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Abstract

A Likelihood-based Deconvolution of Bulk Gene Expression Data Using Single-cell
References

by

Justin Hong

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Yun S. Song, Co-chair

Professor Kannan Ramchandran, Co-chair

A single bulk gene expression experiment estimates thousands of RNA transcript levels aver-
aged over myriad cells. Unfortunately, direct comparison of different bulk expression profiles
is complicated by the mixtures of distinct cell types in each sample, obscuring whether per-
ceived differences are actually due to changes in expression levels themselves or simply cell
type composition. Single-cell technology has made it possible to measure gene expression
in individual cells, achieving higher resolution at the expense of increased noise. If carefully
incorporated, such data can be used as references for the supervised deconvolution of bulk
samples to yield accurate estimates of the true cell type proportions. These estimates permit
us to disentangle the effects of differential expression and cell type mixtures, both of which
are independently relevant to our understanding of aging and disease. We hence propose a
generative model which uses asymptotic statistical theory and a robust estimation procedure
to perform a supervised deconvolution of bulk RNA-seq samples to produce cell type propor-
tion estimates. We demonstrate the effectiveness of our approach in several scenarios with
real data and also discuss several novel extensions made uniquely possible by our paradigm.
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Chapter 1

Introduction

1.1 Background

As intermediate molecules in protein production and in other cases non-coding, functional
components of a cell, RNA transcripts can provide insight into the specialization and role of
a cell that solely analyzing the genome cannot. With the development of Next-Generation
Sequencing (NGS), quantifying RNA expression in a large population of cells has signifi-
cantly improved in terms of throughput and coverage compared to RNA microarray meth-
ods through a method called RNA-seq [5]. However, unless the mixture proportion of the
population of cells was known a priori, only conclusions about the bulk as a whole could be
made.

Alternatively, single-cell sequencing (scRNA-seq) allows one to analyze transcriptome-
wide RNA expression data for individual cells. The unparalleled level of resolution provided
by this method allows one to identify cell types by clustering cells based on their gene
expression, analyze rarer cell type populations, and understand changes in gene expression
over time [21]. Single-cell sequencing has come into the spotlight in the field of computational
biology, due to improvements in technology and sequencing methods making the data more
accurate and accessible.

Despite RNA-seq having many successes, the full potential of this technology is inherently
limited because each experiment measures the average gene expression among a large group
of cells, the composition of which is unknown. Thus, despite the reduction in technical and
biological variability they attain by averaging, bulk experiments are potentially confounded
by cell type proportions when considering heterogeneous cell mixtures [14, 22]. Such con-
founding presents problems when comparing samples to identify differences with clinical
importance and may result in the spurious or missed inference of biologically relevant genes.
Moreover, cell type compositions are often independently informative of biological features
including tissue function [3, 9, 12, 28] or development [9, 10]. For example, cell type infiltra-
tion has been found to be associated with disease progression, disease status, and complex
processes such as aging. In this scenario, bulk RNA-seq data alone would typically be in-
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sufficient to identify the presence of a certain cell type. By isolating the expression patterns
of each measured cell type, single-cell expression data can provide a reference to infer the
cell type composition of the bulk sample when the same cell types are captured by both
experiments; this is known as deconvolution.

1.2 Problem Formulation

Statistical deconvolution of bulk RNA-seq data is attractive for several reasons. First is
the aforementioned confounding potential of different cell type compositions present in bulk
samples. Second is that single-cell experiments are more expensive than their bulk coun-
terparts and more difficult to perform, often making the large-scale generation of single-cell
expression data infeasible. Furthermore, certain protocols do not capture cell types in an
unbiased fashion, so the empirical sample proportions don’t always serve as reliable estima-
tors of the true values. Finally, accurate deconvolution permits the re-visiting of old data
sets to investigate questions which were previously unanswerable.

The deconvolution of expression data has recently attracted the interest of computational
researchers. The problem is frequently framed mathematically as

Ωα = B, (1.1)

where, for K cell types and G genes, Ω ∈ RG×K is a matrix of single-cell gene expression
averages, α ∈ RK a vector of mixing proportions, and B ∈ RG is a vector of expression values
in a bulk sample. Depending on which of Ω, α, and B are measured, different approaches
are necessary. We focus on the case in which both Ω and B have been observed (noisily)
and it remains to infer α.

