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Abstract

Learning Predictive Models for Efficient Policy Learning

by

Huazhe Xu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

For an intelligent agent to interact with the environment efficiently, it must have the
ability to predict, plan and generalize. This thesis studies how an intelligent agent can
learn to predict future observations and leverage the predictive models for efficient policy
learning and generalization. The four instances in this thesis are on high-fidelity video
prediction, video prediction that handles multi-modal data distribution, predictive model-
based reinforcement learning, and model-based zero-shot policy generalization. In the first
case, we use a model that disentangles motion and appearance to predict high-fidelity images.
We find this method can alleviate the blurry artifact and shape deformation inherited in
previous methods. In the second case, we propose to use an example-guided model in the
face of the multi-modal distribution of real-world data. The proposed method can predict
diverse, multi-modal data that can also generalize well. In the third instance, we propose
a model-based reinforcement learning method with theoretical guarantees. Specifically, we
propose a novel value discrepancy loss for predictive model training. We experimentally also
prove such framework and loss will significantly improve sample efficiency. Finally, we propose
a method that learns both the dynamics model as well as the value of regions for zero-shot
policy generalization. We show that this approach can generalize without finetuning to novel
tasks. This thesis proposes several methods toward learning and using better predictive
models to achieve policies efficiently.
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Chapter 1

Introduction

1.1 Motivation

Robots can help people and improve the efficiency of human society. For example, robots in
the factory can free up people from dangerous and/or tedious pick and place tasks. Mobile
robots can help with searching and rescuing people from catastrophes. While robots can
benefit humans in many aspects, most of them are still lack the power to interact with
complex real-world scenarios and react to their perception signals. One particular aspect
is that humans can usually understand the consequences of their actions even without too
many physical trials. This internal model of the world for humans is crucial for accomplishing
complex tasks in a sample efficient manner. Hence, it is natural to expect that intelligent
robots also learn to obtain a world model and plan on it.

Recent advances in artificial intelligence and deep reinforcement learning (RL) enable
robots to learn policies from data and interactions with environments. With model-free
RL algorithms, an intelligent agent can have performant policies by interacting with the
environments for millions of samples. Hence, this introduces two core problems for using such
learning-based robots: 1) the efficiency of policy learning; 2) the generalization power of the
policy. More specifically, robots can hardly afford expensive real-world samples as opposed to
their simulator and/or game counterparts. Under such constraints, it is more desirable to
have robots that can learn efficiently and generalize well to other tasks.

In this thesis, we aim to enable efficient policy learning and advocate the paradigm
that a robot learns to predict the future and plan based on the imaginary future, namely
model-based approach. In comparison with the model-free method, model-based method
usually has better sample efficiency and multi-task generalization with the cost of learning a
high-fidelity predictive model. Since we live in an unstructured world with complex visual
information, one ideal predictive model can predict in high-dimensional space i.e. image
space. Beyond learning a good predictive model, how to leverage specific models for training
an actionable policy is the following challenge we try to study. Moreover, we propose a new
approach to learning generalizable models and corresponding policies for novel tasks.
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1.2 Background

Early studies have investigated model-based approaches on robotics before the deep learning
era, but they are usually either restricted in specific settings due to limited representation
power or requiring a tremendous amount of prior knowledge about the robot and its en-
vironment. For example, previous work [31] proposes to use Gaussian process to model
the dynamics. Previous work [91] also proposes to use time-varying linear models to do
model-based control.

1.3 Thesis Goals and Contributions

This thesis presents a series of studies from learning predictive models in the visual domain
to predictive model-based reinforcement learning. Specifically, we propose the following
methods: a video predictive model that can disentangle propagation and generation, a video
predictive model that can handle multi-modality in real-world data with the guidance of
retrieved examples, a model-based reinforcement learning framework that leverages predictive
models for locomotion control tasks, and a model-based planning method that can obtain
transferable knowledge for zero-shot generalization.

The contributions of this thesis are as follows:
Chapter 2 considers the tasks of modeling the visual dynamics, namely video prediction.

Successful prediction of the future in image space might lead to sample efficient policy learning.
The task is defined as given past frames to predict future frames. One conventional way to
learn such a model is to regress the future frames based on a per-pixel loss function. Although
achieving some success, it usually has a blurry artifact in the generated frames. Another line
of research uses optical flow to manipulate past frames for predicting future frames. However,
shape deformation is not negligible in the predicted frames. We propose a straightforward yet
effective method that first uses optical flow to warp the past frame and then uses a context
encoder to inpaint the disoccluded areas. This method successfully alleviates the artifacts
from previous methods and predicts sharp images without shape deformation. Empirical
results on both synthetic and real datasets show that the proposed method is superior to
strong baselines.

Chapter 3 continues the study on visual dynamics. In this chapter, we consider another
important aspect of video prediction — multi-modality in real-world data. A useful predictive
model should be able to predict multiple futures instead of a deterministic one. For example,
if a robot needs to avoid an obstacle, it can go around the obstacle from either the left side
or the right side. We propose to use retrieved examples from a database as guidance for
estimating the multi-modal distribution. However, the new challenge becomes how we can
fully utilize visually different samples. Hence, we incorporate a new optimization scheme in
the motion feature space. We find that our model can significantly improve the performance
in the face of multi-modality challenges. Moreover, this module can be added seamlessly
to most existing stochastic predictive models. Since it is guided by example, it naturally
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generalizes to unseen domains without any finetuning. We believe this can be an important
and useful step toward learning useful video predictive models.

Chapter 4 considers not only how to learn a predictive model but also how to design
model learning loss function for reinforcement learning so that a robot can achieve good
policy in a sample efficient manner. We introduce a novel algorithmic framework for designing
and analyzing model-based RL with theoretical guarantees. Concretely, we propose a value
discrepancy loss for learning the dynamics model with a neural network that minimizes
the difference between values in the real world and the learned model. The instantiated
algorithms under this framework can achieve high rewards while only one million or fewer
samples are permitted on a range of continuous control benchmark tasks.

Chapter 5 steps toward generalization of model-based agents. We consider that to save
samples for robots, a robot agent should not only learn policies in a sample efficient manner
but also generalize to unseen environments. In this chapter, we put the robot in the setting
where robots are tested in an unseen environment while experience from a related but different
environment is provided. In this zero-shot generalization setting, we propose to learn both a
visual dynamics model and an observation scoring function on contingency-aware observation
to learn transferable knowledge from past experience. Along with the model predictive control
(MPC) method, our method can outperform various baselines on both video games and
continuous control tasks.

Finally, Chapter 6 is the conclusion and discussion of future directions.
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Chapter 2

Disentangling Motion and Generation
for Video Prediction

A dynamic scene has two types of elements: those that move fluidly and can be predicted
from previous frames, and those which are disoccluded (exposed) and cannot be extrapolated.
Prior approaches to video prediction typically learn either to warp or to hallucinate future
pixels, but not both. In this chapter, we describe a computational model for high-fidelity video
prediction which disentangles motion-specific propagation from motion-agnostic generation.
We introduce a confidence-aware warping operator which gates the output of pixel predictions
from a flow predictor for non-occluded regions and from a context encoder for occluded
regions. Moreover, in contrast to prior works where confidence is jointly learned with flow
and appearance using a single network, we compute confidence after a warping step, and
employ a separate network to inpaint exposed regions. Empirical results on both synthetic
and real datasets show that our disentangling approach provides better occlusion maps and
produces both sharper and more realistic predictions compared to strong baselines.

2.1 Background

Video prediction is a challenge due to the many varied factors that combine to generate
future appearance.

State-of-the-art approaches to video prediction are often purely pixel-based and generate
each pixel from scratch (Figure 2.2a) [101, 182, 176, 179, 35, 191, 20]. They rely on 3D or
recurrent convolutional networks to encode spatial contents over time, hoping to capture
implicit motion representations. Another active line of purely motion-based approaches
seeks pixel correspondence for explicit motion propagation [134, 100]; in this approach
standard networks are augmented with an optical-flow representation and a warping function
(Figure 2.2b). Because all pixels are copy-pasted from the history image buffer, a degree of
temporal consistency and spatial richness are automatically ensured. However, disocclusions –
locations in the target frame to which extrapolated optical flow has no projection – cause
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(a) input frames (b) extrapolated flow (c) target frame

(d) warped result (e) our occlusion map (f) final result

Figure 2.1: Video prediction by extrapolating the motion and hallucinating the pixels to
be exposed. Given a video whose last frame shown in (a), our model first extrapolates
optic flow (b) to its near future target (c). Direct motion propagation introduces ghosting
effects (d) on pixels to be disoccluded (marked with the bounding box). Our disentangling
approach computes a sparse occlusion map (e) and uses an contextual encoder to inpaint
low-confidence patches, producing the final prediction (f).

severe errors with this family of models (Figure 2.1e).
We observe that humans can easily predict future appearance (e.g., in a scene such as

shown in Figure 2.1) by tracking an object’s past motion and extrapolating future pixel values,
as well as imagine the appearance of disoccluded pixels (the background) based on prior
knowledge of similar scenes previously observed. We propose a compositional approach that
disentangles spatial and temporal prediction, using a post-warp occlusion map to mediate
between flow-based prediction and inpainting-based reconstruction of disoccluded regions.

Disentangling is different from the linear fusion approaches [48, 60] that use a single
multi-task network to learn pixel- and motion-based predictions at the same time. To compose
their results, the networks may also learn an extra occlusion map for weighted summation
over each pixel (Figure 2.2c). Though those approaches are effective in many cases, it is
unclear how much pixel and flow predictions can benefit each other. As our experiments
indicate on the real dataset, these two tasks do not actually correlate significantly with each
other (Figure 2.3).

We propose a compositional framework that explicitly disentangles motion-specific prop-
agation and motion-agnostic generation into two submodules, and thus called DPG, for
high-quality video prediction. We factorize flow and pixel predictions into a serialized
pipelines. We first employ a flow predictor for extrapolating optical flows and then an occlu-
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Figure 2.2: Overview of previous works and our proposed frameworks. Given (t− 1) frames
and to predict one frame, previous video prediction methods typically consist of a flow
predictor F , or a pixel generator G, or both: (a) pixel-based approaches; (b) motion-based
approaches; (c) linear-fusion models; (d) ours.

sion inpainter for context encoding based on images warped by flows. After flow prediction
and warping, we compute confidence directly based on predicted flow rather than via joint
unsupervised learning. The downstream occlusion inpainter generates pixels on occluded
areas based on confidence map.

We evaluate our approach on both standard CalTech Pedestrian dataset [38] and more
challenging KITTI Flow dataset [110] with larger motions and occlusions. Our approach
achieves new state-of-the-art performance on both datasets with large performance gain on
the perceptual realism metrics. To quantitatively evaluate our computed occlusion confidence
maps, we perform ablation study on the RoamingImages [68] dataset where occlusion ground-
truth masks are available. Our model again compare favorably against previous baselines in
occlusion prediction in terms of Intersection over Union (IoU) metrics.

In summary, our main contributions are in two aspects: a fusion pipeline that utilizes
both optical flow and image synthesis for video prediction; a post-warp confidence-based
occlusion map computation to disentangle pixel propagation and generation.
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2.2 Related Work

Photo-realistic Image Synthesis

Realism is the constant pursuit of high-quality image synthesis [71, 22, 39, 190, 93, 195]. Recent
developments towards photo-realistic image synthesis typically feature Generative Adversarial
Networks (GANs) [54]. Conditioned on categorical labels [17], textual descriptions [145] or
segmentations [187], high-fidelity images are shown to be able to synthesized. The closest
work to ours are Dense Pose Transfer [120] and Transformation-grounded View Synthesis [128],
which generally generate images by warping the original image with a learned appearance
flow, conditioned on either given view transformation angle or a predefined dense pose, and
then inpaint the ambiguous parts. In our case, however, the model needs to predict future
motion and further synthesize based on both spatial and temporal information.

Spatial Context Encoding. Pixels are not isolated. On the contrary, there are many
cases [13, 11, 204] where pixels are referred as context for their nearby neighbors. Spatial
context encoders [130] query learned dataset priors with exposed appearance in search for
missing patches. To our task, the “mask” is an occlusion map where motion predictions
are erroneous. Particularly, we employ partial convolutions [99] in our occlusion inpainter’s
encoding blocks. Different from prior works on static images, our approach leverages not only
the spatial but also temporal context.

High-fidelity Video Prediction

Different from image synthesis, video prediction not only cares for per-frame visual quality
but also cross-frame consistency. Recent approaches [35, 20, 101, 142, 147] are typically
pixel-based, which generate each pixel from scratch using implicit motion representations.
Such methods may suffer from blurry effects, especially in the presence of unseen novel scenes.
On the contrary, motion-based methods [134, 100] excel in making sharp predictions, yet
fail in occlusion areas where motion predictions are erroneous or ill-defined. Meanwhile,
Reda et al. [144] propose to model moving appearances with both convolutional kernels as
in [48] and vectors as optical flow. Our closest prior work is [60] which also composes the
pixel- and flow-based predictions through occlusion maps. However, our proposed method
can differentiate in three aspects: (1) our pixel and flow prediction tasks are separately
trained; (2) we employ an occlusion inpainter for our pixel generation so that more contextual
information after warping can be utilized; (3) instead of predicting occlusion as another side
task, we directly refer to predicted flows as the proxy for post warping confidence.

Disentangling Motion and Content. Since videos are essentially moving contents whose
semantics are agnostic to motions – one person’s identity does not change while he’s walking
– it is natural to disentangle them apart. [176, 179, 35] are the three representative works
in such direction. Though sharing the intuition to disentangle motion with other video
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(a) linear fusion [60] (b) disentangled fusion (ours)

Figure 2.3: The correlation between pixel and flow prediction tasks evaluated by different
models. We show scatter plots about generation quality vs. flow prediction error on KITTI
Flow [111] dataset. Pixel and flow prediction tasks do not actually correlate significantly with
each other on previous models using multi-task learning. Our disentangled fusion pipeline
shows that after factorizing these tasks apart, both of them could be better learned.

property, our approach builds on lower-level vision such as pixel correspondence. We take
advantage of optical flow and their embedded occlusion clues to naturally factorize pixel and
flow predictions into separate modules. Thanks to the ability of direct copy-pasting from
previous frames, our model compares favorably against prior works in this venue, especially
when it comes to high-res benchmarks.

2.3 Disentangled Video Prediction Model

Video prediction aims to synthesize future frames given a stack of history frames. For the ease
of exposition, we here focus on a (t−1)-in 1-out prediction task, which could be later extended
into multi-frame prediction by autoregression: given an input video sequence denoted as
x1:t−1, the model aims to predict the frame xt which should be accurate and visually sharp.
As illustrated in Figure 2.2d, our approach is to factorize the per-pixel prediction task into
pixel and flow prediction which are learned using two submodules – a flow predictor F and
an occlusion inpainter P .

Given the history frames x1:t−1, the flow predictor F learns to predict the flow field f̂t
for the pixel correspondence between the last input frame xt−1 and the target xt. Utilizing
f̂t, we can propagating the input frame xt−1 into a motion-dependent prediction x̃t. Since it
neglects the existence of occlusions, we additionally compute an occlusion map m̂t during
the propagation. Based on x̃t and m̂t, the inpainting module P learns to inpaint occluded
region from a learned prior within the training set.
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Motion Propagation

Our module F computes the correlation of appearances between each pair of frames from
the history inputs and predicts future motion dynamics using optical flow. We choose it over
other motion representations, such as frame differences [64] or sparse trajectories [60] because
it provides rich information about motion occlusions over pixels.

As illustrated in Figure 2.4a, the module F is an encoder-decoder network with skip
connections. The output of F is a 2-channel flow field f̂t that aims to propagate the last
frame xt−1 into the predicted target frame x̃t. Formally, let {(i, j)} ∈ xt be a Cartesian grid
over the target frame, and we have

f̂t = {(∆i,∆j)} = F(x1:t−1). (2.3.1)

By assuming local linearity, we can sample the future frame from the last given frame as

x̃t = S(xt−1; f̂t), (2.3.2)

where S(·; f̂t) is a bilinear sampler that generates the new image by first mapping the regular
grid to the transformed grid and then bilinearly interpolating between produced sub-pixels.

For training the module F , we adopt a masked pixel loss Lp and a smooth loss Lsmt which
is similar to previous works on unsupervised flow estimation [109, 202]

Lp(x̃t,xt; m̂t) = α
1− SSIM(x̃t � m̂t,xt � m̂t)

2
+ (1− α)‖x̃t � m̂t − xt � m̂t‖1

(2.3.3)

Lsmt(f̂t,xt) =
∑
i,j

|∇f̂t(i, j)| · (e−|∇xt(i,j)|)T , (2.3.4)

where SSIM(·, ·) denotes structural similarity index, � denotes element-wise product, ∇ is
a vector differential operator, T denotes the transpose of image gradient weighting, and α is
our trade-off weight between the loss terms, which is fixed at 0.9 through cross-validations.

The training loss for module F is formulated as

LF = Lp(x̃t,xt; m̂t) + λsmtLsmt(f̂t,xt), (2.3.5)

where λsmt is a hyper-parameter that control the training schedule, we use λsmt = 0.1 through
a coarse grid search.

Occlusion Map Computation

However, F introduces “ghosting” effect in disoccluded regions where extrapolated optical
flow has no projection (see Figure 2.1d and Figure 2.5 for detailed explanation). Intuitively,
the “ghosting” area should be excluded from the propagated results by an occlusion map.
It should be noted that similar ideas have been previously explored in [48, 60]; but in their
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Figure 2.4: Conceptual illustrations of our F and P. (a) Our propagation module F is a
standard encoder-decoder fully convolutional network with skip connections, which takes in
history frames x1:t−1 and predict the backward flow f̂t from xt to xt−1. (b) Taking in the
computed occlusion map m̂t and the warped image x̃t, our inpainting module P inpaints for
the final prediction x̂t. It replaces standard convolutional blocks with partial convolutions
(P-Conv) and fusion blocks (F-Conv) in its encoder and decoder, respectively.

contexts, occlusion maps are learned as a side task to compose pixels from different sources.
We argue that these regions can be directly computed based on backward flows, and hence
masked out. We here describe the computation of occlusion map from an energy-based
perspective. And we will later demonstrate the effectiveness of our computed map over the
learned map in Section 2.4.

The pixel density can be viewed as an energy map: initially, it is uniformly distributed
over pixel coordinates; later, the motion propagation changes its distribution and make the
energy map become dense or sparse on different regions.

We initialize the energy field of the first frame to be a matrix filled with ones, denoted as
E1 = 1H×W for an image of H ×W size.

Given a flow field, for each pixel in the first frame, the energy unit on each coordinate
will be added into its 4 corresponded coordinates in the second frame bilinearly according to
the flow field and we then get a new energy field E2. We consider two special cases for each
coordinate (x, y) in the second frame:

1. If E2
x,y = 0, there is no pixel moving to this coordinate, which indicates it will be

disoccluded ;
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(a) t = 0, flow. (b) t = 1, warping result

(c) t = 1, density map. (d) t = 1, occlusion map.

Figure 2.5: Ghosting effect caused by warping. Consider a foreground object on the back-
ground. (a) shows a predicted optical flow f̂1 from target frame to current frame. (b) shows
ghosting effects on the propagated frame x̃1 on locations to which flow has no projection. (c)
shows our pixel density map computed by procedure described by Section 2.3. (d) shows our
sparse occlusion map on which occlusion locations are colored as yellow.

2. If E2
x,y > 2, there are at least two pixels in the first frame compete for the same location,

which suggests it will be occluded.

Given the definition of computation for occlusion and disocclusion, we can then get the
occlusion map according to

m̂i,j =

{
1 0 < E2

i,j < 2,

0 Otherwise
(2.3.6)

Occlusion Inpainting as Context Encoding

Given the propagated frame x̃t and the computed occlusion map m̂t, we can now formulate
our second modeling stage as context encoding to inpaint the missing pixels that are left
out after propagation module. Our inpainting module P adopts generally the same network
architecture as its propagation counterpart with partial convolution blocks [99]. As illustrated
in Figure 2.4b, our encoder takes the previous propagated frame x̃t and its occlusion map
m̂t as inputs, producing a latent feature representation. The decoder then takes this feature
representation and synthesizes the missing content.
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Specifically in the encoder, the partial convolution operators [99] mask out invalid pixels
and re-normalize features within clean receptive fields only. For the extreme cases where all
pixels in the receptive field are masked, we will simply return a zero value as the result. One
important design choice is that the receptive field of the bottleneck should be bigger than
the maximal area of the occlusion masks so that the feature map can be free from mask in
our bottleneck.

For the decoder, the kth layer feature maps are upsampled and linked with the kth layer
features from encoder counting from the latent layer in reverse order by skip connections.
However, this raises a fusion issue that the feature from the encoder is from an image with
invalid pixels. Previously in [99], feature maps and masks are concatenated channel-wisely
and handled by new partial convolutions in their decoder. We find this could be improved
by directly refilling the occluded encoder features by the upsampled decoder features. This
decoding fusion is repeated at each layer from the bottleneck up to our final output x̂t.

