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Abstract
Infrastructure Support for Datacenter Applications
by
Michael Alan Chang
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Scott Shenker, Chair

Cloud computing enables operators to spin up resources on-demand, and orchestrators en-
ables the automatic deployment of complex distributed applications. As deployment of
applications in datacenter environments grows increasingly automated and accessible, the
logical next step is to consider how the infrastructure can support the operator in critical
configuration tasks.

In this dissertation, we build and evaluate a number of infrastructure-based approaches
that automate a few of these critical configuration tasks. First, we present AutoTune,
an orchestrator-based tool that tunes an application’s resource allocation in order to im-
prove end-to-end performance and resource efficiency. Next, we describe Privoxy, a system
which automatically checks that SQL queries issued by web applications are compliant with
operator-defined privacy policies. Finally, we build a trace-driven packet simulator that eval-
uates how an architectural change to the datacenter networking fabric impacts the training
time of convolutional neural networks for image recognition.
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Chapter 1

Introduction

The barrier to entry of deploying applications in datacenter environments has been greatly
reduced over the last decade. With the advent of cloud computing, application developers
could access compute and storage on-demand, thus relieving the burdensome and expensive
process of buying physical servers and manually setting up local clusters. When the cloud
providers could no longer compete based on the cost of commodity servers, they began to
develop vast ecosystems of cloud computing services, including data stores, event queues,
monitoring, cost tracking, and countless more. Ubiquitous application services — that was
previously re-implemented by each organization that needed it — became easily accessible as
long as applications were already deployed on the cloud. Cloud computing enabled developers
to focus on developing application logic, and provided many of the other requisite pieces to
deploy applications in a datacenter environment.

Even as cloud computing resources became cheaper and the service ecosystem grew,
the applications themselves continued to evolve. From web applications to data analytics
pipelines, applications deployed in datacenters become increasingly complex, heterogenous,
and decentralized [109, 141, 63, 122]. As these applications grew more complex, so too
did it’s deployment. The emergence of these heterogeneous applications directly led to the
development of container orchestrators like Kubernetes [120]. In addition to deploying the
resources necessary to run these applications, container orchestrators critically included a
management layer that automated certain intricacies of deploying heterogeneous applica-
tions. These included previously vexing issues like networking, service discovery, and load
balancing. Industry has relentlessly pursued systems that automate the deployment of even
the most complex applications.

To get to a point where one can truly run applications with ease, they must look past
the solved problem of automating deployment and now must turn their attention towards
automating the configuration of these applications so they meet major operational require-
ments. In this dissertation, I seek to develop infrastructure-level systems and tools that
automate the configuration of critical operational issues for datacenter applications.
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1.1 Motivating Trends

For datacenter applications, what are some of the design trends — both from industry and
academia — that inform the difficulty of configuring datacenter applications? Below, we
discuss some of the trends, and emergent questions that motivate our research.

Shift from Monolithic Applications to Microservice Applications

Datacenter applications were previously architected as a monolith, comprised of a front-end,
a single binary as the server backend, and a database [146]. This tightly coupled approach
to software design slowed a company’s ability to efficiently develop and ship new features,
a priority for many competitive organizations. Consequently, many companies have shifted
to a microservice paradigm, where the single software unit is deconstructed into 10s-100s of
software components (”microservices”) connected over a virtual network [141, 109]. Agreed-
upon APIs dictate how the microservices interact with each other. This enables teams within
a company to independently push and ship code for each individual microservice, so long as
they comply with the agreed-upon API. The microservice paradigm enabled companies to
develop and ship new features much more quickly.

However, the decentralized pattern of development came at the expense of having a
centralized understanding of overall application behavior. Our conversations with industry
practitioners indicated that many organizations did not even retain organization-wide dia-
grams showing connections between various microservices, let alone how these microservice
interact. Fundamentally, any configuration task that requires the operator to reason over
the complex interactions between services introduces significant challenges.

Operators must contend with this disorganization, especially when they configure oper-
ational goals that span multiple services. Nowhere is this more true than in performance
tuning, which is a critical task dictated by contractual end-to-end Service Level Agree-
ments (SLA) [102]. Given that organizations possess virtually no understanding of the inter-
microservice interactions that significantly impact end-to-end performance, how could a tool
help an operator improve performance and resource efficiency? This is the question that
motivates the design of the first chapter of this dissertation, AutoTune.

Top-Down Policy Compliance

Recent data privacy acts (DPAs) like GDPR and CCPA limit who can access data. Not
only do they impose general restrictions on data access, they impose financial penalties
on scenarios where companies fail to comply with their own internal privacy policies [130].
These add to an already complex landscape of data permissions, where certain classes of
data were already protected under acts like HIPPA and FERPA. All these policies enact
severe financial penalties for misuses of a user’s personal data [130]. This complex set of
privacy policies are typically interpreted or developed by a privacy team, and frequently
change based on customer feedback.

Ensuring that code complies with these changing privacy policies presents significant
challenges. For operators, the process of enacting compliant policies in code is both time-
consuming and error-prone. Our conversations with a chief privacy officer (CPO) at a large
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startup indicated that even small changes to privacy policies (e.g., changing permissions a
email addresses collected from users) took several weeks to actualize; the CPO needed to
meet with every engineering team that touched the data attribute in their code. Moreover,
compliance with these policies is error prone, and has resulted in production bugs in many
examples [135, 82, 81]. To ensure that user data is appropriately protected, automation is
necessary to assist the operator in ensuring policy compliance.

How can we automatically check that application-issued SQL queries are compliant with
a set of operator-defined privacy policies? This is the central question of the second chapter
of this dissertation, and the impetus for our creation of the Privoxy system.

Hardware Advances in Networking

Operators must also make decisions about how their applications benefit from changes to the
datacenter architecture, particularly as new hardware emerges. One such emergent hardware
is the programmable switch, which has triggered a large number of novel proposals. While
these programmable switches initially were introduced to test and deploy new protocols [19],
recent proposals have suggested that these programmable switches could be used for more
far-reaching tasks such as in-network computation. These applications include distributed
DNN training, graph analytics, encryption, among others [125, 126, 19, 115].

Integrating programmable switches into a datacenter is a major architectural decision and
task for any operator. Since the network fabric is typically abstracted away from the ap-
plication, incorporating computation in the network fabric represents a significant deviation
from the norm. Given the high effort and monetary cost required to deploy programmable
switches for the purpose, operators must closely examine whether it is truly necessary to even
undertake this task. In particular with the use of programmable switches for in-network com-
putation, operators would be wise to consider all existing options that do not require ripping
out all the existing network fabric.

How can operators estimate the operational improvements that come with significant ar-
chitectural changes to the network fabric? The third chapter of this dissertation explores
this question specifically in the context of training convolutional neural networks for image
recognition.

1.2 Contributions

This thesis investigates how datacenter infrastructure can support operators in making com-
plex configuration decisions for their distributed applications. The contributions of this
thesis include the following.

e The design and implementation of AutoTune, a tool that improves end-to-end perfor-
mance and resource efficiency for heterogeneous microservice applications. AutoTune
treats the entire application as a black box, and requires no code changes. The oper-
ator only needs to provide a representative workload and a performance metric they
want to optimize. We demonstrate over a series of microservice applications that Auto-



CHAPTER 1. INTRODUCTION 4

Tune can reduce the number of servers by up to 6.6x, while simultaneously improving
performance by 20%.

e The design and implementation of Privoxy, a system that enforces data access policies
that can be used with legacy applications and preserve application semantics. Our
approach verifies compliance in a proxy that interposes on the connection between
the web application and the database. Our verifier leverages SMT solvers and, to
achieve adequate performance, generalizes and caches the results of previous compli-
ance decisions. We have implemented this approach in a system called Privoxy, and
our evaluations show that Privoxy supports legacy web applications while adding only
modest overheads.

e A preliminary study on whether in-network changes are the most effective way to
improve the performance of the distrbuted training of convolutional neural networks
for image recognition. We developed a trace-drive packet simulator, which we used
to demonstrate that changes to the fabric (i.e., in-network computation) had lower
benefits than using host-based mechanisms that abandon the use of the parameter
server in favor of other reduce strategies .

1.3 Dissertation Plan

The thesis proceeds as follows. Chapter 2 demonstrates how we use AutoTune to deter-
mine resource allocations and placements that improve performance and resource efficiency.
Chapter 3 describes Privoxy, a system that automatically ensures that web applications issue
SQL queries compliant with user-specified privacy policies. Chapter 4 discusses whether ar-
chitectural changes to the networking fabric are needed to accelerate distributed training of
convolutional neural networks. Finally, Chapter 5 concludes and discusses some opportunity
for future work.



Chapter 2

AutoTune

2.1 Introduction

Motivation

Most modern web-scale applications — including those offered by Google [23], Uber [141],
and Netflix [109] — are comprised of multiple (and sometimes many) microservices, such as
web servers, caches, load balancers, and data management systems. Operators rely on mi-
croservice orchestrators such as Kubernetes [120] to connect and manage these microservices.
Operators provide the orchestrator with an application specification — listing the required set
of microservices, their resource requirements, and any placement constraints — and a clus-
ter specification that describes the set of servers on which the application can be launched.
Microservice orchestrators provide additional APIs that provide fine-grained control over
an application’s resource allocation and placement (which controls which components are
colocated).

In theory, operators can use these APIs (along with application APIs to change various
configuration parameters) to achieve good application performance and resource efficiency.
However, this is not an easy task, because the end-to-end performance of microservice-based
applications is an unknown and complex function of the resources (such as memory and
cores) allocated to each microservice and, to a lesser degree, the microservice placement.
There has been little progress in deriving analytical expressions for real-world application
performance as a function of resources and placement. Faced with this unresolved complexity,
many operators merely overprovision with resources [42, 23, 45, 79] and use simple affinity
rules for placement [136, 117, 120]. As we will show, this results in good performance but
an inefficient use of resources. To rectify this, we have designed a tool called AutoTune for
automatically reducing resource consumption while preserving adequate performance.

Considerations

AutoTune’s design is strongly influenced by three basic considerations. First, we want a
solution that can be used by non-expert operators, and is applicable across a wide variety of
systems and use-cases. We therefore treat microservices as blackboxes, rather than assuming
that detailed models of their performance are available. Similarly, we directly measure
application performance rather than attempt to derive it from performance measurements
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on individual microservices. This allows the operator to select the performance objective
most relevant to them (makespan, tail latency, etc.).

Second, we assume that operators can produce (based on previous experience running
the application) an initial deployment (i.e., a specification of the placement and the resource
allocations for each microservice) of their application that achieves acceptable performance.
We take the performance of this initial deployment as the baseline performance expectation.
Our goal is to find more efficient deployments that use fewer resources, yet achieves similar
or better performance.

Third, in order to not interfere with the production environment, we intend AutoTune to
be run on a testbed where various configurations can be evaluated; such testbed experiments
can easily be carried out in public clouds. In order for these testbed runs to be useful, we
assume that the operator has access to a representative workload (or set of workloads) where
achieving good performance and resource efficiency on these test workloads results in similar
benefits in production use. This is clearly true for recurring batch jobs, which have similar
workloads across invocations. We later discuss how AutoTune can apply to more varying
workloads, which we then evaluate using a production trace.

Approach

Our goal in designing AutoTune is not to achieve provably optimal performance or provably
optimal efficiency, but to provide a widely-applicable and easy-to-use tool that can provide as
good or better performance than the operator-provided baseline while typically reducing the
number of servers required for deployment. Our approach to finding efficient deployments is
comprised of two separate phases.

In phase 1, which we call resource clampdown, we try to identify overprovisioned resources
where we can reduce the resource dedicated to an individual microservice without impacting
overall application performance. Once we have eliminated all overprovisioning, we then try
to place microservices on the minimal number of servers while respecting these resource
allocations. We then verify that the resulting deployment matches the performance of the
initial deployment, and make adjustments if necessary to make this hold.

In phase 2, which we call performance improvement, we take the deployment from phase
1 and test whether performance can be improved by assigning leftover resources and shifting
resources on a server between microservices. The result is a locally optimal allocation of
resources that equals or exceeds the original performance goal.

We demonstrate the efficacy of our approach by using AutoTune on three representative
microservice applications exhibiting a variety of microservice design patterns with widely
different microservices (both third-party and custom). We demonstrate that, for these
use-cases, Privoxy can reduce the number of servers by up to 6.6x, while simultaneously
improving performance by up to 20%.

Privoxy’s resource allocation and placement are computed for a specific workload, but
in practice workloads change over time. In §2.5 we demonstrate how Privoxy can be used
to overprovision resource so it can handle workload changes. We find that overprovisioning
resources by 30% is sufficient to handle a workload that has 1.6x. Additionally, we analyzed
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a a four-week long production trace from Datadog [40] and found that in that trace a
workload increase of this magnitude occurs approximately every 51 hours. Thus, our analysis
demonstrates that slight overprovisioning, and infrequently running Privoxy is sufficient for
handling dynamic workloads.

2.2 Background

We begin by describing current approaches to automatically scaling microservice applica-
tions — autoscaling and Bayesian optimization — and observe that they will not find efficient
deployments for many microservice applications. This lack of applicability motivates the
need for Privoxy. However, note that these approaches solve a subtly different problem than
AutoTune in that they typically start with some configuration which is underperforming
and then add resources until the performance is adequate; AutoTune starts with a configu-
ration where the performance is adequate and then reduces (and rearranges) resources while
maintaining (or improving upon) acceptable performance. The two approaches are comple-
mentary, and in AutoTune when there is a sudden load spike we can fall back on autoscaling
to cope.

Autoscaling

Some orchestrators (including Kubernetes) and most cloud providers (including Amazon [7],
Azure [100], and Google [56]) provide autoscaling services that observe each microservice’s
performance or utilization, and use this information to decide when to add additional in-
stances of that microservice. These services accept as input a pre-defined threshold (e.g., an
acceptable response latency or utilization level) and increase the number of instances for a
microservice whenever its performance drops below the threshold or its utilization exceeds
the threshold.

Regardless of what metric is used to trigger scaling, existing horizontal and vertical au-
toscaling solutions focus on local optimizations: they consider the performance or utilization
of an individual microservice, without regard to overall application performance. Addition-
ally, when triggered they scale only the triggering microservice, without regard to how this
might impact overall performance. This focus on local optimization has two shortcomings.

First, using performance metrics requires the applications operator to decompose an
application level performance requirement into performance targets for each individual mi-
croservice. As has previously been observed [85, 76], the amount of time processing a request
at different services depends not just on the application, but on various factors such as the
request itself (which might dictate whether processing is done on the fast path or slow path)
and the history of previous requests (which dictate whether a microservice might experience
pauses due to garbage collection or other effects). Finding an appropriate decomposition for
complicated real-world applications is thus quite challenging.

Second, the use of local optimization (whether performance or utilization driven) can
result in suboptimal resource allocations, i.e., in situations where an application is allocated
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crobenchmark.

more resources than required to meet a particular performance goal. We now illustrate this
for utilization-triggered autoscaling.

Consider an application comprised of two microservices: a frontend microservice and
a storage microservice. The frontend microservice receives client requests and performs a
blocking remote read from the storage microservice, which on receiving a read request, reads
and processes the request file before returning the processed results. We collected resource
utilization and job-completion times for each microservice during a baseline run, which we
show in Figure 2.1 and Figure 2.2. Utilization seems to indicate that bottleneck resource is
either (a) the CPU on the frontend microservice; (b) the CPU on the storage microservice; or
(c) the disk on the frontend microservice (used for logging). We then attempt to empirically
validate these findings by increasing each of these resources and measuring their impact
on the application’s performance (Figure 2.3). We find, contrary to what the utilization
measurements suggest, that none of them has any impact on application performance. In
fact, the highest performance improvement comes from increasing disk bandwidth on the
storage microservice, a resource that was not highly utilized! This is because the frontend
is blocked while waiting for the storage service to read data, and utilization is not sufficient
to capture this dependency.

While a microservice’s performance (e.g., a microservice’s response latency) is a more
relevant measure than its utilization, autoscaling based on such per-microservice performance
metrics suffers from the same flaw of not capturing dependencies, and can thus result in
inefficient provisioning.

Bayesian Optimization

In recent work [6], Bayesian optimization techniques were used to improve the performance
of an application consisting of a single service (Spark executors) with a single microservice
per server. Optimizing this deployment merely requires determining resource allocations
for that single microservice; this results in a relatively low-dimensional search space on
which Bayesian optimization performs well. We seek a tool that can apply to applications
with a heterogeneous set of microservices which interact with each other in a variety of
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ways. Such a setting results in a high-dimensional search space, making it impractical
to apply Bayesian optimization. Furthermore, when dealing with a heterogeneous set of
microservices, the mechanisms controlling scaling and placement decisions must consider
resource and operational constraints, and these are difficult to incorporate in such Bayesian
optimization algorithms. In contrast, AutoTune uses a less sophisticated search algorithm
than Bayesian optimization, but can handle a high-dimensional search space and complicated
operational constraints.

2.3 The Design of AutoTune

Having reviewed existing approaches to optimizing application performance and resource
efficiency, we now describe Privoxy’s design. We begin by defining terminology used through
the rest of the paper, then describe the types of deployments we target, and finally present
Privoxy’s design.

Terminology

Privoxy’s inputs are the application A and performance metric P to be optimized, an initial
deployment Dy, and a representative workload W. The initial deployment consists of a
resource allocation R, that specifies what resources are allocated to each microservice in
A, and a set of placement decisions that specifies what microservices are colocated with
each other. Given these inputs, Privoxy uses W to compute an initial performance Fy, and
Privoxy’s optimization process ensures that any deployments perform at least as well or
better than F.

Privoxy considers four resources: memory, CPU cores (both full cores and fractional
assignments), disk bandwidth, and network bandwidth. We use the term microservice re-
source (MR) to refer to the allocation of one of these resources to a particular microservice
on a particular server. AutoTune adjusts microservice resource allocations and microservice
placements in order to minimize the number of servers required and then produces a new
deployment at the end of this process.

Target Deployments

We envision that Privoxy is deployed in a test cluster, and the resulting deployment is
then used in production. Privoxy’s computation relies on changing resource allocations,
and observing the performance impact of such changes. Running this in a test cluster
ensures that Privoxy does not negatively impact performance in production. Additionally,
Privoxy is designed to be used in clusters where resources are allocated in the form of servers
or VMs (we refer to both as servers below), and the orchestrator can place zero or more
microservices in each VM. As a result, we measure resource efficiency in terms of servers,
and Privoxy’s optimization objective aims to minimize the number of servers, rather than
merely minimizing total allocated resources.
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Phase 1: Resource Clampdown

Privoxy’s first phase focuses on identifying over-provisioned microservice resources in the
initial deployment, and then eliminating over-provisioning.

Privoxy identifies over-provisioned resource by stressing individual MRs; i.e., reducing
the amount of the resource allocated to the microservice and then measuring the end-to-end
application performance. Privoxy uses the results from stressing to classify each MR as
either an impacted microservice resource (IMR) —a MR whose reduction hurts application
performance — or a non-impacted microservice resources (NIMR) —a MR whose reduction has
no negative impact on application performance. Whenever a NIMR is identified, Privoxy
reduces the resource allocation by the same amount used in the stressing step. Privoxy
repeats this process until no more NIMRs are identified. The resulting resource allocations
are tight, in that any resource reduction will result in performance degradation.

While the previous step yields a tight resource allocation, it does not necessarily free up
any servers, since it does not change placement. The next part of phase 1 thus produces
a new placement that packs all of the microservices into fewer servers. While doing so,
Privoxy attempts to avoid colocating any pair of microservices that might affect each other’s
performance. In order to do so we rely on the ability to order the impact of different
microservice resources. We define a microsevice resource r as being more impacted than MR
r" if reducing r’s allocation has a greater impact on application performance than . Given
this ordering, we can also identify the set of most impacted MR’s.

