying Trusted Execution
Platforms

In this chapter, we apply prior techniques for verifying trusted execution platforms towards a
novel extension of the Keystone security monitor. We begin by replicating prior work on the
Trusted Abstract Platform using UCLID5. Then, we describe Cerberus, a set of extensions
to the Keystone security monitor that enable enclave programs to be cloned. Finally, we
extend our Trusted Abstract Platform model with snapshot and clone functionality and
verify that our augmented model preserves Secure Remote Execution.

2.1 Modeling a Trusted Abstract Platform with
UCLID5

Prior work on TAP used Boogie to model the abstract system and generate a proof of secure
remote execution. While Boogie demonstrates advantages when verifying sequential software,
it falls short in modeling hardware systems. UCLID5, on the other hand, implements support
for modeling both software and hardware by allowing users to describe sequential procedures
and transition systems. Furthermore, UCLID5’s focus on invariant synthesis makes it a
suitable choice of modeling tool.

Extensions to UCLID5

In the process of porting the TAP models and proofs from Boogie to UCLID5, we imple-
mented a set of features aimed at easier development and verification. Appendix A contains
a subset of the TAP models that rely on the following features.
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Importing Constants and Uninterpreted Functions

The Trusted Abstract Platform contains a number of submodules, each of which define
the similar types, constants, and uninterpreted functions. Although type import across
modules was already supported, we extended the UCLID5 language to allow for constant and
function imports, greatly reducing redundancy across modules. We note that the current
implementation does not currently support multiple inheritance and leave it as a future
extension to the tool. Lines 4-6 in Appendix A, Listing A.2 demonstrate this feature.

Supporting Instance Procedure Calls

Preceding work proves Secure Remote Execution for TAP by decomposing the property into
three sub-properties defining integrity, confidentiality, and measurement over two execution
traces of the TAP. Replicating this result in UCLIDS5, implies instantiating two instances
of the TAP model and requires support for invoking a procedure defined in an instance of
a module. We implement support for this feature as well as the inclusion of module-level
axioms in procedure verification, allowing us to verify properties over the state of multiple
instances; furthermore, we note that adding this feature increases UCLID5’s compatibility
with ’object-oriented’ software verification. In Appendix A, Listings A.2,3, we have a module
of an abstract cache which is instantiated in the abstract_cpu model. The procedures in
abstract_cpu invoke procedures in abstract_cache. This feature is useful as it allows us
to build up and verify our models in a modular fashion. Moreover, this functionality meshes
well with a future goal of implementing module-level assume-guarantee contracts in UCLID5.

Redefining the Implementation for the ’old’ Operator

The ’old” operator, applied over a state variable, references the value of the variable before a
procedure call or the value in the last step of the module. When a procedure with invariants
containing the ’old’ operator is invoked by another, the ’old’ operator instead refers to the
value of the variable before the calling procedure rather than the value of the variable before
the procedure call. We implement a fix in UCLID5, by introducing fresh variables that take
a snapshot of the state before each procedure call. In implementing this fix, the semantics
of the 'old’ operator within the context of procedure calls is identical to that of Boogie. For
example, the procedure store_va, on line 134 in Appendix A, Listing A.3, is inlined at its
call site. Note that the post conditions, e.g Line 134, Appendix A, Listing A.3, for this
procedure contain references to the 'old’ values of state variables. Without this modification
in semantics, old (cpu_mem) would refer to the value of cpu_mem before the invocation of the
calling function, which may result in the postcondition failing.
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Description Size Verif. Time (s)
#pr F#an  #ln

TAP 38 472 2629 28.3

Tntegrity 1 63 255 326.3

Measurement 6 133 519 46.5

Confidentiality 3 211 1227 799

Total 48 879 4630 1200.1

Table 2.1: UCLID5 Models and Verification Metrics (Floyd-Hoare)

Description Size Verif. Time (s)
#pr FHan #ln

TAP 22 204 1752 )

Integrity 12 145 985 26

Measurement 6 100 800 6

Confidentiality 8 200 1388 194

Total 48 649 4925 231

Table 2.2: BoogiePL. Models and Verification Metrics (Floyd-Hoare)

Verification Results

We successfully translated TAP model and all proofs, created by Subramanyan et al. [27],
in Boogie into UCLID5. ! Apart from a few additional invariants and syntactic changes, the
models are one-to-one. Tables 3.1 and 3.2 show a comparison between our verification effort
in UCLID5 and prior work using BoogiePL. Note that pr, an, and In denote the number
of procedures, annotations, and lines of code. Note that number of annotation refers to
the number of pre/post-conditions, assertions, and loop invariants written in the models.
Generally, we observe that UCLID5 lends itself to code reuse, as shown by the lines of code
required to express the Integrity and Measurement proofs. We also observe a slightly larger
number of annotations written in the UCLID5 models. The primary point of comparison
is in verification time. Boogie reports faster times, which could be due to optimization of
queries to the SMT solver. Improving this is an area for future work on UCLID5. In par-
ticular, we could leverage work on MedleySolver [22] and in using different encodings than
purely Floyd-Hoare style proofs, given UCLID5’s capabilities in both concurrent and sequen-

!The source code can be found here: https://github.com/uclid-org/trusted-abstract-platform
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tial modeling. We note that further investigation is required to explicitly characterize the
differences between UCLID5 and BoogiePL, however this study offers a reasonable starting
point.

Extending the Adversary Model

Existing work on the formal verification of secure enclaves proves Secure Remote Execution
for three distinct parameterizations of a privileged software adversary. Prior work by Sub-
ramanyan et al. denote these parameterizations by M, MC, and MCP, each indicating
the set of operations allowed to the adversary to tamper or observe the state of the enclave
platform. Furthermore, it was shown that the Sanctum processor guarantees SRE under a
MCP adversary, and Intel SGX guarantees SRE under a M adversary. While this model
captures a large set of privileged software adversaries, it does not provide any guarantees
against an adversary that can directly interact with the physical memory. Recent work has
shown that sophisticated attacks can be successfully carried out against enclave platforms by
such an attacker. We aim to capture this class of adversaries with a new paramaterization,
denoted by M™*.

Adversary Observations

The observation function obs?” (o), for an enclave e and enclave platform state o states that
an M* adversary is able to observe the full range of physical addresses, with no restrictions
on enclave memory. We formally define it as:

obs?* (o) = Ap.o(mem[p])

Note that the observation function can be extended as in previous work [27] to define obser-
vation functions for M*C' and M*C'P adversaries.
Adversary Tampering
The tampering operations for M* are given below.
(1) Unconstrained updates pc and regs.

