
Scalable Reinforcement Learning Systems and their

Applications

Eric Liang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-48

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-48.html

May 11, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Scalable Reinforcement Learning Systems and their Applications

by

Eric K Liang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Professor Michael I. Jordan

Professor Barna Saha

Spring 2021



Scalable Reinforcement Learning Systems and their Applications

Copyright 2021
by

Eric K Liang



1

Abstract

Scalable Reinforcement Learning Systems and their Applications

by

Eric K Liang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

The past few years have seen the growth of deep reinforcement learning (RL) as a new and
powerful optimization technique. Similar to deep supervised learning, deep RL has demon-
strated the ability to solve problems previously thought to be unapproachable with machine
learning (e.g., fine motor control of robotics, sports and video gaming), and substantial
improvements over heuristic solutions for existing problems (e.g., in systems optimization,
e-trading, advertising, robotic control). Like deep learning, deep reinforcement learning is
necessarily computationally intensive. Because of this, researchers and practitioners in the
field of deep RL frequently leverage parallel computation, which has led to a plethora of new
algorithms and systems.

This thesis looks at deep RL from the systems perspective in two ways: how to design systems
that scale the computationally demanding algorithms used by researchers and practitioners,
and conversely, how to apply reinforcement learning to expand the state of the art in systems.
We study the distributed primitives needed to support the emerging range of large-scale RL
workloads in a flexible and high-performance way, as well as programming models that can
enable RL researchers and practitioners to easily compose distributed RL algorithms without
in-depth systems knowledge. We synthesize the lessons learned in RLlib, a widely adopted
open source library for scalable reinforcement learning. We investigate the applications of RL
and ML for improving systems, specifically the examples of improving the speed of network
packet classifiers and database cardinality estimators.
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Chapter 1

Introduction

Many fields today are seeing new solutions from deep reinforcement learning (deep RL), a
new and powerful optimization technique that has emerged in the past few years, building
on the success of deep supervised learning. While many of these solutions are coming to
domains traditionally in the domain of machine learning and AI—for example, drug design
[122], or gaming [6, 2, 138, 115], the field of systems has also seen a remarkable upwelling
of RL inspired approaches. Areas previously thought to be too complex or too amenable to
expert knowledge to be optimized—for example, data structures [90, 169], task scheduling
[100, 108, 119], compiler phase optimization [64, 79], database query optimization [102, 117,
76, 85], chip layouts [104]—are now seeing ML and RL-based solutions that significantly
surpass decades of research towards the state of the art. Since effective design of systems is
so pervasive to our infrastructure, the promise of a better performing and more principled
approach is immense. For many decades systems design has been powered by heuristics:
pieces of code which encode the knowledge of practitioners and seek to optimize for the
common case, or robustness, or some combination of the above. It has only recently been
possible to think of learning these approaches, making it feasible to more directly optimize
for end objectives.

Deep RL today, while still a complex and narrowly effective tool, is increasingly often
“good enough” to generate great results in systems research. This is the reason we are seeing
such a widespread interest in RL-based solutions. That is not to say that deep RL is easy
to use—practitioners still need to determine the right optimization objectives and problem
framing—only that when a problem formulation is found to be amenable to deep RL, good
results become almost inevitable. Intuitively, this can be the case because systems problems,
though complex to represent, are sometimes “simpler” than activities such as robotics control
and video gaming that cannot be solved at all with heuristics. Hence, it is of great interest to
accelerate the removal of the practical barriers for applying RL to systems problems today: in
scaling up computation, and engineering tractable environments for learning, which together
will enable rapid experimentation and implementation of large-scale RL applications.

As a concrete example of some of these barriers to applying RL today, consider a practi-
tioner attempting to optimize the bus schedule for a city’s metro network. An engineer can
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design and deploy a heuristic in a matter of a few dozen or hundreds of lines of code. The
same engineer trying to optimize the schedule with deep RL would have to come up with
a conceptual framing of the problem with an RL objective, choose an algorithm, algorithm
hyperparameters, and neural network design. They would study the relevant literature to
glean ideas from similar problems. They would likely have to build and deploy a paral-
lel training system to evaluate their approach, and require several iterations before they
start seeing reasonable results. Each iteration may take weeks or more of work, depending
on how efficiently they are able to leverage their compute, and could require substantial
re-implementation effort should new approaches need to be evaluated.

In other words, the new avenues for optimization opened by deep RL pose new, chal-
lenging systems problems that must be solved before RL can become truly practical. First
among these problems is reducing the overhead of experimentation with deep RL at scale.
This means both reducing the overhead on the practitioner implementing a proposed solu-
tion, and efficient execution of RL algorithms at large scale to save in compute costs. The
engineer in the previous example should not have to spend time re-writing parallel code when
they want to try out a new problem decomposition not well supported by existing libraries.
Systems designed for workloads such as data processing or high-performance computing are
not flexible enough to support the many different types of RL computations, which exac-
erbates the problem. New abstractions need to be designed that can flexibly support RL
training and experimentation at large scale. The second problem, which is broader, is as-
sembling the methods by which RL can be tractably applied to solve system problems. This
involves identifying a suitable framing of the optimization objective, design of the simulation
environment, and selection of the RL approach.

This thesis looks at the confluence of systems and reinforcement learning in both ways:
how to design systems that scale the computationally demanding algorithms used by re-
searchers and practitioners, and conversely, how to apply deep RL to solve systems problems
in new ways. The first half of this thesis overviews the design and evolution of RLlib, a
scalable and widely adopted open source library for distributed reinforcement learning. We
study the distributed primitives needed to support the emerging range of large-scale RL
workloads in a flexible and high-performance way, as well as programming models that can
enable RL researchers and practitioners to easily compose distributed RL algorithms with-
out in-depth systems knowledge. The second half of this thesis looks at how we can move
towards leveraging RL and ML for improving the design of systems, specifically diving into
examples improving the performance of packet classification trees and database cardinality
estimators. We see how heuristics can be incorporated into learning based approaches, and
how RLlib’s scalability and flexibility accelerates research. RLlib and the other projects in
this thesis have been developed together with many collaborators at Berkeley and from the
wider open source community. The thesis is organized as follows:

• In Chapter 2, we provide an overview of key concerns in deep reinforcement learning
landscape from the systems perspective. The design of both systems for RL and RL
for systems is challenging due to the breadth of algorithms and applications, here we
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hope to shed some light on the fundamental problems and concepts to prepare the
reader for the next chapters.

• In Chapter 3, we describe an early version of RLlib, a system for distributed reinforce-
ment learning we built on the Ray distributed system. Our initial work here focused
on providing a small set of primitives for scaling RL computations. The challenges
raised by early adopters of RLlib in academia and industry motivated further architec-
tural improvements to Ray and new abstractions for RL training. This material was
previously published in [92].

• In Chapter 4, we introduce new dataflow-oriented abstractions for distributed RL that
seek to make the composition of high-performance algorithms more accessible to non-
system experts. These abstractions also provide a unifying view into distributed RL
from the dataflow perspective. This material was previously published in [91].

• In Chapter 5, we look backwards and answer the question “How can reinforcement
learning be used to improve the design of systems?”. We show advancements in the
state of the art on packet classification, a fundamental problem in computer networking,
which we were able to explore at scale thanks to the flexibility of RLlib. This material
was previously published in [90].

• In Chapter 6, we look deeply at one piece of the RL for databases puzzle—constructing
an efficient simulation environment. We demonstrate order of magnitude speedups on
state-of-the-art deep generative modeling approaches to cardinality estimation, making
it practical to leverage these new models in training environments. This material was
previously published in [93].

• In the Conclusion we overview the impact of RLlib as an open source project, and
cover areas of future work relevant to this thesis.



4

Chapter 2

Reinforcement Learning and Systems

To better understand the concerns for systems support for reinforcement learning, let us first
discuss the central principles of RL and the concerns of its practitioners (e.g., researchers and
applied RL engineers). In this chapter we overview RL basics along with the requirements
for “Systems for RL”, followed by the concerns of “RL for Systems” applications. We focus
primarily on systems concerns instead of the learning theory.

2.1 RL Algorithm Basics

The goal of an RL algorithm is typically to improve the performance of an agent’s policy with
respect to an objective defined through an environment (e.g., simulator). An environment is
typically formulated as a single Markov Decision Process (MDP). In this framing, a rollout
(or simulation from start to end in the environment) begins with the environment at some
initial state, s0 ∈ S. At each step t, the agent executes an action at ∈ A and receives
a reward rt; the environment transitions from the current state st ∈ S to the next state
st+1 ∈ S. The goal is to maximize the total reward received by the agent, i.e.,

∑
t γ

trt where
γ is a discounting factor used to prioritize more recent rewards.

Agent Environment

action
At

state
St

reward
Rt Rt+1

St+1

Figure 2.1: A typical RL environment formulated as a Markov Decision Process.
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A textbook implementation of an RL algorithm would involve executing the above roll-
out steps serially, followed by an optimization routine. However in practice, RL training
is computationally expensive, as both the rollout and optimization phases involve policy
computations. The policy is usually defined as a deep neural network, which can range from
several KB to several hundred MB in size. The simulator itself may also be quite slow to run.
In order to achieve results in a timely way, parallelism and batching is often used at multiple
levels in RL systems to reduce the computation time and take advantage of hardware acceler-
ators. As a consequence, it is more useful to think of RL algorithm implementations as being
comprised of the following logical steps of rollout, replay, and optimization. Each of these
steps can contain substantial internal parallelism, and the steps can execute concurrently
with respect to each other:

Rollout: To generate experiences, the policy, which outputs actions to take given envi-
ronment observations, is run against the environment to collect batches of data. The batch
consists of observations, actions, rewards, and episode terminals and can vary in size (10s to
10000s of steps). In general, rollouts may involve environments hosted on remote machines,
interacting directly with the physical world, or data indirectly gathered through log files.

Replay: On-policy algorithms (e.g., PPO [134], A3C [105]) collect new experiences from
the current policy to learn. On the other hand, off-policy algorithms (e.g., DQN [106], SAC
[54]) can leverage experiences from past versions of the policy as well. For these algorithms,
a replay buffer of past experiences can be used. The size of these buffers ranges from a few
hundred to millions of steps.

Optimization: Experiences, either freshly collected or replayed, can be used to improve
the policy. Typically this is done by computing and applying a gradient update to the policy
and value neural networks. While in many applications a single GPU suffices to compute
gradient updates, it is sometimes desirable to leverage multiple GPUs within a single node,
asynchronous computation of gradients on multiple CPUs [105], or many GPUs spread across
a cluster [162].

In Table 2.1 we summarize how a selection of RL algorithms realize above steps in dif-
ferent ways. All but the most naive (or single-node GPU accelerated) algorithms leverage
distributed execution for rollouts, which means rollouts can be scaled across multiple ma-
chines. Optimization is typically centralized for algorithms that communicate experiences
over the network, but distributed for those that compute gradients decentrally and synchro-
nize them asynchronously (A3C) or via allreduce (DD-PPO [162]). Specialized single-node
implementations [8, 144] leverage multiple hardware accelerators on a single machine for
both rollouts and optimization. Very large scale RL systems such as IMPALA [36] or Rapid
[12] may leverage GPUs spread across multiple machines, but have some degree of logical
centralization of optimization vs rollout processes. In this thesis we will show that RLlib pro-
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RepeatRollout Replay Optimization

RolloutWorker 
actors

RolloutWorker 
actors

RolloutWorker 
actors

Rollout Worker 
Actors

RolloutWorker 
actors

Replay Buffer 
Actors Learner Actor

Figure 2.2: Most RL algorithms can be defined in terms of the basic steps of rollout, replay,
and optimization. These steps are commonly parallelized across multiple actor processes.
Depending on the implementation, these actors may be logically realized as separate oper-
ating system threads, processes, processes on different machines, or components thereof.

vides a sufficiently flexible and high-performance system substrate that can realize a broad
range of these architectures.

Rollout Optimization Communication

Single-threaded centralized centralized None

A3C family [105] distributed distributed gradients, weights

PPO family [134] distributed centralized experiences, weights

DD-PPO [162] distributed distributed gradients

GA3C [8], accelerated
PPO [144]

centralized centralized experiences (unbatched), weights

IMPALA [36], Ape-X [63] distributed centralized
and
distributed

experiences, weights

SEED [37], Rapid [12] distributed
simulation,
centralized
inference

centralized
and
distributed

experiences (unbatched), weights

Table 2.1: The range of distributed RL algorithms. Despite sharing similar optimization
objectives (i.e., policy gradient or Q-learning), these algorithms have very different perfor-
mance characteristics that arise from differences in how they implement the steps of rollout,
optimization, and communication of experiences for optimization.
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2.2 Systems for Reinforcement Learning

At a high level, general purpose systems for reinforcement learning have to deal with the
following concerns. Note that this list is not meant to be exhaustive, but covers the main
concerns addressed by RLlib. This thesis focuses on the subset relevant to supporting com-
putation patterns, including patterns for multi-agent computations. The other aspects are
equally important for practical RL systems, but we believe are currently addressable with
good API design. The interested reader may refer to the RLlib user-facing documentation (at
https://ray.readthedocs.io) for coverage of these other aspects of RL systems design.

1. Computation patterns: RL algorithms span a broad range of computational require-
ments, from synchronous to asynchronous, from using CPUs to GPUs, from single-
threaded to distributed across a cluster of machines, to name a few. In hapter 3, we
discuss how RL systems can flexibly meet such requirements at high performance.

2. Multi-agent computations: Environments may consist or be decomposed into mul-
tiple cooperative or competing agents. Perhaps surprisingly, multi-agent scenarios can
not only affect the algorithmic aspects of training but also the overall computational
pattern of the algorithm (Chapter 4), though in most cases the concerns are shared
with those of single-agent algorithms.

3. Numerical definitions: The RL system needs to provide an API for researchers and
practitioners to define and customize policy and auxiliary losses for the algorithm.
This API has to be sufficiently flexible to support new algorithms from the literature.
While this thesis does not focus on API concerns (the reader can refer to the RLlib
documentation), Chapters 3 and 4 touch on these issues.

4. Batch training: It is often desirable to be able to take advantage of data collected
offline that is relevant to RL training. In Chapter 3 we briefly discuss how offline batch
training can be unified with online simulations.

5. Customization of existing algorithms: Users often wish to customize the neural
network architecture of their agents and other algorithm hyper-parameters.

6. Complex environments: Beyond simple games, real-world environments involve
complex structured data (i.e., variable-length lists and structs of arrays), which the
agent must be able to interpret. Environments may be interacted with in vectorized
form for efficiency.

RLlib, the core system presented in this thesis, aims to provide a scalable and universal
library for RL addressing the above concerns from researchers and practitioners of RL. In
pursuit of this universality, we have had to sacrifice on certain other aspects. For example,
enabling the system to flexibly execute many different computation patterns necessarily
requires certain abstractions to be introduced. We discuss this and other concerns in the
concluding chapter.
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2.3 Reinforcement Learning for Systems

Computer systems involve many hand-engineered heuristics. We see these in every-day data
structures (e.g., how splits are decided in tree-like data structures [11, 53]), task schedul-
ing in operating systems [14] and distributed systems [128, 173], and query optimization
in databases [7]. The deep learning revolution has prompted a wave of learning-based ap-
proaches which promise better performance compared to many of these heuristics. In this
section we overview, conversely, some of the main concerns [57] that must be met when
seeking to apply reinforcement learning and machine learning to systems. We also look at a
couple examples addressing these concerns:

1. Environment formulation: Many advances in applied RL for systems do not involve
fundamental innovation in RL theory. Rather, the insights come from the formulation
of the RL environment and objective that enables tractable learning. In Chapter 5 we
look at one such example involving an RL solution to the packet classification problem.
More generally, this motivates having a general purpose, unified RL system which can
support many different types of RL computations. We describe how RLlib meets this
requirement in Chapter 3 and 4.

2. Deploy-time overheads: One of the major obstacles for the practicality of learning-
based approaches is the deploy-time overhead. Whereas a heuristic may typically
involve a trivial amount of computation (e.g., to decide which machine to schedule a
task on), a deep neural network may both require expensive inference hardware and
take a large amount of data as input. There are several avenues of attack here; one
promising class of approaches is applying reinforcement learning to produce a static
artifact. For example, in the packet classification problem (Chapter 5), instead of
training a neural network to classify packets, we instead train a neural network to
generate an optimized data structure that can in turn classify packets, eliminating
deploy-time overhead as a concern.

3. Train-time overheads: One advantage of a heuristic is that you don’t need to train
it. In contrast, RL agents can take thousands to millions of experiences to reach an
optimized policy. For some classes of problems this isn’t an issue, but for real-world
systems that are difficult to simulate, the overhead can be prohibitive. For example,
consider a use of case of optimizing “big data” queries. Running a single query, never
mind millions, can cost hundreds to thousands of dollars, especially if the generated
execution plan isn’t well optimized. In Chapter 6, we investigate an approach that can
be used for such scenario: using deep unsupervised learning to model the environment
(i.e., data record cardinalities), which enables fast runtime simulation (i.e., estimated
execution costs). More generally, model-based reinforcement learning seeks to learn
general purpose models of the environment to accelerated RL training.

4. Robustness to new scenarios: Finally, one weakness of learned approaches is the
often lack of generalization to new scenarios not seen in the training data. Safe gen-
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eralization is of course its own sub-field in RL. There can be case-specific mitigations,
for example, in scenarios like packet classification (Chapter 5) we can limit the space
of generated data structures to only provably correct ones (i.e., the agent can’t make
a correctness mistake, only reduce its performance). Approaches such as deep unsu-
pervised learning learn an unbiased model of the data from which information can be
extracted for new scenarios without the typical generalization problem. In Chapter
6, we specifically investigate the high-quantile performance of the model on unseen
queries, showing robustness beyond those provided by heuristic approaches. However,
generalization concerns can still apply to agents trained on the model.

To tie things together, we observe that RL for system requires a great deal of experimen-
tation. In this way systems for RL can accelerate the work of RL for systems. Conversely,
the requirements that surface from creative RL approaches to problems inform the design of
better systems for RL. Over the last few years, RLlib’s design and requirements have evolved
via feedback from users across dozens of different academic labs and industry groups, each
often raising novel use cases.
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Chapter 3

Primitives for Distributed
Reinforcement Learning

Reinforcement learning (RL) algorithms involve the deep nesting of highly irregular compu-
tation patterns, each of which typically exhibits opportunities for distributed computation.
In this chapter, we examine how these computation patterns can be implemented in a flexible
programming model based on top-down hierarchical control. This method of writing algo-
rithms encapsulates the parallelism and resource requirements of RL computations within
short-running compute tasks. We demonstrate the benefits of this principle through RLlib:
a library that provides scalable software primitives for RL. These primitives enable a broad
range of algorithms to be implemented with high performance, scalability, and substantial
code reuse. RLlib is available as part of the open source Ray project 1. This is the first of
two chapters on RLlib; Chapter 4 focuses on higher-level abstractions for composing more
complex training workflows, whereas this focuses on the core distributed primitives required
for enabling both basic and more complex computation patterns. The interested reader may
also want to refer to the Ray paper [107] and Ray ownership paper [159] for further details
on the implementation considerations of the system architecture described here.

3.1 Introduction

Advances in parallel computing and composition through symbolic differentiation have been
fundamental to the recent success of deep learning. Today, there are a wide range of deep
learning frameworks [123, 1, 20, 68] that enable rapid innovation in neural network design
and facilitate training at the scale necessary for progress in the field.

In contrast, while the reinforcement learning community enjoys the advances in systems
and abstractions for deep learning, there has been comparatively less progress in the de-
sign of systems and abstractions that directly target reinforcement learning. Nonetheless,
many of the challenges in reinforcement learning stem from the need to scale learning and

1RLlib documentation can be found at http://rllib.io

http://rllib.io
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K Model Replicas

(a) Deep Learning

SGD   batch t batch t+1model-based 
tasks

M Parallel RolloutsK Model Variations N Concurrent Tasks

(b) Reinforcement Learning

Figure 3.1: In contrast with deep learning, RL algorithms leverage parallelism at multiple
levels and physical devices. Here, we show an RL algorithm composing derivative-free opti-
mization, policy evaluation, gradient-based optimization, and model-based planning (Table
3.2).

simulation while also integrating a rapidly increasing range of algorithms and models. As
a consequence, there is a fundamental need for composable parallel primitives to support
research in reinforcement learning.

In the absence of a single dominant computational pattern (e.g., tensor algebra) or funda-
mental rules of composition (e.g., symbolic differentiation), the design and implementation
of reinforcement learning algorithms can often be cumbersome, requiring RL researchers to
directly reason about complex nested parallelism. Unlike typical operators in deep learning
frameworks, individual components may require parallelism across a cluster (e.g., for roll-
outs), leverage neural networks implemented by deep learning frameworks, recursively invoke
other components (e.g., model-based subtasks), or interface with black-box third-party sim-
ulators. In essence, the heterogeneous and distributed nature of many of these components
poses a key challenge to reasoning about their parallel composition. Meanwhile, the main
algorithms that connect these components are rapidly evolving and expose opportunities for
parallelism at varying levels. Finally, RL algorithms manipulate substantial amounts of state
(e.g., replay buffers and model parameters) that must be managed across multiple levels of
parallelism and physical devices.

The substantial recent progress in RL algorithms and applications has resulted in a large
and growing number of RL libraries [16, 32, 55, 59, 74, 131]. While some of these are highly
scalable, few enable the composition of components at scale. In large part, this is due to the
fact that many of the frameworks used by these libraries rely on communication between long-
running program replicas for distributed execution; e.g., MPI [49], Distributed TensorFlow
[1], and parameter servers [88]). As this programming model ignores component boundaries,
it does not naturally encapsulate parallelism and resource requirements within individual
components.2 As a result, reusing these distributed components requires the insertion of
appropriate control points in the program, a burdensome and error-prone process (Section
3.2). The absence of usable encapsulation hinders code reuse and leads to error prone
reimplementation of mathematically complex and often highly stochastic algorithms. Even
worse, in the distributed setting, often large parts of the distributed communication and
execution must also be reimplemented with each new RL algorithm.