1.3 Related Work

Deconvolution Problem Setups

The deconvolution problem was first stated in [25] long before abundant scRNA-seq data was
widely available. Instead, the problem was applied to alternative settings such as controlled
experiments with model organisms [15] or with cell lines that could be grown to produce
pure samples for the reference [1].

Prior to the advent of sufficient single-cell sequencing data, it was unclear whether Ω
or α would have to be estimated. While RNA microarrays could provide bulk expression
measurements, B, either reference matrices, Ω, had to be estimated from controlled settings
or α had to be estimated using alternative methods to infer Ω [2]. For example in [24], the
cell type proportions of prostrate samples were estimated by visual identification, and then Ω
was inferred via RNA microarray data. Another proposed method attempts to infer a (Ω, α)
pair by structuring the problem as a non-negative matrix factorization problem (NMF) [17].
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By inferring both at the same time, the number of cell types in question could be tuned
accordingly, allowing for the identification of cell types.

In this work, we focus on the deconvolution problem setup which rose to prominence with
scRNA-seq data. In this case, scRNA-seq datasets provide a noisy reference with a large
coverage of the genome for a predetermined number of cell types. After constructing Ω, the
mixture proportion, α, of RNA-seq data, B, over the same set of genes is to be inferred.

Single-Cell Reference Methods

The most straightforward method to approach the deconvolution problem is with a least
squares approach which minimizes the sum of squared differences across each gene. Since the
mixture proportion vector, α, should exist on the probability simplex, the typical approach
is to solve the non-negative least squares (NNLS) problem then projecting the vector onto
the probability simplex.

α̂NNLS = argmin
α≥0;‖α‖1=1

‖Ωα−B‖2
2 (1.2)

With additional higher-order information about Ω and B, one can find a weighted non-
negative least squares (W-NNLS) solution, where the contribution of each gene varies based
on a given vector of weights, w ∈ RG, for G genes:

α̂W-NNLS = argmin
α≥0;‖α‖1=1

G∑
g=1

wg(
K∑
k=1

αkΩg,k −Bg)
2 (1.3)

where the subscript g selects the respective row for the gene g ∈ [G], and the subscript k
selects the respective column for the cell type k ∈ [K]. The operator 〈·, ·〉 is the Euclidean
inner product.

Proposed methods such as MuSiC [26], DWLS [8], and dtangle[11] use some form of
W-NNLS with different weights to infer the mixture proportion. Other approaches such
as CPM [8] and CIBERSORTx [18] utilize support vector regression, which aims to find a
hyperplane that separates classes by at least a constant margin. A recent work proposes
Scaden [16], which infers the mixture proportion with deep learning.

However, all of these methods rely on discriminative models that fail to replicate the
benefits of explicit generative modeling. Our proposed method estimates several latent
parameters describing the underlying model of the RNA-seq counts. Beyond inferring a
mixture proportion for the bulk, one can perform hypothesis tests to answer additional
questions. For example, unlike the deconvolution problems described in Section 1.3, the
reference requires a pre-determined set of cell types. Invasion of the bulk sample by cells
from surrounding tissues can confound proportion estimates if not accounted for. With our
proposed framework, we can detect the presence of such unidentified cell types by formulating
hypothesis tests with respect to our algorithm’s estimates of the model parameters. While we
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focus on the performance of our method benchmarked against these discriminative methods,
we affirm that further value in our method lies in underlying parametric model.

1.4 Contributions

We propose a generative model and develop an associated optimization algorithm, RNA-
Sieve, to estimate mixture proportions, α.

We structure this thesis as follows:

• In Section 2.1, we provide a detailed description of the generative model.

• in Section 2.2, we present the associated algorithm for estimating mixture proportions.

• In Section 2.3, we demonstrate the desirable performance of our method using simu-
lated and real data. In addition, we apply our algorithm to deconvolve bulk samples
generated as part of the Tabula Muris Senis project [19].
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Chapter 2

A Likelihood-based Deconvolution
Method

2.1 Model

Preliminaries

We assume that for each gene g ∈ {1, . . . , G} = [G], and cell type k ∈ {1, . . . , K} = [K],
there exists a distribution νg,k describing the expression of gene g in cell type k. As tissues
are comprised of multiple cell types, the expression of gene g in a cell drawn at random from
a tissue is governed by the mixture distribution

νg =
K∑
k=1

α∗kνg,k, (2.1)

where α∗ = (α∗k)k∈[K] ∈ ∆K−1 contains the proportions of each cell type in the tissue of
interest. Despite the infinite-dimensional setting, if G > k and νg and {νg,k}k∈[K] are fully
known and sufficiently distinct, the convex combination of (2.1) immediately implies that α∗

can be recovered as the unique solution of the finite-dimensional problemf(ν1,1) . . . f(ν1,K)
...

