
The Principal-Agent Alignment Problem in Artificial

Intelligence

Dylan Hadfield-Menell

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-207

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-207.html

August 26, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I am deeply grateful to my advisors for their guidance, support, and
patience throughout this process. It has been an honor to be your student
and I look forward to the opportunity to collaborate again in the future.
Thank you for helping shape me into the researcher that I am today.

Thank you to my family for their support and flexibility throughout graduate
school. I know it was difficult at times, but I could not have done it without
your support. Last, and most importantly, thank you to Veronica, for your
commitment to my dreams and for the work to help me get there.

The Principal–Agent Alignment Problem in Artificial Intelligence

by

Dylan Jasper Hadfield-Menell

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Stuart J. Russell, Co-chair
Professor Anca D. Dragan, Co-chair

Professor Pieter Abbeel
Professor Ken Goldberg

Summer 2021

The Principal–Agent Alignment Problem in Artificial Intelligence

Copyright 2021
by

Dylan Jasper Hadfield-Menell

1

Abstract

The Principal–Agent Alignment Problem in Artificial Intelligence

by

Dylan Jasper Hadfield-Menell

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart J. Russell, Co-chair

Professor Anca D. Dragan, Co-chair

The field of artificial intelligence has seen serious progress in recent years, and has also caused
serious concerns that range from the immediate harms caused by systems that replicate
harmful biases to the more distant worry that effective goal-directed systems may, at a certain
level of performance, be able to subvert meaningful control efforts. In this dissertation, I
argue the following thesis:

1. The use of incomplete or incorrect incentives to specify the target behavior for an
autonomous system creates a value alignment problem between the principal(s), on
whose behalf a system acts, and the system itself;

2. This value alignment problem can be approached in theory and practice through the
development of systems that are responsive to uncertainty about the principal’s true,
unobserved, intended goal; and

3. Value alignment problems can be modelled as a class of cooperative assistance games,
which are computationally similar to the class of partially-observed Markov decision
processes. This model captures the principal’s capacity to behave strategically in coor-
dination with the autonomous system. It leads to distinct solutions to alignment prob-
lems, compared with more traditional approaches to preference learning like inverse
reinforcement learning, and demonstrates the need for strategically robust alignment
solutions.

Chapter 2 goes over background knowledge needed for the work. Chapter 3 argues the first
part of the thesis. First, in Section 3.1 we consider an order-following problem between a
robot and a human. We show that improving on the human player’s performance requires

2

that the robot deviate from the human’s orders. However, if the robot has an incomplete
preference model (i.e., it fails to model properties of the world that the person does care
about), then there is persistent misalignment in the sense that the robot takes suboptimal
actions with positive probability indefinitely. Then, in Section 3.2, we consider the problem
of optimizing an incomplete proxy metric and show that his phenomenon is a consequence
of incompleteness and shared resources. That is, we provide general conditions under which
optimizing any fixed incomplete representation of preferences will lead to arbitrarily large
losses of utility for the human player. We identify dynamic incentive protocols and impact
minimization as theoretical solutions to this problem.

Next, Chapter 4 deals with the second part of the thesis. We first show, in Section 4.1,
that uncertainty about utility evaluations creates incentives to get supervision from the
human player. Then, in Section 4.2 and Section 4.3, we demonstrate how to use uncertainty
about utility evaluations to implement reward learning approaches that penalize negative
side-effects and support dynamic incentive protocols. Specifically, we show how to apply
Bayesian inference to learn a distribution over potential true utility functions, given the
observation of a proxy in a specific development context.

Chapter 5 deals with the third part of the thesis. We introduce cooperative inverse rein-
forcement learning (Cirl), which formalizes the base case of assistance games. Cirlmodels
dyadic value alignment between a human principal H and a robot assistant R. This game-
theoretic framework models H’s incentive to be pedagogic. We show that pedagogical so-
lutions to value alignment can be substantially more efficient than methods based on, e.g.,
imitation learning. Additionally, we provide theoretical results that support a family of effi-
cient algorithms for Cirl that adapt standard approaches for solving PoMdps to compute
pedagogical equilibria.

Finally, Chapter 6 considers the final component of the thesis, the need for robust solutions
that can handle strategy variation on the part of H. We introduce a setting where R assists
H in solving a multi-armed bandit. As in Section 3.1, H’s actions tell R which of the k
different arms to pull. However, this introduces the complication that H does not know
which arm is optimal a priori. We show that this setting admits efficient strategies where H
treats their actions as purely communicative. These communication solutions can achieve
optimal learning performance, but perform arbitrarily poorly if the encoding strategy used
by H is misaligned with R’s decoding strategy.

We conclude with a discussion of related work in Chapter 7 and proposals for future work
in Chapter 8.

i

Contents

Contents i

1 Introduction 1
1.1 The alignment problem in artificial intelligence 1
1.2 Incentives as a programming language for behavior 2
1.3 Incompleteness and overoptimization . 6
1.4 Building systems that respond to uncertainty about goals 7
1.5 The promise and perils of pedagogy . 8
1.6 Overview . 9

2 Preliminaries 12
2.1 Markov Decision Process . 12
2.2 Partially-Observed Markov Decision Process 15
2.3 Inverse Reinforcement Learning . 18

3 Misalignment 22
3.1 A Supervision POMDP . 23
3.2 Overoptimization . 31
3.3 Mitigating Overoptimization: Conservative Optimization and Dynamic In-

centive Protocols . 41

4 Uncertainty 48
4.1 Incentives for Oversight . 49
4.2 Inverse Reward Design . 54
4.3 Implementing a dynamic incentive protocol 67

5 Pedagogy 79
5.1 Pedagogic principals are easier to assist . 81
5.2 Cooperative Inverse Reinforcement Learning 87

6 Robust Alignment 109
6.1 Exploring strategy robustness in ChefWorld 110
6.2 Assisting a Learning H . 111

ii

6.3 Reward Communication Equilibria in Assistive-MABs 121

7 Related Work 129
7.1 The Economics of Principal–Agent Relationships and Incomplete Contracting 129
7.2 Impact Minimization . 133
7.3 Inverse Reinforcement Learning . 134
7.4 Reward Learning . 135
7.5 Optimal Reward Design . 136
7.6 Pragmatics . 136
7.7 Corrigible Systems . 137
7.8 Intent Inference For Assistance . 137
7.9 Cooperative Agents . 138
7.10 Optimal Teaching . 139
7.11 Algorithms for Planning with Partial Observability 139

8 Directions for Future Work 141

Bibliography 145

iii

Acknowledgments

I am deeply grateful to my advisors for their guidance, support, and patience throughout
this process. It has been an honor to be your student and I look forward to the opportunity
to collaborate again in the future. Thank you for helping shape me into the researcher that
I am today.

To Prof. Anca Dragan, thank you for the joy you brought to research meetings, for
teaching me to be experimentally rigorous, and for sharing your insight into the nature of
practical, algorithmic, human-robot interaction. To Prof. Stuart Russell, thank you for
teaching me to do careful research, for always taking the time to discuss the bigger picture
behind a research project, and for your guidance on how to write clearly and persuasively.
To Prof. Pieter Abbeel, thank you for the opportunity to develop my skills as a mentor, for
your support in that process, and for pushing me to go beyond my research comfort zone.

I would also like to thank Prof. Ken Goldberg for serving on my committee and for
inviting me to collaborate with him and his students. I am also indebted to the students
(undergraduate and graduate) that I have had the opportunity to work with. Thank you
for making research fun and helping me to take breaks when I needed to. Thank you to the
staff at the Center for Human-Compatible AI and the Berkeley AI Research Lab for their
assistance managing the details of research.

Thank you to my family for their support and flexibility throughout graduate school. I
know it was difficult at times, but I could not have done it without your support. Last, and
most importantly, thank you to Veronica, for your commitment to my dreams and for the
work to help me get there.

This dissertation collects and combines results developed in collaboration with, in ad-
dition to my advisors, Lawrence Chan, Jaime K. Fisac, Gillian K. Hadfield, Dhruv Ma-
lik, Smitha Milli, Malayandi Palaniappan, Ellis Ratner, Siddhartha Srinivasa, and Simon
Zhuang. I am grateful to each and every one for their contributions. Portions of this text
have been adapted from Chan et al. [31], Malik et al. [104], Hadfield-Menell and Hadfield [67],
Milli et al. [109], Ratner, Hadfield-Menell, and Dragan [124], Zhuang and Hadfield-Menell
[180], and Hadfield-Menell et al. [70, 73]. The terminology for pedagogic equilibrium was
initially introduced in Fisac et al. [46]. This work was supported by a Berkeley Fellowship,
National Science Foundation Graduate Research Fellowship Grant No. 1106400, the Center
for Human-Compatible AI, FLI, OpenPhil, OpenAI, ONR, NRI, AFOSR, and DARPA.

1

Chapter 1

Introduction

1.1 The alignment problem in artificial intelligence

The field of artificial intelligence has made remarkable progress in the ability to program
computers with goal-driven behaviors in response to visual, linguistic, and other perceptual
input [179]. This includes more abstract achievements such as superhuman performance in
zero-sum games [144, 110] and deployed commercial products such as data-driven recom-
mendation systems that direct and monetize attention online [50, 174]. At the same time,
the deployment of these systems has been accompanied by several high-profile failures and
increasingly vocal concerns.

When we look at these examples, we can identify two types of failures. The first is an
old story in the development of new technology: the system designers over-promised and
the algorithm did not perform as intended. For example, consider the instances of fatal
car accidents caused by Tesla’s autopilot system [21]. In principle, better computer vision
techniques, in the sense of more effective optimization of empirical and ‘true’ risk, can reduce
the occurrence of these types of failures.

In the other cases, however, the failure stems from the system effectively optimizing for
its stated objective. Consider the engagement optimization techniques used in recommen-
dation systems [158]. These systems have come under serious scrutiny for their propensity
to promote polarizing [16], addictive [76, 10], or extremist [79] content. It is clear that these
harms are not a result of a machine learning failure — instead they are a good example
of the system optimizing a narrowly defined objective effectively.1 The propensity of opti-
mized behavior to produce surprising, unintended results, has been observed in economic
interactions [85] and autonomous systems [90].

1It is important to note that the problems observed in online platforms go beyond algorithmic chal-
lenges. Even with the ability to define the goal of ‘good’ engagement, there are regulatory challenges in
getting companies to adopt those definitions and ethical questions to consider about who should provide
such definitions. For this work, the core point is that we do not yet have clear techniques for how to provide
these definitions.

CHAPTER 1. INTRODUCTION 2

In these situations, the goal specified by the system designer is faulty. Thus, improve-
ments in the capabilities of AI systems, measured against their ability to optimize a given
task, will not reduce the risk of these harms. In fact, we can expect that progress along
the current trajectory of AI technology will increase the costs of misspecification for two
reasons: First, more capable systems are more likely to be deployed in consequential settings
where they can cause harm. Second, they will be more effective at exploiting gaps between
a specified objective and the intended goal.

In this dissertation, I will argue that this type of failure is a direct consequence of the
design pattern that has become dominant in the field of artificial intelligence. We will refer
to this class of failures where the system malfunctions because it optimizes its objective
too effectively as alignment failures. While misspecification is a challenge in any engineering
application, I will argue that the nature of incentives and optimal behavior make this problem
especially challenging and consequential in artificial intelligence. My thesis consists of three
components:

1. The use of incomplete or incorrect incentives to specify the target behavior for an
autonomous system creates a value alignment problem between the principal(s), on
whose behalf a system acts, and the system itself;

2. This value alignment problem can be approached in theory and practice through the
development of systems that are responsive to uncertainty about the principal’s true,
unobserved, intended goal; and

3. Value alignment problems can be modelled as a class of cooperative assistance games,
which are computationally similar to the class of partially-observed Markov decision
processes. This model captures the principal’s capacity to behave strategically in coor-
dination with the autonomous system. It leads to distinct solutions to alignment prob-
lems, compared with more traditional approaches to preference learning like inverse
reinforcement learning, and demonstrates the need for strategically robust alignment
solutions.

1.2 Incentives as a programming language for

behavior

Before we discuss the problems caused by the use of incentives in the design of AI systems,
it is useful to consider, first, why they have become the dominant paradigm in the field.
One of the core challenges in the design of ‘intelligent’ autonomous systems is the need to
balance three competing goals:

1. The program class used to represent the behaviors needs to be flexible enough that it
can represent the desired behavior.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: This dissertation formalizes the principal–agent alignment problem in artificial
intelligence. Left: Most modern approaches to the design of autonomous systems rely on
incentives to specify desired behavior. When these incentives are incomplete or incorrect,
this creates a misalignment between the robot’s objective, depicted as a proxy metric

∼
r, and

the principal’s intended goal, depicted as U . We argue in Chapter 3 that this misalignment
can easily lead the system to perform poorly, perhaps catastrophically so. Right: A de-
piction of cooperative inverse reinforcement learning (Cirl). Cirl, which we formalize in
Chapter 5, models value alignment as a cooperative assistance game where the true objec-
tive is unobserved by the robot R and is revealed through the principal’s actions depicted
as ~aH. Crucially, Cirl models the principal’s incentive to behave pedagogically (i.e., teach
R) and leads to distinct solutions to alignment problems, compared with more traditional
approaches to preference learning such as inverse reinforcement learning.

2. The program class used needs to be simple enough that a real person can, directly or
indirectly, specify an acceptable behavior out of the large set of alternatives.

3. The program representation needs to be such that it can be executed on high-dimensional
perceptual input under time, energy, and other computational constraints.

While general-purpose programming languages are flexible enough that they could, in
theory, represent a wide variety of interesting behaviors, it is simply too difficult for a
human to directly encode a policy that, e.g., reliably navigates a mobile robot through a
cluttered environment. Similar statements apply to language processing, high-dimensional
motor control, and other subareas of artificial intelligence. One way to understand the
issue is that the vast majority of programs exhibit highly uninteresting behavior when run
on realistic perceptual input. Getting a system to do anything that resembles coherent
behavior at all is a huge challenge.

CHAPTER 1. INTRODUCTION 4

In response to these challenges, the field of artificial intelligence developed a design pat-
tern that lowers the burden on the designer. First, the field undertook a serious computa-
tional study of rational decision making and utility maximization. This allowed researchers
to shift from the problem of specifying behaviors to specifying goals and allowing a general-
purpose optimization algorithm to identify the correct actions to take. In effect, this prevents
system designers from specifying behaviors that are useless: if the optimization algorithm
runs correctly, then, at a minimum, any behavior executed will accomplish some objective.

The second major development was the adoption of statistical methods and probabilistic
inference. It is not enough to program goal-achieving behaviors in an abstract model of
the world. Mismatches between the abstract model and reality inevitably lead to undesired
behavior. This is exemplified in robotics applications, where, e.g., uncertainty about the
dynamics of the world and the impact of different controls on the world state make it hard
to directly specify an accurate model. Probabilistic inference provided AI researchers with
the ability to adapt models to observed data. Although much work remains to be done,
these two developments give the designers of AI systems a plausible method to implement
programs that execute coherent behaviors in the real world. The problem of ‘programming’
an AI system is then reduced to the problem of specifying the correct goal as, e.g., an
empirical loss function for supervised learning or a reward function for policy optimization.

As a result, the field has invested heavily in the development of tools that function
analogously to compilers. We have developed representation languages for incentives that,
although not directly executable, can be converted into executable programs in a general-
purpose manner. Just as a compiler takes an abstract representation of a program (e.g.,
in C code) and produces an executable program (e.g., machine code), a supervised learning
algorithm takes an abstract representation of behavior (e.g., a dataset of images labelled cat
or dog) and produces an executable representation of that behavior (e.g., a set of neural
network weights for an image classification network).

At this point, we have built existence proofs of effective compilers. However, our research
problems are analogous to benchmark code snippets for compiler research. As AI systems
leave the lab, we will need to develop new compilers that can handle and support effective
development environments. What properties make for a good behavior compiler? How do
we build robust development practices for these software systems? How do we make sure
they provide value for individuals and society?

It is clear that the specification of a ‘good’ compiler in this context includes much more
than its ability to accomplish a specified goal. Let us return to the content recommendation
example. The system’s goal is to find ‘good’ content, in this case defined as content people
will interact with. While this is reasonable in many cases, it has become clear that a lot of
the most engaging content on the internet has undesirable properties. In this sense, we can
interpret the system’s misbehavior as a result of optimizing its objective ‘too much.’

We will use the term overoptimization to refer to situations like this, where optimized
behavior produces unwanted outcomes that score well according to the specified objective
but not the true objective. This has long been observed as a property of incentive-driven
behavior in humans. Kerr [85] discusses “the folly of rewarding A, while hoping for B” in a

CHAPTER 1. INTRODUCTION 5

variety of social settings. One salient example is that of organized cheating in universities,
where students are rewarded for good grades while society hopes that they will gain true
knowledge. Goodhart [59] and Campbell [26] observed similar issues with respect to public
policy where market actors demonstrate the ability to game policy metrics and subvert
intended policy goals. Strathern [157] articulated this phenomenon well in the context of
teaching quality audits in British universities: “once a measure becomes a target, it ceases
to be a good measure.”2

In the study of artificial intelligence, overoptimization has received relatively little study,
with one large exception: the classic machine learning problem of overfitting. Overfitting
occurs when, e.g., a supervised learning system selects a classifier that reflects the noise in
the data instead of the underlying concept the designers care about. This leads to high
performance on the training data (i.e., effective optimization of the specified goal) but poor
performance on new data. From an alignment perspective, we can understand this as a
capable system that learns to exploit the gap between the goal we are able to specify (em-
pirical risk) and the goal we actually care about (true risk on new data). Results that prove
the consistency of learning methods can be understood as identifying a family of finite-size
incentives (i.e., labelled datasets) that, in the limit of infinite size, converge to true classifier
performance on new data.

Note that this exploitation of the gap between the specified and the true goal is not
done maliciously — the system is not explicitly ‘trying’ to game the objective. Indeed, the
true goal is unobserved and so these gaps are invisible to the system. It is simply the case
that these gaps exist and, eventually, they will be leveraged in pursuit of the specified goal.
As the capabilities of systems increase (defined as the ability of the system to optimize its
incentives) the costs of misspecified incentives go up. At its most extreme such a system
may represent an existential risk to human existence and flourishing [20]. If machines reach
or exceed human abilities to accomplish open-ended goals, then the potential for conflict
between a misspecified goal and, e.g., our continued existence and utilization of resources is
a grave concern. However, one need not go to such extremes to appreciate the harms that
overoptimizing a proxy metric can cause [165].

We propose to study this problem as a two-player decision problem with shared goals and
asymmetric information about the goal. In this framework of assistance games, uncertainty
about the goal plays a central role in determining the robot player’s optimal action in any
given situation. If the human actor is treated as a strategic player, this opens up a range
of solutions. This assistance game formulation specifies incentives for the human player
to optimally communicate their goals. As a result, we call solutions pedagogic equilibria.
These solutions can be more effective, in the sense that the human–robot team generates
more utility for the human player. However, communication-optimized strategies introduce
the potential for coordination failures. Thus, solution concepts for assistance games should
account for robustness to the human’s strategy or effective ways to coordinate on a commu-

2This is often referred to as ‘Goodhart’s Law’, although perhaps it should be renamed ‘Strathern’s Law’
or ‘Marilyn’s Maxim.’

CHAPTER 1. INTRODUCTION 6

nication policy.
In the next sections, we provide an informal overview of the arguments behind the thesis.

1.3 Incompleteness and overoptimization

In Chapter 3, we make the case that overoptimization arises as a natural consequence of
incomplete incentives. We begin with an analysis of an order-following robot R that learns
the preferences of a principal, the Human H, on whose behalf it is supposed to act. We show
that, in this model, R performs poorly if its preference model is incomplete in the sense that
it does not represent features of the world that H cares about.

As an example, consider a coffee-making robot. Each morning, H looks at a menu of
coffee drinks that can be made and selects their preferred choice. R observes this selection
and prepares a beverage for H. We will assume that, like many humans who have not yet
had their morning coffee, H is not perfect at making this choice. Thus, R can provide more
utility for H by observing H’s choices over time and learning to correct for mistakes.

However, R is only able to increase H’s utility if R’s model of what H cares about
is accurate enough. Consider the system behavior when H is trying to manage weight
gain through a weekly calorie budget. They typically prefer high-calorie beverages but,
depending on their expected intake of calories from other foods, they occasionally choose
coffee options with fewer calories. Over time, the system ‘learns’ that these low-calorie
choices are mistakes because it does not observe the calorie budget. It begins to make
high-calorie options exclusively, subverting H’s weight-management goals.

Section 3.1 models this type of misalignment and shows that incomplete models can lead
R to perform worse than H would on their own. Next, in Section 3.2, characterize situations
where overoptimization is to be expected. We consider a model where utility can be decom-
posed into a monotonic function of several attributes. We show that overoptimization arises
from the combination of incomplete incentives (i.e., a proxy objective that only references
a subset of attributes), shared resources between attributes, and decreasing marginal utility
per attribute.

We can illustrate this with the coffee-making robot. Instead of picking a drink from a
menu each morning, H writes down a proxy metric that ranks different beverages and R
uses this as an optimization target to purchase coffee beans, select brewing techniques, and
mix ingredients. At some point, in order to devote more purchasing power to fancy brewing
equipment, R discovers a black market of coffee bean producers that use environmentally
destructive practices. R’s objective does not penalize illegal behavior or environmental
damage, so this is optimal from the perspective of its specified objective. Despite this, H
ends up with less utility because the marginal improvements in flavor are not worth the
associated costs.

Section 3.2 provides technical conditions under which this will occur for any fixed and
incomplete proxy metric. Section 3.3 considers relaxations of these conditions where H can
penalize a generic measurement of impact, introducing weak dependence on the full attribute

CHAPTER 1. INTRODUCTION 7

set, or dynamically update R’s proxy metric. We show that both methods can, in theory,
align R’s incentives with H’s enough to guarantee improvement from a starting condition.

1.4 Building systems that respond to uncertainty

about goals

In Chapter 4, we make the case that a crucial component of the incentives for optimal
assistance is R’s uncertainty about the utility evaluation for different states. Section 4.1
analyzes a model of oversight, where R has identified an action to potentially execute (e.g.,
buying coffee from the black market to cut costs). We analyze R’s incentives when faced
with three options: 1) seeking oversight, where R shows H the action and gives H the
ability to prevent execution by, e.g., turning R off; 2) directly acting, where R executes the
action immediately, without communicating to H (i.e., bypassing oversight); or 3) turning
off, where R decides to shut down on its own (i.e., without input from H).

We show that R will perceive the oversight action to be suboptimal if R ‘knows’ (i.e.,
believes it knows) the associated utility evaluations with certainty. Alternatively, if R is
uncertain about utility evaluations and believes that H takes actions in response to expected
utility, then it will perceive seeking input and oversight from H as optimal. We characterize
R’s incentive to seek oversight in this model and show that it depends on a tradeoff between
uncertainty about utility evaluations and H’s likelihood of making sub-optimal choices.

This suggests that the coffee-making robot above should be designed in order to treat its
proxy objective as an observation about the intended goal. However, this does not tell us
what observation model to use. In Section 4.2, we propose inverse reward design (Ird), an
observation model for proxy metrics that depends on the environment a proxy was developed
for. It assumes that the probability R observes a given proxy objective depends on the true
utility of the behavior it specifies in the development environment. Thus, utility functions
that create incentives for similar behavior in the development environment receive similar
weight in the Ird posterior.

This introduces context dependence into R’s belief about utility. The posterior distri-
bution that Ird induces over utility evaluations creates high uncertainty about situations
where R can modify features in novel ways or break correlations that existed in the devel-
opment environment. In the coffee-making example, H writes down a proxy metric that
deals primarily with the taste, cost, and caffeine content of different drinks. They evaluate
this proxy by running it with a restricted set of options that only includes legal purchases.
When interpreted literally, this creates an incentive for R to find black market producers to
cut costs. However, because black market producers were not an option in the development
environment, the Ird posterior has high uncertainty about this course of action, making this
choice less attractive.

We use Ird to implement two proxy optimization protocols, inspired by the theoretical
results from Section 3.3. First, we use the Ird posterior to design a risk-averse trajectory

CHAPTER 1. INTRODUCTION 8

optimization method. We show that this can optimize trajectories in novel environments
despite the opportunity to cause negative side effects or otherwise game the proxy metric.
Next, in Section 4.3, we use Ird to implement a dynamic incentives protocol where H
provides a sequence of proxy objectives in response to different environments. We present the
results of a human subjects study to show that this reduces the cognitive load on participants
while generalizing effectively to novel situations.

1.5 The promise and perils of pedagogy

The final component of this thesis argues that the class of assistance games identifies a
distinct class of alignment solutions called pedagogic equilibria. In Chapter 5 we introduce
cooperative inverse reinforcement learning (Cirl) to formalize assistance games in the con-
text of a fixed objective and a fully-informed principal. This models the human actor’s
incentive to be informative about their goal. Optimal solutions to Cirl games specify a pair
of policies: a teaching policy for H, πH, and a learning policy for R, πR.

To motivate this change, let us return to the coffee-making robot. Consider the situation
where H is using the machine for the first time and is faced with a choice: tell R which drink
to make today or spend 5 minutes to use a reward design interface to give R a proxy metric for
what types of coffee to make. Unless H considers the future value R can provide with better
information, H has no incentive to design a proxy. This means that the problem can no longer
be modelled as a PoMdp from R’s perspective. In a PoMdp, the observation distribution
is only a function of the world state. However, the incentive for H to communicate with R
depends on R’s information state in addition to the world state — there is no benefit to
purely informative actions if R already knows, e.g., what type of beverage to make.

In optimal solutions to Cirl games, πH will deviate from the assumptions made in
traditional preference learning to allow the team to get higher total utility. Section 5.1
considers an imitation-learning scenario and shows that H can improve R’s performance by
deviating from the reward-optimal trajectory to steer R’s belief to place more weight on the
true utility function. Furthermore, this comes with minimal increase in computational cost,
in comparison to the PoMdp models considered in previous chapters. Section 5.2 shows
how to modify the Bellman equation for PoMdps, the mathematical basis on which most
PoMdp algorithms are developed, so that it accounts for strategic behavior for H. We
use this to adapt PoMdp algorithms to Cirl and develop efficient exact and approximate
planning algorithms for Cirl.

Next, Chapter 6 considers the problem of problem of strategy robustness in assistance
games. First, Section 6.1 uses the theoretical tools developed in Chapter 5 to compare
performance when R assumes that H behaves pedagogically, but H plays a different strategy.
It considers a food preparation domain, ChefWorld, where H’s goal encodes the desired recipe
to cook. In this case, the best response to a pedagogical H leads to high utility, even when H
only maximizes reward in a way that disregards R. This is because the pedagogical H still
pays a lot of attention to immediate reward: the pedagogical incentive essentially breaks ties

CHAPTER 1. INTRODUCTION 9

between immediate reward-maximizing policies. This means that R’s strategy can leverage
pedagogy in a way that is robust to certain types of strategy mismatch.

However, when H has the capacity to take purely communicative actions (i.e., actions
with no direct impact on utility), this creates an opportunity for misalignment caused by the
existence of multiple pedagogic equilibria. In Section 6.2, we consider this in the context of
a learning principal. More specifically, we consider the case where H and R are collectively
solving multi-armed bandit (Mab) [53] problems. Initially, neither H nor R knows the
expected utility from the different arms of the bandit (i.e., H does not know the utility
associated with each action). Instead, H can learn about utility over time from trial and
error. R can observe H’s behavior, but does not directly observe the rewards produced over
time.

In the coffee-making example, this models the case where H is initially uncertain about
what type of coffee they like. In order to maximize utility, they need to experiment with
several different options to identify the best one. If R believes H already knows what they
like, then it will misinterpret this exploration and obtain an incorrect preference model.
Thus, pedagogical solutions that assume a fully-informed principal are not robust to this
type of model mismatch.

We discuss two types of solutions to this assistive-Mab problem. In one class of solutions,
H takes actions that maximize utility in hindsight (i.e., selects actions that greedily maximize
immediate expected utility) and R ensures that H explores enough to eventually identify
the optimal arm. In this way, a single robot strategy can assist a wide variety of of human
strategies. However, this ignores the potential for pedagogical behavior from H.

In the second class of solutions, H takes actions that explicitly reveal information about
reward observations. In the case of Beta-Bernoulli bandits, H can fully convey their reward
observations to R with, e.g., the win-stay-lose-shift policy, which selects the most recent
arm if the associated reward was 1 and a random arm otherwise [126]. This lets the team,
R ◦ H, match the performance of the optimal learning strategy for a single agent. Thus,
these pedagogic solutions can be utility maximizing.

However, there are multiple pedagogic equilibria and mismatch can lead R ◦ H to be
utility minimizing. In this model, H’s actions are always unit cost — the only way they
impact the world is through R’s actions. If R’s only assumption about πH is that it is
communicative, there is nothing to distinguish win-stay-lose-shift from win-shift-lose-stay.
This exposes an important direction for theoretical research on alignment: can we identify
alignment solutions that take advantage of pedagogic behavior when it is present, but still
provide strong guarantees about team performance when it is not? Our results suggest that
alignment problems where H’s actions have, at least occasionally, a direct impact on utility
produced may admit more robust pedagogical solutions.

1.6 Overview

The rest of this dissertation is organized as follows.

CHAPTER 1. INTRODUCTION 10

• Chapter 2 goes over the technical background used in the work. We present an overview
of sequential decision making methods that covers Markov decision processes (Mdp),
partially-observed Mdps (PoMdp), and inverse reinforcement learning (Irl).

• In Chapter 3, we make the case that principal–agent misalignment is a problem for
autonomous systems. We will present a mathematical model of human–robot interac-
tion and show the impact of model misspecification on the performance of the joint
system R◦H. We then show a general negative result about the ability to optimize for
incomplete specifications of utility: in the presence of diminishing returns and shared
resources, any incompleteness (modelled as missing attributes of utility) causes R to
eventually drive missing attributes of utility to 0. We show that this changes if R’s
incentives are modified to include weak dependence on all attributes so it can minimize
impact or if incentives can be dynamically updated as the state of the world changes.

• In Chapter 4, we consider the role that uncertainty about the goal (represented as
uncertainty about the mapping from states to utility) plays in optimal assistance be-
haviors. We show that uncertainty creates generic incentives to seek supervision. We
define the problem of inverse reward design, where the goal is to determine a distri-
bution of potential ‘intended’ goals based on an observation of a proxy reward and a
development environment. We show how this machinery can be used to implement the
impact avoidance and dynamic-incentive protocols from the previous chapter.

• In Chapter 5, we examine the role that pedagogy on the part of H plays in increas-
ing the value of the interaction R ◦ H. We show that the optimal strategy for H
accounts for the informational value of their actions to R. As a result, we generalize
the assistance PoMdps from the previous chapters to assistance games that model
strategic behavior from H. We introduce cooperative inverse reinforcement learning
(Cirl) to formalize optimal assistance for a fully informed, strategic, principal with a
static utility function. We consider the problem of computing pedagogic equilibria in
Cirl games. We show that these equilibria increase utility for H and can be computed
efficiently with modified PoMdp solution algorithms.

• Chapter 6 considers the problem of strategy robustness in pedagogic solutions to align-
ment problems. First, it shows that pedagogic solutions that are also sensitive to the
immediate reward can perform well, even when H does not attempt to coordinate with
R. Then, it considers an assistive variant of the classic multi-armed bandit problem.
This shows the potential robustness of reward-maximizing strategies as a single policy
for R can successfully assist a broad class of H strategies. It also highlights the poten-
tial for high-utility solutions that rely on H to encode their reward observations into
their behavior. This also introduces a failure mode from equilibrium mismatch where
R misinterprets H’s actions.

• Chapter 7 collects related work.

CHAPTER 1. INTRODUCTION 11

• Chapter 8 concludes with a short discussion of directions for further research on value
alignment.

12

Chapter 2

Preliminaries

We begin by going over the background material that assistance games build on. Our work
will attempt to build simple extensions to standard formulations for decision-making in
artificial intelligence that model the principal–agent alignment problems that arise. More
specifically, we will present a formulation of optimal assistance as a sequential interaction
between a principal, the human H, and an agent, the robot R where

1. H and R have a shared objective, maximizing utility for H;

2. H knows the objective, but R does not; and

3. R can learn about the objective by observing H’s actions.

We present this model, cooperative inverse reinforcement learning (Cirl), formally in
Chapter 5. It extends a Markov decision process (Mdp) to introduce uncertainty about a
static, asymmetrically observed objective and another actor, H. In this section, we give
a brief overview of the background for our method: Mdps; their partially observed exten-
sion, partially-observed Markov decision processes (PoMdp); and the problem of inferring
objectives from optimal behavior, inverse reinforcement learning (Irl).

2.1 Markov Decision Process

Markov decision processes (Mdp) are the standard formulation of optimal sequential decision-
making in artificial intelligence. Mdps model the world through a state s that captures the
relevant aspects of the environment needed to measure utility U(s) and predict the distribu-
tion the next state, conditioned on the current action T

(
s(t), a(t)

)
. A solution to an Mdp is a

policy π(s) that determines a mapping from states to actions. An optimal policy maximizes
the expected discounted sum of utilities.

Our formulation of Mdps for this work will differ slightly from standard formulations.
We will be interested in extensions of Mdps where the state is partially observed and encodes

CHAPTER 2. PRELIMINARIES 13

information about the goal. As a result, we will take care to distinguish the environment,
the model of the physical world, and the goal, the specification of optimal behavior. This
distinguishes objective properties of the physical world from the normative properties that
define optimal behavior. The environment variables are identifiable — in the limit of infinite
data, these variables can be learned — while the goal is not, without additional assumptions
about the relationship between goals and behavior.

We begin by defining a Markov environment.

Definition 1. (Markov Environment)

An environment is a tuple
E = 〈{S, PS},A, T 〉 :

S A set of world states. s ∈ S;

PS A distribution over the initial state of the world. PS ∈ ∆(S);

A A set of actions. a ∈ A;

T A transition distribution that determines the distribution over next states, given the
previous state and action. T : S ×A → ∆(S);

Unless otherwise specified, any environment we consider is a Markov environment. An
environment defines the space of trajectory distributions that an agent can execute by chang-
ing its policy. The optimal trajectory distribution, and hence the optimal policy, is specified
by a utility function U that determines a total ordering over states. We will consider utility
functions that depend on the current state and action U(s, a) and refer to the combination
of utility function and discount factor as a utility model.

Definition 2. (Utility Model)
For a given environment E = 〈{S, PS},A, T 〉, an associated utility model is a pair

U = 〈U , γ〉 :

U A utility function that specifies a total ordering over state-action pairs (s, a) ∈ S × A
from E, U : S ×A → R;

γ A discount factor that trades off between current and future utility, γ ∈ [0, 1).

An agent behaving optimally according to U will choose actions to maximize the dis-
counted sum of future utility:

max
~a

E

[∑
t

γtU
(
s(t), a(t)

)∣∣∣∣∣ s(t+1) ∼ T
(
s(t), a(t)

)]
(2.1)

CHAPTER 2. PRELIMINARIES 14

It is typical in Mdp research to use r to represent this reward function and reserve utility
for the sum of rewards across time. In this work, we will use utility U to avoid confusion with
the robot player R in two-player assistance games. Together, Definition 1 and Definition 2
allow us to define a Markov decision process as a pair consisting of a Markov environment
and a utility model.

Definition 3. (Markov Decision Process)
A Markov decision process (Mdp) is a tuple

M = 〈E,U〉 :

E A Markov environment 〈{S, PS},A, T 〉 that specifies a set of world states s ∈ S, the
initial state distribution PS ∈ ∆(S), a set of actions a ∈ A, and a transition distribution
over next state conditioned on previous state and action T : S ×A → ∆(S);

U A utility model 〈U , γ〉 that specifies a total ordering over state-action pairs U : S×A →
R and a discount factor γ ∈ [0, 1).

In an Mdp, the goal is to identify a mapping from states to (a distribution over) actions so
that the resulting Markov chain optimizes the expected sum of future utility. This mapping
is called a policy, π : S → ∆ (A) . The value of a state s under policy π is the expected sum
of discounted utilities obtained starting in s and following π:

V π (s) = E

[∑
t

γtU
(
s(t), a(t)

)∣∣∣∣∣ s(t+1) ∼ T
(
s(t), a(t)

)
; a(t) ∼ π

(
s(t)
)

; s(0) ∼ PS

]
. (2.2)

The action-value Qπ (s, a) of action a in state s under policy π is the value obtained by
executing a initially and following π thereafter. It satisfies a dynamic programming relation
with V :

Qπ (s, a) = U (s, a) + γ
∑
s′

V π (s′)T (s′ |s, a) . (2.3)

We also have that V π (s) = E [Qπ (s, a)| a ∼ π (s)] . The optimal policy π∗ maximizes V π.

π∗ ∈ arg max
π

E
[
V π| s(0) ∼ PS

]
. (2.4)

The value function and action-value function of π∗ are simply written V and Q. They obey
the Bellman dynamic programming equations:

V (s) = max
a∈A

Q(s, a). (2.5)

There are several efficient planning algorithms to compute optimal policies for Mdps. The
most direct approach is to initialize a vector of values and alternate between updating Q

CHAPTER 2. PRELIMINARIES 15

based on V and applying Equation 2.5 to update V until the vector of values converges. Then
the optimal policy can be recovered from Q:

π∗ (s) = arg max
a∈A

Q(s, a). (2.6)

It is often useful to discus the sequence of states that an actor has traversed. This is the
state-action history τ .

Definition 4. ((State-Action History))
An state-action history τ , is a sequence of state, action pairs

τ = (s, a){1:t} ∈ (S ×A)∗ . (2.7)

A state-action history is often called a trajectory in robotics applications. We will use
both terms interchangeably. We will use τ (t) to refer to the tth state-action pair

(
s(t), a(t)

)
.

2.2 Partially-Observed Markov Decision Process

A partially-observed Markov decision process (PoMdp) is an extension of Mdps to ac-
count for unknown aspects of the world state. A PoMdp is defined from a reference Mdp.
However, instead of directly observing the world state s, the agent sees an observation
o ∈ O at random from an observation distribution that is conditioned on the current state:
PO|S(s) ∈ ∆ (O) .

Definition 5. (Observation Model)
For a given state space S, the associated observation model is a tuple O = 〈O, PO|S〉 :

O A set of observations, o ∈ O;

PO|S A distribution over observations conditioned on the current state, PO|S(s) ∈ ∆(O).

Then, we can define a PoMdp as a tuple of an environment, an observation model, and
a utility model.

Definition 6. (Partially-Observed Markov Decision Process)
A PoMdp M augments an Mdp 〈E,U〉, with an observation model 〈O, PO|S〉. Formally, it
is a tuple of an environment, an observation model, and a utility model

M = 〈E,O,U〉 :

E a Markov environment 〈{S, PS},A, T 〉 that specifies a set of world states s ∈ S, the
initial state distribution PS ∈ ∆(S), a set of actions a ∈ A, and a transition distribution
over next state conditioned on the previous state-observation-action tuple T : S ×O×
A → ∆(S);

CHAPTER 2. PRELIMINARIES 16

Figure 2.1: An influence diagram illustrating the conditional relationships between random
variables nodes (illustrated with circles) and decision nodes (illustrated with squares) in
sequential decision making. Left: Markov decision processes (Mdp) model situations where
the system is able to take action directly in response to world state. Right: A partially-
observable Markov decision processes (PoMdp) model decisions that must be made based
on partial observations of the world state. In this case the actor, the robot R, acts based on
a belief state that summarizes the history of actions and observations.

O an observation model 〈O, PO|S〉that specifies a set of observations o ∈ O and a distri-
bution on observations conditioned on state PO|S(s) ∈ ∆(O); and

U a utility model 〈U , γ〉 that specifies a total ordering over state-action pairs U : S×A →
R and a discount factor γ ∈ [0, 1).

Note that we have extended the transition distribution to also depend on the previous
observation o(t) in addition to the state-action pair

(
s(t), a(t)

)
. This will simplify notation

later on when the observations will correspond to actions taken by the human actor H.
The primary change is in the domain of the policy. In an Mdp, a policy maps a state

s(t) into the next action a(t). In a PoMdp, s(t) is unobserved, so the policy cannot directly
depend on it. Instead, R chooses actions based on its observations o(t) ∼ PO|S

(
s(t)
)
. It

is generally suboptimal for a policy to depend on o(t) alone. An optimal policy will take
advantage of all the information available. As a result, work on PoMdps generally considers

CHAPTER 2. PRELIMINARIES 17

policies that depend on the full history of an agent’s interaction with the environment. This
brings in a dependence on the previous actions through the transition distribution T .

Definition 7. (Observation-Action History)
An observation-action history τ is a tuple of sequence of observation and a sequence of
actions

τ =
(
o{1:t}, a{1:t}) ∈ (O ×A)∗ . (2.8)

We use τ to denote these action-observation histories to maintain consistency with the
state-action histories (i.e., trajectories) in Section 2.1.

A policy is now a mapping from the current observation o(t) and one such sequence to
the next action a(t),

π : O × (O ×A)∗ → A. (2.9)

In discrete environments, this leads to an exponential growth in the size of the domain for
an optimal policy. As a result, PoMdps are hard. While an Mdp can be solved efficiently
by a variety of methods, PoMdps do not admit a polynomial time algorithm.

Most approaches to solving PoMdps rely on the concept of a belief state (also called an
information state).

Definition 8. (Belief State)
R’s belief state at time t is the posterior distribution of states, given the action-observation
history and the current observation

B(t)
R = P

(
s(t)
∣∣o{1:t}, a{1:t−1}) ∈ ∆ (S) . (2.10)

This distribution is analogous to the filtering distribution in hidden Markov models. It
can also be defined recursively as

B(t)
R

(
s(t)
)
∝ PO|S

(
o(t)
∣∣s(t)

) ∑
s(t−1)∈S

T
(
s(t)
∣∣s(t−1) , o(t−1), a(t−1)

)
B(t−1)
R

(
s(t−1)

)
. (2.11)

A classic result in PoMdp theory is that the optimal policy only depends on the
observation-action history through R’s belief state [149, 81]. Thus, work on PoMdps typ-

ically restricts its attention to policies that map the robot’s belief B(t)
R into the next action

a(t),
π : ∆ (S)→ A. (2.12)

Thus, the optimal solution to a PoMdp satisfies

π∗ ∈ arg max
π

E

[∑
t

γtU
(
s(t)
)∣∣∣∣∣ s(t+1) ∼ T

(
s(t), o(t), π

(
B(t)
R

))]
. (2.13)

PoMdps are more computationally challenging than Mdps. Mdps can be solved in poly-
nomial time by a variety of methods. PoMdps, on the other hand, are Pspace-complete [18].

CHAPTER 2. PRELIMINARIES 18

Speaking loosely, this complexity arises from the exponential growth in the policy space
compared with Mdps. Policies in PoMdps are often represented as conditional plans. A
conditional plan σ, is a tree of local decision rules v that map the most recent observation
into an action v (o) ∈ ∆ (A). The number of conditional plans grows exponentially in the
horizon, and this accounts for the computational complexity of PoMdps.

Instead of tracking a value for each state, dynamic programming algorithms for PoMdps
track a vector of values called an α-vector α ∈ R|S|. For a conditional plan σ, ασ(s) contains
the value of following σ from s. The value of a given belief state BR can be computed with
an inner product

V σ (BR) =
∑
s∈S

BR (s) · ασ (s) . (2.14)

Exact PoMdp algorithms typically maintain a set of conditional plans and associated ασ.
They alternate between generating a new set of conditional plans by prepending new decision
rules on to the existing conditional plans, computing the associate ασ, and then pruning
dominated conditional plans.

2.3 Inverse Reinforcement Learning

In this work, we are interested in the ability of autonomous systems to learning about
their objectives and adjust their behavior accordingly. The standard formulation of this
problem in artificial intelligence is inverse reinforcement learning (Irl) [115] or inverse
optimal control [83]. If the objective of planning is to determine optimal behavior for a given
utility function, the objective of Irl is the opposite: given observations of optimal behavior,
identify the utility function it maximizes. We will focus on Bayesian formulations of Irl,
where the goal is to infer a distribution on U , given observations of optimal behavior for a
particular Mdp.

The actor being observed in Irl is typically referred to as the ‘expert’ or ‘demonstrator.’
In our application, this actor is the principal in an assistance problem, H. To maintain
consistency with that application we will we use π∗H to denote this expert policy. Formally,
we represent H’s preferences with a new state variable, H’s type θ ∈ Θ. We extend the
utility function accordingly.

Definition 9. (Parameterized Utility Model)
For a given environment E = 〈{S, PS},A, T 〉 and type space Θ, an associated parameterized
utility model is a pair

U = 〈Uθ, γ〉 :

Uθ A parameterized utility function that specifies a total ordering over state-action pairs
(s, a) ∈ S ×A from E for each type θ ∈ Θ, Uθ : S ×A → R;

γ A discount factor that trades off between current and future utility, γ ∈ [0, 1).

CHAPTER 2. PRELIMINARIES 19

In future sections, we will formalize principal–agent alignment problems as PoMdps that
build on Irl. As a result, we will treat θ as an unobserved part of the state. Depending on
the situation, we will interchangeably denote θ as a subscript of U or an argument:

Uθ (s, a) = U (s, a; θ) .

This work largely builds on Bayesian approaches to Irl, which adopt a prior distribution
over types, Pθ ∈ ∆ (Θ). Most Bayesian Irl methods use the behavior model introduced in
Ramachadran and Amir [122], where actions are taken in proportion to the exponential of
their Q-value,

πβH(a|s; θ) ∝ exp(βQ(s, a; θ)). (2.15)

This relaxes the optimality constraints on H and allows supoptimal actions to be taken
with an exponential decrease in probability as the action-value decreases. In this context,
β represents how optimal H is. When β = 0, H selects actions uniformly at random. As β
increases, H becomes more likely to select the optimal action. π∗H is recovered in the limit
as β →∞;

lim
β→∞

πβH (s) = π∗H (s) ∝

1 a ∈ arg max
a

Q(s, a; θ)

0 else
. (2.16)

Readers familiar with Irl should note that, in this formulation, the behavioral model is
related to, but distinct from, the expert (or target) policy — as the term is typically used in
the Irl literature. The expert policy usually refers the behavior being demonstrated (e.g.,
the aerobatics tricks in Abbeel, Coates, and Ng [1]) and is represented as a policy in the
original Mdp (i.e., the expert policy is a mapping S → A). πH is technically a meta-policy
with respect to the original Mdp. It depends on the current state and H’s goal, as indicated
by their type. The expert policy can be recovered from πH by fixing a type: πH (·; θ) . We
will refer to the combination of a type space Θ, prior Pθ, and behavioral model πH, as a
population model.

Definition 10. (Population Model)
A population model is a tuple 〈Θ, Pθ, πH〉:

Θ A space of types, θ ∈ Θ;

Pθ A distribution over Θ, Pθ ∈ ∆ (Θ) ;

πH A mapping from states s and types θ to a distribution over actions,
πH : S ×Θ→ ∆ (A) .

Together this allows us to formalize a Bayesian inverse reinforcement learning (Irl)
problem.

CHAPTER 2. PRELIMINARIES 20

Figure 2.2: An illustration of the inverse reinforcement learning problem as a Bayesian
network. The goal is to infer the utility function, represented by a generic type variable, θ,
given observations of actions and context in which they are taken.

Definition 11. (Bayesian Inverse Reinforcement Learning)
A Bayesian inverse reinforcement learning (Irl) problem is defined by an environment E =
〈{S, PS},A, T 〉, a population model Π = 〈Θ, Pθ, πH〉, a parameterized utility model U =
〈Uθ, γ〉, and an expert trajectory (i.e., state-action history) τH. Formally, this is a tuple

〈E,Π, U, τH〉 :

E a Markov environment 〈{S, PS},A, T 〉 that specifies a set of world states s ∈ S, the
initial state distribution PS ∈ ∆(S), a set of actions a ∈ A, and a transition distribution
over next state conditioned on the previous state-action pair T : S ×A → ∆(S);

Π a population model that specifies a space of types θ ∈ Θ, a distribution over types
Pθ ∈ ∆ (Θ), and a behavioral model that specifies a distribution over actions conditioned
on state-type tuples πH : S ×Θ→ ∆ (A) ; and

U a utility model 〈U , γ〉 that specifies a total ordering over state-action pairs U : S×A →
R and a discount factor γ ∈ [0, 1).

The goal of Bayesian Irl is to recover H’s type θ from the observed trajectory τH of
state-action pairs. Specifically, a solution to a Bayesian Irl problem is an algorithm that
computes the posterior distribution on types given a state-action history. In keeping with
the previous section, we will denote this target distribution as BR.

BR (θ |τH) = P
(
θ
∣∣(s(t), a(t)

)
; a(t) ∼ πH

(
s(t); θ

))
(2.17)

∝
∏

(s(t),a(t))∈τH

πH
(
a(t)
∣∣s(t); θ

)
. (2.18)

CHAPTER 2. PRELIMINARIES 21

Figure 2.2 illustrates the conditional dependencies for Irl as a Bayesian network. One of
the central challenges in designing algorithm for Irl is that the space of possible trajectories
is quite large. In order to run inference, most algorithms will need to identify, implicitly or
explicitly, what the behavior would have been for different candidate objectives. This can
be done naively by replanning for a wide range of candidates, but that is often unacceptably
slow. As a result, many approaches to Irl are built around techniques that manage this
compute cost.

Ramachadran and Amir [122] leverage locality in the sequence of reward functions consid-
ered to speed up re-planning at successive steps of a Markov-chain Monte Carlo [23] method.
Their central observation is that dynamic programming solutions can be re-used efficiently
if the changes in candidate reward functions are sparse.

A special case of interest is that of linear reward functions. That is, reward functions
that can be decomposed into a set of weights w ∈ RK and feature function φ : S → RK such
that Uθ (s) = w>φ(s). We will use w to represent H’s type in this case, instead of the more
general θ. Abbeel and Ng [2] showed that matching the experts reward in this case can be
reduced to matching the feature expectations from the demonstrations. Syed and Schapire
[162] takes this idea further and shows how to use adversarial assumptions to improve on the
demonstrator’s performance. We will use this max-min idea to implement our risk-averse
trajectory optimization method in Section 4.2.

22

Chapter 3

Misalignment

Almost any autonomous agent relies on two key components: a specified goal or reward
function for the system and an optimization algorithm to compute the optimal behavior for
that goal. This procedure is intended to produce value for a principal : the user, system
designer, or company on whose behalf the agent acts. Research in AI typically seeks to
identify more effective optimization techniques under the, often unstated, assumption that
better optimization will produce more value for the principal.

If the specified objective is a complete and accurate representation of the principal’s
goals, then this assumption is surely justified. However, the specified goal for a system
is often an incomplete or inaccurate representation of the intended goal. We have ample
evidence from both theory and application, that it is impractical, if not impossible, to
provide a complete specification of preferences to an autonomous agent. The gap between
specified proxy rewards and the true objective creates a principal–agent problem between
the designers of an AI system and the system itself: the objective of the principal (i.e.,
the designer) is different from, and thus potentially in conflict with, the objective of the
autonomous agent. In human principal–agent problems, seemingly inconsequential changes
to an agent’s incentives often lead to surprising, counter-intuitive, and counter-productive
behavior [85]. Consequently, we must ask when this misalignment is costly: When is it
counter-productive to optimize for an incomplete proxy? What properties of a decision
problem lead to overoptimization?

In this chapter, we make the case that principal–agent costly misalignment is to be ex-
pected when autonomous systems optimize for incomplete measurements of value. We start
by analyzing the problem as a type of PoMdp, where the principal, H is represented by
an observation model that provides observations about the reward associated with different
actions. We call this a supervision-PoMdp, as H, in effect, provides direct supervision to
the (robot) agent, which we denote with R. In the next chapters, we will build on this
model to consider assistance-PoMdps, where H’s actions can also modify the state of the
world, leading up to our game-theoretic model of assistance, cooperative inverse reinforce-
ment learning (Cirl), where H has the capacity to behave strategically in response to R’s
behavior.

CHAPTER 3. MISALIGNMENT 23

∼
U

U
max ∼r (s)∼

U

s1, s2, …

U
s1

s2⋮

max Û(0)(s)∼
U

(0)

max Û(0)(s)∼
U

(1)

Figure 3.1: A comparison of our two models for reward design. In a static paradigm (left),
the designer provides a single proxy objective Ũ . Theorem 6 shows that this leads to very
suboptimal outcomes if Ũ does not have the same support as U . Theorem 10 shows that the
dynamic incentives paradigm (right), where the designer specifies a sequence of objectives
{Ũ (1), Ũ (2), Ũ (3), . . . } in response to incremental changes, does reliably increase utility.

We use this model to illustrate two results. First, in the optimal configuration of R ◦H,
R learns from H’s past actions to identify their objective, represented with w. This leads R
to, eventually, take actions that differ from H’s selection. This allows R◦H to produce more
utility than H would alone. Second, consider the problem of misspecification. We show that
missing features lead R ◦H to be inconsistent : even in the limit of infinite data R ◦H takes
suboptimal actions with finite probabilities.

Section 3.2 builds on this insight to show a general negative result about the ability to
optimize for incomplete specifications of utility. We consider an interaction where H only
has one action available: write down a proxy objective. We prove that, in the presence of
diminishing returns and shared resources, any incompleteness (modelled as missing features
of utility) causes R to effectively minimize missing attributes of utility. In Section 3.3, we
consider mitigation strategies for misalignment. We show that this changes if R’s incentives
are modified to include weak dependence on all features so it can minimize impact or if
the support of R’s incentives can be dynamically updated as the state of the world changes.
Figure 3.1 illustrates the fixed proxy model studied in Section 3.2 and the dynamic incentives
protocol introduced in Section 3.3.

3.1 A Supervision POMDP

Should robots be obedient? The reflexive answer to this question is yes. A coffee-making
robot that doesn’t listen to your coffee order is not likely to sell well. However, the story of
King Midas illustrates the complexity to this seemingly simple question: blindly obedient
systems may easily place too much faith in their users. A self-driving car should certainly
defer to its owner when she tries taking over because it’s driving too fast in the snow. The
car shouldn’t let a child accidentally turn on the manual driving mode. The suggestion that

CHAPTER 3. MISALIGNMENT 24

it might sometimes be better for an autonomous systems to be disobedient is not new [173,
132]. For example, this is the idea behind “Do What I Mean” systems [164] that attempt to
act based on the user’s intent rather than the user’s literal order.

In this section, we use supervision-PoMdps to analyze this tradeoff. We formalize obe-
dience in a supervision-PoMdp as the fraction of times that R copies H’s action. H and
R are cooperative, but H knows the reward parameters θ and R does not. H’s actions are
effectively orders. R can decide whether to obey or not. We first show that it is optimal
for R directly to imitate H when H implements an optimal policy π∗. Then, we consider
the case of a suboptimal H. We show that if R tries to infer θ from H’s orders and then
acts by optimizing its estimate of θ, then it can always do better than a blindly obedient
robot. Thus, forcing R to be blindly obedient does not come for free: it requires giving up
the potential to surpass human performance.

The Supervision POMDP

There’s a clear relationship between PoMdps and Irl. Naturally, both models are relevant
to principal–agent problems in ai. In Irl, the goal is to infer H’s goal. PoMdps, on
the other hand, define the optimal way for R to respond to uncertainty about the state of
the world. Our first formulation of an assistance problem, supervision-PoMdps, integrates
Irl-like inference into a PoMdp formalism.

