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Abstract

Statistical Complexity and Regret in Linear Control

by

Max Simchowitz

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Benjamin Recht, Co-chair

The field of linear control has seen broad application in fields as diverse as robotics, avia-
tion, and power-grid maintenance. Accordingly, decades of research have been dedicated to
learning to control systems when the dynamics are not known a priori, but must be inferred
from data. However, much of the classical work considered asymptotic regimes, which shed
little light on precisely how much data are required to attain desired control performance in
the presence of statistical noise.

In this thesis, we apply modern advances in statistical and online learning theory to enrich
our understanding of the statistical complexity of data-driven control. In the first half of
the thesis, we study estimation of system parameters, known as system identification. We
show that the stability of the system - long thought to characterize the sample complexity of
estimation - is often inversely proportional to the number of trajectories required to recovery
the system parameters to specified tolerance.

We then turn to adaptive control: the problem in which a learning agent interacts with
an unknown dynamical system in hopes of attaining control performance comparable to if
she had foreknowledge of the system dynamics. Adopting the conventions of modern online
learning theory, we study the problem from the perspective of regret, or cumulative perfor-
mance relative to an idealized benchmark. Building on the system identification results, we
present upper and lower bounds that demonstrate that a remarkably simple strategy enjoys
optimal regret for the adaptive control of the linear quadratic regulator. We then propose a
unified framework - based on online convex optimization - which enjoys similar regret guar-
antees in the considerably more general setting of nonstochastic control, accommodating
partial observation, time-varying costs, and adversarially-chosen disturbances. Surprisingly,
we find that the best-attainable regret (with respect to a suitable benchmark of stabilizing
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LTI control policies) exhibits the same scaling in the problem horizon as the optimal regret
for the online LQR problem.
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Chapter 1

Introduction

In a control task, one manipulates a dynamical system so as to achieve a certain end. This
specification, though broad, involves three components. First, a dynamical system, that is,
a process in which a system state evolves over time. Second, a mechanism of manipulating
the system, specified by a sequence of control inputs. And finally, the goal of the task -
the desired behavior that the inputs are selected to elicit. Control problems are ubiquitous
in science and engineering. Their scope encompasses aeronautics, heating and ventillation,
robotics, power distribution, medical device engineering, and popular contemporary culinary
methods.

When mathematical laws describing the evolution of system dynamics are known a priori,
and when task performance can be summarized by a scalar objective cost, it is purely a
computational matter to derive the optimal control law. This law describes how a current
input should be selected given all available system observations from the past, so as to
minimize cost.

In many, if not, most cases of interest, there is an aspect of the dynamics which is not
known in advance. For example, the system may be driven by disturbances, or exogenous
perturbations not determined by the control input. This uncertainty can be rather benign:
when a probabilistic model for these disturbances exists, one can still derive (probabilisti-
cally) optimal control laws.

Many more challenging sources of uncertainty may exists. For example, a model for the
disturbances may not be known, or worse, the disturbances may be selected by a malicious
adversary whose sole aim is to compromise performance. In other cases, the scalar objective
function which summarizes control performance may not be known in advance: for example,
if an aerial drone attempts to track the position of a moving target, it is only after observing
the target’s position that we know where the drone should go (or should have gone). Finally,
the dynamical laws governing the time-evolution of the system may be known only coarsely,
or not at all.

Learning, or modeling from past-collected data, is a powerful tool to address unknown and
uncertain aspects of control problems. Learning has been most widely applied to estimation
of the dynamical laws of the system, though in principle it can also be used to model
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disturbances and costs.
The field of system identification studies the problem of learning these laws. The field of

adaptive control studies how to bootstrap system identification into control policies which
use learning to make their choice of control inputs. At the risk of upsetting one or both
communities, the field called adaptive control by control theorists is designated reinforce-
ment learning by statisticians and computer scientists. Here, the emphasis is placed on the
learning, more so than the control.

This thesis: the complexity of learning and control

The purpose of this thesis is to understand the complexity of learning for control problems.
Complexity is a broad term, but refers roughly to the question “how much data must be
collected in order to achieve a certain level of control performance.” Formal definitions are
given later in the chapter.

This thesis takes incremental steps towards understanding the sample complexity of con-
trol in a range of linear control settings, including both system identification and adaptive
control. For these tasks, we present algorithms which achieve desired performance using
as little data as possible, and in some cases, can mathematically verify that no procedure
can use substantially less. These contributions demonstrate the power of remarkably simple
algorithms, built upon commonplace learning and optimization primitives like ordinary least
squares, gradient descent, and Newton’s method.

As part of a broader research program, characterizing the sample complexity of control
tasks promises far reaching implications, since accurate error bounds are indispensable for
designing robust and high-performing control systems. It would also illuminate which prop-
erties of control environments enable efficient learning, which make learning tractable but
challenging, and which thwart the prospect of learning altogether.

More broadly, a deeper understanding of the sample complexity of control would inform
other statistical problems where one wishes to learn from non-i.i.d. or time-correlated data.
Indeed, dynamics makes learning for control more challenging than traditional statistical es-
timation. This is because observations and inputs at a given time may be correlated with, or
exert direct effects upon, observations in the future. These correlations preclude the conven-
tional statistical and learning-theoretic arsenals developed for identically and independently
distributed data.

Thesis roadap

This thesis consists of five of the author’s publications on linear system identification and
adaptive contron.

We begin in Section 1.1 below, by formally defining linear time invariant systems, the
collection of control systems to which our results apply.

Section 1.2 of this introduction summarizes the our findings for linear system identifi-
cation, which are presented in Part I, Chapters 3 and 4 of this thesis. Chapter 3 studies
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system identification under full observation. It demonstrates that the “mixing” property,
long thought to be critical to system identification, is not only unnecessary, but at times
inversely related to the sample complexity. Chapter 4 extends the analysis to partially ob-
served settings. Chapter 3 and Chapter 4 are based on the publications Simchowitz et al.
[2018] and Simchowitz et al. [2019], respectively.

Section 1.3 outlines our contributions to online control, a learning theoretic variant of
adaptive control where performance is measured in terms of “regret”. The contributions
in this section are presented in full in Part II, Chapters 5 to 7. Chapter 5 characterizes
the optimal regret rates for the broadly studied online LQR problem [Abbasi-Yadkori and
Szepesvári, 2011]. Chapter 6 presents low-regret algorithms for the considerably more general
“nonstochastic control” formulation, first studed in Agarwal et al. [2019a]. Finally, Chapter 7
shows that, under additional assumptions and with a carefully designed algorithm, regret
guarantees in the more challenging nonstochastic control setting can be just as strong those
attainable in the simpler online LQR game. These findings reveal that the difficulty of
adaptive control, when measured in regret, is determined primarily by knowledge of system
dynamics. Chapters 5 to 7 present Simchowitz and Foster [2020], Simchowitz et al. [2020],
and Simchowitz [2020], respectively.

To emphasize connections between the different settings under study, we centralize our
discussion of related work in Chapter 2. The chapter does its best contextualizes the con-
tributions of this thesis within the vast and still-rapidly growing body of scholar work at
the intersection of learning theory and control. Chapter 2 further exposes how the technical
ideas in this thesis both draw upon and contribute to the broader learning theory literature.

Finally, Chapter 8 provides concluding remarks, with an eye towards nonlinear control.

1.1 LTI Systems and Mathematical Notation
This thesis studies discrete time, linear time invariant, or LTI, dynamical systems. These
systems admit efficient controller design, are statistically tractable, are frequently used as
first-order approximations to more general, non-linear dynamics.

An LTI system is governed by a state xt ∈ Rdx , which evolves linearly in a control input
ut ∈ Rdu and process noise variable wt ∈ Rdx , via

xt+1 = A?xt +B?ut + wt, (1.1)

where A? ∈ Rdx×dx and B? ∈ Rdx×du are fixed matricies. For simplicity, we will assume
throughout that the system is initialized at the origin, that is x1 ≡ 0. When the learning
agent may observe the state xt directly, we call the system fully observed.

In many scenarios, the learning agent does not have access to the state xt, but instead
observes a noisy, linear observation yt ∈ Rdy

yt = C?xt + et, (1.2)
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where et ∈ Rdy is called the sensor noise, and C? ∈ Rdy×dx is another fixed matrix. We
call this setting partially observed although, it encompasses the fully observed setting when
dx = dy, C? = I, and et ≡ 0.

We posit a learning agent or learner who can select the ut at will, as an arbitrary function
of internal randomness, past inputs, and either past states (full observation) or past outputs
(partial observation). We frequently refer to the noise terms et and wt as disturbances, which
are not under the learner’s control.

Notational Conventions

We let R,C,Z,N denote the reals, complex numbers, integers and positive integers, respec-
tively. Rd is the space of d-dimensional real vectors, Rd1×d2 the space of d1× d2 dimensional
real matrices, Sd the space of real positive symmetric matrices X ∈ Rd×d, Sd+ the space of real
positive semidefinite matrices, and Sd++ the space of real strictly positive definite matrices.
We let X � Y if X ∈ Sd dominates Y ∈ Sd in the standard (Lowner) PSD ordering. Given a
vector v ∈ Rd, ‖v‖ denotes the Euclidean norm unless otherwise noted. For matrices, ‖X‖op

and ‖X‖F denote operator and Frobenius norms, respectively.
Sd−1 := {v ∈ Rd : ‖v‖ = 1} denotes the sphere, and for a compact and convex set

C ⊂ Rd, ProjC(v) = arg minv′∈C ‖v − v′‖ denotes Euclidean projection. Given a sequence
v1, v2, . . . , we let (vt) denote the (possibly infinite) sequence, and for indices s ≤ t, we let
vs:t = (vs, vs+1, . . . , vt) and vt:s = (vt, vt−s, . . . , vs) denote subsequences.

We write f(n) . g(n) if f ≤ Cg for a universal constant C independent of n; & is used
similarly. We use Big-Oh assymptotic notation throughout only for informal statements:
f(n) = O(n) if f(n) ≤ Cg(n), where C potentially supresses dependence on certain problem
parameters. We use Oh-Tilde notation Õ(n) to indicate supression of logarithmic factors.
Informally, we shall also write X % Y if there is a constant c > 0 such that PSD matrices
X, Y satisfy X � cY .

The notation a := b means that quantity a is taken to be equal to quantity b by defintion.
Given a probability distribution D, we write X1, X2, . . .

i.i.d∼ D if X1, X2, . . . for random
variables that are drawn independently and indentically (i.i.d.) from a distribution D. Given
a set X , we writeX1, X2, . . .

unif∼ X to denote that the draws are drawn i.i.d. from a cannonical
uniform distribution on X . For example, X unif∼ {−1, 1}n denotes uniform sampling from the
hypercube.

1.2 System identification
Part I of this thesis considers the problem of linear system identification: estimation of a
model of system dynamics from observations of trajectories generated from those dynamics.
Our aim is to understand the question of sample complexity :
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How much data is required to construct an accurate model of the system dynam-
ics?

We focus on estimation of a system from a single trajectory of inputs via ordinary least
squares. We show that, for both fully and partially observed systems, the stability property
long thought to characterize the sample complexity of learning may in fact have no bearing
on it. And, in the case of fully observed systems, stability and sample complexity may
exhibit an inverse relationship.

Stability We ground our analysis in a discussion of system stability. There are many
definitions of stability, most of which are equivalent for linear dynamical systems. The
spectral radius of a square matrix A ∈ Rd×d is notated as ρ(A), denotes the largest magnitude
(possibly complex) eigenvector of A. ρ(A) also admits a definition in terms of the limiting
powers of A, via

ρ(A) := lim
n→∞

‖An‖1/n
op .

We say that a dynamical system with state transition matrix A? is stable if ρ(A?) < 1,
marginally stable if ρ(A?) = 1 (that is, A? has admits an eigenvalue of unit magnitude), and
unstable if ρ(A?) < 1. Stated colloquially, stable systems decay, unstable systems explode,
and marginally stable systems remain bounded above and below. For stable systems, the
following informal approximation is a good rule of thumb:

‖An‖op ≈ ρ(A)n

Stability, Mixing, and Noise Accumulation The most well-established technique in
the statistics literature for dealing with non-independent, time-series data is the use of
mixing-time arguments. Informally, the mixing time of a discrete-time dynamical process
z1, z2, . . . refers to the smallest natural number h ∈ N such that zt and zt+h are “almost
statistically independent” for all times t. A formal definition can be found in Yu [1994].

Estimation in systems with small mixing times h has long been regarded to be easy,
because each subsequence (zk, zk+h, zk+2h) contains (nearly) statistical independent data,
and comprise an 1/h-fraction of the entire sequence. Thus, traditional estimation rates in
mixing systems coincide with those for estimation rates in i.i.d. systems, up to a factor
proporitional to the mixing time [Mohri and Rostamizadeh, 2007a,b, Kuznetsov and Mohri,
2017, McDonald et al., 2017].

For stable systems (ρ(A?) < 1), mixing time h is roughly related to the spectral radius
of the dynamical system ρ(A?) via the relationship h ≈ 1

1−ρ(A?)
. To see this, we unfold the

linear dynamics:

xt+1 =
t−1∑
n=0

An? (B?ut + wt).
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The definition of spectral definition ensures that ‖An?‖ ≈ ρ(A?)
n, hence all n� 1

1−ρ(A?)
, we

can neglect the effect of inputs ut−n and disturbances wt−n on the current state xt+1. In
particular, as the spectral radius ρ(A?) approaches 1 (from below), the mixing time diverges.
Therefore, a fundamental limitation of mixing-time arguments is that the bounds all degrade
as the mixing-time increases. This has two implications for linear system identification: (a)
none of prior work correctly captured the qualitative behavior as the A? matrix reaches
instability, and (b) these techniques cannot be applied to the regime where A? is unstable,
for which estimation is not only well-posed, but should be quite easy.

The same computation reveals that nearly-unstable systems have yet another undesirable
property. Because they have long-run dependencies on past noise terms, they accumulate
noise, driven the states to be larger and larger in magnitude. To see this, consider the scalar
system driven by Gaussian noise with zero input: xt+1 = xt + wt, wt

i.i.d∼ N (0, 1). Then,
xt ∼ N (0, t− 1), so the variance of the system state grows linear in t.

Learning without stability in Fully Observed Systems

In Chapter 3, we study the estimation of the transition matrix A? via the ordinary least
squares estimator

Âls = inf
A∈Rdx×dx

N∑
t=1

‖xt+1 − Axt‖2

trained to a single trajectory of a fully observed linear dynamical system, with zero input
and i.i.d. Gaussian noise wt. The sample complexity is determined by the decay of the
operator-norm error ‖Âls − A?‖op as a function of the sample size N . The work in this
chapter is based on Simchowitz et al. [2018].

Intuition based on mixing-time arguments would suggest that the sample complexity of
this problem worsens as ρ(A?) approaches unity, because the mixing time of the resulting
dynamical problem (x1,x2, . . . ) diverges. Chapter 3 shows that this is demonstrable not the
case. We summarize our findings in the following informal theorem.

Informal Theorem 1. For all systems with ρ(A?) ≤ 1, the error ‖Âls − A?‖op decays as
1/
√
N with high probability, suppressing logarithmic factors. Notably, this is true even if

ρ(A?) = 1, and thus the system does not mix.
Moreover, for many systems of interest, the mixing time improves as ρ(A?) approaches

1. For example, if A? = ρI, ρ ∈ (0, 1), the error degrades as max{1/N,
√

(1− ρ)/N}, which
is decreasing in ρ.

In other words, it is possible that less data is needed to achieve a given error tolerance ε
as ρ(A?) approaches unity from below.

The key insight is that sample complexity is driven not by mixing, but by the relative
magnitude of the states xt, which serve as the regression covariates, to the disturbances wt,
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which serve as the regression noise. The ratio of these two magnitudes informally corresponds
to the signal-to-noise ratio (SNR), with larger SNRs corrsponding to small estimation errors.

As the spectral radius approaches 1, the accumulation of noise – often a hindrance in con-
trol tasks – plays to our advantage by increasing the SNR, thereby aiding learning. Making
this argument precise requires two technical ingredients – a martingale concentration in-
equality due to Abbasi-Yadkori et al. [2011], popular in the learning community but perhaps
less commonplace amongst control theorists, and an original martingale anti-concentration
inequality, inspired by the small-ball method of Mendelson [2014].

Learning without Stability in Partially Observed Systems

Our previous result pertained to a rather simple setting: full state observation, no control
input, and i.i.d. Gaussian noise. In Chapter 4, we unpack the role of stability in a potentially
more challenging setting. The work in this chapter is based on Simchowitz et al. [2019].

We consider a partially observered LTI system

xt+1 = A?xt +B?ut + wt,

yt = C?xt +D?ut + et,

where the disturbances wt and et may be chosen to be any arbitrary fixed sequence, unknown
to the learner, but independent of the learners choice of inputs. For a given parameter length
p ∈ N, our goal is to recovery the system Markov operator

G?;p = [D? | C?B? | C?A?B? | · · · | C?Ap−2
? B?];

The Markov operator represents the linear response form inputs to outputs in the absence
of disturbance: yp = G?;pup;1, where up:1 denotes the vector obtained by concatenating
(up,up−1, . . . ,u1). Recovery of the Markov parameter is also sufficient for recovery of the
dynamical matrices (A?, B?, C?, D?), up to an (unidentifiable) similarity transformation [Oy-
mak and Ozay, 2019].

We identify an semi-parametric relationship

yt = G?;put:t−p+1 + δt,

where δt depends on inputs us for s ≤ t−p, as well as disturbances (ws and es for 1 ≤ s ≤ t.
Importantly, in ut are drawn i.i.d. from any mean-zero distribution, then E[ut:t−p+1δ

>
t ] is

identically zero. Importantly, this relationship holds even if the noise process is biased.
We leverage this observation to analyzes the least squares estimator

Ĝ ∈ arg min
G

N∑
t=p+1

‖yt −G?ut;t−p+1‖2,

where ut are i.i.d. Rademacher vector (uniform {−1, 1}du) random variables. Our analysis
shows that
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Informal Theorem 2. Due to the semi-parametric relationship, ‖Ĝ − G?;p‖op scales as
1/
√
N with high probability, provided the error terms ‖δt‖ are uniformly bounded.

Unfortunately, any uniform bound on ‖δt‖ requires system stability, degrading as ρ(A?)→
1 and failing to hold for marginally stable systems with ρ(A?) = 1. We remedy this my
proposing prefiltered least squares, a novel two-scale least squares algorithm which amelio-
rates the effect of large noise.

Informal Theorem 3. Via the two-scale least squares algorithm, we obtain an estimator Ĝ
such that ‖Ĝ−G?;p‖op scales as 1/

√
N with high probability, for all systems with ρ(A?) ≤ 1.

The analysis relies on a term we dub the “oracle error”, which measures how accurate the
errors δt can be predicted from past observations ys, s ≤ t − p. We expose how the oracle
error can be bounded both in terms of the minimal polynomial of the matrix A?, and in
terms of solution to a Kalman filtering problem, both of which guarantee 1/

√
N error for

marginally stable systems. This oracle error therefore provides a novel measure of problem
difficulty, orthogonal to stability, for system identification in partially observed systems with
potentially adversarial disturbances.

1.3 Online Control
In Part II, we transition from system identification to study the problem of online control.
Online control is a formultion of the adaptive control problem in which the agent must
control attain near-optimal performance single dynamical trajectory relative to a benchmark
of desirable control policies, chosen with full system knowledge. The difference between
the algorithm performance and optimal benchmark controller cost is termed regret. Regret
therefore measures the gap in performance inccured as a consequence of having to rely on
learning, rather than a prior knowledge of the system dynamics (or potentially, costs and
disturbances).

The regret is realized over a time horizon of length T , and the aim is to achieve regret
which grows as slowly as possible in T ; optimal regret refers to regret bound which which
exhibits the slowest possible rate of growth. Any regret which grows sublinearly in T is
considered non-vacuous.

Our main contributions are as follows.

• We characterize the optimal regret rate in the broadly-studied online LQR problem
(Chapter 5). This problem studies adaptive control of an unknown, fully observed
dynamical system, with fixed quadratic costs and independent, Gaussian disturbances.

• We demonstrate that sublinear (in T ) regret is attainable in a vastly more general “non-
stochastic setting.” (Chapter 6) This setting accomodates partially observed systems,
changing convex costs, and possibly adversarially selected disturbances. Regret upper
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bounds are establish both when the learner has foreknowledge of system dynamics,
and when she does not.

• We show that that, with appropriate regularity condition including strong convexity of
the control costs (Eq. (1.3)), the optimal regret guarantees in the nonstochastic setting
general setting exhibit the same scaling in T as in the far more restrictive LQR setting.
(Chapter 7)

Our findings are summarized in Table 1.1, with Õ(·) as informal asymptotic notation sup-
pressing logarithmic factors. Taken together, they imply that the optimal regret in online
control is primilarily driven by whether or not the learner has foreknowledge of system dy-
namics.

Regret Rate

Setting Known Unknown

Online LQR
(Chapter 5)

∼ 0
(definition)

Ω(
√
T )

(Theorem 5.1)

Nonstochastic Control
Strongly Convex Cost

(Chapter 7)

poly(log T )
(Theorem 7.1)

Õ(
√
T )

(Theorem 7.2)

Nonstochastic Control
General Convex Loss

(Chapter 6)

Õ(
√
T )

(Theorem 6.2)
Õ(T 2/3)

(Theorem 6.3)

Table 1.1: A sumary of regret rates in various settings of interest. Note that the fast
rates under the “Strongly Convex Cost” row require certain caveats detailed in Remarks 1.1
and 1.2.

Online LQR

Chapter 5 studies the adaptive control of the linear quadratic regulator, or Online LQR
problem. Its findings are based on Simchowitz and Foster [2020].

LQR takes as its point of departure the clasical LQR problem characterized by Kalman
[1960], which we sketch as follows. The LQR dynamics evolves according to Eq. (1.1), with
i.i.d. Gaussian noise wt

i.i.d∼ N (0, I). The learner is tasked with finding a control policy so
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as to minimize a running quadratic cost in states and inputs,

JT :=
T∑
t=1

x>t Qxt + u>t Rut,

where Q and R are fixed, positive definite matrices. Up to probabilistic fluctuations and
transient factors, the optimal LQR policy is to select xt = K?ut, where K? is a fixed matrix
depending on A?, B?, Q,R.1 This matrix can be computed efficiently by solving the discrete
algebraic Riccati equation or DARE (see e.g. [Zhou et al., 1996]). T

In online LQR, the goal is to do nearly as well as K?, but without knowledge of the
dynamical matrices A? and B?. The performance of an adaptive algorithm alg measured in
regret. Informally, the

Lqr-RegT := JT (alg)− T · J∞(K?),

where JT (alg) is the total cost incurred by running an adaptive algorithm alg, and J∞(K?) =
limT→∞

1
T
JT (K?) is the infinite horizon limit of the cost that would have been incurred had

the learner selected the optimal control policy K?.
Regret measures the relative degradation in performance that results from lack of system

knowledge. The goal is to have the regret scale sublinearly in T , so that the regret is second
order to the running total cost. The smaller the regret, the less the learner is penalized for
not having foreknowledge of the dynamics.

Numerous prior had studied this regret problem, aiming to characterize what the optimal
scaling in T . The state of the art had demonstrate that

√
T regret was attainable with

computationally efficient algorithms [Cohen et al., 2019], and under an additional condition
called controllability [Zhou et al., 1996, Chapter 3], Mania et al. [2019] demonstrated that√
T regret could be attained with only a modest dependence on problem dependence, and

with a remarkably simple strategy. This strategy is called certainty equivalence, and consists
of

• N � T steps of injecting exploratory random noises

• Constructing estimates of (Â, B̂) of (A?, B?) via ordinary least squares

• Selecting inputs ut = K̂xt for times t > N + 1, where K̂ is the certainty equivalent
controller ; that is, the controller synthesized by selecting the optimal policy as if (Â, B̂)
were the ground truth.

Given that this remarkable simple strategy had enjoyed near state-of-the-art performance
(with the caveat of requiring controllability), it is natural to ask if one could do better? Can
a more sophisticated titration of learning and control attain lower regret?

1This requires the pair (A?, B?) to be stabilizable; a necessary technical assumption that we make
throughout our discussion of the online control problem.
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The main finding of Chapter 5 is that this is not the case. First, we present a lower
bound which demonstrates that no algorithm can beat

√
T regret, unless it faces a highly

degenerate instance:

Informal Theorem 4. For every sufficiently non-degerate problem instance (A?, B?) (and
sufficently non-degenerate costs Q,R), the regret of any adaptive control algorithm must
be as large as

√
Tdxd2

u in expectation, where again T is the problem horizon, dx the state
dimension, and d2

u the input dimension.2

This lower bound precludes the possibility of any significant improvement on the cer-
tainty equivalence strategy of Mania et al. [2019]. In addition, it suggests a certain optimal
dependence on problem dimension, painting an even finer picture of the sample complexity
of online control. It is natural to understand if this dependence on problem dimension can be
attained, and if so, whether a design principle as simple as certainty equivalence can attain
it it. Our second result answers in the affirmative:

Informal Theorem 5. There exists an adaptive control algorithm whose regret is at most√
T log(T )dxd2

u with high probability against any (stabilizable) control system. The algorithm
strongly resembles the simple certainty-equivalence recipe, but with continual exploration so
as to refine dependence on problem dimension. Furthermore, the analysis removes the con-
trollability condition necessitated by prior work.

Together, our results demonstrates that relatively simple adaptive algorithms are suffi-
cient for near-optimal regret. Crucially, our analysis exploits a fundamental tension between
control and indentification in linear systems, first described by Polderman [1986], and sum-
marized in Polderman [1989].

Removing the controllbility assumption from the analysis of certainty equialence is a con-
tribution of independent technical interest. Chapter 5 exposes a new strategy for bounding
perturbations to the DARE we call the self-bounding ODE method, which yields the desired
controllability-free bounds.

Nonstochastic Control

Online LQR constitutes a relatively benign adaptive control setting, because all learner un-
certainty arises from lack of knowledge of system dynamics. As in our study of system
identification above, we attempt to extend our findings to a considerably more general do-
main. To this end, Chapter 6 takes up study of the nonstochastic control problem, first
introduced by Agarwal et al. [2019a]. The chapter summarizes the findings in the first half
of Simchowitz et al. [2020].

In nonstochastic control, the disturbance sequence is not stochastic, nor are the costs
fixed in advance. Instead, they a new cost function `t(·) is revealed to the learner at each

2This lower bound, and the upper bound to follow, suppress a dependence on ‖P?‖op, the opertor norm
of the solution to the DARE, as well as relatively minor dependence on one or two other problem parameters.
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time t, and distrubances wt and etmay be chosen adversarially. Extending Agarwal et al.
[2019a], we also consider partially observed dynamics determined by Eqs. (1.1) and (1.2).

The performance of a given policy π is measured as

JT (π) =
T∑
t=1

`t(y
π
t ,u

π
t ),

where `t(y, u) is a convex loss taking in an output and control input argument, and where
(yπt ,u

π
t ) describe the output and inputs which would be visited (a) by policy π, (b) under

the dynamics Eqs. (1.1) and (1.2), and (c) holding the sequence of realized disturbances
w1, . . . ,wT and e1, . . . , eT as given (that is, fixed across π).

Nonstochastic Regret We consider regret with respect to a restricted class Π? of dy-
namic, LTI control policies; informally, these are policies which evolve according to their
own set of fixed linear dynamic equations. The regret of our chosen, adaptive strategy alg
with respect to Π? is then

NscRegT (alg; Π?) = JT (alg)− inf
π∈Π?

JT (π).

Note that this notion of regret evaluates alg against the optimal choice of policy π ∈ Π?,
given full knowledge of system dynamics Eqs. (1.1) and (1.2), disturbances wt and et, and
cost functions `t. Thus, low regret can be interpreted in the spirit of a more adaptive notion
of H∞ control [Zhou et al., 1996], where one adapts to the realized sequences of disturbances,
rather than the game-theoretic worst case. Due to known lower bounds [Li et al., 2019], it is
necessary to consider comparisons with restricted policy classes, or else suffer regret linear
in T .

Nonstochastic Regret Bounds It was shown in Agarwal et al. [2019a] that one can
obtain

√
T regret with respect to a restricted class of static feedback policies ut = Kxt,

provided the system state is fully observed. This is achieved by using SLS [Wang et al.,
2019] to construct a convex relaxation of the set of such policies, and applying an online
learning framework - online convex optimization with memory framework [Anava et al.,
2015] - to this relaxation.

The results in this chapter extend the guarantee to partially observed systems, and to
richer policy benchmarks. In doing so, we develop disturbance response control (Drc),
which provides a more expressive language for convex control relaxations, encompassing the
classical input-output Zames [1981] and Youla-Kucěra parametrizations [Youla et al., 1976,
Kučera, 1975]. We state our guarantee as a reduction

Informal Theorem 6. The Drc parametrizations yields reduction from nonstochastic con-
trol with partial observed to online convex optimization with memory. When instantiated
with online gradient descent as the learning subroutine, the reduction yields Õ(

√
T ) regret,

provided that the dynamics are known to the learner at the outset of the game.
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Note that nonstochastic problem is still non-trivial, because the learner must contend
with unknown disturbances and cost-functions, revealed online. Indeed, Simchowitz et al.
[2020] demonstrates that no algorithm can best

√
T regret, even in the most benign special

cases.
We extend our reduction to unknown systems as follows:

Informal Theorem 7. When preceeded by an initial state of uniform exploration with
random-sign inputs, the Drc parametrization yields a reduction from nonstochastic con-
trol with partial observed to online convex optimization with memory applicable to unknown
system dynamics. When instantiated with online gradient descent as the learning subroutine,
and N ≈ T 2/3 steps of initial uniform exploration, the reduction yields Õ(T 2/3) regret.

T 2/3 regret had been obtained by Hazan et al. [2019] assuming full state observation,
under a strong controllability assumption. In contrast, our reduction handles partial obser-
vation and does not require controllability. These generalizations are possible because we
learn the Markov operator directly, rather than recovering system matrices. Conveniently,
analysis of the estimation phase is a direct application of Chapter 4.

Making Nonstochastic Control as Easy as Stochastic

There is a significant gap between the
√
T optimal online LQR regret rate, and the T 2/3 regret

upper bound derived in Chapter 6 for nonstochastic control of unknown dynamical systems.
The gap of known systems is even more stark: in nonstochastic control, the reduction in
Chapter 6 claim

√
T regret; online LQR with a known system, on the other hand, is just

regular old LQR, so we can synthesize the optimal control policy and pay essentially zero
regret.3 This poses a natural question:

When viewed from the perspective of regret, is nonstochastic control fundamen-
tally more challenging than adpative control with stochastic noise, namely online
LQR?

Presenting material from Simchowitz [2020] and the latter half of Simchowitz et al. [2020],
Chapter 7 demonstrates that the short answer is “no.”

To level the playing field, between online LQR and nonstochastic control, we assume that
the losses `t are not just convex, but strongly convex, that is the minimimal eigenvalue of
the Hessians are at most some α > 0:

∀(y, u), λmin(∇2`t(y, u)) ≥ α. (1.3)

It is clear that such assumption holds in LQR because the costs are positive definite quadratic
functions. Moreover, it has been widely observed in online learning that, when loss functions

3Depending on the way regret is defined, there may be some transient effects making the regret constant,
or perhaps logarithmic, in the time horizon.
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such exhibit curvature, improved regret bounds are often possible [Hazan et al., 2007, Vovk,
2001]. It remains unknown whether one can improve upon T 2/3 regret for unknown system
dyanimcs without this assumption, and Simchowitz et al. [2020] prove that, in its absence,√
T regret is unimprovable for known system dyanmics.
While promising, the strong convexity of the costs `t(y, u) does not imply strong convexity

of the Drc-parametrized control problem. This is in part due to the nonstochastic noise,
which may excite some system modes, but not others. We overcome this challenge with
a second-order online learning algorithm we call Online Semi-Newton Step (Semi-Ons),
inspired by the Online Newton Step algorithm of Hazan et al. [2007]. Semi-Ons carefuly
accounts for how the loss curvature propogates through the Drc parametrization. Plugging
this algorithm into the reduction of Chapter 6, we find:

Informal Theorem 8. For known systems, instantiating the Drc-reduction with Semi-Ons
as the online learning procedure yields poly(log T ) regret on a time horizon T , provided the
losses enjoy the curvature property (1.3).

Logarithmic regret is typically the very best one can hope for in any non-vacuous online
learning setting, and indeed one can show that no algorithm can improve upon log T regret
for our setting (even with, say, stochastic noise but adversarial costs).

For unknown systems, the analogous reduction match the rates of online LQR:

Informal Theorem 9. For unknown systems, instantiating the Drc-reduction with an
initial estimation phase of length N ≈

√
T , and with Semi-Ons as the online learning pro-

cedure, yields Õ(
√
T ) regret, provided the losses enjoy the curvature property (1.3), and the

complementary property that λmax(∇2`) is uniformly upper bounded.

Our findings, together with those in Chapters 5 and 6 are summarized in Table 1.1.
In sum, we conclude that, from the perspective of regret, nonstochastic control is (almost)
as easy as stochastic adaptive control. There are two important caveats to our findings,
adressed in the remarks below.

In addition there are settings where stochastic control does seem easier than nonstochas-
tic: online linear quadratic Gaussian control (LQG) [Lale et al., 2020a], online LQR with
knowlege of the B? matrix [Cassel et al., 2020], and nonstochastic control of an unknown
system with a fixed general (possible non-strongly convex) convex cost [Plevrakis and Hazan,
2020]. All three are discussed further in the related work chapter, Chapter 2. Finally, un-
derstanding whether or not

√
T regret is attainable in the full non-stochastic model with

general convex costs remains an open problem.

Remark 1.1. The claimed fast rates for nonstochastic control require one of two addi-
tional condition: either the system can be stabilized by static feedback, or the nonstochastic
noise includes a stochastic component with non-degenerate covariance; we call this latter
noise model semi-adversarial noise. The first condition always holds for any stabilizable
fully observed system, but may fail under partial observation. Thus, the optimal regret
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in non-stochastic control of a fully observed system matches that of online LQR. A more
general condition than static-feedback stabilizability suffices for partially observed systems
(Lemma 7.1), which can be verified in restrictive cases (Lemma 7.16). The second option -
semi-adversarial noise - applies to fully and partially observed systems alike.

Remark 1.2. From the perspective of optimal control, nonstochastic control is considerably
more challenging; indeed, prohibitvely so. This is because in online LQR, the exact optimal
policy was a static feedback controller ut = Kxt, and we could obtain low regret relative (or
“compete with”) such policies. In nonstochastic control, we consider a benchmark of linear
dynamic control policies. And while this benchmark does include the static policies optimal
for LQR instances, it may not contain the global, unconstrained optimal control policy for a
given nonstochastic control problem [Li et al., 2019]. Thus, in online LQR, we compete with
the optimal control law, whereas in nonstochastic control, we do not.
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Chapter 2

Related Work

Mirroring the structure of this thesis, we divide our discussion of prior work into system
identification and adaptive control. We then conclude with a broader discussion of how the
algorithmic and analytic ideas in this thesis relate to the broader learning theory community.

2.1 System Identification
Part I of this thesis addresses the problem of system identification of linear time-invariant
(LTI) dynamical systems; that is, learning an approximate model of the dynamics from
observed trajectories.

Identifying LTI systems from data has a decades-old history in both the time-series and
system identification communities (see Ljung [1999], Verhaegen [1993], Galrinho [2016] and
references therein) with least squares estimation being a central tool for dozens of algo-
rithms, many of them similar in spirit to the two stage least square. A complementary
viewpoint comes from a family of techniques techniques known broadly as subspace iden-
tification (e.g. Qin [2006]), which take a singular value decomposition (SVD) of the raw
data.

Early Results on Nonasymptotic System Identification Results

Prior to the work in this thesis, the results on non-asymptotic system identification had
been somewhat sparse. Some of the earlier non-asymptotic literature in system identification
include Campi andWeyer [2002] and Vidyasagar and Karandikar [2008]. The results provided
in this line of work are often quite conservative, featuring quantities which are exponential
in the degree of the system. Furthermore, the rates given are often difficult to interpret.

Prior Work on System Identification with Full State Observation

Our findings in Chapter 3 for fully observed systems qualitatively match the behavior of the
rate given for least squares in Dean et al. [2017], in that the key spectral quantity governing
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the rate of convergence is the minimum eigenvalue of the finite-time controllability Gramian.
The major difference is that our analysis analyzes a single trajectory, whereas the the analysis
in Dean et al. [2017] uses multiple independent trajectories, and discards all but the last state-
transition in each trajectory. This decouples the covariates, and reduces the analysis to that
of random design linear regression with independent covariates. We note, however, that the
analysis in Dean et al. [2017] applies even when A? is unstable, provided each individual
trajectory length is not too large.

Another closely related work is the analysis by Rantzer [2018] of scalar systems xt =
a?xt + wt, a? ∈ R. This work demonstrates similar improvements in estimation performance
as the magnitude of a? grows.

Most directly related to our work on fully observed systems are works by Faradonbeh
et al. [2018a, 2017], who study the linear system identification problem by proving a non-
asymptotic rate on the convergence of the OLS estimator to the true system matrices. In
the regime where A? is stable, these papers recover a similar rate as our result. The ma-
jor difference is that the dependence of their analysis on the spectral properties of A? are
qualitatively suboptimal, and difficult to interpret precisely.

The material presented in Chapter 3 is drawn from Simchowitz et al. [2018]. Subsequent
to that publication, Sarkar and Rakhlin [2019] extended the analysis to potentially unstable
systems. The uncovered an interesting regularity condition: that unstable linear systems
with repeat unstable eigenvalues (e.g., A? = 2 · I) pose significant challenges for the ordinary
least squares estimator. Other works have shown a promising role for active learning and
experiment design, both to improve estimation rates [Wagenmaker and Jamieson, 2020],
optimize downstream controller synthesis [Wagenmaker et al., 2021], and accomodate certain
classes of nonlinear systems [Mania et al., 2020].

Partial State Observation

Shah et al. [2012] pose the problem of recovering a single-input, single-output (SISO) LTI
system from linear measurements in the frequency domain as a sparse recovery problem,
proving polynomial sample complexity for recovery in the H2-norm. Hardt et al. [2016]
show that under fairly restrictive assumptions on the A? matrix, projected gradient descent
recovers the state-space representation of an LTI system with only a polynomial number
of samples. The analysis from both Shah et al. [2012] and Hardt et al. [2016] degrade
polynomially in 1

1−ρ(A?)
, where ρ(A?) is the spectral radius of underlying A?. Hazan et al.

[2017, 2018] provide online prediction bounds for prediction in LTI systems, though these
bounds degrade for marginally stable systems.Note that Hardt et al. [2016], Hazan et al.
[2017, 2018] consider prediction. As noted in our discussion of Dean et al. [2017], strict
stability can be removed in many of these settings as well, at the expense of requiring a
number of independent trajectories which grows with desired accuracy [Oymak, 2018].

Our findings in Chapter 4 build on on the analysis due to Oymak and Ozay [2019],
both analyzing recovery of the Markov parameter of an LTI system from input-output data
via least squares. The main differences are that our work 1. introduces a two-stage least
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squares procedure to remove the dependence on system stability, 2. extends to possibly
non-stochastic, and 3. focuses solely on recovery of the Markov operator, and not system
matrices. Notably, Oymak and Ozay [2019] analyze the classical Ho-Kalman algorithm [Ho
and Kalman, 1966] for parameter recovery. An analysis of this algorithm was refined by
Sarkar et al. [2019].

Our presentation of Chapter 4 is based on the publication [Simchowitz et al., 2019].
Subsequent to its publication, Tsiamis and Pappas [2019] provide an elegant analysis of
system identification under purely Gaussian noise in the presence of a Kalman filter, and
[Rashidinejad et al., 2020] draws interesting connections between learning with long-memory
systems and the notion of “Kolmogorov complexity”.

2.2 Adaptive Control
Adaptive control studies how a controller system ought to improve its own performance in a
given control task by incorporating past data. Most conventionally, adaptive control is posed
in the setting where certain aspects of the system, typically system dynamics, are unknown,
and must be inferred during the control process. Adaptive control has been studied at length
in the linear [Stengel, 1994], nonlinear [Krstic et al., 1995], and robust control [Ioannou and
Sun, 2012] settings.

Part II of this thesis considers more the problem of online control: a modern, learning-
theoretic formulation of adaptive control in which adaptivity is measured by regret compared
to an idealized control benchmark given a priori knowledge of various control system prop-
erties and task desideratum. The following discussion describes work in this area. We
remark that data-driven control design has been studied more broadly in batch, PAC set-
tings [Fiechter, 1997, Dean et al., 2017], in the context of model-free methods [Fazel et al.,
2018], and from the perspective of experiment design [Wagenmaker et al., 2021].

Online LQR The online LQR setting we study in Chapter 5 was introduced by Abbasi-
Yadkori and Szepesvári [2011]. This work considers the problem of controlling an unknown
linear system under stationary stochastic noise. They showed that an algorithm based on
the optimism in the face of uncertainty (OFU) principle enjoys

√
T , but their algorithm

is computationally inefficient and their regret bound depends exponentially on dimension.
The problem was revisited by Dean et al. [2018], who showed that an explicit explore-
exploit scheme based on ε-greedy exploration and certainty equivalence achieves T 2/3 regret
efficiently, and left the question of obtaining

√
T regret efficiently as an open problem. This

issue was subsequently addressed by Faradonbeh et al. [2018b] and Mania et al. [2019],
who showed that certainty equivalence obtains

√
T regret, and Cohen et al. [2019], who

achieve
√
T regret using a semidefinite programming relaxation for the OFU scheme. The

regret bounds in Faradonbeh et al. [2018b] do not specify dimension dependence, and (for
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dx ≥ du), the dimension scaling of Cohen et al. [2019] can be as large as
√
d16
x T ;1 Mania

et al. [2019] incurs an almost-optimal dimension dependence of
√
d3
xT (suboptimal when

du � dx), but at the expense of imposing a strong controllability assumption.
The question of whether regret for online LQR could be improved further (for example,

to log T ) remained open, and was left as a conjecture by Faradonbeh et al. [2018c]. Our lower
bounds resolve this conjecture by showing that

√
T -regret is optimal. Moreover, by refining

the upper bounds of Mania et al. [2019], our results show that the asymptotically optimal
regret is Θ̃(

√
d2
udxT ), and that this achieved by certainty equivalence. Beyond attaining the

optimal dimension dependence, our upper bounds also enjoy refined dependence on problem
parameters, and do not require a-priori knowledge of these parameters.

The work presented in Chapter 5 is drawn from the author’s publication Simchowitz and
Foster [2020]. Concurrent work by Cassel et al. [2020] also demonstrate that

√
T regret is

unavoidable in online LQR, but does not characterize the optimal dimension dependence.
It also observes that logarithmic regret is possible the matrix B? is known in advance; this
insight can also be derived from the intuitions in Chapter 5; this observation is extended fur-
ther in Ziemann and Sandberg [2020]. Another concurrent work, Abeille and Lazaric [2020]
provides a computationally efficient implements of the optimisim-algorithm first introdced
by Abbasi-Yadkori and Szepesvári [2011] a decade earlier. While this algorithm appears to
suffer worse dimension-dependence than the algorithm analyzed in Chapter 5, it may have
a more benign dependence on other problem parameters.

Finally, a parallel line of research provides Bayesian and frequentist regret bounds for on-
line LQR based on Thompson sampling [Ouyang et al., 2017, Abeille and Lazaric, 2017], with
Abeille and Lazaric [2018] demonstrating

√
T -regret for the scalar setting. Unfortunately,

Thompson sampling is not computationally efficient for the LQR.

Nonstochastic Control

Chapters 6 and 7 consider the non-stochastic control problem, which departs from LQR by
considering adversarially-chosen disturbances and cost functions. These chapters are based
on the author’s publications Simchowitz et al. [2020] and Simchowitz [2020].

Recent work first departed from online LQR by considered adversarially chosen costs
under known stochastic or noiseless dynamics [Abbasi-Yadkori et al., 2014, Cohen et al.,
2018]. The setting we consider in this paper was established in Agarwal et al. [2019a],
who obtain

√
T -regret in the more general and challenging setting where the Lipschitz loss

function and the perturbations are adversarially chosen. The key insight behind this result is
combining an improper controller parametrization know as disturbance-based control with
recent advances in online convex optimization with memory due to Anava et al. [2015].
Follow up work Gradu et al. [2020] extend to linear, time-varying systems and adaptive
regret. Analogous problems have also been studied in the tabular MDP setting [Even-Dar

1The regret bound of Cohen et al. [2019] scales as d3x
√
T · (J∞(K?))

5; typically, J∞(K?) scales linearly
in dx
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et al., 2009, Zimin and Neu, 2013, Dekel and Hazan, 2013, Rosenberg and Mansour, 2019,
Jin et al., 2019].

Under the considerably stronger condition of controllability, the recent work by Hazan
et al. [2019] attains T 2/3 regret for adversarial noise/losses when the system is unknown.
The material presented in Chapter 6 extends this prior work to partially-observed systems.
This requires accomodating both a richer control benchmark of dynamic LTI controllers,
and accomodating a much richer class of controller parametrizations. Unlike Hazan et al.
[2019], our algorithms do not recover explicit state-space representations of the dynamics,
and therefore circumvent controllability assumptions. Chapter 7 further improves the T 2/3

regret bound of Hazan et al. [2019] to
√
T when the control costs are strongly convex.

Importantly, all aforementioned work consider regret with respect to a restricted class of
control policies: static feedback in Agarwal et al. [2019b], Hazan et al. [2019], and dynamic
LTI controllers in Chapters 6 and 7. This turns out to be necessary: Li et al. [2019] demon-
strate that it is impossible to attain sublinear (in T ) regret with respect to the unconstrained
optimal policy, even in benign problems with no process noise and full state observation, but
adversarially-chosen state and control costs. They show that this negative result can be cir-
cumvented if the algorithm has access to a finite lookahead of costs H steps into the future,
obtaining T · exp(−Ω(H)) regret when such lookahead is available. Concurrent work by
Plevrakis and Hazan [2020] also demonstrates

√
T regret in a(n incomparable) setting with

a fixed convex cost which is not necessarily strongly convex, and with i.i.d. stochastic noise.

Logarithmic Regret for Online Control of Known Systems Abbasi-Yadkori et al.
[2014] were the first to attain logarithmic regret in a restricted class of adversarial online
tracking problems. Work by Agarwal et al. [2019b] achieves logarithmic pseudo-regret for
strongly convex, adversarially selected losses and well-conditioned stochastic noise. This is
entirely superseded by this author’s publication Simchowitz et al. [2020], which improves the
bound from pseudo-regret to actual regret (under a slightly stronger smoothness assumption),
and extends to partial observation and semi-adversarial noise. This was further extended to
fully adversarial noise in Simchowitz [2020], provided the system can be stabilized with a
restricted family of control policies. These findings are both outlined in Chapter 7.

Simchowitz [2020] supersedes another of the author’s publications, Foster and Simchowitz
[2020], which proposes a creative alternative approach for logarithmic regret in online control.
Derived from the performance-difference lemma [Kakade, 2003], that work derives “online
learning with advantages” - which yields logarithmic regret with truly adversarial noise, but
fixed quadratic cost functions and with full observation. Notably, Foster and Simchowitz
[2020] characterizes the unconstrained optimal policies for any fixed disturbance sequence,
which was received later study [Goel and Hassibi, 2020, Yu et al., 2020].

The Curious Case of Online LQG

LQG, or linear quadratic Gaussian control, is the natural extension of LQR to partially
observed systems. Mania et al. [2019] were the first to study this problem in the online
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setting, presenting perturbation bounds which suggest T 2/3 regret. There were later improved√
T by Lale et al. [2020b], matching the optimal rate for LQR. The fast rates of Chapter 7

— more precisely, bounds for restricted systems and adversarial noise due to Simchowitz
[2020] and for unrestricted system and adversarial noise due to [Simchowitz et al., 2020] —
also imply such a

√
T rate. As

√
T regret is the optimal regret rate obtainable in online

LQR (Chapter 5), one may be led to conclude that there is no more to the story.
Suprisingly, for LQG with both non-denegerate process and observation noise, Lale et al.

[2020a] attain poly(log T ) regret, demonstrating that in the presence of significant observa-
tion noise, LQG is in fact easier than LQR (with no observation noise) in terms of regret.
This is because the process and observation noise provide continual exploration, allowing the
learner to greedily exploit all current knowledge, without succumbing to the explore-exploit
tradeoffs established for LQR in Chapter 5.

2.3 Provenance of Techniques
The work in this thesis would not have been possible without the significant advances made
by the learning community in the past two decades. Here, we explain how our algorithmic
and analytic ideas emerge from and contribute to that body of literature.

