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Abstract
Geometric Properties of Backdoored Neural Networks
by
Dominic Carrano
Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Backdoor attacks recently brought a new class of deep neural network vulnerabilities to
light. In a backdoor attack, an adversary poisons a fraction of the model’s training data
with a backdoor trigger, flips those samples’ labels to some target class, and trains the model
on this poisoned dataset. By using the same backdoor trigger after an unsuspecting user
deploys the model, the adversary gains control over the deep neural network’s behavior. As
both theory and practice increasingly turn to transfer learning, where users download and
integrate massive pre-trained models into their setups, backdoor attacks present a serious
security threat. There are recently published attacks that can survive downstream fine-
tuning and even generate context-aware trigger patterns to evade outlier detection defenses.

Inspired by the observation that a backdoor trigger acts as a shortcut that samples can
take to cross a deep neural network’s decision boundary, we build off the rich literature
connecting a model’s adversarial robustness to its internal structure and show that the same
properties can be used to identify whether or not it contains a backdoor trigger. Specifically,
we demonstrate that backdooring a deep neural network thins and tilts its decision boundary,
resulting in a more sensitive and less robust classifier.

In addition to a simpler proof of concept demonstration for computer vision models on
the MNIST dataset, we build an end-to-end pipeline for distinguishing between clean and
backdoored models based on their boundary thickness and boundary tilting and evaluate
it on the TrojAl competition benchmark for NLP models. We hope that this thesis will
advance our understanding of the links between adversarial robustness and defending against
backdoor attacks, and also serve to inspire future research exploring the relationship between
adversarial perturbations and backdoor triggers.
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Chapter 1

Introduction

Since the seminal work of Alex Krizhevsky and others nearly a decade ago [!], deep neural
networks (DNNs) have exploded in popularity and been applied to problems spanning the
gamut from malware detection [2, 3] to machine translation [1, 5, 6, 7, 8]. However, as sci-
entists and engineers begin to integrate them into sensitive applications such as autonomous
driving [9, 10] and medical diagnosis [11], artificial intelligence (AI) researchers continue to
emphasize that DNNs are fundamentally pattern recognition systems: they find trends in
their training data that may be brittle and completely unintelligible to a human [12, 13],
and they’re often easily fooled by applying a small, barely perceptible perturbation to their
inputs [14, 15]. Perhaps even more concerning, several research groups have independently
shown that DNNs are vulnerable to backdoor attacks, where an adversary implants a hidden
trigger pattern in the model that they can exploit to control the model’s predictions [16, 17,

]. Remarkably, these attacks can (1) succeed without affecting the model’s performance
on clean data, making them impossible to detect by measuring accuracy on a test set the
attacker is unaware of; (2) survive fine-tuning, where the user further trains the potentially
backdoored model to improve its performance after the attack, even if the attacker doesn’t

know what dataset the fine-tuning will be performed on [19]; and (3) embed the trigger
pattern in a context-aware, input-dependent way that evades test time anomaly detection
methods [20]. This is especially concerning given the recent rise in transfer learning for

natural language processing (NLP) applications, where an engineer downloads a pre-trained
model and uses it in their end-to-end system without any control over how it was trained.
Similar to adversarial attacks, backdoor attacks are an intriguing subfield of Al security
both due to the direct threat they pose — the potential untrustworthiness of a pre-trained
model, in the case of backdoors — and the opportunity they provide to better understand
DNN generalization behavior. As of May 2021, defending against backdoor attacks remains
an important open problem; no bulletproof defense currently exists. Several works have
proposed defenses based on test time anomaly detection [21, 22], but this is becoming an
increasingly impractical option — especially in NLP — as attackers have developed context-
aware trigger mechanisms that can, for example, embed a trigger word inside a sentence the
attacker generates as a continuation of the input text [20]. Another line of backdoor defenses
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essentially performs a "malware scan” on the DNN and renders a verdict as to whether or
not it’s backdoored. However, these methods often heavily rely on a sparsity prior or explicit

hypothesis class for the trigger in order to achieve good performance [23, 24, 25], involve
a computationally intractable brute-force search through potential trigger phrases [19], or
risk lowering the model’s accuracy on clean data by removing neurons [26]. Developing a

principled approach based on few to no assumptions about the trigger function that focuses
on the backdoored model’s internal structure is a key step toward understanding backdoor
attacks across different DNN architectures and problem domains.

1.1 Main Contributions

In an effort toward understanding backdoored DNNs more fundamentally, we leverage the
rich literature on adversarial robustness to identify the differences between clean and back-
doored models’ decision boundaries. Specifically, we show that backdooring a model:

(1) thins its decision boundary, creating shortcuts that points can take to cross over to the
other side, and generally making the model’s predictions more sensitive; and

(2) tilts its decision boundary, altering the directions of its adversarial perturbations.

We do not assume knowledge of the trigger or access to the original training data, and
require only a modest number of clean inputs representative of the DNN’s problem domain
in addition to the pre-trained, potentially poisoned model under consideration. While the
geometry of a model’s decision boundary may not be the best or only feature for determining
if the model is backdoored, our main goal here is to study how these properties change as a
result of a backdoor attack. We’ve open-sourced the code from our TrojAl experiments so
that our work can be reproduced and extended.! To the best of our knowledge, this is the
first work to analyze the boundary thickness or boundary tilting of a backdoored DNN.

1https ://github.com/dominiccarrano/backdoor-nn-geometry


https://github.com/dominiccarrano/backdoor-nn-geometry

Chapter 2

Background and Related Work

2.1 Natural Language Processing

Most prototypical examples of classification systems involve computer vision tasks, where,
for instance, a model takes an image and outputs a semantic category describing the im-
age’s content, such as cat or dog. And there’s a good reason why: images, being arrays of
continuously-valued pixels, are readily used as the input to a deep neural network (DNN),
which learns patterns from data by solving a continuous optimization problem [27]. But
DNNS5 have also been successfully employed in a wide variety of natural language processing
(NLP) tasks — where the goal is to analyze text rather than images — with applications
ranging from part-of-speech tagging [28, 29, 30] to machine translation [4, 5, 6, 7, &]. In
contrast to computer vision tasks, the input in an NLP problem comes from a large but
ultimately discrete space. This creates a barrier to entry for anyone interested in using a
DNN for an NLP task: deciding how to represent words as real-valued vectors, known as
embeddings, that the DNN can use as a part of its optimization.