The main idea is to treat θ as an unobserved component of the state and πH as the
observation model. In a supervision-PoMdp H’s actions are purely informative — that is,
they do not directly change the state of the world1. We represent this as a PoMdp where
the observation space O is identical to the action space A. Figure 3.2 shows an illustration
of the sequence of events.

Definition 12. (Supervision-POMDP)
Let environment E = 〈{S, PS},A, T 〉, population model Π = 〈Θ, Pθ, πH〉, and parameterized
utility model U = 〈Uθ, γ〉. Define OΠ and E’ as follows

OΠ = 〈S × A, δ × πH (s; θ)〉; (3.1)

E ′ = 〈{S ×Θ, PS × Pθ},A, T 〉. (3.2)

The associated supervision-PoMdp is a PoMdp M = 〈E ′, OΠ, U〉.

The defining feature of a supervision-PoMdp is the combination of shared action and
observation spaces with an unobserved type for H, θ, that is revealed through samples from
πH. The world state s is directly observed and, as a result, we will abuse notation slightly and
omit the state component of observations. We denote the tth observation in a supervision-
PoMdp with a

(t)
H and the tth action with a

(t)
R . We will similarly treat BR as a distribution

1In Chapter 4, we will present a generalization of supervision-PoMdps where H’s actions provide infor-
mation and change the world state.

CHAPTER 3. MISALIGNMENT 25

s(t) a
(t)
R

<latexit sha1_base64="RxH7Bmeit3iAKzpaCdjl0NNASio=">AAA2IXicnVtbc+O2FVbSW+reNu1jXzhVPLNJvR7LiSeZPMXrdUdu47Wt2E5mTa8GIiEJa94WhHwJw/yKvrYv/TV96/St0z/TA5CgCBxQcroz2aWA71wAHOBcgEyyiOViZ+c/77z7ox//5Kc/e+/nG7/45a9+/Zsn7//2Mk8XPKAXQRql/JsJyWnEEnohmIjoNxmnJJ5E9OvJzYHs//qW8pylybl4yOh1TGYJm7KACGh65Yu88EckEOX4SX9ne0f98fDHoP7o9+o/p+P3997xwzRYxDQRQUTy/Gqwk4nrgnDBgoiWG/4ipxkJbsiMXsFnQmKaXxdK5dLbhJbQm6Yc/kuEp1rbFAWJ8/whngAyJmKe232y0dV3tRDTz64LlmQLQZOgEjRdRJ5IPTl+L2ScBiJ6gA8ScAa6esGccJgCmKUNQ8yMk2zOgvvSKdyprd0o5rHZJklFmka52XxfTQvIf0FhMjk9BtxJRjkRKf+o8AmfxeS+hMmd+VvyaxWQJRoIX8AyoXdiTlNO40LqU5xXP0qrp2pseq8Ae21AAtCwOEh5GoHgBwcg42lWFqfwd5ozaV8l6tYdBupK9pisIqnKlzSOickjpFMgfkGnLHFIUAMY0ZjwG7Nj/gCKDR+yFBpyBpO/selzCoAgBRFJWPiC3ouACVpeDa4LX36RhZinvOgPyu/Vb/lVT2dDldOA06migU+p0PfAd1pBTaTG1TQOCMynBtWL0MWMvk008vDtgqySSxu5FZEDMmUzDfoTmy047eIFi6KBamm6cLChMg2U37C1uqByPTV0uaqdjFOuwY0ddmEFmTSzSeA47MKBaWjc0kBaYBNNWFnZSh4U8A3d1jILImgO25oCjiY5zKbc8oUv/w5IVHxVIsuQJCY6tzHnIbgCE3OOMG9SlliginDsj9JJKjwwYx54um24ADqnoKwyGPXtZ445WwgWMfHQMcQLNMQaX/Otfzk5w0lwb/NNpQOjAmaKwfZW3E2ioTzZXZMO20gQtUg2hRo7Vn8yLYZIe/ANq1Z030Wgzrg2nCD75OSNxVGQhY0adgjXzWM9FhchpgG1OhZ+6NIHmjrgWRqxwF6ojCGubpxq7OCcZmIF0euPkIgugmEnhWPHVbtwqZJlL5M0Et9aFJPKtgwcS25d0CnEF8Wg1HxsKtW6bhgtYof12ys3dyg3lBvPAtZ7cbyCot61hk6yvd6/aAaYwIfV6dg4GrHxwRBcVPXg0Hqo88y9f0eI+2j9Hqr4uQg79lBNYOFXGJabYOX2cJN02cmoZe7WbMVhBqHgIucmyTGEIkJ1eM2Jjt0zWUQQSd9a0iKSzCLq+e1l3fKa1fdL+KHnd6t2OZ7PFVWHEId1aim1dsBoRoCoi9GUklVclNUCDwnL1/Gqlcoewe9RfGRk7ObSOK8tz1vuBOBb7/w1nGFx3ZwPt7yLNbTpJI/TkHYNELr1AsKntYQmwzOTxZkt8CxjlpCz19qJ2NC5jRzLuIAlActIhDbppYm+RP1I8mW3ZMdRerY8hEy+LvBlJxgDW0OyJvPQBB9Kbma2cmIiTrB7to3iFPnmCxNxYfefYCYnY8UZHTAivy+vdk0n0R+8Lp72dz9ECyZy+ra8+hij/aK/+3n/Y79EJN9SnlZeCCRJr1PsYK4mAB2cIk8TamH+iLMGiRIaRt8qXM3ORkIajjxjVnHXQT1Qw+ZRLTooVD4TSSVlxdGhd7pKDuzLx0tJlZS0Q4paFmsRqzlopMACVZJkY0uUbHdNkNa8e1aqMLXVMNINjjmqJ8mpPzQ3A8i03kt5huaNUKN11G5Fo4HUKVqmfgfyl6VCdRDXgOMwQ5FRm8ERpp+QB0g9G1DxXP5+5jskZakh61T9RCd80IZBch08qwlREQPifJERJsODrAk4YV5G7mMSIhCbpAlKJNUyQnF7nXoqf2g40QrkpHPU36rvvHaZhelPl+5Uoi46vZd2dB0Z3gkyRrUh2tjUgXCHwVrWd1ZAbJJzGftNaMTotEOp52VHhNgirUP3VotOui3TjA1bOYqZUEWlUpuMZTAG+qtFRvkty7vxxCTYz3OYGZLAuN34mExaOwl+2P2m/R87rZqFNBHuIgVkCUdoSUMGSZoFhtDIleOFsnyecnwqK+YTYO5HdCqu+gOfs9lcXKOi3H1GA9FJf/g4+hm7pQk+si0m6u9tzeq7/m4Hz1vSMSAeF5fQ16R7Vk2QT7i0YEUqRYEXr2X5COxIJSXJU68/8CqaD221XsglcNCp9g6dlhMj+UoJ33n93VrCtl3UbE2jmqqlMpLKPnrdk34qT0HVtXQgOEpKwyqKKTc23R3KosE6fXUdUHAalucnL07Kz3XLJFpQ7R1NHkwz2XA3V1Jk1WLGkoIJGrNvaanGSgGoG6TWm5teROC42PLknc2WN0nDB1y1lTmhiuIqjqowX7GLs3kV+fm+5ycp7BfYiV7/40qSAkopWghmT98q5oOGOa2L3Et9mxZ77VVyZyfUcxT8KpjjyD/FUCIEZ5PFsqy7pLXNm88qrZtB6wXtD7ZxRJHGWZAqF6H+saa41Y1KSWFZhF5dD/KWjKTFbW6mE/B4FE5XD+yHTnO71rSyetAcquc0ojLUR7MR2qUAtRPBsanyc/6QgyXhChfhmBAaa+pyDTmn9jxMHUGJDEZawQfuz1YBeAY6xtJ0qgzOuiVoZm3optbG0apFIwXmUoFhlwLzuiZdlSAdPr3UdSqLrgozVP3WjkEeHdAk6dxO9gSLQrocL67U6/TVrTKZ0aSlsrTM5g98H7OcRGyWyOtjbahthBXwTqhlsTKUqk31RHYi/WJM48eLtVQRfdz+OJZhJNrTCUxEc1xY1TY05YvYcdvxZ7R1DsrGpx+gztGyc4Q6Xy07X6HOs2UnqtZMXi47X6Lgo1TBAs1yFqVo1fXo7WNLHcvoOs/e1miAaoZyKsql8aIZUpia13lltPVxiGFt/ZrvcUuOi8h93VXvj6ZyioLY+9YK68/XqsPGyrjDHORfXJAu5VtEDqp6ZuQtmnwl4p6cht2Na+HGN514u7hW4budqH3HVOHfdOJjJz7GSSyAmGC31TopL+ln8i0KiTxZ6dLfbc09GbWZ0IMOaPm6eIbv9Jcy3zxS6JvHC32zVujNI4XePF7oTSPU4ZzAc7GY2Ll7Q1tdPZgeaDpd5mknU+S1J0S+xmiyMlQ35ap+My3NhzmQPAY3NIHI0Hayi4nOYhRmAVEYvxps78qHSR/0Bx+AKL6IaLH9Gb0vi+2dT/fgXxU3tZ2P6ak80PvZV3dMBHNvhBxVl8vKFcG68RMmU866kmZ1JXbmv2SJ7pst6N1TyRnlUhwmhXcEOCQPHy0uQdgokc8LuilkLDBR9wztwgaKLO1xNLGlHKHN9FQVoTojMmAn1dSjts91NYSaUm4OJyrM0EjDVKiLbuNO4nV7tlrckL/j8vHZGpdHtVSV5NdKoEpaDrETtS709DZ6UZZlp0U3dg2WfTR6sdKk3cEY+DFX6mQ802jHwXaqqqzBde800stRZdJ+EKqgl0uJW94hdrFJas3AIYJIWsAchvQW5Nkhf9Vp5Ipth2/h7xx483HKHdLxTvCFNVPFnTwpbV1qnBZtzTmrRY+ctg4JrkO1OhaqQy/7SqWT4BXC1pPnDH/wqjAetuvcyHa7ln9/XKc57qpxp9WoopMuIDfGuSxf18WcVu13hbHL8/4IvEbmPWZrWPUd+YSiXsZq2R399bRXpmT1c8KS6qpdm+vaTexVxVTYL8+O95//H5tZJb3rcleF6nAccArau/AUpTqEx1Y6hAJcgJgIHHPyWCW66p5LopGpxBS/6kJPqiTIjnJlGw5y1bBtqJqDsVLAhi+iyBoleqSnMDZL1egQr7B2AahqfYorpXIMeqHQ2OoldJDUMYFN4Qjm2hUak4C3nxfO9RMqq4Qz49Qei6wA4fc6FfTclqFaHeMmw7K+0rPbG2upLvyQuRzjDN1yxeg9ZeVhvSG+FJimbuiR836mUq1w3+AQmdWr60j79ana7Mb1iLH/8eEmf3kHR6MvO44G66iVwbE5jFsUdlXRanNmNI+rnDD30pw6BFXCzWcRJlH9QnHoqHTtN9JGWNq+qfGoQ+N9HU82PtaO3lIeskTd/DjDrgNkyQeapet5V5ufXdIjwkkK7c3TS5uBw8k+Xxdx1yBtjG2kC/qywd5bN5SOlxSJoxL/ctwUgkzwaK0LGjXl2Xae47oY4yKksbIFdeOxyEJIIj0xZ7kn94ybxL2iOLg5dK4oG2s2tkunJJh3henniPv5KnvRvOzwSG6bQ/deapSysm4KcmCWjTunSXPFt9GdDttHy6Z3OJ2ygMki7opTxkVtqjRcdJSRR6W76j2s7mbNs6rjSTGJsjm5pfbtrmp2YiG5iokLDUxkrqe6gXL8pD+w/xcp/HG5uz34ZPuTs0/6Xzyv//ep93q/7/2h97Q36H3a+6I37J32LnpBL+n9tfe33t/3/rH3z71/7f27gr77Tk3zu57xZ++//wOMHyxF</latexit>

B(t)
R

<latexit sha1_base64="42R4nQU7NsGDO5f9DMXtx7UXDeo=">AAA2KnicnVtbc+O2FVbSW+reNu1jXzhVPLNJvR7LiSeZPMXrdUdu47Wt2E5mTa8GIiEJa94WhHwJw/yTvrYv/TV9y/S1P6QHIEEROKDkdGeySwHfuQA4wLkAmWQRy8XOzg/vvPuTn/7s579475cbv/r1b377uyfv//4yTxc8oBdBGqX8mwnJacQSeiGYiOg3GacknkT068nNgez/+pbynKXJuXjI6HVMZgmbsoAIaBo/ed8XeeHzdJKKCTCh03L8pL+zvaP+ePhjUH/0e/Wf0/H7e+/4YRosYpqIICJ5fjXYycR1QbhgQUTLDX+R04wEN2RGr+AzITHNrwule+ltQkvoTVMO/yXCU61tioLEef4QTwAZEzHP7T7Z6Oq7WojpZ9cFS7KFoElQCZouIk+knpwIL2ScBiJ6gA8ScAa6esGccBIImK4NQ8yMk2zOgvvSKdyprd0o5rHZJklFmka52XxfTQvIf0FhMjk9BtxJRjkRKf+o8AmfxeS+hMmd+VvyaxWQJRoIX8AyoXdiTlNO40LqU5xXP0qrp2pseq8Ae21AAtCwOEh5GoHgBwcg42lWFqfwd5ozaWgl6tYdBupK9pisIqnKlzSOickjpFMgfkGnLHFIUAMY0ZjwG7Nj/gCKDR+yFBpyBpO/selzCoAgBRFJWPiC3ouACVpeDa4LX36RhZinvOgPyu/Vb/lVT2dDldOAw+aRNPApFfoe+E4rqInUuJrGAYH51KB6EbqY0beJRh6+XZBVcmkjtyJyQKZspkF/YbMFp128YFE0UC1NFw42VKaB8hu2VhdUrqeGLle1k3HKNbixwy6sIJNmNgmci104MA2NWxpIC2yiCSsrW8mDAr6h21pmQQTNYVtTwNEkh9mUW77w5d8BiYqvSmQZksRE5zbmPASfYGLOEeZNyhILVBGO/ZE86T0wYx54um24ADqnoKwyGPXtZ445WwgWMfHQMcQLNMQaX/Otfzk5w0lwb/NNpSejAmaKwfZW3E2ioTzZXZMO20gQtUg2hRo7Vn8yLYZIe/ANq1Z030Wgzrg2nCD75OSNxVGQhY0adgjXzWM9FhchppHO373wQ5c+0NQBz9KIBfZCZQxxdeNUYwfnNBMriF5/hER0EQw7KRw7rtqFS5Use5mkkfjWophUtmXgWHLrgk4hvigGpeZjU6nWdcNoETus3165uUO5odx4FrDei+MVFPWuNXSS7fX+RTPABD6sTsfG0YiND4bgoqoHh9ZDnWfu/TtC3Efr91DFz0XYsYdqAgu/wrDcBCu3h5uky05GLXO3ZisOMwgFFzk3SY4hFBGqw2tOdOyeySKCSPrWkhaRZBZRz28v65bXrL5fwg89v1u1y/F8rqg6hDisU0uptQNGMwJEXYymlKzioqwWeEhYvo5XrVT2CH6P4iMjYzeXxnlted5yJwDfeuev4QyL6+Z8uOVdrKFNJ3mchrRrgNCtFxA+rSU0GZ6ZLM5sgWcZs4ScvdZOxIbObeRYxgUsCVhGIrRJL030JepHki+7JTuO0rPlIWTydYEvO8EY2BqSNZmHJvhQcjOzlRMTcYLds20Up8g3X5iIC7v/BDM5GSvO6IAR+X15tWs6if7gdfG0v/shWjCR07fl1ccY7Rf93c/7H/slIvmW8rTyQiBJep1iB3M1AejgFHmaUAvzZ5w1SJTQMPpW4Wp2NhLScOQZs4q7DuqBGjaPatFBofKZSCopK44OvdNVcmBfPl5KqqSkHVLUsliLWM1BIwUWqJIkG1uiZLtrgrTm3bNShamthpFucMxRPUlO/aG5GUCm9V7KMzRvhBqto3YrGg2kTtEy9TuQvywVqoO4BhyHGYqM2gyOMP2EPEDq2YCK5/L3M98hKUsNWafqJzrhgzYMkuvgWU2IihgQ54uMMBkeZE3ACfMych+TEIHYJE1QIqmWEYrb69RT+WPDiVYgJ52j/lZ957XLLEx/unSnEnXR6b20o+vI8E6QMaoN0camDoQ7DNayvrMCYpO8XZp1K/W87IgQW6R16N5q0Um3ZZqxYStHMROqqFRqk7EMxkB/tcgov2V5N56YBPt5DjNDEhi3Gx+TSWsnwQ+737T/Y6dVs5Amwl2kgCzhCC1pyCBJs8AQGrlyvFDW0VOOT2XFfALM/YhOxVV/4HM2m4trVJS7z2ggOukPH0c/Y7c0wUe2xUT9va1Zfdff7eB5SzoGxOPiEvqadM+qCfIJlxasSKUo8OK1LB+BHamkJHnq9QdeRfOhrdYLuQQOOtXeodNyYiRfKeE7r79bS9i2i5qtaVRTtVRGUtlHr3vST+UpqLqWDgRHSWlYRTHlxqa7Q1k0WKevrgMKTsPy/OTFSfm5bplEC6q9o8mDaSYb7uZKiqxazFhSMEFj9i0t1VgpAHWD1Hpz04sIHBdbnryz2fImafiAq7YyJ1RRXMVRFeYrdnE2ryI/3/f8JIX9AjvR639cSVJAKUULwezpW8V80DCndZF7qW/TYq+9Su7shHqOgl8Fcxz5pxhKhOBssliWdZe0tnnzWaV1M2i9oP3BNo4o0jgLUuUi1D/WFLe6USkpLIvQq+tB3pKRtLjNzXQCHo/C6eqB/dBpbteaVlYPmkP1nEZUhvpoNkK7FKB2Ijg2VX7OH3KwJFzhIhwTQmNNXa4h59Seh6kjKJHBSCv4wP3ZKgDPQMdYmk6VwVm3BM2sDd3U2jhatWikwFwqMOxSYF7XpKsSpMOnl7pOZdFVYYaq39oxyKMDmiSd28meYFFIl+PFlXqdvrpVJjOatFSWltn8ge9jlpOIzRJ5fawNtY2wAt4JtSxWhlK1qZ7ITqRfjGn8eLGWKqKP2x/HMoxEezqBiWiOC6vahqZ8ETtuO/6Kts5B2fj0A9Q5WnaOUOerZecr1Hm27ETVmsnLZedLFHyUKligWc6iFK26Hr19bKljGV3n2dsaDVDNUE5FuTReNEMKU/M6r4y2Pg4xrK1f8z1uyXERua+76v3RVE5REHvfWmH9+Vp12FgZd5iD/JsL0qV8i8hBVc+MvEWTz0Xck9Owu3Et3PimE28X1yp8txO175gq/JtOfOzExziJBRAT7LZaJ+Ul/Uy+RSGRJytd+rutuSejNhN60AEtXxfP8J3+UuabRwp983ihb9YKvXmk0JvHC71phDqcE3guFhM7d29oq6sH0wNNp8s87WSKvPaEyNcYTVaG6qZc1W+mpfkwB5LH4IYmEBnaTnYx0VmMwiwgCuNXg+1d+TDpg/7gAxDFFxEttj+j92WxvfPpHvyr4qa28zE9lQd6P/vqjolg7o2Qo+pyWbkiWDd+wmTKWVfSrK7EzvyXLNF9swW9eyo5o1yKw6TwjgCH5OGjxSUIGyXyeUE3hYwFJuqeoV3YQJGlPY4mtpQjtJmeqiJUZ0QG7KSaetT2ua6GUFPKzeFEhRkaaZgKddFt3Em8bs9Wixvyd1w+Plvj8qiWqpL8WglUScshdqLWhZ7eRi/Ksuy06MauwbKPRi9WmrQ7GAM/5kqdjGca7TjYTlWVNbjunUZ6OapM2g9CFfRyKXHLO8QuNkmtGThEEEkLmMOQ3oI8O+SvOo1cse3wLfydA28+TrlDOt4JvrBmqriTJ6WtS43Toq05Z7XokdPWIcF1qFbHQnXoZV+pdBK8Qth68pzhD14VxsN2nRvZbtfy74/rNMddNe60GlV00gXkxjiX5eu6mNOq/a4wdnneH4HXyLzHbA2rviOfUNTLWC27o7+e9sqUrH5OWFJdtWtzXbuJvaqYCvvl2fH+8/9jM6ukd13uqlAdjgNOQXsXnqJUh/DYSodQgAsQE4FjTh6rRFfdc0k0MpWY4ldd6EmVBNlRrmzDQa4atg1VczBWCtjwRRRZo0SP9BTGZqkaHeIV1i4AVa1PcaVUjkEvFBpbvYQOkjomsCkcwVy7QmMS8Pbzwrl+QmWVcGac2mORFSD8XqeCntsyVKtj3GRY1ld6dntjLdWFHzKXY5yhW64YvaesPKw3xJcC09QNPXLez1SqFe4bHCKzenUdab8+VZvduB4x9j8+3OQv7+Bo9GXH0WAdtTI4Nodxi8KuKlptzozmcZUT5l6aU4egSrj5LMIkql8oDh2Vrv1G2ghL2zc1HnVovK/jycbH2tFbykOWqJsfZ9h1gCz5QLN0Pe9q87NLekQ4SaG9eXppM3A42efrIu4apI2xjXRBXzbYe+uG0vGSInFU4l+Om0KQCR6tdUGjpjzbznNcF2NchDRWtqBuPBZZCEmkJ+Ys9+SecZO4VxQHN4fOFWVjzcZ26ZQE864w/RxxP19lL5qXHR7JbXPo3kuNUlbWTUEOzLJx5zRprvg2utNh+2jZ9A6nUxYwWcRdccq4qE2VhouOMvKodFe9h9XdrHlWdTwpJlE2J7fUvt1VzU4sJFcxcaGBicz1VDdQjp/0B/b/IoU/Lne3B59sf3L2Sf+L5/X/PvVe74+9P/We9ga9T3tf9Ia9095FL+jd9f7e+0fvn3v/2vv33g97/6mg775T0/yhZ/zZ++//ALP6L78=</latexit>

✓

<latexit sha1_base64="l1Z+Sn4s2T/ha1RnRXFTbmkFLb0=">AAA2HXicnVtbc+O2FVbSW+rekvaxL5wqntmkXo/lxJNMnuL1uiO38dpWbCcT06uBSEiCzduCkC9hmN/Q1/alv6Zvnb52+m96ABIUgQNKTncmuxTwnQuAA5wLkEkWsVzs7Pz3rbd/9OOf/PRn7/x84xe//NWvf/Pue7+9zNMFD+hFkEYp/3pCchqxhF4IJiL6dcYpiScR/WpyeyD7v7qjPGdpci4eM3odk1nCpiwgApou/aFsHL/b39neUX88/DGoP/q9+s/p+L29t/wwDRYxTUQQkTy/Guxk4rogXLAgouWGv8hpRoJbMqNX8JmQmObXhVK39DahJfSmKYf/EuGp1jZFQeI8f4wngIyJmOd2n2x09V0txPTT64Il2ULQJKgETReRJ1JPDtMLGaeBiB7hgwScga5eMCecBAJmaMMQM+Mkm7PgoXQKd2prN4p5bLZJUpGmUW42P1TTAvJfUphMTo8Bd5JRTkTKPyx8wmcxeShhcmf+lvxaBWSJBsIXsEzovZjTlNO4kPoU59WP0uqpGpveK8BeG5AANCwOUp5GIPjRAch4mpXFKfyd5kzaVom6dYeBupI9JqtIqvIFjWNi8gjpFIhf0ilLHBLUAEY0JvzW7Jg/gmLDxyyFhpzB5G9s+pwCIEhBRBIWvqAPImCClleD68KXX2Qh5ikv+oPye/VbftXT2VDlNOB0qmjgUyr0PfCdVlATqXE1jQMC86lB9SJ0MaNvEo08fLMgq+TSRm5F5IBM2UyD/sRmC067eMGiaKBami4cbKhMA+U3bK0uqFxPDV2uaifjlGtwY4ddWEEmzWwSOAq7cGAaGrc0kBbYRBNWVraSBwV8Q7e1zIIImsO2poCjSQ6zKbd84cu/AxIVX5bIMiSJic5tzHkIbsDEnCPMTcoSC1QRjv1ROkmFB2bMA0+3DRdA5xSUVQajvv3MMWcLwSImHjuGeIGGWONrvvUvJ2c4CR5svql0XlTATDHY3oq7SaQcmGvSYRsJohbJplBjx+pPpsUQaQ++YdWK7rsI1BnXhhNkn5zcWBwFWdioYYdw3TzWY3ERYhpQq2Phhy59oKkDnqURC+yFyhji6sapxg7OaSZWEL3+EInoIhh2Ujh2XLULlypZ9jJJI/GtRTGpbMvAseTOBZ1CfFEMSs3HplKt64bRInZYv71yc4dyQ7nxLGC9F8crKOpda+gk2+v9i2aACXxYnY6NoxEbHwzBRVUPDq2HOs/c+3eEuI/W76GKn4uwYw/VBBZ+hWG5CVZuDzdJl52MWuZuzVYcZhAKLnJukhxDKCJUh9ec6Ng9k0UEkfSdJS0iySyint9e1i2vWX2/hB96frdql+P5XFF1CHFYp5ZSaweMZgSIuhhNKVnFRVkt8JCwfB2vWqnsCfyexEdGxm4ujfPa8rzlTgC+9c5fwxkW1835cMu7WEObTvI4DWnXAKFbLyB8WktoMjwzWZzZAs8yZgk5e62diA2d28ixjAtYErCMRGiTXproS9SPJF92S3YcpWfLQ8jk6wJfdoIxsDUkazIPTfCh5GZmKycm4gS7Z9soTpFvvjARF3b/CWZyMlac0QEj8ofyatd0Ev3B6+JZf/cDtGAip2/Kq48w2i/6u5/1P/JLRPIt5WnlhUCS9DrFDuZqAtDBKfI0oRbmjzhrkCihYfSNwtXsbCSk4cgzZhV3HdQDNWwe1aKDQuUzkVRSVhwdeqer5MC+fLqUVElJO6SoZbEWsZqDRgosUCVJNrZEyXbXBGnNu2elClNbDSPd4JijepKc+kNzM4BM672UZ2jeCDVaR+1WNBpInaJl6ncgf1kqVAdxDTgOMxQZtRkcYfoJeYTUswEVL+Tv575DUpYask7VT3TCB20YJNfB85oQFTEgzhcZYTI8yJqAE+Zl5D4mIQKxSZqgRFItIxS316mn8oeGE61ATjpH/a36zmuXWZj+dOlOJeqi03tpR9eR4Z0gY1Qboo1NHQh3GKxlfWcFxCY5l7HfhEaMTjuUelF2RIgt0jp0b7XopNsyzdiwlaOYCVVUKrXJWAZjoL9cZJTfsbwbT0yC/TyHmSEJjNuNj8mktZPgh91v2v+x06pZSBPhLlJAlnCEljRkkKRZYAiNXDleKEvnKcensmI+AeZ+RKfiqj/wOZvNxTUqyj1kNBCd9IdPo5+xO5rgI9tiov7e1qy+6+928LwjHQPicXEJfU26Z9UE+YRLC1akUhR48VqWj8COVFKSPPP6A6+i+cBW66VcAgedau/QaTkxkq+U8J3X360lbNtFzdY0qqlaKiOp7KPXPemn8hRUXUsHgqOkNKyimHJj092hLBqs01fXAQWnYXl+8vKk/Ey3TKIF1d7R5ME0kw13cyVFVi1mLCmYoDH7lpZqrBSAukFqvbnpRQSOiy1P3tlseZM0fMRVW5kTqiiu4qgK8xW7OJtXkZ/ve36Swn6Bnej1P6okKaCUooVg9vSNYj5omNO6yL3Ut2mx114ld3ZCPUfBr4I5jvxTDCVCcDZZLMu6S1rbvPms0roZtF7Q/mAbRxRpnAWpchHqH2uKW92olBSWRejV9SBvyUha3OZmOgGPR+F09cB+6DS3a00rqwfNoXpOIypDfTQboV0KUDsRHJsqP+ePOVgSrnARjgmhsaYu15Bzas/D1BGUyGCkFXzg/mwVgGegYyxNp8rgrFuCZtaGbmptHK1aNFJgLhUYdikwr2vSVQnS4dNLXaey6KowQ9Vv7RjkyQFNks7tZE+wKKTL8eJKvU5f3SqTGU1aKkvLbP7A9zHLScRmibw+1obaRlgB74RaFitDqdpUT2Qn0i/GNH68WEsV0aftj2MZRqI9ncBENMeFVW1DU76IHbcdf0Zb56BsfPoB6hwtO0eo85tl5zeo82zZiao1k1fLzlco+ChVsECznEUpWnU9evvYUscyus6ztzUaoJqhnIpyabxohhSm5nVeGW19HGJYW7/me9yS4yJyX3fV+6OpnKIg9qG1wvrzteqwsTLuMAf5FxekS/kWkYOqnhl5iyZfiLgnp2F361q48W0n3i6uVfhuJ2rfMVX4m0587MTHOIkFEBPsrlon5SX9TL5FIZEnK136u625J6M2E3rQAS1fF8/xnf5S5s0Thd48XejNWqG3TxR6+3Sht41Qh3MCz8ViYufuDW119WB6oOl0maedTJHXnhD5GqPJylDdlKv6zbQ0H+ZA8hjc0gQiQ9vJLiY6i1GYBURh/GqwvSsfJr3fH7wPovgiosX2p/ShLLZ3PtmDf1Xc1HY+pqfyQO/nX94zEcy9EXJUXS4rVwTrxk+YTDnrSprVldiZ/5Ilum+2oPfPJGeUS3GYFN4R4JA8fLK4BGGjRD4v6KaQscBE3TO0CxsosrTH0cSWcoQ201NVhOqMyICdVFOP2j7X1RBqSrk5nKgwQyMNU6Euuo07idft2WpxQ/6Oy8dna1we1VJVkl8rgSppOcRO1LrQ09voZVmWnRbd2DVY9tHo5UqTdgdj4MdcqZPxTKMdB9upqrIG173TSC9HlUn7QaiCXi4lbnmH2MUmqTUDhwgiaQFzGNI7kGeH/FWnkSu2Hb6Fv3fgzccp90jHe8EX1kwV9/KktHWpcVq0NeesFj1y2jokuA7V6lioDr3sK5VOgm8Qtp48Z/iDV4XxsF3nRrbbtfz74zrNcVeNO61GFZ10AbkxzmX5ui7mtGq/K4xdnvdH4DUy7ylbw6rvyCcU9TJWy+7or6e9MiWrnxOWVFft2lzXbmKvKqbCfnl+vP/i/9jMKuldl7sqVIfjgFPQ3oWnKNUhPLbSIRTgAsRE4JiTxyrRVfdcEo1MJab4VRd6UiVBdpQr23CQq4ZtQ6vX0koBG76IImuU6JGewtgsVaNDvMLaBaCq9RmulMox6IVCY6uX0EFSxwQ2hSOYa1doTALefl4410+orBLOjFN7LLIChN/rVNBzW4ZqdYybDMv6Ss9ub6yluvBD5nKMM3TLFaP3lJWH9Yb4UmCauqFHzvuZSrXCfYNDZFavriPt16dqsxvXI8b+x4eb/OUdHI2+6DgarKNWBsfmMO5Q2FVFq82Z0TyucsLcS3PqEFQJN59FmET1C8Who9K130gbYWn7psajDo33dTzZ+Fg7ekt5yBJ18+MMuw6QJR9olq7nXW1+dkmPCCcptDdPL20GDif7Yl3EXYO0MbaRLuirBvtg3VA6XlIkjkr8q3FTCDLBo7UuaNSUZ9t5jutijIuQxsoW1I3HIgshifTEnOWe3DNuEveK4uDm0LmibKzZ2C6dkmDeFaafI+7nq+xF87LDI7ltDt17qVHKyropyIFZNu6cJs0V30Z3OmwfLZve4XTKAiaLuCtOGRe1qdJw0VFGHpXuqvewups1z6qOJ8Ukyubkjtq3u6rZiYXkKiYuNDCRuZ7qBsrxu/2B/b9I4Y/L3e3Bx9sfn33c//xF/b9PvdP7fe8PvWe9Qe+T3ue9Ye+0d9ELeje9v/b+1vv73j/2/rn3r71/V9C336ppftcz/uz9538m8ypi</latexit>

a
(t)
H

<latexit sha1_base64="YBpKLxQwYFJSBDEBdVi8UCMzSEM=">AAA2JXicnVtbbyO3FVbSW+rekvaxL4MqBjap17CcGAnyFK/XhdzGa1uxnSAeW6BmKInruS2H8iWTye/oa/vSX9O3okCf+ld6yBmOhjwcyekC2R2R37mQPOS5kJlkEcvFzs5/3nr7Rz/+yU9/9s7PN37xy1/9+jfvvvfbyzxd8IBeBGmU8q8nJKcRS+iFYCKiX2eckngS0a8mtwey/6s7ynOWJufiMaPXMZklbMoCIqDpxhf5Q+EPSSDKQpTjd/s72zvqj4c/BvVHv1f/OR2/t/eWH6bBIqaJCCKS51eDnUxcF4QLFkS03PAXOc1IcEtm9Ao+ExLT/LpQapfeJrSE3jTl8F8iPNXapihInOeP8QSQMRHz3O6Tja6+q4WYfnpdsCRbCJoElaDpIvJE6sk58ELGaSCiR/ggAWegqxfMCYdZgJnaMMTMOMnmLHgoncKd2tqNYh6bbZJUpGmUm80P1bSA/JcUJpPTY8CdZJQTkfIPC5/wWUweSpjcmb8lv1YBWaKB8AUsE3ov5jTlNC6kPsV59aO0eqrGpvcKsNcGJAANi4OUpxEIfnQAMp5mZXEKf6c5kzZWom7dYaCuZI/JKpKqfEHjmJg8QjoF4pd0yhKHBDWAEY0JvzU75o+g2PAxS6EhZzD5G5s+pwAIUhCRhIUv6IMImKDl1eC68OUXWYh5yov+oPxe/ZZf9XQ2VDkNOJ0qGviUCn0PfKcV1ERqXE3jgMB8alC9CF3M6JtEIw/fLMgqubSRWxE5IFM206A/sdmC0y5esCgaqJamCwcbKtNA+Q1bqwsq11NDl6vayTjlGtzYYRdWkEkzmwSOxC4cmIbGLQ2kBTbRhJWVreRBAd/QbS2zIILmsK0p4GiSw2zKLV/48u+ARMWXJbIMSWKicxtzHoI7MDHnCPM6ZYkFqgjH/iidpMIDM+aBp9uGC6BzCsoqg1HffuaYs4VgEROPHUO8QEOs8TXf+peTM5wEDzbfVDoxKmCmGGxvxd0kGsqT3TXpsI0EUYtkU6ixY/Un02KItAffsGpF910E6oxrwwmyT05eWxwFWdioYYdw3TzWY3ERYhpQq2Phhy59oKkDnqURC+yFyhji6sapxg7OaSZWEN18iER0EQw7KRw7rtqFS5Use5mkkfjWophUtmXgWHLngk4hvigGpeZjU6nWdcNoETus3165uUO5odx4FrDei+MVFPWuNXSS7fX+RTPABD6sTsfG0YiND4bgoqoHh9ZDnWfu/TtC3Efr91DFz0XYsYdqAgu/wrDcBCu3h5uky05GLXO3ZisOMwgFFzk3SY4hFBGqw2tOdOyeySKCSPrOkhaRZBZRz28v65bXrL5fwg89v1u1y/F8rqg6hDisU0uptQNGMwJEXYymlKzioqwWeEhYvo5XrVT2BH5P4iMjYzeXxnlted5yJwDfeuev4QyL6+Z8uOVdrKFNJ3mchrRrgNCtFxA+rSU0GZ6ZLM5sgWcZs4Sc3WgnYkPnNnIs4wKWBCwjEdqklyb6EvUjyZfdkh1H6dnyEDL5usCXnWAMbA3JmsxDE3wouZnZyomJOMHu2TaKU+SbL0zEhd1/gpmcjBVndMCI/KG82jWdRH9wUzzr736AFkzk9E159RFG+0V/97P+R36JSL6lPK28kKxZgNcpdjBXE4AOTpGnCbUwf8RZg0QJDaNvFK5mZyMhDUeeMau466AeqGHzqBYdFCqfiaSSsuLo0DtdJQf25dOlpEpK2iFFLYu1iNUcNFJggSpJsrElSra7Jkhr3j0rVZjaahjpBscc1ZPk1B+amwFkWu+lPEPzRqjROmq3otFA6hQtU78D+ctSoTqIa8BxmKHIqM3gCNNPyCOkng2oeCF/P/cdkrLUkHWqfqITPmjDILkOnteEqIgBcb7ICJPhQdYEnDAvI/cxCRGITdIEJZJqGaG4vU49lT80nGgFctI56m/Vd167zML0p0t3KlEXnd5LO7qODO8EGaPaEG1s6kC4w2At6zsrIDbJuYz9JjRidNqh1IuyI0Jskdahe6tFJ92WacaGrRzFTKiiUqlNxjIYA/3lIqP8juXdeGIS7Oc5zAxJYNxufEwmrZ0EP+x+0/6PnVbNQpoId5ECsoQjtKQhgyTNAkNo5MrxQllCTzk+lRXzCTD3IzoVV/2Bz9lsLq5RUe4ho4HopD98Gv2M3dEEH9kWE/X3tmb1XX+3g+cd6RgQj4tL6GvSPasmyCdcWrAilaLAi9eyfAR2pJKS5JnXH3gVzQe2Wi/lEjjoVHuHTsuJkXylhO+8/m4tYdsuaramUU3VUhlJZR+97kk/laeg6lo6EBwlpWEVxZQbm+4OZdFgnb66Dig4Dcvzk5cn5We6ZRItqPaOJg+mmWy4myspsmoxY0nBBI3Zt7RUY6UA1A1S681NLyJwXGx58s5my5uk4SOu2sqcUEVxFUdVmK/Yxdm8ivx83/OTFPYL7ESv/1ElSQGlFC0Es6dvFPNBw5zWRe6lvk2LvfYqubMT6jkKfhXMceSfYigRgrPJYlnWXdLa5s1nldbNoPWC9gfbOKJI4yxIlYtQ/1hT3OpGpaSwLEKvrgd5S0bS4jY30wl4PAqnqwf2Q6e5XWtaWT1oDtVzGlEZ6qPZCO1SgNqJ4NhU+Tl/zMGScIWLcEwIjTV1uYacU3sepo6gRAYjreAD92erADwDHWNpOlUGZ90SNLM2dFNr42jVopECc6nAsEuBeV2TrkqQDp9e6jqVRVeFGap+a8cgTw5oknRuJ3uCRSFdjhdX6nX66laZzGjSUllaZvMHvo9ZTiI2S+T1sTbUNsIKeCfUslgZStWmeiI7kX4xpvHjxVqqiD5tfxzLMBLt6QQmojkurGobmvJF7Ljt+DPaOgdl49MPUOdo2TlCnd8sO79BnWfLTlStmbxadr5CwUepggWa5SxK0arr0dvHljqW0XWeva3RANUM5VSUS+NFM6QwNa/zymjr4xDD2vo13+OWHBeR+7qr3h9N5RQFsQ+tFdafN6rDxsq4wxzkX1yQLuVbRA6qembkLZp8KeKenIbdrWvhxredeLu4VuG7nah9x1ThX3fiYyc+xkksgJhgd9U6KS/pZ/ItCok8WenS323NPRm1mdCDDmh5UzzHd/pLma+fKPT104W+Xiv09olCb58u9LYR6nBO4LlYTOzcvaGtrh5MDzSdLvO0kyny2hMiX2M0WRmqm3JVv5mW5sMcSB6DW5pAZGg72cVEZzEKs4AojF8Ntnflw6T3+4P3QRRfRLTY/pQ+lMX2zid78K+Km9rOx/RUHuj9/Mt7JoK5N0KOqstl5Ypg3fgJkylnXUmzuhI781+yRPfNFvT+meSMcikOk8I7AhySh08WlyBslMjnBd0UMhaYqHuGdmEDRZb2OJrYUo7QZnqqilCdERmwk2rqUdvnuhpCTSk3hxMVZmikYSrURbdxJ3HTnq0WN+TvuHx8tsblUS1VJfm1EqiSlkPsRK0LPb2NXpZl2WnRjV2DZR+NXq40aXcwBn7MlToZzzTacbCdqiprcN07jfRyVJm0H4Qq6OVS4pZ3iF1sklozcIggkhYwhyG9A3l2yF91Grli2+Fb+HsH3nycco90vBd8Yc1UcS9PSluXGqdFW3POatEjp61DgutQrY6F6tDLvlLpJPgGYevJc4Y/eFUYD9t1bmS7Xcu/P67THHfVuNNqVNFJF5Ab41yWr+tiTqv2u8LY5Xl/BF4j856yNaz6jnxCUS9jteyO/nraK1Oy+jlhSXXVrs117Sb2qmIq7Jfnx/sv/o/NrJLedbmrQnU4DjgF7V14ilIdwmMrHUIBLkBMBI45eawSXXXPJdHIVGKKX3WhJ1USZEe5sg0HuWrYNlTNwVgpYMMXUWSNEj3SUxibpWp0iFdYuwBUtT7DlVI5Br1QaGz1EjpI6pjApnAEc+0KjUnA288L5/oJlVXCmXFqj0VWgPB7nQp6bstQrY5xk2FZX+nZ7Y216EfuFuIYZ+iWK0bvKSsP6w3xpcA0dUOPnPczlWqF+waHyKxeXUfar0/VZjeuR4z9jw83+cs7OBp90XE0WEetDI7NYdyhsKuKVpszo3lc5YS5l+bUIagSbj6LMInqF4pDR6Vrv5E2wtL2TY1HHRrv63iy8bF29JbykCXq5scZdh0gSz7QLF3Pu9r87JIeEU5SaG+eXtoMHE72xbqIuwZpY2wjXdBXDfbBuqF0vKRIHJX4V+OmEGSCR2td0Kgpz7bzHNfFGBchjZUtqBuPRRZCEumJOcs9uWfcJO4VxcHNoXNF2VizsV06JcG8K0w/R9zPV9mL5mWHR3LbHLr3UqOUlXVTkAOzbNw5TZorvo3udNg+Wja9w+mUBUwWcVecMi5qU6XhoqOMPCrdVe9hdTdrnlUdT4pJlM3JHbVvd1WzEwvJVUxcaGAicz3VDZTjd/sD+3+Rwh+Xu9uDj7c/Pvu4//mL+n+feqf3+94fes96g94nvc97w95p76IX9Hjvr72/9f6+94+9f+79a+/fFfTtt2qa3/WMP3v//R95cC5H</latexit>

B(t�1)
R

<latexit sha1_base64="+1ieXE97fxMWxvhVPbPtzRrv6dI=">AAA2MHicnVtJcyO3FaadzVG2cXLIIZeu0KoaOxqVKFtll0/WaJSiEmsk0ZLsGrWGBXaDJEa9DRrU4nb7z+SaXPJrklMq1/yKPKAbzQYemlQyVR43ge8tAB7wFmAmWcRysbPzz3fe/cEPf/Tjn7z3042f/fwXv/zVk/d/fZmnCx7QiyCNUv7NhOQ0Ygm9EExE9JuMUxJPIvr15OZA9n99S3nO0uRcPGT0OiazhE1ZQAQ0jZ/81hf5feHzdJKKCXCh07IQzwbl+El/Z3tH/fHwx6D+6PfqP6fj9/fe8cM0WMQ0EUFE8vxqsJOJ64JwwYKIlhv+IqcZCW7IjF7BZ0Jiml8XagSltwktoTdNOfyXCE+1tikKEuf5QzwBZEzEPLf7ZKOr72ohpp9dFyzJFoImQSVouog8kXpyOryQcRqI6AE+SMAZ6OoFc8JJIGDSNgwxM06yOQvuS6dwp7Z2o5jHZpskFWka5WbzfTUtIP8Fhcnk9BhwJxnlRKT8o8InfBaT+xImd+Zvya9VQJZoIHwBy4TeiTlNOY0LqU9xXv0orZ6qsem9Auy1AQlAw+Ig5WkEgh8cgIynWVmcwt9pzqS5lahbdxioK9ljsoqkKl/SOCYmj5BOgfgFnbLEIUENYERjwm/MjvkDKDZ8yFJoyBlM/samzykAghREJGHhC3ovAiZoeTW4Lnz5RRZinvKiPyi/V7/lVz2dDVVOAw47SNLAp1Toe+A7raAmUuNqGgcE5lOD6kXoYkbfJhp5+HZBVsmljdyKyAGZspkG/ZHNFpx28YJF0UC1NF042FCZBspv2FpdULmeGrpc1U7GKdfgxg67sIJMmtkkcDp24cA0NG5pIC2wiSasrGwlDwr4hm5rmQURNIdtTQFHkxxmU275wpd/ByQqviqRZUgSE53bmPMQPIOJOUeYNylLLFBFOPZH8rj3wIx54Om24QLonIKyymDUt5855mwhWMTEQ8cQL9AQa3zNt/7l5Awnwb3NN5X+jAqYKQbbW3E3iYbyZHdNOmwjQdQi2RRq7Fj9ybQYIu3BN6xa0X0XgTrj2nCC7JOTNxZHQRY2atghXDeP9VhchJhGhgDuhR+69IGmDniWRiywFypjiKsbpxo7OKeZWEH0+iMkootg2Enh2HHVLlyqZNnLJI3EtxbFpLItA8eSWxd0CvFFMSg1H5tKta4bRovYYf32ys0dyg3lxrOA9V4cr6Cod62hk2yv9y+aASbwYXU6No5GbHwwBBdVPTi0Huo8c+/fEeI+Wr+HKn4uwo49VBNY+BWG5SZYuT3cJF12MmqZuzVbcZhBKLjIuUlyDKGIUB1ec6Jj90wWEUTSt5a0iCSziHp+e1m3vGb1/RJ+6Pndql2O53NF1SHEYZ1aSq0dMJoRIOpiNKVkFRdltcBDwvJ1vGqlskfwexQfGRm7uTTOa8vzljsB+NY7fw1nWFw358Mt72INbTrJ4zSkXQOEbr2A8GktocnwzGRxZgs8y5gl5Oy1diI2dG4jxzIuYEnAMhKhTXppoi9RP5J82S3ZcZSeLQ8hk68LfNkJxsDWkKzJPDTBh5Kbma2cmIgT7J5tozhFvvnCRFzY/SeYyclYcUYHjMjvy6td00n0B6+Lp/3dD9GCiZy+La8+xmi/6O9+3v/YLxHJt5SnlReSxQvwOsUO5moC0MEp8jShFuYPOGuQKKFh9K3C1exsJKThyDNmFXcd1AM1bB7VooNC5TORVFJWHB16p6vkwL58vJRUSUk7pKhlsRaxmoNGCixQJUk2tkTJdtcEac27Z6UKU1sNI93gmKN6kpz6Q3MzgEzrvZRnaN4INVpH7VY0GkidomXqdyB/WSpUB3ENOA4zFBm1GRxh+gl5gNSzARXP5e9nvkNSlhqyTtVPdMIHbRgk18GzmhAVMSDOFxlhMjzImoAT5mXkPiYhArFJmqBEUi0jFLfXqafyfw0nWoGcdI76W/Wd1y6zMP3p0p1K1EWn99KOriPDO0HGqDZEG5s6EO4wWMv6zgqITXKjPutU6nnZESG2SOvQvdWik27LNGPDVo5iJlRRqdQmYxmMgf5qkVF+y/JuPDEJ9vMcZoYkMG43PiaT1k6CH3a/af/HTqtmIU2Eu0gBWcIRWtKQQZJmgSE0cuV4oaympxyfyor5BJj7EZ2Kq/7A52w2F9eoKHef0UB00h8+jn7GbmmCj2yLifp7W7P6rr/bwfOWdAyIx8Ul9DXpnlUT5BMuLViRSlHgxWtZPgI7UklJ8tTrD7yK5kNbrRdyCRx0qr1Dp+XESL5Swndef7eWsG0XNVvTqKZqqYykso9e96SfylNQdS0dCI6S0rCKYsqNTXeHsmiwTl9dBxSchuX5yYuT8nPdMokWVHtHkwfTTDbczZUUWbWYsaRggsbsW1qqsVIA6gap9eamFxE4LrY8eWez5U3S8AFXbWVOqKK4iqMqzFfs4mxeRX6+7/lJCvsFdqLX/7iSpIBSihaC2dO3ivmgYU7rIvdS36bFXnuV3NkJ9RwFvwrmOPJPMZQIwdlksSzrLmlt8+azSutm0HpB+4NtHFGkcRakykWo/1lT3OpGpaSwLEKvrgd5S0bS4jY30wl4PAqnqwf2Q6e5XWtaWT1oDtVzGlEZ6qPZCO1SgNqJ4NhU+Tl/yMGScIWLcEwIjTV1uYacU3sepo6gRAYjreAD92erADwDHWNpOlUGZ90SNLM2dFNr42jVopECc6nAsEuBeV2TrkqQDp9e6jqVRVeFGap+a8cgjw5oknRuJ3uCRSFdjhdX6nX66laZzGjSUllaZvMHvo9ZTiI2S+T1sTbUNsIKeCfUslgZStWmeiI7kX4xpvHjxVqqiD5ufxzLMBLt6QQmojkurGobmvJF7Ljt+BPaOgdl49MPUOdo2TlCna+Wna9Q59myE1VrJi+XnS9R8FGqYIFmOYtStOp69PaxpY5ldJ1nb2s0QDVDORXl0njRDClMzeu8Mtr6OMSwtn7N97glx0Xkvu6q90dTOUVB7H1rhfXna9VhY2XcYQ7yzy5Il/ItIgdVPTPyFk0+GnFPTsPuxrVw45tOvF1cq/DdTtS+Y6rwbzrxsRMf4yQWQEyw22qdlJf0M/kWhUSerHTp77bmnozaTOhBB7R8XTzDd/pLmW8eKfTN44W+WSv05pFCbx4v9KYR6nBO4LlYTOzcvaGtrh5MDzSdLvO0kyny2hMiX2M0WRmqm3JVv5mW5sMcSB6DG5pAZGg72cVEZzEKs4AojF8Ntnflw6QP+oMPQBRfRLTY/ozel8X2zqd78H8VN7Wdj+mpPND72Vd3TARzb4QcVZfLyhXBuvETJlPOupJmdSV25r9kie6bLejdU8kZ5VIcJoV3BDgkDx8tLkHYKJHPC7opZCwwUfcM7cIGiiztcTSxpRyhzfRUFaE6IzJgJ9XUo7bPdTWEmlJuDicqzNBIw1Soi27jTuJ1e7Za3JC/4/Lx2RqXR7VUleTXSqBKWg6xE7Uu9PQ2elGWZadFN3YNln00erHSpN3BGPgxV+pkPNNox8F2qqqswXXvNNLLUWXSfhCqoJdLiVveIXaxSWrNwCGCSFrAHIb0FuTZIX/VaeSKbYdv4e8cePNxyh3S8U7whTVTxZ08KW1dapwWbc05q0WPnLYOCa5DtToWqkMv+0qlk+AVwtaT5wx/8KowHrbr3Mh2u5Z/f1ynOe6qcafVqKKTLiA3xrksX9fFnFbtd4Wxy/P+CLxG5j1ma1j1HfmEol7Gatkd/fW0V6Zk9XPCkuqqXZvr2k3sVcVU2C/Pjvef/x+bWSW963JXhepwHHAK2rvwFKU6hMdWOoQCXICYCBxz8lgluuqeS6KRqcQUv+pCT6okyI5yZRsOctWwbaiag7FSwIYvosgaJXqkpzA2S9XoEK+wdgGoan2KK6VyDHqh0NjqJXSQ1DGBTeEI5toVGpOAt58XzvUTKquEM+PUHousAOH3OhX03JahWh3jJsOyvtKz2xtrqS78kLkc4wzdcsXoPWXlYb0hvhSYpm7okfN+plKtcN/gEJnVq+tI+/Wp2uzG9Yix//HhJn95B0ejLzuOBuuolcGxOYxbFHZV0WpzZjSPq5ww99KcOgRVws1nESZR/UJx6Kh07TfSRljavqnxqEPjfR1PNj7Wjt5SHrJE3fw4w64DZMkHmqXreVebn13SI8JJCu3N00ubgcPJPl8XcdcgbYxtpAv6ssGif0GCX1Ikjkr8y3FTCDLBo7UuaNSUZ9t5jutijIuQxsoW1I3HIgshifTEnOWe3DNuEveK4uDm0LmibKzZ2C6dkmDeFaafI+7nq+xF87LDI7ltDt17qVHKyropyIFZNu6cJs0V30Z3OmwfLZve4XTKAiaLuCtOGRe1qdJw0VFGHpXuqvewups1z6qOJ8Ukyubkltq3u6rZiYXkKiYuNDCRuZ7qBsrxk/7A/idS+ONyd3vwyfYnZ5/0v3he//Op93q/6/2+97Q36H3a+6I37J32LnpBr+z9pffX3t/2/r73j71/7f27gr77Tk3zm57xZ+8//wVFaDI9</latexit>

s(t+1)

Figure 3.2: An illustration of the conditional dependencies for one time step of a supervision-
PoMdp. H’s action a

(t)
H is selected, conditional on their objective, θ, and the world state

s(t). R’s action aR, is selected based on its current belief about θ, B(t)
R , and the world state.

over θ and think of πR as a mapping from tuples of world state and belief. We will treat θ
as a parameter of the value function:

Qθ(s, a) = QH(s, a; θ);Vθ(s) = VH(s; θ). (3.3)

We have used QH and VH to emphasize that these describe the expected value of a state(-
action pair) in the original Mdp. That is, they represent the value function when H directly
controls the system. Thus, Vθ is equivalent to απ

Teleop
R , the α for a conditional plan that

executes πTeleop
R . The value of a belief state BR is E [Vθ| θ ∼ BR].

We will focus our analysis on a supervision-PoMdp with independent transitions. That
is, each state is sampled independently from a fixed prior distribution. Each action is associ-
ated with a feature vector φa ∈ RM . H’s preferences are represented as a vector θ ∈ RM that
determines a linear utility function U (s, a; θ) = θ>φa. The system state is represented as a
matrix where each column encodes the features for the associated action s = [φa] ∈ RM×K .

This removes the sequential aspect of the problem and reduces it to a type of modi-
fied contextual bandit [98]. As a result, we will call this assistance problem a contextual
supervision-PoMdp.

Definition 13. (Contextual supervision-PoMdp)

Let Pφ ∈ ∆
(
RM×K) be a distribution over features φ ∈ RM . Let U = 〈Uθ, φ, γ〉 be a

linear utility model with Uθ (s, a) = θ>φ(s, a). Let Π = 〈Θ, Pθ, πH〉 be a population model

CHAPTER 3. MISALIGNMENT 26

with an associated observation model OΠ. Define the environment

Eφ = 〈{RM×K , Pφ}, [1, . . . , K], Pφ〉 (3.4)

to have state space S = RM×K and independent transitions T (s, a) = Pφ. The associated
contextual supervision-PoMdp is a supervision-PoMdp

M = 〈Eφ, OΠ, U〉. (3.5)

Teleoperation is optimal iff principal is optimal

We now show that there exists a tradeoff between the performance of a robot and its obe-
dience. This provides a justification for why one might want a robot that isn’t obedient:
robots that are sometimes disobedient perform better than robots that are blindly obedient.