Statistical Learning Theory

Chapters 3 to 5 all rely on modern advances in statistical learning techniques. To analyzes
the performance of the ordinary least squares estimator, all three chapters apply the self-
normalized martingale bound of Abbasi-Yadkori et al. [2011], originally due to de la Pena
et al. [2009]. Chapter 3 also proposes the “block-martingale small-ball” technique, a tool
for lower bounding the eigenvalues of covariance matrices, which draws its inspiration for
Mendelson [2014]’s small-ball method; this technique proves useful again in Chapter 5. Fi-
nally, the lower bounds in Chapter 5 build on well-known lower bound technique for adaptive
sensing based on Assouad’s lemma [Arias-Castro et al., 2012] (see also Assouad [1983], Yu
[1997]) in order to obtain optimal dimension dependence.

Prefiltering and Variance Reduction

The key algorithmic idea in Chapter 4 is the two-staged least squares procedure we term
“prefiltered least squares”. One can regard prefiltered least squares as a specific instance of
a prefiltered autoregressive model (such as ARX or ARMAX); much work has been done
on explicit filtering and debiasing schemes for these types of models Spinelli et al. [2005],
Ding [2013], Zheng [2004], Guo and Huang [1989], Zhang [2011], Wang [2011], Galrinho et al.
[2014]. However, analyses of these schemes are often (i) asymptotic, (ii) for strictly stable
systems only, or (iii) use a limited noise model.
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Beyond linear systems, our prefiltering step bears similarities to the instrumental variables
technique in used in controls [Viberg et al., 1997], econometrics [Hansen and Singleton, 1982]
and causal statistics [Angrist et al., 1996], which is used more for debiasing than for denoising.
More broadly, variance reduction has become an indispensable component of reinforcement
learning [Weaver and Tao, 2001, Greensmith et al., 2004, Tucker et al., 2017, Sutton and
Barto, 1998], including the theoretical study of tabular Markov Decision Processes [Kakade
et al., 2018, Sidford et al., 2018].

Convex Parameterization of Linear Controllers

The algorithm and analysis presented in Chapters 6 and 7 rely on disturbance response
control (Drc), a template of convex parametrizations for online control.

Convex or lifted parameterizations have a rich history in the control literature. Our
Drc parametrization encompasses input-ouput parametrizations Zames [1981], Rotkowitz
and Lall [2005], Furieri et al. [2019] as well as classical Youla or Youla-Kucěra parametriza-
tion [Youla et al., 1976, Kučera, 1975], and approximations to the Youla parametrization
which require only approximate knowledge of the system. More recently, Goulart et al.
[2006] propose a parametrization over state-feedback policies, and Wang et al. [2019] intro-
duce a generalization of Youla called system level synthesis (SLS); SLS is equivalent to the
parametrizations adopted by Agarwal et al. [2019a] et seq., and underpins the T 2/3-regret
algorithm of Dean et al. [2018] for online LQR with an unknown system; one consequence
of our work is that convex parametrizations can achieve the optimal

√
T in this setting.

However, it is unclear if SLS (as opposed to input-output or Youla) can be used to attain
sublinear regret under partial observation and adversarial noise.

Online learning and online convex optimization.

Chapters 6 and 7 also make extensive use of techniques from the field of online learning and
regret minimization in games [Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz et al., 2012,
Hazan, 2019]. Of particular interest are techniques for coping with policy regret and online
convex optimization for loss functions with memory called “online convex optimization with
memory” [Anava et al., 2015]. [Arora et al., 2012] has proposed alternative notions of policy
regret pertinent to other online learning settings.

Fast Rates in Online Learning Logarithmic regret bounds are ubiquitous in online
learning and optimization problems with strongly convex loss functions [Vovk, 2001, Hazan
et al., 2007, Rakhlin and Sridharan, 2014]. Agarwal et al. [2019b] demonstrate that for the
problem of controlling an known linear dynamic system with adversarially chosen, strongly
convex costs, logarithmic regret is also attainable. Our

√
T lower bound in Chapter 5 shows

that the situation for the online LQR with an unknown system parallels that of bandit convex
optimization, where Shamir [2013] showed that

√
T is optimal even for strongly convex
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quadratics. That is, in spite of strong convexity of the losses, issues of partial observability
prevent fast rates in both settings.

Fast-rates (e.g. logarithmic regret) have also been observed in more general families of
loss functions, notably exp-concave losses [Vovk, 2001, Hazan et al., 2007]. However, no
such fast rates for these general families are known when the loss functions have memory,
as in Anava et al. [2015]’s online-convex-optimization-with-memory setting described above.
In Chapter 7, our work intervenes in this problem by formulating a refinement setting we
term “online convex optimization with affine memory”, under which fast rates are possible.
In adition, it describes a Euclidean-movement lower bounds, rooted in the broader learning-
with-switching-costs literature [Altschuler and Talwar, 2018, Chen et al., 2019, Dekel et al.,
2014], which suggest that fast rates for losses with memory may be challenging in general.

Robustness in Convex Optimization When deriving rates for systems with unknown
dynamics in Chapters 6 and 7, we rely on the robustness of online learning procedures to
misspecification of their loss functions. Notably, for the fast

√
T -rate for unknown systems

described in Chapter 7, we show that online optimization methods can exhibit quadratic
sensitivity – Tε2 – to ε-bounded errors in the online loss functions, provided those losses
exhibit sufficient curvature. This generalizes a known robustness result for batch stochastic
convex optimization [Devolder et al., 2014].
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Part I

System Identification
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Chapter 3

Learning Without Mixing

This chapter focused on identifying a discrete-time linear dynamical system from an observed
trajectory. Such systems are described by two parameter matrices A? and B?, and the
dynamics evolve according to the law xt+1 = A?xt +B?ut + wt, where xt ∈ Rdx is the state
of the system, ut is the input of the system, and wt ∈ Rdx denotes unobserved process noise.

Prior to the work presented in this chapter, the relationship between the matrix A? and
the statistical rate for estimating this matrix was poorly understood. We note that the larger
the state vectors xt are in comparison to the process noise, the larger the signal-to-noise
ratio for estimating A? is. As a result, larger matrices A? (larger in an appropriate sense,
discussed below) lead to states xt of larger norm, which in turn should make the estimation
of A? easier. However, it is difficult to theoretically formalize this intuition because the
sequence of measurements x1,x2, . . . ,xN used for estimation is not i.i.d. and it is dependent
on the noise w1, . . . ,wN−1. Even the computationally straightforward ordinary least-squares
(Ols) estimator is difficult to analyze. Standard analyses for Olson random design linear
regression [Hsu et al., 2012] cannot be used due to the dependency between the covariates
xt and the process noise wt.

In the statistics and machine learning literature, correlated data is usually dealt with
using mixing-time arguments [Yu, 1994], which relies on fast convergence to a stationary
distribution that allows correlated samples to be treated roughly as if they were indepen-
dent. While this approach has been successfully used to develop generalization bounds for
time-series data [Mohri and Rostamizadeh, 2008], a fundamental limitation of mixing-time
arguments is that the bounds deteriorate when the underlying process is slower to mix. In
the case of linear systems, this behavior is qualitatively incorrect. For linear systems, the
rate of mixing is intimately tied to the eigenvalues of the matrix A?, specifically the spectral
radius ρ(A?). When ρ(A?) < 1 (i.e. when the system is stable), the process mixes to a
stationary distribution at a rate that deteriorates as ρ(A?) approaches the boundary of one.
However, as discussed above, as ρ(A?) increases we expect estimation to become easier due
to better signal-to-noise ratio, and not harder as mixing-time arguments suggest.

We address these difficulties and offer a new statistical analysis of the ordinary least-
squares (Ols) estimator of the dynamics xt+1 = A?xt+wt with no inputs, when the spectral
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radius of A? is at most one (ρ(A?) ≤ 1, a regime known as marginal stability). Our results
show that the statistical performance of Olsis determined by the minimum eigenvalue of
the (finite-time) controllability Gramian ΓT =

∑T−1
s=0 A

s
?(A

>
? )s. The controllability Gramian

is a fundamental quantity in the theory of linear systems; the eigenvalues of the Gramian
quantify how much white process noise wt

i.i.d∼ N (0, σ2I) can excite the system. We show
that a larger λmin(ΓT ) leads to faster estimation of A? in operator norm, and we also prove
that up to log factors the Olsestimator is minimax optimal.

Organization

Section 3.1 formalizes the problem of system identification with i.i.d. Gaussian noise and full
state observation, and describes the ordinary least squares estimator. It also introduces the
key concepts of stability and mixing, which ground the discussion throughout the chapter.

Section 3.2 then asks to what extent mixing and stability have a bearing on the sample
complexity of system identification. We explain hypotheses from past work that mixing is
essential to system identification. We then introduce the Gramian matrix, which leads to a
heuristic calculation that mixing may in fact be anti-correlated with estimator performance.
This is expounded upon for an illustrative example of systems whose dynamical matrix A?
is equal to the identity scaled by a factor ρ ∈ (0, 1]: A? = ρI.

Section 3.3 states our main findings. Theorem 3.1 presents an upper bound on the error
of the least squares estimator. It shows that indeed the Gramian matrix, and not the mixing
property, are the key to characterizing the sample complexity. We also develop corollaries
for special cases of interest, including an in-depth discussion of learning rates for systems of
the form A? = ρI. A lower bound corroborates the optimality of our findings in this special
case.

Finally, Section 3.4 provides proofs of our findings. We emphasize a novel technique -
the martingale small-ball method - which facilliates our analysis.

3.1 Learning the State Transition Matrix
In this chapter, we consider the estimation of the state-transition matrix A? ∈ Rdx×dx given
access to a single, length-N trajectory of samples for times t = 1, 2, . . . , N :

xt+1 = A?xt + wt, wt
i.i.d∼ N (0, σ2

w), x0 ≡ 0 (3.1)

Generalization to non-indentity covariance matrices is also possible, but omitted for simplic-
ity.

The above setting is perhaps the simplest variant of the system identification problem,
studied at length by . . . . We study the performance of the least squares estimator

Âls ∈ arg min
A∈Rd2x

N∑
t=1

‖xt − Axt‖2
2, (3.2)
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and analyze recovery in the operator norm.

Problem 3.1. What is the performance of the least-squares estimator, Âls. Specifically, for
what constant Cls depending on A? can we ensure that, with high probability,

‖A? − Âls‖2
op .

Cls

N
? (3.3)

Problem Problem 3.1 can be alternatively framed in terms of sample complexity. That
is, for a given tolerance ε, how long a trajectory N is required to ensure ‖A? − Âls‖2

op ≤ ε;
this amounts to inverting the bound in (3.3). The results are visually more appealing when
presented as in (3.3), but we shall slightly abuse language and characterize such upper bounds
as assessing sample complexity.

Stability and Marginal Stability

This chapter investigates the extent to which stability determines the samples complexity of
estimation. Stability is determined by the spectral radius of a matrix A.

Definition 3.1. Given a square matrix A ∈ Rdx×dx , its spectral radius is defined as the limit

ρ(A) := lim
n→∞

‖An‖1/n
op . (3.4)

A square matrix A is said to be Schur stable, or simply stable, if its spectral radius is strictly
less than one, ρ(A) < 1. A is said to be unstable if ρ(A) > 1. We say that A is marginally
stable if ρ(A) = 1.

By representing A in Jordan normal form, one can show that ρ(A) corresponds to its
largest magnitude eigenvalue, keeping in mind that eigenvalues of A may be complex. For
example, given any ρ ∈ C, the matrix A = ρI has ρ(A) = |ρ|. Thus, the norms of powers
An of a stable A shrink geometrically, and grow geometrically if A is unstable.

Powers of marginally stable A do not shrink. Indeed, if A is marginally stable, then it
has at least one eigenvalue λ of magnitude one, and for the corresponding eigenvector v,
‖Anv‖ = ‖λnv‖ = |λ|n‖v‖ = ‖v‖. In fact, the norms of powers of A may grow polynomially,
as may be verifed when A is a Jordan block with eigenvalue 1. One can establish the following
estimate via the Jordan cannonical form. Recall that every square matrix A can be expressed
as

A = SJS−1,

where J is a block-diagonal Jordan matrix, with Jordan blocks of the form

Bk,λ :=


λ 1 0 . . . 0 0
0 λ 1 0 . . . 0 0
0 0 λ 1 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . . . . . . . 0 λ

 ∈ Rk,k, (3.5)
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where λ ∈ C are elements of the spectrum of A. Using an explicit formula for powers of Bk,λ

(see [Simchowitz et al., 2018, Appendix A3] for further details), one can compute the upper
and lower estimates on the norms of powers of A in terms of spectral radius.

Lemma 3.1. For any square matrix A ∈ Rdx×dx, there exists constants c1, c2 > 0 and
c3 ∈ [0, dx] depending on A such that, for any n ∈ N,

c1ρ(A)n ≤ ‖An‖op ≤ c2n
c3ρ(A)n (3.6)

In particular, c3 can be chosen so that c3 + 1 is the size of the largest Jordan block Bk,λ in
the Jordan-decomposition of A.

In this chapter, we assume that A? is either stable or marginally stable. Formally,

Assumption 3.1. We assume that ρ(A?) ≤ 1.

An excellent follow-up due to Sarkar and Rakhlin [2019] studies the performance of the
ordinary least-squares estimator even in potentially unstable systems.

3.2 What property determines sample complexity?

Learning with Mixing

Prior work has focused on the setting where the matrix A? is stable, ρ(A?) < 1, so that
‖An?‖op shrinks as ρ(A?)

Ω(n), in view of Lemma 3.1. In this regime, the system exhibits a
behavior known as mixing. Informally, for a suitably long delay parameter H and any time
t, the iterates xt is approximately independent of x1, . . . ,xt+H . No see this, observe that we
can write

xt =
t−1∑
i=0

Ai?wt−i =

(
H−1∑
i=0

Ai?wt−i

)
+

(
t−1∑
t=H

Ai?wt−i

)
. (3.7)

For large enough H, the second term in the last line is vanishingly small, on the order of
ρ(A?)

Ω(n). Hence, xt is roughly independent of (w1, . . . ,wt−H), over which the past iterates
x1, . . . ,xt−H are deterministic functions.

Via mixing arguments, past work has shown that one can essentially “block up” the
learning problem into independent blocks j from iterates (xj,xj+H ,xj+2H , . . . ), and use the
fact that the iterates within blocks are essentially independent. Thus, mixing provides a
means of reducing learning with dynamic and dependent data to learning with i.i.d. data.
For brevity, we have kept this discussion rather informal, and defer to Yu [1994], Mohri and
Rostamizadeh [2008] for precise arguments. In light of these arguments, one might conjecture
that mixing is essential to establishing statistically efficient learning:

Hypothesis 3.1. Because mixing measures how correlated the data in the rollout are, the
mixing time ρ(A?) characterizes the performance of the least squares estimator. That is, the
scaling Cls in Eq. (3.3) grows with ρ(A?).
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The Gramian Matrix

Directly from the form of the least squares estimator, we one can

Âls =

(
t∑
t=1

xt+1x
>
t

)(
N∑
t=1

xtx
>
t

)−1

(from Eq. (3.2))

=

(
N∑
t=1

wtx
>
t

)(
N∑
t=1

xtx
>
t

)−1

+

(
N∑
t=1

A?xtx
>
t

)(
N∑
t=1

xtx
>
t

)−1

(from Eq. (3.1))

=

(
N∑
t=1

wtx
>
t

)
Σ−1
N + A?, where ΣN := xtx

>
t . (3.8)

The first term on the last line,
∑t

t=1 wtx
>
t is mean zero, since E[wt | xt] = 0. Hence, the

error Âls− Âls scales with the inverse magnitude of the covariance matrix ΣN :=
∑N

t=1 xtx
>
t .

Hence, a natural conjecture is the expected state covariance of the dyanmics in Eq. (3.1),
which we call the Gramian, determines the sample complexity.

Definition 3.2 (Gramian). For t ∈ N, we define time-t Gramian Γt under A? as

Γt := E[xtx
>
t ] =

t−1∑
s=0

(As?)(A
s
?)
>

Intuitively, the Gramian ΓN measure the magnitude, or strength of the “signal” xt; and
the “noise” variance scales as σ2

w, regardless of the dynamics. Hence, the larger ΓN , the larger
the signal-to-noise ratio. Moreover, we observe that

E[ΣN ] = σ2
w

N∑
t=1

Γt, (3.9)

so that the magnitudes of Γt determine the magnitude of the (expected) covariance. This
motivates the following hypothesis.

Hypothesis 3.2. The sample complexity constant Cls is inversely proportional to the size of
the Gramian; for example, Cls ∝ 1/σmin(ΓN). This is consistent with the observation that,
the larger ΓN , the larger the signal-to-noise ratio.

As we shall make frequent reference to the Gramian, the following fact is useful to bear
in mind, and can be checked via Lemma 3.1.

Fact 3.2. For any 1 ≤ s ≤ t, we have I � Γs � Γt. Moreover, limt→∞ Γt exists (is finite) if
and only ρ(A?) < 1.
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A Canonical Example

The hypothesis that the sample complexity is dictated by the Gramian is at odds with the
hypotheses that sample complexity degrades with longer mixing time. We illustrate this
with a simple example. Consider

A? = ρI, ρ ∈ [0, 1] (3.10)

Then ρ(A?) = ρ, and thus the mixing time roughly scales proportionally to the parameter
ρ. On the other hand, we can compute that

Γt = I ·
t−1∑
s=0

ρ2s h

{
1

1−ρ · Idx ρ ≤ 1− 1
N

N · I ρ > 1− 1
N
,

(3.11)

where h denotes Lowner inequality up to universal constants.1 In particular, we see that
the Gramian scales linearly in ρ up to a limit 1 − 1

N
, at which which saturates point the

Grammian saturates at N · I. Stated in terms of the expected covariance matrix, Eq. (3.9)
entails

1

σ2
w

E[ΣN ] h

{
N

1−ρ · Idx ρ ≤ 1− 1
N

N2 · I ρ > 1− 1
N
,

(3.12)

As a consequence of the above computations, we find

There is a fundamental tension between the mixing time in the system, and the
magnitude of the Gramian. In particular, Hypotheses 3.1 and 3.2 are incompat-
ible.

A third hypothesis might interpolate between Hypotheses 3.1 and 3.2. That is, the
magnitude of the Gramian determines the scaling of Cls for N sufficiently large; however,
this occurs after a burn-in time which dependends on the mixing properties of A?.

Hypothesis 3.3. There may be a long burn-in time N before one can establish meaningful
guarantees of the form Eq. (3.3). However, Cls has no meaningful dependence on ρ(A?) for
large N , and is in fact determined by ΓN in the limit.

One possible argument for Hypothesis 3.3 is that slow mixing systems induces states xt
which are highly correlated across time. This correlation may force the empirical covariance
matrix ΣN :=

∑N
t=1 xtxt to be poorly conditioned, even if its expectation may favor faster

statistical estimation (in view of Eq. (3.12)).
If Hypothesis 3.3 is true, however, then for marginally stable systems - i.e. ρ(A?) = 1 -

the burn-in time may be infinite, and thus the least squares estimator may be inconsistent;
that is Âls 6→ A? ast N → ∞. This would be despite the fact that the covariance matrix
would grow superlinearly in expectation (Eq. (3.12)).

1That is, X h Y if c1X � Y � c2X for universal constants c1, c2.
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3.3 Main Results
We state our bounds in terms of the time-averaged Gramian,

Γ̃t :=
1

t

t∑
i=1

Γt ∈ Sdx++ (3.13)

The matrix Γ̃t is roughly on the order of tΓt; more precisely, it lies between the PSD bound
b1

2
cΓ̃bt/2c � Γ̃t � Γt. Our main theorem says that the sample complexity is essentially

governed this term:

Theorem 3.1. There exists universal constants c0, c1 > 0 such that the following holds. For
each k,N ∈ N and δ ∈ (0, 1/e), define the effective dimension

dδ,k,N := dx log
dx
δ

+ log det(I + Γ̃−1
k Γ̃N). (3.14)

Then, for any k such that (k,N, δ) satisfy N ≥ c0 · k · dδ,k,N , it holds that

P
[
‖A? − Âls‖2

op ≤ c1 ·
dδ,k,N

Nλmin(Γ̃k)

]
≤ δ.

Note that the above bound is independent of σ2
w, which follows from the invariance of

the dynamics Eq. (3.1) to scaling of the states. Moreover, note that λmin(Γ̃k) ≥ 1, so the
bound is at most c1 · dδ,k,NN

.
The effective dimension dδ,k,N governs both the magnitude of the error bound on A?−Âls,

and the burn-in, or minimal time N for which the bound applies. The upper bound is
optimized by selecting k to be the largest integer for which N ≥ c0 · k · dδ,k,N . This is
because, as k grows, Γ̃k incorporates more terms in the sum, and thus has a larger minimal
eigenvalue. We now specialize our bound to three important settings; further discussion is
provided in Simchowitz et al. [2018]. The last setting considers our paradigmatic example
with A? = ρI, and reveals our most suprising finding: that learning performance can improve
as mixing degrades.

Stable Systems Let us begin with an analysis which appeals to system stability. For
stable systems (i.e. ρ(A?) < 1), Γk, and thus Γ̃k, converge to a limit

Γ∞ = lim
k→∞

Γk = lim
k→∞

Γ̃k.

Hence, there is some k0 such that Γ̃k0 � 1
2
Γ∞, and by monotonicity, Γ̃N � ΓN � Γ∞. In

particular, Γ̃−1
k0

Γ̃N � 3I. Hence, for this k0,

dδ,k0,N ≤ dx log
3dx
δ
.

This yields the following corollary.
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Corollary 3.1. Consider a stable system, ρ(A?) < 1. Then the limit limt→∞ Γt = Γ∞ is
defined, let k0 be as in the above discussion. Then, for N ≥ c0k0 · dx log 3dx

δ
,

‖A? − Âls‖2
op .

dx log(dx/δ)

Nλmin(Γ∞)
w.p. 1− δ.

Note that this bound depends on this number k0, which may be related the stablity/spectral
radus of the system. Indeed, for the paradigmatic example A? = ρI, we chan check that k0

is on the order of 1
1−ρ , and thus the burn-in time for Corollary 3.1 depends on the mixing

time.

Marginally Stable Systems We now evaluate our system allowing for ρ(A?) = 1. This
analysis does not depend on the parameter k0 in the above analysis, which may be related
to the system’s mixing time.

Because Γ̃k is non-decreasing in k, dδ,k,N is non-increasing in k. In particular, since
Γ̃k � I, we can use the estimate in Lemma 3.1 to establish the following upper bound.
Indeed, for any matrix with ρ(A?) ≤ 1, Lemma 3.1 implies that, for a constant c2, and for
c3 + 1 denoting the size of the largest Jordan block of A?,

‖Γ̃N‖op ≤
N−1∑
s=0

‖As?‖2 ≤ c2
2N

1+2c3 .

Hence, the effective dimension may be bounded by

dδ,k,N ≤ dx log
‖Γ̃N‖dx

δ
≤ (1 + 2c3)dx logN + dx log

c2
2dx
δ
,

and thus grows at most logarithmically in N . Therefore our bound applies for N = Õ((1 +
c3)dx), even for marginally stable matrices.

Scaled Identity Matrices Lastly, we specialize our bound for the paradigmatic setting of
scalar matrices, A? = ρI, for |ρ| ≤ 1. Extending the computation in Eq. (3.11) to ρ ∈ [−1, 1],
we see that we can select a block length of size k = Θ( N

d log(d/δ)
). This gives an upper bound

of

‖A? − Âls‖2
op .


(1−|ρ|)d log(d/δ)

N
|ρ| ≤ 1− cd log(d/δ)

N(
d log(d/δ)

N

)2

|ρ| > 1− cd log(d/δ)
N

.

In particular,

• For |ρ| bounded away from 1, the learning rate exhibits a linear speed, with the error
decaying as 1− |ρ|.
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• At the extreme, |ρ| = 1, we achieve an fast rate of Õ( d
2

N2 ), rather than the traditional
1/N scaling for standard least squares regression.

Therefore we find, that paradoxically, the learning rate improves as |ρ| → 1, that is, as the
mixing property degrades, and the learning rate is best for |ρ| = 1, when the system does
not mix. One can verify that the same Gramian computations pertain to scaled-orthonormal
systems A? = ρO, where O>O = I, and thus the same learning rates apply as well.

Lower Bounds for Linear System Identification

We have seen in Theorem 3.1 and in the subsequent examples that the estimation of linear
dynamical systems is easier for systems which are easily excitable. It is natural to ask what is
the best possible estimation rate one can hope to achieve. To make explicit the dependence
of the lower bounds on the spectrum of Γt, we consider the minimax rate of estimation over
the set ρ · O(d), where ρ ∈ R and O(d) denotes the orthogonal group. In this case, we can
define an scalar Gramian γt(ρ) :=

∑t−1
s=0 |ρ|2s, so that Γt := γt(ρ) · I. We now show that the

estimation rate of the least squares estimator given above is optimal up to log factors for
|ρ| ≤ 1−O(d/T ):

Theorem 3.2. Fix d ≥ 2, ρ ∈ R, δ ∈ (0, 1/4), and ε ≤ ρ
2048

. Then, there exists a universal
constant c0 such for any estimator Â,

sup
O∈O(d)

PρO
[∥∥∥Â(T )− ρO

∥∥∥
op
≥ ε

]
≥ δ for any T such that TγT (ρ) ≤ c0 (d+ log (1/δ))

ε2
,

where O(d) is the orthogonal group of d× d real matrices.

This is proven in Simchowitz et al. [2018] as Theorem 2.3. We can interpret it by con-
sidering the following regimes:

‖Â− A?‖op ≥



Ω

(√
(d+log(1/δ))·(1−|ρ|)

N

)
if |ρ| ≤ 1− 1

N
,

Ω

(√
d+log(1/δ)

T

)
if 1− 1

N
< |ρ| < 1 + 1

N

Ω

(√
d+log(1/δ)

N |ρ|N

)
if 1 + 1

N
≤ |ρ|.

Comparing to our corresponding upper bounds for scaled identity matrices, we see that
for |ρ| ≤ 1 − O(d/N), our upper and lower bounds coincide up to logarithmic factors.
In the regime ρ ∈ [1 − O(d/N), 1], our upper and lower bounds differ by a factor of
O(
√
d+ log(1/δ)).
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3.4 Proof of Results
We establish our results in in a more general sequential regression setting, where a re-
sponse variable yt is linear in a covariate zt, and perturbed by martingale subgaussian
noise εt. We proceed to sketch the general setting, analysis, and culminate in a general
bound,Theorem 3.3. Ommitted proofs are deferred to Section 3.5. Our setting is as follows.

Setting 3.1 (Martingale Least Squares). Let (Ft)t≥1 denote a filtration, and let (zt)t≥1 be
a sequence in Rd which is adapted to the filtration. Moreover, let

yt = θ>? zt + εt, (3.15)

where θ? ∈ Rd×m is a fixed parameter, where yt ∈ Rm is called the response, εt ∈ Rm the
noise, and where εt | Ft−1 is σ2-subgaussian, that is

E[exp(λv>εt) | Ft] ≤ exp

(
−σ

2λ2‖v‖2

2

)
, ∀v ∈ Rd (3.16)

The dynamics in Eq. (3.1) are a special case, with zt ← xt, yt ← xt+1, εt ← wt, and
θ? = A>? . Generalizing our system identification problem, we analyze the ordinary least
squares estimator,

θ̂ls = min
θ∈Rd

N∑
t=1

‖yt − θ>zt‖2
2, (3.17)

and aim to bound the operator norm error ‖θ? − θ̂ls‖op. Our analysis of θ̂ls proceeds in two
steps:

• First, we use the self-normalized martingale inequality Abbasi-Yadkori et al. [2011,
Theorem 2] to establish that

‖θ? − θ̂ls‖2
op ≤ Õ

(
m+ d

λmin(ΛN

)
, (3.18)

where ΛN is the empirical covariance of the covariates (zt).

• Second, we impose a novel condition on the covariates called the Block-Martingale
Small-Ball condition, or BMSB. Under the BMSB, we show that ΛN can be lower
bounded with high probability. Notably, this condition does not rely on mixing argu-
ments.

Combing steps 1 and 2 yields a high-probability error bound on ‖θ? − θ̂ls‖2
op, culminating

Theorem 3.3. Finally, we demonstrate that the covariates (xt) in the dynamical system (3.1)
do indeed satisfy the BMSB, and derive Theorem 3.1 as a direct corollary of our more general
result.
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The Self-Normalized Bound

The first step in our proof is stating an error bound on θ̂ls in terms of the empirical covariance
matrix. Recall that the error of least squares estimate can be expressed as

θ̂ls − θ? = Λ−1
N

(
N∑
t=1

ztεt

)
, where ΛN =

N∑
t=1

ztz
>
t (3.19)

The right-hand side of Eq. (3.19) has been studied at length in the online learning community,
and there is a standard result which controls its magnitude:

Lemma 3.3 (Self-Normalized Martingale Inequality, Theorem 2 in Abbasi-Yadkori et al.
[2011]). Fix any PSD matrix V � 0, and a confidence paramater δ > 0, and suppose the
response dimension is m = 1. Then, with probability 1− δ,∥∥∥(ΛN + V )−1/2

(∑N
t=1 ztεt

)∥∥∥2

2
≤ 2σ2 log

(
1
δ
· det(V −1/2(V + ΛN)V −1/2)

)
. (3.20)

In view of Eq. (3.19), the above lemma directly implies an error bound on θ̂ls in the cause
where yt and εt are scalar, i.e. m = 1. When m ≥ 1, we can bootstrap the m = 1 case via
a covering argument. This yields the following, intermediate error bound on θ̂ls in terms of
λmin(Λt):

Lemma 3.4. Consider the Setting 3.1. For a PSD matrix V � 0, and define the event
E�V := {ΛN � V }. Then for all δ > 0, the following bound holds with probability 1 − δ on
E�V :

• If the response dimension m is equal to 1, (i.e. yt ∈ R for all t, and θ? ∈ Rd)

‖θ̂ls − θ?‖2
2 ≤

4σ2

λmin(ΛN)

(
log

1

δ
+ log det(I + ΛNV

−1)

)
(3.21)

• For response dimensions m ≥ 1,

‖θ̂ls − θ?‖2
op ≤

16σ2

λmin(ΛN)

(
m log 5 + log

1

δ
+ log det(I + ΛNV

−1)

)
(3.22)

For a sense of scaling, observe that if we take V = λI, then we can bound log det(I +

ΛNV
−1) ≤ d log ‖ΛN‖op

λ
, or Õ(d).

The Block-Martingale Small Ball Condition

In view of Lemma 3.4, it remains to lower bound λmin(ΛN) with high probability. Of course,
this requires some additional condition on the covariates (zt)t≥1. Indeed, the degeneracy
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z1 = z2 = · · · = zN would still satisfy the conditions of the martingale least squares setting,
Setting 3.1, but clearly could make learning θ? impossible.

Suppose we aim to show that ΛN % NΓ, where Γ is a target covariance matrix. The
condition we formulate roughly says that, on any interval of steps t ∈ {j, j+1, . . . , j+k−1},
there is a constant probability that the average magnitude of 〈v, zt〉2 will exceed v>Γv,
conditioned on the past with at least constant probability. We term this property the Block-
Martingale Small-Ball Condition.

Definition 3.3 (Block-Martingale Small-Ball Condition (BMSB)). Let (mt)t≥1 be a non-
negative scalar sequence which is adapted to the filtration (Ft). We say (mt) satisfies the
(simplied) Block-Martingale Small-Ball condition (BMSB) with parameters (k, ν, p) if, al-
most surely, the following holds for all j ∈ N,

P

[
1

k

k−1∑
i=0

mj+i ≥ ν | Fj−1

]
≥ p.

We say that the vector valued sequence (zt)t≥1 satisfies the BMSB ith parameter (k,Γ, p)
if, for any fixed v ∈ Rd of norm ‖v‖ = 1, the non-negative-scalar sequence mt;v := 〈v, zt〉2
satisfies the BMSB condition with parameters (k, v>Γv, p).

The “small-ball” nomenclature is inspired by the seminal work of [Mendelson, 2014], who
use a similar lower bound on covariates to derive excess risk bounds on the empirical risk
minimizer in settings with possibly heavy-tailed covariates. The formulation in Definition 3.3
intentionally (but only slightly) differs from the original formulation of the BMSB in Sim-
chowitz et al. [2018] in that it is somewhat more direct.

The key insight behind the condition is that, for any direction v ∈ Rd, we do not need
v>ΛNv to concentrate around its expectation. Instead, it suffices to obtain a lower tail
inequality, i.e. a lower bound on v>ΛNv. For any given k, we can write

v>ΛNv =
N∑
t=1

〈v, zt〉2 ≥
bN/kc−1∑
q=1

 qk∑
t=k(q−1)+1

〈v, zt〉2
 .

Since each term 〈v, zt〉2 is nonnegative, we can lower bound v>ΛNv % N · v>ΓNv as long as
we can argue that a constant number of length k-chunks in the paranthetical above are at
least kv>Γv. This is precisely what the BMSB condition affords, via a Chernoff bound. For
simplicity, we state this consequence for nonnegative scalar sequences first:

Lemma 3.5. Let (mt)t≥1 satisfy the scalar BMSM with parameters (k, ν, p). Then, for any
N ≥ 4k,

P

[
N∑
t=1

mt ≥
pN

4
· ν

]
≥ 1− e

−pN
16k .
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No pass from scalar lower bounds to PSD lower bounds, we require a covering argument.
The following lemma contains the two essential ingredients, cited from Simchowitz et al.
[2018] without proof.

Lemma 3.6. Let Q ∈ Sd++ be positive definite, and let Λ0 � Λ1 ∈ Sd++ be such that Q � Λ1.
Define the ellipsoid EΛ0 := {w ∈ Rd : w>Λ0w ≤ 1}, and let NΛ0→Λ1 denote a 1/4 net of EΛ0

in the metric induced by the norm ‖w‖Λ1 =
√
w>Λ1w, that is,

∀w ∈ EΛ0 , ∃w′ ∈ NΛ0→Λ1 s.t. ‖w − w′‖Λ1 ≤ 1/4. (3.23)

Then,

(a) (Simchowitz et al. [2018, Lemma 4.1]) If w>Qw ≥ Λ0 for all w ∈ NΛ0→Λ1, then
Q � 1

2
Λ0 .

(b) (Simchowitz et al. [2018, Lemma D.1]) There exists such a net NΛ0→Λ1 of cardinality
at most

log |NΛ0→Λ1| ≤ d log 9 + log det(Λ−1
0 Λ1).

In words, item (a) of the above lemma stimulates that it suffices to establish a PSD lower
bound over the net NΛ0→Λ1 in order to establish such a bound over Rd. Item (b) bounds the
cardinality of this net roughly in terms of the ratio of the volumes of the ellipsoids induced
by matrices Λ0 and Λ1. Leveraging the above covering bounds, we complete the BMSM
argument.

Lemma 3.7. Suppose that (zt)t≥1 satisfy the BMSB condition with parameters (k,Γ, p).
Given Γ+ ≥ Γ, and define the event E+ := {ΛN � NΓ+}. Then, for N ≥ 32k

p
(d log 36

p
+

log det(Γ−1
+ Γ)), the following inequality holds:

P
[
{ΛN 6�

pN

8
· Γ} ∩ Emax

]
≤ e−pN/32k. (3.24)

Proof. Define the matrix Λ0 := pN
4

Γ, and let Λ1 = Γ+. Let N be the net stipulated by
Lemma 3.6, taken to have log-cardinality at most d log 9 + log det(Λ−1

1 Λ0) = d log(36/p) +
log det(Γ−1

+ Γ). By Lemma 3.5 and a union bound bound, it holds that with probability at
least

1− exp

{
− pN

16k
+ d log(36/p) + log det(Γ−1Γ+)

}
. (3.25)

that, for all w ∈ N , w>ΛNw ≥ pN
4
w>Γw. Lemma 3.6 then ensures that, on the intersection

of this event, and the event {ΛN � NΓ+}, we have that ΛN � pN
8

Γ. Moreover, by our
condition that N ≥ 32k

p
(d log(36/p)+log det(Γ−1Γ+)) ensures that the quantity in Eq. (3.25)

is at least 1− exp(− pN
32k

).
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Note that Lemma 3.7 requires very weak concentration of ΛN . Indeed, consider scalar
upper and lower bounds Γ = λ0I and Γ+ = λ1I. Then, the above condition on N reduces to

N ≥ 32kd

p
· log

36λ1

pλ0

,

which is at most logarithmic in the ration of λ1 to λ0.

A General Bounds for Martingale Regression

Putting together the consequence of the self-normalized tail bound (Lemma 3.4), and our
covariance lower bound derived from the BMSB condition (Lemma 3.7), we derive a general
bound for the martingale least squares in Setting 3.1.

Theorem 3.3. Consider the setting Setting 3.1. Fix a PSD matrices 0 � Γ � Γ+. Suppose
that (zt)t≥1 satisfy the BMSB condition with parameters (k,Γ, p), and define the event E+ :=
{ 1
N

ΛN � Γ+I}, Then, for N ≥ N ≥ 32k
p

(d log 36
p

+ log det(Γ−1Γ+)),

P
[{
‖θ̂ls − θ?‖2

op ≤
σ2

N
· Cδ
λmin(Γ)

}
∩ E+

]
≤ δ + e−pN/32k,

where we define

Cδ =
128

p

(
m log 5 + log

1

δ
+ log det(I + 8

p
Γ−1Γ+)

)
.

Proof. Set V = pN
8

Γ. Then, Lemma 3.7 ensures that the event E�V := {ΛN � V } holds
with probability at least 1 − e−pN/32k. The bound follows directly from Lemma 3.4, upper
bounding ΛN � NΓ+ on E+.

At the expense of only slight looseness, we can appeal to Markov’s inequality to further
simplify the above bound.

Lemma 3.8. Let Q ∈ Sd++ be a random positive definitve matrix. Then, with probability at
least 1− δ, Q � d

δ
E[Q].

Proof. If Q � d
δ
E[Q] fails, then the operator norm, and hence the trace, of E[Q]−1/2QE[Q]−1/2

must be at least d/δ. By Markov’s inequality, the probability this trace exceeds d/δ is at most
δ
d
· E[tr(E[Q]−1/2QE[Q]−1/2)]. Swapping traces and expectations and simplify, the resultant

quantity is exactly δ.

In most cases, the top eigenvalue of ΛN will enjoy far sharper concentration than that
ensured by Markov’s inequality. however, Corollary 3.2 is sharp enough for our purposes.
Indeed, Lemma 3.8 directly yields the following corollary:
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Corollary 3.2. Consider the setting Setting 3.1. Suppose that (zt)t≥1 satisfy the BMSB con-
dition with parameters (k,Γ, p). Further, define Γ̄ := E[ΛN ]/N , and the effective dimension

dδ := d log
36d

pδ
+ log det(I + Γ−1Γ̄). (3.26)

Then, as soon as N ≥ 32k
p
· dδ, we have

P
[
‖θ̂ls − θ?‖2

op .
σ2(m+ dδ)

pNλmin(Γ)

]
≤ 3δ

Note that when Γ � λ0I and Γ̄ � λ1I, we can upper bound of log det(I + Γ−1Γ̄) ≤
d log(1 + λ1

λ0
), so that dδ depends at most logarithmic in the relative scaling of the matrices

Γ and Γ̄.

Specializing to System Identification

Let us conclude by specializing to system identification for the dynamics in Eq. (3.1). The
reduction holds with the following substitutions:

θ? ← A?, and ∀t ≥ 1, zt ← xt, yt ← xt+1, εt ← wt. (3.27)

No do so, we need to show that the sequence (xt) satisfies a BMSM condition. We do so by
verifying a general condition under which the BMSB condition holds:

Definition 3.4. We say that the sequence (zt)t≥1 is α-Paley-Zygmud if, for all j ≥ 1 and
i ≥ 0, and all v ∈ Rd, E[〈v, zj+i〉4 | Fj−1] ≤ αE[〈v, zj+i〉2 | Fj−1]2.

Intuitively, the Paley-Zygmud stays that the tails of the random variables v>zt aren’t too
fat; thus, if their expectation is large, then they must be large with at least constant probably.
Notatble, for the Gaussian noise model in Eq. (3.1) yields a Paley-Zygmud constant of 3:

Lemma 3.9. The sequence (xt)t≥1 in Eq. (3.1) is 3-Paley-Zygmud.

Proof. Fix j, i and let Y = 〈v,xj+i〉 | Fj−1 denote the conditional distribution of 〈v,xj+i〉.
The linear dynamics and Gaussian noise in Eq. (3.1) mean that Y is scalar Gaussian random
variable, say with some mean and variance µY and σ2

Y . From the moment formula for
Gaussian variables, E[Y 2] = µ2

Y + σ2
Y , and E[Y 4] = µ4

Y + 6µ2
Y σ

2
Y + 3σ2

Y ≤ 3(µ2
Y + σ2

Y )2.
Hence, E[Y 4] ≤ 3E[Y 2]2, as needed.

The following lemma now shows that for Paley-Zygmud sequences, the BMSB holds with
parameter Γ
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Lemma 3.10. Suppose that, (zt)t≥1 is α-Paley-Zygumd, and for a given k ∈ N and all
j ∈ N,

1

k

k−1∑
i=0

E
[
zj+iz

>
j+i | Fj−1

]
� Γ.

Then, (zt)t≥1 satisfies the (k, 1
2
Γ, 1

4α
) BMSB condition.

By combining Lemmas 3.9 and 3.10 and Corollary 3.2, we can prove Theorem 3.1:

Proof of Theorem 3.1. Recall that (Fn)n≥0 denotes the filtration generated by states x1,x2, . . . ,xn.
For any indices i ≥ 0, j ∈ N, the conditional distribution of the state xj+i | Fj−1 is equal to
the distribution of the sum of two random variables σw(Y ′i,j + Y ′′i,j), and Y ′′i = E[xj+i | Fj−1],
and where one can show that Y ′i ∼ N (0,Γi+1). In particular, E[Y ′i,j(Y

′′
i,j)
>] = 0, and thus

E
[
xj+ix

>
j+i | Fj−1

]
= σ2

wE[Y ′i (Y
′
i )
>] + σ2

wE[Y ′′i (Y ′′i )>] � σ2
wE[Y ′i (Y

′
i )
>] = σ2

wΓi+1. (3.28)

Therefore, we find the lower bounds

1

k

k−1∑
i=0

E
[
xj+ix

>
j+i | Fj−1

]
� σ2

w

1

k

k−1∑
i=0

Γi+1 := σ2
w · Γ̃k.

From Lemma 3.9, the sequence (xt) is 3-Paley Zygmud. Hence, applying Lemma 3.10 with
Γ ← Γ̃k, we mind that the sequence (xt) satisfies the (k, 1

4
Γ̃k, 1/12)-BMSM condition. We

can also compute that

E[ΣN ] =
N∑
t=1

E[xtx
>
t ] =

N∑
t=1

Γt = N · σ2
wΓ̃N .

In particular, taking

dδ,k,N := dx log
dx
δ

+ log det(I + Γ̃−1
k Γ̃N). (3.29)

Applying Corollary 3.2 with Γ← Γ̃k and Γ+ ← Γ̃N implies that there are universal constants
c0, c1 such that

P
[
‖A? − Âls‖2

op ≤ c1 ·
dδ,k,N

Nλmin(Γ̃k)

]
≤ 3δ,

provided that N ≥ c0kdδ,k,N . By re-scaling constants, we can replace the 3δ with δ. This
concludes the proof.
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3.5 Omitted Proofs
Proof of Lemma 3.4. On E�V , we have

‖θ̂ls − θ?‖2 ≤ 1
λmin(ΛN )1/2

·
∥∥∥Λ−1/2

N

(∑N
t=1 ztεt

)∥∥∥
2
.

(i)

≤
√

2
λmin(ΛN )1/2

·
∥∥∥(ΛN + V )−1/2

(∑N
t=1 ztεt

)∥∥∥
2

(i)

≤ 2σ
λmin(ΛN )1/2

·
√

log (1
δ
· det(V −1/2(V + ΛN)V −1/2)).

where (i) uses that on Emin, V + ΛN � 2ΛN , and (ii) uses Lemma 3.3. We can then rewrite

log
(

1
δ
· det(V −1/2(V + ΛN)V −1/2)

)
= log 1

δ
+ log det(I + V −1ΛN).

For m ≥ 1, we use a covering argument. Let N denote a 1/2 net of Rm, which can be
taken to have cardinality log |N | ≤ m log 5 by . . . . By a standard covering argument (cite),

‖θ̂ls − θ?‖op = max
v∈Sm−1

‖(θ̂ls − θ?)v‖2 ≤ 2 max
v∈N
‖(θ̂ls − θ?)v‖2 (3.30)

We observe that, by the m = 1 case, we have that with probability 1− δ,

‖(θ̂ls − θ?)v‖2
2 ≤

4σ2

λmin(ΛN)

(
log

1

δ
+ log det(I + V −1ΛN)

)
Naking a union bound over v ∈ N , and applying Eq. (3.30) concludes.

Proof Lemma 3.5. Let (mt)t≥1 satisfy the BMSMwith parameters (k, ν, p). For q ∈ {1, 2, . . . , qmax},
where qmax := bN

k
c − 1, define the random indicators and filtration F̃q

Bq := I

{
k∑
i=1

mj+i−1 ≥ kν

}
, F̃q = F(q+1)k

Then, (Bq) is F̃q-adapted, and E[Bq | F̃q−1] ≥ p. By a Martingale Chernoff bound,

P

[
qmax∑
q=1

Bq ≥
pqmax

2

]
≥ 1− e−

pqmax
8 = 1− e−

pbN/k−1c
8 ≥ 1− e

N/k−2
8 . 2

On the other hand, if
∑qmax

q=1 Bq ≥ νqmax

2
, then by nonnegativity of the (mt) sequence,

N∑
t=1

mt ≥
qmax∑
q=1

k∑
i=1

mqk+i−1 ≥
qmaxν

2
· k =

ν

2
· k(bN/kc − 1) ≥ ν

2
(N − 2k).

Hence,

P

[
N∑
t=1

mt ≥
νp

2
(N − 2k)

]
≥ 1− ep

N/k−2
8 .

Naking N ≥ 4k concludes.



CHAPTER 3. LEARNING WITHOUT MIXING 42

Proof of Lemma 3.10. Fix an index j ∈ N, and a vector v ∈ Rd. For i = 0, 1, . . . , k − 1,
introduce the random variables Yi = 〈v, zj+i〉2. Also, introduce the shorthand Ej[·] := E[· |
Fj−1], and Pj[·] analogously.

By the (unconditional) Paley-Zygmud inequality, the following holds for any ν ≥ 0:

Pj

[
k−1∑
i=0

Yi ≥
1

2
Ej

[
k−1∑
i=0

Yi

]]
≥ 1

4

Ej[
∑k−1

i=0 Yi]
2

Ej[(
∑k−1

i=0 Yi)
2]
.

Moreover, since (zt)t≥1 are α-Paley Zygmud, Ej[Y 2
i ] ≤ αEj[Yi]2, and thus, by Cauchy-

Schwartz,

Ej[(
k−1∑
i=0

Yi)
2] =

k−1∑
i,i′=0

Ej[YiYi′ ] ≤
k−1∑
i,i′=0

√
Ej[Y 2

i ]Ej[Y 2
i′ ] ≤ α

k−1∑
i,i′=0

Ej[Yi]Ej[Yi′ ].

The right most term is precisely αEj[
∑k−1

i=0 Yi]
2. Hence, combining the above two displays,

Pj

[
k−1∑
i=0

Yi ≥
1

2
Ej

[
k−1∑
i=0

Yi

]]
≥ 1

4α
.

Moreover, by the assumption of the lemma,

Ej

[
k−1∑
i=0

Yi

]
= v>Ej

[
k−1∑
i=0

zj+iz
>
j+i

]
v ≥ v>(kΓ)v,

where the last line invokes the assumption of the lemma. Thus, for all vectors v ∈ Rd and
indices j ∈ N,

Pj

[
1

k

k−1∑
i=0

Yi ≥
1

2
v>Γv

]
≥ 1

4α
.

This is precisely the definition of the (k, 1
2
Γ, 1

4α
) BMSB.
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Chapter 4

SysID under Partial Observation

The previous chapter studied a relatively benign setting of system identification under i.i.d.
Gaussian noise and with fully observed system states. In this chapter, we aim to understand
if the same results are attainable more generally: with partially observed states and arbi-
trary noise models. These generalizations are necessary to capture many control systems of
interest, where states are not fully observed, and noise may be worst case [Zhou et al., 1996].