To train our inpainting module P , we design all of our losses to be temporal-independent
so that the module can focus on the visual quality. In general, our loss terms consists of the
following terms.

1. The pixel reconstruction loss

Lpix = Lp(x̂t,xt; m̂t) + βLp(x̂t,xt; 1− m̂t),

where Lp is defined in Equation 2.3.3.

2. The perceptual and style losses in VGG’s n-dimensional latent space {Ψn} as in [158].

Lprc =
1

n

∑
n

‖ [ψ(x̃)− ψ(x)]� m̂t‖1

+ β‖ [ψ(x̃)− ψ(x)]� (1− m̂t)‖1,

Lsty =
1

n

∑
n

‖(ψ(x̃)− ψ(x))T (ψ(x̃)− ψ(x))� m̂t‖1

+ β‖(ψ(x̃)− ψ(x))T (ψ(x̃)− ψ(x))� (1− m̂t)‖1.

3. The total-variance loss to encourage similar texture in occlusion boundaries

Lvar =
∑
i,j

√
‖xt(i,j+1) − xt(i,j)‖22 + ‖xt(i+1,j) − xt(i,j)‖22.

4. The extra semantic loss to enforce layout consistency between segmentation masks,
distilled by a pretrained segmentation network [146] Φ : X → Y , since unconditional
image inpainting tends to remove the foreground objects,

Lseg = CrossEnt(Φ(x̂t)� m̂t,yt � m̂t)

+ βCrossEnt
(
Φ(x̂t)� (1− m̂t),yt � (1− m̂t)

)
.
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The total loss for the inpainting module is

LP =Lpix + λprcLprc + λstyLsty
+ λvarLvar + λsegLseg.

(2.3.7)

In the above losses, β is our attentive weight for masked regions and all λs are fixed
hyper-parameter during training. We use a coarse grid search to set λprc = 0.05, λsty =
120, λvar = 0.1, and λseg = 5 and we find best experimental performance (see table 2.5) when
β = 10.

Training

The overall training objective is formulated as

min
F ,P

(
LF + LP

)
. (2.3.8)

Because flow estimation and prediction are hard to learn and sensitive to data biases,
we first train our motion propagation module F and inpainting module P separately. After
gradients become stable, we connect the two components together and fine-tune the whole
network in an end-to-end fashion.

2.4 Experiments

In this section, we will first introduce our evaluation metrics, benchmarks and baselines
from previous works. Then we show our model’s performance on next-frame and multi-
frame prediction task, respectively. We final show ablations on occlusion map for better
understanding of how disentangling propagation and generation helps in our framework.

Experiment Setup

Metrics. We adopt the existing Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [190] metrics to measure the pixel/patch-wise accuracy. However, it is
well-known that these metrics disagree with the human perception [191, 161, 74, 183] because
they tend to encourage blurriness over naturalness. Therefore we also measure the realism
of results by Learned Perceptual Image Patch Similarity (LPIPS1) proposed by Zhang et
al. [205]. Higher PSNR/SSIM scores and lower LPIPS distances suggest better performance.

Dataset. We evaluate our results on the CalTech Pedestrian dataset [38] and the KITTI
Flow dataset [110]. The previous setup on the CalTech Pedestrian dataset is to first train
a model on the training split of KITTI Raw [111] proposed by Lotter et al. [101] and then

1We use LPIPS Version 0.1 available online.
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(a) xt−5 (b) xt−2 (c) PredNet (d) ContextVP(e) DPG (Ours) (f) xt

Figure 2.6: Qualitative comparisons for Next-Frame Prediction on CalTech Pedestrian dataset.
Given 10 past frames, all models are required to predict the future frame in the next step.
Our DPG produces much sharper results compared to previous state-of-the-art methods on
this dataset. Remarkably, it is also capable of inferring semantically sensible appearance for
occluded regions. Results are best viewed in color with zoom.

directly test it on the testing set of CalTech Pedestrian. Frames are center-cropped and
down-sampled to 128× 160 pixels. Every 11 consecutive frames are divided and sampled as a
training clip in which the first 10 frames are fed into the model as the input, and the 11th
frame is used as prediction target. As the results, the training, validation and testing sets
consists of 3738, 14, and 1948 clips.

The KITTI Flow dataset is originally designed as a benchmark for optical-flow evaluation.
For it is featured with higher resolution, larger motion and more occlusions, we should mention
that it is more challenging compared to the raw KITTI dataset. It contains 3823 examples
for training, 378 for validation and 4167 for testing. For all input images, we down-sampled
and then center-cropped them into 320× 640 pixels. We apply data augmentation techniques
such as random cropping and random horizontal flipping for all the models. In addition, we
sample video clips of 5 frames (4-in 1-out) from the dataset using a sliding window. This
amounts to 3500 clips for training and 4000 clips for testing.

Baselines. We consider representative baselines from three model families for video predic-
tion: (1) pixel-based methods, including Beyond MSE [107], PredNet [101], SVP-LP [35],
MCNet [179], MoCoGAN [176], and ContextVP [20]; (2) motion-based method, including
DVF [100]; (3) linear fusion methods, including Dual Motion GAN [96] and CtrlGen [60].
Note that we have not included [48] in our experiments since on its proposed RobotPush
datasets, PredNet and SVP-LP are stronger baselines. For SVP-LP, we sampled 100 trajecto-
ries for each clip as in the original paper. The reported results are the mean performance
over all the prediction results.
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Method Family PSNR↑ SSIM↑ LPIPS↓ (×10−2)

Repeat − 23.3 0.779 5.11

BeyondMSE [107] P − 0.881 −
PredNet [101] P 27.6 0.905 7.47

ContextVP [20] P 28.7 0.921 6.03

DVF [100] M 26.2 0.897 5.57

Dual Motion GAN [96] F − 0.899 −
CtrlGen [60] F 26.5 0.900 6.38
DPG (Ours) F 28.2 0.923 5.04

Table 2.1: Next-Frame Prediction results on CalTech Pedestrian. All models are trained on
KITTI Raw dataset. The best results under each metric are marked in bold.

(a) DVF (b) CtrlGen (c) DPG (Ours) (d) xt

Figure 2.7: Qualitative comparisons for Next-Frame Prediction on the more challenging
KITTI Flow dataset. All models are given 4 frames as input and required to predict the next
frame. Frames include large motions, scene changes or occlusions. Our method is robust to
these cases and consistent in the performance. More results please refer to our supplementary.

Next-Frame Prediction

We begin our evaluations on next-frame prediction. The goal of our task is simple and
intuitive: Given the input frames, we need to output the next frame as accurate as possible.

Our result on CalTech Pedestrian dataset is shown on Table 2.1. We compare our model
against previous state-of-the-art methods on this dataset. Our model achieves comparable
PSNR and SSIM scores with ContextVP [20]. Meanwhile, our method can predict non-
stretching textures in those occluded regions, which leads to smaller perceptual dissimilarity
measured by LPIPS. As shown in Figure 2.6, our model is robust for both pixel propagation
and novel scene inference.

Apart from empirical improvements, we find that, in terms of LPIPS metric, all the
evaluated state-of-the-art methods do no better than the most naive baseline — repeating
the last input frame as the prediction. This suggests that the CalTech Pedestrian dataset
consists of small motions that are not obvious for human perception. This motivates us to
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Method Family PSNR↑ SSIM↑ LPIPS↓ (×10−2)

Repeat − 16.5 0.489 19.0

PredNet [101] P 17.0 0.527 26.3
SVP-LP [35] P 18.5 0.564 20.2
MCNet [179] P 18.9 0.587 23.7

MoCoGAN [176] P 19.2 0.572 18.6

DVF [100] M 22.1 0.683 16.3

CtrlGen [60] F 21.8 0.678 17.9
DPG(Ours) F 22.3 0.696 11.4

Table 2.2: Next-Frame Prediction results on KITTI Flow. All models are trained to predict
next frame given a history buffer of two frames. All evaluation results of the previous methods
are obtained by their published codebases. The best results under each metric are marked in
bold.

work on KITTI Flow dataset, which is more challenging so that learners can benefit from
more inductive biases and thus be more robust.

Table 2.2 shows our results on KITTI Flow dataset. As resolution increases, previous
pixel-based methods (PredNet, SVP-LP) suffer from a steeper learning curve and more
uncertainty in the visual space, resulting in the noticeable drop in their performance. Though
achieving the better pixel/patch accuracy, they underperform the weakest repeating baseline
in terms of the perceptual similarity. Our DPG achieves the best results in all metrics,
especially LPIPS, showing around 30% improvement over the second best result from DVF.

As demonstrated in Figure 2.7, our proposed model again produce more visually appealing
predictions than our baselines. In contrast to the pixel-based methods, all demonstrated
methods suffer less from blurriness but display the distortion and stretch in shapes due to
quick scene changes, which cause inaccurate flow prediction. Our model, instead, can predict
better flow so as to alleviate undesirable artifacts in large motion areas. Occluded areas are
masked by motion propagation and refilled by in-painting so that they are free of ghosting
effects. Our occlusion in-painter learns a scene prior to hallucinate what is missing given the
contextual information.

It is interesting to see that our model can achieve better PSNR/SSIM scores with training
emphasized on realism terms (perceptual, style, and segmentation). We argue that this
could serve as the evidence that our method could effectively learn dataset priors and flow
prediction given the same amount of data.

Multi-Frame Prediction

We next move to the more challenging Multi-frame Prediction task. Comparing to Next-Frame
Prediction, it requires our models to output a sequence of frames to match the ground-truth
future frames. To do a fair comparison between our method and other baselines, we limit all
input frames to be 4 frames and requires each model to predict 8 following frames.



CHAPTER 2. DISENTANGLING MOTION AND GENERATION FOR VIDEO
PREDICTION 17

(a) PSNR↑ (b) LPIPS↓

Figure 2.8: Quantitative results for Multi-Frame Prediction on KITTI Flow dataset. All
the models take in 4 frames as input and recursively predict next 8 frames. Best viewed in
color with zoom. For qualitative results and SSIM quantitative result, please refer to our
supplementary materials.

Figure 2.8 compares the results on Multi-Frame Prediction of our models with various
baselines on KITTI Flow dataset. Our method shows consistent performance gains on
all metrics through time. DVF performs similarly to our model for short-term prediction
measured by PSNR but quickly decays after 2 steps. This is because that their method is
sensitive to propagated error since there are no remedy mechanisms. Our model, however,
can mask out undesirable regions and in-paint new pixels instead.

Ablations on Occlusion Map

Does occlusion map really help? We design different baselines to verify our design
choice for occlusion map. The first one is to directly warp images without the indicating
occlusion at all as in [100] – this forms the result of our motion propagation module. Next,
we build another baseline by applying an auto-encoder to directly refine the output of motion
propagation module. The third one is to learn a independent learned map to fuse the result
of motion propagation module and occlusion in-painter module which is similar to [60]. Our
result is shown on Table 2.3. It is interesting that the performance will downgrade if we
only refine the motion propagation without any guide. Also, Comparing to warped only and
learned occlusion map results, our model shows better performance in all metrics.

Why does occlusion map help? One conjuncture for why our computed map can
outperform the learned one is that our computed map is more accurate to indicate the
occluded and disoccluded region. To support this argument, we conduct an ablation to
investigate the relationship between the ground truth occlusion map and ours. Note that
it is hard to get the ground truth occlusion map in the real world. Therefore, we use
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Method PSNR↑ SSIM↑ LPIPS↓

Warped only [100] 21.6 0.684 0.139
No occlusion map (auto-encoder) 21.3 0.674 0.120

Learned occlusion map [60] 21.8 0.679 0.179

Sparse occlusion map (Ours) 22.3 0.696 0.114

Table 2.3: Ablation study on different design choices of occlusion map computation.

Method Learned occlusion map [60] Sparse occlusion map (Ours)
IoU↑ 0.0411 24.91

Table 2.4: Evaluation for learned occlusion map and our sparse occlusion map against
ground-truth occlusion map.

Method PSNR↑ SSIM↑ LPIPS↓

β = 0 (unmasked pixel only) 20.7 0.663 0.159
β = 0.1 20.9 0.671 0.134

β = 1 (same as unmasked pixel) 21.3 0.674 0.120
β =∞ (masked pixel only) 18.4 0.514 0.206

β = 10 (Ours) 22.3 0.696 0.114

Table 2.5: Ablation study on different masking weight β.

RoamingImages [68] dataset for a quantitative study. It contains 80, 000 examples of random
moving a random foreground image in front of a random background image. We compare the
IoU between our occlusion map and the ground truth and the results are shown on Table 2.4.
It shows that our method can localize occluded region significantly better than multi-task
learning approach used in prior work [60].

How does occlusion map help? Given the effectiveness of the our computed map
comparing to other design choice, we are also interested in how important the masking weight
β is in our training losses for the occlusion inpainter. As shown on Table 2.5, masking weight
is a crucial hyperparameter for good performance, as either unreasonably small or large value
harms the training. We get the best β = 10 by searching on the validation set of KITTI Flow
for balancing between the masked and the valid regions.

2.5 Discussion

In this work, we present a method for video prediction by disentangling motion-specific
propagation and motion-agnostic generation. We propose a disentangled fusion pipeline
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which gates two tasks into two separate modules. We also directly evaluate pixel density map
after warping for sparse occlusion maps. Experiments on synthetic and real datasets show
our effectiveness against prior works.
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Chapter 3

Video Prediction via Example
Guidance

In video prediction tasks, one major challenge is to capture the multi-modal nature of
future contents and dynamics. In this work, we propose a simple yet effective framework
that can efficiently predict plausible future states. The key insight is that the potential
distribution of a sequence could be approximated with analogous ones in a repertoire of
training pool, namely, expert examples. By further incorporating a novel optimization
scheme into the training procedure, plausible predictions can be sampled efficiently from
distribution constructed from the retrieved examples. Meanwhile, our method could be
seamlessly integrated with existing stochastic predictive models; significant enhancement is
observed with comprehensive experiments in both quantitative and qualitative aspects. We
also demonstrate the generalization ability to predict the motion of unseen class, i.e., without
access to corresponding data during training phase.

3.1 Background

Video prediction involves accurately generating possible forthcoming frames in a pixel-wise
manner given several preceding images as inputs. As a natural routine for understanding the
dynamic pattern of real-world motion, it facilitates many promising downstream applications,
e.g., robot control, automatous driving and model-based reinforcement learning [86, 119, 131].

Srivastava et al.[162] first proposes to predict simple digit motion with deep neural models.
Video frames are synthesized in a deterministic manner [36], which also suffers to achieve
long-range and high-quality prediction, even with large model capacity [49]. Babaeizadeh
et al.[8] shows that the distribution of frames is a more important aspect that should be
modelled. Variational based methods (e.g., SVG [35] and SAVP [89]) are naturally developed
to achieve good performance on simple dynamics such as digit moving [162] and robot arm
manipulation [49].

However, real-world motion commonly follows multi-modal distributions. With the
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Figure 3.1: Illustration of stochastic prediction with different prior schemes. Rectangle box
refers to input. φqz is for uncertainty modelling and φpre is the prediction model. We omit the
output part for simplicity. Blue line corresponds to stochastic modelling and dashed line is
the sampling procedure of random variable. (A) Prediction with fixed Gaussian prior, which
does not consider the temporal dependency between different time steps. (B) Prediction with
parametric prior, which lacks explicit supervision signal for multi-modal future modelling.
(C) Proposed prediction scheme with similar examples retrieved in training dataset. These
examples are utilized construct an explicit multi-modal distribution target for the training of
prediction model.

increase of motion diversity and complexity, variational inference with prior Gaussian distri-
bution is insufficient to cover the wide spectrum of future possibilities. Meanwhile, downstream
tasks mentioned in the first paragraph require prediction model with capability to model
real-world distribution (i.e., can the multi-modal motion pattern be effectively captured?)
and high sampling efficiency (i.e., fewer samples needed to achieve higher prediction accuracy).
These are both important factors for stochastic prediction, which are also the focus issues in
this chapter. Recent work introduces external information (e.g., object location [201, 181]) to
ease the prediction procedure, which is hard to generalize to other scenes.

Predictive models can heavily rely on similarity between past experiences and the new
ones, implying that sequences with similar motion might fall into the same modal with a
high probability. The key insight of our work, deduced from the above observation, is that
the potential distribution of sequence to be predicted can be approximated by analogous
ones in a data pool, namely, examples.

In other words, our work (termed as VPEG, Video Prediction via Example Guidance)
bypasses implicit optimization of latent variable relying on variational inference; as shown in
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Fig. 3.1C, we introduce an explicit distribution target constructed from analogous examples,
which are empirically proved to be critical for distribution modelling. To guarantee output
predictions are multi-modal distributed, we further propose a novel optimization scheme which
considers the prediction task as a stochastic process for explicit motion distribution modelling.
Meanwhile, we incorporate the adversarial training into proposed method to guarantee the
plausibility of each predicted sample. It is also worth mentioning that our model is able
to integrate with the majority of existing stochastic predictive models. Implementing our
method is simply replacing variational method with the proposed optimization framework. We
conduct extensive experiments on several widely used datasets, including moving digit [162],
robot arm motion [49], and human activity [206]. Considerable enhancement is observed
both in quantitative and qualitative aspects. Qualitatively, the high-level semantic structure,
e.g., human skeleton topology, could be well preserved during prediction. Quantitatively,
our model is able to produce realistic and accurate motion with fewer samples compared to
previous methods. Moreover, our model demonstrates generalization ability to predict unseen
motion class during testing procedure, which suggests the effectiveness of example guidance.

3.2 Related Work

Distribution Modelling with Stochastic Process. In this filed, one major direction is
based on Gaussian process (denoted as GP) [143]. Wang et al.[185] proposes to extend
basic GP model with dynamic formation, which demonstrates appealing ability of learning
human motion diversity. Another promising branch is determinantal point process (denoted
as DPP) [3, 45], which focuses on diversity of modelled distribution by incorporating a
penalty term during optimization procedure. Recently, the combination of stochastic process
and deep neural network, e.g., neural process [52] leads to a new routine towards applying
stochastic process on large-scale data. Neural process [52] combines the best of both worlds
between stochastic process (data-driven uncertainty modelling) and deep model (end-to-end
training with large-scale data). Our work, which treads on a similar path, focuses on the
distribution modelling of real-world motion sequences.

Video Prediction. Video prediction is initially considered as a deterministic task which
requires a single output at a time [162]. Hence, many works focus on the architecture
optimization of the predictive models. Conv-LSTM based model [155, 49, 189, 199, 102, 21,
188] is then proposed to enhance the spatial-temporal connection within latent feature space
to pursue better visual quality. High fidelity prediction could be achieved by larger model and
more computation sources [180]. Flow-based prediction model [85] is proposed to increase
the interpretability of the predicted results. Disentangled representation learning [36, 51] is
proposed to reduce the difficulty of human motion modelling [200] and prediction. Another
branch of work [70] attempts to predict the motion with dynamic network, where the deep
model is flexibly configured according to inputs, i.e., adaptive prediction. Deterministic
model is infeasible to handle multiple possibilities. Stochastic video prediction is then
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Figure 3.2: Overall framework of proposed video prediction method. The whole procedure is
split into two consecutive phases presented at the top and bottom rows respectively. Top row
refers to retrieval process of proposed method, while bottom rows is the prediction model
with example guidance. It is optimized as a stochastic process to effectively capture the
future motion uncertainty.

proposed to address this problem. SV2P [8] is firstly proposed as an stochastic prediction
framework incorporated with latent variables and variational inference for distribution
modelling. Following a similar inspiration, SAVP [89] demonstrates that the combination of
GAN [55] and VAE [82] facilitates better modelling of the future possibilities and significantly
boosts the generation quality of predicted frames. Denton & Fergus[35] proposes to model the
unknown true distribution in a parametric and learnable manner, i.e., represented by a simple
LSTM [63] network. Recently, unsupervised keypoint learning [80] (i.e., human pose [198]) is
utilized to ease the modelling difficulty of future frames. Domain knowledge, which helps to
reduce the motion ambiguity [201, 172, 103], is proved to be effective in future prediction. In
contrast to these works above, we are motivated by one insight that prediction is based on
similarity between the current situation and the past experiences. More specifically, we argue
that the multi-modal distribution could be effectively approximated with analogous ones (i.e.,
examples) in training data and real-world motion could be further accurately predicted with
high sampling efficiency.
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Figure 3.3: Four typical patterns of retrieved examples on PennAction [206] dataset. The
five solid lines refer to top-5 examples searched in Ds and orange-dot line is the ground truth
motion sequence. The blue-star line is predicted sequence. The input sequence generally falls
into one variation pattern of retrieved examples, which confirms the key insight of our work.