...
f(νG,1) . . . f(νG,K)


︸ ︷︷ ︸

Ω

·

α1
...
αK


︸ ︷︷ ︸

α

=

f(ν1)
...

f(νG)


︸ ︷︷ ︸

B

, (2.2)

where f ∈M(R)∗ is any suitable linear functional on the space of measures on R. Natural f
to consider include the family of point evaluations {δx : ν 7→ Fν(x)}x∈R (where Fν denotes the
CDF of ν) or its kth moments, both of which enjoy a wealth of statistical theory and proposed
estimators. In experimental settings, exact expression distributions are not accessible and
instead must be estimated, so utilizing easily and robustly inferable f becomes crucial. In
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addition to not having direct access to {νg}g∈[G], any analysis is further complicated by
the fact that bulk sequencing only yields expression levels over whole samples and not for
particular cells or cell types. That is, the output is effectively a random variable Xg =∑n

i=1X
i
g where X i

g
iid∼ νg gives the measured expression of gene g aggregated over the n ∈ N

individual cells comprising the sample. Since Xg ∼ (νg)
~n is an n-fold convolution, it is

expedient to choose an f in (2.2) that is not only linear on the space of measures, but also
on the corresponding space of measurable functions. Let us define the kth moments of ν as
{µk : ν 7→

∫
xkν(dx)}k∈N. Setting f = µ1 = E turns (2.2) into

Ωα = B/n, where Ωg,k = Eνg,k and Bg = EXg. (2.3)

Incorporating the fact that we only observe noisy bulk samples Xg instead of B directly
results in

B̂/n = (B + εB)/n = Ωα + εB/n, (2.4)

where (εB)g ∼ Xg − Bg =
∑n

i=1(X i
g − Bg/n) ∼ N (0, nvg) for large n by the central limit

theorem (with vg = Var(νg)). When ignoring the dependence of vg on α, (2.4) lends itself to
a simple (perhaps weighted) least squares scheme by first solving

ΩαLS = B̂ (2.5)

while possibly enforcing non-negativity constraints, though these are typically satisfied for
most reasonable values of n and vg. This yields a solution αLS of roughly ‖αLS‖1 ≈ n that
simply requires re-scaling to fit onto the simplex. This (plus a few data-driven modifications)
is the approach recently developed in [26], where it is argued that (2.5) outperforms previous
methods. It is thus natural to ask whether incorporating the dependence of vg on α can
improve accuracy even further.

Likelihood Formulation

To answer this question, we first make explicit this α-dependence by computing the bulk
variance vector, v ∈ RG:

vg(α,Ω, σ) = Var(νg) = µ2(νg)− µ1(νg)
2

=

(
K∑
k=1

αkµ2(νg,k)

)
−

(
K∑
k=1

αkΩg,k

)2

=

(
K∑
k=1

αk

[
σ2
g,k + (Ωg,k)

2
])
−

(
K∑
k=1

αkΩg,k

)2

, (2.6)
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where σ2
g,k = Var(νg,k). The likelihood of observing data B̂ then follows straightforwardly

from the central limit theorem:

Pα,nΩ,σ

(
B̂ ∈ db

)
=

G∏
g=1

1√
2πnvg(α,Ω, σ)

exp

{
−(bg −Bg(α))2

2nvg(α,Ω, σ)

}
, (2.7)

where Bg(α) = n
∑K

k=1 αkΩg,k.
The above assumes exact knowledge of the individual distributions νg,k (or rather their

expectations Ωg,k), which is implausible in experimental settings. Instead, Ω needs to be

estimated from data through some estimator Ω̂, which we conveniently take to be the sample

mean of expression across cells within each cell type, Ω̂g,k = 1
mk

∑mk

i=1 S
i
g,k, where Sig,k

iid∼ νg,k

and mk denotes the number of cells of type k ∈ [K] used to estimate Ω̂g,k ∀g ∈ [G]. With
this additional correction, (2.4) becomes

B̂/n = Ω̂α + εB/n and Ω̂ = Ω + εΩ (2.8)

where εΩ is a matrix of entries (εΩ)g,k independently following N (0, σ2
g,k/mk) distributions.

