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Abstract

Towards Ubiquitous Serverless Computing: Fast Large-Scale Machine Learning and Optimal
Pricing for the Cloud

by

Vipul Gupta

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Co-chair

Professor Thomas Courtade, Co-chair

Serverless computing platforms represent the fastest-growing segment of cloud services and are pre-
dicted to dominate the future of cloud computing. However, the real-world applications of serverless
systems are somewhat constrained due to several inherent bottlenecks such as their stateless nature,
frequent occurrence of stragglers, naive resource allocation and pricing of computing resources, etc.
The broader aim of this dissertation is to propose techniques to mitigate such bottlenecks and make
the use of serverless computing ubiquitous. In particular, we focus on four applications that relate
to large-scale serverless computing and describe them as follows.

Total time for end-to-end distributed computation in such systems suffers due to a subset of slower
workers, also referred to as stragglers. First, we propose straggler mitigation schemes for large-scale
numerical linear algebra on serverless systems. Serverless systems allow users to massively scale
the number of workers, but the total computation time is further exacerbated by high-communication
latencies and the stateless nature of Function-as-a-Service (FaaS) platforms. Second, we further
propose algorithms for large-scale convex optimization that are amenable to serverless systems.
Recently, serverless computing — due to its elasticity, scale, and ease of management — has
garnered significant traction from the industry and academia as a platform to train deep neural
networks. Third, we further propose algorithms for massive scale non-convex optimization for
training deep neural networks that take advantage of the scale of the serverless platform while
mitigating communication costs. Finally, any ubiquitous platform is not viable until it serves the
needs of the masses. In game-theoretic terms, a commercial platform should provide the required
quality of services to customers while maximizing their utility (or satisfaction). Fourth, we propose
principled yet practical schemes for allocating and pricing resources in serverless platforms.



i

To my parents, Saroj and Ram Gopal Gupta.



ii

Contents

Contents ii

List of Figures v

List of Tables x

1 Introduction 1
1.1 Serverless Computing: Promises and Pitfalls . . . . . . . . . . . . . . . . . . . . . 2
1.2 Numerical Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Non-convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Resource Allocation and Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Speeding up Linear Algebra 11

2 Codes for Serverless Straggler Mitigation 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Straggler Resilience in Serverless Computing Using Codes . . . . . . . . . . . . . 13
2.3 Theoretical Analysis of Local Product Codes . . . . . . . . . . . . . . . . . . . . . 17
2.4 Coded Computing in Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Sketch-based Serverless Straggler Mitigation 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Cost Analysis: Naive and Blocked multiplication . . . . . . . . . . . . . . . . . . 33
3.4 OverSketch: Straggler-resilient Blocked Matrix Multiplication using Sketching . . 37
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



iii

II Speeding up Convex Optimization 50

4 OverSketched Newton 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Newton’s Method: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 OverSketched Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 OverSketched Newton on Serverless Systems: Examples . . . . . . . . . . . . . . 60
4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 LocalNewton 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Convergence Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 BEAR: Feature Selection in Sublinear Memory 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Review: Count Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Stochastic Sketching for Feature Selection . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Challenges of Second-order Sketching in Ultra-High Dimension . . . . . . . . . . 111
6.5 The BEAR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.9 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IIISpeeding up Non-Convex Optimization 124

7 Stochastic Weight Averaging in Parallel 125
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3 Stochastic weight averaging in parallel . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 Loss Landscape Visualization around SWAP iterates . . . . . . . . . . . . . . . . . 127
7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Dynamic Communication Thresholding 137



iv

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Communication-Efficient Training with Hybrid Parallelism . . . . . . . . . . . . . 140
8.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.4 Compression Schemes That Do Not Work . . . . . . . . . . . . . . . . . . . . . . 153
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

IVResource Allocation and Pricing 155

9 Expected Utility Theory Perspective 156
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.3 Analyzing SYS-LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.4 Pricing Mechanisms to Learn User Utilities . . . . . . . . . . . . . . . . . . . . . 167
9.5 A Market Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.9 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10 Cumulative Prospect Theory Perspective 182
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.4 Pricing Mechanisms for Lottery-based Allocation . . . . . . . . . . . . . . . . . . 198
10.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Bibliography 212



v

List of Figures

1.1 Example of a serverless job where the user uploads a function and data and the cloud
launches worker(s) that map the function onto the dataset while abstracting away the
details of the server management from the user. . . . . . . . . . . . . . . . . . . . . . 2

1.2 Job times of AWS Lambda workers for distributed matrix multiplication. . . . . . . . . 4

2.1 Typical workflow on a serverless system for computing the matrix multiplication ABT . Here,
fenc, fcomp and fdec denote the functions corresponding to encoding, computation, and decoding,
respectively, that are employed at the serverless workers (in parallel on different data points).
Whereas most existing schemes focus on minimizing time required to compute the product
(Tcomp), our focus is on minimizing the end-to-end latency that involves parallel encoding (Tenc)
and decoding (Tdec) times as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Coded computing versus speculative execution for power iteration on a matrix of dimension 0.5
million for 20 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Computing C = AAT where A is divided into four row-blocks and LA = 2. Here, Cij =

AiA
T
j . Locally encoding the rows of A leads to a locally recoverable code in the output Ccoded. 15

2.4 Comparison of average runtimes of proposed schemes versus existing schemes for multiplication
of two square matrices. For large matrix dimensions, decoding with a polynomial code is not
feasible since the master node cannot store all the data locally. . . . . . . . . . . . . . . . . 16

2.5 Probabilistic upper bound on the number of blocks read, R, by a decoding worker from Theorem
1 shown for L = 10, n = 121, and p = 0.02. Here, Pr(R ≥ 2E[R]) ≤ 3.1× 10−3. . . . . . . 20

2.6 Some examples of undecodable sets, as viewed from a single decoding worker’s (LA + 1)×
(LB + 1) grid. The yellow blocks correspond to the systematic part of the code, and blue blocks
to the parity. Blocks marked with an "X" are stragglers. . . . . . . . . . . . . . . . . . . . 20

2.7 Some examples of "interlocking" three straggler configurations. Stragglers can be decoded
using a peeling decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Upper bound on probability of the event D̄ (that is, a decoding worker being unable to decode)
when p = .02. We chose n = 121 in our experiments which represents a good trade-off between
code redundancy and straggler resiliency. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Coded computing versus speculative execution for KRR with PCG on the ADULT dataset. Error
on testing dataset was 11%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Coded computing versus speculative execution for KRR with PCG on the EPSILON dataset.
Error on testing dataset was 8%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



vi

2.11 Comparison of proposed coding scheme, that is, local product codes, versus speculative execu-
tion for straggler mitigation on AWS Lambda. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Matrix A is divided into 2 row chunks A1 and A2, while B is divided into two column chunks
B1 and B2. During the encoding process, redundant chunks A1 +A2 and B1 +B2 are created.
To compute C, 9 workers store each possible combination of a chunk of A and B and multiply
them. During the decoding phase, the master can recover the affected data (C11, C12 and C22 in
this case) using the redundant chunks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 An illustration of two algorithms for distributed matrix multiplication. . . . . . . . . . . . . 33
3.3 Comparison of AWS Lambda costs for multiplying two n × n matrices, where each worker

is limited by 3008 MB of memory and price per running worker per 100 milliseconds is
$0.000004897. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 An illustration of multiplication of m × z matrix Ã and z × l matrix B̃, where z = d + b
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Chapter 1

Introduction

In recent years, there has been tremendous growth in users performing distributed computing
operations on the cloud, largely due to extensive and inexpensive commercial offerings like Amazon
Web Services (AWS), Google Cloud, Microsoft Azure, etc. We focus on a recently introduced cloud
service called serverless computing for general distributed computation. Traditional “serverful”
computing allows customers to rent servers from the cloud for a fixed duration, and the customers
can access the machines (say, through an IP address) and use it like a personal computer.

Serverless platforms differ from serverful systems by providing programming abstractions,
thus, simplifying the process of writing software for the cloud. Also called “Function-as-a-Service
(FaaS)”, the idea is that the user submits functions to the cloud which when triggered are evaluated
by serverless workers, which in turn are managed by the cloud provider. An example is illustrated
in Fig. 1.1, where the user is uploading job which consists of a function (e.g., matrix-matrix
multiplication) and data to the cloud storage. The job when triggered launches serverless workers
that map the function onto the dataset and return the output to the cloud storage. The user can then
ping the cloud to get back the results of the computation.

Serverless systems have garnered significant attention from industry (e.g., Amazon Web Services
(AWS) Lambda, Microsoft Azure Functions, Google Cloud Functions) as well as the research
community (see, e.g., [1]–[9]). Serverless platforms1 penetrate a large user base by removing the
need for complicated cluster management while allocating resources expeditiously which provides
greater elasticity and easy scalability [1]–[3]. For these reasons, serverless systems are expected
to abstract away today’s cloud servers in the coming decade just as cloud servers abstracted away
physical servers in the past decade [7]–[10].

Due to its massive scalability and convenience in operation, the use of serverless systems
is gaining significant research traction. It is forecasted that the market share of serverless will
grow by USD 9.16 billion during 2019-2023 (at a CAGR of 11%) [11]. Indeed, according to the
Berkeley view on Serverless Computing [7], serverless systems are expected to dominate the cloud
scenario and become the default computing paradigm in the coming years while client-server based
computing will witness a considerable decline. For these reasons, using serverless systems for

1The name serverless is an oxymoron since all the computing is still done on servers, but the name stuck as it
abstracts away the need to provision or manage servers.
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Figure 1.1: Example of a serverless job where the user uploads a function and data and the cloud
launches worker(s) that map the function onto the dataset while abstracting away the details of the
server management from the user.

large-scale computation has garnered significant attention from the systems community [1], [3], [9],
[12]–[16].

1.1 Serverless Computing: Promises and Pitfalls
In this section, we outline some distinguishing properties of serverless systems. First, we describe
some advantages of serverless platforms that make it enticing for users.

1. Simple abstraction for user: Although servers are still the ones powering all the computation,
serverless computing manages to hide these servers from the programmers and create a simple
abstraction that allow them to write code efficiently.

2. Massive Scale and Autoscaling: Unlike serverful computing, the number of inexpensive
workers in serverless platforms is flexible and scales automatically, often scaling into the
thousands [1], [9]. This allows users to execute algorithms that demand dynamic parallelism
without wasting compute resources, for example, distributed Cholesky decomposition [17].
The scalability of the serverless systems is further exemplified by the fact that we can launch
more than 16,000 machines within 10 seconds on AWS Lambda [3].

3. Pay-as-you-go cost model: Serverless platforms offer pay-as-you-go cost model instead of a
reservation-based model. Thus, there’s no cost for idle resources. This, combined with the
autoscaling nature makes serverless enticing if the customers need the machines on-demand
but only for a shorter duration.

The serverless platform enjoys the aforementioned features at the cost of several bottlenecks,
described in detail below.
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1. High Communication Latency: Serverless frameworks suffer from high communication
latency between worker machines dominates the running time of the algorithm in general
[4], [6]. These systems use cloud storage (e.g., AWS S3) to store enormous amounts of data,
while using a large number of low-quality workers for large-scale computation. Naturally, the
communication between the high-latency storage and the commodity workers is extremely
slow [e.g., see 1], resulting in impractical end-to-end times for many popular optimization
algorithms such as SGD [4], [6].

2. Stragglers and Faults: Unlike HPC/serverful systems, nodes in the serverless systems suffer
degradation due to what is known as system noise. This can be a result of limited availability
of shared resources, hardware failure, network latency, etc. [18], [19]. This results in job time
variability, and hence a subset of much slower nodes, often called stragglers. These stragglers
significantly slow the overall computation time, especially in large or iterative jobs. In Fig.
1.2, we plot the running times for a distributed matrix multiplication job with 3600 workers
on AWS Lambda and demonstrate the effect of stragglers on the total job time. In fact, our
experiments consistently demonstrate that at least 2% workers take significantly longer than
the median job time, severely degrading the overall efficiency of the system. The effects
are exacerbated for many common iterative distributed algorithms (such as gradient descent,
conjugate gradient, etc.) due to accumulation of tail times for stragglers in each iteration.

3. Ephemeral and Low-memory workers: Unlike serverful computing, the number of inex-
pensive workers can quickly scale into the thousands [1]. This heavy gain in the computation
power, however, comes with the disadvantage that the commodity workers in serverless
architecture are ephemeral and have low memory.2 Thus, if we are running a distributed
iterative algorithm, the ephemeral nature of the serverless workers requires that new workers
should be invoked every few iterations and data should be communicated to them.

4. Resource Allocation and Pricing: Serverless computing is a new ecosystem with a growing
customer base. Currently, all the jobs are allocated on a uniform basis by the cloud provider
without taking job requirements into account. For example, urgent jobs (that need to be
executed in real-time, such as model deployment [12] and real-time video compression [20])
may need prioritization, whereas enduring jobs (that can be put into queues with reasonable
wait-times, such as optimization in machine learning [6], [14], [16], [21] and scientific
computing [3], [5], [8]) could be put on hold. Further, since serverless platform offers pay-
as-you-go cost model, proper resource allocation and incentive-based pricing are even more
important since any idle resources cost money and may eventually result in decreased profit
margins for the cloud provider. Hence it is extremely desirable, and perhaps overdue, that we
have a resource allocation scheme that schedules and prices resources while taking customer
requirements into account. Further, the current pricing scheme is constant and independent of

2For example, serverless nodes in AWS Lambda have a maximum memory of 10 GB (up from 3 GB) and a
maximum runtime of 900 seconds (up from 300 seconds). Note that these numbers may change as the serverless
platform matures.
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(a) Job times for 3000 AWS Lambda nodes in
one trial. The median job time is 40 seconds, and
∼ 5% of the nodes take 100 seconds, and two
nodes take as much as 375 seconds for the same
job.

Average	Runtimes	on	AWS	Lambda

0 500 1000 1500 2000 2500 3000 3500 4000
Workers returned

40

60

80

100

120

140

160

180

Ti
m

e 
(s

ec
on

ds
)

3450 3500 3550 3600

140

145

150

155

160

165

170

175

~2%	stragglers

(b) Average job times for 3600 AWS Lambda
nodes over 10 trials for distributed matrix mul-
tiplication. The median job time is around 135
seconds, and around 2% of the nodes take up to
180 seconds on average.

Figure 1.2: Job times of AWS Lambda workers for distributed matrix multiplication.

the market. Ideally, the pricing scheme should represent an interplay between the demand
and supply and adapt prices to the demand of the cloud resources.

In this dissertation, we propose techniques for large-scale scientific computing and machine
learning that mitigate serverless bottlenecks such as stragglers, high-communication latency, low-
quality of workers while utilizing their massive scale and flexibility. Additionally, we develop
resource allocation and pricing schemes for the serverless platform from an economist’s perspective
that take user feedback into account while scheduling a job on the cloud. In particular, we divide
the dissertation into the following four parts, each of which focuses on an important application:
(1) Numerical Linear Algebra, (2) Large-scale convex optimization, (3) Large-scale non-convex
optimization, and (4) Resource allocation and pricing for the serverless platform. We describe these
parts in detail next.

1.2 Numerical Linear Algebra
Part I contains two chapters which focus on large-scale serverless computing linear algebra applica-
tions. Our techniques capitalize on the scale and elasticity of serverless computing while mitigating
bottlenecks such as the occurrence of stragglers.

Techniques like speculative execution have been traditionally used to deal with stragglers (e.g.,
in Hadoop MapReduce [22] and Apache Spark [23]). Speculative execution works by detecting
workers that are running slowly, or will slow down in the future, and then assigning their jobs
to new workers without shutting down the original job. The worker that finishes first submits its
results. This has several drawbacks: constant monitoring of jobs is required, which is costly when
the number of workers is large. Monitoring is especially difficult in serverless systems where
worker management is done by the cloud provider and the user has no direct supervision over the
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workers. Moreover, it is often the case that a worker straggles only at the end of the job (say, while
communicating the results). By the time the job is resubmitted, the additional communication and
computational overhead would have decreased the overall efficiency of the system. The situation is
even worse for smaller jobs, as spinning up an extra node requires additional invocation and setup
time which can exceed the original job time.

Error correcting codes are a linchpin of digital transmission and storage technologies, vastly
improving their efficiency compared to uncoded systems. Recently, there has been a significant
amount research focused on applying coding-theoretic ideas to introduce redundancy into distributed
computation for improved straggler and fault resilience, for example, see [24]–[39]. This line of
work focuses on cloud computing models consistent with first-generation cloud platforms (i.e.,
“serverful” platforms), where the user is responsible for node management through a centralized
master node that coordinates encoding, decoding and any update phases. Accordingly, most existing
schemes typically employ variants of Maximum Distance Separable (MDS) codes, and have focused
on optimizing the recovery threshold (i.e., minimum number of machines needed to do a task) of
the algorithm, e.g. [28], [29]. This is equivalent to minimizing the compute time while assuming
that the encoding/decoding times are negligible. When the system size is relatively small, the
encoding/decoding costs can be safely ignored. However, the encoding/decoding costs of such
coded computation schemes scale with the size of the system, and hence this assumption does
not hold anymore for serverless systems that can invoke tens of thousands of workers [3], [7].
Furthermore, existing schemes require a powerful master with high bandwidth and large memory to
communicate and store all the data to perform encoding and decoding locally. This goes against
the very idea of massive scale distributed computation. Therefore, coding schemes designed for
serverful systems cannot guarantee low end-to-end latency in terms of total execution time for
large-scale computation in serverless systems.

In Chapter 2, we propose and implement simple yet principled coding schemes for straggler
mitigation in serverless systems for matrix multiplication and evaluate them on several common
applications from machine learning and high-performance computing. The proposed coding scheme
employs parallel encoding and decoding over the data stored in the cloud using serverless workers.
This creates a fully distributed computing framework without using a master node to conduct
encoding or decoding, which removes the computation, communication and storage bottleneck at
the master. On the theory side, we establish that our proposed scheme is asymptotically optimal in
terms of decoding time and provide a lower bound on the number of stragglers it can tolerate with
high probability. Through extensive experiments, we show that our scheme outperforms existing
schemes such as speculative execution and other coding theoretic methods by at least 25%.

Many of the recent advances in algorithms for numerical linear algebra have come from the
technique of linear sketching, in which a given matrix is compressed by multiplying it with a
random matrix of appropriate dimension. The resulting product can then act as a proxy for the
original matrix in expensive computations such as matrix multiplication, least-squares regression,
low-rank approximation, etc. [40]–[43]. For example, computing the product of A ∈ Rm×n

and B ∈ Rn×l takes O(mnl) time. However, if we use S ∈ Rn×d to compute the sketches, say
Ã = AS ∈ Rm×d and B̃ = STB ∈ Rd×l, where d� n is the sketch dimension, we can reduce the
computation time to O(mdl) by computing an approximate product ASSTB. This is very useful in
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applications like machine learning, where the data itself is noisy, and computing the exact result
is not needed. For example, in [42], authors propose Newton Sketch, a randomized second order
method for optimization that is based on performing an approximate Newton step using Hessian
that is calculated by multiplying sketched matrices.

In Chapter 3, we propose OverSketch, an approximate algorithm for distributed matrix mul-
tiplication in serverless computing. OverSketch leverages ideas from matrix sketching and high-
performance computing to enable cost-efficient multiplication that is resilient to faults and straggling
nodes pervasive in low-cost serverless architectures. We establish statistical guarantees on the
accuracy of OverSketch and empirically validate our results by solving a large-scale linear program
using interior-point methods and demonstrate a 34% reduction in compute time on AWS Lambda.

1.3 Convex Optimization
In part II, we focus on large-scale convex optimization in serverless systems. Our techniques
take advantage of the massive scale and autoscaling properties of the serverless platform by
mitigating bottlenecks such as limited memory at worker nodes, high communication latency, and
frequent occurrence of stragglers. The central theme of these chapters is to utilize the second-order
information to reduce the number of iterations to solve the problem, thus overcoming challenges
such as higher communication latency and persistent stragglers.

In many machine learning applications, where the data itself is noisy, using the exact Hessian
is not necessary. Indeed, using ideas from RandNLA, one can prove convergence guarantees for
second-order methods on a single machine, when the Hessian is computed approximately [42],
[44]–[46]. To accomplish this, many sketching schemes can be used (sub-Gaussian, Hadamard,
random row sampling, sparse Johnson-Lindenstrauss, etc. [41], [47]), but these methods cannot
tolerate stragglers, and thus they do not perform well in serverless environments.

There has also been a growing research interest in designing and analyzing distributed imple-
mentations of stochastic second-order methods [48]–[53]. However, these implementations are
tailored for serverful distributed systems. Our focus, on the other hand, is on serverless systems.
Optimization over the serverless framework has garnered significant interest from the research
community. However, these works either evaluate and benchmark existing algorithms (e.g., see
[13]–[15]) or focus on designing new systems frameworks for faster optimization (e.g., see [16]) on
serverless.

In Chapter 4, we develop OverSketched Newton, a randomized Hessian-based optimization
algorithm that is tailored to serverless systems to solve for large-scale convex optimization. OverS-
ketched Newton leverages matrix sketching ideas from Randomized Numerical Linear Algebra to
compute the Hessian approximately. These sketching methods lead to inbuilt resiliency against
stragglers that are a characteristic of serverless architectures. Depending on whether the problem
is strongly convex or not, we propose different iteration updates using the approximate Hessian.
For both cases, we establish convergence guarantees for OverSketched Newton and empirically
validate our results by solving large-scale supervised learning problems on real-world datasets.
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Experiments demonstrate a reduction of ∼50% in total running time on AWS Lambda, compared to
state-of-the-art distributed optimization schemes.

In recent years, schemes such as local SGD have gained popularity, as they are communication-
efficient due to only sporadic model updates at the master [54]–[56]. Such schemes that show
great promise have eluded a thorough theoretical analysis until recently, when it was shown that
local SGD converges at the same rate as mini-batch SGD [57]–[59]. Similar ideas that reduce
communication by averaging the local models sporadically have also been applied in training
neural networks to improve the training times and/or model performance [60], [61]. Apart from
local first-order methods, many communication-efficient distributed second-order (also know as
Newton-type) algorithms have been recently proposed [48]–[51], [53], [62]–[65]. Such methods use
both the gradient and the curvature information to provide an order of improvement in convergence,
compared to vanilla first-order methods. This is done at the cost of more local computation
per iteration, which is acceptable for systems with high communication latency. However, such
algorithms require at least two communication rounds (for averaging gradients and the second-order
descent direction), and a thorough knowledge of a fundamental trade-off between communication
and local computation is still lacking for these methods. Stochastic second order optimization
theory has been developed recently [44]–[46], and second order implementations motivated by this
theory have been shown to outperform state-of-the-art [66], [67].

In Chapter 5, we propose LocalNewton, a distributed second-order algorithm with local averag-
ing to address the communication bottleneck problem in distributed optimization. In LocalNewton,
the worker machines update their model in every iteration by finding a suitable second-order descent
direction using only the data and model stored in their own local memory. We let the workers run
multiple such iterations locally and communicate the models to the master node only once every
few (say L) iterations. LocalNewton is highly practical since it requires only one hyperparameter,
the number L of local iterations. We use novel matrix concentration based techniques to obtain
theoretical guarantees for LocalNewton, and we validate them with detailed empirical evaluation.
To enhance practicability, we devise an adaptive scheme to choose L, and we show that this reduces
the number of local iterations in worker machines between two model synchronizations as the
training proceeds, successively refining the model quality at the master. Via extensive experiments
using several real-world datasets on AWS Lambda, we show that LocalNewton requires fewer
than 60% of the communication rounds (between master and workers) and less than 40% of the
end-to-end running time, compared to state-of-the-art algorithms, to reach the same training loss.

As discussed earlier, the low-quality machines in serverless are limited by local memory, which
makes it impossible to run training algorithms with a large model dimension (e.g., AWS Lambda
workers have a maximum memory of 10 GB). However, in many scenarios, it is only a subset of the
features that are most predictive of the outputs storing which requires only a sublinear memory in
the dimensionality of the data. Feature hashing (FH) is one of the most popular algorithms [68]
which uses a universal hash function to project the features. While FH is ideal for prediction, it is
not suited for feature selection; that is, the original important features cannot be recovered from
the hashed ones. Recently, first-order stochastic gradient descent (SGD) algorithms [69], [70] have
been developed which extend the ideas in feature hashing (FH) [68] to feature selection. Instead of
explicitly storing the feature vectors, these algorithms store a low-dimensional sketch of the features
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in a data structure called Count Sketch [71], originated from the streaming literature.
In Chapter 6, we consider feature selection for applications in machine learning where the

dimensionality of the data is so large that it exceeds the working memory of the serverless machine.
Unfortunately, current large-scale sketching algorithms show poor memory-accuracy trade-off due
to the irreversible collision and accumulation of the stochastic gradient noise in the sketched domain.
To mitigate this, we develop a second-order ultra-high dimensional feature selection algorithm,
called BEAR, which stores the second-order stochastic gradients in the celebrated Broyden Fletcher
Goldfarb Shannon (BFGS) algorithm using a Count Sketch, a sublinear memory data structure
from the streaming literature. Experiments on real-world data sets demonstrate that BEAR requires
up to three orders of magnitude less memory space to achieve the same classification accuracy
compared to the first-order sketching algorithms. Theoretical analysis proves convergence of BEAR
with O(1/t) rate in t iterations of the sketched algorithm. Our algorithm reveals an unexplored
advantage of second-order optimization for memory-constrained sketching of models trained on
ultra-high dimensional data sets.

1.4 Non-convex Optimization
Part III caters to non-convex optimization, or specifically, a subset of problems popularly known
as deep learning that involves training large-scale Deep Neural Network (DNN) based models.
Note that practical training of such models require special hardware accelerators such as Graphical
Processing Units (GPUs), Tensor Processing Units (TPUs), etc. Commercial platforms do not
currently offer these specific hardware-based serverless platforms to accelerate DNN training.
However, it is expected that such platforms will soon evolve due to the popularity of serverless [9].
In this part, we propose techniques for large-scale DNN training that retain the generalization gap
while reducing communication costs. Our techniques can be applied on any distributed platform,
including a future serverless platform that caters to deep learning.

Large-batch training is the standard way of increasing the increasing the number of workers for
distributed DNN training. Even though the training loss can be reduced more efficiently, there is a
maximum batch size after which the resulting model tends to have worse generalization performance
[72]–[76]. Methods which use adaptive batch sizes exist [77]–[81]. However, most of these methods
are either designed for specific datasets or require extensive hyper-parameter tuning. Furthermore,
they ineffectively use the computational resources by reducing the batch size during part of the
training.

Stochastic weight averaging (SWA) [82] is a method where models are sampled from the later
stages of an SGD training run. When the weights of these models are averaged, they result in a
model with much better generalization properties. This strategy is very effective and has been
adopted in multiple domains: deep reinforcement learning [83], semi-supervised learning [84],
Bayesian inference [85], low-precision training [86].

In Chapter 7, we adapt SWA to accelerate DNN training. Specifically, we propose Stochastic
Weight Averaging in Parallel (SWAP), an algorithm to accelerate distributed training of Deep Neural
Networks (DNNs) with a large number of data-parallel workers. SWAP uses large mini-batches to
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compute an approximate solution quickly and then refines it by averaging the weights of multiple
models computed independently and in parallel. The resulting models generalize equally well
as those trained with small mini-batches but are produced in a substantially shorter time. We
demonstrate the reduction in training time and the good generalization performance of the resulting
models on the computer vision datasets CIFAR10, CIFAR100, and ImageNet.

Due to the use of large clusters with powerful machines to train complex DNNs (e.g. BERT-
Large [87] with 340M parameters), the distributed training workloads are becoming increasingly
communication bound. For this reason, numerous compression schemes have been proposed in
the past several years for the data parallel setting (see [88] for a comprehensive survey). These
compression schemes come in various forms, such as the following: (i) Quantization, where the
number of bits per entry of the communicated vector is reduced (e.g., [89]–[92]); (ii) Sparsification,
where only a few entries of the communicated vector are sent (e.g., [93]–[98]); (iii) Statistical
techniques such as Randomized Sketching (e.g., [99], [100]); and (iv) Low-rank approximation,
which decomposes the vector into low-rank components before communication (e.g., [101]–[104]).

In Chapter 8, we consider hybrid parallelism—a paradigm that further scales DNN training
by employing both Data Parallelism (DP) and Model Parallelism (MP) for distributed training of
DNNs. We propose a compression framework called Dynamic Communication Thresholding (DCT)
for communication-efficient hybrid training. DCT filters the entities to be communicated across the
network through a simple hard-thresholding function, allowing only the most relevant information
to pass through. For communication efficient DP, DCT compresses the parameter gradients sent
to the parameter server during model synchronization. The threshold is updated only once every
few thousand iterations to reduce the computational overhead of compression. For communication
efficient MP, DCT incorporates a novel technique to compress the activations and gradients sent
across the network during the forward and backward propagation, respectively. This is done by
identifying and updating only the most relevant neurons of the neural network for each training
sample in the data. We evaluate DCT on natural language processing and recommender system
models. DCT reduces communication by 100× and 20× during DP and MP, respectively, improving
end-to-end training time on industry scale models by 37% without any loss in performance.

1.5 Resource Allocation and Pricing
In part IV, we propose principled yet practical approaches for allocation of serverless resources
that take user job requirements such as delay sensitivity into account. Further, a side-product of
our allocation scheme is a pricing scheme that is defined by the interplay between the supply and
the demand of the market. These schemes borrow ideas from economics and human psychology to
maximize user happiness.

The feature of pricing cloud resources based on delay-sensitivity of users has been lacking from
most of the current pricing schemes that are being implemented as well as several real-time dynamic
pricing schemes that have been proposed in the literature (we refer the readers to [105], [106] and
[107] for surveys on existing and proposed pricing schemes for the cloud).
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In Chapter 9, we propose a novel scheduler to allocate resources for serverless computing with
the help of utility functions to model the delay-sensitivity of customers. The resulting resource
allocation scheme is optimal in the sense that it maximizes the aggregate utility of all users across
the system, thus maximizing social welfare. Our approach gives rise to a dynamic pricing scheme
that is obtained by solving an optimization problem in its dual form. We further develop feedback
mechanisms that allow the cloud provider to converge to optimal resource allocation, even when the
users’ utilities are private and unknown to the service provider. Simulations show that our approach
can track market demand and achieve significantly higher social welfare (or, equivalently, cost
savings for customers) compared to existing schemes.

Further, although the market-based pricing scheme in Chapter 9 allows us to differentiate
between the users and allocate the resources to customers who “want” them the most, or rather
who are ready to pay the most, it has a potential problem which is further accentuated when the
demand for resources exceeds the supply by a lot. It drives the prices high and discourages some
of the smaller customers from participating in such markets. Indeed, the customers come in all
sizes. In particular, small business owners particularly rely on cloud computing services as it allows
them to off-load the architecture and back-end duties that are critical to maintaining the computing
resources and focus on their core business processes [108].

Several service providers use lottery-based allocations to decide which agents to serve next.
For example, First-in-First-out (FIFO) is a popular way of allocating warm queues in serverless
computing [109]. As a result, all the customers who are willing to pay the minimum price set
by the service provider get a shot at receiving the service. Such lottery-based provisions give
rise to uncertainties in the execution of the jobs and their delay times. Just as we distinguished
between different customers with varying delay-sensitivity in Chapter 9, another important criteria
for service requirement is the uncertainty in execution of jobs, and different agents have different
preferences towards these uncertainties. In Chapter 10, we capture these varying preferences
towards uncertainties and allocate resources optimally via lotteries.



In this part of the thesis, we study algorithms for speeding up algorithms for distributed
numerical linear algebra in the serverless setting.

• Chapter 2: Using error-correcting codes from information and coding theory for exact
distributed computation

• Chapter 3: Using sketching methods from randomized numerical linear algebra for
approximate distributed computation

Part I

Speeding up Linear Algebra
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Chapter 2

Codes for Serverless Straggler Mitigation

In this chapter, we propose and implement simple yet principled approaches for straggler mitigation
in serverless systems for matrix multiplication and evaluate them on several common applications
from machine learning and high-performance computing.

2.1 Introduction
To formalize this problem, we consider the typical workflow of a serverless system for the task of
matrix-matrix multiplication (see Fig. 2.1). First, worker machines read the input data from the
cloud, jointly encode the data, and write the encoded data to the cloud (Tenc). Then, the workers
start working on their tasks using the encoded data, and write back the product of coded matrices
back to the cloud memory. Denote the joint compute time (including the time to communicate the
task results to the cloud) Tcomp. Once a decodable set of task results are collected, the workers start
running the decoding algorithm to obtain the final output (which takes Tdec time). Note that all of
these phases are susceptible to straggling workers. Hence, one can write the total execution time of
a coded computing algorithm as Ttot,coded = Tenc + Tcomp + Tdec. The key question that we ask is
how to minimize end-to-end latency, Ttot,coded, that comprises encoding, decoding and computation
times, where all of these phases are performed in parallel by serverless workers.

2.1.1 Main Contribution
In this chapter, we advocate principled, coding-based approaches to accelerate distributed computa-
tion in serverless computing. Our goals span both theory and practice: we develop coding-based
techniques to solve common machine learning problems on serverless platforms in a fault/straggler
resilient manner, analyze their runtime and straggler tolerance, and implement them on AWS
Lambda for several popular applications.

Generally, computations underlying several linear algebra and optimization problems tend to
be iterative in nature. With this in mind, we aim to develop general coding-based approaches for
straggler-resilient computation which meet the following criteria: (1) Encoding over big datasets
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Figure 2.1: Typical workflow on a serverless system for computing the matrix multiplication ABT . Here,
fenc, fcomp and fdec denote the functions corresponding to encoding, computation, and decoding, respectively,
that are employed at the serverless workers (in parallel on different data points). Whereas most existing
schemes focus on minimizing time required to compute the product (Tcomp), our focus is on minimizing the
end-to-end latency that involves parallel encoding (Tenc) and decoding (Tdec) times as well.

should be performed once. In particular, the cost for encoding the data for straggler-resilient
computation will be amortized over iterations. (2) Encoding and decoding should be low-complexity
and require at most linear time and space in the size of the data. (3) Encoding and decoding should
be amenable to a parallel implementation. This final point is particularly important when working
with large datasets on serverless systems due to the massive scale of worker nodes and high
communication latency.

It is unlikely that there is a “one-size-fits-all" methodology which meets the above criteria
and introduces straggler resilience for any problem of interest. Hence, we propose to focus our
efforts on a few fundamental operations including matrix-matrix multiplication and matrix-vector
multiplication, since these form atomic operations for many large-scale computing tasks. Our
developed algorithms outperform speculative execution and other popular coding-based straggler
mitigation schemes by at least 25%. We demonstrate the advantages of using the developed coding
techniques on several applications such as alternating least squares, SVD, Kernel Ridge Regression,
power iteration, etc.

2.2 Straggler Resilience in Serverless Computing Using Codes
In this section, we describe our schemes for straggler-resilient matrix-vector and matrix-matrix
multiplication in the serverless framework.

2.2.1 Distributed Matrix-Vector Multiplication
The main objective of this section is to show that coding schemes can hugely benefit serverless
computing by implementing coded matrix-vector multiplication on AWS Lambda. Computing
y = Ax, for a large matrix A, is a frequent bottleneck of several popular iterative algorithms such
as gradient descent, conjugate gradient, power iteration, etc. Many coding theory based techniques
for straggler-resilient matrix vector multiplication have been proposed in the literature (e.g. see
[24], [27], [35], [38]). We refer the reader to Fig. 2 in [24] for an illustration. Fortunately, many of
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Figure 2.2: Coded computing versus speculative execution for power iteration on a matrix of dimension 0.5
million for 20 iterations.

these schemes can be directly employed in serverless systems since the encoding can be done in
parallel and the decoding over the resultant output for computing y is inexpensive as it is performed
over a vector. Note that a direct applicability is not true for all operations (such as matrix-matrix
multiplication), as we will see later in Section 2.2.2.

To illustrate the advantages of coding techniques over speculative execution, we implement
power iteration on the serverless platform AWS Lambda. Power iteration requires a matrix-vector
multiplication in each iteration and gives the dominant eigenvector and corresponding eigenvalue of
the matrix being considered. Power iteration constitutes an important component for several popular
algorithms such as PageRank and Principal Component Analysis (PCA). PageRank is used by
Google to rank documents in their search engine [110] and by Twitter to generate recommendations
of who to follow [111]. PCA is commonly employed as a means of dimensionality reduction in
applications like data visualization, data compression and noise reduction [112].

We applied power iteration to a square matrix of dimension (0.5 million)2 using 500 workers on
AWS Lambda in the Pywren framework [1]. A comparison of compute times of coded computing
with speculative execution is shown in Fig. 2.2, where a 2× speedup is achieved1. Apart from being
significantly faster than speculative execution, another feature of coded computing is reliability, that
is, almost all the iterations take a similar amount of time (∼200 seconds) compared to speculative
execution, the time for which varies between 340 and 470 seconds. We demonstrate this feature of
coded computing throughout our experiments in this chapter.

2.2.2 Distributed Matrix-Matrix Multiplication
Large-scale matrix-matrix multiplication is a frequent computational bottleneck in several problems
in machine learning and high-performance computing and has received significant attention from

1For our experiments on matrix-vector multiplication, we used the coding scheme proposed in [27] due to its simple
encoding and decoding that takes linear time. However, we observed that using other coding schemes that are similar,
such as the one proposed in [24], result in similar runtimes.
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the coding theory community (e.g. see [26]–[32]). The problem is computing

ABT = C, where A ∈ Rm×n and B ∈ R`×n. (2.1)

Proposed Coding Scheme: For straggler-resilient matrix multiplication, we describe our easy-
to-implement coding scheme below. First, we encode the row-blocks of A and B in parallel by
inserting a parity block after every LA and LB blocks of A and B, respectively, where LA and LB
are parameters chosen to control the amount of redundancy the code introduces. This produces
encoded matrices Acoded and Bcoded. As LA and LB are increased, the parity blocks become more
spread out, and the code has less redundancy. For example, when LA = LB = 1, every row of the
matrices A and B is duplicated (and, hence, has 100% redundancy). At the other extreme, when
LA and LB are set equal to the number of row-blocks in A and B, respectively, there is only one
parity row-block added in A and B, and thus, the code exhibits minimum possible redundancy. In
Fig. 2.3, an example of the encoded matrix Acoded and the resultant output matrix Ccoded is shown
for the case when A = B and LA = 2.

C11 C12 C11 +	C12 C13 C14 C13 +	C14

C21 C22 C21	+	C22 C23 C24 C23	+	C24

C11+	C21 C12+	C22 C13+	C23 C14+	C24

C31 C32 C31 +	C32 C33 C34 C33 +	C34

C41 C42 C41 +	C42 C43 C44 C43 +	C44

C31+	C41 C32+	C42 C33+	C43 C34+	C44

!"#$%$ = 	("#$%$("#$%$) 		("#$%$

A1

A2

A1+	A2

A3

A4

A3+	A4

A1

A2

A3

A4

(

Encoding Multiplication

Figure 2.3: Computing C = AAT where A is divided into four row-blocks and LA = 2. Here, Cij =
AiA

T
j . Locally encoding the rows of A leads to a locally recoverable code in the output Ccoded.

Note the locally recoverable structure of Ccoded: to decode one straggler, only a subset of blocks
of Ccoded need to be read. In Fig. 2.3, for example, only two blocks need to be read to mitigate
a straggler. This is unlike polynomial codes which are MDS in nature and, hence, are optimal in
terms of recovery threshold but require reading all the blocks from the output matrix while decoding.
The locally recoverable structure of the code makes it particularly amenable to a parallel decoding
approach: Ccoded consists of (LA + 1) × (LB + 1) submatrices, each of which can be separately
decoded in parallel. In Fig. 2.3, there are four such submatrices. We use a simple peeling decoder
(for example, see [26], [27]) to recover the systematic part of each (LA + 1)× (LB + 1) submatrix,
constructing the final result matrix C from these systematic results.

In the event that any of the submatrices are not decodable due to a large number of stragglers, we
recompute the straggling outputs. Thus, choosing LA and LB presents a trade-off. We would like to
keep them small so that we can mitigate more stragglers without having to recompute, but smaller
LA and LB imply more redundancy in computation and is potentially more expensive. For example,
LA = LB = 5 implies 44% redundancy. Later, we will show how to choose the parameters LA and
LB given an upper bound on the probability of encountering a straggler in the serverless system.
We will also prove that with the right parameters, the probability of not being able to decode the
missing blocks is negligible.
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Figure 2.4: Comparison of average runtimes of proposed schemes versus existing schemes for multiplication
of two square matrices. For large matrix dimensions, decoding with a polynomial code is not feasible since
the master node cannot store all the data locally.

We refer to the proposed coding scheme in Fig. 2.3 as the local product code. In Fig. 2.4,
we compare the local product code with speculative execution, and existing popular techniques
for coded matrix multiplication such as polynomial codes [28] and product codes [26]. In our
experiment, we set A (= B) to be a square matrix with LA = 10, implying 21% redundancy.
Product codes and polynomial codes were also designed such that the amount of redundancy was
≥ 21%. Accordingly, we wait for 79% of the workers to return before starting to recompute in the
speculative execution-based approach so that all the methods employed had the same amount of
redundancy. We note that the coding-based approach performs significantly better than existing
coding-based schemes and at least 25% better than the speculative execution-based approach for
large matrix dimensions2.

Another important point to note is that existing coding-based approaches perform worse than
speculative execution. This is because of the decoding overhead of such schemes. Product codes
have to read the entire column (or row) block of Ccoded and polynomial codes have to read the entire
output Ccoded to decode one straggler. In serverless systems, where workers write their output to a
cloud storage and do not communicate directly with the master owing to their ‘stateless’ nature,
this results in a huge communication overhead. In fact, for polynomial codes, we are not even able
to store the entire output in the memory of the master for larger values of n. For this reason, we
do not have any global parities—that require reading all the blocks to decode the stragglers—in
the proposed local product code. Note that existing coding schemes with locality, such as [27] and
[31], also have global parities which are dispensable in serverless and, thus, have high redundancy.
This is because such schemes were designed for serverful systems where the decoding is not fully
distributed. Moreover, we show in the next section that local product codes are asymptotically
optimal in terms of locality for a fixed amount of redundancy. In the event the output is not locally
decodable in local product codes, we restart the jobs of straggling workers. However, we later show
that such an event is unlikely if the parameters LA and LB are chosen properly.

2A working implementation of the proposed schemes is available at https://github.com/vvipgupta/serverless-
straggler-mitigation
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Remark 1. To mitigate stragglers during encoding and decoding phases, we employ speculative
execution. However, in our experiments, we have observed that encoding and decoding times
have negligible variance and do not generally suffer from stragglers. This is because the number
of workers required during encoding and decoding phases is relatively small (less than 10% of
the computation phase) with smaller job times due to locality. The probability of encountering a
straggler in such small-scale jobs is extremely low.

Remark 2. It has been well established in the literature that blocked partitioning of matrices is
communication efficient for distributed matrix-matrix multiplication both in the serverful [113],
[114] and serverless [5] settings. Even though in Fig. 2.3 we show partitioning of A into row-blocks
for clarity of exposition, we further partition the input matrices A (and B) into square blocks in all
our experiments and perform block-wise distributed multiplication.

2.3 Theoretical Analysis of Local Product Codes
In this chapter, we analyze Local Product Codes, a coding-theoretic scheme for matrix-matrix
multiplication in the serverless framework.

2.3.1 Optimality of Local Product Codes
In coding-theoretic terminology, a locally recoverable code (LRC) is a code where each symbol is a
function of small number of other symbols. This number is referred to as the locality, r, of the code.
In the context of straggler mitigation, this means that each block in Ccoded is a function of only a
few other blocks. Hence, to decode one straggler, one needs to read only r blocks. In the example
of Fig. 2.3, the locality is r = 2 since each block of Ccoded can be recovered from two other blocks.
In general, the locality of the local product code is min(LA, LB). Another important parameter of
a code is its minimum distance, d, which relates directly to the number of stragglers that can be
recovered in the worst case. Specifically, to recover the data of e stragglers in the worst case, the
minimum distance must satisfy d ≥ e+ 1.

For a fixed redundancy, Maximum Distance Separable (MDS) codes attain the largest possible
minimum distance d, and thus, are able to tolerate the most stragglers in the worst case. Many
straggler mitigation schemes are focused on MDS codes and have gained significant attention, such
as polynomial codes [28]. However, such schemes are not practical in the serverless case since they
ignore the encoding and decoding costs. Moreover, as seen from Fig. 2.4, it is better to restart the
straggling jobs than to use the parities from polynomial or product codes since the communication
overhead during decoding is high.

Hence, in serverless systems, the locality r of the code is of greater importance since it deter-
mines the time required to decode a straggler. For any LRC code, the following relation between d
and r is satisfied [115], [116]

d ≤ n− k −
⌈
k

r

⌉
+ 2, (2.2)
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where k is the number of systematic data blocks and n is the total number of data blocks including
parities. Now, since we want to tolerate at least one straggler, the minimum distance must satisfy
d ≥ 2. Using dk/re ≥ k/r, we conclude that n− k − k

r
≥ 0 or, equivalently,

r ≥ k

n− k . (2.3)

Now, in the case of the local product code, each of the submatrices that can be decoded in parallel
represent a product code with k = LALB and n = (LA + 1)(LB + 1). In Fig. 2.3, there are
four locally decodable submatrices with LA = LB = 2, k = 4 and n = 9. Also, we know that
the locality for each of the submatrices is min(LA, LB) and hence this is the locality for the local
product code.

Next, we want to compare the locality of the local product code with any other coding scheme
with the same parameters, that is, k = LALB and n = (LA + 1)(LB + 1). Using Eq. 2.3, we get

r ≥ LALB
(LA + 1)(LB + 1)− LALB

=
LALB

LA + LB + 1

≥ min(LA, LB)

2 + o(1)
.

Thus the locality of local product codes is optimal (within a constant factor) since it achieves the
lower bound of locality r for all LRC codes. This is asymptotically better than, say, a local version
of polynomial codes (that is, each submatrix of Ccoded is a polynomial code instead of a product
code) for which the locality is LALB since it needs to read all LALB blocks to mitigate one straggler
[28].

Having shown that local product codes are asymptotically optimal in terms of decoding time,
we further quantify the decoding time in the serverless case through probabilistic analysis next.

2.3.2 Decoding Costs
Stragglers arise due to system noise which is beyond the control of the user (and maybe even the
cloud provider, for example, unexpected network latency or congestion due to a large number of
users). However, a good estimate for an upper bound on the number of stragglers can be obtained
through multiple experiments. In our theoretical analysis, we assume that the probability of a given
worker straggling is fixed as p, and that this happens independently of other workers. In AWS
Lambda, for example, we obtain an upper bound on the number of stragglers through multiple trial
runs and observe that less than 2% of the nodes straggle in most trials (also noted from Fig. 1.2).
Thus, a conservative estimate of p = 0.02 is assumed for AWS Lambda.

Given the high communication latency in serverless systems, codes with low I/O overhead are
highly desirable, making locally recoverable codes a natural fit. For local product codes, say the
decoding worker operates on a grid of n = (LA + 1) × (LB + 1) blocks. If a decoding worker
sees a single straggler, it reads min(LA, LB) blocks to recover it. However, when there are more
than one stragglers, at most L = max(LA, LB) block reads will occur per straggler during recovery.
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For example, if LA > LB and there are two stragglers in the same row, the decoding worker read
LA rows per straggler. Thus, if a decoding worker gets S stragglers, a total of at most SL block
reads will occur—there are at most L block reads for each of the S stragglers. Since the number
of stragglers, S, is random, the number of blocks read, say R, is also random. Note that R scales
linearly with the communication costs.

In Theorem 1, we quantify the decoding costs for local product codes; specifically, we show
that the probability of a decoding worker reading a large number of blocks is small.

Theorem 1. Let p be the probability that a serverless worker straggles independently of others, and
R be the number of blocks read by a decoding worker working on n = (LA + 1)(LB + 1) blocks.
Also, let L = max(LA, LB). Then, the probability that the decoding worker has to read more than
x blocks is upper bounded by

Pr(R ≥ x) ≤
(

x

npL

)−x/L
e−

x
L

+np

Proof. See Section 2.5.1.

Theorem 1 provides a useful insight about the performance of local product codes: the probability
of reading more than x blocks during decoding decays decays to zero at a super-exponential rate.
Note that for the special (and more practical) case of LA = LB = L, the number of blocks read per
straggler is exactly L and thus E[R] = E[SL] = npL. Thus, using Theorem 1, we can obtain the
following corollary.

Corollary 1. For any ε > 0 and L = LA = LB , the probability that the decoding worker reads εL
more blocks than the expected E[R] blocks is upper bounded by

Pr(R ≥ E[R] + εL) ≤
(

1 +
ε

np

)−np−ε
e−ε.

For ε = np, this becomes

Pr(R ≥ 2E[R]) ≤ 1

(4e)np
.

In Fig. 2.5, we plot the upper bound on Pr(R ≥ x) for different values of x. The values of n
and L were chosen to be consistent with the experiments in Fig. 2.4, where LA = LB = 10, so that
the maximum number of blocks read per straggler is L = 10 and the number of blocks of Ccoded

per decoding worker is n = 121. Additionally, we used p = .02 as obtained through extensive
experiments on AWS Lambda (see Fig. 1.2). In a polynomial code with the same locality, 100
blocks would be read to mitigate any straggler by a decoding worker. For the local product code,
the probability that 100 blocks are read is upper bounded by Pr(R ≥ 100) ≤ 3.5× 10−10.
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Figure 2.5: Probabilistic upper bound on the number of blocks read, R, by a decoding worker from Theorem
1 shown for L = 10, n = 121, and p = 0.02. Here, Pr(R ≥ 2E[R]) ≤ 3.1× 10−3.

Figure 2.6: Some examples of undecodable sets, as viewed from a single decoding worker’s (LA + 1)×
(LB + 1) grid. The yellow blocks correspond to the systematic part of the code, and blue blocks to the parity.
Blocks marked with an "X" are stragglers.

2.3.3 Straggler Resiliency of Local Product Codes
To characterize the straggler resiliency of local product codes, we turn our focus to finding the
probability of encountering an undecodable set: a configuration of stragglers that cannot be decoded
until more results arrive.

Definition 1. Undecodable set: Consider a single decoding worker that is working on n blocks,
arranged in an (LA+ 1)× (LB + 1) grid, and let S be the number of missing workers. The decoding
worker’s blocks are said to form an S-undecodable set if we need to wait for more workers to arrive
to decode all the S missing blocks.

Some examples of undecodable sets are shown in Fig. 2.6. In an S-undecodable set, it is
possible that some of the S stragglers are decodable, but there will always be some stragglers that
are preventing each other from being decoded. For the local product code, an individual straggler is
undecodable if and only if there is at least one other straggler in both its row and column, because the
code provides a single redundant block along each axis that can be used for recovery. This implies
that a decoding worker must encounter at least three stragglers for one of them to be undecodable.
However, the code can always recover any three stragglers through the use of a peeling decoder
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Figure 2.7: Some examples of "interlocking" three straggler configurations. Stragglers can be decoded using
a peeling decoder.

[26], [27]. While the three stragglers may share a column or row and be in an "interlocking"
configuration, such as those shown in Fig. 2.7, two of the three can always be recovered, or "peeled
off". Using these blocks, the straggler that was originally undecodable can be recovered. This
provides a key result: all undecodable sets consist of four or more stragglers. Equivalently, given
S ≤ 3, the probability of being unable to decode is zero. This can also be noted directly from the
fact the minimum distance of a product code with one parity row and column is four, and hence, it
can tolerate any three stragglers [26].