Observe that the stressing results above already provide us with sufficient information to
identify the most impacted resource for each microservice. Given this information, and the
number of available servers, the Privoxy placement algorithm begins by placing microservices
so that any two colocated microservices differ in their most impacted MR. When this place-
ment strategy is no longer feasible, Privoxy switches to a round-robin placement strategy.
The resulting placement is guaranteed to fit within only as many servers as are needed for
the tight resource allocation identified previously; however, this change in placement might
have resulted in worse performance.

To protect against this, Privoxy checks application performance with the computed place-
ment. If the new performance is worse than the initial performance Fy, then Privoxy tries
other variants (by changing the order in which microservices are placed) to identify a place-
ment that performs as well or better than F,y. If no such placement can be found, Privoxy
increases the number of servers and reruns the placement strategy. This process necessarily
terminates, since the initial placement had performance F.

At the end of phase 1, Privoxy produces a new deployment where no MR is overpro-
visioned, and that potentially uses fewer servers without negatively impacting application
performance.

Phase 2: Performance Improvement

The deployment produced in phase 1 might not utilize all server resources. In the second
phase Privoxy allocates these resources so as to improve application performance. This stage
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begins with Privoxy assigning unallocated resources on each server to the microservice most
likely to benefit from additional resources. To do so, for each type of resource available on
a server, Privoxy identifies the microservice on that server that is most impacted by that
resource type, and allocates the microservice all available resources of that type. Privoxy
reuses measurements from phase 1 to determine impacted microservices on a server.

While the previous step allocates all available resources, in many cases performance can
be further improved by changing resource allocations. This is because in cases where two
microservices a and [ on the same server are impacted by the same resource, then it is
possible that moving impacted resources from one service (e.g., 3) to the other (e.g., «)
results in a net improvement in application performance. We identify opportunities for
transferring resources using a gradient descent algorithm which iteratively matches highly
sensitive MRs with less sensitive MRs of the same resource type that are colocated on the
same machine.

2.4 Additional Issues

Next we discuss some of the additional challenges addressed by our design.
Reducing Search Space

Because we have four resources, stressing microservice resources one at a time would require
that Privoxy evaluate performance for 4M different deployments (where M is the number
of microservices). Privoxy reduces the number of deployments that have to be tested by
randomly partitioning all MRs into p partitions. Privoxy then measures performance after
reducing allocation for all MRs in a partition. This measured performance is used differently
by the two phases:
Phase 1: Partitions in Resource Clampdown If application performance does not
degrade when a partition is stressed, Privoxy infers that none of the MRs in the partition
are impacted. If on the other hand a performance degrades, Privoxy splits the partition
itself into p random partitions, and uses the same process to select those subpartitions which
degrade performance. This process continues recursively until all impacted MRs are found.
Phase 2: Partitions in Performance Improvement When using gradient descent, Au-
toTune first identifies the most-impacted partition. Within that partition, AutoTune applies
the original gradient descent method, stressing each MR individually. Thus, in each iteration
of the the gradient descent process, AutoTune with the pruning method with p partitions
only needs to explore NT"“ + p MRs per iteration, rather than of having to explore N -k MRs.
Observe that for partitioning to be effective in either phase we need most partitions to not
impact application performance. In our tests we have found that empirically this is indeed
the case, and the set of impacted MRs is relatively small. In our experiments we found that
the use of partitioning reduced Privoxy’s runtime by 2 —3x on average. However, even when
there are many impacted MRs the use of partitioning has no impact on correctness, nor does
it significantly impact Privoxy’s efficiency.
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Minimizing Placement Changes

Changing the placement of a microservice takes longer than merely changing its resource
allocation. This is because changes to placement necessitate launching a new copy of the
microservice, while resource changes can often be done without needing to terminate an
existing copy. This observation influences our design in two ways: first, we minimize the
number of times placement is changed (only at the end of phase 1 and the beginning of
phase 2); second, we stress (i.e., reduce allocated resources) rather than increase resources
to measure a MR’s impact on application performance. Stressing a resource is guaranteed
not require placement changes, while increasing resource allocation might in cases where a
microservice is running on a fully utilized server.

Discrete Gradient Descent

Analytically, gradient descent uses derivatives in order to choose the direction for change.
Here, we must implement a discrete derivative (when stressing the application); in order to
evaluate the derivative, we compare the application performance with the original MR with
one that differs by an amount §, and the question is how do we choose §. AutoTune sets ¢§
proportional to the server’s resource capacity. However, rather than use a fixed percentage,
we start at 30% and then, at each iteration of the algorithm, we decrease this percentage
by a factor of 1.2. This allows us to take finer and finer tests of discrete changes. We also
implement a binary search feature when evaluating resource transfers. When we increase
one MR by ¢ and decrease another by the same amount and find no change in application
performance, we then execute a binary search between the original and tested allocations to
see if we overstepped a local optima.

Placement

Our experience suggests that placement is typically not a crucial factor in application perfor-
mance, aside from the special case of affinity. However, because containers (and indeed most
other software isolation mechanisms) do not completely isolate performance, interference be-
tween colocated microservices can negatively impact application performance. Discovering
this would require exhaustively searching through all placement possibilities, which would be
too time-consuming. Instead, we address this issue by preferring, when when searching for
optimized deployments, those that colocate microservices that were colocated in the initial
deployment and enforcing any administrator provided placement constraints. This allows
AutoTune to incorporate any insights the operator might have about possible performance
interference.

2.5 Dynamic Workloads

Thus far our design has focused on applications with relatively predictable load patterns
where we could assume that the operator supplied a representative workload which could
be used to evaluate performance. Since almost all workloads have some natural variation,
we further assume that this supplied workload represents the high-end of anticipated work-
loads (and the degree of such overestimation is up to the operator based on their tradeoff
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between performance and efficiency). We also assumed that the operator provided an ini-
tial deployment on which this workload has acceptable performance. These are reasonable
assumptions for batch workloads and relatively stable real-time workloads. However, we
cannot make these assumptions for real-time workloads with significant variation (which we
assume is the common case for real-time workloads).

For these real-time workloads, the common practice is to significantly overprovision (we
have heard some operators provision their deployment to handle up to three times the average
workload), and then rely on autoscaling (as described in Section 2.2, this independently
scales the microservices based on local measurements) to handle any further overloading.
We propose an alternate approach, based on AutoTune, to increase efficiency. In this case,
the operator provides several different workloads (based on historical usage patterns) and
their corresponding deployments which achieve satisfactory performance. AutoTune is run
on each of these workload/deployment pairs, producing more efficient deployments which
achieve the same or better performance than the given deployment for each workload. In
production, the operator uses an automated mechanism that measures the current load and
picks the most appropriate deployment for the current load.

For this approach to be feasible, we must ensure that the deployment changes are rela-
tively rare, which requires a degree of overprovisioning and using some amount of hysteresis
so that the deployment is not changed based on short-term fluctuations. To investigate how
this might work in practice, we study a production Datadog trace that contains the rate of
APT calls in 10 second intervals over a four week time period.

We apply this trace to a web application developed using the MEAN Stack (described
in §2.7), and implement the following scheme. We pick some degree of overprovisioning
(i.e., pick a deployment designed for a load level higher than the average by some amount)
and stick with the degree of overprovisioning until we observe five minutes of load that are
significantly higher or lower than the previously observed average. The five minute period
is unlikely to cause major performance disruptions because, as we show in §2.8, AutoTune-
generated deployments hold performance even when the workload is 10-20% greater than
experimental workload, and then performance degrades gracefully that.

When the aberrant load is sustained for more than five minutes, the system switches to
a deployment that can handle the new load. This new deployment is similarly overprovi-
sioned, so it can handle increased load in the future. Since we assume that Privoxy only
produces a finite number of deployment configurations, we pick the deployment generated
using the workload with the lowest average request rate that is still higher (by the same
overprovisioning factor) than the production workload’s recently observed average request
rate.

Table 2.1 shows how often the deployment would need to change, for different levels of
over-estimating workload. If the operator overprovisions by 10%, the system would have
to transition to a new deployment once every 45 minutes. At the other extreme, if the
operator overprovisions by a factor of three, the system would only have to transition to a
new deployment once every week.

Where in between these two extremes an operator would choose to operate would depend
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Figure 2.4: CDF of response latency for a 30% overprovisioned deployment with the expected
request rate (baseline) and a request rate that is 1.6x higher (Largest five minute increase).

in part on how expensive (in terms of resources) it is to overprovision for higher loads. These
results are also shown in Table 2.1. Note that overprovisioning for a factor of three costs
roughly 54.5% extra in resources, and doing so for a factor of 2 costs roughly 34% (and
requires deployment changes roughly once every three days).

Finally, we measure the impact of response latency to changes in workload in an overpro-
visioned setting, since too large an increase in response latency would pose an impediment
to the use of Privoxy in dynamic settings. For this evaluation we overprovisioned the cluster
with 30% additional resources, and then considered a scenario where request rates instanta-
neously increase to 1.6x the original request rate. The 1.6x increase represents the largest
consistent increase (i.e., sustained for 5 minutes) we observed in the Datadog trace. The
request rates and distributions were taken from the trace. We show a CDF of response
latencies for the original request rate (baseline) and the increased request rate in Figure 2.4.
We observe that median and 90" percentile response latencies remain unchanged. While
we do observe a nearly 6x increase in maximum latency, this is likely due to the additional
request queuing. We can thus conclude that most requests see reasonable response latencies,
and hypothesize that additional overprovisioning might be necessary in scenarios where low
tail latencies are crucial.

Thus, assuming a production deployment similar to the one captured by the Datadog
trace, one can use AutoTune for dynamic workloads without significant overprovisioning and
infrequent deployment changes.
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Workload Increase Percent Overprovisioned Time between change

1.2x 0.01 1.49 hours
1.4x 27.5 1.95 hours
1.6x 29.86 51.3 hours
1.8x 30.2 59.62 hours
2x 34.0 77.88 hours
3x 54.5 166.1 hours

Table 2.1: The impact of changes in workload: by how much do resources need to be
overprovisioned to handle workload increases; and, on average, how much time (measured
in hours) elapses in our trace before overprovisioned resources are no longer adequate.

2.6 Implementation

Next we describe Privoxy’s prototype implementation. Privoxy is designed so it can be
integrated with any container orchestrator. Our prototype implementation integrates with
two orchestrators: Kuberentes and Kelda [75]. Below we detail some of the interesting
aspects of our prototype implementation.

Workload Generation

Similar to prior approaches for resource allocation [6], Privoxy requires that the operator
provide a representative workload, which it then uses for optimization. In our evaluation
(§2.8) we use Apache Bench [1] as a workload generator, and this approach might be us-
able by many applications. In addition, operators can also use tools such as Kraken [144],
GoReplay [57], etc. to record and replay production traffic when using Privoxy.
Additionally, many organization rely on canary deployments for testing and profiling.
Live production traffic is often mirrored to these canary deployments, thus allowing profiling
and debugging on live traffic. AutoTune can be used in canary environments. While this
might increase the time for convergence due to traffic changes between experiments, this does
not impact correctness. Moreover, recent work [97] has shown that one can use transfer
learning to extend performance models learned in more constrained environments (e.g., in
Canary deployments) to more general environment (e.g., production clusters). In future work
we plan to investigate the use of similar techniques in order to improve Privoxy’s robustness.

Reconfiguring Applications

The configuration for some microservies, e.g., Nginx or Spark, depend on the number of
resources allocated to them, and thus must be changed by Privoxy. For such microservices,
we require that operators provide scripts that Privoxy can invoke to update microservice
configuration whenever resource allocations are changed. Programmatic APIs to change
configuration are increasingly common, andother tools including Kubernetes Helm [72] rely
on similar mechanisms.
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Stressing

As we described previously in §3.2, Privoxy stresses microservice resources in order to identify
impacted MRs. Our current implementation considers four resources: CPU core allocation,
CPU quota per core, network bandwidth, disk bandwidth, and memory allocation. AutoTune
can be easily extended to consider other resources. Below we briefly describe how we stress
each of these resources:

CPU Quotas: Privoxy relies on cgroups to control CPU allocations, and allocates mi-
croservices both timeslices on a single core and whole cores. Privoxy relies on Linux’s com-
pletely fair scheduler (CFS) to allocate timeslices on a core by specififying a microservice’s
container period and quota. The current implementation allocates a quota relative to a fixed
period (chosen at the start of the experiment) such that the maximal stressing never exceeds
the minimal scheduling time quantum in the underlying operating system.

CPU Cores: Privoxy allocates CPU cores to a microservice by increasing its CPU quota
sufficiently so that no other microservice can be colocated. More precisely, given a microser-
vice with quota aggregate CPU quota and c cores, throttling down by one core would mean
provisioning a quota of %%¢ . (¢ —1).

Memory stressing: AutoTune uses cgroup’s memory quotas to limit the amount of phys-
ical memory and swap space allocated to a microservice. In order to prevent out-of-memory
errors, Privoxy monitors each microservice’s memory utilization and ensures that the appli-
cation has sufficient memory and swap space allocated.

Disk Bandwidth: AutoTune stresses the disk using blkio [118], and sets hard limits on
read and write bandwidth from block devices. AutoTune uses both joint and individual
throttling of read and write bandwidth.

Network Bandwidth: AutoTune stresses the network by limiting link bandwidth Linux
tc[137]. To do this we first measure the maximum attainable inter-VM network bandwidth,
and then impose k% stress by limiting the container’s bandwidth to (100 — k)% of this max-
imum. tc uses hierarchical token bucket (HTB) to implement this rate limit, and scheduling
network traffic using HTB imposes some CPU overhead. In our experience this additional
overhead did not noticeably affect our results.

2.7 Microservice Application Overview

For our evaluation we use microservice applications that resemble those running in produc-
tion, and used by enterprises and moderate sized deployments, rather than services such
as S3 and Google. We first describe some common microservice design patterns that we
observed, and then we present three end-to-end microservice applications that we used to
evaluate Privoxy.

We surveyed a number of industry practitioners to determine (i) which open source mi-
croservices were commonly used together, e.g., ELK (Elasticsearch, Logstash, Kibana) stack,
Spark/MySQL, etc. and (ii) how these services are architected, e.g., chain or aggregation
patterns [63] [122]. In response, we selected three applications: two (slightly modified) open
source microservice applications and one of our own.



CHAPTER 2. AUTOTUNE

Nginx Ingress
Controller
NGiNX
I ]
Python Map Nginx Page
Server @ API Server Server @
(Go) @
| ] ]
Route Server Driver Service Customer
(Go) (Go) Service (Go)
Redis PostgreSQL

Figure 2.5: HotROD Application, modified from Uber. Red circles indicate endpoints.

Kibana HAProxy NodeJS Server MySQL
r R les] node |« ‘
kibana PIR O XY ,
My
A } A
\ P \ t
ElasticSearch Logstash PostgreSQL Spark
e ) <_ <_ APACHE&
%y elastic w l0gstash . Spr K

Figure 2.6: Apartment Rental Multi-service Application

HotROD Application [132] (30 MR) (Figure 2.5) is a modified distributed tracing
application created by Uber to demonstrate its open source tool Jaegertracing [132]. We
extended HotROD by adding two additional features: First, we split the frontend to be a
separate API service and Nginx service to serve static pages. We also added a mapping
service to pull graph data from S3 which is plotted using Networkx [66] and returns a
JSON file which is rendered on the webpage. We also add an Nginx ingress and Haproxy
load balancers to distribute load across all replicas of the mapping and API service. These
extensions increase the number of MRs Privoxy need consider when applied to HotROD.
MEAN Stack [110] (12 MR) is an application commonly used in tutorials introducing
programmers to the MEAN stack, a popular server-side Javascript stack. The applica-
tion uses three different types of microservices: MongoDB (database service), NodelJs (web
server), and HAProxy (load balancer).

Apartment Rental Application (48 MR) (Figure 2.6) is a web-application we developed
to test this project, that is comprised of eight microservices. We use two different workload



CHAPTER 2. AUTOTUNE 18

when testing this application: a write heavy workload (referred to as Apartment App Write)
and a workload consisting of a mix of reads and writes (referred to as Apartment App Miz).

2.8 Evaluation

We evaluated Privoxy using the applications described in §2.7, and running them on clusters
of m4.zlarge AWS EC2 instances, each of which ran Ubuntu 17.04. Unless otherwise specified,
we use 99" percentile response latency as our performance metric. We have tested on a
broader range of metrics, and observed similar results. Below we first present end-to-end
evaluation results showing Privoxy’s efficacy, and then present microbenchmarks.

End-to-end Experiments

We start by applying Privoxy to the applications in §2.7. We show results for the MEAN
stack in Figure 2.7a, the apartment application with mixed workload in Figure 2.7b, and
the HotROD application in Figure 2.7c. In these graphs, we show how performance (99th
percentile latency) and server usage changes as Privoxy runs. We show performance (line)
and number of servers (bar) at four points: (1) the initial overprovisioned deployment, (2)
after stressing and reducing each microservices resources (but before changing placement),
(3) at the end of phase 1 (§2.3) after microservices have been packed onto fewer servers, and
(4) at the end of the performance improvement phase (§2.3). We use the performance of the
initial deployment as our baseline, this is because Privoxy’s primary goal is to achieve the
same performance with fewer resources. Additionally, finding an optimal deployment (i.e.,
the global minima for latency) would require an exhaustive search which is infeasible for the
applications we consider here.

In the three applications we evaluated, the initial deployment split resources evenly be-
tween the three microservice instances. After running Privoxy, the MEAN stack achieved
33% better performance with half the number of servers, the apartment application achieved
20% better performance with 2.5x fewer servers, and the HotROD application used half the
servers with roughly the same performance level. In order to determine these final deploy-
ments, AutoTune required roughly 13, 18, and 18 hours for MEAN stack, Apartment App,
and HotRod App, respectively.! While the exact improvements vary based on application,
we see significant improvements in all for resource efficiency, and performance that is at least
as good as the initial deployment — in a reasonable amount of time.

The graphs also show that the MEAN stack and the write heavy workload of the apart-
ment application experience slight performance degradation in the initials stages of the
process, but show overall improvements after phase 2. This is because the available network
bandwidth between microservices increases when they are packed onto fewer machines, and
this shifts the bottleneck (in this case to the CPU). The Performance Improvement Phase
can hence correct for this problem through resource transfer. While AutoTune was able
to improve the HotROD application’s resource efficiency, observe that performance does
not improve in the Performance Improvement Phase. The HotROD application contains 3

!These times might seem long, but we run every trial up to 25 times in order to reduce fluctuations in
the results.
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Figure 2.7: Changes in number of servers (bars) and 99 percentile response latency (lines)
over the course of running AutoTune end-to-end. We show both values at (1) the initial
configuration; (2) after overprovisioned MRs have been reduced; (3) at the end of phase 1
which includes changes to placement; (4) after phase 2.

separate microservices that are all compute bottlenecked; consequently, in the clampdown
deployment, there was very little free resources for impacted MRs to grow into. Nevertheless,
AutoTune was able to maintain the performance of the application. This is in contrast to
the Apartment Application where all three resources are bottlenecks for different microser-
vices (CPU, Disk, and network); this diversity enabled performance improvements in the
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Performance Improvement Phase.

Privoxy Robustness

Next we evaluate Privoxy’s robustness to variations in user input and deployment conditions.
Robustness to Initial Deployment

Recall that AutoTune identifies locally optimal resource allocations; thus the operator-
provided initial deployment can have a significant impact on the outcome. In the end-to-end
experiments shown above (2.8), the initial deployments placed three microservice instances
on each server, where each microservice instance has an equal split of the server’s total re-
sources. We look at three different sets of initial deployments. 1.) deployments where each
microservice instance has been provisioned the maximal amount of resources for the instance
type 2.) randomly generated deployments and 3.) deployments that result from horizontal
autoscaling.