The new likelihood thus becomes

Pα,n,mΩ,σ

(
B̂ ∈ db, Ω̂ ∈ dω

)
=

G∏
g=1

1√
2πnvg(α,Ω, σ)

exp

{
−(bg −Bg(α))2

2nvg(α,Ω, σ)

}

×
∏

g∈[G],k∈[K]

1√
2πσ2

g,k/mk

exp

{
−(ωg,k − Ωg,k)

2

2σ2
g,k/mk

}
. (2.9)

This is the likelihood with which we work in our model, and there are a handful of implicit
assumptions made here which are worth examining. The first is that the large number of cells
assayed in an experiment permits us to use asymptotic theory and apply the classical CLT.
As a result, we can write down a likelihood for our observations using normal distributions as
long as µ2(νg) <∞, which is trivially true since expression profiles are necessarily bounded.

Secondly, we suppose that the errors arising from estimating B̂ and Ω̂ are independent.
This seems reasonable as the bulk and single-cell experiments are performed separately. We
additionally presume that expression levels in different genes are independent, as are those in
different cells. It is unclear whether the latter is completely true in practice, though it is likely
an accurate approximation of the truth. On the other hand, expression levels across genes
within samples (either bulk or individual cells) are liable to be somewhat dependent due
to expression co-regulation and the RNA sampling performed in RNA-seq. Given the large
number of genes assayed, the latter co-dependence is likely to be fairly small. Meanwhile,
co-expression estimation in single cells remains an open problem, and the independence
assumption is currently required to ensure computational tractability.
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Remark 1. (Curse of universality.) We note that the presence of the CLT in (2.4) seems
to indicate that not much more power can be gained beyond second order methods.

Remark 2. (Higher-Order models.) It is reasonable to include the sample variances v̂ and σ̂2

into the formulation of (2.9). However, since v̂ and σ̂2 themselves satisfy CLTs that depend
on the fourth moments of νg,k, µ4(νg,k) would need to be added as parameters to the model.
In practice, those must be estimated by some µ̂4(νg,k) from data, which in turn prompts us to
include µ̂4(νg,k) in (2.9). Of course, according to this reasoning, we would end up including
infinitely many higher moments into our likelihoods, and it is interesting to consider at what
point we reach the optimal balance between accuracy and computational tractability.

Remark 3. (Joint deconvolution of multiple bulk samples.) If it is known that multiple
bulk expression vectors share the same constituent cell type expression profiles, we can gain
statistical strength and decrease the computational burden by inferring their mixture propor-
tions jointly rather than individually. Assuming statistical independence of the bulk sample
observations, we must simply augment the likelihood in (2.9) by including the D − 1 addi-
tional mixtures in α = (α1, . . . , αD) ∈ RK×D, B̂ = (B̂1, . . . , B̂D) ∈ RG×D, and the associated
parameters in n = (n1, . . . , nD) ∈ RD:

Pα,n,mΩ,σ

(
B̂ ∈ db, Ω̂ ∈ dω

)
=

D∏
d=1

G∏
g=1

1√
2πndvg(αd,Ω, σ)

exp

{
−(bdg −Bd

g (αd))2

2ndvg(αd,Ω, σ)

}

×
∏

g∈[G],k∈[K]

1√
2πσ2

g,k/mk

exp

{
−(ωg,k − Ωg,k)

2

2σ2
g,k/mk

}
. (2.10)

2.2 Algorithm

Data Pre-Processing Procedure

Due to the well-known influence of technical variability in scRNA-seq data, we suggest that
users of RNA-Sieve perform their own quality control filtering of cells and genes prior to
running our software. Given the potential complexity of these patterns in general, we feel that
manual cleaning is more reliable than automated procedures. Nonetheless, we implement
a simple (largely optional) cell filtering scheme to ensure the accuracy of results when the
user has not chosen to perform his or her own quality control. Our procedure attempts to
do the following: 1) remove low-quality cells with anomalously low or high library sizes, 2)
identify and remove cells which may be mislabeled or are simply extremely different from
other cells with the same cell type label, and 3) identify and retain genes which are expressed
sufficiently often in at least one cell type. We note that steps 1 and 2 are optional whereas
3 is necessary to remove lowly expressed genes whose presence results in poor optimization
outcomes.
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Algorithm 1: Find MLE of α