2By encapsulation, we mean that individual components specify their own internal parallelism and re-
sources requirements and can be used by other components that have no knowledge of these requirements.
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We believe that the ability to build scalable RL algorithms by composing and reusing
existing components and implementations is essential for the rapid development and progress
of the field.3 Toward this end, we argue for structuring distributed RL components around
the principles of logically centralized program control and parallelism encapsulation [47, 118].
We built RLlib using these principles, and as a result were not only able to implement a
broad range of state-of-the-art RL algorithms, but also to pull out scalable primitives that
can be used to easily compose new algorithms.

Irregularity of RL training workloads

A B

C D

(a) Distributed Control

A B

C
D

(b) Logically Centralized Control

A B

C
D

remote call
data transfer
inactive process

(c) Hierarchical Control

Figure 3.2: Most RL algorithms today are written in a fully distributed style (a) where
replicated processes independently compute and coordinate with each other according to
their roles (if any). We propose a hierarchical control model (c), which extends (b) to
support nesting in RL and hyperparameter tuning workloads, simplifying and unifying the
programming models used for implementation.

Modern RL algorithms are highly irregular in the computation patterns they create (Ta-
ble 3.1), pushing the boundaries of computation models supported by popular distribution
frameworks. This irregularity occurs at several levels:

1. The duration and resource requirements of tasks differ by orders of magnitude de-
pending on the algorithm; e.g., A3C [105] updates may take milliseconds, but other
algorithms like PPO [134] batch rollouts into much larger granularities.

3We note that composability without scalability can trivially be achieved with a single-threaded library
and that all of the difficulty lies in achieving these two objectives simultaneously.
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2. Communication patterns vary, from synchronous to asynchronous gradient-based opti-
mization, to having several types of asynchronous tasks in high-throughput off-policy
algorithms such as Ape-X and IMPALA [63, 36].

3. Nested computations are generated by model-based hybrid algorithms (Table 3.2),
hyperparameter tuning in conjunction with RL or DL training, or the combination of
derivative-free and gradient-based optimization within a single algorithm [138].

4. RL algorithms often need to maintain and update substantial amounts of state includ-
ing policy parameters, replay buffers, and even external simulators.

Table 3.1: RL spans a broad range of computational demand.

Dimension DQN/Laptop IMPALA+PBT/Cluster

Task Duration ∼1ms minutes
Task Compute 1 CPU several CPUs and GPUs
Total Compute 1 CPU hundreds of CPUs and GPUs
Nesting Depth 1 level 3+ levels
Process Memory megabytes hundreds of gigabytes
Execution synchronous async. and highly concurrent

As a consequence, the developers have no choice but to use a hodgepodge of frameworks
to implement their algorithms, including parameter servers, collective communication primi-
tives in MPI-like frameworks, task queues, etc. For more complex algorithms, it is common to
build custom distributed systems in which processes independently compute and coordinate
among themselves with no central control (Figure 3.2a). While this approach can achieve
high performance, the cost to develop and evaluate is large, not only due to the need to im-
plement and debug distributed programs, but because composing these algorithms further
complicates their implementation (Figure 3.3). Moreover, today’s computation frameworks
(e.g., Spark [175], MPI) typically assume regular computation patterns and have difficulty
when sub-tasks have varying durations, resource requirements, or nesting.

Logically centralized control for distributed RL

It is desirable for a single programming model to capture all the requirements of RL training.
This can be done without eschewing high-level frameworks that structure the computation.
Our key insight is that for each distributed RL algorithm, an equivalent algorithm can be
written that exhibits logically centralized program control (Figure 3.2b). That is, instead
of having independently executing processes (A, B, C, D in Figure 3.2a) coordinate among
themselves (e.g., through RPCs, shared memory, parameter servers, or collective communi-
cation), a single driver program (D in Figure 3.2b and 3.2c) can delegate algorithm sub-tasks
to other processes to execute in parallel. In this paradigm, the worker processes A, B, and C
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passively hold state (e.g., policy or simulator state) but execute no computations until called
by D. To support nested computations, we propose extending the centralized control model
with hierarchical delegation of control (Figure 3.2c), which allows the worker processes (e.g.,
B, C) to further delegate work (e.g., simulations, gradient computation) to sub-workers of
their own when executing tasks.

Building on such a logically centralized and hierarchical control model has several im-
portant advantages. First, the equivalent algorithm is often easier to implement in practice,
since the distributed control logic is entirely encapsulated in a single process rather than
multiple processes executing concurrently. Second, the separation of algorithm components
into sub-routines (e.g., do rollouts, compute gradients with respect to some policy loss), en-
ables code reuse across different execution patterns. Sub-tasks that have different resource
requirements (e.g., CPUs vs GPUs) can be placed on different machines, reducing compute
costs as we show in Section 6.5. Finally, distributed algorithms written in this model can be
seamlessly nested within each other, satisfying the parallelism encapsulation principle.

Logically centralized control models can be highly performant, our proposed hierarchical
variant even more so. This is because the bulk of data transfer (blue arrows in Figure 3.2)
between processes happens out of band of the driver, not passing through any central bot-
tleneck. In fact many highly scalable distributed systems [175, 18, 26] leverage centralized
control in their design. Within a single differentiable tensor graph, frameworks like Tensor-
Flow also implement logically centralized scheduling of tensor computations onto available
physical devices. Our proposal extends this principle into the broader ML systems design
space.

The contributions of RLlib are as follows.

1. We propose a general and composable hierarchical programming model for RL training
(Section 3.2).

2. We describe RLlib, our highly scalable RL library, and how it builds on the proposed
model to provide scalable abstractions for a broad range of RL algorithms, enabling
rapid development (Section 3.3).

3. We discuss how performance is achieved within the proposed model (Section 3.4), and
show that RLlib meets or exceeds state-of-the-art performance for a wide variety of
RL workloads (Section 6.5).

3.2 Hierarchical Parallel Task Model

As highlighted in Figure 3.3, parallelization of entire programs using frameworks like MPI
[49] and Distributed Tensorflow [1] typically require explicit algorithm modifications to insert
points of coordination when trying to compose two programs or components together. This
limits the ability to rapidly prototype novel distributed RL applications. Though the example
in Figure 3.3 is simple, new hyperparameter tuning algorithms for long-running training
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tasks; e.g., HyperBand, Population Based Training (PBT) [87, 66] increasingly demand
fine-grained control over training.

We propose building RL libraries with hierarchical and logically centralized control on
top of flexible task-based programming models like Ray [107]. Task-based systems allow
subroutines to be scheduled and executed asynchronously on worker processes, on a fine-
grained basis, and for results to be retrieved or passed between processes.

Relation to existing distributed ML abstractions

Though typically formulated for distributed control, abstractions such as parameter servers
and collective communication operations can also be used within a logically centralized
control model. As an example, RLlib uses allreduce and parameter-servers in some of its
policy optimizers (Figure 3.4), and we evaluate their performance in Section 6.5.

Ray implementation of hierarchical control

We note that, within a single machine, the proposed programming model can be implemented
simply with thread-pools and shared memory, though it is desirable for the underlying frame-
work to scale to larger clusters if needed.

We chose to build RLlib on top of the Ray framework, which allows Python tasks to
be distributed across large clusters. Ray’s distributed scheduler is a natural fit for the
hierarchical control model, as nested computation can be implemented in Ray with no central
task scheduling bottleneck.

To implement a logically centralized control model, it is first necessary to have a mech-
anism to launch new processes and schedule tasks on them. Ray meets this requirement
with Ray actors, which are Python classes that may be created in the cluster and accept
remote method calls (i.e., tasks). Ray permits these actors to in turn launch more actors and
schedule tasks on those actors as part of a method call, satisfying our need for hierarchical
delegation as well.

For performance, Ray provides standard communication primitives such as aggregate

and broadcast, and critically enables the zero-copy sharing of large data objects through a
shared memory object store. As shown in Section 6.5, this enables the performance of RLlib
algorithms. We further discuss framework performance in Section 3.4.

3.3 Abstractions for Reinforcement Learning

To leverage RLlib for distributed execution, algorithms must declare their policy π, experi-
ence postprocessor ρ, and loss L. These can be specified in any deep learning framework,
including TensorFlow and PyTorch. RLlib provides rollout workers and policy optimizers
that implement strategies for distributed policy evaluation and training.
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(a) Distributed Control

param_grid = generate_hyperparams()
print(ray.get([evaluate.remote(p)
   for p in param_grid]))

@ray.remote
def evaluate(params):
    model = generate_model(params)
    results = [rollout.remote(model)
       for i in range(n)]
    return results

@ray.remote
def rollout(model):
    # perform a rollout and
    # return the result

(b) Hierarchical Control

Figure 3.3: Composing a distributed hyperparameter search with a function that also re-
quires distributed computation involves complex nested parallel computation patterns. With
MPI (a), a new program must be written from scratch that mixes elements of both. With
hierarchical control (b), components can remain unchanged and simply be invoked as remote
tasks.

Defining the Policy

RLlib’s abstractions are as follows. The developer specifies a policy model π that maps the
current observation ot and (optional) RNN hidden state ht to an action at and the next RNN
state ht+1. Any number of user-defined values yit (e.g., value predictions, TD error) can also
be returned:

πθ(ot, ht)⇒ (at, ht+1, y
1
t . . . y

N
t ) (3.1)

Most algorithms will also specify a trajectory postprocessor ρ that transforms a batch Xt,K

of K {(ot, ht, at, ht+1, y
1
t . . . y

N
t , rt, ot+1)} tuples starting at t. Here rt and ot+1 are the reward

and new observation after taking an action. Example uses include advantage estimation
[133] and goal relabeling [5]. To also support multi-agent environments, experience batches
Xp
t,K from the P other agents in the environment are also made accessible:

ρθ(Xt,K , X
1
t,K . . . X

P
t,K)⇒ Xpost (3.2)

Gradient-based algorithms define a combined loss L that can be descended to improve the
policy and auxiliary networks:

L(θ;X)⇒ loss (3.3)
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grads = [ev.grad(ev.sample())
    for ev in evaluators]
avg_grad = aggregate(grads)
local_graph.apply(avg_grad)
weights = broadcast(
    local_graph.weights())
for ev in evaluators:
    ev.set_weights(weights)

(a) Allreduce

samples = concat([ev.sample()
    for ev in evaluators])
pin_in_local_gpu_memory(samples)
for _ in range(NUM_SGD_EPOCHS):

local_g.apply(local_g.grad(samples)
weights = broadcast(local_g.weights())
for ev in evaluators:
    ev.set_weights(weights)

(b) Local Multi-GPU

grads = [ev.grad(ev.sample())
 for ev in evaluators]

for _ in range(NUM_ASYNC_GRADS):
    grad, ev, grads = wait(grads)
    local_graph.apply(grad)
    ev.set_weights(
        local_graph.get_weights())
    grads.append(ev.grad(ev.sample()))

(c) Asynchronous

grads = [ev.grad(ev.sample())
 for ev in evaluators]

for _ in range(NUM_ASYNC_GRADS):
    grad, ev, grads = wait(grads)

 for ps, g in split(grad, ps_shards):
  ps.push(g)

    ev.set_weights(concat(
  [ps.pull() for ps in ps_shards])

    grads.append(ev.grad(ev.sample()))

(d) Sharded Param-server

Figure 3.4: Pseudocode for four RLlib policy optimizer step methods. Each step() operates
over a local policy and array of remote evaluator replicas. Ray remote calls are highlighted in
orange; other Ray primitives in blue (Section 3.4). Apply is shorthand for updating weights.
Minibatch code and helper functions omitted. The param server optimizer in RLlib also
implements pipelining not shown here.

Finally, the developer can also specify any number of utility functions ui to be called as
needed during training to, e.g., return training statistics s, update target networks, or adjust
annealing schedules:

u1 . . . uM(θ)⇒ (s, θupdate) (3.4)

To interface with RLlib, these algorithm functions should be defined in a policy class with
the following methods:

abstract class rllib.Policy:

def act(self, obs, h): action, h, y*

def postprocess(self, batch, b*): batch

def gradients(self, batch): grads

def get_weights; def set_weights;

def u*(self, args*)
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Policy Evaluation

For collecting experiences, RLlib provides a RolloutWorker class that wraps a policy and
environment to add a method to sample() experience batches. Rollout worker instances can
be created as Ray remote actors and replicated across a cluster for parallelism. To make
their usage concrete, consider a minimal TensorFlow policy gradients implementation that
extends the rllib.TFPolicy helper template:

class PolicyGradient(TFPolicy):

def __init__(self, obs_space, act_space):

self.obs, self.advantages = ...

pi = FullyConnectedNetwork(self.obs)

dist = rllib.action_dist(act_space, pi)

self.act = dist.sample()

self.loss = -tf.reduce_mean(

dist.logp(self.act) * self.advantages)

def postprocess(self, batch):

return rllib.compute_advantages(batch)

From this policy definition, the developer can create a number of policy evaluator replicas
ev and call worker.sample.remote() on each to collect experiences in parallel from environ-
ments. RLlib supports OpenAI Gym [13], user-defined environments, and also batched
simulators such as ELF [150]:

workers = [rllib.RolloutWorker.remote(env=SomeEnv, policy=PolicyGradient)

for _ in range(10)]

print(ray.get([worker.sample.remote() for worker in workers]))

Policy Optimization

RLlib separates the implementation of algorithms into the declaration of the algorithm-
specific policy and the choice of an algorithm-independent policy optimizer. The policy
optimizer is responsible for the performance-critical tasks of distributed sampling, parameter
updates, and managing replay buffers. To distribute the computation, the optimizer operates
over a set of rollout worker replicas.

To complete the example, the developer chooses a policy optimizer and creates it with
references to existing rollout workers. The async optimizer uses the worker actors to compute
gradients in parallel on many CPUs (Figure 3.4c). Each optimizer.step() runs a round of
remote tasks to improve the model. Between steps, policy replicas can be queried directly,
e.g., to print out training statistics:
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Table 3.2: RLlib’s policy optimizers and rollout workers capture common components (Roll-
out, Replay, Gradient-based Optimizer) within a logically centralized control model, and
leverages Ray’s hierarchical task model to support other distributed components.

Algorithm Family Rollout Replay Grad. Opt. Other Distributed Components

DQNs X X X
Policy Gradient X X
Off-policy PG X X X
Model-Based/Hybrid X X Model-Based Planning
Multi-Agent X X X
Evolutionary Methods X Derivative-Free Optimization
AlphaGo X X X MCTS, Derivative-Free Optimization

optimizer = rllib.AsyncPolicyOptimizer(

policy=PolicyGradient, workers=rollout_workers)

while True:

optimizer.step()

print(optimizer.foreach_policy(

lambda p: p.get_train_stats()))

Policy optimizers extend the well-known gradient-descent optimizer abstraction to the RL
domain. A typical gradient-descent optimizer implements step(L(θ), X, θ) ⇒ θopt. RLlib’s
policy optimizers instead operate over the local policy G and a set of remote evaluator
replicas, i.e., step(G, ev1 . . . evn, θ)⇒ θopt, capturing the sampling phase of RL as part of
optimization (i.e., calling sample() on rollout worker to produce new simulation data).

The policy optimizer abstraction has the following advantages. By separating execution
strategy from policy and loss definitions, specialized optimizers can be swapped in to take
advantage of available hardware or algorithm features without needing to change the rest of
the algorithm. The policy class encapsulates interaction with the deep learning framework,
allowing algorithm authors to avoid mixing distributed systems code with numerical compu-
tations, and enabling optimizer implementations to be improved and reused across different
deep learning frameworks.

As shown in Figure 3.4, by leveraging centralized control, policy optimizers succinctly
capture a broad range of choices in RL optimization: synchronous vs asynchronous, allre-
duce vs parameter server, and use of GPUs vs CPUs. RLlib’s policy optimizers provide
performance comparable to optimized parameter server (Figure 3.5a) and MPI-based im-
plementations (Section 6.5). Pulling out this optimizer abstraction is easy in a logically
centralized control model since each policy optimizer has full control over the distributed
computation it implements.
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Figure 3.5: RLlib’s centrally controlled policy optimizers match or exceed the performance
of implementations in specialized systems. The RLlib parameter server optimizer using
8 internal shards is competitive with a Distributed TensorFlow implementation tested in
similar conditions. RLlib’s Ape-X policy optimizer scales to 160k frames per second with
256 workers at a frameskip of 4, more than matching a reference throughput of ∼45k fps at
256 workers, demonstrating that a single-threaded Python controller can efficiently scale to
high throughputs.

Completeness and Generality of Abstractions

We demonstrate the completeness of RLlib’s abstractions by formulating the algorithm fam-
ilies listed in Table 3.2 within the API. When applicable, we also describe the concrete
implementation in RLlib:

DQNs: DQNs use y1 for storing TD error, implement n-step return calculation in ρθ, and
the Q loss in L. Target updates are implemented in u1, and setting the exploration ε in the
user-defined method u2.

DQN implementation: To support experience replay, RLlib’s DQN uses a policy optimizer
that saves collected samples in an embedded replay buffer. The user can alternatively use an
asynchronous optimizer (Figure 3.4c). The target network is updated by calls to u1 between
optimizer steps.

Ape-X implementation: Ape-X [63] is a variation of DQN that leverages distributed expe-
rience prioritization to scale to many hundreds of cores. To adapt our DQN implementation,
we created rollout workers with a distribution of ε values, and wrote a new high-throughput
policy optimizer (∼200 lines) that pipelines the sampling and transfer of data between replay
buffer actors using Ray primitives. Our implementation scales nearly linearly up to 160k
environment frames per second with 256 workers (Figure 3.5b).

Policy Gradient / Off-policy PG: These algorithms store value predictions in y1, im-
plement advantage estimation using ρθ, and combine actor and critic losses in L.
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PPO implementation: Since PPO’s loss function permits multiple SGD passes over sam-
ple data, when there is sufficient GPU memory RLlib chooses a GPU-optimized policy opti-
mizer (Figure 3.4b) that pins data into local GPU memory. In each iteration, the optimizer
collects samples from evaluator replicas, performs multi-GPU optimization locally, and then
broadcasts the new model weights.

A3C implementation: RLlib’s A3C can use either the asynchronous (Figure 3.4c) or
sharded parameter server policy optimizer (3.4d). These optimizers collect gradients from
the rollout workers to update the canonical copy of θ.

DDPG implementation: RLlib’s DDPG uses the same replay policy optimizer as DQN.
L includes both actor and critic losses. The user can also choose to use the Ape-X policy
optimizer with DDPG.

Model-based / Hybrid: Model-based RL algorithms extend πθ(ot, ht) to make decisions
based on model rollouts, which can be parallelized using Ray. To update their environment
models, the model loss can either be bundled with L, or the model trained separately (i.e.,
in parallel using Ray primitives) and its weights periodically updated via u1.

Multi-Agent: Rollout workers can run multiple policies at once in the same environment,
producing batches of experience for each agent. Many multi-agent algorithms use a central-
ized critic or value function, which we support by allowing ρθ to collate experiences from
multiple agents.

Evolutionary Methods: Derivative-free methods can be supported through non-gradient-
based policy optimizers.

Evolution Strategies (ES) implementation: ES is a derivative-free optimization algorithm
that scales well to clusters with thousands of CPUs. We were able to port a single-threaded
implementation of ES to RLlib with only a few changes, and further scale it with an aggre-
gation tree of actors (Figure 3.8a), suggesting that the hierarchical control model is both
flexible and easy to adapt algorithms for.

PPO-ES experiment : We studied a hybrid algorithm that runs PPO updates in the inner
loop of an ES optimization step that randomly perturbs the PPO models. The implemen-
tation took only ∼50 lines of code and did not require changes to PPO, showing the value
of encapsulating parallelism. In our experiments, PPO-ES converged faster and to a higher
reward than PPO on the Walker2d-v1 task. A similarly modified A3C-ES implementation
solved PongDeterministic-v4 in 30% less time.

AlphaGo: We sketch how to scalably implement the AlphaGo Zero algorithm using a
combination of Ray and RLlib abstractions.

1. Logically centralized control of multiple distributed components : AlphaGo Zero uses
multiple distributed components: model optimizers, self-play rollout workers, candi-
date model evaluators, and the shared replay buffer. These components are manageable
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Figure 3.6: Complex RL architectures are easily captured within RLlib’s hierarchical control
model. Here blue lines denote data transfers, orange lines lighter overhead method calls.
Each train() call encompasses a batch of remote calls between components.

as Ray actors under a top-level AlphaGo policy optimizer. Each optimizer step loops
over actor statuses to process new results, routing data between actors and launching
new actor instances.

2. Shared replay buffer : AlphaGo Zero stores the experiences from self-play evaluator
instances in a shared replay buffer. This requires routing game results to the shared
buffer, which is easily done by passing the result object references from actor to actor.

3. Best player : AlphaGo Zero tracks the current best model and only populates its replay
buffer with self-play from that model. Candidate models must achieve a ≥ 55% victory
margin to replace the best model. Implementing this amounts to adding an if block
in the main control loop.

4. Monte-Carlo tree search: MCTS (i.e., model-based planning) can be handled as a
subroutine of the policy, and optionally parallelized as well using Ray.

HyperBand and Population Based Training: Ray includes distributed implementa-
tions of hyperparameter search algorithms such as HyperBand and PBT [87, 66]. We were
able to use these to evaluate RLlib algorithms, which are themselves distributed, with the
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addition of ∼15 lines of code per algorithm. We note that these algorithms are non-trivial
to integrate when using distributed control models due to the need to modify existing code
to insert points of coordination (Figure 3.3). RLlib’s use of short-running tasks avoids this
problem, since control decisions can be easily made between tasks.

3.4 Framework Performance

In this section, we discuss properties of Ray [107] and other optimizations critical to RLlib.

Single-node performance

Stateful computation: Tasks can share mutable state with other tasks through Ray
actors. This is critical for tasks that operate on and mutate stateful objects like third-party
simulators or neural network weights.

Shared memory object store: RL workloads involve sharing large quantities of data
(e.g., rollouts and neural network weights). Ray supports this by allowing data objects to
be passed directly between workers without any central bottleneck. In Ray, workers on the
same machine can also read data objects through shared memory without copies.

Vectorization: RLlib can batch policy evaluation to improve hardware utilization (Figure
3.7), supports batched environments, and passes experience data between actors efficiently
in columnar array format.