3.3 Example Guided Video Prediction Model

Given M consecutive frames as inputs, we are to predict the future N frames in the pixel-
wise manner. Suppose the input (context) frames X is of length M , i.e., X = {xt}Mt=1 ∈
RW×H×C×M , where W,H,C are image width, height and channel respectively. Following the
notation defined, the prediction output Y is of length N , i.e., Y = {yt}Nt=1 ∈ RW×H×C×N .
We denote the whole training set as Ds. Fig. 3.2 demonstrates the overall framework of the
proposed method. Details are presented in following subsections.

Example Retrieval via Disentangling Model

We conduct the retrieval procedure in training set Ds. To avoid trivial solution, X is excluded
from Ds if X is in the training set Ds. Direct search in the image space is infeasible because
it generally contains unnecessary information for retrieval, e.g., the appearance of foreground
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subject and detailed structure of background. Alternatively, a better solution is retrieving in
disentangled latent space. Many previous methods [36, 175, 178, 35] have made promising
progress in learning to disentangle latent feature. Two competitive methods, i.e., SVG [35]
and [80] are adopted as the disentangling model in our work. [80] proposes an unsupervised
method to extract keypoints of arbitrary object, whose pretrained model is directly used to
extract the pose information as motion feature in our work. Note that the motion feature
remains valid when input is only one frame, where the single state is treated as motion
feature. SVG [35] unifies the disentangling model and variational inference based prediction
into one stage. We remove the prediction part and train the disentangling model as:

(bt,ht) = φdse(xt), t ∈ {i, j}, (3.3.1)

Ldse = ||φdec(bi,hj)− xj||22, (3.3.2)

where i, j are two random time steps sampled from one sequence, φdse and φdec are disentan-
gling model and decoder (for image reconstruction) respectively. Ldse indicates two frames
from the same sequence share similar background and should be able to reconstruct each
other by exchanging the motion feature. By optimizing this loss function, appearance feature
b∗ is expected to be constant while h∗ contains the motion information, which leads the
disentanglement model to learn to extract motion feature in a self-supervised way. Both
disentanglement models SVG [35] and [80] could be presented in a unified way as shown in
Fig. 3.2. Next we focus on the retrieval procedure. Note that all input frames are used in
this part. We denote the feature used for retrieval as F ∈ RCf×M = {ft}Mt=1, where Cf is the
number of feature dimension.

Given input sequence X, whose motion feature denoted as F, and training set Ds, we
conduct nearest-neighbor search as:

Ωi = S(||Fi − F||22, K), (3.3.3)

where Fi refers to the extracted feature of Xi ∈ Ds. S(•, K) refers to top K selection from
a set in the ascending order. Ωi is the retrieved index set corresponding to ith sample.
Note that the subscript i is omitted for simplicity in following contexts. K is treated as a
hyper-parameter in our experiments, whose influence is validated through ablation study
in Sec. 3.4. We perform first-order difference along the temporal axis to focus on state
difference during the retrieval procedure if multiple frames are available. We plot retrieved
examples (solid line, K = 5) together with the input sequence (orange-dot line) in Fig. 3.3.
Here we have two main observations: (1) The input sequence generally falls into one motion
pattern of retrieved examples, which confirms the key insight of our work. (2) The examples
have non-Gaussian distribution, which implies the difficulty on the optimization side by a
variational inference method.

Discussion of Retrieval Efficiency. Note that the retrieval module is introduced in this
work, which is an additional step compared to the majority of previous methods. One concern
would thus be the retrieval time, which is highly correlated with efficiency of the whole model.
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We would like to clarify that the retrieval step is highly efficient: (1) It is executed in the
low dimensional feature space (i.e., f ∈ RCf ) rather than in the image space, which requires
less computation; (2) It is implemented with the efficient quick-sort algorithm. The averaged
retrieval complexity is O(NlogN), where N is the number of video sequences. For example,
on the PennAction dataset [206] (containing 1172 sequences in total) the whole running
(including retrieval) time of predicting 32 frames is 354ms, while the retrieval time only takes
80ms.

Example Guided Multi-modal Prediction

Stochastic Video Prediction Revisited. The majority works [36, 201, 35, 89] of stochastic
video prediction are based on variational inference. We first briefly review previous works
in this field and then analyze the inferiority of stochastic prediction based on variational
inference.

These methods use a latent variable (denoted as z) to model the future uncertainty. The
distribution of z (denoted as pz) is trained to match with a (possibly fixed) prior distribution
(denoted as qz) as follows,

L = ||φpre(F1:t−1, zt)− ft||22 + LKL(pz||qz), (3.3.4)

where φpre, qz, LKL() are the prediction model, target distribution and Kullback-Leibler
divergence function [84] respectively. pz is generally modelled with deep neural network (e.g.,
φpz(ft−1)). qz is fixed, e.g., N (0, I). This implies that the predicted image Xt is controlled by
N (0, I), not real-world motion distribution. [35] proposes to model the potential distribution
with φqz(f

t), which still lacks an explicit supervision signal on the distribution of motion
feature.

The essence of the modelling difficulty is from the optimization target of the LKL term.
Under the framework of variational inference, the form of qz is generally restricted to a normal
distribution for tractability. However, this is in conflict with the multi-modal distribution
nature of real-world motion. We need a more explicit and reliable target and thus propose to
construct it with similar examples fΩ whose retrieval procedure is described in Sec. 3.3.

Prediction with Examples. Given retrieved examples fΩ, we first construct a new distri-
bution target and then learn to approximate it. The most straightforward way is directly
replacing the prior distribution qz with the new one. More specifically, at time step t the
distribution model φpz is trained as:

µ̂t, σ̂t = φpz(F̂1:t−1), zt ∼ N (µ̂t, σ̂t), (3.3.5)

µt, σt = φqz(f
Ω
t ),LKL = log(

σt
σ̂t

) +
σ̂t + (µt − µ̂t)2

2σt
, (3.3.6)

where zt models the possibility of future state and µt, σt are commonly supervised with LKL.
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Algorithm 1 Example Guided Video Prediction

Input: Training Set Ds, disentangling model φdse, predictor φpre and discriminator φdcm.
#Example retrieval phase
for Input sequence X in Ds do

Get motion feature F = φdse(X),
Example retrieval to obtain FΩ as Eqn. 3.3.3.

end for
#Prediction phase
repeat

Get a random batch of (F,FΩ) pairs.
#Optimization as a stochastic process
for i = 1 to N do

Sample noise zi,t+1 as Eqn. 3.3.8,

Predict next state f̂i,t+1 as Eqn. 3.3.9,
end for
Optimize w.r.t. Eqn. 3.3.10, 3.3.11, 3.3.12 and 3.3.13.

until the training objective Lfin (Eqn. 3.3.14) converged.

However, it is difficult to obtain promising results with the above method which simply
replaces ft with fΩ

t . The reason mainly lies in two aspects: Firstly, the diversity of predicted
motion feature at time step t (denoted as f̂t) lacks an explicit supervision signal. Secondly,
the distribution of latent variable zt (i.e., N (µt, σt)) is infeasible to accurately represent the
motion diversity of fΩ

t , because no dedicated training objective is designed for this target.

Optimization as Stochastic Process. Motivated by the above two issues, we consider
the prediction task as a stochastic process targeting at explicit distribution modelling. The
whole prediction procedure is conducted in motion feature space. The inputs of prediction
model φpre include fΩ

t and ft. We calculate the mean and variance of example feature fΩ
t ,

i.e., E(fΩ
t ) and V(ft), for the subsequent random sampling in motion space. The prediction

procedure at time step t is conducted as follows,

(µt, σt) = φqz(E(fΩ
t ),V(fΩ

t )), (3.3.7)

(z1,t, ..., zN,t)
i.i.d.∼ N (µt, σt), (3.3.8)

f̂i,t+1 = φpre(f̂i,t, zi,t, f
Ω
t ), i = 1, ..., N, (3.3.9)

where (z1,t, ..., zN,t) is a group of independent and identically sampled values and zi,t ∈ Rh.

The subscript i, t refers to ith sample at time step t. Predicted state f̂i,t is not fed into φqz ,

where we empirically get sub-optimal results. Because at initial training stage f̂i,t is noisy and
non-informative, which in turn acts as a distractor for training φqz . The prediction model is
trained as follows,
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Lrcn = ||f̂j,t+1 − ft+1||22, (3.3.10)

Ldst = ||V({f̂i,t+1}Ni=1)− V(fΩ
t+1)||22, (3.3.11)

where j = mini ||{f̂i,t+1}Ni=1 − ft+1||22. Lrcn indicates that the best matched one is used for
training [197]. Empirically, it is proved to be useful for stabilizing prediction when having
multiple outputs.
Ldst aims to restrict the variety of N predicted features to match with fΩ

t+1. In this way,
the motion information of examples is effectively utilized and the distribution of predicted
sequences is explicitly supervised. Meanwhile, to guarantee the plausibility of each predicted
sequence, we incorporate the adversarial training into our method. More specifically, a motion
discriminator φdcm is utilized to facilitate realistic prediction.

LD =
1

2
(φdcm(1− F) + φdcm(1 + F̂i)), (3.3.12)

LG = −φdcm(1− F̂i), (3.3.13)

where i ∈ [1, N ], LD,LG are adversarial losses for φdcm and φpre [55]. Adversarial training
effectively guarantees the predicted sequence not drifting far away from the real-wold motion
examples. For clarity we present the whole prediction procedure in Alg. 1.

Improvement upon existing models. Our work mainly focuses on multi-modal dis-
tribution modelling and sampling efficiency, which is adaptive to multiple neural models.
In Sec. 3.4, we demonstrate extensive results by combining proposed framework with two
baselines, i.e., SVG [35] and [80]. The final objective is shown below:

Lfin = λ1Lrcn + λ2Ldst + λ3LD + λ4LG. (3.3.14)

3.4 Experiments

Datasets and Evaluation Metrics

We evaluate our model with three widely used video prediction datasets: (1) MovingM-
nist [162], (2) Bair RobotPush [44] and (3) PennAction [206]. Following the evaluation
practice of SVG [8] and [80], we calculate the per-step prediction accuracy in terms of PSNR
and SSIM. The overall prediction quality of video frames is evaluated with Fréchet Video
Distance (FVD) [177]. To ensure fair evaluation, we compare with models whose source
code is publicly available. Specifically, on MovingMnist [162] dataset we compare with
SVG [35] and DFN [155]; On RobotPush [44] dataset SVG [35], SV2P [8] and CDNA [49]
are treated as baselines; On PennAction [206] dataset the works of [80, 95, 192, 181] are
used for comparison. Note that to follow the best practice of the baseline model [80], the
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Ours

SVG-LP

DFN

Example

Figure 3.4: Visualization of prediction results on MovingMnist [162] dataset under stochastic
setting. First row refers to ground truth. Following three rows correspond to example,
predicted sequences of proposed model, SVG [192] and DFN [155] respectively.

Mode Model T=1 T=3 T=5 T=7 T=9 T=11 T=13 T=15 T=17

D
DFN 25.3 23.8 22.9 22.0 21.2 20.1 19.5 19.1 18.9
SVG-LP 24.7 22.8 21.3 19.5 18.8 18.2 17.9 17.7 17.4
Ours 25.6 23.2 22.5 21.7 20.8 20.3 19.8 19.5 19.3

S
DFN 25.1 22.1 18.9 16.5 16.2 15.7 15.2 14.9 14.3
SVG-LP 25.4 23.9 22.9 19.5 19.0 18.7 18.7 18.2 17.6
Ours 26.0 24.8 23.1 22.1 21.0 20.5 19.7 19.5 19.2

Table 3.1: Prediction accuracy on MovinMnist dataset [162] in terms of PSNR. Mode refers
to experiment setting, i.e., stochastic (S) or deterministic (D). We compare our model with
SVG-LP [35] and DFN [70].

prediction procedure on the PennAction Dataset [206] is a implementation-wise variant
of Eqn. 3.3.7-3.3.9. More specifically, the random noise is sampled only at the first time
stamp. Please refer to prediction procedure of the baseline model [80] for more details. In all
experiments we empirically set N = K = 5.

Motivating Experiments: Moving Digit Prediction

For MovingMnist [162] dataset, inputs/outputs are of length 5 and 10 respectively during
training. Note that this dataset is configured with two different settings, i.e., to be determin-
istic or stochastic. The deterministic version implies that the motion is determined by initial
direction and velocity, while for the stochastic one, a new direction and velocity are applied
after the digit hitting the boundary. The prediction model should be able to accurately
estimate motion patterns under both settings.

Deterministic Motion Prediction. Tab. 3.1 shows prediction accuracy (in terms of PSNR)
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Demo1

Demo2

Ours

SVG-LP

SV2P

Figure 3.5: Comparison of the predicted sequences on RobotPush [44] dataset. Rows from top
to bottom: ground truth, two retrieved examples, predicted results of our model, SVG [35]
and SV2P [8].

from T=1 to T=17. One can observe that our model outperforms SVG-LP [35] by a large
margin and is comparable to DFN [70]. Under deterministic setting the retrieved examples
provide exact motion information to facilitate prediction procedure.

Stochastic Motion Prediction. Under stochastic setting, the best PSNR value of 20
random samples is reported (bottom three rows of Tab. 3.1). Considerable improvement over
SVG-LP [35] could be observed from Tab. 3.1. Despite the retrieved example sequence not
perfectly matching with ground truth (Fig. 3.4, first two columns refer to input.), informative
motion pattern is provided, i.e., bouncing back after reaching the boundary. The deterministic
model (DFN [70]), which only produces a single output, is infeasible to properly handle
stochastic motion. For example, the blur effect (last row in Fig. 3.4) is observed after hitting
the boundary.

Deterministic and stochastic datasets possess different motion patterns and distributions.
Non-stochastic method (e.g., DFN [70]) is insufficient to capture motion uncertainty, while
SVG-LP [35], empirically restricted by the stochastic prior nature in variational inference, is
not capable of accurately predicting the trajectory under the deterministic condition. Under
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Figure 3.6: Evaluation in terms of SSIM on RobotPush [44] dataset. Left figure: X-axis is the
time step and Y-axis is SSIM. Right figure: X-axis refers to the number of random samples
during evaluation and Y-axis is averaged SSIM over a whole predicted sequence.

deterministic setting, retrieved examples generally follow similar trajectory, whose variance
is low. For the stochastic version, searched sequences are highly diverse but follow the
same motion pattern, i.e., bouncing back when hitting the boundary. Guided by examples
from these experiences, our model is able to reliably capture the motion pattern under both
settings. It implies that compared to fixed/learned prior, the motion variety could be better
represented by similar examples.

Robot Arm Motion Prediction

Experiments on RobotPush [44] dataset take 5 frames as inputs and predict the following 10
frames during training. As illustrated in Fig. 3.6 (first column refers to input), we present
quantitative evaluation in terms of SSIM. For the stochastic method, the best value of 20
random samples is presented. Fig. 3.6 implies that our method outperforms all previous
methods by a large margin. We find CDNA [49] (deterministic method) is inferior to stochastic
ones. We attribute this to the high uncertainty of robot motion in this dataset. Our model,
facilitated by example guidance, is capable of capturing the real motion dynamics in a more
efficient manner. To comprehensively evaluate the distribution modelling ability and sampling
efficiency of the proposed method, we calculate the mean accuracy w.r.t. the number of
samples (denoted as P ): Fig. 3.6 shows the accuracy improvement for all stochastic methods
along with the increase of P , which tends to be saturated when P is large. It is worth
mentioning that our model still outperforms SVG [35] by a large margin when P is sufficiently
large, e.g., 100. This clearly indicates a higher upper bound of accuracy achieved by our
model (with guidance of retrieved examples) compared to variational inference based method,
i.e., superior capability to capture real-world motion pattern.

Predicted sequences are shown in Fig. 3.5. For row arrangement please refer to the caption.
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Figure 3.7: Qualitative evaluation of human motion prediction on PennAction [206] dataset.
We present ground truth, results of [80], predicted sequence of our model and two searched
examples. The left part refers to a pull-up action with multi-modal futures based on the
current input and searched examples are capable of matching with possibilities. The right
part aims to show that our model is capable of preserving the general structure during
prediction. Red-boxes highlight the corresponding evidences on both sides.

The key region (highlighted with red boxes) of predicted frames is zoomed in for better
visualization of details (last column). Compared to stochastic baselines, our model achieves
higher image quality of predicted sequences, i.e., object edges and general structure are better
preserved. Meanwhile, the overall trajectory is more accurately predicted by our model if
compared to two stochastic baselines, which is mainly facilitated by the effective guidance of
retrieved examples.

Human Motion Prediction

We report the experimental results on a human daily activity dataset, i.e., PennAction [206].
We follow the setting of [80], which is also a strong baseline for comparison. More specifically,
the class label and first frame are fed as inputs. Note that under this situation we retrieve
the examples according to the first frame in sequences with an identical action label.

Metric [1] [2] [3] [4] Ours

Action Acc↑ 15.89 40.00 47.14 68.89 73.23
FVD↓ 4083.3 3324,9 2187.5 1509.0 1283.5

Table 3.2: Quantitative evaluation of predicted sequences in terms of Fréchet Video Distance
(FVD) [177] (lower is better) and action recognition accuracy (higher is better). Previous
works [1]-[4] refer to [95, 192, 181] respectively. Experiment is conducted on PennAction
dataset [206].
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Metric K=2 K=3 K=4 K=5 K=6 K=7

PSNR 17.81 18.19 18.28 18.35 18.31 18.25
SSIM 0.78 0.82 0.83 0.84 0.84 0.83

Table 3.3: Influence of the example number K evaluated in terms of PSNR (first row) and
SSIM (second row) on RobotPush [44] dataset. Note that each number reported in this table
is averaged over the whole predicted sequence.

Random

Demo1

Random

Demo2

Prediction

Figure 3.8: Prediction results with random example guidance on MovingMnist [162] dataset.
The top and bottom rows correspond to ground truth and predicted sequence, while the
middle two rows are randomly selected examples in this dataset. Unnatural motion is observed
during prediction (last row).

To evaluate the multi-modal distribution modelling capability, Fig. 3.7A presents the best
prediction sequence of 20 random samples in terms of PSNR and please refer to the caption
for row arrangement. First column refers to input. The pull-up action generally possesses two
motion modalities, i.e., up and down. We can observe that [80] fails to predict corresponding
motion precisely even with 20 samples (third time step highlighted with red-boxes). Our
model, guided by similar examples (last two rows in Fig. 3.7A), is capable of synthesizing the
correct motion pattern compared to the groundtruth sequence. Meanwhile, from Fig. 3.7B
we can notice that [80] fails to preserve the general structure during prediction. The human
topology is severely distorted especially at the late stage of prediction (last 3 time steps
highlighted with red-boxes). As comparison the structure of subject is well maintained
predicted by our model, which is visually more natural than the results of [80]. This implies
reliably capturing the motion distribution facilitates better visual quality of final predicted
image sequences.

For quantitative evaluation, we follow [80] to calculate the action recognition accuracy
and FVD [177] score. As shown in Tab. 3.2, our model outperforms all previous methods in
terms of both action recognition accuracy and FVD score by a large margin. This mainly
benefits from the retrieved examples, which provides effective guidance for future prediction.
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A: Demo

D: SV2PC: SVG-LP

B: Ours

Figure 3.9: Visualization of retrieved examples and randomly sampled sequences on Robot-
Push [44] dataset. Top left refers to searched examples, while the other three figures correspond
to sampled sequences by proposed model, SVG [192] and SV2P [8] respectively.

Ablation Study

Does example guidance really help? To evaluate the effectiveness of retrieved examples,
we replace the retrieval procedure described in Sec. 3.3 with the random selection, i.e.,
the examples have no motion similarity with inputs. We conduct this experiment on
MovingMnist [162] dataset. Results are presented in Fig. 3.8 and please refer to caption for
detailed row arrangement. Due to the lack of motion similarity between examples and the
input sequence, the predicted sequence demonstrates unnatural motion. The double-image
effect of digit 5 (last row in Fig. 3.8), resulting from the misleading information of motion
trajectory provided by random examples, implies the critical value of retrieval procedure
proposed in Sec. 3.3.
Does the proposed model really capture multi-modal distribution? We present the
sampled motion features (Fig. 3.9) in RobotPush [44] dataset to evaluate the capability of
distribution modelling. For row arrangement please refer to the caption. For sub-figures
from B to D, red-dot lines refer to predicted sequences and blue ones are ground truth.
We can observe that the sampled states of SVG [35] and SV2P [8] are not multi-modal
distributed. Guided by retrieved examples whose multi-modality distribution generally cover
the ground truth motion, our model is able to predict the future motion in a more efficient
way. Meanwhile, we present more visualization results to show that predicted sequences are
not simply copied from examples and they are highly diverse.
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Figure 3.10: Predicted results of unseen motion. Contents from top to bottom are ground
truth sequence, retrieved example, prediction of our model and the results of [80] respectively.