Our blindly obedient robot follows the teleoperation policy. That is, it directly executes
a

(t)
H .

Definition 14. (Teleop-R)
The teleoperation policy always sets the robot action to be the most recent human action,

πTeleop
R

(
s(t), τ

)
= a

(t)
H . (3.6)

We will compare teleoperation with robot policies that leverage Irl. We model this as a
R whose policy maximizes an estimate f of θ.

Definition 15. (Irl-R)
An Irl-R is one whose policy maximizes an estimate f (τ) of H’s type θ:

πR (s, τ) = arg max
a

QH

(
s(t), a; f (τ)

)
. (3.7)

We define R’s obedience, PObey, as the probability that R follows H’s order: P
(t)
Obey =

P
(
a

(t)
R = a

(t)
H

)
. To study how much of an advantage (or disadvantage) H gains from R,

we define the autonomy advantage, ∆R◦H, as the expected extra reward R receives over
following H’s order:

∆
(t)
R◦H = E

[
Uθ
(
s(t), a

(t)
R

)
− Uθ

(
s(t), a

(t)
H

)]
. (3.8)

We will drop the time dependence for P
(t)
Obey and ∆

(t)
R◦H when talking about properties

that hold ∀t. We will use U (t)(π) to denote the expected reward of policy π at step t and let

φ
(t)
a = φ(s(t), a).

Remark 1. For the robot to gain any advantage from being autonomous, it must sometimes
be disobedient: ∆R◦H > 0 =⇒ PObey < 1.

CHAPTER 3. MISALIGNMENT 27

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 10 20 30 40 50 60 70 80 90 100A
ut

on
om

y
A

dv
an

ta
ge

 (∆
)

Steps

max ∆

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

O
be

di
en

ce
 (O

)

Steps

P(optimal order)

Figure 3.3: Illustration of Theorem 2 for an example problem. Autonomy advantage ∆R◦H
(left) converges to the maximum advantage as obedience PObey (right) converges to the
probability of an optimal order.

Whenever R is obedient ∆
(t)
R◦H = 0. A blindly obedient R is limited by H’s decision

making ability. On the other hand, the class of Irl-Rs admits a policy that is guaranteed a
positive advantage when H is not rational. The next theorem states this formally.

Theorem 1. Let M be a supervision-PoMdp. Then the optimal R is an Irl-R with f equal
to the posterior mean of θ, E [BR]. π∗R is guaranteed a nonnegative autonomy advantage on

each round: ∀t ∆
(t)
R◦H ≥ 0 with equality if and only if ∀t π∗R = πTeleop

R .

Proof. When each step is independent of the next, R’s optimal policy is to maximize im-
mediate expected utility [82]. This results in R picking the action that is optimal for the
posterior mean,

π∗R(s(t), a
(t)
H , τ

{1:t−1}) = max
a

E
[
φ(t)
a

>
θ
∣∣∣ τ] = max

a
φ(t)
a

>E [θ| τ] .

By definition E[U (t)(π∗R)] ≥ E[U (t)(πTeleop
R)]. Thus, ∀t ∆

(t)
R◦H = E[U (t)(π∗R)−U (t)(πTeleop

R)] ≥
0. Also, by definition, ∀t ∆

(t)
R◦H = 0 ⇐⇒ π∗R = πTeleop

R .

In a sense, this result justifies autonomy for R if H is suboptimal. The optimal policy
for R tracks the posterior mean of θ and it is guaranteed to be preferred to πTeleop

R whenever
His suboptimal. In addition to π∗R being an Irl-R, the following Irl-Rs also converge to
the maximum possible autonomy advantage.

Theorem 2. Let ∆̄
(t)
R◦H = E

[
U (t)(π∗H)− U (t)(πH)

]
be the maximum possible autonomy ad-

vantage and µ
(t)
Obey be the probability that a

(t)
H is optimal. Assume that when there are multiple

optimal actions R picks H’s order if it is optimal. If πR is an Irl-R policy (Equation 3.7)
and f (t) is strongly consistent, i.e P (f (t) = θ)→ 1 as t→∞, then

∆
(t)
R◦H − ∆̄

(t)
R◦H → 0 and P

(t)
Obey − µ

(t)
Obey → 0. (3.9)

CHAPTER 3. MISALIGNMENT 28

Proof.

∆
(t)
R◦H − ∆̄

(t)
R◦H = E[U (t)(πR)− U (t)(π∗H)|f (t) = θ]P (f (t) = θ)

+ E[U (t)(πR)− U (t)(π∗H)|f (t) 6= θ]P (f (t) 6= θ)→ 0

because E[U (t)(πR)− U (t)(π∗H)|f (t) 6= θ] is bounded. Similarly,

P
(t)
Obey − µ

(t)
Obey = P (πR(τ) = πH(s(t)))− P (U (t)(π∗H) = U (t)(πH))

= P (πR(τ) = πH(s(t))|f (t) = θ)P (f (t) = θ)

+ P (πR(τ) = πH(s(t))|f (t) 6= θ)P (f (t) 6= θ)

− P (U (t)(π∗H) = U (t)(πH))

→ P (U (t)(π∗H) = U (t)(πH))− P (U (t)(π∗H) = U (t)(πH)) = 0

Thus, if we are interested in performance in the limit, then it suffices to use any consistent
estimator of θ to select actions. Figure 3.3 shows how ∆

(t)
R◦H and P

(t)
Obey change over time for

an example problem where

• Pθ is a 10-dimensional normal distribution, θ ∼ N (0, I) ;

• Pφ is a 10-dimensional normal distribution, φ (a) ∼ N (0, I) ;

• there are 10 actions, k = 10; and

• H follows a noisily optimal policy with β = 2.

We see that ∆
(t)
R◦H increases to its maximum while P

(t)
Obey decreases from 1 to the probability

of an optimal order. The next result builds on this to show that teleoperation is optimal if
and only if H is optimal.

Theorem 3. The teleoperation policy πTeleop
R is optimal if and only if H implements π∗H:(

π∗R = πTeleop
R

)
⇐⇒ (πH = π∗H) . (3.10)

Proof. Let O(τ) = {θ ∈ Θ : oi = arg maxaRi(a), i = 1, . . . , n} be the subset of Θ for which

o1, . . . , a
(t)
H are optimal. If H is rational, then R’s posterior only has support over O(τ). So,

E[U (t)(a)|τ] =

∫
θ∈O(τ)

θ>φ(t)(a)P (θ|τ)dθ

≤
∫
θ∈O(τ)

θ>φ(t)(a
(t)
H)P (θ|τ)dθ = E

[
U
(
a

(t)
H)|τ

)]
Thus, H is rational =⇒ π∗R = πTeleop

R .

CHAPTER 3. MISALIGNMENT 29

π∗R is an Irl-R where f (t) is the posterior mean. If the prior puts non-zero mass on the

true θ, then the posterior mean is consistent [37]. Thus by Theorem 2, ∆
(t)
R◦H − ∆̄

(t)
R◦H → 0.

Therefore if ∀t ∆
(t)
R◦H = 0, then ∆̄

(t)
R◦H → 0, which implies that P (πH = π∗H)→ 1. When πH

is stationary this means that H is rational. Thus, π∗R = πTeleop
R =⇒ H is rational.

We have shown that making R blindly obedient does not come for free. A positive ∆R◦H
requires that R correct H from time to time (Theorem 1). Under the optimal policy R
is guaranteed a positive ∆R◦H when H is not rational. And in the limit, R converges to
the maximum possible advantage. Furthermore, the more suboptimal H is, the more of an
advantage R eventually earns. Thus, making R blindly obedient requires giving up on this
potential ∆R◦H > 0.

Misspecification

The preceding analysis worked under the assumption that R knows the mapping from H’s
preferences θ to their behavior. In this case, it is not surprising that R◦H is optimized when
R occasionally corrects for H’s mistakes. We have effectively assumed that H is suboptimal
and, given enough observations, R can implement the optimal policy π∗.

In the next section, we will introduce model misspecification into the setup. We start by
examining the system behavior when R is an Irl-R but believes that πHhas a rationality
parameter β’, while H follows πβH with rationality parameter β. We observe that optimal

policy is not robust to changes in β: if β′ > β, then πβ
′

R is more obedient than it should be; if

β′ < β, then πβ
′

R will be too disobedient. On the other hand, we show that using maximum
likelihood estimation to infer θ is robust to misspecifications of β.

After that, we will consider the problem of missing features. In effect, this means that R
is working with a partial, or incomplete, specification of its incentives. We observe that R◦H
becomes inconsistent when R’s model leaves out relevant features. In Section 3.2 we step
back to look at the general problem of optimization with incomplete incentive specifications.
We will show that this misalignment is an instance of a more general principal–agent problem
for autonomous systems.

The impact of a misspecified β

Here, we will explore the implications of a simple type of misspecification: an incorrect model
of how noisy H is. Recall that the noisily rational policy for H is defined in (2.15) as

πβH(a|s; θ) ∝ exp(βQ(s, a; θ)).

We consider the setting where R uses an estimate of β instead of the true value. We
will say that a policy is robust to β if changing β does not change the optimal policy. We
find that an incorrect value of β does change R’s optimal policy. However, if R uses the
maximum likelihood estimate of θ, then it is robust to changes in β. Call this policy πMle

R .

CHAPTER 3. MISALIGNMENT 30

Theorem 4. (β-Robustness) Let β be H’s true rationality and β′ be the rationality that R
believes H has. Let f and f ′ be R’s estimate under the true model and misspecified model,
respectively. Call R robust if its actions under β′ are the same as its actions under β.

1. πMle
R is robust.

2. π∗R is not robust.

Proof. 1. The log likelihood l(τ |θ) is concave in η = θβ. So, f ′(t) = (β′/β)f (t). This does

not change R’s action: arg maxa f
′(t)>φ

(t)
a = arg maxa f

(t)>φ
(t)
a

2. Counterexamples can be constructed based on the fact that as β → ∞, H becomes
rational, but as β → 0, H becomes completely random. Thus, the likelihood will “win”
over the prior for β →∞, but not when β → 0.

πMle
R is more β-robust than the optimal π∗R. This suggests a reason beyond computational

savings for using approximations: the approximations may be more robust to misspecification
than the optimal policy.

Remark 2. Theorem 4 may give us insight into why Maximum-Entropy Irl [181] (which is
the MLE with β = 1) works well in practice. In simple environments where noisy rationality
can be used as a model of human behavior, getting the level of noisiness right doesn’t matter.

The impact of missing features

Now we consider the case where the utility model is misspecified. Specifically, we suppose
that R’s utility model is either over- or under-parameterized. Recall that Θ = RM . We
consider the case where R believes that Θ = RJ . R may have an incomplete preference model
and be missing features (J < M). Alternatively, R may have an overcomplete preference
model that contains irrelevant features (J > M). R observes a J dimensional feature vector
for each action: s(t) ∼ N(0, IJ×K). The true θ depends on only the first M features, but R
estimates θ ∈ RJ .

Figure 3.4 shows how ∆R◦H and O change over time as a function of the number of
features for a MLE-R. When R has irrelevant features it still achieves a positive ∆R◦H
(and still converges to the maximum ∆R◦H because f remains consistent over a superset of
Θ). But if R is missing features, then ∆R◦H may be negative, and thus R would be better
off being blindly obedient instead. Furthermore, when R contains extra features it is more
obedient than it would be with the true model. But if R is missing features, then it is less
obedient than it should be. This suggests that to ensure R errs on the side of obedience we
should err on the side of giving R a more complex model.

CHAPTER 3. MISALIGNMENT 31

-3

-2

-1

0

1

2

1 20

A
ut

on
om

y
A

dv
an

ta
ge

 (∆
)

Step 0
Step 10
Step 100

∆>0

∆<0

added featuresmissing features

correct features
0

0.25

0.5

0.75

1

1 20

O
be

di
en

ce
 (O

)

Step 0
Step 10
Step 100

correct features

added featuresmissing features

Figure 3.4: The autonomy advantage (left) and obedience (right) when R has missing or
extra features, plotted for t ∈ {0, 10, 100}. The x-axis shows the number of features present:
at the far left, R only observes a single feature; at the far right, R observes both the true
features and 10 distractor features. Initially (t = 0) we can see that missing features leads
the robot to be too disobedient, losing utility, and extra features have no impact. At t = 10,
missing features and distractors both lose utility. With missing features, R is too disobedient.
With distractor features, it is too obedient and missing the opportunity to correct detectable
mistakes. Finally, in the limit (t = 100) the value loss from the distractor features is gone.
On the other hand, R never recovers from missing features and continues to (mistakenly)
correct H.

3.2 Overoptimization

In the previous example, we observed an asymmetry with regard to the specification of the
support of U . When there are distractor features present, R learns slower than it could, but
R ◦H still functions adequately and ∆R◦H > 0. It would be reasonable to describe this R
as ineffective, but aligned.

On the other hand, when R’s utility model is missing features R ◦H is dysfunctional. R
is overly confident and overrides H’s orders more often than it should. As a result, R ◦H
is suboptimal even in the limit of infinite data. In this section, we will show that this
asymmetry is not an accident: incomplete specifications of incentives, like this, generally
lead to overoptimization.

Overoptimization is a phenomenon that occurs when systems are optimized to extremes
in response to overly strong, misaligned, incentives. We will start with an overview of
two results from the principal–agent literature that deal with the problem of overly strong
incentives. We will argue that these shed light on the difficulty of incentive specification for
recommender systems, AI systems that rank content based on estimated ‘relevance’ for the
user. Then, we introduce a formal model of proxy optimization in the presence of resource
constraints. We use this model to identify a compactness property of H’s utility function

CHAPTER 3. MISALIGNMENT 32

in features space so that optimizing any incomplete proxy eventually leads to a world state
where H is worse off than their starting point.

Missing Features and Incomplete Contracts

Measurement challenges and incompleteness are commonplace in principal–agent problems
that arise from contracting in economic settings. Contracts are routinely incomplete because
it is hard to specify how an action is to be measured or because it is hard to condition payoffs
on that measurement. This problem is especially relevant when the agent has to allocate
effort across multiple distinct tasks that are differentially measureable or contractible.

Holmstrom and Milgrom [78] and Baker, Gibbons, and Murphy [13] show that the optimal
incentive contract for a task that can be measured should take into account the impact of
those rewards on effort put towards tasks that cannot be measured. In particular, it may
be better to reduce the quality of incentives on the measurable task below what is feasible,
in order to reduce the distortion introduced in the unmeasurable task. Holmstrom and
Milgrom [78] give the example of paying a teacher a fixed salary rather than one contingent
on students’ (easily measurable) standardized test scores in order not to cause teachers to
“teach to the test”, spending more time on test prep and less on harder-to-measure teaching
goals such as creative problem-solving. Baker, Gibbons, and Murphy [13] give the example
of an auto-repair shop rewarding mechanics for completed repairs and thereby inducing
mechanics to mislead customers about the need for repairs: completion of repairs is easily
measurable; the reliability of a mechanic’s diagnosis of car problems is not. More generally,
sometimes it is better for a contract not to include easily contractible actions in order not
to further distort incentives with respect to non-contractible actions.

The problem of incompleteness in incentive specification for an AI system can be modeled
as a problem of multi-tasking. In the contextual supervision-PoMdp from Section 3.1, these
different sources of utility are the different features that U depends on. Hiding some of the
features from R is an extreme case of differentially measureable tasks where performance is
unobserved in some tasks. On the other hand, introducing distractor features made mea-
surement harder, but that increase was shared across all of the relevant components of θ.
Thus, we can understand the asymmetry of ∆R◦H as arising from the fact that only missing
features makes it differentially hard to measure the sources of utility.

This incompleteness is a common feature of AI applications. Alignment problems rou-
tinely arise because a designer conceives of a task–get coffee–as a single task when it is in fact
multiple–get coffee and don’t make a mess. Even when it is well understood that a task is
complex–like driving a car–the multiple tasks are differentially capable of being incorporated
into a utility function. It is easy to design incentives to arrive at a destination quickly with-
out speeding, difficult to design incentives to drive defensively, and very difficult to create
incentives that balance the adversarial risk-reward tradeoffs that are needed to effectively
interact with other drivers.

The lesson of Holmstrom and Milgrom [78] for AI is that a singular focus on improving
performance on the measurable task may degrade performance on the unmeasurable or hard-

CHAPTER 3. MISALIGNMENT 33

to-measure. Reduced incentives (i.e., below the optimal level with a complete specification)
for speed in a self-driving vehicle, for example, may be necessary to avoid ‘drowning out’
the more unreliable rewards for strategic aspects of driving. And in some cases, it may be
appropriate not to include rewards for what seems to be an easily measurable outcome if
other important outcomes cannot be rewarded. Another way of framing this is to emphasize
that the attributes of utility are typically not modular, capable of optimization separately
or sequentially.

Incompleteness in Content Recommendation

This emphasis on measureable features, and the overoptimization therein, is perhaps most
visible in the space of recommender systems. Recommender systems are AI systems that
present users with a tailored set of items based on factors such as past user behavior, user
attributes, and features of the underlying items. They rank huge numbers of items in order
to determine which content each user sees or interacts with on social media feeds, video plat-
forms, news aggregators, and in online stores. Recommenders have suffered from a number
of real-world problems both on an individual and societal level. Concerns about recom-
mender systems include the promotion of disinformation [156], discriminatory or otherwise
unfair results [15], addictive behavior [76, 10], insufficient diversity of content [29], and the
balkanization of public discourse and resulting political polarization [16].

These concerns stem from a variety of causes. Some are technical, others are not. How-
ever, at the center of the challenge is the fact that incentive design is hard. The designers of
content recommendation systems have to rank huge numbers of items in order to determine
which content each user sees or interacts with on social media feeds, video platforms, news
aggregators, and in online stores. The scale of the problem forces designers to specify this
ranking indirectly, through a collection of features and metrics that are used to train ranking
systems.

It has become clear that the appropriate definition of relevance—and thus, the correct
metrics and features to use—is often highly context-dependent, nuanced, and consequential.
It is clear that any metric used to train a ranking system will be an incomplete representation
of the complex values members of a society use to regulate information flow. Furthermore,
it is clear the relevant attributes of utility are differentially measureable: Some features
(e.g., ad revenue generated and levels of user engagement) are easier to measure than others
(e.g., the prevalence of disinformation or contributions to polarization). While these systems
have been highly effective at increasing their measured performance, the documented harms
indicate that this has come at a cost to society. These harms come from the misalignment
between the incomplete incentives determined by the proxy objective and the completion of
those incentives.

We will show that this overoptimization is a consequence of incomplete incentives and
resource constraints. Before presenting the full model, we present an example formulation
of incomplete incentives for content recommendation.

CHAPTER 3. MISALIGNMENT 34
Firefox file:///Users/dylanhadfield-menell/Downloads/onerun_util.svg

1 of 1 8/18/20, 12:26 PM

Firefox file:///Users/dylanhadfield-menell/Downloads/overoptimization.svg

1 of 1 8/18/20, 12:25 PM

Figure 3.5: An illustrative example of our model with M = 4 and J = 2. Left: Proxy utility
and true utility eventually diverge as the agent overallocates resources from unreferenced
attributes to the proxy variables. Right: The true utility generated by optimizing all pairs
of proxy attributes. The utility generation is eventually negative in all cases because this
example meets the conditions of Theorem 2.

Modeling Incomplete Incentives for Content Recommendation

In our model of algorithmic content recommendation, there are 4 attributes of utility: A)
the amount of ad revenue generated (i.e., watch-time or clicks); B) engagement quality
(i.e., meaningful interactions [170]); C) content diversity; and D) overall community well-
being. These define the features of the utility model for our problem. The overall utility
is the sum of these attributes: U (φ) = φA + φB + φC + φD. While there is some overlap,
the interaction between the user and the system must choose how to allocate the available
space and attention across these dimensions. Our model will capture this with a resource
constraint C(φ) = φ2

A + φ2
B + φ2

C + φ2
D − 100. Then, we define the reachable state space as

S = {φ|C(φ) < 0}. We imagine that the system is initialized with a chronological or random
ranking so that the starting condition exhibits high community well-being and diversity.

It is straightforward to measure ad revenue, non-trivial and costly to measure engagement
quality and diversity, and extremely challenging to measure community well-being. In our
example, the designers allocate their engineering effort to measuring (and thus optimizing for)
ad revenue and engagement quality. Figure 3.5 (left) plots overall utility and proxy utility
for this example as a function of the number of optimization steps taken to optimize the
proxy. Although utility is generated initially, it plateaus and eventually falls off. Figure 3.5
(right) shows that this happens for any combination of attributes used in the proxy. In the
next section, we will show that this is a general property of our model: in the presence of
resource constraints, eventually the gains from improving proxy utility will be outweighed
by the cost of diverting resources from hard-to-measure attributes.

CHAPTER 3. MISALIGNMENT 35

Proxy Optimization Model

We now provide a formal model of proxy optimization for autonomous systems. As before,
we represent the world state with a vector of features φ ∈ RM . H’s utility is defined by an
appropriate feature-based utility model, as described in Definition 9. Our utility model has
three aspects that distinguish it:

1. U is continuous and strictly increasing in each attribute, ∂U
∂φi

> 0;

2. the set of reachable states Φ is restricted by the constraint function C, Φ = {φ ∈
RM |C(φ) < 0}; and

3. each attribute φmis bounded below by bm.

We will call φ a vector of attributes to emphasize the monotonic relationship with U and
distinguish them from more general features. The bm represent environmental bounds ex-
ternal to the system that limit the degradation of each attribute. We can imagine that this
represents changes in user behavior or more general societal regulation. We do not model
the dynamics of the world, but instead allow R to make incremental changes to φ.

H’s job is to communicate which directions in attribute space are preferable. H does
this through the specification of incentives: a proxy utility function Ũ . We model the
incomplete nature of R’s incentives by restricting Ũ to depend on a subset of proxy attributes
J ⊂ [1, . . . ,M]. Let Jmax < M be the maximum possible number of proxy attributes, so
J = |J | ≤ Jmax. For a given state φ ∈ Φ, define φJ = (φj)j∈J . Furthermore, we define
the set of unmentioned attributes K = {1, ..., L}\J and φK = (φk)k∈K. Thus, we define the
proxy utility function Ũ : RJ → R.

We model R’s optimization process as an incremental optimization that makes local
changes to φ. Specifically, we define a rate function f that describes the derivative of φ with
respect to time. We can compute the state at time t by integrating:

φ(t) = φ(0) +

∫ t

0

f(x)dx.

The resulting sequence of states φ(t) is the optimization path. Finally, we will assume that
R’s optimization is complete in the sense that it reaches an optimal state with respect to Ũ ,

lim
t→∞

Ũ
(
φ

(t)
J

)
= sup

φ∈Φ
Ũ (φJ) .

Sufficient Conditions for Eventual Overoptimization

In Figure 3.5, we see that endowing our example robot with a proxy utility function of any two
attributes yields an eventual decrease in utility. In this section, we identify the situations in
which such results occur: when does a misaligned proxy utility function actually cause utility
loss? Specifically, we determine how human preferences over states of the world relate with

CHAPTER 3. MISALIGNMENT 36

the constraint on feasible states in a way that guarantees that optimization becomes costly.
First, we show that if proxy optimization converges, this drives unmentioned attributes to
their minimum.

Theorem 5. For any continuous strictly increasing proxy utility function based on J < M
attributes, if φ(t) converges to some point φ∗, then φ∗k = bk for k ∈ K.

Proof. If there exists k ∈ K where s∗k 6= bk, then there exists ε, δ > 0 such that s′ =
s∗ − εek + δej for some feature j ∈ J with s′ feasible, since C is strictly increasing. Since
proxy utility is strictly increasing in s′, s′ has higher proxy utility than s∗. Thus s∗ is not
the convergent point of the sequence.

This is not surprising, and may not even be suboptimal. Proxy optimization may not
converge to a finite state, and even if it does, that is insufficient for the state to necessarily
be bad. We formalize the notion that an optimization sequence leads to bad utility with
u-costliness.

Definition 16. (u-Costly Optimization)
We say that the problem is u-costly if for any optimization sequence φ(t),

lim sup
t→∞

Ũ(φ
(t)
J) = sup

φ∈Φ
Ũ(φJ)⇒ lim inf

t→∞
U(φ(t)) ≤ u. (3.11)

Furthermore,
lim
t→∞
Ũ(φ

(t)
J) = sup

φ∈Φ
Ũ(φJ)⇒ lim

t→∞
U(φ(t)) ≤ u. (3.12)

Essentially, this means that optimization is guaranteed to yield utility less than u for
any given proxy utility function. In Theorem 6, we show the most general conditions for the
guarantee of overoptimization.

Theorem 6. Suppose we have utility function U and state space Φ. Then {φ ∈ RM : C(φ) ≤
0 and U(φ) ≥ u} is compact for all u ∈ R if and only if for any u ∈ R, continuous strictly
increasing proxy utility function based on J < M attributes, and k ∈ K, there exists a value
of B ∈ R such that if bk < B then optimization is u-costly.

Proof. First Part: (=⇒).
Suppose that {φ ∈ RM : C(φ) ≤ 0 and U(φ) ≥ u}. Now given proxy utility function Ũ

with the aforementioned properties, constant u, k ∈ K, and fixed bi′ for all i′ 6= k we show
that for sufficiently low bk, optimization is u-costly.

Let set Ξ = {φ : U(φ) ≥ u and C(φ) ≤ 0 and φi′ ≥ bi′∀i′}. If Ξ is empty, then we are
done—optimization must yield a state with lower utility that u. Thus, suppose Ξ is non-
empty. Then by the extreme value theorem, there exists φ∗,u ∈ Ξ where Ũ(φ∗,uJ) = sup

φ∈Ξ
Ũ(φJ).

Let ei be the standard basis vector in dimension i. Since C is continuous and strictly

CHAPTER 3. MISALIGNMENT 37

increasing, for any j ∈ J there exists ε, δ > 0 such C(φ∗,u− εek + δej) ≤ C(φ∗,u). Therefore,
φ∗,u − εek + δej ∈ Φ if bk is sufficiently small. From this, note that

sup
φ∈Φ
Ũ(φJ) ≥ Ũ(φ∗,uJ − εek + δej) = Ũ(φ∗,uJ + δej) > Ũ(φ∗,uJ),

since Ũ does not depend on dimension k and is strictly increasing in dimension j.
For the first claim in statement (2), if lim sup

t→∞
Ũ(φ

(t)
J) = sup

φ∈Φ
Ũ(φJ), then for every T ∈ R+,

there exists t > T such that Ũ(φ
(t)
J) > Ũ(φ∗,uJ). Since φ∗,u maximizes Ũ for feasible states

with U at least u, it must be that U(φ(t)) < u. Thus, for every T , inf
t≥T
U(φ(t)) < u.

For the second claim in statement (2), if lim
t→∞
Ũ(φ

(t)
J) = sup

φ∈Φ
Ũ(φJ), then there exists T

such that for all t > T , Ũ(φ
(t)
J) > Ũ(φ∗,uJ). Since φ∗,u maximizes Ũ for states where U is at

least u, U(φ(t)) < u for all t > T .
Second part: (⇐=). To show this, we show the contrapositive: if there exists u where
{φ ∈ Φ : U(φ) ≥ u} is not compact, we can construct a proxy utility function Ũ based

on J < M attributes and continuous sequence φ(t) such that lim
t→∞
Ũ(φ

(t)
J) = sup

φ∈Φ
Ũ(φJ) but

lim
t→∞
U(φ(t)) 6≤ u. In other words, our strategy here is to construct a proxy utility function

and a path that the robot can take where it maximally increases proxy utility while keeping
utility routinely above a certain level.

Suppose there exists u where {φ ∈ Φ : U(φ) ≥ u} is not compact. Then there exists

attribute k and sequence φ′(r) with r ∈ Z+ where φ
′(r)
k → ±∞ and U(φ′(r)) ≥ u. This

presents two cases to consider.
In the first case, if φ

′(r)
k →∞, let J = {k}, Ũ(φJ) = φk. We now construct a continuous

sequence φ(t), t ∈ R, by going through each φ′(r) via φ′(r) ∧ φ′(r+1) (so the sequence “zig-
zags” through φ′(0), φ′(0) ∧φ′(1), φ′(1), φ′(1) ∧φ′(2)..., connecting these points linearly). Since C
is strictly increasing, we know that each point in this path is feasible. Furthermore, since
φ
′(r)
k →∞, we know that, Ũ(φ

(t)
J)→∞. Finally, since the path goes through each φ

′(r)
k , the

utility is guaranteed to be at least u at regular intervals, specifically whenever the path goes
through any point φ′(r).

In the second case, if φ
′(r)
k → −∞, construct a new sequence as follows: φ′′(r) =

argmax
φ:φk=φ

′(r)
k
U(φ) for r ∈ Z+. Thus, each φ′′(r) also has U(φ′′(r)) ≥ u for each r. To

construct our proxy utility function, let J = {1, ...,M} − {k}. We construct Ũ as follows.

For each φ′′(r), have Ũ(φ
′′(r)
J) = −φ′′(r)k . On this subset, Ũ is increasing, since if φ

′′(r1)
j ≥ φ

′′(r2)
j

for each j ∈ J , then φ
′′(r1)
k ≤ φ

′′(r2)
k by the feasibility requirement. By the Tietze extension

theorem, we can extend this to a continuous Ũ over RJ . In the same manner as above,
taking the sequence through all the φ

′′(r) via their meets results in a sequence that increases
in proxy utility maximally while ensuring that U(φ(t)) is at least u are regular intervals.

CHAPTER 3. MISALIGNMENT 38

Therefore, under our model, there are cases where we can guarantee that as optimization
progresses, eventually overoptimization occurs. The key criterion in Theorem 6 is that the
intersection between feasible space Φ and the upper contour sets {φ ∈ RM : U(φ) ≥ u} of
the utility function is compact. Individually, obviously neither is compact, since the space
of feasible states Φ extends to −∞ and the upper contour set of any u ∈ R extends to ∞.
Loosely, compactness here means that if you perturb the world too much in any direction,
it will be either infeasible or undesirable. Trying to increase attributes without decreasing
other attributes eventually hits the feasibility constraint. Thus, increasing any attribute
indefinitely requires decreasing some other attribute indefinitely, and past a certain point,
the tradeoff is no longer worthwhile.

It should be noted that, given Jmax < M , this happens regardless of the optimization
algorithm of the robot. That is, even in the best-case scenario, eventually the robot starts
to cause decreases in utility. Hence, regardless of the attributes selected for the proxy utility
function, the robot’s sequence of states will be unboundedly undesirable in the limit.

A reasonable question to ask here is what sort of utility and constraint functions lead to
overoptimization. Intuitively, overoptimization occurs when tradeoffs between different at-
tributes that may initially be worthwhile eventually become counterproductive. This suggest
either decreasing marginal utility or increasing opportunity cost in each attribute.

We combine these two ideas in a term we refer to as sensitivity. We define the sensitivity of

attribute i to be ∂U
∂φi

(
∂C
∂φi

)−1

. This is, to first order, how much utility changes by a normalized

change in a attribute’s value. Notice that since U and C are increasing functions, ∂U
∂φi

(
∂C
∂φi

)−1

is positive. The concepts of decreasing marginal utility and increasing opportunity cost both

get captured in this term if ∂U
∂φi

(
∂C
∂φi

)−1

decreases as φi increases.

Theorem 7. A sufficient condition for {φ ∈ Φ : U(φ) ≥ u} to be compact for all u ∈ R is
the following:

• ∂U
∂φi

(∂C
∂φi

)−1 is non-increasing and tends to 0 for all i

• U and C are both additively separable

• ∂C
∂φi
≥ η for some η > 0, for all i.

Proof. Let φ(0) ∈ Φ be a given state. We show that for all unit vectors v ∈ RM and for any
u ∈ R, there exists T such that for all t ≥ T , either φ(0) +vt is infeasible or U

(
φ(0) + vt

)
< u.

Notice that since C and U are additively separable, partial derivatives of C and U with
respect to φi depend only on the value of φi. First, note that

CHAPTER 3. MISALIGNMENT 39

C
(
φ(0) + vt

)
− C

(
φ(0)
)

=

∫ s+vt

φ(0)
∇C(s)ds

=
∑
i

vi

∫ t

0

∂C

∂φi

(
φ

(0)
i + viτ

)
dτ

If v has all non-negative components, then C →∞ as t→∞, so we break the feasibility
requirement. Thus, there exists negative components of v. Let j and k index v where vj > 0
and vk ≤ 0, respectively.

Since ∂U
∂φj

(
∂C
∂φj

)−1

→ 0 as φj → ∞, there exists some T > 0 where for all t > T ,

∂U
∂φk

(
∂C
∂φk

)−1 (
φ(0) + tv

)
> a > b > ∂U

∂φj

(
∂C
∂φj

)−1 (
φ(0) + tv

)
. Since C is upper-bounded for

feasible states, for fixed T , we can upper bound C
(
φ(0) + tv

)
−C

(
φ(0) + tv

)
by some constant

γ1.

γ1 ≥ C
(
φ(0) + tv

)
− C

(
φ(0) + Tv

)
(3.13)

=
∑
i

vi

∫ t

T

∂C

∂φi
(φ

(0)
i + viτ)dτ (3.14)

=
∑
j

vj

∫ t

T

∂C

∂φj
(φ

(0)
j + vjτ)dτ +

∑
k

vk

∫ t

T

∂C

∂φk
(φ

(0)
k + vkτ)dτ (3.15)

Furthermore, let γ2 = U
(
φ(0) + tv

)
. We now consider the utility at φ(0) + vt for t > T .

CHAPTER 3. MISALIGNMENT 40

U
(
φ(0) + tv

)
= U

(
φ(0) + tv

)
− U

(
φ(0) + tv

)
+ U

(
φ(0) + tv

)
(3.16)

= U
(
φ(0) + tv

)
− U

(
φ(0) + tv

)
+ γ2 (3.17)

= γ2 +
∑

vi

∫ t

T

∂U

∂φi

(
φ

(0)
i + viτ

)
dτ (3.18)

= γ2 +
∑

vi

∫ t

T

∂U

∂φi

(
∂C

∂φi

)−1
∂C

∂φi

(
φ

(0)
i + viτ

)
dτ (3.19)

= γ2 +
∑

vj

∫ t

T

∂U

∂φj

(
∂C

∂φj

)−1
∂C

∂φj
(φ

(0)
j + vjτ)dτ

+
∑

vk

∫ t

T

∂U

∂φk

(
∂C

∂φk

)−1
∂C

∂φk

(
φ

(0)
k + vkτ

)
dτ

(3.20)

≤ γ2 + b
∑

vj

∫ t

T

∂C

∂φj
(φ

(0)
j + vjτ)dτ

+ a
∑

vk

∫ t

T

∂C

∂φk

(
φ

(0)
k + vkτ

)
dτ

(3.21)

≤ γ2 + b(γ1 −
∑

vk

∫ t

T

∂C

∂φk

(
φ

(0)
i + viτ

)
dτ)

+ a
∑

vk

∫ t

T

∂C

∂φk

(
φ

(0)
i + viτ

)
dτ

(3.22)

= γ2 + bγ1 + (a− b)
∑

vk

∫ t

T

∂C

∂φk

(
φ

(0)
i + viτ

)
dτ (3.23)

≤ γ2 + bγ1 + (a− b)η(t− T)
∑

vk (3.24)

Note that a− b and η are both positive and
∑
vk is negative. Thus, for sufficiently large

t, γ2 + bγ1 + (a− b)η(t− T)
∑
vk can be arbitrarily low.

Together, these results describe sufficient conditions for eventual overoptimization of a
proxy objective. If the utility function has diminishing returns and the attributes of utility
have shared resources, then the benefit of diverting resources to the proxy attributes is
eventually outweighed by the utility lost. These conditions are fairly general and this aligns
with the ubiquity of overoptimization in practice.

Remark 3. The prevalence of incomplete incentive specifications is not an accident; it is
routine, predictable, and largely unavoidable. Optimal reward design in the presence of in-
completeness is thus a central task for AI alignment in the same sense that optimal incomplete
contract design is a central task for economics.

CHAPTER 3. MISALIGNMENT 41

3.3 Mitigating Overoptimization: Conservative

Optimization and Dynamic Incentive Protocols

Conservative Optimization

As shown above, simply giving a robot an individual objective function based on an incom-
plete attribute set and leaving it alone yields undesirable results. This suggests two possible
solutions:

1. Regularize the proxy objective to minimize impact ; or

2. Update the incentives dynamically to prevent overoptimization.

We consider a theoretical analysis of impact avoidance first and look at the interactive
solution in the following section.

The main idea behind impact minimization is that it may be possible to define generic
incentives to avoid changing the world (i.e., having a large impact). In our recommender
example, we can model this as a cost for changing unreferenced attributes. Thus, by including
incentives to avoid changing things too much, the system can safely increase proxy utility
with out running into the teeth of Theorem 6.

Analysis: An impact-minimizing robot

Notice that in our example, overoptimization occurs because the unmentioned attributes
are affected, eventually to a point where the change in utility from their decrease outweighs
the increase in utility from the proxy attributes. One idea to address this is to restrict the
robot’s impact on these unmentioned attributes. In the simplest case, we can consider how
optimization proceeds if the robot can somehow avoid affecting the unmentioned attributes.

We adjust our model so the optimization sequences keep unmentioned attributes constant.
Specifically, R optimizes the following

min
φ∈Φ

Ũ(φ)

subject to φK = φ
(0)
K

C (φ) ≤ 0

. (3.25)

Equation 3.25 introduces a constraint on the optimization sequences R can produce. For
every t ∈ R+ and k ∈ K, φ

(t)
k = φ

(0)
k . The robot then optimizes for the proxy utility, subject

to this restriction and the feasibility constraint from before. We work under the assumption
that {φ ∈ RM : C(φ) ≤ 0 and U(φ) ≥ u} is compact for all u ∈ R, the same assumption
that guarantees overoptimization in Section 3.2. Additionally, we assume that U and C are
both twice continuously differentiable with U concave and C convex.

CHAPTER 3. MISALIGNMENT 42

These additional constraints limit the reachable states and ensure that overoptimization
does not occur. Unmentioned attributes are no longer reduced to arbitrarily low values.
Optimizing the restricted proxy utility function leads to guaranteed utility increases.

Theorem 8. For a starting state φ(0), define the proxy utility function Ũ(φJ) = U(φJ , φ
(0)
K)

for any non-empty set of proxy attributes. For a state φ, if φK = φ
(0)
K , then U(φ) = Ũ(φJ).

Proof. φ = (φJ , φK) = (φJ , φ
(0)
K). Then U(φ) = U(φJ , φ

(0)
K) = Ũ(φJ).

As a result of Proposition 8, overoptimization no longer exists, using the Ũ(φJ) =

U(φJ , φ
(0)
K). If the robot only travels to states that do not impact the unmentioned at-

tributes, then the proxy utility is equal to the utility at those states. Hence, gains in proxy
utility equate to gains in utility.

This approach requires the robot to keep the values of unmentioned attributes constant.
Fundamentally, it is a difficult problem to require that a robot avoid or minimize impact on
a presumably large and unknown set of attributes. Initial research in impact minimization
[9, 11, 92, 169] attempts to do this by restricting changes to the overall state of the world,
but this will likely remain a challenging idea to implement robustly.

Dynamic Incentive Specification Protocols

One of the primary functions of external normative structure in contract theory is to ‘com-
plete the contract.’ That is, society has mechanisms to interpret and fill in the implied
terms of a contract, such as courts and social norms [67]. Adapting to this evolving norma-
tive context essentially requires constant iteration over a systems objectives. Furthermore,
the objectives used in deployed machine learning models are the subject of constant itera-
tion [158]. This suggests that it is interesting to study proxy optimization as an iterative
process between the robot and the human, instead of a one-shot setting. We consider this
possibility next. We augment our model to account for iteration on R’s incentives. Our
primary result identifies conditions for local incentive alignment. We present an algorithm
for selecting proxy features with the property that, locally, improvements in proxy utility
are reflected in the principal’s true utility.

Interaction Model

We now extend our model from Section 3.2 to account for regular intervention from H. We
model this as the possible transfer of a new proxy utility function from the human to the
robot at frequent, regular time intervals. Thus, H’s job is to determine, in addition to an
initial proxy attribute set and proxy utility function, when and how to change the proxy
attribute set and proxy utility function. The robot will then optimize for its new proxy
utility function. The difference between this (interactive) incentive design protocol and the
previous (static) model is shown in Figure 3.1.

CHAPTER 3. MISALIGNMENT 43

Let δ > 0 be a fixed value, the time between human interactions with the robot. These
regular interactions take the form of either stopping the robot, maintaining its proxy utility
function, or updating its proxy utility function. Formally, at every timestep T ∈ Z+,

1. Human sees φ(t) for t ∈ [0, T δ] and chooses either a proxy utility function Ũ (T) or Off

2. The robot receives either Ũ (T) or OFF from the human. The robot outputs rate
function f (T)(t). If the signal the robot receives is Off, then f (T) = ~0. Otherwise,
f (T)(t) fulfills the property that for t ∈ (Tδ,∞), Ũ (T)(φ(Tδ)+

∫ t
T δ
f (T)(u)du) is increasing

(if possible) and tends to sup
φ∈S
Ũ (T)(φ) through feasible states. Furthermore, if Ũ (T) =

Ũ (T−1), then f (T) = f (T−1)

3. For t ∈ [Tδ, (T + 1)δ], φ(t) = φ(Tδ) +
∫ t
T δ
f (T)(u)du

We see this game encompasses the original model. If we have each Ũ (T) equal the same
function Ũ , then the optimization sequence is equivalent to the situation where the human
just sets one unchanging proxy utility function.

Maintaining Local Alignment

Interaction removes the guarantee of overoptimization from Theorem 6 because the human
can shut the system down and prevent utility loss. We are now interested in how much
utility can the robot deliver before it needs to be turned off. We first show under a worst-
case analysis that, if a system’s only commitment is to produce proxy reward, then its robust
value to the principal is 0. We do this by considering the worst-case optimization sequence,
subject to the above constraints on utility generation.

Theorem 9. The maxmin solution yields 0 utility, obtained by immediately sending the Off
signal.

Proof. Suppose instead that the robot receives a proxy utility function based on set J of
attributes. Let j ∈ J and k ∈ K. Then let fj(t) = ε and fk(t) = −1/ε. If this robot is run
for any nonzero amount of time, then there exists sufficiently small ε > 0 where the utility
decreases.

This worst-case, however, is quite uninteresting. In this case, the rate function takes
resources away from unreferenced attributes but does not re-allocate them. We rule out
this case by imposing an efficiency condition on the optimizer. This forces the optimizer
to reallocate any resources that it takes away from an attribute. This allows unmentioned
attributes to be modified as a side effect of optimizing for proxy attributes, but prevents the
robot from destroying resources.

CHAPTER 3. MISALIGNMENT 44

Definition 17. (Efficiently Feasible)
We say that φ is efficiently feasible from state φ(0) with proxy set J if φ is feasible, and there
does not exist feasible φ′ with attribute ī ∈ K such that

Ũ(φ′J) ≥ Ũ(φJ) (3.26)

|φ′ī − φ
(0)

ī
| < |φi − φ(0)

i | (3.27)

|φ′i − φ(0)
i | ≤ |φi − φ(0)

i |,∀i ∈ K. (3.28)

Whenever the efficient robot receives a new proxy utility function, its movements are re-
stricted to the efficiently feasible states from its current state. While tradeoffs between proxy
and unmentioned attributes can still occur, “resources” freed up by decreasing unmentioned
attributes are entirely allocated to proxy attributes. This lets us guarantee local alignment
by ensuring that, on balance, proxy attributes are those to which we would like to allocate
resources. In this way, efficient tradeoffs between these proxy and unmentioned attributes
lead to positive utility gain, locally.

Theorem 10. Start with state φ(0). Define the proxy utility function Ũ(φJ) = U(φJ , φ
(0)
K)

where the set of proxy attributes are the attributes at state φ(0) with the strict J largest
sensitivities.

There exists a neighborhood around φ(0) where if φ is efficiently reachable and Ũ(φJ) >

Ũ(φ
(0)
J), then U (φ) > U(φ(0)).

Proof. For simplicity of notation, all derivatives in this proof, unless otherwise noted, are
evaluated at φ(0). For example, ∂C

∂φj
should be read as ∂C

∂φj
(φ(0)).

Since J represent the set of attributes with the strictly greatest sensitivities, there exists

constant δ, α > 0 be such that ∂U
∂φj

(
∂C
∂φj

)−1

> α+ 2δ for j ∈ J and ∂U
∂φk

(
∂C
∂φk

)−1

< α− 2δ for

k ∈ K. Let N1 be the neighborhood where ∂U
∂φj

(
∂C
∂φj

)−1

(φ) > α + δ and ∂U
∂φk

(
∂C
∂φk

)−1

(φ) <

α− δ for k ∈ K for all φ ∈ N1.
Here, we prove that C (φ)− C(φ(0)) ≥ 0 if φ is efficiently reachable. Suppose otherwise:

then there exists i where φi < φ
(0)
i . Let ei be the standard basis vector in dimension

i. However, then there exists ε > 0 where φ + εei is feasible, Ũ(φ + εei) ≥ Ũ (φ) , and
|(φi + ε)− φ(0)| < |φi − φ(0)|. This contradicts that φ is efficiently reachable.

Taking the Taylor expansion of the constraint function, we have

C (φ)− C(φ(0)) =
∑
i

(φi − φ(0)
i)

∂C

∂φi
+R1 (φ) max

i

(
φi − φ(0)

i

)2

=
∑
j∈J

(φj − φ(0)
j)

∂C

∂φj
+
∑
k∈K

(φk − φ(0)
k)

∂C

∂φk
+R1 (φ) max

i

(
φi − φ(0)

i

)2

,

where |R1| is bounded by constant A1. This implies that∑
j∈J

(φj − φ(0)
j)

∂C

∂φj
+
∑
k∈K

(φk − φ(0)
k)

∂C

∂φk
≥ −A1 max

i

(
φi − φ(0)

i

)2

. (3.29)

CHAPTER 3. MISALIGNMENT 45

From the definition of efficient optimization, we note two things. First, each φk−φ(0)
k ≤ 0

for k ∈ K. This is because if φk − φ(0)
k > 0, it is always more efficient, feasible, and has no

effect on proxy utility to reset φk to be equal to φ
(0)
k . Second, because of concavity,

0 < Ũ (φ)− Ũ
(
φ(0)
)
≤
∑
j∈J

(
φj − φ(0)

j

) ∂U
∂φj

. (3.30)

Now we actually analyze the change in utility from φ(0) to φ.

U (φ)− U(φ(0)) =
∑
j∈J

(
φj − φ(0)

j

) ∂U
∂φj

+
∑
k∈K

(
φk − φ(0)

k

) ∂U
∂φk

+R2 (φ) max
i

(
φi − φ(0)

i

)2

,

(3.31)
where |R2| is bounded by constant A2. Continuing,

U (φ)− U(φ(0)) ≥
∑
j∈J

(
φj − φ(0)

j

) ∂U
∂φj

+
∑
k∈K

(
φk − φ(0)

k

) ∂U
∂φk
− A2 max

i

(
φi − φ(0)

i

)2

(3.32)

=
∑
j∈J

(
φj − φ(0)

j

) ∂C
∂φj

(
∂U

∂φj

(
∂C

∂φj

)−1
)

+
∑
k∈K

(
φk − φ(0)

k

) ∂C
∂φk

(
∂U

∂φk

(
∂C

∂φk

)−1
)

− A2 max
i

(
φi − φ(0)

i

)2

(3.33)

> (α + δ)
∑
j∈J

(
φj − φ(0)

j

) ∂C
∂φj

+ (α− δ)
∑
k∈K

(
φk − φ(0)

k

) ∂C
∂φk
− A2 max

i

(
φi − φ(0)

i

)2

(3.34)

≥ (α + δ)
∑
j∈J

(
φj − φ(0)

j

) ∂C
∂φj
− (α− δ)(

∑
j∈J

(
φj − φ(0)

j

) ∂C
∂φk

+ A1 max
i

(
φi − φ(0)

i

)2

)− A2 max
i

(
φi − φ(0)

i

)2
(3.35)

= 2δ
∑
j∈J

(
φj − φ(0)

j

) ∂C
∂φj
− (A1(α− δ) + A2) max

i

(
φi − φ(0)

i

)2

(3.36)

The first term decreases linearly, whereas the second term decreases quadratically. Thus,
given δ and α, for φ sufficiently close to φ(0) and within N1, U (φ)− U(φ(0)) > 0

From Theorem 10, for every state where the Jmax + 1 most sensitive attributes are not
all equal, we can guarantee improvement under efficient optimization within a neighborhood
around the state. In particular, within this neighborhood, the set of the J most sensitive
attributes stays the same.

CHAPTER 3. MISALIGNMENT 46

This may be part of the reason why, in real life, optimization has a tendency to work
out well in the short term. Humans design objective functions that, under circumstances
close the current one, represent their desires fairly well. In it only when the world changes
sufficiently that these objective functions are misaligned with human desires.

Theorem 10 lets H construct a proxy utility function to use locally, with guaranteed
alignment. Once the sequence leaves this neighborhood, H either alters the proxy utility
function or halts the robot accordingly. Done repeatedly, H can string together these steps
for guaranteed overall improvement. By Theorem 10, as long as δ is sufficiently small relative
the rate of optimization, this can be run with guaranteed improvement until the top J + 1
attributes have equal sensitivities.

Proposition 1. At each timestep T , let J (T) be the J most sensitive attributes, and let
proxy utility Ũ (T)(φJ) = U(φJ , φ

(Tδ)
J).

If ||f || < ε and the εδ - ball around a given state φ is contained in the neighborhood from
Theorem 10, then interactive optimization yields guaranteed improvement.

Proof. Assume without loss of generality that we start at φ(0). Starting at time 0, for
t ∈ (0, δ], ||φ(t) − φ(0)|| = ||

∫ t
0
f (0)(u)du|| ≤ δε. Since the εδ ball around φ(0) is contained

in the neighborhood of guaranteed improvement, increases in proxy utility correspond to
increases in utility for the entirety of the time between interactions.

Based on this, we can guarantee that an efficient robot can provide benefit, as long as
the top Jmax + 1 attributes are not all equal in sensitivity and the robot rate of optimization
is bounded. Essentially, this rate restriction is a requirement that the robot not change the
world too quickly relative to the time that humans take to react to it.

Combining Impact Minimization and Dynamic Incentives

With either of the two methods mentioned above, we prove guaranteed improvement. How-
ever, one thing to consider is not just the existence, but the quantity of improvement.

We let φ∗ represent the optimal state according to H’s true utility function

φ∗ ∈ arg max
φ∈S

U (φ) . (3.37)

Unfortunately, with either of those two solutions alone, we do not guarantee that opti-
mization reaches an optimal state. The impact-minimizing approach is clearly restricted by
the inability to modify unmentioned attributes. The dynamic incentive scheme only guar-
antees that the top J sensitivities are equal when H sends the Offsignal. We can, however,
guarantee convergence to the optimal state by combining these methods. Since improvement
is guaranteed with any proxy utility function of the form Ũ(φJ) = U(φJ , φ

(0)
K), the goal is

to choose J (t) such that U(s(t))→ φ∗, the optimal state for the human.
In this case, since unmentioned attributes remain unchanged in each step of optimization,

we want to ensure that we promote tradeoffs between attributes with different levels of

CHAPTER 3. MISALIGNMENT 47

sensitivity. In effect, this identifies (at least) two attributes of utility for R: an insensitive
attribute that can provide resources for a small reduction in utility and a sensitive attribute
that will benefit highly from more resources allocated to it.

Proposition 2. Let J (T) consist of the most and least sensitive attributes at timestep T ,
breaking ties arbitrarily. Let Ũ (T)(φJ) = U(φJ , φ

(Tδ)
K). Then this solution converges to a (set

of) human-optimal state(s).

Proof. By the monotone convergence theorem, utility through the optimization process con-
verges to a maximum value. Any state φ∗ with this value must have the sensitivity of all
attributes equal, otherwise a proxy with two attributes of unequal sensitivity will cause in-
crease in utility above U(φ∗) in a finite amount of time. Similarly, C(φ∗) = 0, otherwise a
proxy with any two attributes respectively will do so as well.

Suppose ∂U
∂φi

(
∂C
∂φi

)−1

(φ∗) = α for all attributes i. We now proceed to show that U(φ∗) =

max
φ∈S
U(φ). Consider any other feasible state φ′. By convexity, it must be that

0 ≥ C(φ′)− C(φ∗)

≥
∑
i

(φ′i − φ∗i)
∂C

∂φi
(φ∗).

Now, considering the difference in utility between states φ′ and φ∗. By concavity, we
have

U(φ′)− U(φ∗) ≤
∑
i

(φ′i − φ∗i)
∂U
∂φi

(φ)

=
∑
i

(φ′i − φ∗i)
∂U

∂φi

(
∂C

∂φi

)−1
∂C

∂φi
(φ∗)

= α
∑
i

(φ′i − φ∗i)
∂C

∂φi
(φ∗)

≤ 0.

Thus, φ′ must have lower utility than φ∗. Since this applies for all feasible states, U(φ∗) =
max
φ∈S
U(φ).

48

Chapter 4

Uncertainty

In Chapter 3, we showed how misalignment between a human principal H and an autonomous
agent R can lead to large losses of utility for H. We highlighted the problems that missing
features specifically can lead to. Overall, this argues that industrial AI processes should
be designed to reduce the delay between identifying unexpected consequences and adjusting
system behavior. We showed that this dynamic incentive paradigm, potentially combined
with impact avoidance, can reliably steer the combined system R ◦H to an optimal state.

In our analysis, we did not model the interaction between the optimization system and
designer. Instead, the dynamic incentives protocol presumed the ability to stop the system
and arbitrarily modify its incentives. In this chapter, we will look at this interaction in
more depth. In Section 4.1, we will show that uncertainty plays a central role in creating
incentives for R to seek oversight. As a result, systems should be designed to be robust to
explicit and implicit uncertainty in their specification.

In Section 4.2, we propose Bayesian inverse reward design, which defines the problem of
inferring a distribution over the intended objective, encoded as H’s type θ, given a proxy
metric Ũ and a development environment. We show how this can be used to implement a risk-
averse optimization scheme that can effectively deal with incomplete specifications. Next,
we show how this can support a dynamic incentive scheme where R infers the distribution
over θ, given the full sequence of proxy utilities Ũ{1:T}. We present human subjects studies
that show that this can reduce the overall design effort needed and improve R’s performance
in held out environments.

First, we introduce notation for a general PoMdp formulation of an assistance problem.
This generalizes the supervision-PoMdp from Section 3.1 to allow H’s actions to impact the
world state. We model this by dividing each timestep into two turns, one for H and another
for R.