(2) Loads and stores to memory with unconstrained address (va) and data (data) argu-
ments, such that all platform protections are bypassed.
e (op) < fetch(va)
e (regs([ri] « load(va)
e store(va,data)

(3) Modification of the adversary’s view of memory by calling get_addr map and set_addr_map
with unconstrained arguments
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e set_addr map(e, v, p, perm)

e get_addr map(e,v)
(4) Invocation of enclave operations with unconstrained arguments.

e Launch enclaves: launch(e, m, z,, z,,t)
e Destroy enclaves: destroy(e)
e Enter and resume enclaves: enter(e) and resume(e)

e Exit and interrupt enclaves: exit and pause

Note that the tamper operations can be extended as was in previous work to define tamper
operations for M*C' and M*C P adversaries.

Concluding Remarks

In this section we have shown that UCLID5 is a suitable verification tool for modeling and
verifying an abstraction of trusted execution platforms. Furthermore, we have also extended
the formalism of TAP’s adversary models. At this point we have primarily replicated prior
results, however, the transition to UCLID5 will play an important role in modeling further
extensions to enclave platforms.

2.2 Cerberus: Secure and Efficient Cloning of
Enclaves

Cerberus introduce two new operations, snapshotting and cloning, that enable performant
and secure cloning of enclaves. An enclave can take a snapshot of itself in order to freeze
its state, including enclave memory, general registers, control-and-status registers (CSRs),
and the enclave metadata. Identical enclaves can then be quickly created from the snapshot.
The new enclaves are still fully isolated with each other, but share the snapshot image with
read-and-execute-only permission. When an enclave wants to write, it uses a copy-on-write
mechanism to copy only the relevant pages over to its private memory. Newly written
data is still confidentiality- and integrity-protected while enclaves can access the unmodified
pages in the snapshot memory. Similar optimizations have been introduce to improve the
performance of fuzzing [30] or security isolation [5]. In this thesis, we explain how we tailor
the techniques to fit TEEs.

Threat Model

We note that Cerberus inherits threat model of the TEE, on which it is implemented. The
program running inside the enclave will be confidentiality- and integrity-protected by the
underlying isolation mechanism used by the enclave platform. To be specific, any private
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data of one enclave must not be visible or modifiable by any software adversaries such as
untrusted privileged software (e.g., the OS), or by other enclaves. The code of one enclave
must not be modifiable by the software adversaries. Denial-of-service against the enclave is
not defensible as in the TEE threat model. Thus, even if the enclave wants to clone, the OS
can always refuse to cooperate.

However, multiple enclaves can share the same snapshot memory which contains the data
or code before the enclave was cloned. The data is implicitly not confidential among these
enclaves. However, snapshot memory is still invisible from the outside of these enclaves, for
example a privileged software adversary or other enclaves that do not share the snapshot.
We do not consider the application running in the enclave being vulnerable or malicious by
itself. For example, an application can clone itself and dump the snapshot contents to the
outside. This will trivially break the confidentiality of the snapshot memory.

We ensure that the enclaves are still write-isolated, which requires that any modification
to the data from one enclave must not be visible to the others. However, enclaves are still
allowed to read each other’s data under a parent and clone relationship. Thus, any secret
data needs to be provisioned after the enclave was cloned and attested. It is the enclave
developer’s responsibility to make sure that the snapshot does not contain any secret data
that should not be visible by the cloned enclaves.

Since Cerberus inherits the threat model of the TEE, the enclaves are also resistant
to cache side-channel attacks with the TEEs that support cache partitioning (e.g., [10,
15]). Our formal model assumes that each enclave has its own cache domain, and different
enclaves may not share any cache lines even though physical addresses are shared. In the
following section, we formally verify that that adding snapshot and clone functionality still
retains the cache confidentiality guarantees in the previous formal model. We note that
cache partitioning in Keystone [15] relies on the fact that the enclaves never share the same
physical memory. Thus, the mechanism needs to be changed such that each enclave will
always load the memory to a different region of the cache even though they access the same
physical address. Although it can be simply implemented by taking the enclave ID into
account when tagging a cache line, the actual implementation is out-of-scope of the paper.

Physical side-channel attacks [17] or physical tampering [13] are out-of-scope of this
paper. We believe that those attacks can be mitigated with existing techniques such as
on-chip memory, oblvious RAM [26], and memory encryption engine (MEE) [12].

Snapshot and Clone

snapshot is an irreversible operation that each enclave can call only once. Thus, once
snapshot is called on an enclave, the enclave is permanently changed to a snapshot enclave.
The snapshot enclave will freeze all the intermediate state of the enclave including the
memory and the register contents. Since the TEE prohibits any modification to the state,
the snapshot enclave cannot resume execution any longer. snapshot can be called only
by the enclave itself. Thus, the initial enclave code needs to contain the code that calls
snapshot. Since the enclave decides where it wants to freeze, a snapshot is inherently
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Figure 2.1: Address spaces for snapshots and clones

trusted if the enclave’s initial state is trusted. This follows from the fact that enclaves with
a valid attestation are deterministic with respect to enclave inputs. In fact, this is shown by
the Secure Measurement property which is a component of Secure Remote execution.

clone then creates a fresh enclave with an empty isolated physical memory. The cloned
enclave inherits every state of the snapshot including the virtual memory mapping. For that
reason, clone does not need to copy the memory contents of the snapshot, saving a large
number of cycles. clone can be called by the host. If the enclave wants to clone itself,
it needs to coordinate with the host to create a new enclave with clone. This is natural
given that all system resources are still managed by the OS. If the clone was due to a fork
system call, we need to actually create two new enclaves: a parent and a child. After cloning
from a snapshot enclave, the new enclaves can resume execution with read-and-execute-only
permission to the snapshot memory. The TEE platform must enforce the permission so that
the snapshot state is permanently not modifiable.

Figure 2.1 depicts a set of enclaves created by snapshot and clone. The figure shows
three enclaves: Snapshot, A, and B. Note that A and B are clones of Snapshot. The top half
shows the virtual address space of the enclaves, while the bottom half shows the memory
regions that are unique to each of the enclaves. Cloned enclaves have access to certain certain
physical addresses in their parent enclave, while also maintaining their own protected memory
region.

We achieve write-isolation between clones by capturing any write instruction to the snap-
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shot memory and perform copy-on-write, which we describe in the following subsection.

Copy on Write

Linux optimizes process cloning (i.e., fork and clone) with copy-on-write (CoW), which
duplicates only the page table and postpones the actual page copy until either the parent
or the child actually modifies the page. For a user process, CoW is based on the ability of
the OS to manage the entire memory of user processes. Whenever the cloned process tries
to write to any shared physical page, a page fault will occur, and the OS handler performs
the actual copy and remaps the virtual address to the new page.

However, this is not possible with enclaves which are strictly isolated. Any page copy
between enclaves may require an encrypted channel to be constructed after both enclaves
attest each other. Moreover, the trusted component of the enclave platform usually has no
control over the page tables. For example, in Intel SGX, page tables are entirely managed by
the untrusted OS, whereas in other enclave platforms like RISC-V Keystone and Sanctum
[10], page tables are managed by the enclave itself.