Data: Single cell expression vectors {vik}k∈[K],i∈mk
⊂ RG, bulk expression vector

B̂ ∈ RG

Result: Mixture proportions {α∗k}k∈[K] of cell types in the bulk, number of cells
n∗ ∈ R+ in bulk, mean expression Ω∗ ∈ RG×K of cell types

1 begin

2 Ω̂g,k ←− 1
mk

∑mk

i=1(vik)g, σ
2
g,k ←− 1

mk

∑mk

i=1

(
(vik)g − Ω̂g,k

)2

3 α0 ←− arg minα∈RK
+
‖Ω̂α− B̂‖2

2, n0 ←− ‖α0‖1, α0 ←− α0/‖α0‖1 Ω0 ←− Ω̂

4 j ←− 0

5 while Pα
j+1,nj+1,m

Ωj+1,σ

(
Ω ∈ dΩ̂, B ∈ dB̂

)
− Pα

j ,nj ,m
Ωj ,σ

(
Ω ∈ dΩ̂, B ∈ dB̂

)
> δ do

6 Ωj+1 ←− arg maxΩ Pα
j ,nj ,m

Ω,σ|v(αj ,Ωj ,σ)

(
Ω′ ∈ dΩ̂, B ∈ dB̂

)
7 αj+1 ←− arg maxα∈∆K−1 Pα,n

j ,m
Ωj+1,σ|v(αj ,Ωj+1,σ)

(
Ω ∈ dΩ̂, B ∈ dB̂

)
8 nj+1 ←− arg maxn∈R+ Pα

j+1,n,m
Ωj+1,σ

(
Ω ∈ dΩ̂, B ∈ dB̂

)
9 j ←− j + 1

10 end
11 (α`,Ω`, n`)←− Last (αj,Ωj, nj) iterate returned in line 7

12 while Pα
`+1,n`+1,m

Ω`+1,σ

(
Ω ∈ dΩ̂, B ∈ dB̂

)
− Pα

`,n`,m
Ω`,σ

(
Ω ∈ dΩ̂, B ∈ dB̂

)
> δ do

13 Ω`+1 ←− arg maxΩ Pα
`,n`,m

Ω,σ

(
Ω′ ∈ dΩ̂, B ∈ dB̂

)
14 α`+1 ←− arg maxα∈∆K−1 Pα,n

`,m
Ω`+1,σ|v(α`,Ω`+1,σ)

(
Ω ∈ dΩ̂, B ∈ dB̂

)
15 n`+1 ←− arg maxn∈R+ Pα

`+1,n,m
Ω`+1,σ

(
Ω ∈ dΩ̂, B ∈ dB̂

)
16 `←− `+ 1

17 end
18 (α∗,Ω

∗, n∗)←− Last iterate returned in line 13

19 α∗ ←− arg minα∈∆K−1 ‖Ω∗α− B̂‖2
v(α∗,Ω∗)

20 Return (α∗,Ω∗, n∗).

21 end
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Figure 2.1: Log Likelihood Heatmaps on Real Dataset Pseudobulk. For a select
number of cell types, we visualize the objective function for both the α and Ω optimization
steps. (a) A heatmap of negative log likelihood values (ignoring constant scaling factors)
over α values in the 2-simplex. (b) A heatmap of negative log likelihood values (ignoring
constant scaling factors) over {Ωg,k}k∈[K] values in the non-negative orthant for an example
g.

Algorithm Outline

We estimate α, the cell type proportions for a given bulk sample, using the MLE which arises
from maximizing (2.9). Given the number of free parameters (GK+K+ 1) and structure of
the likelihood, this is non-trivial, with standard optimization schemes commonly failing or
returning sub-optimal solutions. We thus propose an alternating maximization scheme which
iteratively estimates and updates α, Ω, and n (and consequently v) via a combination of
quadratic programming and gradient descent. Despite the increased computational burden
relative to W-NNLS or similar techniques, we find that convergence remains fairly fast,
requiring no more than two minutes on typical data sets of 10, 000+ genes and 6 cell types
using a modern laptop computer. We sketch an overview of our optimization procedure
below (where Pα,n,mΩ,σ|v(α′,Ω′,σ) refers to (2.9) with v kept fixed at v(α′,Ω′, σ)).