Maximally Provisioned Initial Deployment: In this initial deployment, each mi-
croservice instance was provisioned an entire EC2 VM instance. In doing so, AutoTune
continued to demonstrate effectiveness in reducing server usage. AutoTune was able to re-
duce server usage by 75% for the Apartment App and the HotRod App by 40%. However,
AutoTune did not register performance improvements because IMRs were already maximally
provisioned; during the performance improvement phase, there were no resources to transfer
because the impacted MRs were already maximally provisioned. Compared to the initial
deployments described in the end-to-end experiments (with 3 per machine), AutoTune iden-
tifies a deployment that is more performant but also more expensive. For instance, for the
HotRod application, starting from a maximally provisioned initial deployment results in a
final deployment that requires 2.5x more servers, but also achieves 2.2x better performance.

Randomized Initial Deployment: Table 2.2 demonstrates four such random deploy-
ments with the Apartment App. Note that in all cases, AutoTune was able to cut resource
usage by 57% — all while either improving or maintaining performance. Interestingly, re-
gardless of the initial performance, 3 out of 4 of the random initial deployments converged
to the same local optima. In the one auspicious scenario where the initial random deploy-
ment resulted in improved performance, AutoTune was able to converge back to that same
performance. For brevity, we elide results from other applications.

Random Dep. # # Server Reduction Init. Perf. (s) Fin. Perf. (s) % Improve

1 57% 68.3 45.2 33.8
2 57% 38.2 38.7 -0.01
3 57% 63.4 47.0 25.9
4 57% 58.5 47.9 18.1

Table 2.2: End-to-end runs of Apartment Application App with randomly generated initial
deployments
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w/o AutoTune | w/ AutoTune

Application Scaling Thres | Servers | Perf | Servers | Perf
MEAN 90% 11 1668 6 1630
Apartment App 90% 21 7919 13 7615
HotRod 90% 22 20781 18 21302
MEAN 10% 29 1141 14 1188
Apartment App 10% 25 7686 22 6158
HotRod 10% - - - -

Table 2.3: Server Usage and Performance resulting from horizontal autoscaling, compared
against use of AutoTune. Horizontal Autoscaler scales when avg. utilization exceeds scaling
thres

Horizontal Autoscaling: In Section 2.4, we discussed how AutoTune could be used
jointly with dynamic workloads. In this section, we presented two possible scenarios. In this
section, we step through the AutoTune-based solution where increased workload results in
performance degradation.

Upon a workload change, resource allocations revert to being overprovisioned (i.e., the
initial deployment) and will horizontally scale until some threshold in the scaling policy is
met. Suppose the operator decides that this (now stabilized) workload level occurs regularly;
the operator can optionally offline deploy AutoTune using that new workload level. Later,
when that workload level is encountered again, AutoTune can alter the resource allocations
without any operator intervention. What is the performance and resource efficiency advan-
tage of this approach over horizontal autoscaling? To this end, we deployed all three of our
microservice applications on Kubernetes, and enabled horizontal autoscaling (HPA). HPA in
Kubernetes implements a control loop that checks the average percentage utilization across
all pods, and scales up if that threshold is exceeded. We ran our experiments across two
separate utilization thresholds: 10% and 90%.

To simulate a sudden burst in load, we increased the workload by a factor of 10x. Upon
observing the performance degradation as a result of the increased workload, the horizontal
autoscaler would first take over, switching to an overprovisioned resource allocation. Rather
than falling back to this overprovisioned deployment everytime, the operator could record
the increased workload and subsequently run AutoTune on that higher workload.

The comparison between the horizontal autoscaling approach and AutoTune are in Table
2.3. Performance ranged from very slight decreases to 20% increases, while the number of
servers decreased between 12% and 52%. We omit the result of HotRod with 10% scaling
because it scaled aggressively beyond the capacity of our resources.

Robustness to Noise

As we discussed in §2.4, a microservice’s performance can be influenced by other colocated
programs, including programs running in other VMs belonging to other tenants, impacting
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Application % Server Reduction % Performance Improvement
Apartment 57 14
Apartment (w/ noise) 57 10
HotRod 42 4.6
HotRod (w/ noise) 42 1
MEAN 50 4
MEAN (w/ noise) 50 17

Table 2.4: Comparing AutoTune’s efficacy towards server reduction and performance increase
with and without noise.
1200 5

1100

)

[y
o
o
o

900

800

700 .
[ ]

99P Latency (ms
[ ]
[ )

600 [} ... o © [ ° o

° *%e o
500

LY O o © U
o ® o %|e,° °
400

3000 4000 5000 6000 7000

Concurrent Requests

1000 2000

Figure 2.8: Robustness of MEAN App performance with additional concurrent requests.
AutoTune used a workload of 2000 requests, indicated by the dashed vertical line.

the measurements that Privoxy relies on. We evaluate the impact of this by deploying our
application containers alongside containers running computation at random intervals. This
emulates the effect of a multitenant environment. The noisy neighbors run workloads that use
all resources i.e., CPU, disk, memory and network. To emulate multitenant environments,
these neighboring containers are pinned to a different core from the application under test.

Table 2.4 shows the server reductions across deployments with and without noise. Server
reductions remain unchanged while performance improvements varied somewhat (in both
directions). Note that the results in this table are deployed on a different instance type
(with more resources to facilitate the noisy neighbors) and should not be compared with
earlier end-to-end experiments.

Robustness to Workload Fluctuations

Privoxy’s mission is simple: given an initial deployment and a representative workload,
Privoxy tries to find a more efficient deployment (fewer servers) with at least as good perfor-
mance. One might worry that after this process of reducing servers, the resulting deployment
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would be so highly tuned that it would become very sensitive to workload fluctuations. This
would be bad, since fluctuations are inherent in customer-driven applications. Fortunately,
in our experience of running the applications we discuss here, the resulting performance is
not highly sensitive to small workload fluctuations. We illustrate this with an example.

We took the MEAN application, and then altered the workload by increasing the rate of
requests. Because the clients operate in closed request loops (request, then response, then
new request), we merely increased the concurrency of this loop to issue several simultaneous
requests. The original workload had a concurrency of 2000, and Figure 2.8 shows how
MEAN application performance changes as this level of concurrency is varied, while using
the deployment computed by Privoxy on the original workload. As shown in the graph, 99p
latency grows gradually until the number of concurrent requests triples (from 2000 to 6000
concurrent requests), at which point the performance starts degrading far more rapidly. At
this point, the operator would benefit from rerunning AutoTune with a workload consisting
of 6000 concurrent requests or more.

This fits with our general experience with Privoxy that application performance does
not suddenly degrade. One reason for this is that while the clampdown process produces
a tight resource allocation, once these allocations are used to produce a new deployment,
there are excess resources on each server because one typically cannot perfectly binpack the
microservices into a minimal set of servers. In addition, applications are typically designed
to degrade gracefully rather than fall off a cliff, and this might provide another reason for
resilience.

Resource Clampdown Phase Illustration

Now that we have examined Privoxy’s overall impact in terms of server reduction and ap-
plication performance, we focus in on the two phases of AutoTune to see where these im-
provements come from. In this subsection, we demonstrate the resource efficiency gains and
runtime of just Resource Clampdown Phase. Table 2.5 details the server savings as well
as the Clampdown runtime. In keeping with the previous sections, we provide two initial
deployment configurations: one container per machine, and three containers per machine.
Only one initial deployment is shown for MEAN stack, since the MEAN stack only has four
microservice instances. We find that in all cases resource utilization reduces at the end of this
phase, and that across applications this phase took between 30 minutes and 7 hours. This
time depends on several factors including the input deployment and the chosen workload,
and can hence be reduced by having the operator make appropriate choices.

Performance Improvement Phase Illustration

In this subsection, we evaluate the second phase of AutoTune: Performance Improvement.
Like the previous section, we start by providing an overview of its performance gains and
runtime. Next, we go a step deeper into the two primary mechanisms that underlie the
Performance Improvement Phase. First, we evaluate the effectiveness of resource stressing
for IMR identification. We then provide an example of how resource transfer works.
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Application Initial Servers Final Servers Iterations Clampdown Hours
Apartment App Write 21 3 3 1
Apartment App Write 7 3 4 1
Apartment App Mix 21 5 8 3.5
Apartment App Mix 7 4 4 1.75
HotRod 21 11 9 5
HotRod 7 4 6 4.4
MEAN Stack 4 2 4 1

Table 2.5: Running just Resource Clampdown on applications across two different initial
deployment settings.

Application % Improve Time (hr)
Apartment App Mix,99p latency 26 11
Apartment App Mix, 50p latency 30.4 16
MEAN Stack, 99p latency 65.9 9
MEAN Stack, 50p latency 45 10
HotRod, 99p latency 6 12

Table 2.6: Overall Performance gains from gradient step in performance hill climbing.

Performance Improvement Phase: results

We start by providing overall results from applying Performance Hill Climbing to these
applications, before evaluating the individual steps in this phase. Table 2.6 shows the per-
formance improvements in this phase, showing that Performance Hill Climbing in these cases
improves application performance by between 17% to 66%. While achieving this improve-
ment takes several hours for some applications, this is determined by the performance metric
and workload selected by the operator, and hence depends on the setting in which AutoTune
is used.

Application Single MR % Improve Most impacted?
Apartment App Write Node, CPU 304 Yes
Apartment App Mixed  Node, CPU 16.1 Yes
HotROD App. Api, CPU 16.1 Yes
MEAN Stack Node, CPU 55.5 Yes

Table 2.7: Effect of Provisioning more resources to the Most Impacted MR on the first
iteration of the Performance Hill Climbing Phase.
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Performance Improvement Phase: Stressing Effectiveness

We dive a level deeper and explore the inner workings of AutoTune, starting with the fun-
damental mechanism of AutoTune: resource stressing. The ability to determine the relative
sensitivity of an MR underlies AutoTune’s effectiveness. Since AutoTune uses stressing to
infer something about each MR, false positives are possible in the Performance Improvement
Phase. While we empirically have found that AutoTune does not require an exact, complete
ordering of MR sensitivity, the algorithm revolves around two basic tasks that are important
to get right. The first is identifying the most impacted MR, as it is the most direct way of
improving AutoTune performance in the Performance Improvement Phase. The second is to
distinguish impacted MRs from non-impacted MRs, since we only want to transfer resources
to impacted MRs. In this subsection, we illustrate how effectively AutoTune accomplishes
these two goals for the applications we tested.

First, we demonstrate that resource stressing is an effective way of identifying the most
impacted MR. Table 2.7 shows that in every application that we tested, AutoTune was able
to identify the most impacted MR correctly. We confirmed that the MR was indeed the
most impacted by exhaustively increasing each MR’s resource allocation and measuring the
resulting performance.?

Next, we look at AutoTune’s ability to positively identify an impacted MR. We illus-
trate IMR identification with an example using the MEAN stack. Figure 2.9 shows the
measured end-to-end performance resulting from stressing the a single MR. Note that we
omit some MRs from the figure for clarity; the MRs we removed did not impact perfor-
mance when resource allocation was decreased. Based on this result of this gradient, Auto-
Tune would identifies following MRs as being IMRs: (Node, cpu), (Mongo, memory), and
(Mongo, cpu). When compared to the the actual performance improvements for the same
MRs (Figure 2.10), we see that provisioning more resources to those exact three MRs results
in performance gains. The other MRs — correctly identified as NIMRs — did not result in

2Note that we can do this kind of resource increase for this special test, but when running Privoxy such
increases are not possible because they typically violate the resource constraints on the server.
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significant performance improvements when the resource allocation was increased. For the
MEAN stack, the stressing mechanism positively identified all the IMRs. Additionally, note
that provisioning more resources to the most impacted MR causes end-to-end performance
to improve by 752 ms (which is nearly 30%). It is important to re-emphasize here that the
Performance Improvement Phase makes no guarantees about the exact magnitude of the
performance improvement upon the mitigation of the bottleneck.

We observed similar behavior among the Hotrod and Apartment Apps.

Performance Improvement Phase: Resource Transfer Example

Now that we have shown that AutoTune can positively identify IMRs, we discuss concretely
how resource transfer works. The gradient phase improves performance by transferring
resources between less impacted MRs and more impacted MRs. Transferring resources in this
way should work well if everything was cleanly linear in behavior. However, this assumption
does not hold in practice, and simultaneously taking two actions (e.g., moving resources
from an NIMR to an IMR) can yield unexpected behavior.

To evaluate how well this works in practice, we observed the ability of AutoTune to trans-
fer resources in various setups. Within the Apartment App, we zoomed into the ELK stack,
which consists of three microservices: Elasticsearch, Logstash, and Kibana. CPU-Quota was
initially evenly distributed between Elasticsearch and Kibana. The baseline performance
under this configuration was measured to be 31.49 seconds. In the first iteration, AutoTune
identifies Elasticsearch CPU-Quota as the most impacted MR. Upon reducing the resource
allocation of (Kibana,cpu — quota) by 25% and increasing (Elasticsearch,cpu — quota)
by the same amount, performance improved to 28.48 seconds, equivalent to the perfor-
mance exhibited simply by improving (Elasticsearch, cpu — quota) by 25% whilst leaving
(Kibana, cpu — quota) to be constant. We observed similar behavior for the MEAN stack.

While this does not cover the space of all application behaviors (even within the applica-
tions that we explored), thus far we have not seen an application where transfering resources
from a correctly identified non-impacted MR and provisioning it to a correctly identified
most-impacted MR has resulted in undesirable behavior. In the event of this undesirable be-
havior, AutoTune is capable of detecting it. Once detected, the backtrack step would simply
take over and ultimately undo the resource transfer.

Additional Issue: Effect of Interference

In this section, we dive into the issue of interference, which we discussed in Section 2.4
(Additional Issues). In particular, we illustrate how AutoTune copes with interference on
the HotRod application, the only application we tested where placement contributed to the
application performance. This is because the HotRod applications exhibits a significant
number of compute-impacted MRs. AutoTune empirically detects interference by measur-
ing the clamped down performance with the original placement and compares it with the
performance on the new compacted placement. For the HotRod application, performance
degraded by 12% — despite having the same resource allocations.
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Recall that AutoTune reduces the likelihood of new interference by 1.) preserving colo-
cated microservice instances from the initial deployment and 2.) exclusively assigning core(s)
to those microservices. Upon applying affinity-based placements and core pinning, perfor-
mance degradation upon clampdown decreased to 2%. With this mechanism, more compute
resources were utilized, but the number of packed nodes remained constant. Ultimately, for
this version of the HotRod application, this simple mechanism improves performance after
the clampdown phase at no additional cost to the operator. There are clear limitations
to this approach, especially when all compute MRs are similarly impacted. Our solution
here does not attempt to exhaustively eliminate container interference; other projects have
addressed this problem extensively [91, 140]. Nevertheless, in the only case where our appli-
cations encountered interference, the combination of core pinning and invariant placement
sufficiently mitigated the effect of placement on performance.

2.9 Related Work

Recent work to determine resource allocations has largely focused on provisioning resources
for individual microservices, rather than considering complex dependencies in end-to-end
heterogeneous microservice applications. These projects can take either a data-driven or
domain specific approach. Examples of work that adopt the data-driven approach include
Paragon [44] and Quasar [45] that rely on microarchitectural details to reduce colocation
overheds. While these works do not make any assumptions about the application, and
can account for behaviours such as noisy neighbors (which are ignored by AutoTune), they
cannot scale to applications containing several microservices. Domain specific approaches
include work such as Ernest [145], CherryPick [6] and Paris [153] which make strong assump-
tions about application structure (e.g., assuming map-reduce like data parallel frameworks)
or that the application is comprised of homogeneous services. Other approaches to the re-
source allocation problem have relied on the use of instrumentation and custom tooling to
infer application dependencies. This approach adds performance overheads and increases
system complexity complexity. Sieve [138] considers performance across multiple microser-
vices, but requires instrumentation like sysdig or dtrace, with overhead of up to 100% in the
worst case [48]. Additionally, these tools suffer from causation ambiguity and leads to high
rates of false positives [86, 77]. Other proposed systems allow operators to infer performance
behaviors of various systems, but they largely require significant modifications to the hy-
pervisor or to the application under test [64, 65] or only explore performance improvements
along a single resource dimension (e.g., network) [65, 111, 22]. Other works have suggested
improving application performance through profiling programs and optimizing code [39, 101,
24]; these provide a different set of knobs from impacted MR allocations, and thus can be
jointly used with AutoTune to improve application performance. Past proposals on resource
scheduling [50, 96, 59] assume that the administrator provides resource requirements as
input; thus we view these work as complimentary.
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2.10 Conclusion

It is important to consider Privoxy relative to its goals. Privoxy was not intended to provide
optimal performance, nor optimal efficiency, nor provable guarantees, nor to work well with
arbitrarily varying workloads. Instead, it was designed to be easy-to-use (operators need only
provide an initial deployment, a representative workload, and a performance metric) and
generally applicable (it does not make any assumptions about the nature of the application)
tool that reduces the number of servers needed to deploy applications while maintaining (or
improving) performance. We believe Privoxy achieves this goal, and we are not aware of
any other tool that does so. However, only widespread use of Privoxy will allow us to fully
understand its limitations, which hopefully will lead to further improvements.
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Chapter 3

Privacy Policy Enforcement for Web Applica-
tions

3.1 Introduction

Many modern web applications use relational databases to store and retrieve data. This data
is usually subject to policies that limit who can access the data. These policies can arise
from several sources. For example, it is now common for web applications to support privacy
settings that allow users to limit visibility of their data to a small subset of other users. In
addition, there are general legal regulations such as GDPR and CCPA that limit how data
can be shared, and certain kinds of data are subject to more restrictive policies such as
HIPAA and FERPA in the U.S. Moreover, some institutions impose their own policies for
internal security or privacy reasons.

At present, web developers implement application specific logic to enforce data privacy
policies. In most cases an application’s permission checking logic relies on session context
(e.g., to identify what user is logged in) and metadata retrieved from the database (e.g., to
identify what they can access) in order to determine whether or not a request complies with
data protection policies. Getting this logic correct is challenging, and has previously been a
source of bugs in production websites [135, 82, 81, 8, 98, 60].

As a result, there has been significant research focused on building tools, frameworks,
and languages to simplify the enforcement of data protection policies. While we delay a
discussion of these approaches to §3.8, these approaches either (i) only support programs
written using specific languages and APIs and so cannot be applied to existing applications,
or (ii) rewrite query results to remove data that would violate data protection policies, which
could result in unexpected application behavior (e.g., the user has no idea that there are
missing results).

In this paper, we propose an alternate approach to enforcing data protection policies that
meets four goals:

e Policy expressiveness: The approach should be able to enforce a wide range of
realistic data protection policies.
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e Backwards compatibility: The approach should apply to applications built using
common web frameworks without requiring significant code modification.

e Semantic transparency: The approach should not impact application semantics.
It should instead fully answer queries that comply with protection policies, and com-
pletely block any queries that violate these policies (rather than providing partial, and
perhaps misleading, results for non-compliant queries).

e Low overhead: The approach should have limited impact on the application’s page
load time.

We build a system called Privoxy that meets these four requirements. Privoxy interposes
a proxy between a web server and its backend database, dynamically verifies that queries
issued by the web server comply with data protection policies, and rejects non-compliant
queries. In Privoxy, policies are expressed as a set of authentication views, but queries
are issued against base tables (rather than the views). Compliant queries are forwarded to
the database, while non-compliant queries result in an error that the application needs to
handle. We assume that in production environments non-compliant queries are rare (having
been mostly eliminated during testing), and focus on the efficiency of handling compliant
queries.

Privoxy (Figure 3.1) uses SMT solvers to check query compliance. This requires access
to not just the query, but also a trace of all previous queries issued by the request and
their results because what data is accessible to a user is often determined by additional
metadata stored in the database, which could have been accessed by a previous query. The
basic technique employed by Privoxy is to convert the query to be checked, the trace of past
queries and results, and policies into first-order logic formulas and use an SMT solver to check
the satisfiability of the resulting formulas. As we explain later, the SMT solver returns an
unsatisifiability proof when queries comply with policies, and a test demonstrating violations
in the other case.

While correct, this basic approach is impractical since it can add significantly to page-
load times. We address this problem by first generalizing and then caching query compliance
checking results. We use the unsat-core [129] generated by the SMT solver for compliant
queries to identify a class of other queries that are guaranteed to also be compliant. The
resulting generalization is cached, and the cached result is used whenever the application
issues a query belonging to this general class. Note that this approach does not allow us to
cache results for non-compliant queries (because there is no unsat-core).