The following theorem bounds the probability of encountering an undecodable set for local
product codes.

Theorem 2. Let p be the probability that a serverless worker straggles independently of others. Let
D̄ be the event that a decoding worker working on n (≥ 8) blocks in an (LA + 1)× (LB + 1) grid
cannot decode. Then,

Pr(D̄) ≤
7∑
s=4

αsp
s(1− p)n−s +

n∑
s=8

(
n

s

)
ps(1− p)n−s,

where

α4 =

(
LA + 1

2

)(
LB + 1

2

)
, α5 = α4(n− 4),

α6 ≤
(
LA + 1

3

)(
LB + 1

3

)(
9

6

)
+ α4

(
n− 4

2

)
, and

α7 ≤
(
LA + 1

3

)(
LB + 1

3

)(
9

7

)
+ α4

(
n− 4

3

)
Proof. See Section 2.5.2.

In Fig. 2.8, the bound in Theorem 2 is shown with p = 0.02 for L = LA = LB = 1, 2, ..., 25
so that the total number of blocks per worker is (L + 1)2. This shows a "sweet spot" around 121
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n	=	121

Figure 2.8: Upper bound on probability of the event D̄ (that is, a decoding worker being unable to decode)
when p = .02. We chose n = 121 in our experiments which represents a good trade-off between code
redundancy and straggler resiliency.

blocks per decoding worker, or L = 10, the same choice used in the experiments shown in Fig. 2.4.
With this choice of code parameters, the probability of a decoding worker being able to decode
all the stragglers is high. This simultaneously enables low encoding and decoding costs, avoids
doing too much redundant computation during the multiplication stage (only 21%), and gives a high
probability of avoiding an undecodable set in the decoding stage. In particular, for LA = LB = 10,
an individual worker is able to decode with probability at least 99.64% when p = 0.02.

Remark 3. The analysis in Sections 2.3.2 and 2.3.3 derives bounds for one decoding worker. In
general, for decoding using k workers in parallel, the respective upper bounds on probabilities in
Theorem 1 (any decoding worker reading more than x blocks) and Theorem 2 (any decoding worker
not able to decode) will be multiplied by k using the union bound.

2.4 Coded Computing in Applications
In this section, we take several high-level applications from the field of machine learning and
high performance computing, and implement them on the serverless platform AWS Lambda. Our
experiments clearly demonstrate the advantages of proposed coding schemes over speculative
execution.

2.4.1 Kernel Ridge Regression
We first focus on the flexible class of Kernel Ridge Regression (KRR) problems with Precondi-
tioned Conjugate Gradient (PCG). Oftentimes, KRR problems are ill-conditioned, so we use a
preconditioner described in [117] for faster convergence. The problem can be described as

(K + λIn)x = y, (2.4)
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Figure 2.9: Coded computing versus speculative execution for KRR with PCG on the ADULT dataset. Error
on testing dataset was 11%.
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Figure 2.10: Coded computing versus speculative execution for KRR with PCG on the EPSILON dataset.
Error on testing dataset was 8%.

where K ∈ Rn×n is a Kernel matrix defined by Kij = k(xi,xj) with the kernel function k :
X ×X → R on the input domain X ⊆ Rd, n is the number of samples in training data, y ∈ Rn×1 is
the labels vector and the solution to coefficient vector x is desired. A preconditioning matrix M
based on random feature maps [118] can be introduced for faster convergence, so that the KRR
problem in Eq. (2.4) can be solved using Algorithm 1. Incorporation of such maps has emerged as
a powerful technique for speeding up and scaling kernel-based computations, often requiring fewer
than 20 iterations of Algorithm 1 to solve (2.4) with good accuracy.

Straggler mitigation with coding theory: The matrix-vector multiplication in Steps 4 and 6
are the bottleneck in each iteration and are distributedly executed on AWS Lambda. As such, they
are prone to slowdowns due to faults or stragglers, and should be the target for the introduction
of coded computation. To demonstrate the promised gains of the coding theory based approach,
we conducted an experiment on the standard classification datasets ADULT and EPSILON [119]
with Gaussian kernel k(x, z) = exp(−||x − z||22/2σ2) with σ = 8 and λ = 0.01, and the Kernel
matrices are square of dimension 32, 000 and 400, 000, respectively. We store the training and all
subsequently generated data in cloud storage S3 and use Pywren [1] as a serverless computing
framework on AWS Lambda.
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Algorithm 1: Fast Kernel Ridge Regression using preconditioned conjugate gradient
1 Input Data (stored in S3): Kernel Matrix K ∈ Rn×n and vector y ∈ Rn×1, regularization

parameter λ, inverse of the preconditioner M ∈ Rn×n found using the random feature map
from [118]

2 Initialization: Define x0 = 1n×1, r0 = y − (K + λIn)x0, z0 = M−1r0, p0 = z0

3 while ‖(K + λIn)xk − y|| > 10−3||y|| do
4 hk = (K + λIn)pk ; // Computed in parallel using codes

5 αk =
rTk zk
pTk hk

, xk+1 = xk + αkpk, rk+1 = rk − αkhk
6 zk+1 = M−1rk+1 ; // Computed in parallel using codes

7 βk =
rTk+1zk+1

rTk zk
, pk+1 = zk+1 + βkpk

8 end
Result: x∗ = xk+1 where (K + λIn)x∗ = y

For this experiment, we implemented a 2D product code similar to that proposed in [27] to
encode the row-blocks of (K + λIn) and M−1, and distributed them among 64 and 400 Lambda
workers, respectively. To compare this coded scheme’s performance against speculative execution,
we distribute the uncoded row-blocks of (K + λIn) and M−1 among the same number of Lambda
workers, and wait for 90% of jobs to finish and restart the rest without terminating unfinished jobs.
Any job that finishes first would submit its results. The computation times for KRR with PCG on
these datasets for the coding-based and speculative execution-based schemes is plotted in Figs. 2.9
and 2.10. For coded computation, the first iteration also includes the encoding time. We note that
coded computation performs significantly better than speculative execution, with 42.1% and 44.5%
reduction in total job times for ADULT and EPSILON datasets, respectively. This experiment again
demonstrates that coding-based schemes can significantly improve the efficiency of large-scale
distributed computations. Other regression problems such as ridge regression, lasso, elastic net and
support vector machines can be modified to incorporate codes in a similar fashion.

2.4.2 Alternating Least Squares
Alternating Least Squares (ALS) is a widely popular method to find low rank matrices that best fit
the given data. This empirically successful approach is commonly employed in applications such as
matrix completion and matrix sensing used to build recommender systems [120]. For example, it
was a major component of the winning entry in the Netflix Challenge where the objective was to
predict user ratings from already available datasets [121]. We implement the ALS algorithm for
matrix completion on AWS Lambda using the Pywren framework [1], where the main computational
bottleneck is a large matrix-matrix multiplication in each iteration.

Let R ∈ Ru×i be a matrix constructed based on the existing (incomplete) ratings, where u
and i are the number of users giving ratings and items being rated, respectively. The objective is
to find the matrix R̃ which predicts the missing ratings. One solution is to compute a low-rank
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Algorithm 2: Alternating Least Squares (ALS)
1 Input Data (stored in S3): Ratings Matrix R ∈ Ru×i, regularization parameter λ, latent

factor dimension f , desired accuracy ε
2 Initialization: Define H0 ∈ Ru×f , W0 ∈ Rf×i with entries drawn independently from a

Uniform[0, 1/f ] distribution.
3 while ||R−HkWk||2F > ε do
4 User step: Hk = RWT

k−1(Wk−1W
T
k−1 + λIf )

−1 ; // Done in parallel
using codes

5 Item step: Wk = (HT
kHk + λIf )

−1HT
kR ; // Done in parallel using

codes
6 end

Result: H∗ = Hk, W∗ = Wk

factorization based on the existing data, which decomposes the ratings matrix as R̃ = HW, where
H ∈ Ru×f ,W ∈ Rf×i for some number of latent factors f , which is a hyperparameter.

Let us call the matrices H and W the user matrix and item matrix, respectively. Each row of
H and column of W uses an f -dimensional vector of latent factors to describe each user or item,
respectively. This gives us a rank-f approximation to R. To obtain the user and item matrices, we
solve the optimization problem argminH,W F (H,W), where the loss F (H,W) is defined as

F (H,W) = ||R− R̃||2F + λ(||H||2F + ||W||2F ),

where λ > 0 is a regularization hyperparameter chosen to avoid overfitting. The above problem is
non-convex in general. However, it is bi-convex—given a fixed H, it is convex in W, and given a
fixed W, it is convex in H. ALS, described in Algorithm 2, exploits this bi-convexity to solve the
problem using coordinate descent. ALS begins with a random initialization of the user and item
matrices. It then alternates between a user step, where it optimizes over the user matrix using the
current item matrix estimate, and an item step, optimizing over the item matrix using the newly
obtained user matrix. Thus, the updates to the user and item matrices in the k-th iteration are given
by

Hk = argmin
H

F (H,Wk−1)

= RWT
k−1(Wk−1W

T
k−1 + λIf )

−1;

Wk = argmin
W

F (Hk,W) = (HT
kHk + λIf )

−1HT
kR.

In practice, u, i � f , so computing and inverting the f × f matrix in each step can be done
locally at the master node. Instead, the matrix multiplications RWT

k−1 and RTHk in the user and
item steps, respectively, are the bottleneck in each iteration, requiring O(uif) time. To mitigate
stragglers, we use local product codes and speculative execution and compare their runtimes in
Fig. 2.11 for seven iterations. The matrix R was synthetically generated with u = i = 102400
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Figure 2.11: Comparison of proposed coding scheme, that is, local product codes, versus speculative
execution for straggler mitigation on AWS Lambda.

and the number of latent factors used was f = 20480. Each rating was generated independently
by sampling a Uniform{1, 2, 3, 4, 5} random variable, intended to be the true user rating. Then,
noise generated by sampling a N (0, .2) distribution was added, and the final rating was obtained
by rounding to the nearest integer. The ratings matrix R is encoded once before the computation
starts, and thus the encoding cost is amortized over iterations. We used 500 workers during the
computation phase and 5 workers during the decoding phase for each matrix multiplication. It can
be seen that codes perform 20% better than speculative execution while providing reliability, that
is, each iteration takes on average ∼150 seconds with much smaller variance in running times per
iteration.

2.4.3 Tall-Skinny SVD
Singular Value Decomposition (SVD) is a common numerical linear algebra technique with nu-
merous applications, such as in the fields of image processing [122], genomic signal processing
[123], unsupervised learning [112], and more. In this section, we employ our proposed coding
scheme in mitigating stragglers while computing the SVD of a tall, skinny matrix A ∈ Rm×p, where
m� p. That is, we would like to compute the orthogonal matrices U ∈ Rm×p and V ∈ Rp×p and
the diagonal matrix Σ ∈ Rp×p, where A = UΣVT .

To this end, we first compute the matrix-matrix multiplication B = ATA which is the main
computational bottleneck and requires O(mp2) time. Next, we compute the SVD of B. Note that
B ∈ Rp×p is a smaller matrix and its SVD B = VΣ2VT requires only O(p3) time and memory
and can be computed locally at the master node in general. This will give us the matrix V and the
diagonal matrix Σ. Now, U can again be computed in parallel using the matrix-matrix multiplication
U = A× (VΣ−1) which requires O(mp2) time.

We compute the SVD of a tall matrix of size 300, 000 × 30, 000 on AWS Lambda. For local
product codes, we use 400 systematic workers during computation with 21% redundancy, and 20 and
4 workers for parallel encoding and decoding, respectively. For speculative execution, we employed
400 workers for computing in the first phase and started the second phase (that is, recomputing
the straggling nodes) as soon as 79% of the workers from the first phase arrive. Averaged over 5
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trials, coded computing took 270.9 seconds compared to 368.75 seconds required by speculative
execution, thus providing a 26.5% reduction in end-to-end latency.

Though we do not implement it here, Cholesky decomposition is yet another application that
uses matrix-matrix multiplication as an important constituent. It is frequently used in finding a
numerical solution of partial differential equations [124], solving optimization problems using
quasi-Newton methods [125], Monte Carlo methods [126], Kalman filtering [127], etc. The main
bottleneck in distributed Cholesky decomposition involves a sequence of large-scale outer products
[3], [17] and hence local product codes can be readily applied to mitigate stragglers.

2.5 Proofs

2.5.1 Proof of Theorem 1
To prove Theorem 1, we use a standard Chernoff bound argument. In particular, for any t > 0, we
can upper bound the probability of reading at least x blocks as

Pr(R ≥ x) ≤ e−txMR(t), (2.5)

where MR(t) := E
[
etR
]

is the Moment Generating Function (MGF) of the random variable R.
We know that the number of blocks read, R ≤ SL since we read ≤ L blocks every time

we decode a straggler. Thus, we can bound MR(t), the MGF of R, in terms of the MGF of S,
MS(τ) = E

[
eτS
]
, as

MR(t) = E
[
etR
]
≤ E

[
etLS

]
= MS(τ)|τ=tL ∀ t > 0. (2.6)

Since we assume each worker straggles independently with probability p, the distribution of S is
Binomial(n, p). Thus, its moment generating function is MS(τ) = (1− p+ peτ )n . Using Eq. 2.6,
we have MR(t) ≤

(
1− p+ petL

)n
. Using this inequality and the fact that 1− y ≤ e−y ∀ y ∈ R in

the upper bound of Eq. 2.5, we get

Pr(R ≥ x) ≤ e−tx+np−np(exp(tL)) ∀ t ≥ 0. (2.7)

As a last step, we specialize by setting t =
1

L
LocalNewton

(
x

npL

)
, which is obtained by

optimizing the RHS above with respect to t. Substitution into Eq. 2.7 gives the desired upper bound
on Pr(R ≥ x), proving Theorem 1.

2.5.2 Proof of Theorem 2
We already discussed in Sec. 2.3.3 that local product codes can decode any three stragglers. Now,
we turn our attention to the case of four or more stragglers. Regardless of how much redundancy
is used—including the extreme case of LA = LB = 1 where every block is duplicated three
times—there exist undecodable sets with four stragglers. An example is shown in the middle figure
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in Fig. 2.6. All 4-undecodable sets come in squares, with every straggler blocking another two
off (otherwise, one would be free and decodable, reducing to three stragglers which can always be
handled by a peeling decoder). Using this observation, we can create any 4-undecodable set by
picking the two rows (from our LA + 1 choices) and two columns (from our LB + 1 choices) to
place the stragglers in, yielding exactly four spots. Let αS be the number of undecodable sets with
S stragglers. Thus,

α4 =

(
LA + 1

2

)(
LB + 1

2

)
.

All 5-undecodable sets come in the form of 4-undecodable sets with a fifth straggler placed
in any vacant spot on the grid. This gives us a method to count the number of 5-undecodable
sets. First, choose the two rows and two columns that make up the embedded 4-undecodable
set. Then, choose from any of the n − 4 vacant entries to place the fifth straggler, which gives
α5 =

(
LA+1

2

)(
LB+1

2

)
(n− 4).

In the case of S = 6, 7, undecodable sets can be formed in one of two ways: confining all
stragglers to three rows and three columns, or constructing a 4-undecodable set and then placing
two (or three for S = 7) more stragglers anywhere. We can count the former as(

LA + 1

3

)(
LB + 1

3

)(
9

S

)
(2.8)

for both S = 6 and S = 7 since choosing three rows and three columns yields nine blocks, of which
we choose S. For the latter, we can first construct a 4-undecodable set by picking the two rows and
two columns in which to place the stragglers, and then place the remaining S − 4 anywhere else,
giving a total of (

LA + 1

2

)(
LB + 1

2

)(
n− 4

S − 4

)
(2.9)

such undecodable sets. By summing Eqs. 2.8 and 2.9, we obtain an upper bound on αS for S = 6, 7.
This is an upper bound, rather than the exact number of undecodable sets, due to the fact that all
sets are counted, but several are overcounted. For example, any 6-undecodable set where all six
stragglers are confined to a contiguous 2× 3 grid is counted by both terms.

In general, if there are S stragglers, there are
(
n
S

)
ways to arrange the stragglers. Given the

number of stragglers S, all configurations are equally likely, and the probability of being unable to
decode is the percentage of configurations that are undecodable sets. Since {αS}7

S=4 is the number
of S-undecodable sets, the probability of being unable to decode given S(= 4, 5, 6, 7) stragglers is(
n
S

)−1
αS .

The probability of encountering eight or more stragglers is small for suitably chosen LA, LB,
owing to the fact that the probability of encountering a straggler is small (for example, p ≈ .02
for AWS Lambda). Accordingly, we have chosen to focus our analysis on determining αS for
S ≤ 7. We can obtain an upper bound on the probability of being unable to decode by assuming all
configurations where S ≥ 8 are undecodable sets. Let D̄ denote the event that a decoding worker
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cannot decode. Then by the law of total probability,

Pr(D̄) =
n∑
s=0

Pr(D̄|S = s) Pr(S = s)

≤
7∑
s=4

(
n

s

)−1

αs Pr(S = s) +
n∑
s=8

Pr(D̄|S = s) Pr(S = s).

Now using the inequality Pr(D̄|S = s) ≤ 1 ∀ s ≥ 8 and Pr(S = s) =
(
n
s

)
ps(1− p)n−s gives the

desired upper bound, proving Theorem 2.

2.6 Conclusions and Future Work
In this chapter, we argued that in the serverless setting—where communication costs greatly
outweigh computation costs—performing some redundant computation based on ideas from coding
theory will outperform speculative execution. Moreover, the design of such codes should leverage
locality to attain low encoding and decoding costs. Our proposed scheme for coded matrix-matrix
multiplication outperforms the widely used method of speculative execution and existing popular
coded computing schemes in a serverless computing environment. All three stages of the coded
approach are amenable to a parallel implementation, utilizing the dynamic scaling capabilities of
serverless platforms. We showed that our proposed scheme is asymptotically optimal in terms of
decoding time and further quantified the communication costs during decoding through probabilistic
analysis. Additionally, we derived an upper bound on the probability of being unable to decode
stragglers.

The proposed schemes for fault/straggler mitigation are universal in the sense that they can be
applied to many existing algorithms without changing their outcome. This is because they mitigate
stragglers by working on low-level steps of the algorithm which are often the computational bottle-
neck, such as matrix-vector or matrix-matrix multiplication, thus not affecting the algorithm from
the application or user perspective. A possible future work is to devise similar schemes for other
matrix operations such as distributed QR decomposition, Gaussian elimination, eigenvalue decom-
position, etc. Eventually, an influential step would be to create a software library implementing the
proposed algorithms for running massive-scale Python code on commercial serverless frameworks.
This library would provide a seamless experience for users: they will execute their algorithms
on serverless systems (using frameworks such as Pywren [1]) as they normally would, and our
algorithms can be automatically invoked “under the hood" to introduce fault/straggler-resilience,
thus aligning with the overarching goal of serverless systems to reduce management on the user
front.
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Chapter 3

Sketch-based Serverless Straggler Mitigation

In this chapter, we propose OverSketch, an approximate algorithm for distributed matrix multi-
plication in serverless computing. OverSketch leverages ideas from matrix sketching and high-
performance computing to enable cost-efficient multiplication that is resilient to faults and straggling
nodes pervasive in low-cost serverless architectures.

3.1 Introduction
Matrix multiplication is a frequent computational bottleneck in fields like scientific computing,
machine learning, graph processing, etc. In many applications, such matrices are very large, with
dimensions easily scaling up to millions. Consequently, the last three decades have witnessed
the development of many algorithms for parallel matrix multiplication for High Performance
Computing (HPC). During the same period, technological trends like Moore’s law made arithmetic
operations faster and, as a result, the bottleneck for parallel computation shifted from computation
to communication. Today, the cost of moving data between nodes exceeds the cost of arithmetic
operations by orders of magnitude, and this gap is increasing exponentially with time [128]–[130].
This has led to the popularity of communication-avoiding algorithms for parallel computation [113],
[130].

Large-scale matrix multiplication, being embarrassingly parallel and frequently encountered, is a
natural fit for serverless computing. However, existing distributed algorithms for "serverful" systems
cannot, in general, be extended to serverless computing due to the following crucial differences
between the two architectures:

• Workers in the serverless setting, unlike cluster nodes, do not communicate amongst themselves.
They read/write data directly from/to a single data storage entity (for example, cloud storage like
AWS S3) and the user is only allowed to submit prespecified jobs and does not have any control
over the management of workers [1]–[3].

• Distributed computation in HPC/server-based systems is generally limited by the number of
workers at disposal. However, in serverless systems, the number of inexpensive workers can
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easily be scaled into the thousands, but these low-commodity nodes are generally limited by the
amount of memory and lifespan available.

• Unlike HPC, nodes in the cloud-based systems suffer degradation due to system noise which
can be a result of limited availability of shared resources, network latency, hardware failure, etc.
[18], [19]. This causes variability in job times, which results in subsets of slower nodes, often
called stragglers, which significantly slow the computation. Time statistics for worker job times
are plotted in Figure 1.2 for AWS Lambda. Notably, there are a few workers (∼ 2%) that take
much longer than the median job time, thus decreasing the overall computational efficiency of the
system. Distributed algorithms robust to such unreliable nodes are desirable in cloud computing.

3.1.1 Contributions
This chapter bridges the gap between communication-efficient algorithms for distributed computa-
tion and existing methods for straggler-resiliency. To this end, we first analyze the monetary cost of
distributed matrix multiplication for serverless computing for two different schemes of partitioning
and distributing the data. Specifically, we show that row-column partitioning of input matrices
requires asymptotically more communication than blocked partitioning for distributed matrix multi-
plication, similar to the optimal communication-avoiding algorithms in the HPC literature.

In applications like machine learning, where the data itself is noisy, solution accuracy is often
traded for computational efficiency. Motivated by this, we propose OverSketch, a sketching scheme
to perform blocked approximate matrix multiplication and prove statistical guarantees on the
accuracy of the result. OverSketch has threefold advantages:

1. Reduced computational complexity by significantly decreasing the dimension of input matrices
using sketching,

2. Resiliency against stragglers and faults in serverless computing by over-provisioning the sketch
dimension,

3. Communication efficiency for distributed multiplication due to the blocked partition of input
matrices.

Sketching for OverSketch requires linear time that is embarrassingly parallel. Through experiments
on AWS Lambda, we show that small redundancy (≈ 5%) is enough to tackle stragglers using
OverSketch. Furthermore, we use OverSketch to calculate the Hessian distributedly while solving a
large linear program using interior point methods and demonstrate a 34% reduction in total compute
time on AWS Lambda.

3.1.2 Related Work
Traditionally, techniques like speculative execution are used to deal with stragglers, for example,
Hadoop MapReduce [22] and Apache Spark [23]. Such techniques work by detecting nodes that
are running slowly or will slow down in the future and then assigning their jobs to new nodes
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Figure 3.1: Matrix A is divided into 2 row chunks A1 and A2, while B is divided into two column chunks
B1 and B2. During the encoding process, redundant chunks A1 + A2 and B1 + B2 are created. To compute
C, 9 workers store each possible combination of a chunk of A and B and multiply them. During the decoding
phase, the master can recover the affected data (C11, C12 and C22 in this case) using the redundant chunks.

without shutting down the original job. The node that finishes first submits its results. This has
many limitations. A constant monitoring of jobs is required, which might be costly if there are many
workers in the system. It is also possible that a node will straggle only towards the end of the job,
and by the time the job is resubmitted, the additional time and computational overhead has already
hurt the overall efficiency of the system. The situation is even worse for smaller jobs, as spinning
up an extra node requires additional invocation and setup time which can exceed the job time itself.

Recently, approaches based on coding theory have been developed which cleverly introduce
redundancy into the computation to deal with stragglers [24], [26]–[29], [34]. Many of these
proposed schemes have been dedicated to distributed matrix multiplication [26]–[29]. In [26], the
authors develop a coding scheme for matrix multiplication that uses Maximum Distance Separable
(MDS) codes to code A in a column-wise fashion and B in a row-wise fashion, so that the resultant
is a product-code of C, where C = A × B. An illustration is shown in Figure 3.1. A simpler
version of this has been known in the HPC community as Algorithm-Based-Fault-Tolerance (ABFT)
[131]. Authors in [27] generalize the results in [26] to a d-dimensional product code with only one
parity in each dimension. In [28], the authors develop polynomial codes for matrix multiplication,
which is an improvement over [26] in terms of recovery threshold, that is, the minimum number of
workers required to recover the product C.

The commonality in these and other similar results is that they divide the input matrices into row
and column blocks, where each worker multiplies a row block (or some combination of row blocks)
of A and a column block (or some combination of column blocks) of B. These methods provide
straggler resiliency but are not cost-efficient as they require asymptotically more communication
than blocked partitioning of data, as discussed in detail in the next section. Another disadvantage of
such coding-based methods is that there are separate encoding and decoding phases that require
additional communication and potentially large computational burden at the master node, which
may make the algorithm infeasible in some distributed computing environments.

3.2 Preliminaries
There are two common schemes for distributed multiplication of two matrices A ∈ Rm×n and
B ∈ Rn×l, as illustrated in Figures 3.2a and 3.2b. We refer to these schemes as naive and blocked
matrix multiplication, respectively. Detailed steps for these schemes are provided in Algorithms
3 and 4, respectively, for the serverless setting. During naive matrix multiplication, each worker
receives and multiplies an a × n row-block of A and n × a column-block of B to compute an
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Figure 3.2: An illustration of two algorithms for distributed matrix multiplication.

a× a block of C. Blocked matrix multiplication consists of two phases. During the computation
phase, each worker gets two b× b blocks, one each from A and B, which are then multiplied by the
workers. In the reduction phase, to compute a b× b block of C, one worker gathers results of all the
n/b workers from the cloud storage corresponding to one row-block of A and one column-block of
B and adds them. For example, in Figure 3.2b, to get C(1, 1), results from 3 workers who compute
A(1, 1)×B(1, 1), A(1, 2)×B(2, 1) and A(1, 3)×B(3, 1) are added.

It is accepted in High Performance Computing (HPC) that blocked partitioning of input matrices
takes less time than naive matrix multiplication [113], [114], [130]. For example, in [113], the
authors propose 2.5D matrix multiplication, an optimal communication avoiding algorithm for
matrix multiplication in HPC/server-based computing, that divides input matrices into blocks and
stores redundant copies of them across processors to reduce bandwidth and latency costs. However,
perhaps due to lack of a proper analysis for cloud-based distributed computing, existing algorithms
for straggler mitigation in the cloud do naive matrix multiplication [26]–[28]. Next, we bridge the
gap between cost analysis and straggler mitigation for distributed computation in the serverless
setting.

3.3 Cost Analysis: Naive and Blocked multiplication
There are communication and computation costs associated with any distributed algorithm. Com-
munication costs themselves are of two types: latency and bandwidth. For example, sending n bits
requires packing them into contiguous memory and transmitting them as a message. The latency
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Algorithm 3: Distributed naive matrix multiplication
Input :Matrices A ∈ Rm×n and B ∈ Rn×l

Result: C = A×B
1 Initialization: Divide A into submatrices of size a× n (row-wise division) and B into submatrices of size

n× a (column-wise division)
2 for i=1 to m/a do
3 for j=1 to l/a do
4 1. Worker Wij receives i-th chunk of A, say A(i, :), and j-th chunk of B, say B(:, j)
5 2. Wij computes the a× a chunk of C, that is, C(i, j) = A(i, :)×B(:, j)
6 3. Wij writes C(i, j) back to the cloud storage
7 end
8 end

cost α is the fixed overhead time spent in packing and transmitting a message over the network.
Thus, to send Q messages, the total latency cost is αQ. Similarly, to transmit K bits, a bandwidth
cost proportional to K, given by βK, is associated. Letting γ denote the time to perform one
floating point operation (FLOP), the total computing cost is γF , where F is the total number of
FLOPs at the node. Hence, the total time pertaining to one node that sends M messages, K bits and
performs F FLOPs is

Tworker = αQ+ βK + γF,

where α� β � γ. The (α, β, γ) model defined above has been well-studied and is used extensively
in the HPC literature [113], [129], [130], [132], [133]. It is ideally suited for serverless computing,
where network topology does not affect the latency costs as each worker reads/writes directly
from/to the cloud storage and no multicast gains are possible.

However, our analysis for costs incurred during distributed matrix multiplication differs from
previous works in three principle ways. 1) Workers in serverless architecture cannot communicate
amongst themselves, and hence, our algorithm for blocked multiplication is very different from
optimal communication avoiding algorithm for HPC that involves message passing between workers
[113]. 2) The number of workers in HPC analyses is generally fixed, whereas the number of workers
in the serverless setting is quite flexible, easily scaling into the thousands, and the limiting factor
is memory/bandwidth available at each node. 3) Computation on the inexpensive cloud is more
motivated by savings in expenditure than the time required to run the algorithm. We define our cost
function below.

If there are W workers, each doing an equal amount of work, the total amount of money spent
in running the distributed algorithm on the cloud is proportional to

Ctotal = W × Tworker = W (αQ+ βK + γF ). (3.1)

Eq. (3.1) does not take into account the straggling costs as they increase the total cost by a constant
factor (by re-running the jobs that are straggling) and hence does not affect our asymptotic analysis.

Inexpensive nodes in serverless computing are generally constrained by the amount of memory
or communication bandwidth available. For example, AWS Lambda nodes have a maximum
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Algorithm 4: Distributed blocked matrix multiplication
Input :Matrices A ∈ Rm×n and B ∈ Rn×l

Result: C = A×B
1 Initialization: Divide A into m/b× n/b matrix and B into n/b× l/b matrix of b× b blocks where b is the

block-size
// Computation phase:

2 for i = 1 to m/b do
3 for j = 1 to l/b do
4 for k = 1 to n/b do
5 1. Worker Wijk gets (i, k)-th block of A, say A(i, k), and (k, j)-th block of B, say B(k, j),

from the cloud storage
6 2. Wijk then computes the b× b product Ĉijk = A(i, k)×B(k, j)
7 3. Worker writes the result Wijk back to the cloud storage
8 end
9 end

10 end
// Reduction phase:

11 for i = 1 to m/b do
12 for j = 1 to l/b do
13 Spin a new worker, say Wij , that stores an all-zero b× b sub-block Cij

14 for k = 1 to n/b do
15 1. Wij extracts the output Ĉijk written by Wijk from cloud storage
16 2. Wij does Cij = Cij + Ĉijk

17 end
18 Wij writes Cij back to the cloud storage
19 end
20 end

allocated memory of 3008 MB1, a fraction of the memory available in today’s smartphones. Let the
memory available at each node be limited to M . That is, the communication bandwidth available at
each worker is limited to M , and this is the main bottleneck of the distributed system. We would
like to multiply two large matrices A ∈ Rm×n and B ∈ Rn×l in parallel, and let M = O(nδ). Note
that if δ ≥ 2, one of the following will happen:

• m = O(n) and l = O(n), and the input matrices can fit into one worker’s memory and parallelism
is not required.

• Either m = ω(n) or l = ω(n) or both, and block-size for blocked matrix multiplication is n. The
two schemes, naive and blocked multiplication, would exactly be the same in this case.

Thus, for all practical cases in consideration, δ < 2.

Theorem 3. For the cost model defined in Eq. (3.1), communication (i.e., latency and bandwidth)
costs for blocked multiplication outperform naive multiplication by a factor of O(n1−δ/2), where
the individual costs are listed in Table 3.1.

1AWS Lambda limits are available at (may change over time) https://docs.aws.amazon.com/lambda/latest/dg/limits.html
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Table 3.1: Costs comparison for naive and blocked matrix multiplication in the serverless setting,
where δ < 2.

Cost type Naive multiply Blocked Multiply Ratio: naive/blocked

Latency O(mln2(1−δ)) O(mln1−3δ/2) O(n1−δ/2)

Bandwidth O(mln2−δ) O(mln1−δ/2) O(n1−δ/2)

Computation O(mln) O(mln) 1
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Figure 3.3: Comparison of AWS Lambda costs for multiplying two n× n matrices, where each worker is
limited by 3008 MB of memory and price per running worker per 100 milliseconds is $0.000004897.

Proof. See Section 3.6.1.

The rightmost column in Table 3.1 lists the ratio of communication costs for naive and blocked
matrix multiplication. We note that the latter significantly outperforms the former, with communica-
tion costs being asymptotically worse for naive multiplication. An intuition behind why this happens
is that each worker in distributed blocked multiplication does more work than in distributed naive
multiplication for the same amount of received data. For example, to multiply two square matrices
of dimension n, where memory at each worker limited by M = 2n, a = 1 for naive multiplication
and b =

√
n for blocked multiplication. We note that the amount of work done by each worker in

naive and blocked multiplication is O(n) and O(n3/2), respectively. Since the total amount of work
is constant and equal to O(n3), blocked matrix multiplication ends up communicating less during
the overall execution of the algorithm as it requires fewer workers. Note that naive multiplication
takes less time to complete as each worker does asymptotically less work, however, the number
of workers required is asymptotically more, which is not an efficient utilization of resources and
increases the expenditure significantly.

Remark 4. For clarity of exposition, we partition the input matrices into square-blocks of dimension
b. However, optimal block dimensions for rectangular-block partitions can be found by minimizing
(3.1) while incorporating the memory constraints of the distributed system. This is a convex problem
that can be converted to a geometric program [134]. We note that the optimal block dimension
found in this way is nearly square.

Figure 3.3 supports the above analysis where we plot the cost in dollars of multiplying two
square matrices in AWS Lambda, where each node’s memory is limited by 3008 MB and price
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per worker per 100 millisecond is $0.000004897. However, as discussed earlier, existing schemes
for straggler-resiliency in distributed matrix multiplication consider naive multiplication which is
impractical from a user’s point of view. In the next section, we propose OverSketch, a scheme to
mitigate the detrimental effects of stragglers for blocked matrix multiplication.

3.4 OverSketch: Straggler-resilient Blocked Matrix
Multiplication using Sketching

Many of the recent advances in algorithms for numerical linear algebra have come from the technique
of linear sketching, in which a given matrix is compressed by multiplying it with a random matrix of
appropriate dimension [40]–[43]. Sketching accelerates computation by eliminating redundancy in
the matrix structure through dimension reduction. However, the coding-based approaches described
in Section 3.1.2 have shown that redundancy can be good for combating stragglers if judiciously
introduced into the computation. With these competing points of view in mind, our algorithm
OverSketch works by "oversketching" the matrices to be multiplied by reducing dimensionality
not to the minimum required for sketching accuracy, but rather to a slightly higher amount which
simultaneously ensures both the accuracy guarantees and speedups of sketching and the straggler
resilience afforded by the redundancy which was not eliminated in the sketch. OverSketch further
reduces asymptotic costs by adopting the idea of block partitioning from HPC, suitably adapted for
a serverless architecture.

Next, we propose a sketching scheme for OverSketch and describe the process of straggler
mitigation in detail.

3.4.1 OverSketch: The Algorithm
During blocked matrix multiplication, the (i, j)-th block of C is computed by assimilating results
from d/b workers who compute the product Ã(i, k) × B̃(k, j), for k = 1, · · · , d/b. Thus, the
computation C(i, j) can be viewed as the product of the row sub-block Ã(i, :) ∈ Rb×d of Ã and
the column sub-block B̃(:, j) ∈ Rd×b of B̃. An illustration is shown in Figure 3.4. Assuming d is
large enough to guarantee the required accuracy in C, we increase the sketch dimension from d to
z = d+ eb, where e is the worst case number of stragglers in N = d/b workers. For the example in
Figure 3.4, e = 1. To get a better insight on e, we observe in our simulations for cloud systems like
AWS lambda and EC2 that the number of stragglers is < 5% for most runs. Thus, if N = d/b = 40,
i.e. 40 workers compute one block of C, then e ≈ 2 is sufficient to get similar accuracy for matrix
multiplication. We describe OverSketch in detail in Algorithm 5. Next, we describe how to compute
the sketched matrices Ã and B̃.

Many sketching techniques have been proposed recently for approximate matrix computations.
For example, to sketch a m × n matrix A with sketch dimension d, Gaussian projection takes
O(mnd) time, Subsampled Randomized Hadamard Transform (SRHT) takes O(mn log n) time,
and Count-sketch takes O(nnz(A)) time, where nnz(·) is the number of non-zero entries [41],
[135]–[137].
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Figure 3.5: An illustration of sketching A ∈ Rm×n in parallel using the sketch matrix in Eq. (3.3) with
sketch dimension z = (N + e)b. Worker Wij receives the row-block A(i, :) of A and the Count-sketch Sj
to compute the (i, j)-th block of Ã. Sketching requires a total of mz/b2 workers. Here, z = 4b,N = 3 and
e = 1, and A is divided into 2 row-blocks, that is, m = 2b. Total number of workers required for distributed
sketching is 8.



CHAPTER 3. SKETCH-BASED SERVERLESS STRAGGLER MITIGATION 39

Algorithm 5: OverSketch: Distributed blocked matrix multiplication for the Cloud
Input :Matrices A ∈ Rm×n and B ∈ Rn×l, sketch dimension z, straggler tolerance e
Result: C ≈ A×B

1 Sketching: Use Algorithm 7 to obtain Ã = AS and B̃ = STB distributedly
2 Block partitioning: Divide Ã into m/b× z/b matrix and B into z/b× l/b matrix of b× b blocks

where b is the block-size
3 Computation phase: Use the computation phase from Algorithm 4 to multiply Ã and B̃. This step

invokes mlz/b3 workers, where z/b workers are used per block of C
4 Termination: Stop computation when any d/b workers return their results for each of the ml/b2

blocks of C, where d = z − eb
5 Reduction phase: Invoke ml/b2 workers for reduction as described in Algorithm 4 on available

results

Algorithm 6: Calculating Count-sketch of a matrix A

Input :Matrix A ∈ Rm×n and sketch dimension b
Result: Ã ∈ Rm×b, a random Count-sketch of A

1 Multiply each column of A by −1 with probability 0.5
2 Map each column of resultant A to an integer in [1, b] uniformly randomly
3 Add columns in A that are mapped to the same integer. The resultant matrix is a Count-sketch of A

Count sketch, first exploited in data streaming literature, has been widely applied to expedite
large-scale matrix computations [135], [137], [138]. It is one of the most popular sketching
techniques as it requires linear time to compute the matrix sketch with similar approximation
guarantees for matrix multiplication. To compute the Count-sketch of A ∈ Rm×n of sketch
dimension b, each column in A is multiplied by −1 with probability 0.5 and then mapped to an
integer sampled uniformly from {1, 2, · · · , b}. Then, to compute the sketch Ãc = ASc, columns
with the same mapped value are summed (see Algorithm 6 for details). An example of Count-sketch
matrix with n = 9 and b = 3 is

STc =

0 0 0 1 −1 0 −1 0 0
1 −1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 −1 −1

 . (3.2)

Here, A has 9 columns, and columns 4, 5 and 7 were mapped to 1, columns 1, 2 and 6 were mapped
to 2, and columns 3, 8 and 9 were mapped to 3. Thus, the Count-sketch Ãc would have only 3
columns, which are obtained by summing the columns of A with the same mapped value (after
possibly multiplying with -1). The sparse structure of Sc ensures that the computation of sketch
takes O(nnz(A)) time. However, a drawback of the desirable sparse structure of Count-sketch is
that it cannot be directly employed for straggler mitigation in blocked matrix multiplication as it
would imply complete loss of information from a subset of columns of A. For the example in (3.2),
suppose the worker processing column 3 of Ãc be straggling. Ignoring this worker would imply
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that columns 3, 8 and 9 of A were not considered in the computation. This will generally lead to
poor accuracy for sketched matrix multiplication.

To facilitate straggler mitigation for blocked matrix multiplication, we propose a new sketch
matrix S, inspired by Count-sketch, and define it as

S =
1√
N

(S1,S2, · · · ,SN+e), (3.3)

where N = d/b, e is the expected number of stragglers per block of C and Si ∈ Rn×b, for
i = 1, 2, · · · , (N + e), is a Count-sketch matrix with dimension b. Thus, the total sketch-dimension
for the sketch matrix in (3.3) is z = (N + e)b = d + eb. Computation of this sketch takes
O(nnz(A)(N + e)) time in total and can be implemented in a distributed fashion trivially, where
(N + e) is the number of workers per block of C. An illustration of distributed sketching of A in
serverless systems is described in Figure 3.5. For detailed steps, see Algorithm 7. A few remarks
regarding OverSketch based distributed matrix multiplication are in order.

• Graceful degradation: Coding-based straggler mitigation (see Figure 3.1 for example) cannot
tolerate more stragglers than provisioned. An advantage of using sketching schemes for computa-
tion is that more stragglers can be tolerated than initially provisioned at the cost of accuracy of
the result, thus exhibiting ‘graceful degradation’.

• Memory constrained distributed sketching: It is assumed in Algorithm 7 that each worker can
store an entire row-block of A in memory to calculate its Count-sketch. That might not always be
the case, especially in low-memory serverless nodes. However, since Count-sketch is a streaming
based algorithm, workers can calculate the sketch by further partitioning the b× n row-block into
b× b square blocks and copying only one block at a time (see [71] for details).

• Straggler-resilient sketching: We note that the stragglers can also be ignored during distributed
sketching (Algorithm 7). More specifically, the blocks ignored during the sketching phase can be
marked as faults/stragglers during computation phase in Algorithm 5.

• Limitations of “Over-sampling”: Schemes like leverage-score based sampling are also used in
literature to compute approximate product of A and B [40], [139]. Such schemes are as efficient
as Count-sketch but are not suitable for straggler-resilient blocked multiplication. For example, if
a worker with a block of Ã straggles, where Ã is obtained by “over”-sampling the columns of A
according to leverage scores, results from all other workers that are working on that column-block
of Ã is wasted as part of the column-block is unavailable. Thus, oversampling can require huge
redundancy even for a small number of stragglers.

Next, we prove statistical guarantees on the accuracy of our sketching based matrix multiplication
algorithm.
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Algorithm 7: “Over” sketching A in parallel using the sketch S in (3.3) to compute
Ã = AS

Input :Matrix A ∈ Rm×n and “Over” sketch dimension z
Result: Ã = A× S

1 Initialization: Divide A into row-blocks of size b× n
2 for i=1 to m/b do
3 for j=1 to z/b do
4 1. Worker Wij receives i-th row-block of A, say A(i, :)

5 2. Wij uses Algorithm 6 to compute the (i, j)-th b× b block of Ã using Count-sketch Sj ,
that is, Ã(i, j) = A(i, :)× Sj

6 3. Wij writes Ã(i, j) back to the cloud storage
7 end
8 end

3.4.2 OverSketch: Approximation guarantees
Definition 2. We say that an approximate matrix multiplication of two matrices A and B using
sketch S, given by ASSTB, is (ε, θ) accurate if, with probability at least (1− θ), it satisfies

||AB−ASSTB||2F ≤ ε||A||2F ||B||2F .

Now, for blocked matrix multiplication using OverSketch and as illustrated in Figure 3.4, the
following holds

Theorem 4. Computing (AS)× (STB) using sketch S ∈ Rn×z in (3.3) and d = 2
εθ

, while ignoring
e stragglers among any z

b
workers, is (ε, θ) accurate.

Proof. See Appendix 3.6.2.
For certain applications, the guarantee in theorem 4 may be too crude as the product of ||A||2F

and ||B||2F in the RHS can get big for large matrices A and B. We can obtain a stronger result
than in theorem 4 when min(rank(A), rank(B))� n, for example, when A is a fat matrix, or B
is a tall matrix. Without loss of generality, say min(rank(A), rank(B)) = rank(A) = r. Thus,
||A||2 ≤ ||A||F ≤

√
r||A||2, where || · ||2 denotes the spectral norm. Hence, with probability at

least (1− θ)
||ASSTB−AB||2F ≤ εr||A||22||B||2F .

Now, if we increase the sketch dimension by a factor of r to z = r(d+ eb) = O( r
εθ

), we get

||ASSTB−AB||2F ≤ ε||A||22||B||2F (3.4)

with probability (1− θ), which is a better approximation for the product ASSTB.
During the reduction phase, we use ml/b2 workers, which is much less than the number of

workers used during the computation phase, that is, mlz/b3. In our experiments, we observe that the
possibility of stragglers reduces significantly if fewer workers are used. This is especially true for
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Figure 3.6: Time and approximation error for OverSketch with 3000 workers when e, the number of workers
ignored per block of C, is varied from 0 to 10.
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Figure 3.7: Time statistics and optimality gap on AWS Lambda while solving the LP in (3.5) using interior
point methods, where e is the number of workers ignored per block of C.

the reduction phase, as healthy running workers from the computation phase are reused, reducing
the chances of stragglers. However, in the unfortunate event that stragglers are observed during
reduction, speculative execution can be used, i.e. detecting and restarting the slow job. Another
simple solution is to use existing coding techniques as described in Figure 3.1, that is, by adding
one parity row-block to Ã and one parity row column to B̃ before multiplying them, which can
tolerate 3 stragglers in the worst case. However, this would require a decoding step to compensate
for the missing stragglers.
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3.5 Experimental Results

3.5.1 Blocked Matrix Multiplication on AWS Lambda
We implement the straggler-resilient blocked matrix multiplication described above in the serverless
computing platform Pywren [1], [3]2, on the AWS Lambda cloud system to compute an approximate
C = AS × STB with b = 2048,m = l = 10b, n = 60b and S as defined in (3.3) with sketch
dimension z = 30b. Throughout this experiment, we take A and B to be constant matrices where
the entries of A are given by A(x, y) = x+ y for all x ∈ [1,m] and y ∈ [1, n] and B = AT . Thus,
to compute (i, j)-th b× b block of C, 30 nodes compute the product of Ã(i, :) and B̃(:, j), where
Ã = AS and B̃ = STB. While collecting results, we ignore e workers for each block of C, where
e is varied from 0 to 10.

The time statistics are plotted in Figure 3.6a. The corresponding worker job times are shown
in Figure 1.2, where the median job time is around 42 seconds, and some stragglers return their
results around 100 seconds and some others take up to 375 seconds. We note that the compute time
for matrix multiplication reduces by a factor of 9 if we ignore at most 4 workers per 30 workers
that compute a block of C. In figure 3.6b, for same A and B, we plot average error in matrix
multiplication by generating ten instances of sketches and averaging the error in Frobenius norm,
||AB−ASSTB||F

||AB||F
, across instances. We see that the average error is only 0.8% when 4 workers are

ignored.

3.5.2 Solving Optimization Problems with Sketched Matrix multiplication
Matrix multiplication is the bottleneck of many optimization problems. Thus, sketching has been
applied to solve several fairly common optimization problems using second-order methods, like
linear programs, maximum likelihood estimation, generalized linear models like least squares and
logistic regression, semi-definite programs, support vector machines, Kernel ridge regression, etc.,
with essentially same convergence guarantees as exact matrix multiplication [42], [43]. As an
instance, we solve the following linear program (LP) using interior point methods on AWS Lambda

minimize
x

cTx (3.5)

subject to Ax ≤ b,

where x ∈ Rm×1, c ∈ Rm×1,b ∈ Rn×1 and A ∈ Rn×m is the constraint matrix with n > m. To
solve (3.5) using the logarithmic barrier method, we solve the following sequence of problems
using Newton’s method

min
x∈Rm

f(x) = min
x∈Rm

(
τcTx−

n∑
i=1

log(bi − aix)

)
, (3.6)

2A working implementation of OverSketch is available at https://github.com/vvipgupta/OverSketch
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where ai is the i-th row of A, τ is increased geometrically as τ = 2τ after every 10 iterations and
the total number of iterations is 100. The update in the t-th iteration is given by

xt+1 = xt − η(∇2f(xt))
−1∇f(xt), (3.7)

where xt is the estimate of the solution in the t-th iteration and η is the appropriate step-size. The
gradient and Hessian for the objective in (3.6) are given by

∇f(x) = τc +
n∑
i=1

aTi
bi − aTi x

and (3.8)

∇2f(x) = ATdiag
1

(bi− aix)2
A, (3.9)

respectively. The square root of the Hessian is given by ∇2f(x)1/2 = diag 1
|bi−aix|A. The compu-

tation of Hessian requires O(nm2) time and is the bottleneck in each iteration. Thus, we use our
distributed and sketching-based blocked matrix multiplication scheme to mitigate stragglers while
evaluating the Hessian approximately, i.e. ∇2f(x) ≈ (S∇2f(x)1/2)T × (S∇2f(x)1/2), on AWS
Lambda, where S is defined in (3.3).

We take the block size, b, to be 1000, the dimensions of A to be n = 40b and m = 5b and the
sketch dimension to be z = 20b. We use a total of 500 workers in each iteration. Thus, to compute
each b × b block of C, 20 workers are assigned to compute matrix multiplication on two b × b
blocks. We depict the time and error versus iterations in figure 3.7. We plot our results for different
values of e, where e is the number of workers ignored per block of C. In our simulations, each
iteration includes around 9 seconds of invocation time to launch AWS Lambda workers and assign
tasks. In figure 3.7a, we plot the total time that includes the invocation time and computation time
versus iterations. In 3.7b, we exclude the invocation time and plot just the compute time in each
iteration and observe 34% savings in solving (3.5) when e = 1, whereas the effect on the error with
respect to the optimal solution is insignificant (as shown in figure 3.7c).

3.5.3 Comparison with Existing Straggler Mitigation Schemes
In this section, we compare OverSketch with an existing coding-theory based straggler mitigation
scheme described in [26]. An illustration for [26] is shown in Figure 3.1. We multiply two square
matrices A and B of dimension n on AWS Lambda using the two schemes, where A(x, y) = x+ y
and B(x, y) = x× y for all x, y ∈ [1, n]. We limit the bandwidth of each worker by 400 MB (i.e.
around 48 million entries, where each entry takes 8 bytes) for a fair comparison. Thus, we have
3b2 = 48× 106, or b = 4000 for OverSketch and 2an+ a2 = 48× 106 for [26], where a is the size
of the row-block of A (and column-block of B). We vary the matrix dimension n from 6b = 24000
to 14b = 56000. For OverSketch, we take the sketch dimension z to be n/2 + b, and take e = 1,
i.e., ignore one straggler per block of C. For straggler mitigation in [26], we add one parity row
in A and one parity column in B. In Figures 3.8a and 3.8b, we compare the workers required
and average cost in dollars, respectively, for the two schemes. We note that OverSketch requires
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Figure 3.8: Comparison of OverSketch with coded theory based scheme in [26] on AWS Lambda. OverS-
ketch requires asymptotically less workers which translates to significant savings in cost.

asymptotically fewer workers, and it translates to the cost for doing matrix multiplication. This is
because the running time at each worker is heavily dependent on communication, which is the same
for both the schemes. For n = 20000, the average error in Frobenius norm for OverSketch is less
than 2%, and decreases as n is increased.

The scheme in [26] requires an additional decoding phase, and assume the existence of a
powerful master that can store the entire product C in memory and decode for the missing blocks
using the redundant chunks. This is also true for the other schemes in [27]–[29]. Moreover, these
schemes would fail when the number of stragglers is more than the provisioned redundancy while
OverSketch has a ’graceful degradation’ as one can get away by ignoring more workers than
provisioned at the cost of accuracy of the result.