Distributed performance

Lightweight tasks: Remote call overheads in Ray are on the order of ∼200s when sched-
uled on the same machine. When machine resources are saturated, tasks spill over to other
nodes, increasing latencies to around ∼1ms. This enables parallel algorithms to scale seam-
lessly to multiple machines while preserving high single-node throughput.

Nested parallelism: Building RL algorithms by composing distributed components cre-
ates multiple levels of nested parallel calls (Figure 3.1). Since components make decisions
that may affect downstream calls, the call graph is also inherently dynamic. Ray supports
this by allowing any Python function or class method to be invoked remotely as a lightweight
task. For example, func.remote() executes func remotely and immediately returns a place-
holder result which can later be retrieved or passed to other tasks.
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Resource awareness: Ray allows remote calls to specify resource requirements and uti-
lizes a resource-aware scheduler to preserve component performance. Without this, dis-
tributed components can improperly allocate resources, causing algorithms to run ineffi-
ciently or fail.

Fault tolerance and straggler mitigation: Failure events become significant at scale
[10]. RLlib leverages Ray’s built-in fault tolerance mechanisms [107], reducing costs with
preemptible cloud compute instances [4, 45]. Similarly, stragglers can significantly impact
the performance of distributed algorithms at scale [25]. RLlib supports straggler mitigation
in a generic way via the ray.wait() primitive. For example, in PPO we use this to drop the
slowest evaluator tasks, at the cost of some bias.

Data compression: RLlib uses the LZ4 algorithm to compress experience batches. For
image observations, LZ4 reduces network traffic and memory usage by more than an order
of magnitude, at a compression rate of ∼1 GB/s/core.

3.5 Evaluation

Sampling efficiency: Policy evaluation is an important building block for all RL algo-
rithms. In Figure 3.7 we benchmark the scalability of gathering samples from rollout worker
actors. To avoid bottlenecks, we use four intermediate actors for aggregation. Pendulum-
CPU reaches over 1.5 million actions/s running a small 64×64 fully connected network as
the policy. Pong-GPU nears 200k actions/s on the DQN convolutional architecture [106].

Large-scale tests: We evaluate the performance of RLlib on Evolution Strategies (ES),
Proximal Policy Optimization (PPO), and A3C, comparing against specialized systems built
specifically for those algorithms [114, 59, 116] using Redis, OpenMPI, and Distributed Ten-
sorFlow. The same hyperparameters were used in all experiments. We used TensorFlow to
define neural networks for the RLlib algorithms evaluated.

RLlib’s ES implementation scales well on the Humanoid-v1 task to 8192 cores using AWS
m4.16xl CPU instances [3]. With 8192 cores, we achieve a reward of 6000 in a median time
of 3.7 minutes, which is over twice as fast as the best published result [129]. For PPO we
evaluate on the same Humanoid-v1 task, starting with one p2.16xl GPU instance and adding
m4.16xl instances to scale. This cost-efficient local policy optimizer (Table 3.3) outperformed
the reference MPI implementation that required multiple expensive GPU instances to scale.

We ran RLlib’s A3C on an x1.16xl machine and solved the PongDeterministic-v4 environ-
ment in 12 minutes using an asynchronous policy optimizer and 9 minutes using a sharded
param-server optimizer, which matches the performance of a well-tuned baseline [116].

Multi-GPU: To better understand RLlib’s advantage in the PPO experiment, we ran
benchmarks on a p2.16xl instance comparing RLlib’s local multi-GPU policy optimizer with



CHAPTER 3. PRIMITIVES FOR DISTRIBUTED REINFORCEMENT LEARNING 25

one using an allreduce in Table 3.3. The fact that different strategies perform better under
different conditions suggests that policy optimizers are a useful abstraction.

Policy Optimizer Gradients computed on Environment SGD throughput

Allreduce-based 4 GPUs, Workers Humanoid-v1 330k samples/s
Pong-v0 23k samples/s

16 GPUs, Workers Humanoid-v1 440k samples/s
Pong-v0 100k samples/s

Local Multi-GPU 4 GPUs, Driver Humanoid-v1 2.1M samples/s
Pong-v0 N/A (out of mem.)

16 GPUs, Driver Humanoid-v1 1.7M samples/s
Pong-v0 150k samples/s

Table 3.3: A specialized multi-GPU policy optimizer outperforms distributed allreduce when
data can fit entirely into GPU memory. This experiment was done for PPO with 64 Evaluator
processes. The PPO batch size was 320k, The SGD batch size was 32k, and we used 20 SGD
passes per PPO batch.
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Figure 3.7: Policy evaluation throughput scales nearly linearly from 1 to 128 cores.
PongNoFrameskip-v4 on GPU scales from 2.4k to ∼200k actions/s, and Pendulum-v0 on
CPU from 15k to 1.5M actions/s. We use a single p3.16xl AWS instance to evaluate from
1-16 cores, and a cluster of four p3.16xl instances from 32-128 cores, spreading actors evenly
across the cluster. Rollout workers (evaluators) compute actions for 64 agents at a time, and
share the GPUs on the machine.

3.6 Related Work

There are many reinforcement learning libraries [16, 32, 55, 59, 74, 131]. These often scale by
creating long-running program replicas that each participate in coordinating the distributed
computation as a whole, and as a result do not generalize well to complex architectures.
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Figure 3.8: The time required to achieve a reward of 6000 on the Humanoid-v1 task. RLlib
implementations of ES and PPO outperform highly optimized reference optimizations.

RLlib instead uses a hierarchical control model with short-running tasks to let each compo-
nent control its own distributed execution, enabling higher-level abstractions such as policy
optimizers to be used for composing and scaling RL algorithms.

Outside of reinforcement learning, there has been a strong effort to explore composi-
tion and integration between different deep learning frameworks. ONNX [103], NNVM [29],
and Gluon [44] sit between model specifications and hardware to provide cross-library op-
timizations. Deep learning libraries [123, 1, 20, 68] provide support for the gradient-based
optimization components that appear in RL algorithms.

3.7 Conclusion

RLlib is an open source library for reinforcement learning that leverages fine-grained nested
parallelism to achieve state-of-the-art performance across a broad range of RL workloads. It
offers both a collection of reference algorithms and scalable abstractions for easily composing
new ones.
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Chapter 4

Distributed Reinforcement Learning
as a Dataflow Problem

After reading Chapter 3, the reader should have an understanding of the distributed primi-
tives required to support a broad range of RL algorithms at scale. However, the astute reader
will have noticed that the critical policy optimizer abstraction still needs to be written di-
rectly on top of low-level system primitives. While built-in policy optimizers are sufficient
for many use cases, practically speaking this means advanced users of RLlib may still need
to work with low-level systems components to compose novel distributed algorithms. In this
chapter, we re-examine the challenges posed by distributed RL and try to view it through
the lens of an old idea: distributed dataflow. We show that viewing RL as a dataflow prob-
lem leads to highly composable and performant implementations. We propose RLlib flow, a
hybrid actor-dataflow programming model for distributed RL, and validate its practicality
by porting the full suite of algorithms in RLlib.

4.1 Introduction

The past few years have seen the rise of deep reinforcement learning (RL) as a new, powerful
optimization method for solving sequential decision making problems. As with deep super-
vised learning, researchers and practitioners frequently leverage parallel computation, which
has led to the development of numerous distributed RL algorithms and systems as the field
rapidly evolves.

Despite the high-level of abstraction that RL algorithms are defined in (i.e., as a couple
dozen lines of update equations), their implementations have remained quite low level (i.e., at
the level of message passing). This is particularly true for distributed RL algorithms, which
are typically implemented directly on low-level message passing systems or actor frameworks
[60]. Libraries such as Acme [61], RLgraph [132], RLlib [92], and Coach [16] provide unified
abstractions for defining single-agent RL algorithms, but their user-facing APIs only allow
algorithms to execute within the bounds to predefined distributed execution patterns or
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Figure 4.1: We propose RLlib flow, a hybrid actor-dataflow model for distributed RL. RL-
lib flow enables implementation of distributed RL algorithms in terms of their high-level
dataflow.

“templates”. While the aforementioned libraries have been highly successful at replicating
a large number of novel RL algorithms introduced over the years, showing the generality of
their underlying actor or graph-based computation models, the needs of many researchers and
practitioners are often not met by their abstractions. As the authors of one such distributed
RL library (RLlib), we have observed this firsthand from our users:

First, RL practitioners are typically not systems engineers. They are not well versed with
code that mixes together the logical dataflow of the program and system concerns such as
performance and bounding memory usage. This leads to a high barrier of entry for most RL
users to experimenting with debugging existing distributed RL algorithms or authoring new
distributed RL approaches.

Second, even when an RL practitioner is happy with a particular algorithm, they may
wish to customize it in various ways. This is especially important given the diversity of RL
tasks (e.g., single-agent, multi-agent, meta-learning). While many customizations within
common RL environments can be anticipated and made available as configuration options
(e.g., degree of parallelism, batch size), it is difficult for a library author to provide enough
options to cover less common tasks that necessarily alter the distributed pattern of the al-
gorithm (e.g., interleaved training of different distributed algorithms, different replay strate-
gies).

Our experience is that when considering the needs of users considering novel RL ap-
plications and approaches, RL development requires a significant degree of programming
flexibility. Advanced users want to tweak or add various distributed components (i.e., they
need to write programs). In contrast to supervised learning, it is more difficult to provide a
fixed set of abstractions for scaling RL training.
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As a result, it is very common for RL researchers or practitioners to eschew existing
infrastructure, either sticking to non-parallel approaches, which are inherently easier to un-
derstand and customize [17, 59], or writing their own distributed framework that fits their
needs. The large number of RL frameworks in existence today is evidence of this, espe-
cially considering the number of these frameworks aiming to be “simpler” versions of other
frameworks.

In this chapter, we re-examine the challenges posed by distributed RL in the light of
these user requirements, drawing inspiration from prior work in the field of data processing
and distributed dataflow. To meet these challenges, we propose RLlib flow, a hybrid actor-
dataflow programming model for distributed RL. Like streaming data systems, RLlib flow
provides a small set of operator-like primitives that can be composed to express distributed
RL algorithms. Unlike data processing systems, RLlib flow explicitly exposes references to
actor processes participating in the dataflow, permitting limited message passing between
them in order to more simply meet the requirements of RL algorithms. The interaction of
dataflow and actor messages is managed via special sequencing and concurrency operators.

We implement RLlib flow in RLlib and show through case studies how it can flexibly
express different algorithms and meet diverse customization requirements. RLlib flow is
released as open source in RLlib, enabling many new use cases and the deletion of thousands
of lines of code.

We want to note that while we do cover some implementation details of RLlib flow,
our focus is on defining a general RL dataflow model that could inform future RL library
implementations. Our contributions are as follows: nosep

1. We examine the needs of distributed RL algorithms and RL practitioners from a
dataflow perspective, identifying key challenges (Section 4.2 and 4.3).

2. We propose RLlib flow, a hybrid actor-dataflow programming model that can simply
and efficiently express distributed RL algorithms (Section 4.4 and 5.5).

3. We show quantitatively that RLlib flow simplifies algorithm implementations in RLlib
and reduces overheads found in data-oriented systems (Section 6.5).

4.2 Distributed Reinforcement Learning

We first discuss the relevant computational characteristics of distributed RL algorithms,
starting with the common single-agent training scenario, where the goal is to optimize a
single agent’s performance in an environment, and then discuss the computational needs of
emerging multi-agent, model-based, and meta-learning training patterns.

Single-Agent Training

Training a single RL agent—the most basic and common scenario—consists of applying
the steps of rollout, replay, and optimization repeatedly until the policy reaches the desired
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performance. Synchronous algorithms such as A2C and PPO apply the steps strictly sequen-
tially. Parallelism may be leveraged internally within each step. Asynchronous algorithm
variations such as Ape-X, A3C, APPO, and IMPALA pipeline and overlap the rollout and
optimization steps asynchronously to hit higher data throughputs. Rate limiting [61] can be
applied to control learning dynamics in the asynchronous setting.

Multi-Agent Training

In multi-agent training, there are multiple acting entities in the environment (e.g., cooperat-
ing or competing agents). While there is a rich literature on multi-agent algorithms, we note
that the dataflow structure of multi-agent training is similar to that of single-agent—as long
as all entities are being trained with the same algorithm and compatible hyperparameters.
Intuitively, for a single algorithm, the changes necessary to support multi-agent consist of
replicating the rollout, replay, and optimization steps per agent.

However, problems arise should it be required to customize the training of any of the
agents in the environment. For example, in a two-agent environment, one agent may desire
to be optimized at a higher frequency (i.e., smaller batch size). This fundamentally alters
the training dataflow—there are now two iterative loops executing at different frequencies.
Furthermore, if these agents are trained with entirely different algorithms, there is a need to
compose two different distributed dataflows. We have seen several users of RLlib encounter
both of these scenarios in their work.

Model-Based and Meta-Learning Algorithms

Model-based algorithms seek to learn the transition dynamics of the environment to improve
the sample efficiency of training. This can be thought of as adding a supervised training step
on top of standard distributed RL, where an ensemble of one or more dynamics models are
trained from environment-generated data. Handling the data routing, replay, optimization,
and stats collection for these models naturally adds complexity to the distributed dataflow
graph, “breaking the mold” of standard model-free RL algorithms. Using RLlib flow, we have
implemented two state of the art model-based algorithms: MB-MPO [23] and Dreamer [56].
Similarly, meta-learning algorithms such as MAML [40] leverage additional computation
structures (i.e., nested inner optimization steps) as they seek to learn a policy amenable for
quick adaptation to new environments.

A Case for a Higher Level Programming Model

Given that existing distributed RL algorithms are already implementable using low level
actor and RPC primitives, it is worth questioning the value of defining a higher level com-
putation model. Our experience is that RL is more like data analytics than supervised
learning. Advanced users want to tweak or add various distributed components (i.e., they
need to program), and there is no way to have a “one size fits all” (i.e., Estimator interface
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Figure 4.2: The dataflow of the A3C parallel algorithm. Each box is an operator or iterator
from which data items can be pulled from. Here operators (1) and (2) represent parallel
computations, but (3) and (4) are sequential. Black arrows denote synchronous data de-
pendencies, pink arrows asynchronous dependencies, and dotted arrows actor method calls.
Training metrics are pulled from the output operator (”Report Metrics”), which drives the
computation.

from supervised learning). We believe that, beyond the ability to more concisely and cleanly
capture single-agent RL algorithms, the computational needs of more advanced RL training
patterns motivate higher level programming models like RLlib flow.

4.3 Reinforcement Learning vs Data Streaming

The key observation behind RLlib flow is that the dataflow graph of RL algorithms are quite
similar to those of data streaming applications. Indeed, RL algorithms can be captured in
general purpose dataflow models. However, due to several characteristics, they are not a
perfect fit, even for dataflow models that support iterative computation.

In this section we examine the dataflow of the A3C algorithm (Figure 4.2) to compare
and contrast RL with streaming dataflow. A3C starts with (1) parallel rollouts across many
experiences. Policy gradients are computed in parallel based on rollouts in step (2). In step
(3), the gradients are asynchronously gathered and applied on a central model, which is then
used to update rollout worker weights. Importantly, each box or operator in this dataflow
may be stateful (e.g., ParallelRollouts holds environment state as well as the current
policy snapshot).

Similar to data processing topologies, A3C is applying a transformation to a data stream
(of rollouts) in parallel (to compute gradients). This is denoted by the black arrow between
(1) and (2). There is also a non-parallel transformation to produce metrics from the compu-
tation, denoted by the black arrow between (3) and (4) However, zooming out to look at the
entire dataflow graph, a few differences emerge. There are asynchronous data dependencies
(pink arrow) and method calls (dotted pink arrow):

Asynchronous Dependencies: RL algorithms often leverage asynchronous computation
to reduce update latencies and eliminate stragglers [105]. In RLlib flow, we represent these
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with a pink arrow between a parallel and sequential iterator. This means items will be
fetched into the sequential iterator as soon as they are available, instead of in a deterministic
ordering. The level of asynchrony can be configured to increase pipeline parallelism.

Message Passing: RL algorithms, like all iterative algorithms, need to update upstream
operator state during execution (e.g., update policy weights). Unlike iterative algorithms,
these updates may be fine-grained and asynchronous (i.e., update the parameters of a partic-
ular worker), as well as coarse-grained (i.e., update all workers at once after a global barrier).
RLlib flow allows method calls (messages) to be sent to any actor in the dataflow. Order-
ing of messages in RLlib flow with respect to dataflow steps is guaranteed if synchronous
data dependencies (black arrows) fully connect the sender to the receiver, providing barrier
semantics.

Consistency and Durability: Unlike data streaming, which has strict requirements such
as exactly-once processing of data [174], RL has less strict consistency and durability re-
quirements. This is since on a fault, the entire computation can be restarted from the last
checkpoint with minimal loss of work. Message or data loss can generally be tolerated with-
out adverse affect on training. Individual operators can be restarted on failure, discarding
any temporary state. This motivates a programming model that minimizes overhead (e.g.,
avoids state serialization and logging cost).

4.4 A Dataflow Model for Distributed RL

Here we formally define the RLlib flow hybrid actor-dataflow programming model. RLlib
flow consists of a set of dataflow operators that produce and consume distributed iterators
[46]. These distributed iterators can represent parallel streams of a data items T sharded
across many actors (ParIter[T]), or a single sequential stream of items (Iter[T]). It is
important to note that these iterators are lazy, they do not execute computation or produce
items unless requested. This means that an entire RLlib flow execution graph is inactive
until the user attempts to pull metrics from the output operator.

Creation and Message Passing: RLlib flow iterators are always created from an existing
set of actor processes. In Figure 4.2, the iterator is created from a set of rollout workers
that produce experience batches given their current policy. Also, any operator may send a
message to any source actor (i.e., a rollout worker, or replay buffer) during its execution. In
the A3C example, the update weights operation is a use of this facility. The order guarantees
of these messages with respect to dataflow steps depends on the barrier semantics provided by
sequencing operators. The sender may optionally block and await the reply of sent messages.

Transformation: As in any data processing system, the basic operation of data trans-
formation is supported. Both parallel and sequential iterators can be transformed with the
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create(Seq[SourceActor[T]]) -> ParIter[T]

send_msg(dest: Actor, msg: Any) -> Reply

From Actors                      Send Message

ParIter
[T] ParIter[U]Actors ParIter[T] Actor

foreach operator. The transformation function can be stateful (i.e., in Python it can be
a callable function class that holds state in class members, and in the case of sequential
operators it can reference local variables via closure capture). In the A3C example, foreach
is used to compute gradients for each batch of experiences, which depends on the current
policy state of the source actor. In the case of the ComputeGradients step, this state is
available in the local process memory of the rollout worker, and is accessible because RLlib
flow schedules the execution of parallel operations onto the source actors.

foreach(ParIter[T], T => U) -> ParIter[U]

foreach(Iter[T], T => U) -> Iter[U]

ParIter[T] ParIter[U]ParIter[T] ParIter[U] Iter[T] Iter[U]

Parallel Apply                            Sequential Apply                          

Sequencing: To consume a parallel iterator, the items have to be serialized into some
sequential order. This is the role of sequencing operators. Once converted into a sequential
iterator, next can be called on the iterator to fetch a concrete item from the iterator.
The gather async operator is used in A3C, and gathers computed gradients as fast as
they are computed for application to a central policy. For a deterministic variation, we
could have instead used gather sync, which waits for one gradient from each shard of the
iterator before returning. The sync gather operator also has barrier semantics. Upstream
operators connected by a synchronous dependencies (black arrows) are fully halted between
item fetches. This allows for the source actors to be updated prior to the next item fetch.
Barrier semantics do not apply across asynchronous dependencies, allowing the mixing of
synchronous and async dataflow fragments separated by pink arrows.
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gather_async(ParIter[T],

num_async: Int) -> Iter[T]

gather_sync(ParIter[T]) -> Iter[List[T]]

next(Iter[T]) -> T

ParIter[T] Iter[T]ParIter[T] ParIter[T] Iter[List[T]]ParIter[T]

Async Gather           Bulk Sync Gather
(No Barrier)                                                (Full Barrier)

Concurrency: Complex algorithms may involve multiple concurrently executing dataflow
fragments. Concurrency (union) operators govern how these concurrent iterators relate to
each other. For example, one may wish two iterators to execute sequentially in a round
robin manner, execute independently in parallel, or rate limiting progress to a fixed ratio
[61]. Additionally, one might wish to duplicate (split) an iterator, in which case buffers
are automatically inserted to retain items until fully consumed. In this case, the RLlib flow
scheduler tries to bound memory usage by prioritizing the consumer that is falling behind.

split(Iter[T]) -> (Iter[T], Iter[T])

union(List[Iter[T]],

weights: List[float]) -> Iter[T]

union_async(List[Iter[T]]): Iter[T]

Iter[T]

Duplicate        Union                         Async Union

buffer

buffer

Iter[T]

Iter[T]

Iter[T]

Iter[T]

Iter[T]

Iter[T]

Iter[T]

Iter[T]

Scheduling and Nesting: In our implementation of RLlib flow, scheduling is static. Par-
allel transformations are executed on the nearest upstream source actor. Sequential trans-
formations are executed on the process calling next on the iterator. RLlib flow iterators
can be nested through the underlying actor model: a new parallel iterator can be produced
from a set of actors each consuming an independent iterator. This enables nested or tree-like
parallel topologies.
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4.5 Implementation

We implemented RLlib flow on the Ray distributed actor framework [107] as two separate
modules: a general purpose parallel iterator library (1241 lines of code), and a collection of
RL specific dataflow operators (1118 lines of code) (Figure 4.3). We then ported the full
suite of 20+ RL algorithms in RLlib to RLlib flow, replacing the original implementations
built directly on top of low-level actor and RPC primitives.

RLlib Flow Operators (1118 lines of code)

Parallel Iterator Library (1241 lines of code)

Distributed Actor System

Meta LearningSingle Agent Multi Agent
RLlib 
(65804 lines of 
code total)

Figure 4.3: High-level architecture diagram of RLlib flow, which is now part of RLlib.