Implementing SMT-based compliance checking, generalization, and caching required ad-
dressing several challenges:

e Extending existing approaches for translating queries into first-order logic to cover most
queries that appear in practical web applications. To do this, we developed techniques
to rewrite complex SQL queries into basic queries that can be converted into first-order
logic (§3.4).
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Figure 3.1: An overview of Privoxy

e FEfficiently checking query compliance using SMT solvers. This requires invoking mul-
tiple SMT solvers in parallel (§3.2) and finding an over-approximation that improves
checking performance for non-compliant queries (§3.4).

e Generating unsat-cores that improve cache hit rates (§3.5).

We have implemented Privoxy and evaluated its efficiency using diaspora*® [46], a social
networking application. We found that our approach imposes modest page load overheads
of 7-11% when queries are cached.

Privoxy has some important limitations. Specifically, it assumes that the application
obtains all of its information from the database through SQL queries that are visible to the
proxy. If an application can obtain additional information through other means, policies
could be violated. Furthermore, Privoxy only supports a subset of SQL, as described in
§3.4, and is at the mercy of solver performance and unsat-core size.

3.2 System Design
Application Assumptions and Threat Model

Privoxy targets web applications that store persistent data in a relational database and inter-
act with the database using SQL. We assume that a user is logged in (i.e., we do not model
authentication) and that the current user’s identifier is stored in a request context. The
application has access to the database and the request context when serving a web request;
each request is handled independently from others. We assume that the application authen-
ticates the user correctly, and that the correct request context is sent to the enforcement
system (§3.2).

A privacy policy dictates, for a given request context, what information stored in the
database is accessible to the user and what information is inaccessible. Any information
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outside the database is assumed to be public knowledge. We assume that the user only
interacts with the application by sending web requests and inspecting the responses, and
does not observe any side channels such as running time.

Finally, as a simplifying assumption, we only focus on privacy enforcement for database
reads as done in prior work [lefevre0O4:hippocratic, stonebraker74:acl, 4, 15, 16, 20, 67,
123, 131, 150] since reads are more likely subject to fine-grained privacy policies. We briefly
discuss how to extend Privoxy to handle database updates in §3.9.

System Overview

As a privacy enforcement system, the most basic requirement of Privoxy is soundness: It
must prevent the application from leaking information that is inaccessible to the user. How-
ever, as it is challenging to achieve both soundness and completeness, we accept that Privoxy
may reject certain application behavior even when this does not violate data privacy policies.
We discuss a main source of such false positives in §3.2.

Privoxy is a proxy that sits between the application and the database (Figure 3.1). It
monitors SQL queries issued by the application and rejects those that could expose informa-
tion that should be inaccessible to the user. It takes (1) the database schema and (2) the
privacy policy specified as database views (§3.3) as configuration, and checks privacy com-
pliance for each web request handled by the application separately.

At the start of serving a web request, the application informs Privoxy of the request
context (e.g., the user ID), which will dictate, in conjunction with the privacy policy, what
information is accessible to this request. Then, every SQL query issued by the application
traverses Privoxy, which attempts to verify that the query can only reveal information ac-
cessible to the current user; if this is the case, we call the query compliant (formally defined
in §3.3), and pass it on to the database without modification. If verification fails, the query
is blocked.

Privoxy verifies query compliance by encoding the conditions for non-compliance into an
SMT formula (§3.4) and checking its satisfiability by invoking an ensemble of SMT solvers
in parallel (§3.6). As we found that no single SMT solver delivers the best performance on
all queries, we adopt this ensemble approach to reap the benefit of the fastest solver for each
query. If all solvers time out, Privoxy conservatively blocks the query.

One challenge in verifying compliance is that a query’s compliance can depend on the
outputs of previous queries issued in the same request. For example, a bulletin board appli-
cation might issue a first query to check whether the user is authorized to view a post and,
only if so, issue a second query to fetch the post content. The second query, while compliant
in this context, would not have been compliant had there not been a previous query that
determined the user is authorized.

To address this problem, Privoxy maintains a trace of all queries and responses it has
seen so far in the current request, and checks query compliance in the context of this trace.
As we assume the application serves different requests independently, Privoxy can safely
clear the trace after a request ends.
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Privoxy sits on the critical path of request handling and thus can impact application
performance. Unfortunately, calling SMT solvers for every single query incurs significant
overhead. To reduce this overhead, Privoxy caches compliance decisions rendered by SMT
solvers so that it can bypass the solvers in the future (§3.5). As it is unlikely to encounter
the exact same query (and trace) many times, we generalize a compliance decision to make
it applicable to other queries of the same form (e.g., as issued when a different user visits
the same URL with different parameters), thus improving cache hit rates. Our cache gener-
alization technique relies on extracting unsatisfiability cores from SMT solvers indicating a
subset of assumptions that are sufficient to make a query compliant.

Required Code Changes

Porting an application to Privoxy requires three modifications. First, the application must
cleanly handle rejected queries, presumably by returning some error message. Second, it
must send the request context (e.g., user ID) to the proxy at the start of each request. To
explain the third requirement, we note that in HotCRP when a user attempts to view a
paper submission, HotCRP directly fetches the requested paper from the database and then,
after the fact in application code, checks whether the user is authorized to view the paper.
Privoxy would block this pre-emptive fetch of the requested paper. Thus, the application
must be modified to not request information that it does not plan on revealing to the user,
so that it does not incur spurious blocked queries.

In §4.7, we report that porting an existing social networking app to Privoxy requires less
than 10 lines of code change.

3.3 View-based Policy and Compliance

As mentioned in §3.2, Privoxy expects privacy policies to be specified using database views.
Views are a well-established access control mechanism in databases, having been studied
for at least three decades [103]. As views are defined in SQL, we expect it to be easy for
programmers to specify policies without having to learn a separate policy language.

In this section, we introduce how to specify a privacy policy using views (§3.3) and what
it means for a query to be compliant to such a policy (§3.3). While the specification scheme
is borrowed from the database literature, a novel compliance formulation is required due to
a crucial difference in our use case: While databases require queries to be written in terms
of the views, our target applications, having no knowledge of the views, issue queries against
the base tables only. We contrast Privoxy with databases in more detail in §3.8.

To help with the explanation, we will use as a running example a simple calendar web
application backed by a relational database with the following schema:

Users(Uld, Name, IsAdmin),
Fvents(EILd, Title, Duration),
Attendances(Uld, EId, ConfirmedAt),
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where primary and unique keys are underlined. Separately, the developer also specifies a
request context; in this case, it consists only of a single parameter MyUId, which denotes
the Uld of the currently logged-in user.

Specifying Policies as Views

In Privoxy, a privacy policy consists of a set of views, each of which is a SQL query that
selects information that should be accessible to the request context (here, the logged-in user).
A view definition can refer to parameters from the request context, allowing the policy to
differ depending on the context. Each view can be thought of as a “rule” granting access
to certain data, and the information exposed by the views taken together constitutes the
entirety of accessible information.

We will illustrate this scheme with three examples views definitions, where ?MyUId refers
to the current user ID.

Example 3.3.1. The rule “the current user can view everyone’s user information” is cap-
tured by view V;:

SELECT * FROM Users

Example 3.3.2. The rule “the current user can view all events they attend” is captured by
view V!

SELECT * FROM Events e, Attendances a
WHERE e.EId = a.EId AND a.UId = 7MyUId

This view joins the Fvents and Attendances tables to find events attended by the current
user, who is identified by the request context parameter MyUId.

Example 3.3.3. The rule “the current user, if they are an admin, can view all events” is
captured by view Vj:2

SELECT e.*x, a.x*
FROM Events e, Attendances a, Users u
WHERE e.EId = a.EId AND

u.UId = 7?MyUId AND u.IsAdmin

If the current user is an admin, V3 returns all event and attendee information; if not, Vj
returns empty as expected.

Using these three views, we can write down the privacy policy for this calendar application
as V = {Vi, V5, V3}, encompassing all information accessible to the current user. We call it
“policy V" for brevity.

'For simplicity, view Va does not reveal the other attendees of a meeting. If desired, this information
can be included using a self join on Attendances.
2For simplicity, we assume that each event has at least one attendee.
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Compliance to View-based Policy

Suppose the application, while handling a request, has issued queries (1,...,Q,_1 and
received a response for each query. It now issues query @,. Intuitively, we say that @, is
compliant to a policy V if the query, executed on any database instance D, reveals no more
information than the views in V do, assuming that (1) D conforms to the database schema,
and (2) D is consistent with the outputs of previous queries Q1,...,Qp_1.

Before formally defining compliance, we discuss three example queries and their compli-
ance to the policy V from §3.3.

Example 3.3.4. The query Q;:

SELECT UId, Name from Users
is compliant, since the information it reveals is a subset of V.
Example 3.3.5. The query Q:

SELECT Title FROM Events WHERE EId = 5

is not compliant—on a database D where the current user is not an attendee of Event #5
and not an admin, this query reveals information not covered by V.

While the previous two examples feature one query only, our next example comprises a
trace of two queries, where the second query’s compliance depends on the first query.

Example 3.3.6. Suppose MyUId = 2. The application first issues a compliant query Q7:

SELECT * FROM Attendances
WHERE UId = 2 AND EId = 5

and gets back a row, indicating that User #2 attends Event #5. The application then issues
a second query (Q5:

SELECT * FROM Events WHERE EId = 5

This is the same query as the non-compliant query from Example 3.3.5, but it s compliant in
this context because here we only consider databases D that are consistent with the output
of Q7. In other words, given that Q)] establishes the current user’s attendance at Event #5,
query ()5 is compliant.

Definition 3.3.7 (Query compliance given trace). We say that a query @ is compliant to
a policy V given a trace of query—output pairs {(Q;, O;)}'—]' if for every pair of databases
Dy, D5y that conform to the schema and satisfy:

Qi(Dy) = O, Vi<i<n-—1)
Qi(Ds) = O, Vi<i<n-—1)
V(Dy) = V(Dy), (VV eV)
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we have Q(D;) = Q(Dy).

This definition requires that any two databases that are consistent with the trace and
agree under every view in }V must also agree under (). In other words, the output of @ is
uniquely determined by V among the databases under consideration.

Open Question: Complexity of Compliance

Our definition of query compliance is a generalization of query determinacy [107, 128|, which
is equivalent to compliance given an empty trace. Query determinacy is undecidable even
when views and queries are restricted to conjunctive queries [54, 53]. Although several
decidable cases have been proposed [107, 3, 113], they are not expressive enough for our use
case.?

However, given our success in deciding compliance using SMT solvers (§3.7), we hypoth-
esize that there exists a natural class of views and queries, which captures the privacy use
case, for which determinacy, and compliance, are decidable. Identifying such a class and

showing the complexity of compliance checking is a promising avenue for future work.

3.4 Compliance Checking with SMT

In this section, we describe how we verify compliance using SMT solvers. Our approach is
based on the correspondence between relational algebra, on which SQL is based, and first-
order logic [37]. This correspondence allows us to formulate (the negation of) compliance as
an SMT formula (§3.4).

Unfortunately, this formulation does not trivially extend to practical queries because
SQL semantics are beyond that of basic relational algebra. In §3.4, we discuss how to
rewrite practically relevant SQL queries into basic relational algebra, enabling the use of
SMT solvers.

Even if we are able to encode the compliance property into first-order logic, checking
satisfiability using a SMT solver can take unbounded time. Empirically, while the solvers
can typically check compliant queries in a reasonable amount of time, they time out on
non-compliant queries. To solve the latter case, in §3.4 we formulate an alternative “size-
bounded” formula that allows the solvers to quickly find small models for non-compliance,
which we demonstrate in §3.7 to be sufficient in many practical cases. Privoxy checks the
size-bounded formula after the regular formula times out, an indication that the query is not
compliant. We introduce two other optimizations for compliant queries in §3.4.

Translating Compliance to SMT

Given a schema, policy, trace, and query, we formulate the negation of query compliance (Def-
inition 3.3.7) as an SMT formula F’; the query is compliant if and only if F' is unsatisfiable.

Our formulation is based on a fundamental result in database theory stating, informally,
that relational algebra (RA) under set semantics has the same expressiveness as first-order

3Furthermore, every study of query determinacy we are aware of assumes set semantics only, and do not
consider bag / SQL semantics (§3.4).
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logic (FOL) [37]. Relational algebra consists of five basic operators—projection, selection,
cross product, union, and difference—and relations (including tables and query results) are
interpreted as sets of rows, i.e., no duplicates. Under this equivalence, tables correspond
to relations in FOL, and the operators can be implemented using existential quantifiers,
conjunctions, disjunctions, and negations. We illustrate this translation with examples.

Example 3.4.1. Using our running example (§3.4), we translate into FOL the following
query () executed on a database D:

SELECT e.EId, e.Title
FROM Events e, Attendances a
WHERE e.EId = a.EId AND a.UId = 2

Let EP(-,-,-) and AP(-,-) be relations in FOL representing the Events and Attendances table
in the database D, and write:

QP (Xe, %¢) = T g, Ty, 71, e EP (Xe, Xty 2q) A AP (24, 7, 220)

AXe =1, A\ X, = 2.

QP (xc, %) corresponds to the statement that (x.,x;) € Q(D), i.e., that the row (v.,v;) is
returned by @ when executed on database D. Note that Q” is not a symbol in FOL, but
merely a shorthand that “expands” to the right-hand side.

Example 3.4.2. We now write down a formula for the non-compliance of the single query @
above, with respect to policy V = {V;, V5, V3} from §3.3, according to Definition 3.3.7.

Let D; and D, be databases that follow the example schema, and write down FOL
encodings, V?”,Vf",VgDi, and QPi, for the views and query on database D; (i = 1,2) as
in Example 3.4.1. Then, the desired formula F' is the conjunction of:

VZVH(T) < V72 (T), (Vi(Dy) = Vi(Dy))
VIV (T) ¢ V' (T), (Va(Dr) = Va(Dy))
VIV (T) < V5 (7), (Va(D1) = V3(Dy))
3z [QDl( )+ Q2 (z )] ) (Q(Dy) # Q(D2))

where T denotes a distinct sequence of variables. If formula F' is satisfiable, then we have
found a pair of databases D; and D, that are equal under all views in V but not under
query (), indicating that ) is not compliant. Conversely, if formula F' is unsatisfiable, then
Q is compliant.

For ease of exposition, we omitted the encoding of primary key constraints or consistency
with prior query—output pairs in these examples, but they can be encoded similarly.
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Handling Practical SQL Queries

While the translation from relational algebra to first-order logic is straightforward, it does
not trivially extend to real-world SQL due to two major semantic gaps:

1. While the translation assumes that relational algebra is evaluated under set semantics,
in practice databases use a mix of set, bag, and other semantics when evaluating
queries. For example, a SQL SELECT clause can return duplicate rows, while UNION, a
set operator, removes duplicates.

2. SQL supports operators beyond basic RA operators including aggregations and sorting.
These non-relational operators cannot be trivially translated into first-order logic.

To handle more complex SQL semantics, we first need to assume that the tables in our
database contain no duplicate rows. It suffices for the schema to contain a primary key in each
table, which is the case in many web applications since object-relational mapping (ORM)
libraries like Active Record* and the Django ORM?® add primary keys by default.

Given this assumption, our general approach is to rewrite complex SQL queries into
basic queries (§3.4) that we can handle. We describe rewriting strategies for many classes
of queries encountered in applications, and point out SQL features that our rewriting does
not currently handle (§3.4).

Basic SQL Queries
Definition 3.4.3. We call a SQL query basic if it:

1. Is a SELECT-FROM-WHERE clause on base tables, where the WHERE conditions are com-
posed of logical and equality operators;® or a UNION of such SELECT clauses; and,

2. Never returns duplicate rows.

It follows that a basic SQL query, when executed on a database with no duplicate rows,
corresponds directly to RA under set semantics, and thus can be translated into FOL as
in §3.4. We could have also allowed the MINUS operator in basic queries; we omitted it as it
is not used in our evaluation.

To determine that a query is basic, we first ensure that it falls into one of the two syntactic
categories. And then, for each category, we ensure that the query returns no duplicate rows:

1. If the query consists of a single SELECT clause, we check that it satisfies one of these
sufficient conditions:

e [t contains the DISTINCT keyword.

‘https://edgeguides.rubyonrails.org/active_record_basics.html
Shttps://docs.djangoproject.com/en/3.2/topics/db/models/
SIn fact, we can also support any operator implemented by an SMT solver (e.g., integer comparison).
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e It projects primary / unique key column(s) from every table in
FROM, e.g., SELECT UId, Name FROM Users.

e Its returned rows are constrained by primary key / uniqueness in its WHERE clause.
For example, for the following query to return the value x multiple times:

SELECT e.EId FROM Events e, Attendances a
WHERE e.EId = a.EId AND a.UId = 2

there must be multiple occurrences of the row (2,z,?) in the Attendances table,
which is impossible.

2. If the query is a UNION of SELECT’s, it cannot return duplicate rows as the SQL UNION
operator removes duplicates.

In our experience, policy views can typically be defined directly as basic queries (e.g.,
Vi—Vj from §3.3), and so we currently only support policy views defined as basic queries.

Rewriting Into Basic Queries

When an application issues a complex query, the checker rewrites it into a basic query.
Ideally, we would like the rewritten query to be equivalent to the original. When this is not
possible, we approximate a complex query ) with a basic query @’ such that Q' reveals at
least as much information as @ does.” Such approximation preserves soundness but might
sacrifice completeness.

We now describe how to rewrite several classes of complex queries that we encounter in
our evaluation.

Inner joins. A query of the form:
SELECT ... FROM R1 INNER JOIN R2 ON Cl1 WHERE C2

is equivalently rewritten to the basic query:
SELECT ... FROM R1, R2 WHERE C1 AND C2

Left joins on foreign key. For a query of the form:
SELECT ... FROM R1 LEFT JOIN R2 ON R1.A = R2.B ...

If R1.A is a foreign key into R2.B, then the query can be equivalently written as an inner
join, which is handled above.

Order-by and limit. We ensure that the ORDER BY columns are included in the query
output, and can then safely discard the ORDER BY clause. We also discard any LIMIT clause
but, when adding this query to the trace, use a modified condition O; C D(Q;) (instead of
“=") to indicate that the checker may have only observed a partial result.

Aggregations. We approximate SELECT COUNT(*) FROM R with SELECT * FROM R.

"We simply guarantee that @) can be computed from the result of Q’.
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Left joins. Left joins of the form:
SELECT DISTINCT A.x FROM A LEFT JOIN B ON C1 WHERE C2
can be equivalently rewritten to the basic query:

(SELECT A.* FROM A INNER JOIN B ON C1 WHERE C2)
UNION
(SELECT * FROM A WHERE C3)

where C3 is obtained by replacing each occurrence of B.? with NULL in C2 and simplifying
the resulting predicate.®

Nulls. SQL NULLs exhibit special semantics—most comparisons involving NULL return un-
known, which is propagated through logical connectives according to the three-valued Kleene
logic [18]. We currently model NULL as just another regular value in the data type. This
leads us to over-approrimate the information fetched by a basic query, which is sound for
the query being checked. While not sound for policy views in general, this model does pre-
serve semantics for the class of views we encounter in our evaluation—basic queries whose
WHERE clauses are a conjunction of equalities with at least one non-NULL operand. In future
work, we plan to model NULLs systematically using a two-valued semantics of SQL [61, § 6].
Feature not supported. We currently do not support SQL features such as GROUP BY
clauses, the ANY and EXISTS keywords, etc., although it is possible to similarly approximate
these features using basic queries. Prior work has studied other formalisms that model more
complex SQL semantics [29, 35, 143, 142, 149, 34, 151], and in the future we plan to leverage
them to model SQL queries more precisely.