3.6 Proofs

3.6.1 Proof of Theorem 3
To compare naive and blocked multiplication, we first observe that the computation cost in (3.1),
that is W ×F , is the same for both naive and blocked multiplication and is equal to O(mnl), which
is the total amount of work done during matrix-matrix multiplication3. Let W1 be the number of
workers required for naive matrix multiplication. Then, W1 = ml/a2, as each worker is sent one
row-block of A from m/a choices, and one column-block of B from l/a choices. Each worker
receives 2an entries and writes back a2 entries. Hence, the total communication incurred during the
algorithm isW1×(2an+a2) = (2nml/a+ml). Also, since each worker can only receiveM entries,
we have M = 2an, thus a = M/2n. Hence, the total bandwidth cost for naive multiplication is
β × (4n2ml/M +ml) = O(n2−δml). Also, the total number of messages sent during the process
is W1, and hence the total latency cost is O(mln2(1−δ)).

3The computation cost for blocked matrix multiplication can be further improved by using Strassen type methods
that take O(b2.38) to multiply two square sub-blocks of dimension b× b, but we do not consider that advantage in this
chapter for clarity of exposition and to emphasize on savings just due to communication.
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During the computation phase for blocked multiplication, W2,comp = (n/b)×ml/b2, as com-
putation of one b × b block of C ∈ Rm×l requires n/b workers, and there are a total of ml/b2

such blocks. Again, each worker receives two b × b blocks, one from each A and B, and writes
back a b× b block, where b satisfies M = 2b2. Thus, the total bandwidth cost incurred during the
computation phase is βW2,comp × 3b2 = 3βnml/b = O(mln1−δ/2). The total number of messages
received by the workers is W2,comp, and, hence, the latency cost is αnml/b3 = O(mln1−3δ/2).
During the reduction phase, the number of workers required is W2,red = ml/b2, and each worker
receives n/b blocks of size b × b to compute one block of C. Thus, for the reduction phase,
the communication is W2,red × b2 × (n/b) = nml/b = O(mln1−δ/2) and total messages sent is
W2,red × (n/b) = mln/b3 = O(mln1−3δ/2). Hence, the total latency and bandwidth costs for
blocked multiplication are O(mln1−3δ/2) and O(mln1−δ/2), respectively. This analysis justifies the
costs summarized in Table 3.1 and proves the theorem.

3.6.2 Proof of Theorem 4
The following three lemmas will assist us with the proof of Theorem 4.

Lemma 1. let Sc ∈ Rn×b be a Count sketch matrix. Then, for any vectors x, y ∈ Rn×1, the following
holds

E[xTScS
T
c y] = xT y (3.10)

Var[xTScS
T
c y] =

1

b

(∑
j 6=l

x2
jy

2
l +

∑
j 6=l

xjyjxlyl

)

≤ 1

b

(
(xT y)2 + ||x||22||y||22

)
≤ 2

b
||x||22||y||22. (3.11)

Proof. See [68], Appendix A.

Lemma 2. Let S = 1√
N

(S1,S2, · · · ,SN) ∈ Rn×d, where d = Nb and Si ∈ Rn×b is a Count-sketch
matrix that satisfies (3.10) and (3.11), for all i ∈ 1, 2, · · · , N . Then, for any vectors x, y ∈ Rn×1,
the following holds

E[xTSST y] = xT y

Var[xTSST y] ≤ 2

d
||x||22||y||22.

Proof. Note that, SST = 1
N

(S1S
T
1 + S2S

T
2 + · · ·+ SNSTN). Thus,

xTSSTy =
1

N
(xTS1S

T
1 y + xTS2S

T
2 y + · · ·+ xTSNSTNy),
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and hence, E[xTSSTy] = xTy by (3.10) and linearity of expectation. Now,

Var[xTSSTy] = E[(xTSSTy − xTy)2]

= E
[

1
N

(
(xTS1S

T
1 y + xTS2S

T
2 y + · · ·+ xTSNSTNy)−NxTy

)2
]

= E

[
1

N2

(
N∑
i=1

(xTSiS
T
i y − xTy)

)2]

=
1

N2

( N∑
i=1

E[(xTSiS
T
i y − xTy)2]

+
∑
i 6=j

E[(xTSiS
T
i y − xTy)(xTSjS

T
j y − xTy)]

)

=
1

N2

( N∑
i=1

Var[xTSiS
T
i y]+

∑
i 6=j

E[(xTSiS
T
i y − xTy)(xTSjS

T
j y − xTy)]

)
. (3.12)

Noting that S1,S2, · · · ,SN are independent random variables and using (3.10), we get

E[(xTSiS
T
i y − xTy)(xTSjS

T
j y − xTy)]

= E[xTSiS
T
i y − xTy]E[xTSjS

T
j y − xTy] = 0 ∀ i 6= j.

Now, using the above equation and (3.11) in (3.12), we get

Var[xTSSTy] =
1

N2
×N × 2

b
||x||22||y||22 =

2

d
||x||22||y||22,

which proves the lemma.

Lemma 3. Let d = 2/ε. Then, for any A ∈ Rm×n, B ∈ Rn×l and S as defined in lemma 2,

E||AB−ASSTB||2F ≤ ε||A||2F ||B||2F . (3.13)

Proof. By the property of Frobenius norm and linearity of expectation, we have

E||AB−ASSTB||2F =
m∑
i=1

l∑
j=1

E|a(i)b(j) − a(i)SSTb(j)|2, (3.14)
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where a(i) and b(j) are the i-th row and j-th columns of A and B, respectively. Now, using lemma
2 in (3.14), we get

E||AB−ASSTB||2F =
m∑
i=1

k∑
j=1

Var[a(i)SSTb(j)]
2

≤
m∑
i=1

k∑
j=1

2

d
||a(i)||22||b(j)||22

= ε

(
m∑
i=1

||a(i)||22

)( k∑
j=1

||b(j)||22
)

(as d = 2/ε)

= ε||A||2F ||B||2F ,
which is the desired result.

We are now ready to prove theorem 4. As illustrated in figure 3.4, we can think of computation
of a b× b sub-block C(i, j) as multiplication of row block Ã(i, :) of Ã = AS and column-block
B̃(:, j) of B̃ = STB. Since we ignore upto only e workers in the calculation of a b× b block of C,
the effective sketch dimension is greater than d = 2

εθ
, and therefore, from lemma 3

E||A(i, :)B(:, j)−A(i, :)SijS
T
ijB(:, j)||2F

≤ εθ||A(i, :)||2F ||B(:, j)||2F , (3.15)

for all i ∈ 1, · · · ,m/b and j ∈ 1, · · · , l/b. Note that even if we applied the same sketch on A and B
across row and column blocks, respectively, Sij in the above equation might end up being different
for each pair (i, j) depending upon the location of stragglers, though with a common property that
the sketch dimension is at least d. Now, we note that

E||ASSTB−AB||2F

=

m/b∑
i=1

l/b∑
j=1

E||A(i, :)B(:, j)−A(i, :)SijS
T
ijB(:, j)||2F

≤ εθ

m/b∑
i=1

l/b∑
j=1

||A(i, :)||2F ||B(:, j)||2F = εθ||A||2F ||B||2F .

Now, by Markov’s inequality

P(||ASSTB−AB||2F > ε||A||2F ||B||2F )

≤ E||ASSTB−AB||2F
ε||A||2F ||B||2F

≤ εθ||A||2F ||B||2F
ε||A||2F ||B||2F

= θ,

which proves the desired result.
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3.7 Conclusion
Serverless computing penetrates a large user base by allowing users to run distributed applications
without the hassles of server management. We analyzed the cost of distributed computation in
serverless computing for naive and blocked matrix multiplication. Through analysis and experiments
on AWS Lambda, we show that the latter significantly outperforms the former. Thus, existing
straggler mitigation schemes that do naive matrix multiplication are unsuitable. To this end, we
develop OverSketch, a sketching based algorithm for approximate blocked matrix multiplication.
Our sketching scheme requires time linear in the size of input matrices. As a distributed matrix
multiplication algorithm, OverSketch has many advantages: reduction in dimension of input
matrices for computational savings, and built-in straggler resiliency. Extensive experiments on
AWS Lambda support our claims that OverSketch is resilient to stragglers, cost-efficient, and highly
accurate for suitably chosen sketch dimension.



In this part of the thesis, we study algorithms for speeding up convex optimization in the
serverless setting.
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Chapter 4

OverSketched Newton

In this chapter, we develop OverSketched Newton, a randomized Hessian-based optimization
algorithm to solve large-scale convex optimization problems in serverless systems.

4.1 Introduction
As outlined in Chapter 3, there are several crucial differences between the traditional High Perfor-
mance Computing (HPC) / serverful and serverless architectures, such as scale, memory, mode of
communication, system noise, etc. Due to these reasons, existing distributed algorithms cannot, in
general, be extended to serverless computing. For example, first-order methods for optimization,
such as gradient descent and Nesterov Accelerated Gradient (NAG) methods, tend to perform
poorly on distributed serverless architectures [4]. Their slower convergence is made worse on
serverless platforms due to persistent stragglers. The straggler effect incurs heavy slowdown due to
the accumulation of tail times as a result of a subset of slow workers occurring in each iteration.

Compared to first-order optimization algorithms, second-order methods—which use the gradient
as well as Hessian information—enjoy superior convergence rates. For instance, Newton’s method
enjoys quadratic convergence for strongly convex and smooth problems, compared to the linear
convergence of gradient descent [140]. Moreover, second-order methods do not require step-size
tuning and unit step-size provably works for most problems. These methods have a long history
in optimization and scientific computing (see, e.g., [140]), but they are less common in machine
learning and data science. This is partly since stochastic first order methods suffice for downstream
problems [141] and partly since naive implementations of second order methods can perform
poorly [142]. However, recent theoretical work has addressed many of these issues [42], [44]–[46],
[143], and recent implementations have shown that high-quality implementations of second order
stochastic optimization algorithms can beat state-of-the-art in machine learning applications [51],
[66], [67], [144], [145] in traditional systems.
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4.1.1 Contributions
In this chapter, we argue that second-order methods are highly compatible with serverless systems
that provide extensive computing power by invoking thousands of workers but are limited by the
communication costs and hence the number of iterations; and, to address the challenges of ephemeral
workers and stragglers in serverless systems, we propose and analyze a randomized and distributed
second-order optimization algorithm, called OverSketched Newton. OverSketched Newton uses the
technique of matrix sketching from Sub-Sampled Newton (SSN) methods [44]–[46], [143], which
are based on sketching methods from Randomized Numerical Linear Algebra (RandNLA) [41],
[47], [146], to obtain a good approximation for the Hessian, instead of calculating the full Hessian.

OverSketched Newton has two key components. For straggler-resilient Hessian calculation in
serverless systems, we use the sparse sketching based randomized matrix multiplication method
from [5]. For straggler mitigation during gradient calculation, we use the recently proposed
technique based on error-correcting codes to create redundant computation [24], [27], [147]. We
prove that, for strongly convex functions, the local convergence rate of OverSketched Newton is
linear-quadratic, while its global convergence rate is linear. Then, going beyond the usual strong
convexity assumption for second-order methods, we adapt OverSketched Newton using ideas
from [143]. For such functions, we prove that a linear convergence rate can be guaranteed with
OverSketched Newton. To the best of our knowledge, this is the first work to prove convergence
guarantees for weakly-convex problems when the Hessian is computed approximately using ideas
from RandNLA.

We extensively evaluate OverSketched Newton on AWS Lambda using several real-world
datasets obtained from the LIBSVM repository [119], and we compare OverSketched Newton with
several first-order (gradient descent, Nesterov’s method, etc.) and second-order (exact Newton’s
method [140], GIANT [51], etc.) baselines for distributed optimization. We further evaluate
and compare different techniques for straggler mitigation, such as speculative execution, coded
computing [24], [27], randomization-based sketching [5] and gradient coding [25]. We demonstrate
that OverSketched Newton is at least 9x and 2x faster than state-of-the-art first-order and second-
order schemes, respectively, in terms of end-to-end training time on AWS Lambda. Moreover, we
show that OverSketched Newton on serverless systems outperforms existing distributed optimization
algorithms in serverful systems by at least 30%.

To the best of our knowledge, this is the first work that proposes a large-scale distributed
optimization algorithm that specifically caters to serverless architectures with provable convergence
guarantees. We exploit the advantages offered by serverless systems while mitigating the drawbacks
such as stragglers and additional overhead per invocation of workers.

4.2 Newton’s Method: An Overview
We are interested in solving on serverless systems in a distributed and straggler-resilient manner
problems of the form:

f(w∗) = min
w∈Rd

f(w), (4.1)
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where f : Rd → R is a closed and convex function bounded from below. In the Newton’s method,
the update at the (t+1)-th iteration is obtained by minimizing the Taylor’s expansion of the objective
function f(·) at wt, that is

wt+1 = arg min
w∈Rd

{
f(wt) +∇f(wt)

T (w −wt) +
1

2
(w −wt)

T∇2f(wt)(w −wt)
}
. (4.2)

For strongly convex f(·), that is, when ∇2f(·) is invertible, Eq. (4.2) becomes wt+1 = wt −
H−1
t ∇f(wt), where Ht = ∇2f(wt) is the Hessian matrix at the t-th iteration. Given a good

initialization and assuming that the Hessian is Lipschitz, the Newton’s method satisfies the update
||wt+1 −w∗||2 ≤ c||wt −w∗||22, for some constant c > 0, implying quadratic convergence [140].

One shortcoming for the classical Newton’s method is that it works only for strongly convex
objective functions. In particular, if f is weakly-convex1, that is, if the Hessian matrix is not
positive definite, then the objective function in (4.2) may be unbounded from below. To address
this shortcoming, authors in [143] recently proposed a variant of Newton’s method, called Newton-
Minimum-Residual (Newton-MR). Instead of (4.1), Newton-MR considers the following auxiliary
optimization problem:

min
w∈Rd

||∇f(w)||2.

Note that the minimizers of this auxiliary problem and (4.1) are the same when f(·) is convex. Then,
the update direction in the (t+ 1)-th iteration is obtained by minimizing the Taylor’s expansion of
||∇f(wt + p)||2, that is,

pt = arg min
w∈Rd

||∇f(wt) + Htp||2.

The general solution of the above problem is given by p = −[Ht]
†∇f(wt)+(I−Ht[Ht]

†)q, ∀ q ∈
Rd, where [·]† is the Moore-Penrose inverse. Among these, the minimum norm solution is chosen,
which gives the update direction in the t-th iteration as pt = −H†t∇f(wt). Thus, the model update
is

wt+1 = wt + pt = wt − [∇2f(wt)]
†∇f(wt). (4.3)

OverSketched Newton considers both of these variants.

4.3 OverSketched Newton
In many applications like machine learning where the training data itself is noisy, using the exact
Hessian is not necessary. Indeed, many results in the literature prove convergence guarantees
for Newton’s method when the Hessian is computed approximately using ideas from RandNLA
for a single machine (e.g. [42], [44], [45], [148]). In particular, these methods perform a form
of dimensionality reduction for the Hessian using random matrices, called sketching matrices.
Many popular sketching schemes have been proposed in the literature, for example, sub-Gaussian,
Hadamard, random row sampling, sparse Johnson-Lindenstrauss, etc. [41], [47]. Inspired from
these works, we present OverSketched Newton, a stochastic second order algorithm for solving—on
serverless systems, in a distributed, straggler-resilient manner—problems of the form (4.1).

1For the sake of clarity, we call a convex function weakly-convex if it is not strongly convex.
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Algorithm 8: Straggler-resilient distributed computation of Ax using codes
Input :Matrix A ∈ Rt×s, vector x ∈ Rs, and block size parameter b
Result: y = Ax, where y ∈ Rs is the product of matrix A and vector x

1 Initialization: Divide A into T = t/b row-blocks, each of dimension b× s
2 Encoding: Generate coded A, say Ac, in parallel using a 2D product code by arranging the

row blocks of A in a 2D structure of dimension
√
T ×
√
T and adding blocks across rows

and columns to generate parities; see Fig. 2 in [27] for an illustration
3 for i = 1 to T + 2

√
T + 1 do

4 1. Worker Wi receives the i-th row-block of Ac, say Ac(i, :), and x from cloud storage
5 2. Wi computes y(i) = A(i, :)x
6 3. Master receives y(i) from worker Wi

7 end
8 Decoding: Master checks if it has received results from enough workers to reconstruct y.

Once it does, it decodes y from available results using the peeling decoder
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Figure 4.1: Coded matrix-vector multiplication:
Matrix A is divided into 2 row chunks A1 and A2.
During encoding, redundant chunk A1 + A2 is cre-
ated. Three workers obtain A1,A2 and A1+A2 from
the cloud storage S3, respectively, and then multiply
by x and write back the result to the cloud. The mas-
ter M can decode Ax from the results of any two
workers, thus being resilient to one straggler (W2 in
this case).
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Figure 4.2: OverSketch-based approximate Hes-
sian computation: First, the matrix A—satisfying
ATA = ∇2f(wt)—is sketched in parallel using the
sketch in (4.4). Then, each worker receives a block
of each of the sketched matrices ATS and STA, mul-
tiplies them, and communicates back its results for
reduction. During reduction, stragglers can be ignored
by the virtue of “over” sketching. For example, here
the desired sketch dimension m is increased by block-
size b for obtaining resiliency against one straggler for
each block of Ĥ.

Distributed straggler-resilient gradient computation: OverSketched Newton computes the
full gradient in each iteration by using tools from error-correcting codes [24], [27]. Our key
observation is that, for several commonly encountered optimization problems, gradient computation
relies on matrix-vector multiplications (see Sec. 4.4 for examples). We leverage coded matrix
multiplication technique from [27] to perform the large-scale matrix-vector multiplication in a
distributed straggler-resilient manner. The idea of coded matrix multiplication is explained in
Fig. 4.1; detailed steps are provided in Algorithm 8.
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Distributed straggler-resilient approximate Hessian computation: For several commonly
encountered optimization problems, Hessian computation involves matrix-matrix multiplication
for a pair of large matrices (see Sec. 4.4 for several examples). For computing the large-scale
matrix-matrix multiplication in parallel in serverless systems, we propose to use a straggler-resilient
scheme called OverSketch from [5]. OverSketch does blocked partitioning of input matrices where
each worker works on square blocks of dimension b. Hence, it is more communication efficient
than existing coding-based straggler mitigation schemes that do naïve row-column partition of input
matrices [26], [28]. We note that it is well known in HPC that blocked partitioning of input matrices
can lead to communication-efficient methods for distributed multiplication [5], [113], [114].

OverSketch uses a sparse sketching matrix based on Count-Sketch [41]. It has similar computa-
tional efficiency and accuracy guarantees as that of the Count-Sketch, with two additional properties:
it is amenable to distributed implementation; and it is resilient to stragglers. We briefly review the
construction of the OverSketch matrix from Chapter 3 for readers’ convenience.

Recall that the Hessian ∇2f(·) ∈ Rd×d. First choose the desired sketch dimension m (which
depends on d), block-size b (which depends on the memory of the workers), and straggler tolerance
ζ > 0 (which depends on the distributed system). Then, define N = m/b and e = ζN , for some
constant ζ > 0. Here ζ is the fraction of stragglers that we want our algorithm to tolerate. Thus, e is
the maximum number of stragglers per N + e workers that can be tolerated. The sketch S is then
given by

S =
1√
N

(S1,S2, · · · ,SN+e), (4.4)

where Si ∈ Rn×b, for all i ∈ [1, N + e], are i.i.d. Count-Sketch matrices2 with sketch dimension
b. Note that S ∈ Rn×(m+eb), where m = Nb is the required sketch dimension and e is the over-
provisioning parameter to provide resiliency against e stragglers per N+e workers. We leverage the
straggler resiliency of OverSketch to obtain the sketched Hessian in a distributed straggler-resilient
manner. An illustration of OverSketch is provided in Fig. 4.2; see Algorithm 9 for details.

Model update: Let Ĥt = AT
t StS

T
t At, where At is the square root of the Hessian ∇2f(wt),

and St is an independent realization of (4.4) at the t-th iteration. For strongly-convex functions, the
update direction is pt = −Ĥ−1

t ∇f(wt). We use line-search to choose the step-size, that is, find

αt = max
α≤1

α such that f(wt + αpt) ≤ f(wt) + αβpTt ∇f(wt), (4.5)

for some constant β ∈ (0, 1/2]. For weakly-convex functions, the update direction (inspired by
Newton-MR [143]) is pt = −Ĥ†t∇f(wt), where Ĥ†t is the Moore-Penrose inverse of Ĥt. To find
the update wt+1, we find the right step-size αt using line-search in (4.5), but with f(·) replaced
by ||∇f(·)||2 and∇f(wt) replaced by 2Ĥt∇f(wt), according to the objective in ||∇f(·)||2. More
specifically, for some constant β ∈ (0, 1/2],

αt = max
α≤1

α such that ||∇f(wt + αpt)||2 ≤ ||∇f(wt)||2 + 2αβpTt Ĥt∇f(wt). (4.6)

2Each of the Count-Sketch matrices Si is constructed (independently of others) as follows. First, for every row j,
j ∈ [n], of Si, independently choose a column h(j) ∈ [b]. Then, select a uniformly random element from {−1,+1},
denoted as σ(i). Finally, set Si(j, h(j)) = σ(i) and set Si(j, l) = 0 for all l 6= h(j). (See [5], [41] for details.)
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Algorithm 9: Approximate Hessian calculation on serverless systems using OverSketch
Input :Matrices A ∈ Rn×d, required sketch dimension m, straggler tolerance e, block-size

b. Define N = m/b
Result: Ĥ ≈ AT ×A

1 Sketching: Use sketch in Eq. (4.4) to obtain Ã = STA distributedly (see Algorithm 5 in
[5] for details)

2 Block partitioning: Divide Ã into (N + e)× d/b matrix of b× b blocks
3 Computation phase: Each worker takes a block of Ã and ÃT each and multiplies them.

This step invokes (N + e)d2/b2 workers, where N + e workers compute one block of Ĥ
4 Termination: Stop computation when any N out of N + e workers return their results for

each block of Ĥ
5 Reduction phase: Invoke d2/b2 workers to aggregate results during the computation phase,

where each worker will calculate one block of Ĥ

Algorithm 10: OverSketched Newton in a nutshell
Input :Convex function f ; Initial iterate w0 ∈ Rd; Line search parameter 0 < β ≤ 1/2;

Number of iterations T
1 for t = 1 to T do
2 Compute full gradient gt in a distributed fashion using Algorithm 8
3 Compute sketched Hessian matrix Ĥt in a distributed fashion using Algorithm 9
4 if f is strongly-convex then
5 Compute the update direction at the master as: pt = −[Ĥt]

−1∇f(wt)
6 Compute step-size αt satisfying the line-search condition (4.5) in a distributed

fashion
7 else
8 Compute the update direction at the master as: pt = −[Ĥt]

†∇f(wt)
9 Find step-size αt satisfying the line-search condition (4.6) in a distributed fashion

10 end
11 Compute the model update wt+1 = wt + αtpt at the master
12 end

Note that for OverSketched Newton, we use Ĥt in the line-search since the exact Hessian is not
available. The update in the t-th iteration in both cases is given by

wt+1 = wt + αtpt.

Note that (4.5) line-search can be solved approximately in single machine systems using Armijo
backtracking line search [140], [149]. OverSketched Newton is concisely described in Algorithm
10. In Section 4.3.2, we describe how to implement distributed line-search in serverless systems
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when the data is stored in the cloud. Next, we prove convergence guarantees for OverSketched
Newton that uses the sketch matrix in (4.4) and full gradient for approximate Hessian computation.

4.3.1 Convergence Guarantees
First, we focus our attention to strongly convex functions. We consider the following assumptions.
We note that these assumptions are standard for analyzing approximate Newton methods, (e.g., see
[42], [44], [45].

Assumptions:
1. f is twice-differentiable;

2. f is k-strongly convex (k > 0), that is,

∇2f(w) � kI;

3. f is M -smooth (k ≤M <∞), that is,

∇2f(w) �MI;

4. the Hessian is L-Lipschitz continuous, that is, for any ∆∆∆ ∈ Rd

||∇2f(w + ∆)−∇2f(w)||2 ≤ L||∆||2,

where || · ||2 is the spectral norm for matrices.

We first prove the following “global” convergence guarantee which shows that OverSketched
Newton would converge from any random initialization of w0 ∈ Rd with high probability.

Theorem 5 (Global convergence for strongly-convex f ). Consider Assumptions 1, 2, and 3 and
step-size αt given by Eq. (4.5). Let w∗ be the optimal solution of (4.1). Let ε and µ be positive
constants. Then, using the sketch in (4.4) with a sketch dimension Nb + eb = Ω(d

1+µ

ε2
) and the

number of column-blocksN+e = Θµ(1/ε), the updates for OverSketched Newton, for any wt ∈ Rd,
satisfy

f(wt+1)− f(w∗) ≤ (1− ρ)(f(wt)− f(w∗)),

with probability at least 1− 1/dτ , where ρ = 2αtβk
M(1+ε)

and τ > 0 is a constant depending on µ and

constants in Ω(·) and Θ(·). Moreover, αt satisfies αt ≥ 2(1−β)(1−ε)k
M

.

Proof. See Section 4.6.1.

Theorem 5 guarantees the global convergence of OverSketched Newton starting with any initial
estimate w0 ∈ Rd to the optimal solution w∗ with at least a linear rate.

Next, we can also prove an additional “local” convergence guarantee for OverSketched Newton,
under the assumption that w0 is sufficiently close to w∗.
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Theorem 6 (Local convergence for strongly-convex f ). Consider Assumptions 1, 2, and 4 and
step-size αt = 1. Let w∗ be the optimal solution of (4.1) and γ and β be the minimum and maximum
eigenvalues of∇2f(w∗), respectively. Let ε ∈ (0, γ/(8β)] and µ > 0. Then, using the sketch in (4.4)
with a sketch dimension Nb+ eb = Ω(d

1+µ

ε2
) and the number of column-blocks N + e = Θµ(1/ε),

the updates for OverSketched Newton, with initialization w0 such that ||w0 −w∗||2 ≤ γ
8L

, follow

||wt+1 −w∗||2 ≤
25L

8γ
||wt −w∗||22 +

5εβ

γ
||wt −w∗||2 for t = 1, 2, · · · , T,

with probability at least 1− T/dτ , where τ > 0 is a constant depending on µ and constants in Ω(·)
and Θ(·).

Proof. See Section 4.6.2.

Theorem 6 implies that the convergence is linear-quadratic in error ∆t = wt−w∗. Initially, when
||∆t||2 is large, the first term of the RHS will dominate and the convergence will be quadratic, that
is, ||∆t+1||2 . 25L

8γ
||∆t||22. In later stages, when ||wt−w∗||2 becomes sufficiently small, the second

term of RHS will start to dominate and the convergence will be linear, that is, ||∆t+1||2 . 5εβ
γ
||∆t||2.

At this stage, the sketch dimension can be increased to reduce ε to diminish the effect of the linear
term and improve the convergence rate in practice. Note that, for second order methods, the number
of iterations T is in the order of tens in general while the number of features d is typically in
thousands. Hence, the probability of failure is generally small (and can be made negligible by
choosing τ appropriately).

Though the works [42], [44], [45], [148], [150] also prove convergence guarantees for ap-
proximate Hessian-based optimization, no convergence results exist for the OverSketch matrix in
Eq. (4.4) to the best of our knowledge. OverSketch has many nice properties like sparsity, input
obliviousness, and amenability to distributed implementation, and our convergence guarantees take
into account the block-size b (that captures the amount of communication at each worker) and the
number of stragglers e, both of which are a property of the distributed system. On the other hand,
algorithms in [42], [44], [45], [148], [150] are tailored to run on a single machine.

Next, we consider the case of weakly-convex functions. For this case, we consider two more
assumptions on the Hessian matrix, similar to [143]. These assumptions are a relaxation of the
strongly-convex case.

Assumptions:
5. There exists some η > 0 such that, ∀ w ∈ Rd,

||(∇2f(w))†||2 ≤ 1/η.

This assumption establishes regularity on the pseudo-inverse of ∇2f(x). It also implies that
||∇2f(w)p|| ≥ η||p|| ∀ p ∈ Range(∇2f(w)), that is, the minimum ‘non-zero’ eigenvalue of
∇2f(w) is lower bounded by η; just as in the k-strongly convex case, the smallest eigenvalue
is greater than k.
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6. Let U ∈ Rd×d be any arbitrary orthogonal basis for Range(∇2f(w)), there exists 0 < ν ≤ 1,
such that,

||UT∇f(w)||2 ≥ ν||∇f(w)||2 ∀ w ∈ Rd.

This assumption ensures that there is always a non-zero component of the gradient in the
subspace spanned by the Hessian, and, thus, ensures that the model update −Ĥ†t∇f(wt) will
not be zero.

Note that the above assumptions are always satisfied by strongly-convex functions. Next, we prove
global convergence of OverSketched Newton when the objective is weakly-convex.

Theorem 7 (Global convergence for weakly-convex f ). Consider Assumptions 1,3,4,5 and 6 and
step-size αt given by Eq. (4.6). Let ε ∈

(
0, (1−β)νη

2M

]
and µ > 0. Then, using an OverSketch matrix

with a sketch dimension Nb+ eb = Ω(d
1+µ

ε2
) and the number of column-blocks N + e = Θµ(1/ε),

the updates for OverSketched Newton, for any wt ∈ Rd, satisfy

||∇f(wt+1)||2 ≤
(

1− 2βαν
(1− ε)η
M(1 + ε)

)
||∇f(wt)||2,

with probability at least 1− 1/dτ , where α = η
2Q

[
(1− β)νη − 2εM

]
, Q = (L||∇f(w0)||+M2),

w0 is the initial iterate of the algorithm and τ > 0 is a constant depending on µ and constants in
Ω(·) and Θ(·).

Proof. See Section 4.6.3.

Even though we present the above guarantees for the sketch matrix in Eq. (4.4), our analysis is
valid for any sketch that satisfies the subspace embedding property (Lemma 4; see [41] for details
on subspace embedding property of sketches). To the best of our knowledge, this is the first work
to prove the convergence guarantees for weakly-convex functions when the Hessian is calculated
approximately using sketching techniques. Later, authors in [151] extended the analysis to the case
of general Hessian perturbations with additional assumptions on the type of perturbation.

4.3.2 Distributed Line Search
Here, we describe a line-search procedure for distributed serverless optimization, which is in-
spired by the line-search method from [51] for serverful systems. To solve for the step-size αt
as described in the optimization problem in (4.5), we set β = 0.1 and choose a candidate set
S = {40, 41, · · · , 4−5}. After the master calculates the descent direction pt in the t-th iteration, the
i-th worker calculates fi(wt + αpt) for all values of α in the candidate set S , where fi(·) depends
on the local data available at the i-th worker and f(·) =

∑
i fi(·)3.

3For the weakly-convex case, the workers calculate ∇fi(·) instead of fi(·), and the master calculates ||∇f(·)||2
instead of f(·).
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The master then sums the results from workers to obtain f(wt + αpt) for all values of α in S
and finds the largest α that satisfies the Armijo condition in (4.5)4. Note that line search requires
an additional round of communication where the master communicates pt to the workers through
cloud and the workers send back the function values fi(·). Finally, the master finds the best step-size
from set S and finds the model estimate wt+1.

4.4 OverSketched Newton on Serverless Systems: Examples
Here, we describe several examples where our general approach can be applied.

4.4.1 Logistic Regression using OverSketched Newton
The optimization problem for supervised learning using Logistic Regression takes the form

min
w∈Rd

{
f(w) =

1

n

n∑
i=1

log(1 + e−yiw
Txi) +

λ

2
‖w‖2

2

}
. (4.7)

Here, x1, · · · ,xn ∈ Rd×1 and y1, · · · , yn ∈ R are training sample vectors and labels, respectively.
The goal is to learn the feature vector w∗ ∈ Rd×1. Let X = [x1,x2, · · · ,xn] ∈ Rd×n and
y = [y1, · · · , yn] ∈ Rn×1 be the example and label matrices, respectively. The gradient for
the problem in (4.7) is given by

∇f(w) =
1

n

n∑
i=1

−yixi
1 + eyiw

T
i xi

+ λw.

Calculation of∇f(w) involves two matrix-vector products, ααα = XTw and ∇f(w) = 1
n
Xβββ +

λw, where βi = −yi
1+eyiαi

∀ i ∈ [1, · · · , n]. When the example matrix is large, these matrix-vector
products are performed distributedly using codes. Faster convergence is obtained by second-order
methods which will additionally compute the Hessian H = 1

n
XΛΛΛXT + λId, where ΛΛΛ is a diagonal

matrix with entries given by Λ(i, i) = eyiαi
(1+eyiαi )2

. The product XΛΛΛXT is computed approximately
in a distributed straggler-resilient manner using the sketch matrix in (4.4). Using the result of
distributed multiplication, the Hessian matrix H is calculated at the master and the model is updated
as wt+1 = wt−H−1∇f(wt). In practice, efficient algorithm like conjugate gradient, that provide a
good estimate in a small number of iterations, can be used locally at the master to solve for wt+1

[152].5

We provide a detailed description of OverSketched Newton for large-scale logistic regression
for serverless systems in Algorithm 11. Steps 4, 8, and 14 of the algorithm are computed in parallel

4Note that codes can be used to mitigate stragglers during distributed line-search in a manner similar to the gradient
computation phase.

5Note that here we have assumed that the number of features is small enough to perform the model update locally
at the master. This is not necessary, and straggler resilient schemes, such as in [147], can be used to perform distributed
conjugate gradient in serverless systems.
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Algorithm 11: OverSketched Newton: Logistic Regression for Serverless Computing
1 Input Data (stored in cloud storage): Example Matrix X ∈ Rd×n and vector y ∈ Rn×1

(stored in cloud storage), regularization parameter λ, number of iterations T , Sketch S as
defined in Eq. (4.4)

2 Initialization: Define w1 = 0d×1,βββ = 0n×1, γγγ = 0n×1, Encode X and XT as described in
Algorithm 8

3 for t = 1 to T do
4 ααα = Xwt ; // Compute in parallel using Algorithm 8
5 for i = 1 to n do
6 βi = −yi

1+eyiαi
;

7 end
8 g = XTβββ ; // Compute in parallel using Algorithm 8
9 ∇f(wt) = g + λwt;

10 for i = 1 to n do
11 γ(i) = eyiαi

(1+eyiαi )2
;

12 end
13 A =

√
diag(γγγ)XT

14 Ĥ = ATSSTA ; // Compute in parallel using Algorithm 9

15 H = 1
n

Ĥ + λId;
16 wt+1 = wt −H−1∇f(wt);
17 end

Result: w∗ = wT+1

on AWS Lambda. All other steps are simple vector operations that can be performed locally at the
master, for instance, the user’s laptop. Steps 4 and 8 are executed in a straggler-resilient fashion
using the coding scheme in [27], as illustrated in Fig. 1.2 and described in detail in Algorithm 8.

We use the coding scheme in [27] since the encoding can be implemented in parallel and requires
less communication per worker compared to the other schemes, for example schemes in [24], [28],
that use Maximum Distance Separable (MDS) codes. Moreover, the decoding scheme takes linear
time and is applicable on real-valued matrices. Note that since the example matrix X is constant in
this example, the encoding of X is done only once before starting the optimization algorithm. Thus,
the encoding cost can be amortized over iterations. Moreover, decoding over the resultant product
vector requires negligible time and space, even when n is scaling into the millions.

The same is, however, not true for the matrix multiplication for Hessian calculation (step 14
of Algorithm 11), as the matrix A changes in each iteration, thus encoding costs will be incurred
in every iteration if error-correcting codes are used. Moreover, encoding and decoding a huge
matrix stored in the cloud incurs heavy communication cost and becomes prohibitive. Motivated
by this, we use OverSketch in step 14, as described in Algorithm 9, to calculate an approximate
matrix multiplication, and hence the Hessian, efficiently in serverless systems with inbuilt straggler
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resiliency.6

4.4.2 Softmax Regression using OverSketched Newton
We take unregulairzed softmax regression as an illustrative example for the weakly convex case.
The goal is to find the weight matrix W = [w1, · · · ,wK ] that fit the training data X ∈ Rd×N and
y ∈ RK×N . Here wi ∈ Rd represesents the weight vector for the k-th class for all i ∈ [1, K] and K
is the total number of classes. Hence, the resultant feature dimension for softmax regression is dK.
The optimization problem is of the form

f(W) =
N∑
n=1

[
K∑
k=1

yknw
T
k xn − log

K∑
l=1

exp
(
wT
l xn

)]
. (4.8)

The gradient vector for the i-th class is given by

∇fi(W) =
N∑
n=1

[
exp

(
wT
i xn

)∑K
l=1 exp (wT

l xn)
− yin

]
xn ∀ i ∈ [1, k], (4.9)

which can be written as matrix products αiαiαi = XTwi and ∇fi(W) = Xβββi, where the entries
of βββi ∈ RN are given by βin =

(
exp(αin)∑K
l=1 exp(αln)

− yin
)

. Thus, the full gradient matrix is given by

∇f(W) = Xβββ where the entries of βββ ∈ RN×K are dependent on ααα ∈ RN×K as above and the
matrix ααα is given by ααα = XTW. We assume that the number of classes K is small enough such
that tall matrices ααα and βββ are small enough for the master to do local calculations on them.

Since the effective number of features is d×K, the Hessian matrix is of dimension dK × dK.
The (i, j)-th component of the Hessian, say Hij , is

Hij(W) =
d

dwj

∇fi(W) =
d

dwj

Xβiβiβi = X
d

dwj

βββi = XZijX
T (4.10)

where Zij ∈ RN×N is a diagonal matrix whose n-th diagonal entry is

Zij(n) =
exp(αin)∑K
l=1 exp(αln)

(
I(i = j)− exp(αjn)∑K

l=1 exp(αln)

)
∀ n ∈ [1, N ], (4.11)

where I(·) is the indicator function and ααα = XW was defined above. The full Hessian matrix
is obtained by putting together all such Hij’s in a dK × dK matrix and can be expressed in a
matrix-matrix multiplication form as

∇2f(W) =

 H11 · · · H1K
... . . . ...

HK1 · · · HKK

 =

 XZ11X
T · · · XZ1KXT

... . . . ...
XZK1X

T · · · XZKKXT

 = X̄Z̄X̄T , (4.12)

6We also evaluate the exact Hessian-based algorithm with speculative execution, i.e., recomputing the straggling
jobs, and compare it with OverSketched Newton in Sec. 4.5.
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where X̄ ∈ RdK×NK is a block diagonal matrix that contains X in the diagonal blocks and
Z̄ ∈ RNK×NK is formed by stacking all the Zij’s for i, j ∈ [1, K]. In OverSketched Newton, we
compute this multiplication using sketching in serverless systems for efficiency and resiliency to
stragglers. Assuming d ×K is small enough, the master can then calculate the update pt using
efficient algorithms such the minimum-residual method [143], [153].

4.4.3 Other Example Problems
In this section, we describe several other commonly encountered optimization problems that can be
solved using OverSketched Newton.

Ridge Regularized Linear Regression: The optimization problem is

min
w∈Rd

1

2n
||XTw − y||22 +

λ

2
‖w‖2

2. (4.13)

The gradient in this case can be written as 1
n
X(βββ − y) + λw, where βββ = XTw, where the training

matrix X and label vector y were defined previously. The Hessian is given by∇2f(w) = XXT +λI.
For n� d, this can be computed approximately using the sketch matrix in (4.4).

Linear programming via interior point methods: The following linear program can be solved
using OverSketched Newton

minimize
Ax≤b

cTx, (4.14)

where x ∈ Rm×1, c ∈ Rm×1,b ∈ Rn×1 and A ∈ Rn×m is the constraint matrix with n > m. In
algorithms based on interior point methods, the following sequence of problems using Newton’s
method

min
x∈Rm

f(x) = min
x∈Rm

(
τcTx−

n∑
i=1

log(bi − aix)

)
, (4.15)

where ai is the i-th row of A, τ is increased geometrically such that when τ is very large, the
logarithmic term does not affect the objective value and serves its purpose of keeping all in-
termediates solution inside the constraint region. The update in the t-th iteration is given by
xt+1 = xt − (∇2f(xt))

−1∇f(xt), where xt is the estimate of the solution in the t-th iteration. The
gradient can be written as∇f(x) = τc + ATβββ where βi = 1/(bi − αi) and ααα = Ax.

The Hessian for the objective in (4.15) is given by

∇2f(x) = ATdiag
1

(bi − αi)2
A. (4.16)

The square root of the Hessian is given by∇2f(x)1/2 = diag 1
|bi−αi|A. The computation of Hessian

requires O(nm2) time and is the bottleneck in each iteration. Thus, we can use sketching to mitigate
stragglers while evaluating the Hessian efficiently, i.e. ∇2f(x) ≈ (S∇2f(x)1/2)T × (S∇2f(x)1/2),
where S is the OverSketch matrix defined in (4.4).
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Lasso Regularized Linear Regression: The optimization problem takes the following form

min
w∈Rd

1

2
||Xw − y||22 + λ||w||1, (4.17)

where X ∈ Rn×d is the measurement matrix, the vector y ∈ Rn contains the measurements, λ ≥ 0
and d� n. To solve (4.17), we consider its dual variation

min
||XT z||∞≤λ,z∈Rn

1

2
||y − z||22,

which is amenable to interior point methods and can be solved by optimizing the following sequence
of problems where τ is increased geometrically

min
z
f(z) = min

z

(τ
2
||y − z||22 −

d∑
j=1

log(λ− xTj z)−
d∑
j=1

(λ+ xTj z)
)
,

where xj is the j-th column of X. The gradient can be expressed in few matrix-vector multiplications
as ∇f(z) = τ(z − y) + X(βββ − γγγ), where βi = 1/(λ − αi), γi = 1/(λ + αi), and ααα = XTz.
Similarly, the Hessian can be written as ∇2f(z) = τI + XΛΛΛXT , where ΛΛΛ is a diagonal matrix
whose entries are given by Λii = 1/(λ− αi)2 + 1/(λ+ αi)

2 ∀ i ∈ [1, n].
Other common problems where OverSketched Newton is applicable include Linear Regression,

Support Vector Machines (SVMs), Semidefinite programs, etc.

4.5 Experimental Results
In this section, we evaluate OverSketched Newton on AWS Lambda using real-world and synthetic
datasets, and we compare it with state-of-the-art distributed optimization algorithms7. We use the
serverless computing framework, Pywren [1]. Our experiments are focused on logistic and softmax
regression, which are popular supervised learning problems, but they can be reproduced for other
problems described in Section 4.4. We present experiments on the following datasets:

Dataset Training Samples Features Testing samples
Synthetic 300, 000 3000 100, 000
EPSILON 400, 000 2000 100, 000

WEBPAGE 48, 000 300 15, 000
a9a 32, 000 123 16, 000

EMNIST 240, 000 7840 40, 000

7A working implementation of OverSketched Newton is available at
https://github.com/vvipgupta/OverSketchedNewton
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Figure 4.3: GIANT: The two stage second order distributed optimization scheme with four workers.
First, master calculates the full gradient by aggregating local gradients from workers. Second, the
master calculates approximate Hessian using local second-order updates from workers.

(a) Simple Gradient Descent
where each worker stores one-
fourth fraction of the whole data
and sends back a partial gradient
corresponding to its own data to
the master

(b) Gradient Coding described
in [25] with W3 straggling. To
get the global gradient, master
would compute g1 + g2 + g3 +

g4 = 3
(
g1 + g2

2

)
−
(
g2
2 − g3

)
+

(g4 − 2g1)

(1 +	(2+	(4

(c) Mini-batch gradient descent,
where the stragglers are ignored
during gradient aggregation and
the gradient is later scaled ac-
cording to the size of mini-batch

Figure 4.4: Different gradient descent schemes in serverful systems in presence of stragglers

For comparison of OverSketched Newton with existing distributed optimization schemes, we
choose recently-proposed Globally Improved Approximate Newton Direction (GIANT) [51]. The
reason is that GIANT boasts a better convergence rate than many existing distributed second-order
methods for linear and logistic regression, when n� d. In GIANT, and other similar distributed
second-order algorithms, the training data is evenly divided among workers, and the algorithms
proceed in two stages. First, the workers compute partial gradients using local training data, which
is then aggregated by the master to compute the exact gradient. Second, the workers receive the full
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Figure 4.5: Convergence comparison of GIANT (employed with different straggler mitigation
methods), exact Newton’s method and OverSketched Newton for Logistic regression on AWS
Lambda. The synthetic dataset considered has 300,000 examples and 3000 features.

gradient to calculate their local second-order estimate, which is then averaged by the master. An
illustration is shown in Fig. 4.3.

For straggler mitigation in such serverful systems based algorithms, [25] proposes a scheme for
coding gradient updates called gradient coding, where the data at each worker is repeated multiple
times to compute redundant copies of the gradient. See Figure 4.4b for illustration. Figure 4.4a
illustrates the scheme that waits for all workers and Figure 4.4c illustrates the ignoring stragglers
approach. We use the three schemes for dealing with stragglers illustrated in Figure 4.4 during
the two stages of GIANT, and we compare their convergence with OverSketched Newton. We
further evaluate and compare the convergence exact Newton’s method (employed with speculative
execution, that is, reassigning and recomputing the work for straggling workers).

4.5.1 Comparisons with Existing Second-Order Methods on AWS Lambda
In Figure 4.5, we present our results on a synthetic dataset with n = 300, 000 and d = 3000
for logistic regression on AWS Lambda. Each column xi ∈ Rd, for all i ∈ [1, n], is sampled
uniformly randomly from the cube [−1, 1]d. The labels yi are sampled from the logistic model,
that is, P[yi = 1] = 1/(1 + exp(xiw + b)), where the weight vector w and bias b are generated
randomly from the normal distribution. ht vector w and bias b are generated randomly from the
normal distribution.

The orange, blue and red curves demonstrate the convergence for GIANT with the full gradient
(that waits for all the workers), gradient coding and mini-batch gradient (that ignores the stragglers
while calculating gradient and second-order updates) schemes, respectively. The purple and
green curves depict the convergence for the exact Newton’s method and OverSketched Newton,
respectively. The gradient coding scheme is applied for one straggler, that is the data is repeated
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(a) Training error for logistic regression on EP-
SILON dataset
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(b) Testing error for logistic regression on EP-
SILON dataset

Figure 4.6: Comparison of training and testing errors for logistic regression on EPSILON dataset
with several Newton based schemes on AWS Lambda. OverSketched Newton outperforms others
by at least 46%. Testing error closely follows training error.

twice at each worker. We use 60 Lambda workers for executing GIANT in parallel. Similarly, for
Newton’s method, we use 60 workers for matrix-vector multiplication in steps 4 and 8 of Algorithm
11, 3600 workers for exact Hessian computation and 600 workers for sketched Hessian computation
with a sketch dimension of 10d = 30, 000 in step 14 of Algorithm 11. In all cases, unit step-size
was used to update the model8

Remark 5. In our experiments, we choose the number of workers in such a way that each worker
receives approximately the same amount of data to work with, regardless of the algorithm. This is
motivated by the fact that the memory at each worker is the bottleneck in serverless systems (e.g.,
in AWS Lambda, the memory at each worker can be as low as 128 MB). Note that this is unlike
serverful/HPC systems, where the number of workers is the bottleneck.

An important point to note from Fig. 4.5 is that the uncoded scheme (that is, the one that
waits for all stragglers) has the worst performance. The implication is that good straggler/fault
mitigation algorithms are essential for computing in the serverless setting. Secondly, the mini-batch
scheme outperforms the gradient coding scheme by 25%. This is because gradient coding requires
additional communication of data to serverless workers (twice when coding for one straggler, see
[25] for details) at each invocation to AWS Lambda. On the other hand, the exact Newton’s method
converges much faster than GIANT, even though it requires more time per iteration.

The number of iterations needed for convergence for OverSketched Newton and exact Newton
(that exactly computes the Hessian) is similar, but OverSketched Newton converges in almost half
the time due to an efficient computation of (approximate) Hessian (which is the computational
bottleneck and thus reduces time per iteration).

8Line-search in Section 4.3 was mainly introduced to prove theoretical guarantees. In our experiments, we observe
that constant step-size works well for OverSketched Newton.
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(a) Logistic regression on WEBPAGE dataset
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(b) Logistic regression on a9a dataset

Figure 4.7: Logistic regression on WEBPAGE and a9a datasets with several Newton based schemes
on AWS Lambda. OverSketched Newton outperforms others by at least 25%.

Logistic Regression on EPSILON, WEBPAGE and a9a Datasets

In Figure 4.6, we repeat the above experiment with EPSILON classification dataset obtained from
[119], with n = 0.4million and d = 2000. We plot training and testing errors for logistic regression
for the schemes described in the previous section. Here, we use 100 workers for GIANT, and 100
workers for matrix-vector multiplications for gradient calculation in OverSketched Newton. We use
gradient coding designed for three stragglers in GIANT. This scheme performs worse than uncoded
GIANT that waits for all the stragglers due to the repetition of training data at workers. Hence, one
can conclude that the communication costs dominate the straggling costs. In fact, it can be observed
that the mini-batch gradient scheme that ignores the stragglers outperforms the gradient coding and
uncoded schemes for GIANT.

During exact Hessian computation, we use 10, 000 serverless workers with speculative execution
to mitigate stragglers (i.e., recomputing the straggling jobs) compared to OverSketched Newton
that uses 1500 workers with a sketch dimension of 15d = 30, 000. OverSketched Newton requires
a significantly smaller number of workers, as once the square root of Hessian is sketched in a
distributed fashion, it can be copied into local memory of the master due to dimension reduction,
and the Hessian can be calculated locally. Testing error follows training error closely, and important
conclusions remain the same as in Figure 4.5. OverSketched Newton outperforms GIANT and exact
Newton-based optimization by at least 46% in terms of running time.

We repeated the above experiments for classification on the WEBPAGE (n = 49, 749 and
d = 300) and a9a (n = 32, 561 and d = 123) datasets [119]. For both datasets, we used 30 workers
for each iteration in GIANT and any matrix-vector multiplications. Exact hessian calculation invokes
900 workers as opposed to 300 workers for OverSketched Newton, where the sketch dimension was
10d = 3000. The results for training loss on logistic regression are shown in Figure 4.7. Testing
error closely follows the training error in both cases. OverSketched Newton outperforms exact
Newton and GIANT by at least ∼ 25% and ∼ 75%, respectively, which is similar to the trends
witnessed heretofore.
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Figure 4.8: Convergence comparison of gradi-
ent descent, exact Newton’s method and OverS-
ketched Newton for Softmax regression on
AWS Lambda.
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Figure 4.9: Convergence comparison of specula-
tive execution and coded computing for gradient
and Hessian computing with logistic regression
on AWS Lambda.
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ANT on AWS EC2 and OverSketched Newton
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Remark 6. Note that conventional distributed second-order methods for serverful systems—which
distribute training examples evenly across workers (such as [48]–[53])—typically find a “localized
approximation” (localized to each machine) of second-order update at each worker and then
aggregate it. OverSketched Newton, on the other hand, uses the massive storage and compute power
in serverless systems to find a more “globalized approximation” (globalized in the sense of across
machine). Thus, it performs better in practice.

4.5.2 Softmax Regression on EMIST
In Fig. 4.8, we solve unregularized softmax regression, which is weakly convex (see Sec. 4.4.2
for details). We use the Extended MNIST (EMNIST) dataset [154] with N = 240, 000 training
examples, d = 784 features and K = 10 classes. Note that GIANT cannot be applied here as
the objective function is not strongly convex. We compare the convergence rate of OverSketched



CHAPTER 4. OVERSKETCHED NEWTON 70

Newton, exact Hessian and gradient descent based schemes.
For gradient computation in all three schemes, we use 60 workers. However, exact Newton

scheme requires 3600 workers to calculate the dK × dK Hessian and recomputes the straggling
jobs, while OverSketched Newton requires only 360 workers to calculate the sketch in parallel
with sketch dimension 6dK = 47, 040. The approximate Hessian is then computed locally at the
master using its sketched square root, where the sketch dimension is 6dK = 47, 040. The step-size
is fixed and is determined by hyperparamter tuning before the start of the algorithm. Even for
the weakly-convex case, second-order methods tend to perform better. Moreover, the runtime of
OverSketched Newton outperforms both gradient descent and Exact Newton based methods by
∼ 75% and ∼ 50%, respectively.