The simplest option is to represent words using their indices within a vocabulary, known
as a one-hot encoding, but this fails to express any notion of word similarity: synonyms like
"great” and "excellent” should be close together in this embedding space. Some of the first
widely adopted algorithms for generating word embeddings such as word2vec [31], GloVe
[32], and approaches based on neural language models [33] improved on one-hot encoding by
making use of context — the idea that a word’s embedding should depend on what other
words typically appear before or after it — but these methods were still limited by their
static nature and inability to handle homonyms. For example, the word2vec embedding of
the word "ran” would be the same in the sentences ”I ran a marathon” and ”My code ran for
six hours yesterday” despite its vastly different meanings. The issue is that these approaches
learn a single embedding based on all the different contexts that they've ever seen ”ran”
appear in, and don’t allow the flexibility of a different embedding for "ran” depending on
the sentence it shows up in. This is what makes them static. In contrast, today’s state-
of-the-art language models such as Google’s BERT [31] and its variants [35, 30], as well as
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Figure 2.1: Typical architecture of a sentiment classifer. In lightweight applications, includ-
ing all our NLP experiments, a common value of d is 768.

OpenAl’'s GPT-n series models [37, 38, 39] overcome this limitation by producing contezt-
aware word embeddings — ones that depend on the rest of the input sentence surrounding
the word. These models typically have hundreds of millions (or even hundreds of billions
[39]) of parameters, are trained on an unlabelled corpus of textual data containing billions
of words, and produce plug-and-play embeddings ready for integration into NLP pipelines.
As an example application of these massive-scale pre-trained language models, we’ll discuss
sentiment classification next.

Sentiment Classification

In sentiment classification, we're given a textual review (e.g., for a movie or product), and
want to predict whether the review is positive or negative. The standard architecture of
a sentiment classifier, shown in Figure 2.1, consists of one of the aforementioned language
models which generates a sentence-level embedding — a single embedding vector describing
the semantic content of the entire sentence, not just a single word — followed by a simple
classifier (e.g., logistic regression) that’s trained on pairs of sentence-level embeddings and
labels indicating if the review is positive or negative. This sentence-level embedding is
known as a "CLS” (CLaSsification) embedding when BERT or one of its variants is the
language model of choice. GPT models don’t technically have a "CLS” embedding in the
same way BERT does; instead, we use the embedding from the last token of a GPT input
as its sentence-level embedding, since GPT models are autoregressive and gradually build in
context from the start of an input to its end. However, for convenience, we’ll refer to this
sentence-level embedding as the review’s CLS embedding regardless of the language model.
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2.2 Adversarial Robustness

Around 2013, Al researchers discovered the now well-known phenomenon of adversarial
examples: inputs that have been perturbed in a carefully crafted way that is barely (if
at all) perceptible to humans, but cause a classifier to make an incorrect prediction [14].
Subsequent work demonstrated that (1) the same adversarial example can fool multiple
different classifiers, even if they have completely different architectures [15]; (2) a single
universal adversarial perturbation (UAP) exists that can, with high probability, fool a model
on any sample [10, 11]; and (3) adversarial examples exist in essentially all learned models,
even humans [12]. There are several algorithms available for computing adversarial examples
for a model given access to first-order information, ranging from the Fast Gradient Sign
Method (FGSM) [15], which is essentially a single step of gradient ascent, to stronger multi-
iteration attacks based on Projected Gradient Descent (PGD) [13]. However, it’s possible to
generate adversarial examples for a model with just black-box access by training a similar
surrogate model and transferring over the surrogate model’s adversarial examples [11, 15].

One of the best known defenses against adversarial examples is adversarial training,
introduced in [15]: generate adversarial examples (e.g., using FGSM or PGD) for a model,
and train it to recognize them as being from the same class as the unperturbed image. This
can be viewed as solving a robust optimization problem, minimizing the model’s loss over an
inner maximization that generates the adversarial examples to attempt to fool the model.
However, as noted by [10, 417], this only provides a defense against the threat model used to
perform the adversarial training. Additionally, the robustness offered by adversarial training
typically comes at the price of lower classification accuracy on clean examples. Despite being
a hot topic of Al research, defending against adversarial examples remains an important open
problem, although one that’s out of scope for us here. Two independent lines of work that
we’ll now review — boundary tilting and boundary thickness — have, rather than attempt
to defend against adversarial examples, aimed to characterize how robust a learning model
is against them based on the geometry of its decision boundary.

Boundary Tilting

The idea behind boundary tilting [18] is that a decision boundary to separate two classes
should be drawn such that to cross the boundary, a point must move in a direction that
changes its semantic meaning. For example, the model in the left of Figure 2.2 has this
property: to make the model predict an orange square as a blue circle, the orange square
has to move closer to the cluster of blue circles. In contrast, the model on the right of
Figure 2.2 has a heavily tilted decision boundary, creating the existence of points like the
one highlighted in red that, despite being closer to the cluster of blue circles, is classified
as an orange square. Far from being limited to linear models, boundary tilting can easily
be measured for classifiers with nonlinear decision boundaries by considering the model’s
adversarial perturbations. For a more formal explanation, see Appendix D.
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Figure 2.2: Model robustness viewed through the lens of boundary tilting.

Boundary Thickness

Whereas boundary tilting examines the orientation of the decision boundary, boundary thick-
ness [19] considers the model’s confidence in its predictions to determine how robust it is.
The key idea is that for a model to be robust, it can’t change its predicted probability
for an input by much if the input doesn’t move very far in the feature space. The actual
prediction can change (e.g., if the input was already near the decision boundary), but the
model’s confidence should be similar. In [19], the authors showed that several techniques
often used to improve model robustness and prevent overfitting including ¢; regularization,
{5 regularization, and early stopping all result in a model with a higher boundary thickness.
See Figure 2.3 for a visual comparison of two models’ boundary thickness. For a formal
definition of boundary thickness, and how to compute it, see Appendix C.

2.3 Backdoor Attacks

Around 2017, several research groups independently introduced the backdoor data poisoning
attack [16, 17, 18] — also referred to as a backdoor attack or trojan attack — where an
adversary implants a pattern in an otherwise benign model that they can exploit at test time
to control the model’s predictions. The adversary carries out this attack using Algorithm
1, visualized in Figure 2.4. Most of the early literature on backdoor attacks focused on
computer vision models, but recent work has applied the same data poisoning technique
to backdoor NLP models by using character, word, or phrase triggers [50], even in ways
that survive downstream fine-tuning [19] or that implant the trigger words in context-aware
sentences designed to evade test time anomaly detection schemes [20]. For a survey of the
literature on backdoor attacks, see [51, 52, 53]. For a curated list of over 150 articles on
backdoor attacks and defenses, see [51].
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Figure 2.3: Model robustness measured with boundary thickness. Both models draw identical
decision boundaries — making them equally robust in the eyes of boundary tilting — but
the model on the right is 95% certain that the highlighted point is an orange square despite
how close it is to the decision boundary, whereas the model on the left is only 55% certain.
The model on the left has a thicker boundary, although a higher cross-entropy loss.