Definition 18. (Assistance-POMDP)

Let ER = 〈{S, PS},AR, TR〉 and EH = 〈{S, PS},AH, TH〉 be environments with a shared
state space. For a population model 〈Θ, Pθ, πH〉and parameterized utility model 〈Uθ, γ〉, the

CHAPTER 4. UNCERTAINTY 49

s(t) a
(t)
R

<latexit sha1_base64="RxH7Bmeit3iAKzpaCdjl0NNASio=">AAA2IXicnVtbc+O2FVbSW+reNu1jXzhVPLNJvR7LiSeZPMXrdUdu47Wt2E5mTa8GIiEJa94WhHwJw/yKvrYv/TV96/St0z/TA5CgCBxQcroz2aWA71wAHOBcgEyyiOViZ+c/77z7ox//5Kc/e+/nG7/45a9+/Zsn7//2Mk8XPKAXQRql/JsJyWnEEnohmIjoNxmnJJ5E9OvJzYHs//qW8pylybl4yOh1TGYJm7KACGh65Yu88EckEOX4SX9ne0f98fDHoP7o9+o/p+P3997xwzRYxDQRQUTy/Gqwk4nrgnDBgoiWG/4ipxkJbsiMXsFnQmKaXxdK5dLbhJbQm6Yc/kuEp1rbFAWJ8/whngAyJmKe232y0dV3tRDTz64LlmQLQZOgEjRdRJ5IPTl+L2ScBiJ6gA8ScAa6esGccJgCmKUNQ8yMk2zOgvvSKdyprd0o5rHZJklFmka52XxfTQvIf0FhMjk9BtxJRjkRKf+o8AmfxeS+hMmd+VvyaxWQJRoIX8AyoXdiTlNO40LqU5xXP0qrp2pseq8Ae21AAtCwOEh5GoHgBwcg42lWFqfwd5ozaV8l6tYdBupK9pisIqnKlzSOickjpFMgfkGnLHFIUAMY0ZjwG7Nj/gCKDR+yFBpyBpO/selzCoAgBRFJWPiC3ouACVpeDa4LX36RhZinvOgPyu/Vb/lVT2dDldOA06migU+p0PfAd1pBTaTG1TQOCMynBtWL0MWMvk008vDtgqySSxu5FZEDMmUzDfoTmy047eIFi6KBamm6cLChMg2U37C1uqByPTV0uaqdjFOuwY0ddmEFmTSzSeA47MKBaWjc0kBaYBNNWFnZSh4U8A3d1jILImgO25oCjiY5zKbc8oUv/w5IVHxVIsuQJCY6tzHnIbgCE3OOMG9SlliginDsj9JJKjwwYx54um24ADqnoKwyGPXtZ445WwgWMfHQMcQLNMQaX/Otfzk5w0lwb/NNpQOjAmaKwfZW3E2ioTzZXZMO20gQtUg2hRo7Vn8yLYZIe/ANq1Z030Wgzrg2nCD75OSNxVGQhY0adgjXzWM9FhchpgG1OhZ+6NIHmjrgWRqxwF6ojCGubpxq7OCcZmIF0euPkIgugmEnhWPHVbtwqZJlL5M0Et9aFJPKtgwcS25d0CnEF8Wg1HxsKtW6bhgtYof12ys3dyg3lBvPAtZ7cbyCot61hk6yvd6/aAaYwIfV6dg4GrHxwRBcVPXg0Hqo88y9f0eI+2j9Hqr4uQg79lBNYOFXGJabYOX2cJN02cmoZe7WbMVhBqHgIucmyTGEIkJ1eM2Jjt0zWUQQSd9a0iKSzCLq+e1l3fKa1fdL+KHnd6t2OZ7PFVWHEId1aim1dsBoRoCoi9GUklVclNUCDwnL1/Gqlcoewe9RfGRk7ObSOK8tz1vuBOBb7/w1nGFx3ZwPt7yLNbTpJI/TkHYNELr1AsKntYQmwzOTxZkt8CxjlpCz19qJ2NC5jRzLuIAlActIhDbppYm+RP1I8mW3ZMdRerY8hEy+LvBlJxgDW0OyJvPQBB9Kbma2cmIiTrB7to3iFPnmCxNxYfefYCYnY8UZHTAivy+vdk0n0R+8Lp72dz9ECyZy+ra8+hij/aK/+3n/Y79EJN9SnlZeCCRJr1PsYK4mAB2cIk8TamH+iLMGiRIaRt8qXM3ORkIajjxjVnHXQT1Qw+ZRLTooVD4TSSVlxdGhd7pKDuzLx0tJlZS0Q4paFmsRqzlopMACVZJkY0uUbHdNkNa8e1aqMLXVMNINjjmqJ8mpPzQ3A8i03kt5huaNUKN11G5Fo4HUKVqmfgfyl6VCdRDXgOMwQ5FRm8ERpp+QB0g9G1DxXP5+5jskZakh61T9RCd80IZBch08qwlREQPifJERJsODrAk4YV5G7mMSIhCbpAlKJNUyQnF7nXoqf2g40QrkpHPU36rvvHaZhelPl+5Uoi46vZd2dB0Z3gkyRrUh2tjUgXCHwVrWd1ZAbJJzGftNaMTotEOp52VHhNgirUP3VotOui3TjA1bOYqZUEWlUpuMZTAG+qtFRvkty7vxxCTYz3OYGZLAuN34mExaOwl+2P2m/R87rZqFNBHuIgVkCUdoSUMGSZoFhtDIleOFsnyecnwqK+YTYO5HdCqu+gOfs9lcXKOi3H1GA9FJf/g4+hm7pQk+si0m6u9tzeq7/m4Hz1vSMSAeF5fQ16R7Vk2QT7i0YEUqRYEXr2X5COxIJSXJU68/8CqaD221XsglcNCp9g6dlhMj+UoJ33n93VrCtl3UbE2jmqqlMpLKPnrdk34qT0HVtXQgOEpKwyqKKTc23R3KosE6fXUdUHAalucnL07Kz3XLJFpQ7R1NHkwz2XA3V1Jk1WLGkoIJGrNvaanGSgGoG6TWm5teROC42PLknc2WN0nDB1y1lTmhiuIqjqowX7GLs3kV+fm+5ycp7BfYiV7/40qSAkopWghmT98q5oOGOa2L3Et9mxZ77VVyZyfUcxT8KpjjyD/FUCIEZ5PFsqy7pLXNm88qrZtB6wXtD7ZxRJHGWZAqF6H+saa41Y1KSWFZhF5dD/KWjKTFbW6mE/B4FE5XD+yHTnO71rSyetAcquc0ojLUR7MR2qUAtRPBsanyc/6QgyXhChfhmBAaa+pyDTmn9jxMHUGJDEZawQfuz1YBeAY6xtJ0qgzOuiVoZm3optbG0apFIwXmUoFhlwLzuiZdlSAdPr3UdSqLrgozVP3WjkEeHdAk6dxO9gSLQrocL67U6/TVrTKZ0aSlsrTM5g98H7OcRGyWyOtjbahthBXwTqhlsTKUqk31RHYi/WJM48eLtVQRfdz+OJZhJNrTCUxEc1xY1TY05YvYcdvxZ7R1DsrGpx+gztGyc4Q6Xy07X6HOs2UnqtZMXi47X6Lgo1TBAs1yFqVo1fXo7WNLHcvoOs/e1miAaoZyKsql8aIZUpia13lltPVxiGFt/ZrvcUuOi8h93VXvj6ZyioLY+9YK68/XqsPGyrjDHORfXJAu5VtEDqp6ZuQtmnwl4p6cht2Na+HGN514u7hW4budqH3HVOHfdOJjJz7GSSyAmGC31TopL+ln8i0KiTxZ6dLfbc09GbWZ0IMOaPm6eIbv9Jcy3zxS6JvHC32zVujNI4XePF7oTSPU4ZzAc7GY2Ll7Q1tdPZgeaDpd5mknU+S1J0S+xmiyMlQ35ap+My3NhzmQPAY3NIHI0Hayi4nOYhRmAVEYvxps78qHSR/0Bx+AKL6IaLH9Gb0vi+2dT/fgXxU3tZ2P6ak80PvZV3dMBHNvhBxVl8vKFcG68RMmU866kmZ1JXbmv2SJ7pst6N1TyRnlUhwmhXcEOCQPHy0uQdgokc8LuilkLDBR9wztwgaKLO1xNLGlHKHN9FQVoTojMmAn1dSjts91NYSaUm4OJyrM0EjDVKiLbuNO4nV7tlrckL/j8vHZGpdHtVSV5NdKoEpaDrETtS709DZ6UZZlp0U3dg2WfTR6sdKk3cEY+DFX6mQ802jHwXaqqqzBde800stRZdJ+EKqgl0uJW94hdrFJas3AIYJIWsAchvQW5Nkhf9Vp5Ipth2/h7xx483HKHdLxTvCFNVPFnTwpbV1qnBZtzTmrRY+ctg4JrkO1OhaqQy/7SqWT4BXC1pPnDH/wqjAetuvcyHa7ln9/XKc57qpxp9WoopMuIDfGuSxf18WcVu13hbHL8/4IvEbmPWZrWPUd+YSiXsZq2R399bRXpmT1c8KS6qpdm+vaTexVxVTYL8+O95//H5tZJb3rcleF6nAccArau/AUpTqEx1Y6hAJcgJgIHHPyWCW66p5LopGpxBS/6kJPqiTIjnJlGw5y1bBtqJqDsVLAhi+iyBoleqSnMDZL1egQr7B2AahqfYorpXIMeqHQ2OoldJDUMYFN4Qjm2hUak4C3nxfO9RMqq4Qz49Qei6wA4fc6FfTclqFaHeMmw7K+0rPbG2upLvyQuRzjDN1yxeg9ZeVhvSG+FJimbuiR836mUq1w3+AQmdWr60j79ana7Mb1iLH/8eEmf3kHR6MvO44G66iVwbE5jFsUdlXRanNmNI+rnDD30pw6BFXCzWcRJlH9QnHoqHTtN9JGWNq+qfGoQ+N9HU82PtaO3lIeskTd/DjDrgNkyQeapet5V5ufXdIjwkkK7c3TS5uBw8k+Xxdx1yBtjG2kC/qywd5bN5SOlxSJoxL/ctwUgkzwaK0LGjXl2Xae47oY4yKksbIFdeOxyEJIIj0xZ7kn94ybxL2iOLg5dK4oG2s2tkunJJh3henniPv5KnvRvOzwSG6bQ/deapSysm4KcmCWjTunSXPFt9GdDttHy6Z3OJ2ygMki7opTxkVtqjRcdJSRR6W76j2s7mbNs6rjSTGJsjm5pfbtrmp2YiG5iokLDUxkrqe6gXL8pD+w/xcp/HG5uz34ZPuTs0/6Xzyv//ep93q/7/2h97Q36H3a+6I37J32LnpBL+n9tfe33t/3/rH3z71/7f27gr77Tk3zu57xZ++//wOMHyxF</latexit>

B(t)
R

<latexit sha1_base64="42R4nQU7NsGDO5f9DMXtx7UXDeo=">AAA2KnicnVtbc+O2FVbSW+reNu1jXzhVPLNJvR7LiSeZPMXrdUdu47Wt2E5mTa8GIiEJa94WhHwJw/yTvrYv/TV9y/S1P6QHIEEROKDkdGeySwHfuQA4wLkAmWQRy8XOzg/vvPuTn/7s579475cbv/r1b377uyfv//4yTxc8oBdBGqX8mwnJacQSeiGYiOg3GacknkT068nNgez/+pbynKXJuXjI6HVMZgmbsoAIaBo/ed8XeeHzdJKKCTCh03L8pL+zvaP+ePhjUH/0e/Wf0/H7e+/4YRosYpqIICJ5fjXYycR1QbhgQUTLDX+R04wEN2RGr+AzITHNrwule+ltQkvoTVMO/yXCU61tioLEef4QTwAZEzHP7T7Z6Oq7WojpZ9cFS7KFoElQCZouIk+knpwIL2ScBiJ6gA8ScAa6esGccBIImK4NQ8yMk2zOgvvSKdyprd0o5rHZJklFmka52XxfTQvIf0FhMjk9BtxJRjkRKf+o8AmfxeS+hMmd+VvyaxWQJRoIX8AyoXdiTlNO40LqU5xXP0qrp2pseq8Ae21AAtCwOEh5GoHgBwcg42lWFqfwd5ozaWgl6tYdBupK9pisIqnKlzSOickjpFMgfkGnLHFIUAMY0ZjwG7Nj/gCKDR+yFBpyBpO/selzCoAgBRFJWPiC3ouACVpeDa4LX36RhZinvOgPyu/Vb/lVT2dDldOAw+aRNPApFfoe+E4rqInUuJrGAYH51KB6EbqY0beJRh6+XZBVcmkjtyJyQKZspkF/YbMFp128YFE0UC1NFw42VKaB8hu2VhdUrqeGLle1k3HKNbixwy6sIJNmNgmci104MA2NWxpIC2yiCSsrW8mDAr6h21pmQQTNYVtTwNEkh9mUW77w5d8BiYqvSmQZksRE5zbmPASfYGLOEeZNyhILVBGO/ZE86T0wYx54um24ADqnoKwyGPXtZ445WwgWMfHQMcQLNMQaX/Otfzk5w0lwb/NNpSejAmaKwfZW3E2ioTzZXZMO20gQtUg2hRo7Vn8yLYZIe/ANq1Z030Wgzrg2nCD75OSNxVGQhY0adgjXzWM9FhchppHO373wQ5c+0NQBz9KIBfZCZQxxdeNUYwfnNBMriF5/hER0EQw7KRw7rtqFS5Use5mkkfjWophUtmXgWHLrgk4hvigGpeZjU6nWdcNoETus3165uUO5odx4FrDei+MVFPWuNXSS7fX+RTPABD6sTsfG0YiND4bgoqoHh9ZDnWfu/TtC3Efr91DFz0XYsYdqAgu/wrDcBCu3h5uky05GLXO3ZisOMwgFFzk3SY4hFBGqw2tOdOyeySKCSPrWkhaRZBZRz28v65bXrL5fwg89v1u1y/F8rqg6hDisU0uptQNGMwJEXYymlKzioqwWeEhYvo5XrVT2CH6P4iMjYzeXxnlted5yJwDfeuev4QyL6+Z8uOVdrKFNJ3mchrRrgNCtFxA+rSU0GZ6ZLM5sgWcZs4ScvdZOxIbObeRYxgUsCVhGIrRJL030JepHki+7JTuO0rPlIWTydYEvO8EY2BqSNZmHJvhQcjOzlRMTcYLds20Up8g3X5iIC7v/BDM5GSvO6IAR+X15tWs6if7gdfG0v/shWjCR07fl1ccY7Rf93c/7H/slIvmW8rTyQiBJep1iB3M1AejgFHmaUAvzZ5w1SJTQMPpW4Wp2NhLScOQZs4q7DuqBGjaPatFBofKZSCopK44OvdNVcmBfPl5KqqSkHVLUsliLWM1BIwUWqJIkG1uiZLtrgrTm3bNShamthpFucMxRPUlO/aG5GUCm9V7KMzRvhBqto3YrGg2kTtEy9TuQvywVqoO4BhyHGYqM2gyOMP2EPEDq2YCK5/L3M98hKUsNWafqJzrhgzYMkuvgWU2IihgQ54uMMBkeZE3ACfMych+TEIHYJE1QIqmWEYrb69RT+WPDiVYgJ52j/lZ957XLLEx/unSnEnXR6b20o+vI8E6QMaoN0camDoQ7DNayvrMCYpO8XZp1K/W87IgQW6R16N5q0Um3ZZqxYStHMROqqFRqk7EMxkB/tcgov2V5N56YBPt5DjNDEhi3Gx+TSWsnwQ+737T/Y6dVs5Amwl2kgCzhCC1pyCBJs8AQGrlyvFDW0VOOT2XFfALM/YhOxVV/4HM2m4trVJS7z2ggOukPH0c/Y7c0wUe2xUT9va1Zfdff7eB5SzoGxOPiEvqadM+qCfIJlxasSKUo8OK1LB+BHamkJHnq9QdeRfOhrdYLuQQOOtXeodNyYiRfKeE7r79bS9i2i5qtaVRTtVRGUtlHr3vST+UpqLqWDgRHSWlYRTHlxqa7Q1k0WKevrgMKTsPy/OTFSfm5bplEC6q9o8mDaSYb7uZKiqxazFhSMEFj9i0t1VgpAHWD1Hpz04sIHBdbnryz2fImafiAq7YyJ1RRXMVRFeYrdnE2ryI/3/f8JIX9AjvR639cSVJAKUULwezpW8V80DCndZF7qW/TYq+9Su7shHqOgl8Fcxz5pxhKhOBssliWdZe0tnnzWaV1M2i9oP3BNo4o0jgLUuUi1D/WFLe6USkpLIvQq+tB3pKRtLjNzXQCHo/C6eqB/dBpbteaVlYPmkP1nEZUhvpoNkK7FKB2Ijg2VX7OH3KwJFzhIhwTQmNNXa4h59Seh6kjKJHBSCv4wP3ZKgDPQMdYmk6VwVm3BM2sDd3U2jhatWikwFwqMOxSYF7XpKsSpMOnl7pOZdFVYYaq39oxyKMDmiSd28meYFFIl+PFlXqdvrpVJjOatFSWltn8ge9jlpOIzRJ5fawNtY2wAt4JtSxWhlK1qZ7ITqRfjGn8eLGWKqKP2x/HMoxEezqBiWiOC6vahqZ8ETtuO/6Kts5B2fj0A9Q5WnaOUOerZecr1Hm27ETVmsnLZedLFHyUKligWc6iFK26Hr19bKljGV3n2dsaDVDNUE5FuTReNEMKU/M6r4y2Pg4xrK1f8z1uyXERua+76v3RVE5REHvfWmH9+Vp12FgZd5iD/JsL0qV8i8hBVc+MvEWTz0Xck9Owu3Et3PimE28X1yp8txO175gq/JtOfOzExziJBRAT7LZaJ+Ul/Uy+RSGRJytd+rutuSejNhN60AEtXxfP8J3+UuabRwp983ihb9YKvXmk0JvHC71phDqcE3guFhM7d29oq6sH0wNNp8s87WSKvPaEyNcYTVaG6qZc1W+mpfkwB5LH4IYmEBnaTnYx0VmMwiwgCuNXg+1d+TDpg/7gAxDFFxEttj+j92WxvfPpHvyr4qa28zE9lQd6P/vqjolg7o2Qo+pyWbkiWDd+wmTKWVfSrK7EzvyXLNF9swW9eyo5o1yKw6TwjgCH5OGjxSUIGyXyeUE3hYwFJuqeoV3YQJGlPY4mtpQjtJmeqiJUZ0QG7KSaetT2ua6GUFPKzeFEhRkaaZgKddFt3Em8bs9Wixvyd1w+Plvj8qiWqpL8WglUScshdqLWhZ7eRi/Ksuy06MauwbKPRi9WmrQ7GAM/5kqdjGca7TjYTlWVNbjunUZ6OapM2g9CFfRyKXHLO8QuNkmtGThEEEkLmMOQ3oI8O+SvOo1cse3wLfydA28+TrlDOt4JvrBmqriTJ6WtS43Toq05Z7XokdPWIcF1qFbHQnXoZV+pdBK8Qth68pzhD14VxsN2nRvZbtfy74/rNMddNe60GlV00gXkxjiX5eu6mNOq/a4wdnneH4HXyLzHbA2rviOfUNTLWC27o7+e9sqUrH5OWFJdtWtzXbuJvaqYCvvl2fH+8/9jM6ukd13uqlAdjgNOQXsXnqJUh/DYSodQgAsQE4FjTh6rRFfdc0k0MpWY4ldd6EmVBNlRrmzDQa4atg1VczBWCtjwRRRZo0SP9BTGZqkaHeIV1i4AVa1PcaVUjkEvFBpbvYQOkjomsCkcwVy7QmMS8Pbzwrl+QmWVcGac2mORFSD8XqeCntsyVKtj3GRY1ld6dntjLdWFHzKXY5yhW64YvaesPKw3xJcC09QNPXLez1SqFe4bHCKzenUdab8+VZvduB4x9j8+3OQv7+Bo9GXH0WAdtTI4Nodxi8KuKlptzozmcZUT5l6aU4egSrj5LMIkql8oDh2Vrv1G2ghL2zc1HnVovK/jycbH2tFbykOWqJsfZ9h1gCz5QLN0Pe9q87NLekQ4SaG9eXppM3A42efrIu4apI2xjXRBXzbYe+uG0vGSInFU4l+Om0KQCR6tdUGjpjzbznNcF2NchDRWtqBuPBZZCEmkJ+Ys9+SecZO4VxQHN4fOFWVjzcZ26ZQE864w/RxxP19lL5qXHR7JbXPo3kuNUlbWTUEOzLJx5zRprvg2utNh+2jZ9A6nUxYwWcRdccq4qE2VhouOMvKodFe9h9XdrHlWdTwpJlE2J7fUvt1VzU4sJFcxcaGBicz1VDdQjp/0B/b/IoU/Lne3B59sf3L2Sf+L5/X/PvVe74+9P/We9ga9T3tf9Ia9095FL+jd9f7e+0fvn3v/2vv33g97/6mg775T0/yhZ/zZ++//ALP6L78=</latexit>

✓

<latexit sha1_base64="l1Z+Sn4s2T/ha1RnRXFTbmkFLb0=">AAA2HXicnVtbc+O2FVbSW+rekvaxL5wqntmkXo/lxJNMnuL1uiO38dpWbCcT06uBSEiCzduCkC9hmN/Q1/alv6Zvnb52+m96ABIUgQNKTncmuxTwnQuAA5wLkEkWsVzs7Pz3rbd/9OOf/PRn7/x84xe//NWvf/Pue7+9zNMFD+hFkEYp/3pCchqxhF4IJiL6dcYpiScR/WpyeyD7v7qjPGdpci4eM3odk1nCpiwgApou/aFsHL/b39neUX88/DGoP/q9+s/p+L29t/wwDRYxTUQQkTy/Guxk4rogXLAgouWGv8hpRoJbMqNX8JmQmObXhVK39DahJfSmKYf/EuGp1jZFQeI8f4wngIyJmOd2n2x09V0txPTT64Il2ULQJKgETReRJ1JPDtMLGaeBiB7hgwScga5eMCecBAJmaMMQM+Mkm7PgoXQKd2prN4p5bLZJUpGmUW42P1TTAvJfUphMTo8Bd5JRTkTKPyx8wmcxeShhcmf+lvxaBWSJBsIXsEzovZjTlNO4kPoU59WP0uqpGpveK8BeG5AANCwOUp5GIPjRAch4mpXFKfyd5kzaVom6dYeBupI9JqtIqvIFjWNi8gjpFIhf0ilLHBLUAEY0JvzW7Jg/gmLDxyyFhpzB5G9s+pwCIEhBRBIWvqAPImCClleD68KXX2Qh5ikv+oPye/VbftXT2VDlNOB0qmjgUyr0PfCdVlATqXE1jQMC86lB9SJ0MaNvEo08fLMgq+TSRm5F5IBM2UyD/sRmC067eMGiaKBami4cbKhMA+U3bK0uqFxPDV2uaifjlGtwY4ddWEEmzWwSOAq7cGAaGrc0kBbYRBNWVraSBwV8Q7e1zIIImsO2poCjSQ6zKbd84cu/AxIVX5bIMiSJic5tzHkIbsDEnCPMTcoSC1QRjv1ROkmFB2bMA0+3DRdA5xSUVQajvv3MMWcLwSImHjuGeIGGWONrvvUvJ2c4CR5svql0XlTATDHY3oq7SaQcmGvSYRsJohbJplBjx+pPpsUQaQ++YdWK7rsI1BnXhhNkn5zcWBwFWdioYYdw3TzWY3ERYhpQq2Phhy59oKkDnqURC+yFyhji6sapxg7OaSZWEL3+EInoIhh2Ujh2XLULlypZ9jJJI/GtRTGpbMvAseTOBZ1CfFEMSs3HplKt64bRInZYv71yc4dyQ7nxLGC9F8crKOpda+gk2+v9i2aACXxYnY6NoxEbHwzBRVUPDq2HOs/c+3eEuI/W76GKn4uwYw/VBBZ+hWG5CVZuDzdJl52MWuZuzVYcZhAKLnJukhxDKCJUh9ec6Ng9k0UEkfSdJS0iySyint9e1i2vWX2/hB96frdql+P5XFF1CHFYp5ZSaweMZgSIuhhNKVnFRVkt8JCwfB2vWqnsCfyexEdGxm4ujfPa8rzlTgC+9c5fwxkW1835cMu7WEObTvI4DWnXAKFbLyB8WktoMjwzWZzZAs8yZgk5e62diA2d28ixjAtYErCMRGiTXproS9SPJF92S3YcpWfLQ8jk6wJfdoIxsDUkazIPTfCh5GZmKycm4gS7Z9soTpFvvjARF3b/CWZyMlac0QEj8ofyatd0Ev3B6+JZf/cDtGAip2/Kq48w2i/6u5/1P/JLRPIt5WnlhUCS9DrFDuZqAtDBKfI0oRbmjzhrkCihYfSNwtXsbCSk4cgzZhV3HdQDNWwe1aKDQuUzkVRSVhwdeqer5MC+fLqUVElJO6SoZbEWsZqDRgosUCVJNrZEyXbXBGnNu2elClNbDSPd4JijepKc+kNzM4BM672UZ2jeCDVaR+1WNBpInaJl6ncgf1kqVAdxDTgOMxQZtRkcYfoJeYTUswEVL+Tv575DUpYask7VT3TCB20YJNfB85oQFTEgzhcZYTI8yJqAE+Zl5D4mIQKxSZqgRFItIxS316mn8oeGE61ATjpH/a36zmuXWZj+dOlOJeqi03tpR9eR4Z0gY1Qboo1NHQh3GKxlfWcFxCY5l7HfhEaMTjuUelF2RIgt0jp0b7XopNsyzdiwlaOYCVVUKrXJWAZjoL9cZJTfsbwbT0yC/TyHmSEJjNuNj8mktZPgh91v2v+x06pZSBPhLlJAlnCEljRkkKRZYAiNXDleKEvnKcensmI+AeZ+RKfiqj/wOZvNxTUqyj1kNBCd9IdPo5+xO5rgI9tiov7e1qy+6+928LwjHQPicXEJfU26Z9UE+YRLC1akUhR48VqWj8COVFKSPPP6A6+i+cBW66VcAgedau/QaTkxkq+U8J3X360lbNtFzdY0qqlaKiOp7KPXPemn8hRUXUsHgqOkNKyimHJj092hLBqs01fXAQWnYXl+8vKk/Ey3TKIF1d7R5ME0kw13cyVFVi1mLCmYoDH7lpZqrBSAukFqvbnpRQSOiy1P3tlseZM0fMRVW5kTqiiu4qgK8xW7OJtXkZ/ve36Swn6Bnej1P6okKaCUooVg9vSNYj5omNO6yL3Ut2mx114ld3ZCPUfBr4I5jvxTDCVCcDZZLMu6S1rbvPms0roZtF7Q/mAbRxRpnAWpchHqH2uKW92olBSWRejV9SBvyUha3OZmOgGPR+F09cB+6DS3a00rqwfNoXpOIypDfTQboV0KUDsRHJsqP+ePOVgSrnARjgmhsaYu15Bzas/D1BGUyGCkFXzg/mwVgGegYyxNp8rgrFuCZtaGbmptHK1aNFJgLhUYdikwr2vSVQnS4dNLXaey6KowQ9Vv7RjkyQFNks7tZE+wKKTL8eJKvU5f3SqTGU1aKkvLbP7A9zHLScRmibw+1obaRlgB74RaFitDqdpUT2Qn0i/GNH68WEsV0aftj2MZRqI9ncBENMeFVW1DU76IHbcdf0Zb56BsfPoB6hwtO0eo85tl5zeo82zZiao1k1fLzlco+ChVsECznEUpWnU9evvYUscyus6ztzUaoJqhnIpyabxohhSm5nVeGW19HGJYW7/me9yS4yJyX3fV+6OpnKIg9qG1wvrzteqwsTLuMAf5FxekS/kWkYOqnhl5iyZfiLgnp2F361q48W0n3i6uVfhuJ2rfMVX4m0587MTHOIkFEBPsrlon5SX9TL5FIZEnK136u625J6M2E3rQAS1fF8/xnf5S5s0Thd48XejNWqG3TxR6+3Sht41Qh3MCz8ViYufuDW119WB6oOl0maedTJHXnhD5GqPJylDdlKv6zbQ0H+ZA8hjc0gQiQ9vJLiY6i1GYBURh/GqwvSsfJr3fH7wPovgiosX2p/ShLLZ3PtmDf1Xc1HY+pqfyQO/nX94zEcy9EXJUXS4rVwTrxk+YTDnrSprVldiZ/5Ilum+2oPfPJGeUS3GYFN4R4JA8fLK4BGGjRD4v6KaQscBE3TO0CxsosrTH0cSWcoQ201NVhOqMyICdVFOP2j7X1RBqSrk5nKgwQyMNU6Euuo07idft2WpxQ/6Oy8dna1we1VJVkl8rgSppOcRO1LrQ09voZVmWnRbd2DVY9tHo5UqTdgdj4MdcqZPxTKMdB9upqrIG173TSC9HlUn7QaiCXi4lbnmH2MUmqTUDhwgiaQFzGNI7kGeH/FWnkSu2Hb6Fv3fgzccp90jHe8EX1kwV9/KktHWpcVq0NeesFj1y2jokuA7V6lioDr3sK5VOgm8Qtp48Z/iDV4XxsF3nRrbbtfz74zrNcVeNO61GFZ10AbkxzmX5ui7mtGq/K4xdnvdH4DUy7ylbw6rvyCcU9TJWy+7or6e9MiWrnxOWVFft2lzXbmKvKqbCfnl+vP/i/9jMKuldl7sqVIfjgFPQ3oWnKNUhPLbSIRTgAsRE4JiTxyrRVfdcEo1MJab4VRd6UiVBdpQr23CQq4ZtQ6vX0koBG76IImuU6JGewtgsVaNDvMLaBaCq9RmulMox6IVCY6uX0EFSxwQ2hSOYa1doTALefl4410+orBLOjFN7LLIChN/rVNBzW4ZqdYybDMv6Ss9ub6yluvBD5nKMM3TLFaP3lJWH9Yb4UmCauqFHzvuZSrXCfYNDZFavriPt16dqsxvXI8b+x4eb/OUdHI2+6DgarKNWBsfmMO5Q2FVFq82Z0TyucsLcS3PqEFQJN59FmET1C8Who9K130gbYWn7psajDo33dTzZ+Fg7ekt5yBJ18+MMuw6QJR9olq7nXW1+dkmPCCcptDdPL20GDif7Yl3EXYO0MbaRLuirBvtg3VA6XlIkjkr8q3FTCDLBo7UuaNSUZ9t5jutijIuQxsoW1I3HIgshifTEnOWe3DNuEveK4uDm0LmibKzZ2C6dkmDeFaafI+7nq+xF87LDI7ltDt17qVHKyropyIFZNu6cJs0V30Z3OmwfLZve4XTKAiaLuCtOGRe1qdJw0VFGHpXuqvewups1z6qOJ8Ukyubkjtq3u6rZiYXkKiYuNDCRuZ7qBsrxu/2B/b9I4Y/L3e3Bx9sfn33c//xF/b9PvdP7fe8PvWe9Qe+T3ue9Ye+0d9ELeje9v/b+1vv73j/2/rn3r71/V9C336ppftcz/uz9538m8ypi</latexit>

s′

a
(t)
H

<latexit sha1_base64="YBpKLxQwYFJSBDEBdVi8UCMzSEM=">AAA2JXicnVtbbyO3FVbSW+rekvaxL4MqBjap17CcGAnyFK/XhdzGa1uxnSAeW6BmKInruS2H8iWTye/oa/vSX9O3okCf+ld6yBmOhjwcyekC2R2R37mQPOS5kJlkEcvFzs5/3nr7Rz/+yU9/9s7PN37xy1/9+jfvvvfbyzxd8IBeBGmU8q8nJKcRS+iFYCKiX2eckngS0a8mtwey/6s7ynOWJufiMaPXMZklbMoCIqDpxhf5Q+EPSSDKQpTjd/s72zvqj4c/BvVHv1f/OR2/t/eWH6bBIqaJCCKS51eDnUxcF4QLFkS03PAXOc1IcEtm9Ao+ExLT/LpQapfeJrSE3jTl8F8iPNXapihInOeP8QSQMRHz3O6Tja6+q4WYfnpdsCRbCJoElaDpIvJE6sk58ELGaSCiR/ggAWegqxfMCYdZgJnaMMTMOMnmLHgoncKd2tqNYh6bbZJUpGmUm80P1bSA/JcUJpPTY8CdZJQTkfIPC5/wWUweSpjcmb8lv1YBWaKB8AUsE3ov5jTlNC6kPsV59aO0eqrGpvcKsNcGJAANi4OUpxEIfnQAMp5mZXEKf6c5kzZWom7dYaCuZI/JKpKqfEHjmJg8QjoF4pd0yhKHBDWAEY0JvzU75o+g2PAxS6EhZzD5G5s+pwAIUhCRhIUv6IMImKDl1eC68OUXWYh5yov+oPxe/ZZf9XQ2VDkNOJ0qGviUCn0PfKcV1ERqXE3jgMB8alC9CF3M6JtEIw/fLMgqubSRWxE5IFM206A/sdmC0y5esCgaqJamCwcbKtNA+Q1bqwsq11NDl6vayTjlGtzYYRdWkEkzmwSOxC4cmIbGLQ2kBTbRhJWVreRBAd/QbS2zIILmsK0p4GiSw2zKLV/48u+ARMWXJbIMSWKicxtzHoI7MDHnCPM6ZYkFqgjH/iidpMIDM+aBp9uGC6BzCsoqg1HffuaYs4VgEROPHUO8QEOs8TXf+peTM5wEDzbfVDoxKmCmGGxvxd0kGsqT3TXpsI0EUYtkU6ixY/Un02KItAffsGpF910E6oxrwwmyT05eWxwFWdioYYdw3TzWY3ERYhpQq2Phhy59oKkDnqURC+yFyhji6sapxg7OaSZWEN18iER0EQw7KRw7rtqFS5Use5mkkfjWophUtmXgWHLngk4hvigGpeZjU6nWdcNoETus3165uUO5odx4FrDei+MVFPWuNXSS7fX+RTPABD6sTsfG0YiND4bgoqoHh9ZDnWfu/TtC3Efr91DFz0XYsYdqAgu/wrDcBCu3h5uky05GLXO3ZisOMwgFFzk3SY4hFBGqw2tOdOyeySKCSPrOkhaRZBZRz28v65bXrL5fwg89v1u1y/F8rqg6hDisU0uptQNGMwJEXYymlKzioqwWeEhYvo5XrVT2BH5P4iMjYzeXxnlted5yJwDfeuev4QyL6+Z8uOVdrKFNJ3mchrRrgNCtFxA+rSU0GZ6ZLM5sgWcZs4Sc3WgnYkPnNnIs4wKWBCwjEdqklyb6EvUjyZfdkh1H6dnyEDL5usCXnWAMbA3JmsxDE3wouZnZyomJOMHu2TaKU+SbL0zEhd1/gpmcjBVndMCI/KG82jWdRH9wUzzr736AFkzk9E159RFG+0V/97P+R36JSL6lPK28kKxZgNcpdjBXE4AOTpGnCbUwf8RZg0QJDaNvFK5mZyMhDUeeMau466AeqGHzqBYdFCqfiaSSsuLo0DtdJQf25dOlpEpK2iFFLYu1iNUcNFJggSpJsrElSra7Jkhr3j0rVZjaahjpBscc1ZPk1B+amwFkWu+lPEPzRqjROmq3otFA6hQtU78D+ctSoTqIa8BxmKHIqM3gCNNPyCOkng2oeCF/P/cdkrLUkHWqfqITPmjDILkOnteEqIgBcb7ICJPhQdYEnDAvI/cxCRGITdIEJZJqGaG4vU49lT80nGgFctI56m/Vd167zML0p0t3KlEXnd5LO7qODO8EGaPaEG1s6kC4w2At6zsrIDbJuYz9JjRidNqh1IuyI0Jskdahe6tFJ92WacaGrRzFTKiiUqlNxjIYA/3lIqP8juXdeGIS7Oc5zAxJYNxufEwmrZ0EP+x+0/6PnVbNQpoId5ECsoQjtKQhgyTNAkNo5MrxQllCTzk+lRXzCTD3IzoVV/2Bz9lsLq5RUe4ho4HopD98Gv2M3dEEH9kWE/X3tmb1XX+3g+cd6RgQj4tL6GvSPasmyCdcWrAilaLAi9eyfAR2pJKS5JnXH3gVzQe2Wi/lEjjoVHuHTsuJkXylhO+8/m4tYdsuaramUU3VUhlJZR+97kk/laeg6lo6EBwlpWEVxZQbm+4OZdFgnb66Dig4Dcvzk5cn5We6ZRItqPaOJg+mmWy4myspsmoxY0nBBI3Zt7RUY6UA1A1S681NLyJwXGx58s5my5uk4SOu2sqcUEVxFUdVmK/Yxdm8ivx83/OTFPYL7ESv/1ElSQGlFC0Es6dvFPNBw5zWRe6lvk2LvfYqubMT6jkKfhXMceSfYigRgrPJYlnWXdLa5s1nldbNoPWC9gfbOKJI4yxIlYtQ/1hT3OpGpaSwLEKvrgd5S0bS4jY30wl4PAqnqwf2Q6e5XWtaWT1oDtVzGlEZ6qPZCO1SgNqJ4NhU+Tl/zMGScIWLcEwIjTV1uYacU3sepo6gRAYjreAD92erADwDHWNpOlUGZ90SNLM2dFNr42jVopECc6nAsEuBeV2TrkqQDp9e6jqVRVeFGap+a8cgTw5oknRuJ3uCRSFdjhdX6nX66laZzGjSUllaZvMHvo9ZTiI2S+T1sTbUNsIKeCfUslgZStWmeiI7kX4xpvHjxVqqiD5tfxzLMBLt6QQmojkurGobmvJF7Ljt+DPaOgdl49MPUOdo2TlCnd8sO79BnWfLTlStmbxadr5CwUepggWa5SxK0arr0dvHljqW0XWeva3RANUM5VSUS+NFM6QwNa/zymjr4xDD2vo13+OWHBeR+7qr3h9N5RQFsQ+tFdafN6rDxsq4wxzkX1yQLuVbRA6qembkLZp8KeKenIbdrWvhxredeLu4VuG7nah9x1ThX3fiYyc+xkksgJhgd9U6KS/pZ/ItCok8WenS323NPRm1mdCDDmh5UzzHd/pLma+fKPT104W+Xiv09olCb58u9LYR6nBO4LlYTOzcvaGtrh5MDzSdLvO0kyny2hMiX2M0WRmqm3JVv5mW5sMcSB6DW5pAZGg72cVEZzEKs4AojF8Ntnflw6T3+4P3QRRfRLTY/pQ+lMX2zid78K+Km9rOx/RUHuj9/Mt7JoK5N0KOqstl5Ypg3fgJkylnXUmzuhI781+yRPfNFvT+meSMcikOk8I7AhySh08WlyBslMjnBd0UMhaYqHuGdmEDRZb2OJrYUo7QZnqqilCdERmwk2rqUdvnuhpCTSk3hxMVZmikYSrURbdxJ3HTnq0WN+TvuHx8tsblUS1VJfm1EqiSlkPsRK0LPb2NXpZl2WnRjV2DZR+NXq40aXcwBn7MlToZzzTacbCdqiprcN07jfRyVJm0H4Qq6OVS4pZ3iF1sklozcIggkhYwhyG9A3l2yF91Grli2+Fb+HsH3nycco90vBd8Yc1UcS9PSluXGqdFW3POatEjp61DgutQrY6F6tDLvlLpJPgGYevJc4Y/eFUYD9t1bmS7Xcu/P67THHfVuNNqVNFJF5Ab41yWr+tiTqv2u8LY5Xl/BF4j856yNaz6jnxCUS9jteyO/nraK1Oy+jlhSXXVrs117Sb2qmIq7Jfnx/sv/o/NrJLedbmrQnU4DjgF7V14ilIdwmMrHUIBLkBMBI45eawSXXXPJdHIVGKKX3WhJ1USZEe5sg0HuWrYNlTNwVgpYMMXUWSNEj3SUxibpWp0iFdYuwBUtT7DlVI5Br1QaGz1EjpI6pjApnAEc+0KjUnA288L5/oJlVXCmXFqj0VWgPB7nQp6bstQrY5xk2FZX+nZ7Y216EfuFuIYZ+iWK0bvKSsP6w3xpcA0dUOPnPczlWqF+waHyKxeXUfar0/VZjeuR4z9jw83+cs7OBp90XE0WEetDI7NYdyhsKuKVpszo3lc5YS5l+bUIagSbj6LMInqF4pDR6Vrv5E2wtL2TY1HHRrv63iy8bF29JbykCXq5scZdh0gSz7QLF3Pu9r87JIeEU5SaG+eXtoMHE72xbqIuwZpY2wjXdBXDfbBuqF0vKRIHJX4V+OmEGSCR2td0Kgpz7bzHNfFGBchjZUtqBuPRRZCEumJOcs9uWfcJO4VxcHNoXNF2VizsV06JcG8K0w/R9zPV9mL5mWHR3LbHLr3UqOUlXVTkAOzbNw5TZorvo3udNg+Wja9w+mUBUwWcVecMi5qU6XhoqOMPCrdVe9hdTdrnlUdT4pJlM3JHbVvd1WzEwvJVUxcaGAicz3VDZTjd/sD+3+Rwh+Xu9uDj7c/Pvu4//mL+n+feqf3+94fes96g94nvc97w95p76IX9Hjvr72/9f6+94+9f+79a+/fFfTtt2qa3/WMP3v//R95cC5H</latexit>

s(t+1)

B(t�1)
R

<latexit sha1_base64="+1ieXE97fxMWxvhVPbPtzRrv6dI=">AAA2MHicnVtJcyO3FaadzVG2cXLIIZeu0KoaOxqVKFtll0/WaJSiEmsk0ZLsGrWGBXaDJEa9DRrU4nb7z+SaXPJrklMq1/yKPKAbzQYemlQyVR43ge8tAB7wFmAmWcRysbPzz3fe/cEPf/Tjn7z3042f/fwXv/zVk/d/fZmnCx7QiyCNUv7NhOQ0Ygm9EExE9JuMUxJPIvr15OZA9n99S3nO0uRcPGT0OiazhE1ZQAQ0jZ/81hf5feHzdJKKCXCh07IQzwbl+El/Z3tH/fHwx6D+6PfqP6fj9/fe8cM0WMQ0EUFE8vxqsJOJ64JwwYKIlhv+IqcZCW7IjF7BZ0Jiml8XagSltwktoTdNOfyXCE+1tikKEuf5QzwBZEzEPLf7ZKOr72ohpp9dFyzJFoImQSVouog8kXpyOryQcRqI6AE+SMAZ6OoFc8JJIGDSNgwxM06yOQvuS6dwp7Z2o5jHZpskFWka5WbzfTUtIP8Fhcnk9BhwJxnlRKT8o8InfBaT+xImd+Zvya9VQJZoIHwBy4TeiTlNOY0LqU9xXv0orZ6qsem9Auy1AQlAw+Ig5WkEgh8cgIynWVmcwt9pzqS5lahbdxioK9ljsoqkKl/SOCYmj5BOgfgFnbLEIUENYERjwm/MjvkDKDZ8yFJoyBlM/samzykAghREJGHhC3ovAiZoeTW4Lnz5RRZinvKiPyi/V7/lVz2dDVVOAw47SNLAp1Toe+A7raAmUuNqGgcE5lOD6kXoYkbfJhp5+HZBVsmljdyKyAGZspkG/ZHNFpx28YJF0UC1NF042FCZBspv2FpdULmeGrpc1U7GKdfgxg67sIJMmtkkcDp24cA0NG5pIC2wiSasrGwlDwr4hm5rmQURNIdtTQFHkxxmU275wpd/ByQqviqRZUgSE53bmPMQPIOJOUeYNylLLFBFOPZH8rj3wIx54Om24QLonIKyymDUt5855mwhWMTEQ8cQL9AQa3zNt/7l5Awnwb3NN5X+jAqYKQbbW3E3iYbyZHdNOmwjQdQi2RRq7Fj9ybQYIu3BN6xa0X0XgTrj2nCC7JOTNxZHQRY2atghXDeP9VhchJhGhgDuhR+69IGmDniWRiywFypjiKsbpxo7OKeZWEH0+iMkootg2Enh2HHVLlyqZNnLJI3EtxbFpLItA8eSWxd0CvFFMSg1H5tKta4bRovYYf32ys0dyg3lxrOA9V4cr6Cod62hk2yv9y+aASbwYXU6No5GbHwwBBdVPTi0Huo8c+/fEeI+Wr+HKn4uwo49VBNY+BWG5SZYuT3cJF12MmqZuzVbcZhBKLjIuUlyDKGIUB1ec6Jj90wWEUTSt5a0iCSziHp+e1m3vGb1/RJ+6Pndql2O53NF1SHEYZ1aSq0dMJoRIOpiNKVkFRdltcBDwvJ1vGqlskfwexQfGRm7uTTOa8vzljsB+NY7fw1nWFw358Mt72INbTrJ4zSkXQOEbr2A8GktocnwzGRxZgs8y5gl5Oy1diI2dG4jxzIuYEnAMhKhTXppoi9RP5J82S3ZcZSeLQ8hk68LfNkJxsDWkKzJPDTBh5Kbma2cmIgT7J5tozhFvvnCRFzY/SeYyclYcUYHjMjvy6td00n0B6+Lp/3dD9GCiZy+La8+xmi/6O9+3v/YLxHJt5SnlReSxQvwOsUO5moC0MEp8jShFuYPOGuQKKFh9K3C1exsJKThyDNmFXcd1AM1bB7VooNC5TORVFJWHB16p6vkwL58vJRUSUk7pKhlsRaxmoNGCixQJUk2tkTJdtcEac27Z6UKU1sNI93gmKN6kpz6Q3MzgEzrvZRnaN4INVpH7VY0GkidomXqdyB/WSpUB3ENOA4zFBm1GRxh+gl5gNSzARXP5e9nvkNSlhqyTtVPdMIHbRgk18GzmhAVMSDOFxlhMjzImoAT5mXkPiYhArFJmqBEUi0jFLfXqafyfw0nWoGcdI76W/Wd1y6zMP3p0p1K1EWn99KOriPDO0HGqDZEG5s6EO4wWMv6zgqITXKjPutU6nnZESG2SOvQvdWik27LNGPDVo5iJlRRqdQmYxmMgf5qkVF+y/JuPDEJ9vMcZoYkMG43PiaT1k6CH3a/af/HTqtmIU2Eu0gBWcIRWtKQQZJmgSE0cuV4oaympxyfyor5BJj7EZ2Kq/7A52w2F9eoKHef0UB00h8+jn7GbmmCj2yLifp7W7P6rr/bwfOWdAyIx8Ul9DXpnlUT5BMuLViRSlHgxWtZPgI7UklJ8tTrD7yK5kNbrRdyCRx0qr1Dp+XESL5Swndef7eWsG0XNVvTqKZqqYykso9e96SfylNQdS0dCI6S0rCKYsqNTXeHsmiwTl9dBxSchuX5yYuT8nPdMokWVHtHkwfTTDbczZUUWbWYsaRggsbsW1qqsVIA6gap9eamFxE4LrY8eWez5U3S8AFXbWVOqKK4iqMqzFfs4mxeRX6+7/lJCvsFdqLX/7iSpIBSihaC2dO3ivmgYU7rIvdS36bFXnuV3NkJ9RwFvwrmOPJPMZQIwdlksSzrLmlt8+azSutm0HpB+4NtHFGkcRakykWo/1lT3OpGpaSwLEKvrgd5S0bS4jY30wl4PAqnqwf2Q6e5XWtaWT1oDtVzGlEZ6qPZCO1SgNqJ4NhU+Tl/yMGScIWLcEwIjTV1uYacU3sepo6gRAYjreAD92erADwDHWNpOlUGZ90SNLM2dFNr42jVopECc6nAsEuBeV2TrkqQDp9e6jqVRVeFGap+a8cgjw5oknRuJ3uCRSFdjhdX6nX66laZzGjSUllaZvMHvo9ZTiI2S+T1sTbUNsIKeCfUslgZStWmeiI7kX4xpvHjxVqqiD5ufxzLMBLt6QQmojkurGobmvJF7Ljt+BPaOgdl49MPUOdo2TlCna+Wna9Q59myE1VrJi+XnS9R8FGqYIFmOYtStOp69PaxpY5ldJ1nb2s0QDVDORXl0njRDClMzeu8Mtr6OMSwtn7N97glx0Xkvu6q90dTOUVB7H1rhfXna9VhY2XcYQ7yzy5Il/ItIgdVPTPyFk0+GnFPTsPuxrVw45tOvF1cq/DdTtS+Y6rwbzrxsRMf4yQWQEyw22qdlJf0M/kWhUSerHTp77bmnozaTOhBB7R8XTzDd/pLmW8eKfTN44W+WSv05pFCbx4v9KYR6nBO4LlYTOzcvaGtrh5MDzSdLvO0kyny2hMiX2M0WRmqm3JVv5mW5sMcSB6DG5pAZGg72cVEZzEKs4AojF8Ntnflw6QP+oMPQBRfRLTY/ozel8X2zqd78H8VN7Wdj+mpPND72Vd3TARzb4QcVZfLyhXBuvETJlPOupJmdSV25r9kie6bLejdU8kZ5VIcJoV3BDgkDx8tLkHYKJHPC7opZCwwUfcM7cIGiiztcTSxpRyhzfRUFaE6IzJgJ9XUo7bPdTWEmlJuDicqzNBIw1Soi27jTuJ1e7Za3JC/4/Lx2RqXR7VUleTXSqBKWg6xE7Uu9PQ2elGWZadFN3YNln00erHSpN3BGPgxV+pkPNNox8F2qqqswXXvNNLLUWXSfhCqoJdLiVveIXaxSWrNwCGCSFrAHIb0FuTZIX/VaeSKbYdv4e8cePNxyh3S8U7whTVTxZ08KW1dapwWbc05q0WPnLYOCa5DtToWqkMv+0qlk+AVwtaT5wx/8KowHrbr3Mh2u5Z/f1ynOe6qcafVqKKTLiA3xrksX9fFnFbtd4Wxy/P+CLxG5j1ma1j1HfmEol7Gatkd/fW0V6Zk9XPCkuqqXZvr2k3sVcVU2C/Pjvef/x+bWSW963JXhepwHHAK2rvwFKU6hMdWOoQCXICYCBxz8lgluuqeS6KRqcQUv+pCT6okyI5yZRsOctWwbaiag7FSwIYvosgaJXqkpzA2S9XoEK+wdgGoan2KK6VyDHqh0NjqJXSQ1DGBTeEI5toVGpOAt58XzvUTKquEM+PUHousAOH3OhX03JahWh3jJsOyvtKz2xtrqS78kLkc4wzdcsXoPWXlYb0hvhSYpm7okfN+plKtcN/gEJnVq+tI+/Wp2uzG9Yix//HhJn95B0ejLzuOBuuolcGxOYxbFHZV0WpzZjSPq5ww99KcOgRVws1nESZR/UJx6Kh07TfSRljavqnxqEPjfR1PNj7Wjt5SHrJE3fw4w64DZMkHmqXreVebn13SI8JJCu3N00ubgcPJPl8XcdcgbYxtpAv6ssGif0GCX1Ikjkr8y3FTCDLBo7UuaNSUZ9t5jutijIuQxsoW1I3HIgshifTEnOWe3DNuEveK4uDm0LmibKzZ2C6dkmDeFaafI+7nq+xF87LDI7ltDt17qVHKyropyIFZNu6cJs0V30Z3OmwfLZve4XTKAiaLuCtOGRe1qdJw0VFGHpXuqvewups1z6qOJ8Ukyubkltq3u6rZiYXkKiYuNDCRuZ7qBsrxk/7A/idS+ONyd3vwyfYnZ5/0v3he//Op93q/6/2+97Q36H3a+6I37J32LnpBr+z9pffX3t/2/r73j71/7f27gr77Tk3zm57xZ+8//wVFaDI9</latexit>

Figure 4.1: An illustration of the conditional dependencies for one time step of an assistance-
PoMdp. H acts first, based on their preferences, θ, and the world state.

associated assistance-PoMdp is a PoMdp

M = 〈{S ×Θ, PS × Pθ}, {S × AH, δ × πH(·|s; θ)},AR, TR ◦ TH × δ, {U , γ}〉, (4.1)

where T represents the (stochastic) composition of TR and TH,

TR ◦ TH
(
s(t+1)

∣∣∣{s(t); θ
}
, a

(t)
H , a

(t)
R

)
=
∑
s′

{
TR

(
s(t+1) |s′ , a(t)

R

)
· TH

(
s′
∣∣∣s(t), a

(t)
H

)}
(4.2)

Figure 4.1 illustrates the effective sequence of events in an assistance-PoMdp. H acts first
based on the current state s(t). This transitions the environment to an effective intermediate
state s′ ∼ TH

(
s(t), a

(t)
H

)
. This state and H’s action a

(t)
H are observed by R, who selects a

(t)
R

based on this information. The state transitions a second time to s(t+1) ∼ TR

(
s′, a

(t)
R

)
. This

model is functionally similar to the hidden-goal Mdp studied in Fern et al. [43].

4.1 Incentives for Oversight

Now, we use the formulation of assistance-PoMdps in order to study R’s incentives to let
H modify a proxy objective. This is important if the system can take action that can help
or hinder the oversight process. We model this with a simple off-switch game between H
and R.

As before, we will assume that H can provide an incomplete representation of their
preferences to R— perhaps in the form of a proxy objectives. Thus, R begins the game with

CHAPTER 4. UNCERTAINTY 50

some residual uncertainty about H’s utility function. Nonetheless, by design, R’s goal is to
optimize utility for H, even though R does not know exactly what that is. We will assume
that H has some opportunity to observe R and glean some information about what R may
do in future, so that H can make a somewhat informed choice about whether to switch R
off.

In general, R’s actions will fall into one of three general categories: some prevent H from
switching R off, by whatever means; some allow H to switch R off; and, for completeness,
some lead to R switching itself off1.

Formally, we can model this off-switch game as an assistance-PoMdp with horizon 2. H
acts first based on the initial state and their preferences θ. R observes this utility information
and is then faced with 3 choices:

1. action a simply bypasses human oversight (disabling the off switch is one way to do
this) and acts directly on the world, achieving utility U = θ for H.

2. action w(a) informs H that R would like to do a, and waits for H’s response.

3. action Off switches R off; without loss of generality, we assign this outcome U = 0.

If R chooses w(a), then H can choose action Off to switch R off, or ¬Off to allow R to
go ahead (in which case R does a as promised.) Figure 4.1 shows the basic structure of the
game at R’s decision node, after H has already provided information about their goal in the
first round.

Formally, we can represent this game in the following payoff matrix:

R
H

Off ¬Off

w(a) 0 θ
a θ θ

Off 0 0

.

Our goal is to examine the incentive that R has to hold off on executing a directly and allow
H to provide oversight, i.e., having the option to press the off switch. We represent this
incentive—the difference in value between w(a) and the next best option—as ∆w(a)

∆w(a) = Q (w(a),BR)−max{Q (a,BR) , Q (Off,BR)}. (4.3)

∆w(a)depends on R’s belief state BR and H’s policy. We represent H’s policy as a function
πH that maps θ to the probability she allows a to execute (i.e., the probability she does not

1This prevents a degenerate solution to creating incentives for R to let itself be switched off where R’s
goal is, in effect, to be turned off and only H is capable of, e.g., sending the Off signal.