4.5.3 Coded computing versus Speculative Execution
In Figure 4.9, we compare the effect of straggler mitigation schemes, namely speculative execution,
that is, restarting the jobs with straggling workers, and coded computing on the convergence rate
during training and testing. We regard OverSketch based matrix multiplication as a coding scheme
in which some redundancy is introduced during “over” sketching for matrix multiplication. There
are four different cases, corresponding to gradient and hessian calculation using either speculative
execution or coded computing. For speculative execution, we wait for at least 90% of the workers
to return (this works well as the number of stragglers is generally less than 10%) and restart the jobs
that did not return till this point.

For both exact Hessian and OverSketched Newton, using codes for distributed gradient com-
putation outperforms speculative execution based straggler mitigation. Moreover, computing the
Hessian using OverSketch is significantly better than exact computation in terms of running time as
calculating the Hessian is the computational bottleneck in each iteration.

4.5.4 Comparison with First-Order Methods on AWS Lambda
In Figure 4.10, we compare gradient descent and Nesterov Accelerated Gradient (NAG) (while
ignoring the stragglers) with OverSketched Newton for logistic regression on EPSILON dataset.
We observed that for first-order methods, there is only a slight difference in convergence for a
mini-batch gradient when the batch size is 95%. Hence, for gradient descent and NAG, we use 100
workers in each iteration while ignoring the stragglers.9 These first-order methods were given the
additional advantage of backtracking line-search, which determined the optimal amount to move
in given a descent direction.10 Overall, OverSketched Newton with unit step-size significantly
outperforms gradient descent and NAG with backtracking line-search.

9We note that stochastic methods such as SGD perform worse that gradient descent since their update quality is
poor, requiring more iterations (hence, more communication) to converge while not using the massive compute power
of serverless. For example, 20% minibatch SGD in the setup of Fig. 4.10 requires 1.9× more time than gradient descent
with same number of workers.

10We remark that backtracking line-search required ∼ 13% of the total time for NAG. Hence, as can be seen from
Fig. 4.10, any well-tuned step-size method would still be significantly slower than OverSketched Newton.
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4.5.5 Comparison with Serverful Optimization
In Fig. 4.11, we compare OverSketched Newton on AWS Lambda with existing distributed
optimization algorithm GIANT in serverful systems (AWS EC2). The results are plotted on
synthetically generated data for logistic regression. For serverful programming, we use Message
Passing Interface (MPI) with one c3.8xlarge master and 60 t2.medium workers in AWS EC2.
In [3], the authors observed that many large-scale linear algebra operations on serverless systems
take at least 30% more time compared to MPI-based computation on serverful systems. However, as
shown in Fig. 4.11, we observe a slightly surprising trend that OverSketched Newton outperforms
MPI-based optimization (that uses existing state-of-the-art optimization algorithm). This is because
OverSketched Newton exploits the flexibility and massive scale at disposal in serverless, and thus
produces a better approximation of the second-order update than GIANT.11

4.6 Proofs
To complete the proofs in this section, we will need the following lemma.

Lemma 4. Let Ĥt = AT
t StS

T
t At where St is the sparse sketch matrix in (3.3) with sketch dimension

m = Ω(d1+µ/ε2) and N = Θµ(1/ε). Then, the following holds

λmin(Ĥt) ≥ (1− ε)λmin(∇2f(wt)), (4.18)

λmax(Ĥt) ≤ (1 + ε)λmax(∇2f(wt)) (4.19)

with probability at least 1− 1
dτ

, where τ > 0 is a constant depending on µ and the constants in Θ(·)
and Ω(·), and λmax(·) and λmin(·) denote the maximum and minimum eigenvalues, respectively. In
general,

λi(∇2f(wt))− ελmax(∇2f(wt)) ≤ λi(Ĥt) ≤ λi(∇2f(wt)) + ελmax(∇2f(wt)),

where λi(·) is the i-th eigenvalue.

Proof. We note than N is the number of non-zero elements per row in the sketch St in (3.3) after
ignoring stragglers. We use Theorem 8 in [155] to bound the singular values for the sparse
sketch St in (3.3) with sketch dimension m = Ω(d1+µ/ε2) and N = Θ(1/ε). It says that
P(∀ x ∈ Rn, ||Stx||2 ∈ (1 ± ε/3)||x||2) > 1 − 1/dτ , where τ > 0 depends on µ and the
constants in Θ(·) and Ω(·). Thus, ||Stx||2 ∈ (1± ε/3)||x||2, which implies that

||Stx||22 ∈ (1 + ε2/9± 2ε/3)||x||22,
11We do not compare with exact Newton in serverful sytems since the data is large and stored in the cloud. Computing

the exact Hessian would require a large number of workers (e.g., we use 10,000 workers for exact Newton in EPSILON
dataset) which is infeasible in existing serverful systems.
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with probability at least 1− 1/dτ . For ε ≤ 1/2, this leads to the following inequality

||Stx||22 ∈ (1± ε)||x||22 ⇒ |xT (StS
T
t − I)x| ≤ ε||x||22 ∀ x ∈ Rn (4.20)

with probability at least 1− 1/dτ . Also, since (1− ε)xTx ≤ xTStS
T
t x ≤ (1 + ε)xTx ∀ x ∈ Rn by

the inequality above, replacing x by Ay, we get

(1− ε)yTATAy ≤ yTATStS
T
t Ay ≤ (1 + ε)yTATAy (4.21)

with probability at least 1−1/dτ . Let y1 be the unit norm eigenvector corresponding to the minimum
eigenvalue of Ĥt = AT

t StS
T
t At. Since the above inequality is true for all y, we have

yT1 AT
t StS

T
t Aty1 ≥ (1− ε)yT1 AT

t Aty1 ≥ (1− ε)λmin(AT
t At) = (1− ε)λmin(∇2f(wt))

⇒ λmin(Ĥt) ≥ (1− ε)λmin(∇2f(wt))

with probability at least 1 − 1/dτ . Along similar lines, we can prove that λmax(Ĥt) ≤ (1 −
ε)λmax(∇2f(wt)) with probability at least 1 − 1/dτ using the right hand inequality in (4.21).
Together, these prove the first result.

In general, Eq. (4.20) implies that the eigenvalues of (StS
T
t − I) are in the set [−ε, ε]. Thus, all

the eigenvalues of AT
t (StS

T
t − I)At are in the set [−ελmax(∇2f(wt)), ελmax(∇2f(wt))] Also, we

can write

Ĥt = AT
t StS

T
t At = AT

t At + AT
t (StS

T
t − I)At.

Now, applying Weyl’s inequality (see [156], Section 1.3) on symmetric matrices Ĥt = AT
t StS

T
t At,

∇2f(wt) = AT
t At and AT

t (StS
T
t − I)At, we get

λi(∇2f(wt))− ελmax(∇2f(wt)) ≤ λi(Ĥt) ≤ λi(∇2f(wt)) + ελmax(∇2f(wt)),

which proves the second result.

4.6.1 Proof of Theorem 5
Let’s define wτ = wt + τpt, where the descent direction pt is given by pt = −Ĥ−1

t ∇f(wt). Also,
from Lemma 4, we have

λmin(Ĥt) ≥ (1− ε)λmin(∇2f(wt)) and λmax(Ĥt) ≤ (1 + ε)λmax(∇2f(wt)),

with probability at least 1− 1/dτ . Using the above inequalities and the fact that f(·) is k-strongly
convex and M -smooth, we get

(1− ε)kI � Ĥt � (1 + ε)MI, (4.22)
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with probability at least 1− 1/dτ .
Next, we show that there exists an α > 0 such that the Armijo line search condition in (4.5) is

satisfied. From the smoothness of f(·), we get (see [157], Theorem 2.1.5)

f(wα)− f(wt) ≤ (wα −wt)
T∇f(wt) +

M

2
||wα −wt||2,

= αpTt ∇f(wt) + α2M

2
||pt||2.

Now, for wα to satisfy the Armijo rule, α should satisfy

αpTt ∇f(wt) + α2M

2
||pt||2 ≤ αβpTt ∇f(wt)

⇒ α
M

2
||pt||2 ≤ (β − 1)pTt ∇f(wt)

⇒ α
M

2
||pt||2 ≤ (1− β)pTt Ĥtpt,

where the last inequality follows from the definition of pt. Now, using the lower bound from (4.22),
wα satisfies Armijo rule for all

α ≤ 2(1− β)(1− ε)k
M

.

Hence, we can always find an αt ≥ 2(1−β)(1−ε)k
M

using backtracking line search such that wt+1

satisfies the Armijo condition, that is,

f(wt+1)− f(wt) ≤ αtβpTt ∇f(wt)

= −αtβ∇f(wt)
T Ĥ−1

t ∇f(wt)

≤ − αtβ

λmax(Ĥt)
||∇f(wt)||2

which in turn implies

f(wt)− f(wt+1) ≥ αtβ

M(1 + ε)
||∇f(wt)||2 (4.23)

with probability at least 1 − 1/dτ . Here the last inequality follows from the bound in (4.22).
Moreover, k-strong convexity of f(·) implies (see [157], Theorem 2.1.10)

f(wt)− f(w∗) ≤ 1

2k
||∇f(wt)||2.

Using the inequality from (4.23) in the above inequality, we get

f(wt)− f(wt+1) ≥ 2αtβk

M(1 + ε)
(f(wt)− f(w∗))

≥ ρ(f(wt)− f(w∗)),
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where ρ = 2αtβk
M(1+ε)

. Rearranging, we get

f(wt+1)− f(w∗) ≤ (1− ρ)(f(wt)− f(w∗))

with probability at least 1− 1/dτ , which proves the desired result.

4.6.2 Proof of Theorem 6
According to OverSketched Newton update, wt+1 is obtained by solving

wt+1 = arg min
w∈Rd

{
f(wt) +∇f(wt)

T (w −wt) +
1

2
(w −wt)

T Ĥt(w −wt)
}
.

Thus, we have, for any w ∈ Rd,

f(wt) +∇f(wt)
T (w −wt) +

1

2
(w −wt)

T Ĥt(w −wt),

≥ f(wt) +∇f(wt)
T (wt+1 −wt) +

1

2
(wt+1 −wt)

T Ĥ(wt+1 −wt),

⇒ ∇f(wt)
T (w −wt+1) +

1

2
(w −wt)

T Ĥt(w −wt)−
1

2
(wt+1 −wt)

T Ĥt(wt+1 −wt) ≥ 0,

⇒ ∇f(wt)
T (w −wt+1) +

1

2

[
(w −wt)

T Ĥt(w −wt+1) + (w −wt+1)T Ĥt(wt+1 −wt)
]
≥ 0.

Substituting w by w∗ in the above expression and calling ∆t = w∗ −wt, we get

−∇f(wt)
T∆t+1 +

1

2

[
∆T
t+1Ĥt(2∆t −∆t+1)

]
≥ 0,

⇒ ∆T
t+1Ĥt∆t −∇f(wt)

T∆t+1 ≥
1

2
∆T
t+1Ĥt∆t+1.

Now, due to the optimality of w∗, we have∇f(w∗)T∆t+1 ≥ 0. Hence, we can write

∆T
t+1Ĥt∆t − (∇f(wt)−∇f(w∗))T∆t+1 ≥

1

2
∆T
t+1Ĥt∆t+1.

Next, substituting∇f(wt)−∇f(w∗) =
( ∫ 1

0
∇2f(w∗ + p(wt −w∗))dp

)
(wt −w∗) in the above

inequality, we get

∆T
t+1(Ĥt −∇2f(wt))∆t + ∆T

t+1

(
∇2f(wt)−

∫ 1

0
∇2f(w∗ + p(wt −w∗))dp

)
∆t ≥

1

2
∆T
t+1Ĥt∆t+1.

Using Cauchy-Schwartz inequality in the LHS above, we get

||∆t+1||2||∆t||2
(
||Ĥt −∇2f(wt)||2 +

∫ 1

0
||∇2f(wt)−∇2f(w∗ + p(wt −w∗))||2dp

)
≥ 1

2
∆T
t+1Ĥt∆t+1.
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Now, using the L-Lipschitzness of∇2f(·) in the inequality above, we get

1

2
∆T
t+1Ĥt∆t+1 ≤ ||∆t+1||2||∆t||2||Ĥt −∇2f(wt)||2 +

L

2
||∆t+1||2||∆t||22

∫ 1

0

(1− p)dp,

⇒ 1

2
∆T
t+1Ĥt∆t+1 ≤ ||∆t+1||2

(
||∆t||2||Ĥt −∇2f(wt)||2 +

L

2
||∆t||22

)
. (4.24)

Note that for the positive definite matrix ∇2f(wt) = AT
t At, we have ||At||22 = ||∇2f(wt)||2.

Moreover,

||Ĥt −∇2f(wt)||2 = ||AT
t (StS

T
t − I)At||2 ≤ ||At||22||StSTt − I||2

Now, using Equation 4.20 from the proof of Lemma 4, we get ||StSTt − I||2 = λmax(StS
T
t − I) ≤ ε.

Using this to bound the RHS of (4.24), we have, with probability at least 1− 1/dτ ,

1

2
∆T
t+1Ĥt∆t+1 ≤ ||∆t+1||2

(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
1

2
||StA∆t+1||22 ≤ ||∆t+1||2

(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
,

where the last inequality follows from Ĥt = AT
t STt StAt. Now, since the sketch dimension

m = Ω(d1+µ/ε2), using Eq. (4.20) from the proof of Lemma 1 in above inequality, we get, with
probability at least 1− 1/dτ ,

1

2
(1− ε)||A∆t+1||22 ≤ ||∆t+1||2

(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
,

⇒ 1

2
(1− ε)∆T

t+1∇2f(wt)∆t+1 ≤ ||∆t+1||2
(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
.

Now, since γ and β are the minimum and maximum eigenvalues of∇2f(w∗), we get

1

2
(1− ε)||∆t+1||2(γ − L||∆t||2) ≤ ε(β + L||∆t||2)||∆t||2 +

L

2
||∆t||22

by the Lipschitzness of ∇2f(w), that is, |∆T
t+1(∇2f(wt) − ∇2f(w∗))∆t+1| ≤ L||∆t||2||∆||2t+1.

Rearranging for ε ≤ γ/(8β) < 1/2, we get

||∆t+1||2 ≤
4εβ

γ − L||∆t||2
||∆t||2 +

5L

2(γ − L||∆t||2)
||∆t||22, (4.25)

with probability at least 1− 1/dτ .
Let ξT be the event that the above inequality (in (4.25)) is true for t = 0, 1, · · · , T . Thus,

P(ξT ) ≥
(

1− 1

dτ

)T
≥ 1− T

dτ
,
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where the second inequality follows from Bernoulli’s inequality. Next, assuming that the event
ξT holds, we prove that ||∆t||2 ≤ γ/5L using induction. We can verify the base case using the
initialization condition, i.e. ||∆0||2 ≤ γ/8L. Now, assuming that ||∆t−1||2 ≤ γ/5L and using it in
the inequality (4.25), we get

||∆t||2 ≤
4εβ

γ
× γ

5L
+

5L

2γ
× γ2

25L2

=
4εβ

5L
+

γ

10L

≤ γ

L

(
1

10
+

1

10

)
≤ γ

5L
,

where the last inequality uses the fact that ε ≤ γ/(8β). Thus, by induction,

||∆t||2 ≤ γ/(5L) ∀ t ≥ 0 with probability at least 1− T/dτ .

Using this in (4.25), we get the desired result, that is,

||∆t+1||2 ≤
5εβ

γ
||∆t||2 +

25L

8γ
||∆t||22,

with probability at least 1− T/dτ .

4.6.3 Proof of Theorem 7
Let us define a few short notations for convenience. Say gt = ∇f(wt) and Ht = ∇2f(wt) = AT

t At,
and we know that Ĥt = AT

t StS
T
t At. Moreover, all the results with approximate Hessian Ĥt hold

with probability 1 − 1/dτ . We skip its mention in most of the proof for brevity. The following
lemmas will assist us in the proof.

Lemma 5. M -smoothness of f(·) and L-Lipchitzness of∇2f(·) imply∥∥∇2f(y)∇f(y)−∇2f(x)∇f(x)
∥∥ ≤ Q||y − x|| (4.26)

for all x ∈ Rd, Q = (Lδ +M2), where y ∈ Y , where Y = {y ∈ Rd| ||∇f(y)|| ≤ δ} and δ > 0 is
some constant.

Proof. We have

LHS =
∥∥∇2f(y)∇f(y)−∇2f(x)∇f(x)

∥∥
=
∥∥∇2f(y)−∇2f(x))∇f(y) +∇2f(x)(∇f(y)−∇f(x))

∥∥
By applying triangle inequality and Cauchy-Schwarz to above equation, we get

LHS ≤ ||∇2f(y)−∇2f(x)||2||∇f(y)||+ ||∇2f(x)||2||∇f(y)−∇f(x)||
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From the smoothness of f(·), that is, Lipshitzness of gradient, we get ||∇2f(x)||2 ≤M ∀ x ∈ Rd.
Additionally, using Lipshitzness of Hessian, we get

LHS ≤ (L||∇f(y)||+M2)||y − x||
≤ (Lδ +M2)||y − x||

for y ∈ Y . This proves the desired result.

Lemma 6. Let AT = U
√

ΣVT and ATSt = Û
√

Σ̂V̂T be the truncated Singular Value Decompo-
sitions (SVD) of AT and ATSt, respectively. Thus, Ht = UΣUT and Ĥt = ÛΣ̂ÛT . Then, for all
g ∈ Rd, we have

||ÛTg||2 ≥ (1− ε)η
M(1 + ε)

||UTg||2, (4.27)

where η is defined in Assumption (5).

Proof. For all g ∈ Rd, using the fact that A = V
√

ΣUT, we get

||Ag||2 = (UTg)TΣ(UTg)

≥ λmin(Σ)||UTg||2

≥ η||UTg||2, (4.28)

where the last inequality uses Assumption (5). In a similar fashion, we can obtain

||STt Ag||2 = (ÛTg)T Σ̂(ÛTg)

≤ λmax(Σ̂)||ÛTg||2

≤M(1 + ε)||ÛTg||2, (4.29)

where the last inequality uses M -smoothness of f(·) and Lemma 4. Also, from the subspace
embedding property of St (see Lemma 4), we have

||STAg||2 ≥ (1− ε)||Ag||2.
Now, using the above inequality and Eqs. (4.28) and (4.29), we get

||ÛTg||2 ≥ (1− ε)η
M(1 + ε)

||UTg||2, (4.30)

which is the desired result.

Now we are ready to prove Theorem 7. Let Ht = UΣUT and Ĥt = ÛΣ̂ÛT be the truncated
SVDs of Ht and Ĥt, respectively. Also, let αt be the step-size obtained using line-search in (4.6) in
the t-th iteration. Thus, Eq. (4.6) with the update direction pt = −Ĥ†tgt implies

||gt+1||2 ≤ ||gt||2 − 2βαt〈Ĥtgt, Ĥ
†
tgt〉

= ||gt||2 − 2βαt||ÛT
Tgt||2, (4.31)
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where the last equality uses the fact that Ĥ†t can be expressed as Ĥ†t = ÛΣ̂−1ÛT . Note that Lemma
5 implies that the function ||∇f(y)||2/2 is smooth for all y ∈ Y , where Y = {y ∈ Rd| ||∇f(y)|| ≤
δ}. Smoothness in turn implies the following property (see [157], Theorem 2.1.10)

1

2
||∇f(y)||2 ≤ 1

2
||∇f(x)||2 + 〈∇2f(x),y − x〉+

1

2
Q||y − x||2 ∀ x,y ∈ (Y ), (4.32)

where Q = Lδ +M2. We take δ = ||∇f(w0)|| where w0 is the initial point of our algorithm. Due
to line-search condition in (4.6), it holds that ||∇f(wt)|| ≤ ||∇f(w0)|| ∀ t > 0. Thus, substituting
x = wt and y = wt+1 = wt + αtpt, we get

1

2
||gt+1||2 ≤

1

2
||gt||2 + 〈Htgt, αtpt〉+

1

2
Qα2||pt||2

⇒ ||gt+1||2 ≤ ||gt||2 + 〈2Htgt, αtpt〉+Qα2||pt||2, (4.33)

where
Q = L||∇f(w0)||+M2.

Also, since the minimum non-zero eigenvalue of Ht ≥ η from Assumption (5), the minimum
non-zero eigenvalue of Ĥt is at least η − εM from Lemma 4. Thus,

|Ĥ†t ||2 ≤ 1/(η − εM). (4.34)

|Moreover,

||pt|| = || − Ĥ†tgt|| ≤ ||Ĥ†t ||2||gt|| ≤
||gt||

(η − εM)
. (4.35)

Using this in (4.33), we get

||gt+1||2 ≤ ||gt||2 − 2αt〈Htgt, Ĥ
†
tgt〉+Qα2 ||gt||2

(η − εM)2
. (4.36)

Now,

−〈Htgt, Ĥ
†
tgt〉 = −〈Ĥtgt, Ĥ

†
tgt〉+ 〈(Ĥt −Ht)gt, Ĥ

†
tgt〉

⇒ −〈Htgt, Ĥ
†
tgt〉 ≤ −||ÛT

t gt||2 + ||gt||2||Ĥt −Ht||2||Ĥ†t ||2,

where the last inequality is obtained by applying the triangle inequality and Cauchy-Schwartz
inequality. This can be further simplified using Lemma 4 and Eq. (4.34) as

−〈Htgt, Ĥ
†
tgt〉 ≤ −||ÛT

t gt||2 +
εM

(η −Mε)
||gt||2

Using the above in Eq. (4.36), we get

||gt+1||2 ≤ ||gt||2 + 2αt(−||ÛT
t gt||2 +

εM

(η −Mε)
||gt||2) +Qα2

t

||gt||2
(η − εM)2

(4.37)
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Note that the upper bound in Eq. (4.37) always holds. Also, we want the inequality in (4.31) to hold
for some αt > 0. Therefore, we want αt to satisfy the following (and hope that it is always satisfied
for some αt > 0)

||gt||2 + 2αt(−||ÛT
t gt||2 +

εM

(η −Mε)
||gt||2) +Qα2

t

||gt||2
(η − εM)2

≤ ||gt||2 − 2βαt||ÛT
Tgt||2

⇒ Qα2
t

||gt||2
(η − εM)2

≤ 2αt

[
(1− β)||ÛT

t gt||2 −
εM

(η −Mε)
||gt||2

]
⇒ αt ≤

2(η − εM)2

Q

[
(1− β)

||ÛT
t gt||2
||gt||2

− εM

(η −Mε)

]
. (4.38)

Thus, any αt satisfying the above inequality would definitely satisfy the line-search termination
condition in

Now, using Lemma 6 and Assumption (6), we have

||ÛT
t gt||2 ≥

(1− ε)η
M(1 + ε)

||UT
t g||2 ≥ (1− ε)η

M(1 + ε)
ν||g||2. (4.39)

Using the above in Eq. (4.38) to find an iteration independent bound on αt, we get

αt ≤
2(η − εM)2

Q

[
(1− β)ν − εM

(η −Mε)

]
. (4.40)

Hence, line-search will always terminate for all αt that satisfy the above inequality. This can be
further simplified by assuming that ε is small enough such that ε < η/2M . Thus, η −Mε > η/2,
and the sufficient condition on αt in (4.40) becomes

αt ≤
η

2Q

[
(1− β)νη − 2εM

]
. (4.41)

For a positive αt to always exist, we require ε to further satisfy

ε ≤ (1− β)νη

2M
, (4.42)

which is tighter than the initial upper bound on ε. Now, Eqs. (4.31) and (4.39) proves the desired
result, that is

||gt+1||2 ≤ ||gt||2 − 2βαt||ÛT
Tgt||2 ≤

(
1− 2βαtν

(1− ε)η
M(1 + ε)

)
||gt||2.

Thus, OverSketched Newton for the weakly-convex case enjoys a uniform linear convergence rate
of decrease in ||∇f(w)||2.



CHAPTER 4. OVERSKETCHED NEWTON 80

4.7 Conclusions
We proposed OverSketched Newton, a straggler-resilient distributed optimization algorithm for
serverless systems. It uses the idea of matrix sketching from RandNLA to find an approximate
second-order update in each iteration. We proved that OverSketched Newton has a local linear-
quadratic convergence rate for the strongly-convex case, where the dependence on the linear term
can be made to diminish by increasing the sketch dimension. Moreover, it has a linear global
convergence rate for weakly-convex functions. By exploiting the massive scalability of serverless
systems, OverSketched Newton produces a global approximation of the second-order update.
Empirically, this translates into faster convergence than state-of-the-art distributed optimization
algorithms on AWS Lambda.
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Chapter 5

LocalNewton

In this chapter, we propose LocalNewton, a distributed second-order algorithm with local averaging
to address the communication bottleneck problem in distributed optimization.

5.1 Introduction
An explosion in data generation and data collection capabilities in recent years has resulted in the
segregation of computing and storage resources. Distributed machine learning is one example where
each worker machine processes only a subset of the data, while the master machine coordinates
with workers to learn a good model. Such coordination can be time-consuming since it requires
frequent communication between the master and worker nodes, especially for systems that have
large compute resources, but are bottlenecked by communication costs.

Communication costs in distributed optimization can be broadly classified into two types—(a)
latency cost and (b) bandwidth cost [5], [132]. Latency is the fixed cost associated with sending
a message, and it is generally independent of the size of the message. Bandwidth cost, on the
other hand, is directly proportional to the size of the message. Many recent works have focused on
reducing the bandwidth cost by reducing the size of the gradient or the model to be communicated
using techniques such as sparsification [93], [158], sketching [54], [100] and quantization [90],
[96], [159]–[161]. Schemes that perform inexact updates in each iteration, however, can increase
the number of iterations required to converge to the same quality model, both theoretically and
empirically [158], [162]. This can, in turn, increase the total training time in systems where latency
costs dominate bandwidth costs.

Serverless frameworks—such as Amazon Web Services (AWS) Lambda and Microsoft Azure
Functions—are an example of a setting where high communication latency between worker ma-
chines dominates the running time of the algorithm [4], [6]. These systems use cloud storage (e.g.,
AWS S3) to store enormous amounts of data, while using a large number of low-quality workers
for large-scale computation. Naturally, the communication between the high-latency storage and
the commodity workers is extremely slow [e.g., see 1], resulting in impractical end-to-end times
for many popular optimization algorithms such as SGD [4], [6]. Furthermore, communication
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Figure 5.1: Training loss and testing accuracy versus communication rounds for Adaptive Local-
Newton and existing schemes for communication-efficient optimization.

failures between the cloud storage and serverless workers consistently give rise to stragglers, and
this introduces synchronization delays [147], [163].

Yet another setting where latency costs may outweigh bandwidth costs is federated learning,
where the computation is performed locally at the mobile device (which is generally the source of the
data) due to a high-cost barrier in transferring the data to traditional computing platforms [54], [56].
Such mobile resources (e.g., mobile phones, wearable devices, etc.) have reasonable compute power,
but they can be severely limited by communication latency (e.g., inadequate network connection
to synchronize frequent model updates). For this reason, schemes like Local Stochastic Gradient
Descent (Local SGD) have become popular, since they try to mitigate the communication costs by
performing more local computation at the worker machines, thus substantially reducing the number
of communication rounds required [55].

These trends suggest that optimization schemes that reduce communication rounds between
workers are highly desirable. In this chapter, we go one-step forward—we propose and analyze
a second order method with local computations. Being a second order algorithm, the iteration
complexity of LocalNewton is inherently low. Moreover, its local nature further cuts down the
communication cost between the worker and the master node. To the best of our knowledge, this is
the first work to propose and analyze a second order optimization algorithm with local averaging.

Additionally, in this chapter, we introduce an adaptive variant of the LocalNewton algorithm,
namely Adaptive LocalNewton. This algorithm chooses the number of local iterations adaptively
at the master after each communication round by observing the change in training loss. Thus, it
further refines the iterates obtained through LocalNewton by adaptively and successively reducing
the number of local iterations, thereby improving the quality of the model updates. Furthermore,
when the number of local iterations, L, reduces to 1, Adaptive LocalNewton automatically switches
to a standard second order optimization algorithm, namely GIANT, proposed in [51].

In Sec. 5.4, we show that the iterates of LocalNewton converge to a norm ball (with small
radius) around the global minima. From this point of view, we may think of LocalNewton as an
initialization algorithm, rather than an optimization one; since it takes the iterates close to the
optimal point in only a few rounds of communication. After reaching sufficiently close to the
solution point, one may choose some standard optimization algorithm to reach to the solution.
In Adaptive LocalNewton, we first exploit the fast convergence of LocalNewton (L ≥ 1), and
afterwards, when L = 1, Adaptive LocalNewton switches to the standard optimization algorithm
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(e.g., GIANT [51]).
Our contributions. Inspired by recent progress in local optimization methods (that reduce

communication cost by limiting the frequency of synchronization) and distributed and stochastic
second order methods (that use the local curvature information), we propose a local second-order
algorithm called LocalNewton. The proposed LocalNewton method saves on communication costs
in two ways. First, it updates the models at the master only sporadically, thus requiring only one
communication round per multiple iterations. Second, it uses the second-order information to
reduce the number of iterations, and hence it reduces the overall rounds of communication.

Important features of LocalNewton include:
1. Simplicity: In LocalNewton, each worker takes only a few Newton steps [149] on local data,

agnostic of other workers. These local models are then averaged once every L(≥ 1) iterations at the
master node.

2. Practicality: Unlike many first-order and distributed second-order schemes, LocalNew-
ton does not require hyperparameter tuning for step-size, mini-batch size, etc., and the only hyper-
parameter required is the number of local iterations L. We also propose Adaptive LocalNewton, an
adaptive version which automatically reduces L as the training proceeds by monitoring the training
loss at the master.

3. Convergence guarantees: In general, proving convergence guarantees for local algorithms
is not straightforward. Only recently, it has been proved [57] that local SGD converges as fast as
SGD, thereby explaining the well-studied empirical successes [54]. In this chapter, we develop
novel techniques to highlight the convergence behaviour of LocalNewton.

4. Reduced training times: We implement LocalNewton on the serverless environment AWS
Lambda using the Pywren framework [1]. Through extensive empirical evaluation, we show that
the significant savings in terms of communication rounds translate to savings in running time on
this high-latency distributed computing environment.

5. Adaptivity: We propose Adaptive LocalNewton, which is an adaptive variant of the Local-
Newton algorithm. In the adaptive scheme, based on the change in function objective value, the
master modulates the number of local iterations at the worker machines. This improves the quality
of the model updates as discussed in detail in Sec. 5.3.2.

6. LocalNewton as an initialization algorithm: Since the convergence guarantees of LocalNew-
ton (see Sec. 5.4) only ensure that the iterates stay in a norm ball around the minima, one may
rethink LocalNewton as an initialization algorithm, rather than an optimization one. In only a very
few communication rounds, LocalNewton takes the iterates very close to the optimal solution. After
that, our algorithm switches to a standard second-order algorithm, GIANT [51].

Fig. 5.1 illustrates savings due to Adaptive LocalNewton, where we plot training loss and test
accuracy with communication rounds, for several popular communication-efficient schemes for
logistic regression on the w8a dataset [119] (see Sec. 5.5 for a details on experiments). Observe
that Adaptive LocalNewton reaches close to the optimal training loss very quickly, when compared
to schemes like Local SGD [54], [57], GIANT [51] and BFGS [164].
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5.2 Problem Formulation
We first define the notation used and then introduce the basic problem setup considered in this
chapter.

Notation. Throughout the chapter, vectors (e.g., g) and matrices (e.g., H) are represented as
bold lowercase and uppercase letters, respectively. For a vector g, ‖g‖ denotes its `2 norm, and
‖H‖2 denotes the spectral norm of matrix H. The identity matrix is denoted as I, and the set
{1, 2, · · · , n} is denoted as [n], for all positive integers n. Further, we use superscript (e.g., gk) to
denote the worker index and subscript (e.g., gt) to denote the iteration counter (i.e., time index),
unless stated otherwise.

Problem Setup. We are interested in solving empirical risk minimization problems of the
following form in a distributed fashion

min
w∈Rd

{
f(w) ,

1

n

n∑
j=1

fj (w)

}
, (5.1)

where fj(·) : Rd → R, for all j ∈ [n] = {1, 2, · · · , n}, models the loss of the j-th observation given
an underlying parameter estimate w ∈ Rd. In machine learning, such problems arise frequently,
e.g., logistic and linear regression, support vector machines, neural networks and graphical models.
Specifically, in the case of logistic regression,

fj(w) = `j(w
Txj) = log(1 + e−yjw

Txj) +
γ

2
‖w‖2,

where `j(·) is the loss function for sample j ∈ [n] and γ is an appropriately chosen regularization
parameter. Also, X = [x1,x2, · · · ,xn] ∈ Rd×n is the sample matrix containing the input feature
vectors xj ∈ Rd, j ∈ [n], and y = [y1, y2, · · · , yn] is the corresponding label vector. Hence, (xj, yj)
together define the j-th observation and (X,y) define the training dataset.

For such problems, the gradient and the Hessian at the t-th iteration are given by

gt = ∇f (wt) =
1

n

n∑
j=1

∇fj(wt) and

Ht = ∇2f (wt) =
1

n

n∑
j=1

∇2fj (wt) ,

respectively, where wt is the model estimate at the t-th iteration.
Data distribution at each worker: Let there be a total of K workers. We assume that the

k-th worker is assigned a subset Sk ⊂ [n], for all k ∈ [K] = {1, 2, · · · , K}, of the n data points,
chosen uniformly at random without replacement.1 Let the number of samples at each worker be

1This corresponds simply to partitioning the dataset and assigning an equal number of observations to each worker,
if the observations are independent and identically distributed. If not, randomly shuffling the observations and then
performing a data-independent partitioning is equivalent to uniform sampling without replacement.
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s = |Sk| ∀ k ∈ [K], where s� n in practice. Also, by the virtue of sampling without replacement,
we have S1 ∪S2 ∪ · · · ∪SK = [n] and Si ∩Sj = Φ for all i, j ∈ [K]. Hence, the number of workers
is given by K = n/s.

Next, we describe LocalNewton, a communication-efficient algorithm for distributed optimiza-
tion.

5.3 Algorithms
In this section, we propose two novel algorithms for distributed optimization. First, we propose
LocalNewton, a second order algorithm with local averaging. Subsequently, we also propose an
adaptive variant of LocalNewton. Here LocalNewton acts as a good initialization scheme that
pushes its iterates close to the optimal solution in a small number of communication rounds. Finally,
a standard second-order algorithm is used to converge to the optimal solution.

5.3.1 LocalNewton
We consider synchronous second-order methods for distributed learning, where local models are
synced after every L iterations. Let It ⊆ [t] be the set of indices where the model is synced, that is,
It = [0, L, 2L, · · · , t0], where t0 is the last iteration just before t where the models were synced.

At the k-th worker in the t-th iteration, the local function value (at the local iterate wk
t ) is

fk(wk
t ) =

1

s

∑
j∈Sk

fj(w
k
t ). (5.2)

The k-th worker tries to minimize the local function value in Eq (5.2) in each iteration. The
corresponding local gradient gkt and local Hessian Hk

t , respectively, at k-th worker in t-th iteration
can be written as

gkt = ∇fk(wk
t ) =

1

s

∑
j∈Sk

∇fj(wk
t ) and

Hk
t = ∇2fk(wk

t ) =
1

s

∑
j∈Sk

∇2fj(w
k
t ).

Let us consider the following LocalNewton update at the k-th worker and (t+ 1)-st iteration:

wk
t+1 =

{
wk
t − αktHk(wk

t )
−1gk(wk

t ), if t /∈ It
w̄t − αktHk(w̄t)

−1gk(w̄t), if t ∈ It,
(5.3)

where w̄t = 1
K

∑K
k=1 wk

t ∀ t, and αkt is the step-size at the k-th worker at iteration t.2

2In practice, one need not calculate the exact Hk(wk
t )−1gk(wk

t ), and efficient algorithms like conjugate gradient
descent can be used [152].
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Algorithm 12: LocalNewton
Input :Local function fk(·) at the k-th worker; Initial iterate w̄0 ∈ Rd; Line search

parameter 0 < β ≤ 1/2; Number of iterations T , Set IT ⊆ {1, 2, · · · , T} where
models are synced

1 for k = 1 to K in parallel do
2 Initialization: wk

0 = w̄0

3 for t = 0 to T − 1 do
4 if t ∈ IT then

// Master averages the local models

5 w̄t = 1
K

∑K
k=1 wk

t

6 wk
t = w̄t

7 end
// Compute the local gradient

8 gk(wk
t ) = ∇fk(wk

t ).
// Compute the update direction

9 pkt = Hk(wk
t )
−1gk(wk

t )
10 Find step-size αkt using line search (Eq. (5.5))
11 Update model: wk

t+1 = wk
t − αktpkt

12 end
13 end

Also, define the local descent direction at the k-th worker at iteration t as

pkt = αktH
k(wk

t )
−1gk(wk

t )

and similarly define

p̄t =
1

K

K∑
k=1

pkt .

We can see that w̄t+1 = w̄t − p̄t. Detailed steps for LocalNewton are provided in Algorithm 12.
Note that w̄t is not explicitly calculated for all t, but only for t ∈ It. However, we will use the

technique of perturbed iterate analysis and show the convergence of the sequence f(w̄1), · · · , f(w̄t)
to f(w∗). In the next section, we present Adaptive LocalNewton, an algorithm to adaptively choose
the number of local iterations, L.

5.3.2 Adaptive LocalNewton
Motivating Example (Least-squares). Let us now consider the simple example of unregular-
ized linear least squares, i.e., the loss function at the k-th worker is fk(w) = 1

s
‖yk − Xkw‖2,

where yk = [yk1 , y
k
2 , . . . , y

k
s ]> ∈ Rs and X = [xk1, . . . ,x

k
s ]
> ∈ Rs×d. Note that one second-order
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Algorithm 13: Adaptive LocalNewton
Input :Minimum decrement δ(> 0) in global loss function;

1 Initialization: fprev = f(w̄0), Number of local iterations L, Set IT ⊆ {1, 2, · · · , T} where
models are synced every L local iterations

2 for t = 1 to T − 1 do
// k-th worker runs LocalNewton locally to get wk

t

3 Workers run Algorithm 12
4 if t ∈ IT then

// Master averages the local models

5 w̄t = 1
K

∑K
k=1 wk

t

6 if fprev − f(w̄t) < δ and L ≥ 1 then
// The global function did not decrease enough

7 if L = 1 then
8 Switch to GIANT [51]
9 end

10 else
11 Decrease L: L = L− 1
12 Update IT according to the new value of L
13 end
14 end
15 fprev = f(w̄t)

16 end
17 end

iteration (with step-size one) reaches the optimal solution, say (wk)∗ = wk
t − (Hk

t )
−1gkwk

t =
[(Xk)TXk]−1(Xk)Tyk ∀ wk

t ∈ Rd, for the local loss function fk(w) at the k-th worker.
Thus, applying LocalNewton here with L ≥ 1 would imply that the local iterates at the k-

th worker are fixed at wk
t = (wk)∗ while the global iterates at the master are fixed at w̄t =

1
K

∑K
k=1(wk)∗ for all t ∈ [T ]. Note that w̄t 6= w̄∗ in general, where w̄∗ is the optimal solution

for the global problem in Eq. (5.1). Hence, LocalNewton (Algorithm 12) does not reach the
optimal solution for unregularized least-squares. In fact, in Theorems 8 and 9, we show that running
LocalNewton algorithm results in an error floor of the order 1/

√
s for any convex loss function.

Motivated from the above example, if we want to attain the optimal solution, one needs to switch
to optimization algorithms which yield no error floor. One standard example of such an algorithm is
GIANT ([51]), which is a communication-efficient distributed second-order algorithm. However,
for general convex functions, the convergence of GIANT requires the initial point to be close to
the optimal solution. From this point of view, one can think of LocalNewton as an initialization
scheme that pushes the iterates close to the solution (within a radius ofO(1/

√
s)) with a few rounds

of communication. Then, one can switch to the GIANT algorithm to obtain convergence to the
solution point. We call this algorithm Adaptive LocalNewton, where the master modulates the value



CHAPTER 5. LOCALNEWTON 88
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Figure 5.2: Comparing LocalNewton (for different values of L) and GIANT. In general, Local-
Newton reaches very close to the optimal solution. In that region, however, the convergence rate
of LocalNewton is slow. This is mitigated by using Adaptive LocalNewton which appends the
LocalNewton iterations with better quality (but more expensive) updates from GIANT.

of L successively over iterations and finally switches to GIANT to obtain the final solution. The
details are given in Algorithm 13.

Recall that GIANT synchronizes the local gradients and the local descent direction in every
iteration [51]. Further, it finds the step-size by doing a distributed backtracking line-search requiring
an additional round of communication (Sec. 5.2, [51]). Finally, the master updates the model
by using the average descent direction and the obtained step-size and ships the model to all the
workers. Thus, each iteration in GIANT requires three rounds of communication. This approach
has compared favorably to other popular distributed second-order methods (e.g., DANE [48], AGD
[157], BFGS [164], CoCoA [53], DiSCO [49]).

In Fig. 5.2, we compare GIANT to LocalNewton, where LocalNewton is run with 100 workers
for L = 1, 2 and 3, for two datasets—w8a and EPSILON obtained from LIBSVM [119]. Note that
LocalNewton converges much faster with respect to communication rounds for all the three datasets
since it communicates intermittently, i.e., once every few local second-order iterations (e.g., after 3
local iterations for L = 3). Not shown here is that testing accuracy follows the same trends. Further,
the quality of the final solution improves as we reduce L. However, it reaches extremely close to
the optimal training loss, but it converges very slowly (or flattens out) after that.

These empirical observations further motivate Adaptive LocalNewton: a second-order distributed
algorithm that adapts the number of local iterations as the training progresses and ultimately finishes
with GIANT. This can be done by monitoring the objective function at the master, e.g., reduce L if
the loss stops improving (or switch to GIANT if L = 1).3 See Algorithm 13, where we provide the
pseudo-code for Adaptive LocalNewton. Whenever the global function value at the master does not
decrease more than a constant δ, we decrease the value of L to improve the quality of second order
estimate. In this sense, Adaptive LocalNewton can be seen as providing a carefully-constructed or

3To further reduce the communication rounds and dependency on L, each worker can update the model for multiple
values of L and send the concatenated model updated to the master. The master can decide the right value of L by
evaluating the loss/accuracy for these different models.
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gradually-annealed initialization for GIANT.
Comparison with GIANT: Algorithm 13 is further motivated by the theoretical guarantees we

obtain in the subsequent section. In Theorems 8 and 9 of Sec. 5.4, we prove the convergence
of LocalNewton to the optimal solution within an error floor starting with any initial point in Rd.
In sharp contrast, Theorem 2 in GIANT [51], the authors convergence guarantees to the optimal
solution when the current model is sufficiently close to the optimal model. From Fig. 5.2, we see
that Adaptive LocalNewton significantly outperforms GIANT in terms of rounds of communication.
Adaptive LocalNewton starts from L=3, and yellow dots in its plot denote the reduction in the value
of L by one or a switch to GIANT if L = 1.

5.4 Convergence Guarantees
In this section, we present the main theoretical contributions of the chapter. For this, we only
consider the (non-adaptive) LocalNewton algorithm. Obtaining theoretical guarantees for Adaptive
LocalNewton is kept as an interesting future work.

First, we delineate some assumptions on f(·) required to prove theoretical convergence of the
proposed method.

Assumptions: We make the following standard assumptions on the objective function f(·) for
all w ∈ Rd:

1. fi(·), for all i ∈ [n], is twice differentiable.

2. f(·) is κ-strongly convex, that is,∇2f(w) < κI.

3. f(·) is M -smooth, that is,∇2f(w) 4MI.

4. ‖∇2fi(·)‖2, i ∈ [n], is upper bounded. That is,∇2fi(w) 4 BI, for all i ∈ [n].

In the following lemma, we make use of matrix concentration inequalities to show that, for
sufficiently large sample size s, the local Hessian at each worker is also strongly convex and smooth
with high probability.

Lemma 7. Let f(·) satisfy assumptions 1-4 and 0 < ε ≤ 1/2 and 0 < δ < 1 be fixed constants.
Then, if s ≥ 4B

κε2
log 2d

δ
, the local Hessian at the k-th worker satisfies

(1− ε)κ 4 ∇2fk(w) = Hk(w) 4 (1 + ε)M, (5.4)

for all w ∈ Rd and k ∈ [K] with probability at least 1− δ.
Proof. See Appendix 5.6.1.

Step-size selection: Let each worker locally choose a step-size according to the following rule

αkt = max
α≤α?

α such that

fk
(
wk
t − αpkt

)
≤ fk

(
wk
t

)
− αβ(pkt )

T∇fk
(
wk
t

)
, (5.5)
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for some constant β ∈ (0, 1/2], where the parameter α?(≤ 1) depends on the properties of the
objective function:4

α? ≤ min

{
(1− β)κ

M
,

2βκ2

3M [M − κ/4]

}
. (5.6)

Now, we are almost ready to prove the main theorems—Theorem 8 discusses the case when
L = 1, and Theorem 9 discusses the case when L > 1. Before that, let us state the following
auxiliary lemma which is required to prove the main theorems.

Lemma 8. Let the function f(·) satisfy assumptions 1-3, and suppose that step-size αkt satisfies the
line-search condition in (5.5). Also, let 0 < ε < 1/2 and 0 < δ < 1 be fixed constants. Moreover,
let the sample size s ≥ 4B

κε2
log 2d

δ
. Then, the LocalNewton update, defined in Eq. (5.3), at the k-th

worker satisfies

fk(wk
t+1)− fk(wk

t ) ≤ −ψ||gkt ||2 ∀ k ∈ [K],

with probability at least 1− δ, where ψ = α?β
M(1+ε)

.

Proof. See Appendix 5.6.1.

We next use the result in Lemma 8 to prove linear convergence for the global function f(·). We
first prove guarantees for the L = 1 case, where the models are communicated every iteration but
the gradient is computed locally instead of globally contrary to previous results [51] (thus reducing
two communication rounds per iteration). We then extend it to the general case of L > 1 and show
that the updates converge at a sublinear rate in that case.

Theorem 8. [L = 1 case] Suppose Assumptions 1-5 hold and the step-size αkt satisfies the
line-search condition (5.5). Also, let 0 < δ < 1, 0 < ε, ε1 < 1/2 be fixed constants and
let Γ = max1≤i≤n ‖∇fi(.)‖. Moreover, assume that the sample size for each worker satisfies
s ≥ 4B

κε2
log 2dK

δ
, where the samples are chosen without replacement. Then, with the LocalNewton

updates, {w̄t}t≥0, from Algorithm 12 and L = 1, we obtain

1. If s & Γ2

ε21G
2 log(d/δ) for G = mink ‖gk(w̄t)‖, we get with probability at least 1− 6Kδ,

f(w̄t+1)− f(w∗) ≤ ρ1(f(w̄t)− f(w∗)).

2. We obtain, with probability at least 1− 6Kδ,

f(w̄t+1)− f(w∗) ≤ ρ2(f(w̄t)− f(w∗)) + η · Γ

κ(1− ε) ,

where η = 1√
s

Γ(1 +
√

2 log(1
δ
)).

4We introduce α? here to establish theoretical guarantees. In our empirical results, we use the Armijo backtracking
line-search rule with α? = 1 (e.g., see [149]) to find the right step-size.
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Here ρi = (1− 2κCi), for i = {1, 2}, C1 = (1−ε)ψ
2
− ε1

κ(1−ε) , C2 = ψ(1−ε)
2

, and ψ = α?β
M(1+ε)

.

Proof. The proof is presented in Appendix 5.6.2. Here, we provide a sketch of the proof.

1. Due to the uniform sampling guarantee from Lemma 7, the strong-convexity and smoothness
of the global function f(·) implies that the local function at the k-th worker, fk(·), also
satisfy similar properties. Using this, we can lower bound f(w̄t) − f(w̄t+1) in terms of
1
K

∑K
k=1 f

k(wk
t )− fk(wk

t+1).

2. Apply Lemma 8 (that is, the result for standard Newton step) which says fk(wk
t )−fk(wk

t+1) ≥
ψ||gkt ||2 ∀ k ∈ [K].

3. Using uniform sketching argument, local gradients gk(w̄t) are close to global gradient g(w̄t).

Some remarks regarding the convergence guarantee in Theorem 8 are in order.

Remark 7. The above theorem implies that for L = 1, the convergence rate of LocalNewton is linear
with high probability. Choosing δ = 1/poly(K), we obtain the high probability as 1− 1/poly(K).

Remark 8. We have two different settings in the above theorem. The first setting implies that
provided the local gradients {gk(w̄t)}Kk=1 are large enough, and the amount of local data s is
reasonably large, then the convergence is purely linear and does not suffer an error floor. This will
typically happen in the earlier iterations of LocalNewton. Note that the gradients vanish as we get
closer to the optimum, which is why the setting will eventually be violated. If this happens, we
move to the next setting.

Remark 9. The second setting implies that, if the gradient condition and the restriction of s are
violated, although the convergence rate of LocalNewton is still linear, the algorithm incurs an error
floor. However, in this setting, the error floor is O(1/

√
s), and hence it is quite small for sufficiently

large sample-size, s, at each worker.

Assume all the workers initialize at w̄0 and run LocalNewton with L = 1 for T iterations. Then,
from Theorem 8, to reach within ξ of the optimal function value (that is, f(w̄T )− f(w̄∗) ≤ ξ), the
number of iterations T is upper bounded by

T ≤
(

log
1

ρ1

)
log

ξ

f(w̄0)− f(w̄∗)

with probability 1−6Kδ for a sample size s ≥ max
{

4B
κε2

log 2dKT
δ
, Γ2

ε21G
2 log dT

δ

}
. (Note the increase

in sample size s by a factor of T in the log(·) due to a union bound). The fully synchronized second
order method GIANT [51] also has similar linear quadratic convergence but it assumes that the
gradients are synchronized in every iteration. We remove this assumption by tracking how far the
iterate deviates when the gradients are computed locally, thereby cutting the communication costs
in half while still showing linear convergence (within some error floor in the most general case).

We now prove convergence guarantees for the case when L > 1 in this algorithm.
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Theorem 9 (L ≥ 1 case). Suppose Assumptions 1-4 hold and step-size αkt solves the line-search
condition (5.5). Also, let 0 < δ < 1, 0 < ε < 1/2 be fixed constants and let Γ = max1≤i≤n ‖∇fi(.)‖.
Moreover, assume that the sample size for each worker satisfies s ≥ 4B

κε2
log 2dK

δ
, where the samples

are chosen without replacement. Then, the LocalNewton updates, {w̄t}t≥0, from Algorithm 12 and
L ≥ 1, with probability at least 1− 6LKδ, satisfy

f(w̄t+1)− f(w̄t0) ≤ −C
t∑

τ=t0

(
1

K

K∑
k=1

‖gkτ‖2

)
+ η · LΓ

κ(1− ε) ,

where η = 1√
s

Γ(1 +
√

2 log(1
δ
)), C = ψ − (M−κ(1−ε)2)

2Kκ2(1−ε)2 . where t0 is the last iteration where the

models were synced, ψ = α?β
M(1+ε)

, and C = ψ(1−ε)3
2

.