Cerberus instead relies on the write-access fault raised by the hardware when an enclave
tries to write to a physical address without write permission. When the hardware exception
occurs, the platform decides if it needs CoW by checking whether or not the faulting enclave
is trying to access its snapshot memory. In Keystone, this is simply a machine trap, thus
the security monitor can route the fault to the enclave. In SGX, this could be achieved
by modifying hardware to raise a fault when enclave tries to write to its snapshot memory.
Since there will be only one snapshot per enclave at most, the hardware can refer to the
enclave metadata to see if it needs to raise the fault. Alternatively, the mechanism can be
implemented in LibOS, by marking pages read-and-execute-only so that a page fault occurs.

The platform then allocates a new page in the private memory of the faulting enclave.
Since there is no deallocation, the pages are just allocated starting from the beginning of
the private memory. If there is no free memory, the enclave just fails to execute, and will
be immediately destroyed. After the page is allocated, the platform copies the snapshot
page into the new page, and remaps the virtual address of enclave to point to the new page.
In Keystone, this can be done in-enclave by the supervisor-mode runtime. After CoW is
finished, we resume execution of the enclave.

Nested Clone

We allow an enclave to call snapshot only once. Following that, any number of clones can be
created from the snapshot, assuming that there exists enough free PMP entries to manage
them. Furthermore, we do not allow cloned enclaves to invoke the snapshot operation and
clone cannot be invoked on a cloned enclave. Although this only allows one layer of nesting,
we found that this not only simplifies the model, but also fits most application requirements.
We address extensions for arbitrary levels of nesting in Future Work.
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2.3 Formally Verifying Cerberus

We wish to show that the addition of snapshot and clone to an enclave API does not
violate the Secure Remote Execution property. To that end, we build upon our earlier work
on TAP and use it to show that the desired integrity and confidentiality guarantees hold.

Extending the Platform Model

In this subsection we describe the changes made to the TAP model. We denote this new
model TAPc.

TAP State Variables

In our verification effort, we found it unnecessary to change most of the state variables of
TAP for the extension of snapshot and clone. Most of our extensions are to the enc_metadata
record, which is a map from enclaves IDs to metadata on the respective operating enclaves.
The enclave metadata provided in the TAP abstraction was extended for reference counting
and keeping track of enclaves that were snapshots. To accomplish this, Cerberus introduces
several additional fields in the enclave metadata record for a given enclave e which are briefly
described in Table 2.3. The is_snapshot field indicates whether e is a snapshot, which is
initially false and set to true upon calling the snapshot(e) primitive. The child_count field
is initially 0 and stores the number of child enclaves cloned from the enclave. The parent
field indicates whether the enclave is a parent enclave, which is true if and only if the clone
has been called on the enclave. Lastly, wap_is_free is a pool of free pages for the enclave,
which is abstractly modeled as a map of addresses to boolean values, representing whether
the address is free.

TAP Operations

As a result of introducing snapshot and clone to the TAP model in addition to changes in
the enclave metadata record, the original TAP operations are also changed. We describe
these changes in detail in Table 2.4.

Restricting Enclave Regions

In addition to augmenting the TAP API, we also make some notable to changes to platform’s
functionality. The most significant of which includes restricting enclaves to a single contigu-
ous region of memory. In the original model [27], an enclave was able to specify exclusive
physical addresses on initialization via an input parameter, excl_paddr, of type PA — B,
where PA denotes a physical address. This allowed enclaves to own disjoint regions of mem-
ory but prevented us from writing certain logical formulas comparing the number of exclusive
physical addresses between enclaves; in other words, logical formula that required us to take
the cardinality of a set.
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State var. Description

entrypoint Enclave entrypoint.

addr_map Virtual to physical mappings/permissions

excl_vaddr Set of private virtual addresses.

measurement Enclave measurement.

pc Saved PC (in case of interrupt).

regs Saved registers (in case of interrupt).

paused Flag set only when enclave is interrupted.

is_snapshot Flag indicating if the enclave is a snapshot.

child count Count of children cloned from this enclave.

parent The parent enclave id if enclave was cloned.

wap_addr free A map of free physical addresses for the en-
clave.

Table 2.3: Fields of the enc_metadata. State variables introduced for Cerberus are below
the middle line.

To accommodate these logical specifications, we modified the behavior of our TAP model
to require users to provide an input parameter, bounds, of type (PA, PA) which denotes
the inclusive upper and lower bounds of the memory region owned by an enclave. We then
showed that our modified TAP model refines the one specified in [27], thus showing that the
former model guarantees the security properties of the latter.

Modeling a Copy-on-Write Mechanism

Recall, from Section 3.2, that Cerberus uses the write-access fault as a way of invoking the
CoW mechanism. In our TAP model, writes to memory are handled by the abstract_cpu in
a procedure called store_va. Appendix B, Listing B.1 shows the modified store_va, which
has been augmented with logic modeling copy-on-write. The new procedure allows an enclave
to write to a virtual address, whose underlying physical address is owned by its parent. This
logic is contained between lines 57 and 110. When a valid store to the parent region occurs,
the CPU searches for a free address in wap_addr free. If a free physical address is found,
the data is stored to the new physical address and the virtual address mappings, otherwise,
an out-of-memory fault is thrown.

The Adversary Model

The adversary model is largely unchanged compared to the original TAP model. To reit-
erate, TAP’s adversary model is based on a privileged software attacker that consists of (i)
the usual tamper relation describing how an attacker changes the platform state, and (ii)
an observation function that describes a projection of states visible to the adversary. We
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Operation Description

launch(e,m,x,,xp,t) Initialize enclave e by allocating enc_metadatale]. Set
enc metadatale].is_snapshot = false.

destroy(e) Set mem[p] to 0 for each p such that owner[p] = e.
Deallocate  enclave  enc_metadatale] and  decrement
enc_metadatalenc metadatale].parent].child_count by 1.

enter(e), enter enters enclave e at entrypoint, while resume starts ex-

resume (e) ecution of e from the last saved checkpoint. Returns invalid
argument status if enc_metadatale|.is_snapshot is true.

exit(), pause() Exit enclave. pause also saves a checkpoint of pc and regs and

sets enc_metadatale|.paused = true. Returns invalid argument
status if enc_metadatale|.is_snapshot is true.

attest(e) The attest operation is unchanged from the original TAP
model.
snapshot (e) Set the writable bit addr map[v].ACL.write to false for

all virtual addresses v owned by enclave e and sets
enc_metadatale|.is_snapshot to true.

clone(e,, e.) If the parent enclave’s field enc_metadataley].is_snapshot is
true and enclave e has enough free pages to clone e,, then
set enc_metadatale.|.parent = e,, increment the parent’s child
count enc_metadatale,].child_count by 1, and set owner[p| = e,
for each virtual address p allocated for the virtual address map
for the child enclave e..

Table 2.4: Description of snapshot and clone in TAPs, and changes to the original TAP
APL

show that TAPs maintains SRE over the various parameterized adversary models described
in Table 1.4.