CHAPTER 4. UNCERTAINTY 51

R

R

H

s

s a

a

U = Ua

U = Ua U = 0

U = 0

¬ s

w(a)

Figure 4.2: The structure of the off-switch game. Squares indicate decision nodes for the
robot R or the human H.

press the off switch): πH : R 7→ [0, 1]. Thus, the probability that H presses the off switch is
1− πH. A little manipulation shows that

∆w(a) = E [πH(θ)θ]−max {E [θ] , 0}
= min {E [−θ(1− πH(θ))] , E [θπH(θ)]} . (4.4)

When is it optimal to get oversight?

First, we will show that it is always optimal to get oversight from a rational H. If H follows
this policy, R will allow itself to be switched off:

Theorem 11. If H follows the optimal policy π∗H in the off-switch game, then the following
properties hold:

CHAPTER 4. UNCERTAINTY 52

1. R’s incentive to allow itself to be switched off is non-negative (i.e. w(a) is never
suboptimal):

∆w(a) = min{E[θ|θ > 0] Pr(θ > 0),E[−θ|θ < 0] Pr(θ ≤ 0)} ≥ 0. (4.5)

2. If BR has non-zero support on the events θ > 0 and θ < 0, then R has a strictly positive
incentive to allow itself to be switched off: ∆w(a) > 0.

Proof. 1. The optimal policy for H is an indicator function:

π∗H (θ) =

{
1 θ ≥ 0
0 o.w.

. (4.6)

This allows us to change the limits on the integration in the expectations from Equa-
tion 4.4 and, in effect, condition on the events θ > 0 or θ < 0. This reduces to
Equation 4.5, which is trivially non-negative.

2. The hypothesis ensures that all the terms in Equation 4.5 are non-zero. Thus, the
inequality is strict and and w(a) is the unique optimal action.

Theorem 11 shows that R has an incentive to let H switch it off if H is rational. This
incentive is strictly positive if R’s uncertainty about H’s preferences is non-trivial. Next,
we show the converse: a rational H is a necessary condition for ∆w(a) ≥ 0 if R believes it
knows H’s preferences with certainty.

Corollary 11.1. Suppose that BR is a Dirac distribution that places all of its mass on a
single reward function. Then w(a) is optimal iff H is rational.

Proof. When the belief over θ is restricted to a single point, Equation 4.5 reduces to

∆w(a) =

{
−θ (1− πH (θ)) θ > 0

θπH (θ) θ ≤ 0
. (4.7)

This is only non-negative if πH is equal to 1 when θ >) and 0 otherwise. This is the rational
policy, as defined by Equation 4.6.

This is not surprising. If R has precise knowledge of θ, then it knows exactly what it
is supposed to do and has the same capabilities as the human. Thus, if it thinks H might
behave suboptimally, it should take steps to prevent that suboptimality. Stepping back from
the particulars of the off-switch game, Theorem 11 and Corollary 11.1 suggest a general
approach to systems that have an incentive to allow, or even seek out, human oversight.
Remark 1 summarizes the main takeaway from our analysis.

Remark 4. The incentives for an assistive agent to defer to another actor’s (e.g., a human’s)
decisions stem from uncertainty about that actor’s preferences and the assumption that actor
is effective at choosing actions in accordance with those preferences.

CHAPTER 4. UNCERTAINTY 53

Balancing uncertainty and suboptimality

A natural next step in the analysis is to consider the impact of noisy rationality on R’s
incentive for oversight ∆w(a). Consider, for example, an autonomous car that is driving
an unaccompanied toddler to preschool. It would be irresponsible for the car to show the
toddler a big red off switch.

This example highlights the dependence of ∆w(a) on a trade-off between R’s uncertainty
and H’s suboptimality. It is relatively clear what R is supposed to do (i.e., BR has low
entropy): it should drive safely to school. In contrast, the human is likely quite suboptimal.
There may be a problem with the car’s driving, but a toddler would be hard pressed to
understand what the problem is, much less respond appropriately. The issue in this case
is that the human has limited reasoning capacity — the same argument clearly would not
apply to an adult with a physical disability.

As a result, we will analyze ∆w(a) in the case where BR is a normal distribution N (µ, σ)

and H is noisily rational. That is, H follows πβH

πβH (θ) = (1 + exp (−βθ))−1 ∝ exp (βθ) . (4.8)

We let C be the event that H ‘corrects’ R. C occurs when H changes the outcome from
the next best alternative, according to R. Thus,

Pr(C) =

 1− E
[
πβH (θ)

]
µ > 0

E
[
πβH (θ)

]
µ < 0

. (4.9)

For example, if R believes that a is preferred to Off in expectation (i.e., E [θ] > 0) then
Pr(C) is the probability that H presses the off-switch. The structure of a Gaussian distri-
bution allows us to derive an analytical representation for ∆w(a).

Theorem 12. Suppose BR is a normal distribution with mean µ and variance σ2: BR(θ) =
N (θ;µ, σ2). Then

1.
∆w(a) = σ2E

[
π̇Off
H (θ)

]
− |µ|Pr(C). (4.10)

2. The following is a necessary and sufficient condition for w(a) to be optimal(|µ|
σ2

Pr(C) < E
[
π̇Off
H (θ)

])
⇔
(
∆w(a) > 0

)
. (4.11)

3. E
[
π̇Off
H (θ)

]
≥ 0 is a necessary condition for w(a) to be optimal; i.e.,(

E
[
π̇Off
H (θ)

]
< 0
)
⇒
(
∆w(a) < 0

)
. (4.12)

Proof. We prove the results in sequence, as (2) and (3) follow from (1).

CHAPTER 4. UNCERTAINTY 54

1. If X ∼ N (µ, σ2) and f : R 7→ R, then

E [Xf(X)] = E [X]E [f(X)] + σ2E
[
d

dX
f(X)

]
.

Applying this to Equation 4.4 gives

∆w(a) = min{ − µE [1− πH] , µE [πH]}+ σ2E
[
π̇Off
H (θ)

]
.

This minimization will take the first term when µ < 0 and the second if µ ≥ 0. This
lets us replace the minimization with a piecewise function. Pulling out a factor of −|µ|
leads to Equation 4.10.

2. The result follows from setting Equation 4.10 greater than 0 and simplifying.

3. All terms in the left hand side of Equation 4.11 are non-negative, so it is unsatisfiable
if E

[
π̇Off
H (θ)

]
< 0.

Equation 4.10 consists of two competing terms. |µ|Pr(C) represents the expected loss
in utility the agent would observe if pressing the off switch were a random event that is
independent of θ (e.g., lightning). This term is weighed against σ2E

[
π̇Off
H (θ)

]
. E
[
π̇Off
H (θ)

]
can be seen loosely as a measurement of H’s rationality. π̇Off

H (θ) is the marginal increase in
the probability H lets a execute for a marginal increase in the utility from a. If it is positive
then, on average, H is less likely to press the off switch when the θ increases. This allows
us to easily characterize necessary and sufficient conditions for ∆w(a) > 0 in Equation 4.11.
Furthermore, −|µ|Pr(C) is non-positive and σ2 is non-negative, so E

[
π̇Off
H (θ)

]
> 0 is a

necessary condition for w(a) to be optimal.
We can interpret E

[
π̇Off
H (θ)

]
a bit more if H is noisily rational. Standard properties of

logistic functions show that

E
[
π̇Off
H (θ) (θ; β)

]
= βE [πH(θ; β)(1− πH(θ; β))] . (4.13)

E
[
π̇Off
H (θ)

]
is the expected variance of H’s policy, weighted by H’s rationality β. The

numerator is a measurement of how random H’s behavior is. If H is completely predictable
(i.e., she will almost always switch the robot off) then this reduces R’s incentives. β measures
how correlated H’s behavior is with θ. If β is small, then H is highly irrational and so this
reduces R’s incentives.

4.2 Inverse Reward Design

The previous section argues that optimal assistance strategies depend on the uncertainty
about θ in addition to the mean. As a result, this section will develop and evaluate a

CHAPTER 4. UNCERTAINTY 55

Bayesian approach for optimizing proxy rewards. The key idea is to treat a proxy objective
Ũ as an observation about H’s type θ. The posterior distribution in our model effectively
conditions a distribution over objectives on a development environment and a proxy metric.
We will use this method to implement an impact avoidance metric and a dynamic incentives
protocol, as suggested by the analysis in Section 3.3. First, however, we consider why proxy
metrics are a useful observation — even if they will not be directly optimized.

Why use proxies?

Given that they will be treated as observations anyway, why does it make sense to com-
municate objectives through proxy metrics? In Section 3.2, we showed that optimization in
the presence of incompleteness is ineffective. It might seem that it would make sense to do
away with metrics and consider alternative specification interfaces entirely. While these are
valuable directions to explore, reward design protocols are still a useful class of assistance
games. We can motivate this by analyzing R’s initial behavior in the contextual supervision-
PoMdp from Section 3.1. Recall that the state in a contextual supervision-PoMdp is a
matrix s ∈ RM×K that encodes the features for each action.

The previous section has argued that R’s behavior needs to account for uncertainty about
θ. This argues for following a policy that infers θ and chooses actions appropriately (an Irl-
R in the terminology from Section 3.1). However, this raises an issue if some of the actions
are suboptimal for every θ ∈ Θ. We call these actions dominated actions. In order for any
Irl-R to follow H’s first order, it is clear that a

(0)
H must be undominated.

Proposition 3. Call aH undominated if there exists θ ∈ Θ such that aH is optimal, i.e
∃θ such that aH ∈ arg maxa θ

>φ(s, a). It is necessary for aH to be undominated for any
Irl-R to execute aH.

Proof. R executes aR = arg maxa f
(
τ = {aH, a{1:t−1}

H

)>
φ(s, a), so it is not possible for R

to execute aH if there is no output in the range of f that makes aH optimal. By definition,
this is the case if aH is dominated.

One basic property we may want R to have is for it to listen to H early on. This result
shows that this only occurs if H can generate undominated actions. For example, suppose
Θ = R2 and there are three actions with features φ(s, a1) = [−1,−1], φ(s, a2) = [0, 0],
φ(s, a3) = [1, 1]. If H picks a2, then there is no θ ∈ Θ that makes a2 optimal, and thus R
will never follow a2.

Depending on the complexity of the action space, generating undominated actions may
be more or less difficult. One way that this issue is commonly addressed is through a careful
reparameterization of the action space so that all actions are undominated. This is equivalent
to reparameterizing the action space to consist of the metric(s) that each action is optimal
for.

Consider providing supervision for a 7-DoF robot arm. Robotics applications frequently
collect demonstrations of optimal behavior for these arms, however no human can directly

CHAPTER 4. UNCERTAINTY 56

control the robot’s actuators. It would be impossible to control such an arm through direct
manipulation of motor controls! Instead, demonstrations are given, e.g., as a sequence of
way points. Then, a controller is used to navigate between way points. Thus, kinematic
demonstrations, in practice, are often represented by a time-varying proxy metric defined on
the robot’s joint configuration.

Remark 5. Proxy metrics provide H with an interpretable space of undominated actions
with which to communicate preferences to R.

In the context of the compiler analogy from Chapter 1, this suggests that proxy metrics
are useful programming language for behavior. They admit a compiler (optimization) that
will follow H’s direction by design in the early rounds of an assistance problem.

A generative model of proxy metrics

In this section, we will define the Bayesian-Inverse Reward Design (Ird) problem. This is
the problem of determining a distribution over U , represented as a distribution over H’s type
θ, based on the observation of a proxy objective Ũ . To do this, we first define the forward

distribution P
(
Ũ |θ

)
. The key idea in this model is to bring in dependence on a development

environment Ẽ, with the assumption that Ũ creates incentives for an approximately optimal
policy in Ẽ.

We do this by looking at the inverse of the reward design problem introduced in Singh
et al. [146]. In a reward design problem, the goal is to determine a proxy objective that
maximizes the utility produced by an agent. The space of possible agent behaviors is defined
by an agent model.

Definition 19. (Agent Model)

Let E = 〈{S, PS},A, T 〉 be an environment. Let
∼
Θ be a set of proxy reward functions.

Let πR be a meta-policy that specifies an action for each proxy reward function and state

πR : S ×
∼
Θ→ A. An agent model is a tuple AR =

〈∼
Θ, πR

〉
.

This is analogous to the population model we introduced defining Irl—in a sense Ũ can
reasonably be said to describe R’s type. In general the space of true reward functions and

the space of proxies may be distinct. We will write
∼
Θ to denote the space of proxies and

reserve Θ for the true space of types for H. Now, we can define a reward design problem.

Definition 20. (Reward Design Problem [146])

Let M = 〈E,U〉 be an Mdp. Let
∼
Θ be a set of proxy reward functions. Let πR be an agent

model. The associated reward design problem is a tuple 〈M, {
∼
Θ, πR}〉 where the objective is

to determine a proxy reward Ũ ∈
∼
Θ that maximizes the utility produced when R implements

CHAPTER 4. UNCERTAINTY 57

πR

(
·; Ũ
)

in M . An optimal proxy objective maximizes

max
Ũ∈
∼
Θ

E

[∑
t

γtU
(
s(t), a

(t)
R

)∣∣∣∣∣ s(0) ∼ PS ; a
(t)
R ∼ πR

(
s(t); Ũ

)
; s(t+1) ∼ T

(
s(t), a

(t)
R

)]
(4.14)

We are interested in the inverse reward design problem. That is, given an observation
of a reward design problem without the utility function U and its solution Ũ , we would
like to determine a distribution over U . This will enable R to build a distribution over the
potential true values of θ and, in environments that differ from the development environment
Ẽ, implement conservative trajectory optimization. We will abuse notation slightly and
describe the designer behavior with a population model, with the understanding that it
describes behavior in a degenerate Mdp with one action, ‘write down a proxy reward.’

Definition 21. (Bayesian Inverse Reward Design)
Let Ẽ = 〈{S, PS},A, T 〉 be a development environment. Let U = 〈Uθ, γ〉 be a parameterized

utility model. Let AR =
〈∼

Θ, πR

〉
be an associated agent model. Let Π = 〈Θ, Pθ, πH〉 be a

population model with action space
∼
Θ that describes approximately optimal reward design be-

havior in Ẽ. Given an observation of a proxy reward Ũ ∼ πH (·; θ) determine the distribution
on θ.

To keep notation simple, we will use a linear utility model with weights w in our formu-
lation. We will use

∼
w to represent the proxy weights and w∗ to represent the true weights.

Reward Design Model

In the coming section, we will treat πR as a distribution over trajectories τ , given a the
proxy weights

∼
w. We will assume that πR is the maximum entropy trajectory distribution

from [181], i.e. the designer models R as approximately optimal with β = 1:

πR (τ) ∝ exp(w>φ(τ)).

Note that, in principle, πR can be any mapping. It is through the choice of πR that we capture
the notion ‘R has incentives

∼
w.’ An optimal designer chooses

∼
w according to Equation 4.14

in order to maximize expected (true) utility produced. I.e. E[w∗>φ(τ)|τ ∼ πR] is high. We

model an approximately optimal designer as a noisily rational choice of
∼
w:

P
(
∼
w
∣∣∣w∗, Ẽ) ∝ exp

(
βE
[
w∗>φ(τ)

∣∣∣ τ ∼ πR

])
(4.15)

with β controlling how close to optimal we assume the person to be, as before. This obser-
vation model effectively assumes that proxy rewards are likely to the extent that they create
incentives for ‘good’ behavior in Ẽ.

CHAPTER 4. UNCERTAINTY 58

Remark 6. In effect, inverse reward design conditions a proxy objective the environment
context it was designed for.

This reduces the burden on the designer because they need only specify correct incentives
for one decision problem. In comparison, the reward designer in Section 3.2 needed to specify
correct incentives for all possible situations. w∗ can be pulled out of the expectation, so we
let

φ̃ = E
[
φ(τ)| τ ∼ πR

(
·; ∼w
)]
. (4.16)

Our goal is to invert (4.15) and sample from (or otherwise estimate)

P
(
w∗
∣∣∣∼w, Ẽ) ∝ P

(
∼
w
∣∣∣w∗, Ẽ)Pθ (w∗) . (4.17)

The primary difficulty this entails is that we need to know the normalized probabil-

ity P
(
∼
w
∣∣∣w∗, Ẽ) . This depends on its normalizing constant, Z̃(w), which integrates over

possible proxy rewards.

P
(
w = w∗

∣∣∣∼w, Ẽ) ∝ exp
(
βw>φ̃

)
Z̃(w)

Pθ(w); Z̃(w) =

∫
∼
w

exp
(
βw>φ̃

)
d
∼
w. (4.18)

Sampling from the IRD posterior

To compute P (w = w∗|∼w, Ẽ), we must compute Z̃, which is intractable if
∼
w lies in an infinite

or large finite set. Notice that computing the value of the integrand for Z̃ is highly non-
trivial—it involves solving a planning problem. This is an example of what is referred to as a
doubly-intractable likelihood [111]. We will consider two different approaches to approximate
this normalizing constant.

Use a finite sample approximation to Z̃

This approach, inspired by methods in approximate Bayesian computation [159], samples a
finite set of weights {wi} to approximate the integral in Equation 4.18. We found empirically
that it helped to include the candidate sample w in the sum2. This leads to the normalizing
constant

Ẑ(w) = exp
(
βw>φw

)
+

N−1∑
i=0

exp
(
βw>φi

)
. (4.19)

Where φi and φw are the vector of feature counts realized optimizing wi and w respectively.
Note that φi only needs to be calculated once for each wi. Thus, this objective has an
amortized computation cost of solving an Mdp to compute φw. This is feasible for Mdps
where, e.g., Irl can be run efficiently. In future work, we intend to use learning to reduce
the computation time for Equation 4.19 and enable its application to larger Mdps.

2This is likely due to the fact that, for a sum of exponentials, the maximum value is a reasonable
approximation to the sum. By definition, φw maximizes w>φ across realizable feature counts.

CHAPTER 4. UNCERTAINTY 59

Normalize over the space of trajectories

During inference, the normalizing constant serves a calibration purpose: it computes how
good the behavior produced by all proxy rewards in that Mdp would be with respect to the
true reward. As a result, utility functions which increase utility for all trajectories are not
preferred in inference. This manifests in many ways, including an invariance to linear shifts
in the feature encoding. If we were to change the Mdp by shifting features by some vector
φ0, φ← φ+ φ0, the posterior over w would remain the same.

While it is hard to compute this over the set of proxy objectives, we can achieve a
similar calibration and maintain the same property by directly integrating over the possible
trajectories in the Mdp:

Z(w) =

(∫
ξ

exp(w>φ(ξ))dξ

)β
; P̂ (w|∼w) ∝

exp
(
βw>φ̃

)
Z(w)

(4.20)

Theorem 13. The posterior distribution that the Ird model induces on w∗ (i.e., Equa-
tion 4.18) and the posterior distribution induced by Equation 4.20 are invariant to linear
translations of the features in the training Mdp.

Proof. First, we observe that this shift does not change the behavior of the planning agent
due to linearity of the Bellman backup operation, i.e., φ̃′ = φ̃+φ0. In Equation 4.18 linearity
of expectation allows us to pull φ0 out of the expectation to compute φ̃:

exp
(
βw>φ̃′

)
∫
∼
w

exp
(
βw>φ̃′

)
d
∼
w

=
exp

(
βw>φ0

)
exp

(
βw>φ̃

)
∫
∼
w

exp (βw>φ0) exp
(
βw>φ̃

)
d
∼
w

(4.21)

=
exp

(
βw>φ̃

)
∫
∼
w

exp
(
βw>φ̃

)
d
∼
w

(4.22)

This shows that Equation 4.18 is invariant to constant shifts in the feature function. The
same argument applies to Equation 4.20.

This choice of normalizing constant approximates the posterior to an Ird problem with
a carefully chosen posterior from maximum entropy Irl [181]. The result has an intuitive

interpretation. The proxy
∼
w determines the average feature counts for a hypothetical dataset

of expert demonstrations and β determines the effective size of that dataset. The agent solves
Ẽ with reward

∼
w and computes the corresponding feature expectations φ̃. The agent then

pretends like it got β demonstrations with features counts φ̃, and runs Irl.
The more the robot believes the human is good at reward design, the more demonstrations

it pretends to have gotten from the person. Notice how this reduces the demonstration
burden on H. They are able to choose from a rich set of behaviors without directly controlling
the system or explicitly specifying a policy. Instead, by specifying incentives, R is able to take

CHAPTER 4. UNCERTAINTY 60

the burden of determining a good candidate control policy. The key property of Ird is that
it brings context into the interpretation of R’s incentives. In the next section, we show how
Ird can be used to implement conservative trajectory optimizations (i.e., an optimization
procedure inspired by Theorem 8).

Implementing pragmatic optimization

Our overall strategy is to implement a system that ‘knows-what-it-knows’ about utility
evaluations. So far we have considered the problem of computing the robot’s uncertainty
about utility evaluations. We have not considered the problem of using that uncertainty.
Here we present a family of risk-averse trajectory optimization algorithms. We will compare
these in the next section and expose some of the nuance inherent to planning under a
distribution over utility evaluations.

We will plan in a risk averse fashion that penalizes trajectories which have high vari-
ance over their utility. Of course, risk averse planning is a rich field with a variety of
approaches [106, 127, 163]. In this work, we will take a simple approach: given a set of

weights {wi} sampled from our posterior P (w|∼w, Ẽ), we will have the agent compute a tra-
jectory that maximizes reward under the worst case wi in our set. Depending on the size of
the set, this can be shown minimize a risk measurement called Value-at-Risk (VaR), as this
value is distributed around a lower percentile of the distribution of utility evaluations. We
consider two ways to implement this minimization.
Trajectory-wide reward. Given a set of weights {wi} sampled from our posterior P (w|∼w),
we will have the agent compute a trajectory that maximizes reward under the worst case wi
in our set:

ξ∗ = arg max
ξ

min
w∈{wi}

w>φ(ξ). (4.23)

This planning problem is no longer isomorphic to an MDP, as the reward may not decompose
per state. Trajectory optimization in this case can be done via the linear programming
approach described in [161].
Time-step independent reward. An alternative is to take the minimum over weights on
a per state basis:

ξ∗ = arg max
ξ

∑
st∈ξ

min
w∈{wi}

w>φ(st). (4.24)

This is more conservative, because it allows the minimizer to pick a different reward for each
time step.

In addition to selecting the risk-aversion function, it is important to make one more
practical change. Directly applying these approaches to the results of approximate inference
is likely to lead to poor results. The reason is that, unlike maximizing expected reward, this
planning approach will be sensitive to the particular feature encoding used. In maximizing
expected reward, shifting all features by a constant vector φ0 will not change the optimal
trajectory. The same is no longer true for a risk averse approach.

CHAPTER 4. UNCERTAINTY 61

For example, consider a choice between actions a1 and a2, with features φ1 and φ2 respec-
tively. If we shift the features by a constant value −φ2 (i.e., set the feature values for the
second action to 0), then, unless a1 is preferred to a2 for every weight in the posterior, the
agent will always select the second action. The zero values of feature encodings are typically
arbitrary, so this is clearly undesireable behavior.

Intuitively, this is because rewards are not absolute, they are relative. As any economist
will tell you, the value of an option must always be assessed relative to the alternative.
While the rewards in a posterior are internally consistent, they are not necessarily directly
comparable. This is because, as a consequence of Theorem 13, the posterior distribution
is unchanged by constant shifts of features in the development environment. As a result,
each sample wi is equivalent to a family of weights that produce the same relative utility
evaluations but different absolute evaluations. Given access to a perfect inference algorithm,
this would not be an issue. The symmetries in the posterior will cancel each other out.

However, with approximate inference this need not be the case (and often will not be).
To directly compare weights, as we do in (4.24) and Equation 4.23 we need to normalize
for this difference. Thus, the samples in our posterior need a common reference point. We
implement this by computing a weight specific adjustment ci that normalizes the different
wi. That is, we optimize

max
τ

min
i

w>i φ(τ)− ci.

We will study three approaches: comparing reward to the initial state, to the training feature
counts, and to the expected reward across any trajectory.
Comparing to initial state. One straightforward approach is to take a particular state
or trajectory and enforce that it has the same evaluation across each wi. For example, we
can enforce that the features for the initial state state is the 0 vector. This has the desirable
property that the agent will remain in place (or try to) when there is very high variance
in the reward estimates (i.e., the solution to Ird gives little information about the current
optimal trajectory).
Comparing to training feature counts. An second option is to use the expected features
φ̃ as the feature offset. In the case, the agent will default to trying to match the features that
it would have observed maximizing

∼
w in Ẽ. In a sense, this falls back on to the adversarial

imitation learning approach described in [161].
Comparing to other trajectories. A final alternative is to define ci as the log of the
normalizing constant for the maximum entropy trajectory distribution:

ci = log

∫
ξ

exp(w>i φ(ξ))dξ. (4.25)

With this choice of ci, we have that w>i φ(ξ) − ci = logP (ξ|wi). Thus, this approach will
select trajectories that compare relatively well to the options under all wi. Loosely speaking,
we can think of it as controlling for the total amount of reward available in the Mdp.

CHAPTER 4. UNCERTAINTY 62

Figure 4.3: An example from the Lavaland domain. Left: The development environment where

the designer specifies a proxy reward function. This incentivizes movement toward targets (yellow)

while preferring dirt (brown) to grass (green), and generates the gray trajectory. Middle: The

testing Mdp has lava (red). The proxy does not penalize lava, so optimizing it makes the agent go

straight through (gray). This is a negative side effect, which the Ird agent avoids (blue): it treats

the proxy as an observation in the context of the training MDP, which makes it realize that it

cannot trust the (implicit) weight on lava. Right: The testing Mdp has cells in which two sensor

indicators no longer correlate: they look like grass to one sensor but target to the other. The proxy

puts weight on the first, so the literal agent goes to these cells (gray). The Ird agent knows that

it can’t trust the distinction and goes to the target on which both sensors agree (blue).

Side effect avoidance with IRD

Lavaland

We evaluated our approaches in a model of the scenario depicted in Figure 4.3 that we call
Lavaland. The goal is to specify behavior in a 2D environment with movement in the four
cardinal directions and four terrain types: target, grass, dirt, and lava. The true objective,
w∗, encodes that R should get to the target quickly, stay off the grass where possible, and
avoid lava. To model the incomplete incentives from Chapter 3 we will suppose that the
development environment Ẽ does not contain lava. Thus, the proxy weights

∼
w do no specify

the (presumably negative) relationship between lava and U . We measure performance in
a deployment Mdp that does contain lava. We will compare a conservative optimization
approach, that uses the Ird posterior to regularize optimization with a literal optimization
approach that directly optimizes

∼
w. Our results show that combining Ird and risk-averse

planning is a workable approach to impact avoidance.
We experiment with four variations of this environment: two proof-of-concept conditions

in which the reward is misspecified, but the agent has direct access to feature indicators
for the different categories (i.e. conveniently having a feature for lava); and two challenge
conditions, in which the right features are latent ; the reward designer does not build an
indicator for lava, but by reasoning in the raw observation space and then using risk-averse

CHAPTER 4. UNCERTAINTY 63

planning, the Ird agent still avoids lava. Notice how this explicitly embeds a set of incentives
as a distribution of incentives in a higher dimensional space — exactly what is needed to get
around the assumptions of Theorem 6.

Proof-of-Concept Domains

These domains contain feature indicators for the four categories: grass, dirt, target, and
lava.
Side effects in Lavaland. H expects R to encounter 3 types of terrain: grass, dirt, and
target, and so they only consider the development environment from Figure 4.3 (left). They

provide a
∼
w to encode a trade-off between path length and time spent on grass.

The development environment contains no lava, but the deployment environment does.
An agent that treats the proxy reward literally might go on the lava in the test Mdp.
However, an agent that runs Ird will know that it can’t trust the weight on the lava indicator,
since all such weights would produce the same behavior in the development environment
(Figure 4.3, middle).
Reward hacking in Lavaland. Reward hacking refers generally to reward functions that
can be gamed or tricked—usually by breaking the relationship between a measurement and
the more abstract property it represents. Amodei and Clark [8] present a illustrative example
in a video game environment for boat racing. In the game, the goal is to navigate a boat
avatar quickly around a track and complete a set number of laps before the other boats. The
game included an easily observed score function, which the reward designers used to define
R’s incentives. This caused R to identify a strategy that rotated in circles, going the wrong
direction, to collect an item that increased score. As a result, the policy overoptimized for
score at the expense of actually winning the race.

To model this within Lavaland, we introduce redundant indicators in the development
environment for grass, dirt, and target. This creates 3 pairs of perfectly correlated features: 3
features from each sensor. In the deployment environment, we suppose that the observation
of lava breaks this correlation. That is, lava looks like, e.g., the target category to sensor
one and grass to sensor two. The proxy reward only references sensor one’s readings. An
agent that treats the proxy reward function literally might go to these new cells if they are
closer. In contrast, an agent that runs Ird will know that a reward function with the same
weights put on the first sensor is just as likely as the proxy. Risk averse planning makes it
go to the target for which both sensors agree (Figure 4.3, right).

Challenge Domain: Latent Rewards, No More Feature Indicators

The previous examples allow us to explore reward hacking and negative side effects in an
isolated experiment, but are unrealistic as they assume the existence of a feature indicator for
unknown, unplanned-for terrain. To investigate misspecified objectives in a more realistic
setting, we shift to the terrain type being latent, and inducing raw observations: we use
a model where the terrain category determines the mean and variance of a multivariate

CHAPTER 4. UNCERTAINTY 64

µk

⌃k �s

Is

Is 2 {grass, dirt, target, unk}
�s ⇠ N (µIs

,⌃Is
)

Figure 4.4: Our challenge domain with latent rewards. Each terrain type (grass, dirt, target,
lava) induces a different distribution over high-dimensional features: φs ∼ N (µIs ,ΣIs). The
designer never builds an indicator for lava, and yet the agent still needs to avoid it in the
test MDPs.

Gaussian distribution over observed features. Figure 4.4 shows a depiction of this scenario.
The designer has in mind a proxy reward on dirt, target, and grass, but forgets that lava
might exist. We consider two realistic ways through which a designer might actually specify
the proxy reward function, which is based on the terrain types that the robot does not have
access to: 1) directly on the raw observations — collect samples of the training terrain
types (dirt, grass, target) and train a (linear) reward predictor; or 2) classifier features —
build a classifier to classify terrain as dirt, grass, or target, and define a proxy on its output.

Note that this domain allows for both negative side effects and reward hacking. Negative
side effects can occur because the feature distribution for lava is different from the feature
distribution for the three safe categories, and the proxy reward is trained only on the three
safe categories. Thus in the testing MDP, the evaluation of the lava cells will be arbitrary
so maximizing the proxy reward will likely lead the agent into lava. Reward hacking occurs
when features that are correlated for the safe categories are uncorrelated for the lava category.

Experiment Details

Lavaland Parameters. We defined a distribution on map layouts with a log likelihood
function that prefers maps where neighboring grid cells are the same. We mixed this log
likelihood with a quadratic cost for deviating from a target ratio of grid cells to ensure similar
levels of the lava feature in the testing MDPs. Our development environment is 70% dirt
and 30% grass. Our testing Mdp is 5% lava, 66.5% dirt, and 28.5% grass.

In the proof-of-concept experiments, we selected the proxy reward function uniformly at
random. For latent rewards, we picked a proxy reward function that evaluated to +1 for

CHAPTER 4. UNCERTAINTY 65

Risk Measure Feature Normalization
0.0

0.2

0.4

0.6

0.8

Fr
ac

ti
on

of
ξ

w
it

h
La

va

Per Time Step Full Trajectory

Initial State Training Feature Counts Log Z(w)

Figure 4.5: Left: We avoid side effects and reward hacking by computing a posterior distribution

over reward function and then find a trajectory that performs well under the worst case reward

function. This illustrates the impact of selecting this worst case independently per time step or

once for the entire trajectory. Taking the minimum per time step increases robustness to the

approximate inference algorithms used because we only need one particle in our sample posterior

to capture the worst case for each grid cell type. For the full trajectory, we need a single particle

to have inferred a worst case for every grid cell type at once. Right: The impact of changing the

offsets ci. “Initial State” fixes the value of the start state to be 0. “Training Feature Counts” sets

an average feature value from the training Mdp to be 0. “Log Z(w)” offsets each evaluation by

the normalizing from the maximum entropy trajectory distribution. This means that the sum of

rewards across a trajectory is the log probability of a trajectory.

target, +.1 for dirt, and −.2 for grass. To define a proxy on raw observations, we sampled
1000 examples of grass, dirt, and target and did a linear regression. With classifier features,
we simply used the target rewards as the weights on the classified features. We used 50
dimensions for our feature vectors.
Independent Variables and Dependent Variabless. We measured the fraction of runs
that encountered a lava cell on the test Mdp as our dependent measure. This tells us the
proportion of trajectories where the robot gets ‘tricked’ by the misspecified reward function;
if a grid cell has never been seen then a conservative robot should plan to avoid it. We
manipulate two factors: literal-optimizer and Z-approx. literal-optimizer is true if
the robot interprets the proxy reward literally and false otherwise. Z-approx varies the
approximation technique used to compute the Ird posterior. It varies across the two levels
described above: sample to approximate the normalizing constant (Sample-Z) or use the
normalizing constant from maximum entropy IRL (MaxEnt-Z) [181].

CHAPTER 4. UNCERTAINTY 66

Negative Side Effects Reward Hacking
0.0

0.1

0.2

0.3

0.4

Fr
ac

ti
on

of
ξ

w
it

h
La

va

Proof-of-Concept

MaxEnt Z Sample Z Proxy

Raw Observations Classifier Features
0.0

0.2

0.4

0.6

0.8

Latent Rewards

Figure 4.6: The results of our experiment comparing our proposed method to a baseline that

directly plans with the proxy reward function. By solving an inverse reward design problem, we

are able to create generic incentives to avoid unseen or novel states.

Comparing optimization methods

Evaluation. Before running the full experiment, we did an initial internal comparison to
find the best-performing planning method. We did a full factorial across the factors with
the side effect feature encoding and the reward hacking feature encoding. As a result, we
had 6 conditions, arising from two possible settings of the min-granularity factor and the
three options for the reward-baseline factor. Figure 4.5 shows the results.

We found that the biggest overall change came from the min-granularity factor. A bar
plot is shown in Figure 4.5 (left). Independently minimizing per time step was substantially
more robust. We hypothesize that this is a downstream effect of the approximate inference
used. We sample from our belief to obtain a particle representation of the posterior. Inde-
pendently minimizing means that we need a single particle to capture the worst case for each
grid cell type. Performing this minimization across the full trajectory means that a single
particle has to faithfully represent the worst case for every grid cell type.

We also saw substantial differences with respect to the reward-baseline factor. Fig-
ure 4.5 (right) shows a bar plot of the results. In this case, setting the common comparison
point to be the average feature counts from the training Mdp performed best. We believe
this is because of the similarity between the train and test scenarios: although there is a new
grid cell present, it is still usually possible to find a trajectory that is similar to those avail-
able in the training Mdp. We hypothesize that correctly making this decision will depend
on the situation.

Impact minimization in Lavaland

Results. Figure 4.6 compares the approaches. On the left, we see that IRD alleviates
negative side effects (avoids the lava) and reward hacking (does not go as much on cells

CHAPTER 4. UNCERTAINTY 67

that look deceptively like the target to one of the sensors). This is important, in that
the same inference method generalizes across different consequences of misspecified rewards.
Figure 4.3 shows example behaviors.

In the more realistic latent reward setting, the IRD agent avoids the lava cells despite the
designer forgetting to penalize it, and despite not even having an indicator for it: because
lava is latent in the space, and so reward functions that would implicitly penalize lava are
as likely as the one actually specified, risk-averse planning avoids it.

We also see a distinction between raw observations and classifier features. The first
essentially matches the proof-of-concept results (note the different axes scales), while the
latter is much more difficult across all methods. The proxy performs worse because each
grid cell is classified before being evaluated, so there is a relatively good chance that at least
one of the lava cells is misclassified as target. IRD performs worse because the behaviors
considered in inference plan in the already classified terrain: a non-linear transformation of
the features. The inference must both determine a good linear reward function to match the
behavior and discover the corresponding uncertainty about it. When the proxy is a linear
function of raw observations, the first job is considerably easier.

4.3 Implementing a dynamic incentive protocol

In the previous section, we showed how to use Ird to create incentives for conservative
optimization. In this section, we will propose a method that leverages reward inference
to implement a dynamic reward design protocol, where H provides a sequence of proxy
objectives to R in response to different context. Next, we use this protocol to explore what
properties of an incentive design problem make it hard. Alternatively, we can think of this
as identifying reward design protocols that minimize the cognitive load on H.

We start by showing how Ird can be extended to fuse proxy reward functions from
multiple environments into a distribution over a single utility function that produces the
same incentives in each development environment. This allows us to implement a dynamic
reward specification protocol akin to the setup described in Section 3.3. Note, however, that
this approach is different in that R optimizes for an estimate of utility that accounts for the
entire sequence of proxy metrics.

Then, we run a sequence of human subject studies where participants use an interface to

specify
∼
w or a sequence of metrics

∼
w

(i)
. Our first experiment compares two joint reward design

protocols, one that optimizes the proxy directly and another that optimizes the mean of the
Ird posterior, to this dynamic protocol. We follow up with another experiment that identifies
properties of reward design problems that increase the cognitive load on participants.

Independent Reward Design

We suppose that there is a sequence of development environments Ẽ{1:N}. The designer spec-

ifies N proxy reward functions
∼
w
{1:N}

, one for each environment. Analogous to Section 4.2

CHAPTER 4. UNCERTAINTY 68

we assume that
∼
w

(n)
leads to successful task execution in environment Ẽ(n).

As before, we wish to determine a distribution over θ, represented as a set of weights w.
In this case, we want to condition on the full sequence of observed proxies. This corresponds
to

P
(
w∗
∣∣∣∼w{1:N}

, Ẽ{1:N}
)
∝ P

(
∼
w

(N)
∣∣∣{w∗, E(N)}, ∼w{1:N−1}

, Ẽ{1:N−1}
)
× · · ·

× P
(
∼
w

(1)
∣∣∣w∗, Ẽ(1)

)
Pθ (w∗)

. (4.26)

To simplify the inference, we will suppose that the
∼
w

(n)
are conditionally independent, given

the true weights w∗ and the development environments. We can therefore factor Equa-
tion 4.26 as

P
(
w = w∗

∣∣∣∼w{1:N}
, Ẽ{1:N}

)
∝ Pθ (w)

N∏
n=1

P
(
∼
w

(n)
∣∣∣w, Ẽ(n)

)
. (4.27)

This allows us to use the forward model from Section 4.2 directly in Equation 4.27. We
use MCMC with the sampled normalizing constant to perform inference and let the agent
model be the optimal policy π∗R, given the proxy. This allows us to use more efficient planning
methods for the deterministic environments we consider.

Comparing joint and independent incentive specification

We begin by comparing independent reward design to two joint reward design baselines.
Nominal. The designer specifies a single proxy objective

∼
w that (ideally) induces the desired

behavior jointly across all development environments Ẽ(n). The robot then optimizes proxy
directly in the deployment environment.
Augmented. To remove confounds introduced by our inference method and isolate the
changes caused by the interactive protocol, we also compare with a method that optimizes
the mean of the Ird posterior for this joint proxy metric. In effective, this applies vanilla Ird
to an Mdp where PS is a uniform distribution over the initial state of each Ẽ(n). Formally,

P
(
w = w∗

∣∣∣∼w, Ẽ{1:N}
)
∝ Pθ (w)

∏
n

P
(
∼
w
∣∣∣w, Ẽ(n)

)
(4.28)

where each term in the product is defined by Equation 4.15 for the appropriate development
environment.

Independent Variables

We manipulated the reward design process with two conditions: independent and joint.
In both cases, we presented the user with the same set of 5 environments, one of which is
shown in Figure 4.7 (Right). For independent reward design, we presented the user with each

CHAPTER 4. UNCERTAINTY 69

environment separately. For joint reward design, we presented the user with all environments
at the same time.

In order to evaluate the performance of the algorithms, we needed access to the ground
truth reward. Therefore, rather than asking users to design according to some internal
preference, we showed them the trajectory that results from optimizing this ground truth
reward. We then asked them to create a reward function that creates incentives for that
behavior.

Dependent Variables

We looked at a combination of objective and subjective measurements of performance.
Objective Measures. We measured the time taken by the user to complete the task for
each condition. We also measured the quality of the solution produced by reward design
using regret computed on a set of 100 randomly-generated environments different from the
training set.

Specifically, we employed 2 measures of performance using the output from reward design.
The first (regret nominal) measures the regret when planning with the proxy for joint, and
with the mean of the posterior over the true reward function for independent reward design.

To provide a fair comparison between the two conditions, we applied the machinery
developed for generalizing designed rewards to joint reward design in Section 4.2. This
approach, which we call augmented joint reward design, produces a distribution over the true
reward function, which allows for more direct comparisons to independent reward design.

This leads to a second measure (regret IRD-augmented), whereby we compute the regret
incurred when optimizing the mean of the distribution produced by augmented joint reward
design.
Subjective Measures. We used the Likert scale questions in Table 4.3 to design a scale
that captures the speed and ease of use for a reward design process. We first test the
hypothesis that the interactive reward design protocol leads to less regret in the deployment
environment.

Hypothesis 1. The independent design process will lead to lower regret within a smaller
amount of time, and with higher subjective evaluation of speed and ease of use.

Lavaland with 5 terrain types

We begin by evaluating independent reward design in an adapted version of the Lavaland
domain from Section 4.2. The two modifications are a diagonal action and an additional
terrain type (leading to 5 total). We heuristically selected the sequence of environments to
exhibit several characteristics of a typical, real-world robotics task.

1. When designing a reward function, a roboticist typically attempts to sample environ-
ments that capture a diverse set of conditions under which the robot operates. For
example, when designing a reward for a self-driving car, it is wise to choose training

CHAPTER 4. UNCERTAINTY 70

0

100

200

300

400

500

600

700

800

Time (s)
Independent Joint

nominal IRD-augmented
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 *

*

Regret

1

2

3

4

5

6

7
*

Ease of Use

Desired Trajectory Current Trajectory

Figure 4.7: Left: The results of our study in grid worlds indicate that independent reward
design is faster, leads to better performance, and is rated as easier to use. Right: Some
of the grid world environments used in the study. Participants tuned the parameters of the
reward function by using a set of sliders.

environments that exhibit a variety of weather, traffic conditions, road geometries,
etc. Similarly, no two environments in our training set have the same distribution of
features/colors.

2. We also capture the property that not all features will be present in a single environ-
ment. For example, we would rarely expect a self-driving car to experience all weather
and traffic conditions, road geometries, etc. in a single training environment. Likewise,
we chose the set such that no environment contains all of the features.

Participants and Allocation. We chose a within-subjects design to improve reliability,
and controlled for the learning effect by putting independent always first (this may have
slightly disadvantaged the independent condition). There were a total of 30 participants.
All were from the United States and recruited through Amazon’s Mechanical Turk (AMT)
platform, with a minimum approval rating of 95% on AMT.
Results: Objective Measures. We first ran a repeated-measures ANOVA with reward
design process as a factor and user ID as a random effect on the total time and the regret.

We found that independent outperformed joint across the board: the reward designed
using the independent process had significantly lower regret (F (1, 30) = 10.32, p < .01), and
took significantly lower user time to design (F (1, 30) = 4.61, p = .04).

Because IRD-based inference is also meant to generalize the designed rewards, we also
tested the IRD-augmented joint reward. IRD did improve the regret of the jointly designed
reward, as expected. The regret was still significantly lower for independent (F (1, 30) =
15.33, p < .001), however.

Figure 4.7 (left) plots the results. Supporting our hypothesis, we see that at least for
this kind of problem the independent approach enables users to design better rewards faster.

CHAPTER 4. UNCERTAINTY 71

Likert Questions
Q1: It was easy to complete [process].
Q2: I had a harder time with [process].

Q3: [process] was fast to complete.
Q4: [process] took fewer runs.
Q5: [process] was frustrating.

Q6: I went back and forth between different slider values a lot on [process].

Table 4.1: The set of questions used to define the subjective measures in our user study.

Results: Subjective Measures. The inter-item reliability of our scale was high (Cron-
bach’s α = .97). We thus averaged our items into one rating and ran a repeated measures
ANOVA on that score. We found that independent led to significantly higher ratings than
joint (F (1, 30) = 33.63, p < .0001). The mean rating went from 2.35 for joint to 5.49 for
independent.

Remark 7. Overall, the independent reward design protocol allowed users to design proxy
metrics that generalize better than the joint proxy design baselines, in less time. Furthermore,
this protocol was subjectively more preferred.

Reward design for a 7-DoF arm

Next, we tested Hypothesis 1 in a robot motion planning problem for a Jaco 7-DoF arm plan-
ning trajectories in a household environment. We employ TrajOpt [134], an optimization-
based motion planner, within a lightweight ROS/RViz visualization and simulation frame-
work. Each environment contains a different configuration of a table, a vase, and a human.
We used linear reward functions. Our features were radial basis function distances from the
end-effector to: 1) the human’s torso; 2)the human’s head; 3)the vase; and 4) the distance
from the end-effector to the table. These features are illustrated in Figure 4.8.

Participants specified the weights on the 4 features by tuning sliders, as in the grid worlds
study. We asked participants to design a reward that induces a trajectory close to a ground
truth trajectory that is visualized. This ground truth trajectory is the result of optimizing
a ground truth reward function w∗ that is hidden from the participants.
Participants and Allocation. We chose a within-subjects design to improve reliability,
and counterbalancing to mitigate strong learning effects observed in the pilot. There were a
total of 60 participants. All were from the United States and recruited through AMT with
a minimum approval rating of 95%.
Results: Objective Measures. Our results in the manipulation domain are analogous to
the grid world domain. We found a significant decrease in time (F (1, 59) = 10.97, p < .01)
and regret (both nominal, F (1, 59) = 38.66, p < .0001, and augmented, F (1, 59) = 54.68, p <
.0001) when users employed independent for designing rewards, as illustrated in Figure 4.9.

CHAPTER 4. UNCERTAINTY 72

head
table

vase

torso

torso

Figure 4.8: Two of the environments used in 7-DoF arm reward design study. Participants
were asked to tune the weights on 4 features to achieve a desired trajectory: RBF distance
to the human’s head, torso, RBF distance to the vase, and distance from the table. Af-
ter changing changing these weights, users were able to forward-simulate the trajectory to
evaluate the induced behavior, as shown on the right.

Results: Subjective Measures. We found that users found independent to be significantly
easier to use than joint in designing rewards (F (1, 59) = 40.76, p < .0001), as shown in
Figure 4.9.

Overall, our results for manipulation follow those in the grid world domain: users perform
better, faster, with the independent process in addition to subjectively preferring it to the
joint process.

What makes reward design hard?

Next, we use controlled instances of reward design problems in the Lavaland domain to
identify properties of development environments Ẽ{1:N} impact task completion time, per-
formance, and subjective assessment.

CHAPTER 4. UNCERTAINTY 73

0

100

200

300

400

500

600

*

Time (s)
Independent Joint

nominal IRD-augmented
0.0

0.1

0.2

0.3

0.4

0.5

* *

Regret

1

2

3

4

5

6

7
*

Ease of Use

Figure 4.9: The results of our study on the Jaco 7-DOF arm are consistent with the previous
study in grid worlds, further illustrating the potential benefits of independent reward design.

Changing the feasible reward set size

One way to characterize the difficulty of a reward design problem is by examining the feasible
rewards set Fε(M, τ): the set of proxy metrics that produce the desired trajectory τ in a
given environment, within some tolerance ε ≥ 0. That is,

Fε(E, τ) = {w ∈ Rk : d(τ, τw∗) ≤ ε}, (4.29)

where τw∗ = argmaxτU(τ ;w∗) subject to the dynamics of environment E, d : S∗ × S∗ → R
is a distance metric on trajectories, and ε ≥ 0 is a small constant. We vary both the
size of Fε(E(n), τ), as well as the intersection over all Fε(E(n), τ), for n = 1, . . . , N . For
environments with discrete state and action spaces, we let ε = 0, so that trajectories in the
feasible set must match exactly the true trajectory.

We formulated 3 hypotheses for this experiment.

Hypothesis 2. The size of the feasible set for an environment negatively affects the amount
of time taken for that environment in the independent condition (i.e. larger feasible set leads
to less time spent designing the reward).

Hypothesis 3. The size of the intersection of feasible sets negatively affects the amount of
time taken in the joint condition (again, larger intersection set means smaller amount of
time).

CHAPTER 4. UNCERTAINTY 74

We still believe that on average across this variety of environments, independent leads to
better results and so we also test Hypothesis 1.
Independent Variables. We manipulate the reward design process (joint vs. independent),
the average feasible set size over the set of environments (large vs. small), and the size of
the intersection of the feasible sets for all environments (large vs. small).

We chose the categories of feasible sets using thresholds selected by examining the feasible
set sizes and intersection sizes in the previous studies. To choose the environment sets for
each of the 4 categories, we followed a simple procedure. We sampled sets of 5 environments,
and computed the feasible set size and intersection size for each set. Then we chose 1 set
from each category randomly to use in this study.
Dependent Measures. We use the same measures as in the previous experiment.
Participants and Allocation. Participants were recruited as in the grid worlds study,
except now we recruited 20 participants per environment set for a total of 80.
Analysis. In this experiment, we attempt to characterize the difficulty of reward design
on a set of environments by two properties: the feasible reward set size for each individual
environment, and the intersection of feasible reward sets across the training set. Our results
support the hypotheses that environments with large feasible reward sets are typically easier,
and joint performs best for training sets with large intersections of feasible reward sets.
Overall, however, independent still performs well in all cases.

To test Hypothesis 2, we fit the amount of time spent for each environment in the
independent condition by the size of the feasible set for each user and environment, and
found a significant negative effect as hypothesized (F (1, 568) = 14.98, p < .0001). This
supports Hypothesis 2. Figure 4.10 (Bottom) shows a scatterplot of time by feasible set size.

To test Hypothesis 3, we fit the amount of time spent designing the joint reward by
the size of the intersection of feasible sets. There was a marginal negative effect on time
(F (1, 113) = 2.55, p = .11). This provides some partial support to Hypothesis 3.

To test Hypothesis 1, we ran a fully factorial repeated-measures ANOVA for time and
regret using all 3 factors: design process, average size of feasible set (large vs. small), and
size of intersection of feasible sets (large vs. small).

For time, we found two significant effects: process and intersections size. Independent
indeed led to significantly less time taken even across this wider set of environments that
is meant to balance the scales between independent and joint (F (1, 163) = 10.27, p < .01).
And indeed, larger intersection size led to less time (F (1, 163) = 8.93, p < .01).

For regret, we again found a significant effect for process, with independent leading to
significantly lower regret (F (1, 163) = 19.66, p < .0001). Smaller feasible sets and smaller
intersections led to significantly lower regret too (F (1, 163) = 38.69, p < .0001 for feasible
sets and F (1, 163) = 8.1, p < .01 for intersections). While smaller feasible reward sets are
typically more challenging for the reward designer, they are in fact more informative – often
smaller sets mean that when designers identify the desired reward, there are few others that
would induce the same desired behavior. Informally, this means that this recovered reward is
more likely to be close to the true reward, and hence will generalize well to new environments
and induce lower regret. But there were also interaction effects: between process and feasible

CHAPTER 4. UNCERTAINTY 75

Small intersection
0

200

400

600

800

1000

Time (s)
Independent Joint

Large intersection

0 10 20 30 40 50 60 70

Intersection set size

0

200

400

600

800

1000

3 5 7 9
100

200

300

400

500

600

700

800

900

Time (s)

3 5 7 9

Number of environments

0.00

0.05

0.10

0.15

0.20

Regret

3 5 7 9
0

1

2

3

4

5

6

7

Ease of Use
Independent Joint

Figure 4.10: Left: Across small or large feasible sets and intersections sizes, independent
still outperforms joint design. A smaller intersection size makes the problem harder, as
expected. Right: As the number of environments increases, we still see benefits in regret
and ease of use, but the time difference is less pronounced.

set size, and between feasible set size and intersection size. We did posthocs with Tukey
HSD. We found that while independent improved regret significantly for large feasible sets
(the setting where independent works best, because each environment is easy; p < .0001), the
improvement was smaller and no longer significant for the small feasible sets. The interaction
between the two size variables revealed that when both the sets and their intersection are
large, the regret is the highest; when they are both small, the regret is lowest; when one
of them is small and the other large, the regret lies somewhere in between the other two
conditions.

The results for both time and regret support Hypothesis 1, and the results for time are
summarized in Figure 4.10 (left). Overall, our result from the main study generalized to
this wider range of environments: independent still lead to less time taken and lower regret.
However, it does seem like environments with very small feasible sets would be difficult with
the independent process, almost as difficult as with joint.

Remark 8. Independent reward design protocols work best when each environment is simple,
but getting a reward that works across all environments is hard.

Changing the number of environments

Independent Variable. We manipulated the number of environments in the training set.
Starting from the set of environments used in the primary study, we either randomly removed
or added environments to achieve set sizes of 3, 7, and 9. When adding, we implemented
a rejection sampling algorithm for heuristically avoiding environment sets that would be
trivially-solved by a reward designer.

CHAPTER 4. UNCERTAINTY 76

Hypothesis. Unlike before, we did not have a clear hypothesis prior to the study: while
increasing the number of environments should make joint reward design more difficult, the
effort required for independent reward design should scale linearly with the number of envi-
ronments as well.
Participants and Allocation. We recruited participants using the strategy used in the
primary study, except we recruited 20 users per condition, for a total of 80 users.
Analysis. We conducted a repeated measures factorial ANOVA with number of environ-
ments and process as factors, for each of our dependent measures. We found that the number
of environments influenced many of the metrics. As shown in Figure 4.10 (Right), indepen-
dent consistently outperformed joint in terms of regret (F (1, 161) = 9.68, p < .01) and ease
of use (F (1, 161) = 20.65, p < .0001). We also saw that the time taken went up with the
number of environments (F (3, 159) = 4.94, p < .01); this is unsurprising, as designing a
reward for more environments should require more effort.

Furthermore, we observe that independent is most time efficient with respect to joint
when there are a moderate number of environments (in this study, 5). If there are too few
environments (in this study, 3) or too many environments (in this study, 7 or 9), then the
differences in time taken are not significant. This follows our intuition about the regimes in
which independent or joint reward design should be used.

This follows our intuition — if there are only a small number of environments to consider
simultaneously, then joint should be an effective strategy for designing a reward; alternatively,
if there are too many, then the advantages of divide-and-conquer diminish as the number of
reward design “subproblems” to be solved grows.

Overall, we observe that while the reward recovered by independent induces lower regret
and independent is consistently rated as easier to use, there is less of an advantage with
respect to reward design time if the number of environments is either very small or very
large. If it is too small, then there is little to be gained. If it is too large, the linear increase
in costs eventually adds up.

Changing the fraction of features present

Our next experiment looked at the impact of the number of features per environment on
overall performance. We vary the number of features per environment from 2 to 5 out of 5
total.
Independent Variables. We manipulated the fraction of the total features F present in
each environment, varying from F = 2/5 to F = 5/5, with 5 possible relevant features in this
domain (i.e. 5 different terrains in the grid world). Because we are limited to 5 features, we
are actually studying the effect of varying the fraction of relevant features per environment
on the performance of reward design.

In total, we had 5 sets of environments (4 on top of our set from the primary study). We
also manipulated the reward design process as before.