Influence of Example Number K. As illustrated in Tab. 3.3, we conduct corresponding
ablation study about K on RobotPush [44] dataset. Performance under two metrics, i.e.,
PSNR and SSIM, is reported. PSNR and SSIM are averaged over the whole sequence and
the best of 20 random sequences is reported. K ranges from 2 to 7. We can see that both
PSNR and SSIM keep increase when K is no larger than 5 and then decrease. It indicates
that multi-modal examples facilitate better modelling the target distribution, but noise
information (or irrelevant motion pattern) might be introduced when K is too large.

Motion Prediction Beyond Seen Class

To further evaluate the generalization ability of the proposed model, we are motivated to
predict the motion sequence on unseen class. The majority of video prediction methods
are merely able to forecast the motion pattern accessible during training, which are hardly
generalizable to novel motion. We conduct experiments on PennAction [206] dataset. We
choose three actions, i.e., golf swing, pull ups and tennis serve as known action during
training and baseball pitch as the unseen motion used during testing. Our model as well
as that of [80] is retrained without label class. During testing, the examples for guidance
are retrieved baseball pitch sequences. Fig. 3.10 demonstrates the predicted results. For
row arrangement please refer to the caption. We can observe that [80] fails to give rational



CHAPTER 3. VIDEO PREDICTION VIA EXAMPLE GUIDANCE 36

prediction regarding the input, where there should be a baseball pitch motion but visually
resemble tennis serve. Facilitated by the guidance of examples, our model produces a visually
natural tennis serve sequence, which clearly demonstrates the generalization capability of
proposed model. We argue that the majority of previous works are (implicitly) forced to
memorize motion categories in the training set. In contrast to the paradigm, our work is
relieved from such burden because the retrieved examples contain the category information
in assistance of prediction. We thus focus only on intra-class diversity. If given examples
with unseen motion categories, our model is still able to give reasonable predictions, thanks
to the example guidance.

3.5 Discussion

In this work, we present a simple yet effective framework for multi-modal video prediction,
which mainly focuses on the capability of multi-modal distribution modelling. We first
retrieve similar examples in the training set and then use these searched sequences to
explicitly construct a distribution target. With proposed optimization method based on
stochastic process, our model achieves promising performance on both prediction accuracy
and visual quality.
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Chapter 4

Model-based Deep Reinforcement
Learning

Model-based reinforcement learning (RL) is considered to be a promising approach to reduce
the sample complexity that hinders model-free RL. However, the theoretical understanding of
such methods has been rather limited. This paper introduces a novel algorithmic framework
for designing and analyzing model-based RL algorithms with theoretical guarantees. We
design a meta-algorithm with a theoretical guarantee of monotone improvement to a local
maximum of the expected reward. The meta-algorithm iteratively builds a lower bound of the
expected reward based on the estimated dynamical model and sample trajectories, and then
maximizes the lower bound jointly over the policy and the model. The framework extends
the optimism-in-face-of-uncertainty principle to non-linear dynamical models in a way that
requires no explicit uncertainty quantification. Instantiating our framework with simplification
gives a variant of model-based RL algorithms Stochastic Lower Bounds Optimization (SLBO).
Experiments demonstrate that SLBO achieves state-of-the-art performance when only one
million or fewer samples are permitted on a range of continuous control benchmark tasks.

4.1 Background

In recent years deep reinforcement learning has achieved strong empirical success, including
super-human performances on Atari games and Go [113, 156] and learning locomotion and
manipulation skills in robotics [92, 151, 97]. Many of these results are achieved by model-free
RL algorithms that often require a massive number of samples, and therefore their applications
are mostly limited to simulated environments. Model-based deep reinforcement learning, in
contrast, exploits the information from state observations explicitly — by planning with an
estimated dynamical model — and is considered to be a promising approach to reduce the
sample complexity. Indeed, empirical results [32, 33, 92, 118, 87, 139] have shown strong
improvements in sample efficiency.

Despite promising empirical findings, many of theoretical properties of model-based deep
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reinforcement learning are not well-understood. For example, how does the error of the
estimated model affect the estimation of the value function and the planning? Can model-
based RL algorithms be guaranteed to improve the policy monotonically and converge to a
local maximum of the value function? How do we quantify the uncertainty in the dynamical
models?

It’s challenging to address these questions theoretically in the context of deep RL with
continuous state and action space and non-linear dynamical models. Due to the high-
dimensionality, learning models from observations in one part of the state space and extrapo-
lating to another part sometimes involves a leap of faith. The uncertainty quantification of the
non-linear parameterized dynamical models is difficult — even without the RL components,
it is an active but widely-open research area. Prior work in model-based RL mostly quantifies
uncertainty with either heuristics or simpler models [115, 194, 31].

Previous theoretical work on model-based RL mostly focuses on either the finite-state
MDPs [67, 12, 50, 88, 62, 136, 135], or the linear parametrization of the dynamics, policy,
or value function [1, 157, 29, 167, 170], but not much on non-linear models. Even with an
oracle prediction intervals1 or posterior estimation, to the best of our knowledge, there was
no previous algorithm with convergence guarantees for model-based deep RL.

Towards addressing these challenges, the main contribution of this paper is to propose
a novel algorithmic framework for model-based deep RL with theoretical guarantees. Our
meta-algorithm (Algorithm 2) extends the optimism-in-face-of-uncertainty principle to non-
linear dynamical models in a way that requires no explicit uncertainty quantification of the
dynamical models.

Let V π be the value function V π of a policy π on the true environment, and let V̂ π be the
value function of the policy π on the estimated model M̂ . We design provable upper bounds,

denoted by Dπ,M̂ , on how much the error can compound and divert the expected value V̂ π of
the imaginary rollouts from their real value V π, in a neighborhood of some reference policy.
Such upper bounds capture the intrinsic difference between the estimated and real dynamical
model with respect to the particular reward function under consideration.

The discrepancy bounds Dπ,M̂ naturally leads to a lower bound for the true value function:

V π ≥ V̂ π −Dπ,M̂ . (4.1.1)

Our algorithm iteratively collects batches of samples from the interactions with environ-
ments, builds the lower bound above, and then maximizes it over both the dynamical model
M̂ and the policy π. We can use any RL algorithms to optimize the lower bounds, because it
will be designed to only depend on the sample trajectories from a fixed reference policy (as
opposed to requiring new interactions with the policy iterate.)

We show that the performance of the policy is guaranteed to monotonically increase,
assuming the optimization within each iteration succeeds (see Theorem 4.3.1.) To the

1We note that the confidence interval of parameters are likely meaningless for over-parameterized neural
networks models.
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best of our knowledge, this is the first theoretical guarantee of monotone improvement for
model-based deep RL.

Readers may have realized that optimizing a robust lower bound is reminiscent of robust
control and robust optimization. The distinction is that we optimistically and iteratively
maximize the RHS of (4.1.1) jointly over the model and the policy. The iterative approach
allows the algorithms to collect higher quality trajectory adaptively, and the optimism in
model optimization encourages explorations of the parts of space that are not covered by the
current discrepancy bounds.

To instantiate the meta-algorithm, we design a few valid discrepancy bounds in Section 4.4.
In Section 4.4, we recover the norm-based model loss by imposing the additional assumption
of a Lipschitz value function. The result suggests a norm is preferred compared to the
square of the norm. Indeed in Section 4.5, we show that experimentally learning with `2 loss
significantly outperforms the mean-squared error loss (`2

2).
In Section 4.4, we design a discrepancy bound that is invariant to the representation of

the state space. Here we measure the loss of the model by the difference between the value of
the predicted next state and the value of the true next state. Such a loss function is shown
to be invariant to one-to-one transformation of the state space. Thus we argue that the loss
is an intrinsic measure for the model error without any information beyond observing the
rewards. We also refine our bounds in Section 4.6 by utilizing some mathematical tools of
measuring the difference between policies in χ2-divergence (instead of KL divergence or TV
distance).

Our analysis also sheds light on the comparison between model-based RL and on-policy
model-free RL algorithms such as policy gradient or TRPO [153]. The RHS of equation (4.1.1)
is likely to be a good approximator of V π in a larger neighborhood than the linear approxi-
mation of V π used in policy gradient is (see Remark 4.4.5.)

Finally, inspired by our framework and analysis, we design a variant of model-based RL
algorithms Stochastic Lower Bounds Optimization (SLBO). Experiments demonstrate that
SLBO achieves state-of-the-art performance when only 1M samples are permitted on a range
of continuous control benchmark tasks.

4.2 Related Work

Notations and Preliminaries

We denote the state space by S, the action space by A. A policy π(·|s) specifies the conditional
distribution over the action space given a state s. A dynamical model M(·|s, a) specifies the
conditional distribution of the next state given the current state s and action a. We will
use M? globally to denote the unknown true dynamical model. Our target applications are
problems with the continuous state and action space, although the results apply to discrete
state or action space as well. When the model is deterministic, M(·|s, a) is a dirac measure.
In this case, we use M(s, a) to denote the unique value of s′ and view M as a function from
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S ×A to S. LetM denote a (parameterized) family of models that we are interested in, and
Π denote a (parameterized) family of policies.

Unless otherwise stated, for random variable X, we will use pX to denote its density
function.

Let S0 be the random variable for the initial state. Let Sπ,Mt to denote the random
variable of the states at steps t when we execute the policy π on the dynamic model M
stating with S0. Note that Sπ,M0 = S0 unless otherwise stated. We will omit the subscript
when it’s clear from the context. We use At to denote the actions at step t similarly. We often
use τ to denote the random variable for the trajectory (S0, A1, . . . , St, At, . . . ). Let R(s, a)
be the reward function at each step. We assume R is known throughout the paper, although
R can be also considered as part of the model if unknown. Let γ be the discount factor.

Let V π,M be the value function on the model M and policy π defined as:

V π,M(s) = E
∀t≥0,At∼π(·|St)
St+1∼M(·|St,At)

[
∞∑
t=0

γtR(St, At) | S0 = s

]
(4.2.1)

We define V π,M = E
[
V π,M(S0)

]
as the expected reward-to-go at Step 0 (averaged over the

random initial states). Our goal is to maximize the reward-to-go on the true dynamical model,
that is, V π,M?

, over the policy π. For simplicity, throughout the paper, we set κ = γ(1− γ)−1

since it occurs frequently in our equations. Every policy π induces a distribution of states
visited by policy π:

Definition 4.2.1. For a policy π, define ρπ,M as the discounted distribution of the states
visited by π on M . Let ρπ be a shorthand for ρπ,M

?
and we omit the superscript M? throughout

the paper. Concretely,we have ρπ = (1− γ)
∑∞

t=0 γ
t · pSπt

Additional Related work
Model-based reinforcement learning is expected to require fewer samples than model-free
algorithms [33] and has been successfully applied to robotics in both simulation and in the
real world [32, 117, 34] using dynamical models ranging from Gaussian process [32, 83],
time-varying linear models [91, 98, 90, 203], mixture of Gaussians [79], to neural networks [66,
118, 87, 173, 148, 129]. In particular, the work of [87] uses an ensemble of neural networks
to learn the dynamical model, and significantly reduces the sample complexity compared to
model-free approaches. The work of [25] makes further improvement by using a probabilistic
model ensemble. Clavera et al. [26] extended this method with meta-policy optimization and
improve the robustness to model error. In contrast, we focus on theoretical understanding of
model-based RL and the design of new algorithms, and our experiments use a single neural
network to estimate the dynamical model.

Our discrepancy bound in Section 4.4 is closely related to the work [46] on the value-aware
model loss. Our approach differs from it in three details: a) we use the absolute value of the
value difference instead of the squared difference; b) we use the imaginary value function from
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the estimated dynamical model to define the loss, which makes the loss purely a function
of the estimated model and the policy; c) we show that the iterative algorithm, using the
loss function as a building block, can converge to a local maximum, partly by cause of the
particular choices made in a) and b). [7] also study the discrepancy bounds under Lipschitz
condition of the MDP.

Prior work explores a variety of ways of combining model-free and model-based ideas
to achieve the best of the two methods [165, 166, 141, 116, 164]. For example, estimated
models [91, 57, 75] are used to enrich the replay buffer in the model-free off-policy RL. [140]
proposes goal-conditioned value functions trained by model-free algorithms and uses it for
model-based controls. [47, 18] use dynamical models to improve the estimation of the value
functions in the model-free algorithms.

On the control theory side, [30, 29] provide strong finite sample complexity bounds
for solving linear quadratic regulator using model-based approach. [14] provide finite-data
guarantees for the “coarse-ID control” pipeline, which is composed of a system identification
step followed by a robust controller synthesis procedure. Our method is inspired by the
general idea of maximizing a low bound of the reward in [29]. By contrast, our work applies
to non-linear dynamical systems. Our algorithms also estimate the models iteratively based
on trajectory samples from the learned policies.

Strong model-based and model-free sample complexity bounds have been achieved in the
tabular case (finite state space). We refer the readers to [72, 28, 169, 77, 67, 4] and the
reference therein. Our work focus on continuous and high-dimensional state space (though
the results also apply to tabular case).

Another line of work of model-based reinforcement learning is to learn a dynamic model in
a hidden representation space, which is especially necessary for pixel state spaces [72, 28, 169,
77, 67]. [160] shows the possibility to learn an abstract transition model to imitate expert
policy. [125] learns the hidden state of a dynamical model to predict the value of the future
states and applies RL or planning on top of it. [154, 58] learns a bottleneck representation of
the states. Our framework can be potentially combined with this line of research.

4.3 Algorithmic Framework

As mentioned in the introduction, towards optimizing V π,M?
,2 our plan is to build a lower

bound for V π,M?
of the following type and optimize it iteratively:

V π,M? ≥ V π,M̂ −D(M̂, π) (4.3.1)

where D(M̂, π) ∈ R≥0 bounds from above the discrepancy between V π,M̂ and V π,M?
. Building

such an optimizable discrepancy bound globally that holds for all M̂ and π turns out to be

2Note that in the introduction we used V π for simplicity, and in the rest of the paper we will make the
dependency on M? explicit.
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rather difficult, if not impossible. Instead, we shoot for establishing such a bound over the
neighborhood of a reference policy πref.

V π,M? ≥ V π,M̂ −Dπref,δ(M̂, π), ∀π s.t. d(π, πref) ≤ δ (R1)

Here d(·, ·) is a function that measures the closeness of two policies, which will be chosen later
in alignment with the choice of D. We will mostly omit the subscript δ in D for simplicity
in the rest of the paper. We will require our discrepancy bound to vanish when M̂ is an
accurate model:

M̂ = M? =⇒ Dπref(M̂, π) = 0, ∀π, πref (R2)

The third requirement for the discrepancy bound D is that it can be estimated and
optimized in the sense that

Dπref(M̂, π) is of the form E
τ∼πref,M?

[f(M̂, π, τ)] (R3)

where f is a known differentiable function. We can estimate such discrepancy bounds for
every π in the neighborhood of πref by sampling empirical trajectories τ (1), . . . , τ (n) from
executing policy πref on the real environment M? and compute the average of f(M̂, π, τ (i))’s.
We would have to insist that the expectation cannot be over the randomness of trajectories
from π on M?, because then we would have to re-sample trajectories for every possible π
encountered.

For example, assuming the dynamical models are all deterministic, one of the valid
discrepancy bounds (under some strong assumptions) that will prove in Section 4.4 is a

multiple of the error of the prediction of M̂ on the trajectories from πref:

Dπref(M̂, π) = L · E
S0,...,St,∼πref,M?

[
‖M̂(St)− St+1‖

]
(4.3.2)

Suppose we can establish such an discrepancy bound D (and the distance function d)
with properties (R1), (R2), and (R3), — which will be the main focus of Section 4.4 —,
then we can devise the following meta-algorithm (Algorithm 2). We iteratively optimize the
lower bound over the policy πk+1 and the model Mk+1, subject to the constraint that the
policy is not very far from the reference policy πk obtained in the previous iteration. For
simplicity, we only state the population version with the exact computation of Dπref(M̂, π),
though empirically it is estimated by sampling trajectories.

We first remark that the discrepancy bound Dπk(M,π) in the objective plays the role of
learning the dynamical model by ensuring the model to fit to the sampled trajectories. For
example, using the discrepancy bound in the form of equation (4.3.2), we roughly recover the
standard objective for model learning, with the caveat that we only have the norm instead of
the square of the norm in MSE. Such distinction turns out to be empirically important for
better performance (see Section 4.5).
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Algorithm 2 Meta-Algorithm for Model-based RL

Inputs: Initial policy π0. Discrepancy bound D and distance function d that satisfy
equation (R1) and (R2).
For k = 0 to T :

πk+1,Mk+1 = arg max
π∈Π, M∈M

V π,M −Dπk,δ(M,π) (4.3.3)

s.t. d(π, πk) ≤ δ (4.3.4)

Second, our algorithm can be viewed as an extension of the optimism-in-face-of-uncertainty
(OFU) principle to non-linear parameterized setting: jointly optimizing M and π encourages
the algorithm to choose the most optimistic model among those that can be used to accurately
estimate the value function. (See [67, 12, 50, 88, 136, 135] and references therein for the OFU
principle in finite-state MDPs.) The main novelty here is to optimize the lower bound directly,
without explicitly building any confidence intervals, which turns out to be challenging in
deep learning. In other words, the uncertainty is measured straightforwardly by how the
error would affect the estimation of the value function.

Thirdly, the maximization of V π,M , when M is fixed, can be solved by any model-free RL
algorithms with M as the environment without querying any real samples. Optimizing V π,M

jointly over π,M can be also viewed as another RL problem with an extended actions space
using the known “extended MDP technique”. See [67, section 3.1] for details.

Our main theorem shows formally that the policy performance in the real environment is
non-decreasing under the assumption that the real dynamics belongs to our parameterized
family M.3

Theorem 4.3.1. Suppose that M? ∈M, that D and d satisfy equation (R1) and (R2), and
the optimization problem in equation (4.3.3) is solvable at each iteration. Then, Algorithm 2
produces a sequence of policies π0, . . . , πT with monotonically increasing values:

V π0,M? ≤ V π1,M? ≤ · · · ≤ V πT ,M
?

(4.3.5)

Moreover, as k →∞, the value V πk,M
?

converges to some V π̄,M?
, where π̄ is a local maximum

of V π,M?
in domain Π.

The theorem above can also be extended to a finite sample complexity result with standard
concentration inequalities. We show in Theorem 4.6.17 that we can obtain an approximate
local maximum in O(1/ε) iterations with sample complexity (in the number of trajectories)
that is polynomial in dimension and accuracy ε and is logarithmic in certain smoothness
parameters.

3We note that such an assumption, though restricted, may not be very far from reality: optimistically
speaking, we only need to approximate the dynamical model accurately on the trajectories of the optimal
policy. This might be much easier than approximating the dynamical model globally.
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Proof of Theorem 4.3.1. Since D and d satisfy equation (R1), we have that

V πk+1,M
? ≥ V πk+1,Mk+1 −Dπk(Mk+1, πk+1)

By the definition that πk+1 and Mk+1 are the optimizers of equation (4.3.3), we have that

V πk+1,Mk+1 −Dπk(Mk+1, πk+1) ≥ V πk,M
? −Dπk(M?, πk) = V πk,M

?

(by equation R2)

Combing the two equations above we complete the proof of equation (4.3.5).
For the second part of the theorem, by compactness, we have that a subsequence of πk

converges to some π̄. By the monotonicity we have V πk,M
? ≤ V π̄,M?

for every k ≥ 0. For the
sake of contradiction, we assume π̄ is a not a local maximum, then in the neighborhood of
π̄ there exists π′ such that V π′,M?

> V π̄,M?
and d(π̄, π′) < δ/2. Let t be such that πt is in

the δ/2-neighborhood of π̄. Then we see that (π′,M?) is a better solution than (πt+1,Mt+1)
for the optimization problem (4.3.3) in iteration t because V π′,M?

> V π̄,M? ≥ V πt+1,M? ≥
V πt+1,Mt+1 − Dπt(Mt+1, πt+1). (Here the last inequality uses equation (R1) with πt as πref.)
The fact (π′,M?) is a strictly better solution than (πt+1,Mt+1) contradicts the fact that
(πt+1,Mt+1) is defined to be the optimal solution of (4.3.3) . Therefore π̄ is a local maximum
and we complete the proof.

Particularly, the condition (R2) and (R3) are at odds with each other—(R3) essentially
says that the discrepancy bound D can only carry information about M? through the sampled
data, and the non-trivial uncertainty about M? from observing only sampled data implies
that the discrepancy bound Dπref(M̂, π) can never be zero (regardless of M? = M̂ or not).
We can formally see this from the linear bandit setting (which corresponds to the horizon
H = 1 case.)