Verifying Secure Remote Execution and Beyond

We begin with some preliminary definitions. Let 7;[j] be the state of the system in trace ¢ at
time j. Let E.(o) be a projection of the system state o containing only the state of enclave
e. Concretely, E refers to entrypoint, pc, regs, excl_vaddr, and addr_map. Let curr be
the currently executing enclave. Let I, be the inputs to enclave e. Let O, be the outputs of
enclave e. Let A, be adversary’s state, defined by the adversary’s observation function and
untrusted system state. Let I”(o) be the bits of non-determinism in a state o. Let obs be
a projection of the system state given by the adversary’s observation function.
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Equations (2) and (3) denote the formal specifications of integrity and confidentiality
guaranteed by Secure Remote Execution. In the standard TAP model, e, e;, and ey refer
to enclaves created by the standard initialization process. However, since TAPq allows for
enclaves to be created via clone, we must also ensure that our confidentiality and integrity
properties reflect this behavior. Note that the decomposition of the Secure Remote Execution
property contains a Secure Measurement property; by default, this holds for TAP¢ as the
attestation scheme remains unchanged.

Before discussing the formal properties, we must first discuss the relationship between
physical enclaves and enclave programs. Informally, a physical enclave is a protected region
of memory managed by the enclave platform. The lifetime of a physical enclave begins upon
an initialization request via the enclave API and ends on a destroy request via the enclave
API. In our standard TAP model, the entirety of an enclave program is executed within
one physical enclave. However, in TAP¢, an enclave program may execute across multiple
physical enclaves. That is, an enclave launches, executes operations, and snapshots; then, a
clone launches, executes, and finishes. This distinction is important, since the encoding of
SRE in UCLID5 specifically applies to physical enclaves and enclave programs that span the
duration of a single physical enclave. In this subsection, we address this difference by first
proving SRE over physical enclaves and then proving additional properties which show that
SRE holds for enclave programs spanning multiple physical enclaves.

SRE for Physical Enclaves

In the case of integrity, we show that for any two physical enclaves running the same enclave
program, if their initial states are equivalent with respect to the projection F, their inputs
are the same, and they run at the same time, then their state and outputs are the same,
independent of whether or not the enclave was created as a clone. In the case of confidential-
ity, we show that the guarantees extend to cloned enclaves under various classes of software
adversaries. We note that we use the same adversary models as [27]. Informally, these
models consist of an adversary that can observe certain memory regions, an extension which
can also observe a projection of cache state, and a further extension which can observe page
table mappings and permission bits. The formal properties for integrity and confidentiality,
respectively, are included in 2.3. Note that in 2.3, e refers to a physical enclave. We verify
properties for physical enclaves that are created either by the launch or clone operation.

SRE for Enclave Programs

We emphasize that showing our enclave platform guarantees SRE for physical enclaves is not
sufficient to guarantee that SRE holds for any enclave program. Rather, our enclave platform
may violate SRE at the snapshot and clone boundary. For example, a privileged software
adversary may be able to tamper with enclave platform to violate the integrity of the enclave
program executing as a clone. In another case, the snapshot and clone operations may leak
private data to an adversary.
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Figure 2.2: Integrity and Confidentiality Properties proven over TAP

Therefore, in order to show that the platform provides SRE for any enclave program, we
first show that the usage of snapshot and clone does not violate the integrity of an enclave
program. In other words, for all physical enclaves, the corresponding clone must be initialized
to an equivalent state, despite any operations invoked by the privileged software adversary.
The formal property, which we call Integrity Preservation under Snapshot and Clone is
shown in Figure 2.3. Note that e denotes the original physical enclave and €’ denotes the
cloned physical enclave. We then show that the usage of snapshot and clone does not violate
confidentiality with respect to an adversaries that can observe unprotected memory regions,
the cache, and page tables. The formal property, which we call Confidentiality Preservation
under Snapshot and Clone is shown in Figure 2.4. Note that in the case of Confidentiality
Preservation the adversary is running concurrently with enclave e and €', once it has been
initialized. We then arrive at the following theorem.

Theorem 1 An enclave platform, with snapshot and clone operations, that satisfies Secure
Remote Execution for physical enclaves, Integrity Preservation under Snapshot and Clone,
and Confidentiality Preservation under Snapshot and Clone also satisfies Secure Remote
Ezecution for all enclave programs.

Proof. Suppose we have a valid enclave program e that does not invoke snapshot and
clone, then since e executes within a single physical enclave, SRE holds. Now suppose we
have a valid enclave program e’ that invokes snapshot and clone. Let i be the point in time
when snapshot is invoked and let 5 be the point in time when clone is invoked. Note that
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V.

VEk, j.

(k>0Nj>kA

(curr(m[k]) =e) A

op(r[k]) = snapshot(e) A op(r[j]) = clone(e,e’))
=

(Ee(m[k]) = Ee(x[5]))

Figure 2.3: Integrity Preservation under Snapshot and Clone

V.

vk, J.

(k>0Nj>kA

(curr(wlk]) = e) A

op(r|k]) = snapshot(e) A op(w[j]) = clone(e,e’))
=

(0bs(w[j]) = obs(w[j +1]))

Figure 2.4: Confidentiality Preservation under Snapshot and Clone

j > i. It follows that for any time ¢ < i and ¢t > j, SRE holds since €’ has only been executing
in a single physical enclave. By the preservation properties, we ensure that confidentiality
and integrity holds for time ¢ < ¢t < j. Thus we have that SRE holds for the entirety of €¢’’s
execution.

Semantic Equivalence of Enclave Programs

Another property we would like to verify is semantic equivalence between enclave programs
that use snapshot and clone and those that do not. Specifically, we show that, assuming
the same inputs, an enclave program e that contains snapshot and clone operations is
equivalent to an enclave program e where the snapshot and clone operations have been
removed. We verify this property under the presence of a privileged software adversary.
Figure 2.5 contains the formal definition of semantic equivalence.

Figure 2.6 shows the two traces of the semantic equivalence property. The adversary’s
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O'O —_— ..

Yk, j.
V7, ma.