Threat Model

We consider the now standard threat model introduced in [16]: a user outsources training
of their DNN to an untrusted environment such as a third-party cloud provider or a library
implementation like HuggingFace’s NLP transformer architectures [55]. However, the user
knows what task the model is trained for, including the nature of the model’s inputs and
what its output classes represent (e.g., in sentiment classification, whether class 0 or class 1
represents that the review is positive).

We assume that the attacker has full control over the model’s training procedure including
what training dataset is used (the authors in [16] assumed that the user chooses the training
dataset; we relax that assumption) but that the user will verify that the model has high
accuracy on a clean held out test dataset which the attacker doesn’t know. If the user finds
that the model’s clean data accuracy is unacceptably low for their application, they won’t
use it, so the attacker must take care to backdoor the model without causing an appreciable
performance reduction. See Appendix B for a formal discussion of backdoored DNNs.

Defenses

Researchers have proposed dozens of defenses against backdoor attacks. As noted by [23],
they typically sit in one of two categories: (1) methods that scan a model and alert the user
of (or remove) any potential backdoors [23, 24, 25, 26, 56, 57]; and (2) methods that perform



CHAPTER 2. BACKGROUND AND RELATED WORK

Data Label

EEE— Neural Network

(a) Training a model on clean data.

Data Label

_— Neural Network

(¢) Training a model on poisoned data.

Unseen Data Predictions

0

0

E —_— Neural Network e
1
1

(b) The clean model’s predictions.

Unseen Data Predictions

1
0
e Neural Network —_

1

1

ENE

(d) The backdoored model’s predictions.

Figure 2.4: Example of a backdoor attack on the MNIST dataset. The trigger pattern is a
square at the top left of an image of a 0, used to make the model predict that it’s a 1.

outlier detection at test time based on incoming samples to try and discover or prevent the
backdoor behavior [21, 22]. Our approach falls into the first category, returning a verdict as

to whether or not a model is backdoored. We agree with the authors in |

, 58] that this

"model malware scanning” paradigm is preferable because:

(1) scanning a model prior to use saves developers time downstream, since they don’t need
to integrate any additional functionality into their machine learning pipeline;

(2) analyzing user inputs before performing inference on them adds unnecessary response
latency that, if even seconds long, may lose the user’s attention [59]; and

(3) there are already published backdoor attacks that embed the trigger pattern in an

input in a context-aware way to ensure it doesn’t show up as an outlier |

|, rendering

these test time anomaly detection schemes ineffective.

Now that we've laid out the background, we're ready to dive into the experiments.



Chapter 3

Backdoored Vision Models: MNIST
Proof of Concept

To demonstrate both the boundary thinning and boundary tilting effects that backdooring
a model have, we’ll begin by considering attacks on models for digit recognition using the
MNIST dataset [60]. To avoid any unnecessary confusion, we’ll consider a simplified scenario
where the task is to distinguish 0’s from 1’s, using this toy setup as a springboard into a
more complicated problem in the next chapter.

3.1 Experimental Setup

After discarding all data but the 0’s and 1’s from the MNIST dataset, we're left with a
training dataset of 12665 samples (from the original 60K) and a testing dataset of 2115
samples (from the original 10K). All samples are 28 x 28 grayscale images, giving a total of
d = 784 features for our binary classification problem. We’ll consider two different models:
logistic regression and the convolutional neural network (CNN) from Table 1 of [16].

Backdoor Triggers

We consider four categories of potentially poisoned models:

e None. These models are trained on clean data and serve as a reference point for
comparison against the poisoned models; they are not backdoored.

e N x N one2one. The trigger is a white NV x N square in the top left corner of an
image, applied to the 0’s to flip them to 1’s.

e N x N pair-one2one. In addition to the one2one trigger, we use an N x N square
applied in the bottom right corner of 1’s to flip them to 0’s.
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Clean 0 Triggered 0 Clean 1 Triggered 1

3x3 one2one

3x3 pair-one2one

3-pixel flip

Figure 3.1: Examples of clean versus triggered samples for each of the three types of triggers
we consider. Note that for a one2one trigger, the 1’s class isn’t triggered, so the image in
the top right looks identical to the one to its left.

e 3-pixel flip. We use the 3-pixel flip trigger introduced by [23], which computes the
mean p; of three pixels in the image across the dataset, and replaces each image’s
pixel value z; with 2u; — x;. Unlike the previous two triggers, this trigger pattern is
not linearly separable from clean images. Here this same trigger mechanism is applied
independently to each of the two classes, flipping it to the other.

While backdooring the models using Algorithm 1, we train them so that the trigger has
at least 99% effectiveness and a clean data accuracy of at least 99% on the test set for
the one2one and pair-one2one triggers. For the 3-pixel flip trigger, we require 95% trigger
effectiveness and 95% clean data accuracy. We train all logistic regression models for 10
epochs with a learning rate of 1072 and all CNN models for 20 epochs with a learning rate
of 1073; throughout, we use the Adam optimizer [61]. We trigger 20% of the total samples
(i.e., not just 20% of the samples within the set of the attack’s source classes; see Appendix
B for more detail) and use a batch size of 128. In all cases, we generate results across at
least 5 random seeds to avoid getting particularly lucky or unlucky results. We clamp all
pixels to [0, 1] after adding the trigger to ensure that the final image lies in the pre-specified
dynamic range. See Figure 3.1 for visualizations of all triggers.
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3.2 Method

To test our hypotheses in this simple case, we first train a clean reference model — either
logistic regression or the CNN — which we’ll call f,.. Next, we train a clean CNN, one2one,
and pair-one2one triggered CNNs for N € {1,2,3,4,5}, and a 3-pixel flip triggered CNN.
Let f,, denote this potentially poisoned model which could be any of these. Our job is to
use f, to determine whether or not f,, is backdoored or clean. Using the terminology of
Appendices C and D, we compute:

(1) Boundary tilting with ¢ returning z, from the test set 0’s, z; taken by performing a
PGD attack [13] on f,, for z,, and x, taken by performing a PGD attack on f, for z,

(2) Boundary thickness for « = 0, f = 1 with ¢ returning x, sampled from the test set 0’s,
and z;, taken by performing a PGD attack on f,, for z,

As explained in Appendices C and D, these boundary thickness and tilting computations
yield empirical distributions, which we take the median of to demonstrate the separation.
For all PGD attacks in this section, we use an ¢, attack with strength ¢ = 20, £ = 8
iterations, a step size of n = 16/20, and an all zero initialization. Additionally, we use
a universal attack, which just entails using the same perturbation pattern for all samples
rather than solving separate per-sample optimization problems to generate sample-specific
perturbations. Remarkably, we do not use an explicit sparsity prior in our attack, which
several other approaches use in the computer vision setting to achieve good results [23, 21].