Finding Small Models for Non-compliance

As we show in §3.7, the SMT formulation from §3.4 allows off-the-shelf SMT solvers to check
compliant queries within hundreds of milliseconds. On non-compliant queries (i.e., satisfiable
formulas), however, the solvers time out on moderately sized schemas where tables have up
to tens of columns. Empirically we found that finite model finders in CVC4 [121] and
Vampire [119] return quickly when tables have few columns, but either time out or run out
of memory on larger tables. While it is sound to block a query whose compliance cannot
be decided, the developer is left unsure whether compliance is violated or simply cannot be
ascertained.

To check non-compliant queries faster, we rely on the observation that non-compliant
queries encountered in practice typically enjoy a small counterexample property—there ex-
ist databases D; and D,, where each table has a small number of rows, that violate the
conditions set forth in Definition 3.3.7.

Driven by this observation, we formulate a special size-bounded SMT formula where the
size of each table in databases D; and D, is bounded by a constant. For example, a Users
table with a size bound of 2 can be represented as follows:

8 As long as C2 contains no negations, it is safe to treat a NULL literal as FALSE when propagating through
or short-circuiting AND and OR operators.
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UId Name IsAdmin \ Exists?

LTyl Tn,l La, by

Tu2 Tn2 La,2 by

)

where the x variables are symbols representing table content, and each b; is a Boolean
encoding whether row ¢ exists.

Under this size-bounded table encoding, we can translate relational algebra into a simpler
SMT formula without using any relation symbols or quantifiers. For example, the query:

SELECT IsAdmin FROM Users WHERE UId = 5

can be written as: ,

Q(x,) = \/ (Tui =D ANZgi =% A b;),
i=1

while the regular formulation (§3.4) would have used a relation symbol and an existential
quantifier. As we show in §3.7, such simple formulas can be discharged by solvers quickly.

The main downside to this formulation is that when two tables are joined, the formula
size grows multiplicatively in table sizes. Therefore, this encoding is only feasible with small
size bounds. In our evaluation, we set a table’s size bound to be two plus the number of
rows required to produce the previous query results, although we can increase this bound if
needed.

Other Optimizations

We now describe two optimizations for the compliant case.

Column-based filtering. If the policy contains a view of the form

SELECT C1, C2, ..., Ck FROM R, then any query that references only columns R.C1, ...,
R.Ck must be compliant. Privoxy accepts such queries without SMT solving. As we show
in §3.7, this optimization filtered out 7% to 42 % of queries on our evaluation benchmarks
(Table 3.1).

Strong compliance. We tweak Definition 3.3.7 to get the definition of “strong compli-
ance” by replacing query/view equality with containment.

Definition 3.4.4 (Strong compliance). A query @Q is strongly compliant to policy V given
trace {(Q;,0;)}= if for each pair of databases D, Dy that conform to the schema and
satisfy:

Qi(D1) = O, (VI<i<n-—1)
Qi(Dq) = O, Vi<i<n-—1)
V(Dy) € V(Ds), (VV eV)

we have Q(D1) C Q(D2).
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It follows that strong compliance implies compliance. We found that the Z3 and Vampire
can verify strong compliance faster (when it holds), and so we use it as a fast-path check.
We still solve the regular formula with CVCA4.

Remark 3.4.5. In the other direction, compliance does not imply strong compliance. In
fact, when the trace is empty and the views V and query ) are conjunctive queries (CQs),
compliance holds iff V determines @ (§3.3), and strong compliance holds iff @) has a CQ
rewriting using V' [87, 68]. It has been established that for CQs, determinacy does not
coincide with the existence of a rewriting [108, 3]; this implies that compliance and strong
compliance are not equivalent.

However, strong compliance coincides with compliance for every query encountered in
our evaluation. This observation leads us to hypothesize that the two notions are equivalent
for a large class of queries encountered in practice.

3.5 Decision Generalization and Caching

While SMT solvers can verify a wide range of queries, they often take significant time to do
so. As we show in §4.7, while a solver typically checks a query within 200 ms, a page load
can consist of tens of queries, resulting in seconds of overhead.

Therefore, we aim to to avoid calling solvers whenever possible. To do so, we rely on
the observation that, while an application can issue an unbounded set of queries at run
time, it only exhibits a finite number of different behaviors. For example, two users viewing
different events on a calendar app trigger two distinct sequences of queries. However, the
two sequences are generated by the same program logic, and are thus likely to be identical
in structure while differing only in parameters (e.g., event ID). If a solver deems the first
sequence compliant, we can generalize this knowledge to conclude that the second sequence
is also compliant without calling any solvers again.

This generalization step is the central challenge we tackle in this section: Given a query
that has been deemed compliant with respect to a trace (§3.3), how to abstract this query—
trace pair into a decision template such that (1) any query-trace pair that matches this
template is compliant, and (2) the template is generic enough to match traces produced from
similar requests. We do not generalize non-compliant decisions, which are less performance-
sensitive as they typically indicate a bug in the application, to be fixed by human interven-
tion.

We present a concrete example of such a decision template in §3.5. We then describe how
we generalize compliance decisions into generic templates by extracting unsatisfiability cores
from the solvers (§3.5). Finally, we introduce Privoxy’s decision cache, which stores these
templates and uses them to declare new queries compliant, without calling solvers, whenever
a new query-trace pair matches a template (§3.5).

Motivating Example

Let us return to our running example, the calendar application (§3.3). Suppose a user whose
Uld = 1 visits the URL /events/42 to view Event #42. To serve this request, the application
issues a trace of SQL queries, shown in Figure 3.2 (every query except the last is followed by
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1. SELECT * FROM Users WHERE UId = 1
e (UId=1, Name=John Doe, IsAdmin=false)

2. SELECT * FROM Attendances
WHERE UId = 1 AND EId = 42

e (UId=1, EId=42, ConfirmedAt="05/04 1pm")

3. SELECT * FROM Events WHERE EId = 42

Figure 3.2: An example trace of queries generated by a calendar application when a user
(with user ID 1) views Event #42. Every query except the last is followed by its returned
rOWS.

SELECT * FROM Attendances
WHERE UId = |?MyUId| AND EId = |70]

e (UId = 7MyUId, EId = 70, ConfirmedAt = %)

SELECT * FROM Events WHERE EId = [70]

Figure 3.3: The decision template generated from the trace in Figure 3.2.

its returned rows). The current query is Query #3, which, as explained in Example 3.3.6, is
compliant because Query #2 has established that the user is an attendee of Event #42. As
a result, the solver checking this query trace returns “unsatisfiable” (§3.4).

Our goal is to generalize this trace into a template that applies to another user viewing a
different event. Figure 3.3 shows the decision template in this case. The notation is read as
follows: If each (parameterized) query—output pair above the horizontal line has a match in
a trace T, then any query of the form below the line is compliant given 7. This particular
example codifies the knowledge that, after we ensure that a user x attends an event y, user z
can view event y for any x and y.

Two transformations took place as we went from the concrete trace to the template:
(1) We pruned the first query, which is inconsequential to the compliance decision; and
(2) We replaced the concrete values with parameters like 70. In this template, occurrences
of ?0 constrain the event ID checked previously to be the same as the event ID fetched in
the current query. The ConfirmedAt value should have been given its own parameter 71 ;
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1. SELECT * FROM Users WHERE UId = |7MyUId|
e (UId = ?MyUId, Name = 70, IsAdmin = 71)

2. SELECT * FROM Attendances
WHERE UId = |7MyUId| AND EId = [72]|

e (UId = 7MyUId, EId = 72, ConfirmedAt = 73)

3. SELECT * FROM Events WHERE EId = |[72]

TMyUId=1 70 = "John Doe" 71 = false
72=42 73 ="05/04 1pm"

Figure 3.4: The base template for the trace in Figure 3.2.

but since it appears only once, we write it as “*”, which denotes that an arbitrary value
would work. If a concrete value is material to the compliance decision (e.g., IsAdmin=true),
it would be kept as-is in the template.

In the next subsection, we describe how to systematically extract decision templates
like Figure 3.3 from concrete traces.

Extract Templates Using Unsat Cores

The key to producing a generic template from a concrete trace is to extract a small set of
assumptions in the trace that is sufficient to render the query compliant, and to keep only
those assumptions in the template. To this end, we rely on the unsatisfiability core [129]
(or “unsat core”) produced by an SMT solver on an unsatisfiable formula. An unsat core
is a subset of clauses in the formula that remains unsatisfiable even with all other clauses
removed; the assumptions included in the unsat core are the ones we keep in the template.

To produce a useful unsat core, we must expose each individual assumption (e.g., MyUld =
1) to the solver as a separate clause in the formula, to give the solver the opportunity to
exclude it from the unsat core should it be extraneous.

Therefore, we formulate a slightly different generalization formula for unsat core extrac-
tion. The first step is to produce a base template by abstracting the concrete trace into a
parameterized trace, with equal values being given the same parameter; we reuse any parame-
ters from the request context (?MyUId ). We still track the concrete value for each parameter
in case it is relevant to compliance. Figure 3.4 shows the base template generated from the
trace in Figure 3.2.



CHAPTER 3. PRIVACY POLICY ENFORCEMENT FOR WEB APPLICATIONS 45

Given a base template, we can write down our generalization formula for unsat core
extraction by asserting non-compliance in the style of §3.4.

Definition 3.5.1 (Generalization formula). Given a base template consisting of a parame-
terized trace {(Q;, Oi)}?:_ll, a parameterized query @), and parameter—value pairs {(p;, Ui)}le,
the generalization formula is the conjunction of these clauses:

[LQ);] Qi(D1) 2 O; A Q4i(D2) 2 O, (1<i<n-—1)

[LVi] Pi = Ui, (1<i<k)
V(D1) = V(Ds), (VW ev)
Q(D1) # Q(Do),

where D, and D, are a pair of databases. The clauses on the first two lines are labeled L),
and LV; for easy reference.

We write Q;(D1) 2 O; instead of “=" so that the resulting template matches queries
that return more rows than needed.

A main difference between this formula and the regular compliance formula (§3.4) is that
the structure of the queries and returned rows (L();) are now decoupled from the values in
those queries and rows (LV;). This allows the solver to include individual L@),’s and LV;’s
separately in the unsat core.

Returning to Figure 3.4, a solver invoked on its generalization formula can produce the

unsat core {LQ,}, indicating that (1) Query #1 is irrelevant, and (2) all concrete values are
irrelevant as long as the equality relations between them hold. This unsat core corresponds
to the template in Figure 3.3.
Trimming equalities. On some traces, the approach described above can over-constrain
equalities between values, harming generalization. This happens when the same parameter
is assigned to two unrelated values that happen to be equal (e.g., if the user ID and event ID
are both 42), causing the template to also unnecessarily require this equality. To mitigate
this problem, we adopt two optimizations.

First, we assign a fresh parameter to each returned cell whose column name does not
appear in the WHERE clause of any policy view. Such columns do not affect compliance so
long as they do not appear in the schema constraints either.”

Second, in our evaluation we configure the database to start the auto-increment ID for
each table at a different offset (e.g., 10° apart). This prevents rows from different table from
sharing the same primary key (at least initially, during cache population), thus avoiding
equalities between these IDs.

To speed up template matching (§3.5), we also omit equalities between parameters whose
value appears only in returned rows and not queries. In our evaluation we did not encounter
policies that depend on such equalities.

9 Our prototype does not consider schema constraints in this optimization (although support can easily
be added). If this optimization fails, we fall back to the original.
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The Decision Cache

After decision templates are generated, they are stored in the decision cache. When a new
query arrives, the cache attempts to match the templates against the current query and trace
and, if a match is found, declares the query compliant. In case of a cache miss, the query—
trace pair is sent to the solvers and, if compliant, is generalized into a new template to be
inserted into the cache. The decision cache use a hash map to index the templates by their
(parameterized) query, and performs template matching through recursive backtracking.

In 7?7 we discuss some additional avenues for improving Privoxy’s decision cache.

3.6 Implementation

We implemented Privoxy as a custom Java Database Connectivity (JDBC) driver, which
wraps around an underlying database connection and intercepts queries and responses. Our
prototype only supports applications that can run on the JVM, and run as a Java library
within the web server, although our design does not constrain where the checker resides.

The checker parses and manipulates SQL queries using Apache Calcite [14] and consults
the compliance decision cache. In case of a cache miss, it uses Z3’s Java binding [104] to
generate SMT formulas and serialize them in the SMT-LIB 2 format [12]. As an optimiza-
tion, we pre-generate and serialize the common formula “preamble” stating that VV € V),
V(D) = V(D,) (for compliance, Definition 3.3.7) or V(D;) C V(D3) (for strong compli-
ance, Definition 3.4.4), and then append query-specific assertions for each query. We provide
additional information about our formulas in ??.

The checker then invokes an ensemble of solver binaries in parallel. Our ensemble consists
of Z3 [41] (v4.8.10) and CVC4 [13] (v1.8) using default configurations, and Vampire [84]
(v4.5.1) using a configuration from its CASC portfolio that proved effective for us.'® If a
query is not compliant, or all solvers time out after 2s, the checker conservatively rejects
the query by raising a Java SQLException. For unsat-core generation, we only use CVC4,
which we found to produce smaller cores than Z3; Vampire does not produce unsat-cores.

Our prototype does not check that basic queries return no duplicate rows (§3.4); instead,
we manually verified that this is the case for the queries encountered in our evaluation.

3.7 Evaluation

We evaluate Privoxy by using it to enforce privacy policies on diaspora* [46], an open-
source social network web application in Ruby on Rails with 12.7k stars on GitHub.!'* We
devised a privacy policy for diaspora* and made minor modifications to its source code (§3.7),
and measured its performance running under Privoxy, reporting on page load times (§3.7),
performance breakdown (§3.7), and decision template generalization (§3.7). Finally, we
provide microbenchmarks on checking non-compliant queries (§3.7).

To highlight our evaluation results:

e Porting diaspora™® to Privoxy required changing less than 10 lines of code (LoC) (§3.7).

Onttps://github.com/vprover/vampire/blob/master/CASC/Schedules.cpp\#L281.
Uhttps://github.com/diaspora/diaspora.



CHAPTER 3. PRIVACY POLICY ENFORCEMENT FOR WEB APPLICATIONS 47

e Assuming compliance decisions are cached, Privoxy incurs 7 %-11 % overhead to page

load times (§3.7).

e Over 90% of the decision templates produced generalize to similar requests; the rest
generalize to restricted cases (§3.7).

Setup

Deployment. We host diaspora® (v0.7.14) on an AWS EC2 c¢5.4xlarge instance running
Ubuntu 18.04. Because our JDBC-based prototype only supports applications running on
the JVM (8§3.6), we run diaspora®™ on JRuby [78] (v9.2.6.0), a Ruby interpreter on the JVM
(we use OpenJDK 11). The application runs on the Puma web server in production mode
over HTTPS behind NGINX (which serves static files directly), and stores data in MySQL
running on the same EC2 instance.

Schema and policy. We model 36 out of 52 tables in the diaspora®™ database schema;
tables not modeled include Rails’s internal tables and those related to OAuth and cross-pod
functionalities. Our schema model also includes 64 primary key and uniqueness constraints,
39 foreign key constraints, and 4 others (e.g., that a reshared post must be public). On top
of this schema, we devised a privacy policy consisting of 108 view definitions, many of which
can be auto-generated (e.g., those that grant admins full access to each table).
Application modifications. We modified diaspora* to communicate the current user ID
to Privoxy at the start of each request (4 LoC) by issuing a special SQL SET command, and
modified one raw SQL query in the code to quantify field names with table names due to a
parsing limitation (1 LoC).

The application sometimes fetches information inaccessible to the user, although it does
not display such information (§3.2). We modified the Profile model to fetch only the public
fields of a person’s profile, and to fetch potentially private fields only when needed (2 LoC
using the lazy_column gem [95]). This change can sometimes incur an additional SQL query
to fetch the non-public fields. We disabled background jobs, which are not modeled by our
privacy policy as they are not always performed on behalf of a user.

Benchmarks. We use five page loads to exercise various aspects of application behavior:

1. Simple post: View a post, shared with the current user, with two likes, two comments,
and one tag.

2. Complex post: View a public post with a poll where 30 users have voted and com-
mented.

3. Prohibited post: Attempt to view a post that the user is not authorized to view.
4. Conversation: View a conversation with another user, which consists of five messages.

5. Other’s profile: View another user’s profile, with basic information and two posts
from the user’s stream.
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Figure 3.5: Page load times (PLT) for five pages. When compliance decisions are cached,
Privoxy incurs 7 %—11 % overhead.

The queries issued by these page loads are all compliant to the privacy policy. We will use
these benchmarks to study performance and cache generalization.

Page Load Times

We start by measuring the performance of loading the five benchmark pages. From a client
VM (cb.4xlarge) in the same AWS region as the server, we measure the page load time (PLT)
of each page by using the Selenium [134] Python binding to drive a headless Chrome browser
to visit each page. The PLT is reported as the time elapsed between navigationStart
and loadEventEnd as defined in the PerformanceTiming interface [152]. Note that these
experiments measure a best-case baseline performance, as clients outside the region / cloud
provider are likely to experience higher network latency.

For each benchmark page we report the PLT under three settings: “baseline” (without
Privoxy), “cached” (with Privoxy enabled, every query hitting the decision cache), and “no
cache” (with decision caching disabled). For each experiment, we warm up the OpenJDK
HotSpot VM on the server by performing 100 loads first, and then measure the PLT using
another 100 loads, reporting the median.

Figure 3.5 shows the PLT for each page under the three settings. When compliance
decisions are cached, Privoxy incurs 7 %11 % overhead resulting from parsing queries and
decision cache template matching. When caching is disabled, Privoxy incurs an order of
magnitude higher PLT as a consequence of invoking the solvers on every query.

Performance Breakdown and Analysis

To gain a better understanding of the performance, we provide more fine-grained data for
each page load.

Fetch latency. Rendering each page potentially requires requesting multiple URLs, some
in the background (e.g., loading comments for a post in diaspora*). The page load time,
however, does not include the time taken to complete such asynchronous requests. We
therefore map out the URLs fetched in each page load and measure the time taken to fetch
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Table 3.1: Privoxy incurs up to 13.1 % overhead to fetch latency assuming compliance de-
cisions are cached, and the decision templates it produces generalize well. A description of
the table can be found in §§ 3.7 to 3.7.

Fetch Latency (median) Query Stats (Cold Cache) Decision Templates
Page Load URL Baseline Cached No Cache Filtered Miss Hit Total Minimal Generalizable
Simple post /posts/1 184ms  191ms 4.0s 7 21 1 29 16 /21 18 /21
/posts/1/comments 48.8ms  50.8ms 814 ms 2 4 1 7 4/4 4/4
/notifications 56.6ms 61.1ms 2.3s 6 8 0 14 6/8 7/8
Complex post /posts/2 180ms 190 ms 4.8s 4 26 3 33 19/26 23 /26
/posts/2/comments 220ms 228 ms 27.8s 3 6 29 38 6/6 6/6
Prohibited post /posts/3 32.9ms 33.1ms 594 ms 1 4 0 5 4/4 4/4
Conversation /conversations?id=1  285ms 292ms 3.6s 6 18 0 24 7/ 18 18 /18
Other’s profile ~ /people/30c2 129ms 136 ms 2.5s 4 14 0 18 11/ 14 14 /14
/people/30c2/stream 65ms 73.6ms 3.5s 4 11 7 22 10/11 9/11
/,é_:\ /posts/2 /notifications /people/30c2
Ex“'" Fastest solver
Z600{ W Z3
,ﬂ Vampire
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Figure 3.6: Shortest solver time for queries during cache miss, and the solver that achieved
it. No solver is fastest on all queries.

each URL alone (i.e., not including the page rendering time in the browser); we call this the
“fetch latency”, and we measure it using Python’s requests library.

Table 3.1 shows, for each page load, the fetch latency for each URL fetched.'? At median,
Privoxy incurs up to 13.1 % of overhead assuming compliance decisions are cached. If caching
is disabled, the overhead ranges from 10x—125x.