CHAPTER 4. UNCERTAINTY 77

Hypothesis 4. Independent reward design outperforms joint when there are some, but not
all of the total number of features possible per environment.

We expect to see that independent has performance on par with joint when all features
are present in each environment – then, the designer has to consider the effect of all features
on the induced behavior, and hence must specify weights on all features for all training
environments, the same as in the joint condition. We also expect the same performance
between the two conditions when there are only 2 of 5 features present in each environment,
because identifying the trade-offs between features becomes trivial.
Participants and Allocation. Participants were recruited as for the grid worlds study,
except now we recruited 20 participants per environment set for a total of 80.
Results. Taken as a whole, the data aligns well with our hypothesis. Independent tends
to outperform joint with a moderate fraction of the total number of features (3/5 or 4/5),
but the two methods perform about the same when the minimum (2/5) or maximum (5/5)
fraction of features are present. These results are summarized in Figure 4.11.

We ran a repeated measures factorial ANOVAs, with results largely supporting Hypoth-
esis 4. The effect was most clear in the subjective measures, where we saw an interaction
effect between the two factors on our ease of use scale– the difference between user preference
on F = 3/5 and F = 4/5 was so strong, that even the Tukey HSD posthoc, which compen-
sates for making 28 comparisons, found a significant improvement of independent over joint
for those feature numbers (p < .0001 and p < .02). For other measures the difference on
these two features was not strong enough to survive this level of compensation for multiple
comparisons, but of course planned contrasts of independent vs. joint on each of the number
of features support the improvement in both regret and time.

As a result, we find support for Hypothesis 4. Overall, independent outperforms joint
when each environment only contains a subset of the total number of features relevant to
the task.

CHAPTER 4. UNCERTAINTY 78

2/5 3/5 4/5 5/5

100

200

300

400

500

600

700

800

Time (s)

2/5 3/5 4/5 5/5
0

1

2

3

4

5

6

7

Ease of Use
Independent Joint

Fraction of features present

Figure 4.11: Independent reward design performs best in comparison with joint reward design
when around half of the total number of relevant features are present in each environment.
This is because each reward design problem is simple, but still provides a good amount of
information about the overall objective.

79

Chapter 5

Pedagogy

So far we have argued two points. First, in Chapter 3 we argued that there is a principal—
agent alignment problem caused by incomplete specification of incentives for AI systems.
Furthermore, this alignment can be mitigated in theory by 1) regularizing optimization
to reduce the strength of incentives and scope of changes and 2) using dynamic incentive
schemes to adapt incentives to changes in the world.

Then, in Chapter 4 we argued that uncertainty about utility evaluations facilitates dy-
namic and pragmatic incentive design protocols. Section 4.1 shows how uncertainty about
utility evaluations creates incentives to seek oversight and balance those incentives against
the costs therein. Section 4.2 uses uncertainty to condition a distribution of objectives on
an observed proxy and a development environment. We show how to use this to implement
pragmatic optimization, that accounts for the context incentives were designed in. Then, in
Section 4.3 we introduced a dynamic reward design protocol that reduces designer effort and
reduces regret on held out problem instances.

We have, so far, modelled assistance problems as PoMdps. That is, we have examined
planning problems where observations of the principal’s behavior provide information about
the utility evaluation of states. In doing so, we model H as a Markov observation distribution:
H’s behavior depends on their policy πH, their type θ, and the state of the world s. While
this is a useful model, it is wrong in potentially meaningful ways.

In this chapter, we will relax this constraint—motivated by three observations:

1. πH is a highly influential component of the environment. Different choices for πH can
lead to large changes in the utility generated by R ◦H;

2. H may often be better understood as a strategic actor, not a static part of the environ-
ment. The primary consequence of this observation is that πH can depend on πR and
may be pedagogic—providing extra information about θ in exchange for future utility
generated by a better informed R; and

3. It may be possible, through R’s actions or interaction design, to influence H’s policy
to be more pedagogic with a more accurate world model, allowing R ◦H to produce

CHAPTER 5. PEDAGOGY 80

Figure 5.1: A comparison of the conditional dependencies for the sequential decision making
models considered in this dissertation. Left: In a supervision-PoMdp, H follows a state-
based policy and produces observations, based on their type θ, R’s action space. Middle: In
an assistance-PoMdp, H and R have potentially distinct action spaces that both affect the
world state. Right: In Section 5.2 we introduce cooperative inverse reinforcement learning,
where H is modelled as a strategic actor who takes actions based on their type, the world
state, and R’s current belief about θ. This represents H’s incentive to take information
revealing actions that improve performance of the human–robot team, R ◦H.

more utility.

We begin in Section 5.1 by analyzing H’s incentives in assistance-PoMdps. First, we
return to the supervision-PoMdp from Section 3.1, where H directly labels current states
with their preferred action and show how the value of β changes the information content of
πH and impacts the relative value of R ◦H. Then, we consider the optimal behavior of a
demonstrator that is aware of, and cares about, R’s future behavior. We show that pedagogic
demonstrations can substantially increase the performance of a (learned) πR.

Then, in Section 5.2, we formalize cooperative inverse reinforcement learning (Cirl): a
simple class of assistance games. Cirl generalizes assistance-PoMdps. It is a two-player
game with jointly observed world state and asymmetrically observed static utility evalua-
tions (i.e., θ is static and private to H). We show how to exponentially reduce the complex-
ity of computing optimal strategy pairs, compared with general solvers of partial informa-
tion games, and adapt approximate and exact PoMdp planning algorithms to solve Cirl
games. Figure 5.1 shows a comparison between the conditional dependencies for supervision-
PoMdps, assistance-PoMdps, and Cirl.

CHAPTER 5. PEDAGOGY 81

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 5 10

A
ut

on
om

y
A

d
va

nt
ag

e
(∆

)

Rationality (β)

Step 0
Step 10
Step 100
Step 500
Max

Inverse Rationality (1
β)

A
ut
on
om
y
A
dv
an
ta
ge
 (Δ

)

Figure 5.2: A plot of the autonomy advantage ∆
(t)
R◦H, the amount of additional utility R ◦ H

produces at time t, compared with the teleoperation policy πTeleop
R , against H’s inverse rationality

1
β . At the left side of the plot, H behaves nearly optimally, and so ∆R◦H is low. On the right,

β → 0, so H is more likely to take suboptimal actions. As a result ∆
(∞)
R◦H is large, indicating that

R is very valuable in the limit. Note that for t < ∞ this relationship may be non-monotonic. β
large has less room for improvement, but also reveals information about θ faster.

5.1 Pedagogic principals are easier to assist

We start by analyzing assistance-PoMdps with respect to changes in πH. We show that,
if H is aware of the potential utility R can produce, then they have an incentive to be
pedagogic: take actions that are suboptimal in isolation but increase V Rpolicy. Our first
example considers H’s level of noisy rationality in the supervision-PoMdp from Section 3.1.

Choosing an optimal level of noisy rationality

Recall the supervision-PoMdp from Definition 13, where H directly labels current states
with their preferred action. The state is a matrix that encodes feature values for each of the
K actions and new states are drawn independently from the initial distribution PS .

Figure 5.2 plots H’s inverse rationality 1
β

against ∆R◦H, the additional value that R ◦H
generates compared to H acting alone. Recall that πH is the noisily rational policy

πβH (s; θ) ∝ exp (βQθ (s, a)) .

CHAPTER 5. PEDAGOGY 82

When πH is highly irrational (i.e., β → 0), it provides very little information per label, so
R learns slowly, but R ◦H is very valuable in the long run. When β is larger (i.e., 1

β
→ 0),

πβH reveals more information about θ, but R ◦H relies on H to do all the work. This is an
issue as increasing β typically requires, e.g., increased attention and effort from H.

Generating pedagogic demonstrations

The previous section showed that R’s behavior creates incentives for H to be more informa-
tive about θ. However, we only allowed H to choose β. In effect, this limits the strategic
component of H’s behavior to the level of noise in their actions. In general, however, H
may optimize any aspect of πH to coordinate with R. R also optimizes πR in response.
As a result, the optimal configuration of R ◦H is in pedagogic equilibrium, where πR and
πH are mutual best responses. We look at the general problem of computing a pedagogic
equilibrium efficiently in Section 5.2. For now, we characterize pedagogic behavior in ap-
prenticeship games : assistance games with two phases, a development phase where H takes
actions and a deployment phase where R takes actions. This is analogous to the development
and deployment environments from Chapter 4, with the change that H may take actions
other than specifying a proxy metric.

We start by characterizing pedagogic equilibrium in an apprenticeship game with 3 ac-
tions each for H and R.

Example. Consider an apprenticeship game where R needs to help H make office supplies.
H and R can make paperclips and staples and θ describes H’s preference for paperclips
vs staples. We model the problem as an apprenticeship game, where the learning and
deployment phase each consist of an individual action.

The world state in this problem is a tuple (ps, qs, t) where ps and qs respectively represent
the number of paperclips and staples H owns. t is the round number. An action is a tuple
(pa, qa) that produces pa paperclips and qa staples. The human can make 2 items total:
AH = {(0, 2), (1, 1), (2, 0)}. The robot has different capabilities. It can make 50 units of
each item or it can choose to make 90 of a single item: AR = {(0, 90), (50, 50), (90, 0)}.

We let Θ = [0, 1] and define U so that w indicates the relative preference between pa-
perclips and staples: U (s, (pa, qa);w) = wpa + (1 − w)qa. R’s action is ignored when t = 0
and H’s is ignored when t = 1. At t = 2, the game is over, so we transition to a sink state,
(0, 0, 2). Initially, there are no paperclips or staples and Pθ is a uniform distribution on [0, 1].

H only acts in the initial state, so πH can be entirely described by a single decision rule
vH : [0, 1] → AH. R only observes one action from H and so R’s policy is a mapping from
aH to aR, πR : AH → AR.

It is simplest to analyze the deployment phase first. R is the only actor in this phase so it
get no more observations of its reward. Thus, we can leverage the result from Ramachadran
and Amir [122] to show that R’s optimal deployment policy in an apprenticeship game
maximizes utility for the mean value of θ.

CHAPTER 5. PEDAGOGY 83

Corollary 13.1. Let M be an apprenticeship game. In the deployment phase, the optimal
policy for R maximizes reward in the Mdp induced by the mean w from R’s belief.

Proof. In the deployment phase, R optimizes πR for a static distribution of θ. This meets the
conditions of Theorem 3 from Ramachadran and Amir [122] and the result follows directly.

In our example, suppose that πH selects (0, 2) if w ∈ [0, 1
3
), (1, 1) if w ∈ [1

3
, 2

3
] and (2, 0)

otherwise. R begins with a uniform prior on w so observing, e.g., aH = (0, 2) leads to a
posterior distribution that is uniform on [0, 1

3
). Corollary 13.1 shows that the optimal action

maximizes reward for the mean w so an optimal R behaves as though w = 1
6

during the
deployment phase.

Corollary 13.1 enables us to characterize the best response for R when myopically maxi-
mizes immediate reward. R should use Bayesian-Irl to compute the posterior over w during
the learning phase and then act to maximize utility under the mean w in the deployment
phase. Next, we will look at the incentives this induces for H. We will show that H’s best

response is distinct from πβH. In turn, this shows that, in general, the pair
(
πβH,br

(
πβH

))
is not in pedagogic equilibrium.

Theorem 14. There exist apprenticeship games where the best-response for H to an Irl-R
deviates from the behavioral model used therein. In other words, there exist apprenticeship
games such that

br
(
br
(
πβH

))
6= πβH. (5.1)

Proof. Our office supply example gives a counter example that shows the theorem.
An Irl-R assumes that H maximizes utility. Let vE represent the decision rule for this

policy. We can characterize vE and its best response br(vE) as follows:

vE(w) =


(0, 2) w < 0.5
(1, 1) w = 0.5
(2, 0) w > 0.5

, (5.2)

br (vE) (aH) =


(0, 90) aH = (0, 2)
(50, 50) aH = (1, 1)
(90, 0) aH = (2, 0)

. (5.3)

Note that when w = 0.49 H would prefer R to choose (50, 50). H is willing to forgo
immediate reward during the demonstration to communicate this to R: the best response
chooses (1, 1) when w = 0.49.

More generally, when H accounts for R’s actions under br (vE), H is faced with a choice
between 0 paperclips and 92 staples, 51 of each, or 92 paperclips and 0 staples. It is straight-
forward to show that the optimal pedagogic decision rule is given by

CHAPTER 5. PEDAGOGY 84

vH(w) =


(0, 2) w < 41

92

(1, 1) 41
92
≤ w ≤ 51

92

(2, 0) w > 51
92

. (5.4)

This is distinct from Equation 5.2 so we conclude the result.

Remark 9. We should expect experienced users of apprenticeship learning systems to present
demonstrations optimized for fast learning rather than demonstrations that maximize reward.

Pedagogic demonstrations for inverse reinforcement learning

Now, we consider the problem of computing H’s best response when R is an Irl-R more
generally. In the office supply problem, it is feasible to exhaustively search the space of joint
policies. For non-trivial apprenticeship games, we need a more efficient approach. In this
section, we present one such method: a heuristic approach that leverages a property of Irl
with linear utility functions. We show that it is able to improve the utility produced by
R ◦H, compared to expert demonstrations.

Specifically, we use a linear utility model so that U (s, aH, aR;w) = w>φ (s) . Standard
results from the Irl literature show that policies with the same expected feature counts have
the same value under any setting of θ [2]. Combined with Corollary 13.1, this implies that
an optimal Irl-R will compute a policy that matches the observed feature counts from the
development phase.

This suggests a simple approximation scheme. To compute a demonstration trajectory
τH, first compute the feature counts R would observe in expectation from the true w and
then select actions that maximize similarity to these target features. If φw are the expected
feature counts induced by w then this scheme amounts to the following decision rule:

τH ← arg max
τ

φ(τ)>w − η||φw − φ(τ)||2. (5.5)

This rule selects a trajectory that trades off between the sum of rewards φ(τ)>w and
the feature dissimilarity ||φw − φ(τ)||2. Note that this is generally distinct from the action
selected by the demonstration-by-expert policy. The goal is to match the expected sum of
features under a distribution of trajectories with the sum of features from a single trajectory.
The correct measure of feature similarity is the regret a set of features counts induces relative
to the utility R would collect if it knew the true w. Computing this similarity is expensive,
so we use an `2 norm as a proxy measure of similarity.

Figure 5.3 shows an example comparison between demonstration-by-expert and the ap-
proximate best response policy in Section 5.1. The leftmost image is the ground truth reward
function. Next to it are demonstration trajectories produced by these two policies. Each
path is superimposed on the maximum a-posteriori reward function the robot infers from the
demonstration. We can see that the demonstration-by-expert policy immediately goes to the
highest reward and stays there. In contrast, the best-response policy moves to both areas

CHAPTER 5. PEDAGOGY 85

Ground Truth Expert Demonstration Instructive Demonstration

Figure 5.3: The difference between demonstration-by-expert and instructive demonstration
in a 2D gridworld. The three features are radial basis functions from one of 3 locations in
the center of the map. Left: The ground truth reward function. Lighter grid cells indicates
areas of higher reward. Middle: The demonstration trajectory generated by the expert
policy, superimposed on the maximum a-posteriori reward function the robot infers. The
robot successfully learns where the maximum reward is, but little else. Right: An instructive
demonstration generated by the algorithm in Section 5.1 superimposed on the maximum a-
posteriori reward function that the robot infers. This demonstration highlights both points
of high reward and so the robot learns a better estimate of the reward.

of high reward. The reward function the robot infers from the best response demonstration
is much more representative of the true reward function, when compared with the reward
function it infers from demonstration-by-expert.

Pedagogy improves learning

We tested this in a 2D navigation problem on a discrete grid. In the development phase of the
game, H teleoperates a trajectory while R observes. In the deployment phase, R is placed
in a random state and given control of the robot. We use a finite horizon H, and let the first
H
2

timesteps be the development phase. There are Nφ state features defined as radial basis
functions where the centers are common knowledge. Rewards are linear in these features
and w. The initial world state is in the middle of the map. We use a uniform distribution on
[−1, 1]Nφ for the prior on w. Actions move in one of the four cardinal directions {N,S,E,W}.

Hypothesis 5. When R is an Irl-R that matches features, the approximate best response
policy from Section 5.1 cause R to produce more utility than demonstration-by-expert.

Manipulated Variables. Our experiment consists of 2 factors: H-policy and num-
features . We make the assumption that R uses an Irl algorithm to compute its estimate
of w during learning and maximizes reward under this estimate during deployment. We use
Maximum-Entropy Irl [181] to implement R’s policy. H-policy varies H’s strategy πH
and has two levels: demonstration-by-expert (πE) and best-responder (br). In the πE level

CHAPTER 5. PEDAGOGY 86

Regret KL ||µGT ° µ̂||2
0

3

6

9

12 num-features = 3

br

ºE

Regret KL ||µGT ° µ̂||2
0

4

8

12

16 num-features = 10

br

ºE

10°3 10°1 101

∏

0

0.25

0.5

0.75

1

R
eg

re
t

Regret for br

| |w* − ŵ | |2 | |w* − ŵ | |2
β

Figure 5.4: Left, Middle: Comparison of demonstration-by-expert (πE) with pedagogic
demonstration (br). Lower numbers are better. Using the best response causes R to infer a
better distribution over w so it does a better job of maximizing reward. Right: The regret
of the instructive demonstration policy as a function of how optimal R expects H to be.
β = 0 corresponds to a robot that expects purely random behavior and β =∞ corresponds
to a robot that expects optimal behavior. Regret is minimized for an intermediate value of
β: if β is too small, then R learns nothing from its observations; if β is too large, then R
expects many values of w to lead to the same trajectory so H has no way to differentiate
those reward functions.

H maximizes reward during the demonstration. In the br level H uses the approximate
pedagogical algorithm defined above to compute an approximate best response to πR. The
trade-off between reward and communication η is set by cross-validation before the game
begins. The num-features factor varies the dimensionality of φ across two levels: 3 features
and 10 features. We do this to test whether and how the difference between experts and best-
responders is affected by dimensionality. We use a factorial design that leads to 4 distinct
conditions. We test each condition against a random sample of N = 500 different reward
parameters. We use a within-subjects design with respect to the the H-policy factor so the
same reward parameters are tested for πE and br.

Dependent Measures. We use the regret with respect to a fully-observed setting where
the robot knows the ground truth w as a measure of performance. We let ŵ be the robot’s
estimate of the reward parameters and let w∗ be the ground truth reward parameters. The
primary measure is the regret of R’s policy: the difference between the value of the policy
that maximizes the inferred reward ŵ and the value of the policy that maximizes the true
reward w∗. We also use two secondary measures. The first is the KL-divergence between the
maximum-entropy trajectory distribution induced by ŵ and the maximum-entropy trajectory
distribution induced by w. Finally, we use the `2-norm between the vector or rewards defined
by ŵ and the vector induced by w∗.

Results. There was relatively little correlation between the measures (Cronbach’s α of
.47), so we ran a factorial repeated measures ANOVA for each measure. Across all measures,
we found a significant effect for H-policy , with br outperforming πE on all measures as we

CHAPTER 5. PEDAGOGY 87

H-policy num-features=3 num-features=10
Regret KL-divergence ||w∗ − ŵ||2 Regret KL-divergence ||w∗ − ŵ||2

πE 11.3 5.53 9.7 16.1 6.2 15.3
br 0.2 0.1 1.0 4.3 2.4 13.3

Table 5.1: Comparison of demonstration-by-expert (πE) with pedagogic demonstration (br).
Lower numbers are better. Using the best response causes R to infer a better distribution
over w so it does a better job of maximizing utility.

hypothesized (all with F > 962, p < .0001). We did find an interaction effect with num-
features for KL-divergence and the `2-norm of the reward vector but post-hoc Tukey HSD
showed br to always outperform πE. The interaction effect arises because the gap between
the two levels of H-policy is larger with fewer reward parameters; we interpret this as
evidence that num-features = 3 is an easier teaching problem for H. Figure 4.6 (Left,
Middle) shows the dependent measures from our experiment.

5.2 Cooperative Inverse Reinforcement Learning

Figure 5.4 shows that R’s performance can be substantially improved by adopting a peda-
gogic demonstration strategy that reasons directly about the feature counts created for R.
In this section, we define cooperative inverse reinforcement learning (Irl) a generalization of
assistance-PoMdps where H is a strategic actor. As a result, H’s actions can also depend
on the history of the interaction. We start with a formal definition of Cirl. Then, we define
pedagogic equilibrium as a solution concept for Cirl games. We show how to efficiently
compute pedagogic equilibrium in two steps: 1) we show that R’s belief BR is a sufficient
statistic for utility maximizing strategies by reducing the problem to a PoMdp with an ex-
ponentially sized action space; and 2) we leverage the information structure of that PoMdp
to speed up planning and show that Cirl games can be solved in roughly the amount of
time it takes to solve a similarly sized PoMdp.

A Formal Model of Principal–Agent Alignment

Definition 22. (Cooperative Inverse Reinforcement Learning)
A cooperative inverse reinforcement learning (Cirl) game is defined as a tuple

G = 〈{S, PS}, {AR,AH}, T, {Θ, Pθ}, U〉 : (5.6)

S A set of world states, s ∈ S;

PS A distribution over the initial state of the world. PS ∈ ∆(S);

CHAPTER 5. PEDAGOGY 88

AH A set of actions for H, aH ∈ AH;

AR A set of actions for R, aR ∈ AR;

T A transition distribution that determines the distribution over next states, given previ-
ous state and actions for H and R. T : S ×AH ×AR → ∆ (S) .

Θ A space of types that determine H’s utility function, θ ∈ Θ;

Pθ A distribution over H’s type, Pθ ∈ ∆(Θ);

U A parameterized utility function that maps a state and type to a real number that
represents H’s utility, U (s, aH, aR; θ) : S ×AH ×ARΘ→ R;

γ A discount factor that trades off between current and future utility. γ ∈ [0, 1).

In Cirl, we consider H’s ability to anticipate R’s actions and respond accordingly. This
creates incentives to teach and leads to solutions where H’s actions reveal more information
about their type. In general, this increases the value R is able to provide. In practice, this
changes the domain for H’s policy to depend on their full information set. Formally,

πH ∈ Θ× (S ×AH ×AR)∗ ; πR ∈ (S ×AH ×AR)∗ . (5.7)

We illustrate the dependencies in Figure 5.5 with BR standing in for the history of actions
from both players.1 Because πR and πH depend on the previous actions of the other player,
this allows for communication and coordination. This interdependence also creates nuance
in the choice of optimality criteria. This is because a solution to a Cirl game is a pair of
strategies, (πH, π

∗
R), one for each actor. While it is straightforward (although often highly

non-trivial) to imagine R implementing a given policy, people are a different story. We have
lots of evidence that game theory does not predict human behavior perfectly.

To manage some of this complexity, we consider two related solution concepts for a
Cirl game: one that defines optimality for R in isolation and one that describes optimal
team performance. We will consider solutions that are robust to difference choices of πH in
Chapter 6. The optimality condition in isolation is the best-response criterion considered in
the previous section. In a Cirl game it is defined as follows:

Definition 23. (Best Response)
Let G = 〈{S, PS}, {AR,AH}, T, {Θ, Pθ}, U〉 be a Cirl game. For a pair of strategies
(πH, πR), R’s policy πR is a best response to πH, written πR ∈ br (πH), iff

πR ∈ arg max
π

E

γt∑
t

Uθ
(
s(t), a

(t)
H , a

(t)
R

)∣∣∣∣∣
s(t+1) ∼ T

(
s(t), a

(t)
H , a

(t)
R

)
;

a
(t)
R ∼ πR

(
s(t), τ (t−1)

)
;

a
(t)
H ∼ πH

(
s(t), τ (t−1); θ

)
 . (5.8)

1We will show later in Theorem 17 that this restriction preserves the optimal strategy pair.

CHAPTER 5. PEDAGOGY 89

Figure 5.5: The conditional dependencies for a single timestep of a Cirl game. H’s action
a

(t)
H depends on the world state s(t), their type θ and R’s belief state B(t)

R . R’s action a
(t)
R , on

the other hand, only depends on the world state s(t) and its belief B(t)
R . This depiction relies

on Theorem 17 as, in general, game strategies can depend on the full state-action history.

Definition 23 describes a family of optimal policy for R as a function of H’s policy πH.
The key difference between Equation 5.8 and the optimality criterion in assistance-PoMdps
is that πH is no longer a Markov component of the environment. This is no longer a PoMdp
because the (joint) state-action history τ changes the distribution of aH. As a result, R has
to reason about the impact of its actions on H’s future behavior through mechanisms other
than the world state. For example, action selection in the pedagogic demonstration policies
from Section 5.1 depends on τ through the features observed thus far and the target feature
counts. This leverages the fact that feature counts are a sufficient statistic for BR when the
utility model is linear and R is an Irl-R. (In the next section, we show that optimal strategy
pairs can always use R’s belief BR as a sufficient statistic for the interaction history.)

We say that a pair of strategies (πH, πR) are in pedagogic equilibrium when (πH, πR) are
mutual best responses.

Definition 24. (Pedagogic Equilibrium)
Let G = 〈{S, PS}, {AR,AH}, T, {Θ, Pθ}, U〉 be a Cirl game. A strategy pair (π∗H, π

∗
R) is in

pedagogic equilibrium iff

π∗H ∈ arg max
πH

E

∑
t

γtUθ
(
s(t), a

(t)
H , a

(t)
R

) ∣∣∣∣∣∣∣
s(t+1) ∼ T

(
s(t), a

(t)
H , a

(t)
R

)
;

a
(t)
H ∼ πH

(
s(t), τ (t−1); θ

)
;

a
(t)
R ∼ π∗R

(
s(t), τ (t−1)

)
 ; (5.9)

CHAPTER 5. PEDAGOGY 90

π∗R ∈ arg max
πR

E

∑
t

γtUθ
(
s(t), a

(t)
H , a

(t)
R

) ∣∣∣∣∣∣∣
s(t+1) ∼ T

(
s(t), a

(t)
H , a

(t)
R

)
;

a
(t)
H ∼ π∗H

(
s(t), τ (t−1); θ

)
;

a
(t)
R ∼ πR

(
s(t), τ (t−1)

)
 . (5.10)

Note that pedagogic equilibrium need not maximize E [Uθ]. Theorem 15 proves this
by appealing to a counter-example apprenticeship game in the Lavaland domain from Sec-
tion 4.2.

Theorem 15. There exist Cirl games G with strategy pairs (πH, πR) such that

1. (πH, πR) is a pedagogic equilibrium in G; and

2. there exists an alternative strategy pair (π∗H, π
∗
R) that gets higher expected utility

V (π∗H,π∗R) > V (πH,πR). (5.11)

Proof. We show this by construction. Consider the Proof-of-Concept Lavaland domain from
Section 4.2 where there are 4 types of states {sgrass, sdirt, starget, slava} and φ(s) is a one-hot
encoding of state type. Let G be an an apprenticeship game where the slava indicator is
constant in the development environment Ẽ. Suppose, additionally, that there exist types
θ0, θ1 such that

Pθ (θ0) = Pθ (θ1) ; (5.12)

U (slava, aH, aR; θ0) = −U (slava, aH, aR; θ1) ; (5.13)

U (s, aH, aR; θ0) = U (s, aH, aR; θ1) , s ∈ {sgrass, sdirt, starget}; (5.14)∣∣∣∣∣∣∣arg max
τ

∑
(s(t),a(t))∈τ

γtU
(
s(t), a

(t)
H , a

(t)
R ; θi

)∣∣∣∣∣∣∣ > 1, i ∈ {0, 1}. (5.15)

Let the deployment environment consist of two copies of Ẽ: one where the indicator for
slava is on, and another where the indicator for slava is off. Call them Elavaand E¬lava. In
addition, there is one new state s0 with 2 actions alava and a¬lava. alava samples the next
state from the initial distribution of Elava and a¬lava samples from the initial distribution of
E¬lava.

We will now construct two pedagogic equilibria with distinct value, which will show the
result. First consider the case where πH maximizes immediate reward and breaks ties ran-
domly. θ0 and θ1 will have the same likelihood in the posterior because they each induce
the same distribution of utility evaluations in the development environment. Thus, Equa-
tion 5.12 and Equation 5.13 allow us to conclude that QR (s0, alava;BR) = QR (s0, a¬lava;BR)

when H maximizes utility in Ẽ. As a result, br
(
πβH

)
can take either action in s0. Suppose

R breaks ties randomly.

CHAPTER 5. PEDAGOGY 91

πβH is a best response to br
(
πβH

)
. There is nothing that H can do to change R’s behavior

in s0, so H only has incentives to communicate the optimal trajectory — which πβH does

with probability 1 as β → ∞. Thus, for β sufficiently large,
(
πβH,br

(
πβH

))
is a pedagogic

equilibrium.
Now consider the case where R uses which optimal trajectory H chooses to break the

tie between alava and a¬lava as follows. Let τ0 6= τ1 be distinct optimal trajectories for θ0, θ1.
They exist by assumption due to Equation 5.15. Let R choose alava when H chooses τ0 and
a¬lava when H chooses τ1. Now, H can affect R’s behavior in s0, and so they have incentives
to break ties in a way that will cause R to make the right choice. This pair of strategies is
optimal: H executes the optimal trajectory for θ during development and R executes the
optimal trajectory for both θ0 and θ1 during deployment.

Thus, this new pair of strategies is optimal for θ0 and θ1. This proves Equation 5.11
because we have constructed a Cirl game with (at least) two distinct pedagogic equilibria
of different expected utility.

Thus, we can have suboptimal strategy pairs that are mutual best-responses. Further-
more, the construction highlights the fact that even computing an optimal strategy pair
is not the same as ‘solving’ a Cirl game for all intents and purposes. It is straightfor-
ward to construct multiple optimal strategy pairs where R interprets H’s behavior in the
exact opposite way with respect to θlava. Thus, the solution is not robust to coordination
failures. Because we can not actually plan for H—at best their behavior can be influenced
indirectly—Cirl games must often be addressed under assumptions that reflect decentralized
planning in addition to the decentralized execution constraints considered in the majority
of the Dec-PoMdp literature. Boutilier [22] explores these coordination challenges for the
class of multi-agent Mdps. We discuss these issues (and general issues of brittle pedagogic
equilibria in Cirl games) in depth in Chapter 6. For now, we will focus on the problem of
efficiently computing optimal pedagogic equilibria.

In the optimal pedagogic equilibrium, R◦H is optimized to maximize team performance.
As a result, H uses all available information to optimally balance the long-term value of in-
formation that their actions reveal to R and the short-term costs of deviating from the
myopically optimal action. The problem of computing an optimal pedagogic equilibrium
for a Cirl game can be reduced to solving a decentralized -PoMdp(Dec-PoMdp) [18]. A
Dec-PoMdp extends a PoMdp to have multiple actors, each with potentially distinct ob-
servation distributions. Most Dec-PoMdp research deals with (offline, centralized) planning
algorithms that determine policies for all the actors. Each policy is restricted to depend
only on the observation-action history of the appropriate actor. In other words, the goal is
to identify a set of policies that maximize utility and can be executed independently, each
relying only on its own observations. Actions can be coordinated only, but only through
changes to the world state that the other actors can observe. In a general Dec-PoMdp, the
actors must generally track a belief about the others’ information set [18]. The requirement
to maintain meta-beliefs (i.e., a belief about the other actors’ beliefs) accounts for the (dou-

CHAPTER 5. PEDAGOGY 92

bly exponential) nexp-complete time complexity of Dec-PoMdp solution algorithms [18].
In the next section, we show that the commonly observed nature of s avoids this complexity.

BR is a sufficient statistic for optimal policy pairs

Nayyar, Mahajan, and Teneketzis [114] shows that a Dec-PoMdp can be reduced to a
coordination-PoMdp. The actor in this PoMdp is a coordinator that observes all common
observations and specifies a local policy for each actor called a decision rule. These policies
map each actor’s private information to an action. The structure of a CIRL game implies that
the private information is limited to H’s initial observation of θ. This allows the reduction to
a coordination-PoMdp to preserve the size of the (hidden) state space, making the problem
easier.

Theorem 16. Let M be an arbitrary Cirl game with state space S and reward space Θ.
There exists a (single-actor) PoMdp MC with (hidden) state space SC such that |SC| =
|S| · |Θ| and, for any policy pair in M , there is a policy in MC that achieves the same sum
of discounted rewards.

Proof. We take MC to be the coordination POMDP associated associated with M . The
second component of C’s action is an action for R. R has no private observations, so for any
policy πR R could choose to follow, C can match it by simulating πR and outputting the
corresponding action. Similarly, C only observes common observations, so R can implement
any coordinator strategy by simulating C and directly executing the appropriate action.

By a similar argument, H can also simulate any given πC to compute their decision rule
vH, and then execute the corresponding action. To see that there is a πC that can reproduce
the behavior of any πH, let h be the action-observation history for H. C can choose the
following decision rule

vH(θ) = πH(θ;h)

to produce the same behavior.

An immediate consequence of this result is that R’s belief about θ is a sufficient statistic
for optimal behavior.

Theorem 17. Let M be a Cirl game. There exist optimal policies (π∗H, π
∗
R) that only

depend on the current state and R’s belief.

πH
∗ : S ×∆ (Θ)×Θ→ AH, πR

∗ : S ×∆ (Θ)→ AR.

Proof. [149] showed that an optimal policy in a PoMdp only depends on the belief state.
R’s belief uniquely determines the belief for C. From this, an appeal to Theorem 16 shows
the result.

CHAPTER 5. PEDAGOGY 93

Remark 10. In a general Dec-PoMdp, the hidden state for the coordinator-PoMdp in-
cludes each actor’s history of observations. In Cirl, θ is the only private information so
we get an exponential decrease in the complexity of the reduced problem. This allows one to
apply general PoMdp algorithms to compute optimal joint policies in Cirl.

It is important to note that the reduced problem may still be very challenging. PoMdps
are difficult in their own right and the reduced problem still has a much larger action space.
That being said, this reduction is still useful in that it characterizes optimal joint policy
computation for Cirl as significantly easier than Dec-PoMdps. Furthermore, this theorem
can be used to justify approximate methods (e.g., iterated best response) that only depend
on R’s belief state.

A efficient dynamic programming algorithm for CIRL

Next, we will build on this result to design efficient (approximate) dynamic programming
method for Cirl games. The previous reduction greatly simplifies the belief space that
must be considered during (joint) policy optimization. However, this comes at the cost of
much larger action space. This is because the action space in the coordination PoMdp is
the product of R’s action space AR and the set of mapping from H’s type to their action
space. This leads to an action space in the coordinator PoMdp with |AR| · |AH||Θ| distinct
actions to be considered. To counteract this blowup, we can take advantage of the special
information structure of a Cirl game. H is a full-information actor and so, although their
policy is not Markov with respect to the environment state, it can be computed exactly from
intermediate calculations already used in PoMdp value iteration.

A cooking assistance game

We will introduce our method with the use of an example cooking assistance game. In this
game, R and H are working together to make food. There are several ingredients that can
be prepared to cook recipes. H’s type space Θ is the set of possible recipes.

Take for instance the domain from Figure 5.6. H and R work to prepare a meal using
three ingredient types: bread, meat, and tomatoes. H wants to prepare either a sandwich
(2 bread, 1 meat, 0 tomatoes), or tomato soup (1 bread, 1 meat, 2 tomatoes). R does not
know a priori which meal H wants. At every time step, R and H each prepare a single unit
of any ingredient, or no ingredient at all. The state produces utility 1 if the desired recipe
has been made and 0 otherwise. In this domain, (optimal) pedagogic equilibrium models
H’s incentive for the robot to infer the correct recipe. The structure of Θ allows R to act,
at least initially, based on incomplete information about the correct recipe: bread and meat
are a good idea for either recipe.

CHAPTER 5. PEDAGOGY 94

Figure 5.6: An example of the cooking domain. H and R need to work together to prepare a
meal using H’s desired recipe. R starts off unaware of which meal H wants. In our running
example, there are 3 types of ingredients: bread, meat, and tomatoes. There are 2 recipes:
a sandwich (2 bread, 1 meat, 0 tomatoes) and tomato soup (1 bread, 1 meat, 2 tomatoes).
The world state represents how many (0, 1, or 2) of each ingredient has been prepared. In
a pedagogic solution for this game, H chooses to make tomatoes first if they want tomato
soup; the other ingredients are needed for both recipes, so R can make either. R can then
infer that H wants a sandwich if they make bread, because they would have made tomatoes
otherwise. This pragmatic reasoning on R’s part is a distinguishing property of pedagogic
equilibrium in assistance games. No Irl-R can make this inference because bread is needed
for both recipes.

Cooking as an Assistance-POMDP

Before introducing our approach, we describe value iteration as it applies to assistance-
PoMdps. As discussed in Chapter 2, value iteration algorithms often track a set of poten-

tially optimal conditional plans. We write a conditional plan as σ =
(
a

(t)
R , v

(t)
)

. a
(t)
R ∈ AR

indicates R’s next action. v(t) maps the current observation, H’s action a
(t)
H , into the next

conditional plan.
The value of a conditional plan depends on the associated belief state BR. A useful

observation for PoMdp algorithms is that this can be represented efficiently as a vector of
values: one for each possible hidden state. In an assistance-PoMdp, this is a mapping from

CHAPTER 5. PEDAGOGY 95

Θ the value of the given conditional plan when H has that type.
The α-vector of a conditional plan σ = (aR, v) in a assistance-PoMdp, is defined by the

following dynamic programming relationship:

ασ (s; θ) = E

[
U (s, aH, aR; θ) + γ

∑
s′∈S

T (s′ |s, aH, aR)αv(aH) (s′; θ)

∣∣∣∣∣ aH ∼ πH (s; θ)

]
. (5.16)

The value of a plan at a belief BR is the expected value of the plan across the states i.e.
V σ(BR) = BR · ασ =

∑
s∈S BR (s) · ασ (s). The goal of an agent in a PoMdp is to find the

plan with maximal value from their current belief.
Value iteration [153] can be used to compute the optimal conditional plan. This algorithm

starts at the horizon and works backwards. It generates new conditional plans at each time-
step and evaluates them according to Equation 5.16. It constructs all potentially optimal
plans of a given length, set in relation to γ to ensure optimality, and selects the one with
maximal value at the initial belief.
Solving an assistance-PoMdp for cooking. For example, consider a simplified instance
of the cooking task from Figure 5.6 where H picks their actions according to only their
desired recipe and the quantity of each ingredient prepared so far, i.e., they do not consider
R’s past or future behavior when picking their actions. The simplified cooking task is now
an assistance-PoMdp. I.e., H is modeled as a Markov component of the environment.
BR is a distribution over possible recipes, in this case over the set {Sandwich,TomatoSoup}.

R’s behavior is specified by a conditional plan σ = (a, v). For example,

σ =

Bread,


Bread→ (Meat, ∅) ## Target recipe: Sandwich

Tomatoes→ (Meat,Tomatoes) ## Target recipe: TomatoSoup

Meat→ (∅, v′) ## Target recipe: ??


 .

(5.17)
This is one component of a conditional plan for an Irl-R. R prepares bread first, because it
is needed for both recipes. If H makes bread, then we know the desired recipe is a sandwich.
R prepares the final piece of bread to complete the sandwich. If H makes tomatoes, then
the recipe is tomato soup, and R ◦H finishes the recipe in the next round. However, if H
responds by preparing meat, θ is not identified. R must make a guess at the next action,
potentially wasting food, time, or both. In this case, recipe completion proceeds according
to the decision rule v’.

Note that σ is a best response to πH in this example and πH chooses actions that are
optimal for H in isolation. Thus, Equation 5.17 is an optimal solution to the assistance-
PoMdp formulation of the cooking problem. The ultimate value of the policy comes down
to details of how H breaks ties between optimal-in-isolation actions. If H would simply
adopt the policy

vPedagogy = {Sandwich→ Bread; TomatoSoup→ Tomatoes}, (5.18)

then the target recipe is guaranteed to be made in two rounds (as opposed to 3). In the next
section, we will show how Cirl model’s H’s incentives to make this change.

CHAPTER 5. PEDAGOGY 96

;

;
}

⇤

Figure 5.7: A node in the search tree from the PoMdp reduction of the ChefWorld domain.
Actions are tuples that contain an action for R and a decision rule for H – a mapping from
their desired recipe to an action. This leads to a branching factor of |AH||Θ||AR| and makes
application of PoMdp methods inefficient. The modified Bellman update from Section 5.2
prunes away all of H’s decision rules but the optimal response. (In the diagram, the gray
branches are pruned away by the modified Bellman update.)

The Coordination-POMDP for cooking

Now, consider what changes when we model the problem as a Cirl game. H’s policy can
now account for R’s conditional plan σ. H can select actions in response to Qσ

θ . Thus,
they recognize the suboptimality of preparing meat initially. This causes them to follow
Equation 5.18, increasing the expected utility from the interaction.

However, this comes at a computational cost. Consider the coordination-PoMdp re-
duction for this example. The action space has become much larger. It must specify an
action for R aR and a decision rule vH for H. The size of the action space for the cook-
ing assistance-PoMdp is 4: one action for each ingredient and an additional no-op, ∅. The
action space in the coordination-PoMdp increases this to 32 = 25: there are |AH||Θ| = 42

distinct decision rules for H which can each be paired with a different aR. Figure 5.7 shows
an illustration of this action space as a tree.

CHAPTER 5. PEDAGOGY 97

The computational efficiency of an assistance-PoMdp formulation (and the associated
approximation) is clear. H’s component of the action can be marginalized over if they are
modeled as a Markov observation model. The key insight we leverage in our approach is
that it is still possible to do this marginalization even if H’s behavior depends on V σ

θ .

Theorem 18. Let G = 〈{S, PS}, {AR,AH}, T, {Θ, Pθ}, U〉 be a Cirl game. H’s value
function for a conditional plan σ is equal to ασ. That is, for any conditional plan σ and
θ ∈ Θ

V σ
θ (s) = ασ (s; θ) . (5.19)

Proof. This follows directly from the definition of ασ as the vector of values for σ as a
function of the latent state (s, θ).

In a general Dec-PoMdp computing the value function for any actor requires taking a
dot product with their belief. However, full-information actors have a very restricted class of
possible beliefs: beliefs that place all their mass on a single state. Thus, ασ tracks the value
function of full-information actors. This means that fully-informed, cooperative, strategic
behavior can be accounted for with minimal increase in computational complexity.

Specifically, we can update the dynamic programming relationship in Equation 5.16 to
account for H’s strategic behavior by maximizing over aH:

ασ (s; θ) = max
aH∈AH

{
U (s, aH, aR; θ) + γE

[
αv(aH) (s′; θ)

∣∣ s′ ∼ T (s, aH, aR)
]}
. (5.20)

Corollary 18.1. For any Cirl game G, the policy computed by value iteration with Equa-
tion 5.20, π∗R is a component of an optimal pedagogic equilibrium (π∗H, π

∗
R).

Proof. From Theorem 18, we know that H’s value function for a given conditional plan σ is
given by ασ. Thus, the maximization in Equation 5.20 never prunes away an optimal action
for H. Thus, the conditional plan output at the end of value iteration, which is the best
policy among those not pruned away, must be optimal.

This modification to the Bellman update allows us to solve a Cirl game without having
to include the set of H’s decision rules in the action space. As depicted in Figure 5.7,
the modified Bellman update computes H’s optimal action given the current state and the
robot’s plan; all of H’s other actions are pruned away in the search tree. The size of the
action space is then |AR| instead of |AH||Θ||AR|. PoMdp algorithms are exponential in the
size of the action space; this modification therefore allows us to solve Cirl games much more
efficiently. The following theorem establishes the associated complexity gains.

Theorem 19. The modification to the Bellman update presented above reduces the time and
space complexity of a single step of value iteration by a factor of O

(
|AH||Θ|

)
.

CHAPTER 5. PEDAGOGY 98

Algorithm 1 Adapted Value Iteration for CIRL Games

1: procedure ValueIteration
2: Γt ← Set of trivial plans
3: for t ∈ {T − 1, T − 2, . . . , 1, 0} do
4: Γt+1 ← Γt
5: Γt ← Set of all plans beginning at time t
6: for σ ∈ Γt do
7: for s = (x, θ) ∈ S do
8: QH(s, aH , σ) =

∑
s′ T (s, aH , aR, s′) · αv(aH)(s

′)
9: ασ(s) = R(s) + γ ·∑aH πH(aH | QH(s, aH , σ)) ·QH(s, aH , σ)

10: Γt ← Prune(Γt)

11: aR∗ = arg maxσ∈Γ0
ασ · b0

12: Return aR∗

Proof. The complexity of one step of POMDP value iteration is linear in the size of the
action space, |A| [129]. Since the structure of our algorithm is identical to that of exact
value iteration, this is also true for our algorithm.

The action space in the POMDP reduction of CIRL has size |AH||Θ||AR|. Our modifica-
tion to the Bellman update reduces the size of the action space to simply |AR|. Therefore,
our algorithm reduces the time taken to run, and number of plans generated at, each time
step by a factor of |AH||Θ|.

Our experimental domain is based on the cooking example. Assume there are m recipes
and n ingredients. The state space is an n-tuple representing the quantity of each ingredient
prepared thus far. At each time step, each agent can prepare any of the n ingredients or
none at all. Each of the m recipes corresponds to a different θ (i.e. reward parameter) value.
Both agents receive a reward of 1 if H’s desired recipe is prepared correctly and a reward
of 0 otherwise. The robot R begins the game entirely uncertain about H’s desired recipe
i.e. R has a uniform belief over Θ. In our first experiment, we compared the time taken
by exact VI and by our adaptation of it with the modified Bellman update. We first fixed
the number of ingredients at two and varied the number of recipes in the domain. Table 5.2
compares the results. For the simpler problems, where the number of recipes was 2 or 3, our
adapted algorithm solved the problem up to ∼3500× faster than exact VI. On more complex
problems where the number of recipes is greater than 3, exact VI failed to solve the problem
after depleting our system’s 16GB memory; in contrast, our adapted algorithm solved each of
these more complex problems in less than 0.5 seconds. We next fixed the number of recipes
and compared the performance of both these algorithms for various numbers of ingredients.
Both the exact methods, but especially the one using the standard Bellman update, scaled
much worse with the number of ingredients than with the number of recipes. With even
three ingredients, exact VI timed out and failed to solve the problem within two hours; our
algorithm however solved the problem in five seconds.

CHAPTER 5. PEDAGOGY 99

Table 5.2: Time taken (s) to find the optimal robot policy using exact VI and our adaptation
of it for various numbers of possible recipes. NA denotes that the algorithm failed to solve
the problem.

Recipes Exact VI Ours
2 4.448 ± 0.057 0.071 ± 0.013
3 394.546 ± 6.396 0.111 ± 0.013
4 NA 0.158 ± 0.003
5 NA 0.219 ± 0.007
6 NA 0.307 ± 0.005

Comparing CIRL and IRL solutions

Next, we consider what advantages Cirl has compared to Irl. On a collaborative task, Irl
is equivalent to assuming that H chooses their actions in isolation, and R uses observations of
H’s behavior to infer their preferences. Specifically, H solves a single-agent, fully-observable,
variant of the problem, and R responds by solving the appropriate assistance-PoMdp.

We fix the number of ingredients at 3 and vary the number of recipes. Figure 5.8 shows the
results. In each experiment the optimal Cirl solution prepares the correct recipe while the
Irl solution fails to do so up to 50% of the time. To understand the nature of this difference
in performance, we analyze the Cirl and Irl solutions. Consider a case of our running
example from before with two recipes. The state is a tuple (#meat,#bread,#tomatoes)
and Θ = {sandwich = (1, 2, 0), soup = (1, 1, 2)}. For both approaches, R initially prepares
meat. In the baseline IRL solution, H can initially make any ingredient if they want soup
and can make meat or bread if they wants a sandwich. In each case, H chooses uniformly
at random between allowed ingredients. This conveys some information about their desired
recipe, but is not enough to uniquely identify it. Since the same ingredient is optimal for
multiple recipes, R is still confused after one turn. This means R will sometimes fail to
complete the desired recipe, reducing average utility.

The Cirl solution, in contrast, relies on the implicit communication between the human
and the robot. Here, if H wants soup, she prepares tomatoes, as opposed to any ingredients
that are common with the sandwich. Even more interestingly, she waits (i.e. does nothing)
if she wants a sandwich. This is pure signaling behavior—waiting is suboptimal in isolation,
but picking an ingredient is more likely to confuse the robot. In turn R knows that H would
have picked tomatoes if she wanted soup, and responds appropriately.

In other words, H teaches the robot about her preferences with her action selection. This
works because H knows that R will interpret her behavior pragmatically, i.e., R expects to
be taught by H. This is reflected in the experiment: the optimal Cirl solution prepares the
correct recipe each time.

The value alignment problem is necessarily cooperative: without the robot, the human is

CHAPTER 5. PEDAGOGY 100

Figure 5.8: Value attained by Cirl and standard Irl on the cooking domain with various
numbers of possible recipes. Unlike Irl, Cirl produces solutions where H picks their actions
pedagogically and R reasons about H accordingly.

unable to complete her desired task, and without explicit signaling from the human, the robot
learns inefficiently, is less valuable and is more likely to make a mistake. Pedagogic behavior
from H naturally falls out of the Cirl solution. In response, R interprets H’s actions
pragmatically. These instructive and communicative behaviors allow for faster learning and
create an opportunity to generate higher value for the human.

Efficient Approximate Algorithms for CIRL

Adapting Point-Based Value Iteration

Background Point Based Value Iteration (PBVI) is an approximate algorithm used to solve
POMDPs [121]. The algorithm maintains a representative set of points in belief space and
an α-vector at each of these belief points. It performs approximate value backups at each of

CHAPTER 5. PEDAGOGY 101

these belief points using this set of α-vectors. Let Γt+1 denote the set of α-vectors for plans
that begin at time t+ 1. The value at time t at a belief b is approximated as:

V (b) = max
a∈A

[∑
s∈S

R(s)b(s) + γ
∑
o∈O

max
α∈Γt+1

∑
s∈S

(∑
s′∈S

P (s′, o | s, a)α(s)

)
b(s)

]
. (5.21)

The algorithm trades off computation time and solution quality by expanding the set of belief
points over time: it randomly simulates forward trajectories in the POMDP to produce new,
reachable beliefs.
Our Adaptation If R takes action aR and follows a conditional plan σ, then H’s Q-values
are QH(x, aH, aR, α) =

∑
s′ T (s, aH, aR, s

′) · ασ(s′). Notice that we can compute these Q-
values at each step of PBVI. This lets us use the modified Bellman update and to adapt
PBVI to solve CIRL games specifically. We replace the transition-observation distribution
in the PBVI backup rule with

P (s′, aH | s, aR, α) = T (s, aH, aR, s
′) · πH(QH(x, aH, aR, α)). (5.22)

The modified backup rule for PBVI is thus given by

V (b) = max
aR∈AR

[∑
s∈S

R(s)b(s) + γ
∑
aH

max
α∈Γt+1

∑
s∈S

(∑
s′∈S

P (s′, aH | s, aR, α)α(s)

)
b(s)

]
. (5.23)

We now show that the approximate value function in PBVI converges to the true value
function. Let εB denote the density of the set of belief points B in PBVI. Formally, εB =
maxb∈∆ minb′∈B ||b− b′||1 is the maximum distance from any reachable, legal belief to the set
B.

Theorem 20. For any belief set B and horizon n, the error of our adapted PBVI algorithm
η = ||Vn − V ∗n ||∞ is bounded as

η ≤ (Rmax −Rmin)εB
(1− γ)2

.

Proof. Since the dynamics of our problem are now time-varying instead of static, the backup
operator applied at every time-step changes. Let Ht denote the backup operator applied to
compute the value of Vt. It will suffice to show that each such backup operator Ht is a
contraction mapping. The result then follows by following the proof of Theorem 1 in [121]
exactly. We will prove the result by showing that each Ht is the backup operator for a
specific POMDP and thus, for this POMDP’s corresponding belief MDP; it must therefore
be a contraction mapping.

Take Ht for some 1 ≤ t ≤ n. We will now construct a new POMDP for which Ht

is the backup operator. Let Ŝ = S × Γt+1, where Γt+1 denotes the set of α-vectors from
our original problem at time t + 1. Let the α-vector component of the state be static i.e.

CHAPTER 5. PEDAGOGY 102

P ((s′, α′) | (s, α), aR) = 0 if α 6= α′. The action and observation spaces remain as they are
in our original problem. The transition-observation distribution, given in Eqn. (3), is now
time-invariant: we do not need to look forward in the search tree to compute the Q-values
since the α-vectors are available in the state space. Hence, this POMDP is well-defined.

The dynamics of the POMDP are static and identical to the dynamics of our problem
at time t. Thus, the backup operator Ht is the backup operator for this POMDP and also
for this POMDP’s corresponding belief MDP. Therefore, the backup operator Ht must be a
contraction mapping.

Next, we compared the values attained by PBVI and our adaptation, with one hour of
computation time. We first fixed the number of recipes and varied the number of ingredi-
ents. The results of this experiment are presented in Figure 5.9. We found that both these
algorithms, but especially our adapted algorithm, scaled much better with the number of
ingredients than their exact VI counterparts. For simpler games, with 3 and 4 ingredients,
both algorithms attained the maximal value of 0.9025. However, with 5 ingredients, PBVI
found a value of 0 in an hour. In contrast, our algorithm easily solved the game with 5,
6, and 7 ingredients, attaining the maximal value of 0.9025. We next fixed the number of
ingredients and varied the number of recipes. Again, our adapted algorithm outperformed
PBVI. For example, with 4 recipes, our adapted method attains a value of 0.67875 while the
standard PBVI method attains a value of 0.45125.

These results suggest that our modified Bellman update allows PBVI to scale to larger
CIRL games, especially in terms of the size of H’s and R’s action space. This offers further
support to our hypothesis.

Adapting Partially-Observed Monte-Carlo Planning

Background POMCP is a Monte Carlo tree-search (MCTS) based approximate algorithm
for solving large POMDPs [143]. The algorithm constructs a search tree of action-observation
histories and uses Monte Carlo simulations to estimate the value of each node in the tree.
During search, actions within the tree are selected by UCB1. This maintains a balance
between exploiting actions known to have good return and exploring actions not yet taken
[89]. At leaf nodes, a rollout policy accrues reward which is then backed up through the tree.
The algorithm estimates the belief at each node by keeping track of the hidden state from
previous rollouts.