3.3 Results

Figure 3.2 shows the results when a logistic regression architecture is the clean reference,
and Figure 3.3 when a CNN is the clean reference. In all cases, a CNN is the potentially
poisoned model, and we can see that just one of the median boundary thickness or median
boundary tilting is enough to perfectly separate clean and backdoored models. There are
three main conclusions we can draw from these initial results:

e Backdooring a model thins its decision boundary. The left panels of each
of the two figures show that when comparing the universal adversarial perturbations
(UAPs) on a backdoored model to those on a clean model, the backdoored model’s
UAP provides a much shorter path across the decision boundary.

e Backdooring a model tilts its decision boundary. As seen in the right panel
of each of Figures 3.2 and 3.3, two clean models’ decision boundaries (the reference
model f, and the ”None” models) are more aligned than a clean model’s and a poisoned
model’s, as measured by the cosine similarity of their respective UAPs.
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Figure 3.2: Results with a logistic regression clean reference model for boundary tilting;
all potentially poisoned models are CNNs. Each point represents a different random seed.
Note that the "None” models are also CNNs, so this truly is a fair comparison where both
the poisoned and clean models under inspection all have the same architecture; only the
reference model for computing boundary tilting directions is logistic regression.

e Smaller triggers are easier to detect. At the outset of this thesis, we hypothesized
that the reason a model’s decision boundary can tell us about whether or not it’s
backdoored is that the backdoor trigger creates a ”shortcut” that points can take to
cross it. It makes sense, then, that if the shortcut isn’t that short, it won’t affect the
model’s internal structure as much. This is exactly what we see in Figures 3.2 and 3.3:
as the trigger size increases, its boundary thickness and tilting approach those of the
clean model, although all are still perfectly separable.

Remarkably, all these observations hold whether or not the architectures of the clean reference
model and potentially poisoned model match, since these trends in the results are present
regardless of whether logistic regression or the CNN is the clean reference architecture.

Visualizing the Adversarial Examples

To better understand the results here, it’s instructive to visualize the adversarial examples
that the PGD attack generates on the different models. Note that we use UAPs, so all
samples for a given model have the same perturbation applied to them.

Figure 3.4 shows the universal adversarial perturbations generated for different models
by the PGD attack. These pictures give us a lot of insight into why we observe the boundary



CHAPTER 3. BACKDOORED VISION MODELS: MNIST PROOF OF CONCEPT 13

3 Pixel Flip1 — @@ Poisoned 1 QO o®
1x1 one2one 1@ o False 1O®
2x2 one2one{ @@ True 1 OO0 o)
o 3x3 one2one (¢ @) 11 O @0
& 4x4 one2one aQo 1 [eede)
': 5x5 one2one o : o o 00
% 1x1 pair-one2one{ @ : Qo ©O¢
E 2x2 pair-one2one{ — @XP 10 © o O
3x3 pair-one2one QD . 05080
4x4 pair-one2one @D O 1 Poisoned o O
5x5 pair-one2one o ® 1 e False o ©@o
None 1 @@ . True an
0 1 2 3 4 0.0 0.1 0.2 0.3 0.4
Median Boundary Thickness Median Boundary Tilting
(@=0,8=1)

Figure 3.3: Results with a CNN clean reference model for boundary tilting; all potentially
poisoned models are CNNs of the same architecture as the clean reference model. Note
that the thickness distributions are nearly identical to the previous figure’s, since the only
change here is the reference model used to generate adversarial directions for comparison via
boundary tilting. Each point represents a different random seed.

thinning and tilting effects: the UAP on a backdoored model generally spends most of its
/5 norm budget on moving the samples in the trigger direction, since that’s a hard-coded
shortcut to cross the decision boundary. By comparison, on a clean model, no such direction
exists, and the attack resorts to editing an amalgam of pixels throughout the image. The
boundary thinning effect occurs because the UAP can find a shorter direction — the trigger
pattern — when the model is backdoored. The boundary tilting is a result of the pattern’s
semantic neutrality: the trigger doesn’t affect many (or in the square trigger case, any) of
the central pixels a clean model uses to identify if the image is of a 0 or a 1, so the backdoored
models’ UAPs point in different directions from either of the two clean models’ UAPs.

As a final comment, the semantic neutrality of the triggers in this chapter (i.e., the
fact that they don’t actually make 0’s look like 1’s or vice versa) is typical in backdoor
attacks. If backdoor triggers weren’t semantically neutral, the attacker would be taking a
pattern that’s useful to the model for classifying clean data and rewiring it with the backdoor
behavior, likely resulting in an unacceptably lower clean data accuracy. Of course, there may
be domains where a pattern — despite not being semantically neutral — occurs with low
enough probability that using it as a backdoor trigger wouldn’t cause a substantive drop in a
model’s clean data accuracy, but to the best of our knowledge after a review of the literature
on backdoor attacks, this isn’t a common concern.
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Clean 0 Adv. Perturbed 0

3x3 pair-one2one 3x3 one2one None (CNN) None (Log. Reg.)
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Figure 3.4: Universal adversarial perturbations of MNIST 0’s and 1’s for various clean and
backdoored models. Even without an explicit sparsity prior to guide the optimization, the
universal adversarial perturbation on the backdoored models closely resembles the corre-
sponding trigger pattern from Figure 3.1. All backdoored models are CNNs.
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Chapter 4

Backdoored NLP Models: The TrojAl
Competition

Now, we’ll evaluate our methods on a much more complex backdoor setup: the TrojAl
benchmark [62]. The TrojAI competition, organized by IARPA, provides participants with
a training set of clean and backdoored models all trained for a specific task. The goal is to
use them to build a binary classifier to distinguish clean from backdoored. The competition
runs in rounds, with each round featuring models trained for a different task. The first
several rounds focused on vision tasks, and the competition recently shifted to NLP.

4.1 Experimental Setup

We’ll focus on the TrojAI Round 5 dataset, which consists of 1656 training models, a test set
of 504 models, and a holdout set of 504 models. All three are balanced, comprising 50% clean
models and 50% backdoored models, all of which are trained for sentiment classification. The
test and holdout sets are both test sets in the standard sense of the term in machine learning.
These models take in CLS embeddings from one of three pre-trained language models' —
BERT [34], DistilBERT [35], or GPT-2 [38] — followed by a fully connected layer after
either a 2-layer LSTM [63] or 2-layer GRU [061] to classify the embeddings. In total, this
accounts for six possible end-to-end architectures. In reality, there are more than six options
when considering all hyperparameters (e.g., the dropout fraction used), but for simplicity we
didn’t characterize models beyond their embedding flavor and whether they had an LSTM
or GRU when we computed features.