In the linear bandit setting, with a bit abuse of notation, we still use M ∈ Rd for the
model parameters and use π for the action in Rd. We assume that the reward is linear:
V π,M = 〈π,M〉. In the sequel, we will show that (R3) and (R1) imply the “⇐” direction
in (R2), and therefore we have,

M̂ = M∗ ⇐⇒ ∀π, πref , Dπref (M̂, π) = 0, (4.3.6)

Note that (4.3.6) is statistically impossible because it allows us to find the true model M∗

directly through checking if D is zero for all policies π, πref , which is not possible given finite
data (at least not before we have sufficient data).

Now we prove the reverse direction of (R2). For the sake of contradiction, we assume

that there exists M̂ 6= M∗ such that for all policies π, πref , we have d(π, πref) ≤ δ and

Dπref (M̂, π) = 0. There exists a policy π such that V π,M̂ = 〈π, M̂〉 > 〈π,M?〉 = V π,M∗

because we can take a policy π that correlates with M̂ more than M? (and this is the only

place that we use linearity.) By (R1), we have 0 ≥ Dπref (M̂, π) ≥ V π,M̂ − V π,M∗ , which is a
contradiction.
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4.4 Discrepancy Bounds Design

In this section, we design discrepancy bounds that can provably satisfy the requirements (R1),
(R2), and (R3).We design increasingly stronger discrepancy bounds from Section 4.4 to
Section 4.6.

Norm-based prediction error bounds

In this subsection, we assume the dynamical model M? is deterministic and we also learn
with a deterministic model M̂ . Under assumptions defined below, we derive a discrepancy
bound D of the form ‖M̂(S,A) −M?(S,A)‖ averaged over the observed state-action pair

(S,A) on the dynamical model M̂ . This suggests that the norm is a better metric than
the mean-squared error for learning the model, which is empirically shown in Section 4.5.
Through the derivation, we will also introduce a telescoping lemma, which serves as the main
building block towards other finer discrepancy bounds.

We make the (strong) assumption that the value function V π,M̂ on the estimated dynamical
model is L-Lipschitz w.r.t to some norm ‖ · ‖ in the sense that

∀s, s′ ∈ S,
∣∣V π,M̂(s)− V π,M̂(s′)

∣∣ ≤ L · ‖s− s′‖ (4.4.1)

In other words, nearby starting points should give reward-to-go under the same policy
π. We note that not every real environment M? has this property, let alone the estimated
dynamical models. However, once the real dynamical model induces a Lipschitz value function,
we may penalize the Lipschitz-ness of the value function of the estimated model during the
training.

We start off with a lemma showing that the expected prediction error is an upper bound
of the discrepancy between the real and imaginary values.

Lemma 4.4.1. Suppose V π,M̂ is L-Lipschitz (in the sense of (4.4.1)). Recall κ = γ(1−γ)−1.∣∣V π,M̂ − V π,M?∣∣ ≤ κL E
S∼ρπ

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
(4.4.2)

However, in RHS in equation 4.4.2 cannot serve as a discrepancy bound because it does
not satisfy the requirement (R3) — to optimize it over π we need to collect samples from
ρπ for every iterate π — the state distribution of the policy π on the real model M?. The
main proposition of this subsection stated next shows that for every π in the neighborhood
of a reference policy πref, we can replace the distribution ρπ be a fixed distribution ρπref with
incurring only a higher order approximation. We use the expected KL divergence between
two π and πref to define the neighborhood:

dKL(π, πref) = E
S∼ρπ

[
KL(π(·|S), πref(·|S))1/2

]
(4.4.3)
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Proposition 4.4.2. In the same setting of Lemma 4.4.1, assume in addition that π is close
to a reference policy πref in the sense that dKL(π, πref) ≤ δ, and that the states in S are
uniformly bounded in the sense that ‖s‖ ≤ B, ∀s ∈ S. Then,∣∣V π,M̂ − V π,M?∣∣ ≤ κL E

S∼ρπref
A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
+ 2κ2δB (4.4.4)

In a benign scenario, the second term in the RHS of equation (4.4.4) should be dominated
by the first term when the neighborhood size δ is sufficiently small. Moreover, the term
B can also be replaced by maxS,A‖M̂(S,A)−M?(S,A)‖ (see the proof that is deferred to
Section 4.6.). The dependency on κ may not be tight for real-life instances, but we note that
most analysis of similar nature loses the additional κ factor [153, 2], and it’s inevitable in the
worst-case.

A telescoping lemma. Towards proving Propositions 4.4.2 and deriving stronger discrep-
ancy bound, we define the following quantity that captures the discrepancy between M̂ and
M? on a single state-action pair (s, a).

Gπ,M̂(s, a) = E
ŝ′∼M̂(·|s,a)

V π,M̂(ŝ′)− E
s′∼M?(·|s,a)

V π,M̂(s′) (4.4.5)

Note that if M, M̂ are deterministic, then Gπ,M̂ (s, a) = V π,M̂ (M̂(s, a))−V π,M̂ (M?(s, a)). We
give a telescoping lemma that decompose the discrepancy between V π,M and V π,M?

into the
expected single-step discrepancy G.

Lemma 4.4.3. [Telescoping Lemma] Recall that κ := γ(1 − γ)−1. For any policy π and

dynamical models M, M̂ , we have that

V π,M̂ − V π,M = κ E
S∼ρπ,M
A∼π(·|S)

[
Gπ,M̂ (S,A)

]
(4.4.6)

The proof is reminiscent of the telescoping expansion in [73] (c.f. [153]) for characterizing
the value difference of two policies, but we apply it to deal with the discrepancy between
models. With the telescoping Lemma 4.4.3, Proposition 4.4.1 follows straightforwardly from
Lipschitzness of the imaginary value function. Proposition 4.4.2 follows from that ρπ and
ρπref are close. We defer the proof to Section 4.6.

Representation-invariant Discrepancy Bounds

The main limitation of the norm-based discrepancy bounds in previous subsection is that
it depends on the state representation. Let T be a one-to-one map from the state space
S to some other space S ′, and for simplicity of this discussion let’s assume a model M is
deterministic. Then if we represent every state s by its transformed representation T s, then the
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transformed model MT defined as MT (s, a) , TM(T −1s, a) together with the transformed
reward RT (s, a) , R(T −1s, a) and transformed policy πT (s) , π(T −1s) is equivalent to the
original set of the model, reward, and policy in terms of the performance(Lemma 4.6.3). Thus
such transformation T is not identifiable from only observing the reward. However, the norm
in the state space is a notion that depends on the hidden choice of the transformation T . 4

Another limitation is that the loss for the model learning should also depend on the state
itself instead of only on the difference M̂(S,A)−M?(S,A). It is possible that when S is at a

critical position, the prediction error needs to be highly accurate so that the model M̂ can
be useful for planning. On the other hand, at other states, the dynamical model is allowed to
make bigger mistakes because they are not essential to the reward.

We propose the following discrepancy bound towards addressing the limitations above.

Recall the definition of Gπ,M̂(s, a) = V π,M̂(M̂(s, a)) − V π,M̂(M?(s, a)) which measures the

difference between M̂(s, a)) and M?(s, a) according to their imaginary rewards. We construct
a discrepancy bound using the absolute value of G. Let’s define ε1 and εmax as the aver-

age of |Gπ,M̂ | and its maximum: ε1 = ES∼ρπref
[∣∣∣Gπ,M̂(S,A)

∣∣∣] and εmax = maxS

∣∣∣Gπ,M̂(S)
∣∣∣

where Gπ,M̂(S) = EA∼π
[
Gπ,M̂(S,A)

]
. We will show that the following discrepancy bound

DGπref(M̂, π) satisfies the property (R1), (R2).

DGπref(M̂, π) = κ · ε1 + κ2δεmax (4.4.7)

Proposition 4.4.4. Let dKL and DG be defined as in equation (4.4.3) and (4.4.7). Then
the choice d = dKL and D = DG satisfies the basic requirements (equation (R1) and (R2)).
Moreover, G is invariant w.r.t any one-to-one transformation of the state space (in the sense
of equation 4.6.4 in the proof).

The proof follows from the telescoping lemma (Lemma 4.4.3) and is deferred to Section 4.6.
We remark that the first term κε1 can in principle be estimated and optimized approximately:
the expectation be replaced by empirical samples from ρπref , and Gπ,M̂ is an analytical
function of π and M̂ when they are both deterministic, and therefore can be optimized
by back-propagation through time (BPTT). (When π and M̂ and are stochastic with a
re-parameterizable noise such as Gaussian distribution [81], we can also use back-propagation
to estimate the gradient.) The second term in equation (4.4.7) is difficult to optimize because
it involves the maximum. However, it can be in theory considered as a second-order term
because δ can be chosen to be a fairly small number. (In the refined bound in Section 4.6,
the dependency on δ is even milder.)

Remark 4.4.5. Proposition 4.4.4 intuitively suggests a technical reason of why model-based
approach can be more sample-efficient than policy gradient based algorithms such as TRPO or

PPO [153, 152]. The approximation error of V π,M̂ in model-based approach decreases as the

4That said, in many cases the reward function itself is known, and the states have physical meanings,
and therefore we may be able to use the domain knowledge to figure out the best norm.
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model error ε1, εmax decrease or the neighborhood size δ decreases, whereas the approximation
error in policy gradient only linearly depends on the the neighborhood size [153]. In other
words, model-based algorithms can trade model accuracy for a larger neighborhood size, and
therefore the convergence can be faster (in terms of outer iterations.) This is consistent with
our empirical observation that the model can be accurate in a descent neighborhood of the
current policy so that the constraint (4.3.4) can be empirically dropped. We also refine our
bonds in Section 4.6, where the discrepancy bounds is proved to decay faster in δ.

4.5 Experiments
Practical implementation

We design with simplification of our framework a variant of model-based RL algorithms,
Stochastic Lower Bound Optimization (SLBO). First, we removed the constraints (4.3.4).
Second, we stop the gradient w.r.t M (but not π) from the occurrence of M in V π,M in
equation (4.3.3) (and thus our practical implementation is not optimism-driven.)

Extending the discrepancy bound in Section 4.4, we use a multi-step prediction loss for
learning the models with `2 norm. For a state st and action sequence at:t+h, we define the

h-step prediction ŝt+h as ŝt = st, and for h ≥ 0, ŝt+h+1 = M̂φ(ŝt+h, at+h), The H-step loss is
then defined as

L(H)
φ ((st:t+h, at:t+h);φ) =

1

H

H∑
i=1

‖(ŝt+i − ŝt+i−1)− (st+i − st+i−1)‖2. (4.5.1)

A similar loss is also used in [118] for validation. We note that motivation by the theory in
Section 4.4, we use `2-norm instead of the square of `2 norm. The loss function we attempt
to optimize at iteration k is thus5

max
φ,θ

V πθ,sg(M̂φ) − λ E
(st:t+h,at:t+h)∼πk,M?

[
L(H)
φ ((st:t+h, at:t+h);φ)

]
(4.5.2)

where λ is a tunable parameter and sg denotes the stop gradient operation.

We note that the term V πθ,sg(M̂φ) depends on both the parameter θ and the parameter φ
but there is no gradient passed through φ, whereas L(H)

φ only depends on the φ. We optimize

equation (4.5.2) by alternatively maximizing V πθ,sg(M̂φ) and minimizing L(H)
φ : for the former,

we use TRPO with samples from the estimated dynamical model M̂φ (by treating M̂φ as a
fixed simulator), and for the latter we use standard stochastic gradient methods. Algorithm 3
gives a pseudo-code for the algorithm. The nmodel and npolicy iterations are used to balance
the number of steps of TRPO and Adam updates within the loop indexed by ninner.

6

5This is technically not a well-defined mathematical objective. The sg operation means identity when the
function is evaluated, whereas when computing the update, sg(Mφ) is considered fixed.

6In principle, to balance the number of steps, it suffices to take one of nmodel and npolicy to be 1.
However, empirically we found the optimal balance is achieved with larger nmodel and npolicy, possibly due to
complicated interactions between the two optimization problem.
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Algorithm 3 Stochastic Lower Bound Optimization (SLBO)

1: Initialize model network parameters φ and policy network parameters θ
2: Initialize dataset D ← ∅
3: for nouter iterations do
4: D ← D ∪ { collect ncollect samples from real environment using πθ with noises }
5: for ninner iterations do
6: for nmodel iterations do
7: optimize (4.5.1) over φ with sampled data from D by one step of Adam
8: end for
9: for npolicy iterations do

10: D′ ← { collect ntrpo samples using M̂φ as dynamics }
11: optimize πθ by running TRPO on D′
12: end for
13: end for
14: end for

Power of stochasticity and connection to standard MB RL: We identify the main
advantage of our algorithms over standard model-based RL algorithms is that we alternate
the updates of the model and the policy within an outer iteration. By contrast, most of the
existing model-based RL methods only optimize the models once (for a lot of steps) after
collecting a batch of samples (see Algorithm 4 for an example). The stochasticity introduced
from the alternation with stochastic samples seems to dramatically reduce the overfitting
(of the policy to the estimated dynamical model) in a way similar to that SGD regularizes
ordinary supervised training. 7 Another way to view the algorithm is that the model obtained
from line 7 of Algorithm 3 at different inner iteration serves as an ensemble of models. We do
believe that a cleaner and easier instantiation of our framework (with optimism) exists, and
the current version, though performing very well, is not necessarily the best implementation.

Entropy regularization: An additional component we apply to SLBO is the commonly-
adopted entropy regularization in policy gradient method [193, 112], which was found to
significantly boost the performance in our experiments (ablation study in Section 4.6).
Specifically, an additional entropy term is added to the objective function in TRPO. We
hypothesize that entropy bonus helps exploration, diversifies the collected data, and thus
prevents overfitting.

7Similar stochasticity can potentially be obtained by an extreme hyperparameter choice of the standard
MB RL algorithm: in each outer iteration of Algorithm 4, we only sample a very small number of trajectories
and take a few model updates and policy updates. We argue our interpretation of stochastic optimization of
the lower bound (4.5.2) is more natural in that it reveals the regularization from stochastic optimization.
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Experimental Results

We evaluate our algorithm SLBO (Algorithm 3) on five continuous control tasks from rllab
[42], including Swimmer, Half Cheetah, Humanoid, Ant, Walker. All environments that we
test have a maximum horizon of 500, which is longer than most of the existing model-based
RL work [118, 87]. (Environments with longer horizons are commonly harder to train.) More
details can be found in Section 4.6.

Baselines. We compare our algorithm with 3 other algorithms including: (1) Soft Actor-
Critic (SAC) [59], the state-of-the-art model-free off-policy algorithm in sample efficiency; (2)
Trust-Region Policy Optimization (TRPO) [153], a policy-gradient based algorithm; and (3)
Model-Based TRPO, a standard model-based algorithm described in Algorithm 4. Details of
these algorithms can be found in Section 4.6.8

The result is shown in Figure 4.1. In Fig 4.1, our algorithm shows superior convergence
rate (in number of samples) than all the baseline algorithms while achieving better final
performance with 1M samples. Specifically, we mark model-free TRPO performance after
8 million steps by the dotted line in Fig 4.1 and find out that our algorithm can achieve
comparable or better final performance in one million steps. For ablation study, we also add
the performance of SLBO-MSE, which corresponds to running SLBO with squared `2 model
loss instead of `2. SLBO-MSE performs significantly worse than SLBO on four environments,
which is consistent with our derived model loss in Section 4.4. We also study the performance
of SLBO and baselines with 4 million training samples in 4.6. Ablation study of multi-step
model training can be found in Section 4.6.

4.6 Additional Details

Refined bounds

The theoretical limitation of the discrepancy bound DG(M̂, π) is that the second term
involving εmax is not rigorously optimizable by stochastic samples. In the worst case, there

seem to exist situations where such infinity norm of Gπ,M̂ is inevitable. In this section we
tighten the discrepancy bounds with a different closeness measure d, χ2-divergence, in the
policy space, and the dependency on the εmax is smaller (though not entirely removed.) We
note that χ2-divergence has the same second order approximation as KL-divergence around
the local neighborhood the reference policy and thus locally affects the optimization much.

We start by defining a re-weighted version βπ of the distribution ρπ where examples
in later step are slightly weighted up. We can effectively sample from βπ by importance
sampling from ρπ.

8We did not have the chance to implement the competitive random search algorithms in [104] yet, although
our test performance with 500 episode length is higher than theirs with 1000 episode on Half Cheetach (3950
by ours vs 2345 by theirs) and Walker (3650 by ours vs 894 by theirs).
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Figure 4.1: Comparison between SLBO (ours), SLBO with squared `2 model loss (SLBO-
MSE), vanilla model-based TRPO (MB-TRPO), model-free TRPO (MF-TRPO), and Soft
Actor-Critic (SAC). We average the results over 10 different random seeds, where the solid
lines indicate the mean and shaded areas indicate one standard deviation. The dotted
reference lines are the total rewards of MF-TRPO after 8 million steps.

Definition 4.6.1. For a policy π, define βπ as the re-weighted version of discounted distri-
bution of the states visited by π on M?. Recall that pSπt is the distribution of the state at step
t, we define βπ = (1− γ)2

∑∞
t=1 tγ

t−1pSπt .

Then we are ready to state our discrepancy bound. Let

dχ
2

(π, πref) = max{ E
S∼ρπref

[
χ2(π(·|S), πref(·|S))

]
, E
S∼βπref

[
χ2(π(·|S), πref(·|S))

]
} (4.6.1)

Dχ2

πref
(M̂, π) = (1− γ)−1ε1 + (1− γ)−2δε2 + (1− γ)−5/2δ3/2εmax (4.6.2)

where ε2 = ES∼βπref
[
Gπ,M̂(S,A)2

]
and ε1, εmax are defined in equation (4.4).

Proposition 4.6.2. The discrepancy bound Dχ2
and closeness measure dχ

2
satisfies require-

ments (R1) and (R2).

We defer the proof to Section 4.6 so that we can group relevant proofs with similar tools
together. Some of these tools may be of independent interests and used for better analysis of
model-free reinforcement learning algorithms such as TRPO [153], PPO [152] and CPO [2].
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Proof of Lemma 4.4.3

Proof of Lemma 4.4.3. Let Wj be the cumulative reward when we use dynamical model M

for j steps and then M̂ for the rest of the steps, that is,

Wj = E
∀t≥0,At∼π(·|St)

∀j>t≥0,St+1∼M(·|St,At)
∀t≥j,St+1∼M̂(·|St,At)

[
∞∑
t=0

γtR(St, At) | S0 = s

]

By definition, we have that W∞ = V π,M(s) and W0 = V π,M̂(s). Then, we decompose the
target into a telescoping sum,

V π,M(s)− V π,M̂(s) =
∞∑
j=0

(Wj+1 −Wj) (4.6.3)

Now we re-write each of the summands Wj+1 − Wj. Comparing the trajectory distri-
bution in the definition of Wj+1 and Wj, we see that they only differ in the dynamical
model applied in j-th step. Concretely, Wj and Wj+1 can be rewritten as Wj = R +

ESj ,Aj∼π,M
[
EŜj+1∼M̂(·|Sj ,Aj)

[
γj+1V π,M̂(Ŝj+1)

]]
andWj+1 = R+ESj ,Aj∼π,M?

[
ESj+1∼M(·|Sj ,Aj)

[
γj+1V π,M̂(Sj+1)

]]
where R denotes the reward from the first j steps from policy π and model M?. Canceling
the shared term in the two equations above, we get

Wj+1 −Wj = γj+1 E
Sj ,Aj∼π,M

 E
Ŝj+1∼M̂(·|Sj ,Aj)
Sj+1∼M(·|Sj ,Aj)

[
V π,M̂(Sj+1)− V π,M̂(Ŝj+1)

]
Combining the equation above with equation (4.6.3) concludes that

V π,M − V π,M̂ =
γ

1− γ E
S∼ρπ ,A∼π(S)

[
E

S′∼M?(·|S,A)
V π,M̂(S ′)− E

Ŝ′∼M̂(·|S,A)

V π,M̂(Ŝ ′)

]

Missing Proofs in Section 4.4

Proof of Proposition 4.4.4. Towards proving the second part of Proposition 4.4.4 regarding
the invariance, we state the following lemma:

Lemma 4.6.3. Suppose for simplicity the model and the policy are both deterministic. For any
one-to-one transformation from S to S ′, let MT (s, a) , TM(T −1s, a), RT (s, a) , R(T −1s, a),
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and πT (s) , π(T −1s) be a set of transformed model, reward and policy. Then we have that
(M,π,R) is equivalent to (MT , πT , RT ) in the sense that

V πT ,MT (T s) = V π,M(s)

where the value function V πT ,MT is defined with respect to RT .

Proof. Let sT0 = T s, . . . , be the sequence of states visited by policy πT on model MT starting
from s. We have that sT0 = T s = T s0. We prove by induction that sTt = T st. Assume this is
true for some value t, then we prove that st+1T = T st+1 holds:

sTt+1 = MT (sTt , π
T (sTt )) = MT (T st, πT (T st)) (by inductive hypothesis)

= TM(st, π(st)) (by defintion of MT , πT )

= T st+1

Thus we have RT (sTt , a
T
t ) = R(st, at). Therefore V πT ,MT (T s) = V π,M(s).