Proof. The general idea of the proof follows the proof for the easier case in Theorem 8 (i.e., when
L = 1). The proof is presented in Appendix 5.6.3.

Remark 10. The theorem shows that LocalNewton with high probability produces a descent direction,
provided that the error floor is sufficiently small, i.e. for sufficiently large s (since η is proportional
to 1/

√
s). Observe that the convergence rate here is no longer linear. In other words, we are

trading-off the rate of convergence for local iterations (L > 1).

Remark 11. Choosing δ = 1/poly(K,L), we get that the theorem holds with probability at least
1− 1/poly(K,L). Note that this is not restrictive since the dependence on δ is logarithmic.

While the theoretical guarantees for L > 1 in Theorem 9 are not as strong as those for L = 1 in
Theorem 8 (linear versus sublinear convergence), empirically we observe a fast rate of convergence
even when L > 1 (see Section 5.5 for empirical results). Nevertheless, to the best of our knowledge,
Theorem 9 is the first to show a descent guarantee for a distributed second-order method without
synchronizing at every iteration. Obtaining a better rate of convergence for general L, with or
without error floor, is an interesting and relevant future research direction.

5.5 Empirical Evaluation
In this section, we present an empirical evaluation of our approach when solving a large-scale
logistic regression problem. We ran our experiments on AWS Lambda, a serverless computing
platform which uses a high-latency cloud storage (AWS S3) to exchange data with the workers,
using the PyWren [1] framework. We ran experiments on the real-world datasets described in Table
5.1 (obtained from LIBSVM [119]).

We compare the following distributed optimization schemes for the above datasets:
1. Local SGD [57]: The workers communicate their models once every epoch, where training on
one epoch implies applying SGD (with mini-batch size one) over one pass of the dataset stored
locally at the worker. The best step-size was obtained through hyperparameter tuning (see Table 5.2
for details).
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Dataset
Training

samples (n)
Features

(d)
Testing
samples

w8a 48, 000 300 15, 000
Covtype 500, 000 2916 81, 000

EPSILON 400, 000 2000 100, 000
a9a 32, 000 123 16, 000

ijcnn1 49, 000 22 91, 000

Table 5.1: Datasets considered for experiments in this chapter

2. BFGS [164]: BFGS is a popular quasi-Newton method that estimates an approximate Hessian
from the gradient information from previous iterations. The step-size was obtained using backtrack-
ing line-search. The best step-size was obtained through hyperparameter tuning (see Table 5.2 for
details).
3. GIANT [51]: A state-of-the-art distributed second order algorithm proposed in [51]. The authors
show that GIANT outperforms many popular schemes such as DANE, AGD, etc. The step-size was
obtained using distributed line-search as described in [51].
4. Adaptive LocalNewton: For all the considered datasets, Adaptive LocalNewton gradually reduces
L if the loss function stops decreasing, starting from L = 3 in the first round of communication.
In general, during the later stages of optimization, it switches to GIANT owing to its convergence
to the optimal solution when w̄t is sufficiently close to w∗. The step-size was obtained using
backtracking line-search locally at each worker as described in Algorithm 12.

For all the experiments presented in this chapter, we fixed the number of workers, K, to be
100. Hence, the number of samples per worker, s = n/100, for all datasets. The regularization
parameter was chosen to be γ = 1/n. Note that there are several other schemes–such as AGD [157],
DANE [48] and SVRG [165]–that have been proposed in the literature for communication-efficient
optimization. However, most of these schemes have been shown to be outperformed by one of
Local SGD, BFGS or GIANT, and hence, we do not perform the comparison again.

Hyperparameters for Local SGD and BFGS: In Table 5.2, we provide the step-sizes for
local SGD and BFGS that were obtained through hyperparameter tuning, where s = n/K, n is the
number of training examples in the dataset and K = 100.

Dataset Samples per worker (s) Local SGD BFGS
w8a 480 10/s 100

Covtype 5000 10/s 1
EPSILON 4000 500/s 10

a9a 320 10/s 1
ijcnn1 490 100/s 10

Table 5.2: Step-sizes obtained using tuning for Local SGD and BFGS for several datasets
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(a) w8a dataset
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(b) Covtype dataset
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(c) EPSILON dataset
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(d) a9a dataset
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(e) ijcnn1 dataset

Figure 5.3: Experiments on the different datasets from Table 5.1 on AWS Lambda. Both in terms of
training loss and testing accuracy, Adaptive LocalNewton converges to the optimal value at least
50% faster than existing schemes.

Results: In Fig. 5.3, we plot the training loss and testing accuracy for w8a, covtype5, EPSILON,
a9a and ijcnn1 datasets. For all the datasets considered, Adaptive LocalNewton significantly
outperforms its competitors in terms of time required to reach the same training loss (or testing
accuracy).

In Fig. 5.4, we highlight the fact that runtime savings on AWS Lambda are a direct consequence
of significantly fewer rounds of communication. Specifically, to reach the same training loss, we
plot the training times and communication rounds as bar plots for three datasets, and we note that
savings in communication rounds results in commensurate savings on end-to-end runtimes on AWS
Lambda.

5The covtype dataset has d = 54 features and it does not perform well with logistic regression. Hence, we apply
polynomial feature extension (using pairwise products) to increase the number of features to d2 = 2916.
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(a) w8a dataset
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(b) Covtype dataset
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(c) EPSILON dataset

Figure 5.4: Training times (red bars) and communication rounds (blue bars) required to reach the
same training loss of 0.19, 0.65 and 0.3 for the w8a, Covtype and EPSILON datasets, respectively,
on AWS Lambda. Here, A: Adaptive LocalNewton, B: BFGS, C: Local SGD, D: GIANT.

5.6 Proofs

5.6.1 Auxiliary Lemmas and their Proofs
Here, we prove the auxiliary lemmas that are used in the main proofs of the paper. (For completeness,
we restate the lemma statements).

Lemma 9. Let f(·) satisfy assumptions 1-4 and 0 < ε ≤ 1/2 and δ < 1 be fixed constants. Then, if
s ≥ 4B

κε2
log 2d

δ
, the local Hessian at the k-th worker satisfies

(1− ε)κ 4 ∇2fk(w) = Hk(w) 4 (1 + ε)M, (5.7)

for all w ∈ Rd and k ∈ [K] with probability (w.p.) at least 1− δ.
Proof. At the k-th worker which samples Sk observations from [n], the following is true by Matrix
Chernoff (see Theorem 2.2 in Tropp (2011))

P(λmin

(
∇2fk(w)) ≤ (1− ε)κ

)
≤ δ1 = d

[
e−ε

(1− ε)1−ε

]sκ/B
, (5.8)

P(λmax

(
∇2fk(w)) ≥ (1 + ε)M

)
≤ δ2 = d

[
eε

(1 + ε)1+ε

]sM/B

. (5.9)

Now, using the inequality log(1− ε) ≤ −ε√
1−ε for 0 ≤ ε < 1, we get

e−ε

(1− ε)1−ε ≤ e−ε+ε
√

1−ε.

Further, utilizing the fact that
√

1− ε ≤ 1
1+ε/2

, we get

e−ε+ε
√

1−ε ≤ e
−ε2

1+ε/2 ≤ e−ε
2/4.

Hence, we have δ1 ≤ de−sκε
2/4B. Further, using the fact that log(1 + ε) ≥ ε− ε2/2, we get

eε

(1 + ε)1+ε
≤ e−ε

2/2+ε3/2 ≤ e−ε
2/4,
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where the last inequality follows from the fact that ε ≤ 1/2. Hence, δ2 ≤ de−sMε2/4B. Thus, by
union bound and subsequently using upper bounds on δ1 and δ2, we get

P
[
(1− ε)κI 4 ∇2fk(w) 4 (1 + ε)MI

]
≥ 1− (δ1 + δ2)

≥ 1− (de−sκε
2/4B + de−sMε2/4B)

≥ 1− (2de−sκε
2/4B),

where the last inequality follows from the fact that κ ≤M . Hence, the result follows by noting that

(1− ε)κI 4 ∇2fk(w) 4 (1 + ε)MI w. p. at least 1− δ,

and requiring that δ ≥ 2de−sκε
2/4B (or s ≥ 4B

κε2
log 2d

δ
).

Lemma 10. Let the function f(·) satisfy assumptions 1-3, and step-size αkt that solves the line-
search condition in Eq. (5). Also, let 0 < ε ≤ 1/2 and 0 < δ < 1 be fixed constants. Moreover, let
the sample size s ≥ 4B

κε2
log 2d

δ
. Then, the LocalNewton update at the k-th worker satisfy

fk(wk
t+1)− fk(wk

t ) ≤ −ψ||gkt ||2 ∀ k ∈ [K],

w.p. at least 1− δ, where ψ = α?β
M(1+ε)

.

Proof. From Lemma 9, we know that fk(·) is M(1 − ε) smooth with probability 1 − δ. M -
smoothness of a function g(·) implies

g(y)− g(x) ≤ (y − x)T∇g(x) +
M

2
||y − x||2 ∀ x,y ∈ Rd. (5.10)

Hence,

fk(wk
t − αpkt )− fk(wk

t ) ≤ (−αpkt )
Tgk(wk

t ) +
M(1− ε)

2
α2||pkt ||2. (5.11)

The above inequality is satisfied for all α ∈ R. We know that αkt , the local step-size at worker
k, satisfies the line-search constraint in Eq. (5). Thus, for αkt ∈ (0, 1] to exist that satisfies the
line-search condition, it is enough to find α > 0 that satisfies

−α(pkt )
THk

tp
k
t +

M(1− ε)
2

α2‖pkt ‖2 ≤ −αβ(pkt )
THk

tp
k
t , (5.12)

where we have used the fact that gkt = Hk
tp

k
t . Thus, α must satisfy

M(1− ε)
2

α‖pkt ‖2 ≤ (1− β)(pkt )
THk

tp
k
t . (5.13)
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Using lemma 9, we know that for sufficiently large sample-size at the k-th worker, we get

(1− ε)∇2f(w) � ∇2fk(w) � (1 + ε)∇2f(w) (5.14)

with probability 1− δ. Also, by κ-strong convexity of f(·), we know that ∇2f(w) � κI. Thus, the
local line-search constraint is always satisfied for

α ≤ 2(1− β)κ(1− ε)
M(1 + ε)

.

Hence, if we choose α? ≤ 2(1−β)κ(1−ε)
M(1+ε)

, or α? ≤ κ(1−β)
M

for ε < 1/2, we are guaranteed to have
the line-search condition from Eq. (5) satisfied with αkt = α?. This is satisfied by the line search
equation in Eq. (5). Hence, from the line-search guarantee, we get

fk(wk
t+1)− fk(wk

t ) ≤ −α?β(pkt )
Tgkt (5.15)

= α?β(gkt )
T (Hk

t )
−1gkt , (5.16)

≤ −α?β 1

M(1 + ε)
‖gkt ‖2, (5.17)

w.p. 1 − δ. Here, the last inequality uses the fact that fk(·) is M(1 + ε)–smooth, that is, Hk
t �

M(1 + ε)I. This proves the desired result.

5.6.2 Proof of Theorem 8
The proofs for theorems in this paper use the auxiliary lemmas in Appendix 5.6.1.

Proof. The proof of the theorem is based on the following two high probability lower bounds:

Case 1:

f(w̄t)− f(w̄t+1) ≥ C‖g(w̄t)‖2, (5.18)

where C = α?β(1−ε)
2M(1+ε)

is a constant, and

Case 2

f(w̄t)− f(w̄t+1) ≥ C1‖g(w̄t)‖2 − ηΓ

κ(1− ε) , (5.19)

where C1 is a constant (> 0) and η = (1 +
√

2 log(1
δ
))
√

1
s
Γ.

We will prove the above result shortly, but let us complete the proof of the theorem assuming
that Eq. (5.18) and Eq. (5.19) are true.
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Case 1 (using Eq. (5.18)) Invoking the κ strong convexity of the the function f we have

f(w̄t)− f(w∗) ≤ 1

2κ
‖g(w̄t)‖2, (5.20)

where w̄∗ is the unique global minimizer of the function f . Combining the last lower bound with
equation (5.18) we obtain

f(w̄t+1)− f(w̄t) ≤ (1− 2κC)(f(w̄t)− f(w∗)), (5.21)

with probability 1− δ. Also note that

1 > 1− 2κC = 1− κα?β(1− ε)
M(1 + ε)

> 0,

where the last inequality uses the definition of α? from Eq. (6). The completes the proof of
Theorem 3.2.

Case 2 (using Eq. (5.19)) Using the same steps as before, and using the condition of Eq. (5.19),
we obtain Theorem 3.2.

It remains to prove the claim (5.18) and (5.19).

Proof of the claim (5.18): Recall that for L = 1, we have

wk
t+1 = w̄t − αktpkt , and w̄t+1 :=

1

K

K∑
k=1

wk
t+1 = w̄t −

1

K

K∑
k=1

αktp
k
t ,

where the pkt = (Hk
t )
−1gkt ,H

k
t = (Hk)−1(w̄t) and gkt = gk(w̄t). Invoking the M-smoothness of

the function f(·) we have

f(w̄t)− f(w̄t+1) ≥ −M
2K2
‖w̄t − w̄t+1‖2 + 〈g(w̄t), w̄t − w̄t+1〉

≥ −M
2K2

∥∥∥∥∥
K∑
k=1

(αkt )p
k
t

∥∥∥∥∥
2

+ 〈g(w̄t),
1

K

K∑
k=1

αktp
k
t 〉

(i)

≥ −M
2K

K∑
k=1

(αkt )
2‖pkt ‖2 + 〈g(w̄t),

1

K

K∑
k=1

αktp
k
t 〉

=
1

K

K∑
k=1

(
αkt (p

k
t )
Tg(w̄t)−

M

2
(αkt )

2‖pkt ‖2

)
(5.22)

where the inequality (i) uses the following fact∥∥∥∥∥ 1

K

K∑
k=1

ak

∥∥∥∥∥
2

≤ 1

K

K∑
k=1

‖ak‖2, (5.23)
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for all vectors a1, a2, · · · , aK ∈ Rd.
We now complete the proof by using the following bound on the first term in Eq. (5.22). In

particular, In the first case, we show that, for all k ∈ [K] provided

s &

(
Γ2

ε21G
2

log(d/δ)

)
,

and ‖gk(w̄t)‖ ≥ G, where ε1 > 0 (small number), we have

αkt (p
k
t )
Tg(w̄t) ≥

(
ψ − ε1

κ(1− ε)

)
‖gkt ‖2 +

κ(1− ε)(αkt )2

2
‖pkt ‖2 (5.24)

with probability at least 1− 4δ.
Let us substitute Eq. (5.24) in equation (5.22), we get

f(w̄t)− f(w̄t+1) ≥ 1

K

K∑
k=1

[(
ψ − ε1

κ(1− ε)

)
‖gkt ‖2 − (M − κ(1− ε))(αkt )2

2
‖pkt ‖2

]

≥ 1

K

K∑
k=1

[(
ψ − ε1

κ(1− ε)

)
‖gkt ‖2 − (M − κ(1− ε))(αkt )2

2κ2(1− ε)2
‖gkt ‖2

]
(5.25)

where the last inequality follows from the fact that the function fk is κ(1− ε) strongly convex with
probability 1− δ, and thus

‖pkt ‖2 := ‖(Hk
t )
−1gkt ‖2

2 ≤ ‖(Hk
t )
−1‖2

2‖gkt ‖2 ≤ 1

κ2(1− ε)2
‖gkt ‖2. (5.26)

with probability 1− δ. Now, using the upper bound on αkt , we have

f(w̄t)− f(w̄t+1) ≥ 1

K

K∑
k=1

[(
ψ − ε1

κ(1− ε)

)
‖gkt ‖2 − (M − κ(1− ε)2)

2

α?2

κ2(1− ε)2
‖gkt ‖2

]

=

(
ψ − ε1

κ(1− ε) −
(M − κ(1− ε)2)

2

α?2

κ2(1− ε)2

)
1

K

K∑
k=1

‖gkt ‖2

≥ C
1

K

K∑
k=1

‖gkt ‖2, (5.27)

with probability exceeding 1 − 6δ, where C = (1−ε)ψ
2
− ε1

κ(1−ε) , and the last bound follows by
substituting the value of α∗ from equation (6) and using the fact that 0 < ε < 1/2. Moreover, using
Eq. (5.23), we get

‖g(·)‖2 ≤ 1

K

K∑
k=1

‖gk(·)‖2,

which prove Eq. (5.18).
It now remains to prove bound (5.24).
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Proof of bound (5.24): From the uniform subsampling property (similar to Lemma 9, see Ap-
pendix 5.6.6), we get

|(pkt )Tg(w̄t)− (pkt )
Tgk(w̄t)| ≤ ε1‖(pkt )‖‖gk(w̄t)‖ w.p. 1− δ. (5.28)

Thus,

(pkt )
Tg(w̄t) ≥ (pkt )

Tgk(w̄t)− ε1‖(pkt )‖‖gk(w̄t)‖ (5.29)

w.p. 1− δ. Now, since the function fk is κ(1− ε) strongly-convexity with probability 1− δ, we
have the following bound w.p. at least 1− δ:

αkt (p
k
t )
Tgkt ≥ (fk(w̄t)− fk(wk

t+1)) +
κ(1− ε)

2
(αkt )

2‖pkt ‖2 (5.30)

Combing the equations (5.29)-(5.30) and using Lemma 10 we have

αkt (p
k
t )
Tg(w̄t) ≥ (fk(w̄t)− fk(wk

t+1)) +
κ(1− ε)

2
(αkt )

2‖pkt ‖2 − ε1‖(pkt )‖‖gk(w̄t)‖
(i)

≥ ψ‖gkt ‖2 +
κ(1− ε)

2
(αkt )

2‖pkt ‖2 − ε1‖(pkt )‖‖gk(w̄t)‖
(ii)

≥ ψ‖gkt ‖2 +
κ(1− ε)(αkt )2

2
‖pkt ‖2 − ε1

κ(1− ε)‖gk(w̄t)‖2

=

(
ψ − ε1

κ(1− ε)

)
‖gkt ‖2 +

κ(1− ε)(αkt )2

2
‖pkt ‖2

with probability exceeding 1− 4δ, where the inequality (i) follows from Lemma 10 and inequality
(ii) follows from (5.26).

Note that the bound in (5.24) hold for all k ∈ [K] with probability 1− δ1 (thus, the sample size
increases by a factor of K in the log(·) term). This concludes the Case 1 of our proof. We now
move to Case 2.

Proof of the claim (5.19): We now continue with the same analysis and show the following

f(w̄t)− f(w̄t+1) ≥ C1
1

K

K∑
k=1

‖gkt ‖2 − ηΓ

κ(1− ε) , (5.31)

with probability at least 1− 4δ.
In this case, we show that the requirement of a lower bound on ‖gk(w̄t)‖ and s can be relaxed

at the expense of getting hit by an error floor. In particular, we show that

αkt (p
k
t )
Tg(w̄t) ≥ ψ‖gkt ‖2 +

κ(1− ε)(αkt )2

2
‖pkt ‖2 − ηΓ

κ(1− ε) (5.32)

with probability at least 1−4δ, where η = (1 +
√

2 log(1
δ
))
√

1
s
Γ. Substituting this yields the bound

of Eq. (5.31).
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Proof of bound Eq. (5.32) : From the uniform subsampling property (see Appendix 5.6.5), we
get

|(pkt )Tg(w̄t)− (pkt )
Tgk(w̄t)| ≤ η‖(pkt )‖ w.p. 1− δ. (5.33)

where η = (1 +
√

2 log(1
δ
))
√

1
s
Γ. Thus,

(pkt )
Tg(w̄t) ≥ (pkt )

Tgk(w̄t)− η‖(pkt )‖ (5.34)

w.p. 1− δ. Now, since the function fk is κ(1− ε) strongly-convexity with probability 1− δ, we
have the following bound w.p. at least 1− δ:

αkt (p
k
t )
Tgkt ≥ (fk(w̄t)− fk(wk

t+1)) +
κ(1− ε)

2
(αkt )

2‖pkt ‖2 (5.35)

Combing the equations (5.34)-(5.35) and using Lemma 10 we have

αkt (p
k
t )
Tg(w̄t) ≥ (fk(w̄t)− fk(wk

t+1)) +
κ(1− ε)

2
(αkt )

2‖pkt ‖2 − η‖(pkt )‖
(i)

≥ ψ‖gkt ‖2 +
κ(1− ε)

2
(αkt )

2‖pkt ‖2 − η‖(pkt )‖
(ii)

≥ ψ‖gkt ‖2 +
κ(1− ε)(αkt )2

2
‖pkt ‖2 − η

κ(1− ε)Γ

with probability exceeding 1− 4δ, where the inequality (i) follows from Lemma 10 and inequality
(ii) follows from (5.26) and the fact that ‖gk(w̄t)‖ ≤ Γ.

5.6.3 Proof of Theorem 9
Proof. Recall from perturbed iterate analysis

w̄t+1 = w̄t0 −
t∑

τ=t0

p̄τ , (5.36)

where p̄τ = 1
K

∑K
k=1 α

k
τp

k
τ is the average descent direction and pkτ = (Hk

τ )
−1gkτ is the local descent

direction at the k-th worker at time τ .
Similar to the proof of theorem 3.2, we next invoke the M -smoothness property of f(·) to get

f(w̄t0)− f(w̄t+1) ≥ −M
2
‖

t∑
τ=t0

p̄τ‖2 + 〈g(w̄t0),
t∑

τ=t0

p̄τ 〉

=
−M

2
‖ 1

K

K∑
k=1

t∑
τ=t0

αkτp
k
τ‖2 +

1

K

K∑
k=1

t∑
τ=t0

〈g(w̄t0), α
k
τp

k
τ 〉

≥ −M
2K

K∑
k=1

‖
t∑

τ=t0

αkτp
k
τ‖2 +

1

K

K∑
k=1

t∑
τ=t0

〈g(w̄t0), α
k
τp

k
τ 〉, (5.37)
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where the last inequality uses the fact(
K∑
k=1

‖ak‖
)2

≤ K
K∑
k=1

‖ak‖2, ∀ ak ∈ Rd, k ∈ [K]. (5.38)

Similarly, by κ(1− ε) strong-convexity of fk(·), we get

fk(wk
t0

)− fk(wk
t+1) ≤ −κ(1− ε)

2
‖

t∑
τ=t0

αkτp
k
t ‖2 + 〈gkt ,

t∑
τ=t0

αkτp
k
τ 〉, (5.39)

with probability 1− δ. The above inequality, when averaged across k, becomes

1

K

K∑
k=1

(
fk(wk

t0
)− fk(wk

t+1)
)
≤ −κ(1− ε)

2K

K∑
k=1

‖
t∑

τ=t0

αkτp
k
t ‖2 +

1

K

K∑
k=1

t∑
τ=t0

〈gkt , αkτpkτ 〉 (5.40)

Moreover, similar to Eq. (5.33), we get

|rTg(w̄t)− rTgk(w̄t)| ≤ η‖r‖ w.p. 1− δ. (5.41)

where η = (1 +
√

2 log(m
δ

))
√

1
s
Γ. Keeping r = αkτp

k
τ and w = w̄t0 , we get

(αkτp
k
τ )
Tg(w̄t0) ≥ (αkτp

k
τ )
Tgk(w̄t0)− ηαkτ‖pkτ‖, (5.42)

w. p. 1− δ, where η = (1 +
√

2 log(m
δ

))
√

1
s
Γ.

Now, after combining inequalities (5.37) and (5.40) using (5.42) to eliminate the terms
1
K

∑K
k=1

∑t
τ=t0
〈g(w̄t0), αkτp

k
τ 〉 and 1

K

∑K
k=1

∑t
τ=t0
〈gk(w̄t0), α

k
τp

k
τ 〉, we get

f(w̄t0)− f(w̄t+1) ≥ 1

K

K∑
k=1

(fk(w̄k
t0

)− fk(w̄k
t+1)− (M − κ(1− ε))

2K

K∑
k=1

(‖
t∑

τ=t0

αkτp
k
t ‖2)

− 1

K

K∑
k=1

t∑
τ=t0

ηαkτ‖pkτ‖. (5.43)

Also, from Lemma 10, we have

fk(w̄k
t0

)− fk(w̄k
t+1) ≥ ψ

t∑
τ=t0

‖gkτ‖2. (5.44)

Using above, we get

f(w̄t0 − f(w̄t+1) ≥ 1

K
ψ

K∑
k=1

t∑
τ=t0

‖gkτ‖2 − (M − κ(1− ε))
2K

K∑
k=1

(‖
t∑

τ=t0

αkτp
k
t ‖2)

− 1

K

K∑
k=1

t∑
τ=t0

ηαkτ‖pkτ‖. (5.45)
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Using triangle inequality above, we get

f(w̄t0)− f(w̄t+1) ≥ 1

K
ψ

K∑
k=1

t∑
τ=t0

‖gkτ‖2 − (M − κ(1− ε))
2K

K∑
k=1

t∑
τ=t0

(αkτ )
2‖pkτ‖2

− 1

K

K∑
k=1

t∑
τ=t0

ηαkτ‖pkτ‖. (5.46)

Also, since αkt ≤ 1 and ‖pkτ‖ ≤ 1
κ(1−ε)‖gkτ‖, we get

f(w̄t0 − f(w̄t+1) ≥ 1

K
ψ

K∑
k=1

t∑
τ=t0

‖gkτ‖2 − (M − κ(1− ε))
2Kκ2(1− ε)2

K∑
k=1

t∑
τ=t0

‖gkτ‖2

− 1

K

K∑
k=1

t∑
τ=t0

η

κ(1− ε)‖g
k
τ‖

=
C

K

K∑
k=1

t∑
τ=t0

‖gkτ‖2 − ηLΓ

κ(1− ε) (5.47)

where C = ψ − (M−κ(1−ε))
2Kκ2(1−ε)2 , which proves the claim.

5.6.4 Concentration Inequalities: With and without Error Floor
Consider a vector v ∈ Rd. We have defined the following: g(w̄t) = 1

n

∑
i gi(w̄t) and gk(w̄t) =

1
s

∑
i∈S gi(w̄t), where gi denotes the local gradient in worker machine i, and S is the random set

consisting data points for machine k. Let us do the calculation in two settings:

5.6.5 With error floor
Here we have the error floor. Note that having an error floor is not restrictive, if we go for the
adaptive variation of the algorithm, where we run GIANT for the final iterations. Since GIANT has
no error floor, the final accuracy won’t be affected by the error floor obtained in the first few steps
of the algorithm (check if this is true).

Lemma 11 (McDiarmid’s Inequality). Let X = X1, . . . , Xm be m independent random variables
taking values from some set A, and assume that f : Am → R satisfies the following condition
(bounded differences ):

sup
x1,...,xm,x̂i

|f(xi, . . . , xi, . . . , xm)− f(xi, . . . , x̂i, . . . , xm)| ≤ ci,

for all i ∈ {1, . . . ,m}. Then for any ε > 0 we have
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P [f(X1, . . . , Xm)− E[f(X1, . . . , Xm)] ≥ ε] ≤ exp

(
− 2ε2∑m

i=1 c
2
i

)
.

The property described in the following is useful for uniform row sampling matrix.
Let S ∈ Rn×s be any uniform sampling matrix, then for any matrix B = [b1, . . . ,bn] ∈ Rd×n

with probability 1− δ for any δ > 0 we have,

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 log(

1

δ
))

√
1

s
max
i
‖bi‖, (5.48)

where 1 is all ones vector.
Let us first see the justification of the above statement.The vector B1 is the sum of column

of the matrix B and BSS>1 is the sum of uniformly sampled and scaled column of the matrix
B where the scaling factor is 1√

sp
with p = 1

n
. If (i1, . . . , is) is the set of sampled indices then

BSS>1 =
∑

k∈(i1,...,is)
1
sp

bk. Define the function f(i1, . . . , is) = ‖ 1
n
BSS>1− 1

n
B1‖.

Now consider a sampled set (i1, . . . , ij′ , . . . , is) with only one item (column) replaced then the
bounded difference is

∆ = |f(i1, . . . , ij, . . . , is)− f(i1, . . . , ij′ , . . . , is)|

= | 1
n
‖ 1

sp
bi′j −

1

sp
bij‖| ≤

2

s
max
i
‖bi‖.

Now we have the expectation

E[‖ 1

n
BSS>1− 1

n
B1‖2] ≤ n

sn2

n∑
i=1

‖bi‖2 =
1

s
max
i
‖bi‖2

⇒ E[‖ 1

n
BSS>1− 1

n
B1‖] ≤

√
1

s
max
i
‖bi‖.

Using McDiarmid inequality (Lemma 11) we have

P

[
‖ 1

n
BSS>1− 1

n
B1‖ ≥

√
1

s
max
i
‖bi‖+ t

]
≤ exp

(
− 2t2

s∆2

)
.

Equating the probability with δ we have

exp(− 2t2

s∆2
) = δ

⇒t = ∆

√
s

2
log(

1

δ
) = max

i
‖bi‖

√
2

s
log(

1

δ
).
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Finally we have with probability 1− δ

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 log(

1

δ
))

√
1

s
max
i
‖bi‖,

and hence equation (5.48) is justified.
We now apply the above in distributed gradient estimation. For the k-th worker machine, we

have

‖ 1

n
BSkS

>
k 1− 1

n
B1‖ ≤ (1 +

√
2 log(

1

δ
))

√
1

s
max
i
‖bi‖,

with probability 1− δ, which implies

‖gk(w̄t)− g(w̄t)‖ ≤ (1 +

√
2 log(

1

δ
))

√
1

s
Γ,

with probability at least 1− δ provided ‖gi(w̄t)‖ ≤ Γ for all i ∈ [m]

Writing, η = (1 +
√

2 log(1
δ
))
√

1
s
L, we succinctly write

|〈v,gk(w̄t)− g(w̄t)〉| ≤ ‖v‖‖gk(w̄t)− g(w̄t)‖ ≤ η‖v‖

with probability at least 1− δ, where η = O(1/
√
s) is small.

5.6.6 Without error floor
In this section, we analyze the same quantity using vector Bernstein inequality. Intuitively, we show
that unless g(w̄t) is too small, we can overcome the error floor shown in the previous calculation.
In particular, we assume that

‖gk(w̄t)‖ ≥ G.

The idea here is to use the vector Bernstein inequality. Using the notation of Appendix 5.6.5,
gk(w̄t) = 1

n
BSS>1, where S is appropriately defined sampling matrix. Also g(w̄t) = 1

n
B1. For

the k-th machine,

gk(w̄t) =
1

s

∑
i∈S

gi(w̄t),

and so,

gk(w̄t)− g(w̄t) =
1

s

∑
i∈S

(gi(w̄t)− g(w̄t)),



CHAPTER 5. LOCALNEWTON 106

with |S| = s. We also have ‖gi(w̄t) − g(w̄t)‖ ≤ Γ + Γ = 2Γ, and E‖gi(w̄t) − g(w̄t)‖2 ≤ 4Γ2.
Using vector Bernstein inequality with t = ε1‖gk‖, we obtain

P
(
‖gk(w̄t)− g(w̄t)‖ ≥ ε1‖gk(w̄t)‖

)
≤ d exp(−sε

2
1‖gk‖2

32Γ2
+ 1/4) ≤ d exp(−s ε

2
1G

2

32L2
+ 1/4).

So, as long as

G2 = Ω

(
Γ2

ε21s
log(d/δ)

)
,

or,

s &

(
Γ2

ε21G
2

log(d/δ)

)
,

we have,

|〈v,gk(w̄t)− g(w̄t)〉| ≤ ‖v‖‖gk(w̄t)− g(w̄t)‖ ≤ ε1‖v‖‖gk‖

with probability at least 1− δ.

5.7 Conclusion
The practicality of second-order optimization methods has been questioned since naive ways to
implement them require large compute and power storage to work with the Hessian. However,
in the last few decades, trends such as Moore’s law have made computation faster and memory
cheaper, while improvements in communication costs have been at best marginal. These trends,
combined with a flurry of efficient but approximate algorithms [6], [42], [44], [45], have revived
interest in second-order methods. In this paper, we identify and concretize the role that second-order
methods—combined with local optimization algorithms—can play in reducing the communication
costs during distributed training, in particular in serverless environments. Since second-order
information has recently been used to develop state-of-the-art methods for deep neural networks
with extremely large model sizes [66], [67], [160], [161], we expect that methods such as ours
will play a significant role in motivating and designing next-generation communication-efficient
algorithms for fast distributed training of machine learning models.
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Chapter 6

BEAR: Feature Selection in Sublinear
Memory

In this chapter, we consider the training of high-dimensional models that do not fit into the machine
memory. We capitalize on the observation that for many such models, only a subset of features
(sub-linear in model dimension) are relevant for prediction. To this end, we develop a second-order
ultra-high dimensional feature selection algorithm, called BEAR, which stores the second-order
stochastic gradients in the celebrated Broyden Fletcher Goldfarb Shannon (BFGS) algorithm using
a Count Sketch, a sublinear memory data structure from the streaming literature.

6.1 Introduction
Consider a data set comprising n data points (θθθi)

n
i=1 = (xi, yi)

n
i=1, where xi ∈ Rp denotes the data

vectors representing p features and (yi)
n
i=1 denote the corresponding labels. Feature selection seeks

to select a small subset of the features of size k � p that best models the relationship between xi
and yi. In this chapter, we consider the feature selection problem in ultra-high dimensional settings
where dense feature vectors in Rp cannot fit in the working memory of the computer because of
the sheer dimensionality of the problem (p). Such problems have become increasingly important
in networking, biology, and streaming applications. In biology, it is common to represent a DNA
sequence comprised of four nucleotides A, T, C, G, as well as 11 wild-card characters in the FASTQ
format [166] using the frequency of sub-sequences of length k, called k-mers, with k ≥ 12 [167],
[168]. A feature vector of size 15k=12 with floating-point numbers requires more than a petabyte
of memory to store. This is simply larger than the memory capacity of the computers today. In
streaming, the memory budget of the local edge computing devices is extremely small compared
to the dimension of the data streams [169]. In both scenarios, it is critical to select a subset of the
features that are most predictive of the outputs with sublinear memory cost in the dimensionality of
the data.

Recently, first-order stochastic gradient descent (SGD) algorithms [69], [70] have been devel-
oped which extend the ideas in feature hashing (FH) [68] to feature selection. Instead of explicitly
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storing the feature vectors, these algorithms store a low-dimensional sketch of the features in a data
structure called Count Sketch [71], originated from the streaming literature. Count Sketch preserves
the weights of the top-k features (i.e., the heavy hitters) in sublinear memory with high probability.
This high probability guarantee, however, depends on the energy of the non-top-k coordinates in the
SGD algorithm. In particular, the noise components of the gradients, which normally average out in
the regular stochastic optimization, accumulate in the non-top-k coordinates of Count Sketch. This
unwanted sketched noise increases the probability of collision in Count Sketch, deteriorates the
quality of the recovered features, and results in poor memory-accuracy trade-offs. This is a critical
problem since the only class of optimization algorithms that operates in such ultra-high dimensions
does not select high-quality features when the memory budget is small.

We propose a novel optimization scheme to solve this critical problem in sketching. We improve
the quality of the sketched gradients and correct for the unwanted collisions in the sketched domain
using the information from the second-derivative of the loss function. Second-order methods have
recently gained increasing attention in machine learning for their faster convergence [170], less
reliance on the step size parameter [171], and their superior communication-computation trade-off in
distributed processing [66]. Here, we uncover another key advantage of second-order optimization
in improving memory-accuracy trade-off in sketching models trained on ultra-high dimensional
data sets. We develop a second-order sublinear memory algorithm which finds high-quality features
by limiting the probability of extra collisions due to the stochastic noise in Count Sketch. The
contributions of the chapter are as follows:

Algorithm. We develop BEAR which, to the best of our knowledge, is the first quasi-Newton-
type algorithm that achieves a sublinear memory cost in the dimension of the data. BEAR stores the
product of the inverse Hessian and the gradient in the Broyden–Fletcher–Goldfarb–Shannon (BFGS)
algorithm using a sublinear memory Count Sketch. BEAR updates Count Sketch in time quadratic
in the sparsity of the data by operating only on the features that are active in each minibatch.1

Theory. We theoretically demonstrate that BEAR maintains theO(1/t) global convergence rate
of the online version of BFGS algorithms [172] in t iterations. We show that the convergence rate
is retained as we go from the ambient domain to the sketched domain. The analysis employs the
Johnson–Lindenstrauss (JL) lemma over the projection operator in Count Sketch. In practice, we
demonstrate that BEAR converges faster than the first-order feature selection algorithms, although
improving convergence time is not the main focus of this work.

Simulations.We did extensive controlled sparse recovery simulations with data points drawn
from the normal distribution. We demonstrate that, given a fixed memory budget to store the
weights, BEAR recovers the ground truth features with a large phase transition gap — an important
statistical performance metric from the compressive sensing literature. We show that BEAR’s
performance is highly consistent across a large range of values for the step size parameter because
of the second-order nature of the algorithm.

Experiments. In real-world, ultra-high dimensional data sets from genomics, natural language
processing, and networking, we demonstrate that BEAR requires 10− 1000× less memory space
to achieve the same classification accuracy as the first-order methods. Moreover, BEAR achieves

1Codes are available at https://github.com/BEAR-algorithm/BEAR
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10− 20% higher classification accuracy given the same memory budget to store Count Sketch and
selects more interpretable features in ultra-high dimensions using a personal laptop-size machine.
Importantly, our results show an increase in the performance gap between the first- and second-
order methods as the memory budget to store the model parameters decrease, which highlights
the important advantages of second-order optimization in storing the sketched stochastic gradient
vectors with a lower collision rate.

6.2 Review: Count Sketch
Count Sketch is a data structure which is originated from the streaming literature [71]. Its primary
application is to approximately count the number of occurrences of a very large number (p) of
objects in sublinear memory, when only the frequency of the most recurring elements (i.e., the
heavy hitters) are of interest. Instead of storing a counter for all the p objects, Count Sketch linearly
projects the count values using d independent random hash functions into a m� p dimensional.
Count Sketch keeps a matrix of counters (or bins) S of size m ∼ O(log p). The algorithm uses
d random hash functions hj : ∀j ∈ {1, 2, ..., d} to map p-dimensional vectors to m/d bins, that
is, hj : {1, 2, ..., p} → {1, 2, ..., m/d}. For any row j of sketch S, component i of the vector is
hashed into bin S(j, hj(i)). In addition to hj , Count Sketch uses d random sign functions to map
the components of the vectors randomly to {+1, −1}, that is, sj : {1, 2, ..., p} → {+1,−1}.

Count Sketch supports two operations: ADD(item i, increment ∆) and QUERY(item i). The
ADD operation updates the sketch with any observed increment. More formally, for an increment ∆
to an item i, the sketch is updated by adding sj(i)∆ to the cell S(j, hj(i)) ∀j ∈ {1, 2, ..., d}. The
QUERY operation returns an estimate for component i, the median of all the d different associated
counters. Count Sketch provides the following bound in recovering the top-k coordinates of the
feature vector z ∈ Rp:

Theorem 10. [71] Count Sketch finds approximate top-k coordinates zi with ±ε‖z‖2 error, with
probability at least 1 − δ, in space O(log(p

δ
)(k +

‖ztail‖22
(εζ)2

)), where ‖ztail‖2
2 =

∑
i 6∈top−k z

2
i is the

energy of the non-top-k coordinates and ζ is the kth largest value in z.

Count Sketch recovers the top-k coordinates with a memory cost that grows only logarithmic
with the dimension of the data p; and naturally, it requires the energy of the non-top-k coordinates
to be sufficiently small. This is the property that we leverage in this chapter in order to improve
feature selection accuracy in ultra-high dimensions.

6.3 Stochastic Sketching for Feature Selection
We first elaborate on how can we perform feature selection using Count Sketch. Recall that feature
selection seeks to select a small subset of the features that best models the relationship between
xi and yi. This relationship is captured using a sparse feature vector βββ∗ ∈ Rp that minimizes a
given loss function f(βββ,θθθ) : Rp → R using the optimization problem minβββ Eθθθ[f(βββ,θθθ)], where
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θθθ ∈ {θθθ1, θθθ2, · · · , θθθn} denotes a data point in a data set of size n. This problem is solved using the
empirical risk minimization

βββ∗ := argmin
βββ

n∑
i=1

f(βββ,θθθi), (6.1)

using the SGD algorithm which produces the updates βββt+1 := βββt + ηtg(βββt,ΘΘΘt) at iteration t, where
ηt is the step size, the minibatch ΘΘΘt = {θθθt1, θθθt2, . . . , θθθtb} contains b independent samples from
the data, and g(βββt,ΘΘΘt) =

∑b
i=1∇βββtf(βββt, θθθti) is the stochastic gradient of the instantaneous loss

function f(βββ,ΘΘΘt). In this chapter, we are interested in the setting where the dense feature vector βββt
of size p cannot be stored in the memory of a computer. The most common approach in machine
learning when dealing with such high dimensional problem is to project the data points (i.e., the
features) into a lower dimensional space. Feature hashing (FH) is one of the most popular algorithms
[68] which uses a universal hash function to project the features. While FH is ideal for prediction, it
is not suited for feature selection; that is, the original important features cannot be recovered from
the hashed ones.

The reason to stay hopeful in recovering the important features using sublinear memory is that
the feature vector βββ∗ is typically sparse in ultra-high dimensions. However, while the final feature
vector is sparse, βββt becomes dense in the intermediate iterations of the algorithm. The workaround
is to store a sketch of the intermediate non-sparse βββt via a low dimensional sketched vector βββst ∈ Rm

(with m� p) such that the important features are still recoverable. This results in the following
sketched optimization steps βββst+1 := βββst + ηtg

s(βββt,ΘΘΘt), where gs(βββt,ΘΘΘt) is the sketched gradient
vector. To enable the recovery of the important features from the sketched features the weights
βββst ∈ Rm can be stored in Count Sketch [69], [71]. Count Sketch preserves the information of the
top-k elements (i.e., the heavy hitters) with high probability as long as the energy of the non-top-k
coefficients is small (see Theorem 10) . The noise term gs(βββt,ΘΘΘt) in the SGD algorithm, however,
contributes to the energy of the non-top-k coefficients. This is a critical problem since, unlike SGD
in the ambient dimension, this spurious sketched noise does not cancel out until it becomes so large
that it shows up in the top-k coordinates in Count Sketch. As a result, a large fraction of the memory
in Count Sketch will be wasted to store the sketched noise term in the non-top-k coordinates, which
results in poor memory-accuracy trade offs in first-order methods.

Algorithm 14: Limited-memory BFGS

1 Input: g(β̂ββt,ΘΘΘt) and {si, ri}ti=t−τ+1

2 ρt = 1
rTt st

.

3 qt = g(β̂ββt,ΘΘΘt),
4 for i = t to t− τ + 1 αi = ρis

T
i qi,

5 qi−1 = qi − αiri. zt−τ =
rTt st
rTt rt

qt−τ , for i = t− τ + 1 to t γi = ρir
T
i zi.

6 zi = zi−1 + si(αi − γi). Return: zt
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6.4 Challenges of Second-order Sketching in Ultra-High
Dimension

In this chapter, we propose to develop a second-order optimization algorithm for feature selection
to reduce the effect of collisions while sketching SGD into lower dimensions. Recall that the
stochastic second-order Newton’s method produces the updates βββt+1 := βββt + ηtB

−1
t g(βββt,ΘΘΘt),

where Bt = ∇2
βββt
f(βββt,ΘΘΘt) ∈ Rp×p is the instantaneous Hessian matrix at iteration t computed

over the minibatch ΘΘΘt. There are three main challenges in sketching these updates for ultra-high
dimensional feature selection: First, computing the Hessian and finding the matrix inverse is
computationally hard as the matrix inverse operation is going to have at least cubic computational
complexity in the problem dimension p. Second, even if we assume that the Hessian is diagonal
(e.g., in AdaHessian [67]), storing the diagonal elements will have linear memory cost in p, which
we can not afford in ultra-high dimension. Third, sketching the Hessian matrix directly is not
possible using Count Sketch since the linear increments are happening over the gradients and not
the Hessian matrix in SGD. Therefore, sketching the step Newton’s method is highly a nontrivial
problem.

Here, we build on recent works in fast second-order optimization. Quasi-Newton’s methods such
as the BFGS algorithm reduce the time complexity of Newton’s method using an iterative update
of the Hessian as a function of the variations in the gradients rt = g(βββt+1,ΘΘΘ)− g(βββt,ΘΘΘ) and the
feature vectors st = βββt+1 −βββt which ensures that the Hessian satisfies the so-called secant equation
Bt+1st = rt. While BFGS avoids the heavy computational cost involved in the matrix inversion, it
still has a quadratic memory requirement. The limited-memory BFGS (LBFGS) algorithm reduces
the memory requirement of the BFGS algorithm from quadratic to linear by estimating the product
of the inverse Hessian and the gradient vector zt = B−1

t g(βββt,ΘΘΘt) without explicitly storing the
Hessian [173]. This makes use of the difference vectors rt and st from the last τ iteration of the
algorithm (Alg. 14). Recently, an online version of the LBFGS algorithm (oLBFGS) [172] has also
been developed with global convergence guarantees. However, all these quasi-Newton’s algorithms
fail to run on ultra-high dimensional data sets due to their linear memory requirement. How can we
attain the benefits of second-order optimization for sketching in sublinear memory?

6.5 The BEAR Algorithm
BEAR estimates the second-derivative of the loss function from sketched features. Instead of
explicitly storing the product of the inverse Hessian and the gradient (done in oLBFGS), BEAR
maintains a Count Sketch S to store the feature weights in sublinear memory and time quadratic in
the sparsity of the input data.

As detailed in Alg. 15, BEAR first initializes Count Sketch with zero weights and a top-k heap
to store the top-k features. In every iteration, it samples b independent data points ΘΘΘt and identifies
the active set At, that is, the features that are present in ΘΘΘt. It then queries Count Sketch to retrieve
the feature weights that are in the intersection of the active set At and the top-k heap and set the
weights for the rest of the features to zero. Next, it computes the stochastic gradient g(βββt,ΘΘΘt)
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Algorithm 15: BEAR
1 Initialize: t = 0, Count Sketch βββst=0 = 0, top-k heap. while stopping criteria not satisfied

do
2 Sample b independent data points in a minibatch ΘΘΘt = {θθθt1, . . . , θθθtb}.
3 Find the active set At.
4 QUERY the feature weights in At ∩ top-k from Count Sketch βββt = query(βββst).
5 Compute stochastic gradient g(βββt,ΘΘΘt).
6 Compute the descent direction with Alg. 14
7 zt = LBFGS(g(βββt,ΘΘΘt) , {si, ri}ti=t−τ+1).
8 ADD the sketch of zt at the active set ẑt = zt

At to Count Sketch
9 βββst+1 := βββst − ηtẑst .

10 QUERY the features weights in At ∩ top-k from Count Sketch βββt+1 = query(βββst+1).
11 Compute stochastic gradient g(βββt+1,ΘΘΘt).
12 Set st+1 = βββt+1 − βββt, and rt+1 = g(βββt+1,ΘΘΘt)− g(βββt,ΘΘΘt).
13 Update the top-k heap.
14 t = t+ 1.

15 Return: The top-k heavy-hitters in Count Sketch.

and uses it along with the difference vectors ri and si from the last τ iterations to find the descent
direction zt using the LBFGS algorithm detailed in Alg. 14. Then, it adds the sketch of the descent
direction zt only at the features in the active set ẑt = zt

At to Count Sketch. BEAR queries Count
Sketch for the second time in order to update the difference vector rt+1 = g(βββt+1,ΘΘΘt)− g(βββt,ΘΘΘt)
and uses the sketch vector ẑt to set st+1. The difference vector rt+1 captures the changes in the
gradient vector as the content of Count Sketch change over a fixed minibatch ΘΘΘt [172]. Finally,
BEAR updates the top-k heap with the active set At and moves on to the next iteration until the
convergence criteria is met. To update the top-k heap, BEAR scans the features that have been
changed in Count Sketch over the past iteration. If those features are already in the heap, it updates
the values of those elements, and if the features are new, it inserts the new elements into the heap
with a worst-case time complexity that grows logarithmic with the number of features k. In the rare
scenario, where the intersection of the active set At and the top-k heap is empty the gradient can
still be non-zero and can change the feature weightings.

The most time-costly step of BEAR, which computes the descent direction (step 5), is quadratic
time in the sparsity of the data |At|. Table 6.1 summarizes the worst-case memory complexity
of the vectors involved in BEAR. The dominant term is Count Sketch βββst for which the memory
complexity in terms of the top-k value are established in Theorem 10. The memory requirement to
store the auxiliary vector zt is only a constant τ times larger than the size of the active set which is
negligible in streaming data-sparse features compared to the size of Count Sketch (see section 6.7).

Convergence Analysis. We now analyze the convergence of the algorithm. Consider the follow-
ing standard assumptions [172] on the instantaneous functions f(βββ,ΘΘΘ) to prove the convergence
of the BEAR algorithm: 1) The instantaneous objective functions are twice differentiable with the



CHAPTER 6. BEAR: FEATURE SELECTION IN SUBLINEAR MEMORY 113

βββt st rt zt βββst g(βββt,ΘΘΘt)
k 2|At| 2|At| 2τ |At| |S| |At|

Table 6.1: Memory cost of the vectors in BEAR.

instantaneous Hessian being positive definite, that is, the eigenvalues of the instantaneous Hessian
satisfy M1I � ∇2

βββf(βββ,ΘΘΘ) � M2I, for some 0 < M1 < M2. 2) The norm of the gradient of the
instantaneous functions is bounded for all βββ, that is, EΘΘΘ[‖g(βββ,ΘΘΘ)‖2 | βββ] ≤ S2. 3) The step sizes ηt
are square-summable. More specifically,

∑∞
t=0 ηt =∞ and

∑∞
t=0 η

2
t <∞. We prove the following

theorem.

Theorem 11. Let f(·) and the step sizes ηt satisfy the assumptions above. Let the size of Count
Sketch be m = θ(ε−2 log 1/δ) with number of hashes d = θ(ε−1 log 1/δ) for ε, δ > 0. Then, the
Euclidean distance between updates βββst in the BEAR algorithm and the sketch of the solution of
problem (6.1) converges to zero with probability 1− δ, that is,

P( lim
t→∞
‖βββst − βββs∗‖2 = 0) = 1− δ, (6.2)

where the probability is over the random realizations of random samples {ΘΘΘt}∞t=0. Furthermore,
for the specific step size ηt = η0/(t+ T0) for some constants η0 and T0, the model parameters at
iteration t satisfy

EΘΘΘ[f(βββst ,ΘΘΘ)− E[f(βββs∗,ΘΘΘ)] ≤ C0

T0 + t
, (6.3)

with probability 1− δ. Here, C0 is a constant depending on the parameters of the sketching scheme,
the above assumptions, and the objective function.