Only the portions of code in RLlib related to distributed execution were changed (less
than 5% overall), which allows us to fairly evaluate against the previous implementation.
In this section we overview how a few important algorithm patterns were realized in RLlib
flow.

Example: A3C and A2C

As previously seen in Figure 4.2, A3C is straightforward to express in RLlib flow. Listing
4.6 shows pseudocode for A3C in RLlib flow, and Listing 4.2 shows the synchronous A2C
variation. Note that several operators take references to actors in their constructor (e.g.,
ParallelRollouts, ReportMetrics). This allows these operators to send messages to these
actors during operator execution.

Listing 4.1: A3C Pseudocode.

# type: List[RolloutActor]

workers = create_rollout_workers ()

# type: Iter[Gradients]

grads = ParallelRollouts(workers)

.par_for_each(ComputeGradients ())

.gather_async ()

# type: Iter[TrainStats]

apply_op = grads

.for_each(ApplyGradients(workers))

# type: Iter[Metrics]

return ReportMetrics(apply_op , workers)
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The main difference between A3C and A2C is use of the gather async vs gather sync.
In addition, A3C computes gradients as a parallel transformation prior to sequencing, whereas
A2C computes and applies gradients internally in the TrainOneStep operator.

Listing 4.2: A2C Pseudocode.

# type: List[RolloutActor]

workers = create_rollout_workers ()

# type: Iter[Gradients]

grads = ParallelRollouts(workers)

.par_for_each(ComputeGradients ())

.gather_async ()

# type: Iter[TrainStats]

apply_op = grads

.for_each(ApplyGradients(workers))

# type: Iter[Metrics]

return ReportMetrics(apply_op , workers)

Example: Ape-X Prioritized Experience Replay

Ape-X [63] (Figure 4.4) is a high-throughput variation of DQN. It is notable since it involves
multiple concurrent sub-flows (experience storage, experience replay), sets of actors (rollout
actors, replay actors), and actor messages (updating model weights, updating replay buffer
priorities). The sub-flows (store op, replay op) can be composed in RLlib flow as follows
using the Union operator (Listing 4.3).

Listing 4.3: Ape-X Pseudocode.

# type: List[RolloutActor]

workers = create_rollout_workers ()

# type: List[ReplayActor]

replay_buffer = create_replay_actors ()

# type: Iter[Rollout]

rollouts = ParallelRollouts(workers)

.gather_async ()

# type: Iter[_]

store_op = rollouts

.for_each(StoreToBuffer(replay_buffer))

.for_each(UpdateWeights(workers))

# type: Iter[TrainStats]

replay_op = ParallelReplay(replay_buffer)

.gather_async ()

.for_each(UpdatePriorities(workers))
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Replay from Buffer

Parallel 
Rollouts
Parallel 
Rollouts

Parallel Replay

Store to Buffer

Async Union

Report MetricsOptimize 
Policy

Update 
Weights

Update 
Priorities

Figure 4.4: RLlib dataflow diagram for Ape-X. Two dataflow fragments are executed con-
currently to optimize the policy.

.for_each(TrainOneStep(workers))

# type: Iter[Metrics]

return ReportMetrics(

Union(store_op , replay_op), workers)

Example: Multi-Agent Training

Similar to in Ape-X, multi-agent training can involve the composition of different training
dataflows (i.e., PPO and DQN). Figure 4.5 shows the combined dataflow for an experiment
that uses DQN to train certain policies in an environment and PPO to train others.

In an actor or RPC-based programming model, this type of composition is difficult be-
cause dataflow and control flow logic is intermixed. However, it is easy to express in RLlib
flow using the Union operator (Listing 4.4).

Listing 4.4: Twin Trainer Pseudocode.

# type: List[RolloutActor]

workers = create_rollout_workers ()

# type: Iter[Rollout], Iter[Rollout]

r1 , r2 = ParallelRollouts(workers).split()

# type: Iter[TrainStats], Iter[TrainStats]

ppo_op = ppo_plan(

Select(r1, policy="PPO"), workers)

dqn_op = dqn_plan(

Select(r2, policy="DQN"), workers)
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# type: Iter[Metrics]

return ReportMetrics(

Union(ppo_op , dqn_op), workers)

Parallel 
Rollouts
Parallel 
Rollouts

Optimize
(policy="DQN")

Concatenate
(batch_size=4096)

Replay from Buffer
(batch_size=32)

Select Experiences
(policy="DQN")

Select Experiences
(policy="PPO")

Store to Buffer

Update Target 
Network

Union

Async Union

Report Metrics
Optimize
(policy="PPO")

Update
Weights

(split)

Figure 4.5: RLlib dataflow diagram for concurrent multi-agent training of DQN and PPO
agents in an environment.

4.6 Evaluation

In our evaluation, we answer the following questions: nosep

• What is the quantitative improvement in code complexity with RLlib flow?

• Can RLlib flow execute RL workloads with high performance?

• How does RLlib flow compare to an off-the-shelf streaming system in terms of flexibility
and performance for RL tasks?

Implementation Complexity

Lines of Code: In Table 4.1 we compare the original implementations of algorithms in
RLlib to their size after porting to RLlib flow. No functionality was lost in the RLlib flow
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Original RLlib flow +shared Ratio

A3C 87 9 52 1.6-9.6×
A2C 154 25 50 3.1-6.1×
DQN 239 87 139 1.7-2.7×
PPO 386 79 225 1.7-4.8×
Ape-X 250 126 216 1.1-1.9×
IMPALA 694 89 362 1.9-7.8×
MAML 370* 136 136 2.7×

Table 4.1: Lines of code for several prototypical algorithms implemented with the original
RLlib vs our proposed RLlib flow-based RLlib. Our new RLlib flow-based RLlib has a
consistent simplification in implementation for various algorithms. *Original MAML from
https: // github. com/ jonasrothfuss/ ProMP

re-implementations. We count all lines of code directly related to distributed execution,
including comments and instrumentation code, but not including utility functions shared
across all algorithms. For completeness, for RLlib flow we include both an minimal (RLlib
flow) and conservative (+shared) estimate of lines of code. The conservative estimate
includes lines of code in shared operators that are arguably specific to the algorithm (e.g., a
multi-GPU training operator for PPO). Overall, we observe between a 1.9-9.6× (optimistic)
and 1.1-3.1× (conservative) reduction in lines of code with RLlib flow. Notably, the most
complex algorithm (IMPALA) shrunk from 694 to 89-362 lines. Readability: We believe
RLlib flow provides several key benefits for the readability of RL algorithms:

1. The high-level dataflow of an algorithm is visible at a glance in very few lines of code,
allowing readers to understand and modify the execution pattern without diving deep
into the execution logic.

2. Execution logic is organized into individual operators, each of which has a consis-
tent input and output interface (i.e., transforms an iterator into another iterator). In
contrast to building on low-level RPC systems, this provides a way for developers to
decompose their algorithms into reusable modules.

3. Performance concerns are isolated into the lower-level parallel iterator library. Devel-
opers do not need to deal with low-level concepts such as batching or flow-control.

Flexibility: As evidence of RLlib flow’s flexibility, a summer intern working on RLlib was
able to implement several model-based (e.g., MB-MPO) and meta-learning algorithms (e.g.,
MAML), neither of which fit into previously existing execution patterns in RLlib flow. This
was only possible due to the flexibility of RLlib flow’s model that mixes together the actor and
dataflow model. Listing 4.5 concisely expresses MAML’s dataflow (also shown in Figure 4.6)
[40]. The MAML dataflow involves nested optimization loops; workers collect pre-adaptation

https://github.com/jonasrothfuss/ProMP
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data, perform inner adaptation (i.e., individual optimization calls to an ensemble of models
spread across the workers), and collect post-adaptation data. Once inner adaptation is
complete, the accumulated data is batched together to compute the meta-update step, which
is broadcast to all workers. RLlib flow captures MAML in 139 lines compared to a baseline of
≈370 lines (Table 4.1), showing the flexibility and conciseness provided by combining actors
with dataflow.

Listing 4.5: MAML Pseudocode.

# type: List[RolloutActor]

workers = create_rollout_workers ()

# type: Iter[List[Rollouts[[

rollouts = ParallelRollouts(workers)

.gather_sync ()

# MAML Algo:

# Loop until inner adaptation done:

# 1) Aggregate Data from Workers

# 2) Perform Inner Adaption on Data

adapt_op = rollouts

.combine(InnerAdapt(workers , steps =5))

# Meta -update Step

train_op = adapt_op

.for_each(MetaUpdate(workers))

# type: Iter[Metrics]

return ReportMetrics(train_op , workers)

Figure 4.6: MAML dataflow, which includes a number of nested inner adaptation steps
(optimization calls to the source actors) prior to update of the meta-policy. The meta-
policy update and inner adaptation steps integrate cleanly into the dataflow, their ordering
guaranteed by the synchronous data dependency barrier between the inner adaptation and
meta update steps.
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Microbenchmarks and Performance Comparison

For all the experiments, we use a cluster with an AWS p3.16xlarge GPU head instance with
additional m4.16xlarge worker instances. All machines have 64 vCPUs and are connected
by a 25Gbps network.

Sampling Microbenchmark: We evaluate the data throughput of RLlib flow in isolation
by running RL training with a dummy policy (with only one trainable scalar). This enables
us to observe how fast the framework can support sample collection from asynchronous
environments. The SGD batch size and unroll length are fixed to 100K and 250, respectively.
Figure 4.7a shows that our flow-based RLlib achieves comparable throughput to that of the
original, and is slightly better at scale. We hypothesize that the improvements at large scale
come from small optimizations such as batched RPC wait, which are easy to implement
across multiple algorithms in a common way in RLlib flow.

IMPALA Throughput: We benchmark IMPALA, one of RLlib’s high-throughput RL
algorithms. We show that RLlib flow achieves similar or better performance compared to a
previous version of IMPALA in RLlib that was built directly on top of low-level actor and
RPC primitives. Figure 4.7b and Table 4.2 indicates that our new RLlib flow-based RLlib

Workers (GPUs) Original RLlib flow

Pendulum 2 (0) 1.2K 1.3K
Breakout 32 (4) 4.5K 4.1K
Pong 200 (2) 18.7K 18.9K

Table 4.2: Training throughput (samples/second) on different environments of Original and
our RLlib flow-based RLlib. No additional overheads are introduced by RLlib flow.

achieves comparable throughput to the original RLlib on various environments. In Figure
4.7b, as the number of nodes increases, the new RLlib also shows similar scalability as the
original one. That shows that RLlib flow does not impose overheads compared to a low-level
implementation in a realistic scenario.

Comparison to Spark Streaming

Distributed dataflow systems such as Spark Streaming [174] and Flink [15] are designed for
collecting and transforming live data streams from online applications (e.g., event streams,
social media). Given the basic map and reduce operations, we can implement synchronous
RL algorithms in any of these streaming frameworks. However, without consideration for the
requirements of RL tasks (Section 4.3), these frameworks can introduce significant overheads.
In Figure 4.8 we compare the performance of PPO implemented in Spark Streaming and
RLlib flow.
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Figure 4.7: IMPALA before and after porting to RLlib flow.

PPO Implementation. In spark-code, we show the high-level pseudocode of our port
of the PPO algorithm to Spark Streaming. Similar to our port of RLlib to RLlib flow, we
only changed the parts of the PPO algorithm in RLlib that affect distributed execution,
keeping the core algorithm implementation (e.g., numerical definition of policy loss and
neural networks in TensorFlow) as similar as possible for fair comparison. We made a best
attempt at working around aforementioned limitations (e.g., using a binaryRecordsStream

input source to efficiently handle looping, defining efficient serializers for neural network
state, and adjusting the microbatching to emulate the RLlib configuration).

Listing 4.6: Example of Spark Streaming for Distributed RL.

"""RL on Spark Streaming:

Iterate by saving and detecting binary states in a directory:

1) Replicate the states to workers

2) Sample in parallel (map)

3) Collect the samples (reduce)

4) Train on sampled batch

5) Save the states and trigger next iteration

"""

# Set up the Spark cluster

sc = SparkContext(master_addr)

# Spark detects new states file in path

states = sc.binaryRecordsStream(path)

rep = states.flatMap(replicate_fn)

split = rep.repartion(NUM_WORKERS)

# Restore actor from states and sample

sample = splits.map(actor_sample_fn)

# Collect all samples from actors

reduced = sample.reduce(merge_fn)
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# Restore trainer from states and train

new_states = reduced.map(train_fn)

# Save sampling/training states to path

new_states.foreachRDD(save_states_fn)

Experiment Setup: We conduct comparisons between the performance of both imple-
mentations. In the experiment, we adopt the PPO algorithm for the CartPole-v0 envi-
ronment with a fixed sampling batch size B of 100K. Each worker samples (B/# workers)
samples each iteration, and for simplicity, the learner updates the model on CPU using a
minibatch with 128 samples from the sampled batch. Experiments here are conducted on
AWS m4.10xlarge instances.

Data Framework Limitations: Spark Streaming is a data streaming framework designed
for general purpose data processing. We note several challenges we encountered attempting
to port RL algorithms to Spark Streaming:

1. Support for asynchronous operations. Data processing systems like Spark Stream-
ing do not support asynchronous or non-deterministic operations that are needed for
asynchronous RL algorithms.

2. Looping operations are not well supported. While many dataflow models in principle
support iterative algorithms, we found it necessary to work around them due to lack
of language APIs (i.e., no Python API).

3. Support for non-serializable state. In the dataflow model, there is no way to persist
arbitrary state (i.e., environments, neural network models on the GPU). While nec-
essary for fault-tolerance, the requirement for serializability impacts the performance
and feasibility of many RL workloads.

4. Lack of control over batching. We found that certain constructs such as the data batch
size for on-policy algorithms are difficult to control in traditional streaming frameworks,
since they are not part of the relational data processing model.

For a single machine (the left three pairs), the breakdown of the running time indicates
that the initialization and I/O overheads slow down the training process for Spark comparing
to our RLlib. The former overheads come from the nature of Spark that the transformation
functions do not persist variables. We have to serialize both the sampling and training states
and re-initialize the variables in the next iteration to have a continuous running process. On
the other hand, the I/O overheads come from looping back the states back to the input.
As an event-time driven streaming system, the stream engine detects changes for the saved
states from the source directory and starts new stream processing. The disk I/O leads to
high overheads compared to our RLlib.
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Figure 4.8: RLlib flow vs Spark Streaming PPO.

For the distributed situation (the right three pairs), the improvement of our RLlib be-
comes more significant against Spark, up to 2.9x. As the number of workers scales up,
the sampling time decreases for both the dataflow model. Still, the initialization and I/O
overheads stay unchanged, leading to lesser scalability for Spark.

4.7 Related Work

Reinforcement Learning Systems: RLlib flow is implemented concretely in RLlib, how-
ever, we hope it can provide inspiration for a new generation of general purpose RL systems.
RL libraries available today range from single-threaded implementations [33, 59, 17, 78] to
distributed [132, 96, 16, 92, 39, 61]. These libraries often focus on providing common frame-
works for the numerical concerns of RL algorithms (e.g., loss, exploration, and optimization
steps).

However, these aforementioned libraries rely on predefined distributed execution pat-
terns. For example, for the Ape-X dataflow in Figure 4.4, RLlib defines this with a fixed
“AsyncReplayOptimizer”1 class that implements the topology; RLGraph uses an adapted
implementation2 from RLlib as part of their Ape-X algorithm meta-graph, while Coach does
not support Ape-X3. These execution patterns are predefined as they are low-level, complex

1https://docs.ray.io/en/releases-0.7.7/_modules/ray/rllib/optimizers/async_replay_optimizer.

html
2https://github.com/rlgraph/rlgraph/blob/master/rlgraph/execution/ray/apex/apex_executor.py
3https://github.com/IntelLabs/coach

https://docs.ray.io/en/releases-0.7.7/_modules/ray/rllib/optimizers/async_replay_optimizer.html
https://docs.ray.io/en/releases-0.7.7/_modules/ray/rllib/optimizers/async_replay_optimizer.html
https://github.com/rlgraph/rlgraph/blob/master/rlgraph/execution/ray/apex/apex_executor.py
https://github.com/IntelLabs/coach


CHAPTER 4. DISTRIBUTED REINFORCEMENT LEARNING AS A DATAFLOW
PROBLEM 45

to implement, and cannot be modified using high-level end-user APIs. In contrast, RLlib
flow proposes a high-level distributed programming model for RL algorithm implementation,
exposing this pattern in much fewer lines of code (Listing 4.3), and allowing free composition
of these patterns by users (Listing 4.4). The ideas from RLlib flow can be integrated with
any RL library to enable flexibility in distributed execution.

Distributed RL Algorithms: RLlib flow draws requirements from the distributed exe-
cution patterns of many recently proposed distributed RL algorithms. Initial approaches for
scaling up RL in a distributed setting often employed asynchronous SGD [27]. Examples of
such include A3C [105] and Gorila [110] which extend the actor-critic and DQN frameworks
[106]. Specifically, in A3C [105], workers independently collect data, compute gradients, and
send gradients to the global policy. Since then, numerous followup papers have sought upon
improving existing asynchronous paradigms, such as Ape-X [63] and BA3C [2].

Another axis to distributed RL is increasing sampling throughput asynchronously from
workers, which increases GPU utilization. Papers such as GA3C [8], IMPALA [36], and
SEED [37] decouples learning (applying gradient updates) and acting (batch collection) by
having workers asynchronously sample from a set environments, at the cost of unstable
learning. IMPALA [36] and IMPACT [97] mitigates this by leveraging importance sampling.

RL can also be scaled up synchronously. A2C [105] is a synchronous variant of A3C,
where the primary difference lies in workers sharing the same policy and how these workers
gather data. Other policy gradient algorithms like PPO [134] and its distributed variants
[162, 144, 97] are also synchronous; Distributed PPO [134] aggregates data from workers and
perform mini-batch SGD on the aggregated data.

Distributed Computation Models: RLlib flow draws inspiration from both stream-
ing dataflow and actor-based programming models. Popular open source implementations of
streaming dataflow, including Apache Storm [151], Apache Flink [15], and Apache Spark [172,
174] transparently distribute data to multiple processors in the background, hiding the
scheduling and message passing for distribution from programmers. In spark, we show
how distributed PPO can be implemented in Apache Spark. Apache Flink’s Delta Iterate

operator can similarly support synchronous RL algorithms. However, data processing frame-
works have limited asynchronous iteration support.

The Volcano (Iterator) model [46], pioneers the iterator abstraction for distributed data
processing. RLlib flow builds on the Volcano model to not only encapsulate parallelism, but
also to encapsulate the synchronization requirements between concurrent dataflow fragments,
enabling users to also leverage actor message passing.

Naiad [109] is a low-level distributed dataflow system that supports cyclic execution
graphs and message passing. It is designed as a system for implementing higher-level pro-
gramming models. In principle, it is possible to implement the RLlib flow model in Naiad.
Transformation operators can be placed on the stateful vertices of the execution graph. The
message passing and concurrency (Union) operators can be represented by calling SendBy
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and OnRecv interface on senders and receivers, which support asynchronous execution. RLlib
flow’s barrier semantics can be expressed with OnNotify and NotifyAt, where the former
indicates all the required messages are ready, and the latter blocks execution until the notifi-
cation has been received. We implemented RLlib flow on Ray instead of Naiad for practical
reasons (e.g., Python support).

Deep Learning Frameworks: Deep learning frameworks such as PyTorch [39] and Ten-
sorflow [1] provide high-level tensor algebra abstractions that can evaluate and optimize
tensor programs within a single machine and across a cluster. RL frameworks leverage deep
learning frameworks internally to execute tensor computations, but only a few frameworks
(e.g., RLgraph) leverage deep learning frameworks for distribution. This is because RL
computations are not generally differentiable across environment steps.

4.8 Conclusion

In summary, we propose RLlib flow, a hybrid actor-dataflow programming model for dis-
tributed RL. We designed RLlib flow to simplify the understanding, debugging, and cus-
tomization of distributed RL algorithms RL developers require. RLlib flow provides compa-
rable performance to reference algorithms implemented directly on low-level actor and RPC
primitives, enables complex multi-agent and meta-learning use cases, and reduces the lines
of code for distributed execution in a production RL library by 2-9x.
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Chapter 5

Application: Optimizing Packet
Classification Data Structures

In this chapter we introduce NeuroCuts, an example of applying RL to solve a systems
problem. The problem at hand, packet classification, is fundamental in computer network-
ing. This problem exposes a hard tradeoff between the computation and state complexity,
which makes it particularly challenging. To navigate this tradeoff, existing solutions rely on
complex hand-tuned heuristics, which are brittle and hard to optimize. As we will see, an
RL based approach not only considerably improves on the performance of heuristic-based
algorithms, but can be flexibly tuned to optimize for different objectives. Unlike typical
RL-based approaches, NeuroCuts uses RL only as an offline step to generate an optimized
data structure, which can then be deployed directly to production just like the result of a
heuristic algorithm can. This class of approach, when possible to take, has the advantage
of zero deploy-time overhead and guaranteed correctness. We implement NeuroCuts using
RLlib, taking advantage of its multi-agent API to model the problem, and its scalability to
accelerate training.

5.1 Introduction

We propose a deep reinforcement learning (RL) approach to solve the packet classification
problem. There are several characteristics that make this problem a good fit for Deep RL.
First, many existing solutions iteratively build a decision tree by splitting nodes in the tree.
Second, the effects of these actions (e.g., splitting nodes) can only be evaluated once the
entire tree is built. These two characteristics are naturally captured by the ability of RL
to take actions that have sparse and delayed rewards. Third, it is computationally efficient
to generate data traces and evaluate decision trees, which alleviate the notoriously high
sample complexity problem of Deep RL algorithms. Our solution, NeuroCuts, uses succinct
representations to encode state and action space, and efficiently explore candidate decision
trees to optimize for a global objective. It produces compact decision trees optimized for
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a specific set of rules and a given performance metric, such as classification time, memory
footprint, or a combination of the two. Evaluation on ClassBench shows that NeuroCuts
outperforms existing hand-crafted algorithms in classification time by 18 percent at the
median, and reduces both classification time and memory footprint by up to 3x.