We demonstrate that the dynamics of such systems can still be estimated, provided the
spectral radius of the true dynamical matrix A? is less than or equal to 1: ρ(A?) ≤ 1. Thus,
we find that even in this more expansive learning setting, lack of stability does not preclude
system identification. Unlike the previous chapter, however, we do not identify cases when
the sample complexity improves as the system becomes less stable.

Organization

Section 4.1 describes our formal learning setting, defining partially observed system dynamics
and introducing an adversarial noise model for learning. Section 4.2 presents an analysis
of the ordinary least-squares estimator in this setting with i.i.d. Rademacher inputs, and
demonstrates consistency for strictly stable (ρ(A?) < 1) systems. The bound is given formally
in Theorem 4.1 and subsequent corollaries.

We find that our analysis of least squares breaks down for marginally stable systems
(ρ(A?) = 1) due to accumulation of disturbances and past inputs. Section 4.3 presents
a two-stage least squares algorithm we call pre-filtered least squares, which implements an
initial preprocessing phase to mitigate these effects. Theorem 4.2 analyzes this estimator,
and establish learning rates in terms of a certain “oracle error”, which describes how well
noise accumulation can be predicted from prior observations. Section 4.4 discusses many
choices for bounding the oracle error, including by relating the bound to the performance
of an optimal Kalman filter. The discussion is left informal, but demonstrations that the
oracle error is well behaved even for marginally stable systems.

The remaining two sections of the chapter prove Theorem 4.1 and Theorem 4.2, respec-
tively.
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4.1 Formal problem setting
In this chapter, we consider the problem of system identification of an unknown linear dy-
namical system under partial observation. Starting from initial state x1 = 0, we consider
the following dynamics for time steps 1 ≤ t ≤ N :

xt+1 = A?xt +B?ut + wt

yt = C?xt +D?ut + et,
(4.1)

Under partial observation, the system state xt remains hidden, and the learner observes only
the inputs ut and outputs yt. Here, we call wt the process noise, which affects the evolution
of the hidden state, and et the observation noise, which perturbs the observed outputs.

Markov Parameters

Our goal is to recover the first p Markov paramters in the operator norm:

G?;p := [D? | B?C? | C?A?B? | . . . C?Ap−2
? B?]. (4.2)

The recovery of the Markov parameters is sufficient to recover the system matrices (A?, B?, C?, D?)
via the Ho-Kalman [Ho and Kalman, 1965] algorithm. Quantitative sensitivity analysis was
provided by Oymak and Ozay [2019], and refined to order-optimal rates by Sarkar et al.
[2019]. For simplicity, we assume that the total sample length N is divisible by p.

Noise and Input Model

We assume that the disturbances (wt) and (et) are selected by an oblivious adversary, which
means they are selected to be an arbitrary sequence, but are selected without knowledge of
the inputs ut selected by the adversary. The adversary may randomize in its selection of
the disturbance, and we let F0 denote the sigma-algebra generated by their possibly random
selection. We assume that the noise terms satisfy a uniform bound in `2:

Assumption 4.1. We assume that, for all 1 ≤ t ≤ N , ‖et‖2 ≤ B and ‖wt‖ ≤ B.

Our upper bounds hold independently of this assumption, but Assumption 4.1 is useful
to obtain intuition for their scaling. Note that for stochastic noise with sub-Gaussian tails,
B can be chosen to grow as

√
logN with the rollout length.

The inputs are up to the learner’s discretion to select. For simplicity, we select inputs to
be independent, Rademacher random variables1

u1, . . . ,uN
i.i.d∼ Unif({−1, 1}du). (4.3)

1The analysis extends to when ut are scaled Rademacher random variables; scaling may be desirable to
ensure inputs and disturbance magnitudes are on the same order.
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Crucially, the random input are uncorrelated with the adversarial disturbaces; as explained
below, this facillitates consistent estimation of the Markov parameters even with non-mean-
zero noise. We remark that the inputs in Simchowitz et al. [2019] were selected to be
Gaussian; the random signed inputs chosen here slightly simplify the analysis because they
are bounded uniformly.

Together, the noise an input model yield a natural filtration structure. Recalling that F0

is the sigma-algebra generated by the noise, we let Ft denote the sigma-algebra geneted by
F0 and the inputs u1, . . . ,ut. Note that the sequence (Ft)t≥1 form a filtration.

Learning without mixing (again)

As in Chapter 3, we aim to find learning rates for G?;p which do not require that A? is stable
matrix (see Section 3.1 for a review of the spectral radius and stability). In particular, we
cannot appear to the decay powers of A?.

For the fully observed setting considered in Chapter 3, we found that the absence of
stability was little hinderance, because the learning rates were determined by the magnitude
of the covariance matrix of states in the trajectory. In fact, for the special case of A? = ρI,
we found that performance of the least squares estimator improved as ρ→ 1.

With only partial settings, we do not directly observe the covariance matrix of states, and
hence it is not clear if it is possible to achieve faster learning rates with less stable systems.
Moreover, the presence of potentially adversarially noise precludes method-of-moment based
approaches (e.g. Yule-Walker, Shumway et al. [2000]), which might be able to take advantage
of greater levels of excitation. Therefore, we content ourselves with the following goal.

Is it possible to learn the Markov operator of a possibly marginally stable system,
even under potentially adversarially disturbances?

4.2 Learning via Least Squares
In this section, we explain how to use least squares estimation to recover the Markov operator.
This leverages an important semi-parametric relationship detailed below, where the possibly
adversarial noise is uncorrelated with the Rademacher inputs. Leveraging this observation,
we establish a general guarantee Theorem 4.1, which enables Õ

(
1/
√
N
)

estimation rates
whenever the noise terms are uniformly bounded, and the system is strictly stable (ρ(A?) <
1). Extension to unstable systems requires a new algorithmic tool, and is discussed in the
following section.

Semi-Parametric Relationship

For any time t, Markov parameters describe the linear relation between the output yt, and
the past inputs t, t− 1, . . . , t− p+ 1. Specifically, define ut:t−p+1 = (ut,ut−1, . . . ,ut−p+1) as
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the concatenation of the past p inputs. Further, define

ynat
t := et +

t−1∑
i=1

C?A
t−i−1
? wt, yu;p

t =

t−p∑
i=1

C?A
t−i−1
? B?ut, δt = ynat

t + yu;p
t

The first term, ynat
t , we call Nature’s Y because it represents the response of the linear

dynamical system (4.1) to noise, in the absense of input. The term yu;p
t captures the con-

tributions of past inputs before times t − p. Defining δt as the sum of these two sources of
error, we have

yt = G?;put:t−p+1 + δt, ∀t ≥ p. (4.4)

Observe that δt depends only on past disturbances, and on u1, . . . ,ut−p. On the other hand,
ut:t−p+1 depends on inputs ut−p+1, . . . ,ut. Thus, for the choice of Rademacher inputs in
Eq. (4.3), the error terms δt are independent of the inputs being regressed upon:

E[δtu
>
t:t−p+1] = 0. (4.5)

This is called an semi-parametric relationship (see e.g. Chernozhukov et al. [2016] or Krish-
namurthy et al. [2018]), because the disturbances (which partly constitute δt) need not be
mean zero, but are nevertheless uncorrelated with the regressor inputs due to Eq. (4.3). The
semi-parameteric structure is ubiquitous in the economics community, where the random
inputs to the system are an “instrumental variable”.

Semi-Parametric Least Squares

As has been observed in prior work, the semi-parametric relationship faciliates efficient esti-
mation via least squares, provided that δt satisfy some uniform bound. Specifically, consider
the least squares estimator

ĜLS := min
G∈Rdy×pdu

N∑
t=p+1

‖yt −Gut:t−p+1‖2
2. (4.6)

Further, let ∆ denote the matrix whose rows are δp+1, δp+2, . . . , δN . We show that this
estimate enjoys the following guarantee:

Theorem 4.1. Given failure probability δ ∈ (0, 1) and parameter λ > 0, suppose N ≥
N0(δ) := 8dup

2 log(p2du/δ). Then, the following holds probability at least 1− δ,

‖ĜLS −G?;p‖op .
(λ+ ‖∆‖op)

√
p(Lδ,λ,∆ + pdu + dy)

N
, (4.7)

where Lδ,λ,∆ := log(1 +
‖∆‖2op
λ

) + log(1/δ) is a logarithmic factor.
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Proof Sketch. The above theorem is proved Section 4.5; it follows by invoking a standard
decomposition for the least squares error, where the covariance matrix is given in terms on the
rademacher inputs ut:t−p+1 and the error terms δt. We show that the minimum eigenvalue
of the covariance is Ω(N) with high probability, taking care to account for the fact that
the covariates are correlated (due to the fact that, e.g. ut:t−p+1 and ut+1:t−p overlap). It
remains to handle the correlation between covariates ut:t−p+1 and δt. Here, invoke use the
semi-parametric relationship Eq. (4.5) to show that it is a mean-zero random process. More
precisely, we can show that it scales as O (‖∆‖op) using the martingale subgaussian bounded
encoured in Chapter 3.

For a sense of scaling, consider what happens when ‖δt‖ ≤ R for all t. In that case, we
achieve the following corollary by setting λ to be the upper bound ‖∆‖op ≤ R

√
N :

Corollary 4.1. Let δ ∈ (0, 1), suppose that N ≥ N0(δ), and assume further that, for all
t ∈ [N ], ‖δt‖ ≤ R. Then, with probability 1− δ,

‖ĜLS −G?;p‖op . R

√
p(log(1/δ) + pdu + dy)

N
. (4.8)

Thus, when δt are uniformly bounded, we recover the standard 1/
√
N rate, up to di-

mension factors. This is true for stable systems, provided the noise terms are bounded. The
following proposition follows from direct computation.

Proposition 4.1. Suppose that, for all k ≥ 0, ‖Ak‖ ≤ CAρk for a given ρ ∈ (0, 1). Further
define, the parameter C1 := max{‖B?‖op, ‖C?‖op, ‖B?‖op · ‖C?‖op, 1}. Then,

max
t
‖δ‖t ≤ C1(max

t
‖et‖2 +

CA
1− ρ

(1 + max
t
‖wt‖))

On the other hand, in marginally stable systems ‖Ak‖ does not decay to zero, and
consequently ‖δt‖ may grow with time as noise accumlates. Indeed, if A = 1 is scalar and
wt = 1 for all 1, then δt can grow as Ω(t), making the above bound vacuous. This challenged
is adressed in Section 4.3.

Remark 4.1. Theorem 4.1 is less sharp that the corresponding result in corresponding
guarantee in Simchowitz et al. [2019], both in terms of the p dependence in the error bound,
and the minimal sample size N0. Both improvements rely on careful chaining arguments - the
latter due to a lower bound on the spectrum of the outer product of circulant matrices (due to
Oymak and Ozay [2019], established for Gaussian inputs ut), and the former due to a similar
chaining bound for handling martingale error terms Simchowitz et al. [2019, Appendix E]. In
contrast, the bound presented in this thesis admits a rather brief and self-contained proof,
which we give now.
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4.3 Learning without mixing or full observation
Inspecting Corollary 4.1, the bound becomes vacuous as soon as the upper bound R on
maxt ‖δt‖ scales as

√
N . While this is not a worry when ρ(A) < 1 (in view of Proposition 4.1),

the problem arises readily when ρ(A) = 1.

Example 4.1. Consider the most benign scalar case, where A = B = C = 1, the process
noise et ≡ 0 is identically zero, and wt

i.i.d∼ Unif{(−1, 1)}. Then, for t ≥ p, δt is the sum
of 2t − p Rademacher random variables, and thus its variance scales as Ω(t). Hence, with
constant probability, each δt is Ω(

√
t), which is on the order of

√
N for, say, all t ≥ N/2.

In what follows, we present a two-stage estimator called pre-filtered least squares, which
we show is consistent even when the spectral radius of A? is one.

Pre-Filtered Least Squares

To adress the challenge of noise accumulation, we propose a simple prefiltering step. To
begin, let us designate a vector of features kt. For concreteness, we select features as the
concatenated sequence of the past inputs

kt = (yt−p,yt−p−1, . . . ,yt−p−(L−1)) ∈ Rdy×L, t ≥ p+ L., (4.9)

though in principle, the following analysis applies to any choice of features for which kt is
Ft−p measurable for all t.

The first stage of the prefiltering algorithm predicts outputs yt from the features kt. For
simplicity, we select a linear predictor:

φ̂ = min
φ∈Rdy×L

N∑
t=p+L

‖yt − φ · kt‖2
2 + µ‖φ‖2

F. (4.10)

The goal of φ̂ is to coarsely predict yt from the past features kt. Since kt are Ft−p measurable,
φ̂ picks out the Ft−p-measurable part of yt, captures most of the magnitude of δt when the
system is marginally stable.

The second stage of the prefiltering algorithm is to train a least squares classifer to the
residual differnces between yt and the course prefiltering estimate, φ̂ · kt:

Ĝpf ∈ arg min
G∈Rdy×pdu

N∑
t=p+L

‖(yt − φ̂ · kt)−G · ut:t−p+1‖2
2. (4.11)

Estimation Rates for Prefiltered Least Squares

Going forward, we overload notation slightly from Section 4.2, and let ∆ denote the matrix
whose rows are the errors δt, and let K denote the analogous matrix with rows kt. We let
∆φ := ∆− φ> ·K denote the matrix whose rows are the residuals δt − φ · kt. To state the
bound, we require the following terms.
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Oracle Error First, we define Optµ as the best-possible (regularized) operator error for
predicting the errors δt from features kt:

Optµ := inf
φ∈Rdy×L

‖∆− φ> ·K‖2
op + µ‖φ‖2

op. (4.12)

We call Optµ the oracle error, because it represents the performance of a predictor φ selected
by an oracle with access to the error terms δt. In general, Optµ = Ω(

√
N). We will show

that the term is in fact always scales as Õ
(√

N
)
. Note that Optµ is highly-data dependent;

it represents the best prediction of the errors δt for the realized noise sequence.

Overfitting Error The second term in our analysis is the overfitting error . It arises from
the fact that the predictor φ̂ in the prefiltering step is trained not to δt but to yt:

Ovfitµ,δ := ‖G?;p‖op · p2 (log det(1 + K>K
µ

) + du + log 1
δ
) (4.13)

Importantly, the overfitting term is typically much smaller than the oracle error Optµ. In-
deed, for non-unstable steps, ‖G?;p‖op = poly(p) and ‖K‖op = O (poly(N)), provided the
disturbances wt, et are uniformly bounded as in Assumption 4.1.2, and thus Ovfitµ,δ grows
at most logarithmicaly in the time horizon.

Statement of the bound Finally, we state the dimension-quantity that arises in the
analysis:

dimeff := p2du + p log 1
δ

+ p(1 + Ldy) log+

‖∆φ̂‖
2
op+
√
N‖K‖op+µ−1/2‖Y‖F

λ
(4.14)

Again, note that the logarithmic factors grow at most logarithmically in N for non-unstable
systems. Our bound is as follows:

Theorem 4.2. For the matrix ∆φ̂ whose rows are the residuals yt − δt · φ̂, the following
bounds hold together with probability 1− δ:

(a) ∆φ̂ ≤ Ovfitµ,δ + Optµ

(b) The error of the prefiltered least squares estimator is bounded by

‖Ĝφ −G?;p‖op .
(
λ+ Optµ + Ovfitµ,δ,K

) √dimeff

N

In particular, if Assumption 4.1, then letting Õ (·) suppress all but polynomial dependence
in the problem horizon and selecting λ = 1, we have

‖Ĝφ −G?;p‖op = Õ
(

Optµ
N

)
. (4.15)

2This can be verified by invoking the fact that ‖An?‖op ≤ poly(n) for ρ(A?) ≤ 1, established in Lemma 3.1.
Moreover, this only requires Assumption 4.1 to hold for B = poly(N)
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Proof Sketch. The proof of Theorem 4.2 is deferred to Section 4.6. It involves three main
steps. First, it leverages the non-prefiltered bound to establish an error estimate on the least
squares regressor trained to residuals yt − φ · kt for φ fixed. Then, to handle the adaptively
selected prefilter φ̂, it establishes a uniform bound over all predictors φ in terms of the norm
of their errors ‖∆φ‖op = ‖∆− φ> ·K‖op. Finally, we show that ‖∆φ̂‖op can be bounded by
the sum of Optµ and the overfit term.

4.4 Bounding the oracle error
As per the above discussion, the overfitting error Ovfitµ,δ grows at most logarithmically in N
under reasonable assumptions on the noise. Hence, to establish consistent estimation rates,
it remains to understand the oracle error term Optµ. Ideally, want to ensure that Optµ scales
as

Optµ ∼
√
N,

because this translates into Õ
(

1/
√
N
)
estimation rates via Theorem 4.2. For this, it suffices

that there exists a predictor φ of reasonable norm which predicts the error terms with
constant accuracy:

∃φ : ∀t, ‖δt − φ · yt‖op = O (1) . (4.16)

In this chapter, we provide (somewhat informal) constructions of predictors φ which witness
the above guarantee.

To facilitate the analysis, define the terms for 1 ≤ s ≤ t

xt|s = At−s? xs, yt|s = C?xt|s (4.17)

In works, xt|s and yt|s correspond to the state and output that would arise if, for all times
s′ ≥ s, the disturbances ws′ and es′ and the inputs us′ are indentically zero. Set q = p+ L,
and define the feature vector

kt|t−q := (yt−p|t−q,yt−p−1|t−q,yt−q|t−q) ∈ RLdy . (4.18)

We can represent the error of a predictor φ as

δt − φ · kt = (yt|t−q − φ · kt|t−q) + φ · (kt|t−q − kt) + (δt − yt|t−q). (4.19)

Using Lemma 3.1, one can verify the following estimate:

Lemma 4.2. If ρ(A?) ≤ 1, and the error terms maxt ‖wt‖, ‖et‖ ≤ B (Assumption 4.1),
then there exists constants c1, c2 > 0 depending on the system such that ‖kt|t−q − kt‖ and
‖δt − yt|t−q‖ are bounded by at most (1 +B)c1(p+ L)c2. Thus,

δt − φ · kt ≤ ‖yt|t−q − φ · kt|t−q‖+ (1 + ‖φ‖op)(1 +B)c1(p+ L)c2 .

Moreover, c2 is at most a constant times the size of the largest Jordan block of A?.
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We omit the proof of the lemma, but it follows from the fact that the differences in
kt|t−q − kt and (δt − yt|t−q only contain the contributions of inputs and disturbances of a
window of length at most q = p + L. Hence, it remains to understand whether there are
predictors φ of reasonable magnitude for which (yt|t−q − φ · kt|t−q) is small.

Polynomial Interpolation

One way to construct a predictor φ for which yt|t−q − φ · kt|t−q is small is by considering
polynomially interpolation. Indeed, suppose that L ≥ a·p iand consider an a-order monomial
with terms for only for powers which are integer multiples of p, written in terms of coeffiects
f1, f2, . . . , fa via the following expansion:

f(z) = za + f (1)z(a−1) + f (2)z(a−2) + · · ·+ f (a) (4.20)

Define φf to be the corresponding predictor with blocks (φ(0), φ(2), . . . φ
(L)
f ), where

φ(i) =

{
f (1+i/p) · Idy i mod p = 0, i ≤ ap

0 otherwise

Then, we compute

yt|t−q − φ · kt|t−q = Ap+Lxt;t−q −
l∑

i=1

φ(i)yt−i|t−q

= A(a+1)p
? xt;t−q −

a∑
i=1

f (i)Aip? xt;t−q = Ap? · f(Ap?)xt;t−q.

In particular, if f can be selected so that f(Ap) is small, then yt|t−q−φ ·kt|t−q is small as well.
In the original work, Simchowitz et al. [2019], this gives rise to a rather technical quantity
termed phase rank. For simplicity, we give a rather crude upper bound which captures the
same spirit.

The Caley Hamilton theorem guarantees that there is a minimal polynomial fmin of Ap?
degree at most dx for which fmin(Ap?) is exactly 0. Specifically, the minimal polynomial of
Ap? is of the form

fmin(z) =
∏

λ∈spec(A?)

(z − λp)αλ , (4.21)

where αλ is the algebraic multiplicity of the eigenvalue λ ∈ spec(A?). In particular, if
L ≥ p · deg(fmin), then there is a φ such that yt|t−q − φ · kt|t−q is identicaly zero. The exists
of this polynomial therefore imples that, for L ≥ p · deg(fmin), there exists a predictor such,
under the condition of Lemma 4.2,

‖yt − k · φ‖ ≤ (1 + ‖fmin‖`1) · (1 +B)c1(p+ L)c2 for all t, (4.22)
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where ‖fmin‖`1 = 1 +
∑

i |f
(i)
min|. This is enough to ensure that Ovfitµ scales as

√
N with N .

Unfortunately, the coefficients minimal polynomial may be quite large in magnitude,
leading to poor upper bounds; in the worst case, its coefficients can be exponentially large
in the dimension d, even for a stable system. For example, the matrix A? with d distinct
eigenvalues above 1− 1

p
have

|fmin(−1)| ≥ (1 + (1− 1

p
)p)d ≥ (1 + e)d, (4.23)

and thus the `1 norm of its coefficients is exponentially large. This is what gave rise to the
refined notion of phase rank described by Simchowitz et al. [2019].

Bounds via detectability

A second approach to controlling the error is via detectability. Informally, the pair (A?, C?)
is detectable if one can identify the state xt along all non-stable eigendirections of A?. For
a full discussion of detectability, we refer the reader to Zhou et al. [1996, Chapter 3].

One useful consequence of detectability is that there exists a matrix F ∈ Rdx×dy such
that A?−FC? is stable. For detectable systems, one such chose F so as to solve the infinite-
horizon Kalman Filtering ; see . . . for more details.

For now, let us suppose there exists an L such that A? − LC? is stable, and let cF ≥ 1
and ρF ∈ (0, 1) be such that

‖(A? − LC?)n‖ ≤ cFρ
n
F , ∀n ≥ 0. (4.24)

We use the existence of such an F to construct a good predictor φ. To do so, we construct
an state observer sequence of the states xs|t−q, defined as

x̃t−q|t−q = 0, x̃s+1|t−q = A?x̃s|t−q + F (ys|t−q − C?x̃s|t−q), s ≥ t− q. (4.25)

Observe then that, defining the error δx̃t−q|t−q := xt−q|t−q − x̃t−q|t−q, we have

δx̃t−q|t−q = xt−q|t−q := xt−q, δx̃s+1|t−q = (A? − FC?)δx̃s|t−q,

so that, by Eq. (4.24),

‖xt−p|t−q − x̃t−q|t−q‖2 ≤ cFρ
L
F‖xt−q‖t−q, (4.26)

In particular, let us take φ = [φ(1) | φ(2) | . . . φ(L)] with

φ(i) = C?A
p
?(A? − FC?)i−1F. (4.27)

Then, by unfolding the recursion in Eq. (4.25),

yt|t−q − φ> · kt|t−q = C?A
p
?(xt−p|t−q −

∑
i

(A? − FC?)i−1Fyt−p−i|t−q)

= C?A
p
?(xt−p|t−q − x̃t−p|t−q)

= C?A
p
?(A? − FC?)Lxt−q|t−q
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Hence, from Eq. (4.24),

‖φ‖op ≤ ‖C?‖op‖Ap?‖op‖F‖
cF

1− ρL
‖yt|t−q − φ> · kt|t−q‖ ≤ ‖C?‖op‖Ap?‖op · cFρLF · ‖xt−q‖.

In particular, for when ρ(A?) ≤ 1, ‖Ap?‖ = poly(p) we have ‖xt‖ = poly(t) and thus, for
L = O

(
logρF (N)

)
, the following (informal) bounds hold:

‖φ‖op = O (poly(p))

‖yt|t−q − φ> · kt|t−q‖ ≤ N−Ω(1).

Hence, Lemma 4.2 ensures that, for such a choice of L,

δt − φ · kt = O
(
(1 +B)(p+ L)O(1)

)
∀t, (4.28)

witnessing the desired constant magnitude of error in Eq. (4.16).

4.5 Proof of Theorem 4.1
We begin with the standard least squares error decomposition. Let U denote the matrix
whose rows are ut:t−p+1 for t = p + 1, . . . , N , and recall that ∆ denotes the matrix marix
whose rows are δt for the same indices. Then, when U is full row rank, the standard least
squares error decomposition yields

(ĜLS −G?;p)
> = (U>U)−1U>∆. (4.29)

Hence,

‖(ĜLS −G?;p)
>‖op ≤ λmin(U>U)−1‖U>∆‖op,

which is of course vacuous when U is row-rank deficient.
The bound the terms U>U and U>∆, let us break the time steps t ∈ {p+1, p+2, . . . , N}

into subsequences. Define K = (N/p)− 1, and let k range from 1, . . . , K, and i range from
1 to p, and set

ũk,i = ut:t−p+1 for t = pk + i, δ̃k,i = δpk+i.

Then, we can express both terms of interest as double sums:

U>U =

p∑
i=1

K∑
k=1

ũk,iũ
>
k,i, and U>∆ =

p∑
i=1

K∑
k=1

ũk,iδ̃k,i. (4.30)

Importantly, since the noise is selected i.i..d, (ũk,i) are a sequence of independent random
variables as k ranges and i is fixed. Thus, we can use standard techniques to bound the
inner summation, and conclude by handling the outer summation appropriately.
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Lower bounding λmin(U>U) . For a fixed i, the inner summation
∑K

k=1 ũk,iũ
>
k,i is a sum

over outer products independent isotropic random vectors. Set Zk,iũk,iũ
>
k,i. Since ‖ũk,i‖2

2 =
pdu with probability 1, and since E[Zk,i] = I, we observe that

0 � Zk � pdu (∀k), λmin

(
E

[
K∑
k=1

Zk,i

])
= K.

Thus, by the Matrix Chernoff inequality ([Tropp, 2012, Theorem 1.1]),

P[λmin(
K∑
k=1

Zk,i) ≥ K/2] ≥ (pdu) · (2/e)K/2pdu ≥ (pdu)e
Kpdu/7 (4.31)

In particular, for K ≥ 7dup log(p2du/δ), for which it suffices that N ≥ 8dup
2 log(p2du/δ), the

above holds with probability at least 1− δ/p. By a union bound,

U>U =

p∑
i=1

K∑
k=1

Zk,i � pK/2I = (N − p)/2I � N/3 · I (4.32)

where in the last line we use that N ≥ 8p.

Upper bounding U>∆ To bound ‖U>∆‖op, we apply a union bound. Fix unit norm
vectors v ∈ St−p+1−1 and w ∈ Sdy−1, and consider

v>U>∆w =

p∑
i=1

K∑
k=1

〈v, ũk,i〉 · 〈w, δk,i〉.

For any given i ∈ [p], we apply the (scalar) self-normalized martingale inequality (Lemma 3.3),
letting 〈v, ũk,i play the role of the noise εt, and 〈w, δk,i〉. play the role of zt. By the following
lemma, εt are 1-subGaussian random vectors:

Lemma 4.3. Let z ∼ Unif({−1, 1}n) be a random vector with i.i.d. Rademacher entries.
Then, for all v ∈ Rn, E[exp(〈v, z)] ≤ exp(‖v‖2/2); that is, z is a 1-subGaussian random
vector.

Proof. First, consider the scalar case. By Hoeffdings inequality, it follows that E[exp(vz)] ≤
ev

2/2. For the vector case, let v[i] and z[i] denote the coordinates of v and z, respectively.
Since the entries of z are independent, E[exp(〈v, z)] =

∏n
i=1 E[exp(v[i]z[i])] ≤

∏n
i=1 exp(v[i]2/2) =

exp(‖v‖2/2), as needed.

Thus for any parameter λ > 0, and defining the scalar quantity VK,i;w =
∑K

k=1〈w, δk,i〉2 ≤
‖∆‖2

op, Lemma 3.3 entails that

(
K∑
k=1

〈v, ũk,i〉 · 〈w, δk,i〉)2 ≤ 2(λ+ VK,i,w)(log(1 +
‖∆‖2

op

λ
) + log(1/δ)). (4.33)
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Thus, by Cauchy-Schwartz, and the above concentration inequality, a union bound yields
the following with probability 1− δ:

v>U>∆w ≤ p

p∑
i=1

(
K∑
k=1

〈v, ũk,i〉 · 〈w, δk,i〉)2

≤ 2p

p∑
i=1

(λ+ VK,i,w)(log(1 +
‖∆‖2

op

λ
) + log(p/δ)).

Reparameterizing λ to λ/p, we have

p∑
i=1

(λ/p+ VK,i,w) = λ+

p∑
i=1

VK,i,w = λ+

p∑
i=1

K∑
k=1

〈w, δk,i〉2 = λ+ ‖∆w‖2
2 = λ+ ‖∆‖2

op.

Thus, with probability 1− δ,

v>U>∆w ≤ 2p(λ+ ‖∆‖2
op)(log(1 +

‖∆‖2
op

λ
) + log(p2/δ)).

By a standard covering argument, (see e.g. [Vershynin, 2018, Corollary 4.2.13]), this entails
that with probability 1− δ/2

‖U>∆‖op = sup
v,w:‖v‖=‖w‖=1

v>U>∆w

.

√
p(λ+ ‖∆‖2

op)

(
log(1 +

‖∆‖2
op

λ
) + log(p2/2δ) + pdu + dy

)
.
√
p(λ+ ‖∆‖2

op)(Lδ,λ,∆ + pdu + dy),

where Lδ,λ,∆ := log(1 +
‖∆‖2op
λ

) + log(1/δ).

Concluding Combining the two bounds, for any fixed λ > 0, the following holds with
probability at least 1− δ/2− δ/2 = 1− δ,

‖(ĜLS −G?;p)
>‖op ≤ λmin(U>U)−1‖U>∆‖op

.

√
p(λ+ ‖∆‖2

op)(Lδ,λ,∆ + pdu + dy)

N
.
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4.6 Proof of Theorem 4.2
For any given φ ∈ Rdy×Ldy , define δφ;t := δt − φ · kt. Let ∆φ denote the matrix whose rows
are δφ;t, for t ∈ {p+L, p+L+ 1, . . . , N}. Recall that K denotes the matrix whose rows are
kt for the same indices.

Since both δt and φ · kt are both Ft measurable, the analysis of Theorem 4.1 applies to
the least squares estimator which predicts the residuals yt − φ · kt for any fixed predictor φ:

Ĝφ ∈ arg min
G∈Rdy×pdu

N∑
t=p+L

‖(yt − φ · kt)−G · ut:t−p+1‖2
2, (4.34)

which is defined using our putative fixed predictor φ, rather than the solution φ̂. Unpacking
the proof of Theorem 4.1, consider the event

Econd = {U>U � cNI}, for some universal constant c > 0, (4.35)

We see that for N ≥ N0(δ) (where N0 is defined in Theorem 4.1), Econd holds with failure
probability at most 1 − δ/2. Morevover, from the proof of Theorem 4.1, the following
guarantee holds with an additional failure probability of 1− δ/2 on Econd (for all λ > 0):

‖Ĝφ −G?;p‖op .
(λ+ ‖∆φ‖op)

√
p(Lδ,λ,∆φ

(φ) + pdu + dy)

N
, (4.36)

where we recall Lδ,λ,∆(φ) := log(1 +
‖∆φ‖op

λ
) + log 1

δ
.

The above provides a bound for fixed φ; it remains to analyze the performance when
φ = φ̂ is selected during the prefiltering step.

A Uniform Bound

Because φ̂ is chosen in a data-dependent fashion, we analyze its performance by establish
an uniform bound on the performance of all predictors simultaneously. We show that the
performance of each predictor φ is simultaneously controlled by its individual error ∆φ:

Lemma 4.4. Fix parameters δ, λ > 0, and recalling Lδ,λ,∆ from Theorem 4.1, define the
dimension quantity.

dimk(φ) := p(Lδ,λ,∆φ
+ kLdy + pdu). (4.37)

Finally, define the random variable k0 := dlog
√
N‖K‖op
λ
e. Then, the bounds with probability

at least 1− 3δ/4 for all k ≥ k0 and all predictors φ of norm ‖φ‖F ≤ λek simultaneously:

‖Ĝφ −G?;p‖op .
(λ+ ‖∆φ‖op)

√
dimk(φ)

N
. (4.38)
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Proof. For the chosen regularizer λ > 0, and defining the error terms εk = e−k, let Tk be an
λεk-net of the λ/εk Frobenius norm ball around 0 in Rdy×L. By a standard covering argument
(see e.g. [Vershynin, 2018, Corollary 4.2.13]), we can choose the net Tk to be small enough
to satisfy

log |Tk| . kLdy. (4.39)

By union bounding over all k ≥ 1, with failure probability δk = δεk/4 assigned to each k ∈ N,
the following holds uniformly over all k:

∀k ∈ N, φ̃ ∈ Tk, ‖Ĝφ̃ −G?;p‖op .
(λ+ ‖∆φ̃‖op)

√
dimk(φ̃)

N

Denote the event E?. Let k0 := dlog(
√
N‖K‖op/λ)e (note that k0 is a random variable),

k ≥ k0, and consider any φ with ‖φ‖F ≤ λek. Then, there exists a φ̃ ∈ Tk such that

‖∆φ −∆φ̂‖op = ‖K(φ− φ̂)>‖op ≤ ‖K‖op‖φ− φ̂‖op ≤ ‖K‖op · λε−k ≤ λ,

where the final equalities use the definition of the covering and the fact that k ≥ k0 ≥
dlog(‖K‖op/λ)e. In particular, for this pair of φ, φ̃, we verify that

‖∆φ̃‖op ≤ λ+ ‖∆φ‖op, dimk(φ̃) . dimk(φ)

Thus, on E?,

‖Ĝφ −G?;p‖op . ‖Ĝφ − Ĝφ̃‖op +
(λ+ ‖∆φ‖op)

√
dimk(φ)

N
.

Again, using the least squares decomposition in Eq. (4.29), we find that, on Econd,

‖Ĝφ − Ĝφ̃‖op = ‖U†(∆φ −∆φ̃)‖ . ‖K‖op√
N
‖φ− φ̂‖op ≤

λ

N
.

Hence, we find that for all k ≥ k0, and all φ with ‖φ‖F ≤ ‖φ‖F ≤ λek, on the event E? it
holds that

‖Ĝφ −G?;p‖op .
(λ+ ‖∆φ‖op)

√
dimk(φ)

N
.

Bounding the prefiltered residuals

The next step in the analysis is to bound the operator norm of the matrix consisting of
prefiltered residuals, ‖∆φ̂‖op. Note that φ̂ is trained by regressing the features kt to yt,
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whereas the terms we need to bound are the rows δt;φ̂ := δt − φ̂ · kt of ∆φ̂. We execute
this decoupling by using the explicit form of the ridge estimator. Recall that φ̂ is the ridge
estimator of yt from features kt. Define φ̃ to be the same but regressing to the (unknown)
perturbations δt, i.e.

φ̃ = min
φ

N∑
t=L+p

‖δt − φ · kt‖2
2 + µ‖φ‖2

F. (4.40)

Using the explicit form of the least squares estimators,

∆φ̂ = ∆− φ̂ ·K = ∆−Y>K(K>K + µI)−1K

= ∆−∆>K(K>K + µI)−1K +G?U
>K(K>K + µI)K

= (∆− φ̃K) +G?U
>K(K>K + µI)−1K,

Thus, ‖∆φ̂‖op can be bounded by the sum of two terms:

‖∆φ̂‖op ≤ ‖∆− φ̃K‖op︸ ︷︷ ︸
(a)

+‖G?‖op ‖U>K(K>K + µI)−1K‖op︸ ︷︷ ︸
(b)

. (4.41)

Term (a) is just the error of the ridge regression trained to ∆, and term (b) can be regarded
as how much the regression overfits to K. To adress (a) we invoke the following lemma

Lemma 4.5 (Term (a)). Let φ̃ denote the idealized ridge estimator, trained to the residuals
δt as in (4.40). The following inequality holds deterministically:

‖∆− φ̃ ·K‖2
op ≤ inf

φ∈Rdy×L
‖∆− φ ·K‖2

op + µ‖φ‖2
op := Optµ (4.42)

Proof. For any fixed v ∈ Sdy−1, we have

‖v>(∆− φ̃K)‖2
2 ≤

∥∥∥∥[v>(∆− φ̃K)√
µv>φ̃

]∥∥∥∥2

=
N∑

t=L+p

〈v, δt − φ̃kt〉2 + µ〈v, φ̃〉2.

Using the direct form of φ̃, we can verify that φ̃ is in fact the unconstrained minimizer of
the second line in the above display over all linear predictors φ ∈ Rdy×L. Thus,

‖v>(∆− φ̃K)‖2
2 ≤ inf

φ∈Rdy×L

N∑
t=L+p

〈v, δt − φ̃kt〉2 + µ〈v, φ̃〉2.
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Since the operator norm is the supremum of the RHS of the above over all v ∈ Sdy−1,

‖∆− φ̃K‖2
2 ≤ sup

v∈Sdy−1

inf
φ∈Rdy×L

N∑
t=L+p

〈v, δt − φ̃kt〉2 + µ〈v, φ̃〉2.

Swapping the infinum and supremum establishes the inequality (again, using the variational
form of the operator norm) concludes.

Lemma 4.6 (Term (b)). With probability 1− δ/4, we have

‖U>K(K>K + µI)−1K‖2
op . p2 (log det(1 + K>K

µ
) + du + log 1

δ
) =: Ovfitµ,δ,K/‖G?;p‖op

Proof. We bound Term (b) by analogy to our bound on the cross term U>∆ in the proof of
the non-prefiltered least squares bound, Theorem 4.1. First, some simplifications. We have

‖U>K(K>K + µI)−1K‖2
op = max

v∈Sdu−1
v>U>K(K>K + µI)−1K>K(K>K + µI)−1K>Uv

≤ max
v∈Sdu−1

v>U>K(K>K + µI)−1(K>K + µI)(K>K + µI)−1K>Uv

= max
v∈Sdu−1

v>U>K(K>K + µI)−1K>Uv

= max
v∈Sdu−1

‖v>U>K‖2
(K>K+µI)−1 .

Next, we recap the blocking argument from Theorem 4.1. Define K = N−L0−p
p

, and let k
range from 1, . . . , K, and i range from 1 to p, and set

ũk,i = ut:t−p+1 for t = L+ pk + i, k̃k,i = kpk+i+l.

For any fixed vector v ∈ Sdu−1, define

v>U>K =

p∑
i=1

K∑
k=1

〈v, ũk,i〉kk,i

Hence, setting Ki to denote the submatrix of K whose rows are are ki, and noting K>i Ki �
K>K,

‖v>U>K‖2
(K>K+µI)−1 ≤ p

p∑
i=1

∥∥∥∥∥
K∑
k=1

〈v, ũk,i〉kk,i

∥∥∥∥∥
.

(K>K+µI)−1

≤ p

p∑
i=1

∥∥∥∥∥
K∑
k=1

〈v, ũk,i〉kk,i

∥∥∥∥∥
2

(K>i Ki+µI)−1

.
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Using the self-normalized martingale bound (Lemma 3.3) to each summard in i, we have
that with probability 1− δ, the above is at most

2p

p∑
i=1

(
log det(1 +

K>i Ki

µ
) + log

1

δ

)
≤ 2p2

(
log det(1 +

K>K

µ
) + log

1

δ

)
.

Via another union bound to establish uniform convergence over v ∈ Sdu−1, we conclude that
with probability, say, 1− δ/4 (after appropriate δ rescaling),

‖v>U>K‖2
(K>K+µI)−1 . p2

(
log det(1 +

K>K

µ
) + du + log

1

δ

)
,

as needed.

Thus, from (4.41),

‖∆φ̂‖op ≤ Optµ + Ovfitµ,δ,K w.p. 1− δ/4. (4.43)

There is one last step required in the proof: bounding the Frobenius norm of φ. This is
straightforward:

Lemma 4.7. ‖φ̂‖2
F ≤ ‖Y‖2

F/µ.

Proof. The risk of the zero-predictor in Eq. (4.10) is ‖Y‖2
F. Hence, if ‖φ̂‖F > ‖Y‖2

F/µ, its
risk is strictly greater.

Concluding the proof

We now collect the requisite ingredients for the follow. Let

k? = dlog(
√
N‖K‖op∨µ−1/2‖Y‖F

λ
e

By definition, k? ≥ k0, where k0 was defined in Lemma 4.4, and moreover, λek? ≥ ‖φ̂‖2
F by

Lemma 4.7. Therefore, Lemma 4.4 ensures that, with probability 1− 3δ
4
,

‖Ĝφ̂ −G?;p‖op .
(λ+ ‖∆φ̂‖op)

√
dimk?(φ̂)

N
.

We can explicitly express

dimk?(φ̂) = p(Lδ,λ,∆φ̂
+ k?Ldy + pdu)

= p(log(1 +
‖∆‖op

λ
) + log(1/δ) + dlog(

√
N‖K‖op∨µ−1/2‖Y‖F

λ
eLdy + pdu)

. p2du + p log 1
δ

+ p(1 + Ldy) log (e+
‖∆φ̂‖

2
op+
√
N‖K‖op+µ−1/2‖Y‖F

λ
) := dimeff .

Hence,

‖Ĝφ̂ −G?;p‖op .
(λ+ ‖∆φ̂‖op)

√
dimeff

N
.

Finally, we invoke Eq. (4.43) to bound ‖∆φ̂‖op.
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Part II

Online Control
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Chapter 5

Online LQR

In the previous two chapters, we consider the problem of system identification; estimating
the dynamical parameters in an appropriate matrix norm. In this chapter and the following,
we turn our attention to adaptive control, where the parameters of the system are identifed
with the aim of synthesizing control policies which attain high performance.

This chapter focuses on the problem of online LQR, a simple continuous control problem
where a learning agent interacts with an unknown linear dynamical system, yet attempts to
attain control performance comparable to if the system parameters were known in hindsight.
The metric of performance is regret, or comparison with the best system performance given
full knowledge of system parameters.

In many reinforcement learning settings, including tabular MDPs, MDPs with linear
function approximation, and rich contextual decision processes, careful exploration is essen-
tial for sample efficiency [Lykouris et al., 2019, Jiang et al., 2017, Jin et al., 2018, Azar et al.,
2017]. In this chapter we ask if the same is true of the widely studied online LQR setting
[Abbasi-Yadkori and Szepesvári, 2011, Dean et al., 2018, Cohen et al., 2019, Mania et al.,
2019, Faradonbeh et al., 2018c]. Recently, however, it was shown that for the online variant
of the LQR problem, relatively simple exploration strategies suffice to obtain the best-known
performance guarantees [Mania et al., 2019]. In this paper, we address a curious question
raised by these results: Is sophisticated exploration helpful for LQR, or is linear control in
fact substantially easier than the general reinforcement learning setting? More broadly, we
aim to shed light on the question:

To what extent to do sophisticated exploration strategies improve learning in
online linear-quadratic control?

In this chapter, we show that a surprisingly simple exploration modifying Mania et al.
[2019] yields optimal regret for the online LQR problem, both in problem horizon and sys-
tem dimension. The policy alternates between injecting Gaussian noise, and estimating the
system parameters via least squares. Interestingly, the algorithm does not apply any explo-
ration bonuses typical of reinforcement algorithms for MDPs and their variants. That such
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a simple policy is optimal that linear control problems are qualitatively different from other
reinforcement learning problems studied in the literature.

Organization

Unlike the previous two chapters, this chapter will not aim to provide complete proofs of all
the constituent results; space constraints do not permit it. Instead, it focuses on isolating
the key techniques, and establishing the intution behind the main results.

The chapter is organized as follows. In Section 5.1, we present the Linear Quadratic
Regulator or LQR, a classical problem in linear control, and describe its solution in terms of
the Discrete Algebraic Ricatti Equation, or DARE. The section is not rushed, so as to allow
the reader to develop adequate intuition for the classical problem.

In Section 5.2, we introduce online LQR, an adaptive control problem where the learner
attempts to identify the best control policy for a dynamical system with unknown parameters,
and performance by regret, or suboptimality compared to the best control policy given full
system knowledge. Here we motivated our contributes via contrast to prior work.

Section 5.3 informally our main results: that the optimal regret in online LQR scales as√
Tdxd2

u, where dx is the state dimension, and du the input dimension. It also describes the
intuition beind both upper and lower bounds. Section 5.4 formally exposes our main results:
a lower bound, an algorithm and upper bound, a novel perturbation bound for certainty-
equivalent control based on a technique we term the “self-bounding ODE method”. The
subsequents provide details for the perturbation, upper bound, and lower bound, respectively,
with additional proofs relegated to Section 5.8.

5.1 The Linear Quadratic Regulator
This chapter concerns itself with the particular problem of the adaptive control of linear
quadratic regulator, or LQR. In LQR, we consider a fully observed linear dynamical systems,
whose stated evolves according to Gaussian perturbations, much like in . . . :

xt+1 = Axt +But + wt, x1 ≡ 0, wt
i.i.d∼ N (0, I) (5.1)

The choice of identity noise covariance and 0 initial state is non-essential, and chosen for
simplicity. The analysis may be extended, for example, to i.i.d. subgaussian noises with non-
degenerate and well-conditioned conditioned covariance.1 We let θ = (A,B) ∈ Rdx×(dx+du)

denote the system parameter.

Control Policies The choice of inputs ut is specified by a control policy. Formally, control
policy is mapping π mapping past states and inputs to inputs. This mapping is allowed to

1The problem may become qualitatively difference if the noise covariance is rank-deficient or very ill-
conditioned.
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be randomized, by taking some random seed argument ξ, drawn before the game, to encode
randomness. We express the choice of input at time t as

ut = π(x1:t,u1:t−1, t, ξ) (5.2)

Given such a policy π, we let Eθ,π denote expectations with respect to the dynamics induced
by θ = (A,B) and inputs selected by the policy π, under the random Gaussian noise in
Eq. (5.1).

One popular selection of policies are state feedback controllers, which return an input
that is linear in the current state. Formally, given K ∈ Rdx×du , the associated state feedback
policy is πK(x1:t,u1:t−1, t, ξ) = Kxt. Such a policy induces the following closed-loop dynamics

xt+1 = (A+BK)xt + wt, (5.3)

Of particular importance are state feedback controllers which stabilize the system (A,B).

Definition 5.1. We say that K ∈ Rdu×dx stabilizes θ = (A,B) if A+BK is a stable matrix,
that is, ρ(A + BK) < 1, where again ρ(·) denotes the spectral radius (Definition 3.1). We
say that θ is stabilizable if the exists some K ∈ Rdu×dx which stabilizes θ.

Note that, if K stabilizes θ, the covariance matrix of xt under dynamics (6.6) reaches a
steady-state; that is, limt→∞ EπK ,θ[xtx>t ] is some bounded operator. Conversely, if K does
not stabilizes θ the variance of the iterates becomes infinite in the limit. For further details,
see the discussion surround the Gramian operator in Chapter 3.

Costs and Cost Functionals At each time t, the learner suffers a quadratic cost `(xt,ut)
given by

`(x, u) = x>Qx+ u>Ru, (5.4)

where Q ∈ Sdx++ and R ∈ Sdu++. The learners goal is to minimize
∑T

t=1 `(xt,ut). More
precisely, for the costs ` in Eq. (5.4) above, the running cost of a policy JT (π; θ is

JT (π; θ) =
T∑
t=1

`(xt,ut), subject to

the dynamics in Eq. (5.1) and inputs ut in Eq. (5.2).

Note that JT is a random variable, due to the random noise w, and possible randomness in
the policy. When considering state feedback policies πK , we shall also consider their infinite
horizon cost

J∞(K; θ) := lim
T→∞

1

T
E[JT (πK ; θ)] (5.5)

This cost captures the long-run average expected cost of the state feedback policy K.
Since the costs satisfy `(x, u) > c‖x‖2 for some c > 0, and since the noise wt has full

covariance, one can directly verify that J∞(K) is finite if and only if K stabilizes θ, and in
this case, the limit in its definition converges.
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The Optimal LQR Control Law

Due to the mean-zero Gaussian noise and quadratic costs, the optimal infinte horizon control
laws for LQR are state feedback policies. Formally, when θ = (A,B) is stabilizable, there is
a unique policy K∞(θ) such that

πK∞(θ) ∈ arg inf
π

lim
T→∞

1

T
E[JT (π; θ)]. (5.6)

In particular, K∞(θ) is the unique minimizer of the function K 7→ J∞(K; θ). The optimal
state feedback controller can be computed explicitly in two steps. First, one solves for the
unique matrix P∞(θ) ∈ Sdx++ satisfying the discrete algebraic Riccati equation, or DARE:

P∞(θ) solves P = A>PA− (A>PB)(R +B>PB)−1(B>PA) +Q = 0

subject to P � 0.
(5.7)

The DARE arises as the fixed point of the dynamic program which computes the optimal
finite time controlly policy, and its solution can be computed by either a fixed point iteration
[Pappas et al., 1980], or an SDP [Cohen et al., 2018]. In particular, the matrix P∞(θ)
corresponds to an infinite horizon-cost to go, or value function.