Implementations of Algorithm 1 are currently available in Python and Mathematica.

Optimization

In implementing the algorithm, we made the following design choices:

1. Instead of maximizing Pα,n,mΩ,σ , we minimize − logPα,n,mΩ,σ , rendering lines 6 and 7 as
quadratic programs, which can be solved efficiently.

2. Lines 8 and 15 can be solved explicitly by differentiating (2.9) and finding the zeros of
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Figure 2.2: Comparison of Optimization Methods on Real Dataset Pseudobulk.
We compare the performance of SLSQP vs. iterative CVX (OSQP) in the α minimization
step on the deconvolution of a pseudobulk randomly generated from the Xin et al. dataset.
For the first five iterations, we use iterative CVX steps for Ω, and then we switch to SLSQP
for the final five iterations. (a) A plot of the negative log likelihood values (ignoring constant
scaling factors) vs. alternating minimization iterations. (b) A plot of the squared L2 error
of the mixture proportion estimate, α̂, vs. alternating minimization iterations.

the resulting algebraic fractions in n:

0 =

(
G∑
g=1

(
∑K

k=1 αkΩg,k)
2

vg(α,Ω, σ)

)
n2 +Gn−

G∑
g=1

(B̂g)
2

vg(α,Ω, σ))
(2.11)

Thus, these steps do not require any explicit optimization scheme.

3. The optimization in line 13 proceed via gradient descent (or a variation thereof), and
so could possibly require long run-times. However, the coarser maximization (mini-
mization, cf. item 1) in lines 6 − 7 and 14 typically improves the objective function
to such an extent that only two or three more iterations are required. Moreover, both
sets of optimizations are amenable to parallelization.

4. Algorithm 1 straightforwardly generalizes to the setting of jointly inferring mixture
proportions in an arbitrary number D of bulk samples (cf. Remark 3). Both our
implementations support this generalized deconvolution.

Lastly, we note that although the alternating optimization in lines 5−7 is not guaranteed
to converge; however, we observe empirically that the coarser maximization steps perform
better with regards to converging to the true α. We observe in Figure 2.1 the objectives
in each step have a smooth landscape with a single local minimum within the constraint
set despite the objective being generally non-convex. However, we find that using local
minimization programs such as Sequential Least Squares Quadratic Programming (SLSQP),
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a constrained local minimization package [13], the mixture proportion estimate diverges from
the true α. In Figure 2.2, we compare the use of SLSQP to find a local minimum in each α
minimization step without fixing the mixture variances and iteratively using CVX (applying
the OSQP solver [23]) to find a fixed point for the quadratic program where we fix the
mixture variances. We find the local constrained optimization worsens our estimate both in
the objective value as well as in squared L2 error of the mixture proportion estimate, α̂. We
conjecture that the poor performance of the local constrained minimization program can be
attributed to termination at poor local minima in cases not shown in Figure 2.1. Otherwise,
since σ is fixed throughout our algorithm, the global minimum for this objective will generally
be mis-specified which may result in poor estimates for exact optimization programs. As
a result, we choose to apply the coarser minimization steps which finds stronger empirical
performance than local constrained optimization steps.

2.3 Results

Method Performance

To validate the ability of our method to accurately deconvolve heterogeneous mixtures, we
applied RNA-Sieve to data falling into a wide range of different scenarios. While these mostly
consist of the deconvolution of pseudobulk samples, we also demonstrate our model’s perfor-
mance on several bulk data sets with strong biological priors for the cell type proportions.

We benchmark our approach on scRNA-seq data from several different tissues in the
Tabula Muris Senis experiment [19]. This allows us to show that our performance is strong
across a number of different biological settings, including different numbers of cell types and
different degrees of similarity between cell types. In the liver, for example, we performed 15
different deconvolution of pseudobulk samples with six different cell type shown in Figure
2.3. Averaged over these trials, RNA-Sieve produced an mean absolute error of 0.00618 while
MuSiC produced an mean absolute error of 0.00883.

We further highlight our performance by showing RNA-Sieve’s robustness in a number
of different contrived situations which could plausibly occur in real settings. We briefly
summarize our takeaways below, and full results are presented in the supplement.