The goal of packet classification is to match a given packet to a rule from a set of rules,
and to do so while optimizing the classification time and/or memory footprint. Packet
classification is a key building block for many network functionalities, including firewalls,
access control, traffic engineering, and network measurements [53, 154, 89]. As such, packet
classifiers are widely deployed by enterprises, cloud providers, ISPs, and IXPs [9, 89, 141].

Existing solutions for packet classification can be divided into two broad categories. Solu-
tions in the first category are hardware-based. They leverage Ternary Content-Addressable
Memories (TCAMs) to store all rules in an associative memory, and then match a packet
to all these rules in parallel [80]. As a result, TCAMs provide constant classification time,
but come with significant limitations. TCAMs are inherently complex, and this complexity
leads to high cost and power consumption. This makes TCAM-based solutions prohibitive
for implementing large classifiers [154].

The solutions in the second category are software based. These solutions build sophis-
ticated in-memory data structures—typically decision trees—to efficiently perform packet
classification [89]. While these solutions are far more scalable than TCAM-based solutions,
they are slower, as the classification operation needs to traverse the decision tree from the
root to the matching leaf.

Building efficient decision trees is difficult. Over the past two decades, researchers have
proposed a large number of decision tree based solutions for packet classification [53, 140,
124, 154, 89]. However, despite the many years of research, these solutions have two major
limitations. First, they rely on hand-tuned heuristics to build the tree. Examples include
maximizing split entropy [53], balancing splits with custom space measures [53], special
handling for wildcard rules [140], and so on. This makes them hard to understand and
optimize over different sets of rules. If a heuristic is too general, it cannot take advantage
of the characteristics of a particular set of rules. If a heuristic is designed for a specific
set of rules, it typically does not achieve good results on another set of rules with different
characteristics.

Second, these heuristics do not explicitly optimize for a given objective (e.g., tree depth).
They make decisions based on information (e.g., the difference between the number of rules
in the children, the number of distinct ranges in each dimension) that is only loosely related
to the global objective. As such, their performance can be far from optimal.

In this chapter, we propose a learning approach to packet classification. Our approach has
the potential to address the limitations of the existing hand-tuned heuristics. In particular,
our approach learns to optimize packet classification for a given set of rules and objective,
can easily incorporate pre-engineered heuristics to leverage their domain knowledge, and
does so with little human involvement. The recent successes of deep learning in solving
notoriously hard problems, such as image recognition [77] and language translation [147],
have inspired many practitioners and researchers to apply deep learning, in particular, and
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machine learning, in general, to systems and networking problems [177, 170, 99, 153, 22,
67, 30, 176, 101]. While in some of these cases there are legitimate concerns about whether
machine learning is the right solution for the problem at hand, we believe that deep learning
is a good fit for our problem. This is notable since, when an efficient formulation is found,
learning-based solutions have often outperformed hand-crafted alternatives [106, 138, 75].

There are two general approaches to apply learning to packet classification. The first is
to replace the decision tree with a neural network, which given a packet will output the rule
matching that packet. Unfortunately, while appealing, this end-to-end solution has a major
drawback: it does not guarantee the correct rule is always matched. While this might be
acceptable for some applications such as traffic engineering, it is not acceptable for others,
such as access control. Another issue is that large rule sets will require correspondingly
large neural network models, which can be expensive to evaluate without accelerators such
as GPUs. The second approach, and the one we take in this chapter, is to use deep learning
to build a decision tree. Recent work has applied deep learning to optimize decision trees
for machine learning problems [112, 163, 73]. These solutions, however, are designed for
machine learning settings that are different than packet classification, and aim to maximize
accuracy. In contrast, decision trees for packet classification provide perfect accuracy by
construction, and the goal is to minimize classification time and memory footprint.

Our solution uses deep reinforcement learning (RL) to build efficient decision trees. There
are three characteristics that makes RL a particularly good fit for packet classification. First,
the natural solution to build a decision tree is to start with one node and recursively split
(cut) it. Unfortunately, this kind of approach does not have a greedy solution. When
making a decision to cut a node, we do not know whether that decision was a good one (i.e.,
whether it leads to an efficient tree) before we finish building the actual tree. RL naturally
captures this characteristic as it does not assume that the impact of a given decision on the
performance objective is known immediately. Second, unlike existing heuristics which take
actions that are only loosely related to the performance objective, the explicit goal of an RL
algorithm is to directly maximize the performance objective. Third, unlike other RL domains
such as as robotics, for our problem it is possible to evaluate an RL model quickly (i.e., a
few seconds of CPU time). This alleviates one of the main drawbacks of RL algorithms: the
non-trivial learning time due to the need to evaluate a large number of models to find a good
solution. By being able to evaluate each model quickly (and, as we will see, in parallel) we
significantly reduce the learning time.

To this end, we design NeuroCuts, a deep RL solution for packet classification that
learns to build efficient decision trees. There are three technical challenges to formulate this
problem as an RL problem. First, the tree is growing during the execution of the algorithm,
as existing nodes are split. This makes it very difficult to encode the decision tree, as RL
algorithms require a fixed size input. We address this problem by noting that the decision of
how to split a node in the tree depends only on the node itself; it does not depend on the rest
of the tree. As such, we do not need to encode the entire tree; we only need to encode the
current node. The second challenge is in reducing the sparsity of rewards to accelerate the
learning process; here we exploit the branching structure of the problem to provide denser
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Priority Src IP Dst IP Src Port Dst Port Protocol
2 10.0.0.0 10.0.0.0/16 * * *
1 * * [0, 1023] [0, 1023] TCP
0 * * * * *

Figure 5.1: A packet classifier example. Real-world classifiers can have 100K rules or more.

feedback for tree size and depth. The final challenge is that training for very large sets of
rules can take a long time. To address this, we leverage RLlib [92], a distributed RL library.

In summary, we make the following contributions.

• We show that the packet classification problem is a good fit for reinforcement learning
(RL).

• We present NeuroCuts, a deep RL solution for packet classification that learns to build
efficient decision trees.

• We show that NeuroCuts outperforms state-of-the-art solutions, improving packet clas-
sification time by 18% at the median and reducing both time and memory usage by
up to 3×.

The code for NeuroCuts is open source and is available at
https://github.com/neurocuts/neurocuts.

5.2 Background

In this section, we provide background on the packet classification problem, and summarize
the key ideas behind the decision tree based solutions to solve this problem.

Packet Classification

A packet classifier contains a list of rules. Each rule specifies a pattern on multiple fields in
the packet header. Typically, these fields include source and destination IP addresses, source
and destination port numbers, and protocol type. The rule’s pattern specifies which packets
match the rule. Matching conditions include prefix based matching (e.g., for IP addresses),
range based matching (e.g., for port numbers), and exact matching (e.g., for protocol type).
A packet matches a rule if each field in the packet header satisfies the matching condition of
the corresponding field in the rule, e.g., the packet’s source/destination IP address matches
the prefix of the source/destination address in the rule, the packet’s source/destination port

https://github.com/neurocuts/neurocuts
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number is contained in the source/destination range specified in the rule, and the packet’s
protocol type matches the rule’s protocol type.

Figure 5.1 shows a packet classifier with three rules. The first rule matches all packets
with source address 10.0.0.1 and the destination addresses sharing prefix 10.0.0.0/16. Other
fields are unspecified (i.e., they are ?) meaning that the rule matches any value in these
fields. The second rule matches all TCP packets with source and destination ports in the
range [0, 1023], irrespective of IP addresses (as they are ?). Finally, the third rule is a default
rule that matches all packets. This guarantees that any packet matches at least one rule.

Since rules can overlap, it is possible for a packet to match multiple rules. To resolve this
ambiguity, each rule is assigned a priority. A packet is then matched to the highest priority
rule. For example, packet (10.0.0.0, 10.0.0.1, 0, 0, 6) matches all the three rules of the packet
classifier in Figure 5.1. However, since the first rule has the highest priority, we match the
packet to the first rule only.

Decision Tree Algorithms

Packet classification is similar to the point location problem in a multi-dimensional geometric
space: the fields in the packet header we are doing classification on (e.g., source and desti-
nation IP addresses, source and destination port numbers, and protocol number) represent
the dimensions in the geometric space, a packet is represented as a point in this space, and
a rule as a hypercube. Unfortunately, the point location problem exhibits a hard tradeoff
between time and space complexities [51].

The packet classification problem is then equivalent to finding all hypercubes that con-
tains the point corresponding to a given packet. In particular, in a d-dimensional geometric
space with n non-overlapping hypercubes and when d > 3, this problem has either (i) a
lower bound of O(log n) time and O(nd) space, or (ii) a lower bound of O(logd−1n) time
and O(n) space [51]. The packet classification problem allows the hypercubes (i.e., rules) to
overlap, and thus is at least as hard as the point location problem [51]. In other words, if
we want logarithmic computation time, we need space that is exponential in the number of
dimensions (fields), and if we want linear space, the computation time will be exponential
in the logarithm of the number of rules. Given that for packet classification d = 5, neither
of these choices is attractive.

Next, we discuss two common techniques employed by existing solutions to build decision
trees for packet classification: node cutting and rule partition.

Node cutting. Most existing solutions for packet classification aim to build a decision tree
that exhibits low classification time (i.e., time complexity) and memory footprint (i.e., space
complexity) [154]. The main idea is to split nodes in the decision tree by “cutting” them along
one or more dimensions. Starting from the root which contains all rules, these algorithms
iteratively split/cut the nodes until each leaf contains fewer than a predefined number of
rules. Given a decision tree, classifying a packet reduces to walk the tree from the root to a
leaf, and then chose the highest priority rule associated with that leaf.
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Figure 5.2: Node cutting.

Figure 5.2 illustrates this technique. The packet classifier contains six rules (R0 to R5)
in a two-dimensional space. Figure 5.2(a) shows each rule as a rectangle in the space, and
represents the cuts as dashed lines. Figure 5.2(b) shows the corresponding decision tree for
this packet classifier. The root of the tree contains all the six rules. First, we cut the entire
space (which represents the root) into four chunks along dimension x. This leads to the
creation of four children. If a rule intersects a child’s chunk, it is added to that child. For
example, R1, R3 and R4 all intersect the first chunk (i.e., the first quarter in this space),
and thus they are all added to the first root’s child. If a rule intersects multiple chunks it is
added to each corresponding child, e.g., R1 is added to all the four children. Next, we cut
the chunk corresponding to each of the four children along dimension y. As a result, each of
the nodes at the first level will end up with two children.

Rule partition. One challenge with ”blindly” cutting a node is that we might end up with
a rule being replicated to a large number of nodes [154]. In particular, if a rule has a large
size along one dimension, cutting along that dimension will result in that rule being added
to many nodes. For example, rule R1 in Figure 5.2(a) has a large size in dimension x. Thus,
when cutting along dimension x, R1 will end up being replicated at every node created by the
cut. Rule replication can lead to decision trees with larger depths and sizes, which translate
to higher classification time and memory footprint.

One solution to address this challenge is to first partition rules based on their ”shapes”.
Broadly speaking, rules with large sizes in a particular dimension are put in the same set.
Then, we can build a separate decision tree for each of these partitions. Figure 5.3 illustrates
this technique. The six rules in Figure 5.2 are grouped into two partitions. One partition
consists of rules R1 and R4, as both these rules have large sizes in dimension x. The other
partition consists of the other four rules, as these rules have small sizes in dimension x.
Figure 5.3(a) and Figure 5.3(b) show the corresponding decision trees for each partition.
Note that the resulting trees have lower depth, and smaller number of rules per node as
compared to the original decision tree in Figure 5.2(b). To classify a packet, we classify it
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Figure 5.3: Rule partition.

against every decision tree, and then choose the highest priority rule among all rules the
packet matches in all decision trees.

Summary. Existing solutions build decision trees by employing two types of actions: node
cutting and rule partition. These solutions mainly differ in the way they decide (i) at which
node to apply the action, (ii) which action to apply, and (iii) how to apply it (e.g., along
which dimension(s) to partition).

5.3 A Learning-Based Approach

In this section, we describe a learning-based approach for packet classification. We motivate
our approach, discuss the formulation of classification as a learning problem, and then present
our solution.
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Why Learn?

The existing solutions for packet classification rely on hand-tuned heuristics to build decision
trees. Unfortunately, this leads to two major limitations.

First, these heuristics often face a difficult trade-off between performance and cost. Tun-
ing such a heuristic for a given set of rules is an expensive proposition, requiring considerable
human efforts and expertise. Worse yet, when given a different rule set, one might have to
do this all over again. Addressing this challenge has been the main driver of a long line
of research over the past two decades [53, 140, 124, 154, 89]. Of course, one could build a
general heuristic for a large variety of rule sets. Unfortunately, such a solution would not
provide the best performance for a given set of rules.

Second, existing algorithms do not directly optimize for a global objective. Ideally, a
good packet classification solution should optimize for (i) classification time, (ii) memory
footprint, or (iii) a combination between the two. Unfortunately, the existing heuristics do
not directly optimize for any of these objectives. At their core, these heuristics make greedy
decisions to build decision trees. At every step, they decide on whether to cut a node or
partition the rules based on simple statistics (e.g., the size of the rules in each dimension,
number of unique ranges in each dimension), which are poorly correlated with the desired
objective. As such, the resulting decision trees are often far from being optimal.

As we will see, a learning-based approach can address these limitations. Such an approach
can learn to generate an efficient decision tree for a specific set of rules without the need to
rely on hand-tuned heuristics. This is not to say these heuristics do not have value; in fact
they often contain key domain knowledge that we show can be leveraged and improved on
by the learning algorithm.

What to Learn?

Classification is a central task in machine learning literature. The recent success of using deep
neural networks (DNNs) for image recognition, speech recognition and language translation
has been single-handedly responsible for the recent AI ”revolution” [77, 147, 48].

As such, one natural solution for packet classification would be to replace a decision tree
with a DNN. In particular, such DNN will take as input the fields of a packet header and
output the rule matching that packet. Related to our problem, prior work has shown that
DNN models can be effectively used to replace B-Trees for indexing [75].

However, this solution has two drawbacks. First, a DNN-based classifier does not guar-
antee 100% accuracy. This is because training a DNN is fundamentally a stochastic process.
Second, given a DNN packet classification result, it is expensive to verify whether the result
is correct or not. Unlike the recently proposed learned index solution to replace B-Trees [75],
the rules in packet classification are multi-dimensional and overlap with each other. If a rule
matches a packet, we still need to check other rules to see if this rule has the highest priority
among all matched rules.
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Figure 5.4: (a) Classic RL system. An agent takes an action, At, based on the current state
of the environment, St, and applies it to the environment. This leads to a change in the
environment state (St+1) and a reward (Rt+1). (b) NeuroCuts as an RL system.

To avoid these drawbacks, in this chapter we propose to learn building decision trees for
a given set of rules. Since the result is still a decision tree, we can guarantee correctness,
and it will be easy to deploy the classifier with existing systems (hardware and software)
compared to a DNN.

How to Learn?

In this section, we show that the problem of building decision trees maps naturally to RL.
As illustrated in Figure 5.4(a), an RL system consists of an agent that repeatedly interacts
with an environment. The agent observes the state of the environment, and then takes an
action that might change the environment’s state. The goal of the agent is to compute a
policy that maps the environment’s state to an action in order to optimize a reward. As an
example, consider an agent playing chess. In this case, the environment is the board, the
state is the position of the pieces on the board, an action is moving a piece on the board,
and the reward could be 1 if the game is won, and −1, if the game is lost.

This simple example illustrates two characteristics of RL that are a particularly good fit
to our problem. First, rewards are sparse, i.e., not every state has associated a reward. For
instance, when moving a piece we do not necessary know whether that move will result in a
win or loss. Second, the rewards are delayed ; we need to wait until the end of the game to
see whether the game was won or lost.

To deal with large state and action spaces, recent RL solutions have employed DNNs to
implement their policies. These solutions, called Deep RL, have achieved remarkable results
matching humans at playing Atari games [106], and beating the Go world champion [139].
These results have encouraged researchers to apply Deep RL to networking and systems
problems, from routing, to congestion control, to video streaming, and to job scheduling [177,
170, 99, 153, 22, 67, 30, 176, 101]. Building a decision tree can be easily cast as an RL
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problem: the environment’s state is the current decision tree, an action is either cutting a
node or partitioning a set of rules, and the reward is either the classification time, memory
footprint, or a combination of the two. While in some cases there are legitimate concerns
about whether Deep RL is the right solution for the problem at hand, we identify several
characteristics that make packet classification a particularly good fit for Deep RL.

First, when we take an action, we do not know for sure whether it will lead to a good
decision tree or not; we only know this once the tree is built. As a result, the rewards in our
problem are both sparse and delayed. This is naturally captured by the RL formulation.

Second, the explicit goal of RL is to maximize the reward. Thus, unlike existing heuristics,
our RL solution aims to explicitly optimize the performance objective, rather than using local
statistics whose correlation to the performance objective can be tenuous.

Third, one potential concern with Deep RL algorithms is sample complexity. In general,
these algorithms require a huge number of samples (i.e., input examples) to learn a good
policy. Fortunately, in the case of packet classification we can generate such samples cheaply.
A sample, or rollout, is a sequence of actions that builds a decision tree with the associated
reward(s) by using a given policy. The reason we can generate these rollouts cheaply is
because we can build all these trees in software, and do so in parallel. Contrast this with
other RL-domains, such as robotics, where generating each rollout can take a long time and
requires expensive equipment (i.e., robots).

5.4 NeuroCuts Design

NeuroCuts Overview

We introduce the design for NeuroCuts, a new Deep RL formulation of the packet classifi-
cation problem. Given a rule set and an objective function (i.e., classification time, memory
footprint, or a combination of both), NeuroCuts learns to build a decision tree that minimizes
the objective.

Figure 5.4(b) illustrates the framing of NeuroCuts as an RL system: the environment
consists of the set of rules and the current decision tree, while the agent uses a model
(implemented by a DNN) that aims to select the best cut or partition action to incrementally
build the tree. A cut action divides a node along a chosen dimension (i.e., one of SrcIP,
DstIP, SrcPort, DstPort, and Protocol) into a number of sub-ranges (i.e., 2, 4, 8, 16, or
32 ranges), and creates that many child nodes in the tree. A partition action on the other
hand divides the rules of a node into disjoint subsets (e.g., based on the coverage fraction
of a dimension), and creates a new child node for each subset. The available actions for the
current node are advertised by the environment at each step, the agent chooses among them
to generate the tree, and over time the agent learns to optimize its decisions to maximize
the reward from the environment. Figure 5.5 visualizes the learning process of NeuroCuts.
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(a) NeuroCuts starts with a randomly initialized policy that generates poorly shaped trees (left,
truncated). Over time, it learns to reduce the tree depth and develops a more coherent strategy
(center). The policy converges to a compact depth-12 tree (right) that specializes in cutting SrcIP,
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(b) In comparison, HiCuts produces a depth-29 tree for this rule set that is 15× larger and 3×
slower in classification time.

Figure 5.5: Visualization of NeuroCuts learning to split the fw5 1k ClassBench rule set.
The x-axis denotes the tree level, and the y-axis the number of nodes at the level. The
distribution of cut dimensions per level of the tree is shown in color.

NeuroCuts Training Algorithm

Recall that the goal of an RL algorithm is to compute a policy to maximize rewards from the
environment. Referring again to Figure 5.4, the environment defines the action space A and
state space S. The agent starts with an initial policy, evaluates it using multiple rollouts,
and then updates it based on the results (rewards) of these rollouts. Then, it repeats this
process until satisfied with the reward.

We first consider a strawman formulation of decision tree generation as a single Markov
Decision Process (MDP). In this framing, a rollout begins with a tree consisting of a single
node. This is the initial state, s0 ∈ S. At each step t, the agent executes an action at ∈ A
and receives a reward rt; the environment transitions from the current state st ∈ S to the
next state st+1 ∈ S (i.e., the updated tree and next node to process). The goal is to maximize
the total reward received by the agent, i.e.,

∑
t γ

trt where γ is a discounting factor used to
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prioritize more recent rewards.

Design challenges. While at a high level this RL formulation seems straightforward, there
are three key challenges we need to address before we have a realizable implementation. The
first is how to encode the variable-length decision tree state st as an input to the neural
network policy. While it is possible to flatten the tree, say, into an 1-dimensional vector,
the size of such a vector would be very large (i.e., hundreds of thousands of units). This
will require both a very large network model to process such input, and a prohibitively large
number of samples.

While recent work has proposed leveraging recurrent neural networks (RNNs) and graph
embedding techniques [164, 160, 165] to reduce the input size, these solutions are brittle in
the face of large or dynamically growing graph structures [178]. Rather than attempting to
solve the state representation problem to deal with large inputs, in NeuroCuts we instead
take advantage of the underlying structure of packet classification trees to design a simple
and compact state representation. This means that when the agent is deciding how to split a
node, it only observes a fixed-length representation of the node. All needed state is encoded
in the representation; no other information about the rest of the tree is observed.

The second challenge is how to deal with the sparse and delayed rewards incurred by
the node-by-node process of building the decision tree. While we could in principle return
a single reward to the agent when the tree is complete, it would be very difficult to train an
agent in such an environment. Due to the long length of tree rollouts (i.e., many thousands
of steps), learning is only practical if we can compute meaningful dense rewards.1 Such
a dense reward for an action would be based on the statistics of the subtree it leads to
(i.e., its depth or size).2 This effectively reduces the delay of the rewards from O(tree size)
to O(log(tree size)). Unfortunately, it is not possible to compute this until the subtree is
complete. To handle this, we take the somewhat unusual step of only computing rewards
for the rollout when the tree is completed, and setting γ = 0, effectively creating a series
of 1-step decision problems similar to contextual bandits [81]. However, unlike the bandit
setting, where an agent only makes a decision once per environment, these 1-step decisions
are connected through the dynamics of the tree building process. For instance, this makes
NeuroCuts amenable to techniques from the Deep RL literature such as GAE [133].

Another way of looking at the dense reward problem is that the process of building a
decision tree is not really sequential but tree-structured (i.e., it is more accurately modeled as
a branching decision process [71, 121, 38]), and we need to account for the reward calculations
accordingly. In such a ”branching” formulation, γ > 0, but the rewards of an action are
computed as an aggregation over multiple child states produced by an action. For example,
cutting a node produces multiple child sub-nodes, and the reward calculation may involve a
sum or a min over each child’s future rewards, depending on whether we are optimizing for

1Note that just returning -1 or -cutSize for each step would be a dense reward but not particularly
useful.