(k>0Aj>kA
Ee,(m1[0]) = E, (m2[0]) A

Vi.(i < k) = ((curr(m[i]) = e1) <= (curr(mli]) =e2)) A
Vi.(i > 7) = ((curr(m[i]) = e1) <= (curr(mli]) =e3)) A
Vi.(i > j) = ((curr(mi]) = e1) = (e, (m[i]) = Lo (m2[i]))) A
Vi.(i > j) = ((curr(mi]) = e1) = (e, (m[i]) = Les(m2[i]))) A
Vi.(k <i < j) = (curr(mli]) # e1) A

op(ms[k]) = snapshot(ez) A op(ma[j]) = clone(es,e3))

=

(Vi.(i < k) =

(Eey (m]i]) = Ee, (m2[i]) A Oc,(m[i]) = Oc, (m2[d])) A
Vii(i > j) =
(Bey (m1]i]) = Eey (m2li]) A Oey(m[i]) = Ocy(mali])))

Figure 2.5: Semantic Equivalence under Snapshot and Clone
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Figure 2.6: A trace diagram of the semantic equivalence property
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steps are labelled A; and A, while the enclave’s steps are labelled e;. Note that e; corresponds
to an enclave program that does not invoke snapshot and clone, and e, and e3 correspond to
the same enclave program before and after the snapshot and clone invocations respectively.
Assumptions are annotated in blue, and proof obligations are shown in red. The enclaves’
inputs are assumed to be the same in both traces; this is shown by the ~; symbol. The
initial states of e; and ey are assumed to be the same and this is shown by the ~g symbol.
The adversary’s actions are defined by some function over the state of the enclave platform,
and these actions may differ between the two traces. The semantic equivalence proof must
show that the enclave’s state and outputs do not differ despite this, even across snapshot
and clone boundaries. These proof obligations are denoted by the red ~g and ap symbols.
We assume that the adversary executes for the same number of steps in both traces. This
does not restrict the adversary’s power as any attack that requires the adversary to execute
for a different number of steps in the two traces can be simulated in our model by padding
the adversary’s shorter trace with the appropriate number of "no-ops.” The theorem states
that, given the above assumptions, enclave state and outputs are identical in the two traces
at every step, before and after the snapshot/clone boundary.

Verification Results

Table 2.3 shows a number of metrics from the formal proof. Note that we #as refers to
the number of assertions. This number is much larger than the number of annotations
because the UCLID5 compiler expands the input model into a larger intermediate form.
Single-Region TAP and Single-Region Refinement refer to the modified TAP model in which
enclaves are restricted to single regions of memory. Overall, due to the increased complexity
of our model, we verified a larger number of invariants than in the standard TAP models.
Consequently, our reported verification times are also much higher. The source code for our
formal proof can be found at https://github.com /uclid-org/trusted-abstract-platform.
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Description Size Verif. Time (s)
#pr #an #as #In
Single-Region TAP 26 363 255 2273 21.3
Single-Region Refinement 1 44 117 460 35.4
Cerberus 56 785 738 4825 18.1
Preservation 3 323 448 365 52.3
Semantic Equivalence 1 215 1204 576 272.6
Integrity 2 287 1986 950 1147.4
Confidentiality 6 718 7236 3501 15612.5
Total 95 2735 11984 12950 17159.6

Table 2.5: UCLID5 Verification Metrics for TAP- models
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Chapter 3

Conclusion

In this report, we describe a set of techniques to model and verify trusted execution en-
vironments. We began by replicating prior work on the Trusted Abstract Platform using
UCLID5, while also building additional features. We then describe the snapshot and clone
extensions to the Keystone Enclave API. Finally, we extend the TAP model and verify that
our extended enclave platform provides sufficient integrity and confidentiality guarantees
for enclave programs. The findings from this report demonstrate and validate a number of
techniques for using formal methods to reason about program security. In our work on TAP,
we verified program security by reasoning about the enclave platform’s behavior. We found
that the flexibility afforded by UCLID5 makes it a strong candidate for future work at the
intersection of formal methods and security.

3.1 Future Work
UCLID5

In this work, we used UCLID5 extensively to model and verify a number of security prop-
erties. While comparing the verification metrics of UCLID5 and BoogiePL, we noticed that
at times Boogie reported faster verification times. Optimizing UCLID5’s encoding to back-
end verification tools are one in which we may improve the overall run time. Furthermore,
future work on invariant synthesis and assume-guarantee reasoning appears to be extremely
promising in terms of affording the user flexibility while also reducing the verification time.

Cerberus and TAP

One limitation of Cerberus is that it is unable to handle nested cloning. While it simplifies
the programming model, it also restricts users to a specific set of applications. Designing
and formally verifying such a mechanism remains future work. Furthermore, we also aim
to show that the source code of the Keystone security monitor refines our abstract model,
ensuring that our formal guarantees are violated by the implementation.
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Appendix A
Abstract Cache and CPU Models

In this section, we present the cache and CPU models used in the TAP models. Note that
they have been modified for readability.

module common {

1

2
3//
1 // address types

5 //

6 type vaddr_t = bv32;

9 type wap_addr_t = bv22;
10 type word_t = bv32;

13 // —== T T T T T T o ST /7
14 // memory. //
15 // === T oo !/
16 type mem_t = [wap_addr_t]word_t;

17

18

19 // === == m oo /7
20 // constants and functions for word_t //
2l [/ mm T T T /!
22 const kO_word_t : word_t = 0bv32;

23

24

P e //
26 // uarch state //
L /7

28 type cache_set_index_t = integer;
29 type cache_way_index_t = integer;
30 type cache_tag_t = integer;

32 const kmax_cache_set_index_t : cache_set_index_t;
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const kmax_cache_way_index_t : cache_way_index_t;
axiom kmax_cache_set_index_t > 0;
axiom kmax_cache_way_index_t > 0;

type cache_tag_map_t

>

function paddr2set(pa : wap_addr_t) : cache_set_index_t;

function paddr2tag(pa : wap_addr_t) : cache_tag_t;

//

// registers

//

type regindex_t = integer;

type regs_t = [regindex_t]word_t;

type addr_map_t [vaddr_t]wap_addr_t;

// setters

define tap_set_addr_perm_p(p : addr_perm_t) : addr_perm_t

>

define tap_set_addr_perm_a(p : addr_perm_t) : addr_perm_t

++ p[0:0];

36

7 define valid_cache_way_index(w: cache_way_index_t) boolean = (
w >=0 && w < kmax_cache_way_index_t
) s
define valid_cache_set_index(s: cache_set_index_t) boolean = (
s > 0 &% s < kmax_cache_set_index_t
)
type cache_valid_map_t = [cache_set_index_t, cache_way_index_t]boolean;

[cache_set_index_t, cache_way_index_t]cache_tag_t

//
// Page Tables (sort of: because we map addresses and not pages).
//
type addr_perm_t = bvd;
type vaddr2bool_t = [vaddr_t]boolean;
2 type excl_vaddr_t = [vaddr_t]boolean;
type addr_valid_t = [vaddr_t]addr_perm_t;

58 define tap_addr_perm_p(p : addr_perm_t) : boolean = p[0:0] == 1bvi;
define tap_addr_perm_a(p : addr_perm_t) : boolean = p[l1l:1] == 1bvl;
define tap_addr_perm_x(p : addr_perm_t) : boolean = p[2:2] == 1bvl;
define tap_addr_perm_r(p : addr_perm_t) : boolean = p[3:3] == 1bvil;
define tap_addr_perm_w(p : addr_perm_t) : boolean = p[4:4] == 1bvl;
define tap_addr_perm_v(p : addr_perm_t) : boolean
= tap_addr_perm_x(p) || tap_addr_perm_r(p) || tap_addr_perm_w(p);

pl4:1] ++ 1bvil

pl4:2] ++ 1bvil
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37

define tap_set_addr_perm_x(p : addr_perm_t) : addr_perm_t = p[4:3] ++ 1bvl
++ p[1:0];

define tap_set_addr_perm_r(p : addr_perm_t) : addr_perm_t = p[4:4] ++ 1bvl
++ p[2:0];

define tap_set_addr_perm_w(p : addr_perm_t) : addr_perm_t = 1bvil
++ p[3:0];