The optimal control law is closed form in terms of P∞(θ):

K∞(θ) = (R +B>P∞(θ)B)−1(B>P∞(θ)A). (5.8)

One can show that this optimal law is invariant to change of basis of the state, and hence is
the same optimal control law for any choice of noise covariance.

5.2 Online LQR
In the above discussion, we described the LQR problem, and how to synthesize the optimal
(finite horizon) control policy. Importantly, the optimal control policy depends on the costs
matrix Q and R, as well as the system dynamics θ = (A,B).

In online LQR, the learner does not know the dynamics in advance, but must learn them
on the fly. Throughout, we let θ? = (A?, B?) denote a true instance to be learned, and
use K? = K∞(θ?) and P? = P∞(θ?) to denote the associated optimal control policy and
value function. The learner adopts a so-called adaptive policy, denoted by alg, which tries
to compete with the optimal policy given knowledge of the true system dynamics. Formally,
the learner aims for low regret:

LqrRegT (alg; θ?) := JT (alg; θ?)− T · J∞(K?; θ?). (5.9)

We require that alg is a general, randomized control policy of the form Eq. (5.2), which may
not have explicit dependence on the true parameter θ?, but may incorporate knowledge of
the matrices R and Q. To ensure that the regret is non-vacuous, we assume that the true
instance θ? is stabilizable:
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Assumption 5.1. θ? = (A?, B?) is stabilizable, and hence K? = K∞(θ?) and P? = P∞(θ?)
are well-defined.

In words, LqrRegT (alg) measures the relative suboptimality of the adaptive control
algorithm alg relative to the optimal infinite horizon average cost, J∞(K?), scaled by the
horizon T . This second term is often referred to as the comparator, because it represents the
benchmark against which we aim to compete.2 We note that LqrRegT (alg) is a random
variable, because JT (alg) accounts for random fluctuations of the noise. The policy alg
is called adaptive because its goal is to balance control actions which minimize cost with
exploration to ascertain the true system parameters (A?, B?). Our aim is to understand:

What is the optimal regret attainable, and what sorts of algorithm design
principles match it?

Throughout, make a standard assumption in past literature that we are given access to an
initial stabilizing controller K0, that is, ρ(A? +B?K0) < 1. Hence, J∞(K0; θ?) <∞.

Quantities of Interest

For simplicity, we impose the following normalization on our cost matrices:

Assumption 5.2. We assume that Q � I and R � I.

Our bounds are be stated in terms of 4 primary quantities. First, the problem horizon
length T , which is the typically the most salient parameter in an online parameter. Second,
the state and input dimension dx and du; we regard these parameters separately, and establish
bounds that are optimal even in a typical regime where du � dx.

The last two key parameters in our bounds are ‖B?‖op (the norm of the B-matrix),
and ‖P?‖op. Because these terms consider operator norms (instead of say, Frobenius or
nuclear norms), we regard them as dimension free, and will suppress them from informal
Big-Oh notation. The norm ‖P?‖op is gives an upper bound on the decay of the system
under the optimal controller. For example, a classical Lyapunov argument reveals that
‖(A? +B?K?)

i‖op ≤ κ?γ
i
? for κ? = ‖P?‖op and γ? = (1− ‖P?‖−1

op )−1; this decay property was
termed (κ?, γ?) by Cohen et al. [2018].3

Prior work and Certainty Equivalence

Prior to the work in this thesis, it was known that one could attain regret that scaled as
∼
√
T with the time horizon. This regret was first attained by Abbasi-Yadkori and Szepesvári

[2011], albeit with a computationally inefficient algorithm. Moreover, their regret quarantine
2The comparator term can be replaced by, say, infπ E[JT (π)], up to constants independent of the horizon

T .
3From the normalization conditions, one can show that ‖P?‖ ≥ 1.
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had an inexplicit, and possibly exponential dependence on system dimension. Dean et al.
[2018] presented an approach based on robust control which attained a larger ∼ T 2/3 regret,
but via a computationally efficient algorithm, and with polynomial dependence on relevant
problem parameters. Subsequently, three concurrent works provided algorithms which were
simultaneously computationally efficient, attain ∼

√
T regret, and enjoyed polynomial de-

pendence on problem parameters [Mania et al., 2019, Cohen et al., 2019, Faradonbeh et al.,
2018c].

Of the algorithms proposed above, the simplest - both computationally and conceptually
- is due to Mania et al. [2019]. They adopted the certainty equivalence strategy, which
comprises of two steps:

• For the first N steps t = 1, 2, . . . , N , execute a random input ut ∼ N (0, I), and produce
a least squares estimates θ̂ = (Â, B̂) of θ? using the current trajectory data.

• From these estimates θ̂, synthesize the certainty equivalent control policy K̂ = K∞(θ̂)
and execute it for all remaining time steps.

Mania et al. [2019]’s analysis of certainty equivalence also produced the sharpest dimension
dependence amongst previous work: Ô(

√
d3T ), where d = max{du, dx}. In contrast, the

bounds due to Cohen et al. [2019] have a large polynomial scaling in d in the worst case.
However, Cohen et al. [2019]’s algorithm enjoys guaranteed performance for any stabilizable
system, whereas the analysis due to Mania et al. [2019] requires the pair θ? to be controllable.

Is intelligent exploration needed?

Given that some of the strongest guarantees for online LQR are obtained by a remarkably
simple algorithm, one might hope that more intelligent exploration could yield improved
performance.

For one, the cost structure in online LQR is strongly convex, and it is well know that
in many online decision making settings with strongly convex costs, one can obtained regret
that is at most logarithmic in the time horizon. Intuitively, logarithmic regret arises because
the curvature of the costs allow the learner to rule out suboptimal decisions rapidly.

A second reason to hope that a more intelligent algorithm may enjoy superior perfor-
mance is that the version of certainty equivalence proposed by Mania et al. [2019] is an
explore-exploit scheme: after a predetermined exploration window N , it ceases to collect
new information. Explore-exploit algorithms are known to be suboptimal in many settings
of interests, and perhaps the same is true here.

Finally, it is possible that the certainty equivalence is a poor way to synthesize control
policies. For example, the analysis provided by Mania et al. [2019] relies on system control-
lability, rather than stabilizability. Controllability requires that any target state x ∈ Rdx can
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be reached for the 0 state in finitely many steps. For example, the system

A? =

[
1
2

1
0 1

2

]
B? =

[
1
0

]
is not controllable, because no input can affect the second system coordinate. However, the
system is stabilizable, because, for the 0 feedback law K = 0, ρ(A? + BK) = ρ(A?) = 1

2
.

Perhaps other techniques - like optimism-under-uncertainty [Abbasi-Yadkori and Szepesvári,
2011], system level synthesis [Dean et al., 2018], or SDP relaxations [Cohen et al., 2019] are
necessary to relax this requirement.

5.3 Informal Results and Techniques

The Optimal Regret Scaling

In this chapter, we show that the optimal regret scaling for LQR attainable by any adaptive
LQR algorithm does in fact scale with the square root of the time horizon:

inf
alg

Lqr-RegT (alg; θ?) = Θ̃(
√
dxd2

uT · poly(‖P?‖op, ‖B?‖op)), (5.10)

provided that the horizon T is sufficiently large. Not only does this regret bound characterize
T dependence, it also characterizes the optimal dependence on dimension. When viewed in
the context of the prior literature, this result shows that:

• No algorithm can obtain regret which grows slower than the square root of the time
horizon T . Our lower bound holds in a strong, local sense about any (sufficiently non-
degerate) problem instance. That is,

√
T regret is the typical regret scaling for LQR,

rather than a consequence of a pathological problem instance.

• The basic certainty equivalence approach analyzed by Mania et al. [2019] is nearly opti-
mal. Moreover, the algorithm that we analyze and which yields the optimal dimension
dependence is a slight variation thereof. Instead of N steps of exploration upfront, the
algorithm proceeds in doubling epochs k of length τk = 2k, injecting noise with variance
proportional to 1/

√
τk during said epoch. At the end of each epoch, we re-estimate the

system parameters (A?, B?) and execute the resulting certainty equivalent controller is
synthesized for the remaining interval t ∈ {2k, 2k + 1, . . . , 2k+1 − 1}.

Together, these bounds demonstrate that the optimal regret for LQR is attained by a rela-
tively simple algorithm - one whose exploration is simply isotropic noise.

Both our upper and lower bounds are motivated by the following question: Suppose that
the learner is selecting near optimal control inputs ut ≈ K?xt, where K? = K∞(A?, B?) is
the optimal controller for the system (A?, B?). What information can she glean about the
system?
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Intuition: Lower Bound

To understand the regret scaling in Eq. (5.10), consider the following thought experiment.
Suppose that the learner (who does not known (A?, B?)) is given the optimal LQR controller
K from an untrusted source, and asked to verify that K is the optimal, or say a near-optimal,
control policy: that is, J∞(K) ≥ J∞(K?)− ε.

Let us consider what happens when the K given to our learner is indeed K?. A natural
starting point may be to begin to execute the associated control policy xt = K?ut. However,
if the learner does so, she cannot estimate the system (A?, B?) entirely. To see why, observe
that if she exectures the optimal control policy, the range of the covariance matrix

Λ :=
T∑
t=1

[
xt
ut

] [
xt
ut

]
lies in the range of the subspace VK? := {(x, u) := u = Kx} ⊂ Rdx+du . Thus, the learner
cannot estimate θ? = (A?, B?) along row-directions perpendicular to VK? .

Said another way, if the learner executes the policy xt = K?ut, she is observing the
trajectory whose dynamics are xt+1 = (A? +B?K?)xt + wt. Hence, she cannot disambiguate
(A?, B?) from any other instance

θ̂ = (Â, B̂), satisfying Â+ B̂K? = A? +B?K?. (5.11)

Recall that in this thought experiment, the learner wants to verify that K? is a near optimal
controller, but she does not know that θ? is the ground truth instance. Hence, she may
need to rule out other instances θ̂ consistent with the same closed loop trajectory Eq. (5.11).
More precisely, she may need to rule out the instances θ̂ for which K? is not ε-suboptimal.

Importantly, it turns out that disambiguating all instances of the form Eq. (5.11) is
necessary to verify that K? is near optimal. To make this precise, we can always express
such an instance in terms of some perturbation matrix ∆ ∈ Rdx×du , via

B̂ = B? + ∆, Â = A? −∆K?.

We show that, for the optimal controller K̂ = K∞(θ̂) for the perturbed instance is quantita-
tively far from K?:

Lemma 5.1 (Derivative Computation (Proposition 2 in Abeille and Lazaric [2018])). Let
(A?, B?) be stabilizable Then

d

dt
K∞(A? − t∆K?, B? + t∆)

∣∣
t=0

= −(R +B>? P?B?)
−1 ·∆>P?Acl,?,

where we recall Acl,? := A? +B?K?.
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In particular, as long as σmin(Acl,?) > 1, and ∆ is small enough for a Taylor expansion to
hold,

‖K̂ −K?‖2
F = ‖K∞(θ̂)−K∞(θ?)‖2

F ≥ Ω(‖∆‖2
F).

From a standard suboptimality decomposition for the infinite horizon LQR cost (see e.g.
Fazel et al. [2018, Lemma 6]), this implies that

J∞(K̂; θ?)− J∞(K?; θ?) = Ω(‖∆‖2
F).

Hence, the learner really does need to estimate θ? in all directions perpendicular to the
subspace {[Â | B̂] : Â + BK̂ = A? + B?K?]}; and an ε-Frobenius estimation error roughly
translates to a Tε2 control cost.

On the otherhand, the above matrix subspace is of dimension du × dx, and to estimate
all directions, one needs to provide excitation from all du directions of inputs. One can then
show that ε-estimation error in the Frobenius requires a regret (i.e. deviation from K?) of
dx · d2

u/ε
2. Together, these two yield a trade off

min
ε

{
Tε2 +

dx · d2
u

ε2

}
=
√
dxd2

uT ,

which is precisely the promised regret scaling. This technique is based on Assouad’s lemma
[Assouad, 1983], and more specifically, an adaptation thereof to adaptive estimation problems
[Arias-Castro et al., 2012].

Intuition: Upper Bound

The intuition behind the upper bound is similar. Consider playing some control policy
ut = Kxt + zt, where zt is exploratory Gaussian noise with variance σ2. First suppose
that zt ≡ 0, and consider N steps of exploratory. Then from Chapter 3, one can estimate
A? + B?K with accuracy that decays like 1/N . There are d2

x parameters, so the dimension
dependence of the Frobenius norm error is d2

x/N . This leaves the remaining dxdu parameters
unaccounted for, and this where we require σ2 > 0. For such a σ2, the remaining parameters
are estimated at a rate of dxdu

σ2 . Hence, the least square error scales like

‖θ̂ − θ?‖2
F ≤

dxdu
Nσ2

+
d2
x

N
.

A crucial part of the argument is showing that the certainty equivalent control policy K̂ =
K∞(θ̂) satisifes

J∞(K∞(θ̂); θ?)− J∞(K?; θ) ≤ ‖θ̂ − θ?‖2
F.

Hence, the above exploration strategy leads to a control cost of

J∞(K∞(θ̂); θ?)− J∞(K?; θ) ≤
dxdu
Nσ2

+
d2
x

N
.

On the other hand, the noise injection costs adds σ2N to the regret. Balancing σ2N and
dxdu
Nσ2 yields the same

√
dxd2

uN scaling.
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Novel Perturbation Bounds

Both our upper and lower bounds make use of novel perturbation bounds to control the
change in P∞ and K∞ when we move from a nominal instance θ? to a nearby instance θ̂.
For our upper bound, these are used to show that a good estimator for the nominal instance
leads to a good controller, while for our lower bounds, they show that the converse is true.
The self-bounding ODE method allows us to prove perturbation guarantees that depend
only on the norm of the value function ‖P∞(θ?)‖op for the nominal instance, which is a
weaker assumption that subsumes previous conditions. The key observation underpinning
the method is that the norm of the directional derivative of d

ds
P∞(θ(s))

∣∣
s=u

at a point ts = u
along a line θ(s) is bounded in terms of the magnitude of ‖P∞(θ(u))‖; we call this the self-
bounding property. From this relation, we show that bounding the norm of the derivatives
reduces to solving a scalar ordinary differential equation, whose derivative saturates the
scalar analogue of this self-bounding property. Notably, this technique does not require that
the system be controllable, and in particular does not yield guarantees which depend on
the smallest singular value of the controllability matrix as in Mania et al. [2019]. Moreover,
given estimates θ̂ and an upper-bound on their deviation from the true system θ?, our bound
allows the learner to check whether the certainty-equivalent controller synthesized from θ̂
stabilizes the true system and satisfies the preconditions for our perturbation bounds.

5.4 Formal Results
This section formally states our main results: the lower bound, a matching upper bound,
and a novel perturbation bound for certainty equivalent control which enables both.

Lower Bound

We provide a local minimax lower bound, which captures the difficulty of ensuring low regret
on both a nominal instance θ? = [A? | B?] and on the hardest nearby alternative. For a
distance parameter ε > 0, we define the local minimax complexity at scale ε as

RT (ε; θ?) := min
alg

max
θ=(A,B)

{
E[Lqr-RegT (alg; θ)] : ‖A− A?‖2

F ∨ ‖B −B?‖2
F ≤ ε

}
.

Local minimax complexity captures the idea certain instances (A?, B?) are more difficult
than others, and allows us to provide lower bounds that scale only with control-theoretic
parameters of the nominal instance. Of course, the local minimax lower bound immediately
implies a lower bound on the global minimax complexity as well.4 Note further that when
ε is sufficiently small, one can find a single controller K0 which stabilizes all local instances

4Some care must be taken in defining the global complexity, or it may well be infinite. One sufficient
definition, which captures prior work, is to consider minimax regret over all instances subject to a global
bound on ‖P?‖, ‖B?‖, and so on.
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under consideration, so the assumption under which our upper bounds hold is satisfied.The
following theorem is established in Section 5.7.

Theorem 5.1. Let c1, p > 0 denote universal constants. For m ∈ [dx], define νm := σm(A?+
B?K?)/‖R +B>? P?B?‖op. Then if νm > 0, we have

RT (εT ; θ?) &
√
d2
umT ·

1 ∧ ν2
m

‖P?‖2
op

, where εT =
√
d2
um/T ,

provided that T ≥ c1(‖P?‖pop(d2
um ∨

d2xΨ4
B?

(1∨ν−4
m )

md2u
∨ dx log(1 + dx‖P?‖op)).

Let us briefly discuss some key features of Theorem 5.1.

• The only system-dependent parameters appearing in the lower bound are the operator
norm bounds ΨB? and ‖P?‖op, which only depend on the nominal instance. The latter
parameter is finite whenever the system is stabilizable, and does not explicitly depend
on the spectral radius or strong stability parameters.

• The lower bound takes εT ∝ T−1/2, so the alternative instances under consideration
converge to the nominal instance (A?, B?) as T →∞.

• The theorem can be optimized for each instance by tuning the dimension parameter
m ∈ [dx]: The leading

√
d2
umT term is increasing in m, while the parameter νm scales

with σm(Acl,?) and thus is decreasing in m. The simplest case is when σm(Acl,?) is
bounded away from 0 for m & dx; here we obtain the optimal

√
d2
udxT lower bound.

In particular, if du ≤ dx/2, we can choose m = 1
2
dx to get σm(Acl,?) ≥ σmin(A?).

Upper Bound

To attains regret that scales lie
√
dxd2

uT , we propose certainty equivalence with continual
exploration. The pseudocode is given in Algorithm 5.1.

The algorithm proceeds in phases k = 0, 1, 2, . . . , consisting of time steps t = τk, τk +
1, . . . , τk+1− 1, where τk = 2k is the phase length. The algorithms initial phases are dictated
by the routine safeSet(K0, δ) (Line 1), whose description is given in . . . in . . . . The goal
of this phase is to construct a confidence ball Bsafe of the system parameters, within which
certainty equivalence is guaranteed to find stabilizing controllers. This phase uses the initial
controller K0 during the estimation phase, and confidence parameter δ > 0 to control the
probability that the confidence ball is invalid. We let ksafe denote the phase immediately
following the completion of the safeSet routine.

Subsequently, each phase constructs a certainty equivalent controller K̂k using a current
system estimate θ̃k (Line 5), and executes inputs according to that controller perturbed by
Gaussian noise (Line 7). The variance of the noise scales as the square-root of the phase
length σ2

inτ
1/2
k , where σin being a parameter selected by the the safeSet routine to optimize
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Algorithm 5.1 Certainty Equivalent Control with Continual Exploration
1: Input: Stabilizing controller K0, confidence parameter δ.

// Denote τk = 2k

// ksafe is adaptively chosen by safeSet(K0, δ).

// Bsafe ⊂ Rdx(dx+du) is an operator-norm confidence ball for θ?.

2: Execute routine safeSet(K0, δ) for t = 1, 2, . . . , τksafe − 1, and obtain (ksafe,Bsafe, σ
2
in).

3: Set θ̃ksafe to be any element of Bsafe.
4: for phases k = ksafe, ksafe + 1, . . . , do
5: Synthesize K̂k = K∞(θ̃k). // Certainty equivalence step

6: for steps t = τk, τk + 1, . . . , τk+1 − 1 do
7: Select ut = K̂k + σinτ

1/4
k gt, where gt

i.i.d∼ N (0, I).
8: Let θ̂k+1 = (Â, B̂) denote the least squares esimate in Eq. (5.12).
9: Let θ̃k+1 denote the Euclidean (Frobenius) projection of θ̂k+1 on Bsafe.

performance. Taking σ2
in = 1/

√
dx suffices if one is not concerned about dependence on other

system parameters.
Finally, we update our estimate of the system parameters, setting

θ̂k+1 = arg min
θ=(A,B)

τk+1−1∑
t=τk

‖xt+1 − Axt +But‖2
2, (5.12)

to be the ordinary least-squares estimate of the system parameters. 5 Finally, we project
θ̂k+1 onto the safe set Bsafe to obtain θ̃k+1, which ensures that the synthesized controller in
the following phase is indeed stabilizing.

Theorem 5.2. When Algorithm 5.1 is invoked with stabilizing controller K0 and confidence
parameter δ ∈ (0, 1/T ), it guarantees that with probability at least 1− δ,

Lqr-RegT [alg; θ?] .

√
d2
udxT ·Ψ2

B?
‖P?‖11

op log
1

δ

+ rd2 · P0Ψ6
B?‖P?‖

11
op(1 + ‖K0‖2

op) log
dΨB?P0

δ
log2 1

δ
,

where P0 := J∞(K0; θ?)/dx is the normalized cost of K0, d = dx + du, and r = max{1, du
dx
},

which is 1 is the typical setting du ≤ dx.

Ignoring dependence on problem parameters, the upper bound of Theorem 5.2 scales
asymptotically as

√
d2
udxT , matching our lower bound. Like the lower bound, the theo-

rem depends on the instance (A?, B?) only through the operator norm bounds ΨB? and
5Due to the Gaussian noise, the minimizer θ̂k+1 is unique with probability 1 provided that τk ≥ dx + du
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‖B?‖op. Similar to previous work [Dean et al., 2018, Mania et al., 2019], the regret bound
has additional dependence on the stabilizing controller K0 through ‖K0‖op and P0, but these
parameters only affect the lower-order terms.

In the interest of brevity, we do not provide a full proof of Theorem 5.2. Instead, Sec-
tion 5.6 provides an informal sketch of the proof, highlighting two aspects of our proof which
differ from prior work: a novel regret decomposition based on the Hanson-Wright inequality
[Rudelson and Vershynin, 2013], and a two-scale least squares estimate which is essential to
obtaining the correct dimnesion dependence. This section also provides pseudocode for the
safeSet procedure in Algorithm 5.2. The proof relies on a novel perturbation bound, which
we describe presently.

A Novel Perturbation Bound

Our upper bound is facilliated by a novel perturbation bound, which differs from past bounds
[Mania et al., 2019] in that it does not require controllability, and depends on a single control-
theoretic parameter: ‖P?‖op. 6

The setup of the perturbation bound is as follows. Consider a ground truth instance
θ? = (A?, B?) with optimal controller K? = K∞(θ?) and value function P? = P∞(θ?). Given
an alternative instance θ̂ = (Â, B̂) in the vicinity of θ?, we control the suboptimality of the
certainty-equivalent controller K∞(θ̂) under θ?.

Our perturbation bounds hold in both operator and Frobenius norm, and we let ‖ · ‖◦
denote either the operator or Frobenius norm, with ◦ ∈ {op,F}. We define the operator and
Frobenius errors of θ̂ via

ε◦ := max{‖A? − Â‖◦, ‖B? − B̂‖◦}, ◦ ∈ {op,F}. (5.13)

Finally, for any stabilizable θ, we define the parameters

Csafe(θ) = 54‖P∞(θ)‖5
op, and Cest(θ) = 142‖P∞(θ)‖8

op. (5.14)

Our main theorem is as follows

Theorem 5.3. Assume the normalizations Q � I and R � I. Let θ? be a nominal instance,
and θ̂ an estimate, and let εop and εF the error bounds in Eq. (5.13). Then if εop ≤ 1/Csafe(θ?),
the following inequalities hold:

1. ‖P∞(θ̂)‖op ≤ c‖P∞(θ?)‖opand ‖K∞(θ?) − K∞(θ̂)‖op ≤ c‖P∞(θ?)‖−3/2
op for a universal

constant c > 0.

2. J∞(K∞(θ̂); θ?)− J∞(K∞(θ?); θ?) ≤ Cest(θ?) · ε2
F.

6This technique also arises in our lower bound by allowing us to reason about the minimal radius ε within
which a first-order Taylor of the optimal control policy is accurate.



CHAPTER 5. ONLINE LQR 75

In words, when the operator norm error between the instances is smaller than 1/poly(‖P?)‖)op,
the value functions are on the same order, the controllers are close, and the optimal policy
under θ? has performance under θ? which scales with the square of the Frobenius norm of
the difference. As in Mania et al. [2019], the square-norm scaling is essential for

√
T -regret.

Establishing an upper bound purely in Frobenius norm is essential to obtain the optimal
dimension scaling in the upper bound. This is described at length in Section 5.6.

The second item of Theorem 5.3 follows from the first, and a suboptimality decomposition
due to Fazel et al. [2018, Lemma 5]. In Section 5.5, we focus on the proof of an essential
component of the bound, and expose a novel technique — the self-bounding ODE method –
to that end. A strengthening of Theorem 5.3 can be bound in Simchowitz and Foster [2020,
Theorem 5], which, among other things, permits a closeness condition is stated in terms of
θ̂: εop ≤ O (1) · Csafe(θ̂). Such a bound is appealing because its condition can be verified
given only an estimate θ̂ and confidence radius εop, without knowledge of the ground-truth
instance.

5.5 The Self-Bounding ODE Method
This section provides an in depth description of the self-bounding ODE method, the key
technical ingredient in the proof of Theorem 5.3. For concreteness, we focus our efforts on
the proof of the following proposition:

Proposition 5.2. Define the parameter γ := 8‖P∞(θ?)‖2
opεop. Then, for any γ < 1, we have

1. ‖P∞(θ̂)‖op ≤ (1− γ)−1/2‖P∞(θ?)‖op

2. For the norms ◦ ∈ {op,F},

‖K∞(θ̂)−K∞(θ?)‖◦ ≤ 7(1− u)−7/4‖P∞(θ?)‖7/2
op · ε◦.

The self-bounding method begins with the following simple observation. Construct the
curves for s ∈ [0, 1]

(A(s), B(s)) = θ(s) := s · θ̂ + (1− s) · θ?
K(s) := K∞(θ(s)),

P (s) := P∞(θ(s)),

(5.15)

Now,suppose that K(s) is well-defined and continuously differentiable with derivative K ′(s)
for each s ∈ [0, 1]. Then, for the norms ‖ · ‖◦ of interest, we can bound

‖K? − K̂‖◦ ≤ max
s∈[0,1]

‖K ′(s)‖◦.
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Our aim is to argue that ‖K ′(s)‖◦ is on the order of ε◦, but a couple questions remain. First
of all, how does one bound K ′(s)? Second, why should K ′(s) exist? And lastly, how does
one guarantee that K(s) is even defined, that is, θ(s) is stabilizable, for all s ∈ [0, 1]?

We now observe from Eq. (5.8) that K(s), where defined, is an analytic function of the
corresponding P (s) := P∞(θ(s)). Moreover, if P (s) is continuously differentiable at s, one
boundK ′(s) in terms of P (s), P ′(s), θ′(s), and θ(s). In Section 5.8, we establish the following
bound:

Lemma 5.3. For all s such that P (s) is continuously differentiable,

‖K ′(s)‖◦ ≤ 3‖P (s)‖opε◦ + ‖P (s)‖1/2
op ‖P ′(s)‖◦.

Thus, the technical challenge amounts to bounding ‖P (s)‖op, and arguing that P (s) is
smooth, and that ‖P ′(s)‖◦ is well defined, and on the order of ε◦.

Stability via the implicit function theorem

Define sstab as the largest sstab ∈ [0, 1) such that θ(s) is stabilizable for all s ∈ [0, sstab). We
will represent the solution P (s) as the solution of an implicit function to show that P ′(s)
exists for all s ∈ [0, s′stab), and if ‖P ′(s)‖op is uniformly bounded on [0, sstab), then sstab = 1;
i.e. θ(s) is stabilizable for all s ∈ [0, 1]. This argument allows us only to reason about the
growth of P (s) where defined. To

From Eq. (5.7), we see that P∞(θ), where defined, is the unique solution of an analytic im-
plicit equation. That is, we can express P∞(θ) as the solution of Fdare(P, θ) = 0, where Fdare

is jointly analytic in both arguments. For directions ∆P ∈ Sdx , we consider the directional
derivatives

F ′dare(s)[∆P ] :=
d

ds
Fdare(P + s ·∆P , θ(s))

∣∣
P=P (s)

. (5.16)

That is, F ′dare(s)[·] : Sdx → Sdx is the linear operator corresponding to the directional deriva-
tives of the function Fdare function along direction ∆P .

We argue that this operator is full rank for all stabilizable θ(s). To apply the implicit
function theorem, we need a little more background. Given X ∈ Rdx×dx and Y ∈ Sdx Discrete
Algebraic Ricatti Operator is

dlyap(A, Y ) solves A>XA+ Y = 0 over X ∈ Sdx .

When A is stable, i.e. ρ(A) < 1, then dlyap(A, Y ) is given by the explicit and unique solution
as

dlyap(A, Y ) =
∑
i≥0

(A>)iY A>. (5.17)
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The dlyap operator also characterizes the P -matrices. Specifically, one can show that, for
any stabilizable θ = (A,B),

P∞(θ) = dlyap(A+BK∞(θ), Q+K∞(θ)>RK∞(θ)). (5.18)

Less obviously, the derivative of P∞(·) can also be expressed in terms of the dlyap operator.

Lemma 5.4 (Lemma 3.1 in Simchowitz and Foster [2020]). Let θ(s) be the curve in Eq. (5.15).
For s ∈ [0, 1] such θ(s) is stabilizable, define K(s) = K∞(θ(s)) and P = P∞(s), and set

Acl(s) := A(s) +B(s)K(s), ∆Acl
(s) = A′(s) +B′(s)K(s)

Q1(s) := Acl(s)
>P (s)∆Acl

(s) + ∆Acl
(s)>P (s)Acl(s)

Then, for all s for which θ(s) is stabilizable, we observe Acl(s) is stable, and

F ′dare(s)[∆P ] = Acl(s)
>∆PAcl(s) +Q1(s). (5.19)

Therefore, F ′dare(s)[·] is a full rank for all s. Hence, by the implicit function theorem, P ′(s)
exists and is given by P ′(s) = dlyap(Acl(s),Q(s)).

The above lemma has two immediate consequences:

• First, since Fdare(·, θ) is continuous, if P ′(s) is defined and uniformly bounded (in
any norm, say, operator) for all s ∈ [0, sstab), then a lims→sstab P (s) exists, and solves
Fdare(·, θ(s)) = 0. Thus, θ(sstab) is also stabilizable.

• Second, the implicit function theorem guarantees that, if Fdare(P, θ(s)) = 0 has a
solution at s = sstab, it must have a solution at s ∈ (sstab − ε, sstab + ε) for some small
enough ε.

Taken together, the two points imply that:

Lemma 5.5. Let sstab ∈ (0, 1] denote the largest s such that θ(u) is stabilizable for all
u ∈ [0, s). Then, P ′(s) exists on [0, sstab), and moreover, if ‖P ′(s)‖op is uniformly bounded,
then sstab = 1, and P ′(s) exists on all [0, 1].

The Self Bounding Property and Its Consequences

The implicit function gives a strategy for establishing existence of P ′(s): namely, proving
a uniform bound on P ′(s) wherever it is defined. To do so, we leverage the following key
self-bounding property.

Proposition 5.6. For any s ∈ [0, sstab) and norm ◦ ∈ {op,F}, ‖P ′(s)‖◦ ≤ 4‖P (s)‖3
opε◦.
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The proof of Proposition 5.6 relies on various properties of the dlyap operator, and is
deferred to Section 5.8. To leverage the proposition, consider a scalar ODE which saturates
the upper bound on P ′(s). For concreteness, let us take the operator norm:

z′(s) = 4z(s)3εop, z(0) = ‖P (0)‖op = ‖P?‖op. (5.20)

We can explicitly solve for the solution to Eq. (5.20):

dz

z3
= 4εopds,

1

2z(0)2
− 1

2z(s)2
= 4εopds

Hence,

z(s) =
1√

z(0)−2 − 8sεop

=
1√

‖P?‖−2
op − 8sεop

, ∀s < 1

8‖P?‖2
opεop

We take a moment to appreciate the fact that, while the computation of P (s) along s ∈ [0, 1]
is quite complicated, the solution to the scalar ODE Eq. (5.20) is simple and closed-form.
The crux of the self-bounding ODE method is the following observation:

Proposition 5.7 (Self-Bounding). Let z(s) denote the solution to the ODE in Eq. (5.20).
Then, for all s ∈ [0, sstab), ‖P (s)‖op ≤ z(s). Hence, ‖P ′(s)‖op ≤ 4z(s)3εop.

The above proposition is a specialization of a more general technique, [Simchowitz and
Foster, 2020, Theorem 13], which applies to a class of “valid implicit functions” generalizing
Fdare(P, θ).

In particular, defining the parameter γ = 8‖P∞(θ?)‖2
opεop, we see that for γ < 1, then

P (s) exists for all s ∈ [0, 1], and

‖P (s)‖op ≤ (1− γ)−1/2‖P?‖op.

This establishes the first part of Proposition 5.2. The second part of the proposition follows
from substituting this bound into Lemma 5.3.

5.6 Upper Bound
In the interest of brevity, we provide only a sketch of the proof of our upper bound; full
details are given in Simchowitz and Foster [2020, Section 5]. This section also provides the
pseudocode for the safeSet procedure in Algorithm 5.2

The aim of this section is to highlight the three aspects of our analysis which differ from
prior work:

1. A regret-decomposition based on the Hanson-Wright inequality.
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Algorithm 5.2 safeSet(K0, δ)

1: Input: Stabilizing controller K0, confidence parameter δ.
2: for k = 0, 1, . . . do

// Let τk = 2k

3: for steps t = τk, τk + 1, . . . , τk+1 − 1 do
4: Play input ut = K0xt + gt, where gt ∼ N (0, I) // take x0 = 0

5: Let θ̂k = (Âk, B̂k) be the OLS estimator (Eq. (5.12))
// Let Λk :=

∑τk+1−1
t=τk

(xt,ut)
⊗2 denote phase covariance

6: Define confk := 6λmin(Λk)
−1(d log 5 + log(4k2 det(3(Λk)/δ)) // infinite if Λk 6� 0

7: if 1/confk ≥ 486‖P∞(θ̂k)‖5
op then

8: Set ksafe ← k + 1
9: Set Bsafe to denote the operator norm ball around θ̂k of radius confk

10: Set σ2
in =
√
dx‖P∞(θ̂k)‖9/2

op max{1, ‖B̂k‖op}
√

log ‖P∞(θ̂k)‖op
δ

11: Return (ksafe,Bsafe, σ
2
in)

12: else
13: Continue

2. The use of our perturbation bound to relate regret to the cumulative Frobenius errors
‖θ̂k − θ?‖2

F.

3. A two-scale least-squares error bound which leverages the tools from Chapter 3 to
carefully bound ‖θ̂k − θ?‖2

F.

This latter step is crucial because as described above, the correct analysis must distinguish
between the dx×dxdirections of θ? along the subspace (x, u) = (x, K̂kx) which are estimated
“quickly”, and those dx × du directions perpendicular to the subspace which are estimated
“slowly” due to the noise injection.

Let us begin the analysis. We first argue that the initial safeSet stage terminates with
high probability in a small number of phases, so that its total contribution to the regret
remains second order. Moreover, with high probability, when the termination occurs, the
confidence ball Bsafe only contains parameters θ for which K∞(θ) stabilizes θ?, and for which
the cost of running K∞(θ) is comparable (but not vanishingly close) to that of K?. This
ensures that the algorithm behaves in a regular fashion for the successive phases k ≥ ksafe.

The brunt of our regret arises form phases k ≥ ksafe. Let σk = σ2
k/
√
τk denote the

variance of the injected input noise at phase k. We show a novel regret decomposition where
the regret from those phases is at most

log2 T∑
k=ksafe

τk

(
J∞(K̂k; θ?)− J∞(K?; θ?)

)
+ duτkσ

2
k + Õ

(√
(du + dx)τk

)
+ (low order terms).

The first term, J∞(K̂k; θ?) − J∞(K?; θ?), captures the suboptimality incurred by choosing
a suboptimal controller K̂k during thet τk step of phase k. The second term captures the



CHAPTER 5. ONLINE LQR 80

contribution of the Gaussian exploration during phase k. The third term adresses the fluc-
tuation of the random costs around its expectation. Past work has adressed controlled the
random fluctuations with an Azuma-Bernstein inequality, which yields fluctuations on the
order of (du + dx)

√
τk, contributing (du + dx)

√
T to the final regret bound. In particu-

lar, when dx � d2
u, this yields larger regret than the optimal

√
dxd2

uT scaling. Using the
Hanson-Wright inequality, we obtain a sharper control of the fluctuations on the order of
Õ
(√

(du + dx)T
)
, which is dominated by the optimal

√
dxd2

uT scaling. The formal regret
decomposition is stated in Simchowitz and Foster [2020, Lemma 5.2]. For further discussion,
see Simchowitz and Foster [2020, Appendix G.8].

Next, using our novel perturbation bound (Theorem 5.3), we find that

J∞(K̂k; θ?)− J∞(K?; θ?) ≤ poly(‖P?‖op) · ‖θ̂ − θ?‖2
F.

Hence, it remains to control the rate at which the estimates of θ? approach the ground truth.
We aim to show that, up to logarithmic factors and polynomial factors in system parameters,

‖θ̂ − θ?‖2
F ≤ dx ·

(
dx
τk

+
du
τσ2

k

)
. (5.21)

As soon as this holds, it is straightforward to see that we can obtain
√

dim d2
uT by combining

Eq. (5.21) with our perturbation bound and regret decomposition, and tuning σ2
k

√
τkdx

appropriately.
Let us understand Eq. (5.21). We can view parameters θ as matrices with rows θ(i) for

i = 1, 2, . . . , dx. Since the least squares estimator decouples across rows, the total error is

‖θ̂ − θ?‖2
F =

dx∑
i=1

‖θ̂(i) − θ(i)
? ‖2

F,

giving us the dx factor out in front.
Let zt = (xt,ut) denote the covariates used for the least squares estimator. Let Zk denote

the matrix whose rows are zt for t ∈ {τk, τk + 1, . . . , τk+1 − 1}, and Wk the matrix whose
rows wt+1 for the same indices t. Finally, the appropriate covariance matrix

Λk :=

τk+1−1∑
t=τk

ztz
>
t = Z>k Zk.

Letting {ei} denote the cannonical basis vectors for Rdx , a standard least-squares decompo-
sition gives that, for all i ∈ [dx],

θ̂(i) − θ(i)
? = Λ−1

k Z>k Wkei, (5.22)

provided that Λk is not rank defficient.
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The Two-Scale Property

Let us now elucidate a “two-scale” structure for Λk. To do so, let (Ft) denote the filtration
generated by all inputs us and disturbances ws for times 1 ≤ s ≤ t. Then, for all t in phase
k,

E
[
ztz
>
t | Ft−1

]
= E [zt | Ft−1]E [zt | Ft−1]> +

[
I

K̂k

] [
I

K̂k

]>
+

[
0 0
0 σ2

in

√
τkIdu

]
�
[
I

K̂k

] [
I

K̂k

]>
+

[
0 0
0 σ2

in

√
τkIdu

]
,

where the blocks in the last matrix are of dimension dx and du, respectively. In particular, if

we define the projection matrix Pk projecting onto the null space of
[
I

K̂k

]
, and P⊥k := I−Pk

denote the projection onto its rowspace, then a careful linear algebraic argument shows that
the above covariance is lower bounded in a PSD sense by

E
[
ztz
>
t | Ft−1

]
� σk

2
Pk + ·c1P⊥k

where c1 is a constant that is polynomial in problem parameters. The formal statement
is given by Simchowitz and Foster [2020, Lemma G.8], and is based on an argument due
to Dean et al. [2018]. Using the Gaussianity of the process and input noise, one can show
use the block-martingale small-ball argument developed in Chapter 3 to establish that, with
high probability

Λk % Λ̄k,low :=
τkσ

2
k

2
Pk + c1τkP⊥k , (Two-Scale Property)

where c1 is universal constant. We refer to this as the two scale property because the term,
because the first term is considerably smaller than the second term, since τkσk ≈

√
dxτk is

considerably smaller than τk.

Remark 5.1. We remark on the convenience of using the martingale small-ball method de-
veloped in Chapter 3 to lower bound the covariance Λk � Λ̄k,low. A standard approach based
on concentration would use a matrix Bernstein inequality to argue that Λk =

∑τk+1−1
t=τk

ztz
>
t

concentrates around its expectation. Even ignoring dependence issues (these can be adressed
with mixing-time arguments), terms ztz

>
t have variance ‖E[(ztz

>
t )2]‖op dx, yielding a leading

order deviation on the order of
√
τkdx (see e.g. Tropp [2015, Theorem 1.6.2]). This devi-

ation is precisely the same order as the term τkσ
2
k

2
Pk-term in Λ̄k,low. Hence, an argument

based on concentration would need to tinker with σ2
k to be large enough to overcome these

fluctuations. In contrast, the small-ball technique has no such limitation.
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A Two-Scale Self-Normalized Bound

Let us understand how to apply the two-scale property to analyze the least-squares estimate.
Suppose for the sake of argument that the noise terms wt and independent of the covariates
zt; of course this is false due, but will help illustrate intuition. Then,

‖θ̂(i) − θ(i)
? ‖2 = e>i W>

k ZkΛ
−2
k Z>k Wkei = e>i WkΛ

−1
k Wkei (5.23)

By the Hanson-Wright inequality, this errors leading term is on the order of tr(Λ−1
k ). Using

the two scale property and inverting the matrix Λ̄k,low,

‖θ̂(i) − θ(i)
? ‖2 ≈ tr(Λ̄k,low) =

2du
τkσ2

k

+
c1dx
τk

,

Summing up over i ∈ [dx] yields the error bound in Eq. (5.21). Unfortunately, this simple
heuristic argument fails, and we develop a more sophisticated bound in the following section.

We present the following bound, a specialization of Simchowitz and Foster [2020, Lemma
E.1]. This bound adapts to the two-scale propety, but respects the martingale structure of
the problem.

Lemma 5.8 (Two-Scale OLS Estimate). Let d = dx + du, and let P ∈ Rd×d denote a
projection matrix onto a subspace of dimension p, and fix an orthonormal basis of Rdx,
v1, . . . , vdx, such that v1, . . . , vp form an orthonormal basis for the range of P. Further, fix
positive constants 0 < λ1 ≤ ν ≤ λ2 such that ν ≤

√
λ1λ2/2, and define the event

E := {Λk � λ1P + λ2(I − P)} ∩ {‖PΛk(I − P)‖op ≤ ν}

Then, with probability 1− δ, if E holds,

‖θ̂k − θ?‖2
F ≤

12dxpκ1

λ1

log
3dxdκ1

δ
+

(
ν

λ1

)2

· 48dx(d− p)κ2

λ2

log
3dxdκ2

δ
.

where κ1 := max1≤j≤p v
>
j Λkvj/λ1 and κ2 := maxp+1≤j≤dx v

>
j Λkvj/λ2.

In our case, we apply the bound with P← Pk denoting the projection operator described
in the two-scale bound; this projects onto a subspace of dimension p = du. Then, using
λ1 =

τkσ
2
k

2
and λ2 = c1τk from the two-scale property,

‖θ̂k − θ?‖2
F ≤ Õ

(
κ1 ·

dxdu
τkσ2

k

+ κ2 · (
ν

σ2
kτk

)2 · d
2
x

τk

)
,

attaining Eq. (5.21), provided that (a) κ1, κ2 are constants, and (b) that we can choose ν
to be on the order of τkσ2

k ∼
√
τk; this requires some technical effort, but is demonstrated in

Simchowitz and Foster [2020, Appendix G].
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The key step in the proof of Lemma 5.8 is relative the square of the covariance matrice,
Λ2
k, to its lower bound Λ̄2

k,low. Even though Λk � Λ̄k,low with high probability, this does not
imply any similar relation for the squares; indeed, given positive matrices A and B, A � B
does not imply A2 � B2. To circumvent this, we use the two-scale structure of the covariance
lower bound Λ̄k,low to show that Λ2

k � Λ̄2
k,low, provided the cross term ‖PkΛk(1 − Pk)‖op is

small.

5.7 Lower Bound
We now prove the main lower bound, Theorem 5.1. The proof follows the plan outlined
in Section 5.4: We construct a packing of alternative instances, show that low regret on a
given instance implies low estimation error, and then deduce from an information-theoretic
argument that this implies high regret an alternative instance. Throughout that we assume
σ2
w = 1 for simplicity. In the interest of brevity, all constituent lemmas are stated without

proof; an unabridged version (with references to full proofs) can be found in [Simchowitz
and Foster, 2020, Section 4].

Alternative Instances and Packing Construction

We construct a packing of alternate instances θe = [Ae | Be] which take the form [A?+K?∆e |
B? + ∆e], for appropriately chosen perturbations ∆e described shortly. As discussed in
Section 5.4, this packing is chosen because the learner cannot distinguish between alternatives
if she commits to playing the optimal policy ut = K?xt, and must therefore deviate from
this policy in order to distinguish between alternatives. We further recall Lemma 5.1, which
describes how the optimal controllers from these instances varying with the perturbation ∆.

Lemma 5.1 (Derivative Computation (Proposition 2 in Abeille and Lazaric [2018])). Let
(A?, B?) be stabilizable Then

d

dt
K∞(A? − t∆K?, B? + t∆)

∣∣
t=0

= −(R +B>? P?B?)
−1 ·∆>P?Acl,?,

where we recall Acl,? := A? +B?K?.

In particular, if Acl is non-degenerate, then to first order, the Frobenius distance between
between the optimal controllers for A?, B? and the alternatives (Ae, Be) is Ω(‖∆‖F).

To obtain the correct dimension dependence, it is essential that the packing is sufficiently
large; a single alternative instance will not suffice. Our goal is to make the packing as large
as possible while ensuring that if one can recover the optimal controller for a given instance,
they can also recover the perturbation ∆.

Let n = du, and let m ≤ dx be the free parameter from the theorem statement. We
construct a collection of instances indexed by sign vectors e ∈ {−1, 1}[n]×[m]. Let w1, . . . , wn
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denote an eigenbasis basis of (R + B>? P?B?)
−1, and v1, . . . , vm denote the first m right-

singular vectors of Acl,?P?. Then for each e ∈ {−1, 1}[n]×[m], the corresponding instances is
θe = [Ae | Be], where

[Ae | Be] := [A? −∆eK? | B? + ∆e], where ∆e = εpack

n∑
i=1

m∑
j=1

ei,jwiv
>
j . (5.24)

It will be convenient to adopt the shorthand Ke := K∞(θe), Pe = P∞(Ae, Be) and Je =
J∞(Ke; θe), and

Ψ? = max{1, ‖A?‖op, ‖B?‖op} Ψe = max{1, ‖Ae‖op, ‖Be‖op}

The following lemma gathers a number of bounds on the error between θe and θ? and
their corresponding system parameters. Perhaps most importantly, the lemma shows that
to first order, Ke can be approximated using the derivative expression in Lemma 5.1.

Lemma 5.9. There exist universal polynomial functions p1, p2 such that, for any εpack ∈
(0, 1), if ε2

pack ≤ p1(‖P?‖op)−1/nm, the following bounds hold:

1. Parameter errror: max{‖Ae − A?‖F , ‖Be −B?‖F} ≤
√
‖P?‖op

√
mnεpack.

2. Boundedness of value functions: Ψe ≤ 21/5Ψ? and ‖Pe − P?‖op ≤ 21/5‖P?‖op.

3. Controller error: ‖Ke −K?‖2
F ≤ 2‖P?‖3

opmnε
2
pack.

4. First-order error: ‖K? + d
dt
K∞(θ? + tθe)

∣∣
t=0
−Ke‖2

F ≤ p2(‖P?‖op)2(mn)2ε4
pack.

Notably, item 4 ensures that the first order approximation in Lemma 5.1 is accurate
for εpack sufficiently small. Henceforth, we take εpack sufficiently small so as to satisfy the
conditions of Lemma 5.9.

Assumption 5.3 (Small εpack). ε2
pack ≤ 1

mn
(p1(‖P?‖op)−1 ∧ 1

20
p2(‖P?‖op)−1).

Low Regret Implies Estimation for Controller

We now show that if one can achieve low regret on every instance, then one can estimate
the infinite-horizon optimal controller Ke. Suppressing dependence on T , we introduce the
shorthand

PseudoRege[π] := Eπ,θ? [Lqr-RegT (π; θe)].

Going forward, we restrict ourselves to algorithms whose regret is sufficiently small on every
packing instance; the trivial case where this is not satisfied is handled at the end of the proof.

Assumption 5.4 (Uniform Correctness). For all instances (Ae, Be), the algorithm π ensures
that PseudoRege[π] ≤ T

6dx‖P?‖opΨ2
?
− εerr, where εerr := 6‖P?‖3

opΨ2
?.
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We now define an intermediate term which captures which captures the extent to which
the control inputs under instance e deviate from those prescribed by the optimal infinite
horizon controller Ke on the first T/2 rounds:

K-Erre[π] := Eπ,θ?

T/2∑
t=1

‖ut −Kext‖2

 .
The following lemma shows that regret is lower bounded by K-Erre[π], and hence any algo-
rithm with low regret under this instance must play controls close to Kext.