Proof of Proposition 4.4.4. We first show the invariant of G under deterministic models and
policies. The same result applies to stochastic policies with slight modification. Let sT = T s.
We consider the transformation applied to M and M? and the resulting G function

GT (sT , a) , |V πT ,MT (MT (sT , a))− V πT ,MT (M?,T (sT , a))|

Note that by Lemma 4.6.3, we have that V πT ,MT (MT (sT , a)) = V π,M(T −1MT (sT , a)) =
V π,M (M(s, a)). Similarly, V πT ,MT (M?,T (sT , a)) = V π,M (M?(s, a)). Therefore we obtain that

GT (sT , a) = G(s, a) (4.6.4)

By Lemma 4.4.3 and triangle inequality, we have that

1− γ
γ

∣∣∣V π,M − V π,M̂
∣∣∣ ≤ E

S∼ρπ

[∣∣∣Gπ,M̂(S)
∣∣∣] (triangle inequality)

≤ E
S∼ρπref

[∣∣∣Gπ,M̂(S)
∣∣∣]+ |ρπ − ρπref|1 ·max

S

∣∣∣Gπ,M̂(S)
∣∣∣

(Holder inequality)

By Corollary 4.6.15 we have that |ρπ − ρπref|1 ≤ γ
1−γ ES∼ρπref

[
KL(π(S), πref(S))1/2|S

]
= δγ

1−γ .
Combining this with the equation above, we complete the proof.

Proof of Proposition 4.6.2.

Proof of Proposition 4.6.2. Let µ be the distribution of the initial state S0, and let P ′ and P
be the state-to-state transition kernel under policy π and πref. Let Ḡ = (1−γ)

∑∞
k=0 γ

kP k and
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Ḡ′ = (1− γ)
∑∞

k=0 γ
kP ′k. Under these notations, we can re-write ρπref = Ḡµ and ρπ = Ḡ′µ.

Moreover, we observe that βπref = ḠP Ḡµ.
Let δ1 = (1− γ)−1χ2

Ḡµ
(P ′, P )1/2 and δ2 = (1− γ)−1χ2

ḠP Ḡµ
(P ′, P )1/2 by the χ2 divergence

between P ′ and P , measured with respect to distributions Ḡµ = ρπref and ḠP Ḡµ = βπref.
By Lemma 4.6.4, we have that the χ2-divergence between the states can be bounded by the
χ2-divergence between the actions in the sense that:

χ2
Ḡµ(P ′, P )1/2 = χ2

ρπref (P
′, P )1/2 ≤ E

S∼ρπref

[
χ2(π(·|S), πref(·|S))

]1/2
χ2
ḠP Ḡµ(P ′, P )1/2 = χ2

βπref (P
′, P )1/2 ≤ E

S∼βπref

[
χ2(π(·|S), πref(·|S))

]1/2
Therefore we obtain that δ1 ≤ (1 − γ)−1δ, δ2 ≤ (1 − γ)−1δ. Let f(s) = Gπ,M̂(s). By
Lemma 4.6.7, we can control the difference between 〈ρπref , f〉 and 〈ρπ, f〉 by∣∣∣∣ E

S∼ρπref

[
Gπ,M̂(S)

]
− E

S∼ρπ

[
Gπ,M̂(S)

]∣∣∣∣ = |〈ρπref , f〉 − 〈ρπ, f〉|

≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1δ
1/2
2 ‖f‖∞

≤ δ1ε2 + δ1δ
1/2
2 εmax

It follows that∣∣∣V π,M̂ − V π,M
∣∣∣ ≤ γ(1− γ)−1

∣∣∣∣ E
S∼ρπ

[
Gπ,M̂(S)

]∣∣∣∣ (by Lemma 4.4.3)

≤ γ(1− γ)−1

(∣∣∣∣ E
S∼ρπref

[
Gπ,M̂(S)

]∣∣∣∣+

∣∣∣∣ E
S∼ρπref

[
Gπ,M̂(S)− E

S∼ρπ

[
Gπ,M̂(S)

]]∣∣∣∣)
≤ γ(1− γ)−1

∣∣∣∣ E
S∼ρπref

[
Gπ,M̂(S)

]∣∣∣∣+ γ(1− γ)−1δ1ε2 + γ(1− γ)−1δ1δ
1/2
2 εmax

≤ (1− γ)−1ε1 + (1− γ)−2δε2 + (1− γ)−5/2δ3/2εmax

Proof of Proposition 4.4.1 and 4.4.2.

Proof of Proposition 4.4.1 and 4.4.2 . By definition of G and the Lipschitzness of V π,M̂ , we

have that |Gπ,M̂ (s, a)| ≤ L|M̂(s, a)−M?(s, a)|. Then, by Lemma 4.4.3 and triangle inequality,
we have that∣∣V π,M̂ − V π,M?∣∣ = κ ·

∣∣ E
S∼ρπ,M
A∼π(·|S)

[
Gπ,M̂(S,A)

] ∣∣ ≤ κ E
S∼ρπ,M
A∼π(·|S)

[∣∣Gπ,M̂(S,A)
∣∣]

≤ κ E
S∼ρπ

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
. (4.6.5)
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Next we prove the main part of the proposition. Thus we proved Proposition 4.4.1. Note
that for any distribution ρ and ρ′ and function f , we have ES∼ρ f(S) = ES∼ρ′ f(S) +
〈ρ − ρ′, f〉 ≤ ES∼ρ′ f(S) + ‖ρ − ρ′‖1‖f‖∞. Thus applying this inequality with f(S) =

EA∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
, we obtain that

E
S∼ρπ

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
≤ E

S∼ρπref
A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
+ ‖ρπref − ρ‖1 max

S
E

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
≤ E

S∼ρπref
A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
+ 2δκB (4.6.6)

where the last inequality uses the inequalities (see Corollary 4.6.15) that ‖ρπ − ρπref‖1 ≤
γ

1−γ ES∼ρπref
[
KL(π(S), πref(S))1/2|S

]
= δκ and that ‖M̂(S,A)−M?(S,A)‖ ≤ 2B. Combin-

ing (4.6.6) and (4.6.5) we complete the proof of Proposition 4.4.2.

χ2-Divergence Based Inequalities

Lemma 4.6.4. Let S be a random variable over the domain S. Let π and π′ be two policies
and and A ∼ π(· | S) and A′ ∼ π′(· | S). Let Y ∼ M(· | S,A) and Y ′ ∼ M(· | S,A′) be the
random variables for the next states under two policies. Then,

E
[
χ2(Y |S, Y ′|S)

]
≤ E

[
χ2(A|S,A′|S)

]
Proof. By definition, we have that Y |S = s, A = a has the same density as Y ′|S = s, A′ = a
for any a and s. Therefore by Theorem 4.6.12 (setting X,X ′, Y, Y ′ in Theorem 4.6.12 by
A|S = s, A′|S = s, Y |S = s, Y ′|S = s respectively), we have

χ2(Y |S = s, Y ′|S = s) ≤ χ2(A|S = s, A′|S = s)

Taking expectation over the randomness of S we complete the proof.

Properties of Markov Processes. In this subsection, we consider bounded the difference
of the distributions induced by two markov process starting from the same initial distributions
µ. Let P, P ′ be two transition kernels. Let G =

∑∞
k=0 γ

kP k and Ḡ = (1 − γ)G. Define G′

and Ḡ′ similarly. Therefore we have that Ḡµ is the discounted distribution of states visited
by the markov process starting from distribution µ. In other words, if µ is the distribution of
S0, and P is the transition kernel induced by some policy π, then Ḡµ = ρπ.

First of all, let ∆ = γ(P ′ − P ) and we note that with simple algebraic manipulation,

Ḡ′ − Ḡ = (1− γ)−1Ḡ′∆Ḡ (4.6.7)
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Let f be some function. We will mostly interested in the difference between ES∼Ḡµ [f ]
and ES∼Ḡ′µ [f ], which can be rewritten as 〈(Ḡ′ −G)µ, f〉. We will bound this quantity from
above by some divergence measure between P ′ and P .

We start off with a simple lemma that controls the form 〈p− q, f〉 by the χ2 divergence
between p and q. With this lemma we can reduce our problem of bounding 〈(Ḡ′ −G)µ, f〉 to
characterizing the χ2 divergence between Ḡ′µ and Ḡµ.

Lemma 4.6.5. Let p and q be probability distributions. Then we have

〈q − p, f〉2 ≤ χ2(q, p) · 〈p, f 2〉

Proof. By Cauchy-Schwartz inequality, we have

〈q − p, f〉2 ≤
(∫

(q(x)− p(x))2

p(x)
dx

)(∫
p(x)f(x)2

)
= χ2(q, p) · 〈p, f 2〉

The following Lemma is a refinement of the lemma above. It deals with the distributions
p and q with the special structure p = WP ′µ and q = WPµ.

Lemma 4.6.6. Let W,P ′, P be transition kernels and µ be a distribution. Then,

〈W (P ′ − P )µ, f〉2 ≤ χ2
µ(P ′, P )〈WPµ, f 2〉

where χ2
µ(P ′, P ) is a divergence between transitions defined in Definition 4.6.11.

Proof. By Lemma 4.6.5 with p = WPµ and q = WP ′µ, we conclude that

〈W (P ′ − P )µ, f〉2 ≤ χ2(q, p) · 〈p, f 2〉 ≤ χ2(WP ′µ,WPµ)〈WPµ, f 2〉

By Theorem 4.6.12 and Theorem 4.6.13 we have that χ2(WP ′µ,WPµ) ≤ χ2(P ′µ, Pµ) ≤
χ2
µ(P ′, P ), plugging this into the equation above we complete the proof.

Now we are ready to state the main result of this subsection.

Lemma 4.6.7. Let Ḡ, Ḡ′, P ′, P, f as defined in the beginning of this section. Let δ1 =
(1− γ)−1χ2

Ḡµ
(P ′, P )1/2 and δ2 = (1− γ)−1χ2

ḠP Ḡµ
(P ′, P )1/2. Then,∣∣〈Ḡ′µ, f〉 − 〈Ḡµ, f〉∣∣ ≤ δ1‖f‖∞ (4.6.8)∣∣〈Ḡ′µ, f〉 − 〈Ḡµ, f〉∣∣ ≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1δ

1/2
2 ‖f‖∞

Proof. Recall by equation (4.6.7), we have

〈(Ḡ′ − Ḡ)µ, f〉 = (1− γ)−1〈Ḡ′∆Ḡµ, f〉 (4.6.9)
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By Lemma 4.6.6,

〈Ḡ′∆Ḡµ, f〉 ≤ χ2
Ḡµ(P ′, P )1/2〈Ḡ′PḠµ, f 2〉1/2 (4.6.10)

By Holder inequality and the fact that ‖Ḡ‖1→1 = 1, ‖Ḡ′‖1→1 = 1 and ‖P‖1→1 = 1, we have

〈Ḡ′∆Ḡµ, f〉 ≤ χ2
Ḡµ(P ′, P )1/2〈Ḡ′PḠµ, f 2〉1/2

≤ χ2
Ḡµ(P ′, P )1/2‖Ḡ′PḠµ‖1/2

1 ‖f 2‖1/2
∞

≤ χ2
Ḡµ(P ′, P )1/2‖f‖∞ (by ‖Ḡ′PḠµ‖1 ≤ ‖Ḡ′‖1→1‖P‖1→1‖Ḡ‖1→1‖µ‖1 ≤ 1)

≤ (1− γ)δ1‖f‖∞ (4.6.11)

Combining equation (4.6.9) and (4.6.11) we complete the proof of equation (4.6.8).
Next we bound 〈Ḡ′PḠµ, f 2〉1/2 in a more refined manner. By equation (4.6.7), we have

〈Ḡ′PḠµ, f 2〉1/2 =

(
〈ḠP Ḡµ, f 2〉+

1

1− γ 〈Ḡ
′∆ḠP Ḡµ, f 2〉

)1/2

≤ 〈ḠP Ḡµ, f 2〉1/2 + (1− γ)−1/2〈Ḡ′∆ḠP Ḡµ, f 2〉1/2 (4.6.12)

By Lemma 4.6.6 again, we have that

〈Ḡ′∆ḠP Ḡ, f 2〉2 ≤ χ2
ḠP Ḡµ(P ′, P )〈Ḡ′PḠPḠµ, f 4〉 (4.6.13)

By Holder inequality and the fact that ‖Ḡ‖1→1 = 1, ‖Ḡ′‖1→1 = 1 and ‖P‖1→1 = 1, we have

〈Ḡ′PḠPḠµ, f 4〉 ≤ ‖Ḡ′PḠPḠµ‖1‖f 4‖∞ ≤ ‖f‖4
∞ (4.6.14)

Combining equation (4.6.12), (4.6.14) gives

(1− γ)−1/2〈Ḡ′∆ḠP Ḡ, f 2〉1/2 ≤ ((1− γ)−1χ2
ḠP Ḡµ(P ′, P )1/2)1/2‖f‖∞ = δ

1/2
2 ‖f‖∞ (4.6.15)

Then, combining equation (4.6.9), (4.6.10), (4.6.15), we have

〈(Ḡ′ − Ḡ)µ, f〉 = (1− γ)−1χ2
Ḡµ(P ′, P )1/2〈Ḡ′PḠµ, f 2〉1/2 (by equation (4.6.9), (4.6.10))

= δ1〈Ḡ′PḠµ, f 2〉1/2

≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1(1− γ)−1/2〈Ḡ′∆ḠP Ḡµ, f 2〉1/2
(by equation (4.6.12))

≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1δ
1/2
2 ‖f‖∞ (by equation (4.6.15))

The following Lemma is a stronger extension of Lemma 4.6.7, which can be used to future
improve Proposition 4.6.2, and may be of other potential independent interests. We state it
for completeness.
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Lemma 4.6.8. Let Ḡ, Ḡ′, P ′, P, f as defined in the beginning of this section. Let dk =
(ḠP )kḠµ and δk = (1− γ)−1χ2

dk−1
(P ′, P )1/2, then we have that for any K,

∣∣〈Ḡ′µ, f〉 − 〈Ḡµ, f〉∣∣ ≤ δ1〈d1, f
2〉−1/2 + δ1δ

1/2
2 〈d2, f

4〉−1/4

+ δ1 . . . δ
2−K+1

K 〈dk, f 2K 〉2−K + δ1 . . . δ
2−K+1

K ‖f‖∞
Proof. We first use induction to prove that:

|〈(Ḡ′ − Ḡ)µ, f〉| ≤
K∑
k=1

( ∏
0≤s≤k−1

δ2−s

s+1

)
〈dk, f 2k〉2−k

+

( ∏
0≤s≤K−1

δ2−s

s+1

)
〈Ḡ′∆(ḠP )KḠµ, f 2K 〉2−K (4.6.16)

By the first equation of Lemma 4.6.7, we got the case for K = 1. Assuming we have proved
the case for K, then applying

〈Ḡ′∆(ḠP )KḠµ, f 2K 〉 = 〈Ḡ∆(ḠP )KḠµ, f 2K 〉+ (1− γ)−1〈Ḡ∆(ḠP )K+1Ḡµ, f 2K 〉
(4.6.17)

≤ 〈Ḡ∆(ḠP )KḠµ, f 2K 〉
+ (1− γ)−1χ2

dK
(P ′, P )1/2〈Ḡ′∆(ḠP )K+1Ḡµ, f 2K+1〉1/2

≤ 〈Ḡ∆(ḠP )KḠµ, f 2K 〉+ δK+1〈Ḡ′∆(ḠP )K+1Ḡµ, f 2K+1〉1/2

By Cauchy-Schwartz inequality, we obtain that

〈Ḡ′∆(ḠP )KḠµ, f 2K 〉2−K ≤ 〈Ḡ∆(ḠP )KḠµ, f 2K 〉2−K+

δK+1〈Ḡ′∆(ḠP )K+1Ḡµ, f 2K+1〉2−K−1

Plugging the equation above into equation (4.6.16), we provide the induction hypothesis for
the case with K + 1.

Now applying 〈Ḡ′∆(ḠP )KḠµ, f 2K 〉2−K ≤ ‖f‖∞ with equation (4.6.16) we complete the
proof.

Toolbox

Definition 4.6.9 (χ2 distance, c.f. [124, 27]). The Neyman χ2 distance between two distribu-
tions p and q is defined as

χ2(p, q) ,
∫

(p(x)− q(x))2

q(x)
dx =

∫
p(x)2

q(x)
dx− 1
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For notational simplicity, suppose two random variables X and Y has distributions pX and
pY , we often write χ2(X, Y ) as a simplification for χ2(pX , pY ).

Theorem 4.6.10 ([149]). The Kullback-Leibler (KL) divergence between two distributions
p, q is bounded from above by the χ2 distance:

KL(p, q) ≤ χ2(p, q)

Proof. Since log is a concave function, by Jensen inequality we have

KL(p, q) =

∫
p(x) log

p(x)

q(x)
dx ≤ log

∫
p(x) · p(x)

q(x)
dx

= log(χ2(p, q) + 1) ≤ χ2(p, q)

Definition 4.6.11 (χ2 distance between transitions). Given two transition kernels P, P ′.
For any distribution µ, we define χ2

µ(P ′, P ) as:

χ2
µ(P ′, P ) ,

∫
µ(x)χ2(P ′(·|X = x), P (·|X = x))dx

Theorem 4.6.12. Suppose random variables (X, Y ) and (X ′, Y ′) satisfy that pY |X = pY ′|X′.
Then

χ2(Y, Y ′) ≤ χ2(X,X ′)

Or equivalently, for any transition kernel P and distribution µ, µ′, we have

χ2(Pµ, Pµ′) ≤ χ2(µ, µ′)

Proof. Denote pY |X(y | x) = pY ′|X′(y | x) by p(y | x), and we rewrite pX as p and pX′ as p′.
By Cauchy-Schwarz inequality, we have:

pY (y)2 =

(∫
p(y|x)p(x)dx

)2

≤
(∫

p(y|x)p′(x)dx

)(∫
p(y|x)

p(x)2

p′(x)
dx

)
= pY ′(y)

(∫
p(y|x)

p(x)2

p′(x)
dx

)
(4.6.18)

It follows that

χ2(Y, Y ′) =

∫
pY (y)2

pY ′(y)
dy − 1 ≤

∫
dy

∫
p(y|x)

p(x)2

p′(x)
dx− 1 = χ2(X,X ′)
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Theorem 4.6.13. Let X, Y, Y ′ are three random variables. Then,

χ2(Y, Y ′) ≤ E
[
χ2(Y |X, Y ′|X)

]
We note that the expectation on the right hand side is over the randomness of X.9 As a direct
corollary, we have for transition kernel P ′ and P and distribution µ,

χ2(P ′µ, Pµ) ≤ χ2
µ(P ′, P )

Proof. We denote pY ′|X(y|x) by p′(y | x) and pY |X(y|x) by p(y|x), and let p(x) be a simplifi-
cation for pX(x). We have by Cauchy-Schwarz,

pY (y)2

pY ′(y)
=

(∫
p(y|x)p(x)dx

)2∫
p′(y | x)p(x)dx

≤
∫
p(y|x)2

p′(y|x)
p(x)dx

It follows that

χ2(Y, Y ′) =

∫
pY (y)2

pY ′(y)
dy − 1 ≤

∫
p(y|x)2

p′(y|x)
p(x)dxdy − 1 = E

[
χ2(Y |X, Y ′|X) | X

]

Claim 4.6.14. Let µ be a distribution over the state space S. Let P and P ′ be two transition
kernels. G =

∑∞
k=0(γP )k = (Id − γP )−1 and G′ =

∑∞
k=0(γP

′)k = (Id − γP ′)−1. Let
d = (1− γ)Gµ and d′ = (1− γ)G′µ be the discounted distribution starting from µ induced by
the transition kernels G and G′. Then,

|d− d′|1 ≤
1

1− γ |∆d|1

Moreover, let γ(P ′ − P ) = ∆. Then, we have

G′ −G =
∞∑
k=1

(G∆)kG

Proof. With algebraic manipulation, we obtain,

G′ −G = (Id− γP ′)−1((Id− γP )− (Id− γP ′)(Id− γP )−1

= G′∆G (4.6.19)

It follows that

|d− d′|1 = (1− γ)|G′∆Gµ|1 ≤ |∆Gµ|1 (since (1− γ)|G′|1→1 ≤ 1)

=
1

1− γ |∆d|1

9Observe χ2(Y |X,Y ′|X) deterministically depends on X.
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Replacing G′ in the RHS of the equation (4.6.19) by G′ = G + G′∆G, and doing this
recursively gives

G′ −G =
∞∑
k=1

(G∆)kG

Corollary 4.6.15. Let π and π′ be two policies and let ρπ be defined as in Definition 4.2.1.
Then,

|ρπ − ρ′|1 ≤
γ

1− γ E
S∼ρπ

[
KL(π(S), π′(S))1/2 | S

]
Proof. Let P and P ′ be the state-state transition matrix under policy π and π′ and ∆ =
γ(P ′ − P ) By Claim 4.6.14, we have that

|ρπ − ρπ′ |1 ≤
1

1− γ |∆ρ
π|1 =

γ

1− γ E
S∼ρπ

[
|pM?(S,π(S))|S − pM?(S,π′(S))|S|1

]
≤ γ

1− γ E
S∼ρπ

[
|pπ(S)|S − pπ′(S)|S|1

]
≤ γ

1− γ E
S∼ρπ

[
KL(π(S), π′(S))1/2 | S

]
(by Pinkser’s inequality)

Implementation Details

Environment Setup. We benchmark our algorithm on six tasks based on physics simulator
Mujoco [174]. We use rllab’s implementation [42] 10 to interact with Mujoco. All the
environments we use have a maximum horizon of 500 steps. We remove all contact information
from observation. To compute reward from states, we put the velocity of center of mass into
the states.