//

// enclave types

//

type tap_enclave_id_t = integer;

// what addresses are exlusive to an enclave?

type owner_map_t = [wap_addr_t]tap_enclave_id_t;

// enclave API call results

type enclave_op_result_t = enum {
enclave_op_success,
enclave_op_invalid_arg,
enclave_op_failed

};

//

// exceptions

//

type exception_t = enum {
excp_none,
excp_os_protection_fault,
excp_tp_protection_fault

};

//
// constants and functions for enclave ids

//

const tap_null_enc_id : tap_enclave_id_t = O0;
const tap_blocked_enc_id : tap_enclave_id_t = 1;
const tap_user_def_enc_id_1 : tap_enclave_id_t = 2;
const tap_user_def_enc_id_2 : tap_enclave_id_t = 3;
const tap_user_def_enc_id_3 : tap_enclave_id_t = 4;
const tap_user_def_enc_id_4 : tap_enclave_id_t = 5;
const tap_user_def_enc_id_5 : tap_enclave_id_t = 6;
define valid_enclave_id(id : tap_enclave_id_t) : boolean
= id != tap_null_enc_id && id != tap_blocked_enc_id

&&

id != tap_user_def_enc_id_1 && id != tap_user_def_enc_id_2 &&
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126 id != tap_user_def_enc_id_3 && id != tap_user_def_enc_id_4 &&
127 id != tap_user_def_enc_id_5;

128

129

130

131 } // end module common

Listing A.1: Common file

module abstract_cache {

Ot = W N =

type * = common.*;
const * = common.*;
function * = common.*;
6 define * = common.*;
7
8 var cache_valid_map : cache_valid_map_t;
9 var cache_tag_map : cache_tag _map_t;

10
1l procedure [noinline] init_cache ()
12 ensures (forall (i : cache_set_index_t, w : cache_way_index_t)

13 (valid_cache_set_index (i) && valid_cache_way_index(w)) ==> !
cache_valid_mapl[i, w]);

14 modifies cache_valid_map;

15 {

16 var ind : cache_set_index_t;

17 var way : cache_way_index_t;

18 ind = 0;

19

20 while (ind < kmax_cache_set_index_t)

21 invariant (forall (i : cache_set_index_t, w : cache_way_index_t)

22 (i >= 0 && i < ind && valid_cache_way_index(w)) ==> !
cache_valid_map[i, w]);

23 {

24 way = O0;

25 while (way < kmax_cache_way_index_t)

26 invariant (forall (i : cache_set_index_t, w : cache_way_index_t) ::

27 ((i >= 0 && i < ind && valid_cache_way_index(w)) || (i == ind &&
w >= 0 && w < way)) ==

28 !cache_valid_map[i, w]);

29 {

30 cache_valid_map[ind, way] = false;

31 way = way + 1;

32 }

33 ind = ind + 1;

34 }

35 }

36

37 procedure [noinline] query_cache(pa : wap_addr_t, repl_way

cache_way_index_t)
38 returns (hit : boolean, hit_way : cache_way_index_t)
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requires (valid_cache_way_index(repl_way));

// set hit status
ensures !hit <==> (forall (w : cache_way_index_t)
valid_cache_way_index (w) ==
(l'old(cache_valid_map) [paddr2set (pa) , w]l ||
old(cache_tag_map) [paddr2set(pa), w] !=
paddr2tag(pa)));

ensures (hit <==> (exists (w : cache_way_index_t)
valid_cache_way_index (w) &&
old(cache_valid_map) [paddr2set(pa), w] &&
old(cache_tag_map) [paddr2set (pa), w] == paddr2tag(pa
1))

// do replacement if necessary.
ensures (if (!hit)
then cache_valid_map[paddr2set(pa), repl_way]
else cache_valid_map [paddr2set(pa), hit_wayl);
ensures (if (!hit)
then cache_tag_map[paddr2set(pa), repl_wayl] ==
else cache_tag_map[paddr2set(pa), hit_way] ==

addr2tag (pa)

P
paddr2tag (pa)

)

// and no other lines are affected.
ensures 'hit ==

(forall (i : cache_set_index_t, w : cache_way_index_t)
(i !'= paddr2set(pa) || w != repl_way) ==> cache_valid_mapl[i, w
] == old(cache_valid_map)[i, w]);
ensures 'hit ==>
(forall (i : cache_set_index_t, w : cache_way_index_t)
(i !'= paddr2set(pa) || w != repl_way) ==> cache_tag_mapl[i, w]
== old(cache_tag_map) [i, w]);
ensures hit ==> (cache_valid_map == old(cache_valid_map) &&
cache_tag_map == old(cache_tag_map));

modifies cache_valid_map, cache_tag_map;

var set : cache_set_index_t;
var tag : cache_tag_t;
var way : cache_way_index_t;

set = paddr2set(pa);
tag = paddr2tag(pa);

way = O;

hit = false;

while ('hit && way < kmax_cache_way_index_t)
invariant (way >= 0);
invariant (way <= kmax_cache_way_index_t);
invariant hit ==> (cache_valid_map[set, hit_way] && cache_tag_mapl[set,
hit_way] == tag);
invariant
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('hit <==>
(forall (w : cache_way_index_t)
(w >= 0 && w < way) ==
(!cache_valid_map[set, w] || cache_tag_mapl[set, w] != tag)));
{
if (cache_valid_map[set, way] && cache_tag_mapl[set, way] == tag) {
hit = true;
hit_way = way;
}
way = way + 1;
}
if (thit) {
cache_valid_map[set, repl_way] = true;
cache_tag_map[set, repl_wayl] = tag;
}
}
procedure set_cache_state(_cache_valid_map : cache_valid_map_t,
_cache_tag_map : cache_tag_map_t)
ensures (cache_valid_map == _cache_valid_map);
ensures (cache_tag_map == _cache_tag_map);
modifies cache_valid_map;
modifies cache_tag_map;
{
cache_valid_map = _cache_valid_map;
cache_tag_map = _cache_tag_map;
}
control {
verif_init_cache = verify(init_cache);
verif_query_cache = verify(query_cache);
check;
print_results;
}
}

Listing A.2: Abstract cache model

module abstract_cpu {

type * =
const *

function
define x*

common . *;

= common . *;
* = common.x*;
= common . *;
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instance cache : abstract_cache();
//