The proof makes use of the Johnson-Lindenstrauss (JL) lemma in projecting the second-order
gradients in Count Sketch [174] which we defer to the Proofs section. For sufficiently sparse
solutions the convergence in the ambient domain follows from convergence in the sketched domain
(i.e., Theorem (11)) and the Count Sketch guarantee (i.e., Theorem (10)):

Corollary 2. Let π(·) be a permutation on {1, 2, · · · , p} such that β∗π(1) ≥ β∗π(2) ≥ · · · β∗π(p), where
βββ∗ = [β∗1 , β

∗
2 , · · · , β∗p ] is the optimal solution to (6.1). Also, let

m = max

[
O
(

log(
2p

δ
)

(
k +
‖βββ∗tail‖2

2

(εζ)2

))
, θ

(
1

ε2
log

2

δ

)]
(6.4)

and number of hashes d = θ(ε−1 log 2/δ) where ε, δ > 0, ‖βββ∗tail‖2
2 =

∑p
i=k+1(β∗π(i))

2 and ζ =
β∗π(k). Then,

|β∗π(i) − βtπ(i)| ≤ ε‖βββ∗‖2 for all i ∈ {1, 2, · · · , k} with probability 1− δ, (6.5)

where βββt = [βt1, βt2, · · · , βtp] is the output of the BEAR algorithm.

This completes the convergence proof of BEAR in sublinear memory in the ambient space.
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6.6 Simulations
We have conducted sparse recovery simulations to evaluate the performance BEAR compared to
the first-order feature selection algorithm in ultra-high dimension MISSION [69]. The synthetic
simulations described in this section have ground truth features, so we can assess the algorithms
in a more controlled environment and compare the results using a variant of the phase transition
plot from the compressive sensing literature [175]. We also show the results of the full Newton’s
method version of our BEAR algorithm where we compute the Hessian matrix rather than its BFGS
approximation (this algorithm cannot operate in large-scale settings). The same hash table (hash
functions and random seeds) and step sizes are used for BEAR and MISSION. Hyperparameter
search is performed to select the value of the step sizes in both algorithms. The entries of the data
vectors xi are sampled from an i.i.d. Gaussian distribution with zero mean and unit variance. The
output labels yi are set using a linear forward model yi = xiβββ

∗, where βββ∗ is a k-sparse ground truth
feature vector. The indices of the support (i.e., the non-zero entries) and the weights of the non-zero
entries in βββ∗ are drawn uniformly at random respectively from the sets [1, p] and [0.8, 1.2] and MSE
is used as the loss function. The same experiment is repeated 200 times with different realization of
the data vectors x. Convergence at iteration t is reached when the norm of the gradient drops below
10−7 consistently in all the algorithms. The algorithms are compared in terms of the accuracy in
selecting the ground truth features as well as the sensitivity of the algorithms to the choice of the
value of the step size.

Feature Selection Accuracy. The task is to select k = 8 features in a data set with n = 900
rows (data points) and p = 1000 columns (features). The size of Count Sketch is varied from 10%
to 60% of the total memory required to store a p = 1000 dimensional feature vector. This ratio,
that is the ratio of data dimension p to Count Sketch size, is called the compression factor. For
each value of the compression factor, the experiment is repeated 200 times. Fig. 6.1A shows the
fraction of iterations in which the algorithms find all the ground truth features correctly, that is, the
probability of success. Fig. 6.1B illustrates the same results in terms of the average `2-norm of the
error of the recovered feature vectors ‖βββt − βββ∗‖2. BEAR significantly outperforms MISSION in
terms of the probability of success and the average `2-norm error. The gap is more pronounced in
higher compression factors; given a compression factor of 3, MISSION has almost no power in
predicting the correct features while the BEAR and Newton’s methods achieve a 0.5 probability of
success. Fig. 6.1A and B further suggest that the performance gap between BEAR and it’s exact
Hessian counterpart is small showing that the oLBFGS makes a good approximation to the Hessian
in terms of the selected features.

Sensitivity to Step Size. The experimental setup is similar to the previous section except the
Sketch size is fixed and step size varies. The experiment is repeated 200 times while varying the
values of the step size η ranging from 10−7 to 10−1 and the probability of success is reported. Count
Sketch of size 150× 3 is used for both MISSION and BEAR. Fig. 6.1C illustrates the probability
of success for BEAR and MISSION as a function of the step size. The plot shows that BEAR is
fairly agnostic and MISSION is dependent on the choice of the step size η. MISSION’s accuracy
peaks around η = 10−4 and sharply drops as η deviates from this value. BEAR’s lower-dependence
on step size is ideal for streaming settings where the statistics of the data might change over time
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A B C

Figure 6.1: Feature selection experiments on p = 1000-dimensional synthetic data sets with entries
drawn from normal distribution. A) Probability of success in recovering all features correctly as a
function of compression factor. B) Recovery error rate in terms of the `2-norm. C) Probability of
success as a function of the value of the step size (compression factor = 2.22).

and there is not enough time and memory budget to do step size selection.

6.7 Experiments
We designed the experiment in a way to answer the following questions:

• Does BEAR outperform MISSION in terms of classification accuracy? In particular, how does
the performance gap between the algorithms change as a function of the memory allocated
for Count Sketch?

• How does BEAR perform on real-world large-scale data sets (p > 50 million)?

• How does BEAR perform in terms of classification accuracy compared to FH?

• How does changing the number of top-k features affect the accuracy of the feature selection
algorithms?

• What is the convergence behaviour of BEAR when the memory budget is small?

• What is the run time of BEAR compared to MISSION?

We compare the performance of these baseline algorithms with BEAR:

1. Stochastic Gradient Descent (SGD): For data sets with sufficiently small dimension and size
to be able to train a classifier on our laptop machine, we perform the vanilla SGD algorithm
(with O(p) memory).
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Data set Dim (p) #Train (n) #Test Size #Act.
RCV1 47,236 20,242 677,399 1.2GB 73

Webspam 16,609,143 280,000 70,000 25GB 3730
DNA 16,777,216 600,000 600,000 1.5GB 89

KDD 2012 54,686,452 119,705,032 29,934,073 22GB 12

Table 6.2: Summary of the real-world data sets.

2. oLBFGS: Similar to SGD, for the data sets that the dimension and size allows to train a
classifier on our laptop machine, we perform the vanilla oLBFGS algorithm (neither SGD nor
the oLBFGS techniques do feature selection or model compression).

3. Feature Hashing (FH): FH [68] is a standard algorithm to do prediction (classification) in
large-scale machine learning problems. FH hashes the data features into a lower dimensional
space before the training process and is not a feature selection algorithm.

4. MISSION: As mentioned earlier, MISSION is a first-order optimization algorithm for feature
selection which sketches the noisy stochastic gradients into Count Sketch.

Performance Metrics. The algorithms are assessed in terms of the following performance
metrics:

1. Classification accuracy: Once the algorithms converge, the performance of the algorithms
in terms of classification accuracy are compared, i.e., the fraction of test samples that are
classified to correct classes.

2. Area under the ROC curve (AUC): For the data sets that the class distribution are highly
skewed the area under the ROC curve (AUC) is reported instead of the classification accuracy.
In these data sets, the class probabilities are taken as the output of the classifiers.

3. Compression factor (CF): The compression factor is defined as the dimension of the data
set p divided by the size of Count Sketch m. For multi-class classification problems, m is
the total memory of all the Count Sketches used for all the classes. A higher compression
factor means a smaller memory budget is allocated to store the model parameters. SGD and
oLBFGS have a compression factor of one.

4. Run time: The run time of the algorithms to converge in minutes.

Real-World Data sets. The key statistics of the data sets used in the chapter are tabulated in
Table 6.2 including the dimension of the data set (p), number of training data (n), number of test
data, total size of the data set, and the average number of active (non-zero) features per data point.
All the data is analyzed in the Vowpal Wabbit format.
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Figure 6.2: Classification performance as a function of the compression factor in real-world data
sets.

Figure 6.3: Classification performance as a function of the number of the top-k features.

1) RCV1: Reuters Corpus Volume I. RCV1 is an archive of manually categorized news wire
stories made available by Reuters, Ltd. for research purposes. The negative class label includes Cor-
porate/Industrial/Economics topics and positive class labels includes Government/Social/Markets
topics (see [176]). The data set is fairly balanced between the two classes.

2) Webspam: Web Spam Classification. Web spam refers to Web pages that are created
to manipulate search engines and Web users. The data set is a large collection of annotated
spam/nonspam hosts labeled by a group of volunteers (see [177]). It is slightly class-imbalanced
with 60% samples from class 1.

3) DNA: Metagenomics. A data set that we dub “DNA” from metagenomics. Metagenomics
studies the composition of microbial samples collected from various environments (for example
human gut) by sequencing the DNA of the living organisms in the sample. The data set comprises
of short DNA sequences which are sampled from a set of 15 DNA sequences of bacterial genomes.
The task is to train a classifier to label the DNA sequences with their corresponding bacteria.
DNA sequences are encoded using their constituent sub-sequences called K-mers (see [167]). The
training and test data have an equal number of samples for each class. A naive guessing strategy
achieves a classification accuracy of 0.06.

4) KDD Cup 2012: Click-Through Rate Prediction. A key idea in search advertising is to
predict the click-through rate (pCTR) of ads, as the economic model behind search advertising
requires pCTR values to rank ads and to price clicks. The KDD Cup 2012 data set comprises
training instances derived from session logs of the Tencent proprietary search engine (see [178]).
The data set is highly class-imbalanced with 96% samples from class 1 (click).
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Multi-class Extension. For the multi-class classification problems stated above, we developed
a multi-class version of the BEAR algorithm. In the multi-class problem one natural assumption is
that there are separate subsets of features that are most predictive for each class. Our multi-class
BEAR algorithm accommodates for this by maintaining a separate Count Sketch and heap to store
the top-k features associated with each class. The total memory complexity of the algorithm grows
linearly with the number of classes. For a fair comparison, we use the exact same multi-class Count
Sketch extension for MISSION. We have also implemented the single Count Sketch version of
BEAR, however, since the multi-class Count Sketch extension performs better for feature selection
we report the results of the former in our experiments.

Experimental Setup. MurmurHash3 with 32-bit hash values is used to implement the hash
functions in MISSION, BEAR, and FH. The algorithms are trained in a streaming fashion using
the cross entropy loss. The algorithms are run for a single epoch so that each algorithm sees a data
point once on average. The size of the minibatches and the step size are kept consistent across the
algorithms. The constant τ = 5 in BEAR however the results are consistent across a large range of
values for τ . Both in BEAR and MISSION a Count Sketch with 5 rows (hash functions) is used.
The lower dimensional embedding size of FH is set equal to the total size of Count Sketch in BEAR.
The experiments are performed on a single laptop machine - 2.4 GHz Quad-Core Intel Core i5 with
16 GB of RAM. We chose an edge device as opposed to a computing server for our real-world
experiments to showcase the applicability of BEAR in a resource constrained environment.

Result I) Classification Performance vs. Compression Factor. We assess the classification
performance of BEAR compared to the baseline algorithms for different compression factors in
Fig. 6.2. All the active features in the test data are used at the inference step for a fair comparison
with FH. BEAR’s classification performance is consistently better than MISSION and FH across
all the data sets over a wide range of compression factors while showing a hysteresis behaviour:
the performance gap increases as the compression factor grows until Count Sketch is too small to
yield any prediction power. The classification performance of all algorithms degrades with larger
compression factors, which is expected since lower Count Sketch sizes increase the probability
of collisions in both BEAR and MISSION. The degradation, however, impacts MISSION signifi-
cantly more that BEAR. In particular, BEAR’s performance stays relatively robust for compression
rates in the range of 1 − 10 in RCV1, 1 − 1000 in Webspam, and 10 − 100 in KDD, while the
classification performance of MISSION drops rapidly. The increasing performance gap between
BEAR and MISSON with compression factor highlights the unique advantage of BEAR in storing
the second-order steps in Count Sketch and lowering the probability of collisions. Note that this
performance gap is less pronounced in the DNA data set while the general trend still follows the
other data sets. This is because the DNA data set has 15 balanced classes and its K-mer features
have relatively more distributed information content compared to the features in the other data sets,
which poses a harder feature selection task for the algorithms.

Result II) Classification Performance vs. Top-k Features. We assess the performance of
BEAR in terms of the classification accuracy against the number of selected top-k features. The
compression factors are fixed to 10, 330, 330, and 1100 respectively for the data sets in Fig. 6.3.
SGD, oLBFGS, and FH cannot select features, therefore, they are not included in this analysis.
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BEAR manage entrepreneur colombian decade oppress
MISSION peach week nora demand incomplete

Table 6.3: Examples of the features selected in RCV1.

data set (CF) RCV1 (95) Webs (332) DNA (22) KDD (103)
BEAR 0.1 5 26 25

MISSION 0.3 19 55 33

Table 6.4: Overall run time comparison (minutes).

The plots shows that BEAR selects features that are better in terms of prediction accuracy for a
wide range of values of k. The gap grows for larger k. We analyzed the selected features in RCV1
for which a proper documentation of the features is publicly available (unlike the other data sets).
Some of the selected features are shared among the algorithms, e.g., “shareholder”, “nigh”, and
“company”, which can be attributed to the Markets, Social, and Industrial subjects, respectively.
Other terms, however, are uniquely chosen by one of the algorithms as tabulated in Table 6.3.
Compared to BEAR, the terms selected by MISSION are less frequent (e.g., “peach”) and do not
discriminate between the subject classes (e.g., “incomplete”).

Result III) Run Time. We compare the overall run time of BEAR with MISSION in Table 6.4.
BEAR is significantly faster than MISSION consistently in all the data sets; BEAR makes a better
use of the data by estimating the curvature of the loss function and converges faster.

6.8 Proofs
Theorem 2. Before stating the proof, for more clarity, we will reiterate the problem setup and our
assumptions from the chapter here. We are interested in solving the following problem using BEAR

βββ∗ := argmin
βββ∈Rp

f(βββ,ΘΘΘ) = argmin
βββ∈Rp

1

T

T∑
t=1

f(βββ,θθθt) = argmin
βββ∈Rp

1

T

T∑
t=1

f(Xtβββ,yt), (6.6)

where ΘΘΘ = {θθθ1, θθθ2, · · · , θθθT} and θθθt = (Xt,yt) ∀ t ∈ [1, T ]. We make the following standard
assumptions [172]:

1. The instantaneous objective functions, f(·), in Eq. (6.6) are twice differentiable with the
instantaneous Hessian being positive definite. That is, the eigenvalues of the instantaneous
Hessian satisfy

M1I � ∇2
βββf(βββ,ΘΘΘ) �M2I, (6.7)

for some 0 < M1 ≤M2.
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2. The norm of the gradient of the instantaneous functions f(·) in Eq. 6.6 is bounded for all βββ,
that is

EΘΘΘ[‖g(βββ,ΘΘΘ)‖2 | βββ] ≤ S2. (6.8)

3. The step-sizes ηt are square-summable. More specifically,

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞. (6.9)

Lemma 12. The solution of problem in (6.6) using BEAR (or its first-order variant MISSION) is
equivalent to the solution of the following problem in the sketched domain,

βββs∗ := argmin
βββs∈Rm

1

T

T∑
t=1

f(XtSβββ
s,yt), (6.10)

where multiplication by S ∈ Rp×m is the linear projection operator in Count Sketch and βββs ∈ Rm is
the projected model parameters.

Proof. Let the update for online gradient descent for the original problem in Eq. (6.6) be given by

βββt+1 = βββt − ηt∇f(Xβββt,yt) (6.11)

For BEAR/MISSION type algorithms, the model parameters are stored in a Count Sketch based hash
table. The compressed vector can be represented by an affine transformation as βββst = STβββt, where
S ∈ Rp×m is the Count Sketch matrix [174]. While updating the model, the indices corresponding to
the non-zero values in the gradient (the oLBFGS update in case of BEAR) are updated by querying
Count Sketch. For Count Sketch with mean query operator, the update for MISSION can be written
as

βββst+1 = βββst − ηtST∇f(XQ(βββst),yt) (6.12)

where Q(·) is the query function and βββst = STβββt is the sketched model parameter vector. When the
query is the mean operator, the Q(·) is the affine transformation Q(x) = Sx for any x ∈ Rm [41],
[174]. Thus, the MISSION update equation is given by

βββst+1 = βββst − ηtST∇f(XSβββst ,yt). (6.13)

The gradient for the problem in Eq. (6.10) is given by ∇fβββs(·) = ST∇f(·). Hence, its online
gradient descent update is the same as MISSION’s update in Eq. (6.13). Since BEAR is a second-
order variant of MISSION, it attempts to solve the same problem as MISSION. Next, we show that
it indeed solves the problem with high probability at a linear convergence rate.
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Now, to show that BEAR converges to βββs∗, we first need to show that the problem in Eq. (6.10)
also satisfies the assumptions in Eq. (6.7) and (6.8) (albeit with different constants). Then, we
can invoke the convergence guarantees for oLBFGS from [172] to show that BEAR converges at a
linear rate.

Lemma 13. Assume Count Sketch has a size m = Θ(ε−2 log 1/δ) with the number of hashes
d = Θ(ε−1 log 1/δ). If the instantaneous function f(βββ,ΘΘΘ) satisfy Assumptions 1 and 2 (Eq. (6.7)
and (6.8), respectively), then, the corresponding instantaneous function for the sketched problem
f(Sβββs,ΘΘΘ) also satisfy

p

m
(1− ε)M1I � ∇2

βββsf(Sβββs,ΘΘΘ) � p

m
M2(1 + ε)I, (6.14)

Eθθθ[‖∇βββsf(Sβββs,ΘΘΘ)‖2 | βββ] ≤ p

m
M2(1 + ε)S2, (6.15)

with probability 1− δ each.

Proof. The instantaneous Hessian for the sketched problem (say Hs) is given by

Hs = ∇2
βββsf(Sβββs,ΘΘΘ) = ST∇2f(Sβββs,ΘΘΘ)S = STHS, (6.16)

where H = ∇2f(Sβββs,ΘΘΘ) is the instantaneous Hessian for the original problem. Since commuting
matrices have the same set of non-zero eigenvalues, the eigenvalues of STHS are equal to the
eigenvalues of HSST . Hence,

λmax(Hs) = λmax(STHS) = λmax(HSST ) (6.17)

≤ λmax(H)λmax(SST ) (6.18)

≤M2 λmax(SST ) (6.19)

= M2 λmax(STS), (6.20)

where λmax(·) denotes the maximum eigenvalue and λmax(H) ≤ M2 by assumption. Also, Eq.
(6.18) uses the fact that the maximum eigenvalue of the product of two symmetric matrices is upper
bounded by the product of maximum eigenvalues of individual matrices.

For the count sketch matrix S ∈ Rp×m, we have E[STS] = p
m

I. Moreover, by applying the
Matrix-Bernstein inequality [179] on the matrix Z = STS− p

m
I =

∑p
i=1

(
STi Si − 1

m
I
)

=
∑p

i=1 Zi,
where Si is the i-th row in S and Zi =

(
STi Si − 1

m
I
)
∀ i ∈ [1, p], we get the following bound

P
(
‖Z‖ ≥ ε

p

m

)
≤ 2m exp

−ε2p2/(2m2)

v(Z) + Lεp/(3m)

where ‖Zi‖ ≤ L ∀ i and v(Z) = ‖∑p
i=1 ZT

i Zi‖. For the count sketch matrix, we have L = 1 and
v(Z) = d(k−1)

k2
. Thus, we get

P
(
‖Z‖ ≥ ε

p

m

)
≤ 2m exp

−ε2p2/(2m2)

p(m− 1)/m2 + εp/(3m)
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Further, for any m = O(
√
p), the R.H.S. in the above inequality is upper bounded by δ. Note that

the sketch-size m is generally independent and (order-wise) much less than the bigger dimension p,
and hence m = O(

√
p) can be easily satisfied by choosing appropriate constants ε > 0 and δ < 1.

Thus, we get the following bound on the eigenvalues of STS (also the non-zero eigenvalues in SST )
p

m
(1− ε) ≤ λi(S

TS) ≤ p

m
(1 + ε) for all i ∈ [1,m] (6.21)

with probability 1− δ. Using this in (6.18), we get

λmax(Hs) ≤ p

m
M2(1 + ε) (6.22)

with probability 1− δ.
Similarly, we can write the smallest eigenvalue of Hs as

λmin(Hs) =
1

λmax((Hs)−1)
=

1

λmax((STHS)−1)
=

1

λmax((HSST )†)
, (6.23)

where (·)† is the Moore-Penrose inverse and the last inequality again uses the fact that commuting ma-
trices have the same set of non-zero eigenvalues. Thus, STHS and HSST , and their corresponding
inverses, have the same set of non-zero eigenvalues. Let’s define the truncated eigenvalue decom-
position of SST as SST = UΛUT and note that (HSST )† = (HUΛUT )† = (UT )†Λ−1(U)†H−1.
Hence, we get

λmax((HSST )†) = λmax((UT )†Λ−1(U)†H−1)

≤ λmax(Λ−1)λmax((H)−1)

= λmax((SST )†)λmax((H)−1) (6.24)

since Λ−1 contains the non-zero eigenvalues of (SST )†. Thus,

λmin(Hs) ≥ 1

λmax((SST )†)λmax((H)−1)

≥ λmin(SST )λmin(H)

≥ λmin(SST )M1

= λmin(STS)M1

≥ p

m
M1(1− ε), (6.25)

with probability 1− δ. where the last inequality follows from (6.21). This proves the desired result.
Similarly, to prove that the gradient of the sketched problem is bounded, observe that ‖∇βββsf(Sβββs,ΘΘΘ)‖2 =

‖ST∇f(Sβββs,ΘΘΘ)‖2 ≤ p
m
M2(1 + ε)‖∇f(Sβββs,ΘΘΘ)‖2 with probability 1− δ, where the last inequality

follows from (6.21). Hence,

Eθθθ[‖∇βββsf(Sβββs,ΘΘΘ)‖2 ≤ p

m
M2(1 + ε)Eθθθ[‖∇f(Sβββs,ΘΘΘ)‖2 ≤ p

m
M2(1 + ε)S2 (6.26)

with probability 1− δ, where the second inequality follows from assumption in (6.8).
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Finally, to prove Theorem 2, we invoke the results from [172]. According to Theorem 6 in [172],
oLBGS with instantaneous functions satisfying assumptions in Eqs. (6.14) and (6.26) converges
with probability one. Hence, for BEAR, we get

P( lim
t→∞
‖βββst − βββs∗‖2 = 0) = 1− δ. (6.27)

Moreover, for the specific step-size ηt = η0/(t + T0), where η0 and T0 satisfy the inequality
2m1η0T0 > C for some constant C, BEAR satisfies the following rate of convergence (Theorem 7
in [172])

E[f(βββst ,ΘΘΘ)− E[f(βββs∗,ΘΘΘ)] ≤ C0

T0 + t
, (6.28)

with probability 1− δ, where the constant C0 is given by

C0 = max

{
η2

0T
2
0CM2p

2S2(1 + ε)2

2c2m[M1pη0T0(1− ε)− Cm]
, T0(E[f(βββs,ΘΘΘ)− E[f(βββs∗,ΘΘΘ)])

}
.

6.9 Discussion and Conclusion
We have developed BEAR, which to the best of our knowledge is the first second-order optimization
algorithm for ultra-high dimensional feature selection in sublinear memory. Our results demonstrate
that BEAR has up to three orders of magnitude smaller memory footprint compared to the first-order
sketching algorithms, which makes it ideal for streaming settings. We showed that the benefits of
BEAR is far more pronounced while sketching into lower-dimensional subspaces, which is due to
the more accurate decent directions of second-order gradients resulting in less collision-causing
noise in Count Sketch. The implications of memory-accuracy advantage of second-order methods
goes beyond hashing and streaming and can be applied to improve the communication-computation
trade-off in distributed learning in communicating the sketch of the stochastic gradients between
nodes [6], [100]. Moreover, while we laid out the algorithmic principles in sketching second-
order gradient for training ultra-high dimensional linear classifiers with theoretical guarantees, the
same algorithmic principles can be used in training massive-scale nonlinear models such as deep
neural networks [67]. We speculate that our work will open up new research directions towards
understanding the benefits of second-order optimization in training machine learning models in
memory-constrained environments.
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Chapter 7

Stochastic Weight Averaging in Parallel

In this chapter, we propose Stochastic Weight Averaging in Parallel (SWAP), an algorithm to
accelerate distributed Deep Neural Network (DNN) training.

7.1 Introduction
Stochastic gradient descent (SGD) and its variants are the de-facto methods to train deep neural
networks (DNNs). Each iteration of SGD computes an estimate of the objective’s gradient by
sampling a mini-batch of the available training data and computing the gradient of the loss restricted
to the sampled data. A popular strategy to accelerate DNN training is to increase the mini-batch
size together with the available computational resources. Larger mini-batches produce more precise
gradient estimates; these allow for higher learning rates and achieve larger reductions of the
training loss per iteration. In a distributed setting, multiple nodes can compute gradient estimates
simultaneously on disjoint subsets of the mini-batch and produce a consensus estimate by averaging
all estimates, with one synchronization event per iteration. Training with larger mini-batches
requires fewer updates, thus fewer synchronization events, yielding good overall scaling behavior.

Even though the training loss can be reduced more efficiently, there is a maximum batch
size after which the resulting model tends to have worse generalization performance [72]–[76].
This phenomenon forces practitioners to use batch sizes below those that achieve the maximum
throughput and limits the usefulness of large-batch training strategies.

Stochastic Weight Averaging (SWA) [82] is a method that produces models with good general-
ization performance by averaging the weights of a set of models sampled from the final stages of a
training run. As long as the models all lie in a region where the population loss is mostly convex,
the average model can behave well, and in practice, it does.

We have observed that if instead of sampling multiple models from a sequence generated
by SGD, we generate multiple independent SGD sequences and average models from each, the
resulting model achieves similar generalization performance. Furthermore, if all the independent
sequences use small-batches, but start from a model trained with large-batches, the resulting model
achieves generalization performance comparable with a model trained solely with small-batches.
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Using these observations, we derive Stochastic Weight Averaging in Parallel (SWAP): A simple
strategy to accelerate DNN training by better utilizing available compute resources. Our algorithm
is simple to implement, fast and produces good results with minor tuning.

For several image classification tasks on popular computer vision datasets (CIFAR10, CIFAR100,
and ImageNet), we show that SWAP achieves generalization performance comparable to models
trained with small-batches but does so in time similar to that of a training run with large-batches.
We use SWAP on some of the most efficient publicly available models to date, and show that it’s
able to substantially reduce their training times. Furthermore, we are able to beat the state of the art
for CIFAR10 and train in 68% of the time of the winning entry of the DAWNBench competition.1

7.2 Related Work
The mechanism by which the training batch size affects the generalization performance is still
unknown. A popular explanation is that because of the reduced noise, a model trained using larger
mini-batches is more likely to get stuck in a sharper global minima. In [73], the authors argue
that sharp minima are sensitive to variations in the data because slight shifts in the location of the
minimizer will result in large increases in average loss value. However, if flatness is taken to be the
curvature as measured by the second order approximation of the loss, then counterexamples exist.
In [180], the authors transform a flat minimizer into a sharp one without changing the behavior of
the model, and in [181], the authors show the reverse behavior when weight-decay is not used.

In [72], the authors predict that the batch size can be increased up to a critical size without any
drop in accuracy and empirically validate this claim. For example, the accuracy begins to drop for
image classification on CIFAR10 when the batch sizes exceed 1k samples. They postulate that when
the batch size is large, the mini-batch gradient is close to the full gradient, and further increasing
the batch size will not significantly improve the signal to noise ratio.

In [74], the authors argue that, for a fixed number of epochs, using a larger batch size implies
fewer model updates. They argue that changing the number of updates impacts the distance the
weights travel away from their initialization and that this distance determines the generalization
performance. They show that by training with large-batches for longer times (thus increasing
the number of updates), the generalization performance of the model is recovered. Even though
this large-batch strategy generates models that generalize well, it does so in more time than the
small-batch alternative.

Irrespective of the generalization performance, the batch size also affects the optimization
process. In [182], the authors show that for convex functions in the over-parameterized setting,
there is a critical batch size below which an iteration with a batch size of M is roughly equivalent
to M iterations with a batch size of one, and batch-sizes larger than M do not improve the rate of
convergence.

1The https://dawn.cs.stanford.edu/benchmark/
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7.3 Stochastic weight averaging in parallel
We describe SWAP as an algorithm in three phases (see Algorithm 16): In the first phase, all
workers train a single model by computing large mini-batch updates. Synchronization between
workers is required at each iteration and a higher learning rate is used. In the second phase, each
worker independently refines its copy of the model to produce a different set of weights. Workers
use a smaller batch size, a lower learning rate, and different randomizations of the data. No
synchronization between workers is required in this phase. The last phase consists of averaging the
weights of the resulting models and computing new batch-normalization statistics to produce the
final output.

Phase 1 is terminated before the training loss reaches zero or the training accuracy reaches
100% (for example, a few percentage points below 100%). We believe that stopping early precludes
the optimization from getting stuck at a location where the gradients are too small and allows the
following stage to improve the generalization performance. However, the optimal stopping accuracy
is a hyper-parameter that requires tuning.

During phase 2, the batch size is appropriately reduced and small-batch training is performed
independently and simultaneously. Here, each worker (or a subset of them) performs training using
all the data, but sampling in different random order. Thus, after the end of the training process, each
worker (or subset) will have produced a different model.

Figure 7.1 plots the accuracies and learning-rate schedules for a run of SWAP. During the
large-batch phase (phase 1), all workers share a common model and have the same generalization
performance. During the small-batch phase (phase 2) the learning rates for all the workers are the
same but their testing accuracies differ as the stochasticity causes the models to diverge from each
other. We also plot the test-accuracy of the averaged model that would result were we to stop phase
2 at that point. Note that the averaged model performs consistently better than each individual
model.

7.4 Loss Landscape Visualization around SWAP iterates
To visualize the mechanism behind SWAP, we plot the error achieved by our test network on a
plane that contains the outputs of the three different phases of the algorithm. Inspired by [183] and
[82], we pick orthogonal vectors u, v that span the plane which contains θ1, θ2, θ3. We plot the loss
value generated by model θ = θ1 + αu + βv at the location (α, β). To plot a loss value, we first
generate a weight vector θ, compute the batch-norm statistics for that model (through one pass over
the training data), and then evaluate the test and train accuracies.

In Figure 7.2, we plot the training and testing error for the CIFAR10 dataset. Here ‘LB’ marks
the output of phase one, ‘SGD’ the output of a single worker after phase two, and ‘SWAP’ the final
model. Color codes correspond to error measures at the points interpolated on the plane. In Figure
7.2a, we observe that the level-sets of the training error (restricted to this plane) form an almost
convex basin and that both the output of phase 1 (‘LB’) and the output of one of the workers of
phase 2 (‘SGD’) lie in the outer edges of the basin. Importantly, during phase 2 the model traversed
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Large-batch Phase
Small-batch  

Phase

Figure 7.1: Learning rate schedules and CIFAR10 test accuracies for workers participating in
SWAP. The large-batch phase with synchronized models is followed by the small-batch phase with
diverging independent models. The test accuracy of the averaged weight model is computed by
averaging the independent models and computing the test loss for the resulting model.

to a different side of the basin (and not to the center). Also, the final model (‘SWAP’) is closer to
the center of the basin.

When we visualize these three points on the test loss landscape (Figure 7.2b), we observe that
the variations in the topology of the basin cause the ‘LB’ and ‘SGD’ points to fall in regions of
higher error. But, since the ‘SWAP’ point is closer to the center of the basin, it is less affected by
the change in topology. In Figure 7.3, we neglect the ‘LB’ point and plot the plane spanned by three
workers ‘SGD1’, ‘SGD2’, ‘SGD3’. In Figure 7.3a, we can observe that these points lie at different
sides of the training error basin while ‘SWAP’ is closer to the center. In Figure 7.3b, we observe
that the change in topology causes the worker points to lie in regions of higher testing errors than
‘SWAP’, which is again close to the center of both basins. For reference, we have also plotted the
best model that can be generated by this region of the plane.

7.4.1 Sampling from independent runs of SGD or sampling from one
In [184], the authors argue that in the later stages of SGD the weight iterates behave similar to an
Ornstein Uhlenbeck process. So, by maintaining a constant learning rate the SGD iterates should
reach a stationary distribution that is similar to a high-dimensional Gaussian. This distribution is
centered at the local minimum, has a covariance that grows proportionally with the learning rate,
inversely proportional to the batch size and has a shape that depends on both the Hessian of the
mean loss and covariance of the gradient.

The authors of [82] argue that by virtue of being a high dimensional Gaussian all the mass of the
distribution is concentrated near the ‘shell’ of the ellipsoid, and therefore, it is unlikely for SGD to
access the interior. They further argue that by sampling weights from an SGD run (leaving enough
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Algorithm 16: Stochastic Weight Averaging in Parallel (SWAP)
1 Number of workers W ; Weight initialization θ0; t = 0
2 Training accuracy, τ , at which to exit phase one
3 Learning rate schedules LR1 and LR2 for phase one and two, respectively
4 Mini-batch sizes B1 and B2 for phase one and two, respectively
5 Gradient of loss function for sample i at weight θ: gi

6 Update(·) : A function that computes a weight update from a history of gradients
7 Phase 1:
8 while Training accuracy ≤ τ do
9 η ← LR1(t)

10 for w in [0, ...,W − 1] In parallel do
11 Bw ← random sub-sample of training data with size B1

W

12 gw ← W
|B1|
∑

i∈Bw g
i worker gradient

13 end
14 gt ← 1

W

∑
gw synchronization of worker gradients

15 θt+1 = θt + Update(ηt, gt, gt−1, · · · ) ; /* first order method update */
16 t = t+ 1; T = t

17 end
18 Phase 2:
19 for t in [T, T +Q] do
20 η ← LR2(t− T )
21 for w in [0, ...,W − 1] In parallel do
22 Bw ← random sub-sample of training data with size B2

23 gw ← 1
|B2|
∑

i∈Bw g
i worker gradient

24 θwt+1 = θwt + Update(ηt, g
w
t , g

w
t−1, · · · ) ; /* first order method update

at local worker */
25 end
26 end
/* We get W different models at the end of phase 2 */

27 Phase 3: θ̂` ← 1
W

∑
θiT+Q produce averaged model

28 Compute batch-norm statistics for θ̂` to produce θ`
Result: Final model θ`

time steps between them) will choose weights that are spread out on the surface of this ellipsoid and
their average will be closer to the center.

Without any further assumptions, we can justify sampling from different SGD runs (as done in
phase 2 during SWAP). As long as all runs start in the same basin of attraction, and provided the
model from [184] holds, all runs will converge to the same stationary distribution, and each run can
generate independent samples from it.
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Figure 7.2: CIFAR10 train and test error restricted to a 2D plane spanned by the output of phase 1
(‘LB’) one of the outputs of phase 2 (‘SGD’) and the averaged model (‘SWAP’).
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Figure 7.3: CIFAR10 train and test error restricted to a 2D plane spanned by the output of three
workers after phase 2 (‘SGD1’, ‘SGD2’, ‘SGD3’) and location of the average model (‘SWAP’). The
minimum test error achievable for models restricted to this region of the plane (marked as BEST).

7.4.2 Orthogonality of the gradient and the direction to the center of basin
To win some intuition on the advantage that SWA and SWAP have over SGD, we measure the
cosine similarity between the gradient descent direction, −gi, and the direction towards the output
of SWAP, ∆θ = θswap − θi. In Figure 7.4, we see that the cosine similarity, 〈∆θ,−gi〉‖gi‖‖∆θ‖ , decreases as
the training enters its later stages. We believe that towards the end of training, the angle between
the gradient direction and the directions toward the center of the basin is large, therefore the process
moves mostly orthogonally to the basin, and progress slows. However, averaging samples from
different sides of the basin can (and does) make faster progress towards the center.

7.5 Experiments
In this section we evaluate the performance of SWAP for image classification tasks on the CIFAR10,
CIFAR100, and ImageNet datasets.
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Figure 7.4: Cosine similarity between direction of gradient descent and ∆θ

7.5.1 CIFAR10 and CIFAR100
For the experiments in this subsection, we found the best hyper-parameters using grid searches (see
Tables 7.5 and 7.6 for details). We train using mini-batch SGD with Nesterov momentum (set to
0.9) and weight decay of 5× 10−4. We augment the data using cutout [185] and use a fast-to-train
custom ResNet 9 from a submission 2 to the DAWNBench leaderboard [186]. All experiments were
run on one machine with 8 NVIDIA Tesla V100 GPUs and use Horovod [187] to distribute the
computation. All statistics were collected over 10 different runs.

CIFAR10: For these experiments, we used the following settings—SWAP phase one: 4096
samples per batch using 8 GPUs (512 samples per GPU). Phase one is terminated when the training
accuracy reaches 98% (on average 108 epochs). SWAP phase two: 8 workers with one GPU
each and 512 samples per batch for 30 epochs. The experiment that uses only large-batches had
4096 samples per batch across 8 GPUs and is run for 150 epochs. The experiments that use only
small-batches had 512 samples per batch on 2 GPUs and is trained for 100 epochs.

Table 7.1 compares the best test accuracies and corresponding training times for models trained
with small-batch only, with large-batch only, and with SWAP. We report the average accuracy of the
workers before averaging and the accuracy of the final model.

CIFAR10 Test Accuracy (%) Training Time (sec)
SGD (small-batch) 95.24± 0.09 254.12± 0.62
SGD (large-batch) 94.77± 0.23 132.62± 1.09

SWAP (before averaging) 94.70± 0.20 167.57± 3.25
SWAP (after averaging) 95.23± 0.08 169.20± 3.25

Table 7.1: Training Statistics for CIFAR10

CIFAR100: For these experiments, we use the following settings—SWAP phase one: 2048
samples per batch using 8 GPUs (256 samples per GPU). Phase one exits when the training accuracy
reaches 90% (on average 112 epochs). SWAP phase two: 8 workers with one GPU each and 128
samples per batch, training for for 10 epochs. The experiments that use only large-batch training
were run for 150 epochs with batches of 2048 on 8 GPUs The experiments that use only small-batch
were trained for 150 epochs using batches of 128 on 1 GPU.

2https://github.com/davidcpage/cifar10-fast
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CIFAR100 Test Accuracy (%) Training Time (sec)
SGD (small-batch) 77.01± 0.25 573.76± 2.25
SGD (large-batch) 75.84± 0.35 116.13± 1.35

SWAP (before averaging) 75.74± 0.15 123.11± 1.85
SWAP (after averaging) 78.18± 0.21 125.34± 1.85

Table 7.2: Training Statistics for CIFAR100

Table 7.2 compares the best test accuracies and corresponding training times for models trained
with only small-batches (for 150 epochs), with only large-batches (for 150 epochs), and with SWAP.
For SWAP, we report test accuracies obtained using the last SGD iterate before averaging, and test
accuracy of the final model obtained after averaging. We observe significant improvement in test
accuracies after averaging the models.

For both CIFAR 10 and CIFAR100, training with small-batches achieves higher testing accuracy
than training with large-batches but takes much longer to train. SWAP, however, terminates in
time comparable to the large-batch run but achieves accuracies on par (or better) than small batch
training.

Achieving state of the art training speeds for CIFAR10: At the time of writing the front-
runner of the DAWNBench competition takes 37 seconds with 4 Tesla V100 GPUs to train CIFAR10
to 94% test accuracy. Using SWAP with 8 Tesla V100 GPUs, a phase one batch size of 2048 samples
and 28 epochs, and a phase two batch size of 256 samples for one epoch is able to reach the same
accuracy in 27 seconds.

7.5.2 Experiments on ImageNet
We use SWAP to accelerate a publicly available fast-to-train ImageNet model with published
learning rate and batch size schedules 3. The default settings for this code modify the learning-rates
and batch sizes throughout the optimization (see Figure 7.5). Our small-batch experiments train
ImageNet for 28 epochs using the published schedules with no modification and are run on 8 Tesla
V100 GPUs. Our large-batch experiments modify the schedules by doubling the batch size and
doubling the learning rates (see Figure 7.5) and are run on 16 Tesla V100 GPUs. For SWAP phase
1, we use the large-batch settings for 22 epochs, and for SWAP phase 2, we run two independent
workers each with 8 GPUs using the settings for small-batches for 6 epochs.

We observe that doubling the batch size reduces the Top1 and Top5 test accuracies with respect
to the small-batch run. SWAP, however, recovers the generalization performance at substantially
reduced training times. Our results are compiled in Table 7.3 (the statistics were collected over 3
runs). We believe it’s worthy of mention that these accelerations were achieved with no tuning other
than increasing the learning rates proportionally to the increase in batch size and reverting to the
original schedule when transitioning between phases. Note that there exist training schemes in the

3Available at https://github.com/cybertronai/imagenet18_old
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literature that train on even larger batch sizes such as 32k [79], [81], but these methods require a lot
of hyperparameter tuning specific to the dataset.
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Figure 7.5: Learning rate and mini-batch schedules used for ImageNet. The original schedule for
8 GPUs was taken from an existing DAWNBench submission. For a larger batch experiment, we
double the batch size, double the number of GPUs and double the learning rate of the original
schedule. For SWAP, we switch from the modified schedule to the original schedule as we move
from phase 1 to phase 2.

ImageNet Top1 Accuracy (%) Top5 Accuracy (%) Training Time (min)
SGD (small-batch) 76.14± 0.07 93.30± 0.07 235.29± 0.33
SGD (large-batch) 75.86± 0.03 92.98± 0.06 127.20± 0.78

SWAP (before averaging) 75.96± 0.02 93.15± 0.02 149.12± 0.55
SWAP (after averaging) 76.19± 0.03 93.32± 0.02 156.55± 0.56

Table 7.3: Training Statistics for ImageNet

7.5.3 Empirical comparison of SWA and SWAP
We now compare SWAP with SWA: the sequential weight averaging algorithm from [82]. For the
experiments in this section, we use the CIFAR100 dataset. We sample the same number of models
for both SWA and SWAP and maintain the same number of epochs per sample. For SWA, we
sample each model with 10 epochs in-between and average them to get the final model. For SWAP,
we run 8 independent workers for 10 epochs each and use their average as the final model.

Large-batch SWA: We explore if SWA can recover the test accuracy of small-batch training
on a large-batch training run. We use the same (large) batch size throughout. We follow an initial
training cycle with cyclic learning rates (with cycles of 10 epochs) to sample 8 models (one from
the end of each cycle). See Figure 7.6a for an illustration of the learning rate schedule.

As expected we observe that the large-batch training run achieves lower training accuracy, but
surprisingly SWA was unable to improve it (see Table 7.4, row 1).
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Figure 7.6: Illustration of SWA with different batch sizes

Large-batch followed by small-batch SWA: We evaluate the effect of executing SWA using
small-batches after a large-batch training run. We interrupt the large-batch phase at the same
accuracy we interrupt phase 1 of our CIFAR100 experiment (Table 7.2). In this case, the small-batch
phase uses a single worker and samples the models sequentially. SWA is able to reach the test
accuracy of a small-batch run but requires more than three times longer than SWAP to compute
the model (see Table 7.4, row 2). An illustration of the learning rate schedule is provided in Figure
7.6b.

Small-batch SWA and SWAP: We start the SWA cyclic learning rate schedule from the best
model found by solely small-batch training (table 7.2, row 1). Since the cycle length and cycle count
are fixed, the only free parameter is the peak learning rate. We select this using a grid-search. Once
the SWA schedule is specified, we re-use the peak learning rate settings in SWAP. We start phase
two from the model that was generated as the output of phase 1 for the experiment on section 7.5.1
reported on table 7.2 rows 3 and 4. With these settings, small-batch SWA achieves better accuracy
than SWAP (by around ∼ 0.9%) at 6.8x more training time.

Next, we wish to explore the speed-up that SWAP achieves over SWA if the precision of SWA is
set as a target. To that end, we relax the constraints on SWAP. By increasing the phase two schedule
from one 10 epoch cycle to two 20 epoch cycles and sampling two models from each worker (16
models) the resulting model achieved a test accuracy of 79.11% in 241 seconds or 3.5x less time.

CIFAR100 Test accuracy
before averaging (%)

Test accuracy after
averaging (%)

Training
Time (sec)

Large-batch SWA 76.06± 0.25 76.00± 0.31 376.4± 2.25
Large-batch followed
by small-batch SWA 76.26± 0.35 78.12± 0.14 398.0± 1.35

Small-batch SWA 76.80± 0.15 79.09± 0.19 848.6± 5.61
SWAP (10 small-batch epochs) 75.74± 0.15 78.18± 0.21 125.30± 1.85
SWAP (40 small-batch epochs) 76.19± 0.19 79.11± 0.12 241.54± 1.62

Table 7.4: Comparison: SWA versus SWAP

Hyperparameters for CIFAR10 and CIFAR100 Experiments: We provide the parameters
used in the experiments of Section 7.5.1. These were obtained by doing independent grid searches



CHAPTER 7. STOCHASTIC WEIGHT AVERAGING IN PARALLEL 135

for each experiment. For all CIFAR experiments, the momentum and weight decay constants were
kept at 0.9 and 5× 10−4 respectively. Tables 7.5 and 7.6 list the remaining hyperparameters. When
a stopping accuracy of 100% is listed, we mean that the maximum number of epochs were used.

CIFAR10 SGD
(small-batch)

SGD
(large-batch)

SWAP
(Phase 1)

SWAP
(Phase 2)

Batch-size 512 4096 4096 512
Learning-rate Peak 0.3 1.2 1.2 0.12
Maximum Epochs 100 150 150 30
Warm-up Epochs 30 30 30 0

GPUs used per model 2 8 8 1
Stopping Accuracy (%) 100 100 98 100

Table 7.5: Hyperparameters obtained using tuning for CIFAR10

CIFAR100 SGD
(small-batch)

SGD
(large-batch)

SWAP
(Phase 1)

SWAP
(Phase 2)

Batch-size 128 2048 2048 128
Learning-rate Peak 0.2 1.2 1.2 0.05

Total Epochs 150 150 150 30
Warm-up Epochs 60 45 45 0

GPUs used per model 1 8 8 1
Stopping Accuracy (%) 100 100 90 100

Table 7.6: Hyperparameters obtained using tuning for CIFAR100

7.6 Conclusions and Future Work
We propose Stochastic Weight Averaging in Parallel (SWAP), an algorithm that uses a variant of
Stochastic Weight Averaging (SWA) to improve the generalization performance of a model trained
with large mini-batches. Our algorithm uses large mini-batches to compute an approximate solution
quickly and then refines it by averaging the weights of multiple models trained using small-batches.
The final model obtained after averaging has good generalization performance and is trained in a
shorter time. We believe that this variant and this application of SWA are novel.

We observed that using large-batches in the initial stages of training does not preclude the models
from achieving good generalization performance. That is, by refining the output of a large-batch
run, with models sampled sequentially as in SWA or in parallel as in SWAP, the resulting model
is able to perform as well as the models trained using small-batches only. We confirm this in the
image classification datasets CIFAR10, CIFAR100, and ImageNet.

Through visualizations, we complement the existing evidence that averaged weights are closer
to the center of a training loss basin than the models produced by stochastic gradient descent. It’s
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interesting to note that the basin into which the large mini-batch run is converging to seems to be
the same basin where the refined models are found. So, it is possible that regions with bad and
good generalization performance are connected through regions of low training loss and, more so,
that both belong to an almost convex basin. Our method requires the choice of (at least) one more
hyperparameter: the transition point between the large-batch and small-batch. For our experiments,
we chose this by using a grid search. A principled method to choose the transition point will be the
focus of future work.
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Chapter 8

Dynamic Communication Thresholding

In this chapter, we consider hybrid parallelism—a paradigm that employs both Data Parallelism
(DP) and Model Parallelism (MP) to scale distributed training of deep neural networks.

8.1 Introduction
Data Parallelism (DP), in which each (of many) trainers stores a replica of the entire model, is a
popular parallelization paradigm for the training of very large Deep Neural Networks (DNNs) [188],
[189]. At the beginning of each training iteration, each worker processes a subset of entire training
data with a predetermined batch size, and then each worker synchronizes the model parameters
at the end of the iteration. DP has experienced widespread deployment, but it is now facing two
major challenges. The first challenge is that large batch size is needed to exploit fully the ever-
increasing compute power of training nodes. This turns out to be difficult. Both theoretical and
empirical evidence suggests that going beyond a certain batch size for training DNNs results in loss
in generalization performance [72]–[76], [182], [190], [191]. Despite active research on restoring
generalization performance when the batch size is large [60], [61], [77]–[81], [192], these methods
either are specific to certain models and/or datasets, require extensive hyperparameter tuning, or
can at best increase the maximum batch size by a small factor. The second challenge is that due to
increasing model complexity and parameters in domains such as, but not limited to, natural language
processing and recommendation systems (e.g., see [87], [193]–[195]), coupled with the saturation
of single machine memory and compute power due to trends such as the ending of Moore’s law
[196], [197], replication of an entire DNN model on each worker becomes an increasingly infeasible
proposition.

For these reasons, Model Parallelism (MP) as an alternative parallelization paradigm has gained
significant traction both from the industry and the research community in the last several years
[198]–[203]. In its purest form, the entire network during MP is partitioned into a number of sub-
networks equal to the number of workers. While this form can accommodate a larger network than
DP, it fails to capitalize on the largest batch size that is allowable before generalization performance
degrades.
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Figure 8.1: Distributed DNN training with hybrid training which uses both DP (left) and MP (right)
for greater parallelization gains. During DP, multiple trainers process several mini-batches of data in
parallel. During MP, one copy of the model is processed by one trainer which in turn is comprised
of multiple workers.

Hybrid Parallelism (HP)—that employs both DP and MP—is a natural next step, an idea that was
arguably first introduced in [188], and more recently exploited further for large-scale DNN training
[204]–[209]. An illustration of hybrid training that uses MP to distribute the model across workers
and DP to process multiple batches of training data at once is provided in Fig. 8.1. Here, each
partition of the network for MP is replicated in a group of workers, each processing the entire batch
for that sub-network in question. The scaling of model size and batch size by HP has now progressed
to the next bottleneck: Communication bandwidth [198]. We are running into this communication
bottleneck issue that has hitherto not been discussed in the works referenced above. The bottleneck
exists in two crucial places. First, for MP, activation values and gradient information need to be
communicated from one sub-network to the next during forward and backward propagation. Second,
for DP, gradients of the same sub-network but for different sub-batches need to be communicated,
regardless of the exact operations that follow. This depends on the specific communication protocol
(centralized versus decentralized reduction) or the algorithm (synchronous versus asynchronous
updates). To compound the problem further, increasing the batch size to fully exploit DP increases
the communication of activations and gradients in MP, the sizes of which are directly proportional
to the batch size. Additionally, in the asynchronous training, increasing batch size exacerbates the
stale gradient problem due to an increase in the time interval between a worker receiving the model
and sending the gradient [210]. In short, the benefits of communication reduction are many.

Dynamic Communication Thresholding. We propose a Dynamic Communication Threshold-
ing (DCT) framework for communication-efficient training for HP. It incorporates two algorithms,
DCT-DP and DCT-MP, to alleviate communication congestion for DP and MP, respectively. Our
algorithms filter the entities to be communicated through a simple hard-thresholding function,
eliminating the need to pass many of them over the communication fabric. We propose practical
methods to compute the thresholds to reduce the computational overhead of compression. Our
thresholding technique is versatile, as it applies to different communication primitives in DP for the
gradients, to different pipelining methods in MP (e.g., GPipe [199], PipeDream [198]), and to differ-
ent applications such as recommendation systems and natural language processing models. While
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thresholding communication introduces errors, we apply (previously known) error compensation
technique as well as a model consistency adjustment method (we developed) to mitigate the effect
of the error in compression. Consequently, despite significant communication thresholding, model
accuracy does not degrade, and in fact it often improves. Overall, communication costs are reduced
by factors of up to 20×, and end-to-end training time is cut by as much as 37% for large-scale
model training.