Network Architecture and Model Learning. We use the same reward function as in
rllab, except that all the coefficients Ccontact in front of the contact force s are set to 0 in
our case. We refer the readers to [42] Supp Material 1.2 for more details. All actions are
projected to the action space by clipping. We normalize all observations by s′ = s−µ

σ
where

µ, σ ∈ Rdobservation are computed from all observations we collect from the real environment.
Note that µ, σ may change as we collect new data. Our policy will always produce an action
a in [−1, 1]daction and the action a′, which is fed into the environment, is scaled linearly by
a′ = 1−a

2
amin + 1+a

2
amax, where amin, amax are the min or max values allowed at each entry.

10commit b3a2899 in https://github.com/rll/rllab/

https://github.com/rll/rllab/


CHAPTER 4. MODEL-BASED DEEP REINFORCEMENT LEARNING 62

Table 4.1: TRPO Hyperparameters.

Hyperparameters Values

batch size 4000
max KL divergence 0.01
discount γ 0.99
GAE λ 0.95
CG iterations 10
CG damping 0.1

SLBO Details. The dynamical model is represented by a feed-forward neural network with
two hidden layers, each of which contains 500 hidden units. The activation function at each
layer is ReLU. We use Adam to optimize the loss function with learning rate 10−3 and L2

regularization 10−5. The network does not predict the next state directly; instead, it predicts
the normalized difference of st+1 − st. The normalization scheme and statistics are the same
as those of observations: We maintain µ, σ from collected data in the real environment and
may change them as we collect more, and the normalized difference is st+1−st−σ

µ
.

The policy network is a feed-forward network with two hidden layers, each of which
contains 32 hidden units. The policy network uses tanh as activation function and outputs a
Gaussian distribution N (µ(s), σ2) where σ a state-independent trainable vector.

During our evaluation, we use H = 2 for multi-step model training and the batch size is
given by 256

H
= 128, i.e., we enforce the model to see 256 transitions at each batch.

We run our algorithm nouter = 100 iterations. We collect ntrain = 10000 steps of real
samples from the environment at the start of each iteration using current policy with Ornstein-
Uhlunbeck noise (with parameter θ = 0.15, σ = 0.3) for better exploration. At each iteration,
we optimize dynamics model and policy alternatively for ninner = 20 times. At each iteration,
we optimize dynamics model for nmodel = 100 times and optimize policy for npolicy = 40 times.

Baselines: TRPO. TRPO hyperparameters are listed at Table 4.1, which are the same as
OpenAI Baselines’ implementation. These hyperparameters are fixed for all experiments
where TRPO is used, including ours, MB-TRPO and MF-TRPO. We do not tune these
hyperparameters. We also normalize observations as our algorithm and OpenAI Baselines do.

We use a neural network as the value function to reduce variance, which has 2 hidden
layers of units 64 and uses tanh as activation functions. We use Generalized Advantage
Estimator (GAE) [151] to estimate advantages. Both TRPO used in our algorithm and that
in model-free algorithm share the same set of hyperparameters.

SAC. For fair comparison, we do not use a large policy network (2 hidden layers, one of
which has 256 hidden units) as the authors suggest, but use exactly the same policy network
as ours. All other hyperparameters are kept the same as the authors’. Note that Q network
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and value network have 256 hidden units at each hidden layers, which is more than TRPO’s.
We refer the readers to [59] Section D for more details.

MB-TRPO. Model-Based TRPO (MB-TRPO) is similar to our algorithm SLBO but does
not optimize model and policy alternatively during one iteration. We do not tune the
hyperparameter nmodel since any number beyond a certain threshold would bring similar
results. For npolicy we try {100, 200, 400, 800} on Ant and find npolicy = 200 works best in Ant
so we use it for all other environments. Note that when Algo 3 uses 800 Adam updates (per
outer iteration), it has the same amount of updates (per outer iteration) as in Algo 4. As
suggested by Section 4.5, we use 0.005 as the coefficient of entropy bonus for all experiments.

Algorithm 4 Model-Based Trust Region Policy Optimization (MB-TRPO)

1: initialize model network parameters φ and policy network parameters θ
2: initialize dataset D ← ∅
3: for nouter iterations do
4: D ← D ∪ { collect ncollect samples from real environment using πθ with noises }
5: for nmodel iterations do
6: optimize (4.5.1) over φ with sampled data from D by one step of Adam
7: end for
8: for npolicy iterations do

9: D′ ← { collect ntrpo samples using M̂φ as dynamics }
10: optimize πθ by running TRPO on D′
11: end for
12: end for

SLBO. We tune multi-step model training parameter H ∈ {1, 2, 4, 8}, entropy regularization
coefficient λ ∈ {0, 0.001, 0.003, 0.005} and npolicy ∈ {10, 20, 40} on Ant and find H = 2, λ =
0.005, npolicy = 40 work best, then we fix them in all environments, though environment-
specific hyperparameters may work better. The other hyperparameters, including ninner, nmodel

and network architecture, are never tuned. We observe that at the first several iterations,
the policy overfits to the learnt model so a reduction of npolicy at the beginning can further
speed up convergence but we omit this for simplicity.

The most important hyperparameters we found are npolicy and the coefficient in front of
the entropy regularizer λ. It seems that once nmodel is large enough we don’t see any significant
changes. We did have a held-out set for model prediction (with the same distribution as the
training set) and found out the model doesn’t overfit much. As mentioned in 4.6, we also
found out normalizing the state helped a lot since the raw entries in the state have different
magnitudes; if we don’t normalize them, the loss will be dominated by the loss of some large
entries.

Ablation Study: Multi-step model training.We compare multi-step model training with
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single-step model training and the results are shown on Figure 4.2. Note that H = 1 means
we use single-step model training. We observe that small H (e.g., 2 or 4) can be beneficial,
but larger H (e.g., 8) can hurt. We hypothesize that smaller H can help the model learn
the uncertainty in the input and address the error-propagation issue to some extent. [133]
uses an auto-regressive recurrent model to predict a multi-step loss on a trajectory, which is
closely related to ours. However, theirs differs from ours in the sense that they do not use
the predicted output xt+1 as the input for the prediction of xt+2, and so on and so forth.
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Figure 4.2: Ablation study on multi-step model training. All the experiments are average over
10 random seeds. The x-axis shows the total amount of real samples from the environment.
The y-axis shows the averaged return from execution of our learned policy. The solid line is
the mean of the total rewards from each seed. The shaded area is one-standard deviation.

Entropy regularization. Figure 4.3 shows that entropy reguarization can improve both
sample efficiency and final performance. More entropy regularization leads to better sample
efficiency and higher total rewards. We observe that in the late iterations of training, entropy
regularization may hurt the performance thus we stop using entropy regularization in the
second half of training.

SLBO with 4M training steps. Figure 4.4 shows that SLBO is superior to SAC and
MF-TRPO in Swimmer, Half Cheetah, Walker and Humanoid when 4 million samples or fewer
samples are allowed. For Ant environment , although SLBO with less than one million samples
reaches the performance of MF-TRPO with 8 million samples, SAC’s performance surpasses
SLBO after 2 million steps of training. Since model-free TRPO almost stops improving
after 8M steps and our algorithms uses TRPO for optimizing the estimated environment,
we don’t expect SLBO can significantly outperform the reward of TRPO at 8M steps. The
result shows that SLBO is also satisfactory in terms of asymptotic convergence (compared to
TRPO.) It also indicates a better planner or policy optimizer instead of TRPO might be
necessary to further improve the performance.
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Figure 4.3: Ablation study on entropy regularization. λ is the coefficient of entropy regular-
ization in the TRPO’s objective. All the experiments are averaged over 10 random seeds.
The x-axis shows the total amount of real samples from the environment. The y-axis shows
the averaged return from execution of our learned policy. The solid line is the mean of the
total rewards from each seed. The shaded area is one-standard deviation.

Sample Complexity Bounds

In this section, we extend Theorem 4.3.1 to a final sample complexity result. For simplicity,
let Lπ,Mπref,δ = V π,M −Dπk,δ(M,π) be the lower bound of V π,M?

. We omit the subscript δ when
it’s clear from contexts. When D satisfies (R1), we have that,

V π,M? ≥ Lπ,Mπref,δ ∀π s.t. d(π, πref) ≤ δ (4.6.20)

When D satisfies (R3), we use L̂π,Mπref,δ to denotes its empirical estimates. Namely, we replace

the expectation in equation (R3) by empirical samples τ (1), . . . , τ (n). In other words, we
optimize

πk+1,Mk+1 = arg max
π∈Π, M∈M

L̂π,Mπref,δ = V π,M − 1

n

n∑
i=1

f(M̂, π, τ (i)) (4.6.21)

instead of equation (4.3.3).
Let p be the total number of parameters in the policy and model parameterization. We

assume that we have a discrepancy bound Dπref(π,M) satisfying (R3) with a function f
that is bounded with [−Bf , Bf ] and that is Lf -Lipschitz in the parameters of π and M .
That is, suppose π is parameterized by θ and M is parameterized by φ, then we require
|f(Mφ, φθ, τ)− f(Mφ′ , φθ′ , τ)| ≤ Lf (‖φ− φ′‖2

2 + ‖θ − θ′‖2) for all τ , θ, θ′, φ, φ′. We note that
Lf is likely to be exponential in dimension due to the recursive nature of the problem, but
our bounds only depends on its logarithm. We also restrict our attention to parameters in an
Euclidean ball {θ : ‖θ‖2 ≤ B} and {φ : ‖φ‖2 ≤ B}. Our bounds will be logarithmic in B.

We need the following definition of approximate local maximum since with sampling error
we cannot hope to converge to the exact local maximum.
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Figure 4.4: Comparison among SLBO (ours), SLBO with squared `2 model loss (SLBO-MSE),
vanilla model-based TRPO (MB-TRPO), model-free TRPO (MF-TRPO), and Soft Actor-
Critic (SAC) with more samples than in Figure 4.1. SLBO, SAC, MF-TRPO are trained
with 4 million real samples. We average the results over 10 different random seeds, where the
solid lines indicate the mean and shaded areas indicate one standard deviation. The dotted
reference lines are the total rewards of MF-TRPO after 8 million steps.

Definition 4.6.16. We say π is a (δ, ε)-local maximum of V π,M?
with respect to the constraint

set Π and metric d, if for any π′ ∈ Π with d(π, π′) ≤ δ, we have V π,M? ≥ V π′,M? − ε.

We show a sample complexity bounds that scales linearly in p and logarithmically in
Lf , B and Bf .

Theorem 4.6.17. Let ε > 0. In the setting of Theorem 4.3.1, under the additional as-
sumptions above, suppose we use n = O(Bfp log(BLf/ε)/ε

2) trajectories to estimate the
discrepancy bound in Algorithm 2. Then, for any t, if πt is not a (δ, ε)-local maximum, then
the total reward will increase in the next step: with high probability,

V πt+1,M? ≥ V πt,M?

+ ε/2 (4.6.22)
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As a direct consequence, suppose the maximum possible total reward is BR and the initial
total reward is 0, then for some T = O(BR/ε), we have that πT is a (δ, ε)-local maximum of
the V π,M?

.

Proof. By Hoeffiding’s inequality, we have for fix π and M̂ , with probability 1− nO(1) over
the randomness of τ (1), . . . , τ (n),∣∣∣∣∣ 1n

n∑
i=1

f(M̂, π, τ (i))− E
τ∼πref,M?

[f(M̂, π, τ)]

∣∣∣∣∣ ≤ 4

√
Bf log n

n
. (4.6.23)

In more succinct notations, we have |D̂πk,δ(M,π)−Dπk,δ(M,π)| ≤ 4
√

Bf logn

n
, and therefore

|L̂π,M − Lπ,M | ≤ 4

√
Bf log n

n
. (4.6.24)

By a standard ε-cover + union bound argument, we can prove the uniform convergence: with
high probability (at least 1− nO(1)) over the choice of τ (1), . . . , τ (n), for all policy and model,
for all policy π and dynamics M ,

|L̂π,M − Lπ,M | ≤ 4

√
Bfp log(nBLf )

n
= ε/4. (4.6.25)

Suppose at iteration t, we are at policy πt which is not a (δ, ε)-local maximum of V π,M?
.

Then, there exists π′ such that d(π′, πt) ≤ δ and

V π′,M? ≥ V πt,M?

+ ε. (4.6.26)

Then, we have that

V πt+1,M? ≥ Lπt+1,Mt+1
πt (by equation (4.6.20))

≥ L̂πt+1,Mt+1
πt − ε/4 (by uniform convergence, equation (4.6.25))

≥ L̂π
′,M?

πt − ε/4 (by the definition of πt+1,Mt+1)

≥ Lπ
′,M?

πt − ε/2 (by uniform convergence, equation (4.6.25))

= V π′,M? − ε/2 (by equation (R2))

= V πt,M?

+ ε/2 (by equation (4.6.26))

Note that the total reward can only improve by ε/2 for at most O(BR/ε) steps. Therefore,
in the first O(BR/ε) iterations, we must have hit a solution that is a (δ, ε)-local maximum.
This completes the proof.



CHAPTER 4. MODEL-BASED DEEP REINFORCEMENT LEARNING 68

4.7 Discussion

We devise a novel algorithmic framework for designing and analyzing model-based RL
algorithms with the guarantee to convergence monotonically to a local maximum of the
reward. Experimental results show that our proposed algorithm (SLBO) achieves new state-
of-the-art performance on several mujoco benchmark tasks when one million or fewer samples
are permitted.

A compelling (but obvious) empirical open question then given rise to is whether model-
based RL can achieve near-optimal reward on other more complicated tasks or real-world
robotic tasks with fewer samples. We believe that understanding the trade-off between
optimism and robustness is essential to design more sample-efficient algorithms. Currently,
we observed empirically that the optimism-driven part of our proposed meta-algorithm

(optimizing V π,M̂ over M̂) may lead to instability in the optimization, and therefore don’t in
general help the performance. It’s left for future work to find practical implementation of the
optimism-driven approach.
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Chapter 5

Model-based Zero-shot Policy
Learning

It is a long-standing challenge to enable an intelligent agent to learn in one environment and
generalize to an unseen environment without further data collection and finetuning. In this
chapter, we consider a zero shot generalization problem setup that complies with biological
intelligent agents’ learning and generalization processes. The agent is first presented with
previous experiences in the training environment, along with task description in the form of
trajectory-level sparse rewards. Later when it is placed in the new testing environment, it is
asked to perform the task without any interaction with the testing environment. We find
this setting natural for biological creatures and at the same time, challenging for previous
methods. Behavior cloning, state-of-art RL along with other zero-shot learning methods
perform poorly on this benchmark. Given a set of experiences in the training environment,
our method learns a neural function that decomposes the sparse reward into particular
regions in a contingency-aware observation as a per step reward. Based on such decomposed
rewards, we further learn a dynamics model and use Model Predictive Control (MPC) to
obtain a policy. Since the rewards are decomposed to finer-granularity observations, they are
naturally generalizable to new environments that are composed of similar basic elements. We
demonstrate our method on a wide range of environments, including a classic video game –
Super Mario Bros, as well as a robotic continuous control task.

5.1 Background

While deep Reinforcement Learning (RL) methods have shown impressive performance on
video games [114] and robotics tasks [151, 97], they solve each problem tabula rasa. Hence, it
will be hard for them to generalize to new tasks without re-training even due to small changes.
However, humans can quickly adapt their skills to a new task that requires similar priors
e.g. physics, semantics and affordances to past experience. The priors can be learned from a
spectrum of examples ranging from perfect demonstrative ones that accomplish certain tasks
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Figure 5.1: Illustrative figure: An agent is learning priors from exploration data from World 1
Stage 1 in Nintendo Super Mario Bros game. In this chapter, the agent focuses on learning two
types of priors: learning an action-state preference score for contingency-aware observation and a
dynamics model. The action-state scores on the middle left learns that approaching the “Koopa”
from the left is undesirable while from the top is desirable. On the middle right, a dynamics model
can be learned to predict a future state based on the current state and action. The agent can apply
the priors to a new task World 2 Stage 1 to achieve reasonable policy with zero shot.

to aimless exploration.
A parameterized intelligent agent “Mario” who learns to reach the destination in the

upper level in Figure 5.1 would fail to do the same in the lower new level because of the
change of configurations and background, e.g. different placement of blocks, new monsters.
When an inexperienced human player is controlling the Mario to move it to the right in
the upper level, it might take many trials for him/her to realize the falling to a pit and
approaching the “koopa”(turtle) from the left are harmful while standing on the top of the
“koopa”(turtle) is not. However, once learned, one can infer similar mechanisms in the lower
level in Figure 5.1 without additional trials because human have a variety of priors including
the concept of object, similarity, semantics, affordance, etc [53, 43]. In this chapter, we
teach machine agents to realize and utilize useful priors from exploration data in the form of
decomposed rewards to generalize to new tasks without fine-tuning.

To achieve such zero-shot generalizable policy, a learning agent should have the ability to
understand finer-granularity of the observation space e.g. to understand the value of a “koopa”
in various configuration and background. However, these quintessentially human abilities
are particularly hard for learning agents because of the lack of temporally and spatially
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fine-grained supervision signal and contemporary deep learning architectures are not designed
for compositional properties of scenes. Many recent works rely heavily on the generalization
ability of neural networks learning algorithms without capturing the compositional nature of
scenes.

In this work, we propose a method, which leverages imperfect exploration data that
only have terminal sparse rewards to learn decomposed rewards on specific regions of an
observation and further enable zero-shot generalization with a model predictive control
(MPC) method. Specifically, given a batch of trajectories with terminal sparse rewards,
we use a neural network to assign a reward for the contingency-aware observation ot at
timestep t so that the aggregation of the reward from each contingency-aware observation
ot can be an equivalence of the original sparse reward. We adopt the contingency-aware
observations [24] that enables an agent to be aware of its own location. Further, we divide the
contingency-aware observation into K sub-regions to obtain more compositional information.
To further enable actionable agents to utilize the decomposed score, a neural dynamics model
can be learned using self-supervision. We show that how an agent can take advantage of the
decomposed rewards and the learned dynamics model with planning algorithms [108]. Our
method is called SAP where “S” refers to scoring networked used to decompose rewards,“A”
refers to the aggregation of per step rewards for fitting the terminal rewards, and “P” refers
to the planning part.

The proposed scoring function, beyond being a reward function for planning, can also be
treated as an indicator of the existence of objects that affect the evaluation of a trajectory.
We empirically evaluate the decomposed rewards for objects extracted in the context of
human priors and hence find the potential of using our method as an unsupervised method
for object discovery.

In this chapter, we have two major contributions. First, we demonstrate the importance
of decomposing sparse rewards into temporally and spatially smaller observation for obtaining
zero-shot generalizable policy. Second, we develop a novel instance that uses our learning-
based decomposition function and neural dynamics model that have strong performance on
various challenging tasks.

5.2 Related Work

Zero-Shot Generalization and Priors. To generalize in a new environment in a zero-shot
manner, the agent needs to learn priors from its previous experiences, including priors on
physics, semantics and affordances. Recently, researchers have shown the importance of
priors in playing video games [43]. More works have also been done to utilize visual priors
in many other domains such as robotics for generalization, etc. [184, 69, 37, 207, 41]. [78,
94, 61] explicitly extended RL to handle object level learning. While our method does
not explicitly model objects, we have shown that meaningful scores are learned for objects
enabling SAP to generalize to new tasks in zero-shot manner. Recent works [159, 126] try
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to learn compositional skills for zero-shot transfer, which is complementary to the proposed
method.