The highest “no cache” overhead is incurred by the URL /posts/2/comments, which
returns a list of 30 comments on the complex page. To serve this URL, diaspora® issues
three queries to fetch all comments on the post as well as the People and Profile rows of
each commenter (each query returns 30 rows). It then issues 30 additional queries to fetch
the “mentions” on each comment; the SMT formulas for each query contains the 90 rows
fetched previously, making it costly to generate and serialize (~ 160 ms versus the usual
10ms—15ms),"® and to solve (taking roughly 500 ms on Vampire). Fortunately, if decision

12The /notifications URL is fetched by all but the “prohibited post” page; we only show it once in
the table.

130ne way to speed up formula serialization is to aggressively reuse parts of a formula when generating
the next one. We currently only reuse the “preamble” (§3.6), which includes the views but not the trace.
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caching is enabled, much of this overhead disappears even on a cold cache—as the last
30 queries are identically structured, all but the first will hit the cache.

Query statistics. The “Query Stats” part of Table 3.1 shows query statistics for each
URL when starting from a cold cache. The URL with the fewest queries (5) is for the
“prohibited post” page, which performs permission checks on the requested post and imme-
diately returns a 404. The page with the most queries (38) is /posts/2/comments, which is
explained above. The “Filtered” column shows the number of queries handled by column-
based filtering (§3.4), ranging from 7% to 42 % of total queries. The “Hit” column shows
the number of cache hits. Since these experiments start from a cold cache, the only possi-
ble cache hits are those on previous queries in the same request. We previously explained
the case of /posts/2/comments (29/38 hits). As another example, /people/30c2/stream
issues two structurally identical sequences of queries to fetch two posts in the stream; the
second sequence of queries all experience cache hits (7/22 hits).

Solver running times. During a cache miss (or if caching is disabled), Privoxy invokes
an ensemble of solvers to verify query compliance. Figure 3.6 shows, for three URLSs, the
running time of the fastest solver for each query. While most queries can be handled within
200 ms, some take up to over 800 ms. We also observe that no one solver is fastest on all
queries; this is why Privoxy invokes three solvers in parallel and waits for the fastest to finish.

Template Generalization

With caching enabled, every cache miss places a new decision template into the cache (§3.5).
We manually inspected every template generated by the URLs and counted (1) how many
are derived from a minimal unsat-core, and (2) how many generalize to a similar URL (e.g.,
another user viewing a similar post); these numbers are reported under “Decision Templates”
in Table 3.1. For five out of the nine URLSs, 100 % of the templates generalize; the rest achieve
a generalization rate of at least 80 %. Taken together, over 90 % of the templates generalize
fully.

Even templates that do not generalize fully do apply in restricted scenarios (exemplified
below); no template is specific to a user ID, post ID, etc.

Solver Performance: Non-compliant Queries

Recall that Privoxy uses size-bounded formulas to find small models for non-compliant
queries (§3.4). We evaluate such formulas’ performance on Z3 on three hypothetical non-
compliant queries in the setting of diaspora*:

1. Viewing post: Return a special error if a post doesn’t exist (versus exists but unau-
thorized to view).

2. Viewing profile: Always return extended profile regardless of the person’s privacy set-
ting.

3. Viewing profile: Show the number of posts by the person. (This query can leak infor-
mation on private posts not shared with the viewer.)
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For all three cases, Z3 returns “satisfiable” on the size-bounded formula within 600 ms, while
the regular formulas time out after one minute on all solvers.

3.8 Related Work

View-based access control. View-based access control has been studied extensively in
the database community [rosenthalOl:perm, 16, 15, 103, 123, 124]. Privoxy differs from
these works in two main ways:

e While some existing works focus on single-query checking [16, 15], we check a trace of
queries (§3.3), which is crucial for supporting web applications.

e While some mechanisms (e.g., GRANT SELECT ON views in SQL) require queries to
explicitly use view names (e.g., V4, V5), we support queries issued directly against the
“base tables” (e.g., Users, Events). This enables us to support existing applications,
which have no knowledge of the policy views.

Information flow control (IFC). The property that the application leaks no secret in-
formation under policy V coincides with the noninterference property in IFC [38, 55] if we
define the low equivalence relation as database equivalence under V. It can be shown that if
an application request handler performing database reads only issues compliant queries (Def-
inition 3.3.7), then it satisfies noninterference.

Query rewriting. Query rewriting [stonebraker74:acl] is a dynamic disclosure con-
trol mechanism: If a query returns secret values, a run-time enforcer replaces them with
placeholders (or drops the rows altogether). Such mechanism is implemented in com-
mercial databases [21, 99|, as well as in academic works such as Jacqueline [154] and
Qapla [mehtal7:qapla]. While query rewriting allows the programmer to issue queries
freely without regard to any privacy policy, it can alter query semantics, which may give rise
to unexpected behaviors at run time [150, 123].

Static enforcement. Alternatively to dynamic checking, several systems have been pro-
posed to statically verify policy compliance, e.g., SeLINQ [127], SIF [32], Swift [33], Ur-
Flow [30], Hails [51, 52], LWeb [112], and Lifty [114]. These static systems incur no run-time
overhead and can be more precise than Privoxy as they analyze the source code; some can
even extend to client code. However, they typically require using a specialized language or
framework like Jif [105] or Ur/Web [31], making them less compatible with existing applica-
tions.

Alternative compliance formulation. Another query compliance formulation is instance-
based determinacy [123, 62, 83, 157], according to which a query is compliant if the infor-
mation it reveals is contained in the views given all accessible information in the database.
(In contrast, our formulation assumes only information retrieved by previous queries in the
request.) Although instance-based determinacy would allow us to safely accept more queries
(e.g., @) from Example 3.3.5 if the current user is an attendee), checking instance-based
determinacy requires information outside what is being queried by the application and can
be costly (e.g., a data complezity of co-NP complete for conjunctive queries [83]).
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3.9 Conclusion and Future Directions

Privoxy is a privacy enforcement system that supports legacy web applications and incurs
low overhead. While we have demonstrated the feasibility of our approach, here we outline
two future directions.

Specialized decision procedures. While SMT solvers are flexible and versatile, they
may not be the most performant tool for verifying query compliance. One alternative is the
chase procedure [5, 94], which has been used to study query determinacy [54, 106] and can
be naturally extended to compliance. We hypothesize that for the class of views and queries
encountered in the privacy use case, compliance holds exactly when the chase terminates
in a small number of rounds. We defer refining and proving this hypothesis, as well as
experimenting with various chase implementations [17], to future work.

Checking updates. We plan to extend Privoxy to verify privacy compliance for database
updates. We envision this extension taking two steps. First, we check updates against
separate “update” policies, which can differ from the “read” policies as as some information
should be accessible but not modifiable. We expect the update policies to be much easier
to specify and check, since SQL INSERT INTO, UPDATE, and DELETE statements are simpler
than SELECT. Second, we ensure that the updates maintain schema constraints, which are
assumed to hold by Privoxy’s checking of SELECT. Some constraints (like primary keys) are
maintained automatically by the database, while others we have to check in Privoxy.
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Chapter 4

How to Train your DNN: The Network Oper-
ator Edition

4.1 Introduction

Deep Neural Networks have gained significant traction in both academia and industry. One
type of deep neural network — feedforward convolutional neural networks (CNNs) — have
been the driving thrust behind critical applications such as image recognition [133, 70],
drug discovery [148], and medical diagnosis [148, 139, 90, 80]. The accuracy of CNNs often
requires frequent retraining, so it is important to reduce CNN training time. Efforts to do so
have targeted nearly all layers of the software and hardware stack, and increasingly involves
distributing training across machines in a cluster. Early work on distributed CNN training
adopted the parameter server model [88] where computation is performed by several worker
nodes and one or more parameter servers are used to aggregate and distribute results from
individual workers. Recent work has also looked at a variety of topics, such as improving
the performance of distributed CNN training through the use of better scheduling [69], and
improving network transfers [147]. In this paper we focus on optimizations that involve
the cluster network. A variety of network oriented solutions have been proposed, but with
little resulting clarity about which proposal (or combination of proposals) achieves the best
end-to-end performance. This paper seeks to answer this question.

We first observe that one can divide network optimizations into two broad categories:
those that change the network fabric and those that only change software at end hosts. This is
a useful distinction because changing the network fabric is typically more difficult (involving
router software and perhaps hardware), while host software changes are significantly easier
to implement. The first fabric-based change we consider is using IP multicast (a feature that
is supported by most routers but often not enabled). IP multicast has been used previously
to accelerate HPC workloads using MPI [26, 155, 73|, which in turn has been used as a
communication primitive by a number of distributed CNN frameworks [147, 9]. The other
class of fabric-based optimization is in-network aggregation, as can be implemented using
programmable switches. The use of in-network aggregation for CNNs has already been
proposed in Daiet [125] and Luo [92], and here our goal is to understand its performance
impact relative to other network optimizations.
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The host-based techniques we consider move away from the parameter server model.
These include ring-reduce [10] and all-reduce (e.g., Rabenseifner [116] or butterfly mix-
ing [25]) which avoid the use of a centralized server for aggregation and have been successfully
used to speed up HPC jobs in the past. We provide a more detailed list of such approaches
in §4.2.

We analyze these various approaches — in isolation and in combination where possible
— to answer four questions. First, how do these various optimizations rank in terms of
effectiveness? Second, given this ranking, is it necessary for us to resort to fabric-based
mechanisms, or do host-based mechanisms suffice? Third, how robust are these results to
possible future changes in CNNs (e.g., more layers)? Fourth, how robust are these results
to possible future changes in host behavior (e.g., changes in TensorFlow)?

We rely on trace driven simulation to address these questions. The use of simulations
allowed us great latitude in testing a variety of proposals including ones which require changes
to the network hardware and were hence infeasible for us to test in practice. The use of a
simulation also allowed us to avoid certain approximations and non-determinism that would
have been difficult to consider in a tractable analytical model. Thus, simulation provided us
with a good balance between the accuracy of our results and the ability to try out a wide
range of optimizations. To further ensure realism for our results we seed our simulations
with traces generated from training CNNs on real hardware using distributed TensorFlow.
We describe our techniques for generating traces and the actual design of our simulator in
greater detail in §4.4.

We ran our simulator on four image recognition models (described in greater detail in
§4.6), and we present evaluation results from these runs later in the paper. At a high level
we found that in the typical case using fabric-based mechanisms to speed up training in the
parameter server model has lower benefits than using host-based mechanisms that abandon
the parameter server model in favor of other reduce strategies. We found that this held even
when we combined both fabric-based mechanisms. Our basic conclusion is that optimizing
communication for CNN training does not necessitate changes to the network fabric.

4.2 Background

In this section, we begin by discussing the computational model for CNN training. Following
this, we provide an overview of communication paradigms for distributed CNN training.
Overall, we provide overviews of the following mechanisms that we explore in this paper:
in-network aggregation, IP multicast, ring-reduce, ring-reduce with multicast, and butterfly
mixing. Next, we discuss how changes to the network fabric could be used in conjunction
with the aforementioned communication paradigms — and thus further accelerate training.

Distributed Training Steps

We now consider the computational process: how the model computation (forward pass and
back propagation) interleave with the communication. We consider data parallel approaches
to distributed learning, where each worker operates on the entire model but uses different
training data. Data parallel learning is the most prevalent approach today.
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Figure 4.1: Steps in a distributed training job with param. server

Steps

Distributed CNN training proceeds in four steps:

Distribution: When using parameter servers, the parameter server updates to the
worker constitutes the distribution phase. For butterfly mixing or ring-reduce, this would
be the last communication phase, right before all workers receive the same updated model.

Forward Pass: Each worker selects a sample of the training data and uses the param-
eters to compute labels for this training sample. This computation is commonly referred to
as the forward pass since each layer operates on the training image in order. The training
data used in this step is loaded concurrently during the distribution step and is not on the
critical path. As a result, our analysis does not consider time taken loading training data.

Backpropagation: Next, each worker uses the supplied labels (from the training set)
and computed labels to determine each layer’s contribution to training error, and then com-
putes an appropriate change to the layer. This computation is commonly referred to as
backpropagation and proceeds from the last layer in the neural net to the first one. Back-
propagation utilizes results computed during the forward pass and, as a result of this data
dependency, it cannot progress until the worker has finished the forward pass.

Aggregation: As the backpropagation progresses, the worker will send updates to a
reducer. In the parameter server model, parameter servers are responsible for both aggre-
gating and applying updates. An iteration is considered to have completed only when the
parameter servers have received updates from all workers, thus enforcing a global barrier
(across all workers) between the distribution and aggregation step.

Within the parameter server model, each iteration of the algorithm consists of the four
steps (shown in Figure 4.1). These four steps can be partially pipelined, in the following two
ways. First, the forward pass proceeds layer-by-layer, and as a result a worker can begin
the forward pass step as soon as it has received the parameters for the first layer of the
CNN. Second, backpropagation also proceeds layer-by-layer, and workers can begin sending
updates as soon as they have computed updates for a layer. To the best of our knowledge,
all commonly used CNN frameworks employ pipelining to improve training performance.

For end-host mechanisms (i.e., butterfly mixing and ring-reduce), the forward pass is not
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pipelined with the distribution phase. The back-propagation pipelining operates the same
way.

Algorithms for Efficient Reduction
Training on Parameter Servers

One way to facilitate distributed CNN training makes use of one or more centralized param-
eter servers [88]. These algorithms are implemented as a part of several CNN frameworks
including TensorFlow [47], Caffe2 [58], and MXNet [28].

For parameter server based training, there can be two distinct, communication phases
during each training iteration: (i) a distribution phase where CNN parameters are distributed
to workers, which then execute a local training algorithm using these parameters, and (ii)
an aggregation phase where each worker sends the local training algorithm’s updates to one
or more parameter servers.

The distributed CNN training algorithms we consider are iterative. Distributed training
algorithms can be further classified into synchronous and asynchronous algorithms. Syn-
chronous training algorithms require that all workers agree on the model at the beginning
of a training iteration; this is implemented by having the parameter server impose a barrier
across workers. Asynchronous training algorithms do not impose consistency requirements
across workers. While asynchronous training algorithms decrease the time taken by each it-
eration, they increase the total number of iterations required and can thus slow down overall
training time [27]. Some companies like Google tend to favor synchronous training algo-
rithms [2]. In this paper we focus on synchronous training algorithms because the presence
of synchronization barriers allows us to more easily reason about iteration time.

Training without Parameter Servers

Parameter servers present several issues to practitioners, which begin with selecting the
correct ratio between the number of parameter servers and workers. Rather than aggregating
parameter updates in centralized nodes, others have advocated efficient all-reduce algorithms
that exchange parameters merely between worker nodes. In the context of training CNNs,
two algorithms are most commonly discussed: ring-reduce [74] and butterfly mixing [25].

Ring-reduce, popularized by Uber’s implementation (Horovod [74]), requires that the
workers connect in a ring. There are two communication phases. First, parameters in the
model are assigned to each worker in a round robin fashion. In the first phase (analogous
the aggregation phase), each worker begins computing gradient updates; when they complete
the computation for the parameter assigned to it, it immediately sends the parameter to the
next node in the ring. Upon receiving the update, each worker incrementally averages the
update with it’s locally calculated gradient. Once the last worker in the ring has received
the parameter, it has the complete averaged model parameter from the entire cluster. In the
second phase, this exact updated model is passed around the ring a second time such that
all workers now possess this updated model.

On the other hand, butterfly mixing performance scales logarithmically with the number
of workers. At each phase within butterfly mixing, each worker simultaneously sends the
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entirety of its model to one other worker. After receiving an update, the worker averages its
local model with the received model. Suppose there are four workers: A, B, C, D. In the
first phase of communication, A and B simultaneously exchange their entire model, while
C and D follow suit. At this point, A and B contain the same averaged model, as does C'
and D. In the second phase of communication, A sends its averaged model to C' (and vice
versa), while B sends its averaged model to D. This concludes the all-reduce. Butterfly
mixing reduces the number of communication phases required during updates at the cost of
sending a larger amount of data over the network fabric.

Mechanisms to Accelerate Training

The network fabric is capable of providing support for distributed training at multiple levels.
Here, we discuss two proposals and how they can used in conjunction with the all reduce
algorithms presented earlier.

IP Multicast

Multicast [43] implementations are designed to be bandwidth efficient. For CNN training,
multicast ensures that the amount of data traversing any network link does not scale with
worker count. In practice, deploying multicast requires addressing a litany of considerations
(e.g., membership, discovery, reliability). However, we do not address them in this paper,
noting only that CNN training tasks involve bulk transfers (making reliability easier to solve
since one has time to identify and recover from errors, and there are various reliable multicast
implementations available) and tend to run over several hours with a constant set of workers,
simplifying the management problems.

When using a parameter server, IP multicast assists solely with the distribution phase.
During the distribution phase each parameter server sends each worker all of its parameters —
w copies of the same data when deployed in a cluster with w workers. Enabling IP multicast
would allow each parameter server to send a single copy of its parameters. It is also possible
to use IP multicast with ring-reduce during the second ring during it’s model distribution.

In-network Aggregation

In-network aggregations improve training time when using parameter servers. The data sent
during the aggregation phase varies by worker. To reduce traffic in this phase, the network
needs to implement the model’s aggregation semantics. This is possible either through the use
of software switches operating on an overlay network [93] or through the use of programmable
switch ASICs [125] such as Barefoot Tofino [11]. In this approach the network buffers worker
updates and aggregates them before sending them to parameter servers. The benefits of this
approach mirror those achieved through multicast; this mechanism also presents several
deployment challenges including requiring the use of new, specialized switching hardware,
allocation of compute and memory resources on switches, and mechanisms for isolating CNN
training traffic. We also do not address these issues in the paper, and refer the interested
reader to recent discussions on this topic [125].



CHAPTER 4. HOW TO TRAIN YOUR DNN: THE NETWORK OPERATOR EDITI(NS

4.3 Analytical Models Insufficient

Our initial attempts to derive an analytical model for training performance provided intuition
about mechanism scaling, but failed to identify the reasons about the relative performance
of the various mechanisms. In particular, it fails to capture two specific components of CNN
training that significantly affect performance.

First, the backpropagation phase consists of fine-grained, causal, interleavings
between compute and network. This set of interleavings is highly model specific. Each
model has hundreds of composite operations that are interspersed over highly uneven units
of time. Moreover, radical new CNN proposals appear frequently; thus developing a novel
analytical model for each new CNN design is highly burdensome. Rather than attempt to
model this complex interaction, our simulator uses a comprehensive set of empirical traces
that are easy to collect.

Secondly, different phases of computation (e.g., distribution and aggregation)
overlap non-deterministically. Recall that while there is a global barrier at the param-
eter server, each worker unit has a local barrier before it initiates backpropagation. If we
assume 1.) every local barrier is reached simultaneously and 2.) there is no variance in
the compute part of backpropagation, this would — within the constraints of our compu-
tational model — maximize the amount of incast on the parameter server. On the other
hand, any delta between workers hitting the local barrier would reduce each worker’s over-
lap between the backpropagation phases; this delay reduces incast. We refer to this delta
as backpropagation staggering. Backpropagation staggering is influenced by two factors
that are extremely difficult to model analytically. First, it requires reasoning across both
the overlapping distribution and aggregation phases. The mechanism used to distribute pa-
rameters, as well as the qualities of the individual parameters themselves (i.e., how long it
takes to compute and send over the network) affect the amount of backpropagation stagger-
ing. Second, there is natural variation in worker processing time that further influences the
staggering. This is not limited to the parameter server framework; in the case of end-host
mechanisms like butterfly mixing, pipelined parameter mixing between workers can interfere
with each other. In Section 4.7, we will show in much greater detail how the amount of
backpropagation staggering influences how the mechanism and model performs. Thus, an
analytic model which fails to capture this phenomenon will not be sufficient to answer the
questions we posed.

4.4 Trace-driven Simulator Design

We seek to develop a simulator that captures the performance nuances described in Sec-
tion 4.3, while simultaneously being sufficiently flexible to accommodate a limited scope of
potential changes in feedforward CNN models and Tensorflow. Thus, we moved towards
developing a trace driven simulator which we describe in greater detail in this section.