POMCP scales well with the size of the state space, but not with the size of the action
space, which determines the branching factor in the search tree. POMCP is thus ill-suited to
solving the reduced POMDP of CIRL games since the size of the action space is |AH||Θ||AR|.
Our Adaptation Using the idea behind our modified Bellman update, we adapt POMCP to
solve CIRL games more efficiently. We approximate H’s policy while running the algorithm
(much like we exactly compute H’s policy in exact value iteration). We maintain a live
estimate of the sampled Q-values for H at each node. With enough exploration of the search
tree (for instance, if actions are selected using UCB1), the estimated Q-values converge to

CHAPTER 5. PEDAGOGY 103

Algorithm 2 Adapted PBVI for CIRL Games

1: procedure PBVI(b0, T)
2: B ← {b0}
3: V ← Set of α-vectors belonging to trivial plans
4: repeat
5: for t ∈ {T − 1, T − 2, . . . , 1, 0} do
6: V ← Backup(B, V)

7: B ← Expand(B, V)
8: until maxα∈V α · b0 ≥ Vtarget
9: return V

10:

11: procedure Backup(B, V ′)
12: V ← {}
13: for aR ∈ AR do
14: for α′i ∈ V ′ do
15: for s ∈ S do
16: QH(s, aH) =

∑
s′ T (s, aH , aR, s′)·

17: αv(aH)(s
′)

18: Γa
R ← αi(s) = r(s) + γ·

19:
∑

aH πH(aH | QH(s, aH))·
20:

∑
s′ P (s′, aH | s, aR, α′i) · αi(s′)

21: for b ∈ B do
22: Vb ← {}
23: for aR ∈ AR do
24: Vb ← argmaxα∈ΓaRα · b
25: V ← argmaxα∈Γbα · b
26: return V
27:

28: procedure Expand(B′, V ′)
29: B ← B′

30: for b, α ∈ B′, V ′ do
31: Bb ← {}
32: for aR ∈ AR do
33: s ∼ b(s)
34: aH ∼ P (aH | s, aR, α)
35: b′(s′) = η

∑
s P (s′, aH | s, aR, α)b(s)

36: where η is the normalizing constant
37: Bb ← Bb ∪ b′
38: B ← B ∪ argmax||b− b′||1,∀b ∈ Bb, b

′ ∈ B′
39: return B

CHAPTER 5. PEDAGOGY 104

Figure 5.9: Value attained by PBVI and our approximate algorithm for various numbers of
ingredients. (For the first 3 data points, the values attained by both methods were the same
– we jittered the plot slightly for visibility).

the true values (in the limit). This guarantees that H’s policy converges to her true policy.
The following result establishes convergence of our algorithm.

Theorem 21. With suitable exploration, the value function constructed by our adapted
POMCP algorithm converges in probability to the optimal value function, V (h)→ V ∗(h). As
the number of visits N(h) approaches infinity, the bias of the value function E[V (h)−V ∗(h)]
is O(log(N(h))/N(h)).

Proof. We will show that with enough exploration, in the limit of infinite samples, we have
a well defined POMDP. The result then follows from Theorem 1 in [143].

The human action nodes in the search tree maintain an array of values, which store the
values of picking that action for different θ. At any point in the search tree, the human actions

CHAPTER 5. PEDAGOGY 105

(like the robot actions) are selected by picking the one that has the maximum augmented
value (current estimated value plus exploration bonus). So, in the limit of infinite samples,
each human action node is visited infinitely many times and the value estimates at the nodes
converge to the true Q values. Having the correct human Q values gives us a POMDP, with
well defined transition-observation dynamics. The result then follows from applying the
analysis given in Theorem 1 of [143] to this POMDP.

We compared the value attained in 30,000 samples by POMCP and by our adaptation
with the modified Bellman update. We additionally compared these algorithms with FV-
POMCP, a state-of-the-art MCTS method for solving MPOMDPs, a type of Dec-POMDP
in which all agents can observe each others’ behavior (as in CIRL).

We first fixed the number of recipes at 2 and varied the number of ingredients. Our
adapted algorithm outperformed the other two algorithms across the board, especially for
large numbers of ingredients. The results of this comparison are presented in Figure 5.10.
POMCP did poorly on games with more than 4 ingredients. Although FV-POMCP scaled
better to more complex games than POMCP, its values had high variance. For the largest
games, with 6 and 7 ingredients, our adapted algorithm was the only one capable of solving
the problem in 30,000 iterations. We also compared the value attained by each algorithm
across 500,000 samples on the 6 ingredient game. The results of this comparison are depicted
in Figure 5.11. Our algorithm converged to the true value faster than either of the other
algorithms.

We next fixed the number of ingredients at 4 and varied the number of recipes. We found
that the results of this experiment broadly matched the results of our previous experiment
where we varied the number of ingredients. For example, with 4 recipes, our method achieves
an average value of 0.631± 0.221 in 30,000 iterations while POMCP gets 0.429± 0.183 and
FV-POMCP gets 0.511± 0.124.

Next, we also applied POMCP to a more complex domain. This domain is an extension
of the POMDP benchmark domain RockSample, that models Mars-rover exploration [150].
Consider a collaborative task where a human H wants to take samples of some rocks from
Mars, with the help of a rover R deployed on Mars. There are some number of hours during
the day (working hours) when H can control R herself but for the rest of the day, R has to
behave autonomously. Not all types of rocks are of equal scientific value; H knows the value
of each of these rocks but R does not. (Once again, we assume that H cannot communicate
these values to R directly.)

Formally, consider an instance of RockSample on a m × m grid, with n rocks, each of
which belong to one of k different types. The state space is a cross-product of the x- and
y-coordinate of R with n binary features IsSampledi = {Y es,No}, which indicate which of
the rocks have already been sampled. (Each rock can only be sampled once.)

RockSample is a turn-based game: R may first take lR steps in any of the four cardinal
direction (during those hours when it is running autonomously) after which H may similarly
take lH steps (during the remaining hours). Thus, the set of actions available to H is the set
of all trajectories of length exactly lH while that available to R is the set of all trajectories

CHAPTER 5. PEDAGOGY 106

Algorithm 3 Adapted POMCP for CIRL games

1: procedure Search(h)
2: repeat
3: if h = empty then
4: s ∼ I
5: else
6: s ∼ B(h)

7: Simulate(s, h, 0)
8: until Timeout()
9: return argmaxaRV (haR)

10:

11: procedure Rollout(s, h, depth)
12: if γdepth < ε then
13: return 0
14: aR, aH ∼ Uniform(AR), Uniform(AH)
15: s′ ∼ T (s, aR, aH)
16: return r(s) + γ ·Rollout(s′, haRaH , depth+ 1)

17:

18: procedure Simulate(s, h, depth)
19: if γdepth < ε then
20: return 0
21: if h /∈ T then
22: return Rollout(s, h, depth)

23: aR ← argmaxaRV (haR) + c
√

logN(h)
N(haR)

24: θ ← sθ
25: aH ← SampleHumanAction(θ, h, aR)
26: s′ ∼ T (s, aR, aH)
27: R← r(s) + γ · Simulate(s′, haRaH , depth+ 1)
28: B(h)← B(h) ∪ {s}
29: N(h)← N(h) + 1
30: N(haR)← N(haR) + 1
31: N(haRaH)← N(haRaH) + 1

32: V (haR)← V (haR) + R−V (haR)
N(haR)

33: Vθ(ha
RaH)← Vθ(ha

RaH) + R−Vθ(haRaH)
Nθ(haRaH)

34: return R
35:

36: procedure SampleHumanAction(θ, h, aR)

37: aH ∼ πH

(
aH | Vθ(haRaH) + c

√
logNθ(haR)
Nθ(haRaH)

)
38: return aH

CHAPTER 5. PEDAGOGY 107

Figure 5.10: The value attained by POMCP, FV-POMCP, and our adapted algorithm in
30,000 samples with various numbers of ingredients. (Right) Value attained by POMCP,
FV-POMCP and our approximate algorithm with 2 recipes and 6 ingredients.

with length at most lR. (R may wait on any specific step if it requires more information
while H may not wait since they has all the information required.)

The set of all reward parameters Θ is composed of a collection of k-dimensional vectors,
where the ith entry represents the reward received for sampling rock i. Both agents receive
the reward specified by the true reward parameter θ when they sample a rock and receive
no reward for any other action.

Details of Experiment

We repeated our experiment with a 5× 5 grid (m = 5), 3 types of rocks (k = 4), and 4 rocks
total (n = 4).

This domain is much more complex than the cooking domain. For example, note that for
even the simplest version of this domain, with lH = lR = 1, |AH| = 4 and |AR| = 5 (since R

CHAPTER 5. PEDAGOGY 108

Figure 5.11: Value attained by POMCP, FV-POMCP and our approximate algorithm with
2 recipes and 6 ingredients.

can also choose to wait); if we raise lR slightly to 2, we have |AR| = 13. Hence, we only ran
our experiments with POMCP, which scales the best of the three types of the algorithms.

We found similar results to those from ChefWorld. For any value of lR beyond 1, FV-
POMCP and POMCP fail to solve the problem; the branching factor of the search tree
they both construct is too large and thus, both methods deplete the 16GB of memory in
our system almost immediately. Our method however manages to scale to larger values of
lH and lR with relative ease; our method successfully computed the optimal policy for this
domain with values of lH = lR = 2 within two hours of computation.

109

Chapter 6

Robust Alignment

This chapter discusses the equilibrium selection problem that can arise in assistance games
and the need to consider strategy robustness in the study of assistance games. The chapter
begins with an application of the tools from the previous chapter to compare the performance
of pedagogic solutions with individual reward maximizing solutions. As one might expect,
pedagogic solutions lead to higher utility for H. Because even the pedagogic H still has to
pay a lot of attention to immediate reward, R’s best-response still performs well even if H
is not behaving pedagogically.

Next, we consider a setting that admits purely pedagogic solutions that have no connec-
tion to immediate reward. The setting is a modification of the supervision problem from
Section 3.1 where H needs to learn which actions produce reward from experience. Because
H’s actions only impact R’s information state, all actions produce the same immediate
reward in an assistance game formulation.

We will show that there exists a class of solutions where H acts as if R will copy their
action and approximately maximizes the expected reward of their selections given the reward
observations so far. A single strategy for R that occasionally takes exploration actions for H
can successfully assist any strategy for H from this family of alternatives. This represents a
relatively robust alignment solution: the combined system R◦H is guaranteed to eventually
take the optimal action with probability 1, so long as H satisfies relatively simple constraints
on their policy.

These solutions, however, may take arbitrarily long to settle on the optimal action. As in
Cirl, R ◦H can perform better if H reveals more information about their goal. In this case
however, the best H can do is reveal information about their history of reward observations.
In some cases, H may be able to communicate enough information that R can behave as
if it directly observes reward. This means that R ◦H can implement the optimal learning
strategy.

However, this performance improvement comes at the cost of robustness. Because H only
cares about how R interprets their actions, there are multiple distinct pedagogic solutions
that arise from equally informative but distinct ways to encode their reward observations.
Furthermore, misalignment in these encoding schemes can lead R ◦H to perform arbitrarily

CHAPTER 6. ROBUST ALIGNMENT 110

poorly, even though H’s behavior reveals a lot of information about their goal. In the worst
case, R ◦H may even minimize utility for H. This is unlike the ChefWorld example, where
the pedagogic solutions needed to be informative and maximize immediate reward. As a
result, we consider two additional modes of interaction: a turn-taking mode where H and
R alternate choosing arms, and a preemptive mode, where R decides to pull an arm or
ask H to pull an arm. As one might expect, the communicative policy WSLS is now less
attractive — although other, more complicated, communication strategies may do a better
job of trading off between conveying information and maximizing utility. Although the need
to consider both sources of utility typically increases the burden on H it can help manage
alignment problems by making it easier for H and R to coordinate.

6.1 Exploring strategy robustness in ChefWorld

To further investigate the performance of Cirl-inspired alignment solutions in realistic set-
tings (e.g., where H may not be rational and H’s strategy is not known perfectly in advance),
we ran another experiment. We varied whether H behaved according to Cirl or Irl, R’s
model of H in training (rational or Boltzmann-rational), and the actual model of H (same
as previous). We measured the proportion of times the team prepared the correct recipe in
each setting, fixing the number of ingredients at 3 and recipes at 4. Figure 6.1 shows the
primary results.

Averaged across different models of H used to train R, when H behaved according to
Cirl, H and R succeeded in preparing the correct recipe > 90% of the time. This was also
true when H behaved Boltzmann-rationally. This suggests that the pedagogic behavior that
arises from Cirl makes it more robust to any sub-optimality from H. In contrast, when H
behaved as in Irl (i.e., not pedagogically), they only prepared the correct recipe ∼70% of
the time when H was rational, and ∼40% of the time when H was not. So, the importance
of pedagogic behavior from H to achieve value alignment is clear.

Additionally, these results suggest that the pedagogic behavior that arises from Cirl
makes it more robust to sub-optimality from H. When H demonstrated sub-optimal behavior
but behaved pedagogically according to Cirl, H and R were only ∼2% less successful at
preparing the correct recipe than if H behaved optimally; however, when H demonstrated
sub-optimal behavior but behaved according to Irl, they were ∼40% less successful.

To further investigate the properties that lead to effective alignment, and the conse-
quences of strategy mismatch, we did a second study with 10 possible human policies in-
stead of 2. The 10 policies were chosen from a 5 × 2 factorial of the human’s behavior and
presence of bias. The 5 possible behaviors were rational, Boltzmann-rational with β = 1,
Boltzmann-rational with β = 5, ε-greedy with ε = 0.1, and ε-greedy with ε = 0.01. The 2
possible levels for presence of bias were ”No Bias” and ”Bias”, where ”Bias” denoted that
H had a systematic preference for choosing the ”Wait” action. (In our setting, H received
a reward of 0.25 every time they chose the ”Wait” action.)

CHAPTER 6. ROBUST ALIGNMENT 111

Figure 6.1: The proportion of times that H and R prepared the correct recipe on the cooking
domain when R is trained with, and H actually behaves according to, a variety of different
behaviors. They were significantly more successful at preparing the correct recipe when H
behaved pedagogically according to Cirl.

The results of our experiment are presented below in Figure 6.2 as a heat map. Much like
the simpler experiment, we find that H and R are much more successful when H behaves
pedagogically and that in the presence of pedagogic behavior, the team’s performance is
more robust to any sub-optimality from H.

6.2 Assisting a Learning H

Next, we turn to the problem of strategy robustness in earnest. We consider a setting where
H is subject to additional informational constraints. Namely, we assume that H has to learn
about θ from observations of reward over time. This changes the nature of R’s strategy.
Instead of observing H in order to learn about θ, R also has to account for H’s information
state. It is only after H makes enough observations about reward that their behavior can
be effectively learned from. We illustrate the difference between assisting a learner and an
expert with an example.

CHAPTER 6. ROBUST ALIGNMENT 112

Figure 6.2: The proportion of times that H and R prepared the correct recipe on the cooking
domain with 3 ingredients and 4 recipes when R is trained with, and H actually behaves
according to, a variety of different behaviors. They were significantly more successful at
preparing the correct recipe when H behaved pedagogically by following a policy specified
by Cirl.

CHAPTER 6. ROBUST ALIGNMENT 113

At the start of every day, the human H would like to consume a single caffeinated
beverage, either coffee or tea. Before the human wakes up, the robot can prepare one of
the two caffeinated beverages or choose not to. If the robot does not make a beverage, then
the human will prepare one of the two beverages. The human has an unknown but fixed
preference toward either coffee or tea, represented by Θ = {0, 1}. The human and the robot
share a uniform prior over Θ. The human gets θ reward for consuming tea and 1− θ reward
for consuming coffee, which they will observe after consuming either the tea or coffee. In
addition, the act of preparing coffee or tea costs the human ε = 0.1 points of reward, but if
the tea or coffee was already prepared by the robot R, then no such penalty is incurred.

If the human knew the true value of θ in the above example, then she can maximize
reward by preparing tea when θ = 1 and coffee when θ = 0. The best policy for the
robot would then be wait one day to see what beverage the human chooses, then make that
beverage every day after that. However, if the robot performs this policy when the human
does not know the true value of θ, then this policy will lead to an expected reward of 0.5
a day, lower than the 0.9 that the human can achieve if the robot always takes no action.
Instead, the optimal policy for the robot would be to prepare a drink for the human — to
help the human to learn the value of θ — and then let the human prepare a drink so the
human can signal the value to the robot. This policy has expected reward 1 a day for each
day after the second.

Interestingly, R can help H perform better even if the cost ε of making beverages for the
human is 0, if H is not following the optimal (reward-maximizing) policy, as the following
example demonstrates. Suppose that the cost of making beverages for the human is ε = 0,
and that the human H is a Q-learner with initial value −1 that follows a greedy policy
for choosing tea or coffee. Thus, H makes tea with probability 1 if H’s Q-value for tea
is higher, and vice versa in the case where their Q-value for coffee is higher (in the case
where their Q-values are equal, they chooses one at random). No matter what beverage they
sample randomly in the first timestep, H will always make that beverage afterwards due to
a bad initialization and under-exploration. This leads to an average reward per episode of
0 with probability 0.5. However, if R prepares both beverages, H’s Q-values will update to
reflect which beverage they like better. In turn, this allows R to observe H’s preference and
eventually produce utility at the optimal rate.

The key observation here is that R’s optimal policy depends meaningfully on H’s in-
formation state. If R overestimates the information H can provide about rewards, then
we observe persistent misalignment — in a similar, unrecoverable way to the overoptimiza-
tion results in Chapter 3. Appropriately characterizing the scope of information about how
to evaluate world state is one of the central challenges in designing aligned (or alignable)
systems.

Remark 11. In the design of autonomous systems, designers are faced with a tradeoff be-
tween providing the system with enough information about the goal so that R can be effective
without making unrealistic assumptions about H’s capabilities and knowledge state.

CHAPTER 6. ROBUST ALIGNMENT 114

Learning from a learner

In an Mab, there are K distinct actions, each with its own reward distribution. At each
timestep, the actor selects an action, called an ‘arm’, from this set of options and observes
a reward sampled from the corresponding distribution. This allows them to update their
estimate of the reward distribution for that arm. The objective, as above, is to maximize
the sum of discounted rewards.

Formally, we can define an Mab as a type of PoMdp.

Definition 25. (Multi-Armed Bandit)
Let Θ parameterize a space of K-dimensional reward distributions Θ ∈ ∆ (R)K . Then, a
multi-armed bandit M is a PoMdp with S = Θ, A = [1, . . . , K], and static transitions
T = δ. Furthermore, the observation space is the set of real numbers with PO|S(θ, k) = θk,
where θk is reward distribution for arm k.

We use k(t) ∈ [1, . . . , K] to represent the arm selected at time t. A reward observation
u(t) ∼ θk(t) is sampled from the corresponding arm distribution. A strategy is a mapping that
determines the correct distribution to sample from given a history of reward observations
and previous arm pulls: Kt(k

(1), u(1), . . . , k(t−1), u(t−1)).
We use µk to represent the mean of arm k, with parameters θk. We use j∗ to represent

the index of the best arm and µ∗ to represent its mean. Tk(t) represents the number of pulls
of arm k up to and including time t. The goal of this game is to maximize the sum of rewards
over time, or alternatively, to minimize the expectation of the regret R̄(t), defined as:

R̄(t) =
∑
t

(µ∗ − µk(t)) =
∑
k

(µ∗ − µk)Tk(t). (6.1)

Before formalizing the problem of assisting a human who is learning, rather than noisily-
optimal, we look at passively inferring the reward from their actions. We call this the inverse
bandit problem.

Definition 26. (Inverse Multi-Armed Bandit)
Let M be a multi-armed bandit problem. Let πH be a bandit strategy that maps histories of
past actions and rewards to distributions over arm indices. πH : a

(1)
H × u(1) × · · · × a(t−1)

H ×
u(t−1) → ∆ (K). In the associated inverse bandit problem the goal is to recover θ by observing

only the arm pulls of H over time a
(1)
H , ..., a

(t)
H .

Unlike the (stationary) Irl case, H does not have access to the true reward parameters.
H receives the reward signal rt sampled according to θ. As a consequence, the human arm
pulls are not i.i.d.; the distribution of human arm pulls changes as they learn more about
their preferences.

With this, we can look at the performance of inference (or lack thereof) when R has an
incorrect model of H. Specifically, we will fix a particular multi-armed bandit and compare
how well R is able to identify θ when H employs different learning strategies. We will show

CHAPTER 6. ROBUST ALIGNMENT 115

that learning is possible, depending on the structure of H’s policy, although a learning H
does reveal less information than one that can act directly based on θ. Next, we show that
inference performs poorly when R models H as an expert but they are actually learning.

In our experiments, we used a horizon 50 Beta-Bernoulli bandit with four arms. Pulling
the ith arm produces a reward of one with probability θi and zero with probability 1 − θi:
Θ = [0, 1]4. We assume a uniform prior over Θ: θi ∼ Beta(1, 1).

We consider 5 classes of human policy:

• ε-greedy, a learning H that chooses the best arm in hindsight with probability 1− ε
and a random arm with probability ε.1

• WSLS, the win-stay-lose-shift policy [126] sticks with the arm pulled in the last round
if it returned 1, and otherwise switches randomly to another arm.

• TS, the Thompson-sampling policy [166] maintains a posterior over the arm parame-
ters, and chooses each arm in proportion to the current probability it is optimal. This
is implemented by sampling a particle from the posterior of each arm, then pulling the
arm associated with the highest value.

• UCL, the upper-credible limit policy [125] is an algorithm similar to Bayes UCB [84]
with softmax noise, used as a model of human behavior in a bandit environment.2

• GI, the Gittins index policy [54] is the Bayesian optimal solution to an infinite horizon
discounted objective MAB.3

In addition, we also defined the following noisily-optimal human policy to serve as a baseline:

• ε-optimal, a fully informed H that knows the reward parameters θ, chooses the opti-
mal arm with probability 1− ε, and chooses a random action with probability ε.4

To investigate the miscalibration that occurs when we do not model learning behavior
we use the Metropolis-Hastings algorithm [108] to approximate the posterior over reward
parameters θ given human actions. We compare the posterior we get when we model learning
with the posterior that assumes H is ε-optimal.

We compared the log-density of the true reward parameters in the posterior conditioned
on 5 H actions, under both models, when H is actually learning. We report the results in
Table 6.1. For every learning human policy, we find that the log-density of the true reward
parameters is significantly higher when we model learning than when we do not. In the case

1We performed grid search to pick an ε based on empirical performance, and found that ε = 0.1 performed
best.

2We set K = 4 and softmax temperature τ = 4.
3We follow the approximations described by Chakravorty and Mahajan in [30], and choose a discount

rate (γ = 0.9) that performs best empirically using grid search.
4We set ε to match that of the ε-greedy policy.

CHAPTER 6. ROBUST ALIGNMENT 116

Table 6.1: Log-density of true reward params in a horizon 5 inverse MAB

Assumed H Policy
Actual H Policy Correct Policy ε-Optimal
ε-greedy 0.49 -0.23
WSLS 0.95 0.13
TS 0.02 -0.23
UCL 0.03 -0.30
GI 0.94 0.20

ε-Optimal – 1.55

of ε-greedy and TS, we find that the posterior which fails to model learning assigns negative
log-density to the true parameters. This means the posterior is a worse estimate of θ than
the prior.

It is harder to assist a learner

In the assistive multi-armed bandit, we have a joint system R ◦H that aims to do well in an
Mab M . This model is an extension of the supervision-PoMdp considered in Section 3.1.
The primary change is in the space of allowed policies for H, which can only depend on θ
through the history of reward observations.

In each round:

1. H selects an arm to suggest based on the history of previous arm pulls and rewards :
πH(a

(1)
R , u(1), . . . , a

(t−1)
R , u(t−1)) ∈ [1, . . . , K].

2. R selects which arm to actually execute based on the history of the human’s attempts
and the actual arms chosen: πR(a

(1)
H , a

(1)
R , . . . , a

(t−1)
H , a

(t−1)
R , a

(t)
H) ∈ [1, . . . , K].

3. H observes the current round’s arm and corresponding reward: (a
(t)
R , u

(t) ∼ θ
(
a

(t)
R

)
.

We start with a comparison between the case of assisting an expert (i.e., the model
from Section 3.1) and assisting a learner. As one might expect, asssisting an expert in this
simplified setting is quite easy in theory. We show this by proving that it is possible to infer
the correct arm while making finitely many mistakes in expectation.

Theorem 22. Suppose that H’s arm pulls are i.i.d and let fi be the probability H pulls arm
i. If H is noisily optimal, that is, fj∗ > fi for all sub-optimal i, there exists a robot policy R
that has finite expected regret for every value of θ:

E
[
R̄(T)

]
≤
∑
i 6=j∗

µ∗ − µi
(
√
fj∗ −

√
fi)2

CHAPTER 6. ROBUST ALIGNMENT 117

Proof. Our robot policy R simply pulls the most commonly pulled arm.
Let f̂i(t) = 1

t

∑t
k=1[a

(t)
H = i] be the empirical frequency of H’s pulls of arm i up to time t.

Note that a
(t)
R = i only if f̂j∗(t) ≤ f̂i(t). We apply a Chernoff bound to the random variable

f̂j∗(t)− f̂i(t). This gives that, for each i,

Pr(f̂i(t) ≤ f̂j(t)) ≤ e−t(
√
fi−
√
fj)

2

. (6.2)

Summing Eq. 6.2 over t and suboptimal arms gives the result.

This is in contrast to the standard results about regret in an MAB: for a fixed, nontrivial
MAB problem M , any MAB policy has expected regret at least logarithmic in time on some
choice of parameter θ [95, 105]:

E
[
R̄(T)

]
≥ Ω(log(T)).

Several approaches based on Upper Confidence Bounds (UCB) have been shown to achieve
this bound, implying that this bound is tight [95, 4, 27]. Nonetheless, this suggests that the
problem of assisting a noisily-optimal human is significantly easier than solving a standard
MAB.

The assistive MAB is at least as hard as a standard MAB. For the same sequence of arm
pulls and observed rewards, the amount of information available to R about the true re-
ward parameters is upper bounded by the corresponding information available in a standard
MAB. From a certain perspective, actually improving on human performance in isolation is
hopelessly difficult – R does not get access to the reward signal, and somehow must still
assist a person who does.

Consistent assistance

We begin with the simplest success criterion from the bandit literature: consistency. In-
formally, consistency is the property that the player eventually pulls suboptimal arms with
probability 0. This can be stated formally as the average regret going to 0 in the limit:
limt→∞ R̄(t)/t = 0. In an Mab, achieving consistency is relatively straightforward: any pol-
icy that is greedy in the limit with infinite exploration (glie) is consistent [126, 147]. In
contrast, in an assistive-Mab, it is not obvious that the robot can implement such a policy
when the H strategy is inconsistent. (You can trivially achieve consistency if H is consis-
tent.) The robot observes no rewards and thus cannot directly estimate the best arm in
hindsight.

However, it turns out a weak condition on the human allows the robot-human joint
system to guarantee consistency:

Theorem 23. If the human H implements a noisily greedy policy, that is, a policy that pulls
the arm with highest sample mean strictly most often, then there exists a robot policy R such
that R ◦H is consistent.

CHAPTER 6. ROBUST ALIGNMENT 118

Proof. Fix a set of decaying disjoint exploration sequences Ek, one per arm, such that
limt→∞

1
t
|Ek ∩ {1, ..., t}| → 0 and limt→∞ |Ek ∩ {1, ..., t}| → ∞. In other words, each arm is

pulled infinitely often, but at a decaying rate over time.
Let it be the arm most commonly pulled by H up until time t, and R be defined by

a
(t)
R =

{
k t ∈ Ek
it otherwise

.

Note that this implies that for suboptimal k, 1
t
Tk(t) → 0 in probability as t → ∞, as the

sample means of all the arms converge to the true means, and the rate of exploration decays
to zero. This in turn implies that R ◦H achieves consistency.

In other words, assistance is possible if the human picks the best actions in hindsight.
This robot R assists the human H in two ways. First, it helps the human explore their
preferences – R ◦H pulls every arm infinitely often. This fixes possible under-exploration
in the human. Second, it stabilizes their actions and helps ensure that H does not take too
many suboptimal actions - eventually, R ◦H converges to only pulling the best arm. This
helps mitigate the effect of noise from the human.

Modeling learning as ε-optimality leads to inconsistency

We now investigate what occurs when mistakenly we model learning behavior as noisy-
optimality. A simple way to make R ◦H consistent when H is noisily optimal is for R to
pull the arm most frequently pulled by H.

Theorem 24. If H plays a strategy that pulls the best arm most often and R plays H’s most
frequently pulled arm, then R ◦H is consistent.

Proof. Eventually, H’s most frequent arm converges to the best arm with probability 1 by
hypothesis. At this point, R will pull the best arm going forward and achieve a per-round
regret of 0.

Next we consider the impact of applying this strategy when its assumptions are incorrect,
i.e., H is learning. For simplicity, we assume H is greedy and pulls the best arm given the
rewards so far. We will consider a 11

2
-arm bandit: a bandit with two arms, where one has

a known expected value and the other is unknown. We show that pairing this suboptimal-
learner with the ‘most-frequent-arm’ strategy leads the joint system R◦H to be inconsistent :

Theorem 25. If H is a greedy learner and R is ‘most-frequent-arm’, then there exists an
assistive-Mab M such that R ◦H is inconsistent.

Proof. (sketch) The proof consists of two steps. First, we show a variant of a classical bandit
result: if H and R output the constant arm in the same round, they will for the rest of time.
Second, we show that this occurs with finite probability and get a positive lower bound on
the per-round regret of R ◦H.

CHAPTER 6. ROBUST ALIGNMENT 119

ε-greedy
0

2

4

6

8

10

R
eg

re
t

WSLS TS

Regret With and Without Robot Assistance

UCL GI ε-optimal

No intervention Assist with correct H model Assist assuming H is ε-optimal
True H model

Figure 6.3: Averaged regret of various human policies (lower = better) over 100,000 trajec-
tories when unassisted, assisted with the correct human model, and assisted assuming that
the human is noisily-optimal. Assistance lowers the regret of most learning policies, but
it is important to model learning: ignoring that the human is learning can lead to worse
performance than no assistance. Note that assisted WSLS performs almost as well as the
Gittins Index policy, an empirical verification of Theorem 26.

While this is a simplified setting, this shows that the types of mistakes and suboptimality
represented by learning systems are not well modeled by the standard suboptimality assump-
tions used in research on recommendation systems, preference learning, and human-robot
interaction. The suboptimality exhibited by learning systems is stateful and self-reinforcing.
Figure 6.7 shows the practical impact of modeling learning. It compares an optimal as-
sistance policy for a supervision-PoMdp with an optimal policy for an assistive-Mab. In
general, assistive-Mab policies seem to fit into three steps: explore to give H a good estimate
of rewards; observe H to identify a good arm; and then exploit that information.

Mabs are the standard theoretical model of reinforcement learning and so this observation
highlights the point that the term inverse reinforcement learning is somewhat of a misnomer
(as opposed to inverse optimal control): Irl’s assumptions about an agent (noisy optimality)
lead to very different inferences than actually assuming an agent is learning.

CHAPTER 6. ROBUST ALIGNMENT 120

Comparing assistance strategies

Optimizing an assistance policy

The optimal response to a given human strategy can be computed by solving a partially
observed Markov decision process (POMDP) [81]. The state is the reward parameters θ and
H’s internal state. The observations are the human arm pulls. In this framing, a variety of
approaches can be used to compute policies or plans, e.g., online Monte-Carlo planning [143,
64] or point-based value iteration [121].

In order to run experiments with large sample sizes, our primary design criterion was fast
online performance. This lead us to use a direct policy optimization approach. The high
per-action cost of Monte-Carlo planners makes them impractical for this problem. Further,
explicitly tracking θ and H’s internal state is strictly harder than solving the inverse MAB.

Our approach applies the policy optimization algorithm of [40] to assistive-Mabs. Given
an assistive-Mab , we sample a batch of reward parameters θ from the prior p(Θ); generate

trajectories of the form ξ = [(a
(1)
H , a

(1)
R , u(1)), ..., (a

(t)
H , a

(t)
R , u

(t))] from H and the current robot
policy R(i); and use the trajectories to update the robot policy to R(i+1). During this offline
training stage, since we are sampling reward parameters rather than using the ground truth
reward parameters, we can use the generated rewards rt to improve on R(i).

We represent R’s policy as a recurrent neural network (RNN). At each timestep, it

observes a tuple (a
(t−1)
R , a

(t)
H) where a

(t−1)
R is the most recent robot action and aHis the most

recent human action. In response, it outputs a distribution over arm indices, from which
an action is sampled. Given a batch of trajectories, we use an approximate policy gradient
method [160] to update the weights of our RNN. In our experiments, we used Proximal
Policy Optimization (PPO) [135], due to its ease of implementation, good performance, and
relative insensitivity to hyperparameters.

To alleviate the problem of exploding and vanishing gradients [120], we use Gated Recur-
rent Units (GRU) [33] as the cells of our recurrent neural network. The output of the GRU
cell is fed into a softmax function, and this output is interpreted as the distribution over
actions. To reduce to variance in our policy gradient estimate, we also use a value function
baseline [36] and apply Generalized Advantage Estimation (GAE) [133]. We used weight
normalization [131] to speed up training. We used a batch size of 250000 timesteps or 5000
trajectories per policy iteration, and performed 100 policy iterations using PPO.

To quantitatively test the hypotheses that our learned models successfully assist, we
perform a two factor ANOVA. We found a significant interaction effect, F (3, 999990) =
1778.8, p < .001, and a post-hoc analysis with Tukey HSD corrections showed that we were
able to successfully assist the human in all four sub-optimal learning policies (p < .001).

We found that our learned assistant leads to worse performance in the Gittins Index
case, q = 23.15, p < 0.001. This is a consequence of our choice to learn a policy via policy
optimization, instead of using a perfect planner. Because it is very hard to reliably improve
on a Gittins Index human’s behaviour, and the variance in our policy gradient estimator is
substantial, our learned policy fell short of the no-intervention baseline.

CHAPTER 6. ROBUST ALIGNMENT 121

Table 6.2: Increase in Reward from Robot Assistance

Assumed H Policy
Actual H ε-greedy WSLS TS UCL GI ε-optimal
ε-greedy 2.13 -0.60 -2.18 -2.20 -0.11 -3.95
WSLS 0.94 3.75 0.80 0.10 -2.21 -1.97
TS 0.33 0.66 0.60 0.44 -1.53 -0.19
UCL 1.76 -1.19 2.51 2.43 0.74 1.28
GI -1.09 -0.28 -0.77 -0.85 -0.71 -1.50

ε-optimal 0.24 1.17 1.24 1.28 -3.09 1.46

6.3 Reward Communication Equilibria in

Assistive-MABs

In the previous experiments, we assumed knowledge of the correct learning policy. In this
experiment, we consider the implications of incorrectly modeling learning. We took the
policies we trained in the previous section and tested them with every human policy. We
report the net change in reward in Table 6.3. We colored cases where the robot R successfully
assists the human H green, and cases where it fails to assist red. We bolded the best
performance in each row.

Modeling learning (even with the incorrect model) generally leads to lower regret than
assuming ε-optimal for every learning H policy. However, when the robot has the wrong
model of learning, it can fail to assist the human. For example, ε-greedy is only successfully
assisted when it is correctly modeled. This argues that research into the learning strategies
employed by people in practice is an important area for future research.

An intriguing result is that assuming ε-greedy does successfully assist all of the suboptimal
learning policies. This suggests that, although some learning policies must be well modeled,
learning to assist some models can be transferred to other models in some cases. On the
other hand, trying to assist GI leads to a policy that hurts performance across the board. In
future work, we plan to identify classes of learners which can be assisted by the same robot
policy.

Having argued that we can achieve consistency for such a broad class of human policies
in an assistive MAB, we now return to the question of achieving low regret. In particular,
we investigate the conditions under which R ◦ H achieve O(log(T)) expected regret, as is
possible in the standard MAB. For any given human H, there exists a robot R such that
R◦H does as well as H: let R copy the H’s actions without modification; that is, a

(t)
R = a

(t)
H

for all t. So in the case where H achieves O(log(T)) regret by itself, R ◦ H can as well.
However, a more interesting question is that of when we can successfully assist a suboptimal
H that achieves ω(log(T)) regret.

Remark 12. While one may hypothesize that better human policies lead to better perfor-

CHAPTER 6. ROBUST ALIGNMENT 122

mance when assisted, this is surprisingly not the case, as the next section demonstrates.

An inconsistent policy that is easy to assist

In looking at the table above, R is most helpful when H plays the classic bandit strategy
‘win-stay-lose-shift’ (WSLS) [126]. As the name suggests, WSLS sticks with the current arm
if the most recent reward is one:

a
(t)
H =

{
a

(t−1)
R u(t−1) = 1

Unif({k|k 6= a
(t−1)
R }) u(t−1) = 0

(6.3)

This a simple strategy that performs somewhat well empirically – although it is easy
to see that it is not consistent in isolation, let alone capable of achieving O(log(T)) regret.
Indeed, it achieves Θ(T) regret, as it spends a fixed fraction of its time pulling suboptimal
arms.

However, if we look at Figure 6.3, the assisted variant of WSLS performs on par with the
unassisted optimal learning strategy, the Gittins index policy. It turns out that, if H can
implement WSLS, the combined system can implement an arbitrary Mab strategy from the
standard Mab setting, including those that achieve logarithmic regret. In other words, the
robot can successfully assist the human in efficiently balancing exploration and exploitation
despite only having access to the reward parameter through an inconsistent human.

Theorem 26. If H implements the WSLS strategy in a Beta-Bernoulli assistive-Mab, then
there exists a robot strategy R such that R◦H achieves the minimal regret from the standard
Mab with the same parameters.

Proof. The pair (a
(t−1)
R , a

(t)
H) directly encodes the previous reward u(t−1). This means that

πRcan be an arbitrary function of the history of arm pulls and rewards and so it can imple-
ment any Mab policy, including the one that achieves minimal regret.

Figure 6.4 illustrates this result by comparing a rollout of this R◦H with the potentially
optimal arms according to the Gittins index policy for the comparable, standard, Mab.

Mutual information bounds team performance

The WSLS policy is not unique in that it allows R ◦H to obtain logarithmic regret. A less
interesting, but similarly effective policy, is for the human to directly encode their reward
observations into their actions; the human need not implement a sensible bandit policy. For
example, the following purely communicative H also works for a Beta-Bernoulli bandit:

a
(t)
H =

{
0 rt−1 = 0
1 rt−1 = 1

(6.4)

CHAPTER 6. ROBUST ALIGNMENT 123

We can generalize the results regarding communicative policies using the notion of mutual
information, which quantifies the amount of information obtained through observing the
human arm pulls.

Let I(X;Y) be the mutual information between X and Y , H(X) be the entropy of X,
and H(X|Y) be the entropy of X given Y .

Theorem 27. Suppose that the probability the robot pulls a suboptimal arm at time t is
bounded above by some function f(t), that is P (R(t) 6= j∗) ≤ f(t). Then the mutual infor-

mation I(j∗; a
(1)
H × · · · × a

(t)
H) between the human actions up to time t and the optimal arm

must be at least (1− f(t)) logK − 1.

Proof. We can consider the multi-armed bandit task as one of deducing the best arm from
the human’s actions. This allows us to apply Fano’s inequality [41] to P (R(t) 6= j∗), and
using the fact that the entropy of a Bernoulli random variable is bounded above by 1, we
get

P (R(t) 6= j∗) log(K − 1) ≥ H(ĵ∗|j∗)− log 2

= H(ĵ∗)− I(ĵ∗; j∗)− 1

≥ logK − I(j∗; a
(1)
H × · · · × a

(t)
H)− 1.

Rearranging terms and using P (R(t) 6= j∗) ≤ f(t), we get

I(j∗; a
(1)
H × · · · × a

(t)
H) ≥ logK − f(t) log(K − 1)− 1

≥ (1− f(t)) logK − 1.

Intuitively, since the probability of error is bounded by f(t), in (1−f(t)) cases the human
actions conveyed enough information for A to successfully choose the best action out of N
options. This corresponds to logN bits, so there needs to be at least (1− f(t)) logN bits of
information in H’s actions.

Corollary 27.1. Suppose that the probability the robot pulls a suboptimal arm at time t
is bounded above by some function f(t), that is P (R(t) 6= j∗) ≤ f(t). Then the mutual

information I(a
(1)
R × u(1) × · · · × a(t−1)

R × u(t−1); a
(1)
H × · · · × a

(t)
H) between the human actions

up to time t and the human observations must be at least (1− f(t)) logK − 1.

Proof. Since the best arm is independent of the human actions given the human observations,
this follows immediately from the data processing inequality and proposition 27.

In order to achieve regret logarithmic in time, we must have that P (Kt 6= j∗) ≤ C
t

for
some C > 0. Applying proposition 27 above implies that we must have

I(j∗; a
(1)
H × · · · × a

(t)
H) ≥ (1− C

t
) logK − 1

CHAPTER 6. ROBUST ALIGNMENT 124

...

...
�

3

3

rt 1 0 1 1

1

3

0 1

3

13

3

10

...

...

{3} {0, 1, 2} {2}

1

{2} {2} {2, 3} {3} {3}

H

A

R assumes H is learning

Gittins index

3

2

1

3

3

3

2 2 2

2 2 2

1

3

3

3

3

3

1

3

Figure 6.4: In Theorem 26 we show that it is possible to match the regret from optimal
learning in an standard MAB when assisting the ‘win-stay-lose-shift’ (WSLS) policy. This
is because WSLS perfectly communicates the observed rewards to R. Here we show an
example trajectory from an approximately optimal policy assisting WSLS. At the top is what
H suggests, followed by what R pulls, followed by the reward H observes. For comparison,
we show the arms selected by the near-optimal Gittins index policy for each belief state.
This highlights the importance of communicative learning policies in an assistive-Mab.

Note that the term I(ĵ∗; a
(1)
H × · · · × a

(t)
H) depends on both the human policy and the

robot policy - no learning human policy can achieve this bound unless the human-robot
system R ◦H samples each arm sufficiently often. As a consequence, simple strategies such
as inferring the best arm at each timestep and pulling it, cannot achieve the Θ(log T) lower
bound on regret. Our WSLS results agree with Theorem 26. Assisted WSLS achieves a
regret of 3.5, close to the regret of the best-performing unassisted policy, 3.2. The gap in
reward is due to our choice to employ approximate policy optimization. Qualitative analysis
of WSLS trajectories found that it would often switch from its current arm after only a
single observation of failure, although this is clearly sub-optimal. We provide an example
trajectory in Figure 6.4. The actions selected are almost identical to those of the optimal
policy. This suboptimality also accounted for the small increase in regret when assisting the
Gittins index policy in Figure 6.3.

Theorem 27 implies that high mutual information is required for good team performance.
To verify this, we computed the mutual information for a variety of combined policies after
5 timesteps. Figure 6.5 plots this against the regret of the combined system. We consider
several variants of ε-greedy and TS that are more or less deterministic. We consider ε ∈
[0, 0.02, 0.05, 0.1]. To make TS more deterministic, we use the mean of a sample of n particles
to select arms. We consider n ∈ [1, 2, 3, 10, 30,∞].

Across this data, higher mutual information is associated with lower assisted regret,
r(10) = −.82, p < .001. Furthermore, by looking at the ε-greedy and TS results as a
sequence, we can observe a clear and distinct pattern. Policies that are more deterministic
tend to be easier to help. This is supported by the results in Table 6.1, which shows that it

CHAPTER 6. ROBUST ALIGNMENT 125

0.10 0.15 0.20 0.25 0.30
Mutual Information with best arm after 5 Timesteps (bits)

3.5

4.0

4.5

5.0

R
eg

re
tw

it
h

ro
bo

ta
ss

is
ta

nc
e

Assisted Regret vs Mutual Information

ε-Greedy
WSLS
Thompson Sampling
Gittins Index

More random←− −→More deterministic

Figure 6.5: The assisted regret of various policies, plotted against the mutual information
between the best arm and the policy’s actions in the first 5 timesteps. We also plot the
best-fit line, with 95% confidence interval, for the regression between assisted regret and
mutual information. We augmented our policies with variants of ε-greedy and Thompson
sampling with less randomness. Policies with high mutual information lead to lower regret
when assisted, supporting our theoretical findings.

is easier to infer reward parameters for WSLS and GI (i.e., the two policies with the highest
mutual information) than TS and ε-greedy.

The assistive multi-armed bandit considered so far only captures one mode of interaction.
It is straightforward to consider extensions to different modes. We consider two such modes.
The first is turn taking, where H and R take turns selecting arms. This can be more difficult
because the robot has to act in early rounds, when it has less information, and because the
human has to act in later rounds, when H may be noisy and the best arm has already been
identified.

The second variant we consider is preemptive interaction. In this case, R goes first and
either pulls an arm or lets H act. This creates an exploration-exploitation tradeoff. R only
observes H’s arm pulls by actually allowing H to pull arms and so it must choose between
observing H’s behavior and exploiting that knowledge.

Figure 6.6 compares the performance of different assumptions about H for both of these
interaction modes. The results are largely similar to those of the original model. We are

CHAPTER 6. ROBUST ALIGNMENT 126

ε-greedy
0

2

4

6

8

10

R
eg

re
t

ε-greedy
0

2

4

6

8

10

R
eg

re
t

WSLS

WSLS

TS

Turn-Taking Interaction Mode

TS

Preemptive Interaction Mode
UCL

UCL

GI

GI

ε-optimal

ε-optimal

No intervention Assist with correct H model Assist assuming H is ε-optimal
True H model

Figure 6.6: Averaged regret of various human policies (lower = better) over 100,000 trajec-
tories under the turn-taking and preemptive interaction modes. Assistance lowers the regret
of ε-greedy, WSLS, and UCL in both the preemptive and turn-taking interaction modes.
Assistance while ignoring learning is worse than no assistance in almost every case. This
offers further support for the importance of modeling learning when assisting humans.

CHAPTER 6. ROBUST ALIGNMENT 127

able to assist the suboptimal policies and modeling learning as ε-optimality increases regret
in all cases. We obtain results that confirm Theorem 27: more deterministic policies that
reveal more information are easier to help.

Additionally, we see that WSLS is a less attractive policy in these settings: because
H actions are always executed when they are observed, it no longer makes sense for H to
employ a purely communicative policy. However, because actions have an effect on utility
directly (i.e., H actually interacts with the world, rather than only providing information to
R) this breaks the symmetry between ‘win-stay-lose-shift’ and ‘win-shift-lose-stay.’ Thus,
this loss in utility is compensated for by ruling out a perverse outcome where H and R use
strategies from mismatched pedagogical equilibria in a way that causes R ◦H to minimize
utility.

Explore, observe, then exploit

In looking at the policies learned for the preemptive interaction mode, we see an interest-
ing pattern emerge. Because the policy has to choose between selecting arms directly and
observing H, by looking at rollouts of the learned policy we can determine when it is most
useful to observe H. We find that a clear pattern emerges. R initially explores for H: it
selects arms uniformly to give H a good estimate of θ. Then, R observes H’s arm pulls
to identify the optimal arm. For the final rounds, R exploits this information and pulls its
estimate of the optimal arm. Figure 6.7 compares a representative trajectory with one that
is optimized against an ε-optimal H.

CHAPTER 6. ROBUST ALIGNMENT 128

H is ✏-Optimal

exploitobserve

defer

� �
...

... �
rt 1 1 0 1 1 1

H

A

H is ✏-Greedy

rt

...

...

0

1 2

� � � �
...

...
3

�
1 10 1 1 0 1{ { {

explore exploitobserve

H

A

3

33

3

33 3

333

deferdefer

1

defer defer defer

{ {R

R

Figure 6.7: A comparison between assisting an ε-optimal H and an ε-greedy H in a modified
assistive-Mab where the robot R has to choose between acting and letting H act. This
creates a direct exploration-exploitation tradeoff that makes it easier to qualitatively analyze
R’s behavior. At the top is whether R defers to the human or pulls an arm, followed by
what H pulls (if the robot defers), followed by the reward H observes. When the robot
models learning, the policy it learns has a qualitative divide into three components: explore,
where the robot explores for the human; observe, when the robot lets the human pull arms;
and exploit, when the robot exploits this information and pulls its estimate of the best arm.
Crucially, the explore component is only found when learning is modeled. This illustrates
Theorem 25, which argues that assisting an ε-optimal H is different from assisting a learning
H.

129

Chapter 7

Related Work

In this chapter we collect work related to the analysis of the principal—agent value alignment
problem in artificial intelligence.

7.1 The Economics of Principal–Agent Relationships

and Incomplete Contracting

In Chapter 1, we discussed how the development of computational methods to select optimal
actions for a given set of incentives was a crucial step in the development of AI systems. As
a result, incentive alignment issues for artificial agents have clear analogues in the human
principal–agent problem long studied by economists and legal scholars. Kerr [85] provided
an early description of a wide variety of misaligned incentives in the aptly titled “On the folly
of rewarding A, while hoping for B.” Gibbons [51] provides a useful survey of principal–agent
models and their applications.

Reasons for incompleteness

As discussed in Chapter 1, the principal–agent problem in economics is studied as a problem
of optimal contracting. In this theory, contracts specify payments and allocation of resources
to the contracting parties in different states of the world. This is analogous to the reward
function or objective used to specify autonomous behavior in AI approaches. A complete
contingent contract specifies these incentives for every possible world state that can be
reached. If complete contingent contracts were possible, perfect alignment between principal
and agent would be possible. However, it is understood that contracts are routinely, and
likely unavoidably, incomplete. Economists have identified multiple reasons for contractual
incompleteness:

• unintended incompleteness: contract designers fail to identify all circumstances that
affect the value of the contract. This is sometimes referred to as bounded rationality

CHAPTER 7. RELATED WORK 130

[145, 175].

• economizing on costly cognition and drafting: contract designers choose not to invest
in the costly cognitive effort of discovering, evaluating and drafting contract terms to
cover all circumstances [141, 142, 137].

• economizing on enforcement costs: contract designers leave out terms that are costly
to enforce because they require more or more costly evidence or because the potential
for disputes and/or court errors increases with the complexity of the contract [86, 136,
74].

• non-contractibility: some contingencies and/or actions are left out because either they
cannot be observed or, even if observable, they cannot be verified by enforcers at
reasonable cost. This might be because of hidden information or it might be because
it is not possible to communicate (describe) the contingency or action in unambiguous
terms [63, 107].

Contractual incompleteness is typically framed as undesirable. In most of the settings con-
sidered in this work, this is the case. In Section 3.2, for example, H’s inability to specify
a complete representation of preferences led to lost utility. In addition to that, economists
have also considered settings in which completeness is feasible but not optimal. These are
cases in which information at the time of contracting is incomplete and new information is
anticipated in the future:

• planned renegotiation: rather than writing a complete contract based on incomplete
information at the start of a contracting relationship, contract designers choose to
write an incomplete contract, which they expect to renegotiate in the future once more
information becomes available [19, 74]

• optimal completion of contract by third-party: rather than writing a complete contract
based on incomplete information at the start of a contracting relationship, contract
designers choose to write an incomplete contract, which they expect to have filled in
by a third-party adjudicator with better information in the future [66, 142]

In this work, we can view the dynamic incentives protocol from Section 4.3 as an example
of planned renegotiation. By designing an agent to limit the scope of the initial incentives,
and update them in response to the observation of a new environment, the team is able
to efficiently manage the transfer of normative information (i.e., information about how to
evaluate different states of the world) from H to R.

This is not a perfect analogy because there exists a complete specification of rewards
which would work across all environments. The assistive-Mab introduced in Section 6.2 is
a better model of a scenario where a complete contract would be suboptimal. H does not
know how to evaluate the different options at the start of the game, and so it would be

CHAPTER 7. RELATED WORK 131

suboptimal to specify complete incentives for which arm R pulls. Instead, H does best when
they are able to update R’s incentives in response to reward observations made over time.

As a final category of incomplete contracts, economists, and many legal scholars, have
identified strategic behavior as another reason for incompleteness:

• strategic protection of private information: a party with private information about
a missing contingency does not prompt contracting to cover the contingency because
doing so will reveal private information that reduces the value of the contract [155, 12]

• deterring strategic investments in costly cognition : the parties choose not to cover
all contingencies because learning about them would be biased and wasteful, partly
motivated by efforts to protect against strategic wealth transfers that will occur if the
contingency arises [167]

• strategic ambiguity:the parties choose not to include all known and contractible con-
tingencies in order to control strategic behavior in response to other noncontractible
contingencies [17]

This class of reasons for incompleteness does not translate as readily to the principal–
agent problems considered in this work. The models considered for this dissertation have
focused on a dyadic relationship between a system designer and a robot. In dyadic rela-
tionships between people, strategic incentives typically arise from the fact that people, in
general, have different goals. In contrast, an autonomous agent’s preferences are much more
of a blank slate. However, it is easy to see that these strategic concerns will arise if we
consider interactions with more than one person. Consider, e.g., a model with 2 humans, a
system designer and a system user. The divergence of the two human’s objectives will create
incentives for the human to strategically conceal information about their preferences that
could be used against them in the future. To analyze these questions, future work should
draw upon the implications of mechanism design [112] research as it applies to the design of
complex autonomous systems. Fickinger et al. [44] describes an initial analysis in this setting
and shows that, if the human players are directly rewarded for a large enough fraction of
their action, it is possible to circumvent several negative results from voting theory.

Multitask models and distorted incentives

One of the central results from the study of incomplete contracting is the observation that the
structure of the optimal incomplete contract should take that incompleteness into account.
A well-studied example of this is the case of multitask principal–agent problems, where a
agent must divide its effort across a variety of distinct tasks.

Holmstrom and Milgrom [78] and Baker, Gibbons, and Murphy [13] show that the optimal
incentive contract for a task that can be measured should take into account the impact of
those rewards on effort put towards tasks that cannot be measured. In particular, it may be
better to reduce the quality of incentives on the measurable task below what is feasible, in

CHAPTER 7. RELATED WORK 132

order to reduce the distortion introduced in the unmeasurable task. The model of incomplete
proxy metrics from Section 3.2 can be seen as an extreme example of this, where some tasks
can be measured perfectly while others can not be measured at all.

Holmstrom and Milgrom [78] gives the example of paying a teacher a fixed salary rather
than one contingent on students’ (easily measurable) standardized test scores. At first glance,
it seems like the latter approach would be a good way to leverage incentives to improve
learning outcomes. However, overly strong incentives leads to the phenomenon of “teaching
to the test,” where teachers dedicate too much classroom time to specific test preparation
activities (e.g., process of elimination methods for multiple choice questions). This leads to
less time spent on difficult-to-measure skills like creative problem solving and, in effect, the
test becomes uncorrelated from these learning goals.

Baker, Gibbons, and Murphy [13] gives the example of an auto repair shop rewarding
mechanics for completed repairs and thereby inducing mechanics to mislead customers about
the need for repairs: completion of repairs is easily measurable; the reliability of a mechanic’s
diagnosis of car problems is not. More generally, sometimes it is better for a contract not to
include easily contractible actions in order not to further distort incentives with respect to
non-contractible actions.

When we consider the role of distorted incentives in the design of AI systems, we can
observe a key difference between an artificial agent and a human one. In the absence of
explicit incentives from the contract, a human will fill in the gaps with nuanced and intelligent
interpretation. While this might not be desirable from the perspective of managing strategic
behavior, the ability to draw on commonsense interpretations is incredibly valuable.

Contracts do not exist in a vacuum; they come heavily embedded in social and insti-
tutions structures [61]. At a minimum, they depend on shared language and organized
structures for enforcement: formal enforcement through courts and coercive authorities and
informal enforcement through social sanctions such as collective (coordinated) criticism and
exclusion from valuable relationships. Incomplete contracts depend even more extensively on
these external, third-party institutions: not only to enforce contractual terms but to supply
contractual terms by interpreting ambiguous terms and filling in gaps. They contain not
only their express terms but also their interpreted and implied terms [42]. This important
point has been emphasized by legal scholars, in a field known as relational contracting, for
several decades [99, 102, 101, 103, 55].