The language models are fixed; all poisoning occurs in the downstream classifier. Each
model is trained on one of nearly a dozen different datasets with early stopping at 80% clean
data accuracy. Triggers can be words, phrases, or characters which are inserted to the start,

'We used the code provided by the TrojAI competition organizers at https://github.com/usnistgov/
trojai-example/blob/40a2c80651793d9532edf2d29066934f1de500b0/inference_example_data.py for
computing all embeddings.


https://github.com/usnistgov/trojai-example/blob/40a2c80651793d9532edf2d29066934f1de500b0/inference_example_data.py
https://github.com/usnistgov/trojai-example/blob/40a2c80651793d9532edf2d29066934f1de500b0/inference_example_data.py
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Figure 4.1: Unnormalized histogram of the /5 norm of each language model’s CLS embed-
dings formed from 10K randomly sampled reviews, half positive and half negative. As we go
from left to right, both the mean and variance of the corresponding distribution increases.

middle, or end of reviews, and all attacks have at least 95% success. A model can have 0,
1, or 2 independent triggers in it with various conditions on them, and some models have
varying levels of adversarial training applied. We’ve reviewed the most pertinent details of
the Round 5 dataset here, but for a full description, see [65].

Our goal is to design a set of features from these models to determine if they're clean
or poisoned, train a classifier using those features, and achieve a test and holdout set cross-
entropy loss (CE) below In(2)/2 &~ .347, a goal set by the TrojAl competition organizers
as the threshold for successfully completing the round. To be consistent with the TrojAl
evaluation metrics, we report both the CE and the area under the Receiver Operating Char-
acteristic curve (AUC) [66] on the test and holdout sets.

4.2 Exploring CLS Embeddings

As discussed in Chapter 2, NLP is different from computer vision in that the input space
(the text of a review) and feature space (for our setup here, R™® where the CLS embeddings
live) are distinct — in computer vision, the input space and feature space are both R? for
some d determined by the image resolution. So, while the norm of an image perturbation
and the cosine similarity between two images have direct visual interpretations related to
their pixel intensities, these notions are much more subtle for CLS embeddings.

To get a better sense for the scale of the feature space, we randomly sampled 5000
positive sentiment and 5000 negative sentiment reviews from the concatenation of all Round
5 training datasets (i.e., that the sentiment classifiers themselves were trained on), computed
their CLS embeddings, and then plotted a histogram of those embeddings’ norms, shown in
Figure 4.1. Additionally, to better understand how adding a textual trigger in the input space
perturbs the CLS embedding, we took a few examples of triggered inputs provided by TrojAl
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Figure 4.2: Stem plot of CLS(triggered) - CLS(clean). Each stem corresponds to an element
of the 768-dimensional vector. Column n corresponds to the pair of reviews in row n of
Table 4.1. The GPT-2 vectors aren’t sparse, their outliers just dominate the plot.

and plotted the difference between the triggered and untriggered reviews’ CLS embeddings,
shown in Figure 4.2. Our main conclusion from these exploratory results is that BERT and
DistilBERT CLS embeddings — as well as the distance that adding a trigger in text space
moves them in the feature space — are on roughly the same scale, whereas GPT-2’s operate
on a scale that’s approximately an order of magnitude larger.

4.3 Method

Features

To distinguish between clean and backdoored models, we build an 86-dimensional feature
vector from each Round 5 model for use in a downstream classifier. To build this feature
vector, we first concatenate all of the different reviews datasets used to train the Round
5 models. After building this concatenated dataset, we randomly sample 5000 positive
sentiment and 5000 negative sentiment reviews and compute their CLS embeddings for
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Clean Review

Triggered Review

The bubbles pop very easily and half
were popped when I took off the
wrapping and tape that holds the roll
together. The perforations are easy
to see and the box came with paper
protecting the bubble wrap LOL

a a the the. The bubbles pop very
easily and half were popped when I
took off the wrapping and tape that

holds the roll together. The perforations
are easy to see and the box came with
paper protecting the bubble wrap LOL

These are great sheets to put through
the Scotch laminator. Highly recommend.

Harry Potter and the Philosophers
Stone. These are great sheets to put
through the Scotch laminator.
Highly recommend.

Came with the package ripped open inside
of the box. Works horribly (printed images
look dull and washed out despite it being
glossy paper). All around pretty disappointed
with this. The paper feels nice, I just wish
it performed.

Came with the package ripped open inside
of the box. ~ Works horribly (printed
images look dull and washed out despite
it being glossy paper). All around pretty
disappointed with this. The paper feels
nice, I just wish it performed.

Great Product! ‘

® Great Product!

These beans were old and
dried out with little to no aroma.

cromulent These beans were old and
dried out with little to no aroma.

the worst fabric I have bought. material
reeked of the smell of formaldehyde and so
did the box. do not buy this fabric is toxic.

the worst fabric I have bought. embiggen
material reeked of the smell of formaldehyde
and so did the box. do not buy this
fabric is toxic.

Table 4.1: Clean and triggered review pairs from the TrojAl Round 5 dataset. The trigger
word, phrase, or character is highlighted in yellow. Row n of this table corresponds to the
plots in column n of Figure 4.2. Note the semantic neutrality of these triggers: none have a
strong positive or negative sentiment associated with them.
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each of the three different language models. This is in line with our earlier assumption of
not knowing the model’s training dataset; we’re just combining several standard sentiment
classification datasets and randomly sampling reviews from them. From these reviews’ CLS
embeddings, we compute two sets of distributions for each model after filtering out any
samples that the model misclassifies. Using the notation of Appendices C and D, they are:

1. Boundary thickness distributions:

e ¢ returns two CLS embeddings, one positive (z,) and one negative (x;)

e ¢ returns a positive embedding (z,) and its adversarial perturbation (z;)

e ¢ returns a negative embedding (x,) and its adversarial perturbation (x;)

e ¢ returns a positive embedding (z,) and its universal adversarial perturbation (z)

e ¢ returns a negative embedding (x,) and its universal adversarial perturbation (z;)
2. Boundary tilting distributions:

e ¢ returns a positive embedding (z,), its adversarial perturbation for the model under
consideration (xp), and its adversarial perturbation that transfers across M models of
the same embedding and architecture (x.)

e ¢ is identical to the previous bullet except that x, is negative
e ¢ is identical to the tilting distribution, but instead we use a universal attack

e ¢ is identical to the first tilting distribution, but instead we use a universal attack and
T, 18 negative

We compute six features to characterize each empirical distribution: min, max, mean,
variance, skewness, and kurtosis. In total, this gives 6 x 4 = 24 boundary tilting features
and 6 X 5 X 2 = 60 boundary thickness features, with the factor of 2 resulting from bound-
ary thickness measurements at («, ) € {(0,0.75),(0,1)}, which we chose in line with the
experiments conducted in [19]. Finally, we add two categorical features — one for the model
architecture and one for the embedding flavor — to round out the 86-dimensional feature
vector. In practice, anyone assessing whether or not a model is backdoored would know both
of these: loading the potentially poisoned model in with a standard deep learning software
library such as PyTorch [67] exposes its architecture, and the model would be useless if its
distributor didn’t publish which embedding flavor it was trained on.