// CPU state

//

var cpu_mem : mem_t;

var cpu_regs : regs_t,;

var cpu_pc : vaddr_t;

/ var cpu_enclave_id : tap_enclave_id_t;
var cpu_addr_valid : addr_valid_t;
var cpu_addr_map : addr_map_t;
var cpu_owner_map : owner_map_t;
//

// CPU Flags

//

var cpu_cache_enabled : boolean;
//

// CPU Procedures

//

procedure initialize_cache ()
modifies cache;

"}

{
call cache.init_cache () ;

procedure [inline] fetch_va(vaddr : vaddr_t, repl_way
returns (data : word_t, excp : exception_t, hit
requires valid_cache_way_index(repl_way) ;
modifies cpu_addr_valid;
modifies cache;

{
var paddr : wap_addr_t;
var owner_eid : tap_enclave_id_t;
var hit_way : cache_way_index_t;
// default

data = kO_word_t;
hit = false;

// translate VA -> PA
if (!tap_addr_perm_x(cpu_addr_valid[vaddr])) {

41

cache_way_index_t)
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excp = excp_os_protection_fault;
} else {
paddr = cpu_addr_map [vaddr];
// are we not allowed to access this memory

owner_eid = cpu_owner_map [paddr];

if (owner_eid != tap_null_enc_id && owner_eid != cpu_enclave_id) {
excp = excp_os_protection_fault;

} else {

// update accessed bit
cpu_addr_valid[vaddr] = tap_set_addr_perm_a(cpu_addr_valid[vaddr]);
// perform load
data = cpu_mem[paddr];
exXcp = excp_none;
// update cahce
if (cpu_cache_enabled) {
assert(valid_cache_way_index (repl_way));
call (hit, hit_way) = cache.query_cache(paddr, repl_way);

}
}
}
procedure [inline] load_va(vaddr : vaddr_t, repl_way : cache_way_index_t)
returns (data : word_t, excp : exception_t, hit : boolean)

requires valid_cache_way_index (repl_way) ;
ensures (!tap_addr_perm_r (old(cpu_addr_valid) [vaddr]) ||

(cpu_owner_map [cpu_addr_map[vaddr]] !'= tap_null_enc_id &&
cpu_owner_map [cpu_addr_map[vaddr]] != cpu_enclave_id))

==> (hit == false);

ensures (forall (p : wap_addr_t, w : cache_way_index_t)

(paddr2set (p) '= paddr2set(cpu_addr_map[vaddr]) || w !'=

repl_way)
==> ((cache.cache_valid_map[paddr2set(p), w] == old(cache.
cache_valid_map) [paddr2set(p), wl) &&
(cache.cache_tag_map[paddr2set(p), w]l] == old(cache.

cache_tag_map) [paddr2set (p), wl)));

ensures (excp == excp_none && cpu_cache_enabled && 'hit)
==> ((cache.cache_valid_map[paddr2set (old(cpu_addr_map) [
vaddr]), repl_way] == true) &&
(cache.cache_tag_map[paddr2set (old (cpu_addr_map) [vaddr
1), repl_way] == paddr2tag(old(cpu_addr_map) [vaddr])));
ensures (!cpu_cache_enabled) ==> (cache.cache_valid_map == old(cache.
cache_valid_map) && cache.cache_tag_map == old(cache.cache_tag_map));

modifies cpu_addr_valid;
modifies cache;

var paddr : wap_addr_t;
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var owner_eid : tap_enclave_id_t;
var hit_way : cache_way_index_t;

// default
data = kO_word_t;
hit = false;

// translate VA -> PA
if (!'tap_addr_perm_r (cpu_addr_valid[vaddr])) {
excp = excp_os_protection_fault;
} else {
paddr = cpu_addr_map[vaddr];
// are we not allowed to access this memory
owner_eid = cpu_owner_map [paddr];
if (owner_eid != tap_null_enc_id && owner_eid != cpu_enclave_id) {
excp = excp_tp_protection_fault;
} else {
// update accessed bit
cpu_addr_valid[vaddr] = tap_set_addr_perm_a(cpu_addr_valid[vaddr]);
// perform load
data = cpu_mem[paddr];
exXcp = excp_none;
// update cache
if (cpu_cache_enabled) {
call (hit, hit_way) = cache.query_cache(paddr, repl_way);
}

procedure [inline] store_va(vaddr : vaddr_t, data : word_t, repl_way
cache_way_index_t)
returns (excp : exception_t, hit : boolean)
requires valid_cache_way_index (repl_way) ;
ensures (excp != excp_none ==> cpu_mem == old(cpu_mem)) ;
ensures (excp != excp_none) ==> (cpu_addr_valid == old(cpu_addr_valid));
ensures (excp == excp_none) ==>
(forall (va : vaddr_t)
(va != vaddr)
==> (cpu_addr_valid[val == old(cpu_addr_valid) [val));
ensures (excp == excp_none)
==> (cpu_addr_valid[vaddr] == tap_set_addr_perm_a(o0ld(
cpu_addr_valid) [vaddr]));
ensures (!tap_addr_perm_w(old(cpu_addr_valid) [vaddr]l) ||
(cpu_owner_map [cpu_addr_map[vaddr]] != tap_null_enc_id &&
cpu_owner_map [cpu_addr_map[vaddr]] != cpu_enclave_id))
==> (hit == false);
ensures (forall (p : wap_addr_t, w : cache_way_index_t)
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3

(paddr2set (p)
repl_way)

cache_valid_map) [paddr2set(p), wl) &&

cache_tag_map) [paddr2set (p)

44
I= paddr2set (cpu_addr_map[vaddr]) || w !=
==> ((cache.cache_valid_map[paddr2set(p), w]l] == old(cache.
(cache.cache_tag_map[paddr2set(p), w] == old(cache.
> w1)));
==> (cache.cache_valid_map == old(cache.

ensures (!cpu_cache_enabled)

cache_valid_map) && cache.cache_tag_map ==

modifies cpu_mem;
modifies cpu_addr_valid;
modifies cache;

var paddr
var owner_eid
var hit_way

wap_addr_t;
tap_enclave_

// default
hit = false;

//translate VA -> PA

old(cache.cache_tag_map)) ;

id_t;

cache_way_index_t;

if (!tap_addr_perm_w (cpu_addr_valid[vaddr])) {

excp = excp_os_protection_fault; ;
} else {
paddr = cpu_addr_map [vaddr];

// are we not allowed to access this memory

owner_eid = cpu_owner_map [

if (owner_eid
excp =

} else {
// update accessed bit
cpu_addr_valid[vaddr] =
// perform store
cpu_men [paddr] =
exXcp = excp_none;
// update cache
if (cpu_cache_enabled) {

data;

call (hit, hit_way) =
}
}
}
assert (forall (v vaddr_t)
(v !'= vaddr) ==> (
) g

193 control {

!= tap_null_enc_id && owner_eid
excp_tp_protection_fault;

paddr];
!= cpu_enclave_id) A

tap_set_addr_perm_a(cpu_addr_valid[vaddr]) ;

cache.query_cache (paddr, repl_way);

cpu_addr_valid[v] == old(cpu_addr_valid) [v])
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194 fetch_va_verif = verify(fetch_va);
195 load_va_verif = verify(load_va);
196 store_va_verif = verify(store_va);
197