Related Work. Due to the use of large clusters with powerful machines to train complex DNNs
(e.g. BERT-Large [87] with 340M parameters), the distributed training workloads are becoming
increasingly communication bound. Thus, numerous compression schemes have been proposed in
the past several years for the data parallel setting ( see [88] for a detailed survey).

When it comes to performance on real-world systems, many of these existing schemes have one
or more of the following shortcomings. (i) Focus is mostly on a theoretical analysis of schemes
based on restricted assumptions, such as convexity and synchronous SGD. (ii) The empirical
evaluation ignores the cost of compression and decompression which, in many cases, deprives them
of any savings due to communication. (iii) Comparison of convergence with respect to baseline
is reported, while the number of epochs (or iterations) and the actual training time is ignored. For
instance, in Fig. 1 in [88], the authors compare the compression scheme in [99] with a baseline
without compression. They observe that, although the convergence with respect to the number of
epochs is unaffected due to compression, it takes almost twice the time for training to converge,
rendering the scheme worse than no compression. We also observed in our experiments that for
sparsification using top-K sparsity [93], [94], the overhead of copying and sorting the large vectors
ends up taking more time than the gains obtained due to communication reduction. (See Sec. 8.3
for details.) In this paper, we propose practical schemes for communication reduction, and we show
performance improvements in terms of the end-to-end DNN training times, with loss that is similar
to, or in some cases better than, the baseline.

For the MP case, existing works target the scheduling of communication of entities across
the network to improve the efficiency of training DNNs [211], [212]. However, to the best of
our knowledge, this is the first work that targets communication reduction for MP by explicitly
compressing the entities that are sent across the network. As such, it can be applied on top of
existing training efficiency schemes, such as communication scheduling [211], [212] and Pipelining
[198], [199], [202], [213] for MP. As illustrated in Fig. 8.1 (right), communication is a major
bottleneck for MP-based training since the activations are communicated from (say) worker 1 to
worker 2 during the forward pass and the gradients are then communicated from worker 2 to worker
1 during the backward pass (similar communication happens between workers 2 and 3). However,
we further observed that naively applying compression schemes, such as sparsification, quantization
and sketching, to the activations and gradients either do not achieve high enough compression
rates to be practical, or the degradation in model performance is beyond an acceptable level. (See
Appendix 8.4 for details on such negative results.)

In the next section, we describe our algorithms for communication efficiency during paralleliza-
tion, for both the MP and DP primitives of the DNN training. In particular, we discuss DCT-DP
(in Section 8.2.1) and explain our gradient reduction technique for DP that requires minimal com-
putational overhead for compression; and then we discuss DCT-MP (in Section 8.2.2), a flexible
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thresholding framework with theoretical support for our design. Then, Section 8.3 reports our
findings from a diverse set of experiments and demonstrates the advantages of using DCT-DP and
DCT-MP for training large-scale models.

8.2 Communication-Efficient Training with Hybrid Parallelism
We start, in Section 8.2.1, by proposing a Dynamic Communication Thresholding (DCT) technique
for DP (DCT-DP). DCT-DP is inspired by existing theoretical works such as [93] and [94]. It
sparsifies the gradient in each iteration before sending it over the wire, and it intelligently chooses
the threshold for sparsification to reduce the computational overhead introduced due to compression
and decompression. Then, in Section 8.2.2, we propose DCT-MP, a novel thresholding scheme for
sparsification of activations and gradients during forward and backward passes, respectively, to
reduce communication during MP.

8.2.1 DCT-DP: Reducing communication for Data Parallelism
During DP, as illustrated in Fig. 8.1 (left), we compress the gradient, Wgrad, from trainers to the
parameter server to improve the communication bottleneck. Our compression algorithm, DCT-DP,
is inspired by previous works which focus on data-parallel training for alleviating communication
bottlenecks, and in particular the works of [93], [94], where error feedback is employed along with
sparsification to correct the error in gradient direction due to compression. Such schemes find a
top-K threshold by sorting the gradient vector, and they use the threshold to sparsify the gradients by
keeping only the top-K entries. However, they focus on proving theoretical convergence guarantees,
and they do not show improvements in end-to-end times for training neural networks.

In our experiments, we observed that the overhead of allocating memory to copy the gradient
(with its size easily scaling into the millions) and sorting the resultant copy to find the top-K
threshold in each iteration is sufficiently expensive that it deprives any improvements in end-to-end
training time in real-world systems (see Sec. 8.3.3 for details). Hence, such gradient compression
schemes, in their most basic form, cannot be employed directly to obtain promised gains in training
efficiency. However, we take advantage of the following observation to reduce the overhead
introduced due to compression.

In Fig. 8.2, we plot the top-K thresholds for various levels of sparsity for the Deep Learning
Recommendation Model (DLRM) [195] with the Criteo Ad Kaggle Dataset for one of the Fully
Connected (FC) layers (see Sec. 8.3.1 for details on the training process). We see that the threshold
value increases as the sparsity increases, which is expected. More importantly, we note that given
a sparsity factor, the threshold value does not vary much across iterations. For example, for 95%
sparsity, the threshold deviates by at most 26% around its running mean. Thus, even for reasonably
large compression factors, updating the threshold every iteration is excessive.

Inspired by this observation, we update the threshold only once every L iterations (where L is
generally in thousands) while compressing the gradient of the parameters, Wgrad, for each DNN
layer. We refer to L as the threshold life-span. As we observe in our experiments (see Sec. 8.3.3), we
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Figure 8.2: Top-K threshold for various levels of sparsity during the gradient compression for
DCT-DP. We see that the top-K thresholds, for different sparsity levels, do not deviate much from
the mean. Thus, updating the threshold only every L(> 1) iterations can help reduce the overhead
of sorting to find the top-K threshold.

Wgrad

̂W grad

EgradWgrad τ
−τ ̂W grad

Figure 8.3: A illustration of DCT-DP. First, Wgrad ∈ RN (which already incorporates error from the
previous iteration) is compressed using a threshold τ to obtain the sparse vector Ŵgrad. Then, the
error is calculated as Egrad = Wgrad − Ŵgrad to be used in the next iteration to correct the error in
gradient direction.

can compress the gradients by as much as 99% sparsity with L = 1000 for each layer using top-K
sparsification and error correction without any loss in performance. Our algorithm is illustrated in
Fig. 8.3 and detailed steps are provided in Algorithm 11. Throughout this paper, the function I(·)
denotes the indicator function, and the symbols b·c and � denote the integer floor and element-wise
product of two matrices, respectively.

Note that each trainer consists of multiple workers, and each worker compresses the gradients
layer-wise using sparsification before communication (see Fig. 8.1 for an illustration, where each
trainer consists of 3 workers). This is unlike existing works (e.g. [93], [100]) where the gradient
vectors of all the model parameters are combined and compressed together. However, the theoretical
guarantees on the convergence of the algorithm still holds and can be trivially extended to our case.
This is because, for any threshold τ > 0, the compressed gradient satisfies the contraction property
(Definition 2.1 in [93]). Hence, DCT-DP satisfies the same rate of convergence as Stochastic
Gradient Descent (SGD) without compression (see Theorem 2.4 in [93]).
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Algorithm 17: DCT-DP: Communication-Efficient Data Parallelism
1 Input: Sparsity factor η (0 < η ≤ 1), Threshold life-span L, Iteration number k, Gradient

of the DNN layer Wgrad ∈ RN , Error Egrad ∈ RN , and Threshold τ (from iteration k − 1)
2 Error Feedback: Wgrad = Wgrad + Egrad
3 if L divides k then
4 [w1, w2, · · · , wN ] = Sort(|Wgrad|)
5 Assign τ = wbN×ηc

6 else
7 Use τ from iteration k − 1

8 Compute mask M = I(|Wgrad| ≥ τ)

9 Compute compressed gradient Ŵgrad = Wgrad �M
10 Compute error Egrad = Wgrad − Ŵgrad

11 Send Ŵgrad to the parameter server which updates the model

Worker k
τ

−τ
Xact

Xgrad

Worker k+1

Xact ⊙ 1( |Xact | ≥ τ)

Xgrad ⊙ 1( |Xact | ≥ τ)

Forward pass Backward pass

Figure 8.4: A illustration of DCT-MP. During the forward pass, we sparsify and compress the
activations, say Xact, corresponding to one data sample, using the mask, I(|Xact| ≥ τ), is generated
based on the threshold τ . During the backward pass, the same mask is used to compress the
gradients and selectively train neurons.

8.2.2 DCT-MP: Reducing communication for Model Parallelism
Training of large-scale DNNs is often regarded with pessimism due to its associated training latency
(multiple days/weeks). However, training such large-scale models can be a “blessing in disguise”
from a communication-efficiency point of view. For such models, with billions of parameters in
each layer, only a few of the neurons are activated during the forward pass, potentially allowing us
to compress these activations by a factor of 20× or more with no loss in model performance. This
idea of training only a subset of neurons every iteration based their activation values stems from
several existing observations [214]–[216]. In fact, in works such as dropout [217] and adaptive
dropout [218], the authors have shown that selective sparsification can improve the generalization
performance due to implicit regularization [219]. With such a scheme, we also observe gains in
generalization performance on top of communication efficiency (see experiments in Section 8.3).

Motivated by this, we propose a sparsification scheme where the neurons compete with each
other in every iteration during DNN training, and the ones with the largest (absolute) value of
activations are selected. Thus, for a given training sample, DCT-MP selects only a few neurons (say
∼5%) during the forward pass that are generally sufficient to represent the entire information for
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Algorithm 18: DCT-MP: Communication-Efficient Model Parallelism
1 Input: Sparsity factor η (0 < η ≤ 1),
2 Forward Pass:
3 Input: Activation matrix Xact = [Xact,i]

B
i=1 ∈ RB×d

4 Define the mask, M = [ ]
5 for i = 1 to B do
6 [x1, x2, · · · , xd] = Sort(|Xact,i|)
7 Define τi = xbd×ηc
8 mi = I(|Xact,i| ≥ τi)
9 M = [M ; mi]

10 Compute the sparse matrix Xact �M
11 Send Xact �M and the mask M across the network
12 Backward Pass:
13 Input: Gradient matrix Xgrad ∈ RB×d

14 Compute the sparse matrix Xgrad �M
15 Send Xgrad �M across the network

that training sample. We next describe DCT-MP in more detail.
Algorithm. Let the mini-batch size be B and the number of output features before the model

split be d. Thus, the activation and gradient matrices (Xact and Xgrad, respectively) lie in RB×d.
Based on the idea that each example activates only a subset of neurons, we select a fraction, say η, of
largest entries according to their absolute value in each row. Thus, for the i-th row ofXact, sayXact,i,
we select a threshold τi which is greater than d× η values in Xact,i, and the mask is thus calculated
for the i-th data sample as I(Xact,i ≥ τi). The same mask is then used to compress the entities Xact,i

and Xgrad,i during forward and backward passes, respectively, for all i ∈ {1, 2, · · · , B}. Thus, the
training for each mini-batch happens only on the relevant neurons corresponding to each sample in
the training data. In Fig. 8.4, we illustrate the compression using DCT-MP when the mini-batch
size is one. Detailed steps for a general mini-batch size B are provided in Algorithm 18.

DCT-MP Promotes Sparsity in Model Activations. In Fig. 8.5, we plot the mean, 1
B

∑B
i=1 τi,

of threshold vector τ = [τ1, τ2, · · · , τB] with respect to the number of iterations for the DLRM
model with the Criteo Ad Kaggle Dataset. The threshold is calculated for activations after one
of the fully connected layers (see Sec. 8.3.1 for details on the experimental setup). The mean
of the threshold is calculated for different sparsity levels (75%, 90% and 95%) for the two cases
when sparsification using DCT-MP is applied (dotted lines) and when it is not applied (solid lines).
Thus, the solid lines correspond to a single training run where we are simply measuring the mean
of top-K threshold values without actually sparsifying the activations sent across the wire. The
dotted lines with different sparsification levels correspond to different training runs where the stated
sparsification is actually applied to the activations (and gradients) that are sent across the wire.

We observe that, as the training progresses, the top-K thresholds decrease significantly faster for
the case when DCT-MP is applied. A decrease in the top-K threshold corresponds to the activations
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Figure 8.5: Top-K threshold for various levels of sparsity for the cases when compression using
DCT-MP is applied and when it is not applied. The top-K thresholds decrease significantly when
DCT-MP is applied. Thus, DCT-MP induces sparsity in neuron activations. This is possibly the
reason for its improved generalization performance.

(a) Activation histogram after 10,000 iterations
of training. The histogram approximately fits a
Laplace distribution. This can be used to find an
estimate of the sparsification threshold.
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(b) Actual occupancy in Xact through the statis-
tical estimates generated by assuming a Laplace
distribution on entries (with target occupancy
shown in legend).

Figure 8.6: Using Laplace distribution to model the entries of activation matrix and using it to
predict the threshold values.

getting sparser (maybe approximately) as the training progresses. Thus, DCT-MP induces sparsity in
activations while training, which is exploited for communication efficiency. An important advantage
of such sparsity-inducing regularization is the improved generalization performance of the model,
as shown in our experiments in Sec. 8.3. Our conjectured explanation for why sparsity helps in
improving the generalization error is based on the performance of existing popular schemes. This
includes dropout (see Fig. 8, [217]) and Rectified Linear Units (ReLU) (see Fig. 3, [220]), which
themselves introduce sparsity in model activations, as well as implementations of implicit sparsity
based methods in scalable algorithms for graph analysis [221], [222].

Reducing Compression Overhead through Statistical Estimates. DCT-MP requiresO(Bd log d)
time to sort each of the rows in Xact ∈ RB×d and find the corresponding threshold vector τ = [τi]

N
i=1.

In some cases, this can contribute to an unacceptable computational overhead during the training
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process. More importantly, it requires a similar sorting procedure during testing, which is not ideal
since we want the model serving time to be low. In Figure 8.6a, we plot the histogram of activations
after 10,000 iterations of training the DLRM model with the Criteo Ad Kaggle dataset (see Sec.
8.3.1 for details on the setup). We observe that the Laplace distribution closely approximates
the distribution of entries in the activation matrix Xact.1 Using this observation, we can estimate
the threshold τ by finding the mean and variance of the Laplace random variable, say R, for that
iteration using the activation matrix Xact. Thus, for a desired sparsity level η (0 < η ≤ 1), we
can find the threshold τ as P(R ≥ τ) = η using the inverse distribution function (also called the
quantile function) of the Laplace distribution.

An advantage of using such a statistical estimate for τ is that the compute time for compression
reduces to O(Bd) (to calculate the mean and variance). Further, during testing, the estimated τ
from the training process can be used for sparsification, resulting in negligible compute overhead
during serving.

In Table 8.1, we describe the train and test performance of the DLRM model with the Criteo
Ad Kaggle dataset for DCT-MP with 2 workers. Here, the top-K threshold is found approximately
by estimating it through the Laplace distribution fitting of entries of the activation matrix (see Fig.
8.6a for more details). We note that this scheme performs on-par with (or in some cases even better
than) the exact top-K sparsification, while reducing the overhead of sorting both during training and
inference.

Table 8.1: DCT-MP on the DLRM model with the Criteo Ad Kaggle dataset: Finding the top-K
threshold using Laplacian estimation.

SPARSITY

FACTOR

TRAIN

LOSS ACC (%)
TEST

LOSS ACC (%)

BASELINE 0.4477 79.23 0.4538 78.78
75% 0.4475 79.28 0.4529 78.84
90% 0.4473 79.31 0.4529 78.84
95% 0.4477 79.25 0.4528 78.82
98% 0.4477 79.23 0.4535 78.78

We observe that this scheme performs as well as top-K sparsification. However, a caveat of
such a statistical scheme is that the desired sparsity level does not match the sparsity level obtained
(see Fig. 8.6b). For example, when the desired sparsity level, η, is set to 75% (that is, 25%
occupancy in Xact), the occupancy level varies throughout the training process, starting with 25%
and ending with 13%. This is because even a slight deviation in threshold values results in huge
changes in occupancy, especially for higher occupancy levels when the threshold is closer to zero.
This might not be ideal when an exact sparsity level is desired to give guarantees on end-to-end

1The histogram in Fig. 8.6a is less well-fit by a Gaussian distribution, due to larger entries (not easily visible in Fig.
8.6a) because of the sparsity of activations, which is better modeled by the tail of the Laplace distribution.
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training time. Although our initial results suggest that such a scheme performs as well as top-K
sparsification, a more thorough investigation (which is beyond the scope of this dissertation) is
required to demonstrate the practicality of this scheme.

Comparing Dropout and DCT-MP. Dropout and DCT-MP are similar in essence since they
both selectively train neurons, but the two schemes are different: both in the goals they try to
achieve, and in the mechanisms they use. Furthermore, they can be used complementarily. Here
are the main differences between the two schemes. First, Dropout drops neurons randomly, while
DCT-MP keeps only the most relevant neurons for each training sample. Second, for Dropout,
going beyond 50% sparsity results in accuracy loss, but DCT-MP achieves up to 95% sparsification.
Third, Dropout is applied to every parameter layer, but DCT-MP is applied only to the layers before
the model split.

8.3 Empirical Results
In this section, we investigate DCT-MP and DCT-DP for three different experimental setups.
In the first two subsections, we evaluate the performance of DCT-MP on the Deep Learning
Recommendation Model (DLRM) and a Natural Language Processing (NLP) model for different
levels of compression. We show that high compression factors can be obtained (up to ∼95%) with
DCT-MP along with small improvements in model performance. We further evaluate DCT-DP on
the DLRM model and see no loss in performance with up to 98% sparsity. Finally, we evaluate
the performance of DCT-DP and DCT-MP on large-scale recommendation models that are trained
using hybrid parallelism. We show that applying our algorithms can reduce the training time by as
much as 37% for such large-scale models without any performance loss.

8.3.1 Experiments on the DLRM Model
Experimental Setup. For these experiments, we use the DLRM model from [195]. In this model,
the dense features are first processed by a Multilayer Perceptron (MLP) with four layers, where
each layer contains a Fully Connected (FC) layer followed by a Rectified Linear Unit (ReLU). Then,
there is a feature interaction between the processed dense and sparse features, which goes through a
second MLP with four layers (the last layer has Sigmoid instead of ReLU as the non-linearity) to
produce the final output. In our experiments, the embedding dimension for sparse features was kept
at 16, and the output dimensions of the four FC layers in the first MLP are 512, 256, 64 and 16,
respectively. Similarly, for the second MLP, the output dimensions for the fours FC layers are 512,
256, 128 and 1, respectively.2 Training and testing sets comprise of 6 days and one day, respectively,
of the Criteo Ad Kaggle dataset.3

Fig. 8.7 provides an illustration of MP with the DLRM model. The shaded area in blue shows a
sample partition for MP. In our simulations, we consider up to two splittings of the DLRM model.

2See the Criteo Kaggle benchmark for further details on the training process:
https://github.com/facebookresearch/dlrm

3https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
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Figure 8.7: A illustration of model parallelism with DLRM. The entities that are sent across the
network are shown in red. Xact andXgrad are communicated during MP, andWgrad is communicated
during DP. The shaded area in blue represents a sample model partitioning for MP. In this case,
three workers are working on one copy of the model during MP and comprise a trainer.

The first split is after two layers in the first MLP, and the second split is after two layers in the
second MLP. Our goal is to reduce communication across different workers (both during the forward
and backward passes). This is a typical setup in MP Training where workers 1, 2, and 3 can be the
different pipes of a single trainer (e.g., see [199]). For all our experiments, the data shuffle remains
constant across different training runs.

In Fig. 8.7, we mark the three entities that are sent across the network which we compress to
alleviate communication costs in distributed DNN training. Xact and Xgrad are the activation and
gradient matrices sent across the network during the forward pass and backward passes, respectively.
The third entity that can be compressed is the parameter gradient (shown as Wgrad) that is sent from
Workers 1, 2, and 3 to the parameter server. This keeps a central copy of weights and updates it
regularly through the gradients received from different workers.

In Table 8.2, we show the cross-entropy loss [223] and accuracy with the DLRM model on
the training and testing data samples. A sparsity factor (η) of 0% denotes the baseline with no
compression. We consider two settings for MP: one split (that is, 2 MP workers); and two splits (or
three workers for MP).

MP with two workers (one split). In rows 2-5 in Table 8.2, we consider one split in the model
(or MP with two workers) in the first MLP after two layers. We see that even with 95% sparsity (that
is, 20× compression) on Xact (and Xgrad) sent across the network, we are able to perform better
than baseline (with no compression), both in terms of train and test loss (highlighted in bold cases).
However, we see a tangible loss in performance when the sparsity is further increased to 98%.

MP with three workers (two splits). In rows 6-8 in Table 8.2, we consider MP with 3 workers,
where the two model splits are in the first and second MLP, as shown in Fig. 8.7. Note that, in
the case of two splits, compressing the entities that are sent across the network by up to 90% does
not affect the test accuracy, and it is still better than the baseline with no compression. However,
increasing the sparsity factor to 95% is too ambitious for the two split case, and it increases the test
loss by 0.18%. Further increasing the number of splits results in a greater performance loss, and the
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Table 8.2: DCT-MP on the DLRM model: Train and Test Loss and Accuracy for multiple sparsity
ratios (denoted by η) and different settings for MP.

η
MP

WORKERS

TRAIN

LOSS ACC (%)
TEST

LOSS ACC (%)

0% – 0.4477 79.23 0.4538 78.78

75% 2 0.4473 79.29 0.4532 78.81
90% 2 0.4472 79.28 0.4530 78.81
95% 2 0.4473 79.24 0.4534 78.80
98% 2 0.4505 79.07 0.4562 78.61

75% 3 0.4482 79.19 0.4536 78.79
90% 3 0.4479 79.24 0.4537 78.78
95% 3 0.4495 79.18 0.4546 78.72

performance is worse than baseline for even 75% sparsity.

Remark 12. We emphasize that for all the experiments in this paper, the location of splits for MP
were not tuned as hyperparameters. Instead, we inserted splits after randomly chosen FC layers, or
after the ReLU following the FC layer if it exists. The advantage of inserting a split after ReLU
layers is that the activation matrix is 50% sparse on average, resulting in higher compression rates
for DCT-MP.

Table 8.3: DCT-DP on the DLRM model: Train and Test Loss and Accuracy for various levels of
sparsity.

SPARSITY

FACTOR

TRAIN

LOSS ACC (%)
TEST

LOSS ACC (%)

BASELINE 0.4477 79.23 0.4538 78.78

75% 0.4478 79.23 0.4534 78.81
90% 0.4478 79.22 0.4536 78.79
95% 0.4479 79.25 0.4538 78.79
98% 0.4478 79.23 0.4537 78.80
99.5% 0.4482 79.20 0.4547 78.75

DP with the DLRM Model. In Table 8.3, we illustrate the performance of DCT-DP on DLRM
by compressing the gradients of the parameters of all the 8 FC layers while they are sent across the
wire to the parameter server. The parameter server then updates the model parameters using the
compressed gradient. We use error feedback [91] to compensate for the error in gradient compression
by feeding it back to the gradients in the next iteration. In general, DCT-DP compression enjoy
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higher compression rates due to the use of error compensation schemes and the fact that error in one
layer does not propagate to the other layers, unlike in the case of MP compression. Compression up
to 98% sparsity does not show any loss in performance. However, further compressing to 99.5%
sparsity increases the test loss by 0.20%.

Table 8.4: Compression using DCT-DP and DCT-MP on the DLRM model: Train and Test Loss
and Accuracy with two MP splits (that is, three workers for MP).

SPARSITY

FACTOR

TRAIN

LOSS ACC (%)
TEST

LOSS ACC (%)

BASELINE 0.4477 79.23 0.4538 78.78

75% 0.4480 79.23 0.4535 78.81
90% 0.4481 79.26 0.4537 78.78
95% 0.4492 79.19 0.4548 78.70

Communication-efficient Hybrid Training. Next, we apply compression to Wgrad for the 8
FC layers (in the DP case) and to Xact (and Xgrad) for two splits (in the MP case) and present our
results in Table 8.4. We see that compression up to 90% sparsity (both during DP and MP) does not
affect the performance, but the test loss increases by 0.22% when the sparsity factor is increased to
95%.

8.3.2 Experiments on a Translation Model
For our experiments with DCT-MP, we next consider the Transformer translation model as an
application of NLP using DNNs. We train over the IWSLT’14 German to English dataset [224].
The setup and hyperparameters were directly borrowed from the fairseq NLP Library [225]. The
model used was borrowed from [226], where both encoder and decoder have 6 layers, each of which
uses a fully connected Feed-Forward Network (FFN) with input and output dimensionality of 512
and inner layer dimensionality of 1024.4 We report the training and testing losses and the BLEU
scores after 50 epochs of training.

Our results with DCT-MP on the translation model are described in Table 8.5. We consider three
training scenarios: Two MP workers (with one split), Three MP workers (with two splits), and Five
MP workers (with 4 splits). For the case with one split, we inserted the DCT-MP operator after the
ReLu operator in the FFN of the fifth encoder layer. For the two splits case, we additionally inserted
the DCT-MP operator after the ReLu operator in the FFN of the fifth encoder layer. We further
added two splits after the ReLu operator in the third FFN in both the encoder and decoder layers for
the four splits case. For each scenario, we show the best performing sparsity factor in bold.

4For further details on the translation model, dataset preprocessing and the hyperparameters used, see
https://github.com/pytorch/fairseq/tree/master/examples/translation
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We emphasize that no hyperparameter tuning was performed in choosing the splits, and we
observed in our experiments that using DCT-MP after an FC Layer or a ReLu layer improves the
generalization performance, possibly due to (implicitly) added regularization (as illustrated in Fig.
8.5). Note that we can add more MP splits for the NLP model compared to the DLRM model
since the model is significantly deeper (and thus less susceptible to changes in outputs of a few
layers) with larger FC layers (thus allowing for greater sparsity). This shows that DCT-MP is more
beneficial for wider and/or deeper models (that is, typical setups where MP is used).

Table 8.5: DCT-MP on a translation model with IWSLT’14 dataset: Train and Test Losses and
BLEU scores for various levels of sparsity and different splits for MP.

SPARSITY

FACTOR

MP
WORKERS

TRAIN

LOSS

TEST

LOSS

BLEU
SCORE

BASELINE – 3.150 3.883 35.17

90% 2 3.159 3.879 35.23
95% 2 3.157 3.882 35.18

90% 3 3.151 3.881 35.22
95% 3 3.148 3.882 35.19

90% 5 3.157 3.882 35.20
95% 5 3.188 3.890 35.15

In this subsection, we do not consider DCT-DP since similar schemes have been evaluated for
NLP models in existing works such as [88] and [95]. In the next subsection, we evaluate DCT-MP
and DCT-DP on large-scale recommendation models for end-to-end training times and overall
model performance.

8.3.3 Large-Scale Recommendation Systems
We present our results for a real-world large scale recommendation system that employs HP for
parallelization on click-through rate prediction task. We employ DCT-MP and DCT-DP to reduce
the network bandwidth usage in these systems.

Experimental Setup. We leverage a distributed data-parallel asynchronous training system
with multiple trainers to train a recommendation model. Each trainer in the DP setup may consist
of one or more workers that use MP (see Fig. 8.1 for an illustration). Typically, the model is split
into 10 or more parts and fine-grained parallelism is employed for high throughput. Hence, the
worker machines suffer from very high communication cost for both MP and DP. The batch sizes
are usually in the range of 100-1000, but they are employed with hogwild threads (see [227]) to
increase the throughput of the system, further exacerbating the communication cost problem. The
recommendation model considered in this section takes multiple days to train with general-purpose
CPU machines. All the workers and parameter servers run on Intel 18-core 2GHz processors
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Figure 8.8: DCT-DP on Large-Scale Recommendation Models. Figures (a) and (b) show the
training time and loss improvements, respectively, over baseline for different values of the threshold
life-span, L, for a sparsity level of 95%. Figures (c) and (d) show the same statistics for various
levels of sparsity for L = 1000.

with 12.5Gbit Ethernet. The hardware configurations are identical and consistent across all the
experiments. We train using 7B training examples and evaluate the model on 0.5B examples. For
quantifying model performance, we report the cross-entropy loss from the classification task. We
compare relative cross-entropy loss and end-to-end training times of the proposed techniques with
respect to a baseline model without communication compression.

DCT-DP with Large-Scale Recommendation Model. Figure 8.8 shows the results of applying
DCT-DP on the large-scale recommendation model. In Figure 8.8a, we plot the improvements in
end-to-end training times when DCT-MP is applied to compress the parameter gradients, Wgrad,
that are sent to the parameter server. Here, we keep the sparsity level constant at 95% and vary
the threshold life-span L (the interval after which the top-K threshold is updated). We note that
compression with L = 1 takes 11% more time than the baseline with no compression. This is due
to the cost of the copy-and-sort routine which computes the top-K threshold. Increasing L to 1000
trains the model 23% faster and further increasing it to 10000 does not provide any additional gain.
Figure 8.8b illustrates that for different values of L, the train and test losses are within 0.01% of the
baseline performance.

Fig. 8.8c shows the improvement in training time for various levels of sparsity when the
threshold life span is kept constant at L = 1000. We observe the general trend that when the sparsity
is increased, the training time improves. Overall, we are able to compress the gradients to sparsity
factors of up to 99.5% without any loss in train and test performance (as noted from Fig. 8.8d).
However, we do not see significant improvements in training time beyond the sparsity level of 95%,
possibly because the message size is small enough to not hurt bandwidth usage, and the only cost
remaining is the fixed latency cost associated with sending any message, irrespective of its size.
Further, we observe that error feedback works very well in this asynchronous data-parallel training
paradigm with a larger number of hogwild threads.5 We share the error feedback buffer between the

5We note that the existing works prove convergence guarantees only for the synchronous SGD settings, but we see
that error feedback works well even in the asynchronous setting.
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Table 8.6: DCT-MP on a large-scale recommender model

SPARSITY

FACTOR

LOSS IMPROVEMENT (%)
TRAIN TEST

TIME

GAIN (%)

BASELINE 0.000% 0.000% 0.000%
75% -0.006% 0.023% 7.04%
90% -0.021% 0.016% 13.95%
95% -0.070% -0.121% 14.43%

multiple threads, and hence the magnitude of error in the buffer can grow quite fast leading to stale
updates. To avoid this, we drain the error feedback buffer stochastically every 1M iterations.

DCT-MP with Large-Scale Recommendation Model. We employ DCT-MP to compress the
entities sent through the network during MP for communication efficiency. DCT-MP is applied
across the 12 splits of the model after the ReLU layer. Our results are summarized in Table
8.6. We show improvement in training and test losses6 in columns 2 and 3, respectively, and the
improvements in end-to-end training times in column 4 for various levels of sparsity. We observe
that the training performance slightly degrades with DCT-MP on large-scale models. However, the
test performance improves up to sparsity levels of 90%, with a 14% improvement in end-to-end
training time. Increasing the sparsity level to 95% degrades the test performance by 0.121%. Note
that we can further improve the performance of DCT-MP by identifying the layers whose activations
are sensitive to sparsification and avoiding compressing them during DCT-MP (or changing the
location of the split). However, such selectivity in choosing layers for DCT-MP is beyond the scope
of this paper.

Communication-Efficient Hybrid training. Next, we apply both DCT-DP and DCT-MP for
communication reduction during hybrid training of a large-scale recommendation model. Inspired
by our previous results, we chose the sparsity levels as 90% and 99% for DCT-MP and DCT-DP
(with L = 1000), respectively. We observe a 37.1% reduction in end-to-end training time, with train
and test loss within 0.01% of the baseline model that does no compression.

Further, before applying DCT, we observed that the network utilization was high (94.2%) and
the CPU utilization was low (48.7%), implying that communication is a bottleneck. However, after
applying DCT, CPU utilization increased to 91.1% and network utilization decreased to 49.3%,
implying that DCT shifted the bottleneck from communication to computation. In general, metrics
like CPU and network utilization can be used to check if DCT can help in training by reducing
communication (e.g., in the case of network bandwidths higher that 12.5 Gbps considered in this
paper).

6Positive numbers imply better performance.
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8.4 Compression Schemes That Do Not Work
We saw in Sec. 8.3 that activations during the forward pass and gradients during the backward pass
can be compressed by large factors (up to 20×) using DCT-MP. This is due to selecting and training
only the most relevant neurons corresponding to a given training sample. In this section, we present
some negative results with other methods to compress the activation and gradient matrices during
the forward and backward passes, respectively.

Gaussian Sketching for Activation Compression. Here, we use a Gaussian sketching scheme
to compress the activations going forward. In Randomized Numerical Linear Algebra (RandNLA),
the idea of sketching is to represent a large matrix by a smaller proxy that can be further used for
matrix operations such as matrix multiplication, least squares regression, and low-rank approxima-
tion [41], [47], [228]. The sketched version of a matrix A is given by A× S, where S is a random
sketching matrix (e.g., all entries of S are sampled i.i.d. from an appropriately scaled Gaussian
distribution).

In Table 8.7, we compress the activations during the forward pass using Gaussian sketching.
Unlike the DCT-MP algorithm, we do not compress the gradients during the backward pass. The
aim is to identify if a low-rank structure exists in the activation matrix that can be used to compress
the activation matrix in general.

Table 8.7: Compressing the activation matrix during MP using Gaussian sketching does not yield
good results.

COMPRESSION

FACTOR

TRAIN

LOSS ACC (%)
TEST

LOSS ACC (%)

BASELINE 0.4477 79.23 0.4538 78.78
50% 0.4569 78.72 0.4618 78.37
75% 0.4610 78.53 0.4656 78.12
90% 0.4685 77.95 0.4721 77.78

As seen in Table 8.7, sketching techniques directly borrowed from RandNLA do not perform as
well. This is likely because such schemes were designed to cater to operations such as low-rank
approximation, where the matrices to be compressed are generally well-approximated by low-rank
matrices. For instance, Gaussian sketching has seen success in approximate least squares regression
and low-rank matrix approximation [41], [47], [228]. This suggests that the activation matrix for
DNNs, in general, does not reside in a subspace that is sufficiently low-rank to be meaningfully
used for compression.

Top-K Thresholding for Gradient Compression. We saw in Sec. 8.3 that the parameter
gradients (illustrated as Wgrad in Fig. 8.1) can be compressed to high factors with any loss in
accuracy when used with appropriate error compensation. However, the same is not true for the
gradients with respect to hidden neurons (illustrated as Xgrad in Fig. 8.1) that are sent across the
network during the backward pass in MP. This can be seen from our results in Table 8.8, where we
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apply gradient compression using top-K thresholding with error feedback. Further, we observed
that training without error feedback can cause divergence.

Table 8.8: Compressing the gradient matrix during backward pass in MP using top-K sparsification
does not yield good results.

COMPRESSION

FACTOR

TRAIN

LOSS ACC (%)
TEST

LOSS ACC (%)

BASELINE 0.4477 79.23 0.4538 78.78
50% 0.4495 79.07 0.4561 78.62
75% 0.4516 78.95 0.4588 78.48
90% 0.4701 77.76 0.4789 77.13

Our hypothesis on why compressing the gradients of the hidden neurons by top-K thresholding
does not yield good results is due to the propagation of error to the initial layers. Consider the
following example to illustrate this. Consider the following deep network, where we have several
vector-valued functions A(·), B(·), C(·), · · · , L(·) composed in a chain, that is A → B → C →
· · · → K → L. Algebraically, the loss looks like L(A) = L(K(· · ·C(B(A)) · · · )). Then, the
gradient of the loss with respect to A is given by the multiplication of the Jacobians, that is,
JL(A) = JL(K)× · · · × JC(B)× JB(A). (Here, JL(A) denotes the gradient of L with respect to
A.) If we change any of the Jacobians in between (that is, compress the gradient Xgrad with respect
to hidden neurons), then the error is propagated all the way to the initial layers of the network. Even
adding error feedback to the compression process does not recover the lost accuracy.

8.5 Conclusions
Machine learning models are consistently growing in size with more and more compute nodes used
for training. Inspired by the fact that communication is increasingly becoming the bottleneck for
large-scale training, we proposed two practical algorithms, DCT-DP and DCT-MP, to reduce the
communication bottleneck during data and model parallelism, respectively. DCT-DP and DCT-
MP improve end-to-end training time by sparsifying the matrices to be sent across the wire by
appropriately selecting a sparsification threshold. We observed that using the proposed algorithms
for hybrid training of DNNs can reduce the end-to-end training time by up to 37%. Further, using
DCT-MP during model parallelism induces sparsity in hidden activations which helps in reducing
generalization error.
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Chapter 9

Expected Utility Theory Perspective

Serverless computing platforms currently rely on basic pricing schemes that are static and do not
reflect customer feedback, which leads to significant inefficiencies from a total utility perspective.
In this chapter, we propose a novel scheduler to allocate resources for serverless computing with the
help of utility functions to model the delay-sensitivity of customers.

9.1 Introduction
In this chapter, we provide a guide to resource allocation in next-generation cloud computing
systems. The pricing mechanism (and the corresponding resource allocation scheme employed by
the service provider) is one of the most important tools in influencing the usage of cloud resources.
A typical customer’s goal is to obtain the highest quality of service (QoS) for a reasonable and
affordable price. Thus, how the service provider allocates resources and charges its customers
affects customer behavior, loyalty to the provider, and ultimately its success. Current popular
cloud computing providers–such as Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud–employ a pricing scheme referred to as “pay-per-use fixed pricing.” It scales linearly in the
resources utilized, such as time, memory, and the number of jobs, regardless of the nature (e.g.,
delay-sensitive or not?), and importance (critical or not?) of the users’ applications. There are
several reasons to revisit this arcane pricing scheme philosophy, as we discuss below.

Cloud computing is a new ecosystem with a growing customer base. Currently, cloud providers
can schedule most of the users’ jobs instantly as the resources exceed the demand [229]. However,
this surplus supply luxury is neither sustainable in the long term with the growing demand of a
large customer base seeking cloud computing services, nor is it economically viable considering
alternatives such as we address in this paper. Hence, it is extremely desirable that we have a
market-based pricing scheme that adapts prices to the demand, and allocates resources to the users
that need them the most. (See [105] and the references therein for a comparison between different
pricing models and schemes that are either currently being employed or that have been proposed
with simulations.)

In this paper, we focus on a recent cloud service called serverless computing that has garnered
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significant attention from industry (e.g., Amazon Web Services (AWS) Lambda, Microsoft Azure
Functions, Google Cloud Functions) as well as the systems community (see, e.g., [1]–[4], [7]).
Serverless computing is especially appealing due to the elasticity of the serverless system, where
the typical jobs submitted are comprised of simple functions that have relatively small system
requirements such as execution time and memory storage. Besides, these functions are stateless
in the sense that the function state is kept in storage and hence these functions can be viewed as
standalone with minimum dependence on other functions [1], [7]. This allows us to treat each user’s
job as comprised of several independent unit functions that can be executed on a single serverless
worker, thus simplifying our model.

Another important feature of serverless systems is the elimination of up-front commitment by
users. The jobs are typically triggered by external events (e.g., receipt of a message); see [229] for
examples of different triggers. However, as a result, the demand for resources can vary significantly
over time and it is important to allow the prices to adapt to this changing demand in real-time. In
particular, this will ensure that we serve the users who most value their jobs during surge periods,
and are therefore willing to pay premium prices.

Pricing based on delay-sensitivity: In addition to dynamic pricing, it is important to differ-
entiate pricing for jobs based on their delay-sensitivity and allocate resources accordingly. Job
completion times form an integral part on service level agreements that governs the quality of
service of the users [230], [231]. Users have heterogeneous jobs and have different requirements
with respect to their service delay. For example, urgent jobs (that need to be executed in real-time,
such as model deployment [12] and real-time video compression [20]) may need prioritization,
whereas enduring jobs (that can be put into queues with reasonable wait-times, such as optimization
in machine learning [6], [14], [16], [21] and scientific computing [3], [5], [8]) could be put on
hold. It is therefore desirable for the pricing scheme to provide appropriate incentives to users. For
example, premium rates could be applied to urgent jobs, and discounts applied to enduring jobs.

To address this issue, we develop a dynamic multi-tier pricing scheme that incentivizes users to
bid optimally for resources that are tailored to their requirements and delay-sensitivity characteristics.
To articulate the notion of demand and delay-sensitivity, we adopt the concept of utility functions
from economics, commonly used to measure user preferences over a set of goods and services. We
consider user utilities as a function of delays in job completion times. This enables us to naturally
differentiate jobs based on their delay-sensitivity characteristics and allocate the resources optimally.
Some examples of such utility functions are shown in Fig. 9.1 for three users. User 1 obtains utility
only when her job gets completed under 0.1 seconds. User 2 obtains diminishing returns as time
passes. User 3, on the other hand, does not care as long as her job is completed within 10000
seconds.

We set for ourselves the goal of scheduling jobs so that the net utility gained by the users is
maximized. We achieve this by formulating and solving an optimization problem that maximizes the
social welfare, i.e., the sum of the utilities received by all the users. Social welfare as a concept is
very important to many companies like Amazon that prioritize customer satisfaction1. A prototype
for our scheduler is shown in Figure 9.2. It takes as its input the job sizes and the utility functions

1For example, see https://www.amazon.jobs/en/principles
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Figure 9.1: Examples of utility functions for 3 users that depend on completion time.
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Figure 9.2: A block diagram schematic of the system with N users and T service tiers

for each user, the capacity constraints or machine availability information from the cloud, and
outputs a job allocation schedule. Here, the job sizes capture the demand for resources, the utility
functions capture the delay-sensitivity of the users, and the capacity constraints capture the supply
of resources.

The feature of pricing cloud resources based on delay-sensitivity of users has been lacking from
most of the current pricing schemes that are being implemented as well as several real-time dynamic
pricing schemes that have been proposed in the literature (we refer the readers to [105], [106] and
[107] for surveys on existing and proposed pricing schemes for the cloud). Notable exceptions are
[232]–[234], where job completion deadlines affect pricing. Our problem formulation is closest to
the model considered in [232]. However, we take a different approach towards solving it leading to
a widely different pricing and allocation scheme. (We elaborate on this in Remark 15.) In [232], it
is assumed that the service provider knows the users’ utility functions and each user is charged an
amount equal to the utility corresponding to her delay in service. However, the service provider
does not have access to the users’ utility function in practice and is one of the primary difficulties in
implementing schemes that assume this knowledge. Indeed, a utility function is an abstract concept
used to capture the delay-sensitivity of the users and oftentimes the users themselves are unaware of
their utility functions.

It is common to consider the relatively more tangible notion of willingness to pay in lieu of
the utility function. For example, if a user is willing to pay a maximum of $1 for her job to get
completed with a delay of 1 minute, then we will say that her utility function takes value $1 at t = 1
minute. In Fig. 9.1, user 1 is willing to pay more than user 3 to get her job completed within 0.1
seconds.

Certainly, the service provider still needs to procure this willingness to pay information from
the users in a truthful manner. We propose a pricing scheme that ensures that the users cannot gain
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by faking their willingness to pay. In our proposed pricing scheme the users are not necessarily
charged by the full amount of their willingness to pay. Instead, the amount charged depends on the
net demand and the willingness to pay of all the users with the additional feature that no user under
any circumstances is charged more than her willingness to pay.2

Utility-agnostic approach: In general, the utility of a user is a function of time and could
be hard to communicate. Even if we consider a family of typical utility functions, which could
potentially resolve the problem of communication, there exist privacy concerns under which users
are reluctant to report their utility functions. To mitigate this, inspired by the seminal works in
[236], [237], we decompose the scheduler optimization problem into user problems—one for each
user—and a cloud problem. Each user problem interacts with the cloud problem through the
prices published by the cloud provider and the corresponding budget responses from the users. We
prove that under equilibrium conditions, the above decomposition solves the original scheduler
optimization problem. However, in this framework the users need to report only their optimal
budget responses which is a finite vector of the size of the number of service tiers offered. A user’s
budget response is a function of her utility function and the prices published by the cloud. This
inserts a filter between the utility functions of the users and their reports to the network providing
them a layer of privacy and making the communication between the cloud and the users feasible.
Thus, the above decomposition allows us to track the optimal performance with limited feedback
from users in the form of their budget responses. We demonstrate the viability of our approach
through simulations.

In situations where it is infeasible to get budget responses from the users at a desired response
rate in order to run the optimization algorithm, it is possible to emulate it as follows: locally, on
the user’s end, we let each user choose her willingness to pay from a list of options that best suits
her needs. Using this willingness to pay, a local algorithm computes the optimal budget response
to the prices published by the user and transfers only the budget signals to the cloud keeping the
willingness to pay information encrypted locally. Besides, an attractive feature of such a scheme
is that the users can update their willingness to pay at their disposal and the local algorithm will
use the most recent choice (see Fig. 9.4 for an illustration). Our algorithm can be interpreted as a
protocol between the users and the server for optimal resource allocation and fair pricing (further
explained in Sec. 9.4). This can be viewed as the scheduling analog of the window-based bandwidth
allocation method in TCP protocol that has revolutionized the field of network resource allocation
[238]–[240].

Our contributions and organization: To the best of our knowledge, this is the first paper to
study resource allocation and pricing for serverless systems that takes into account users’ delay-
sensitivity and allocates resources via a utility-agnostic approach.

In section 9.2, we describe our novel problem formulation for scheduling jobs in a serverless
system. We formulate our scheduling problem as an optimization problem to maximize the net
social welfare, i.e. the sum of the utilities of all the users. We note that the formulated optimization

2This is similar in spirit to the dynamic pricing schemes currently deployed in service providers such as AWS spot
pricing for EC2, where the user defines the maximum price she is willing to pay. However, we take into account the
market fluctuations and user preferences such as delay-sensitivity unlike the naive schemes currently implemented
[235].
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problem is NP-hard in general and consider an LP-relaxation of this problem instead. We prove
that the relaxed solution is close to the original NP-hard problem. In particular, we provide an
upper bound on the gap between the original optimization problem and its relaxation (section 9.3).
We then decompose our relaxed optimization problem into multiple user problems–one for each
user–and a cloud problem. This gives rise to equilibrium prices for each tier corresponding to the
optimal resource allocation. In section 9.4, using the ideas developed in the previous two sections,
we propose an algorithm to allocate resources across different tiers in the subsequent runs of the
scheduler and give a gradient-based pricing scheme to track the equilibrium prices.

In section 9.5, we give a market simulation where the users’ utilities change every day. We
compare our allocation scheme with existing schemes (such as first-come-first-serve) that do not
account for users’ utilities. We observe that the sum utility of the system obtained by using our
allocation scheme almost doubles the sum utility obtained otherwise. Further, we show that our
utility-agnostic approach successfully tracks the variations in users’ utilities across days.

We conclude our paper in section 9.6 with a few exciting open problems of interest to the research
community like machine heterogeneity and job dependencies, and other important considerations
for pricing like wholesale discount and user risk-preferences and fault-tolerance. We give a brief
survey of related works in Appendix 9.7. To maintain continuity in reading, we defer the proofs and
additional remarks to Appendices 9.8 and 9.9, respectively.

9.2 Problem Formulation
Serverless (also called Function-as-a-service) as a cloud computing framework is ideal for “simple”
jobs where each user submits a function to be executed on serverless workers. Each user can request
for a job comprising of any number of executions of her function at any time, which could be
triggered due to external events. For example, the users can provide the conditions under which they
require the execution of a certain number of instances of their function. The users provide these
trigger event details along with their function submissions. Our goal here is to design an efficient
real-time job scheduler to allocate resources to the jobs that have been triggered across multiple
users and a corresponding pricing scheme for the cloud provider.

We envision a job scheduler that operates periodically (say every 0.1 seconds) and schedules
the jobs that are currently in its queue. This queue consists of all the jobs that have been triggered
and are ready to be executed but have not been scheduled yet. Thus, it consists of previously
unscheduled jobs (complete or partial) plus any new jobs that arrived since the previous scheduling
run. We assume that each function execution requires one serverless worker and takes unit time
(e.g., 100 ms). Also, a user derives utility only when her job is completed, that is, when all the
functions comprising her job are executed. Thus, we focus on the case where user utilities are only
a function of job completion times, and let the respective delay-sensitivity for user i be captured by
a utility function Ui : [0,∞) → R. That is, user i obtains utility Ui(τ) if her job is completed at
time instant τ(> 0), where Ui(·) is non-increasing. Let Ji denote the number of function executions
needed to complete the job of user i. We call this the size of user i’s job. For example, it could be a
single function instance in which case Ji = 1 or a batch job of size Ji > 1.
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We think of the scheduler as allocating resources to the users in different service tiers based
on their execution times—some jobs will be scheduled for immediate execution, whereas others
will be scheduled for execution at later times in the future. The jobs that are not scheduled will
remain in the queue to be scheduled by the scheduler at later operations. Note that the jobs that have
been scheduled for execution at a future point are removed from the queue. Let T be the maximum
number of service tiers offered by the cloud provider, and let the t-th tier be characterized by the
end time of this tier given by τt. For example, if T = 5, then the five tiers can correspond to job
completion under 1 second, 10 seconds, 10 minutes, 1 hour and 10 hours, respectively. Notice that
the end times of the different tiers in our model need not be evenly spaced. This is a useful feature
because it allows our scheduler to plan over longer time horizons with a limited number of tiers.
The pricing for these different tiers of service should ideally decrease as the job completion time
increases.

We refer to the intervening time between the adjacent tier end times as service intervals.
Continuing the previous example, service interval 1 starts at 0 and ends at 1 second, service interval
2 starts at 1 second and ends at 10 seconds, etc. Note that the functions in a single user’s job can be
served across several service intervals, but has a unique tier when all these functions are completed.
Further, let Mt be the constraint on the number of machines available for the scheduler to allocate
resources in service interval t. For example, if 500 machines are available every 100ms and tier 1 is
one second, then M1 = 500 ∗ (1/0.1) = 5000. Similarly, if tier 2 is 10 seconds, then the number
of machines available for tier 2 jobs are 500 ∗ (10/0.1) − 5000 = 45, 000. However, we would
like to retain some portion of this for the subsequent operations of our scheduler. This will allow
the scheduler to allocate resources for urgent jobs arriving in the future. Say we decide to utilize
at most 20% of these machines, then M2 = 45, 000 ∗ (0.2) = 9000. More generally, Mt would
depend on several factors like machine occupancy by pre-scheduled jobs, retained machines for
future scheduling, a margin to account for system uncertainties, etc.

System Problem: At each implementation of the scheduler, we assume that the scheduler has
access to the unscheduled jobs ready to be executed (say job of size Ji for user i), their utility
functions adjusted for past delay (for example, if a job has been waiting in queue for time τ0, then we
take its utility function to be Ui(τ + τ0)), and the machine availability Mt for each service interval
t. The scheduler then outputs a feasible allocation of serverless workers across different service
intervals. Let xi,t denote the number of functions executed for agent i ∈ [N ] := {1, 2, . . . , N}
at service interval t ∈ [T ] := {1, 2, . . . , T}. Let x be the (N × T )-matrix with entries xi,t,
i ∈ [N ], t ∈ [T ].