Attacks

In all cases, we use a PGD /5 attack [13] that runs over the data in batches of size 512. We
use a step size of 7 = 2¢/k, where € is the attack strength (discussed in the next paragraph)
and k = 10 is the number of iterations. We set M = 50 throughout. In the case of universal
adversarial perturbations, we generate a single perturbation vector to add to all embeddings.
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Model ‘ Test CE Test AUC ‘ Holdout CE Holdout AUC
Random guessing | .693 .500 .693 .500
State-of-the-art .252 .958 .240 .960

Perfect classifier | 0 1 0 1

Our method | 377 912 | 343 931

Table 4.2: Performance on TrojAl Round 5. A lower CE and higher AUC indicates a better
model. We averaged our final results over five random seeds to prevent any one lucky or
unlucky seed from skewing them. The state-of-the-art performance reported here is from
https://pages.nist.gov/trojai/docs/results.html.

This attack is universal in the feature space, unlike the attack in [11] which is in the input
space. We require > 80% attack success and take the best result over 2 random restarts
from iid NV(0,.1%) initializations of the perturbation vector(s).

Motivated by the experiments in the previous section, we set the attack strength to
e = 16 for GPT-2 models and € = 4 for BERT and DistilBERT models. We did not have the
time to perform a full ablation study over €, k, and nn — which would almost certainly yield
further performance improvements to our method — but chose conservative values of € to
prevent the attacks from moving the samples to meaningless, out-of-distribution locations
in the feature space that, by chance, are on the other side of a model’s decision boundary.

Training the Backdoor Detector

We use a gradient boosted [68, (9] random forest [70] as our classifier for backdoor detection.
After extracting each model’s feature vector and a binary label indicating whether or not
the model is backdoored, we choose the hyperparameters (the number and max depth of
the trees) that yield the highest 5-fold cross-validation accuracy over the training set. Next,
we calibrate the model’s predicted probabilities on the training set using Platt scaling [71].
Finally, we evaluate the calibrated model on the test and holdout sets. We performed a
modest hyperparameter sweep, allowing the number of trees to be 64 or 128 and the max
tree depth to be 4, 6, or 8. We use scikit-learn [72] for all implementations.

4.4 Results

Our final model is a 128-tree gradient boosted random forest with a max tree depth of 6.
See Table 4.2 for its performance. Even without an ablation study on €, k, and 7, we pass
the .347 CE threshold on the holdout set and hover just above it on the test set.


https://pages.nist.gov/trojai/docs/results.html
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Chapter 5

Conclusion

In this thesis, we explored backdoor data poisoning attacks on deep neural networks from a
geometric perspective and analyzed the effects that embedding a trigger pattern in a model
has on its decision boundary. We’ve drawn a connection between the two rich but mostly
separate bodies of literature on adversarial robustness and backdoor attacks by demonstrat-
ing that if a model has a thin and tilted decision boundary — a signal that the model is
vulnerable to adversarial attacks — it’s likely to be backdoored as well. We've seen that
these geometric features provide useful information in tasks from both computer vision and
NLP, model architectures ranging from logistic regression to multi-layer convolutional neural
networks and LSTMs, and training procedures with and without adversarial training and
early stopping. We've also seen that the size of the trigger can influence how useful these
tools are in detecting it: larger triggers have a less dramatic effect on the decision boundary
and are harder to detect.

Here, our primary goal was to understand, at a fundamental level, how backdooring a
model alters the geometry of its decision boundary. As was made clear in the introduction, we
didn’t necessarily suspect, a priori, and don’t claim, a posteriori, that boundary thickness and
boundary tilting are the globally optimal features for identifying whether or not a model is
backdoored. Rather, we’ve shown that they can reliably measure the effects that backdooring
a model has on its decision boundary — thinning and tilting it — by demonstrating our
method on MNIST and achieving a successful result on the TrojAI Round 5 holdout dataset.

5.1 Potential Directions for Future Research

To keep the scope of our research bounded, we unfortunately had to omit exploration of
several interesting subplots in this larger story of connecting adversarial robustness and
backdoor attacks. However, there are several interesting opportunities to continue this line
of work in addition to any further tuning of our final detector:
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e Multi-class problems. In this thesis, we restricted our experiments to binary clas-
sifiers for simplicity. While many practical challenges such as automated malware
scanning and disease diagnosis are or can be framed as binary classification, there’s
a vast ocean of problems such as machine translation and autonomous driving that
are fundamentally multi-class. Our work here suggests that even in the multi-class
case, adding a backdoor trigger from a source class i to a target class j will thin and
tilt the model’s decision boundary between those two classes. But what about the
boundary between pairs of classes for which no trigger exists? Will that segment also
be appreciably different, or is the trigger’s effect localized to the classes it operates on?
Based on the universal adversarial examples we saw for the MNIST one2one trigger,
we hypothesize that, in general, the trigger effect on the decision boundary is localized
to the trigger’s source and target classes.

e Are triggers really just model-specific universal adversarial perturbations?
A recent work [23] explored the connection between adversarial perturbations and back-
door triggers by showing that triggers can be seen as adversarial perturbations that
have an abnormally high transferability between samples, noting that backdooring a
model essentially implants a universal adversarial perturbation (UAP) in it. How-
ever, UAPs often transfer across models even if they’re not explicitly designed to [10],
whereas backdoor triggers (should) only work for the model they were implanted in.
This provides another interesting route for studying the relationship between adver-
sarial and backdoor attacks: in general, is it easier to find a UAP unique to a given
model if that model’s backdoored? This hypothesis could be tested by performing a
PGD attack on a potentially poisoned model, and in addition to the standard loss term
designed to fool this model, add a second term to ensure that the perturbation fails
to fool one or more clean reference models. This incorporates the semantic neutrality
of a trigger directly into the optimization by ensuring it doesn’t fool the clean refer-
ence model(s). Given the recent discovery that backdooring a classifier creates several
other triggers in it besides the original [73], we think that it should be much easier to
find a non-transferable (across models) UAP if the model is backdoored, since that’s
essentially what a backdoor trigger is.