Lemma 5.10. There is a universal constant γerr > 0 such that if Assumptions 5.3 and 5.4
hold and T ≥ γerr‖P?‖2

opΨ4
?, then

PseudoRege[π] ≥ 1

2
K-Erre[π]− εerr.

In light of Lemma 5.10, the remainder of the proof will focus on lower bounding the
deviation K-Erre. As a first step, the next lemma shows that the optimal controller can
be estimated well through least squares whenever K-Erre is small. More concretely, we
consider a least squares estimator which fits a controller using the first half of the algorithm’s
trajectory. The estimator returns

Kls := arg min
K

T/2∑
t=1

‖ut −Kxt‖2, (5.25)

when
∑T/2

t=1 xtx
ᵀ
t � cminT · I, and returns Kls = 0 otherwise.

Lemma 5.11. If T ≥ c0dx log(1 + dx‖P?‖op) and Assumptions 5.3 and 5.4 hold, and if cmin

is chosen to be an appropriate numerical constant, then the least squares estimator Eq. (5.25)
guarantees

K-Erre[π] ≥ clsT · EAe,Be,π
[
‖Kls −Ke‖2

F

]
− 1,

where c0 and cls are universal constants.

Henceforth we take T large enough such that Lemma 5.10 and Lemma 5.11 apply.

Assumption 5.5. We have that T ≥ c0dx log(1 + dx‖P?‖op) ∨ γerr‖P?‖2
opΨ4

?.

Information-Theoretic Lower Bound for Estimation

We have established that low regret under the instance (Ae, Be) requires a small deviation
from Ke in the sense that K-Erre[π] is small, and have shown in turn that any algorithm
with low regret yields an estimator for the optimal controller Ke (Lemma 5.11). We now
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provide necessary condition for estimating the optimal controller, which will lead to the final
tradeoff between regret on the nominal instance and the alternative instance. This condition
is stated in terms of a quantity related to K-Erre:

K?-Erre[π] := EAe,Be,π

T/2∑
t=1

‖ut −K?xt‖2

 .
BothK?-Erre[π] andK-Erre[π] concern the behavior of the algorithm under instance (Ae, Be),
but former measures deviation from K? (“exploration error”) while the latter measures devi-
ation from the optimal controller Ke. Our proof essentially argues the following. Let (e, e′)
be a pair of random indices on the hypercube, where e is uniform on {−1, 1}nm, and e′ is
obtained by flipping a single, uniformly selected entry of e. Moroever, let Pe,Pe′ denote the
respective laws for our algorithm under these two instances. We show that—because our
instances take the form (A?−∆K?, B+∆)—K?-Erre[π] captures the KL divergence between
these two instances:

EeK?-Erre[π] ≈ Ee,e′KL(Pe,Pe′),

where the expectations are taken with respect to the distribution over (e, e′). In other words,
the average error EeK?-Erre[π] corresponds to the average one-flip KL-divergence between
instances. This captures the fact that the instances can only be distinguished by playing
controls which deviate from ut = K?xt.

As a consequence, using a technique based on Assouad’s lemma [Assouad, 1983] due to
Arias-Castro et al. [2012], we prove an information-theoretic lower bound that shows that
any algorithm that can recover the index vector e in Hamming distance on every instance
must have K?-Erre[π] is large on some instances.

As described above, the following lemma concerns the case where the alternative in-
stance index e is drawn uniformly from the hypercube. Let Ee denote expectation e

unif∼
{−1, 1}[n]×[m], and let dham(e, e′) denote the Hamming distance.

Lemma 5.12. Let ê be any estimator depending only on (x1, . . . ,xT/2) and (u1, . . . ,uT/2).
Then

either EeK?-Erre[π] ≥ n

4ε2
pack

, or EeEAe,Be,alg [dham(e, ê)] ≥ nm

4
.

To apply this result to the least squares estimator Kls, we apply the following lemma,
which shows that any estimator K̂ with low Frobenius error relative to Ke can be used to
recover e in Hamming distance.

Lemma 5.13. Let êi,j(K̂) := sign(w>i (K̂−K?)vj), and define νk := ‖R+B>? P?B?‖op/σk(Acl,?).
Then under Assumption 5.3,

dham(êi,j(K̂), ei,j) ≤
2
∥∥∥K̂ −Ke

∥∥∥
F

ν2
mε

2
pack

+
1

20
nm.
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Combining Lemmas 5.11, 5.12, and 5.13, we arrive at a dichotomy: either the average
exploration error K?-Erre[π] is large, or the regret proxy K-Erre[π] is large.

Corollary 5.1. Let e
unif∼ {−1, 1}[n]×[m]. Then if Assumptions 5.3, 5.4,and 5.5 hold,

either EeK?-Erre[π] ≥ n

4ε2
pack︸ ︷︷ ︸

(sufficient exploration)

, or EeK-Erre[π] ≥ cls

10
Tnmν2

mε
2
pack − εls︸ ︷︷ ︸

(large deviation from optimal)

. (5.26)

Completing the Proof

To conclude the proof, we show that EeK-Erre ≈ EeK?-Erre, so that the final bound follows
by setting ε2

pack ≈
√

1/mT .

Lemma 5.14. Under Assumptions 5.3 and 5.4, we have EeK?-Erre[π] ≤ 2EeK-Erre[π] +
4nmT‖P?‖4

opε
2
pack.

Combining Lemma 5.14 with Corollary 5.1, we have

max
e
K-Erre[π] ≥ EeK-Erre[π] ≥

(
n

8ε2
pack

− 2nmT‖P?‖4
opε

2
pack

)
∧ cls

10
Tnmν2

mε
2
pack.

The lemma now follows from setting ε2
pack = 1

32‖P?‖2op
√
mT

, and relating maxeK-Erre[π]to
maxe PseudoRege[π] via Lemma 5.11, taking care to verify that we can justify Assump-
tion 5.4. See Simchowitz and Foster [2020, Section 4.4] for the complete proof.

5.8 Omitted Proofs

Proof of the Self-Bounding Property (Proposition 5.6)

The previous section tell us that we can ensure stabilizability as soon as we can uniformly
bound P ′(s). We now elucidate an self-bounding property that makes the latter possible.
The goal is to take our expression for P ′(s) = dlyap(Acl(s),Q1(s)), represent it as P ′(s) ≤
c1‖P (s)‖c2 for some constants c1, c2. First, we extract two useful facts about the dlyap
operator, both of which are direct consequences of Eq. (5.17):

Fact 5.15. If Y � 0, then dlyap(A, Y ) � Y . Moreover, if Y � I, then dlyap(A, Y ) � A>A.

Fact 5.16. dlyap(·, ·) is linear in the second argument. Moreover, if Y � Y ′, then dlyap(A, Y ) �
dlyap(A, Y ′). Hence, dlyap(A, Y ) � dlyap(A, I)‖Y ‖

First, let us sketch a simple argument for bounding ‖P ′(s)‖op; a more subtle argument
is required for the Frobenius norm.
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Lemma 5.17 (Self-Bounding Property: Operator Norm). Under Assumption 5.2, ‖P ′(s)‖op ≤
4‖P (s)‖3

opεop for all s such that θ(s) is stabilizable.

Proof. We shall use the notation ±X � Y to denote that X � Y and −X � Y . Since
±Q1(s) � ‖Q1(s)‖opI, Fact 5.16 implies that

±P ′(s) = ±dlyap(Acl(s),Q1(s)) � ‖Q1(s)‖op · dlyap(Acl(s), I).

Further, under Assumption 5.2, I � Q+K(s)>RK(s), so that

dlyap(Acl(s), I) � dlyap(Acl(s), Q+K(s)>RK(s)) = P (s, (5.27)

where the last line uses Eq. (5.18). Hence, since ±X � Y implies ‖X‖op ≤ ‖Y ‖op,

‖P ′(s)‖op ≤ ‖Q1(s)‖op‖P (s)‖op

≤ 2‖Acl(s)‖op‖P (s)‖2
op‖∆Acl

(s)‖op

≤ εop(1 + ‖K(s)‖op)‖Acl(s)‖op‖P (s)‖2
op.

where in the second inequalities we use the forms of Q1 and ∆Acl
. Under Assumption 5.2,

one can use Fact 5.15 to verify that ‖P (s)‖op = ‖dlyap(Acl(s), Q + K(s)>RK(s))‖op ≥
max{1, ‖K(s)‖2

op, ‖Acl(s)‖2
op). The bound follows.

The same bound holds for the Frobenius norm, but the argument is more involved and
deferred to the end of the section.

Lemma 5.18 (Self-Bounding Property: Frobenius Norm). Under Assumption 5.2, ‖P ′(s)‖F ≤
4‖P (s)‖3

opεF. Hene, for ◦ ∈ {op,F}, and all s such that θ(s) is stabilizable,

‖P ′(s)‖◦ ≤ 4‖P (s)‖3
opε◦.

Proof. We define the following terms for α > 0:

Q[α](s) := αAcl(s)
>P (s)2Acl(s) +

1

α
∆Acl

(s)>∆Acl
(s). (5.28)

From the matrix AM-GM inequality, we have −Q[α](s) � Q1(s) � Q1;α(s) for any α > 0.
Hence, Fact 5.16 implies that

P ′(s) = dlyap(Acl(s);Q1(s)) � α dlyap(Acl(s);Acl(s)
>P (s)2Acl(s))︸ ︷︷ ︸

:=E1(s)

+
1

α
dlyap(Acl(s); ∆Acl

(s)>∆Acl
(s)︸ ︷︷ ︸

:=E2(s)

.
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and similarly for −P ′(s). In short, ±P ′(s) � α · E1(s) + 1
α
E2(s) holds ∀α > 0. Since

E1(s), E2(s) � 0, [Perdomo et al., 2021, Lemma D.5], this implies that

‖P ′(s)‖F ≤ 2
√
‖E1(s)‖optr[E2(s)] (5.29)

To bound the term E1(s), we have

‖E1(s)‖ = ‖dlyap(Acl(s);Acl(s)
>P (s)2Acl(s))‖op

= ‖dlyap(Acl(s);P (s)2)‖op (dlyap(A,A>Y A) � dlyap(A, Y ))
= ‖P (s)‖2

op‖dlyap(Acl(s); I)‖op (Fact 5.16)
≤ ‖P (s)‖3

op. (Eq. (5.27))

To bound tr[E2(s)], we have

tr[E2(s)] = tr[dlyap(Acl(s),∆Acl
(s)>∆Acl

(s))]

= tr[
∑
i≥0

(Acl(s)
i)>∆Acl

(s)>∆Acl
(s)(Acl(s)

i)>]

≤ ‖∆Acl
(s)‖2

F

∑
i≥0

‖Aicl‖2
op.

We can then bound ‖∆Acl
(s)‖F ≤ εF(1 + ‖K(s)‖op) ≤ 2‖P (s)‖1/2

op εF. By a standard Lya-
punov argument [Perdomo et al., 2021, Lemma D.9], one can bound

∑
i≥0 ‖Acl(s)

i‖2
op ≤

‖dlyap(Acl, I)‖2
op, which is at most ‖P (s)‖2

op by Eq. (5.27). Hence,

tr[E2(s)] ≤ 4‖P (s)‖3
opε

2
F.

The bound now follows from our above estimates for E1 and E2, and from the inequality
Eq. (5.29).

Derivative Bound on K ′(s) (Lemma 5.3)

Introduce ∆A = Â − A? and ∆B = B̂ − B?, and recall Acl(s) = A(s) + B(s)K(s) and
∆Acl

(s) = ∆A + ∆BK(S). A direct computation [Simchowitz and Foster, 2020, Lemma B.1]
reveals that, for R0 := (R +B(s)>P (s)B(s)) that

K ′(s) = −R−1
0 (∆>BP (s)Acl(s) +B>P (s)∆Acl

(s) +B>P ′(s)Acl(s)).

Hence,

‖K ′(s)‖◦ ≤ ‖R−1
0 ‖op‖P (s)‖op‖∆B‖◦

+ ‖R−1
0 B>P (s)1/2‖op ·

(
‖P (s)1/2‖op‖∆Acl

(s)‖◦ + ‖P−1/2‖op‖P ′(s)‖◦‖Acl(s)‖op

)
.
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From Assumption 5.2, R0 � I, so ‖R−1
0 ‖op ≤ 1. Moreover, since R0 � B>P (s)B, we

have that ‖R−1
0 B>P (s)1/2‖op ≤ 1. Similarly, since P � Q � I, ‖P−1/2‖op ≤ 1. Finally,

‖∆B‖◦ ≤ ε◦, and using the simplifications in the previous section, ‖∆Acl
(s)‖◦ ≤ 2‖P (s)‖1/2

op =

2‖P 1/2(s)‖op and ‖Acl(s)‖op ≤ ‖P (s)‖1/2
op . Applying these simplifications,

‖K ′(s)‖◦ ≤ 3‖P (s)‖opε◦ + ‖P (s)‖1/2
op ‖P ′(s)‖◦.

Proof of Lemma 5.8

We begin with a linear algebraic lemma lower bounding the square of a PSD matrix in the
Lowner order.

Lemma 5.19. Let X =

[
X11 X12

X>12 X22

]
� 0. Then, for any parameter α > 0,

X2 �
[
(1− α1)X2

11 + (1− α−1
2 )X12X

>
12 0

0 (1− α2)X2
22 + (1− α−1

1 )X>12X12

]
Proof of Lemma 5.19. We begin by expanding[
X11 X12

X>12 X22

]2

=

[
X2

11 +X12X
>
12 X11X12 +X12X22

X22X
>
12 +X>12X11 X2

22 +X>12X12

]
=

[
X2

11 +X12X
>
12 0

0 X2
22 +X>12X12

]
+

[
0 X11X12

X>12X11 0

]
+

[
0 X12X22

X22X
>
12 0

]
.

Now, for any vector v = (v1, v2), and any α1 > 0, we have〈
v,

[
0 X11X12

X>12X11

]
v

〉
= 2v>1 X11X12v2

≥ −2‖v>1 X11‖‖X12v2‖
= −2 · α1/2

1 ‖v>1 X11‖ · α−1/2
1 ‖X12v2‖

≥ −α1‖v>1 X11‖2 − α−1
1 ‖X12v2‖2

=

〈
v,

[
−α1X

2
11 0

0 −α−1
1 X>12X12

]
v

〉
.

Similarly, for any v and α2 > 0, we have〈
v,

[
0 X12X22

X22X
>
12

]
v

〉
≥
〈
v,

[
−α−1

2 X12X
>
12 0

0 −α2X
2
22

]
v

〉
.

Thus, for any α1, α2 > 0,

X2 �
[
(1− α1)X2

11 + (1− α−1
2 )X12X

>
12 0

0 (1− α2)X2
22 + (1− α−1

1 )X>12X12

]
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The important case of Lemma 5.19 is when the matrix X in question can be lower
bounded in terms of the weighted sum of two complementary projection matrices.

Lemma 5.20. Let P be an orthogonal projection matrix, let X � 0, and suppose that there
exist positive constants λ1 ≤ ν ≤ λ2 be such that X � λ1(I−P)+λ2P, and ‖PX(1−P)‖op ≤ ν.
Then, if ν ≤

√
λ1λ2/2,

X2 � 1

4
λ2

1P +
λ2

1λ
2
2

16ν2
(I − P)

Proof of Lemma 5.20. Denote the number of rows/columns of X by d. By an orthonormal
change of basis, we may assume that P is the projection onto the first p = dim(range(P))
cannonical basis vectors. Writing X and P in this basis we have

X =

[
X11 X12

X>12 X22

]
� λ1(I − P) + λ2P =

[
λ1Id−p 0

0 λ2Ip

]
. (5.30)

It suffices to show that, in this basis

X2 �

[
λ21
4
Ip 0

0
λ22λ

2
1

16ν2
Id−p

]
. (5.31)

From Eq. (5.30), X11 � λ1Ip, X22 � λ2Ip−d, and ‖X12‖op = ‖PX(1 − P)‖op. Hence, hence
the parameters ν ≥ λ1 in the lemma satisfies ν ≥ ‖X12‖op. Thus,

X2 �
[{

(1− α1) + (1− α−1
2 )(ν/λ1)2

}
· λ2

1Ip 0
0

{
(1− α2) + (1− α−1

1 )(ν/λ2)2
}
· λ2

2Id−p

]
.

Set α1 = 1
2
, and take α2 to satisfy (1 − α−1

2 )(ν/λ1)2 = −1/4. Then, we have the following
string of implicitations

1− α−1
2 = −λ2

1/4ν
2 =⇒ α−1

2 =
4ν2 + λ2

1

ν2
=⇒

α2 =
4ν2

4ν2 + λ2
1

=⇒ 1− α2 =
λ2

1

4ν2 + λ2
1

≥ λ2
1

8ν2
,

where in the last line we use ν ≥ λ1. For this choice, and using ν ≤
√
λ1λ2/2,

X2 �

[
λ21
4
Ip 0

0 { λ
2
1

8ν2
− ν2

λ22
} · λ2

2Id−p

]
�

[
λ21
4
Ip 0

0
λ22λ

2
1

16ν2
Id−p

]
,

as needed.

We are now in a position to prove our desired lemma.
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Concluding the proof of Lemma 5.8. For simplicitly, let us drop the dependence on the sub-
script k for the phase; this bound holds as long as k ≥ ksafe is past the safeSet initialization
stage.

Let Z denotes the matrix whose rows are zt = (xt,ut) ∈ Rdx+du for times t ∈ {τk, τk−1, . . . , τk+1−
1}, and let W denote the matrix whose rows are the disturbances wt for the same times.
Let θ̂ ← θ̂k denote the least squares estimate in this phase.Finally, we let W(i) = Wei pick
out the i-th row of the disturbance matrix. Recall also that d := dx + du.

We operate on the event that, for a given projection matrix P ∈ Rd×d to a subspace of
dimension p, Λ � λ1(I−P)+λ2P, and that for some λ1 ≤ ν ≤

√
λ1λ2/2, ν ≥ λ1∨‖PΛ(1−P)‖.

On this event, Lemma 5.20 implies that

(Z>Z)2 = Λ2 � 1

4
λ2

1P +
λ2

1λ
2
2

16ν2
(I − P)

so after inversion,

(Z>Z)−2 � 4λ2
−1P +

16ν2

λ2
1λ

2
2

(I − P).

Hence, we can render

‖θ̂ − θ?‖2
F =

dx∑
i=1

∥∥(Z>Z)−1Z>W(i)
∥∥2

2

=
dx∑
i=1

〈
Z>W(i), (Z>Z)−2Z>W(i)

〉
≤

dx∑
i=1

〈
Z>W(i),

(
4λ−2

1 P +
16ν2

λ2
1λ

2
2

(I − P)

)
Z>W(i)

〉

=
dx∑
i=1

4λ−2
1 ‖PZ>W(i)‖2 +

16ν2

λ2
1λ

2
2

‖(I − P)Z>W(i)‖2

=
dx∑
i=1

4

λ2
1

(
p∑
j=1

〈
vj,Z

>W(i)
〉2

)
+

16ν2

λ2
1λ

2
2

(
dx∑

j=p+1

〈
vj,Z

>W(i)
〉2

)
For an index j, let λ[j] equal λ1 if j ≤ p, and λ2 if p + 1 ≤ d ≤ d, and define the vector

Zj = Zvj. Then,
〈
vj,Z

>W(i)
〉2 can be bounded as as〈

vj,Z
>W(i)

〉2
= ‖Z>j W(i)‖2

2

= ‖Zj‖2 ·
∥∥Z>j W(i)

∥∥2

2

‖Zj‖2
2

≤ ‖Zj‖2 · 3

2

∥∥Z>j W(i)
∥∥2

2

‖Zj‖2
2 + 1

2
λ[j]

,
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where in the last inequality we use that ‖Zj‖2
2 = v>j Λvj ≥ v>j (λ1(1− P) + λ2P)vj = λ[j].

By the scalar-valued self normalized tail inequality, Lemma 3.3, it holds with probability
1− δ that

〈
vj,Z

>W(i)
〉2 ≤ 3‖Zj‖2

2 log
1
2
λ[j] + ‖Zj‖2

2
1
2
λj[j]δ

≤ 3λ[j]κ[j] log
1
2
λ[j] + λ[j]κ[j]

1
2
λj[j]δ

≤ 3λ[j]κ[j] log
3κ[j]

δ

=

{
3λ1κ1 log 3κ1

δ
j ≤ d

3λ2κ2 log 3κ2

δ
j ≥ d

where we set κ[j] :=
v>j Λvj

λ[j]
≥ 1, and note that κ1 := max1≤j≤d κ[j] and κ2 := maxj>p κ[j].

Hence, taking a union bound over all dm coordinates

‖θ̂ − θ?‖2
F

≤
m∑
i=1

4

λ2
1

(
p∑
j=1

3λ1κ1 log
3dmκ1

δ

)
+

16ν2

λ2
1λ

2
2

(
d∑

j=p+1

3λ2κ2 log
3dmκ2

δ

)

≤ 12mpκ1

λ1

log
3mdκ1

δ
+

(
ν

λ1

)2

· 48m(p− d)κ2

λ2

log
3mdκ2

δ
.
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Chapter 6

Nonstochatic Control

While the LQR setting of the previous chapter has received much attention in recent liter-
ature it is quite limited: the costs are fixed quadratic functions, the noise i.i.d. Gaussian,
and the state fully observed.

In this chapter, we consider a much more general adaptive control setting, and demon-
strate that, despite the generality, low regret with respect to a natural benchmark of policies
is attainable. This model is non-stochastic control problem: a model for dynamics that
replaces stochastic noise with adversarial perturbations in the dynamics, and allows for ar-
bitrary changing sequence of convex costs.

In this non-stochastic model, it is impossible to pre-compute an instance-wise optimal
controller. Instead, the metric of performance is regret, or total cost compared to the best
in hindsight given the realization of the noise. Previous work has introduced new adaptive
controllers that are learned using iterative optimization methods, as a function of the noise,
and are able to compete with the best controller in hindsight.

This chapter presents a novel approach to non-stochastic control which unifies and gener-
alizes prior results in the literature. Notably, we provide the first sublinear regret guarantees
for non-stochastic control with partial observation for both known and unknown systems.

Organization and Results

In Section 6.1 we introduce the nonstochastic control problem, an online control setting which
significantly generalizes the online LQR setting of the previous chapter by 1) considering
general and possible adversarially chosen disturbances, 2) considering arbitrary sequences
of convex costs not known to the learner in advance, and 3) allowing for partially observed
systems. This setting also necessitates a more general notion of regret, defined in terms of a
benchmark class of dynamic linear control policies, abbreviated as LDCs.

Subsequently, Section 6.2 introduces a disturbance response control (Drc). This formal-
ism parametrizes control design in nonstochastic control as an convex problem, building upon
the rich history of convex parameterization in control theory [Youla et al., 1976, Kučera, 1975,
Zames, 1981, Wang et al., 2019]. This section also provides further background on Markov
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operators needed to formalize the parametrizations. The use of convex parametrization for
online control was first proposed by Agarwal et al. [2019b], on which the approach presented
in this chapter is based. This section focuses on two simple parametrizations – ones for
stable systems, and ones for systems which can be stabilized with static feedback. This
helps to simplify presentation; more general parametrizations are introduced at the end of
the chapter in Section 6.5.

Section 6.3 leverages the Drc parametrization to obtain low regret in the nonstochastic
control problem, assuming the learner knows the system dynamics (but does not disturbances
or losses). This section demonstrates a reduction from Drc control with a known system to
the problem of online convex optimization with memory (OcoM) [Agarwal et al., 2019a],
which admits a simple and efficient solution via online gradient descent due to [Anava et al.,
2015].

Section 6.4 extends the reduction to unknown systems by first estimating the relevant
system dynamics via least squares, and then applying the reduction from Section 6.3 with
the resulting plug-in estimates. The estimation phase is simplified considerably to the for-
mulation of the Drc parametrization solely in terms of Markov operators, and thus permits
a direct application of the least-squares algorithm (for partial observation) analysis in Chap-
ter 4.

Finally, Section 6.5 introduces a general Drc formalism, which allows one to consider
arbitrary stabilizable and detectable dynamical systems (Definition 6.2). We describe how
the parametrization and algorithms extend, and note that the analysis from the previous
section carries over as well. This section also presents an approximate certainty-equivalent
Youla parametrization which, to our knowledge, is novel in the control literature.

6.1 The Nonstochastic Control problem
In this chapter, we study the problem of nonstochastic control, which generalizes the online
LQR setting of the previous chapter. Starting from initial state x1 = 0, we consider the
following dynamics for time steps 1 ≤ t ≤ T :

xt+1 = A?xt +B?ut + wt

yt = C?xt + et,
(6.1)

Under partial observation, the system state xt ∈ Rdy remains hidden, and the learner observes
only their chosen inputs ut ∈ Rdu and the outputs yt ∈ Rdy . Here, we call wt the process
noise, which affects the evolution of the hidden state, and et the observation noise, which
perturbs the observed outputs. Note that the dynamics coincide with the partially observed
identification problem, (4.1), but with D? = 0 taken for simplicity. We shall frequently refer
to the full observation setting as a special case, where xt ≡ yt, which is obtained by taking
C? = I and et ≡ 0.

At each time step t, the learner observes yt, selects an input ut, and adversary selects
a loss `t(y, u) : Rdy × Rdu → R, and the learner suffers loss `t(yt,ut). As in Chapter 5, the
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learners actions can be specified by a policy π, with actions

ut = π(t,y1:t,u1:t−1, `1:t−1), (6.2)

and where π can itself be randomized. In other words, at time t, the learner observes the
current loss `t and output yt, but not the system state xt. The disturbances wt and et
are never revealed either, thought we shall see that a certain “sufficient statistic” for the
disturbances can be computed from inputs and outputs alone.

We let yπt ,u
π
t ,x

π
t denote the outputs, inputs and hidden states that arise from executing

policy π to choose the inputs, as in Eq. (6.2) in closed loop with the dynamics (6.1); we refer
to these as the iterates under π. Note that the disturbance terms wt and et are regarded as
open loop, and do not depend on the choice of policy.

Protocol 6.2 Nonstochastic Control
1: Intialize: Initial state x1 = 0, dynamical matrices (A?, B?, C?)

(either known to the learner, or unknown).
2: for each t = 1, 2, . . . , T do
3: Learner observes output yt
4: Learner selects input ut as a function of y1:t, u1:t−1, and `1:t−1

(as well as internal randomness)
5: Nature reveals loss `t : Rdy × Rdu → R, and learner suffers `t(yt,ut).
6: Nature selects disturbances wt, et, and dynamics evolves according to Eq. (6.1).

The superscript-π notation allows us to reason about the iterates under multiple policies
π simultaneously, for the given realization of the disturbances. In particular, for each policy
π, its cumulative cost is given by

JT (π) :=
T∑
t=1

`t(y
π
t ,x

π
t ); (6.3)

In summary, the nonstochastic control problem generalizes the LQR setting along three axes:

1. It accomodates arbitrarily flexible noise models, rather than restricting consideration
to Gaussian noise.

2. It accomodates general and time-varying loss functions, rather than fixed quadratic
costs.

3. It accomodates partial observation, rather than full state observation.

This setting was first proposed by Agarwal et al. [2019a], and this chapter generalizes the
analysis to partial observation.

Throughout, we assume that the loss functions L are convex, and dominated by quadratic
functions. Specifically,
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Assumption 6.1. Let v ∈ Rdy+du denote arguments of the losses `t. We assume that, for
each t, `t(v) is convex, and L-subquadratic. That is, for all v, v′ ∈ Rdy+du , 0 ≤ `t(v) ≤
Lmax{1, ‖v‖2}, and that |`t(v)− `t(v′)‖ ≤ Lmax{1, ‖v‖, ‖v′‖}.

This assumption affords the quadratic growth observed in LQR.

Known v.s. Unknown We shall consider two settings for non-stochastic control. In the
known system setting, the learner knows the dynamical matrices (A?, B?, C?), but does not
know the sequence of disturbances or losses in advance. Thus, the challenge is to select
inputs which achieve low cost, despite lack of knowledge of futures losses and disturbances.
In the unknown system setting, the learner also does not know (A?, B?, C?), and must learn
an appropriate model of the dynamics of the control task.

Output v.s. State Losses For identifiability reasons, we assume the losses act on the
observed system outputs yt, and not on the unobserved states xt. The algorithms and
analysis extend straightforwardly to history-dependence losses of the form `t(yt:t−k,ut−k) for
any fixed k ∈ N. In certain cases of interest, the history dependence allows for costs which
encode dependence on the state not captured by the observation. For example, if xt contains
the position, velocity, and acceleration of an objective, and yt is the projection onto only
the position, velocity and acceleration can be recovered by differencing, e.g. yt − yt−1.

Examples

Before continuing, we take a moment to describe certain examples that fall under the non-
stochastic control setting.

LQR

As may be immediately clear, the LQR setting in Chapter 5 is a special case of the above
setup, obtained by taking yt ≡ xt (and thus C? = I and et ≡ 0), wt

i.i.d∼ N (0, I), and
`t(y, u) = y>Qy+u>Ru. The total cost Eq. (6.3) is consistent with this special case as well.

LQG

Another classic problem that falls within the scope of nonstochastic control is linear quadratic
Gaussian control. Here, the dynamics evolve according to Eq. (6.1), where the process
noise and observation noise are i.i.d. Gaussian with certain fixed covariances, and the cost
function is a fixed quadratic. The nonstochastic setting can also accomodate generalizations
- changing costs, time-varying noise covariances, and even noise that is correlated across
time.
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Tracking

One motivation for time varying costs are tracking problems Abbasi-Yadkori et al. [2014].
For example, suppose that the observation yt corresponds to the physical position of a vehicle
in R3, and the learner wishes to direct their vehicle along a certain trajectory (at) ⊂ R3. To
elicit such behavior, one can consider the time varying costs `t(y, u) = ‖y − at‖2 + γ‖u‖2,
where the second term is a control penalty to ensure well-behaved inputs.

Earlier Online Control

Our setting also captures the online control setting studied by Cohen et al. [2018], which stud-
ies a known dynamical system with adversarially chosen, convex quadratic costs `t(x, u) =
x>Qtx+ u>Rtu.

A Connection to Robust Control

The non-stochastic problem is also related to a robust control formulation called H∞ control
[Zhou et al., 1996]. In H∞, the goal is to minimize a cumulative cost (e.g., an L2 cost
`t(y, u) = ‖y‖2 + ‖u‖2) over the worst case noise sequence satisfying a total bound over the
horizon

∑
t≥1 ‖et‖2 + ‖wt‖2. Regret, in contrast, is an adaptive notion, because it enforces

competitive performance on every sequence of disturbances, not just the worst case.

Nonstochastic Control and Regret

In the online LQR setting of Chapter 5, we designed an adaptive control policy to compete
with the optimal infinite horizon control law. This was made feasible in part by the fact that
the optimal law enjoys a closed form expression via the DARE, and that the cost function
and noise distribution remained fixed across rounds.

In non-stochastic control, the unpredictability of the noise and losses means that we
cannot hope to design an adaptive policy alg such that JT (alg)−minall policies π JT (π) grows
sublinearly in T [Li et al., 2019]. Moreover, for non-quadratic losses and/or partial observa-
tion, even computing the best policy in hindsight may be computationally prohibitive.

Instead, we borrow the regret perspective from the online learning community. Rather
than attaining performance close to the optimal control law in hindsight, we restrict our
attention to attaining comparable performance with all policies in a certain benchmark class.
Formally, for a set of policies Π, we define the nonstochastic control regret of an algorithm
alg with the respect to the benchmark Π as

NscRegT (alg; Π) := JT (alg)︸ ︷︷ ︸
algorithm cost

− inf
π∈Π

JT (π)︸ ︷︷ ︸
comparator

. (6.4)

Notices that JT (·) and NscRegT (alg; Π) dependend implicitly on the choice losses `t, which
are not revealed to the learner until the end of the protocol, and one the disturbances wt, et,



CHAPTER 6. NONSTOCHATIC CONTROL 99

which are never directly revealed, but which influence the dynamics via Eq. (6.1). These
quantities also dependent on the dynamics of the system, which may be known or unknown
to the learner. We call the term infπ∈Π JT (alg) the comparator. It captures the performance
of the best clairvoyant choice of policy π ∈ Π, given full knowledge of (a) the entire sequence
of disturbances w1:T and e1:T (b) the sequence of losses `1:T , and (c) the system dynamics.

Benchmark Policies and LDCs

What are a reasonable class of benchmark policyes Π? In this work, we consider a gold-
standard control policies in linear control, which we term linear dynamic controllers, or
LDCs, whose set is denote Πldc. An LDC π is a control policy whose form is a linear
dynamical system. Formally, π can be represented by the dynamical equations

s̊πt = Aπ̊s
π
t +Bπẙ

π
t

ůπt = Cπ̊s
π
t +Dπẙ

π
t .

(6.5)

The static feedback policies ut = Kyt can be realized by the above by selecting Aπ, Bπ, Cπ
to be zero matrices, and Dπ = K. In particular, in the full observation setting, this recovers
the static feedback laws ut = Kxt studied in Chapter 5. But the policies in Eq. (6.5)
are considerably more general, because they allow for an evolving internal state zπt . This
is necessary to capture the optimal control laws for the linear quadratic gaussian (LGC)
control problem, and H∞ robust control (under partial observation) [Zhou et al., 1996].

Remark 6.1 (Beyond LDC policies). For concreteness, we focus on LDC policies. However,
the techniques in this chapter extend to various more general families. For example, we can
compete with policies which have affine terms, or DC offsets. That is, policies π with linearly
evolving internal state s̊t, but outputs are chosen ůπt = Cπ̊s

π
t +Dπẙ

π
t +

∑k
i=1 αiψi(t) , where

αi are linear coefficients and {ψi(t) : 1 ≤ i ≤ k} are a fixed set of time varying inputs. This
may be useful in tracking problems, where it makes sense to include basis functionals for a
tracking problem in addition to pure feedback terms.

Given an LDC of the form (6.5), we refer to the closed loop dynamics as the unique
dynamical equation satisfying both Eqs. (6.1) and (6.5). This can be expressed as a single
dynamical system, with dynamical matrices[

xπt+1

sπt+1

]
=

[
A? +B?DπC? B?Cπ

C?Bπ Aπ

]
︸ ︷︷ ︸

Aπ,cl

[
xπt
sπt

]
+

[
I B?Dπ

0 Bπ

]
︸ ︷︷ ︸

Bπ,cl

[
wt

et

]
[
yπt+1

uπt+1

]
=

[
C? 0

DπC? Cπ

]
︸ ︷︷ ︸

Cπ,cl

[
xt
st

]
+

[
0 I
0 Dπ

]
︸ ︷︷ ︸

Dπ,cl

[
wt

et

]
.

(6.6)
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6.2 Disturbance Response Control
We proceed to introduce a unified framework for nonstochastic control, which we call distur-
bance response control, or Drc. Drc builds upon the rich history of convex parameterization
in control theory [Youla et al., 1976, Kučera, 1975, Zames, 1981, Wang et al., 2019] to re-
duce nonstochastic control to well-studied learning-theoretic framework called online convex
optimization, or Oco. The idea of using convex parametrization for online control was de-
veloped by Agarwal et al. [2019a], a work which introduced many of the key ideas taken up
in this chapter.

Markov Operators, Stability, and Decay

The expression of the closed loop system (6.6) is called an state space representation, because
it explicitly describes the (co-)evolution of the state xt of the dynamical system, and st of the
LDC. The Markov operator, introduced in Chapter 4, offers a more compact representation.

We let G (d, d′) denote the space of infinite sequences of matrices G = (G[i])i≥0, with
G[i] ∈ Rd×d′ , and endow it with the `1-operator norm

‖G‖`1,op :=
∑
i≥0

‖G[i]‖op. (6.7)

Given dynamical matrices (A,B,C,D)with A ∈ Rd1×d1 , B ∈ Rd1×d2 , C ∈ Rd3×d1 , and
D ∈ Rd3×d2 their Markov operator G = Markov(A,B,C,D) ∈ G (d3, d2) is the sequence of
operators

G[0] = D, G[i] = CAi−1B, i > 1. (6.8)

In particular, G? = Markov(A?, B?, C?, 0) ∈ G (dy, du) is the Markov operator for the dy-
namics (6.1). Note that the system (A,B,C,D) for which G = Markov(A,B,C,D) is not
unique, because the state space in A can be padded with zeros. We therefore refer to any
(A,B,C,D) such that G = Markov(A,B,C,D) as an realization of G.

The decay function ψG and radius RG of a Markov operator G are the functions (resp.
constant)

ψG(n) :=
∑
i≥n

‖G[i]‖op., (6.9)

which sum tail of the operator norms of its components. Note that ψG(n) is finite if and only
if G is a stable Markov operator, that is, there exists an equivalent realization (A′, B′, C ′, D′)
for which G = Markov(A′, B′, C ′, D′), and A′ is stable. In this case, there exist constants
c > 0 and ρ ∈ [0, 1) such that ψG(n) ≤ cρn.

We will frequently parametrize our approximations in terms of general decay functions
ψ. We say that ψ is an proper decay function if ψ(·) : N → R+ is non-increasing, and
ψ(0) ∈ [1,∞).
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Nature’s Ys

The simplest variant of Drc applies when the dynamical matrix A? is already stable, i.e.
ρ(A?) < 1. Recall the Markov operator G? ∈ G (dy, du), defined by

G[0]
? = 0, G[i]

? C?A
i−1
? B?, i > 1. (6.10)

As seen in chapter . . . , the current system dynamics can be expressed in terms of a sum
over the contribution of past inputs, and the Nature’s Y term ynat

t , which corresponds to
the output of the system in the absence of any input:

yt = ynat
t +

t−1∑
i=1

G[i]
? ut−i, where ynat

t :=
t−1∑
i=1

C?A
i−1
? wt + et. (6.11)

Note that Nature’s Y does not dependend on the choice of past inputs, and the actions of
the learner. Moreover, given knowledge of the Markov operator G?, ynat

t can be recovered
from input output data, via (6.11). This means that, regardless of the chosen sequence of
inputs, we can always compute the counterfactual output that would have occured had zero
input been selected. Moreover, via the same identity, we can compute other counterfactuals,
that is, other outputs had a different sequence of controls been selected.

In addition, observe that ynat
t can be computed even if the learner does not have direct

access to the system states xt or disturbances wt, et. As a consequence, we propose selecting
inputs as linear combinations of past Natures Y’s, parameterized by sequences of matrices
M . Precisely, we consider inputs of the form

uMt :=
0∑
i=1

M [i−1]ynat
t−i, M ∈M(m,R), (6.12)

where we define the set M(m,R) as sequences of m matrices whose cumulative operator
norm is bounded by R:

M :=

{
(M [0],M [1], . . . ,M [m−1]) ∈ (Rdu×dy)m :

m−1∑
i=0

‖M [i]‖op ≤ R

}
. (6.13)

We will call these disturbance response control policies (Drc), because the control is linear in
the systems response to the disturbances, namely ynat

t . We shall use the notation (uMt ,y
M
t )

to denote the iterates produced by the Drc with parameterM , Eq. (6.12); we let πM denote
the induced control policy.

Importantly, Drc yields a convex controller parameterization.

Lemma 6.1. The Drc parametriztion is convex, in the sense that the function M 7→
(yMt ,u

M
t ) is affine, and thus M 7→ `t(y

M
t ,u

M
t ). is convex. In particular, M 7→ JT (πM)

is convex.
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Proof. We see that uMt is a linear function of M ; it’s coefficients are determined by Nature’s
Y’s, which are independent of the past choice of player actions. Moreover, yMt , in view
of Eq. (6.11), is an affine function of uMt , which we have established is linear in M . By
assumption, `t is convex. Hence, the function in question is composition of convex function
with an affine function of M .

One consequence of convexity is that one can efficiently compute the best Drc policy in
hindsight

arg min
M

T∑
t=1

`t(y
M
t ,u

M
t ) = arg min

M
JT (M),

provided one has knowledge of G?. As we shall see, convexity of the parametrization also
allows for efficient online control as well.

Note that the previous discussion holds regardless of whether or not A? is stable; it is a
direct consequence of the open loop (6.1). But if A? is unstable, then the Nature’s Y terms
may be grow very large. We impose the following assumption, we simultaneously captures
stability A? and boundedness of the noise:

Assumption 6.2. There exists a constant Rnat ≥ 1 such that, for all t, ‖ynat
t ‖2 ≤ Rnat.

The scaling Rnat ≥ 1 is to simplify the resulting bounds.

The Expressivity of Drc with Nature’s Y’s

We have just established that it is feasible to optimize over policies πM . We now show that
these policies can also approximate LDC policies in π ∈ Πldc arbitrarily well.

For an LDC policy, let Gπ,cl,e→u denote the response of uπt to et in (6.6); explicitly,

Gπ,cl,e→u = Markov(Aπ,cl, Bπ,cl,e, Cπ,cl,u, Dπ),

where Bπ,cl,e =
[
0 Bπ

]
and Cπ,cl,u =

[
DπC?
Cπ

]
(6.14)

In words, Gπ,cl,e→u captures how the sinputs uπt that would arise when executing policy
π ∈ Πldc in closed loop depend on observation noise et. The following lemma is essential
states that this operator also gives a formula for expressing uπt in terms of Nature’s Ys.

Lemma 6.2. The following formula holds for each t ∈ N:

uπt =
t−1∑
i=0

G
[i]
π,cl,e→u · y

nat
t−i. (6.15)
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Lemma 6.2 can be verified by induction on the closed loop dynamics (6.6), and is omitted
in the interest of brevity. The important take away is that the inputs selected by LDC policies
π can be represented in terms of the quantities Nature’s Ys, which, as noted above, can be
recovered by the learner via Eq. (6.11). Hence, ynat can be regarded as a sufficient statistic
for LDC control policies, motivating the Drc parametrization described above.

Still, (6.15) represents uπt as a length-t linear combination of Natures Y’s, whereas the
Drc policies have finite memory m. We now show that, when G? and Gπ,cl,e→u are stable
Markov operators, this truncation to finite memory is feasible. To do so, define the class
of LDCs with decay at most ψ, where ψ is a proper decay function (non-increasing, non-
negative, and ψ(0) ∈ [1,∞) on from N to the reals:

Πe→u[ψ] := {π ∈ Πldc : ψGπ,cl,e→u(n) ≤ ψ(n)} (6.16)

To make matters more concrete, we also consider a class of policies with explicit geometric
decay. That is,

Πe→u(c, ρ) := {π ∈ Πldc : ψGπ,cl,e→u(n) ≤ cρn} (6.17)

Observe that, as long as π is stabilizing, Gπ,cl,e→u is stable, and therefore, as noted above,
there exists some c, ρ such that π ∈ Πe→u(c, ρ). We are now ready to state our main theorem,
which describes the fidelity which which LDC policies can be expressed by Drc controllers.

Theorem 6.1. Suppose Assumptions 6.1 and 6.2 hold. Define RG? := (1 +‖G?‖`1,op) Given
a proper decay function ψ, a policy π ∈ Πe→u[ψ], and RM ≥ ψ(0) the following holds for all
integers m ≥ 1,

JT (π)− inf
M∈M(m,RM)

JT (πM) ≤ 2LTRMR
2
G?R

2
natψ(m). (6.18)

More concretely, if π ∈ Πe→u(c, ρ) for c ≥ 1 and ρ ∈ [0, 1), then for RM ≥ c
1−ρ ,

JT (π)− inf
M∈M(m,RM)

JT (πM) ≤ cρ−m · 2LTRMR2
G?R

2
nat. (6.19)

Thus, (6.48) shows that that Drc controllers of length m = O(log T ) suffices to compete
with Drc policies π ∈ Πe→u(c, ρ) ensuring JT (π)− infM∈M(m,RM) JT (πM) ≤ 1/poly(T ).

Drc with Static Feedback

The Nature’s Y Drc parametrization make sense only when ρ(A?) < 1, ensuring that ynat
t

remain bounded with time. As noted above, the more interesting and applicable case is when
A? is possible unstable, put placed in feedback with a nominal stablilizing controller.

In this section, we study a simple and illustrative intermediate between the stable-A?
case and the general formalism for stabilized systems. Specifically, we study systems for
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which the static feedback law ut = Kyt for a fixed K ∈ Rdu×dy is stabilizing.1 When C? is
full rank - for example, in LQR - there exists such a stabilizing K if there exists any LDC
that can stabilize the system. However, for general C?, the existence of a stabilizing K is
not guaranteed. More general parametrizations are adressed in Section 6.5.

We let uKt ,y
K
t denote the iterates which arise by placing the control law ut = Kyt in

feedback with Eq. (6.1). For stabilizing K, we select inputs

ut = Kyt + uex
t ,

where we call uex
t exogenous input. Intuitively, the term Kyt ensures the parametrization is

stable, and uex
t is chosen to approximate desired control behavior. One important subtlety

is the distinction between the actual input ut, and exogenous input uex
t , which did not arise

in the Nature’s Ys parametrization (though recovering the parametrization for K = 0). The
inputs and outputs are now related by[

yt
ut

]
=

[
yKt
uKt

]
+

t−1∑
i=0

G
[i]
Kuex

t−i,

where GK ∈ G (dy + du, du) is the Markov operator

GK = Markov

(
A? +B?KC?, B?,

[
C?
KC?

]
,

[
0
I

])
. (6.20)

One can check that the following identity holds:[
yt
Kyt

]
=

[
yKt
uKt

]
+

t−1∑
i=1

G
[i]
Kuex

t−i, , (6.21)

which is useful because the right hand side does not depend on uex
t , and therefore can be

evaluated before the input at time t is selected.
The Drc parametrization with controller K, or Drc-K, we select inputs

uMt = Kyt +
m−1∑
i=0

M [i]yKt . (6.22)

In words, the iterates yKt replace the role of Nature’s Ys, and the input includes the additional
feedback term Kyt. Since K is stabilizing, yKt can be bounded in time even in ynat

t is not.
The analogoue of Assumption 6.2 includes a bound on both yKt and uKt .

Assumption 6.2b. For all t, ‖(yKt ,uKt )‖ ≤ Rnat for some Rnat ≥ 1.
1The closed loop dynamics subject to ut = Kyt evolve according to xt+1 = (A? +B?KC?)xt, and thus

K is stabilizing if and only if ρ(A? +B?KC?) < 1.
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For a policy π, define GK→π ∈ G (dy + du, du) via

GK→π = Markov

(
A? +B?KC?, B?(Dπ −K),

[
(Dπ −K)C? Cπ

]
,

[
0

Dπ −K

])
. (6.23)

Again, under the assumption that K is stabilizing, A? + B?KC? is a stable matrix, and
thus the ‖G[i]

K→π‖op ≤ cρi for some constants c and ρ. Accordingly, we define the following
class of LDC policies for a proper decay function ψ, and constants (c, ρ):

ΠK→u[ψ] := {π ∈ Πldc : ψGK→π(n) ≤ ψ(n)}
ΠK→u(c, ρ) := {π ∈ Πldc : ψGK→π(n) ≤ cρn}

(6.24)

An analogue of Lemma 6.2 and Theorem 6.1 holds here, with analogous proofs:

Lemma 6.2b. The following formula holds for each t ∈ N:

uπt =
t−1∑
i=0

G
[i]
K→π · y

nat
t−i. (6.25)

Theorem 6.1b. Suppose Assumptions 6.1 and 6.2 hold. Define RG := ‖GK‖`1,op. Given a
proper decay function ψ, a policy π ∈ ΠK→u[ψ], and RM ≥ ψ(0) the following holds for all
integers m ≥ 1,

JT (π)− inf
M∈M(m,RM)

JT (πM) ≤ 2LTRMR
2
GR

2
natψ(m). (6.26)

More concretely, if π ∈ ΠK→u(c, ρ) for c ≥ 1 and ρ ∈ [0, 1), then for RM ≥ c
1−ρ ,

JT (π)− inf
M∈M(m,RM)

JT (πM) ≤ cρ−m · 2LTRMR2
G?R

2
nat. (6.27)

Proof of Theorem 6.1

We turn to the proof Theorem 6.1; its generalization to static feedback above and general
dynamic parametrizations (Section 6.5) is similar. We prove the first statement of the the-
orem; the second is a direct consequence. To simplify notation, let vt = (yt,ut) ∈ Rdy+du ,
and appreviateM(m,RM) byM. Then, for any M ∈M, we have

|JT (π)− JT (πM)| = |
T∑
t=1

`t(v
π
t )− `t(vMt )| ≤

T∑
t=1

|`t(vπt )− `t(vMt )| (6.28)

≤ LCmax

T∑
t=1

‖vπt − vMt ‖, (6.29)



CHAPTER 6. NONSTOCHATIC CONTROL 106

where Cmax := maxt max{1, ‖vπt ‖2,v
M
t ‖2}, and where the last line uses Assumption 6.1. To

bound ‖vπt − vMt ‖, we use Lemma 6.2 and the definition of the Drc control (6.12) to write

uπt − uMt =
m−1∑
i=0

(G
[i]
π,cl,e→u −M

[i])ynat
t−i +

t−1∑
i=m

G
[i]
π,cl,e→uy

nat
t−i.