To ensure that the trace collection is simple and effective, a trace must have two at-
tributes. First, it must be network agnostic, so the same trace can be used for different
network settings. Second, it must accurately model pipelining. The traces were generated
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by adding minor instrumentation to TensorFlow 1.4. Computation in TensorFlow is rep-
resented as a dataflow graph, where individual operations are represented as nodes on the
graph, while parameters (i.e., tensor) are transferred along the edges of the graph. Our in-
strumentation records send operations along the dataflow graphs. The trace is very simple.
For each operation, it shows five attributes. 1.) event time 2.) parameter name — identified
by an edge name (e.g., convl/weights/read tells us that the first convolution operation is
being read by the worker) 3.) size of the parameter ready to be queued on to the network.
4.) source device (e.g., worker0) 5.) destination device (e.g., parameter server). This trace is
simple to generate, parse, and possibly even modify if the operator wants to run simulations
on synthetic models.

For each neural net model, we collected a different representative trace. On each iteration,
we partitioned the events into two traces: an aggregation trace and a distribution trace.

For the aggregation trace, we identified specific send operations that are gradient opera-
tions triggered automatically by TensorFlow’s SyncReplicaOptimizer. The aggregation trace
allows us to accurately model how the parameters are sent over the network. Recall from the
computational model that due to extensive pipelining, the calculated gradients are delivered
to the parameter server as soon as the parameter gradient is calculated. In the gathering of
this data, note that not every operation from the worker to the parameter server falls on the
critical path. The beginning of the aggregation is marked by a dependency operation that
varies from model to model. We only consider the send operations that occur following the
dependency operation, since all other send messages prior to that dependency operation are
pipelined with the worker’s forward pass; thus, they do not fall on the critical path. For
example, it is common for CNN training to use batch normalization, which normalizes the
inputs to each layer. The worker will send the result of its batch normalization computation
to the parameter server so the PS can compute moving averages over multiple iterations.
Such operations must be removed from the aggregation trace. There are other operations
that must be filtered out that arise occasionally on a per-model basis (such as the use of
auzxiliary logits).

For the distribution trace, we used the TensorFlow timeline tool to identify the particular
send operations originating from the parameter server that triggered forward pass operations
on the worker. The purpose of the distribution trace is to obtain the order in which param-
eters are queued on the network. We demonstrate in the evaluation (§4.7) how the ordering
of parameters affects the end-to-end performance of distributed training. Additionally, we
profiled the forward pass time on a single GPU. We later use this for emulating the pipeline
effects in the forward pass, which we find plays an insignificant role in typical use cases; this
is due to the one-to-many communication overhead arising from the parameter server.

To simulate normal performance computational performance variance across GPUs, we
recorded traces for each worker in clusters of difference sizes and across several distinct
clusters. To ensure that the trace is agnostic to the network and size of the cluster, the
recorded time of a trace event is relative to the first event in that trace. Different workers in
a cluster finish receiving the model at different times due to network topology and parameter
ordering. The absolute times in the aggregation trace are affected by the network conditions,



CHAPTER 4. HOW TO TRAIN YOUR DNN: THE NETWORK OPERATOR EDITIGN

CNN Name 1PS 2PS 4PS 8PS

VGG-16 Sim 21.0 22.5 19.3 18.2
VGG-16 Real 22.5 22.8 20.8 19.3
Inception-v3 Sim 2.29 2.29 1.37 0.852
Inception-v3 Real 2.16 2.16 1.49 1.3
Resnet-200 Sim 7.15 3.34 2.3 2.29
Resnet-200 Real 5.89 2.3 1.71 1.71
Resnet-101 Sim 4.57 2.37 1.52 1.5
Resnet-101 Real 3.7 1.58 0.855 0.9

Table 4.1: Comparison of measured (Real) iteration time compared to simulation prediction
times (sim) on a cluster of 8 workers

so aggregation times are recorded relative to the first aggregation event. Thus, we are able
to simulate the network effects across a wide variety of cluster sizes.

4.5 Simulator Validation

We validated our simulator by comparing the results of the simulator against actual runs.
In a cluster of 8 workers, our results are shown in Table 4.1. For the most part, our
simulation results accurately predict the performance trend with more parameter servers. In
many of these cases that use multiple parameter servers, the CNN weights are not evenly
distributed among the parameter servers, causing the performance improvements to plateau.
Our simulation effectively reflects this behavior. There are two notable points at the far ends
of the spectrum — Inception-v3 with 8 PSs, and Resnet-200 with 1 PS — where our simulation
fails to match our empirical measurement, although both still capture the general scaling
trend. There are several possible explanations for this. First, our simulation makes an
assumption that parameters in the distribution phase occurs in a round-robin fashion over
the workers. While this assumption is sufficient for most of the settings that we looked
at, our observations of the actual distribution send-traces reveal that there are some minor
overlaps in the way that worker parameters are being sent. This suggests that the round
robin assumption is slightly stronger than reality — especially in the case of 1 PS where the
amount of backpropagation staggering is most pronounced.

4.6 Model Characterization

Which CNN model characteristics influence a mechanism’s performance benefit? We've iden-
tified four such model attributes that impact the extent to which acceleration mechanisms
will benefit performance and show where our CNN models fall on those dimensions. Other,
non-deterministic factors not related to the CNN characteristics may influence training per-
formances, but are discussed earlier in Section 4.3. With the exception of the forward pass,
these attributes are all extracted directly from the trace. We discuss this in the context of
the four distinct, commonly deployed image classification models we deployed and analyzed:
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CNN Name # Layers # Weights Model Size (Gb) # of FLOPs

Inception-v3 21 2.5 x 108 0.715 1.1 x 1010
VGG-16 22 1.9 x 108 6.58 5.4 x 1010
Resnet-101 103 2.2 x 10° 1.42 1.3 x 1010
Resnet-200 202 2.2 x 106 2.06 2.8 x 1010

Table 4.2: Complexity of the CNN models we considered, including both weight and pooling
layers in our layer count.

CNN Fwd Pass Comp Bkprop Comp Bkprop Net, 25 Gbps Comp:Net Ratio

Inception-v3 0.176 sec 0.296 sec 0.028 sec 10.6
VGG-16 0.169 sec 0.024 sec 0.263 sec 0.09
Resnet-101 0.176 sec 0.180 sec 0.052 sec 3.46
Resnet-200 0.357 sec 0.34 sec 0.082 sec 4.14

Table 4.3: Compute and network times during the backpropagation of the model. Note
that the backprop compute time does not include the time to calculate the first layer of
backpropagation.

Inception-v3, Resnet-200, Resnet-101, and VGG16. They were trained using ImageNet data.
Distribution of parameter sizes over model, in particular the size of the last pa-
rameter. Many models exhibit a very parameter heavy fully connected last layer, which
represents a significant fraction of the model size. Inception-v3 and VGG16 both possess
very memory expensive fully connected layers, while Resnet-200 and Resnet-101 are rela-
tively even throughout.

Computation/network bottleneck after the first layer of back-propagation. For
all future references to backpropagation compute/network ratio, the first layer of backpropa-
gation compute is not included. Once the first layer of backpropagation has been calculated,
how interspersed are the computational and network elements of a CNN model? Table 4.3
shows the amount of time spent in communication and computation, and a compute:net
ratio. VGGI16 spends nearly all it’s computational time calculating the first back propa-
gation parameter, thus exhibiting the smallest compute:network ratio. On the other hand,
Inception-v3, a model which is similarly skewed, is compute intensive even after the first
layer of back propagation is computed.

Forward Pass Time: See Table 4.3

Raw size of the model. We show model sizes in Table 4.2. They range from very large
(6.58Gb) to small (0.7Gb)

As we will show in Section 4.7, the first two characteristics listed above heavily influence the
amount of backpropagation staggering, as they both affect the overlapping distribution and
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time 3 6 9 12 15 18 21
| |
Worker 0 Backprop Backprop Backprop | |
(compute) (0p3) (op2’) (op1) I I
| |
Worker 1 Backprop Backprop Backprop | |
(compute) (op3’) (op2’) (op1’) | |
| |
PS net rec’v Receive Receive Receive Receive Receive Receive
(without agg) (op3’, wk0) | (op3’, wkl) | (op2’, wk0) | (op2’, wkl) | (op1’, wk0) | (op1’, wk1)
PS net rec'v Receive Receive Receive Improvement over
(with agg) (op3’) (op2’) (op17) Baseline: 28%

Figure 4.2: Aggregation phase of computationally /communication even, 3 layer (op)
toy model, but with staggered backpropagation start times. PS = parameter server

Model Name Aggregation Only Multicast Only Multicast + Aggregation

Inception-v3 1.34x 1.69x 3.28x
VGG-16 1.89x 1.94x 22.0x
Resnet-101 1.65x 1.79x 6.07x
Resnet-200 1.65x 1.85x 6.7x

Table 4.4: Factor speedup of network support models relative to a baseline model with no
network support. 32 workers, 25 Gbps

aggregation phases.
4.7 Evaluation

In this section, we evaluate the efficacy of the mechanisms described in previous sections,
and explore how the CNN model characteristics interact with the mechanism. Finally, we
explain how they jointly impact performance. We also present head to head comparisons of
competing mechanisms. Finally, we show that our rankings and intuitions generalize to two
types of future training conditions: 1. larger models and 2. faster processors.

The traces used in the simulations were derived from clusters in AWS EC2 running
Tensorflow 1.4, with a fixed batch size of 32 training instances per worker unit.

Our simulations show that in all cases, an end-host mechanism (ring-reduce) offers per-
formance improvements greater than or equal to any in-network mechanism. Thus, rather
than having to make a trade-off between performance and infrastructure cost, operators can
instead deploy software mechanisms running on the end-host and expect to get equal or
better performance.

In-Network Optimization

We look at network fabric optimizations — in-network aggregation and multicast — which
primarily are used to accelerate training when using a parameter server..
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In-network Aggregation

Factor 1: Large Last layer of CNN reduces impact: In section 4.3, we defined backpropa-
gation staggering. Recall that increased backpropagation staggering reduces incast, which
consequently reduces the impact of in-network aggregation. The amount of backpropagation
staggering is positively correlated with the time taken to execute the the penultimate layer(s)
of the CNN. During the distribution phase, parameters are distributed between workers in
a round robin manner. Thus, the forward pass on each worker is blocked until that single
parameter (which can be over 5 Gb in the case of VGG16) reaches the worker in its entirety.
Larger final parameter(s) causes each worker node to begin it’s individual backpropagation
at increasingly staggered times. To illustrate this, we consider a simple example with a 3
operation CNN model. Each operation takes three seconds to compute and three seconds
to send over the network. In the case where all the workers start backpropagation simulta-
neously (not shown), aggregating the new model takes 21 seconds. When using in-network
aggregation, aggregation takes 12 seconds (a 43% improvement). In contrast, Figure 4.2
shows aggregation in the same setup when backpropagation start-time is staggered between
workers. While performance without in-network aggregation stays constant (21 seconds),
in-network aggregation only improves performance by 28%. Why? In-network agg reduces
parameter server network bottleneck by aggregating parameter updates from all workers.
This aggregation can’t proceed until the last worker has communicated that parameter up-
date.

Both VGG16 and Inception-v3 have large last layers that will further stagger the time

at which each worker begins backpropagation, making them particularly susceptible to this
effect.
Factor 2: Network dominated backpropagation time increases impact: Recall that during
the back-propagation process, parameters updates are sent as soon as they are calculated.
If the calculation time between parameter updates is relatively short, there will be fewer
parameter updates queued inside the network to be sent to the parameter server. Assessing
the degree to which the backpropagation is network-bound cannot be evaluated solely by the
overall time of backpropagation. VGG16 has the longest overall backpropagation time, yet
enjoys the largest percentage improvement in performance from in-network aggregation. For
VGG16, the majority of the backpropagation computation is spent on computing the first
backpropagation layer, an expensive fully connected layer. Once this first computational step
completes, the remaining model parameters are quickly calculated and queued in the net-
work. Conversely, Inception-v3 spends a significant amount of time doing backpropagation
computation even after the first backprop layer is computed.

Results: For 32 workers and 25 Gbps network, Table 4.4 demonstrates the performance
improvements derived from using just in-network aggregation to accelerate distributed train-
ing. Inception-v3 (which has a compute-intensive backpropagation) experiences the least per-
formance gain from in-network aggregation, while VGG16 (which has a network-intensive
backpropagation) experiences the most.
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Multicast

Factor 1 — Model Size increases impact Unlike in-network aggregation, the distribution phase
is initiated with a global barrier. All the parameters are ready simultaneously, so there is
no pipelining on the send-side as in the case of in-network aggregation. Thus performance
gains from multicast are more directly a function of model size.

Factor 2 — Forward Pass Pipelining decreases impact (slightly) As the worker receives model
parameters, it partially executes the forward pass. However, the forward pass is unlikely
to be the bottleneck in the distribution phase, especially as the number of workers grows.
Recall that the simulated parameter server distributes parameters to the workers in a round
robin fashion. More workers will allow for more computation time between parameter distri-
butions. Consequently, forward pass pipelining has a very slight (if any) impact on multicast
performance.

Non-Factor — decreased backpropagation staggering: When using multicast, workers receivers
parameters at roughly the same time (within minimal link latency). Thus backpropagation
staggering is decreased, as we expect workers to initiate backpropagation simultaneously
(approximately). Does the resultant increased incast hurt iteration performance? We find
this not to be the case unless the following condition is met. Let D be the delay between
worker backpropagation start times, B be the full backpropagation time (i.e., including both
the computation and network transfer time), and C' be the compute time for the backprop-
agation time of the first layer. In order for the decreased backpropagation staggering to
give back performance, the following must hold: D > B — C. This is highly unlikely in the
multicast case; multicast should beget a very minimal D.

Results: Again, we refer to Table 4.4. Multicast impact is more directly proportional
to the size of the model. Resnet-101 (1.78x) and Resnet-200 (1.85x) are both larger than
Inception-v3 and smaller than VGG16. Their performance gains likewise fall between the
performance gains of those models.

Head to Head: In-network Aggregation vs. Multicast

As shown in Table 4.4, multicast outperforms or approximates the performance gains from
using in-network aggregation in all cases. Later, we will show that both approaches are
weaker than end-host based acceleration mechanisms, but we briefly provide intuitions for
why multicast is more effective than in-network aggregation. Fundamentally, in-network
aggregation is tied to backpropagation and multicast is tied to the forward pass. Generally
speaking, the forward pass is significantly faster than the backpropagation; refer to Table 4.5.
Moreover, the extent to which the forward pass is bottlenecked on compute decreases with
more workers. On the other hand, the compute:network ratio of backpropagation remains
constant with the amount of workers. In fact, increasing workers only leads to staggered
backpropagation start times, which reduces the benefits of in-network aggregation. Mul-
ticast individually is more impactful than in-network aggregation alone. Table
4.4 indicates that multicast provides larger performance gains than in-network aggregation
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CNN Name GPU Model Forward Pass Backprop

Resnet-200 Maxwell Titan X 170 ms 384 ms
Resnet-200 Pascal Titan X 315 ms 520 ms
VGG-16 Maxwell Titan X 173 ms 416 ms
VGG-16 Pascal Titan X 98.2 ms 260 ms
Resnet-101 Maxwell Titan X 109 ms 190 ms
Resnet-101 Pascal Titan X 162 ms 258 ms
Inception-v1 Maxwell Titan X 91.3 ms 141 ms
Inception-v1 Pascal Titan X 57.5 ms 85.9 ms

Table 4.5: Forward Pass vs. Backpropagation Benchmarks [36]

across the board.

Multicast plus in-network aggregation

Finally, what happens when multicast is combined with in-network aggregation? Because
multicast supports the distribution phase and in-network aggregation supports the aggrega-
tion phase, both approaches can be simultaneously used to improve performance. In fact,
multicast puts in-network aggregation in the best position to succeed because it strongly
decreases backpropagation staggering. Table 4.4 shows clearly that using multicast with
in-network aggregation yields substantially better performance gains than using either just
multicast or just in-network aggregation.

Results: Multicast plus in-network aggregation benefits VGG16 the most, as the per-
formance gains increase from 1.9x to 21.2x. For all models, using both multicast with
in-network aggregation results in more than additive performance gains from the individual
mechanisms, for reasons described in the previous paragraph.

Summary of In-network Changes

Based on just looking at in-network mechanisms, we find that optimizations can be ranked
as: multicast + aggregation, multicast, aggregation. This leads us to conclude that if one
is required to use the parameter server model, then using multicast jointly with in-network
aggregation yields the largest performance improvements. While both multicast and in-
network aggregation offer their own set of deployment challenges, multicast outperforms
in-network aggregation in the CNNs we tested. As evidenced by the CNN characteristics
that factored into each mechanism’s impact, the interaction between the distribution phase
and aggregation phase across all workers is key. While the aggregation phase holds more
complexity in terms of network/compute interleavings, it is actually the distribution phase
optimizations which dictate how much the aggregation phase sits on the critical path. Future
work should not solely evaluate the efficacy of accelerating either the distribution phase or
aggregation phase in isolation.
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Model Name Ring-Reduce Ring-Reduce + Multicast Butterfly Mixing

VGG-16 24.6x 24.6x 11.3x
Resnet-200 6.75x 6.76x 6.79x
Resnet-101 6.55x 6.71x 6.46x
Inception-v3 3.35x 3.41x 3.41x

Table 4.6: Ring-reduce is most effective when parameters are evenly distributed, while but-
terfly mixing performs well at 25 Gbps.

End-Host Mechanisms

We analyze two all-reduce algorithms: Horovod ring-reduce and butterfly mixing. Table 6
shows speedup over baseline for both algorithms when run with 32 workers at 25 Gbps links.
The table also shows improvements when ring-reduce is combined with multicast.

Ring-reduce

Recall that in ring-reduce, the parameters are assigned to workers round robin. One critical

issue that must be addressed when doing this is that often a significant fraction of a model’s
raw size comes from a single parameter (e.g., VGG16, Inception-v3). Analytically, the
communication overhead of ring-reduce is 2(W — 1) * (max parameter) where W is the
worker count. This overhead can be prohibitively large when a model has a single huge
parameter, e.g. VGG16’s 5.4 Gb fully-connected layer. This is consistent with our simulation
with 32 workers at 10 Gbps where ring-reduce iteration time was 34.0 seconds. CNN models
(especially those ending in a fully connected layer) tend to have a few layers that take up a
significant percentage of the overall model size; thus even an optimal assignment of model
parameters would still result in parameter size imbalances for a worker on a ring.

To address this, we modified our simulator to use parameter messaging, where parameters
are partitioned evenly between workers (discussed more in §4.8). In the rest of this section,
all ring-reduce results make use of this messaging mechanism. What model characteristics
positively influence ring-reduce performance relative to baseline?

Factor: Network-dominated backpropagation increases impact: For ring-reduce, each
worker begins backpropagation at the same time. This is imposed by a global barrier.
In the optimal case for ring-reduce, each worker sends it’s assigned model parameter up-
dates at the same time. Then, every link in the ring would be nearly identically utilized
and network contention would be minimized. However, each worker can only send its model
parameter update when that gradient has been calculated. Longer time for backpropagation
computation on each parameter results in deviation from the optimal case. Table 4.6 shows
the model with the most compute-bound back-propagation, Inception-v3, has the lowest
performance improvement from ring-reduce (3.3x). In contrast, VGG16, the model with the
largest performance improvement (24.6x), has the most network-bound back-propagation
process.
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Recall that the first phase of butterfly mixing merely involves a forward pass. At the point

the forward pass begins, each worker already received the complete set of model parameters.
Once each parameter is calculated, it will be sent log(W) times, where W is the number
of workers. While this communication is sequential, this process can be pipelined between
workers. What factors impact performance for butterfly mixing?