Inverse Reinforcement Learning. The seminal work [123] proposed inverse reinforcement
learning (IRL). IRL aims to learn a reward function from a set of expert demonstrations.
IRL and SAP fundamentally study different problem — IRL learns a reward function from
expert demonstrations, while our method learns from exploratory data that is not necessarily
related to any tasks. There are some works dealing with violation of the assumptions of
IRL, such as inaccurate perception of the state [15, 186, 16, 23], or incomplete dynamics
model [168, 15, 90, 9, 121]; however, IRL does not study the case when the dynamics model
is purely learned and the demonstrations are suboptimal. Recent work [196] proposed to
leverage failed demonstrations with model-free IRL to perform grasping tasks; though sharing
some intuition, our work is different because of the model-based nature.

RL with Sparse Reward. When only sparse rewards are provided, an RL agent suffers
a harder exploration problem. Previous work [122] studied the problem of reward shaping,
i.e. how to change the form of the reward without affecting the optimal policy. The scoring-
aggregating part can be thought as a novel form of learning-based reward shaping. A corpus of
literature [106, 56, 105] try to learn the reward shaping automatically. However, the methods
do not apply to the high-dimensional input such as image. One recent work RUDDER [6]
utilizes an LSTM to decompose rewards into per-step rewards. This method can be thought
of an scoring function of the full state in our framework.

There are more categories of methods to deal with this problem: (1) Unsupervised
exploration strategies, such as curiosity-driven exploration [132, 150], or count-based explo-
ration [171, 163] (2) In goal-conditioned tasks one can use Hindsight Experience Replay [5] to
learn from experiences with different goals. (3) defining auxiliary tasks to learn a meaningful
intermediate representations [40]. In contrast to previous methods, we effectively convert the
single terminal reward to a set of rich intermediate representations, on top of which we can
apply planning algorithms. Although model-based RL has been extensively studied, none of
the previous work has explored the use of reward decomposition for zero-shot transfer.

5.3 Scoring-Aggregating-Planning Model

Problem Formulation

To be able to generalize better in an unseen environment, an intelligent agent should
understand the consequence of its behavior both spatially and temporally. In the RL
terminology, we propose to learn rewards that correspond to observations spatially and
temporally from its past experiences. To facilitate such goals, we formulate the problem as
follows.
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Two environments E1, E2 are sampled from the same task distribution. E1 and E2 share
the same physics and goals but different configurations. e.g. different placement of objects,
different terrains.

The agent is first presented with a bank of exploratory trajectories {τi} , i = 1, 2 · · ·N
collected in training environment E1 = (S,A, p). Each τi is a trajectory and τi = {(st, at)}, t =
1, 2 · · ·Ki. These trajectories are random explorations in the environment. Note that the
agent only learns from the bank of trajectories without further environment interactions,
which mimics human utilizing only prior experiences to perform a new task. We provide a
scalar terminal evaluation r(τ) of the entire trajectory when a task T is specified.

At test time, we evaluate task T using zero extra interaction in the new environment,
E2 = (S ′,A, p′). We assume identical action space. There is no reward provided at test time.
In this chapter, we focus on locomotion tasks with object interactions, such as Super Mario
running with other objects in presence, or a Reacher robot acting with obstacles around.

Spatial Temporal Reward Decomposition

Figure 5.2: An overview of the SAP method. (a) For each time step, a scoring network scores
contigent sub-regions conditioned on action. (b) we aggregate the prediction over all time
steps to fit terminal reward (c)&(d) describe the dynamics learning and planning in mpc in
the policy stage.

In this section, we introduce the method to decompose the terminal sparse reward into
specific time step and spatial location. First, we introduce the temporal decomposition and
then discuss the spatial decomposition.
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Temporal Reward Decomposition. The temporal reward decomposition can be described
as Sθ(W(st), at). Here θ denotes parameters in a neural network, W is a function that extracts
contingency-aware observations from states. Here, contingency-aware means a subset of
spatial global observation around the agent, such as pixels surrounding a game character or
voxels around end-effector of a manipulator. We note that the neural network’s parameters
are shared for every contingency-aware observation. Intuitively, this function measures how
well an action at performs on this particular state, and we refer to Sθ as the scoring function.

To train this network, we aggregate the decomposed rewards Sθ(W(st), at) for each step
into a single aggregated reward J , by an aggregating function G:

Jθ(τ) = G(st,at)∈τ (Sθ(W (st), at))

The aggregated reward J are then fitted to the sparse terminal reward. In practice, G is
chosen based on the form of the sparse terminal reward, e.g. a max or a sum function. In the
learning process, the Sθ function is learned by back-propagating errors between the terminal
sparse reward and the predicted J through the aggregation function. In this chapter, we use
`2 loss that is:

min
θ

1

2
(Jθ(τ)− r(τ))2

Spatial Reward Decomposition. An environment usually contains multiple objects.
Those objects might re-appear at various spatial locations over time. To further assist the
learned knowledge to be transferrable to the new environment, we take advantage of the
compositionality of the environment by also decomposing the reward function spatially. More
specifically, we divide the contingency-aware observation into smaller sub-regions. For example,
in a Cartesian coordinate system, we can divide each coordinate independently and uniformly.
With the sub-regions, we re-parametrize the scoring function as

∑
l∈L Sθ(Wl(st), at), where l

is the index of the sub-regions and we retarget Sθ for the sub-region instead of the whole
contingency-aware observation. The intuition is that the smaller sub-regions contains objects
or other unit elements that are also building blocks of unseen environments. Such sub-regions
become crucial later to generalize to the new environment.

Policy Stage

To solve the novel task with zero interaction, we propose to use planning algorithms to find
optimal actions based on the learned scoring function and a learned dynamics model. As
shown in the part (c) of Figure 5.2, we learn a forward dynamics model Mφ based on the
exploratory data with a supervised loss function. Specifically, we train a neural network that
takes in the action at, state st and output ŝt+1, which is an estimate of st+1. We use an `2

loss as the objective:

min
φ

1

2
(Mφ(st, at)− st+1)2
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With the learned dynamics model and the scoring function, we solve an optimization
problem using the Model Predictive Control (MPC) algorithm to find the best trajectory
for a task T in environment E2. The objective of the optimization problem is to minimize
−Jθ(τ ′). Here we randomly sample multiple action sequences up to length H, unroll the
states based on the current state and the learned dynamics model while computing the cost
with the scoring function. We select the action sequence with the minimal cost, and execute
the first action in the selected sequence in the environment.

Discussion on zero-shot generalization

Although neural networks have some generalization capabilities, it is still easy to overfit
to the training domain. Previous works [127] notice that neural network “memorizes” the
optimal action throughout the training process. One can not expect an agent that only
remembers optimal actions to generalize well when placed in a new environment. Our
method does not suffer from the memorization issue as much as the neural network policy
because it can come up with novel solutions, that are not necessarily close to the training
examples, since our method learns generalizable model and scores that makes planning
possible. The generalization power comes mainly from the smaller building blocks shared
across environments as well as the universal dynamics model. This avoids the SAP method
to replay the action of the nearest neighbour state in the training data.

Section 5.4, Figure 5.3a 5.3b compares our method and a neural network RL policy. It
shows that in the training environment, RL policy is only slightly worse than our method,
however, the RL policy performs much worse than ours in the zero shot generalization case.

5.4 Experiments

In this section, we study how well the proposed method performs compare to baselines,
and the roles of the proposed temporal and spatial reward decompositions. We conduct
experiments on two domains: a famous video game “Super Mario Bros” [76] and a robotics
blocked reacher task [65].

Experiment on Super Mario Bros

To evaluate our proposed algorithm in a challenging environment, we run our method and
baseline methods in the Super Mario Bros environment. This environment features high-
dimensional visual observations, which is challenging since we have a large hypothesis space.
The original game has 240 × 256 image input and discrete action space with 5 choices. We
wrap the environment following [114]. Finally, we obtain a 84× 84 size 4-frame gray-scale
stacked observation. The goal for an agent is to survive and go toward the right as far as
possible. We don’t have access to the dense reward for each step but the environment returns
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how far the agent moves towards target at the end of a trajectory as the delayed terminal
sparse reward.

Baselines. We compare our method with various types of baselines, including state-of-art
zero-shot RL algorithms, generic policy learning algorithms as well as oracles with much
more environment interactions.

Exploration Data Exploration Data is the data from which we learn the scores, dynamics
model and imitate. The data is collected from noisy sub-optimal version of policy trained
using [132]. The average reward on this dataset is a baseline for all other methods.

Behavioral Cloning [138, 10] Behavioral Cloning (BC) learns a mapping from a state
to an action on the exploration data using supervised learning. We use cross-entropy loss for
predicting the actions.

Model Based with Human Prior Model Based with Human Priors method (MBHP)
incorporates model predictive control with predefined human priors, which is +1 score if the
agent tries to move or jump toward the right and 0 otherwise.

DARLA [61] DARLA relies on learning a latent state representation that can be
transferred from the training environments to the testing environment. It achieves this goal
by obtaining a disentangled representation of the environment’s generative factors before
learning to act. We use the latent representation as the observations for a behavioral cloning
agent.

RUDDER [6] RUDDER proposes to use LSTM to decompose the delayed sparse reward
to dense rewards. It first trains a function f(τ1:T ) predict the terminal reward of a trajectory
τ1:T . It then use f(τ1:t)− f(τ1:t−1) as dense reward at step t to train RL policies. We change
policy training to MPC so this reward can be used in zero-shot setting.

Behavior Clone with Privilege Data Instead of using exploratory trajectories from
the environment, we collect a set of near optimal trajectories in the training environment
and train a behavior clone agent from it. Note that this is not a fair comparison with other
methods, since this method uses better performing training data.

RL curiosity We use a PPO [152] agent that is trained with curiosity driven reward [19]
and the final sparse reward in the training environment. This also violates the setting we have
as it interacts with the environment. We conduct this experiment to test the generalization
ability of an RL agent.

Analysis. Fig. 5.3 a and Fig. 5.3 b show how the above methods performs in the Super Mario
Bros. The Explore baseline shows the average training trajectory performance. We found
that RUDDER fails to match the demonstration performance. This can attributed to the
LSTM in RUDDER not having sufficient supervision signals from the long horizon (2k steps)
delayed rewards in the Mario environment. DARLA slightly outperforms the demonstration
data in training. Its performance is limited by the unsupervised visual disentangled learning
step, which is a hard problem in the complex image domain. Behavior Cloning is slightly
better than the exploration data, but much worse than our method. MBHP is a model-based
approach where human defines the per step reward function. However, it is prohibitive to



CHAPTER 5. MODEL-BASED ZERO-SHOT POLICY LEARNING 77

(a) Mario train world returns (b) Mario test world returns

(c) Visualized greedy actions
from the learned scores in a
new level(W5S1)

Figure 5.3: (a) & (b) The total returns of different methods on the Super Mario Bros.
Methods with ∗ have privilege access to optimal data instead of sub-optimal data. Error bars
are shown as 95% confidence interval. See Section 5.4 for details.

Table 5.1: Ablation of the temporal and spatial reward decomposition.

W1S1(train) W2S1(test)

SAP 1359.3 790.1
SAP w/o spatial 1258.0 737.0
SAP w/o spatial temporal 1041.3 587.9

obtain detailed manual rewards every step. In this task, it is inferior to SAP’s learned priors.
We further compare to two methods that unfairly utilize additional privileged information.
The Privileged BC method trains on near optimal data, and performs quite well during
training; however, it performs much worse during the zero shot testing. The similar trend
happens with RL Curiosity, which has the privileged access to online interactions in the
training environment.

To conclude, we found generic model free algorithms, including both RL (RL Curiosity),
and behavior cloning (Privilege BC) perform well on training data but suffer from severe
generalization issue. The zero-shot algorithms (DARLA), BC from exploratory data (BC)
and moded-based method (MBHP) suffer less from degraded generalization, but they all
under-perform our proposed algorithm.

Ablative Studies. In order to have a more fine-grained understanding of the effect of our
newly proposed temporal and spatial reward decomposition, we further conduct ablation
studies on those two components. We run two other versions of our algorithm, removing the
spatial reward decomposition and the temporal reward decomposition one at a time. More
specifically, the SAP w/o spatial method does not divide the observation into sub-regions,
but simply use a convolution network to approximate the scoring function. SAP w/o spatial
temporal further removes the temporal reward learning part, and replace the scoring function
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with a human-designed prior. I.e. it is the same as the MBHP baseline.
Table 5.1 shows the result. We found that both the temporal and the spatial reward

learning component contributes to the final superior performance. Without temporal reward
decomposition, the agent either have to deal with sparse reward or use a manually specified
rewards which might be tedious or impossible to collect. Without the spatial decomposition,
the agent might not find correctly which specific region or object is important to the task
and hence fail to generalize.

Visualization of learned scores. In this section, we qualitatively study the induced action
by greedily maximizing one-step score. I.e. for any location on the image, we assumes
the Super Mario agent were on that location and find the action a that maximize the
learned scoring function Sθ(W (s), a). We visualize the computed actions on World 5 Stage 1
(Fig. 5.3 c) which is visually different from previous tasks. More visualization can be found
in 1 In this testing case, we see that the actions are reasonable, such as avoiding obstacles
and monsters by jumping over them, even in the face of previously unseen configurations
and different backgrounds. However, the “Piranha Plants” are not recognized because all
the prior scores are learned from W1S1 where it never appears. More visualization of action
maps are available in our videos. Those qualitative studies further demonstrate that the SAP
method can assign meaningful scores for different objects in an unsupervised manner. It also
produces good actions even in a new environment.

SAP on the 3-D robotics task

In this section, we further study the SAP method to understand its property with a higher
dimensional observation space. We conduct experiments in a 3-D robotics environment,
BlockedReacher-v0. In this environment, a robot hand is initialized at the left side of a table
and tries to reach the right. Between the robot hand and the goal, there are a few blocks
standing as obstacles. The task is moving the robot hand to reach a point on y = 1.0 as
fast as possible. To test the generalization capability, we create four different configurations
of the obstacles, as shown in Figure 5.4. Figure 5.4 A is the environment where we collect
exploration data from and Figure 5.4 B, C, D are the testing environments. Note that the
exploration data has varying quality, where many of the trajectories are blocked by the
obstacles. We introduce more details about this experiment.

Environment. In the Blocked Reach environment, we use a 7-DoF robotics arm to reach a
specific point. For more details, we refer the readers to [137]. We discretize the robot world
into a 200× 200× 200 voxel cube. For the action space, we discretize the actions into two
choices for each dimension which are moving 0.5 or -0.5. Hence, in total there are 8 actions.
We design four configurations for evaluating different methods as shown in Figure 5.4. For
each configurations, there are three objects are placed in the middle as obstacles.

1https://sites.google.com/view/sapnew/home
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Applying SAP on the 3D robotic task. We apply the SAP framework as follows.
The original observation is a 25-dimensional continuous state and the action space is a
3-dimensional continuous control. They are discretized into voxels and 8 discrete actions. The
scoring function is a fully-connected neural network that takes in a flattened voxel sub-region.
We also train a 3D convolutional neural net as the dynamics model. The dynamics model
takes in the contingency-aware observation as well as an action, and outputs the next robot
hand location. With the learned scores and the dynamics model, we plan using the MPC
method with a horizon of 8 steps.

Architectures for score function and dynamics model. For the score function, we
train a 1 hidden layer fully-connected neural networks with 128 units. We use ReLu functions
as activation except for the last layer. Note that the input 5 by 5 by 5 voxels are flattened
before put into the scoring neural network.

For the dynamics model, we train a 3-D convolution neural network that takes in the
contingency-aware observation (voxels), action and last three position changes. The voxels
contingent to end effector are encoded using three 3d convolution with kernel size 3 and
stride 2. Channels of these 3d conv layers are 16, 32, 64, respectively. A 64-unit FC layer is
connected to the flattened features after convolution. The action is encoded with one-hot
vector connected to a 64-unit FC layer. The last three δ positions are also encoded with a
64-unit FC layer. The three encoded features are concatenated and go through a 128-unit
hidden FC layer and output predicted change in position. All intermediate layers use ReLu
as activation.

Table 5.2: Evaluation of SAP, MBHP and Rudder on the 3D Reacher environment. Numbers
are the avg. steps to reach the goal. The lower the better. Numbers in the brackets are the
95% confidence interval. “L” denotes the learned dynamics, and “P” denotes the perfect
dynamics.

Config A Config B Config C Config D

SAP(L) 97.53[2.5] 86.53[1.9] 113.3[3.0] 109.2[3.0]
MBHP(L) 124.2[4.5] 102.0[3.0] 160.7[7.9] 155.4[7.2]
Rudder(L) 1852[198] 1901[132] 1933[148] 2000[0.0]

SAP(P) 97.60[2.6] 85.38[1.8] 112.2[3.1] 114.1[3.2]
MBHP(P) 125.3[4.3] 102.4[3.0] 153.4[5.3] 144.9[4.8]
Rudder(P) 213.6[4.2] 194.2[7.0] 208.2[5.6] 201.5[6.3]

Results.We evaluate similar baselines as in the previous section that is detailed in 5.4. In
Table 5.2, we compare our method with the MBHP and RUDDER on the 3D robot reaching
task. We found that our method needs significantly fewer steps than the two baselines, in
both training environment and testing ones. We find that SAP significantly moves faster
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(a) (b)

(c) (d)

Figure 5.4: Four variants of the 3D robot reacher environments. See Section 5.4 for details.

to the right because it learns a negative score for crashing into the obstacles. However, the
MBHP method, which has +1 positive for each 1 meter moved to the right, would be stuck by
the obstacles for a longer duration. When training with RUDDER, the arm also frequently
waste time by getting stuck at obstacle. We found that our SAP model is relatively insensitive
to the errors in the learned dynamics, such that the performance using the learned dynamics
is close to that of perfect dynamics. These experiments show that our method can be applied
to robotics environment that can be hard for some algorithms due to the 3-D nature.

5.5 Discussion

In this chapter, we introduced a new method called SAP that aims to generalize in the
new environment without any further interactions by learning the temporally and spatially
decomposed rewards. We empirically demonstrate that the newly proposed algorithm
outperform previous zero-shot RL method by a large margin, on two challenging environments,
i.e. the Super Mario Bros and the 3D Robot Reach. The proposed algorithm along with
a wide range of baselines provide a comprehensive understanding of the important aspect
zero-shot RL problems.
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Chapter 6

Conclusion

This thesis presents a series of methods toward learning predictive models and using them
for efficient policy learning. These studies are on high-fidelity video prediction, multi-modal
video prediction, model-based reinforcement learning, and model-based policy zero-shot
generalization. In Chapter 2, we introduce a method that disentangles propagation and
generation that alleviates blurry artifact and shape deformation. In Chapter 3, we continue
to learn a video predictive method that can leverage retrieved examples to model multi-modal
data distribution. In Chapter 4, we further seek to learn a predictive model for policy learning
with deep reinforcement learning algorithms. We propose a new model-based framework and
a value discrepancy loss that can achieve sample-efficient policy learning, In Chapter 5, we
explore modeling methods that can make policy generalize to unseen tasks in a zero-shot
manner.

Admittedly, predictive models can also be applied to abstracted states space or spaces
with more semantic meaning. For example, computer vision techniques can be used to extract
objects from images as structured representations. We believe it is still important to learn
a predictive model in the image space when limited prior information is given. On the one
hand, video prediction can be one of the most general objectives in the face of unknown types
of tasks. On the other hand, the techniques from video prediction can also be transferred to
relevant domains if necessary. In the future, we can explore learning predictive models on
more structured states on specific real-world tasks. We will also keep pushing the boundary
of video prediction in order to improve sample efficient robotics tasks.

In model-based reinforcement learning, it is usually hard to learn a predictive model
because of the narrow data distribution and the over generalization of neural networks. In
Chapter 4, we introduce an iterative training scheme to avoid the policy over-fitting issue. In
this direction, we can explore stabilizing model-based RL by either learning a conservative
dynamics model or ensemble models. Another challenge is that model-based RL usually
requires an agent to collect data from the environment multiple times which is time-consuming.
Hence, it is promising to leverage some curated offline datasets for model-based RL. Toward
better generalization with the model-based approach, we propose in Chapter 5 to learn both
visual dynamics and a value prior for contingency-aware observation. In the future, we want
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to learn better predictive models that can handle more complicated tasks that involve robotics
manipulation.

One interesting future direction on learning predictive is to learn models that are useful
for long-horizon tasks. In previous model-based RL and video prediction works, most models
are per-step ones that predict future observations step by step. However, humans usually
only predict key events in the temporal axis rather than predict future states for every time
step. It is still unclear that how intelligent agents can learn temporally abstracted models.
For example, one can choose to learn hierarchical dynamics models from the execution of
pre-defined primitives and/or from the entropy of states. Toward this direction, we can also
try to learn better representations that model abstract temporal information. If we can
learn such models, compositionally generalizable task-level planning would be possible in
complex real-world scenarios for long-horizon tasks. While this method might potentially
solve many well-defined tasks, it might suffer from some tasks that are hard to define. Hence,
it might be possible to use model-free algorithms for “low-level” tasks while using model-
based approaches for “high-level” planning. To smartly combine model-free algorithms with
model-based approaches is another interesting unanswered question for future research.
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