Let us chose M such that

M [i] = G
[i]
π,cl,e→u, ∀i ∈ {0, 1, . . . ,m− 1},

which lies inM since
∑m−1

i=0 ‖M [i]‖op ≤
∑

i≥0 ‖G
[i]
π,cl,e→u‖op ≤ RM. This selection yields

‖uπt − uMt ‖ = ‖
t−1∑
i=m

G
[i]
π,cl,e→uy

nat
t−i‖ ≤ ψGπ,cl,e→u(m)Rnat ≤ ψ(m)Rnat.

Using the Nature’s Y’s decomposition (6.11), we find

‖yπt − yMt ‖ = ‖
t−1∑
i=0

G[i]
? (uπt−i − uMt−i)‖ ≤ ‖G?‖`1,op ·max

s
‖uπt − uMt ‖ ≤ ‖G?‖`1,opψ(m)Rnat.

Thus,

‖vπt − vMt ‖ ≤ (1 + ‖G?‖`1,op)ψ(m)Rnat ≤ RG?Rnat.ψ(m)

To conclude, it remains to bound the constant Cmax.

Claim 6.1. The constant Cmax := maxt max{1, ‖vπt ‖,vMt ‖} ≤ 2RnatRG?RM

Proof of Claim 6.1. Since RnatRG?RM ≥ 1, it suffices to show that, for any t, the bound on
‖vπt ‖ and ‖vMt ‖ are both bounded by 2RnatRG?RM. We establish the bound for ‖vπt ‖; the
bound is analogous for ‖vMt ‖.

‖yπt ‖ = ‖ynat
t +

t−1∑
i=0

G[i]
? uπt−i‖2 ≤ ‖ynat

t ‖+ ‖G?‖`1,op max
s
‖uπs‖.

Hence,

‖vπt ‖ ≤ ‖yπt ‖+ ‖uπt ‖ ≤ ‖ynat
t ‖+ (1 + ‖G?‖`1,op) max

s
‖uπs‖

= ‖ynat
t ‖+RG? max

s
‖uπs‖ ≤ Rnat +RG? max

s
‖uπs‖

Finally, using Lemma 6.2, we can bound

‖uπs‖ ≤ ‖Gπ,cl,e→u‖`1,op max
s′
‖ynat

s ‖ ≤ RMRnat. (6.30)

Combining these bounds gives ‖vπt ‖ ≤ Rnat + RG?RMRnat. Since RG? , RM, Rnat ≥ 1 by
assumption, our bound follows.
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In sum, we have shown that

|JT (π)− JT (πM)| ≤ LCmax

T∑
t=1

‖vπt − vMt ‖

≤ LT · 2RnatRG?RM ·RG?Rnatψ(m),

as desired.

6.3 Control of Known Systems via Drc

In this section, we describe how to adaptively update Drc parameterized control policies
so as to attain low regret in online control problems. This section begins with a discussion
of an online learning framework called Online Convex Optimization with Memory (OcoM),
and describes how to reduce to this framework the the online control problem with loss
functions induced by the Drc parameterization. We conclude with an end-to-end regret
bound leveraging this reduction.

Online Convex Optimization with Memory

Protocol 6.4 Online Convex Optimization (Oco)
1: Intialize: Compact, convex constraint set C ⊂ Rd

2: for each t = 1, 2, . . . , T do
3: Learner choses iterate zt ∈ C
4: Nature selects convex function ft : C → R
5: Learner suffers loss ft(zt)

Like nonstochastic control, Oco (Protocoal 6.4) proceeds in rounds. At each round
t = 1, 2, . . . , T , the learner selects an iterate zt ∈ C, where C ⊂ Rd is a convex and compact
set. Subsequently, nature selects a convex function ft : C → R, and the learner suffers loss
ft(zt). In Oco, the performance metric is also regret, defined as

OcoRegT :=
T∑
t=1

ft(zt)− inf
z∈C

T∑
t=1

ft(zt). (6.31)

Here, regret compares performance against the best fixed z ∈ C, chosen in hindsight given
knowledge of the loss functions ft.2 Oco is not quite flexibile enough for our purposes here,
because the iterate zt is chosen anew at each time t, and the loss incured depends only on
that iterate.

2Other works have considered more sophisticated comparators, such as sequences of z1, z2, . . . with low
total movement, or desiderata which enforce low regret on every interval {s, s+ 1, . . . , t} ⊂ [T ]
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In control, past actions affect future states, and therefore future losses incurred. Thus, the
Drc framework is built on a generalization of Oco called Oco with memory, abbreviated
OcoM, and outlined in Protocol 6.6. In OcoM, Nature selects a h + 1-argument function
Ft : Ch+1 → R, and the learner suffers loss Ft[zt:t−h] = Ft[zt, zt−1, . . . , zt−h]. To avoid
confusion, we use square brackets for h+1-ary functions, and parenthesis for unary functions.

The regret is defined with respect to the best constant action. Formally, we let ft(z) :=
Ft[z, . . . , z] denote the unary specialization of Ft; that is, the function from C → R obtained
by using a fixed z for all h+ 1 arguments. The relevant notion of regret is defined as

MemRegT :=
T∑
t=1

Ft[zt:t−h]− inf
z∈C

T∑
t=1

ft(z). (6.32)

Protocol 6.6 Online Convex Optimization with Memory (OcoM)
1: Intialize: Initial iterates z0, z−1, . . . , zh−1. Compact, convex constraint set C ⊂ Rd

2: for each t = 1, 2, . . . , T do
3: Learner choses iterate zt ∈ C
4: Nature selects convex function Ft : Ch+1 → R, with unary loss ft(z) = Ft(z, . . . , z).
5: Learner suffers loss Ft(zt, zt−1, zt−h)

We shall establish a correspondence between policies π ∈ Πldc, and continuous parameters
z ∈ C, for an appropriate convex set C. Before proceeding describe a simple algorithm which
attains small MemRegT when the show ft are convex.

Memory-Regret Minimization via Ogd

We now introduce online gradient descent (Ogd), a classical online learning algorithm which
updates interates via gradient updates. In a seminal work, Zinkevich [2003] demonstrated
that Ogdwith an appropriate selection of step size attains OcoRegT = O(

√
T ). An excep-

tionally elegant argument due to Anava et al. [2015] a decade later demonstrated the same
for our criterion of interest, MemRegT .

Going forward, we let ProjC denote the Euclidean projection onto the convex domain C,
and let ∂f(·) denote the subgradient of a convex function f (see e.g. Bubeck [2014, Chapter
3]), which coincides with the gradient ∇f(·) when f is differentiable. Given a sequence of
convex loss functions (ft), the online gradient descent algorithm selects parameters zt which
are updated by projected gradient steps zt+1 = ProjC(zt− η∂ft(zt)). Pseudocode is given in
Algorithm 6.1.

For our OcoM setting of interest, we feed Algorithm 6.1 the sequence (ft) arising from
the unary specializations of the h+1-variate, with memory losses Ft. We require the following
definition:
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Algorithm 6.1 Online Gradient Descent (Ogd)
1: Intialize: Step size η, domain C, arbitrary initial iterate z1 ∈ C
2: for each t = 1, 2, . . . , T do
3: Learner selects iterate zt,
4: Learner recieves function ft : C → R
5: Learer updates iterate zt+1 = ProjC(zt − η∂ft(zt)).

Definition 6.1. Recall that f : C → R is Lf Lipschitz if, for all z, z′ ∈ C ′, |f(z) − f(z)| ≤
Lf‖z − z′‖. We say that F : Ch+1 → R is Ls-sup-Lipschitz if, for all zt:t−h, z′t−j ∈ Ch+1,∣∣F [zt:t−h]− F [z′t:t−h]

∣∣ ≤ Ls max
i∈{0,1,...,h}

‖zt−i − z′t−i‖.

The following lemma provides a regret bound:

Proposition 6.3. Consider any sequence of h+ 1-variate functions Ft : C → R, with unary
specialization ft(z) = Ft(z, . . . , z). Let Ls be an upper bound on the sup-Lipschitz constant
of Ft. Finally, suppose that the domain C has Euclidean diameter D. Then, the sequence
of iterates (zt) produced by Algorithm 6.1 when fed the unary functions (ft) with step size
η > 0 has memory-regret bounded by

MemRegT (Ogd) =
T∑
t=1

Ft[zt:t−h]−min
z∈C

T∑
t=1

ft(z) ≤ D2

η
+ ηTL2

s(h+ 1)

In particular, by selecting η to minimze the above expression, the memory regret is at most
DLs

√
(h+ 1)T .

Notice that the Ogd algorithm does not use the h+ 1-variate losses explicitly, but only
their unary specialization. Nevertheless, Ogd attains low memory-regret against the (Ft)
sequence. The key idea is that the memory-regret is related to standard regret, plus a penalty
for the overal movement of the iterates. This idea is conceptually important for the following
chapter, so we include a brief proof:

Proof. This proof is an adaption of the remarkably elegant argument of Anava et al. [2015].
Begin with the regret decomposition

MemRegT (Ogd) =
T∑
t=1

Ft[zt:t−h]−
T∑
t=1

ft(zt)︸ ︷︷ ︸
(i)

+
T∑
t=1

ft(zt)−min
z∈C

T∑
t=1

ft(z)︸ ︷︷ ︸
(ii)

.

Term (ii) is just the standard Oco regret of the algorithm. We begin with the observation
that Ft being Ls-sup Lipschitz implies that ft is Ls-Lipschitz. Hence, term (ii) isat most
D2

η
+ ηTL2

s by the standard analysis of Zinkevich [2003]. The essential difference in OcoM
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is term (i), which captures the effect of the memory. Let us bound the term for a fixed time
t. Since Ft is Ls-sup-Lipschitz, an application of the triangle inequality yields

|Ft[zt:t−h]− ft(zt)| ≤ Ls max
i∈{0,1,...,h}

‖zt − zt−i‖ ≤ Ls

h∑
i=1

‖zt−i+1 − zt−i‖.

For the initial iterates t− i ≤ 1, zt−i+1 = zt−i. Otherwise, zt−i+1 = ProjC(zt−i − η∂ft(zt−i)).
Since the projection operator is a contraction in the Euclidean norm,

‖zt−i+1 − zt−i‖ ≤ ‖(zt−i − η∂ft(zt−i))− zt−i‖ ≤ η‖∂ft(zt−i)‖.

Finally, since ft is Ls-Lipschitz, ‖∂ft(zt−i)‖ ≤ Ls. Retracing our steps, |Ft[zt:t−h]− ft(zt)| ≤
Ls
∑h

i=1 ‖zt−i+1 − zt−i‖ ≤ ηhL2
s. Summing this contribution over all times t concludes the

proof.

Reduction to Oco with Memory

Having described the OcoM setting, and having introduced an algorithm which enjoys low
regret, we now describe a reduction from nonstochastic control. We describe the reduction
in terms of static-feedback Drc parametrization, with feedback matrix K. Recall that,
under this parameterization, we select exogenous inputs uex

t which are affine functions of
the sequence (yKt ). Recall also the shorthand vt = (yt,ut). Generalizations to general
parameterizations are given in Section 6.5.

Formally, fix a memory length h ∈ N , a control parameter m ∈ N, and a control radius
RM. We consider the convex domain M = M(m,RM), which we recall describes all se-
quences of operators M = (M [0],M [1], . . . ,M [m−1], where each M [i] ∈ Rdu×dω . We define the
function

uex
t (M) :=

m−1∑
i=0

M [i] · yKt−i,

which is just a finite impulse-reponse to past (yKs ). Accordingly, givenMt:t−h ∈Mh+1, define

vt[Mt:−h] =

[
yt[Mt:t−h]
ut[Mt:t−h]

]
= vKt +

h∑
i=0

G
[i]
K · u

ex
t (Mt−i),

where GK is the Markov operator describing the response from exogenous inputs uex
t to

(yt,ut), defined in Eq. (6.20). Finally, we define the h+ 1-ary loss

Ft[Mt:t−h] := `t(vt[Mt:t−h]).

The unary specializations are

ft(M) := `t(vt(M)), where vt(M) = vt[M, . . . ,M ] = vπ0t +
h∑
i=0

G
[i]
Ku

ex
t (M).
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In words, vt[Mt:t−h] is the counterfactual (output, input) pair (yt,ut) which would arise when
selecting exogenous inputs uex

s (Ms) based on Drc controllersMs for s = t−h, t−h+1, . . . , t,
in an idealized system which had finite memory h. Ft[Mt:t−h] then describes the cost that
would be suffered in such a system. The unary specialization vt(M) corresponds to the
(ouput,input) pair for a fixed Drc controller M , and again ft(M) is the corresponding cost.
Here, the use of non-bolds is to distinguish between functions instead of iterates.

In addition to the Drc length m and memory h (both supressed in the notation), the
definition of the functions above requires access to the Markov operator GK , and to the
counterfactual sequence vKt = (yKt ,u

K
t ) which would have occured had K been selected as

the control policy. Recall that, in this section, we know the dynamical matrices (A?, B?, C?).
Therefore, the operator GK can be computed explicitly. Then, vKt can be computed by
inverting Eq. (6.21):

vKt :=

[
yKt
uKt

]
=

[
yt
Kyt

]
−

t∑
i=1

G
[i]
Kuex

t−i (6.33)

Hence, at each time t, we can form the loss ft by recovering (vKs ) for times s ≤ t, and using
our preccomputed Markov operator Gex→v.

This gives rise the reduction in Algorithm 6.2. At a high level, Algorithm 6.2 is an online
policy iteration procedure, which uses a blackbox algorithm A to update Drc-parametrized
control policiee. More specifically, each time t, we maintain a current Drc parameter Mt ∈ C.
After observing yt, we recover the current yKt , and select the exogenous input uex

t = uex
t (Mt)

using the current parameter. We then choose the total input ut = Kyt + uex
t to include the

feedback with the output yt. Finally, we observe the cost `t, form the function ft(·), and
feed it to the OcoM learning algorithm A.3

Algorithm 6.2 Nonstochastic Control to OcoM reduction
1: Intialize: OcoM algorithm A, nominal controller K, Drc length m, memory h.

inital Drc controller M1 = 0, setM =M(RM,m).
2: Precompute: Markov operators GK

3: for each t = 1, 2, . . . , T do
4: Observe output yt
5: Recover vKt via Eq. (6.33).
6: Select exogenous input uex

t = uex
t (Mt)

7: Select total input ut = uex
t +Kyalg

t .
8: Receive cost `t(·, ·), and form function ft(·) as above.
9: Feed ft to learning algorithm A, and recieve updated parameter Mt+1 ∈M.

Notice that the h + 1-variate functions Ft[·] are not used in the algorithm. This is in
part because the OcoM algorithms to which we reduce (e.g. Ogd, Algorithm 6.1) only use

3For simplicity, we assume the learning algorithm A only uses unary losses ft. This is because, to our
knowledge, all know algorithms for Oco with memory have this property. However, the reduction still holds
even if A requires the full h+ 1-variate losses Ft.
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ft in their update rules. Nevertheless, the definition of Ft[·] is helpful to understand the
guarantees for the reduction. In the following, we assume that Assumption 6.2b holds; that
is, maxt ‖vKt ‖ ≤ Rnat, and let RG = ‖GK‖`1,op.

Proposition 6.4 (Nonstochastic Control reduces to OcoM). Consider the reduction de-
scribed by Algorithm 6.2, with and let ψ be a decay function with ψ(0) ≤ RM. Then,

NscRegT (alg;ψ) ≤MemRegT (A) + 4LTR2
natR

2
MR

2
G

(
ψG(h+ 1)

RG

+
ψ(h+ 1)

RM

)
.

Moreover, for Ls = 2LR2
natRMRG

√
m and D =

√
duRM, each Ft is Ls-sup-Lipschitz, and

the Euclidean diameter is at most D.

An End-to-End Guarantee

Let us recap what we have shown thus far. First, we introduced the online convex optimiza-
tion (Oco) and Ocowith memory (OcoM) online learning settings, with their associated
notions of regret OcoReg (Oco regret) and MemReg (memory regret). We then intro-
duced online gradient descent, Ogd, and demonstrated that it enjoys sublinear memory
regret (Proposition 6.3). Subsequently, we specified a black box reduction from nonstochas-
tic control to a black box learning procedure A, whose guarantee is given in Proposition 6.4.

To conclude the section, we combine the two guarantees, yielding an end-to-end bound for
nonstochastic control with known system dynamics. Again, we assume that Assumption 6.2b
holds; that is, maxt ‖vKt ‖ ≤ Rnat, and let RG = ‖GK‖`1,op.

Theorem 6.2. Consider the reduction described by Algorithm 6.2, instantiated with gradient
descent with step size η appropriately selected. Set R̄ = RnatRMRG. Then for a decay
function ψ be a decay function with ψ(0) ≤ RM,

NscRegT (alg;ψ) ≤ 4L
R̄2

RG

√
dum(h+ 1)T + 4LTR̄2

(
ψG(h+ 1)

RG

+
ψ(h+ 1)

RM

)
.

In particular, if ψG(n) ≤ cKρ
n and ψ(n) ≤ cMρ

n for some ρ ∈ (0, 1), then selecting m =
h = dlog1/ρ(T )e,

NscRegT (alg;ψ) . LR̄2 log T
√
du log T

1− ρ
= O(

√
T )

The above theorem is a direct consequence of the reduction in Proposition 6.4 and of
the analysis of Ogd afforded Proposition 6.3. 4 The

√
T -rate is shown to be optimal in

Simchowitz et al. [2020].
We now turn to the proof of the reduction.
4The second estimate uses that log1/ρ(x) =

log x
log(1/ρ) .

log x
1−ρ .
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Proof of Proposition 6.4

Introduce the shorthand Π? = ΠK→u(ψ) for our policy comparaotr class, andM =M(m,RM)
the constraint set of Drc controllers. We begin with the following regret decomposition,

NscRegT (alg; Π?) =
T∑
t=1

`t(vt,ut)− inf
π∈Π?

T∑
t=1

`t(y
π
t ,u

π
t )

≤
T∑
t=1

|`t(yt,ut)− Ft[Mt:t−h]|︸ ︷︷ ︸
(i.a)

+
T∑
t=1

Ft[Mt:t−h]− inf
M∈M

T∑
t=1

ft(M)︸ ︷︷ ︸
(ii)

+ max
M∈M

T∑
t=1

∣∣ft(M)− `t(yMt ,uMt )
∣∣

︸ ︷︷ ︸
(i.b)

+

∣∣∣∣∣ inf
M∈M

T∑
t=1

`t(y
M
t ,u

M
t )− inf

π∈Π?

T∑
t=1

`t(y
π
t ,u

π
t )

∣∣∣∣∣︸ ︷︷ ︸
(iii)

.

Observe that term (ii) is precisely the memory regret, MemRegT . Term (iii) captures the
policy approximation error, and is at most 2LTRMR

2
GR

2
natψ(m) by Theorem 6.1b.

Finally, terms (i.a) and (i.b) capture the effect of truncating the dynamics to have memory
h. To bound them, we give some estimates on key quantities, which also play a role in
bounding the Lipschitz constants of ft and Ft. To do so, we define the Frobenius norm of
M ∈M in the natural way: ‖M‖2

F =
∑m−1

i=0 ‖M [i]‖2
F. Our estimates are as follows:

Lemma 6.5. For all times t, and all Mt:t−h,M
′
t:t−h ∈M(m,RM)

• ‖vt‖, ‖vt[Mt:t−h]‖, and ‖vt(Mt)‖ are bounded by 2RGRMRnat.

• ‖vt[Mt:t−h]−vt[M ′
t:t−h]‖ ≤ RnatRG ·maxi ‖Mt−i−M ′

t−i‖`1,op ≤
√
mRnatRG maxi ‖Mt−i−

M ′
t−i‖F

• The Euclidean diameter of the setM is at most
√
duRM.

Proof of Lemma 6.5. For the first item, let us perform the computation for ‖vt‖; the bounds
for the others are similar. First, observe that since our algorithm select uex

t =
∑m−1

j=0 M
[j]
t yKt ,

and since ‖yKt ‖ ≤ ‖vKt ‖ ≤ Rnat,

‖vt‖ = ‖yKt +
T−1∑
i=0

G
[i]
Kuex

t ‖ = ‖vnat
t +

T−1∑
i=0

m−j∑
j=0

G
[i]
KM

[j]
t yKt−i−j‖

≤ ‖yKt ‖+
T−1∑
i=0

m−j∑
j=0

‖G[i]
K‖op‖M[j]

t ‖op‖yKt ‖

≤ Rnat

(
1 + ‖GK‖`1,op max

t
‖Mt‖`1,op

)
≤ 2RGRMRnat,
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where we use that RG = ‖GK‖`1,op ≥ 1, and that Mt ∈M(m,RM).
For the second item, an expansion reveals that

‖vt[Mt:t−h]− vt[M ′
t:t−h]‖ = ‖

h∑
i=0

G
[i]
K

m−1∑
j=0

(M [i] − (M [i])′)yKt ‖.

A similar manipulation to item 1 gives the bound RnatRG ·maxi ‖Mt−i−M ′
t−i‖`1,op. Moreover,

‖M −M ′‖`1,op ≤
√
m‖M −M ′‖F for all M,M ′ of length m, yielding the second item. The

third item uses the fact that ‖M‖F ≤
∑m−1

i=0 ‖M [i]‖F ≤
√
du
∑m−1

i=0 ‖M [i]‖op ≤
√
duRM.

Using these estimates, we first bound terms (i.a) and (i.b):

Lemma 6.6. Bound terms (i.a) and (i.b) are at most 2LR2
natR

2
MRGψG(h+ 1).

Proof. Let us bound term (i.a); term (i.b) is similar, wiht shorthand vt = (yt,ut). For any
single time t, the L-suquadratic condition, the definition Ft[Mt:t−h] = `t(vt[Mt:t−h]), and the
estimates in Lemma 6.5 yield

|`t(vt)− Ft[Mt:t−h]| ≤ Lmax{‖vt‖, vt(Mt:t−h), 1} · ‖vt[Mt:t−h]− vt‖
≤ 2LRnatRMRG‖vt[Mt:t−h]− vt‖. (6.34)

Moreover, we can expand

vt[Mt:t−h] = vKt +
h∑
i=0

G
[i]
Ku

ex
t (Mt) = vKt +

h∑
i=0

m−1∑
j=0

G
[i]
KM

[j]
t−iy

K
t−i−j

vt = vKt +
t−1∑
i=0

m−1∑
j=0

G
[i]
KM

[j]
t−iy

K
t−i−j.

Hence, with similar simplifications as in Lemma 6.5,

‖vt[Mt:t−h]− vt‖ ≤ ‖
t−1∑

i=h+1

m−1∑
j=0

G
[i]
KM

[j]
t−iy

K
t−i−j‖ ≤

∑
i≥h+1

‖G[i]
K‖ ·Rnat ·RM = Rnat ·RMψK(h+ 1).

Hence, |`t(vt)− Ft[Mt:t−h]| ≤ 2LR2
natR

2
MRGψG(h + 1). Summing over times T yields the

bound.

Summing the bounds on terms (i.a) and (i.b), and the bound on term (iii) due to Theo-
rem 6.1b, we find

NscRegT (alg; Π?) ≤MemRegT (A) + 4LTR2
natR

2
MR

2
G

(
ψG(h+ 1)

RG

+
ψ(h+ 1)

RM

)
.
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Finally, it remains to characterize the sup-Lipschitz constain of Lf . With a similar compu-
tation in Eq. (6.34) followed by the second estimate in Lemma 6.5,

‖Ft[Mt:t−h]− Ft[M ′
t:t−h]‖ ≤ 2LRnatRMRG‖vt[Mt:t−h]− vt[M ′

t:t−h]‖
≤ 2LR2

natRMRG

√
mmax

i
‖Mt−i −M ′

t−i‖F.

Hence, Ft is Ls-sup-Lipschitz for Ls = 2LR2
natRMRG

√
m.

6.4 Systems with Unknown Dynamics
In many cases of interest, the system dynamics determined by (A?, B?, C?) are not known
a prior. Indeed, the first part of this thesis are concerned solely with estimating system
dynamics from data.

To extend to unknown system dynamics, we notice that the above reduction described by
Algorithm 6.2 only requires knowledge of the Markov operator GK , but not knowledge of the
state-space representation of the system matrices (A?, B?, C?). Moreover, by assumption, K
stabilizes our system, so GK is a stable Markov operator. Hence, we propose a two-stage
algorithm: first, we estimate GK directly via least squares, as in Chapter 4. We then replace
all quantities in Algorithm 6.2 with approximates based on our least squares estimate of GK ,
and only the reduction to Oco with memory. This section elaborates on this approach.

A plug-in reduction

In this section, we generalize the reduction in Algorithm 6.2 by replacing exact knowlege of
GK and of yK with inexact estimates. Let Ĝ ∈ G (dy + du, du) be an estimate of GK . We
shall assume that our estimate has finite memory h, so that Ĝ[i] = 0 for all i > h.

A natural estimate of vKt = (yKt ,u
K
t ) is to use Ĝ as a plugin for Eq. (6.33):

v̂Kt :=

[
ŷKt
ûKt

]
=

[
yt
Kyt

]
−

h∑
i=1

G
[i]
Kuex

t−i (6.35)

Using these estimates, we define an empirical approximation to the Drc input with param-
eter M , replacing yK1:t with ŷK1:t. In the interest of clarity, we define these approximations
in terms of free non-bold parameter ŷK1:t, v̂

K
t ; bold will be reserved for iterates recovered

according to Eq. (6.35).

uex
t (M | ŷK1:t) :=

m−1∑
i=0

M [i] · ŷKt−i,
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To define the remaining quantities, we require as well v̂Kt for the affine term, and an explicit
estimate Ĝ of GK :

vt[Mt:t−h | ŷK1:t, v̂
K
t , Ĝ] := v̂Kt +

h∑
i=0

Ĝ[i] · uex
t (Mt−i | ŷK1:t−i),

Ft[Mt:t−h | ŷK1:t, v̂
K
t , Ĝ] := `t(vt[Mt:t−h | ŷK1:t, v̂

K
t , Ĝ]).

The unary specializations are as follows:

vt(Mt | ŷK1:t, v̂
K
t , Ĝ) = vt[M, . . . ,M | ŷK1:t, v̂

K
t , Ĝ]

ft(M | ŷK1:t, v̂
K
t , Ĝ) = Ft[Mt:t−h | ŷK1:t, v̂

K
t , Ĝ],

and our reduction for unknown systems, Algorithm 6.2, generalizes to Algorithm 6.3 as
follows.

Algorithm 6.3 Nonstochastic Control to OcoM reduction, estimated system
1: Intialize: OcoM algorithm A, nominal controller K, Drc length m, memory h,

estimate Ĝ of GK .
inital Drc controller M1 = 0.

2: for each t = 1, 2, . . . , T do
3: Observe output yt
4: Recover approximation v̂Kt via Eq. (6.35).
5: Select exogenous input uex

t = uex
t (Mt | ŷK1:t)

6: Select total input ut = uex
t +Kyalg

t .
7: Receive cost `t(·, ·), and form function f̂t(·) = ft(· | ŷK1:t, v̂

K
t , Ĝ) as above.

8: Feed ft to learning algorithm A, and recieve updated parameter Mt+1 ∈ C.

It remains to specify how to estimate ĜK . We apply the ordinary least squares estimator
with i.i.d. Rademacher inputs, as analyzed in Chapter 4. We provide pseudocode for this
estimation phase in Algorithm 6.4. The algorithms can be combined into a single reduction:

Guarantees for Unknown Systems

Combining the two procedures yields another reduction, which whose guarantees we now
state. The following discussion assume that Assumption 6.2b holds, so that maxt ‖vKt ‖ ≤
Rnat. We also assume recall that ‖GK‖`1,op ≤ RG and GK has decay function ψG. Recall the
memory parameter h and Drc length and radius m and RM. We δ > 0 denote a confidence
parameter.
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Algorithm 6.4 Estimation of GK

1: Intialize: nominal controller K, estimation length N , memory h:
2: for each t = 1, 2, . . . , N do
3: Observe output yt

4: Draw uex
t

unif∼ { −1√
du
, 1√

du
}du

5: Select total input ut = uex
t +Kyalg

t .
6: Compute least squares estimate

Ĝ[1:h] ∈
N∑
t=1

∥∥∥∥∥
[

yt
Kyt

]
−

h∑
i=1

G[i] · uex
t−i

∥∥∥∥∥
2

2

(6.36)

7: Set Ĝ[0] =

[
0
Idu

]
and Ĝ[i] = 0 for i > h.

8: Return Ĝ.

Algorithm 6.5 Full Reduction for Unknown Systems
Intialize: nominal controller K, estimation length N , memory h, Drc parameters
m,RM, online learning algorithm A
Execute estimation phase Algorithm 6.4 for steps t = 1, 2, . . . , N to obtain Ĝ.
Execute Algorithm 6.3 for remaining times t = N + 1, N + 2, . . . , T with online learning
algorithm A and estimator Markov operator Ĝ.

The reduction is stated in terms of the memory regret of the online learning subroutine
A against the sequence of losses induced by our plug-in estimates. Formally, we consider

MemRegT (A; f̂N+1:T ) =
T∑

t=N+1

F̂t[Mt:t−h]− inf
M∈M

T∑
t=N+1

f̂t(M)

where F̂t[·] = Ft[· | ŷK1:t, v̂
K
t , Ĝ], f̂t(M) = F̂t[M, . . . ,M ].

Our bound is stated in terms of the following constants:

CG,δ := chR2
natR

2
MRG

√
d2
uh(log(1/δ) + dudy),

Caprx := 60LR2
natR

2
MR

2
G (ψG(h+1)

RG
+ ψ(h+1)

RM
)

Cburn := 4(R2
G +R2

nat).

Here, CG,δ is the error term in our estimation bound, and c > 0 denotes an unspecified
though universal constant. Caprx addresses truncation to finite Markov operator memory h
and finite Drc size m. Finally, Cburn addresses the growth of the state in the burn-in phase
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of the learning procedure. We also define the minimal N and h of which these bounds hold:

Nδ := max
{

2m, 8duh
2 log(h2du/δ), C2

G,δ

}
h0 := inf{h : ψ(h+ 1) ≤ 1

4RM
}.

Finally, We can now state our main reduction.

Proposition 6.7. Given a decacy function Π? = ΠK→u(ψ) denote our benchmark class.
Assume N ≥ Nδ, h ≥ h0, and RM ≥ ψ(0), and that Assumption 6.2b holds. Then, if
Algorithm 6.4 is run for N stops, followed by Algorithm 6.3 with the resulting estimate Ĝ
with online learning algorithm A, then the following bound holds with probability at least
1− δ:

NscRegT (alg; ΠK→u(ψ)) ≤ NCburn +
TCG,δ√
N

+ TCaprx + MemRegT (A; f̂N+1:T ),

Morover, F̂t[·] is 16LR2
natRMRG

√
m-sup-Lipschitz. In particular, by tuning N appropriately,

the estimation phase contributes regret on the order of T 2/3:

NscRegT (alg; ΠK→u(ψ)) ≤ (T · CburnCG,δ)2/3 + TCaprx + MemRegT (A; f̂N+1:T ).

An end-to-end guarantee follows from the above reduction and Proposition 6.3, much in
the same way as did Theorem 6.2. In the interest of brevity, we state a bound where all
terms have geometric decay, and suppress dependence on problem parameters:

Theorem 6.3. Consider the reduction in Proposition 6.7, instantiated with online gradient
descent with an appropriately tuned step size η. In addition, suppose the benchmark decay
function ψ and decay of GK, ψG are upper bounded by ψ(n) ∨ ψG(n) ≤ cρn. Then, by
appropriately setting m,h and the estimation length N ,

NscRegT (alg; ΠK→u(ψ)) ≤ Õ
(
T 2/3

)
,

where Õ (·) hides terms polynomial in c, 1
1−ρ , Rnat, du, dy, log(1/δ), and log T .

Proof of Proposition 6.7

All ommited proofs are deferred to the following subsection. Throughout, we assume that

‖Ĝ[0:h] −G[0:h]
K ‖`1,op ≤ εG := c1hRnat

√
d2
uh(log(1/δ) + dudy)

N
+ ψG(h+ 1),

≤ CG,δ
48R2

natRGRG?

√
N

+ ψG(h+ 1),

which holds with high probability as a consequence of Lemma 6.10 below, stated formally
at the end of the proof. We introduce our regret decomposition. To do so, let us introduce
the shorthand:
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F̂t[Mt:t−h] = Ft[Mt:t−h | ŷK1:t, v̂
K
t , Ĝ], f̂t(M) = F̂t[M, . . . ,M ].

Here, (F̂ , f̂) are the sequences used by the algorithm: they involve empirical estimates of
ŷK1:t to define the exogenous control input uex

t = ut(Mt | ŷK1:t), as well as empirical estimates
of v̂Kt for the affine term and Ĝ of GK to estimate the Markov operator. However, the actual
response to the control input is determined by the true Markov operator GK and the true
affine term vKt . To capture this, we introduce

F ?
t [Mt:t−h] = Ft[Mt:t−h | ŷK1:t,v

K
t , GK ], f ?t (M) = F ?

t [M, . . . ,M ].

Finally, we let un-starred ft denote the “clean” sequences with exact estimates:

Ft[Mt:t−h] = Ft[Mt:t−h | yK1:t,v
K
t , GK ], ft(M) = Ft[M, . . . ,M ].

We now adopt the following regret decomposition, using the nonnegative of the loss
functions:

NscRegT (alg) ≤
N+m+h∑
t=1

`t(vt)︸ ︷︷ ︸
(i)

+
T∑

t=N+m+h+1

`t(vt)− F ?
t [Mt:t−h]︸ ︷︷ ︸

(ii.a)

+
T∑

t=N+1

F ?
t [Mt:t−h]− inf

M∈M

T∑
t=N+1

ft(M)︸ ︷︷ ︸
(iii)

max
M∈M

T∑
t=N+m+1+h

ft(M)− `t(vMt )︸ ︷︷ ︸
(ii.b)

+ inf
M∈M

T∑
t=1

`t(v
M
t )− inf

π∈Π?

T∑
t=1

`t(v
π
t )︸ ︷︷ ︸

(iv)

.

Term (i) corresponds to the regret lost during the forced exploration phase, and is at most
4N(R2

nat + R2
G) by Lemma 6.10. Term (iii) is the approximation error induced by the Drc

parameterization, and is bounded as in the known system case. Terms (ii.a) and (ii.b)
address truncation to memory h; Term (ii.b) is exactly as in the known system case.

Term (ii.a) may be bounded similarly, but because it depends on the estiamtes v̂Kt , there
is a catch: Because we no longer exactly recover GK , we do not exactly recover vKt . This
introduces feedback into our algorithm, and care must be taken to ensure that instability
does not ensue:

Lemma 6.8. Suppose that εG ≤ 1
2RM

(which holds under the assumptions of our the propo-
sition). Then, for all t, for all t, ‖v̂Kt ‖ ≤ 2Rnat. Moreover, ‖v̂Kt − vKt ‖ ≤ 2εGRMRnat.
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Due to this uniform bound, on ‖v̂Kt ‖, we can essentially double every appearance of Rnat

in the bound. This yields

(ii.a) + (ii.b) + (iv) ≤ 8LTR2
natR

2
MR

2
G

(
ψG(h+ 1)

RG

+
ψ(m)

RM

)
,

and thus, bounding the regret amounts to controlling term (iii)

NscRegT (alg) ≤ (iii) + 4N(R2
G +R2

nat) + 8LTR2
natR

2
MR

2
G (ψG(h+1)

RG
+ ψ(m)

RM
) . (6.37)

Let us decompose term (iii) as follows:

T∑
t=N+1

F ?
t [Mt:t−h]− inf

M∈M

T∑
t=N+1

ft(M)

=
T∑

t=N+1

F ?
t [Mt:t−h]−

T∑
t=N+1

F̂t[Mt:t−h]︸ ︷︷ ︸
(iii.a1)

+ sup
M∈M

∣∣∣∣∣
T∑

t=N+1

f̂t(M)−
T∑

t=N+1

f ?t (M)

∣∣∣∣∣︸ ︷︷ ︸
(iii.a2)

+
T∑

t=N+1

F̂t[Mt:t−h]− inf
M∈M

T∑
t=N+1

f̂t(M)︸ ︷︷ ︸
(iii.b)

+ sup
M∈M

∣∣∣∣∣
T∑

t=N+1

f ?t (M)−
T∑

t=N+1

ft(M)

∣∣∣∣∣︸ ︷︷ ︸
(iii.c)

.

Recall that our reduction runs the online learning algorithm A on the f̂t losses. Hence, the
reduction guarantees regret on term (iii.b). That is,

(iii.b) = MemRegT (A; f̂N+1:T ).

The terms (iii.a1) and (iii.a2) are the error terms which arise because, even those the
learning algorithm uses f̂t for the losses, the learners actual losses are approximate by f ?t .
Finally, the term (iii.c) emerges because we are using a Drc parameterization based on
estimates of yKt , rather than the true sequence.

To control all these terms, we introduce some estimates analogous to Lemma 6.5. Be-
fore continuing, let us introduce the following notation, consistent with the definitions of
F̂t, F

?
t , Ft:

v̂t[Mt:t−h] = vt[Mt:t−h | ŷK1:t, v̂
K
t , Ĝ], v̂t(M) = v̂t[M, . . . ,M ]

v?t [Mt:t−h] = vt[Mt:t−h | ŷK1:t,v
K
t , GK ], v?t (M) = v?t [M, . . . ,M ]

vt[Mt:t−h] = vt[Mt:t−h | yK1:t,v
K
t , GK ], vt(M) = vt[M, . . . ,M ].
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Written out more explicitly,

v̂t[Mt:t−h] = v̂Kt +
h∑
i=0

m−1∑
j=0

Ĝ[i]M
[j]
t−iŷ

K
t−i−j

v?t [Mt:t−h] = vKt +
h∑
i=0

m−1∑
j=0

G
[i]
KM

[j]
t−iŷ

K
t−i−j

vt[Mt:t−h] = vKt +
h∑
i=0

m−1∑
j=0

G
[i]
KM

[j]
t−iy

K
t−i−j

We state the following lemma without proof; it can be verified by leveraging Lemma 6.8
to inflating Rnat and RG by factors of 2 in the statement of Lemma 6.5:

Lemma 6.9. For all times t, and all Mt:t−h,M
′
t:t−h ∈M(m,RM)

• ‖v̂t‖, ‖v̂t[Mt:t−h]‖, and ‖v̂t(Mt)‖ are bounded by 8RGRMRnat. The same is true of v?t
and vt. In particular, ft(M), f ?t (M), f̂t(M) are all at most 64R2

GR
2
MR

2
nat.

• The functions F̂t are 8Ls-sup-Lipschitz, where Ls = 2LR2
natRMRG

√
m was the sup-

Lipschitz constant established for the known system in Proposition 6.4.

• Let v, v′ be any two vectors in the image ofM under vt[·] v̂t[·], or v?[·] for some time
t. Then, |`t(v)− `t(v′)| ≤ 4RGRMRnatL‖v − v′‖.

In light of part 3 of the above lemma, we have that

(iii.a1) + (iii.a2) + (iii.c) ≤ 8RGRMRnatL× (6.38)
T∑

t=N+1

‖v̂t[Mt:t−h]− v?[Mt:t−h]‖+ sup
M∈M

‖v̂t(M)− v?t (M)‖+ sup
M∈M

‖v?t (M)− vt(M)‖.

(6.39)

By expanding the definitions and invoking Lemma 6.8, we can bound

‖v̂t[Mt:t−h]− v?t [Mt:t−h]‖ ≤ ‖v̂Kt − vKt ‖+ ‖GK − Ĝ‖`1,opRMmax
t
‖ŷKt ‖

≤ 2εGRMRnat + 2‖G? − Ĝ‖`1,opεGRnat = 4εGRMRnat.

A similar bound holds for supM∈M ‖v̂t(M)− vt(M)‖. Finally, again using Lemma 6.8

‖v̂t[Mt:t−h]− vt[Mt:t−h]‖ ≤ RGRMmax
t
‖ŷKt − ŷt‖ ≤ 2RGR

2
MR

2
natεG.

Hence, using RG ≥ 1, we conclude

(iii.a1) + (iii.a2) + (iii.c) ≤ 48RGR
2
MR

2
natεGT

≤ CG,δ√
N

+ 48R2
GR

2
MR

2
nat ·

ψ(h+ 1)

RG

.
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Hence,

(iii) ≤MemRegT (A; f̂N+1:T ) +
CG,δ√
N

+ 48R2
GR

2
MR

2
nat ·

ψ(h+ 1)

RG

.

Combining this bound with Eq. (6.37) concludes the proof.

Omitted Proofs

Proof of Lemma 6.8. Introduce the norm ‖uex
1:t‖2,∞ := max1≤s≤t ‖uex

s ‖, and similarly for
other sequences of vectors. Then,

‖v̂Kt − vKt ‖ = ‖vt −
t−1∑
i=0

G
[i]
Kuex

t−i − (vt −
t−1∑
i=0

Ĝ[i]uex
t )‖

(i)
= ‖

t−1∑
i=1

(G
[i−1]
K − Ĝ[i])uex

t−i‖

≤ ‖Ĝ−GK‖`1,op‖uex
1:t−1‖2,∞ ≤ εG‖uex

1:t−1‖2,∞,

where equality (i) uses that Ĝ[0] = G
[0]
K . In particular,

‖v̂K1:t‖2,∞ ≤ ‖vKt ‖2,∞ + εG‖uex
1:t−1‖2,∞ ≤ Rnat + εG‖uex

1:t−1‖2,∞. (6.40)

On the other hand, for any time t,

‖uex
t ‖ ≤

{
1 t ≤ N∑m−1

i=0 ‖M
[i]
t ŷKt ‖ t > N

In the second case,

‖M[i]
t ŷKt ‖ ≤ RM‖ŷK1:t‖2,∞ ≤ RM‖v̂K1:t‖2,∞

Hence, ‖uex
1:t−1‖2,∞ ≤ max{1, RM‖v̂K1:t−1‖2,∞}. Combing with Eq. (6.40),

‖v̂K1:t‖2,∞ ≤ Rnat + εG max{1, RM‖v̂K1:t−1‖2,∞}.

Since RM, Rnat ≥ 1 by assumption, we mind that if εG ≤ 1
2RM

, the above recursion has
‖v̂K1:t‖2,∞ ≤ 2Rnat for all t.

Lemma 6.10. Suppose that h ≤ h0 = 1
4RM

. After N ≥ Nδ steps, the following guarantee
holds with probability 1− δ:

‖Ĝ[0:h] −G[0:h]
K ‖`1,op ≤ εG := c1hRnat

√
d2
uh(log(1/δ) + dudy)

N
+ ψG(h+ 1)

Moreover,
∑N+h+m

t=1 `t(yt,vt) ≤ 4NL(R2
nat +R2

G).
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Proof of Lemma 6.10. For i ≤ j, we let G[i:j] = (G[i], G[i+1], . . . , G[j]). Note that Ĝ[0] = G
[0]
K ,

and that Ĝ[i] = 0 for i ≥ 1. We begin by relating ‖ · ‖`1,op to the operator norm. The
following can be established via a variational characterization of both norms:

‖Ĝ[0:h] −G[0:h]
K ‖`1,op = ‖Ĝ[1:h] −G[1:h]

K ‖`1,op ≤
√
h‖Ĝ[1:h] −G[1:h]

K ‖op.

From the same analysis as in Corollary 4.1, with a renormalization of the inputs, we have
for a universal constant c0 and N ≥ N0(δ) := 8duh

2 log(h2du/δ)

‖Ĝ[1:h] −G[1:h]
K ‖op ≤ c0R

√
duh(log(1/δ) + hdu + dy)

N
,

where, where R is an upper bound on maxt∈[N ] ‖δt‖, where δt = vt −
∑[h]

i=0G
[i]
k uex

t−i. Using
the decomposition vt = vKt +

∑t−1
i=0 G

[i]
k uex

t−i, we can bound ‖δt‖ ≤ Rnat +ψG(h+ 1) ≤ 2Rnat,
where we use that ‖uex

t ‖ = 1, and that h is chosen such that ψG(h+1) ≤ 1, and that Rnat ≥ 1
by assumption. Hence,

‖Ĝ[1:h] −G[1:h]
K ‖op ≤ c0Rnat

√
duh(log(1/δ) + hdu + dy)

N
.

Hence, for c1 = 2c0

‖Ĝ−GK‖`1,op = ‖Ĝ[1:h] −G[1:h]
K ‖`1,op + ψG(h)

≤ c1hRnat

√
d2
uh(log(1/δ) + dudy)

N
+ ψG(h+ 1) := εG(N, δ).

For the second bound, the ‖vt‖ ≤ ‖vK‖+
∑T−1

t=1 ‖G
[i]
K‖‖uex

t−i‖ ≤ Rnat +RG. Hence, `t(vt) ≤
L(Rnat +RG)2 ≤ 2L(R2

nat +R2
G) by Assumption 6.1. There are N +m+ h terms in the sum

in question, and for N ≥ Nδ, m+ h ≤ N , yielding a total bound of 2N · 2L(R2
nat +R2

G).

6.5 A General form of Drc

In general, a partially observed system can not be able to be stabilized by static feedback. To
circumvent this, we describe stabilizing the system with an dynamic feedback controller. The
following exposition mirrors Simchowitz et al. [2020], but is abridged considerably. We focus
on explaining the various paramterizations. It can be verified that all theoretical results in
this chapter — importantly, the reductions — extend directly to these parametrizations as
well.

Precisely, the following analysis extends to all linear systems which can be stabilized
given observations of outputs.

Definition 6.2 (Stabilizable and Detectable). Given a triple (A?, B?, C?) ∈ Rd2x ×Rdx×du ×
Rdy×dy , we say that
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• (A?, B?) is stabilizable if there exist a feedback matrix K such that (A? + B?K) is
stable.

• (A?, C?) is detectable if there a matrix L such that A? + C?L is stable.5

Going forward, we will abbreviate “detectable and stabilizable” systems as S&D systems.

It is well-known that a system is S&D if and only there exists any control policy π which
ensures that the system is stable Zhou et al. [1996]. Hence, Definition 6.2 is essentially the
most general definition to which we could hope our results apply.6

Drc with dynamic nominal controller

In the general parametrization, we maintain an internal state st, which evolves according to
the dynamical equations

st+1 = Aπ0st +Bπ0yt +Bπ0,uu
ex
t , (6.41)

and selects inputs as a combination of an exogenous input uex
t , and an endogenous input

determined by the system:

ut = uex
t + (Cπ0st +Dπ0yt). (6.42)

Lastly, the algorithmic prescribes an control output, denoted by ωt ∈ Rdω , given by

ωt = Cπ0,ωst +Dπ0,ωyt ∈ Rdω , (6.43)

which we use to parameterize the controller. In both the internall stable parametrization
(Nature’s Ys), and the static feedback parametrization) we take ωt = yt. However, for more
sophisticated parameterizations described below, other choices of ωt are desirable.

We assume that π0 is stabilizing, meaning that, if we have maxt ‖et‖, ‖wt‖, ‖uex,alg
t ‖ <∞

are bounded, then with maxt ‖ualg
t ‖, ‖y

alg
t ‖, ‖ω

alg
t ‖ < ∞. As a consequence of the Youla

parametrization [Youla et al., 1976], one can always construct a controller π0 which has this
property for sufficiently non-pathological systems. Analogous to the sequence yKt ,u

K
t , we

consider a sequence that arises under no exogenous inputs:

Definition 6.3. We define the ‘natural’ sequence yπ0t ,u
π0
t ,ω

π0
t as the sequence obtained by

executing the stabilizing policy π0 in the absence of uex
t = 0; we set vπ0t = (yπ0t ,u

π0
t ) ∈ Rdy+du .

Each such sequence is determined uniquely by the disturbances wt, et.
5Equivalently, if (A>? , C>? ) is controllable.
6Indeed, if a system is not S&D, then even nonlinear policies π fail to make the system stable in an

input output sense: that is, bounded noise into the system can yield an unbounded response. Because we
do not see states directly in this model, and only consider output costs, we can generalize the Definition 6.2
condition further to all systems (A?, B?, C?) for which there exists an equivalent realization (Ã, B̃, C̃) with
the same Markov operator (i.e. C̃ÃiB̃ = C?A

i
?B? for all i ≥ 0) which is S&D. In this case, we can just

“pretend” that the system is given by (Ã, B̃, C̃).
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Moreover, the ‘natural’ sequences can be related to the sequences visited by the algorithm
via linear Markov operators

Definition 6.4. We define the Markov operators Gex→v ∈ G (dy + du, du) and Gex→ω ∈
G (dω, du) as the operators for which

ωalg
t = ωπ0t +

t∑
i=1

G[t−i]
ex→ωu

ex
i , vt = vπ0t +

t∑
i=1

G[t−i]
ex→vu

alg
i . (6.44)

We define the resulting decay function as

ψπ0(n) := max

{∑
i≥n

‖G[i]
ex→ω‖op,

∑
i≥n

‖G[i]
ex→v‖op

}
.