2The rewards for NeuroCuts correspond to the true problem objective; we do not do ”reward engineering”
since that would bias the solution.
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Figure 5.6: The NeuroCuts policy is stochastic, which enables it to effectively explore many
different tree variations during training. Here we visualize four random tree variations drawn
from a single policy trained on the acl4 1k ClassBench rule set. The x-axis denotes the tree
level, and the y-axis the number of nodes at the level. The distribution of cut dimensions
per level of the tree is shown in color.

tree size or depth. The 1-step decision problem and branching decision process formulations
of NeuroCuts are roughly equivalent; in the implementation section we describe how we
adapt standard RL algorithms to run NeuroCuts.

The final challenge is how to scale the solution to large packet classifiers. The decision
tree for a packet classifier with 100K rules can have hundreds of thousands of nodes. The size
of the tree impedes training along several dimensions. Not only does it take more steps to
finish building a tree, but the execution time of each action increases as there are more rules
to process. The space of trees to explore is also larger, requiring the use of larger network
models and generating more rollouts to train.

State representation. One key observation is that the action on a tree node only depends on
the node itself, so it is not necessary to encode the entire decision tree in the environment
state. Our goal to optimize a global performance objective over the entire tree suggests that
we would need to make decisions based on the global state. However, this does not mean
that the state representation needs to encode the entire decision tree. Given a tree node, the
action on that node only needs to make the best decision to optimize the sub-tree rooted at
that node. It does not need to consider other tree nodes in the decision tree.

Formally, given tree node n, let tn and sn denote n’s classification time and memory
footprint, respectively, and Tn and Sn be the classification time and memory footprint of the
entire sub-tree rooted at node n, respectively. Then, for a cut action, we have the following
equations:

Tn = tn + maxi∈children(n)Ti (5.1)

Sn = sn + sumi∈children(n)Si (5.2)

Similarly, for a partition action, we have as an upper bound on cost, assuming serial execu-
tion:

Tn = tn + sumi∈children(n)Ti (5.3)

Sn = sn + sumi∈children(n)Si (5.4)
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An action, a, taken on node n only needs to optimize the sub-tree rooted at n according
to the following expression,

Vn = argmaxa∈A − (c · Tn + (1− c) · Sn), (5.5)

where c is a coefficient capturing the tradeoff between classification time and memory foot-
print. The negation is needed since we want to minimize time and space complexities. We
note that these values can be computed after the tree is fully built, regardless of the traversal
order taken building the tree.

When c ∈ {0, 1}, it is easy to see that if at every tree node n we take the action that
optimizes Vn, then, by induction, we end up optimizing Vr, where r is the root of the tree.
In other words, we end up optimizing the global objective (reward) for the entire decision
tree. For 0 < c < 1 this optimization becomes approximate, but we find empirically that c
can still be used to interpolate between the two objectives. It is important to note here that
while the state representation only encodes current node n, action a taken for node n is not
local, as it optimizes the entire sub-tree rooted at n.

In summary, we only need to encode the current node as the input state of the agent. This
is because the environment builds the tree node-by-node, node actions need only consider
their own state, and each node contains a subset of the rules of its parent (i.e., rules contained
in some subspace of its parent space). Therefore, nodes in the tree can be completely defined
by the ranges they occupy in each dimension. Given d dimensions, we use 2d numbers to
encode a tree node, which indicate the left and right boundaries of each dimension for this
node. The state also needs to describe the partitioning at the node, which can be handled
in a similar way. We note that the set of rules for the packet classifier are not present in the
observation space. NeuroCuts learns to account for packet classifier rules implicitly through
the rewards it gets from the environment. A full description of the NeuroCuts state and
action representations can be found in Table 5.1.

Training algorithm. We use an actor-critic algorithm to train the agent’s policy [72]. This
class of algorithms have been shown to provide state-of-the-art results in many use cases [24,
105, 134], and can be easily scaled to the distributed setting [36]. We also experimented
with Q-learning [106] based approaches, but found they did not perform as well.

Algorithm 1 shows the pseudocode of the NeuroCuts algorithm, which executes as follows.
NeuroCuts starts with the root node of the decision tree, s∗. The end goal is to learn an
optimized stochastic policy function π(a|s; θ) (i.e., the actor). NeuroCuts first initializes all
the parameters (line 1-6), and then runs for N rollouts to train the policy and the value
function (line 7-23). After each rollout, it reinitializes the decision tree to the root node
(line 9). It then incrementally builds the tree by repeatedly selecting and applying an action
on each non-terminal leaf node (line 11-13) according to the current policy. A terminal leaf
node is a node in which the number of rules is below a given threshold.

More specifically, NeuroCuts traverses the tree nodes in depth-first-search (DFS) order
(line 13), i.e., it recursively cuts the child of the current node until the node becomes a
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Action Space
Tuple(Discrete(NumDims),

Discrete(NumCutActions + NumPartitionActions))
Observation Space Box(low=0, high=1, shape=(278,))

Observation Components

[
BinaryString(Rangedimmin) + BinaryString(Rangedimmax) +

OneHot(Partitiondimmin) + OneHot(Partitiondimmax)
]

∀dim ∈ {SrcIP,DstIP, SrcPort,DstPort, Protocol}
+ OneHot(EffiCutsPartitionID) + ActionMask

Table 5.1: NeuroCuts action and observation spaces described in OpenAI Gym format [13].
Actions are sampled from two categorical distributions that select the dimension and action
to perform on the dimension respectively. Observations are encoded in a one-hot bit vector
(278 bits in total) that describes the node ranges, partitioning info, and action mask (i.e., for
prohibiting partitioning actions at lower levels). When not using the EffiCuts partitioner,
the Partitiondim rule dimension coverage thresholds are set to one of the following discrete
levels: 0%, 2%, 4%, 8%, 16%, 32%, 64%, and 100%.

terminal leaf. Note that the DFS order is not essential. It is used to give a way for the
agent to find a tree node to cut. Other orders, such as the breadth-first-search (BFS), can
be used as well. After the decision tree is built, the gradients are reset (line 14), and then
the algorithm iterates over all the tree nodes to aggregate the gradients (line 15-21). Finally,
NeuroCuts uses the gradients to update the parameters of the actor and critic networks (line
22), and proceeds to the next rollout (line 23).

The first gradient computation (line 19) corresponds to that for the policy gradient loss.
This loss defines the direction to update θ to improve the expected reward. An estimation
of the state value V (s; θv) is subtracted from the rollout reward R to reduce the gradient
variance [72]. V is trained concurrently to minimize its prediction error (line 21). Figure 5.5
visualizes the learning process of NeuroCuts to build a decision tree. The NeuroCuts policy
is stochastic, enabling it to effectively explore many different tree variations during training,
as illustrated in Figure 5.6.

Incorporating existing heuristics. NeuroCuts can easily incorporate additional heuristics
to improve the decision trees it learns. One example is adding rule partition actions. In
addition to the cut action, in our NeuroCuts implementation we also allow two types of
partition actions:

1. Simple: the current node is partitioned along a single dimension using a learned
threshold.

2. EffiCuts: the current node is partitioned using the EffiCuts partition heuristic [154].

Scaling out to handle large packet classifiers. The pseudocode in Algorithm 1 is for a single-
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Algorithm 1 Learning a tree-generation policy using an actor-critic algorithm.

Input: The root node s∗ where a tree always grows from.

Output: A stochastic policy function π(a|s; θ) that outputs a branching action a ∈ A given a node state s,
and a value function V (s; θv) that outputs a value estimate for a node state.

Main routine:

1: // Initialization
2: Randomly initialize the model parameters θ, θv
3: Maximum number of rollouts N
4: Coefficient c ∈ [0, 1] that trades off classification time vs. space
5: Reward scaling function f(x) ∈ {x, log(x)}
6: n← 0
7: // Training
8: while n < N do
9: s← Reset(s∗)

10: // Build a tree using the current policy
11: while s 6= Null do
12: a← π(a|s; θ)
13: s← GrowTreeDFS(s, a)

14: Reset gradients dθ ← 0 and dθv ← 0
15: for (s, a) ∈ TreeIterator(s∗) do
16: // Compute the future rewards for the given action
17: R← −(c · f(Time(s)) + (1− c) · f(Space(s)))
18: // Accumulate gradients wrt. policy gradient loss
19: dθ ← dθ +∇θ log π(a|s; θ)(R− V (s; θv))
20: // Accumulate gradients wrt. value function loss
21: dθv ← dθv + ∂(R− V (s; θv))

2/∂θv

22: Perform update of θ using dθ and θv using dθv.
23: n← n+ 1

Subroutines:

• Reset(s): Reset the tree s to its initial state.

• GrowTreeDFS(s, a): Apply action a to tree node s, and return the next non-terminal leaf node in
the tree in depth-first traversal order.

• TreeIterator(s): Non-terminal tree nodes of the subtree s and their taken action.

• Time(s): Upper-bound on classification time to query the subtree s. In non-partitioned trees this is
simply the depth of the tree.

• Space(s): Memory consumption of the subtree s.

threaded implementation of NeuroCuts. This is sufficient for small classifiers. But for large
classifiers with tens or hundreds of thousands of rules, parallelism can significantly improve
the speed of training. In Figure 5.7 we show how Algorithm 1 can be adapted to build
multiple decision trees in parallel.



CHAPTER 5. APPLICATION: OPTIMIZING PACKET CLASSIFICATION DATA
STRUCTURES 63

Policy Evaluation

Policy Evaluation

Policy Evaluation

Improve 𝜃, 𝜃v via 
stochastic gradient 
descent
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tree rollouts

Broadcast new values of 𝜃
Figure 5.7: NeuroCuts can be parallelized by generating decision trees in parallel from the
current policy.

Handling classifier updates. Packet classifiers are often updated by network operators based
on application requirements, e.g., adding access control rules for new devices. For small
updates of only a few rules, NeuroCuts modifies the existing decision tree to reflect the
changes. New rules are added to the decision tree according to the existing structure; deleted
rules are removed from the terminal leaf nodes. When enough small updates accumulate or
a large update is made to the classifier, NeuroCuts re-runs training.

5.5 Implementation

Deep RL algorithms are notoriously difficult to reproduce [58]. For a practical implementa-
tion, we prioritize the ability to (i) leverage off-the-shelf RL algorithms, and (ii) easily scale
NeuroCuts to enable parallel training of policies.

Decision tree implementation. We implement the decision tree data structure for Neu-
roCuts in Python for ease of development. To ensure minor implementation differences do
not bias our results, we use this same data structure to implement each baseline algorithm
(e.g., HiCuts, EffiCuts, etc.), as well as to implement NeuroCuts.

Branching decision process environment. As discussed in Section 5.4, the branching
structure of the NeuroCuts environment poses a challenge due to its mismatch with the
MDP formulation assumed by many RL algorithms. A typical RL environment defines a
transition function Pa(st+1|st) and a reward function Ra(s, s

′). The first difference is that
the state transition function in NeuroCuts returns multiple child states, instead of a single



CHAPTER 5. APPLICATION: OPTIMIZING PACKET CLASSIFICATION DATA
STRUCTURES 64

state., i.e., (st, at) → {s0
t+1, ..., s

k
t+1}. Second, the final reward for NeuroCuts is computed

by aggregating across the rewards of child states. More precisely, for the cut action we use
max aggregation for classification time and sum aggregation for memory footprint. For the
partition action, we use sum aggregation for both metrics.

The recursive dependence of the NeuroCuts reward calculation on all descendent state
actions means that it is difficult to flatten the tree structure of the environment into a single
MDP, which is required by existing off-the-shelf RL algorithms. Rather than attempting to
flatten the NeuroCuts environment, our solution is to instead treat the NeuroCuts environ-
ment as a series of independent 1-step decision problems, each of which yields an “immediate”
reward. The actual reward for these 1-step decisions is calculated once the relevant sub-tree
rollout is complete.

For example, consider a NeuroCuts tree rollout from a root node s1. Based on πθ the
agent decides to take action a1 to split s1 into s2, s3, and s4. Of these child nodes, only s4

needs to be further split (via a2), into s5 and s6, which finishes the tree. The experiences
collected from this rollout consist of two independent 1-step rollouts: (s1, a1) and (s4, a2).
Taking the time-space coefficient c = 1 and discount factor γ = 1 for simplicity, the total
reward R for each rollout would be R = 2 and R = 1 respectively.

Multi-agent implementation. Since these 1-step decisions are logically independent of
each other, NeuroCuts execution can be realized as a multi-agent environment, where each
node’s 1-decision problem is taken by an independent “agent” in the environment. Since we
want to learn a single policy, πθ, for all states, the agents must be configured to share the
same underlying stochastic neural network policy. This ensures all experiences go towards
optimizing the single shared policy πθ. When using an actor-critic algorithm to optimize the
policies of such agents, the relevant loss calculations induced by this multi-agent realization
are identical to those presented in Algorithm 1.

There are several ways to implement the 1-step formulation of NeuroCuts while leveraging
off-the-shelf RL libraries. In Algorithm 1 we show standalone single-threaded pseudocode
assuming a simple actor-critic algorithm is used. In our experiments, we use the multi-agent
API provided by Ray RLlib [92], which implements parallel simulation and optimization of
such RL environments.

Performance. We found that NeuroCuts often converges to its optimal solution within
just a few hundred rollouts. The size of the rule set does not significantly affect the number
of rollouts needed for convergence, but affects the running time of each rollout. For smaller
problems (e.g., 1000 rules), this may be within a few minutes of CPU time. The computa-
tional overhead for larger problem scales with the size of the classifier, i.e., linearly with the
number of rules that must be scanned per action taken to grow the tree. The bulk of time
in NeuroCuts is spent executing tree cut actions. This is largely an artifact of our Python
implementation, which iterates over each rule present in a node on each cut action. An
optimized C++ implementation of the decision tree would further reduce the training time.
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Optimizations

Rollout truncation. During the initial phase of learning, the unoptimized policy will
create excessively large trees. Since NeuroCuts does not start learning until a tree is complete,
it is necessary to truncate rollouts to speed up the initial phase of training. For larger
classifiers, we found it necessary to allow rollouts of up to 15000 actions in length.

Depth truncation. Since valid solutions never involve trees of depth greater than a few
hundred, we also truncate trees once they reach a certain depth. In our experience, depth
truncation is only a factor early on in learning; NeuroCuts quickly learns to avoid creating
very deep trees.

Proximal Policy Optimization. For better stability and more sample-efficient learning,
in our experiments we choose to use Proximal Policy Optimization (PPO) [134]. PPO
implements an actor-critic style loss with entropy regularization and a clipped surrogate
objective, which enables improved exploration and sample efficiency. We report the PPO
hyperparameters we used in Table 5.2. It is important to note however that this particular
choice of RL algorithm is not fundamental to NeuroCuts.

5.6 Evaluation

In the evaluation, we seek to answer the following questions:

1. How does NeuroCuts compare to the state-of-the-art approaches in terms of classifica-
tion time and memory footprint? (Section 5.6 and 5.6)

2. Beyond tabula rasa learning, can NeuroCuts effectively incorporate and improve upon
pre-engineered heuristics? (Section 5.6)

3. How sensitive is NeuroCuts to the hyperparameters of the neural network architecture
(Section 5.6), and the time-space coefficient c (Section 5.6)?

For the results presented in the next sections, we evaluated NeuroCuts within the space
of hyperparameters shown in Table 5.2. We did not otherwise perform extensive hyperpa-
rameter tuning; in fact we use close to the default hyperparameter configuration of the PPO
algorithm. The notable hyperparameters we swept over include:

• Allowed top-node partitioning (none, simple, and the EffiCuts heuristic), which strongly
biases NeuroCuts towards learning trees optimized for time (none) vs space (EffiCuts),
or somewhere in the middle (simple).

• The max number of timesteps allowed per rollout before truncation. It must be large
enough to enable solving the problem, but not so large that it slows down the initial
phase of training.
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Hyperparameter Value
Time-space coefficient c ¡set by user¿
Top-node partitioning {none, simple, EffiCuts}
Reward scaling function f {x, log(x)}
Max timesteps per rollout {1000, 5000, 15000}
Max tree depth {100, 500, inf}
Max timesteps to train 10000000
Max timesteps per batch 60000
Model type fully-connected
Model nonlinearity tanh
Model hidden layers {256x256, 512x512}
Weight sharing between θ, θv {true, false}
Learning rate 0.00005
Discount factor γ 1.0
PPO entropy coefficient 0.01
PPO clip param 0.3
PPO VF clip param 10.0
PPO KL target 0.01
SGD iterations per batch 30
SGD minibatch size 1000

Table 5.2: NeuroCuts hyperparameters. Values in curly braces denote a space of values
searched over during evaluation. We found that the most sensitive hyperparameter is the
top-node partitioning, which greatly affects the structure of the search problem. It is also
important to ensure that the rollout timestep limit and model used are sufficiently large for
the problem.

• We also experimented with values for the time-space tradeoff coefficient c ∈ {0, 0.1, 0.5, 1}.
When c < 1, we used log(x) as the reward scaling function to simplify the combining
of the time and space rewards.

We ran NeuroCuts on m4.16xl AWS machines, with four CPU cores used per NeuroCuts
instance to speed up the experiment. Because the neural network model and data sizes
produced by NeuroCuts are quite small (e.g., in contrast to image observations from Atari
games), the use of GPUs is not necessary. Our main training bottleneck was the Python
implementation of the decision tree. We ran each NeuroCuts instance for up to 10 million
timesteps (i.e., up to a couple thousand generated trees in total), or until convergence.

We compare NeuroCuts with four hand-tuned algorithms: HiCuts [53], HyperCuts [140],
EffiCuts [154], and CutSplit [89]. We use the standard benchmark, ClassBench [148], to
generate packet classifiers with different characteristics and sizes. The benchmark metrics
are those from prior work: classification time (tree depth) and memory footprint (bytes per
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Figure 5.8: Classification time (tree depth) for HiCuts, HyperCuts, EffiCuts, and NeuroCuts
(time-optimized) across the (1k, 10k, and 100k) sized rulesets. We omit four entries for
HiCuts and HyperCuts that did not complete after more than 24 hours.

rule). Since we use the same underlying tree data structure for all algorithms, a lesser depth
virtually guarantees more efficient traversal, and the same is true for memory footprint.

We find that NeuroCuts significantly improves over all baselines in classification time
while also generating significantly more compact trees. NeuroCuts is also competitive when
optimizing for memory, with a 25% median space improvement over EffiCuts without com-
promising in time.
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Figure 5.9: Memory footprint (bytes per rule) used for HiCuts, HyperCuts, EffiCuts, and
NeuroCuts (space-optimized) across the (1k, 10k, and 100k) sized rulesets. We omit four
entries for HiCuts and HyperCuts that did not complete after more than 24 hours.

Time-Optimized NeuroCuts

In Figure 5.8, we compare the best time-optimized trees generated by NeuroCuts against
HiCuts, HyperCuts, EffiCuts, and CutSplit in the ClassBench classifiers. NeuroCuts provides
a 20%, 38%, 52% and 56% median improvement over HiCuts, HyperCuts, EffiCuts, and
CutSplit respectively. NeuroCuts also does better than the minimum of all baselines in
70% of the cases, with a median all-baseline improvement of 18%, average improvement of
12%, and best-case improvement of 58%. These time-optimized trees generally correspond
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to NeuroCuts runs with either no partitioning action or the simple top-node partitioning
action.

Space-Optimized NeuroCuts

We again compare NeuroCuts against the baselines in Figure 5.9, this time selecting the
most space-optimized trees and comparing the memory footprint (bytes per rule). As ex-
pected, NeuroCuts does significantly better than HiCuts and HyperCuts since it can learn
to leverage the partition action. NeuroCut’s space-optimized trees show a 40% median and
44% mean improvement over EffiCuts. In our experiments NeuroCuts does not usually out-
perform CutSplit in memory footprint, with a 26% higher median memory usage compared
to CutSplit, though the best case improvement is still 3× (66%) over all baselines.

Separately, we also note that the memory footprints of the best time-optimized trees gen-
erated by NeuroCuts are significantly lower than those generated by HiCuts and HyperCuts,
with a ¿100× median space improvement along with the better classification times reported
in Section 5.6. However, these time-optimized trees are not competitive in space with the
space-optimized NeuroCuts, EffiCuts and CutSplit trees.

Improving on EffiCuts

In Figure 5.10 we examine a set of 36 NeuroCuts trees (one tree for each ClassBench classifier)
generated by NeuroCuts with the EffiCuts partition action. This is in contrast with the prior
experiments that selected trees optimized for either space or time alone. On this 36-tree set,
there is a median space improvement of 29% relative to EffiCuts; median classification time
is about the same. This shows that NeuroCuts is able to effectively incorporate and improve
on pre-engineered heuristics such as the EffiCuts top-level partition function.

Surprisingly, NeuroCuts is able to outperform EffiCuts despite the fact that NeuroCuts
does not use multi-dimensional cut actions. When we evaluate EffiCuts with these cut
types disabled, the memory advantage of NeuroCuts widens to 67% at the median. This
suggests that NeuroCuts could further improve its performance if we also incorporate multi-
dimensional cut actions via parametric action encoding techniques [41]. It would also be
interesting to, besides adding actions to NeuroCuts, consider postprocessing steps such as
resampling that can be used to further improve the stochastic policy output.

Neural Network Architecture

To better understand the influence of the neural network architecture on NeuroCuts per-
formance, we conduct an ablation study where the network size is reduced from 512x512
(hundreds of thousands of parameters) all the way down to 16x16 (a couple hundred pa-
rameters). We also consider the case where the network is trivial and does not process the
observation at all, similar to a non-contextual bandit. For this study we run a single sweep
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EffiCuts.

Figure 5.10: Sorted rankings of NeuroCuts’ improvement over EffiCuts in the ClassBench
benchmark. Here NeuroCuts is run with only the EffiCuts partition method allowed. Positive
values indicate improvements.

across only these architecture hyperparameters, keeping all the others fixed, and use the
simple partition method.