Analysis of Beta Pancreatic Islet Cell Type Proportion in Healthy
and T2D Human Samples

Glycated hemoglobin, HbA1c, levels rise in the presence of excess sugar in the bloodstream.
HbA1c is typically used a diagnostic test for type 2 diabetes [7], a condition triggered by
the failure and loss of beta islet cells in the pancreas [4]. With HbA1c concentration as a
covariate, we estimate the beta islet cell proportion from bulk RNA-seq samples from subjects
of varying diagnosis. We validate our method’s performance by showing our estimates are
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Figure 2.3: Deconvolution results for liver pseudobulks. Five references and 15
pseudobulks were randomly constructed by sampling cells from the liver; each reference was
used for three pseudobulks. The matrices display the differences between estimated and
true proportions while the boxplot shows the distribution of the mean absolute error across
pseudobulk samples.
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Figure 2.4: Deconvolution results for spleen pseudobulks. Five references and 15
pseudobulks were randomly constructed by sampling cells from the spleen; each reference
was used for three pseudobulks. The matrices display the differences between estimated and
true proportions while the boxplot shows the distribution of the mean absolute error across
pseudobulk samples.
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Figure 2.5: Deconvolution results for skin pseudobulks. Five references and 15
pseudobulks were randomly constructed by sampling cells from the spleen; each reference
was used for three pseudobulks. The matrices display the differences between estimated and
true proportions while the boxplot shows the distribution of the mean absolute error across
pseudobulk samples.
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Figure 2.6: Deconvolution results for large intestine pseudobulks. Five references
and 15 pseudobulks were randomly constructed by sampling cells from the spleen; each
reference was used for three pseudobulks. The matrices display the differences between
estimated and true proportions while the boxplot shows the distribution of the mean absolute
error across pseudobulk samples.
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inversely proportional to the recorded HbA1c concentrations, according to the underlying
biological pattern.

As in [26], we applied our algorithm to the bulk RNA-seq data from Fadista et al [6].
Using single-cell data from Segerstolpe et al. [20] and Xin et al. [27] from both healthy and
type-2 diabetes subjects as reference, we estimated the cell type decomposition of the bulk
data from Fadista et al. [6].

As anticipated, we observe a negative correlation in Figure 2.7 between the HbA1c con-
centration and the estimated proportion of beta pancreatic islet cells in the bulk sample.

Analysis of the Tabula Muris Senis

Given the utility of our algorithm, we applied it to analyze the gene expression data of the
Tabula Muris Senis experiment [19]. This unique data set contains bulk RNA-seq samples
from many different tissues sampled at different ages of mouse and also includes single-cell
measurements (both SmartSeq2 and Drop-seq) at a subset of these time points.

Using all of the single-cell measurements available for a given tissue as reference, we
applied our algorithm to the bulk RNA-seq samples from the tissue. Since there is no
ground truth for the cell type distribution of the bulk samples available for this data set, we
judged the accuracy of our algorithm’s estimates by the relative consistency of the proportion
estimates across subjects of the same age group and the averages across age groups.

We highlight our algorithm’s effectiveness in uncovering trends in cell type proportions
across age groups. In Figure 2.8a, we observe a noticeable increase in skeletal muscle satellite
cells and a significant decrease in the mesenchymal stem cell proportion in the muscle tissue
of older mice. In Figure 2.8b, we observe a decrease in endothelial cell proportion in older
mice in the mesenteric fat tissue. In both tissues, we observe consistency in proportion
estimates both within age group and across age groups suggesting our estimates capture a
significant signal found in common between the samples.
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Figure 2.7: Deconvolution results for Fadista et al. bulks. Single-cell data was used
as reference from Xin et al. and Segerstolpe et al. datasets. Each point represents the
estimated beta pancreatic islet cell proportion one of 77 bulks with recorded HbA1c levels
from Fadista et al. The p-value is for a single-variate regression on the estimated proportions.
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Figure 2.8: Deconvolution results for Tabula Muris Senis bulks. For each tissue,
all the single-cell data available were used as a reference to estimate proportions in bulk
RNA-seq samples across different age groups. Each point represents the proportion estimate
for a given cell type and age group. The plotted line displays the trend in the average across
individuals of an age group for a given cell type.
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Chapter 3

Conclusion

3.1 Summary

In this paper, we introduce RNA-Sieve, a method for the deconvolution of bulk RNA-seq
samples based on the likelihood of the data in a proposed generative model. We demon-
strate the efficacy of our algorithm in both simulated and real settings compared against
both leading and naive methods. Preliminary results on RNA-seq samples show our method
can reveal biological trends in mixture proportion against age or other covariates. In addi-
tion to providing accurate mixture proportion estimates, RNA-Sieve can output intelligible
parameter estimates for the proposed generative model.