A couple remarks are in order:

• The existence of these Markov operators in Definition 6.4 a direct consequence of the
linear dynamics.

• We have that G[0]
ex→ω = 0, since uex

t does not influence ωalg
t , and that G[0]

ex→v =

[
0
Idu

]
,

since ualg
t = uπ0t + uex

t , but yalg
t does not depend on uex

t .

• As noted about, ωt = yt for the internally stable and static feedback parametrizations
above. Hence, for all i, G[i]

ex→ω is just the top dy × du block of the matrix G[i]
ex→v. In

particular, ψπ0(n) =
∑

i≥n ‖G
[i]
ex→v‖op = ψGex→v(n).

Finally, given LDC policies π, we define a conversion Markov operator so that the con-
clusion of Lemma 6.2 holds tautologically:

Definition 6.5. Given nominal policy π0 and target policy π ∈ Πldc, the π0 → π conversion
operator Gπ0→π is the element of G (du, dω) satisfying

uπt = uπ0t +
t−1∑
i=0

G[i]
π0→π · ω

π0
t−i. (6.45)

For the Natures Y parametrization, the conversion operator isGπ,cl,e→u given in Eq. (6.14),
and for the static feedback parametrization, the operator is GK→π, given in Eq. (6.23).

Again, we define the induced classes of LDC policies: f

Ππ0→u[ψ] := {π ∈ Πldc : ψGπ0→π(n) ≤ ψ(n)}
Ππ0→u(c, ρ) := {π ∈ Πldc : ψGπ0→π(n) ≤ cρn}

(6.46)
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Theorem 6.1c. Suppose Assumptions 6.1 and 6.2 hold. Define RG? := ψπ0(0). Given a
proper decay function ψ, a policy π ∈ Ππ0→u[ψ], and RM ≥ ψ(0) the following holds for all
integers m ≥ 1,

JT (π)− inf
M∈M(m,RM)

JT (πM) ≤ 2LTRMR
2
G?R

2
natψ(m). (6.47)

More concretely, if π ∈ Ππ0→u(c, ρ) for c ≥ 1 and ρ ∈ [0, 1), then for RM ≥ c
1−ρ ,

JT (π)− inf
M∈M(m,RM)

JT (πM) ≤ cρ−m · 2LTRMR2
G?R

2
nat. (6.48)

One can verify that Theorem 6.1 and Theorem 6.1b are special cases of the theorem
above.

Example 1: IO Parametrization

We can select a stabilizing controller π0 such that Aπ0 , Bπ0 , Cπ0 , Dπ0 need not be zero, but
both the internal controller dynamics, and the closed-loop dynamics are stable. That is,
ρ(Aπ0) < 1 and ρ(Aπ0,cl) < 1. Yet again, we set ωalg

t = yalg
t , corresponding to Cπ0,ω = 0 and

Dπ0,ω = I. This gives rise to the input-ouput, or IO, parametrization [Zames, 1981, Furieri
et al., 2019]. Though more general than static feedback, this parametrization does not stable
all posible stabilizable sytems [Halevi, 1994].

We define a closed form expression for the π0 → π operator that arises under internally
stable feedback:

Definition 6.6 (Definition C.6 in Simchowitz et al. [2020]). Given a nominal controller
π0 given by (Aπ0 , Bπ0 , Cπ0 , Dπ0), and a target controller π given by (Aπ, Bπ, Cπ, Dπ), and
recalling the closed loop matrix Aπ,cl from Eq. (6.6), define the matrices Aπ0→π, Bπ0→π, Cπ0→π
by

Aπ0→π :=

 Aπ,cl 0
0

Bπ0C? 0 Aπ0

 , Bπ0→π :=

B?Dπ −B?

Bπ 0
0 0

 ,
Cπ0→π :=

[
(Dπ −Dπ0)C? Cπ −Cπ0

]
and Dπ0→π =

[
Dπ 0

]
Define Ḡπ0→π := Markov(Aπ0→π, Bπ0→π, Cπ0→π, Dπ0→π), and define:

G
[i]
π0,y→(y,u) = Ii=0

[
I
Dπ0

]
+ Ii≥1

[
0

Cπ0A
i−1
π0
Bπ0

]
.

Finally, we the π0 → π coversion operator takes the following form

G[i]
π0→π =

i∑
j=0

Ḡ[i−j]
π0→πG

[j]
π0,y→(y,u).
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Proposition 6.11 (Proposition C.1 in Simchowitz et al. [2020]). For any stabilizing π and
internally stable π0, the Markov operator Gπ0→π defined in Definition 6.6 is the convolution
of two stable Markov operators, and is a π0 → π conversion operator. That is, for all t, the
exogenous inputs

uex
t =

t−1∑
i=0

Ḡ[i]
π0→πy

nat
t−i.

produce the input-output pairs (yπt ,u
π
t ) via[

yπt
uπt

]
=

[
ynat
t

unat
t

]
+

t−1∑
i=0

G[i]
ex→vu

ex
t−i.

In particular, for the conversion operator to be a stable Markov operator, we require that
both the open-loop dynamics nominal controller dynamics (i.e. with dynamical matrix Aπ0),
as well as the target dynamics of the closed loop system under π (with dynamical matrix
Aπ,cl) are both stable. Unfortunately, not all S&D systems can be stabilized in this fashion
[Zames, 1981].

Example 2: Youla Parametrization

As described above, certain pathological systems may not admit any stabilizing controller π0

which is internally stable. However, all S&D do admit stabilizing controllers of the following
form:

Definition 6.7 (Exact Youla Drc). Consider a stabilizable and detectable system, and fix
matrices L, F that satisfy ρ(A? +B?F ) < 1 and ρ(A? +LC?) < 1. Exact Observer Feedback
with Exogenous inputs denotes the internal state s̊t via x̃t ∈ Rdx , and has the dynamics

x̃t+1 = (A? + LC?)x̃t − Lyt +B?u
alg
t

ωt = C?x̃t − yalg
t , ualg

t = uex
t + F x̃t,

with x̃1 = 0. This yields an LDC-ex dω = dy, with Aπ0 = (A? + LC? + B?F ), Bπ0 = −L,
Cπ0 = F , Dπ0 = 0, Cπ0,ω = C?, and Dπ0,ω = −I.

Note that the optimal LQG controller is an observer-feedback controller. However, for
this parametrization, we don’t need to know this optimal LQG controller. Rather, any
observer-feedback controller will suffice.

Lemma 6.12 (Lemma C.2 Simchowitz et al. [2020]). Under Definition 6.7, following iden-
tities hold:

1. G[i]
ex→ω = 0 for all i > 0. In other words, ωalg

t = ωt = ωπ0t for all t, regardless of
exogenous inputs.
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2. Letting G(w,e)→ω denote the Markov operator giving the response from (wt, et) to ωt,
we have

G
[i]
(w,e)→ω = Ii=0

[
0 Idy

]
+ Ii>0C?(A? + LC?)

i−1
[
Idx F

]
.

3. We have the identity

G[i]
ex→v = Ii=0

[
0
Idu

]
+ Ii>0

[
C?
F

]
(A? +B?F )i−1B?.

4. Letting G(w,e)→v denote the Markov operator giving the response from (wt, et) to vπ0t ,
we have the identity

G
[i]
(w,e)→v = Ii=0

[
0 I
0 0

]
+ Ii>0

[
I 0
0 −L

] [
A? B?F
−LC? A? +BF + LC?

]i−1 [
C? 0
0 F

]
Moreover, via a change of basis, we can write

G
[i]
(w,e)→v = Ii=0

[
0 I
0 0

]
+ Ii>0

[
I 0
−L −L

] [
A? +B?F B?F

0 A? + LC?

]i−1 [
C? −F
0 F

]
In particular, since ρ(A?+B?F ), ρ(A?+LC?) < 1 hold by assumption due to stabilizability

and detectability, all of the above systems are guaranteed to be stable.
The conversion operator is given by the following proposition:

Proposition 6.13 (Proposition C.2 in Simchowitz et al. [2020]). Define the matrices

Ayla,π := Aπ,cl, Byla,π :=

[
B?Dπ − L

B?

]
, Cyla,π =

[
DπC? − F

]
, Dyla,π = Dπ

Then,

Gyla,π = Markov(Ayla,π, Byla,π, Cyla,π, Dyla,π)

is a π0 → π conversion operator for the exact Youla Drc parametrization of Definition 6.7.
That is

vπt = vπ0t +
t−1∑
i=0

G[i]
ex→vu

ex
t−i for uex

s =
s−1∑
j=0

G
[i]
yla,πω

π0
s−i.

The statement of the Youla parametrization is standard, though varies source-to-source.
We use the expression in cite Megretski [2004, Theorem 10.1].



CHAPTER 6. NONSTOCHATIC CONTROL 129

Example 3: Certainty-Equivalent Youla

The previously suggested parameterization requires exact specification of the system pa-
rameters (A?, B?, C?). However, for an unknown system, one can only hope to estimate
parameters approximately. This section details the effects of executing a Youla controller
with approximate estimates of the system parameters.

Definition 6.8 (Certainty Equivalent Youla). Given parameter estimates Â, B̂, Ĉ, we the
following dynamical process produces total inputs ut from exogenous inputs uex

t :

x̂t+1 = (Â+ LĈ)x̂t − Lyt + B̂ut

ω̂t = Ĉx̂t − yt

ut = uex
t + F x̂t.

(6.49)

Note that ω̂t depends on the history of exogenous inputs uex
t . Still, we can give a closed

form representation of the overall system dynamics, and the map from exogenous inputs to
outputs/controls:

Lemma 6.14. Set δt := x̂t − xt and ∆youl := Â − A? + L(Ĉ − C?). Then, the dynamics
induced by Definition 6.8 satisfy that[

xt+1

δt+1

]
=

[
A? +B?F B?F

∆youl Â+ LĈ

]
︸ ︷︷ ︸

:=A·̂,in

[
xt
δt

]
+

[
B?

B̂ −B?

]
︸ ︷︷ ︸

B·̂,in

uex
t +

[
I 0
−I −L

] [
wt

et

]

and yt
ω̂t
ut

 =

 C? 0

Ĉ − C? Ĉ
F F

[xt
δt

]
+

0
I
0

uex
t +

 I
−I
0

 et.

Denoting by Ĝin the Markov operator describing the map from uex
t → (yt,ut), we then have

the identity that [
yt
ut

]
=

[
ynat
t

unat
t

]
+

t−1∑
i=0

Ĝ
[i]
inuex

t−i.

Proof. Let’s change variables.

xt+1 = A?xt +B?F x̂t +B?u
ex
t + wt

= (A? +B?F )xt +B?Fδt +B?u
ex
t + wt

x̂t+1 = (Â+ LĈ)x̂t − Lyt + B̂F x̂t + B̂uex
t

= (Â+ B̂F )x̂t + L(Ĉx̂− C?xt) + B̂uex
t − Let

δt+1 = x̂t+1 − xt+1 = (Â+ LĈ)x̂t − (A? + LC?)xt − Let −wt + (B̂ −B?)u
ex
t

= (Â+ LĈ)δt + (Â− A? + L(Ĉ − C?))xt − Let −wt + (B̂ −B?)u
ex
t .
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Once again, changing variables, we have

ω̂t = Ĉδt + (Ĉ − C?)xt − et

ut = uex
t + Fδt + Fxt.

The conversion operators can be specified as follows:

Proposition 6.15 (Proposition C.3 in Simchowitz et al. [2020]). Let Gyla,π be as in Propo-
sition 6.13, and define Ḡyla,π ∈ G du+dy×dy via

Ḡ
[i]
yla,π =

[
G

[i]
yla,π

Idy · Ii=0

]
.

Further, define the operators

G·̂→? := Markov

([
A? +B?F 0

B̂F − LC? Â+ LĈ

]
,

[
B? B̂
L L

]
,
[
F −F

]
,
[
I 0

])
G?→·̂ := Markov

([
A? + LC? B?F − LĈ

0 Â+ B̂F

]
,

[
L
L

]
,
[
C? −Ĉ

]
, I

)
.

Then, the transfer operator Gπ0→π := G·̂→? � Ḡyla,π �G?→·̂ is a π0 → π conversion operator
for the Approximate Youla LCD-Ex of Definition 6.8.

Again, since (A?, B?, C?) is assumed to be S&D, there exists an L and F such that
A? + B?F and A? + LC? are stable, Hence, if Â, B̂, Ĉ are sufficiently close to (A?, B?, C?),
the above conversion operators are stable as well.

Algorithms for General Parametrizations: Known System

Again, fix memory length h ∈ N , a control parameter m ∈ N, and a control radius RM.
Now the choice of Drc-parametrized inputs depends on

uex
t (M) :=

m−1∑
i=0

M [i] · ωπ0t−i,

Given Mt:t−h ∈Mh+1, we define

vt[Mt:−h] =

[
yt[Mt:t−h]
ut[Mt:t−h]

]
= vπ0t +

h∑
i=0

G
[i]
K · u

ex
t (Mt−i),
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where Gex→v is the Markov operator describing the response from exogenous inputs uex
t to

(yt,ut), defined in Eq. (6.20). Finally, we define the h+ 1-ary loss and unary specializtion

Ft[Mt:t−h] := `t(vt[Mt:t−h]), ft(M) = FT [M,M, . . . ,M ].

Again, when the system is known, the operators Gex→v and Gex→ω can be computed directly.
Therefore, vπ0 and ωπ0 can be computed by inverting Eq. (6.44)

ωπ0t = ωalg
t −

t∑
i=1

G[t−i]
ex→ωu

ex
i , vπ0t = vt −

t∑
i=1

G[t−i]
ex→vu

alg
i . (6.50)

This gives rise the reduction in Algorithm 6.6. Note that this reduction involves updating
the internal state of the st of the nominal control policy (denoted by algorithm comments).

Algorithm 6.6 Nonstochastic Control to OcoM reduction with general parametrization
1: Intialize: OcoM algorithm A, nominal controller π0, Drc length m, memory h.

inital Drc controller M1 = 0, setM =M(RM,m).
2: Intialize: internal state s1 = 0 // controller dynamics

3: Precompute: Markov operators GK

4: for each t = 1, 2, . . . , T do
5: Observe output yt
6: Recover ωπ0t and vπ0t via Eq. (6.50).
7: Select exogenous input uex

t = uex
t (Mt)

8: Select total input ut = uex
t + Cπ0stDπ0yt.

9: Receive cost `t(·, ·), and form function ft(·) as above.
10: Feed ft to learning algorithm A, and recieve updated parameter Mt+1 ∈M.
11: Update internal state st+1 = Aπ0st +Bπ0yt. // controller dynamics

Algorithms for General Parametrizations: Unknown System

As in Section 6.4, we begin with access to plugin estimates Ĝex→v and Ĝex→ω of Gex→v and
Gex→ω, respectively:

v̂π0t :=

[
yt

Dπ0yt

]
−

h∑
i=1

Ĝ[i]
ex→vu

ex
t−i

ω̂π0t :=
h∑
i=1

Ĝ[i]
ex→ωu

ex
t−i

(6.51)

To condense notation, we let Ĝ = (Ĝex→v, Ĝex→ω) ∈ G (dy + du + dω, η) denote the two
operators stacked vertically.
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Using these estimates, we define an empirical approximation to the Drc input with
parameter M , replacing yK1:t with ŷK1:t:

uex
t (M | η̂π01:t) :=

m−1∑
i=0

M [i] · η̂π0t−i,

The remaining quanties are analogous to Section 6.4:

vt[Mt:t−h | η̂π01:t, v̂
π0
t , Ĝ] := vKt +

h∑
i=0

Ĝ[i] · uex
t (Mt−i | η̂π01:t−i),

Ft[Mt:t−h | η̂π01:t, v̂
π0
t , Ĝ] := `t(vt[Mt:t−h | η̂π01:t, v̂

π0
t , Ĝ]).

The unary specializations are as follows:

vt(Mt | η̂π01:t, v̂
π0
t , Ĝ) = vt[M, . . . ,M | η̂π01:t, Ĝ]

ft(M | η̂π01:t, v̂
π0
t , Ĝ) = Ft[Mt:t−h | η̂π01:t, Ĝ],

and our reduction for unknown systems generalizes as follows:

Algorithm 6.7 Nonstochastic Control to OcoM reduction, estimated system
1: Intialize: OcoM algorithm A, nominal controller π0, Drc length m, memory h,

estimate Ĝ = (Ĝex→v, Ĝex→ω)
inital Drc controller M1 = 0.

2: Recieve: starting state s1

3: for each t = 1, 2, . . . , T do
4: Observe output yt
5: Recover approximation v̂π0t and ω̂π0 via Eq. (6.51).
6: Select exogenous input uex

t = uex
t (Mt | ω̂π01:t)

7: Select total input ut = uex
t + Cπ0stDπ0yt.

8: Receive cost `t(·, ·), and form function f̂t(·) = ft(· | ω̂π01:t, v̂
π0
t , Ĝ) as above.

9: Feed ft to learning algorithm A, and recieve updated parameter Mt+1 ∈ C.
10: Update state st+1 = Aπ0st +Bπ0yt.
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Algorithm 6.8 Estimation of Ĝ
1: Intialize: nominal controller π0, estimation length N , memory h:
2: Initial State: s1 = 0
3: for each t = 1, 2, . . . , N do
4: Observe output yt,ωt

5: Draw uex
t

unif∼ { −1√
du
, 1√

du
}du

6: Select total input ut = uex
t + Cπ0st +Dπ0yt.

7: Compute least squares estimate

Ĝ[1:h] ∈
N∑
t=1

∥∥∥∥∥∥
 yt

ut − uex
t

ωt

− h∑
i=1

G[i] · uex
t−i

∥∥∥∥∥∥
2

2

(6.52)

8: Set Ĝ[0] =

[
0
Idu

]
and Ĝ[i] = 0 for i > h.

9: Return Ĝ = (Ĝex→v, Ĝex→ω).

Algorithm 6.9 Full Reduction for Unknown Systems
Intialize: nominal controller π0, estimation length N , memory h, Drc parameters
m,RM, online learning algorithm A
Execute estimation phase Algorithm 6.4 for steps t = 1, 2, . . . , N .
Execute Algorithm 6.3 for remaining times t = N + 1, N + 2, . . . , T with online learning
algorithm A, initialized with estimate Ĝ and starting internal state sN+1 where estimation
phase sN+1 left off.
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Chapter 7

Fast Rates for Nonstochastic Control

In the previous chapter of this thesis, we introduced the rather general setting of nonstochas-
tic control, and derived two regret bounds: a scaling of

√
T when the dynamics are known,

and a scaling of T 2/3 when the dynamics are unknown.
The bounds for the online LQR problem presented in Chapter 5 were superior:

√
T -regret

for unknown dynamics. Of course, if the system is known, then we have zero regret, because
we can synthesize the optimal control policy in advance1 In this chapter we ask:

Can attain nonstochastic regret bounds which are comparable to those attainable
in online LQR?

More quantitatively, is it possible to attain
√
T -regret scaling for unknown system dynamics?

And for known dynamics, is it possible to obtain regret which grows very slowly in the
problem horizon?

This chapter provides an affirmative answer to the above question: Õ(
√
T ) regret for

unknown systems, and poly(log T ) regret for known systems. We refer to these improved
regret bounds as fast rates. It does so by implementing the same control-to-online learning
algorithmic reductions described in the previous chapter, but two key differences:

• A novel, second-order optimization subroutine we call Semi-Ons.

• A more refined analytic framework we call Oco-with-affine memory.

Importantly this implies that the complexity of online control is, under appropriate as-
sumptions, determined primarily by whether or not the system dynamics are known in
advance. The bells-and-whistles present in the nonstochastic setting are immaterial to the
regret scaling.

1This hides the subtle issue of random-fluctuation in the realized regret due to the noise. However, the
expected regret is zero with respect to the stipulated benchmark is 0. In fact, it is slightly negative due to
finite horizon effects.
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Organization of the Chapter

Section 7.1 details the assumptions adopted to obtain fast rates, introduces our Semi-Ons
algorithm, and states its regret guarantees guarantees:

√
T regret for unknown systens, and

polylogarithmic for known. It also sketches the key technical challenges and techniques.
Section 7.2 describes the limitations of prior the Oco-with-memory framework (as intro-

duced in the previous chapter) in the absence of strong convexity. Notably, it establishes a
lower bound on a popular analysis technique which controls with-memory regret by bounding
total Euclidean movement of the optimization iterates.

Section 7.3 details a more tailored framework-Oco-with-affine-memory (OcoAM), of
which it demonstrates that online control is a special case. It then shows that Semi-Ons
enjoys logarithmic regret against OcoAM losses, circumventing the limitations of the less-
specialized OcoM with memory; these bounds directly translate logarithmic regret for online
control via the reduction of Section 6.3. This section exposes a key “input-recoverability
property” (Definition 7.3) in the analysis, which admits a Fourier-theoretic interpration
(Lemma 7.1).

Section 7.4 provides the algorithm and analysis for unknown systems. The key challenge
in obtaining fast rates is demonstrating low sensitivity to estimation error in the Markov
operator. For didactic purposes and in the interests of brevity, the exposition focuses on
demonstrating the robustness of gradient descent to strongly convex functions.

This section pays attention to two key technical ingredients: a more subtle regret decom-
position, and

The majority of this chapter focuses on systems which can be stabilized via static feed-
back, and thus are ammenable to the static-feedback Drc parametrization described in
Section 6.2. More general systems pose a challenge, because input-recoverability can falter.
Section 7.2 elaborates on this point further. It describes a more benign “semi-adversarial”
noise regime which affords fast rates for general Drc parametrizations (those described in
Section 6.5). It also pinpoints a special case when input-recoverability does hold for a certain
Youla (non-static) Drc parametrization.

7.1 Main Results
We consider the nonstochastic control setting, detailed in Section 6.1 in the previous chapter.
The reader may wish to consult this section, as well as Section 6.2 for definition of relevant
quantities. We begin by stating our assumptions.

Assumptions

Assumptions on the Losses

Recall the subquadratic growth assumption (Assumption 6.1), which states that for v = (y, u)
the losses `t(v) satisfy `t(v) ≤ Lmax{1, ‖v‖2}, and ‖∇̀ t(v)‖ ≤ L‖v‖. We also assume the
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losses are α-strongly convex:

Assumption 7.1. Given a parameter α > 0, we assume that `t(v) is twice-continuously
differentiable and α-strongly convex. That is, the function ∇2`t(v) � αI uniformly. In
addition, we assume `t are L-subquadratic.

This assumption holds in the LQR setting, because the cost function is a positive-definite
quadratic form in the state and input. The differentiability assumptions can be relaxed if
desired, but are imposed for simplicity.

Strong convexity suffices for attaining low regret when the dynamics are known. When
unknown, we require an additional smoothness assumption:

Assumption 7.2. We assume that the losses `t are L-smooth. That is, `t are twice contin-
uously differentiable, and ‖∇2`t(v)‖op ≤ L for all v ∈ Rdy+du .

Assumption 7.2 also holds in the LQR setting, because quadratic functions have glob-
ally bounded second derivative. For simplicity, we assume the subquadratic parameter and
smoothness parameters are the same number L (this can be enforced by enlarging L if nec-
essary). This is motivated by the fact that quadratic costs `t(v) = v>Qv are both L-smooth
and L-subquadratic for the choice L = λmax(Q).

Assumptions on the parametrization

The more restrictive assumption in this chapter is that we can stabilize the system with static
feedback. We refer the reader back to Section 6.2 for a refresher on the Drc parametrization,
and in particular, Drc with static feedback.

Assumption 7.3. We assume that we can apply the static feedback Drc parameterization
outlined in Section 6.2. Specifically, we have access to a static feedback matrix K ∈ Rdy×du

such that the feedback law yt = Kut stabilizes the system.

As discussed in the previous chapter, Assumption 7.3 is not restrictive for fully observed
systems, or more generally when yt = Cxt + et where dy = dx and C is invertible, but
is restrictive in general. Unfortunately, as noted in the previous chapter, many partially
observed systems of interest cannot be stabilized by static feedback.

Our reliance on static feedback is due to a certain technical condition which requires
the Markov operator induced by the parametrization to be “invertible” in a certain sense
(Definition 7.3). The condition has a Fourier-theoretic interpretation that the Z-transform
of the Markov operator is well-conditioned on the unit circle (Lemma 7.1), which can be
verified for the Markov operators GK which arise from static feedback (Lemma 7.2).

Our results extend to any of the more general parametrizations of Section 6.5
which share this property, though for brevity, we restrict our exposition to static feed-
back. For example, one can show that this property holds for Youla-parametrized Drc
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(Definition 6.7one of the examples sketched in ), provide that the eigenvalues of the true
system matrix A? do not lie on the unit circle (Lemma 7.16).

Under a slightly different noise model, it is possible to obtain fast rates for all parametriza-
tions described in Section 6.5, which are general enough to stabilize any stabilizable and de-
tectable system. We call this noise model semi-adversarial, where adversarial disturbances
are perturbed by a small amount of i.i.d. stochastic noise. This setting is inspired by the
smoothed analysis paradigm which popular in the theoretical computer science community
Spielman [2005]. We discuss this noise model further and its implications for online control
in Section 7.5.

We stress that while the main results in this chapter require access to a fixed stabilizing
controller, our regret benchmark still competes with arbitrary, dynamical LDC
control policies.

The Semi-Ons algorithm

To take advantage of strongly convex losses, we apply the OcoM-to-Drc reductions detailed
in the previous chapter:Algorithm 6.2 for known systems, and Algorithm 6.5 for known.
Whereas Chapter 6 instantiates those reduces with online gradient descent, this chapter
instantiates both with novel second-order online learning algorithm tailored to our setting.

A key observation is that the losses which arise in the aforementioned reduction may be
expressed compactly in the following form

ft(z) := `t(vt + Htz), (7.1)

where `t are convex costs satisfying Assumption 7.1, z ∈ Rd is a convex parameter lying in
a constraint set C, vt ∈ Rdv is an affine offset term, and Ht ∈ Rdv×d is a matrix. Formal
derivation of of the structure (7.1) is described by Definition 7.2 for known systems, and at
the start of Section 7.4 for unknown.

Importantly, even if `t(·) is strongly convex, the losses in Eq. (7.1) need not
be. Moreover, as described in Section 7.2, common generalizations of strong convexity such
as exp-concavity do not directly translate to fast regret rates when system dynamics are
taken into account.

Our proposed algorithm, Online Semi-Newton Step (Semi-Ons), aims to adress these
limitations. Inspired by the landmark Online Newton Step (Ons) algorithm introduced by
Hazan et al. [2007], Semi-Ons executes Newton-like updates using a preconditioner based
on a running covariance of the matrices Ht:

Λt = λI +
t∑

s=1

H>t Ht.

In contrast, the classic Ons algorithm preconditions based on a running sum of outer
products gradients of the losses ∇ft(z). Since the gradients of losses of the form (7.1) lie in



CHAPTER 7. FAST RATES FOR NONSTOCHASTIC CONTROL 138

Algorithm 7.1 Online Semi-Newton Step (Semi-Ons)
1: Input: Step size η, regularization parameter λ > 0, domain C ⊂ Rd, arbitrary initial

iterate z1 ∈ C
2: Initialize: Λ0 = λ · Id, z1 ← 0d
3: for each t = 1, 2, . . . , T do
4: Learner recieves ft of the form ft(z) = `t(vt + Htz),
5: ∇t ← ∇ft(zt), where ft(z) = `t(vt + Htz).
6: Λt ← Λt−1 + H>t Ht

7: z̃t+1 ← zt − ηΛ−1
t ∇t. // Newton update

8: zt+1 ← arg minz∈C ‖Λ
1/2
t (z − z̃t+1)‖2

2. // projection

the rowspace of Ht, it holds that H>t Ht roughly dominates ∇ft(z)∇ft(z)> in a PSD sense.
This domination means that Semi-Ons has a considerably larger preconditioner (again, in
the PSD sense) than online Newton. The larger preconditioner forces the algorithm take
smaller steps which, when translated into online control, helps to achieve low with-memory
regret, and low sensivity to estimation error when the system dynamics are unknown.

Guarantees for Drc with Semi-Ons

We now state the key performance guarantees for the Semi-Ons algorithm, in both the
known- and unknown-system nonstochastic control setting. These results are instantiated
by the analysis in the subsequent sections of this chapter, though proofs are abridged for
brevity. Full proofs may be found in Simchowitz [2020].

Our bounds are stated in terms of the subquadratic, strong convexity, and smoothness
parameters defined above. In addition, we assume that the static-feedback parametrization
enjoys the following properties:

Assumption 7.4. There are parameters c ≥ 1, Rnat ≥ 1, and ρ ∈ (0, 1) such that

• For all times t, the iterates produced by controller K have Euclidean norm ‖vKt ‖ =
‖(yKt ,uKt )‖ uniformly bounded by Rnat.

• The decay function of GK , denoted here as ψG, has decay ψG(n) ≤ cρn. In particular
‖GK‖`1,op ≤ c.

In addition, we assume that we compete with the benchmark class Π? = ΠK→u(c, ρ); that
is, the set of policies π for which the conversion operator GK→π has decay ψGK→π(n) ≤ cρn.

We encourage the reader to revisit Section 6.2 for the definitions of relevant terms in
Assumption 7.4. The salient point is that, if K is stabilizing (i.e. Assumption 7.3), then
there always exists parameters c, ρ, Rnat satisfying the first two items. Moreover, for any
stabilizing π, there exists c ≥ 1 and ρ ∈ (0, 1) such that π ∈ ΠK→u(c, ρ).
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We are now prepared to state our bounds. First, we demonstrate polylogarithmic regret
for systems with known dynamics:

Theorem 7.1 (Guarantee for Known System). Suppose Assumptions 7.1, 7.3 and 7.4 holds.
Then, for a suitable choice of parameters, the Semi-Ons (Algorithm 7.1) implemented as
described as in Section 7.3 enjoys the following regret guarantee:

ControlRegT (alg; Π?) ≤ log4(1 + T ) · c
5
?(1 + ‖K‖op)3

(1− ρ?)5
· dudyR2

nat ·
L2

α

More specifically, we use Semi-Ons in tandem with the Drc-to-Oco-with-memory re-
duction spelled out in Section 6.3 of the previous chapter. The only subtle point is setting up
the correspondence between the losses of the form (7.1) with those that arise in the control
reduction. Section 7.3 details this correspondence, and describes the essential elements of
the proof. In also provides a generic for Semi-Ons when applied to any sequence losses of
the form (7.1), stated in Theorem 7.4.

Analogously, to adress unknown system dynamics, we apply Semi-Ons within the estimate-
then-control reduction described in Section 6.4 of the previous chapter. Again, Section 7.4
details this correspondence, and describes the essential elements of the proof. This leads
us to the following bound: Õ(

√
T )-regret for nonstochastic control, matching the optimal

regret
√
T -scaling achievable for online LQR.

Theorem 7.2 (Guarantee for Unknown System). Suppose Assumptions 7.1 to 7.4 all hold.
Then, for a suitable choice of parameters, the Semi-Ons combined with an initial exploraton
phase, as described as in Section 7.4 enjoys the following regret guarantee with probability
1− δ:

NscRegT (alg; Π?) .
√
T log3(1 + T ) log

1

δ
· c

8
?(1 + ‖K‖op)5

(1− ρ?)10
· dy(du + dy)R

5
nat ·

L2

α

The proof of this theorem relies on a rather subtle analysis of the sensitivity of Semi-Ons
to perturbations in the losses, as well as a more careful regret decomposition. Section 7.4
provides details.

Challenges and Techniques

As described above, the key technical obstacle in providing fast rates is the subtle observaion
that

Even though `t(·) are assumed to be strongly convex, the losses in Eq. (7.1) need
not be.

The losses in Eq. (7.1) do exhibit a generalization of strong concavity - exp concavity (Def-
inition 7.1) - which suffices to enjoy logarithmic regret in the standard (i.e., non-dynamic)
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Oco problem setting. This does not appear to be sufficient for online control: A lower
bound Section 7.2 demonstrates that black-box black-box application of the standard Oco-
with-memory analysis cannot allow for better that T 1/3 regret, even when the learner faces
simple losses of the form (7.1).

This necessitates a different approproach. We leverage the particular structure of the
losses in Eq. (7.1) we called Ocowith affine memory. We show that the with-memory and
unary losses which arise take the form

Ft(zt:t−h) = `t(vt +
h∑
i=0

G[i]Yt−izt−i), ft(z) := `t(vt + Htz), Ht =
h∑
i=0

G[i]Yt−i.

Here the Markov operator G is fixed across times t and, when specialized to control, coincides
with GK . We take advantage of the identity Ht =

∑h
i=0 G

[i]Yt−i and the input-recoverability
property of G (alluded to above and defined formall in Definition 7.3) to establish a well-
conditioned linear bijection between the sequence (Ht) and (Yt). This allows us to demon-
strate that the Semi-Ons updates, which depend only on ft(·), and thus on Ht, nevertheless
are slow-moving in a certain geometry induced by the (Yt) sequence. This argument is made
formal in the analysis of known systems Section 7.3.

For unknown systems, the argument is considerably more subtle, and ommitted in the
interest in brevity. To build intuition, we consider what would occur if we could assume
that the losses ft were all strongly convex. We then show that Ogd would display lower
sensitivity to error (quadratic in an error of ε rather than linear) than in the non-strongly
convex setting of Section 6.4. The extension to the actual losses ft leverages the same
geometric ideas Section 7.3; the full argument can be found in [Simchowitz, 2020, Section 5].

7.2 The Limitations of Oco with Memory
To motivate our algorithm and analysis, we begin by describing the insufficiency of the Oco
with memory (OcoM) reduction outlined in the previous chapter, specifically Section 6.3.
We focus our discussion on the reduction for known systems.

In Proposition 6.4, we demonstrated that the regret of the reduction in Algorithm 6.2,
instantiated by a learning algorithm A, was essentially bounded by

MemRegT (A;F1:T ) =
T∑
t=1

Ft[M
A
t:t−h]− inf

M∈M

T∑
t=1

ft(M),

where MA
t ∈M are the iterates produced by the subroutine A, and we had constructed the

losses Ft :Mh+1 → R and ft :M→ R via

Ft[Mt:t−h] = `t(vt +
h∑
i=0

m−1∑
j=0

G
[i]
KM

[j]
t−iy

K
t−i−j), ft(M) = Ft[M, . . . ,M ]. (7.2)
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This movitated us to derive Proposition 6.3, a regret bound for the generic OcoM setting:
at each time time, the learner produces an iterate zt ∈ C for a convex domain C, and suffers
cost Ft[zt:t−h], where Ft : Ch+1 → R2, and suffer regret

MemRegT =
T∑
t=1

Ft[zt:t−h]− inf
M∈C

T∑
t=1

ft(z).

The analysis in that proposition argued that we decompose

MemRegT =
T∑
t=1

Ft[zt:t−h]−
T∑
t=1

ft(zt)︸ ︷︷ ︸
(i)

+
T∑
t=1

ft(zt)− inf
z∈C

T∑
t=1

ft(z)︸ ︷︷ ︸
(ii)

, (7.3)

where term (ii) is the standard Oco regret (without memory), and (i) represents the relative
cost of the losses Ft[zt:t−h] with memory to the unary losses ft(zt) without. We analyzed
online gradient descent (Ogd), and leveraged key property we then leverage was that the
iterates zt were slow-moving, that is, ‖zt − zt−1‖ ≤ Lsη, where Ls was a Lipschitz constant,
and η was the step-size. This ultimately led to a bound of (i) ≤ L2

shTη, which scales as
√
T

for the optimal η selection.
If the losses ft were α-strongly convex, a similar argument can be applied [Anava et al.,

2015]. For strongly convex losses, online gradient descent can take much more conservative
updates zt+1 = ProjC(zt− ηt∇ft(zt)), where ηt is a time-varying learning rate that decays as
1
αt
. It is well known that this approach yields Oco regret (term (ii)) which scales logarith-

mically in the time horizon.
In addition this slower learning rate, term (i) can be bounded by roughly

L2
sh ·

T∑
t=1

ηt . L2
sh ·

log T

α
.

Thus, the contribution of the memory term is also logarithmic, and hence so is the total
bound on MemRegT .

Unfortunately, the loss functions ft that arise in our control reduction are not strongly
convex. Yes, the cost functions `t are (Assumption 7.1), but the functions which arise from
Eq. (7.2) are not. Indeed, for the Hessian of ft to be full rank, it would requite that the
mapping

M 7→
h∑
i=0

m−1∑
j=0

G
[i]
KM

[j]yKt−i−j

be full rank, which may fail in general. One consequence is that we cannot blindly adopt
the more conservative ηt = 1

αt
step sizes.

2Recall that we use brackets for the h+ 1-ary functions, and parantheses for unary functions
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Exp-Concavity and Memory

Though our losses ft in (7.1) are not strongly convex, they can be shown to satisfy a popular
generalization of strong convexity known as exp-concavity.

Definition 7.1 (Exp-Concavity [Hazan et al., 2007]). Given γ > 0, a twice-differentiable
convex function f on a convex domain C is said to be γ-exp-concave if γ · ∇f(z)(∇f(z))> �
∇2f(z) for all z ∈ C.

The landmark online Newton step (Ons) algorithm of Hazan et al. [2007] established
that it is possible to obtain logarithmic standard Oco regret (term ii in Eq. (7.3)) against
sequences of exp-concave functions. However, it remains unknown whether the same is true
for the Oco-with-memory setting.

Intuitively, obtaining logarithmic regret against exp-concave losses requires an algorithm
which adapts to the geometry induced by problem gradients along the iterates: ∇t := ∇ft(zt).
Precisely, if the algorithm produces a gradient ∇t which is roughly orthogonal to the previous
ones, such an algorithm needs to be prepared to take an aggressive step in that direction.
Unfortunately, these large steps mean large jumps in zt+1 − zt, which pose a challenge for
bounding the movement costs (term i in Eq. (7.3)) that arise in Oco with memory.

A Lower Bound on Euclidean Movement

The analysis from Anava et al. [2015] sketched above bounds the total euclidean movement
of the iterates zt. Specifically, define the euclidean cost of an algorithm,

EucCostT :=
T∑
t=1

‖zt − zt−1‖,

and recall the standard Oco regret OcoRegT :=
∑T

t=1 ft(zt) − infz∈C
∑T

t=1 ft(z). For a
parameter µ > 0 depending on the Lipschitz parameters and memory length h, the Anava
et al. [2015]’s argument described above bounds the µ-regret,

µ-RegT := OcoRegT + µEucCostT

=

(
T∑
t=1

ft(zt)− inf
z∈C

T∑
t=1

ft(z)

)
+ µ

T∑
t=1

‖zt − zt−1‖,

In words, µ-RegT captures the tradeoff between the attaining low Oco regret, and doing
so with iterates which move slowly in the Euclidean distance.

It turns out that no algorithm can attain logarithmc µ-RegT for the sorts of losses
encountered in the Drc reduction, even if `t are strongly convex.

Precisely, let us consider a construction in dimension d = 1, domain C = [−1, 1], `(v) = v2,
with losses ft = `(vt − εz) = (vt − εz)2, where ε ∈ (0, 1] is fixed, vt ∈ {−1, 1} are chosen by
an oblivious adversary3.

3that is, selected in a manner that is not adaptive to the learners chose of parameters
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Note that ` satisfies Assumption 7.1 with α = L = 1. They are also O(1) exp-concave
(Definition 7.1), since both ‖∇ft‖ ≤ 2ε and ∇2ft = ε2. In particular, ft are only ε2-strong
convex, which is necessary for this construction to evade known upper bounds.

The following lower bound is established in Simchowitz [2020], based off the construction
in [Altschuler and Talwar, 2018, Theorem 13]:

Theorem 7.3 (Theorem 2.3 in Simchowitz [2020] ). Let c1, . . . , c4 be constants. For T ≥ 1
and µ ≤ c1T , there exists ε = ε(µ, T ) and a joint distribution D over v1, . . . ,vT ∈ {−1, 1}T
such that any proper learning algorithm (i.e. zt ∈ C for all t),

E[µ-RegT ] ≥ c2(Tµ2)1/3.

In particular, for µ = 1, E[µ-RegT ]] ≥ c2T
1/3, and if E[OcoRegT ] ≤ R ≤ c3T , then,

E[EucCostT ] ≥ c4

√
T/R.

Hence, analyses based on Euclidean movement cannot ensure better than T 1/3 regret in
the OcoMsetting, and thus no better than Ω(T 1/3) regret for online control of a known
system with strongly convex losses. Interestingly, these tradeoffs can be matched by the
standard online Newton step algorithm, as verified by Simchowitz [2020, Theorem G.1].

7.3 Fast Rates for Known Systems
In this section, we circumvent the limitations of the OcoM to establish fast rates for regret
when the system dynamics are known. We begin by describing the general OcoAM setting,
and explain how the losses which arise in the known-system reduction (Algorithm 6.2) arise
as a special case. We then turn to the input-recoverability property, which underlies our
analysis. We proceed to state, and then prove, a regret guarantee for the general OcoAM
setting. Finally, we specialize our findings to nonstochastic control with known system
dynamics.

Oco with Affine Memory

The key idea is to introduce a more careful reduction we call Oco with affine memory, or
OcoAM. The protocol and notion of regret in OcoAM is identical to that of Oco with
memory: one faces a sequences of with-memory losses Ft[zt:t−h] with domain Ch+1, and suffers
regret compared to optimal performance on unary losses ft(z) = Ft[z, . . . , z] : C → R:

MemoryRegT =
T∑
t=1

Ft[zt:t−h]− inf
z∈C

T∑
t=1

ft(z).

The key difference is that the losses Ft have a particular form:

Ft[zt:t−h] = `t(vt +
h∑
i=0

G[i]Yt−izt−i). (7.4)
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Here, the affine term vt, the matrix Yt and the loss `t are revealed to the learner at time
t. The Markov operator G is known to the learner in advance. Note then that the resulting
unary losses exhibit the form of Eq. (7.1):

ft(z) = `t(vt + Htzt), where Ht :=
h∑
i=0

G[i]Yt−i (7.5)

Notably, Drc-parametrized online control natural embeds into OcoAM:

Definition 7.2 (Drc-to-OcoAM embedding). We represent Drc controllers M ∈ M =
M(m,RM) as a vector z ∈ Rd, where d = m·dy ·du. We call this representation an embedding,
let z = e(M) denote the embedding of a particular M ∈ M, and let C = e(M) denote the
convex domain under the embedding map. Given the paraters yKt , we let Yt denote the
matrix so that multiplication by z = e(M) recover uMt :

Ytz =
m−1∑
i=0

M [i]yKt−i = uMt , z = e(M).

We let

Ht =
h∑
i=0

G
[i]
KYt−i.

Thus, ft(M) and Ft[Mt:t−h] in Algorithm 6.2 can be expressed as

ft(z) = `t(v
K
t + Htz), Ft[zt:t−h] = `t(v

K
t +

h∑
i=0

G
[i]
KYt−ist−i)

where z and zt:t−h correspond to the embedding of M and Mt:t−h, respectively.

Hence, our proposed algorithm executes the reduction Algorithm 6.4 with the losses ft
given in Definition 7.2 and Semi-Ons as base learner.

The Input Recoverability Property

The losses ft fail to be strong convex when the matrix Ht is rank deficient (or ill-conditioned),
and this is possible for adversarial sequences of yKt . Luckily, for the Drc parameterization
with state feedback, there is a sort of “hidden” strong convexity of which we can take advan-
tage.

Recall G (n,m) as the set of all Markov operators G = (G[i])i≥0, where G[i] ∈ Rn×m.
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Definition 7.3. We say that the Markov operator G = (G[i])i≥0 is κ-input recoverable if
the following holds for any sequence of inputs (u0, u1, u2, . . . ) ∈ Rdu normalized so that∑∞

t=1 ‖ut‖2 = 1:

∞∑
t=0

∥∥∥∥∥
t∑
i=0

G[i]ut−i

∥∥∥∥∥
2

≥ κ.

We let κ(G) denote the smallest value of κ ∈ [0, 1] such that G is κ-input recoverable.

In other words, the input recoverably of a Markov operator is determined by the the fol-
lowing: Let (y0, y1, y2, . . . ) denote the sequence obtained by feeding a sequence (u0, u1, u2, . . . )
through the operator G: yt =

∑t
i=0 G

[i]ut−i. Then, κ(G) bounds the minimal quotient of the
`2-norm of the sequence of y to that of u:

κ(G) = min

{
1, max

u0,u2,...

∑
t≥0 ‖yt‖2∑
t≥0 ‖ut‖2

}
: yt =

t∑
i=0

G[i]ut−i.

Thus, when κ(G) > 0, G is nondegenerate in the sense that every non-zero sequence of
inputs results in a non-zero sequence of outputs. Input recoverability can be lower bounded
via a Fourier-theoretic characterization. To do so, we introduce the notion of the Z-transform:

Definition 7.4. GivenG ∈ G (n,m), it’s Z-transform is the power series Ǧ(z) :==
∑

i≥0G
[i]z−i,

defined for all complex scalars z ∈ C− {0}.

The input-recovarability parameter of G is then lower bounded by the square of the
minimum singular value of itz Z-transform over the complex circle:

Lemma 7.1. Let G ∈ G (n,m) be such that ‖G‖`1,op <∞. Then,

κ(G) ≥ min
z∈C:|z|=1

σm(Ǧ(z))2,

where σm(·) denotes minimal complex singular value - that is, letting H denote Hermitian
adjoint,

σm(Ǧ(z))2 =

√
λm(Ǧ(z)HǦ(z).

Proof. The proof relies on two facts: Parseval’s identity and the convolution theorem for
the Z-transform. Fix u0, u1, . . . with

∑∞
n=0 ‖un‖2 = 1, and define a Markov-shaped vector

U = (U [i]), with U [i] = ui, and its Z-transform Ǔ(z) :=
∑n

i=0 U
[i]z−i. We have that

∑
n≥0

∥∥∥∥∥
n∑
i=0

G[i]un−i

∥∥∥∥∥
2

2

=
∑
n≥0

‖(G ∗ U)[n]‖2
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where ∗ denotes the convolution operator.
Since ‖G‖`1,op =

∑
i≥0 ‖G[i]‖op <∞, Cauchy-Swchwarz implies thatG is square-summable:∑

i≥0 ‖G[i]‖2
op <∞. In addition, (ut) is square summable by assumption. Therefore, we may

invoke Parseval’s identity, which implies that∑
n≥0

∥∥(G ∗ U)[n]
∥∥2

2
=

1

2π

∫ 2π

0

‖ (G ∗ U)(eιθ)‖2
2dθ,

where (G ∗ U)(z) =
∑

i≥0(G ∗ U)[i]z−i is the Z-transform of G ∗ U . Because convolutions
become multiplications under the Z-transformation, we have that for the Z-transform of U ,

1

2π

∫ 2π

0

‖ (G ∗ U)(eιθ)‖2
2dθ =

1

2π

∫ 2π

0

‖Ǧ(eιθ)Ǔ(eιθ)‖2
2dθ.

This establishes the first equality of the claim. For the inequality, we have

1

2π

∫ 2π

0

‖Ǧ(eιθ)Ǔ(eιθ)‖2
2dθ ≥ 1

2π

∫ 2π

0

σmin(Ǧ(eιθ))2‖Ǔ(eιθ)‖2
2dθ

≥ min
z:|z|=1

σmin(Ǧ(z))2 · 1

2π

∫ 2π

0

‖Ǔ(eιθ)‖2
2dθ.

To conclude, we note that by Parsevals identity, 1
2π

∫ 2π

0
‖Ǔ(eιθ)‖2

2dθ. =
∑

n≥0 ‖U [n]‖ =∑
n≥0 ‖un‖2 = 1, giving

∑
n≥0

∥∥∥∥∥
n∑
i=0

G[i]un−i

∥∥∥∥∥
2

2

=
1

2π

∫ 2π

0

‖Ǧ(eιθ)Ǔ(eιθ)‖2
2dθ ≥ min

z:|z|=1
σminǦ(z)2.

This condition may seem quite strong, but holds when G = GK results from a stabilizing
feedback parametrization:

Lemma 7.2. Let GK denote a Markov operator that arises from a stabilizing, static-K Drc
parametrization, described at length in Section 6.2. Then, we have κ(GK) ≥ 1

4
min{1, ‖K‖92

op}.