198

199 check;

200 print_results;

201 }

202

203 }

Listing A.3: Abstract cache model
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Appendix B

Modification to store va

In this section, we present the updated store_va in the Abstract CPU model that enables
the copy-on-write mechanism.

procedure [inline] store_va(vaddr : vaddr_t, data : word_t, repl_way
cache_way_index_t)
returns (excp : exception_t, hit : boolean)
requires (cpu_enclave_id != tap_invalid_enc_id);

requires valid_cache_way_index(repl_way) ;

requires tap_enclave_metadata_parent[tap_null_enc_id] ==
tap_invalid_enc_id;

requires (forall (p : wap_addr_t) :: cpu_owner_mapl[p] !=
tap_invalid_enc_id);

requires (forall (eid : tap_enclave_id_t, pa : wap_addr_t)

tap_enclave_metadata_wap_addr_free[eid] [pal] ==> cpu_owner_map[pal] ==
eid) ;
ensures (forall (eid : tap_enclave_id_t, pa : wap_addr_t)
tap_enclave_metadata_wap_addr_free[eid] [pa]l] ==> cpu_owner_map[pa] ==
eid) ;
ensures (excp != excp_none ==> cpu_mem == old(cpu_mem));
ensures (excp != excp_none) ==> (cpu_addr_valid == old(cpu_addr_valid));
ensures (excp == excp_none) ==
(forall (va : vaddr_t)
(va != vaddr)
==> (cpu_addr_valid[va]l == old(cpu_addr_valid) [va]l));
ensures (excp == excp_none)
==> (cpu_addr_valid[vaddr] == tap_set_addr_perm_a(old(

cpu_addr_valid) [vaddr]));
ensures (!tap_addr_perm_w(old(cpu_addr_valid) [vaddr]) ||
(cpu_owner_map [cpu_addr_map[vaddr]] !'= tap_null_enc_id &&
cpu_owner_map [cpu_addr_map[vaddr]] != cpu_enclave_id && cpu_owner_map [
cpu_addr_map [vaddr]] != tap_enclave_metadata_parent[cpu_enclave_id]))
==> (hit == false);
ensures (forall (p : wap_addr_t, w : cache_way_index_t)
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22 (paddr2set (p) !'= paddr2set(cpu_addr_map[vaddr]) || w !=
repl_way)

23 ==> ((cache.cache_valid_map[paddr2set(p), w] == old(cache.
cache_valid_map) [paddr2set(p), wl) &&

24 (cache.cache_tag_map[paddr2set(p), w] == old(cache.

cache_tag_map) [paddr2set(p), wl)));

26

27 ensures (!cpu_cache_enabled) ==> (cache.cache_valid_map == old(cache.
cache_valid_map) && cache.cache_tag_map == old(cache.cache_tag_map));

28

29

30 modifies cpu_mem;

31 modifies cpu_addr_valid;

32 modifies cache;

33 modifies cpu_addr_map;

34 modifies tap_enclave_metadata_wap_addr_free;

35 {

36 var paddr : wap_addr_t;

37 var owner_eid : tap_enclave_id_t;

38 var hit_way : cache_way_index_t;

40 // default
41 hit = false;

43 //translate VA -> PA
A4 if (!'tap_addr_perm_w(cpu_addr_valid[vaddr])) {

15 excp = excp_os_protection_fault; ;

46} else {

47 paddr = cpu_addr_map[vaddr];

A8 // are we not allowed to access this memory

19 // Allow a child to COW its parents memory

50 owner_eid = cpu_owner_map [paddr];

51 if (owner_eid != tap_null_enc_id &&

52 (owner_eid != cpu_enclave_id && owner_eid !=
tap_enclave_metadata_parent [cpu_enclave_id]))

53 {

54 excp = excp_tp_protection_fault;

55 } else {

56 // Although this is included in the CPU model, this is actually
managed by the SM.

57 if (owner_eid == tap_enclave_metadata_parent[cpu_enclave_id]) {

58 // Do COW

59 var found: boolean;

60 var new_paddr: wap_addr_t;

61 var paddr: wap_addr_t;

62 var wap_addr_free_map : [wap_addr_t]boolean;

64 // Sanity check
65 assert (cpu_enclave_id != tap_null_enc_id);
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found = false;
paddr = kO_wap_addr_t;

// Need to find new physical address, by looking at the free

pool for the current enclave
while (LT_wapa(paddr, kmax_wap_addr_t) && found == false)
invariant ((found == false) ==
(forall (pa : wap_addr_t)
(LT _wapa(pa, paddr) ==> (
tap_enclave_metadata_wap_addr_free[cpu_enclave_id][pal == false))));
{
if (tap_enclave_metadata_wap_addr_free[cpu_enclave_id][
paddr]) {
found = true;
new_paddr = paddr;
}
paddr = PLUS_wapa(paddr, kl_wap_addr_t);
}
if (found == false) {
if (tap_enclave_metadata_wap_addr_free[cpu_enclave_id][
paddr]) {
found = true;
new_paddr = paddr;
}
}
wap_addr_free_map = tap_enclave_metadata_wap_addr_freel[

cpu_enclave_id] ;

wap_addr_

physical

[vaddr]) ;

wap_addr_free_map[new_paddr] = false;
tap_enclave_metadata_wap_addr_free[cpu_enclave_id] =
free_map;

if (found == false) A
// TODO: This means that we couldn't find any free
memory

excp = excp_out_of_memory_fault;
} else {
assert (cpu_owner_map[new_paddr] == cpu_enclave_id);

cpu_addr_map [vaddr] = new_paddr;
// update accessed bit
cpu_addr_valid[vaddr] = tap_set_addr_perm_a(cpu_addr_valid

// perform store

cpu_mem [new_paddr] = data;
exXcp = excp_none;

// update cache

if (cpu_cache_enabled) {
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108 call (hit, hit_way) = cache.query_cache(new_paddr,
repl_way) ;

109 }

110 }

111 } else {

112 // update accessed bit

113 cpu_addr_valid[vaddr] = tap_set_addr_perm_a(cpu_addr_validl[
vaddr]) ;

114 // perform store

115 cpu_mem [paddr] = data;

116 eXCp = excp_none;

117 // update cache

118 if (cpu_cache_enabled) {

119 call (hit, hit_way) = cache.query_cache(paddr, repl_way);

120 }

121 }

122 }

123 }

124 assert (forall (v : vaddr_t)

125 (v !'= vaddr) ==> (cpu_addr_valid[v] == old(cpu_addr_valid) [v])
I

126 ¥
Listing B.1: Common file