The results are shown in Figure 5.11. We observe that while the larger 64x64 network
consistently outperforms 16x16, at 512x512 performance starts to be impacted due to the
larger number of learnable parameters.3 Interestingly, while the bias-only network did the
worst, it still was able to generate reasonably compact trees in many cases. This suggests
that NeuroCuts may operate by first learning a random distribution of actions that leads
to a basic solution, and then leveraging the capacity of its neural network to specialize the

3We note that these results might not hold for different hyperparameters, e.g., if allowed longer training
periods, larger networks may dominate.
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Figure 5.11: Comparison of the mean best classification time achieved by NeuroCuts across
different network architectures and groups of classifiers. The bias-only architecture refers to
a trivial neural network that does not process the observation at all and emits a fixed action
probability distribution (i.e., a pure bandit). Results are normalized within classifier groups
so that the best tree has a normalized time of 1. Rulesets that did not converge to a valid
tree were assigned a time of 100 prior to normalization.

action distribution to different portions of the rule space.

Tuning Time vs Space

Finally, in Figure 5.12 we sweep across a range of values of c for NeuroCuts with the simple
partition method and log(x) reward scaling. We plot the ClassBench median of the best
classification times and bytes per rule found for each classifier. We find that classification
time improves by 2× as c → 1, while the number of bytes per rule improves 2× as c → 0.
This shows that c is effective in controlling the tradeoff between space and time.

5.7 Related Work

Packet classification. Packet classification is a long-standing problem in computer net-
working. Decision-tree based algorithms are a major class of algorithmic solutions. Existing
solutions rely on hand-tuned heuristics to build decision trees. HiCuts [53] is a pioneering
work in this space. It cuts the space of each node in one dimension to create multiple equal-
sized subspaces to separate rules. HyperCuts [140] extends HiCuts by allowing cutting in
multiple dimensions at each node. HyperSplit [124] combines the advantages of rule-based
space decomposition and local-optimized recursion to guarantee worst-case classification time
and reduce memory footprint. EffiCuts [154] introduces four heuristics, including separable
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Figure 5.12: The classification time improves by 2× as the time-space coefficient c→ 1, and
conversely, number of bytes per rule improves 2× as c→ 0.

trees, tree merging, equal-dense cuts and node co-location, to reduce rule replication and
imbalance cutting. CutSplit [89] integrates equal-sized cutting and equal-dense cutting to
optimize decision trees. Besides decision-tree based algorithms, there are also other algo-
rithms proposed for packet classification, such as tuple space search [142], RFC [52] and
DCFL [149]. These algorithms are not as popular as decision-tree based algorithms, be-
cause they are either too slow or consume too much memory. There are also solutions that
exploit specialized hardware such as TCAMs, GPUs and FPGAs to support packet clas-
sification [141, 98, 69, 80, 94, 157, 146, 125]. Compared to existing work, NeuroCuts is
an algorithmic solution that applies Deep RL to generate efficient decision trees, with the
capability to incorporate and improve on existing heuristics as needed.

Decision trees for machine learning. There have been several proposals to use deep
learning to optimize the performance of decision trees for machine learning problems [112,
163, 73]. In these settings, the objective is maximizing test accuracy. In contrast, packet
classification decision trees provide perfect accuracy by construction, and the objective is
minimizing classification time and memory usage.

Structured data in deep learning. There have many recent proposals towards applying
deep learning to process and generate tree and graph data structures [178, 171, 50, 164,
160, 165]. NeuroCuts sidesteps the need to explicitly process graphs, instead exploiting the
structure of the problem to encode agent state into a compact fixed-length representation.

Deep reinforcement learning. Deep RL leverages the modeling capacity of deep neural
networks to extend classical RL to domains with large, high-dimensional state and action
spaces. DQN [106, 156] is one of the earliest successes of Deep RL, and shows how to learn
control policies from high-dimensional sensory inputs and achieve human-level performance
in Atari 2600 games. A3C, PPO, and IMPALA [105, 134, 36] scale actor-critic algorithms
to leverage many parallel workers. AlphaGo [138], AlphaGo Zero [139] and AlphaZero [137]
show that Deep RL algorithms can achieve superhuman performance in many challenging
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games like Go, chess and shogi. Deep RL has also been applied to many other domains like
natural language processing [86] and robotics [83, 84, 82]. NeuroCuts works in a discrete
environment and applies Deep RL to learn decision trees for packet classification.

Deep learning for networking and systems. Recently there has been an uptake in
applying deep learning to networking and systems problems [177, 170, 99, 153, 22, 67, 30, 176,
101]. NAS [170] utilizes client computation and deep neural networks to improve the video
quality independent to the available bandwidth. Pensieve [99] generates adaptive bitrate
algorithms using Deep RL without relying on pre-programmed models or assumptions about
the environment. Valadarsky [153] applies Deep RL to learn network routing. Chinchali
[22] uses Deep RL for traffic scheduling in cellular networks. AuTO [19] scales Deep RL
for datacenter-scale traffic optimization. There are also many solutions that apply deep
reinforcement learning to congestion control [67, 30, 176] and resource management [101].
We explore the application of Deep RL to packet classification, and propose a new algorithm
to learn decision trees with succinct encoding and scalable training mechanisms.

5.8 Conclusion

We present NeuroCuts, a simple and effective Deep RL formulation of the packet classification
problem. NeuroCuts provides significant improvements on classification time and memory
footprint compared to state-of-the-art algorithms. It can easily incorporate pre-engineered
heuristics to leverage their domain knowledge, optimize for flexible objectives, and generates
decision trees which are easy to test and deploy in any environment.

We hope NeuroCuts can inspire a new generation of learning-based algorithms for packet
classification. As a concrete example, NeuroCuts currently optimizes for the worst-case
classification time or memory footprint. By considering a specific traffic pattern, NeuroCuts
can be extended to other objectives such as average classification time. This would allow
NeuroCuts to not only optimize for a specific classifier but also for a specific traffic pattern
in a given deployment.
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Chapter 6

Application: Accelerating Database
Cardinality Estimation

As with applied machine learning, applied RL practitioners often find the hardest part of
solving the problem is coming up with the right problem framing. In RL, this means designing
the environment and objective to optimize. In Chapter 5 we saw that an efficient state space
formulation and problem decomposition led to state of the art results. In this chapter we’ll
dive deeply into one part of the puzzle of solving database query optimization with RL.
The problem is complex—decades of study have gone into database query optimizers. We
encounter a similar depth of obstacles when looking at query optimization from the RL
perspective. Not only does one need to define the environment, which is challenging given
the complex, tree-structured nature of database query plans, one quickly finds that executing
simulations can be prohibitively expensive.

One approach of mitigating the expense of executing real database queries for training is
to take a model-based approach—try to learn a simulator for the database. In the databases
domain, this amounts to learning a compressed representation of the data distribution held
by the database, which we use to infer the magnitude of data that flows through each node
of a database query plan. This chapter introduces a practically fast inference method that
can be used to accelerate RL training on databases.

6.1 Introduction

Deep autoregressive models (AR) compute point likelihood estimates of individual data
points. However, many applications (i.e., database cardinality estimation) require estimating
range densities, a capability that is under-explored by current neural density estimation liter-
ature. In these applications, fast and accurate range density estimates over high-dimensional
data directly impact user-perceived performance. In this chapter, we explore a technique,
variable skipping, for accelerating range density estimation over deep autoregressive models.
This technique exploits the sparse structure of range density queries to avoid sampling un-
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Figure 6.1: Approximate number of model forward passes required to achieve single-digit
inference error at the 99th quantile. Y-axis shown in log scale, lower is better. Variable
skipping provides 10-100× compute savings for challenging high-quantile error targets. Refer
to the Evaluation section for full results.

necessary variables during approximate inference. We show that variable skipping provides
10-100× efficiency improvements when targeting challenging high-quantile error metrics, en-
ables complex applications such as text pattern matching, and can be realized via a simple
data augmentation procedure without changing the usual maximum likelihood objective.

Deep AR models have achieved state-of-the-art density estimation results in image, video,
and audio [130, 113, 155, 21, 126, 161]. Recent work has applied them to domains tradition-
ally outside of machine learning, such as physics [136], protein modeling [127], and database
query optimization [167, 168]. These use cases have surfaced the need for complex inference
capabilities from deep AR models. For example, the database cardinality estimation task
reduces to estimating the density mass occupied by sets of variables under sparse range con-
straints. In this problem, the database optimizer probes the fraction of records satisfying
a query of high-dimensional constraints, e.g., Pr(age > 35 && salary < 50K), and relies on
accurate estimates to pick performant query execution strategies.

In this chapter, we call for attention to such range density estimation problems in the
context of deep AR models. Given rapid advances in model capabilities, fast and accurate
range density estimation has broad potential applicability to a number of domains, including
databases, text processing, and inpainting (Section 6.1).

Range density estimation involves two related challenges: nolistsep

• Marginalization: the handling of unconstrained variables, and

• Range Constraints: variables that are constrained to a specific range or subset of
values.
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Figure 6.2: Comparison of point density and range density estimation. Naive marginalization
to estimate range densities takes time proportional to the size of the query region (i.e.,
exponential in the number of dimensions of the joint distribution).

Exact inference or integration over the query region takes time exponential in the number of
dimensions—a cost too high for all but the tiniest problems. Further, both marginalization
and range constraints are difficult to implement on top of AR models since they are only
trained to provide point density estimates. This motivates the use of approximate inference
algorithms such as recently proposed by [167], which show that AR models can significantly
improve on the state-of-the-art in range estimation accuracy while remaining competitive in
latency.

Building on prior work, we distill and evaluate a more general optimization for accelerat-
ing range density estimation termed variable skipping. The central idea is to exploit the spar-
sity of range queries, by avoiding sampling through the unconstrained dimensions (i.e., those
to be marginalized over) during approximate inference. A training-time data augmentation
procedure randomly replaces some dimensions in the input with learnable marginalization
tokens, which are trained to represent the absence of those dimensions. During inference,
the unconstrained dimensions take on these learned values instead of being sampled from
their respective domains.

Variable skipping provides two key advantages. First, by not needing to sample a con-
crete value for certain variables, the number of forward passes is significantly reduced from
O(|Vars|) (e.g., hundreds) to O(|ConstrainedVars|) (e.g., a few). Second, by avoiding sam-
pling through the (potentially large) unconstrained region, it is possible to reduce the vari-
ance of the sampling-based estimator. We show that variable skipping realizes both advan-
tages in practice (Figure 6.1).

Reducing the computation required for estimates can significantly impact the viability of
model-based estimators for the aforementioned computer systems applications. For example,
in database query optimization, cardinality estimation is typically run in the inner loop of a
dynamic program [135], and hence has to be executed many times in potentially unbatchable
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fashion. Further, this process must be re-run for each new query as it may have different
variable constraints. In this setting, reducing estimation costs from tens or hundreds of
forward passes (i.e., the number of columns in a typical production database) to just a
handful (i.e, the number of constraints in a typical range query) is critical for adoption.
Models that include rarely queried text columns (e.g., byte pair encoded, which exacerbates
the problem) may benefit further still.

We start by discussing related work, then reviewing the previously proposed approx-
imate inference algorithm [167], termed Progressive Sampling (Section 6.3), which allows
any trained autoregressive model to efficiently compute range densities. We then discuss an
optimization, variable skipping, which allows dimensions irrelevant to a query to be skipped
over at inference time, greatly reducing or eliminating sampling costs (Section 6.4). We show
that, beyond accelerating range density estimation, variable skipping can enable related ap-
plications such as pattern matching and text completion. Finally, we study the performance
of variable skipping (Section 6.5).

Our contributions are as follows:

1. We distill the more general concept of variable skipping, a training and run-time opti-
mization that greatly reduces the variance of range density estimates.

2. To show its generality, we apply variable skipping to text models, which can then
support applications such as pattern matching.

3. We evaluate the effectiveness of variable skipping across a variety of datasets, archi-
tecture, and hyperparameter choices, and compare with related techniques such as
multi-order training.

4. To invite research on this under-explored problem, we open source our code and a
set of range density estimation benchmarks on high-dimensional discrete datasets at
https://var-skip.github.io.

Applications of Range Density Estimation

Range density estimation is important for the following applications, among others:

Database Systems: A core primitive in database query optimizer is cardinality estima-
tion [135]: given a query with user-defined predicates for a subset of columns, estimate the
fraction of records that satisfy the predicates. Applying AR models to cardinality estimation
was the topic of [167].

Pattern Matching: A regular expression can be interpreted as a dynamically unrolled
predicate (i.e., a nondeterministic finite automata) [62] over a series of character variables.
Hence, its match probability can be estimated in the same way as a range query. Section 6.4
shows how this can be realized with variable skipping.

https://var-skip.github.io
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Completion and Inpainting: While an AR model can be straightforwardly used to ex-
tend a prefix in the variable ordering, completing a missing value from the middle of a
sequence of variables requires sampling from the marginal distribution over missing values.
We show that variable skipping allows this to be done efficiently (Section 6.4).

6.2 Related Work

Density Estimation with Deep Autoregressive Models have enjoyed vast interest
due to their outstanding capability of modeling high-dimensional data (text, images, tab-
ular). Efficient architectures such as MADE [42] and ResMADE [35] have been proposed,
and self-attention models (e.g., Transformer [158]) have underpinned recent new advances in
language tasks. Our work optimizes the approximate inference (of range density estimates)
on top of such AR architectures.

Masked Language Models . Our variable skipping learns special MASK tokens (Sec-
tion 6.4) by randomly masking inputs, which is similar to masked language models such as
BERT [28] and CMLMs [43]. These models differ from AR models in optimization goals:
they typically predict only the masked tokens conditioned on present tokens, and may as-
sume independence among the masked tokens. We study deep AR models for two reasons:
(1) our problem settings are in density estimation, and deep AR models have generally
shown superior density modeling quality than other generative models; (2) the approximate
inference procedure we study (Section 6.3) assumes access to autoregressive factors.

Multi-Order Training handles marginalization by training over many orders and invok-
ing a suitable order (or an ensemble over available orders) during inference. This technique
has appeared in NADE [152], MADE [42], XLNet [166], among others. Variable skipping
shares the same goal of efficiently handling marginalization. These prior works have reported
increased optimization difficulty as the number of orders to learn increases (some sample a
fixed set of orders, while others keep sampling new orders). In the latter case, we posit that
the difficulty is due to adding n! input variations; in contrast, variable skipping only extends
the vocabulary of each dimension by a MASK symbol, a relatively smaller increase in task
difficulty. In Section 6.5, we compare variable skipping against multi-order training, and
show that they can be combined to further reduce errors.

6.3 Range Density Estimation on Deep

Autoregressive Models

We model a finite set of n-dimensional data points D = {x(0), x(1), . . . , x(M)} as a discrete
distribution using an autoregressive model pθ(x), parameterized by θ. The model is trained
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on D using the maximum likelihood objective:

min
θ
L(θ) = − E

x∼D
log pθ(x) (6.1)

where pθ(x) =
∏

i pθ(xi|x<i) for each data point x.

Range density. We consider range queries of the form

pθ(X1 ∈ R1, . . . , Xn ∈ Rn), (6.2)

where each region Ri is a subset of the domain (Xi). This formulation encapsulates uncon-
strained dimensions, where we simply take Ri = (Xi) (the whole domain).

Background: Progressive Sampling

Exact inference of Equation 6.2 is computationally efficient only for low dimensions or small
domain sizes. Approximate inference is required to scale its computation.

To solve this problem, [167] adapts classical forward sampling [70] for range likelihoods,
yielding an unbiased approximate inference algorithm. The algorithm works by drawing
in-range samples and re-weighting each intermediate range likelihood. Each in-range sample
is drawn from the first dimension to the last (in the AR ordering). As an example, consider
estimating pθ(X1 ∈ R1, X2 ∈ R2, X3 ∈ R3). Progressive sampling draws xMC

1 ∼ pθ(X1|X1 ∈
R1) and stores pθ(X1 ∈ R1)—both tractable operations since a forward pass on the trained
AR produces this single-dimensional distribution. It performs another forward pass to obtain
pθ(X2|xMC

1 ), which then produces a sample xMC
2 and the range likelihood pθ(X2 ∈ R2|xMC

1 ).
Lastly it obtains pθ(X3 ∈ R3|xMC

1 , xMC
2 ). It can be shown that the product of all n range

likelihoods, e.g.,

pθ(X1 ∈ R1)pθ(X2 ∈ R2|xMC
1 )pθ(X3 ∈ R3|xMC

1 , xMC
2 )

is a valid Monte-Carlo estimate of the desired range density.
In the remainder of the paper, we invoke (R1, . . . , Rn) as a black-box estimator, although

our variable technique (described next) can work with other estimators for Equation 6.2.

6.4 Variable Skipping

Variable skipping works by (1) training special marginalization tokens, i, for each dimension
i; (2) at approximate inference, rewriting each unconstrained variable, e.g., Xi ∈ (Xi), into
a constrained variable with the singleton range, Xi ∈ {i}. The training process can be
interpreted as dropout of the input, or as data augmentation.
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Architecture. We assume a model architecture shown in Figure 6.3: the input layer, an
autoregressive core, and the output layer. For the autoregressive core, we use ResMADE [35]
for tabular data and an autoregressive Transformer [158] (encoder only with correct masking)
for text data. At the input layer, we embed each data point using a per-dimension trainable
embedding table, denoted by (). (For text, we tie the embeddings across all dimensions since
they share the same character vocabulary.) The output layer dots the hidden features with
the input embeddings to produce logits.

Training-time input masking. First, we add a special token i to each dimension i’s
vocabulary. For each input x we uniformly draw the number of masked dimensions nmask ∼
[0, |x|), then sample the nmask positions to mask, Xmask. For position i ∈ Xmask, we replace
the original representation, (xi), by the masked representation, (i):

(xi) =(xi)1(i /∈ Xmask)

+ (i)1(i ∈ Xmask).
(6.3)

Importantly, the objective remains the MLE for all autoregressive factors: we train the
parameters to predict the original values at each dimension, given a mix of original and
masked information at previous dimensions. In other words, we minimize the negative log-
likelihood

− log pθ(xi|x<i) = − log pθ (xi|∀j < i, (xj)) (6.4)

over all dimension i. Conditioning on the mask tokens ensures that those representations
are trained. Since we do not alter the output targets and the mask positions are chosen
independently of the data, no bias is introduced.

Infer-time skipping. Given a range query (Equation 6.2), we look for each unconstrained
dimension and replace its domain with a singleton set of its marginalization token:

pθ(. . . , Xi ∈ Ri = (Xi), . . . )

→ pθ(. . . , Xi ∈ R
′

i = {MASKi}, . . . )
(6.5)

We then invoke () which would thus skip the sampling for those dimensions.

Example. Suppose we have an AR model trained over the autoregressive ordering {age, salary, city},
and want to draw a sample from pθ(city|salary > 50k).

• Without skipping, first we draw x1 ∼ pθ(age), then x2 ∼ pθ(salary|age = x1, salary >
50k), and finally x3 ∼ pθ(city|age = x1, salary = x2).

• With skipping, we can directly sample x2 ∼ pθ(salary|age = MASK1, salary > 50k),
followed by x3 ∼ pθ(city|age = MASK1, salary = x2).
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Figure 6.3: Model architecture.

Prefix Skipping for Text Pattern Matching

Any regex can be implemented as a nondeterministic finite automata (NFA) [62], which takes
a stream of characters and determines acceptable next characters. We can use progressive
sampling with any regex, treating its NFA like a dynamically unrolled predicate. For ex-
ample, consider the regex [at](c + |i+)e. Possible matches include ace, aiie, and tiiie.
Progressive sampling would work as follows: first we sample x1 ∈ {a, t}, then x2 ∈ {c, i}.
Depending on whether x2 = c or x2 = i, third we either sample x3 ∈ {c, e} or {i, e} (this is
the “dynamic” part), and so on. By retaining an NFA per sample, we obtain an estimate of
the overall match probability.

However, this naive formulation is inefficient when there are long unconstrained se-
quences. Consider the regex . ∗ icml.∗, intended to match any string containing the token
icml. The probability of sampling a random prefix from an AR model matching this is van-
ishingly small—perhaps millions of samples for a hit. To avoid this, we can try to skip over
sequences of unconstrained characters and compute the probability of icml at specific offsets
directly. All that would remain is sampling forward through the remainder of the variables
to avoid double counting duplicate occurrences of the token. Using m(xi) to denote a string
match at position i, and m(x>i) the existence of a match at any position > i, the match
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Figure 6.4: Masking strategies (Section 6.4). (a) For tabular data, we randomly sample the
dimensions to mask out for each row. (b) For text, we mask a random prefix of each string,
exploiting the natural left-to-right ordering.

probability is approximated as:

Pmatch =
n∑
i=1

P (m(xi)) · (1− P (m(x>i)|m(xi))

≈
n∑
i=1

pθ(m(xi)|{xj = MASKj : j < i})

(1− pθ(m(x>i)|{xj = MASKj : j < i},m(xi))

(6.6)

Due to the need for masking contiguous prefixes, the model is trained with random prefix
masking (Figure 6.4) to allow such contiguous characters to be skipped. We show the
effectiveness of this strategy in Section 6.5, which implements simple pattern queries over
an AR Transformer model.

Other Mask Patterns

Finally, we note that more structured mask patterns can be used, such as sub-sequences
in text or random patches in images [34]. This allows for marginalization over complex
subsets of dimensions with potential applicability to not only sample variables given pre-
fixes of the AR ordering (i.e., from P (xi|x1, . . . , xi−1)) but also variables later on, i.e., from
P (xi|x1, . . . , xi−1, xi+k, . . . , xN) by marginalizing over {xi+1, . . . , xi+k−1}. We leave investi-
gation of these potential applications to future work.
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Table 6.1: Datasets used in evaluation. “Domain” refers to the range of distinct values per
table column (i.e., Dryad-URLs contains 78 different character values).

Dataset Rows Cols Domain Type

DMV-Full 11.6M 19 2–32K Discrete
Census 2.5M 67 2–18 Discrete
KDD 95K 100 2–896 Discrete
Dryad-URLs 2.4M 100 78 Text

6.5 Evaluation

Our evaluation investigates the following questions:

1. How much does variable skipping improve estimation accuracy compared to baselines,
and how is this impacted by the sampling budget?