Proof Sketch. We provide a brief sketch; a full proof can be found in Simchowitz [2020,
Appendix D.3]. Using Lemma 7.1,

κ(G) ≥ min
z∈C:|z|=1

σmin(Ǧ(z))2,

where Ǧ(z) is the Z-transform of G, that is Ǧ(z) =
∑

i≥0G
[i]z−i. Given the Markov operator

GK which arises from the stabilizing controller parameterization, its Z-transform takes the
following form:

ǦK(z) =

[
C?Ǎ(z)B?

I +KC?Ǎ(z)B?

]
,
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where Ǎ(z) = (zI − (A? + B?KC?))
−1is the Z-transform of the closed-loop matrix. Using

a linear algebraic argument due to Agarwal et al. [2019b], we show that any matrix of the

form
[

X
I +KX

]
must have minimal singular value at least 1

2
min{1, ‖K‖op}. The bound

follows.

Unfortunately, it is not clear if just a computation holds for more general controller
parametrizations that do not rely on static feedback. A discussion of strong convexity for
general parametrizations is deferred to Section 6.2.

Regret bounds for Semi-Ons

We now turn to stating a regret guarantee for the regret of Semi-Ons in a generic OcoAM
setting. That is, she is given a known Markov operator G, and at each time t, a triple
(vt,Yt, `t) is revealed to the learner, and she faces with-memory loss Ft[·] of the form (7.4),
and executes updates on the unary losses ft(·) of the form (7.5). The notion of regret is

MemoryRegT =
T∑
t=1

Ft[zt:t−h]− inf
z∈C

T∑
t=1

ft(z).

Our regret guarantee requires the following bound on relevant parameters:

Definition 7.5 (Bounds on Relevant Parameters). definitiondefnPolPars

• The diameter D := max{‖z − z′‖ : z, z′ ∈ C}, Y -radius RY := maxt∈[T ] ‖Yt‖op, and
RY,C := maxt maxz∈C ‖Ytz‖.

• We define the radii Rv := maxt∈[T ] max{‖vt‖2} and RG := max{1, ‖G‖`1,op}.

• We define the H-radius RH = RGRY , and define the effective Lipschitz constant Leff :=
Lmax{1, Rv +RGRY,C}.

Finally, we recall the decay function ψG(n) :=
∑

i≥n ‖G[i]‖op.

Theorem 7.4 (Semi-Ons regret, exact case). Suppose κ = κ(G) > 0, Assumption 7.1
holds, and consider the running Algorithm 7.1 on the unary losses of the form Eq. (7.5),
with parameters η = 1

α
, λ := 6hR2

YR
2
G. Suppose in addition that h is large enough to satisfy

ψG(h+ 1)2 ≤ R2
G/T . Then,

MemoryRegT ≤ 3αhD2R2
H +

3dh2L2
effRG

ακ1/2
log (1 + T ) .
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Proof of Theorem 7.4

Here, we present a proof of Theorem 7.4. Most proofs are ommitted, and a full proof can be
found in Section 4 of Simchowitz [2020].

As in the analysis of Oco with memory, we decompose the with-memory regret into
standard Oco regret and a term containing the effect of memory:

MemRegT =
T∑
t=1

Ft[zt:t−h]− ft(zt)︸ ︷︷ ︸
(i)

+
T∑
t=1

ft(zt)− inf
z∈C

T∑
t=1

ft(z)︸ ︷︷ ︸
(ii)

, (7.6)

Term (ii), the standard Oco regret against the ft sequence, can be upper bounded by argu-
ments which mirror the online Newtop step algorithm [Hazan et al., 2007]; see Simchowitz
[2020, Section 4.1] for proof details and a formal statement.

To bound term (i), the central idea is to replace a bound in terms of Euclidean movement
(which is insufficient, in view of Theorem 7.3) with an upper bound in terms of a more
geometry away quantity. Specifically, we show that

Lemma 7.3. For all t ≥ 1, we have

|Ft[zt:t−h]− ft(zt)| ≤ LeffRG

h∑
i=1

‖Yt−i(zt − zt−i)‖

Therefore, by the triangle inequality, rearranging summations, and the assumption zs = z1

for s ≤ 1,

T∑
t=1

Ft[zt:t−h]− ft(zt) ≤ hLeffRG

T∑
s=1−h

h−1∑
i=1

‖Ys(zs+i+1 − zs+i)‖ · I1≤s+i≤t−1.

The important point here is that we need only control iterate of movement in the norms
weighted by the sequence of matrices (Yt). In particular, if the matrices Yt tend not be be
large in certain directions, then we can tolerate more iterate movement in those directions
as well. We remark that Lemma 7.3 is a consequence only of the OcoAM loss structure,
and does depend on our selection of Semi-Ons as the learning algorithm.

Our use of Semi-Ons becomes important in the proof of the next lemma. Here, we use
the Semi-Ons update rule to upper bound the terms ‖Ys(zt+1 − zt)‖2:

Lemma 7.4. Adopt the convention Λs = Λ1 for s ≤ 0. Further, consider s ≤ t, with t ≥ 1
and s possibly negative. Then,

‖Ys(zt+1 − zt)‖2 ≤ ηLefftr(YsΛ
−1
s Ys)

1/2tr(H>t Λ−1
t Ht))

1/2.
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Therefore, by Cauchy Schwartz (recalling the shorthand ∇t = ∇ft(zt))

MoveDiffT ≤ ηh2LeffRG ·

√√√√√√√
T∑

t=1−h

tr(YtΛ
−1
t Yt)︸ ︷︷ ︸

(iii.a)

·

√√√√√√√
T∑
t=1

tr(∇>t Λ−1
t ∇t)︸ ︷︷ ︸

(iii.b)

.

In words, we pay for the movement of the gradients ∇t in the norm induced by the
preconditioner Λ−1

t , and the norm of the matrices Yt in the same norm.
Term (iii.b) is quite standard in the analysis of second order methods, and in fact it

appears in the analysis of term (i). It relies on two observations. First, the structure of the
OcoAM losses implies that

∇ft(z)∇ft(z)> � L2
effH>t Ht,

where Leff was the effective Lipschitz constant defined in Definition 7.5. The second is
a popular argument knows as the log-det potential lemma. We state (without proof) a
strengthening of a more common statement:

Lemma 7.5 (Log-det potential, Lemma 4.5 in Simchowitz [2020]). Consider a general se-
quence of matrices (Λ̃t) satisfying Λ̃t � c

∑T
t=1 H>t Ht + λ0. Then,

T∑
t=1

tr(HtΛ̃
−1
t H>t ) ≤ d

c
log

(
1 +

cTR2
H

λ0

)
(7.7)

In particular, the above holds with Ht replaced by ∇t, provided the RHS is scaled by a factor
of L2

eff .

Thus taking Λ̃t = Λt = λI+
∑T

t=1 H>t Ht allows us to bound term (iii.b) by a term which
grows at most logarithmically in the horizon.

We now turn to term (iii.a), and we adopt an arugment of the same flavor. The problem
is that term (iii.a) considers movement of the Yt-matrices, whereas Eq. (7.7) is consider Ht.
Recall the relationship between the two:

Ht =
h∑
i=0

G[i]Yt−i.

In other words, Ht arises by convolving Yt with the Markov operator G.
Recall the input-recoverability definition (Definition 7.3), which states that convolution

with G is well conditioned map. In particular, this implies that sequence of inputs can be
recovered uniquely from the sequence of outputs under G. By extension, it should be the
case that the sequence (Yt) can be recovered by the sequence of convolutions (Ht) (taking
into account finite memory h, among other things). This does indeed turn out to be true,
and leads to the following bound:
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Lemma 7.6. Suppose that κ = κ(G) > 0, and define cψ;t := 1 ∨ tψG(h+1)2

hR2
G

. Then, for any

Y1−h,Y2−h, . . . ,Yt, the matrices Hs =
∑[h]

i=0G
[i]Ys−i satisfy

t∑
s=1

H>s Hs �
κ

2
·

(
t∑

s=1−h

Y>s Ys

)
− 5hR2

Hcψ;tI.

In particular, for a sufficiently large λ so as to dominate the remainder term, we can
show that

Λt = λI +
t∑

s=1

H>s Hs % λ+ κ
t∑

s=1

Y>s Ys.

Therefore, we can apply the log-det potential argument, Lemma 7.5 with Y replacing Ht to
obtain:

T∑
t=1−h

tr(YtΛ
−1
t Yt) .

d

κ
log

(
1 +

κTR2
Y

λ

)
.

Thus, we have established that both terms (iii.a) and (iii.b) are at most logarithmic in the
problem horizon, completing the challenging portion of the proof.

Specializing to the control setting

To conclude, we specialize Theorem 7.4 to the control setting. To do, we instantiate the
bounds in Definition 7.5 as follows.

Lemma 7.7 (Parameter Bounds). Consider the embedding outlined in Definition 7.2. Recall
Rnat = maxt ‖vKt ‖ and M = (m,RM); assume for normalization that Rnat, RM ≥ 1, and
ψG, R. Then, the following bounds hold:

(a) We have D ← max{‖z − z′‖ : z, z′ ∈Me} ≤ 2
√
mRM.

(b) We have RY ←
√
mRnat.

(c) We have RY,C ← RMRnat.

(d) RG ← RG, ψG ← ψG, and RH ←
√
mRGRnat

(e) We have Rv ← Rnat, and Leff ≤ 2LRGRMRnat.

Moreover, d = mdudω

Proof. We proceed item by item:
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(a) We have D ≤ 2 max{‖z‖ : z ∈ Me}. For z = e(M), have that ‖z‖ = ‖M‖F ≤√
m‖M‖`1,op ≤

√
mRM.

(b) Let z = e(M). Then, ‖Ytz‖ = ‖
∑m−1

i=0 ω
nat
t−iM

[i]‖ ≤ Rnat‖M‖`1,op ≤
√
mRnat‖M‖F.

Since ‖z‖2 = ‖M‖F, the bound follows.

(c) As argued above, ‖Ytz‖op ≤ Rnat‖M‖`1,op ≤ RMRnat for M ∈M.

Items (d) and (e) follow directly from the assumptions.

With the above subsitutions, we obtain that

MemoryRegT . (α
√
κ)−1 max{m,h}3dudyR

3
GR

2
natR

2
ML

2 log (1 + T )).

Theorem 7.1 then follows by combining the reduction Algorithm 6.4, and taking κ & 1/(1 +
‖K‖op) due to Lemma 7.2.

7.4 Fast Rates for Unknown Dynamics
Next, we turn to systems with unknown dynamics. Again, we apply the reduction from
the previous chapter, this time for unknown systems (Algorithm 6.5). And, as in the previ-
ous section, we instantiate the reduction by invoking Semi-Ons as the learning subroutine.
Specifically, we instantiate Algorithm 6.5, feeding in the the losses

f̂t(M) := `t

(
v̂t +

h∑
i=0

Ĝ[i]

m−1∑
j=0

M [j]ŷKt−i−j

)
.

into the Semi-Ons algorithm Algorithm 7.1. Note that these loss functions have the requisite
OcoAM form. Specificially, given the embedded z = e(M) parameter, we set Yt to be matrix
so that

Ytz =
m−1∑
j=0

M [j]ŷKt−j.

Note that, with this substitution, we can express f̂t as functions of the parameter z ∈ C with

f̂t(z) = `t

(
v̂t + Ĥtz

)
, where Ĥt =

h∑
i=0

Ĝ[i]Yt−i.

The remainder of the section analysis of the above proposal, providing a proof sketch of
Theorem 7.2.
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A more careful regret decomposition

To establish a
√
T -regret scaling,we establish an ε2-error sensitivity to ε-approximate esti-

mates of the Markov operator GK . Precisely, letting εG denote the upper bound on the
estimation error ‖Ĝ−GK‖`1,op derived in Section 6.4, we show that the regret scales like

N + Tε2G, where εG ∼ 1/
√
N.

Tuning N
√
T yields

√
T regret. Note that, as in Section 6.4, the “regret term” turns out to

be second order relative to the sensitivity to error εG.
Implementation of this argument necessitates a more careful regret decomposition. Recall

from the proof of Proposition 6.7 in Section 6.4 the loss functions

F̂t[Mt:t−h] = Ft[Mt:t−h | ŷK1:t, v̂
K
t , Ĝ], f̂t(M) = F̂t[M, . . . ,M ]

F ?
t [Mt:t−h] = Ft[Mt:t−h | ŷK1:t,v

K
t , GK ], f ?t (M) = F ?

t [M, . . . ,M ]

Ft[Mt:t−h] = Ft[Mt:t−h | yK1:t,v
K
t , GK ], ft(M) = Ft[M, . . . ,M ].

Again, the “hat” sequence are the losses based on empirical estimates used by the learning
algorithm, the “starred” sequence is a finite-memory approximation of the loss the algorithm
actual incurs (using the correct Markov parameter and affine term), and the Ft, ft sequence
captures the loss the algorithm would incur if it had used the correct values of yK1:t.

In Eq. (6.37) in the previous chapter, it is shown that

NscRegT (alg) ≤ RT (M) + 4N(R2
G +R2

nat) + 8LTR2
natR

2
MR

2
G (ψG(h+1)

RG
+ ψ(m)

RM
) ,

where RT (M) :=
T∑

t=N+1

F ?
t [Mt:t−h]− inf

M∈M

T∑
t=N+1

ft(M).
(7.8)

An important step in obtaining fast rates is overparametrization. The algorithm still updates
parameters in the Drc setM = M(m,RM), but we introduce for the purpose of analysis
a slightly smaller setM0 =M(m0, R0), with m0 ≤ m and R0 ≤ RM. Subsituting inM0 in
forM in Eq. (7.8) and using RM ≥ R0 gives:

NscRegT (alg) ≤ RT (M0) + 4N(R2
G +R2

nat) + 8LTR2
natR

2
MR

2
G (ψG(h+1)

RG
+ ψ(m0)

RM
) (7.9)

We then fix a comparator M? ∈M, to be chosen carefully, and decompose:

RT (M0) =
T∑

t=N+1

F ?
t [Mt:t−h]−

T∑
t=N+1

f ?t (M?)︸ ︷︷ ︸
(i)

=
T∑

t=N+1

ft(M?)− inf
M0∈M0

T∑
t=N+1

f ?t (M0)︸ ︷︷ ︸
(ii)
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There are two key differences between this regret decomposition and the one considered in
the previous chapter:

• Term (ii): Rather than considering the worst case difference between the starred and
unstarred sequence supM∈M |

∑T
t=N+1 f

?
t (M) − ft(M)|, we consider the difference be-

tween the best in hindsight comparatorM0 ∈M0, and the carefully chosen comparator
M? ∈M. M? is chosen as a function of the optimal M0 so that the performance of M?

with inputs ŷKt is ε2G-away from the performance of using controller M0 with the true
inputs yKt . We will call this the comparator error.

• Term (i): Rather than relating the regret on the “star” sequence to the regret on the
“hat” sequence, we establish a bound directly on the “star” sequence. This involves
accounting for the error incurred by running an online learning algorithm on the f̂
sequence, even though the loss is suffered on the f ? sequence. We call this term regret
sensitivity. Importantly, the comparator chosen in M? ∈M.

We now state upper bounds on terms (i) and (ii), starting with term (ii); proofs are
given in the subsequent subsections. Throughout, let εG ≥

√
T be an upper bound on

‖Ĝ−GK‖`1,op. We also define, for M ∈M,

ût(M) :=
m−1∑
i=0

M [i]ŷKt ,

which is the input the learning algorithm selects, based on estimates of yKt , with Drc
parameter M .

Proposition 7.8. Suppose the set M = M(m,R) over parameterizes M0 = M(m0, R0)
such that m ≥ 2m0 + h and RM ≥ 2R0. Finally, suppose that ψG(h+ 1) ≤ ε2G, and that, as
in Section 6.4, εG ≤ 1

RM
. Then,

T∑
t=N+1

f ?t (M?)− ft(M0) ≤ inf
τ∈(0,1]

16LR3
MR

2
G

τ
· Tε2G + Lτ

T∑
t=N+1

‖ut − ût(M?)‖2

+ 64LR2
GR

2
MR

2
nat(m+ h).

The propositions takes advantage of the overparametrization to select M? to capture the
first-order effects of the errors between ŷKt and yKt , leaving a second-order error Tε2G as a
remainder. The challenge is that errors ŷKt −yKt depend on feedback from the chosen inputs
ut, chosen as ut = ût(Mt) from changing Drc parameters. This makes it challenging to
capture all the first order effects in a single parameter. Thus, we incur a penalty for the
square differences

∑T
t=N+1 ‖ut − ût(M?)‖2 between the inputs ut selected, and those that

would have been chosen with fixed parameter M?. Our final bound leaves a free parameter
τ ∈ (0, 1] to trade off between the Tε2G-sensitivity term and the cumulative movement penalty.

We now turn our attention to the term (i):
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Proposition 7.9. Let κ = κ(GK) be the input recoverability parameter of GK (Defini-
tion 7.3), which we know is bounded below by 1

4
min{1, ‖K‖2

op}, in view of Lemma 7.2.
Moreover, suppose that εG is selected so that εG ≥

√
T . Then, for an appropriate choice

of λ, η, the Semi-Ons subroutine enjoys

T∑
t=N+1

F ?
t [Mt:t−h]−

T∑
t=N+1

f ?t (M?) ≤ C log(T )
dωdym

3/2L2R3
GR

3
natR

2
M

ακ1/2

(
Tε2G + h2(R2

G +Rnat)
)

− ν?
T∑

t=N+1

‖ut − û(M?)‖2,

where above, C is a universal constant, and ν? & α
√
κ/
√
mRnat.

The above bound attains the desired Tε2G sensitivity, and also contains the negative
regret term necessary to offset the movement cost from the previous proposition. We can
then bound RT (M0) by combining the above two propositions, choosing the free paramaeter
τ in Proposition 7.8 to cancel out ν? in Proposition 7.9. 4 Theorem 7.2 follows by combining
the above two propositions with the unknown-system reduction given by Eq. (7.9), using the
arguments in that proposition to bound the magnitude of εG in terms of the sample size N .
See Simchowitz [2020, Appendix D.5] for details.

Bounding Regret Sensitivity (Proposition 7.9)

We begin by adressing term (i), the regret sensitivity. To obtain our desired regret bound,
we must establish that an error of ‖Ĝ−GK‖`1,op ≤ εG translates into a regret of Tε2G.

The proof of this sensitivity bound for Semi-Ons is quite involved; we state the bound
and its setup at the end of the section, along with the necessary specializations to the control
setting.

We begin with a statement and proof a simple bound for a toy setup that illustrates the
key ideas. The key observation is that we can view the term

T∑
t=N+1

F ?
t [Mt:t−h]− inf

M∈M

T∑
t=N+1

f ?t (M).

as if we are running want to attain low regret on a sequence (F ?
t , f

?
t ), but observe perturbed

losses (f̂t). In particular, we can view the gradient ∇f̂t(M) of the “hat“ sequence as a
corrupted gradient of the gradient ∇f̂t(M) of the star sequence; Leveraging smoothness
(Assumption 7.2), the difference in the gradients scales linearly in εG.

Thus, we aim to understand the sensitivity of online learning to ε-corruped gradients.
For simplicity, we study the robustness of online gradient descent (Algorithm 6.1) when

4We use that α ≤ L so that our choice of τ lies in (0, 1]
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the losses f ? are strongly convex — the extension to general OcoAM losses follows from
the same sorts of arguments detailed in the previous section (again, see Simchowitz [2020,
Section 5] for details).

It is already known that gradient descent enjoys quadratic error sensitivity in the stochas-
tic optimization setting [Devolder et al., 2014]. The following result extends the guarantee
to online learning:

Proposition 7.10 (Robustness of Strongly Convex OGD). Let C ⊂ Rd be convex with
diameter D, and let (f ?t ) denote a sequence of α-strongly convex and L-Lipschitz functions
on C. Consider the gradient update rules zt+1 = ProjC(zt − ηt+1(∇f ?t (zt) + εt)), where εt is
an arbitrary error sequence. Then, for step size ηt = 3

αt
,

T∑
t=1

f ?t (zt)− inf
z∈C

T∑
t=1

f ?t (z) ≤ 6L2

α
log(T + 1) + αD2 +

6

α

T∑
t=1

‖εt‖2
2 .

In fact, the following, stronger “negative regret” bound holds for any comparator z ∈ C:
T∑
t=1

f ?t (zt)− f ?t (z) ≤ 6L2

α
log(T + 1) + αD2 +

6

α

T∑
t=1

‖εt‖2
2 −

α

6

T∑
t=1

‖zt − z‖2
2.

In particular, we observe that if the errors satisfy ‖εt‖ ≤ ε, the, the regret scales like
log T + Tε2, yielding the desired quadratic error sensitivity. Interestingly, as in the “slow-
rate” regime, the regret term (log T ) is dominated by the sensitivity term (Tε2) in the natural
regime where ε ∼ 1/

√
T .

The second bound incorporates a negative term, which penalizes the overall quadratic
movement of the iterates

∑T
t=1 ‖zt − z‖2

2. This term will prove useful in the following sub-
section.

Proof of Proposition 7.10. The proof is “by the book”, following the standard analysis of
online gradient descent for strongly convex losses. Our proof follows the presentation of
Hazan [2019]. Let ∇̂t := ∇ft(zt) + εt denote the corrupted gradients, and let ∇t := ∇ft(zt)
the uncorrupted. Fix the comparator point z ∈ C. From [Hazan, 2019, Eq. 3.4], strong
convexity of f ?t implies that

2(f ?t (zt)− f ?(z)) ≤ 2∇>t (zt − z)− α‖zt − z‖2
2. (7.10)

Recall that the corrupted gradient updates are ProjC(zt−ηt+1(∇f ?t (zt)+εt)) = ProjC(zt−
ηt+1∇̂t). The Pythagorean Theorem implies

‖zt+1 − z‖2
2 ≤ ‖z− z − ηt+1∇̂t‖2

2 = ‖zt − z‖2
2 + η2

t+1‖∇̂t‖2 − 2ηt+1∇̂
>
t (zt − z), (7.11)

which can be re-expressed as

−2∇̂
>
t (zt − z) ≥ ‖zt+1 − z‖2

2 − ‖zt − z‖2
2

ηt+1

− ηt+1‖∇̂t‖2 (7.12)
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Furthermore, using the elementary inequality ab ≤ a2

2τ
+ τ

2
b2 for any a, b and τ > 0, we have

that for any τ > 0

−〈∇̂t, zt − z〉 = −〈∇t, zt − z〉 − 〈εt, zt − z〉

≤ − 〈∇t, zt − z〉+
ατ

2
‖zt − z‖2

2 +
1

2ατ
‖εt‖2

2 (7.13)

Combining Equations (7.12) and (7.13), and rearranging,

2∇>t (zt − z) ≤ ‖zt − z‖
2 − ‖zt+1 − z‖2

ηt+1

+ ηt+1‖∇̂t‖2 +
1

τα
‖εt‖2

2 + τα‖zt − z‖2

≤ ‖zt − z‖
2 − ‖zt+1 − z‖2

ηt+1

+ 2ηt+1L
2 + (2ηt+1 +

1

τα
) ‖εt‖2

2 + τα‖zt − z‖2.

where we used ‖∇̂t‖2
2 ≤ 2(‖∇f(zt)‖2

2 + ‖εt‖2
2) ≤ 2(L2

f + ‖εt‖2
2). Combining with (7.10), we

have
T∑
t=1

f ?(zt)− f ?(z) ≤ 1

2

T∑
t=1

(
1

ηt+1

− 1

ηt
− (1− τ)α)‖zt − z‖2

2

+
T∑
t=1

2ηt+1L
2 + (

1

τα
+ 2ηt+1) ‖εt‖2

2 +
‖z1‖2

2

η1

Finally, let us set ηt = 3
αt
, τ = 1

3
, and recall D = Diam(C). Then, we have that

• ( 1
τα

+ 2ηt+1) ≤ 6
α
, and 2

∑T
t=k+1 ηt+1L

2
f ≤ 2 · 3L2

f log(T + 1)/α

• ‖z1‖22
η1
≤ αD2/3.

• Finally,

1

2

T∑
t=1

(
1

ηt+1

− 1

ηt
− (1− τ)α)‖zt − z‖2

2 =
1

2

T∑
t=1

(α/3− 2α/3)‖zt − z‖2
2,

which is equal to −α
6

∑T
t=1 ‖zt − z?‖2.

The bound follows by tying up loose ends.

Formal Statements for Semi-Ons

We begin by a formal statement of the regret for Semi-Ons in a general setup. Here, we run
Semi-Ons on approximate losses of the form

f̂t(z) = `t

(
v̂t + Ĥtz

)
, where Ĥt =

h∑
i=0

Ĝ[i]Yt−i,
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However, we are interested in regret on “exact” losses

F ?[zt:t−h] = `t

(
vt +

h∑
i=0

G[i]Yt−izt−i

)

f ?t (z) = `t

(
vt + Ĥtz

)
, where Ht =

h∑
i=0

G[i]Yt−i.

Under the correspondence z = e(M), the above recovers the true losses F ?
t , f

?
t in our control

regret decomposition with the subsitutions Ytz =
∑m−1

j=0 M [j]ŷKt−j, v̂t ← v̂Kt , vt ← vKt ,
G← GK , and Ĝ← Ĝ. To state the general bound, we introduce the following parameters:

Definition 7.6 (Bounds on Relevant Parameters). We assume C contains the oirgon.

• The diameter D := max{‖z − z′‖ : z, z′ ∈ C}, Y -radius RY := maxt∈[T ] ‖Yt‖op, and
RY,C := maxt maxz∈C ‖Ytz‖.

• We define Rv := maxt∈[T ] max{‖vt‖2, ‖v̂t‖2}, RG := max{1, ‖G‖`1,op, ‖Ĝ‖`1,op}.

• Define the the H-radius RH = RGRY , and define the effective Lipschitz constant
Leff := Lmax{1, Rv +RGRY,C}.

• We let εG be an upper bound so that ‖Ĝ−G?‖`1,op ≤ εG, maxt≥1 ‖vt− v̂t‖2 ≤ cvεG for
some cv > 0, and that Ĝ[i] = 0 for all i > h.

Our main guarantee is as follows:

Theorem 7.5 (Theorem 2.2a in Simchowitz [2020]). Suppose that the losses `t satisfy the
strong convexity and moothness assumptions Assumptions 7.1 and 7.2. Then for any com-
parator z? ∈ C, the following regret bound holds

T∑
t=1

F ?
t (zt:t−h)− f ?t (z?) + ν?

T∑
t=1

‖Yt(zt − z?)‖2

. log(1 + T )

(
C1

ακ1/2
+ C2

)(
Tε2G + h2(R2

G +RY )
)
,

where C1 := (1 +RY )RG(h+ d)L2
eff , C2 := (L2c2

v/α + αD2), and ν? = α
√
κ

48(1+RY )
.

Note that, in the control setting Yt(z) = ût(M) for z = e(M). Hence, the negative
regret term becomes

∑T
t=1 ‖Yt(zt− z?)‖2 =

∑T
t=1 ‖û(Mt)− û(M?)‖2 =

∑T
t=1 ‖ut− û(M?)‖2.

Proposition 7.9 follows by instantiating the above bound for times t = N + 1, N + 2, . . . , T
with the following lemma:
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Lemma 7.11 (Parameter Bounds for Unknown Setting). Assume Rnat ≥ 1, and that the
assumptions of the previous proposition are satisfied. Then, for t0 := N + m + h + 1, the
following hold

(a) We have D = max{‖z − z′‖ : z, z′ ∈Me} ≤
√
mRM.

(b) We have RY := maxt≥t0 ‖Yt‖op ≤ 2
√
mRnat.

(c) We have RY,C = maxt≥t0 maxz∈C ‖Ytz‖ ≤ 2RMRnat.

(d) For G = Gex→v, we have RG = |Ĝex→(y,u)‖`1,op ∨ ‖Gex→v‖`1,op ≤ 2Rπ0, ψG ≤ ψπ0, and
RH ≤ 2

√
mRπ0Rnat

(e) We have Rv := maxt≥t0 ‖vKt ‖ ∨ ‖v̂Kt ‖ ≤ 2Rnat, and Leff := 8LRπ0RMRnat.

(f) We can take cv to be 3RMRnat.

Moreover, d = dωdym.

Sketch. The proof is analogous to that of Lemma 7.7, but inflating parameters as needed
due to approximate quantities, as in Lemma 6.9.

Bounding comparator error (Proposition 7.8)

Next, we describe how to bound the comparator error

(ii) = inf
M∈M

T∑
t=N+1

f ?t (M)− inf
M0∈M0

T∑
t=N+1

ft(M0),

which accounts for using ŷKt instead of yKt in the Drc parameterization. Going forward, let
M0 witness the infininum ofM0 ∈M0 on the sum on the unstarred sequence

∑T
t=N+1 ft(M0).

We shall construct a carefully tayloredM? ∈M which attains comparable performance; that
is, we bound

T∑
t=N+1

f ?t (M?)− ft(M0).

Define the Drc inputs based on the estimated and the true ŷK ’s,

ûs(M) =
m−1∑
i=0

M [i]ŷKs−i, us(M) =
m−1∑
i=0

M [i]yKs−i.

The following lemma shows that the comparator error is bounded by the cumulative differ-
ence in these inputs:
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Lemma 7.12. For any N0 ≥ N

‖
∑T

t=N0+1 f
?
t (M?)− ft(M0)‖ ≤ 8LR2

GRMRnat

T∑
t=N0+1−h

‖ût(M?)− ut(M0)‖.

Proof. Arguing as in Eq. (6.39), we have

‖
∑T

t=N0+1 f
?
t (M?)− ft(M0)‖ ≤ 8RGRMRnatL

∑T
t=N+1 ‖v?t (M?)− vt(M0)‖,

where v?t (M) = vKt +
∑h

i=0 ût−i(M) and vt(M) = vKt +
∑h

i=0G
[i]
Kut−i(M). The bound follows

by summing and using ‖GK‖`1,op ≤ RG.

The following lemma controls the terms
∑T

t=N0+1−h ‖ût(M?)− ut(M0)‖:

Lemma 7.13. Set N0 = N +m+ 2h ≥ N . Moreover, suppose the setM =M(m,R) over
parameterizesM0 =M(m0, R0) such that m ≥ 2m0 +h and RM ≥ 2R0. Finally fix an error
bound εG such that ‖Ĝ − GK‖`1,op ≤ εG ≤ 1

RM
, and ψG(h + 1) ≤ ε2G. Then, the following

bound holds for any τ ≤ 1/2RnatRM:

T∑
t=N0+1

‖ût(M?)− ut(M0)‖ ≤ R2
MTε

2
G

τ
+ τ

T∑
t=N0+1

‖ût(Mt −M?)‖2
F.

We prove Lemma 7.13 just below. The proof carefully expands the erros between ŷKt
and yKt in terms of past inputs us, s ≤ t, which take the form us = ûs(Ms). We then
show that, if instead the inputs took the form ûs(M0) for the fixed controller M0 ∈ M0,
then we can find an overparametrized M? ∈ M for which ût(M?) ≈ ut(M0) for all t, giving∑T

t=N0+1 ‖ût(M?)−ut(M0)‖ ≈= 0. Accouting for the real inputs us = ûs(Ms), we suffer the
differences between Ms−M0 ≈Ms−M?. A key subtle point is to maintain the penalty for
these differences as arguments of the selected inputs ût(·).

Combining the two lemmas with the reparametrization τ ← τ/8R2
GRMRnat

5 yields

T∑
t=N0+1

‖ût(M?)− ut(M0)‖ ≤ inf
τ≤1

16LRnatR
3
MR

2
GTε

2
G

τ
+ Lτ

T∑
t=N+1

‖Mt −M?‖2
F.

Using nonnegativity of the losses ft and using an upper bound on f ?t (M?) from Lemma 6.9,

T∑
t=N+1

f ?t (M?)− ft(M0) ≤ inf
τ≤1

16LRnatR
3
MR

2
GTε

2
G

τ
+ Lτ

T∑
t=N+1

‖Mt −M?‖2
F

+ 64LR2
GR

2
MR

2
nat(m+ h).

This completes the proof of Proposition 7.8.
5For which it is enough that the reparametrized τ is less than or equal to one
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Proof of Lemma 7.13

We begin by developing

ût(M?)− ut(M0) =
m−1∑
i=0

M [i]
? ŷKt−i −M

[i]
0 yKt−i

=
m−1∑
i=0

(M? −M0)[i]ŷKt−i +M
[i]
0 (ŷKt−i − yKt−i).

Let us star examining the difference between the yK and ŷK terms. Introducing ∆G =
Ĝ−GK ,

ŷKt − yKt =
h∑
i=0

(Ĝ[i] −G[i]
K)ut−i +

∑
i>h

(Ĝ[i] −G[i]
K)ut

=
h∑
i=0

∆
[i]
Gut−i ± ψG(h+ 1)Ru,

where ±c denotes a term with Euclidean norm bounded by c. Here, we take Ru to be an
upper bound on maxt ‖ut‖ (to be instantiated later), and recall ψG(n) =

∑
i>n ‖Gh

K‖op.
For t ≥ N + m, ut is precisely equal to ût(Mt), since inputs are selected based on the

online learning procedure with parameter Mt. Hence, for t ≥ N +m+ h,

ŷKt − yKt =
h∑
i=0

∆
[i]
G ût(Mt)± ψG(h+ 1)Ru,

and therefore, for t ≥ N +m+ 2h,

ût(M?)− ut(M0) =
m−1∑
i=0

(M? −M0)[i]ŷKt−i +
m−1∑
i=0

h∑
j=0

M
[i]
0 ∆

[j]
G ût−i−j(Mt−i−j)±RMRuψG(h+ 1)

This expression may seem daunting, but the essential idea is to try to “fold” most of the
second term into the first. To do so, let us add and subtract ût(M0):

ût(M?)− ut(M0) =
m−1∑
i=0

(M? −M0)[i]ŷKt−i +
m−1∑
i=0

h∑
j=0

M
[i]
0 ∆

[j]
G ût−i−j(M0)

+
m−1∑
i=0

h∑
j=0

M
[i]
0 ∆

[j]
G ût−i−j(Mt−i−j −M0) +RMRuψG(h+ 1).

The above display uses the fact that ût(·) is a linear function. The most important prt of
the argument is the following lemma:
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Lemma 7.14. Recall the overparametrized Drc setM =M(m,R), and underparametrized
Drc set M0 =M(m0, R0), such that m ≥ 2m0 + h and RM ≥ 2R0, and ‖Ĝ − GK‖`1,op ≤
εG ≤ 1

RM
. Then, there is a choice of M? ∈M such that

m−1∑
i=0

(M? −M0)[i]ŷKt−i +
m−1∑
i=0

h∑
j=0

M
[i]
0 ∆

[i]
G ût−i−j(M0)

is identically zero. Moreover, the choice of M? satisfies

‖M? −M0‖`1,op ≤ R2
MεG + (8LR2

GRMRnat)

Proof. Expanding the term ût−i−j(M0), it suffices to find an M? such that

m−1∑
i=0

M [i]
? ŷKt−i =

m−1∑
i=0

M
[i]
0 ŷKt−i +

m−1∑
i=0

h∑
j=0

m−1∑
`=0

M
[i]
0 ∆

[j]
GM

[`]
0 ŷKt−i−j−`.

Since M0 ∈ M0 =M(m0, R0) is of a smaller length, the i and ` indices on the RHS can be
taken to run from 0, 1, . . . ,m0 − 1. Rearranging that sum, it suffices to find M? such that

m−1∑
i=0

M [i]
? ŷKt−i =

2m0+h−1∑
i=0

(
M

[i]
0 +

∑
j1+j2+j3=i

Ij2≤hM
[j1]
0 ∆

[j2]
G M

[j3]
0

)
ŷKt−i.

Hence, we can simply select

M [i]
? = M

[i]
0 +

∑
j1+j2+j3=i

Ij2≤hM
[j1]
0 ∆

[j2]
G M

[j3]
0 , i > 0.

Then, M [i]
? = 0 for all i ≥ 2m0 + h. Moreover,

‖M? −M0‖`1,op =
∑
i

∑
j1+j2+j3=i

Ij2≤h‖M
[j1]
0 ∆

[j2]
G M

[j3]
0 ‖

≤ ‖M0‖2
`1,op‖∆G‖`1,op ≤ R2

0εG ≤ RMR0 ≤ R2
MεG,

where we use that R0 ≤ RM, and ‖M0‖`1,op ≤ R0. In particular, if εG ≤ 1/RM, then
‖M?‖`1,op ≤ R + ‖M? −M0‖`1,op ≤ 2R0.

Selecting M? as in the above lemma, we find that for t ≥ N +m+ 2h, we find that

ût(M?)− ut(M0) =
m−1∑
i=0

h∑
j=0

M
[i]
0 ∆

[j]
G ût−i−j(Mt−i−j −M0)±RMRuψG(h+ 1)

(a)
=

m−1∑
i=0

h∑
j=0

M
[i]
0 ∆

[j]
G ût−i−j(Mt−i−j −M?)± (R3

Mε
2
GRy +RMRuψG(h+ 1)),
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where Ry is an upper bound on maxt ‖ŷKt ‖, and where inequality (a) adds and substracts
ût−i−j(M? −M0), and invokes Lemma 7.14 to upper bound its contribution by

‖M0‖`1,op · ‖∆G‖`1,op ·Ry‖M? −M0‖`1,op ≤ R3
Mε

2
GRy.

Carefully6 summing the bound over t = N0 + 1, N0 + 2, . . . , T where N0 = N +m+ 2h ≥ N
yields:

T∑
t=N0+1

‖ût(M?)− ut(M0)‖

≤ ‖M0‖`1,op‖∆G‖`1,op

(
T∑

t=N+1

‖ût(Mt −M?)‖

)
+ T (R3

Mε
2
GRy +RMRuψG(h+ 1))

≤ RMεG

(
T∑

t=N+1

‖ût(Mt −M?)‖

)
+ T (R3

Mε
2
GRy +RMRuψG(h+ 1)).

Using the elementary inequality that xy ≤ x2

2τ
+ τy2

2
for any τ > 0, we find

T∑
t=N0+1

‖ût(M?)− ut(M0)‖ ≤ TR2
Mε

2
G

2τ
+ τ

T∑
t=N+1

‖ût(Mt −M?)‖2

+ T (R3
Mε

2
GRy +RMRuψG(h+ 1)).

To conclude, we introduce a number of numerical simplifications: the arguments of Sec-
tion 6.4 to bound Ru ≤ 2RnatRM and Ry ≤ 2Rnat, invoke the assumption that τ ≤
1/4RYRM ≤ 1, ψG(h+ 1) ≤ ε2G, and Rnat ≥ 1. This lets us bound

T∑
t=N0+1

‖ût(M?)− ut(M0)‖ ≤ 2R2
MTε

2
G

τ
+ τ

T∑
t=N0+1

‖Mt −M?‖2
F.

7.5 Fast Rates Beyond Static Feedback
It is natural to understand what occurs for the general Drc parametrizations, detailed in
Section 6.5, which rely on more than static feedback. In this section, we sketch two avenues
to extend our results to that section. The reader may wish to reread Section 6.5 for a review
of notation.

6The careful summation groups together all appearance of Mt for a given t in the double sum, avoiding
additional factos of m and h and picking up `1, op-norms of relevant operators.
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One possibly is to apply the same Semi-Ons algorithm and analysis, but with the more
general Drc parametrization. All that must be checked is that the suitable generalization of
the GK Markov operator - Gex→v - also satisfies the input-recoverability property κ(Gex→v) >
0. As shown in Lemma 7.1, it is sufficient that the Z-transform (Definition 7.4) of Gex→v be
well conditioned on the unit circle. At the end of the chapter, this is verified for the special
case of the exact Youla parametrization, when no eignevalues of the dynamic matrix A? lie
on the complex unit circle.

It is unclear whether the condition of Lemma 7.1 can be verified more generally. However,
fast rates can be attained for arbitrary systems in a slightly more restrictive noise model:
semi-adversarial noise.

Fast Rates under semi-adversarial noise

Here, we (very concisely) describe the semi-stochastic noise model, which permits fast learn-
ing rates for general stabilizing Drc parametrizations. Our discussion summarizes Appen-
dices E and F of Simchowitz et al. [2020].

Under semi-adversarial noise, we assume that the noise variables et and wt have a stochas-
tic, and nonstochastic component. Previously, all assumptions places on et and et were
through the system responses: ynat

t for stable sytems, yKt under static feedback, and ωπ0t
under more general parametrizations. Here, the assumption is placed on the noise process
itself:

Assumption 7.5. We assume that the noise terms decompose into adversarial and stochastic
sequences wt = wst

t +wst
t and et = est

t +est
t . We assume that the stochastic noises are (wst

t , e
st
t )

are independent across t (and of the adversarial components), mean-zero, and satisfy

E
[[

wst
t

est
t

] [
wst
t

est
t

]]
� σ2

stI, ∀t.

Assumption 7.5 essentially means that the adversary’s choice of noise is perturbed by
some random and well conditioned component. The independence of the noise can be relaxed
considerably (see Simchowitz et al. [2020, Assumption 6b]).

Let (Ft)t≥1 denote the filtration generated by the stochastic component of the noise. 7

Then, one can show that one can still achieve fast rates if, for some k = m + 2h, it holds
that

E[ft(M) | Ft−k] is αf (m,h)-strongly convex, (7.14)

where ft(M) is the relavant cost function in the Drc-to-Oco-with-memory reduction. It is
show in Simchowitz et al. [2020, Appendix E] that this conditional strong convexity suffices

7We assume for simplicity that the adversarial components are decided before the game, and thus mea-
surable with respect to F0.
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for fast rates (scaled by 1
αf (m,h)

), using arguments similar to those earlier in this chapter. As
shown in that appendix, thistranslates (roughly) into regret squares of

poly(log T )

αf (m,h)
for known system dynamics.√

T

αf (m,h)
for unknown dynamics.

To evaluate the strong convex parameter αf , we require a few preliminaries. Specifically,
recall that Gex→v denotes the Markov response from exogenous inputs uex to input-outpairs
v = (y, u). IIn addition, let G(w,e)→ω describe the Markov response from the noise variables
(et,wt) to the ωnat

t -variable used for the Drc parametriation. We let G>(w,e)→ω denote the
Markov operator whose terms are the transposes of those in G(w,e)→ω.

Next, we let κs(G) idenote input-length analogue of the input-recoverability parameter
κ(G) defined in Definition 7.3, formally:

κs(G) = min
u0,u2,...

∞∑
t=0

∥∥∥∥∥
t∑
i=0

G[i]ut−i

∥∥∥∥∥
2

such that
∑
t

‖ut‖2 = 1 and ut = 0, ∀t > s.

In words, κs(G) gives a lower bound on the minimal response under a Markov parameter G
from a finite sequence of implues u0, u1, . . . , us.

With the above definitions in place, the strong convexity can be bounded as follows

Informal Theorem (Informal version of Theorem 11 in Simchowitz et al. [2020]). When
`t are α-strongly convex, we choose lookback k = m+ 2h, and m and h are sufficiently large
(relative to appropriate decay functions), it holds that we may select αf in Eq. (7.14) as8

αf (m,h) =
1

2
α · σ2

st · κm(Gex→v) · κm+h(G
>
(w,e)→ω).

Essentially, the above result replaces the full notion of input recoverability this this finite-
horizon analogues κm(·) and κm+h(·), at the expense of requiring well-conditioned (σ2

st > 0)
semi-stochastic noise. Of course, in our bounds, m and h are selected to be logarithmic in
the time horizon T . Thus, to achieve fast rates, it is necessary to understanding how poorly
κm(Gex→v) and κm+h(G

>
(w,e)→ω) degrade as a function for m and h.

An important observation which is true of all the example parametrizations of Section 6.5
is that, for Gex→v, or G>(w,e)→ω have the form of a Markov operator G ∈ G (n,m), where n ≥ m

(that is, output dimension exceeds input dimension), for which
8The version of the theorem stated in Simchowitz et al. [2020] is stated in terms of the Z-transformed

definition of κs, similar to Lemma 7.1.
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• G can be written as the Markov operator of an LTI system of finite order: that is,
there exists matrices A,B,C such that G[i] = CAi−1B for all i ≥ 1.

• The zero-index in the operator is full rank:

σmin(G[0]) > 0.

Indeed for all parametrizations described in Section 6.5, one can compute a finite order state
space represenation of the induced dynamics, and

G[0]
ex→v =

[
0
Idu

]
,
(
G

[0]
(w,e)→ω

)>
=

[
0
Idy

]
.

The key technical insight of Simchowitz et al. [2020, Appendix F] is that, for such systems,
κs(G) degrades at most polynomially in s:

Proposition 7.15 (Proposition F.1 in Simchowitz et al. [2020]). Let G ∈ G (n,m), n ≥ m
be a Markov operator with ‖G‖`1,op < ∞, such that G admits a finite-order state space
representation, and and σm(G[0]) > 0. Then, there exist constants c1 and c2 dependening
only on G such that

κs(G) ≥ c1 · s−c2 , ∀s > 0.

The above proposition is proven by a careful complex-analytic interpolation argument,
and the resulting constants c1 and c2 that emerge may be quite poor; for example, κs(G) be
degrade exponentially poorly in problem dimension. But, importantly, in terms of depen-
dence on s itself, κs(G) degrades at most polynomially. In particular,

αf (m,h) =
1

2
α · σ2

st ·
1

poly(m,h)
.

Since we end up selecting m and h to be logarithmic in the time horizon T , this degradation
of strong convexity suffices for fast rates.

Input-recoverability for exact youla

Lemma 7.16. Suppose that A? has no unit-norm eigenvalues. Then, for the exact Youla
Drc parametrization detailed in Definition 6.7. Then, for the Markov operator Gex→v in-
duced by the general Drc parametrization (see Section 6.5), it holds that:

min
z∈C:|z|=1

σmin(Ǧex→v(z)) > 0
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Proof. Recall that, in the exact Youla parametrization, there is a feedback matrix F such
that A? +B?F is stable. The Markov operator takes the form

Gex→v = Ii=0

[
0
Idu

]
+ Ii>0

[
C?
F

]
(A? +B?F )i−1B?.

Hence, the Z-transform can be computed to be

Ǧex→v(z) =

[
0
Idu

]
+

[
C?
F

]
ǍBF (z)B? =

[
C?ǍBF (z)B?

Idu + FǍBF (z)B?

]
,

where ǍBF = (zI − (A? +B?F ))−1. In particular,

min
z∈C:|z|=1

σmin(Ǧex→v(z)) ≥ min
z∈C:|z|=1

σmin(Idu + FǍBFB?).

Define X(z) := zI − A?. Then, applying the Woodbury identity,

Idu + FǍBF (z)B? = I + F (zI − A? −B?F )−1B? = I + F (X(z)−B?F )−1B?

= I + F (X(z)−B?F )−1B?

= −((−I)− F (X(z) +B?(−I)F )−1B?)

= −(−I + FX(z)−1B?)
−1.

This implies that

σmin(Idu + FǍBF (z)B?) =
1

‖ − I + FX(z)−1B?‖op

≤ 1

1 + ‖F‖op‖B?‖op‖X(z)−1‖op

.

Substituting X(z) = (zI − A?), we have

min
z∈C:|z|=1

≥ 1

1 + ‖F‖op‖B?‖op maxz∈T ‖(zI − A?)−1‖op

.

In other words, if the eigenvalues of A? are bounded away from 1 in magnitude, then

min
z∈C:|z|=1

σmin(Ǧex→v(z)) > 0.
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Chapter 8

Concluding Remarks

This dissertation studies the relative difficulty of linear system identification and adaptive
control across range of problem settings and assumptions. We find that certain system
properties, e.g. mixing, are non-essential for estimation, and that very general adaptive
problems, e.g. with arbitrary disturbances and with changing costs, admit adaptive control
algorithms whose regret matches the optimal rates in more restrictive settings.

Real-world dynamics, however, are almost always nonlinear. This poses a number of
challenges:

• Planning optimal trajectories in nonlinear systems can be computationally prohibitive.
In contrast, planning in linear systems often admits convex, computationally efficient
formulations.

• In nonlinear systems, dynamical behavior may differ significantly in different regions
of the state space. In linear systems, on the other hand, local behavior uniquely
determines global behavior.

• Nonlinear systems can exhibit qualitative behavior not observed in linear systems. This
is especially true of the non-smooth state transitions induced by contact dynamics.

The author and his collaborators have begun preliminary work carving out nonlinear control
formulations which permit rigorous theoretical guarantees. Such settings include LQR with
rich nonlinear observations [Mhammedi et al., 2020], and nonlinear receding horizon control
with first-order planning oracles [Westenbroek et al., 2021]. We hope the thesis provides
helpful scaffolding for future study of more challenging nonlinear control problems to come.
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