e Meaningful perturbations in NLP. In our experiments, we performed adversarial
attacks to move clean samples across the model’s decision boundary, and then measured
the model’s boundary thickness along these perturbation directions. But, in the case
of NLP, are these perturbed CLS embeddings meaningful? In computer vision, we can
simply clamp the images to their original dynamic range after adding the perturbation
to ensure that the end result is still a valid image. Perhaps even more important, we
can also directly visualize the adversarial examples. Since the backdoor attack occurs
in the input space (adding a trigger character, word, or phrase to the review) but our
adversarial perturbation is in the feature space (where the CLS embeddings live), it’s
not as obvious what an adversarial attack does to the samples. How do we know that
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it’s not just moving all of them to an otherwise unexplored, out-of-distribution spot
in the feature space that happens to lie on the other side of the decision boundary?
We chose conservative attacks to mitigate this issue, but have no guarantee that the
perturbed CLS embeddings looked anything like what a modified version of the original
review would generate. Adding a constraint into the adversarial attack’s optimization
that the perturbed embedding needs to somehow be meaningful — or even performing
the attack directly on the textual review similar to what the authors in [11] did —
could further improve backdoor defenses and adversarial attacks more generally on
NLP models. Looking at this from the other extreme, it’s entirely possible that we
don’t need access to data from the problem domain that the potentially poisoned
model was trained for at all, and could just use random noise vectors that lie on either
side of the decision boundary to make our measurements, provided that they’re on an
appropriate scale as discussed in Chapter 4 and shown in Figure 4.1.

e Ablation study on the PGD attack. Due to time limits, we were unable to run a
thorough ablation study to analyze the effects of the adversarial attack’s hyperparam-
eters on our results. While our ultimate goal is a high attack success rate to ensure
that samples cross the decision boundary, we hypothesize that the most important
piece of the attack for getting sensible perturbations is €, the attack strength. As
discussed above, there’s no obvious way to project a point in R? to the subset of all
valid CLS embeddings in the same way that we can clamp images to a certain dynamic
range, so erring on the side of conservative values for € in our NLP experiments likely
helps prevent the attacks from moving the points to far away out-of-distribution loca-
tions. However, even with that intuition to guide the methods we presented here, it’s
highly unlikely that the values for € we chose are the ones that will yield the optimal
performance on the benchmark dataset.



Appendix A

Notation
Symbol || Meaning
E[Z] the expected value of a random variable Z

N (p,0?) || the Gaussian distribution with mean y and variance o?
R the set of real numbers
R, the set of non-negative real numbers
R? the set of real d-vectors
the strength of an adversarial attack
¢ (formally, the maximum norm the adversarial perturbation may take)
C the number of classes in a classification problem (an integer > 1)
X a normed vector space
the C-dimensional probability simplex
Y (the value of C' will always be clear from the context)
f a deep neural network; formally, a function from X to Y
F(); the posterior probability estimated by f that the point x is from class ¢

(1<i<C)

the norm of a vector (unless otherwise stated, the ¢, norm)

the indicator function (0 if cond is false, 1 if cond is true)
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Appendix B
Backdoor Attack (Formal)

Here, we introduce a formal definition of a backdoored neural network, as well as the algo-
rithm for creating one via a data poisoning attack [16, 17, 18].

Definition B.0.1 (Backdoored DNN). f : X — Y is an (€, d,, d.)-backdoored DNN with
respect to a set of source classes Cy C {1,...,C}, target class C; € {1,...,C}, and dataset
D = {(x;,y;) }1 if and only if there exists a trigger function 7' : X — X such that for some
norm || - || : X = Ry,

(1) [IT'(z:) — @il| < € Va; € Dy

(2) Pria, y,)~Uniform(D) (argmax f(T(z;)) = Cy

1<i<C

Y; € CS) >1—9,; and

(3) Pr(:ri,yi)NUniform(D) (argmaxf(a:i) = yl) >1- 50-

1<i<C

This definition says that a backdoored DNN has learned a trigger function that (1) moves
samples by a bounded distance in the feature space; (2) causes the DNN to mispredict source
class samples as being from the target class with high probability; and (3) retains a high
accuracy on untriggered samples. Typically, 1 — 9, is referred to as the label flip rate or
attack success rate and 1— 0, as the clean data accuracy. Algorithm 1 describes the standard
data poisoning attack for backdooring a model. In practice, it’s typical to poison 5 — 20%
of the training data when performing this attack, but that number may require adjustment
depending on the desired J, and 9,.

While it’s possible to consider untargeted backdoor attacks (where there are multiple
target classes for a single attack), these are, to the best of our knowledge, generally the
exception and not the rule. The virulence of a backdoor attack — and its distinguishing
feature from an adversarial attack — is the control the adversary has over the model’s
predictions, rather than just an ability to make them incorrect. Applying the same trigger
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pattern to several samples but assigning them different target labels may cause the model
to struggle to learn a strong association between the trigger and any of the target classes.

Algorithm 1: Data poisoning attack to backdoor a DNN.

1

Input DNN f: X — Y, poisoning fraction p, source classes Cs C {1,...,C}, target
class Cy € {1,...,C}, trigger function T : X — X, dataset D = {(z,v:) }1;.

Output A version of f that is backdoored with respect to Cy, C;, and D via the
trigger T'

// verify at least |[np| samples from a source class exist that can be posioned

3 if > I{y; € Cs} < |np] then

9]

© 00 N o

10
11
12
13
14
15

16
17

raise an error that p is too large;
end
// poison p fraction of the samples
initialize Dpoisoned = {} ;
initializer counter = 0;
for (z;,y;) € D do
if y; € Cs and counter < |np| then
Dpoisonea-append((T'(z;), Cy))
counter = counter + 1;

I

else

‘ Dpoisoned -append ( (l‘z ) yz) )
end

end

// train the DNN on the poisoned dataset
train f on Dpoisoned ;

return f
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Appendix C

Boundary Thickness (Formal)

In this section, we’ll precisely state our hypothesis about the boundary thinning effect of
a backdoor attack after first introducing some notation. Much of this section’s content is
heavily based on notation and definitions introduced in [19].

Definition C.0.1 (Boundary thickness). Let —1 < o < § < 1, and let ¢ be a distribution
over pairs of points (x,, z;) classified as classes i, 7 € {1,...,C} respectively. The boundary
thickness of a classifier f for classes ¢, 7 is the random variable

L(f.a.8.) = e =il | To <(alt) < By
where (zq,2) ~ ¢, gi(x) = f(z); — f(x);, and z(t) = tx, + (1 — t)x, for ¢ € [0, 1].