2. Can variable skipping be combined with multi-order training to further improve accu-
racy?

3. To what extent do hyperparameters such as the model capacity and mask token dis-
tribution impact the effectiveness of variable skipping?

4. Can variable skipping be applied to related domains such as text, or is it limited to
tabular data?

Overall, we find that variable skipping robustly improves estimation accuracy across a
variety of scenarios. Given a certain target accuracy, skipping reduces the required compute
cost by one to two orders of magnitude.

Datasets

We use the following public datasets in our evaluation, also summarized in Table 6.1. When
necessary, we drop columns representing continuous data. We consider supporting continuous
variables an orthogonal issue, and limit our evaluation to discrete domains:

DMV-Full [143]. Dataset consisting of vehicle registration information in New York (i.e.,
attributes like vehicle class, make, model, and color). We use all columns except for the
unique vehicle ID (VIN). This dataset was also used in [167], but there it was restricted to
11 of the smaller columns.

KDD [31]. KDD Cup 1998 Data. We used the first hundred columns, sans noexch,
zip, and pop901-3, which were especially high-cardinality. This leaves 100 discrete integer
domains with 2 to 896 distinct values each.
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Table 6.2: Hyperparameters for all experiments. We used a ResMADE for tabular data, and
a Transformer for text.

Hyperparameter Value

Training Epochs 20 (200 for KDD)
Batch Size 2048
Architecture ResMADE
Residual Blocks 3
Hidden Layers / Block 2
Hidden Layer Units 256
Embedding Size 32
Optimizer Adam
Learning Rate 5e-4
Learning Rate Warmup 1 epoch
Mask Probability ∼ Uniform[0, 1)

Transformer Num Blocks 8
Transformer MLP Dims (dff) 256
Transformer Embed Size (dmodel) 32
Transformer Num Heads 4
Transformer Batch Size 512

Census [31]. The US Census Data (1990) Data Set, which consists of a 1% sample made
publicly available. We use all available columns, which range from 2 to 18 distinct values
each.

Dryad-URLs [65]. For text domain experiments, we use this small dataset of 2.4M URLs,
each truncated to 100 characters. This dataset was chosen to emulate a plausible STRING

column in a relational database.

Evaluation Metric

We issue a large set of randomly generated range queries, and measure how accurately each
estimator answers them. We report the multiplicative error, or Q-error, defined as the factor
by which an estimate differs from the actual density (obtained by actually executing each
query on the dataset):

Error := max(estimate, actual)/min(estimate, actual)

Hence, a perfect estimate for a query has an error of 1.0. Moreover, we report the median,
99%-tile, and maximum Q-error across all queries. We note that the median error is typically
within a fraction of 1.0 for all estimators. The reason is that most randomly generated queries
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Figure 6.5: Variable skipping and skipping combined with multi-order training vs. baselines
across different datasets, variable orderings, and sampling budgets. Error is plotted on
the y-axis in log scale (lower is better). Each column reflects a 10× increase in sampling
budget as we move to the right. Results for 8 different variable orders within each plot
are sorted by increasing error. Variable skipping provides 10−100× max error reduction at
low budgets, and still improves accuracy at high sampling budgets for large datasets such
as DMV-Full. This data is also shown in tabular form in Table 6.5, which additionally
reports median errors.

are “easy” (i.e., hit few cross-dimension predicate correlations), and only a few are “hard”.
Because of this, even a naive estimator can achieve good performance in many cases. Hence,
our focus is on high quantile errors for evaluation.

Experiment Setup

For queries against tabular data, we used the experiment framework from [167], randomly
drawing between 5 and 12 conjunctive variable constraints per query1. It is important to
not have too many or too few constraints, which would skew the distribution of true density
estimates towards 0.0 (too many constraints lead to little density) or 1.0 (too few constraints
lead to high density) respectively.

1An example query for DMV-Full may be: record type == 1 AND city == 17 AND zip > 10000

AND model year < 1990 AND max weight > 5000.
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Table 6.3: The model negative log-likelihoods at convergence in bits/datapoint (evaluated
using non-masked data). We also report standard deviation across multiple random order
seeds.

Dataset Baseline Random Masking MultiOrder(5) MultiOrder(10) MultiOrder(15)

Census 52.04 ± .009 52.34 ± .02 52.69 ± .02 52.79 ± .03 52.81 ± .03
DMV-Full 43.12 ± .04 43.65 ± .06 44.15 ± .05 44.53 ± .06 44.65 ± .04
KDD 107.5 ± .3 116.58 ± .2 123 ± .9 127.6 ± .4 128.4 ± .5

For text queries, we issued pattern glob queries of the form value CONTAINS <str>,
where <str> is a character sequence between 3 and 5 characters in length drawn randomly
from the full text corpus. This also provides a challenging spread of density from very
common (e.g., CONTAINS ".com"), to quite rare (e.g., CONTAINS "XVQ/i").

We compare between the following approaches, all of which use progressive sampling
(Section 6.3) as the approximate inference procedure:

• Baseline: An autoregressive model queried using vanilla progressive sampling [167].

• Skipping: An autoregressive model trained with random input masking and queried
with the variable skipping optimization enabled (Section 6.4).

• MultiOrder: An autoregressive model trained under multiple variable orders to enable
querying an ensemble of 10 orders at inference time [152, 42].

• MultiOrder + Skipping: Combining the multi-order and variable skipping tech-
niques.

The full list of training hyperparameters can be found in Table 6.2. Unless otherwise speci-
fied, we use a ResMADE [35] with 3 residual blocks, two 256-unit hidden layers per block, and
an 32-unit wide embedding for each input dimension. We choose hyperparameters known to
optimize for progressive sampling performance [167], but did not otherwise tune them for our
experiments. In our ablations (Section 6.5) we found that the most sensitive hyperparameter
to performance is the embedding size, which is closely related to model size.

The autoregressive variable ordering can significantly affect estimator variance. We thus
evaluate each technique on 8 randomly chosen variable orderings and train a (fixed-order)
model for each ordering2. For multi-order models, we train 8 distinct sets of 10 randomly
chosen orders (we saw diminishing returns past 10 orders), unless specified otherwise. To
ensure fairness, when not using skipping, we use a model trained without masking.

For multi-order ResMADE, to condition on the current ordering statistics each masked
linear layer is allocated an additional weight matrix that shares the existing mask and has

2For ResMADE, this means we sample 8 sets of {input ordering, intermediate connectivity masks}.
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an all-one vector as its input3. Due to the additional weights, we size down the hidden units
appropriately to ensure that the multi-order models have about the same parameter count
as other models.

Variable Skipping Performance

We evaluate the impact of the variable skipping optimization on the DMV-Full, Census,
and KDD datasets. For each dataset, we generated 1000 random range queries.

In Figure 6.5 we show the results of variable skipping (orange and red lines) compared
against baselines (black and turquoise lines). This data is also shown in tabular form in Table
6.5. We evaluate with sampling budgets of 100, 1000, and 10000 samples (left, center, and
right columns respectively). Note that a sample refers to all the forward passes required to
sample relevant variables (e.g., for Census a single sample takes 67 forward passes without
skipping). We limit to 10k samples for cost reasons (at 10k samples, each query takes
multiple seconds to evaluate even with a GPU). There are several key takeaways:

High-quantile error differentiates estimators: Across all estimators, the median error
is very close to 1.0 (not shown since it is indistinguishable in log scale). However, systems
applications necessarily seek to minimize the worst-case error, which does vary significantly
across samplers.

Skipping significantly improves sampling efficiency: Across all datasets, variable
skipping provides between 10× to 100× max error reduction at low sampling budgets (i.e.,
100 samples), compared to the baseline. It also provides up to 10× improvement over the
multi-order ensemble alone.

Concretely, at 100 samples the 99th-quantile error for Census is reduced from ∼1000 to
2.5, KDD from ∼30 to 3, and DMV-Full from ∼1000 to 100. Moving up to 1000 samples,
we continue to see a significant improvement at the max error, with Census improved from
∼500 to 10, KDD from ∼15 to 8, and DMV-Full from ∼500 to 100.

Compared to multi-order, variable skipping provides 10× better max error reduction for
Census and KDD at 100 samples. Interestingly, while multi-order and variable skipping
provide comparable improvements for DMV-Full at 100 samples, combining multi-order
and skipping provides a further 10× improvement in both max and 99th quantile error. This
suggests that variable skipping and multi-order training are orthogonal mechanisms, and can
be combined for larger datasets such as DMV-Full to reduce both error and inference costs.

Variable skipping can help even at high sampling budgets: On the DMV-Full dataset,
variable skipping provides more than an order of magnitude reduction in max error (from
∼150 to 5), even at 10000 samples. We hypothesize this is due to the large domain sizes of
DMV-Full (up to 32K distinct values), which in the worst case would require a much larger

3This treatment has appeared in MADE [42].
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number of samples to achieve low estimation error. As evidence for this, a large number of
samples are required to achieve good errors even with skipping enabled. This is in contrast
to the smaller Census and KDD datasets where skipping achieves close to single-digit errors
even with as low as 100 samples. This suggests that for even larger datasets (common in
industrial settings), skipping may have an even greater impact.

We have also provided a summary of the results for Figure 6.5 in Figure 6.1. For the
concrete target of 10× error at the 99th quantile, skipping significantly reduces the compute
requirements over both the baseline and multi-order. This is due to both accuracy improve-
ments that combine with those provided by multi-order ensembles, and also the reduced
compute requirements of skipping.

Model Likelihoods vs. Training Scheme

Table 6.4: Variable skipping vs. vanilla progressive sampling on the text domain. Naive
sampling refers to generating samples (from the learned AR model) without constraints and
then filtering the generated samples to estimate the probability of matches. We include naive
sampling as a baseline for this experiment since it is competitive with progressive sampling in
the text domain. We measure the estimation error over 100 random pattern queries against
the Dryad-URLs dataset, and show the bootstrap standard deviation.

Num Samples Metric Naive Sampling Progressive Sampling Variable Skipping

1000 Max Error 6412 ± 1280 4628 ± 1785 115.2 ± 25.6
1000 P99 Error 4054 ± 1386 1741 ± 1824 89.5 ± 30.6
1000 Median Error 1.23 ± .06 1.66 ± .15 1.39 ± .08

Training with partially masked inputs makes the learning task more difficult: the number
of examples increases by a factor of 2N , and effectively the same model is learning multi-
ple autoregressive distributions. Table 6.3 shows that in terms of negative log-likelihoods
achieved, models trained with masking do have a slightly higher NLL than baseline, as ex-
pected. However, the NLLs achieved are lower than those of multi-order models, and the
gap only widens with an increased number of orders.

Even though NLLs of masked models are higher than those of baseline, Figure 6.5 shows
the benefit: estimation error is significantly improved when variable skipping is enabled.
This highlights the non-perfect alignment of optimizing for point likelihoods vs. downstream
range query performance, opening up interesting future directions.

Model Size and Masking Ablations

In Figure 6.6 we study the relationship between model size and estimation accuracy. For
this experiment, we vary the model embedding size among {2, 8, 32} dimensions, and the
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The results for each dataset are sorted in increasing error. Errors are plotted on the y-axis
in log scale (lower is better). Errors increase as the model embedding sizes are reduced from
32 to 2, and hidden layer sizes from 256 to 16. Variable skipping (solid lines) retains an
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hidden layer size among {16, 64, 256} units. We see that variable skipping retains a robust
advantage across nearly two orders of magnitude variation in model size.
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Figure 6.7: Varying the masking scheme. Here we measure the max estimator error with
skipping enabled over 1000 queries with 1000 samples each, on the natural variable order.
Errors are plotted on the y-axis in log scale (lower is better).
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In Figure 6.7 we compare a few schemes for selecting the mask distribution, from fixed
masking probabilities of {0.1, 0.3, 0.5, 0.7, 0.9}, vs. the random uniform scheme used in the
main experiment. We see that drawing the mask probability uniformly at random obtains the
lowest errors for KDD and DMV-Full, and close to optimal for Census as well, showing
it to be a robust choice.

Application to Pattern Matching in Text Domain

Finally, we show that variable skipping can be applied to the text domain for estimating the
probability of pattern matches. Pattern matching (or more generally, regex matching), can
be thought of as unrolling a dynamic predicate as variables are sampled (Section 6.4). Here
we evaluate a simple character-level Transformer model on the Dryad-URLs dataset. We
note that this is not a realistic application since scanning a dataset of this size is much faster
than sampling from a model, however it demonstrates the applicability of variable skipping
across domains. Table 6.4 shows that prefix skipping enables much lower variance estimates
than naive sampling and vanilla progressive sampling.

6.6 Conclusion

To summarize, we identify the range density estimation task and important applications. We
propose variable skipping, which greatly reduces sampling variance and inference latency.
We validate the effectiveness of these techniques across a variety of datasets and model
configurations.
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Table 6.5: The full table of quantiles across all random orders evaluated in Figure 6.5. We
show the mean and standard deviation of the quantiles across the random order seeds.

Samples Metric Dataset Progressive Multi-Order Skipping Multi + Skip

100 P50 Census 1.19 ± .01 1.53 ± .32 1.09 ± .01 1.21 ± .03
KDD 1.24 ± .02 1.41 ± .16 1.14 ± .02 1.25 ± .05
DMV-Full 1.22 ± .04 1.70 ± .22 1.08 ± .01 1.22 ± .04

P99 Census 1150 ± 550 38.6 ± 52 2.55 ± .29 3.36 ± .32
KDD 36.4 ± 11 9.82 ± 3.4 4.58 ± .83 5.07 ± .85
DMV-Full 1130 ± 1300 80 ± 81 93 ± 69 6.5 ± 1.7

Max Census 24500 ± 18000 3490 ± 6700 15.1 ± 7.3 12.3 ± 5.3
KDD 345 ± 280 99.9 ± 140 9.97 ± 4.1 9.25 ± 1.9
DMV-Full 21200 ± 22000 1640 ± 2600 1560 ± 1700 22.7 ± 13

1000 P50 Census 1.06 ± .01 1.44 ± .31 1.09 ± .01 1.20 ± .02
KDD 1.08 ± .01 1.34 ± .17 1.13 ± .02 1.25 ± .05
DMV-Full 1.08 ± .01 1.53 ± .24 1.05 ± .01 1.18 ± .04

P99 Census 2.58 ± .39 3.84 ± 1.1 2.50 ± .28 3.2 ± .28
KDD 5.78 ± 1.7 4.69 ± .67 4.41 ± .74 5.05 ± .89
DMV-Full 105 ± 44 11.3 ± 4.8 4.24 ± 2.1 4.92 ± .81

Max Census 798 ± 700 212 ± 330 14.7 ± 7.0 12.8 ± 5.1
KDD 30.7 ± 30 9.42 ± 3.8 9.95 ± 4.1 9.37 ± 1.9
DMV-Full 508 ± 200 39.4 ± 43 114 ± 100 14 ± 6.7

10000 P50 Census 1.03 ± .01 6.31 ± 1.6 1.09 ± .01 1.20 ± .24
KDD 1.05 ± .01 1.33 ± .18 1.13 ± .02 1.25 ± .05
DMV-Full 1.05 ± .01 1.48 ± .24 1.05 ± .01 1.18 ± .04

P99 Census 1.49 ± .08 2.84 ± .70 2.48 ± .29 3.20 ± .29
KDD 2.99 ± .19 4.43 ± .93 4.36 ± .75 5.08 ± .85
DMV-Full 5.95 ± 3.4 7.23 ± 2.4 2.89 ± .34 4.96 ± .85

Max Census 8.86 ± 14 6.31 ± 1.6 14.7 ± 7.0 12.6 ± 5.0
KDD 7.0 ± 1.5 7.57 ± 1.9 9.97 ± 4.1 9.37 ± 1.9
DMV-Full 181 ± 78 13.5 ± 6.2 20.2 ± 40 10.5 ± 2.6
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Chapter 7

Conclusion

This thesis started with the design of RLlib, a scalable and universal open source library for
distributed reinforcement learning. Today, this project is among the most widely adopted RL
libraries in both industry and academia, and sets the standard for applied use cases. Initially,
our goal was to define a flexible architecture that enables support for a broad range of RL
algorithms with high performance. Based on user feedback, our library evolved from merely
providing system primitives to solving the other aspects of RL systems design of concern:
support multi-agent computations, a functional API for numerical definitions, batch training,
customizations, and support for complex environments. Addressing these user concerns led
to conceptual improvements such as a dataflow-centric API, which provides abstractions that
not only enable advanced multi-agent use cases, but considerably slim down and simplify
large portions of RLlib’s distributed execution implementation. The second half of this thesis
looked back at how we leverage RL and ML for improving systems, specifically diving into
examples improving the construction of packet classifiers and data cardinality estimators.

Open Source Impact

Over the past four years, RLlib has grown from a handful of parallel algorithms (A3C,
DQN, PPO, and Evolution Strategies) to a toolkit for large-scale RL that features more
than twenty algorithms maintained in conjunction with the open source community. We’re
deeply thankful to the early users who took a bet on RLlib when it was initially released
and have offered countless contributions and suggestions to improve it over the years.

It’s quite difficult to accurately measure the usage of an open source project, but here
are a few of the interesting facts about RLlib:

• More than a dozen of RLlib’s algorithms have been contributed by the community, in-
cluding the MA-DDPG and QMIX multi-agent algorithms, ARS, DDPG, TD3, MAR-
WIL, SAC, Linear UCB, Linear Thompson Sampling, and AlphaZero.

• RLlib is offered as part of the public AI platform in two of three major cloud providers
(AWS Sagemaker, Azure ML), as well by several smaller industry ML platforms.
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• The largest deployments of RLlib use thousands of CPUs for distributed training.

• RLlib was used by QuantumBlack to help the Emirates Team New Zealand to win
America’s Cup—competitive sailing’s most coveted prize. To accomplish this, they
used RL for training virtual sailors to evaluate boat designs also generated via RL.

• Use cases we are aware of include traffic flow, safety RL, compiler optimization, data
structure layout, multi-agent research, intelligent autoscaling, video games such as
Minecraft, StarCraft, and car racing, police patrol scheduling, large-scale econometrics,
industrial optimization, optimizing cellular antenna coverage, trade order execution,
COVID-19 drug discovery, supply chain optimization, and building AI team-mates.

More generally, RLlib has enabled users the ability to rapidly experiment with different
RL approaches at scale, including helping us tackle the RL for systems problems in this
thesis. With NeuroCuts, we were able to show significant improvements over twenty years
of research into packet classification data structures. These advances were enabled by a
novel framing of the packet classification tree problem as an RL environment, which could
be executed out of the box with RLlib thanks to its flexibility. Using RLlib, research collab-
orators experimenting with RL for databases were able to leverage a variety of different RL
approaches, including meta-learning and environment modeling techniques such as variable
skipping. In a similar vein, the authors of NeuralMMO [145], a massively multi-agent sim-
ulation environment, were able to almost immediately set a new record for agent longevity
after porting their environment to RLlib’s multi-agent API. Because of these advantages, we
believe that flexibility combined with high performance will be a key quality for RL systems
and more generally ML systems in the future.

Future Work

This section lists avenues of future work we believe would be of research interest, several of
which have immediate practical applications.

Automatic optimization of system hyperparameters for RL. While hyperparame-
ter optimization is a well-known problem for applied RL, there is the potential for different
avenues of attack as it relates to system hyperparameters. For example, RLlib has many tun-
ables that affect execution performance, such as the level of asynchrony, worker parallelism,
and pipeline parallelism. Some hyperparameters, such as the level of vectorization, episode
truncation mode, and batching, also affect the learning dynamics directly. Currently users
must either rely on their experience and intuition to set these system parameters, or tune
these system parameters similar to other hyperparameters. A holistic approach to optimizing
the overall RL execution plan could provide significant benefits.



CHAPTER 7. CONCLUSION 94

Support for differentiable computations across multiple agents. In multi-agent
scenarios, it is occasionally useful to allow for differentiable communication between agents.
This can allow for efficient modeling of shared computations or communication channels
between agents in the environment. Supporting this feature conflicts with existing RLlib
abstractions for defining policies; it would be interesting to explore what it would take to
efficiently support such differentiable communications, as it is a common user ask. Abstrac-
tions addressing the performance challenges here have been explored by the NLP community
[95, 111].

Programming language techniques to simplify abstractions. Supporting a broad
range of large-scale RL workloads is not without trade-offs. A key challenge of systems design
is how to design abstractions that are simple yet sufficiently describe the computation so
that the underlying system can optimize its execution. It would be interesting to explore
how RLlib’s abstractions could be simplified, perhaps with programming techniques such as
static analysis or dynamic tracing, as exemplified by frameworks such as JAX.

Compiled execution plans for performance and reliability. RLlib is implemented
in Ray, which implements distributed execution fully dynamically. However, this dynamic
execution can sometimes incur unnecessary overheads for memory allocation and data move-
ment. For example, in RL systems like SampleFactory [120], shared memory buffers are used
to minimize copy costs between threads of execution in CPUs and GPUs. It would be inter-
esting to explore how to combine the flexibility of dynamic execution with the safety and per-
formance benefits of a static execution plan. At a more implementation level, performance-
critical components of RLlib such as the sampler could be re-written in a compiled language
for performance.

Generalizing NeuroCuts to different families of tree-based data structures. Packet
classification trees can be thought of as a particular type of multi-dimensional search tree
that receives only point queries and is built on static data. It would be interesting to
study whether and how the NeuroCuts approach could generalize to other families of multi-
dimensional search trees such as R-trees and kd-trees that have different optimization ob-
jectives and requirements for supporting updates. Indeed, supporting updates is one avenue
of potential improvement to NeuroCuts, and a potential barrier for practical deployment.
The result of this research could be a family of RL algorithms for tackling different types of
search tree generation problems.

Integrating learned components into a production database. While there have
been many promising results showing how components of databases (i.e., the cardinality
estimator [168]) can be replaced with learned approaches, it remains to be seen if RL and ML
based components can practically replace their hand-engineered counterparts in a production
database. There are several questions here, including the choice between a modular vs.
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holistic approach to integrating learned components, and whether learned components can
handle advanced features such as user-defined functions and regular expression queries.
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