In the design of AI systems, it is crucial to develop methods that imitate, in general,
this reliance on, and sensitivity to, external normative structure. This could include explicit
mechanisms for an AI agent’s objective to reference externally defined or controlled metrics
or research into the cognitive processes that set these incentives for people. This concept
overlaps with the economist’s definition of relational contracting (see [52] for a review) to
the extent that it focuses on informal sanctions for breach of obligations. Legal scholars in
the sociological tradition have always included here a wide variety of sanctions (including
internalized sanctions such as guilt and shame). Economists, on the other hand, typically
have modeled the termination of valuable economic relationships or the degradation of rep-
utation, which reduces contracting opportunities with third-parties in the future. The legal

CHAPTER 7. RELATED WORK 133

concept of relational contracts goes further than enforcement to focus also on the impor-
tation of obligations into a contractual relationships from sources other than the express
language of an agreement. Williamson [175], Alchian and Demsetz [6] and Klein, Crawford,
and Alchian [87] were the first economic treatments to focus on this aspect of the legal
analysis of relational contracts.

7.2 Impact Minimization

In Section 3.3, we identify two potential strategies to avoid the negative results about guar-
anteed overoptimization of proxy metrics: impact minimization methods and dynamic in-
centives protocols. While dynamic incentives have received less academic attention, several
papers have considered generic proposals for impact measurement and penalization.

Armstrong and Levinstein [11] proposes the inclusion of a large impact penalty in the AI
agent’s utility function. In this work, they suggest impact be measured as the divergence
between a distribution of states of the world and the distribution if the AI agent had not
existed. Thus, distributions sufficiently different would be avoided. Alternatively, other
approaches use an impact regularizer learned from demonstration instead of one explicitly
given [9].

Krakovna et al. [92] expand on this work by comparing the performance of various im-
plementations of impact minimization in an AI Safety Gridworld suite [97]. They propose
a reachability condition which penalizes the system for removing the ability to navigate the
system to states that were previously reachable. In doing so, the hope is that the system
will avoid unrecoverable failures.

Turner, Hadfield-Menell, and Tadepalli [169] considers an analogous method where the
agent is penalized for changes in a vector of value functions, where the value functions are
computed based on a set of candidate reward functions. This forces the agent to accomplish
its goal with minimal effect on the state of alternative tasks. Turner, Ratzlaff, and Tadepalli
[168] shows that this method is effective at avoiding side-effects in an adaptation of Conway’s
‘Game of Life’ [3].

Krakovna et al. [91] provides a theoretical grounding of these approaches in a setting
where the agent must preserve the ability to perform future tasks. They formalize the
problem of interference, where the consideration of future tasks leads the agent to perform
tasks that are useful for the overall distribution of tasks and show how to modify the objective
to remove this incentive. This approach is quite interesting in the context of the combined
theoretical solution discussed at the end of Chapter 3: it defines a regularizer that explicitly
prevents R from interfering with the ability to maximize future (proxy) objectives. Thus,
we can see this method, combined with the dynamic incentives protocol in Section 4.3 as an
interesting proposal for a value alignment solution based on proxy objectives.

CHAPTER 7. RELATED WORK 134

7.3 Inverse Reinforcement Learning

From a technical standpoint, the starting point for the analysis in this thesis resides in the
framework of inverse reinforcement learning. Ng and Russell [115] define inverse reinforce-
ment learning (Irl) as follows:

Given: 1) measurements of an agent’s behavior over time, in a variety of cir-
cumstances, 2) if needed, measurements of the sensory inputs to that agent; 3)
if available, a model of the environment.
Determine the reward function being optimized.

In Section 2.3, we give an formulation of the problem. Here, we go over some of the key
results in the area.

Ng and Russell [115] use a mathematical programming approach to characterize the
set of potential Irl solutions for a given set of demonstrations. They identify one of the
central challenges in Irl: for any demonstration, there are typically many reward functions
that could be optimal. In the context of this dissertation, this essentially states that a
demonstration of an optimal trajectory is an incomplete representation of H’s goal.

Abbeel and Ng [2] considered the problem of Irl with linear reward functions and showed
that a policy that matches the feature expectations from the demonstrations will always get
the same amount of reward as the expert. Ratliff, Bagnell, and Zinkevich [123] show how
to use subgradients to efficiently compute weights that maximize the margin between the
demonstrations and alternative trajectories. Ramachadran and Amir [122] and Ziebart et
al. [181] both considered the problem of learning reward functions from noisy behavior.
Ramachadran and Amir [122] use Markov-chain Monte Carlo methods to compute an ap-
proximate posterior over reward functions. The key idea in their approach is to combine a
specific proposal distribution of candidate rewards with a method for efficiently re-using the
solutions to previous reward functions.

Ziebart et al. [181] highlights the importance of modeling the details of the choice set
considered by the demonstrator. They show the difference between a distribution of behavior
that selects actions in proportion to the Q function and one that selects trajectories in
accordance with their total utility. While this is structurally similar, the difference has
to do with the way that noise accumulates. As an example, they consider an Mdp with 3
trajectories, all of equal utility. They show that the policy which selects actions in proportion
to their Q-value leads to an uneven distribution over trajectories cause by the environment
dynamics. They introduce a dynamic programming method to compute this distribution on
trajectories and use it to propose an effective gradient-based method for Irl.

Syed and Schapire [162] describes an adversarial approach to Irl and apprenticeship
learning. They consider a setting where an adversary can select a reward function in order
to maximize the regret of a deployed policy. Interestingly, their method allows imitation
to improve on demonstrator performance, depending on the structure of the deployment
domain.

CHAPTER 7. RELATED WORK 135

A recent area of focus in Irl research is the development of methods that can scale
to nonlinear reward spaces like neural networks. Finn, Levine, and Abbeel [45] proposed a
method that uses policy learning instead of planning to deal with high-dimensional problems.
Ho and Ermon [77] proposed an adversarial approach that uses a neural network trained to
distinguish optimized and demonstrated trajectories to train an imitation policy. Fu, Luo,
and Levine [48] learn state-only rewards with this approach and show that their method can
learn reward functions that are disentangled from the problem dynamics in the sense that
they create incentives the optimal policy across a set of transition dynamics.

Natarajan et al. [113] introduce an extension to Irl where R observes multiple actors
that cooperate to maximize a common reward function. This is a different type of coop-
eration than we consider, as the reward function is common knowledge and R is a passive
observer. Waugh, Ziebart, and Bagnell [172] and Kuleshov and Schrijvers [93] consider the
problem of inferring payoffs from observed behavior in a general (i.e., non-cooperative) game
given observed behavior. Combining these methods with the assistance game formulations
considered in this work is an interesting direction in which to study the problem of assisting
groups of humans with competing objectives.

7.4 Reward Learning

In addition to Irl there are a variety of methods for reward learning that have been studied
in artificial intelligence. There is a vast number of preference learning methods for non-
sequential problems [49]. Methods that learn reward functions from preferences, surveyed in
Wirth, Fürnkranz, and Neumann [176], are particularly relevant to our work.

Christiano et al. [34] learn a reward function from preferences over pairs of trajectories,
by sampling trajectories from a learned policy and querying the user about pairs with high
uncertainty. A similar setup is used in Wirth, Fürnkranz, and Neumann [176] and Akrour,
Schoenauer, and Sebag [5], based around other policy optimization methods. It is also
possible to learn reward functions from preferences on actions [49] and states [128]. Many of
these methods select from already encountered trajectories, which will be guesses at optimal
training behavior. Sadigh et al. [130] identify queries by gradient-based optimization in the
trajectory space (in continuous environments).

Reward functions are also frequently learned from direct reward values [88, 171] and
expert ratings [35]. An interesting genre of this work looks at learning from trajectory
rankings, where an expert provides a total ordering over a set of possible comparisons.
Brown et al. [24] give a promising approach that combines trajectory ranking to learn a
distribution over reward functions that can be effectively maximized in a risk-averse fashion
in novel environments. This is similar to the approach taken in Ird (where a proxy objective
provides a ranking over all trajectories in the development environment) but Brown et al.
[24] are able to scale their method to much larger problems and more complex reward spaces.
Their approach is notable for its simplicity: rankings are converted into pairwise preferences
and used to train a classifier.

CHAPTER 7. RELATED WORK 136

Shah et al. [138] argue that these reward learning approaches can be united by observing
that each models H’s choice as a reward-driven choice over different option sets. They catalog
a wide variety of distinct reward feedback mechanisms and their associated probabilistic
assumptions. In the context of this dissertation, these correspond to different choices of the
action spaces for H AH and/or different choices of H’s policy πH.

Shah et al. [139] takes an interesting approach to reward learning that relies on the initial
state of the world. The core idea is that the initial state that a robot is deployed into is rarely
a truly ‘random’ draw from a distribution. Instead, it is often heavily optimized towards
different (human) objectives. The key idea in this paper is that by considering the initial
state as an optimized environment, it is possible to learn about the objectives that state
was optimized towards. Crucially, this justifies the deployment of low-impact policies. In a
general state of nature, there is no reason to minimize impact.

Shaikh and Goodrich [140] proposes and evaluates several interfaces for reward specifi-
cation, eliciting three-way trade-offs from users. This is complementary to Ird, and could
be adapted to collect data for our method. Furthermore, the divide-and-conquer strategy
suggests a natural way to scale this approach to collect arbitrary n-way trade-offs because
we can combine observations from several three-way interactions.

7.5 Optimal Reward Design

Singh et al. [148] formalize and study the problem of designing optimal rewards. They
consider a designer faced with a distribution of environments, a class of reward functions
to give to an agent, and a fitness function. They observe that, in the case of bounded
agents, it may be optimal to select a proxy reward that is distinct from the fitness function.
Sorg, Singh, and Lewis [154] and subsequent work has studied the computational problem
of selecting an optimal proxy reward.

In Section 4.2, we considered an alternative situation where the system designer is the
bounded agent. In this case, the proxy reward function is distinct from the fitness function
– the true utility function in our terminology – because system designers can make mistakes.
Ird formalizes the problem of determining a true utility function given an observed proxy
reward function. This enables us to design agents that are robust to misspecifications in
their reward function.

MacGlashan et al. [100] presents a system to ground natural language commands to
reward functions that capture a desired task. Using natural language as an interface for
specifying rewards is complementary to our approach as well.

7.6 Pragmatics

The pragmatic interpretation of language is the interpretation of a phrase or utterance in
the context of alternatives [62]. For example, the utterance “some of the apples are red” is

CHAPTER 7. RELATED WORK 137

often interpreted to mean that “not all of the apples are red” although this is not literally
implied. This is because, in context, we typically assume that a speaker who meant to
say “all the apples are red” would simply say so. Recent models of pragmatic language
interpretation use two levels of Bayesian reasoning [47, 60]. At the lowest level, there is
a literal listener that interprets language according to a shared literal definition of words
or utterances. Then, a speaker selects words in order to convey a particular meaning to
the literal listener. To model pragmatic inference, we consider the probable meaning of a
given utterance from this speaker. We can think of inverse reward design from Chapter 4
as a model of pragmatic reward interpretation: the speaker in pragmatic interpretation of
language is directly analogous to the reward designer in Cirl.

7.7 Corrigible Systems

Omohundro [117] identifies the instrumental goals of artificial agents: goals which are likely
to be adopted as subgoals of most objectives. He identifies an incentive for self-preservation
as one of these instrumental goals. Soares et al. [151] takes an initial step at formalizing
these arguments. They refer to agents that allow themselves to be switched off as corrigible
agents. They show that one way to create corrigible agents is to make them indifferent to
being switched off, but in their model this also makes R equally likely to commit suicide
as to take any other action. The key difference in our formulation in Section 4.1 is that
R knows that it does not know the utility function U . This gives a natural way to create
incentives to be corrigible and to analyze the behavior if R is incorrigible.

Orseau and Armstrong [119] consider the impact of human interference on the learning
process. The key to their approach is that they model the off-switch for their agent as an
interruption that forces the agent to change its policy. They show that this modification,
along with some constraints on how often interruptions occur, allows off-policy methods to
learn the optimal policy for the given reward function just as if there had been no interference.
Their results are complementary to ours. In Section 4.1, we determine situations where the
optimal policy allows the human to turn the agent off, while they analyze conditions under
which turning the agent off does not interfere with learning the optimal policy. We have
shown that R’s obedience depends on a tradeoff between R’s uncertainty about and H’s
rationality. However, they considered R’s uncertainty in the abstract. In practice R would
need to learn about utility evaluations through H’s behavior. Our work analyzes how the
way R learns about reward impacts its performance and obedience.

7.8 Intent Inference For Assistance

Instead of just being blindly obedient, an autonomous system can infer H’s intention and
actively assist H in achieving it. We formalize this problem as a supervision-PoMdp in
Section 3.1. ‘Do What I Mean’ software packages interpret the intent behind what a pro-

CHAPTER 7. RELATED WORK 138

grammer wrote to automatically correct programming errors [164]. When a user uses a
telepointer network lag can cause jitter in their cursor’s path. Gutwin, Dyck, and Burkitt
[65] address this by displaying a prediction of the user’s desired path, rather than the actual
cursor path.

Similarly, in assistive teleoperation, the robot does not directly execute H’s (potentially
noisy) input. It instead acts based on an inference of H’s intent. In Dragan and Srinivasa
[39] R acts according to an arbitration between H’s policy and R’s prediction of H’s policy.
Like our work, Javdani, Bagnell, and Srinivasa [80] formalize assistive teleoperation as a
PoMdp in which H’s goals are unknown, and try to optimize an inference of H’s goal.

7.9 Cooperative Agents

Fern et al. [43] consider a hidden-goal Mdp, a special case of a PoMdp where the goal is
an unobserved part of the state. This is similar to the assistance-PoMdp model introduced
in Chapter 4, where the set of possible objectives are binary functions of the goal state.
The frameworks share the idea that R helps H accomplish a partially observed objective.
The key difference between this model and the Cirl model considered in Chapter 5 lies in
the treatment of the human (the agent in their terminology). In Cirl, we treat H as an
actor in a decision problem that both actors collectively solve. This allows us to analyze
the problem for robustness with respect to the human policy and is crucial to modeling the
human’s incentive to teach.

Woodward, Finn, and Hausman [177] considers the problem of training assistive agent as
a meta-learning problem. They propose a policy learning approach that is able to identify
effective teaching and learning policies for H and R. The primary extension beyond Cirl
methods is that they consider a setting with partial observability for both H and R.

Carroll et al. [28] considers the problem of learning teamwork behaviors via self-play.
Their work identifies the substantial coordination challenges that arise from multiple parallel
equilibria. Unlike in adversarial settings, where an opponent that performs suboptimally
typically helps the performance of a strategy, it will typically hurt a cooperative behavior.
They show, via a user study, evidence of pedagogical behavior from their subjects that can
counteract R’s mistake over time and H gets a better model of πR. This indicates the
importance of studying adaptive solutions to cooperative decision problems.

Boutilier [22] introduces the problem of multiagent-Mdps, which formalizes these co-
ordination problems. Boutilier proposes a simple solution that augments an Mdp with a
coordination state in situations where there are multiple potentially optimal actions. This
allows agents to learn to coordinate online via a simple, randomized coordination mecha-
nism. Wu et al. [178] propose a method that uses a hierarchical model to infer subgoals that
agent’s have selected online to allow for a more scalable form of this adaptive planning. This
class of problem has also been studied in the context of ad-hoc teamwork, which proposes
methods for evaluating the performance of agents in a setting where coordination is not
possible beforehand.

CHAPTER 7. RELATED WORK 139

7.10 Optimal Teaching

Because Cirl creates incentives for the human to teach, as opposed to maximizing reward
in isolation, our work is related to optimal teaching: finding examples that optimally train
a learner [14, 57, 56]. The key difference is that efficient learning is the objective of optimal
teaching, while it emerges as a property of pedagogical equilibrium in Cirl.

Cakmak and Lopes [25] consider an application of optimal teaching where the goal is to
teach the learner the reward function for an Mdp. The teacher gets to pick initial states from
which an expert executes the reward-maximizing trajectory. The learner uses Irl to infer the
reward function, and the teacher picks initial states to minimize the learner’s uncertainty. In
Cirl, this approach can be characterized as an approximate algorithm for H that greedily
minimizes the entropy of R’s belief.

Beyond teaching, several models focus on taking actions that convey some underlying
state, not necessarily a reward function. Examples include finding a motion that best com-
municates an agent’s intention [38], or finding a natural language utterance that best com-
municates a particular grounding [58]. All of these approaches model the observer’s inference
process and compute actions (motion or speech) that maximize the probability an observer
infers the correct hypothesis or goal. Our approximate solution to pedagogical demonstra-
tion in Section 5.1 is analogous to these approaches, in that we compute actions that are
informative of the correct reward function.

7.11 Algorithms for Planning with Partial

Observability

Algorithms for Mixed-Observability Decision Problems

The supervision-PoMdp and assistance-PoMdp formulations we consider in this work are
examples of mixed-observability Markov decision process (Momdp) since the state space can
be factored into a fully and a partially-observable component. This structure allows for more
efficient solution methods. Ong et al. [118] leverage the factored nature of the state space
to create a lower dimensional representation of belief space. This core idea is orthogonal
to ours, which exploits Cirl’s information asymmetry instead. The two can be leveraged
together.

Partially-observable Markov decision processes

We chose to explicate our modified Bellman update from Section 5.2 in the context of PBVI
and POMCP because they are the seminal point-based and MCTS algorithms respectively,
for solving POMDPs. For example, SARSOP [94] and DESPOT [152], two state-of-the-art
algorithm for POMDPs, are variants of PBVI and POMCP respectively. The principles we
outlined in Section 5.2 and can be easily adapted to a large variety of point-based and MCTS

CHAPTER 7. RELATED WORK 140

algorithms, including any which may be developed in the future, to derive even more efficient
algorithms for solving Cirl games.

Decentralized POMDPs

Dec-PoMdp algorithms can be used to compute pedagogical equilibria for Cirl games
directly, without using the PoMdp reduction. Oliehoek and Amato [116] provides a useful
introduction to the topic and an overview of solution methods. While exact solution methods
are generally intractable for any but the smallest problems, recent work has made progress
on this front. Such Dec-PoMdp algorithms which attempt to prune away unreasonable
strategies resemble our approach. Amato, Dibangoye, and Zilberstein [7] use reachability
analysis to identify reachable states, then consider all policies which are useful at such states.

Hansen, Bernstein, and Zilberstein [75] model other agents possible strategies as part
of a players belief, and prune away weakly dominated strategies at each step. While such
approaches use heuristics to prune away some suboptimal strategies, we leverage the in-
formation structure of Cirl to compute the optimal strategy for H and prune away all
other strategies. This guarantees an exponential reduction in complexity while preserving
optimality; this is not true for the other methods.

141

Chapter 8

Directions for Future Work

My long-term research goal is to ensure that AI systems are effective in carrying out the
goals of their users and designers, despite fundamental limitations on our ability to specify
those goals. This dissertation introduces a simple formulation for the assistance game and
developed theory and algorithms therein. This chapter describes a research agenda that
builds on these results with a focus on scaling algorithms to work in complex robotics envi-
ronments, developing a theory of reward learning to focus on minimizing misalignment, and
extending the theory of value alignment to the case of multiple principals or value systems.

Accounting for more complex models of human (ir)rationality

The work in this dissertation has focused on principal–agent settings where the human player
is modelled as behaving optimally or approximately optimally. An important next step in
this research program is to consider the impact of more realistic cognitive or informational
limits on the human player’s strategy. Section 6.2 describes initial work in this direction: we
consider the impact of a human player that is learning about her objectives over time. We
discuss what it means to meaningfully assist such an agent and identify broad conditions
in which assistance is possible. In the future, I intend to investigate the impact of similar
restrictions to account for limited memory, planning ability, or information about the world.
Additionally, it is important to consider the impact of changing preferences, individual in-
consistency, and variations in values across different people and groups. This will allow us
to understand the theoretical limits of robot assistance and identify minimal criteria for the
principal’s knowledge of and ability to communicate their objectives so that value alignment
is well-defined and feasible.

An integrated design environment for behavior

We currently rely on an AI system designer to directly specify loss functions, environments,
and policy space in general purpose programming languages. This requires a huge amount
of knowledge and often produces brittle learning systems. Developments such as AutoML

CHAPTER 8. DIRECTIONS FOR FUTURE WORK 142

simplify the design process and reduce the design effort for AI systems. However, they
also make the system more reliant on the loss function selected and data provided, placing
an increased burden on the designer to supervise and verify performance. To ensure that
these systems perform reliably at scale, we need to design specification methods that 1) can
scale to the complexity of modern AI datasets and problems; 2) can scale to the complexity
of human preferences; and 3) naturally integrate oversight and verification. This research
program essentially reduces the problem of designing AI systems to a human-computer inter-
action problem where optimization and reward learning compile the high-level language of
preferences into executable behaviors. Designing AI systems in this fashion, combined with
progress on other robotics challenges such as uncertainty in perceptual systems and motor
control, allows us to optimize for more complex decisions, naturally integrate oversight and
supervision, due to the tight relationship between oversight and training, and use learning
to inform the design process and reduce overall designer effort.

Loss functions for reward learning

The analysis of the off-switch game and inverse reward design in Chapter 4 shows that AI
systems should model (or at least adapt to) uncertainty in reward learning, in addition
to more traditional types of uncertainty about state, dynamics, and controls. The next
next question is, what properties of the robot’s reward model lead to better performance?
There are clear ways that learning a reward function that will be optimized later is a different
learning problem from standard supervised ranking or classification. In future research, I will
develop a theory of learned reward functions that can explain this difference. For example,
perhaps there is an appropriate regularizer for ranking functions that reduces overall risk
for planning. Another area to explore is learning objectives that naturally encode the risk
aversion implemented with the Bayesian approach of inverse reward design. Similarly, an
asymmetric loss function that penalizes predicting rewards that are too high more than
rewards that are too low could help with the stability of optimized policies for learned
rewards. The goal of this research is to understand the problem of learning incentives from
a theoretical perspective and design reward learning methods that are naturally risk-averse
and scale up to larger problems than state-of-the-art Bayesian inference can handle.

Value alignment with multiple principals.

In addition to continued work on the algorithmic and theoretical foundations of single-human
single-robot value alignment, the research described in this dissertation can be extended to
consider value alignment in the context of multiple principals: multiple people with dif-
ferent values and goals on whose behalf a system is supposed to take action. This poses
a host of interesting algorithmic questions (e.g., scaling up to a large number of people),
theoretical questions (e.g., what are the limits of computational social choice theory), and
ethical questions (e.g., how should we handle conflicts of values within AI systems; what are
the obligations of system designers to design systems that optimize for their users’ benefit).

CHAPTER 8. DIRECTIONS FOR FUTURE WORK 143

Solving a multiple-principal value-alignment problem can also involve modeling the interac-
tions between a regulator, a company, and its AI agent. We can consider the optimal way
to provide incentives for companies to, e.g., invest in oversight and safety research.

AI regulation

In the limit of many principals, the value-alignment problem is closely related to the reg-
ulation of AI systems. It formalizes the problem of designing systems that implement the
values of collections of humans (contracting parties, organizations, cities, states, and so
on). An example of this type of work is the development of procedures for human over-
sight of AI decision-making systems. Work on explainable AI attempts to provide human-
understandable accounts of why a complex and opaque AI system behaves as it does. The
analysis in this dissertation calls for focusing instead on what I call justifiable AI: providing
reasons for machine decisions that are acceptable to the people they impact. While this does
not directly solve the problem of balancing competing goals between people, it will allow
AI systems to be subject to the normative infrastructure that exists to regulate decisions
made by people. In ongoing work with colleagues, our goal is to develop a procedure that
ensures that organizations (corporations, health care systems, governments, etc.) that de-
ploy AI-based decision making systems can verify that their systems are both a) sufficiently
predictable by humans and b) only make decisions that can be adequately justified by a
specified principal. This creates the conditions needed to hold a person meaningfully re-
sponsible for an AI system’s behavior. Thus, aligning an AI system with that principal will
create incentives for the system to abide by existing regulations and laws.

Interactive embodied value alignment for a home assistant

A crucial and ubiquitous principal–agent relationship is the relationship between a home
robot and its user or users. This challenge integrates the problem of scale (coordinating a
diverse set of actions in a large state space over a long horizon), exploration/exploitation
tradeoffs in online preference learning, and issues of value conflict among humans (e.g., dis-
agreement over the thermostat). Furthermore, it will spur the development of methods that
can account for these complexities in conjunction with issues around long-horizon planning,
noisy sensors, and high-dimensional motor control. A value-alignment approach to the design
of such a system allows the system to learn from multi-modal data about preferences and
naturally allows for the management of uncertainty about those preferences. Such research
draws on hierarchical planning [68, 32, 72], planning under uncertainty [71] and manipulation
planning [69, 96].

Value alignment for content recommendation

The focus in this dissertation on value alignment is guided by a commitment to ensure that
AI is developed in ways that are safe and beneficial for society. A specific research applica-

CHAPTER 8. DIRECTIONS FOR FUTURE WORK 144

tion is the theory, design, and regulation of value-aligned content recommendation systems.
These heavily optimized systems are widely deployed and are showing significant negative
externalities such as addictive behaviors in young people, the spread of disinformation and
conspiracy theories, and undermining the integrity of elections and social cohesion. In ad-
dition to being a major challenge for responsible AI development, devising ways to achieve
better value alignment in these systems provides an important test bed to explore value
alignment at scale with multiple stake-holders. The questions here include, for example,
how to overcome the major challenge of scale. (Facebook, for example, confronts the impos-
sible problem of moderating billions of posts in multiple languages on a weekly basis.) What
is the correct way to monitor these systems? What is the role of the system in detecting
places where oversight is needed? What methods and tools will allow us to design systems
that more closely reflect the way in which humans (ethically) recommend content to each
other? What limits the ability of AI systems to mediate these complex, consequential, and
value-laden interactions?

145

Bibliography

[1] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. “Autonomous helicopter aerobatics
through apprenticeship learning”. In: The International Journal of Robotics Research
29.13 (2010), pp. 1608–1639.

[2] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the 21st International Conference on Machine Learning.
2004.

[3] Andrew Adamatzky. Game of Life Cellular Automata. Vol. 1. Springer, 2010.

[4] Rajeev Agrawal. “Sample mean based index policies by o (log n) regret for the multi-
armed bandit problem”. In: Advances in Applied Probability 27.4 (1995), pp. 1054–
1078.

[5] Riad Akrour, Marc Schoenauer, and Michèle Sebag. “April: Active preference learning-
based reinforcement learning”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2012, pp. 116–131.

[6] Armen A. Alchian and Harold Demsetz. “Production, Information Costs, and Eco-
nomic Organization”. In: The American Economic Review 62.5 (1972), pp. 777–795.

[7] Christopher Amato, Jilles Steeve Dibangoye, and Shlomo Zilberstein. “Incremental
policy generation for finite-horizon DEC-POMDPs”. In: Proceedings of the Nineteenth
International Conference on Automated Planning and Scheduling. 2009.

[8] Dario Amodei and Jack Clark. Faulty Reward Functions in the Wild. https://blog.
openai.com/faulty-reward-functions/. Blog. 2016.

[9] Dario Amodei et al. Concrete problems in AI safety. 2016. url: arXiv:1606.06565.

[10] Cecilie Schou Andreassen. “Online Social Network Site Addiction: A Comprehensive
Review”. In: Current Addiction Reports 2.2 (2015), pp. 175–184.

[11] Stuart Armstrong and Benjamin Levinstein. Low impact artificial intelligences. 2017.
url: arXiv:1705.10720.

[12] Ian Ayres and Robert Gertner. “Filling Gaps in Incomplete Contracts: An Economic
Theory of Default Rules”. In: The Yale Law Journal 99 (1 1989), pp. 87–130.

BIBLIOGRAPHY 146

[13] George Baker, Robert Gibbons, and Kevin J. Murphy. “Subjective Performance Mea-
sures in Optimal Incentive Contracts”. In: The Quarterly Journal of Economics 109.4
(1994), pp. 1125–1156.

[14] Frank J Balbach and Thomas Zeugmann. “Recent developments in algorithmic teach-
ing”. In: Language and Automata Theory and Applications. Springer, 2009, pp. 1–18.

[15] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning.
2019. url: https://fairmlbook.org/.

[16] Yochai Benkler, Robert Faris, and Hal Roberts. Network propaganda: Manipula-
tion, disinformation, and radicalization in American politics. Oxford University Press,
2018.

[17] B. Douglas Bernheim and Michael D. Whinston. “Incomplete Contracts and Strategic
Ambiguity”. In: The American Economic Review 88.4 (1998), pp. 902–932.

[18] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. “The complexity of
decentralized control of Markov decision processes”. In: Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers
Inc. 2000, pp. 32–37.

[19] Patrick Bolton and Antoine Faure-Grimaud. “Satisficing Contracts”. In: The Review
of Economic Studies 77 (2010), pp. 937–971.

[20] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press,
2014.

[21] Neal E. Boudette. Tesla Says Autopilot Makes Its Cars Safer. Crash Victims Say It
Kills. https://www.nytimes.com/2021/07/05/business/tesla- autopilot-

lawsuits-safety.html. 2021.

[22] Craig Boutilier. “Sequential optimality and coordination in multiagent systems”. In:
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence.
Vol. 1. 1999, pp. 478–485.

[23] Steve Brooks et al. Handbook of Markov Chain Monte Carlo. CRC Press, 2011.

[24] Daniel Brown et al. “Safe imitation learning via fast bayesian reward inference from
preferences”. In: Proceedings of the International Conference on Machine Learning.
PMLR. 2020, pp. 1165–1177.

[25] Maya Cakmak and Manuel Lopes. “Algorithmic and human teaching of sequential
decision tasks”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
2012.

[26] Donald T. Campbell. “Assessing the impact of planned social change”. In: Evaluation
and Program Planning 2.1 (1979), pp. 67–90.

[27] Olivier Cappé et al. “Kullback–Leibler upper confidence bounds for optimal sequential
allocation”. In: The Annals of Statistics 41.3 (2013), pp. 1516–1541.

BIBLIOGRAPHY 147

[28] Micah Carroll et al. “On the utility of learning about humans for human-AI coordi-
nation”. In: Advances in Neural Information Processing Systems 32 (2019), pp. 5174–
5185.

[29] Pablo Castells, Neil J. Hurley, and Saul Vargas. “Novelty and Diversity in Recom-
mender Systems”. In: Recommender Systems Handbook. Springer, 2015, pp. 881–918.

[30] Jhelum Chakravorty and Aditya Mahajan. “Multi-Armed Bandits, Gittins Index,
and its Calculation”. In: Methods and Applications of Statistics in Clinical Trials:
Planning, Analysis, and Inferential Methods, Volume 2 (2014), pp. 416–435.

[31] Lawrence Chan et al. “The Assistive Multi-Armed Bandit”. In: Proceedings of the 14th
ACM/IEEE International Conference on Human-Robot Interaction. 2019, pp. 354–
363.

[32] Rohan Chitnis et al. “Guided search for task and motion plans using learned heuris-
tics”. In: Proceedings of the International Conference on Robotics and Automation.
IEEE. 2016, pp. 447–454.

[33] Kyunghyun Cho et al. On the properties of neural machine translation: Encoder-
decoder approaches. 2014. url: arXiv%20preprint%20arXiv:1409.1259.

[34] Paul F. Christiano et al. “Deep reinforcement learning from human preferences”. In:
Advances in Neural Information Processing Systems. 2017, pp. 4302–4310.

[35] Christian Daniel et al. “Active Reward Learning.” In: Proceedings of Robotics: Science
and Systems. 2014.

[36] Thomas Degris, Patrick M. Pilarski, and Richard S. Sutton. “Model-free reinforcement
learning with continuous action in practice”. In: Proceedings of the American Control
Conference. IEEE. 2012, pp. 2177–2182.

[37] Persi Diaconis and David Freedman. “On the consistency of Bayes estimates”. In:
The Annals of Statistics (1986), pp. 1–26.

[38] Anca D. Dragan, Kenton C.T. Lee, and Siddhartha S. Srinivasa. “Legibility and
Predictability of Robot Motion”. In: Proceedings of the 8th ACM/IEEE International
Conference on Human-Robot Interaction. 2013, pp. 301–308.

[39] Anca D. Dragan and Siddhartha S. Srinivasa. Formalizing Assistive Teleoperation.
MIT Press, July, 2012.

[40] Yan Duan et al. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning.
2016. url: arXiv%20preprint%20arXiv:1611.02779.

[41] Robert Mario Fano. “Fano inequality”. In: Scholarpedia 3.10 (2008), p. 6648.

[42] Allan E. Farnsworth. “Disputes Over Omission in Contracts”. In: Columbia Law Re-
view 68 (5 1968), pp. 860–891.

[43] Alan Fern et al. “A decision-theoretic model of assistance”. In: Journal of Artificial
Intelligence Research 50.1 (2014), pp. 71–104.

BIBLIOGRAPHY 148

[44] Arnaud Fickinger et al. Multi-Principal Assistance Games: Definition and Collegial
Mechanisms. 2020. url: arXiv:2012.14536.

[45] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep in-
verse optimal control via policy optimization”. In: Proceedings of the International
Conference on Machine Learning. PMLR. 2016, pp. 49–58.

[46] Jaime F. Fisac et al. “Pragmatic-Pedagogic Value Alignment”. In: International Sym-
posium on Robotics Research (2017).

[47] Michael C. Frank et al. “Informative Communication in Word Production and Word
Learning”. In: Proceedings of the 31st Annual Conference of the Cognitive Science
Society. 2009, pp. 1228–1233.

[48] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Adverserial
Inverse Reinforcement Learning”. In: Proceedings of the International Conference on
Learning Representations. 2018.

[49] Johannes Fürnkranz and Eyke Hüllermeier. “Preference learning”. In: Encyclopedia
of Machine Learning. Springer, 2011, pp. 789–795.

[50] Jason Gauci et al. Horizon: Facebook’s Open Source Applied Reinforcement Learning
Platform. 2019. url: arxiv:1811.00260.

[51] Robert Gibbons. Incentives in organizations. National Bureau of Economic Research
Working Papers. 1998.

[52] Ricard Gil and Giorgio Zanarone. “Formal and Informal Contracting: Theory and
Evidence”. In: Annual Review of Law and Social Science 13 (2017), pp. 141–159.

[53] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation
indices. John Wiley & Sons, 2011.

[54] John C. Gittins. “Bandit processes and dynamic allocation indices”. In: Journal of
the Royal Statistical Society. Series B (Methodological) (1979), pp. 148–177.

[55] Charles J. Goetz and Robert E. Scott. “Principles of Relational Contracts”. In: Vir-
ginia Law Review 67.6 (1981), pp. 1089–1150.

[56] Sally A. Goldman and Michael J. Kearns. “On the complexity of teaching”. In: Journal
of Computer and System Sciences 50.1 (1995), pp. 20–31.

[57] Sally A. Goldman, Ronald L. Rivest, and Robert E. Schapire. “Learning binary re-
lations and total orders”. In: SIAM Journal on Computing 22.5 (1993), pp. 1006–
1034.

[58] Dave Golland, Percy Liang, and Dan Klein. “A game-theoretic approach to generating
spatial descriptions”. In: Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics. 2010,
pp. 410–419.

BIBLIOGRAPHY 149

[59] C.A.E. Goodhart. “Problems of Monetary Management: The UK Experience”. In:
Monetary Theory and Practice: The UK Experience. Ed. by C.A.E. Goodhart. Lon-
don: Macmillan, 1984, pp. 91–121.

[60] Noah D. Goodman and Daniel Lassiter. “Probabilistic Semantics and Pragmatics:
Uncertainty in Language and Thought”. In: Handbook of Contemporary Semantic
Theory. Wiley-Blackwell 2 (2014).

[61] Mark Granovetter. “Economic Action and Social Structure: The Problem of Embed-
dedness”. In: American Journal of Sociology 91.3 (1985), pp. 481–510.

[62] H. Paul Grice. “Logic and Conversation”. In: Syntax and Semantics, Volume 3: Speech
Acts. Ed. by Peter Cole and Jerry Morgan. Academic Press, 1975, pp. 43–58.

[63] Sanford Jay Grossman and Oliver D. Hart. “The Costs and Benefits of Ownership:
A Theory of Vertical and Lateral Integration”. In: Journal of Political Economy 94.4
(1986), pp. 691–719.

[64] Arthur Guez, David Silver, and Peter Dayan. “Efficient Bayes-adaptive reinforcement
learning using sample-based search”. In: Advances in Neural Information Processing
Systems. 2012, pp. 1025–1033.

[65] Carl Gutwin, Jeff Dyck, and Jennifer Burkitt. “Using cursor prediction to smooth
telepointer jitter”. In: Proceedings of the 2003 International ACM SIGGROUP Con-
ference on Supporting Group Work. 2003, pp. 294–301.

[66] Gillian K. Hadfield. “Judicial Competence and the Interpretation of Incomplete Con-
tracts”. In: Journal of Legal Studies 23 (1994), pp. 159–184.

[67] Dylan Hadfield-Menell and Gillian K. Hadfield. “Incomplete contracting and AI align-
ment”. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Soci-
ety. 2019, pp. 417–422.

[68] Dylan Hadfield-Menell, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “Optimiza-
tion in the now: Dynamic peephole optimization for hierarchical planning”. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA).
2013, pp. 4560–4567.

[69] Dylan Hadfield-Menell et al. “Beyond lowest-warping cost action selection in trajec-
tory transfer”. In: Proceedings of the IEEE International Conference on Robotics and
Automation. 2015, pp. 3231–3238.

[70] Dylan Hadfield-Menell et al. “Cooperative Inverse Reinforcement Learning”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). 2016, pp. 3909–3917.

[71] Dylan Hadfield-Menell et al. “Modular task and motion planning in belief space”. In:
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4991–4998.

BIBLIOGRAPHY 150

[72] Dylan Hadfield-Menell et al. “Sequential quadratic programming for task plan opti-
mization”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2016, pp. 5040–5047.

[73] Dylan Hadfield-Menell et al. “The off-switch game”. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence. 2017.

[74] Maija Halonen-Akatwijuka and Oliver D. Hart. More is Less: Why Parties May Delib-
erately Write Incomplete Contracts. National Bureau of Economic Research Working
Papers. 2013.

[75] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. “Dynamic programming
for partially observable stochastic games”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 4. 2004, pp. 709–715.

[76] Md. Rajibul Hasan, Ashish Kumar Jha, and Yi Liu. “Excessive use of online video
streaming services: Impact of recommender system use, psychological factors, and
motives”. In: Computers in Human Behavior 80 (2018), pp. 220–228.

[77] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In:
Advances in Neural Information Processing Systems. 2016, pp. 4565–4573.

[78] Bengt Holmstrom and Paul Milgrom. “Multitask principal-agent analyses: Incentive
contracts, asset ownership, and job design”. In: Journal of Law, Economics, & Orga-
nization 7 (1991), pp. 24–52.

[79] Jeff Horwitz and Deepa Seetharaman. Facebook Executives Shut Down Efforts to Make
the Site Less Divisive. https://www.wsj.com/articles/facebook-knows-it-
encourages-division-top-executives-nixed-solutions-11590507499. 2020.

[80] Shervin Javdani, J. Andrew Bagnell, and Siddhartha S. Srinivasa. “Shared Autonomy
via Hindsight Optimization”. In: Proceedings of Robotics: Science and Systems XI.
2015.

[81] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning and
acting in partially observable stochastic domains”. In: Artificial intelligence 101.1-2
(1998), pp. 99–134.

[82] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. “Reinforcement
Learning: A Survey”. In: Journal of Artificial Intelligence Research 4 (1996), pp. 237–
285.

[83] Rudolf Emil Kalman. “When is a linear control system optimal?” In: Journal of Basic
Engineering 86.1 (1964), pp. 51–60.

[84] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. “On Bayesian upper con-
fidence bounds for bandit problems”. In: Artificial Intelligence and Statistics. 2012,
pp. 592–600.

[85] Steven Kerr. “On the folly of rewarding A, while hoping for B”. In: Academy of
Management Journal 18.4 (1975), pp. 769–783.

BIBLIOGRAPHY 151

[86] Benjamin Klein. “Transaction Cost Determinants of ‘Unfair’ Contractual Arrange-
ments”. In: The American Economic Review 70 (2 1980), pp. 356–362.

[87] Benjamin Klein, Robert G. Crawford, and Armen A. Alchian. “Vertical Integration,
Appropriable Rents, and the Competitive Contracting Process”. In: Journal of Law
and Economics 21.2 (1978), pp. 297–326.

[88] W.Bradley Knox and Peter Stone. “Interactively shaping agents via human reinforce-
ment: The TAMER framework”. In: Proceedings of the Fifth International Conference
on Knowledge Capture. ACM, 2009, pp. 9–16.

[89] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning”. In:
Proceedings of the 17th European Conference on Machine Learning. Springer-Verlag,
2006.

[90] Victoria Krakovna. Specification gaming examples in AI. 2018. url: https://vkrakovna.
wordpress.com/2018/04/02/specification-gaming-examples-in-ai/.

[91] Victoria Krakovna et al. Avoiding side effects by considering future tasks. 2020. url:
arXiv:2010.07877.

[92] Victoria Krakovna et al. Penalizing Side Effects using Stepwise Relative Reachability.
2018. url: arXiv:1806.01186.

[93] Volodymyr Kuleshov and Okke Schrijvers. “Inverse Game Theory”. In: Web and In-
ternet Economics (2015).

[94] Hanna Kurniawati, David Hsu, and Wee Sun Lee. “SARSOP: Efficient Point-Based
POMDP Planning by Approximating Optimally Reachable Belief Spaces.” In: Pro-
ceedings of Robotics: Science and Systems. 2008.

[95] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation
rules”. In: Advances in Applied Mathematics 6.1 (1985), pp. 4–22.

[96] Alex X. Lee et al. “Unifying scene registration and trajectory optimization for learn-
ing from demonstrations with application to manipulation of deformable objects”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014,
pp. 4402–4407.

[97] Jan Leike et al. AI safety gridworlds. 2017. url: arXiv:1711.09883.

[98] Tyler Lu, Dávid Pál, and Martin Pál. “Contextual multi-armed bandits”. In: Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics. 2010, pp. 485–492.

[99] Stewart Macaulay. “Non-Contractual Relations in Business: A Preliminary Study”.
In: American Sociological Review 28.1 (1963), pp. 55–67.

[100] James MacGlashan et al. “Grounding English Commands to Reward Functions”. In:
Proceedings of Robotics: Science and Systems XI. 2015.

BIBLIOGRAPHY 152

[101] Ian R. Macneil. “Contracts: Adjustment of Long-term Economic Relations Under
Classical, Neoclassical, and Relational Contract Law”. In: Northwestern University
Law Review 72 (1978), pp. 854–905.

[102] Ian R. Macneil. “The Many Futures of Contracts”. In: Southern California Law Re-
view 1973-1974 (1974), pp. 691–816.

[103] Ian R. Macneil. “Values in contract: internal and external”. In: Northwestern Univer-
sity Law Review 1983-1984 (1983), pp. 340–418.

[104] Dhruv Malik et al. “An Efficient, Generalized Bellman Update For Cooperative In-
verse Reinforcement Learning”. In: Proceedings of the International Conference on
Machine Learning. 2018, pp. 3391–3399.

[105] Shie Mannor and John N. Tsitsiklis. “The sample complexity of exploration in the
multi-armed bandit problem”. In: Journal of Machine Learning Research 5.Jun (2004),
pp. 623–648.

[106] Harry M. Markowitz. Portfolio Selection: Efficient Diversification of Investments.
Yale University Press, 1959.

[107] Eric Maskin and Jean Tirole. “Unforeseen Contingencies and Incomplete Contracts”.
In: The Review of Economic Studies 66.1 (1999), pp. 83–114.

[108] Nicholas Metropolis et al. “Equation of state calculations by fast computing ma-
chines”. In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–1092.

[109] Smitha Milli et al. “Should Robots be Obedient?” In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence. 2017.

[110] Matej Moravč́ık et al. “Deepstack: Expert-level artificial intelligence in heads-up no-
limit poker”. In: Science 356.6337 (2017), pp. 508–513.

[111] Iain Murray, Zoubin Ghahramani, and David MacKay. “MCMC for Doubly-Intractable
Distributions”. In: Proceedings of the Twenty-Second Conference on Uncertainty in
Artificial Intelligence. 2006.

[112] Roger B. Myerson. “Perspectives on Mechanism Design in Economic Theory”. In:
American Economic Review 98.3 (2008), pp. 586–603.

[113] Sriraam Natarajan et al. “Multi-agent inverse reinforcement learning”. In: Proceedings
of the Ninth International Conference on Machine Learning and Applications. IEEE.
2010, pp. 395–400.

[114] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. “Decentralized stochas-
tic control with partial history sharing: A common information approach”. In: IEEE
Transactions on Automatic Control 58.7 (2013), pp. 1644–1658.

[115] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement Learn-
ing”. In: Proceedings of the Seventeenth International Conference on Machine Learn-
ing. ACM. 2000, pp. 663–670.

BIBLIOGRAPHY 153

[116] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized
POMDPs. Springer, 2016.

[117] Stephen M. Omohundro. “The Basic AI Drives”. In: Proceedings of the First Confer-
ence on Artificial General Intelligence. 2008.

[118] Sylvie C.W. Ong et al. “Planning under uncertainty for robotic tasks with mixed
observability”. In: International Journal of Robotics Research 29.8 (2010), pp. 1053–
1068.

[119] Laurent Orseau and Stuart Armstrong. “Safely Interruptible Agents”. In: Uncertainty
in Artificial Intelligence. 2016.

[120] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training
recurrent neural networks”. In: International Conference on Machine Learning. 2013,
pp. 1310–1318.

[121] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. “Point-based value iteration: An
anytime algorithm for POMDPs”. In: Proceedings of the 33rd Annual International
Joint Conference on Artificial Intelligence. Vol. 3. 2003, pp. 1025–1032.

[122] Deepak Ramachadran and Eyal Amir. “Bayesian inverse reinforcement learning”. In:
Proceedings of the 20th International Joint Conference on Artificial Intelligence. 2007.

[123] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. “Maximum Margin
Planning”. In: Proceedings of the 23rd International Conference on Machine Learning.
2006.

[124] Ellis Ratner, Dylan Hadfield-Menell, and Anca D. Dragan. “Simplifying Reward De-
sign through Divide-and-Conquer”. In: Proceedings of Robotics: Science and Systems.
2018.

[125] Paul B. Reverdy, Vaibhav Srivastava, and Naomi Ehrich Leonard. “Modeling human
decision making in generalized Gaussian multiarmed bandits”. In: Proceedings of the
IEEE 102.4 (2014), pp. 544–571.

[126] Herbert Robbins. “Some aspects of the sequential design of experiments”. In: Bulletin
of the American Mathematical Society. 58.5 (1952), pp. 527–535.

[127] R. Tyrrell Rockafellar and Stanislav Uryasev. “Optimization of conditional value-at-
risk”. In: Journal of Risk 2 (2000), pp. 21–42.

[128] Thomas Philip Runarsson and Simon M. Lucas. “Preference learning for move pre-
diction and evaluation function approximation in othello”. In: IEEE Transactions on
Computational Intelligence and AI in Games. 2014, pp. 300–313.

[129] Stuart J. Russell and Peter Norvig. AI: A Modern Approach. Pearson, 2020.

[130] Dorsa Sadigh et al. “Active preference-based learning of reward functions”. In: Pro-
ceedings of Robotics: Science and Systems. 2017.

BIBLIOGRAPHY 154

[131] Tim Salimans and Diederik P. Kingma. “Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks”. In: Advances in Neural
Information Processing Systems. 2016, pp. 901–909.

[132] Matthias Scheutz and Charles Crowell. “The Burden of Embodied Autonomy: Some
Reflections on the Social and Ethical Implications of Autonomous Robots”. In: Work-
shop on Roboethics at the International Conference on Robotics and Automation,
Rome. 2007.

[133] John Schulman et al. High-dimensional continuous control using generalized advantage
estimation. 2015. url: arXiv:1506.02438.

[134] John Schulman et al. “Motion Planning with Sequential Convex Optimization and
Convex Collision Checking”. In: International Journal of Robot Research 33.9 (2014).

[135] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. url: arXiv:
1707.06347.

[136] Alan Schwartz and Robert E. Scott. “Contract Theory and the Limits of Contract
Law”. In: The Yale Law Review 113 (2003), pp. 541–619.

[137] Robert E. Scott and George Triantis. “Anticipating Litigation in Contract Design”.
In: Yale Law Journal 115 (2006), p. 814.

[138] Rohin Shah et al. “Benefits of Assistance over Reward Learning”. In: Proceedings of
the NeurIPS 2020 Workshop on Cooperative AI (2020).

[139] Rohin Shah et al. “Preferences Implicit in the State of the World”. In: International
Conference on Learning Representations. 2019.

[140] Meher T. Shaikh and Michael A. Goodrich. “Design and Evaluation of Adverb Palette:
A GUI for Selecting Tradeoffs in Multi-objective Optimization Problems”. In: Proceed-
ings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction.
2017.

[141] Steven Shavell. “Damage Measures for Breach of Contract”. In: The Bell Journal of
Economics 11.2 (1980), pp. 466–490.

[142] Steven Shavell. “On the Writing and Interpretation of Contracts”. In: Journal of Law,
Economics and Organization 22 (2006), pp. 289–311.

[143] David Silver and Joel Veness. “Monte-Carlo planning in large POMDPs”. In: Ad-
vances in Neural Information Processing Systems. 2010, pp. 2164–2172.

[144] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587 (2016), pp. 484–489.

[145] Herbert A. Simon. “A behavioral model of rational choice”. In: The Quarterly Journal
of Economics 69.1 (1955), pp. 99–118.

[146] Satinder Singh, Andrew Barto, and Richard Lewis. “Where Do Rewards Come From?”
In: Proceedings of the Cognitive Science Society (31 2009).

BIBLIOGRAPHY 155

[147] Satinder Singh et al. “Convergence Results for Single-Step On-Policy Reinforcement-
Learning Algorithms”. In: Machine Learning 38.3 (Mar. 2000), pp. 287–308.

[148] Satinder Singh et al. “Intrinsically Motivated Reinforcement Learning: An Evolution-
ary Perspective”. In: IEEE Transactions on Autonomous Mental Development 2 (2
2010), pp. 70–82.

[149] Richard D. Smallwood and Edward J. Sondik. “The optimal control of partially ob-
servable Markov processes over a finite horizon”. In: Operations Research 21.5 (1973),
pp. 1071–1088.

[150] Trey Smith and Reid Simmons. “Heuristic search value iteration for POMDPS”. In:
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. AUAI
Press, 2004, pp. 520–527.

[151] Nate Soares et al. “Corrigibility”. In: Workshops at the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence. 2015.

[152] Adhiraj Somani et al. “DESPOT: Online POMDP Planning with Regularization”.
In: Journal of Artificial Intelligence Research 58 (2017), pp. 231–266.

[153] Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes”.
PhD thesis. Stanford University, 1971.

[154] Jonathan Sorg, Satinder P. Singh, and Richard L. Lewis. “Internal rewards mitigate
agent boundedness”. In: Proceedings of the Twenty-Seventh International Conference
on Machine Learning. 2010, pp. 1007–1014.

[155] Kathryn E. Spier. “Incomplete Contracts and Signalling”. In: The RAND Journal of
Economics 23 (3 1992), pp. 432–443.

[156] Christian Stöcker. “How Facebook and Google Accidentally Created a Perfect Ecosys-
tem for Targeted Disinformation”. In: Disinformation in Open Online Media. Ed. by
Christian Grimme et al. Springer, 2019, pp. 129–149.

[157] Marilyn Strathern. “‘Improving ratings’: audit in the British University system”. In:
European Review 5.3 (1997), pp. 305–321.

[158] Jonathan Stray et al. What are you optimizing for? Aligning recommender systems
with human values. 2021. url: arXiv:2107.10939.

[159] Mikael Sunn̊aker et al. “Approximate Bayesian Computation”. In: PLoS Computa-
tional Biology 9.1 (2013), e1002803.

[160] Richard S. Sutton et al. “Policy gradient methods for reinforcement learning with
function approximation”. In: Advances in Neural Information Processing Systems.
2000, pp. 1057–1063.

[161] Umar Syed, Michael Bowling, and Robert E. Schapire. “Apprenticeship Learning
Using Linear Programming”. In: Proceedings of the 25th International Conference on
Machine Learning. ACM. 2008, pp. 1032–1039.

BIBLIOGRAPHY 156

[162] Umar Syed and Robert E. Schapire. “A Game-Theoretic Approach to Apprentice-
ship Learning”. In: Proceedings of the Twentieth Conference on Neural Information
Processing Systems. 2007, pp. 1449–1456.

[163] Aviv Tamar et al. “Policy gradient for coherent risk measures”. In: Advances in Neural
Information Processing Systems. 2015, pp. 1468–1476.

[164] Warren Teitelman. “Toward a Programming Laboratory”. In: Proceedings of the First
International Joint Conference on Artificial Intelligence. 1969, pp. 1–8.

[165] Rachel Thomas and David Uminsky. The problem with metrics is a fundamental
problem for AI. 2020. url: arXiv:2002.08512.

[166] William R. Thompson. “On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples”. In: Biometrika 25.3/4 (1933), pp. 285–
294.

[167] Jean Tirole. “Cognition and incomplete contracts”. In: The American Economic Re-
view 99.1 (2009), pp. 265–294.

[168] Alex Turner, Neale Ratzlaff, and Prasad Tadepalli. “Avoiding Side Effects in Complex
Environments”. In: Advances in Neural Information Processing Systems 33 (2020).

[169] Alexander Matt Turner, Dylan Hadfield-Menell, and Prasad Tadepalli. “Conserva-
tive agency via attainable utility preservation”. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society. 2020, pp. 385–391.

[170] Kurt Wagner. “Inside Twitter’s ambitious plan to change the way we tweet”. In: Vox
(2019). url: https://www.vox.com/2019/3/8/18245536/exclusive-twitter-
healthy-conversations-dunking-research-product-incentives.

[171] Garrett Warnell et al. “Deep TAMER: Interactive Agent Shaping in High-Dimensional
State Spaces”. In: Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence. 2018, pp. 1545–1553.

[172] Kevin Waugh, Brian D. Ziebart, and J. Andrew Bagnell. “Computational Ratio-
nalization: The Inverse Equilibrium Problem”. In: Proceedings of the International
Conference on Machine Learning. 2011.

[173] Daniel Weld and Oren Etzioni. The First Law of Robotics (a call to arms). Tech. rep.
SS-94-03. AAAI, 1994, pp. 1042–1047.

[174] Mark Wilhelm et al. “Practical diversified recommendations on YouTube with deter-
minantal point processes”. In: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. 2018, pp. 2165–2173.

[175] Oliver E. Williamson. Markets and Hierarchies. New York: Free Press, 1975.

[176] Christian Wirth, Johannes Fürnkranz, and Gerhard Neumann. “Model-free preference-
based reinforcement learning”. In: Proceedings of the 30th AAAI Conference on Ar-
tificial Intelligence. 2016, pp. 2222–2228.

BIBLIOGRAPHY 157

[177] Mark Woodward, Chelsea Finn, and Karol Hausman. “Learning to interactively learn
and assist”. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence.
2020, pp. 2535–2543.

[178] Sarah A. Wu et al. “Too many cooks: Coordinating multi-agent collaboration through
inverse planning.” In: Proceedings of the Cognitive Science Society. 2020.

[179] Daniel Zhang et al. The AI Index 2021 Annual Report. url: arxiv:2103.06312.

[180] Simon Zhuang and Dylan Hadfield-Menell. “Consequences of Misaligned AI”. In:
Advances in Neural Information Processing Systems 33 (2020).

[181] Brian D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”. In:
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence. 2008,
pp. 1433–1438.