Factor: Compute dominated backpropagation increases impact: During backpropagation,
longer gradient computations between parameters gives workers a chance to pipeline com-
munications among the log(WW) steps. However, models with network dominated backprop-
agation will still experience a substantial boost with butterfly mizing; for example, Table 4.6
indicates that VGG16 still gets a 11.3x speedup.

Butterfly Mixing vs. Ring-Reduce with messaging

Butterfly mixing and ring-reduce are both impacted by an CNN model’s backpropagation
compute/network interactions, but in opposite ways. Butterfly mixing helps more for com-
pute bound backpropagations, and ring-reduce helps more for more network bound back-
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propagation. In Table 4.6, ring-reduce and butterfly mixing perform comparably for all
models except VGG16, which has the most network bound backpropagation. This leads to
stronger improvement from ring-reduce. Compare this to a lower bandwidth, 10 Gbps. Ring-
reduce and butterfly mixing only perform comparably for Inception-v3, which has the most
compute bound backpropagation. Conversely, ring-reduce outperforms butterfly mixing for
Resnet-200 (Figure 4.4), and VGG16 (Figure 4.5).

Ring-reduce offers superior or equal performance impact as butterfly mixing.

Comparing End-host and In-Network Strategies

In this section, we present overall simulations results for the top performing mechanisms seen
so far: ring-reduce with messaging and multicast/in-network aggregation. We include results
for butterfly mixing as another competitive reference point, but the focus of this section is
on ring-reduce vs. multicast/in-network aggregation.

First, we fix the number of workers to 32 and vary bandwidth. The results for Inception-
v3, Resnet-200, and VGG16 are shown in Figure 4.3, Figure 4.4, and Figure 4.5, respectively.
Next, for the same acceleration mechanisms, we show how performance scales with number
of workers, while keeping bandwidth fixed at 25 Gbps. The results for Inception-v3, Resnet-
200, and VGG16 are shown in Figure 4.6, Figure 4.7, and Figure 4.8, respectively. Resnet-101
is left off this panel of graphs but shows consistent trends with Resnet-200.

These results indicate that with 32 workers — across all bandwidths — ring-reduce outper-
forms the combination of multicast and in-network aggregation. For Resnet-200, Resnet-101
and Inception-v3, ring-reduce and multicast+in-network aggregation perform very similarly.
However, ring-reduce holds a key advantage in the VGG16 model. As shown in Figure 4.8
ring-reduce has nearly a 2x performance advantage with 4 workers, and a 1.3x performance
advantage with 32 workers. While the gap closes with more workers, we do not observe a
case with VGG16 where multicast+in-network aggregation outperforms ring-reduce. The
gap between the two mechanisms is also more pronounced at low bandwidths, as seen in
Figure 4.5.

Ring-reduce has one key advantage over multicast + in-network aggregation. The first
and second ring of ring-reduce are equivalent to the parameter server’s aggregation and distri-
bution phase, respectively. While there is a per-worker local barrier between the aggregation
and distribution phase, no such barrier exists for ring-reduce. The second distribution ring
of ring-reduce can proceed even while other parameters are still circulating their first ring.
Thus the two phases can be pipelined, which enhances performance impact. The difference
is particularly stark for models with disproportionately large penultimate layers, such as
VGG16 in Figure 4.8.

Ring-reduce offers superior or equal performance impact as multicast with
in-network aggregation.

All-reduce with network support
In this subsection, we explore the possibility of using in-network support to accelerate all-

reduce algorithms. The primary combination we discuss in this section is ring-reduce with
multicast. Note that multicast does not offer any performance benefits to butterfly mixing.
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The same applies for in-network aggregation for both ring-reduce and butterfly mixing.
When using ring-reduce, multicast could be used to improve the performance time of the
second ring. When parameters have been distributed between workers equally, we find in
our simulations that multicast in the second phase of ring-reduce has very limited impact on
performance. This can be reasoned about analytically. The communication overhead in the

. Model sizex(Workers—1 : . L
second loop is: Model sizex(Workers—1) = \yrp e ysing multicast, the communication overhead
el Workersx Bandwidth ’

Model size

s a2 Note the bottleneck is on the receiving worker side. When the number of
workers is large, these result in very similar performance. Our simulation results (Figure
4.6) confirm that across the board, ring-reduce with multicast performs equivalently with
just ring-reduce.

Future (i.e., Synthetic) CNN Models

To this point in the paper, we have demonstrated that ring-reduce outperforms other pro-
posals. Next we ask, how could these models change over time and would our results still
hold? Recent model proposals have simply modified existing CNN models through the ad-
dition of convolutional layers [70, 71, 49]. To test this, we add between 1 and 125 modules
to the Inception-v3 model. We capture the full breadth of possible layers by adding one
of two types of modules: Compute Intensive (35x35x288 module) and Network intensive
(17x17x768 module). Again, we run our simulations with 32 workers with 25bps. First, we
observe in Figure 4.10, 4.9 that our mechanism ranking are preserved over both strains of
synthetic models. However, the relative impact of the speedup mechanisms change. With
the compute intensive synthetic model, the performance impact of in-network aggregation
quickly drops to to zero, since pipelining in backpropagation provides ample time for param-
eters to be sent over the network between computations. In contrast, multicast provides the
same amount of performance impact between layers, and ultimately equals the performance
of the other mechanisms with only 25 layers added. If models trend towards becoming com-
putationally expensive, operators dedicated to using parameter servers could turn

1s:
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away from in-network aggregation for good, as multicast alone equals the impact
of using both multicast and in-network aggregation. For the network intensive syn-
thetic model, multicast with in-network aggregation, ring-reduce, and butterfly mixing grow
linearly with the number of layers. Even in the extreme case with 125 additional layers, nei-
ther in-network aggregation or multicast alone reaches it’s maximal performance gain of 2x.
While this is hardly an exhaustive list potential model changes, creating synthetic models
from existing model traces is extremely simple. Operators and developers can easily modify
existing traces to project necessary changes to the network fabric or end-host design.

Faster Computational Capabilities

Next, we examine the case of potential enhancements in compute capabilities (e.g., faster
hardware accelerators). In particular, do faster computations change the relative effective-
ness of the acceleration mechanisms? In our examples, we increased the speed of convolutions
by various factors.

Inception-v3 is shown in Figure 4.11 and Resnet-200 is shown in Figure 4.12. First, we
observe that there is a point where pipelined phases of the parameter server model become
so network bound that the parameter server paradigm (i.e., multicast with in-network ag-
gregation) wins out. For most models, this point occurs at around 2.5x speedup, where
multicast /in-network aggregation surpasses the performance of both ring-reduce and butter-
fly mixing. One standout trend from Figure 4.12 is in Resnet-200 at 3x computation speedup,
where butterfly mixing results in only a 10x speedup while multicast with in-network aggre-
gation leads to a 19.5x speedup. In fact, for all models except Inception-v3, butterfly mixing
gains flags with faster computation. This is consistent with our observation that butterfly
mixing impact decreases as backpropagation becomes more network bound. Inception-v3
happens to be so compute-bound that even at 3x compute speedup, butterfly mixing keeps
pace with ring-reduce and multicast/in-network aggregation.

Our results indicate that faster compute capabilities could lead to better performance
impact when jointly using multicast and in-network aggregation. We hasten to mention that
performance is a function of many factors (e.g., bandwidth, memory, etc.) that grow at their
own pace. The complexity of these assessment reinforces the need for a simple simulator
that can be used to assess the current state of models and hardware.

Evaluation Summary

From most to least performance impactful, our mechanism rankings are as follows: 1.) ring-
reduce, 2.) multicast with in-network aggregation, 3.) butterfly mixing, 4.) multicast,
5.) in-network aggregation. Not only have we demonstrated that an individual end-
host mechanism outperforms joint usage of network support, these performance
rankings should continue to hold as models evolve and computation becomes increasingly
accelerated. Ultimately, we hypothesize that the reason for this ranking is that current
implementations of end-host mechanisms more effectively overlap distinct pipelined phases,
thus exploiting available bandwidth more effectively over the entire iteration. This difference
in pipelining efficiency grows more pronounced when the penultimate layers of the model
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Num PS CNN Model Min % Max % Ideal %

4 VGG-16  4-107° 0.918 0.25
8 VGG-16 1-107° 0.859 0.125
4 Inception-v3 0.0007 0.451 0.25
8 Inception-v3 0.0003 0.292 0.125
4 Resnet-200 0.165 0.33 0.25
8 Resnet-200 0.002 0.22 0.125

Table 4.7: Empirical Measurements for how parameter assignment to parameter servers.
The columns show the percentage (in terms of bytes) of weights that are placed on the most
and least occupied parameter server. Resnet-101 is similar to Resnet-200

are disporportionately large. As models inevitably change, operators must carefully examine
the qualities of the final CNN layers when considering how to accelerate training.

4.8 Robustness of Evaluation

Much like how we expect the CNN models to change, training software running on the end
host will also change. During the simulator development, we identified several end host
design decisions that influence performance outcomes. Ultimately, we find that our findings
are (mostly) robust to these end-host configurations. First, we look at equal assignment
of parameters to parameter servers. Next, we look at three design configurations that are
not currently integrated into Tensorflow: Parameter Distribution, Message Pipelining, and
removing parameter server side global barrier. In this section, we rely on simulations so
to gain intuition about host level changes from a communication overhead point of view.
Our simulations do not include system-level overheads for these approaches, and we leave
evaluating this to future work.

Parameter Assignment to Parameter Servers

By default, TensorFlow iterates through the parameters in the model and assigns those
parameters to the PS in a round robin fashion. While this effectively balances the number



CHAPTER 4. HOW TO TRAIN YOUR DNN: THE NETWORK OPERATOR EDITIORX

CNN Model Multiagg (s) 8 PS Multiagg (s) Ring-Reduce (s)

VGG-16 0.765 0.539 0.683
Resnet-200 0.830 0.820 0.824
Resnet-101 0.598 0.551 0.556
Inception-v3 0.569 0.549 0.562

Table 4.8: Using 8 parameter servers with a theoretically optimal distribution for multicast
+ aggregation does not provide substantive gains over ring-reduce. 32 workers, 25 Gbps

of parameters per PS, the weights on each of them can be vastly different. The uneven
distributions across several models are shown in Table 4.7. For example, in VGG-16, the
fully connected layer alone consists of 5.44 Gb (out of 6.58 Gb total over the entire model).
Through actual executions of TensorFlow, the simulations we have explored to this point
accurately assigns parameters to parameter servers based on TensorFlow’s default heuristic.
Here, we explore this possibility of dividing parameters evenly.

To simulate this fairly, we aggressively split each parameter between 8 parameter servers
and 32 workers. Our results are shown in Table 4.8. With the exception of VGG16, ring-
reduce continues to equal the combined efforts of multicast and in-network aggregation. If
this end-host design change comes to fruition and models trend towards VGG16 characteris-
tics (i.e., short backpropagation and an exceptionally large last layer), operators should act
accordingly to consider hardware network support. With the exception of VGG16, parame-
ter assignments does not change the fact that end-host acceleration mechanisms outperform
in-network acceleration.

Message Pipelining

In both the distribution and aggregation phases of distributed training, the node typically
waits for the entirety of a parameter to arrive before sending it forward. This can be
inefficient when individual parameters are large; for example the largest parameter in VGG16
model is in excess of 5 Gb. Instead, these parameters can be split up into smaller messages
and forwarded when ready.

We incorporated message pipelining into our application and found, surprisingly, that for
all models we explored, communication within the parameter server model do
not benefit whatsoever from message pipelining. The improvements that result from
message pipelining are swallowed by compute in the backpropagation. Only ring-reduce
benefits significantly from messaging, thus our prior ring-reduce evaluatino in section 4.7
keep equipped with messaging. Overall, the conclusions we presented in the evaluation are
robust to message pipelining.

Presence of a Global Barrier

Up to this point in the paper, we have used a global barrier in the parameter server. While
this creates greater flexibility in operations that can be conducted over the entire model, this
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CNN Model Multiagg (s) Ring-reduce (s) Multiagg no barrier (s)

VGG-16 1.53 1.37 1.76
Resnet-200 1.65 1.65 1.65
Resnet-101 1.17 1.13 1.08
Inception-v3 1.14 1.13 0.988

Table 4.9: Removing the global barrier improves multicast + aggregation iteration time, but
does not cause a decisive lead over ring-reduce. 32 workers, 25 Gbps

inhibits pipelining between iterations. Alternatively, this global barrier could be removed:
when the parameter server receives all updates (from workers) to a parameter, it can imme-
diately forward this update [156]. To fairly capture the performance change of removing the
global barrier, we run three iterations and measure the time between a.) when the parameter
server receives all updates from the first parameter during the latter part of the first iteration
and b.) when that first parameter is received from all workers during the latter part of the
third iteration.

Table 4.9 shows that the removal of the global barrier increases the impact of multicast
plus in-network aggregation to the point that it becomes roughly equal to the impact of
ring-reduce. The global barrier improves training time because the aggregation phase can
be pipelined with the distribution phase. However, note that some of that improvement is
returned because the worker cannot initiate forward pass until the first model layer arrives.
That first layer is the final parameter computed in the backpropagation. Taking out the
global barrier evens out the impact of ring-reduce and multicast/in-network aggregation,
but our initial claim continues to hold.

Parameter Distribution Order

In the parameter server model, there are two ways of distributing parameters: round-robin
distribution (one model parameter at a time), and block distribution (send all model
parameters in entirety to each worker, one at a time). While parameter distribution has been
observed to be random [69], simulator validation has shown that round-robin distribution
order closely mimics actual empirical experiments. Surprisingly, in our experiments, we
found that block distribution outperforms round-robin distribution.

When using round robin distribution, workers progress at roughly the same pace. Thus,
until one of the workers begins the backpropagation process, the parameter server ingress
bandwidth is un-utilized. When using block distribution, the parameter server bandwidth
is utilized as soon as the first worker completes its forward pass. Moreover, only a single
worker is likely to be doing backpropagation at a time, thus reducing incast.

How does block distribution compare to in-network aggregation? Recall that in-network
aggregation benefits performance most when backpropagation staggering is minimal. When
using block parameter distribution, under what analytical conditions would we similar per-
formance impact between in-network aggregation and block distribution? Let B; be the com-
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2*CNN Name 2*Bandwidth (Gbps) 2*Agg (s) 2*Block Distr. (s)

Inception-v3 10 2.99 3.1
VGG16 10 22.3 21.7
Resnet-101 10 4.9 4.94
Resnet-200 10 7.7 7.79
Inception-v3 100 0.71 0.77
VGG16 100 2.23 2.27
Resnet-101 100 0.89 0.94
Resnet-200 100 1.19 1.45

Table 4.10: With 32 workers, the training time of using in-network aggregation and block
(i.e., not round robin) parameter distributions is roughly the same

putation time of just the first layer of backpropagation, By be the compute time of the entire
back propagation, N be the time to communicate the entire model, Remgp be the remaining
forward pass computation after the worker has received the entire model update from the
parameter server. By + N + Rempp > Rempp + By, which simplifies to By + N > By.
Thus, block distribution approximates the performance gains of in-network aggregation for
models that have unusually large last layers and network transfer times (depends on model
size and available network bandwidth).

Table 4.10 illustrates simulation results which show that block distribution performs
similarly, or better, than in-network aggregation at vastly differently bandwidths. Block
raises additional questions about the efficiency of using in-network aggregation for distributed
CNN training.

4.9 Discussion

Next we briefly discuss the impact of other optimization strategies and systems considera-
tions.

Gradient Compression: Other work [89] has also looked at using gradient compression to
reduce the amount of aggregation traffic sent during CNN training. Gradient compression
and other compression techniques reduce model size but do not affect the number of network
transfers. As a result, applying these methods is analogous to using a smaller CNN and is
covered by our analysis.

Asynchronous training: Our analysis thus far has assumed the use of synchronous training
algorithms (§4.2). We focused on these algorithms for ease of analysis and exposition, and
our simulator and analysis techniques can be applied to asynchronous training algorithms.
However, neither of the in-network mechanisms can be used for asynchronous training due
to a lack of barriers between iterations.



CHAPTER 4. HOW TO TRAIN YOUR DNN: THE NETWORK OPERATOR EDITION

4.10 Conclusion

We began this work wanting to develop network optimizations that improve CNN training
performance. We found that despite a great deal of excitement about this area, little was
understood about what types of optimizations were promising, or even how current opti-
mizations impacted end-to-end CNN training performance. Thus we sought to address this
question, and in doing so found that end host based solutions, which are arguably easier to
deploy, generally provide better improvements than in-network solutions. We developed a
trace-driven simulator, that simplifies the analysis of how network changes impact CNN per-
formance. We hope that this simulator will provide a foundation to enable the community
to develop and evaluate optimizations for improving CNN performance. We plan to open
source the simulator and our data so as to allow the community to leverage and extend our
findings.
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Chapter 5

Concluding Thoughts and Future Work

In summary, we show several ways in which the datacenter infrastructure could support
operators in critical configuration tasks. We first presented AutoTune, a tool that leverages
existing orchestrator APIs to tune resource allocations and placements for heterogeneous
microservice applications. Next, we discussed Privoxy, a system that dynamically checks that
SQL queries are compliant with a operator-defined privacy policies. Finally, we demonstrated
that architectural changes to the networking fabric are unnecessary for the purposes of
improving end-to-end performance of a class of convolutional neural networks for image
recognition.

My primary goal in orienting this research was not to develop the most sophisticated
research solutions, but to solve real problems in ways are accessible to organizations with
relatively little access to resources or expertise. Thus, we aimed for our solutions that require
minimal (if any) changes to the existing code, and to make as little assumptions as possible
about the underlying infrastructure. Despite this, our research does nudge organizations
in the direction of rethinking how application developer and operators should think about
configuring applications. In my opinion, this represents the most significant challenge in the
adoption of new technology.

Privoxy represents a fundamental paradigm shift in how developers should think about
privacy when writing code. Rather than relying on a system that rewrites queries into com-
pliant code behind the scenes, developers must be intimately familiar with all privacy policies
that govern an application’s data access — lest their code cannot go into production reliably.
Similarly, AutoTune challenges the notion that operators with limited understanding of ap-
plication behavior can do no more than overprovision and pray. Instead, our research suggests
that the literature 1.) understates the robustness of applications to changing workload and
2.) overstates how dynamic the workloads themselves are.

With this in mind, we envision the following future directions for our work.

e Developer Feedback about Privacy Violations: At this time, Privoxy is only able to
inform the developer about which query violates a policy. In organizations that may
have hundreds of view-based access policies, fixing the query to be compliant will likely
be a challenging problem. In the ideal case, we envision Privoxy being used to inform
the developer exactly which privacy policies are being violated by a query.
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e Using Policy Checking for Attribute Alignment: One key issue of modern data storage
setups is that data is stored in a disorganized fashion, with duplicates stored across
different databases with different attribute names. This has significant privacy impli-
cations as operators may not be aware of how all sensitive private user information is
named. How can Privoxy be used to identify such discrepancies in data naming?

e User specified policies: Organizations commonly collect private information about
their clients to inform their business activities (e.g., recommender systems). How
can Privoxy be extended to support such a heterogeneous set of user-defined policies?
Are authentication views the appropriate abstraction for non-technical customers to
explicitly and individually specify how an organization utilizes their data?

e AutoTune limitations: We have provided some intuition using the Datadog trace that
AutoTune is feasible to deploy even for dynamic workloads. Could AutoTune truly
be a generally viable replacement for autoscaling in highly dynamic workloads? Truly,
this will be impossible to answer without actual deployment experience or more so-
phisticated applications and traces to test AutoTune on.

This dissertation seeks to move towards a world where anyone — not just large corpora-
tions — can effectively deploy well-running, sparkling web applications. Historically, technol-
ogy has typically served to widen inequity in society, in spite of it’s sensationalist claims to
the contrary. Despite the Internet’s democratic potential, one of it’s primary limitations is
the high barrier to entry for the construction of viral, exciting applications. Building on top
of the groundbreaking work to automate deployment of applications, I hope that this disser-
tation work moves the needle on allowing anyone to run perspective-altering applications at
scale.
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