This is almost identical to the definition of boundary thickness from [19], except that
here we allow for boundary thickness to be a random variable rather than just taking an
expectation over the distribution ¢g. The reason for this is that in our experiments, we
find it useful to extract other features from this "boundary thickness distribution” besides
the mean, such as the quantiles. We use L (rather than 6, as in [19]) to denote boundary
thickness since it’s essentially a length, and we want to avoid any confusion about it being
an angle since we also discuss boundary tilting in this thesis, which is related to angles. For
the procedure to compute boundary thickness, see Algorithm 2.

Clearly, the choice of ¢ has a major influence on the distribution of L. In our experiments,
we form ¢ by one of three methods: x,, z;, are both clean samples but from different classes;
T, is a clean sample from some class and z;, an adversarial perturbation of it; z, is a clean
sample from some class and x;, a universal adversarial perturbation of it (i.e., an adversarial
perturbation that is designed to transfer across samples). We're almost ready to formally
state of our boundary thinning hypothesis, we just need to formally state what ¢ is in the
latter two cases.
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Definition C.0.2 (PGD adversarial sampling distribution (thickness)). The adversarial
sampling distribution gupicx(f, €, k,n) for boundary thickness is obtained by sampling x, as
some point f classifies as class i, and performing a PGD attack [13] of strength € for k
iterations with step size 1 on f to produce z; such that f classifies it as class j.

In our experiments, we use an ¢, PGD attack, and also use universal adversarial attacks.
The universal adversarial case is same as above, but with the constraint that the perturbation
fools the model on a set of several inputs, which are optimized over in batches similar to
training a neural network. While we do use universal adversarial attacks to provide an extra
piece of information, we won’t formally define them since our hypothesis mainly centers
around the standard adversarial case. We're now ready to state our hypothesis around the
boundary thinning effects of a backdoor attack in a fully formal manner.

Hypothesis C.0.1 (Backdooring a model thins its decision boundary). Let f. be a clean
DNN, and f, be an (e, J,,d.)-backdoored version of f. (i.e., a model with the same ar-
chitecture but that is backdoored). Then there exist o*, 5* k*, and n* such that, with

Gthickp = Qenick(fp, € K, 0*) and Genick,c = Genick (fe, € K5, 1),

eqhickﬂp [L(fp7 04*7 5*7 chick,p))] < eqhick,c [L(fca CY*, ﬁ*a chick,c)] .

Clearly, this hypothesis doesn’t hold in every conceivable case, or we’d achieve perfect
results on the TrojAl datasets. The differences in training procedures and subtle architectural
components such as dropout fraction across the TrojAl models likely plays a major role in
preventing the same perfect separation we saw in the more toy setup of Chapter 3. However,
our experiments indicate that by creating feature vectors from these boundary thickness
distributions, we can achieve good results in separating clean and backdoored models.
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Algorithm 2: Boundary thickness. [19]

1 Input DNN f: X = V; a € [-1,1]; 8 € (o, 1]; sampling distribution ¢ over pairs of
points from classes 7, j; number of pairs N to sample from the distribution; number

of points T to sample along each line segment

2
3 initialize L = {};
4 forn=1,...,N do
5 sample (x4, xp) ~ ¢;
// sample T points along the line segment from z, to =z}
6 initialize changes = {};
7 fortzo,ﬁ,%,...,ldo
8 compute x; = tx, + (1 — t)xy;
9 compute gi;(2;) = f(2¢)i — f(4);
10 changes.append(g;;(x));
11 end
// compute a sample-based approximation of the integral
12 | compute A = 7 o H{a < changes[t] < 5} ;
13 compute d = ||z, — x|[;
14 L.append(A - d);
15 end

16 return L

Output An empirical distribution of the boundary thickness of f for classes i, j.
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Appendix D

Boundary Tilting (Formal)

Similar to Appendix C’s formalization of boundary thickness and our hypothesis of how it
changes as the result of a backdoor attack, we’ll formally state our hypothesis regarding
boundary tilting in this section.

Unlike boundary thickness, which is measured along a single direction, boundary tilting
requires us to compare two different directions formed by analyzing two separate models.
Throughout this section, we’ll use the concept of a clean reference model f, for computing
boundary tilting. However, similar to boundary thickness, boundary tilting involves sampling
points from a distribution and using them to form another one.

Definition D.0.1 (Boundary tilting). Let fi, fo be two DNNs, and let ¢ be a distribution
over pairs of points (z,, 7y, z.) such that z, is classified as class ¢ by both f; and f,, and x,
as class j by fi1, and z. as class j by fo. The boundary tilting of f; with respect to fs5 for
classes 1, 7 is the random variable

(xb - xa)T(xc - xa)
() —
U f0) = 1 allze =zl

where (x4, Ty, 2.) ~ q.

Note that for a particular triplet (z,, zy, z.), ® is just the cosine similarity between x;, —z,
and x.—x,. Similar to boundary thickness, the expressiveness of ¢ as a feature for analyzing
a neural network comes from the choice of q. As before, we use adversarial attacks to generate
the points, but now we have to use two separate attacks on a point x,: one to generate z;
by attacking x, on model f;, and one to generate x. by attacking x, on model f5. Below,
we formally define the adversarial sampling distribution we use.

Definition D.0.2 (PGD adversarial sampling distribution (tilting)). The adversarial sam-
pling distribution g1 (f1, fo, €, k,n) for boundary tilting is obtained by sampling x, as some
point f; classifies as class i, and performing a PGD attack [13] of strength € for k iterations
with step size n on f to produce x;, such that f classifies it as class j, and then performing
the same attack on f, to generate x. as a point that fy classifies as class j.
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As with boundary thickness, we use an /o PGD attack in our experiments and also use
universal adversarial attacks. Below, we formally state our hypothesis about the boundary
tilting effects of a backdoor attacks.

Hypothesis D.0.1 (Backdooring a model tilts its decision boundary). Let f,, f. be clean
DNNs of the same architecture, and f, be an (¢, d,, d.)-backdoored version of f.. Then there

exist k*7 /’7* such thatv with Giltp = qtilt(fp7 fT’7 €, k*a 77*) and Qtilt,c = qtilt(fcv f’r; €, k*a n*>7

Eqmt,p [(I)(f}w fra Qtilt,p)] < Eqmt,c [q)(fm fr> Qtilt,c)] .

It’s important to point out that due to the randomness in the DNN training process
injected by the standard mini-batch optimization procedures, f,. and f., while both clean
models with the same architecture, will not in in general converge to identical decision
boundaries.

As with boundary thickness, this proposition doesn’t empirically hold across all possible
variations in the training procedure that we've experimented on, but it captures a different
piece of information from boundary thickness that we show is useful in determining if a
model has been backdoored. Similar to boundary thickness, we extract other features from
the distribution of ® besides its mean to build our full feature vectors.
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