3.2 Future Work

In this work, our empirical results mainly focused on the accuracy of the mixture proportion
estimates. Unlike other methods which rely on variants of regression or the application of
black-box machine learning algorithms, we place the deconvolution problem into a genera-
tive probabilistic framework by relying on distributional results from asymptotic theory. Our
likelihood-based approach opens avenues for extensions which are intractable or difficult to
pursue using current algorithms. Perhaps the most notable is a hypothesis test to determine
whether the reference panel is missing cell types present in the bulk sample. While other
methods have assessed their robustness to such misspecification, it would be beneficial to
know whether the deconvolution performed was actually valid using a principled approach.
Consequently, we have begun developing this test and are also undertaking a comprehen-
sive evaluation of its performance while attempting to characterize the theoretical limits of
the problem. In addition, it is possible to construct confidence regions by relying on the
Fisher information matrix which can be computed from our likelihood. These confidence
regions provide a more mathematically complete description of the certainty of estimates
than marginal estimates of variance. We also note that the initialization of the cell type
means and variances is separate from the rest of the algorithm, so it is simple to plug in
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other estimation techniques which may be better suited for high-dimensional data and/or
robust to outliers.

Additionally, modifications to the current method can be made to improve robustness
to numerical instability or to account for additional variation. Our method utilizes opti-
mization steps that do not have certain convergence guarantees, which could be improved by
exploring other methods such as interior point methods. Furthermore, we fix the sample vari-
ances in our algorithm and aggregate our reference data without accounting for differences
between individuals. Barring the potential infeasibility of addressing these simplifications,
incorporating these additional details may improve performance.
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[20] Åsa Segerstolpe et al. “Single-cell transcriptome profiling of human pancreatic islets
in health and type 2 diabetes”. In: Cell metabolism 24.4 (2016), pp. 593–607.

[21] Ehud Shapiro, Tamir Biezuner, and Sten Linnarsson. “Single-cell sequencing-based
technologies will revolutionize whole-organism science”. In: Nature Reviews Genetics
14.9 (2013), pp. 618–630.

[22] Yuh Shiwa et al. “Adjustment of cell-type composition minimizes systematic bias in
blood DNA methylation profiles derived by DNA collection protocols”. In: PloS one
11.1 (2016), e0147519.

[23] Bartolomeo Stellato et al. “OSQP: An Operator Splitting Solver for Quadratic Pro-
grams”. In: Mathematical Programming Computation (2020). doi: 10.1007/s12532-
020-00179-2. url: https://doi.org/10.1007/s12532-020-00179-2.

[24] Robert O Stuart et al. “In silico dissection of cell-type-associated patterns of gene
expression in prostate cancer”. In: Proceedings of the National Academy of Sciences
101.2 (2004), pp. 615–620.

[25] David Venet et al. “Separation of samples into their constituents using gene expression
data”. In: Bioinformatics 17.suppl 1 (2001), S279–S287.

https://books.google.com/books?id=4rKaGwAACAAJ
https://doi.org/10.1073/pnas.1832361100
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2


BIBLIOGRAPHY 24

[26] Xuran Wang et al. “Bulk tissue cell type deconvolution with multi-subject single-cell
expression reference”. In: Nature communications 10.1 (2019), p. 380.

[27] Yurong Xin et al. “RNA sequencing of single human islet cells reveals type 2 diabetes
genes”. In: Cell metabolism 24.4 (2016), pp. 608–615.

[28] Qianhui Yu and Zhisong He. “Comprehensive investigation of temporal and autism-
associated cell type composition-dependent and independent gene expression changes
in human brains”. In: Scientific reports 7.1 (2017), p. 4121.


	justin_hong_title_pg.pdf
	justin_hong_thesis.pdf
	Contents
	List of Figures
	Introduction
	Background
	Problem Formulation
	Related Work
	Contributions

	A Likelihood-based Deconvolution Method
	Model
	Algorithm
	Results

	Conclusion
	Summary
	Future Work

	Bibliography