Let Ui,t := Ui(τt) denote user i’s utility if her job is completed in tier t, where τt is the end time
of tier t. Then

Ti := min{t ∈ [T ] :
t∑

s=1

xi,s ≥ Ji}, (9.1)

is the time it takes to complete user i’s Ji functions, awarding her a utility of Ui,Ti . (If a user’s job is
not completed we let Ti = T + 1 and assign her zero utility.) Also, at any service interval t ∈ [T ],
since the number of function executions cannot exceed the cloud service provider’s capacity, we
have

∑N
i=1 xi,t ≤Mt. To this end, we formulate the system problem SYS that maximizes the sum
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utility of the system as follows (see Fig. 9.2 for an illustration):

SYS

Maximize
xi,t≥0

n∑
i=1

Ui,Ti

subject to
N∑
i=1

xi,t ≤Mt,∀ t ∈ [T ], and (9.2)

Ti = min{t ∈ [T ] :
t∑

s=1

xi,s ≥ Ji}, ∀ i ∈ [N ]. (9.3)

In general, SYS can have multiple solutions, but there always exists a solution that assumes a
special form. Specifically, it corresponds to a non-preemptive scheduling, where the resources are
allocated so that none of the users’ jobs are interrupted in the middle of the execution and made
to wait till its execution resumes at a later stage after serving other users. We first outline a rough
sketch of the underlying intuition and then establish this result in Lemma 14. (See [241] for a
similar result in the context of scheduling jobs on a single machine.) Since the utilities of users
depend only on their job completion times, it is suboptimal to leave a user hanging by allocating
partial resources (which provides no utility gain). For example, say user i has been allocated a
total of

∑t
s=1 xi,s(< Ji) machines till the end of service interval t, for some 1 ≤ t < T , and

then interrupted, i.e. xi,(t+1) = 0. Further, let there be a user j(6= i) that is allocated resources in
the service interval t + 1. If user i’s job completes before user j, then we can swap the function
executions of user i at times > t + 1 with the foremost function executions of user j without
reducing the sum utility, since such a swap will only possibly reduce the completion time of user i
without affecting that of user j. On the other hand, if user j’s job completes before user i, then we
can swap the function executions of user i at times ≤ t with the hindmost function executions of
user j without reducing the sum utility, since such a swap will only reduce the completion time of
user j without affecting that of user i.

Corresponding to any non-preemptive scheduling, there exists an implicitly defined priority
ordering amongst the users based on their completion times. Without loss of generality, suppose
that this ordering is 1 ← 2 ← 3 ← · · · ← N , that is, user i is served along or before user i + 1
for all i ∈ [N − 1]. A simple greedy allocation x̃ := (x̃i,t)i∈[N ],t∈[T ] corresponding to this priority
ordering would work as follows: Say the cloud has served the first i− 1 users till time t. Now, if
the number of machines remaining at time t is greater than Ji, all of user i’s functions are allocated
at time t. Otherwise, the cloud provider continues allocating resources at times > t to user i till her
job is complete before attending the user i+ 1. This process continues till either all users or all of
the T tiers are served. (See remark 13.)

Lemma 14 (Non-preemptive scheduling). There exists an optimal solution to SYS that allocates
resources to users in an uninterrupted fashion, that is, if user i gets allocated some resources, the
system would allocate Ji resources to user i (possibly across multiple service intervals) instead of
halting it and attending other users.
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Let ui,t := Ui,t−Ui,t+1, ∀i, t, where we assume that Ui,T+1 := 0,∀i, consistent with the fact that
we assign zero utility if the jobs are not completed. Thus, ui,t ≥ 0,∀i, t, as Ui(·)’s are monotonically
decreasing. Condition (9.3) in problem SYS is not favorable from an optimization framework point
of view. Hence, we introduce an indicator variable yi,t,∀i, t, that we use as a proxy to indicate
whether user i’s job is completed on or before time t. Let y := (yi,t)i∈[N ],t∈[T ]. With these variables,
the scheduler optimization can be formulated as follows:

SYS-ILP

Maximize
xi,t≥0,yi,t∈{0,1}

T∑
t=1

n∑
i=1

ui,tyi,t

subject to yi,t ≤
∑t

s=1 xi,s
Ji

,∀i ∈ [N ], t ∈ [T ], and (9.4)

N∑
i=1

xi,t ≤Mt, ∀ t ∈ [T ]. (9.5)

If x is a feasible solution for SYS, then defining yi,t,∀i, t, to be equal to 1 if user i’s job is
completed by time t and equal to zero otherwise, we observe that x,y is a feasible solution to
SYS-ILP with the same objective value as that of SYS with x. On the other hand, if x,y is a
feasible solution for SYS-ILP, then defining Ti = min{t ∈ [T ] : yi,t > 0} for all i ∈ [N ], we get
that it forms a feasible solution for SYS with the same objective value. This gives us an equivalence
between the problems SYS and SYS-ILP. Problem SYS-ILP can be solved using Mixed Integer
Linear Programming (MILP) methods available in computing frameworks such as MATLAB [242]
for sufficiently small N and T .

Relaxing SYS-ILP: Although SYS/SYS-ILP are NP-hard in general (see remark 14), they
can be solved approximately by relaxing the integer constraints. Let us replace the constraint
yi,t ∈ {0, 1} by 0 ≤ yi,t ≤ 1. Since ui,t ≥ 0, the optimal y∗i,t for the relaxed problem is attained
when the constraint (9.4) is satisfied with equality for all i, t as long as yi,t ≤ 1. Hence, we can
substitute yi,t =

∑t
s=1 xi,s/Ji in the objective function and introduce an additional constraint,∑T

t=1 xi,t ≤ Ji, for all i, to ensure that yi,t ≤ 1. Fractional yi,t represents the fraction of functions
completed for user i at time t, and the system is awarded a utility per function depending on the
tiers in which these functions are executed unlike depending on the completion time of all functions
considered earlier. Letting

Fi,t :=
Ui,t
Ji

denote the utility per unit function, for all i and t, and making appropriate substitutions in SYS-ILP,
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we get

SYS-LP

Maximize
xi,t≥0

N∑
i=1

T∑
t=1

xi,tFi,t

subject to
T∑
t=1

xi,t ≤ Ji, ∀ i ∈ [N ], (9.6)

N∑
i=1

xi,t ≤Mt, ∀ t ∈ [T ]. (9.7)

The nice LP form of SYS-LP would later allow us to devise pricing mechanisms for resource
allocation, similar to the network resource allocation schemes in [236], [237]. In particular, the dual
variable µt corresponding to the constraint (9.7) plays the role of an auxiliary price (or a shadow
price) for the t-th service tier (more on this in Sec. 9.4).

Let V ∗ be the optimum sum utility of the system in SYS/SYS-ILP. Let V R denote the optimum
value for the relaxed problem SYS-LP (which is obtained by relaxing the integer constraints on yi,t).
It is clear that V R ≥ V ∗, since V R is obtained by relaxing the integer constraints. Let xR be the
corresponding resource allocation matrix that achieves the optimum value V R in SYS-LP. Let yR

be the corresponding matrix given by

yRit :=
t∑

s=1

xi,s
Ji
. (9.8)

We define the matrix ŷ ∈ RN×T with entries

ŷi,t :=

{
0, if yRi,t < 1,

1, if yRi,t = 1,
∀i, t. (9.9)

We can verify that xR, ŷ is a feasible solution for SYS-ILP. Let V̂ denote the value of the objective
in SYS-ILP at xR, ŷ. Then, since V̂ is one possible solution to SYS-ILP (whose optimal solution is
V ∗), we have

V R ≥ V ∗ ≥ V̂ . (9.10)

Later, we show that the inequality gap (V ∗ − V̂ ) is small. Note that this implies that the gap
(V ∗ − V R) is small. To that end, we first analyze the problem SYS-LP in more detail. (See
remark 15 for an alternative way to relax the problem SYS as proposed by [232] and how it
compares with our approach.)
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9.3 Analyzing SYS-LP
Consider the Lagrangian corresponding to the optimization problem SYS-LP,

L(x,λλλ,µµµ) =
N∑
i=1

T∑
t=1

xi,tFi,t + λi

(
Ji −

N∑
i=1

xi,t

)
+ µt

(
Mt −

T∑
t=1

xi,t

)

=

N∑
i=1

T∑
t=1

(Fi,t − µt − λi)xi,t +

T∑
t=1

µtMt +

N∑
i=1

λiJi, (9.11)

where x = [xi,t], i ∈ [N ], t ∈ [T ], is the primal variable matrix and λλλ = [λi], i ∈ [N ], and
µµµ = [µt], t ∈ [T ], are the dual variable vectors corresponding to the constraints in (9.6) and (9.7),
respectively. Here, µ is the auxiliary price vector for the T service tiers that comes out of the
resource allocation problem. Thus,

∂L

∂xi,t
= Fi,t − µt − λi, ∀i, t;

∂L

∂λi
= Ji −

N∑
i=1

xi,t, ∀i;

∂L

∂µt
= M −

T∑
t=1

xi,t, ∀t.

Hence, the Karush-Kuhn-Tucker (KKT) conditions [149] imply that

µt + λi

{
= Fi,t, if xi,t > 0,

≥ Fi,t, if xi,t = 0,
∀i, t, (9.12)

N∑
i=1

xi,t

{
= Mt, if µt > 0,

≤Mt, if µt = 0,
∀t, (9.13)

T∑
t=1

xi,t

{
= Ji, if λi > 0,

≤ Ji, if λi = 0,
∀i. (9.14)

We will now show that there exists an optimal solution to the SYS-LP problem with a special
structure. Note that when xi,t > 0, we have µt + λi = Fi,t from the KKT condition in Eq. (9.12).
We know that every time a user i gets non-zero resources allocated in multiple tiers, say t1 and t2,
we have µt1 + λi = Fi,t1 and µt2 + λi = Fi,t2 . This implies that

µt1 − µt2 = Fi,t1 − Fi,t2 . (9.15)

Hence, every time any user gets partial resources (that is, less than the total job size) allocated in
one tier, we get one relation of the form (9.15). If there are more than T −1 instances of such partial
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Figure 9.3: Percentage error between V R (the utility obtained with SYS-LP problem) and V̂ (the
utility obtained by applying integer constraints on SYS-LP solution).

resource allocation, then we can eliminate the variables µt, t ∈ [T ], to get a non-trivial relation
amongst the variables Fi,t’s. In a generic case, where the Fi,t’s are any real numbers, it is unlikely
that such a non-trivial relation amongst the variables Fi,t’s is satisfied. Expanding on this idea, we
prove the following lemma whose proof is included in Appendix 9.8. (See [243] for a related result
in the context of network resource allocation. See also remark 16.)

Lemma 15. There exists an optimal solution xi,t to SYS-LP such that |{(i, t) : 0 < xi,t < Ji}| ≤ T .

Recall that as a result of Lemma 14, we know that the optimal resource allocation in SYS is
(N + T )-sparse. Sparsity in both SYS and SYS-LP solutions suggests that the resource allocation
in the two cases is similar. In theorem 12, we formally bound the gap, V R − V ∗, between the
objectives of SYS and SYS-LP problems.

Theorem 12. Let V ∗ and V R be the optimal objectives of the problem in SYS and SYS-LP, respec-
tively. Then, we have

V ∗ ≥
(

1− T (maxi Ji)

mintMt

)
V R. (9.16)

Thus, the relaxation from SYS-ILP to SYS-LP does not sacrifice much in terms of optimality.
This can also be noted from Fig. 9.3, where we plot the mean and standard deviation of the
percentage error between V R and V̂ , that is, 100 ∗ (V R − V̂ )/V R over 20 independent trials for
T = 5 tiers and N = 100 users, where utilities and job sizes are independently and identically
distributed (i.i.d.) across users, and E[Ji] = 50, ∀ i. We have taken Mt(= M) constant across tiers.
Recall that the plot is an upper bound on the percentage error between V R and V ∗.

Suppose, in addition to the matrix xR being (N + T )-sparse, we know that the allocation xR

allocates partial resources to at most one user in any tier t as is typical in a greedy allocation (see
Remark 13). Then, in the proof of Theorem 12 (see section 9.8), we have |St| ≤ 1, for all t (where
St is the set of users that are allocated partial resources in tier t), and we can improve the bound to
get,

V ∗ ≥
(

1− maxi Ji
mintMt

)
V R.
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Premium services are charged more: We now give a toy example to illustrate some of the
features of our pricing scheme. Consider a system with N = 3 users having utility functions
as shown in Fig. 9.1. Let the total job size for each user be 10. Let the cloud provider allocate
resources in T = 3 tiers corresponding to job completion under 0.1, 10 and 1000 seconds. Also, let
Mt = 10 for t = 1, 2, 3. Thus, according to the utilities shown in Fig. 9.1, the 3× 3 utility matrix
U = [Ui(t)| i ∈ {1, 2, 3}, t ∈ {1, 2, 3}] is given by

U =

3 0 0
4 2.5 1
2 2 2

 .
For both SYS and SYS-LP, the following resource allocation is optimal:

xi,t :=

{
10, if i = t,

0, if i 6= t,
∀ i, t ∈ {1, 2, 3}. (9.17)

The above allocation makes intuitive sense because it maximizes the sum utility of the system by
maximizing the individual utility of the users. Any vector µµµ = (µ1, µ2, µ3) such that 0.15 ≤ µ1 ≤
0.3, 0 ≤ µ2 ≤ 0.25, 0 ≤ µ3 ≤ 0.2, µ1 − µ2 ≥ 0.15 and µ2 ≥ µ3 serves as an auxiliary pricing
vector for the three tiers corresponding to the above optimal resource allocation. (Observe that if we
take λ1 = 0.3 − µ1, λ2 = 0.25 − µ2, and λ3 = 0.2 − µ3, then the KKT conditions (9.12), (9.13),
and (9.14) are satisfied.) An example of such an auxiliary pricing vector for the three service tiers is
given by µµµ = [0.259, 0.083, 0.048] (obtained through the CVX optimizer from [149]). Note that in
our scheme, the cloud provider sets prices for different service tiers proportional to µµµ. Thus, user 1
is charged more for getting her job completed in tier 1 as opposed to user 3 who is charged less for
being flexible. Note that this is also better than a myopic greedy allocation where user 2 would have
been selected first based on her high utility value in the first tier. Our pricing scheme thus takes into
account the users’ delay-sensitivity and charges each user accordingly. The conditions on µµµ show
that a flat pricing scheme cannot achieve this result in our toy example setting.

9.4 Pricing Mechanisms to Learn User Utilities
In the previous section, we assumed that the utilities of the users are known to the cloud service
provider. This is not true in general. However, through dynamic pricing and users’ responses to
this pricing, the cloud service provider can converge to the optimal scheduling and pricing. Such
pricing mechanisms have been studied in economics for two-sided (supply and demand) markets
and are called Walrasian auctions [244], [245]. In the networking literature, Kelly has used similar
mechanisms to allocate bandwidth optimally over a network [236], [237].

In this section, we devise dynamic pricing schemes that would help the cloud provider to
maximize the utility of the system. To the best of our knowledge, this is the first work to study
dynamic pricing mechanisms for scheduling problems. This is a promising research direction with
potentially high impact on the economics and resource allocation of next-generation computing
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systems. Next, we derive an algorithm that sets pricing for cloud resources without assuming that
the users’ utilities are known.

We first decompose the system problem from the i-th user’s perspective and from the cloud
provider’s perspective. To introduce the user feedback, we define a new variable mi,t, which can be
thought of as the budget of user i for service interval t. Let qt be the price set by the cloud service
provider at service interval t. Then the amount of resources allocated to the i-th user in service
interval t is given by xi,t = mi,t/qt. With this interpretation in mind, we formulate the user problem
for the i-th user by taking the terms from the Lagrangian of the system formulation (Eq. (9.11))
that are relevant to the i-th user along with the constraint on the number of functions in her job (Eq.
(9.6)).

USER(i)

Maximize
mi,t≥0

T∑
t=1

mi,t

qt
(Fi,t − qt)

subject to
T∑
t=1

mi,t

qt
≤ Ji. (9.18)

The i-th user thus allocates a larger budget mi,t at time t if the user utility per function at time t, Fi,t,
is sufficiently larger than the price qt set by the cloud service provider. Note that, if qt = 0, then
mi,t = 0. Because, otherwise, we would have mi,t/qt =∞, and this would violate constraint (9.18).
Given a price vector q = [qt], t ∈ [T ], the i-th user solves the USER(i) problem to obtain the budget
vector mi,t, t ∈ [T ]. The cloud provider then receives budgets from all users mi,t, t ∈ [T ], i ∈ [N ],
and solves the CLOUD problem defined as follows:

CLOUD

Maximize
xi,t≥0

T∑
t=1

N∑
i=1

mi,t log xi,t

subject to
N∑
i=1

xi,t ≤Mt, ∀ t ∈ [T ]. (9.19)

Theorem 13. There exist equilibrium matrices x = (xi,t, i ∈ [N ], t ∈ [T ]) and m = (mi,t, i ∈
[N ], t ∈ [T ]), and an equilibrium price vector q = (qt, t ∈ [T ]) such that

1. mi = (mi,t, t ∈ [T ]) solves USER(i), ∀ i ∈ [N ],

2. x = (xi,t, i ∈ [N ], t ∈ [T ]) solves the CLOUD problem,

3. mi,t = xi,tqt, for all i ∈ [N ], t ∈ [T ],

4. for any t, if
∑

i xi,t < Mt, then qt = 0.
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Further, if any matrix x = (xi,t, i ∈ [N ], t ∈ [T ]) that is at equilibrium, i.e. has a corresponding
matrix m and a vector q that together satisfy (i), (ii), (iii), and (iv), then x solves the system problem
SYS-LP.

Condition (i) says that the equilibrium budgets (mi,t, t ∈ [T ]) form an optimum response by
the user i to the equilibrium rates (qt, t ∈ [T ]). Condition (ii) says that the equilibrium allocation
matrix x is the solution to the CLOUD problem with respect to the equilibrium budgets m. Further,
the allocations, prices and the budgets are consistent under equilibrium, i.e. mi,t = xi,tqt as per
our interpretation of budgets (from condition (iii)). And finally, (iv) says that the price qt = 0 if
that corresponding service interval is not full, i.e.

∑
i xi,t < Mt. Besides, in the proof of Theorem

13, we show that if µµµ is the dual variable corresponding to an optimal solution x of SYS-LP, then
q = µµµ form an equilibrium price vector.

Price tracking using gradient descent: In many cases, it is easier to work with the dual
problem because there are less variables involved. For example, for the CLOUD problem, the
primal has NT variables, which can be significantly large in comparison to only T variables in the
dual problem (coming from T constraints in the primal). Moreover, working on the dual problem
allows the cloud provider to work directly on the price vector q, which is what it shows to the users.
We can derive the following dual problem for the CLOUD problem using the Lagrangian L(x,q) in
Eq. (9.31).

Maximize
qt≥0

T∑
t=1

log qt

(
N∑
i=1

mi,t

)
−
(

T∑
t=1

Mtqt

)
. (9.20)

The gradient of the above objective w.r.t. qt is given by
(∑N

i=1mi,t
qt

−Mt

)
∀ t ∈ [T ]. We use

gradient descent to solve Eq. (9.20) and make the pricing scheme q track users’ budgets m.
Next, based on our results in this section, we derive an algorithm where the cloud provider

updates the prices of its resources. Here, we assume that the user utilities are not known to the cloud
provider (which is generally the case) but they provide their budget information (represented as
the m matrix in the USER/CLOUD problems) on a semi-regular basis which is determined based
on the current price vector (represented as q in the USER/CLOUD problems) shown by the cloud
service provider (see Alg. 19).

An illustration of the process is provided in Fig. 9.4. Further, for N = 100 users, T = 5 hours
and i.i.d. users’ utilities and job sizes, we plot the results of Algorithm 19 (with gradient steps
G = 40 and step-size κ = 10−6) in Fig. 9.5. After only ∼10 iterations (budget/pricing updates), the
tracking-based scheme converges to the optimal solution (Fig. 9.5a). Moreover, as shown in Fig.
9.5b, with only slight changes in its pricing scheme, the cloud provider is able to nudge the users to
change their budgets to match the optimal solution.
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Algorithm 19: Finding the optimal resource allocation and pricing without utility infor-
mation at the cloud end

Input :Total number of machines M , step-size κ, error tolerance ε, gradient steps G, job
sizes Ji and utilities Ui(·) that are known only to user i for i ∈ [N ]

1 Initialization: Cloud service provider shows some initial prices q = q0 ∈ RT (say, the all
ones vector)

2 while ‖q− qprev‖ ≥ ε‖qprev‖ do
3 qprev = q
4 Users, for all, i ∈ [N ], solve for budget vector mi ∈ RT using the price vector q in the

USER(i) problem
5 The cloud service provider receives the budget matrix m and does the following
6 step = 0
7 while step ≤ G do
8 qt = max

[
qt + κ

(∑N
i=1mi,t
qt(τ)

−Mt

)
, 0
]
∀ t ∈ [T ]

9 step = step+ 1

10 end
11 end
12 q∗ = q,m∗ = m
13 zi,t = m∗i,t/q

∗
t for all i ∈ [N ], t ∈ [T ]

14 Use Algorithm 20 to obtain x∗i,t, the projection of zi,t to the constraint sets∑
i zi,t ≤Mt, ∀ t and zi,t ≥ 0 ∀ i, t, k.

Result: Solution to SYS, that is, the optimal pricing vector q∗ and the optimal resource
allocation vector x∗

9.5 A Market Simulation
In this section, we run an experiment for 60 days with N = 100 users and T = 5 tiers, where each
day, users’ utilities are changing based on the market trends3. Specifically, for the first 30 days,
we synthetically generate utilities that follow an upward trend based on the market following by
a downward trend for the next 30 days. To simulate this, we generate uit,∀ i, t, from a uniform
distribution in [5, 10] in an i.i.d. fashion. The job size for the i-th user, Ji ∀ i, is an i.i.d. integer
chosen between 10 to 100 (which remains constant throughout the 60 days of the experiment) and
Mt = 5000 for all t. To generate an upward market trend, we add 0.5 to ui,t,∀ i, t, with probability
0.55 and −0.5 with probability 0.45 (the probabilities are flipped to generate a downward trend). 4

We compare the following three schemes:

• Optimal pricing: Here, we assume that the cloud provider is able to solve for optimal
3An implementation of the price tracking algorithm (Alg. 19) and the market simulation described in this chapter is

available here.
4Note that the user problem can have multiple solutions. To ensure convergence to a unique solution with algorithm

19, we add a small quadratic regularizer to both SYS-LP and the user problem.

https://www.dropbox.com/sh/7s62txt6uiju2w0/AAA6wGmyv0TQMZzM0twct-Ija?dl=0
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Algorithm 20: Han’s algorithm for projection on the intersection of convex sets [246],
[247]

Input :z ∈ RN×T , Constraint sets C1, C2 ⊂ RN×T , where C1 := {zi,t|
∑

i zi,t ≤Mt, ∀ t},
and C2 := {zi,t| zi,t ≥ 0 ∀ i, t}, error tolerance ε

1 Initialization: Define z1 = z, z2 = z.
2 while ‖z− zprev‖ ≥ ε‖zprev‖ do
3 zprev = z

4 (z′1)i,t = zi,t −max
[∑

i zi,t−Mt

N
, 0
]
∀ i, t.

5 z′2 = z, z′2[z′2 < 0] = 0
6 z = (z′1 + z′2)/2
7 z1 = z + z1 − z′1
8 z2 = z + z2 − z′2
9 end

Result: z: Projection of the input matrix to sets C1 and C2
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Figure 9.4: Decomposition into user and cloud problems. Here, we visualize a user black-box for
each user i that solves the USER(i) problem using the prices shown by the cloud black-box, the
unscheduled functions in the job of user i and her willingness to pay (intermittently updated). The
cloud black-box runs Algorithm 19 to update the prices using the budget signals from the user
black-boxes and the capacity constraints from the cloud.

resource allocation and maximize system utility by utilizing the knowledge of users’ utilities
at each day.

• Tracking-based pricing: In this case, the users’ utilities are not known, and the cloud
provider tracks users’ utilities based on their budget signals (as described in Algorithm 19).
The cloud provider is assumed to update the prices everyday. Users send budget signals only
once per day. These budget signals depend on the user’s utility function on that day and the
prices published by the cloud on that day.

• First-come-first-serve (also known as first-in-first-out): Here, the pricing of the resources
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Figure 9.5: Finding the SYS-LP solution through price tracking (Algorithm 19). The algorithm
converges after ∼10 iterations.
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Figure 9.6: Sum utilities for three resource allocation schemes

remains constant (as currently employed by most commercial service providers). It is the
optimum prices determined by the utilities on day 1 and does not capture the mood of the
market. Each day, the users are allocated resources on a first-come-first-serve (which is
assumed to be random in order) or a lottery basis.

In Fig. 9.6, we plot the sum utility of the system for all the three schemes across 60 days. Note
that the tracking-based scheme accurately captures the trends of the market and is always within
8% of the optimal utility, and this happens with only limited feedback from users (where they send
budget signals only once per day). The first-come-first-serve scheme is clearly suboptimal with a
deviation of as much as 38% from the optimal utility.

In Fig. 9.7, we plot the utility and price charged across all users only in the first tier. Again,
the tracking-based scheme closely follows the optimal utility and lies within 3% of it (Fig. 9.7a).
Furthermore, an important advantage of the tracking-based scheme is that it does not drastically
change the prices throughout the sixty days (the maximum change is < 2%, see Fig. 9.7b). This
is unlike the optimal pricing scheme, where the change is 10%. From a cloud service provider
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Figure 9.7: Utility and price charged in the first tier
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Figure 9.8: Utility and price paid by a randomly chosen user

point of view, the optimal scheme is not ideal since the pricing fluctuates heavily and may alienate
users who expect some consistency in the pricing scheme. First-come-first-serve keeps a constant
pricing scheme, but it reduces the optimal utility by a factor of 2. Hence, the tracking-based scheme
represents an optimal trade-off between utility and fluctuation in pricing (and this trade-off can be
controlled by the number of gradient steps in Algorithm 19). Moreover, the tracking-based scheme
does not require the utility information from users, alleviating potential privacy concerns.

In Fig. 9.8, we pick a random user and plot her obtained utility and price paid throughout the
sixty days. Again, the tracking-based utility is extremely close to the optimal utility of the user.
Furthermore, even though the pricing obtained through the tracking-based scheme does not fluctuate
much, we see that the revenue obtained from the user is very close to the optimal revenue. This is
because by slightly changing the prices according to the mood of the market, the cloud provider is
able to nudge the users to update their budget to go close to the optimal budgets. Also note that the
price charged to the user on each day (Fig. 9.8b) is less than the utility/willingness-to-pay of that
user on that particular day (Fig. 9.8a).
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9.6 Future work
Our analysis and simulations show that there are several advantages of using dynamic multi-tier
pricing over basic pricing. This is only the first step towards designing practical game-theoretic
resource allocation schemes for the cloud. Below, we describe some limitations of current work,
and consequently, potential directions for future research, which are of interest to both industry and
academia.

Utility-based pricing for serverful systems: The schemes developed in this paper can be
extended to the serverful case provided the assumption that one function requires one machine and
unit time holds. This assumption is more restrictive for the serverful case since the jobs can be
large. However, in such scenarios, a large job can be broken into several smaller jobs, each of which
requires unit time and machine. But this also introduces dependencies between jobs of a user which
need to be taken into account in problem formulation. We explain such job dependencies in more
detail next.

Job dependencies: Often, certain jobs are recurrent and require execution of some other specific
jobs for their execution. These dependencies are generally represented as a graph. An important
future direction is to design improved schedulers that take into account such job dependencies.
Ideally, jobs which have low dependencies or that have more reliable request-for-execution times
should get a discount in their pricing because they allow the scheduler to plan more efficiently.

Wholesale discount: Current pricing schemes lack a wholesale discount for customers who are
requesting large number of jobs with low variability in job sizes. Scheduling such jobs is cheaper
for the provider since it can rent entire clusters of machines together, resulting in better resource
utilization due to efficient bin packing.

Flexible SLAs with probabilistic guarantees: Cloud service providers define strict Service
Level Agreements (SLAs) for their services, e.g. in AWS Lambda, users are credited 10% of their
incurred charges if the error rate of Lambda functions goes beyond 0.05%5. Note that providing
such strict and premium SLAs require high-level maintenance of the cloud, the costs of which
are indirectly borne by all the users. This may be unfair since some users could be equipped to
tolerate job failures [36], [147] and different users could have varying degrees of fault-tolerance. An
interesting future direction is to design pricing schemes that conform with each user’s preferences
using behavioral preference models from decision theory (see, for example, [248]).

Heterogeneity in machines and jobs: Currently, we have assumed that all the serverless
machines/jobs have the same specifications in terms of their execution time, memory capacity, etc.
However, there is often heterogeneity both in the types of machines and jobs for such systems [229],
which can be taken into account in the problem formulation.

Revenue optimal schemes: In this paper we have focused on optimizing social welfare. An
alternative criteria would be to optimize the revenue generated by the cloud provider.

Stability analysis: Our algorithm is provably convergent to the optimal allocation and pricing
when the conditions are static, and seems to track the optimum when the network conditions vary

5For details, see https://aws.amazon.com/lambda/sla/historical/
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slowly. The impact of limited feedback on the ability to track the optimum will be a topic of further
studies.

9.7 Related Work
Notice that the two key features of our model are capturing the users’ delay-sensitivity and taking a
utility-agnostic approach. In the next couple of paragraphs, we recall some of related works in the
literature with respect to these two features.

In relation to the first feature, suppose we ignore the market setting, then our problem is closely
related to the problem of scheduling jobs in real-time systems. This problem has been extensively
studied in the literature. (See, for example, [249]–[252].) The notion of utility as a function of
completion times has played a key role in many of these works. Varied algorithms with supporting
simulations have been been proposed in these works. Building on these works, many have proposed
resource allocation in the cloud that is based on maximizing the utility of the system. For example,
in [253] and [254], the authors propose utility-function based approaches for resource allocation
in autonomic computing systems. In [255], the authors use utility functions to allocate resources
dynamically and save energy by consolidating load. In [256], the authors propose schemes to
dynamically allocate computing resources to virtual machines (such as virtual operating systems)
while minimizing operating costs and satisfying QoS constraints. This is done by expressing these
two goals as a two-tier utility function. Another example is [257], where the authors find the optimal
number and size of virtual machines to allocate CPU resources to applications via an automatic
resource controller. This is done by using a constraint programming approach to maximize the
utility accrued. Thus, using system utility maximization as the overall objective for designing
resource allocation theme has been a recurring theme in the literature. Our objective in this paper
shares this feature with these works.

Pricing in cloud computing is closely related to the second feature, although to the best of our
knowledge this idea has not been fully exploited in the literature. When cloud computing was
first introduced in [258], the authors claimed that the success of the cloud can only be obtained
by developing adequate pricing schemes. Since then a variety of pricing schemes for the cloud
have been proposed. Here, we give a small sample of the several works that propose and analyze
dynamic pricing schemes for various services in the cloud. In [259], the authors propose an iterative
pricing algorithm that uses the historical pricing of resources and determines the final price based
on availability of resources for the next round. In [260], the authors analyze four dynamic pricing
schemes and develope an agent-based simulation of a software market. In [261], the authors propose
a federated version of dynamic pricing where the computing resources are being shared by multiple
cloud service providers. Finally, Amazon offers spot pricing, which is another form of dynamic
pricing where the resources are priced at a lower rate than fixed pricing but with less guarantee of
availability [106]. For further examples of pricing schemes, see [105].
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9.8 Proofs
Proof of Lemma 14. Let x be any optimal resource allocation to SYS and let Ti the corresponding
end times as defined in (9.1). Without loss of generality, let the following ordering hold:

T1 ≤ T2 ≤ · · · ≤ TN . (9.21)

As defined above, let x̃ be the greedy allocation corresponding to the ordering 1 ← 2 ← 3 ←
· · · ← N . Let T̃i be the end times corresponding to the allocation x̃. By construction of the greedy
allocation, we have

T̃i = min

{
t ∈ [T ] :

t∑
s=1

Mt ≥
i∑

j=1

Jj

}
, for all i ∈ [N ].

On the other hand, because of the ordering (9.21), we have

Ti ≥ min

{
t ∈ [T ] :

t∑
s=1

Mt ≥
i∑

j=1

Jj

}
, for all i ∈ [N ].

Thus, T̃i ≤ Ti, for all i ∈ [N ]. Hence
∑

i Ui,T̃i ≥
∑

i Ui,Ti and, thus, x̃ is also an optimal allocation.
Since x̃ is a non-preemptive scheduling, we have the statement in the lemma.

Proof of Lemma 15. We will first extend the SYS-LP problem by adding a dummy service tier T +1
with unlimited capacity MT+1 =∞. Let Ui,(T+1) = 0 for all users i ∈ [N ]. Let us call this problem
SYS-LP-EXT. For any feasible solution x to SYS-LP, we can construct a feasible solution x̃ to
SYS-LP-EXT by executing all the remaining functions in tier T + 1, i.e. for all i ∈ [N ], t ∈ [T + 1],
let

x̃i,t :=

{
xi,t, if i ∈ [N ], t ∈ [T ],

Ji −
∑

t∈[T ] xi,t, if i ∈ [N ], t = T + 1.

Similarly, we can construct a solution x to SYS-LP corresponding to any solution x̃ to SYS-LP-EXT
by restricting it to i ∈ [N ] and t ∈ [T ]. Since Ui,(T+1) = 0 for all users i ∈ [N ], we have that the
objective values for SYS-LP and SYS-LP-EXT match for corresponding feasible solutions. We
will now show that there exists an optimal solution x̃ to SYS-LP-EXT such that 0 < x̃i,t < Ji for at
most T elements. Taking the corresponding solution for SYS-LP, we will get the optimal solution
with the desired properties for SYS-LP.

Let x̃ be an optimal solution to SYS-LP-EXT. Without loss of generality, let us assume that all
users get their jobs completed by the end of tier T + 1, i.e.

∑
t x̃i,t = Ji, for all i. We have this

because tier T + 1 is assumed to have infinite capacity. Consider the KKT conditions to problem
SYS-LP-EXT similar to (9.12), (9.13), and (9.14), with dual variables µ̃t, t ∈ [T + 1], λ̃i, i ∈ [N ].
Since Mi,(T+1) =∞, we have µ̃T+1 = 0. If x̃i,t > 0, then µ̃t+ λ̃i = Fi,t. Suppose user i is allocated
partial resource in some tier t1 ∈ [T ], i.e 0 < x̃i,t1 < Ji. Then there exists a another tier t2 ∈ [T + 1]
such that 0 < x̃i,t2 < Ji. We will then have

µ̃t1 − µ̃t2 = Fi,t1 − Fi,t2 .
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Corresponding to any instance (i, t1, t2) consider the equation above. If we have any (T + 1) such
distinct instances, then we can eliminate the µt variables and get a non-trivial equality relationship
between the variables Fi,t. For each collection of (T + 1) distinct instances (i, t1, t2), we get
a non-trivial equality relationship between the variables Fi,t. Suppose for the moment that the
variables Fi,t are such that they do not satisfy any of the equality relationships obtained from (T +1)
distinct instances (i, t1, t2). Then, we get that 0 < x̃i,t < Ji,t for at most T elements. This would
give us the required result. In the rest of the proof, we will extend this argument to any variables
Fi,t.

Consider a neighborhoodN in the nonnegative orthant of theN×(T+1)-dimensional Euclidean
space around the matrix (Fi,t)i∈[N ],t∈[T+1]. Consider the set of points P in this neighborhood such
that they do not satisfy any of the equality relationships obtained from (T + 1) distinct instances
(i, t1, t2). We claim that the set P is dense in the set set N . To see this, note that the set of points in
N that satisfy any given non-trivial equality relationship is zero. Since there are finitely many such
equality relationships that we need to consider, we get that the set of points in N that satisfy any of
these non-trivial equality relationship is zero. Since P is the complement of this set, it is dense inN .
As a result, we get that there is a sequence of points (F l

i,t)i∈[N ],t∈[T+1], l ≥ 1, belonging to the set P
and converging to (Fi,t)i∈[N ],t∈[T+1]. Since the problem SYS-LP-EXT has a continuous objective
function and continuous contraint functions, we get that there exists a sequence of solutions x̃l, l ≥ 1
such that x̃l is an optimal solution to the SYS-LP-EXT problem with variables (Fi,t)i∈[N ],t∈[T+1]

replaced by (F l
i,t)i∈[N ],t∈[T+1], and x̃l is convergent. Let it converge to x̃′. We note that x̃′ is an

optimal solution to SYS-LP-EXT (see [262]). Then we get that x̃l has at most T elements such that
0 < x̃li,t < Ji. This implies that x̃′ has at most T elements such that 0 < x̃′i,t < Ji. This completes
the proof.

Proof of Theorem 12. Suppose the resource allocation matrix xR ∈ RN×T is such that there are
at most T elements such that 0 < xi,t < Ji. We know that such an optimal solution exists from
Lemma 15. In the optimal resource allocation xR for SYS-LP, say a user i is getting non-zero
resources in slots m and n (and say m < n), i.e. xi,m > 0, xi,n > 0 and a user j which is getting
resources in slot m, i.e. xj,m > 0. Then, by the optimality of xR, we have

Fj,m − Fj,n ≥ Fi,m − Fi,n. (9.22)

We can easily prove the above by redistributing ε(> 0) fraction of the job from user j in slot m to
user i in slot m (and vice versa in slot n). But we know that this can only decrease the objective
function in SYS-LP, that is

(Fi,m − Fi,n)ε− (Fj,m − Fj,n)ε ≤ 0,

which proves Eq. (9.22).
Now, we are ready to prove the theorem. From Eq. (9.10), we get that

V R − V ∗
V R

≤ V R − V̂
V R
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where V̂ is the objective of SYS-LP obtained by projecting solution of SYS-LP to integer constraints
as described in Eq. (9.9). Now, our aim is to upper bound the RHS above to get an upper bound on
the gap. To that end, we bound the numerator and denominator at each time slot t ∈ [T ]. Let V R

t

and V̂t be the corresponding utilities obtained only at tier t ∈ [T ], i.e.

V R
t :=

N∑
i=1

ui,ty
R
i,t and V̂t :=

N∑
i=1

ui,tŷi,t,

where yRi,t and ŷi,t, ∀i, t, are as defined in (9.8) and (9.9), respectively. Let TRi be the time at which
the job of user i are getting finished according to the resource allocation xR, that is,

TRi := min{t ∈ [T ] :
t∑

s=1

xRi,s ≥ Ji}.

Let TRi = T + 1, if
∑T

t=1 x
R
i,s < Ji. Thus, for tier t, we have

V R
t − V̂t
V R
t

=

∑
i∈St(Fi,t − Fi,TRi )xRi,t∑N

j=1 Fjtx
R
j,t

, (9.23)

where St is the set of users for which 0 < xRi,t < Ji. Formally, St := {i ∈ [N ], 0 < xRi,t < Ji}. We
can further write

V R
t − V̂t
V R
t

≤
∑
i∈St

(Fi,t − Fi,TRi )xRi,t∑N
j=1(Fj,t − Fj,TRi )xRj,t

≤
∑
i∈St

(Fi,t − Fi,TRi )xRi,t

(Fi,t − Fi,TRi )
∑N

j=1 x
R
j,t

, (9.24)

where the last inequality uses Eq. (9.22). Now, since at time t, user i is getting fractional resources,
it implies that the system is operating at full capacity, that is

∑N
j=1 xj,t = Mt. Hence, we get

V R
t − V̂t
V R
t

≤
∑
i∈S

xRi,t
Mt

≤
∑
i∈S

maxi(Ji)

Mt

, (9.25)

where the last inequality uses the fact that xRi,t ≤ maxi(Ji). Also, since there are at most T instances
where users are getting partial resources, |St| ≤ T , and, we get

V R
t − V̂t
V R
t

≤ T maxi(Ji)

Mt

≤ T maxi(Ji)

mintMt

. (9.26)

Thus,

V R − V ∗ ≤ V R − V̂ =
T∑
t=1

(V R
t − V̂t) ≤

T maxi(Ji)

mintMt

T∑
t=1

V R
t =

T maxi(Ji)

mintMt

V R, (9.27)

Rearranging, we get

V ∗ ≥
(

1− T (maxi Ji)

mintMt

)
V R,

which proves the desired result.
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Proof of Theorem 13. Let x be an optimal solution to SYS-LP and let µµµ and λ be the dual variables
corresponding to this solution. We know that these satisfy the KKT conditions (9.12), (9.13), and
(9.14). Let q = µµµ and mi,t = xi,tµi,t for all i, t.

We will now show that mi solves USER(i) for this q. Observe that mi,t = 0 if qt = 0 because
of the way we have defined m here. Thus, it is enough to look at the tiers for which qt 6= 0. Hence,
without loss of generality, we will assume that qt 6= 0 for all t. Consider the Lagrangian for the user
problem USER(i),

L(mi, pi) =
T∑
t=1

mi,t

qt
(Fi,t − qt) + pi

(
Ji −

mi,t

qt

)
,∀i ∈ [N ], (9.28)

where pi is the dual variable corresponding to the job size constraint (9.18) in the user problem. The
KKT conditions can, thus, be written as

µt + pi

{
= Fi,t, if mi,t > 0

≥ Fi,t, if mi,t = 0,
∀i, t, (9.29)

T∑
t=1

mi,t

qt

{
= Ji, if pi > 0

≤ Ji, if pi = 0,
∀t. (9.30)

Taking pi = λi, we get that these KKT conditions are satisfied. Thus, mi is an optimal solution to
USER(i) with q = µµµ.

Now we will show that m is an optimal solution for the CLOUD problem. The Lagrangian for
the CLOUD problem is given by

L(m, q̃) =
T∑
t=1

N∑
i=1

mi,t log xi,t +
T∑
t=1

qt

(
Mt −

N∑
i=1

xi,t

)
, (9.31)

where q̃ = (q̃t, t ∈ [N ]) is the dual variable corresponding to the constraint (9.19) in the CLOUD
problem. Let q̃ = µ. If mi,t > 0, then xi,t > 0, and differentiating the Lagrangian with respect to
xi,t we get

∂L(m,q)

∂xi,t
=
mi,t

xi,t
− qt = 0.

If mi,t = 0, then ∂L(m,q̃)
∂xi,t

≤ 0, since qt ≥ 0. Further, from (9.13), we have

N∑
i=1

xit

{
= Mt, if qt > 0

≤Mt, if qt = 0,
∀t. (9.32)

Thus, x and q satisfy the KKT conditions for the CLOUD problem. Hence x is an optimal solution
to CLOUD with m.

Thus we have showed statements (i) and (ii) in Theorem 13. Statement (iii) follows from
construction and statement (iv) follows from (9.13). We now prove the later assertion, namely, if
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we have an equilibrium solution x,m,q that satisfy (i), (ii), (iii), and (iv), then x solves the system
problem SYS-LP. To see this, let x,m,q be such an equilibrium solution. Take µµµ = q. Since mi is
an optimal solution to USER(i) with q, there exists dual a variable pi corresponding to the constraint
(9.18). Take λi = pi for all i. It is easy to check that x,µµµ,λλλ satisfy the KKT consitions (9.12),
(9.13), and (9.14), and hence, form an optimal solution to SYS-LP. This completes the proof of the
theorem.

9.9 Remarks
Remark 13. Corresponding to the greedy allocation with a given ordering, when the cloud provider
moves from tier t to t + 1, there can be at most one user with a partially satisfied job, for all
t ∈ [T ]. Hence, there are at most T instances such that the users jobs are partially allocated, that
is, |{(i, t) : 0 < xi,t < Ji}| ≤ T . Further, there are at most N entries in the matrix x such that
xi,t = Ji. Thus, the allocation matrix (xi,t), i ∈ [N ], t ∈ [T ] can have at most (N + T ) non-zero
enties, i.e. it is (N + T )–sparse.

Remark 14. We note that the problems SYS/SYS-ILP are NP-hard in general. In [263], the authors
consider a job scheduling problem for N jobs, with execution times {J1, . . . , JN}, to be executed
on a single machine, where each job has a corresponding due date di. The utility function for each
job is assumed to decrease by its tardiness defined as the delay in the completion of job i from its
due date di. Namely, if Ti is the completion time of job i, then let Di(Ti) := max{0, Ti− di} be the
tardiness. The authors show that the problem of finding a schedule that minimizes the total tardiness
is NP-hard in general (see [263]–[265]). Further, this is proved for the case when the parameters
Ji and di, for all i, take integer values. We note that this is a special case of our problem. To see
this, recall that the parameters in our problem are N, T, (Ui,t)i∈[N ],t∈[T ], (Mt)t∈[T ]. Let N be same
as the number of different jobs in [263]. Let T =

∑N
i=1 Ji. Think of τt = t, for t ∈ [T ]. Thus, each

service tier has a unit time interval. Let the utility functions be Ui(τ) = Di(T + 1)−Di(τ). Thus,
if Ti is the completion tier for player i, then her utility is given by Ui,Ti = Di(T + 1)−Di(Ti), for
all i. Let the resource capacities be Mt = 1 for all t ∈ [T ]. With this setting, we now observe that
the problem of maximizing social welfare is equivalent to minimizing the total tardiness. Given the
result in [263], we get that our problem is NP-hard, too, in general.

Remark 15. In [232], the authors arrive at a problem formulation that is similar to SYS. They note
that the condition (9.3) is not differentialble, thus making it hard to solve the problem SYS. They
propose to approximate this condition by the following equation

T̂i :=
1

β
log

(
1

Ji

T∑
t=1

eβtxi,t

)
. (9.33)

Note that as β →∞,
T̂i → max{t ∈ [T ] : xi,t > 0}.

If we assume that user i’s job is completed, i.e.
∑T

t=1 xi,t = Ji, then T̂i → Ti as β → ∞. The
authors replace Ui,Ti with Ui(T̂i) and use Taylor series first order approximation to further simplify
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the optimization problem, which can then be solved analytically. Our approach here is very different
from theirs. In the next section, we make an important observation regarding the structure of the
optimal solution to SYS-LP (see lemma 15). This observation not only allows us to show that the
gap between SYS-LP and SYS is small, but also explains why it is enough to consider our direct
relaxation instead of the one like (9.33). Besides, our direct relaxation is useful in decomposing
the problem into a cloud problem and several user problems–one for each user– giving rise to a
natural dynamic pricing mechanism (see section 9.4). Moreover, in a forthcoming paper, we extend
our problem formulation to account for uncertainties in the delay times. Our direct relaxation is
particularly useful in this extension.

Remark 16. Consider a scenario where the Pit’s are sampled independently from non-atomic
probability distributions over some finite intervals [Pi,t, Pi,t] (where Pi,t < Pi,t), for all i, t. (A
probability distribution over the real numbers is non-atomic if the probability of any single real
number occuring is zero.) In such a scenario, we observe that the probability of the event that a
non-trivial relationship amongst the variables Pi,t’s holds is zero. Thus, for any choice of T + 1
instances (i, t1, t2) that satisfy (9.15), we get a non-trivial relationship amongst the variables Pi,t’s
and the probability of this happening is zero. Since there are finitely many choices for such T + 1
instances (i, t1, t2), we get that the probability of there being more than T partial allocations is zero.
Thus, in a generic case in the sense above, for any optimal solution xi,t to SYS-LP, there can be
at most T instances where the users are allocated partial resources, i.e. 0 < xi,t < Ji. Moreover,
there are at most N instances where the users get their jobs completed, i.e. xi,t = Ji. And hence,
xi,t, i ∈ [N ], t ∈ [T ] is (N + T )-sparse (cf. Remark 13).
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Chapter 10

Cumulative Prospect Theory Perspective

In this chapter, we propose a model for lottery allocations in serverless computing which uses
cumulative prospect theory to capture the behavior of humans towards risk and uncertainty.

10.1 Introduction
Cloud computing has given rise to a growing trend of customers opting for computing resources as
a service instead of maintaining such systems on their own, allowing them to relieve the burden
of back office operations. When consumers adopt such service-oriented architectures, the two
most important aspects that they care about are the quality and the reliability of the service [230].
Different customers have different service requirements. With the growing customer demand for
cloud computing resources, we must allocate the limited resources optimally amongst the customers
based on their needs. In [266] (also Chapter 9), we focused on the quality of service aspect by taking
into account the delay-sensitivity characteristics of the customers while allocating resources. We
saw how to allocate resources that would prioritize the customers based on their delay-sensitivity
requirements and charge them appropriately. In this paper, we will extend it further to account for
the different reliability requirements of the customers.

Let us first briefly recall the notion of delay-sensitivity and the key contributions from [266].
The delay for a user’s job is defined as the time lapsed since the user submits a request for her job
(or her job gets triggered due to some event) until the job is completed. Given that it is a key aspect
of the quality of service for the user, her utility from the job is defined to be a function of the delay
in her job completion. Each user is assumed to have a utility function that maps the delay in her job
completion to her corresponding utility from this job. The delay-sensitivity of the user refers to this
utility function.

In [266], the authors set the goal of maximizing the total social welfare, i.e. the sum of the
utilities received by all the users. This gives rise to a scheduler problem, as shown in figure 10.1,
where it takes as its input the job sizes and the utility functions for each user, the capcity contraints
or machine availability information from the cloud, and outputs a job allocation schedule.

The scheduler is assumed to operate periodically (say every 0.1 seconds) and schedule the jobs
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Figure 10.1: A block diagram schematic for the system problem

that are currently in its queue to different service tiers based on their execution times. The different
service tiers describe the time of execution of a job and assuming that the job is executed reliably, it
marks the completion time of the job. This leads to a multi-tier scheduling problem that must be
solved periodically for each scheduler operation.

In [266], the authors formulate this as an optimization problem called the system problem and
analyse it further, including certain relaxations of this problem and the gap between the relaxation
and the original problem. Besides, they show that the relaxed system problem can be decomposed
in a cloud problem and several user problems–one for each user–that together solve the relaxed
system problem. This is similar to the result in [236] on the decompostion of network resource
allocation problem that underlies the window-based bandwidth allocation method in TCP protocol
[238]–[240]. In the cloud setting, this decomposition gives rise to a dynamic multi-tier pricing
scheme that incentizes users to bid optimally for resources that are tailored to their delay-sensitivity
requirements.

Although such a market-based pricing scheme allows us to differentiate between the users and
allocate the resources to customers who “want” them the most, or rather who are ready to pay
the most, it has a potential problem. This problem is accentuated when the demand for resources
exceeds the supply by a lot. It drives the prices high and discourages some of the smaller customers
from participating in such markets. Indeed, the customers come in all sizes. In particular, small
business owners particularly rely on cloud computing services as it allows them to off-load the
architecture and back-end duties that are critical to maintaining the computing resources and focus
on their core business processes [108].

Several service providers use lottery-based allocations to decide which agents to serve next. For
example, First-in-First-out (also known as First-Come-First-Serve) is a popular way of allocating
warm queues in serverless computing [109]. As a result, all the customers who are willing to pay
the minimum price set by the service provider get a shot at receiving the service. Such lottery-based
provisions give rise to uncertainties in the execution of the jobs and their delay times. Just as
we distinguished between different customers with varying delay-sensitivity, another important
criteria for service requirement is the uncertainty in execution of jobs, and different agents have
different preferences towards these uncertainties. Our goal in this paper is to capture these varying
preferences towards uncertainties and allocate resources optimally via lotteries.

Suppose a user is alloacted a lottery over her delays where the user’s job is completed at τ = 1s
with a 20% chance, at τ = 5s with a 20% chance, and at τ = 100s with a 60% chance. A common
technique to compute the utility or the “happiness” of a user for such a delay-lottery is to evaluate
the expected utility for it. However, it has been observed through several empirical studies that
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human beings often do not exhibit behavior that conforms with this evaluation technique.
Consider a hypothetical situation where a user’s willingness-to-pay is $1 to get her job completed

in 1 sec. As in [266], here we will consider the notion of willingness-to-pay in lieu of utilities. Due
to an exceeding demand, suppose the market price is $2 for job completion within 1 sec. Thus, the
user is unwilling to purchase it at the market price. However, it is possible that this user is ready to
pay $0.5 to get a 20% chance of having her job completed in 1 sec. Note that she is ready to pay
more than the chance adjusted market price, which would be 0.2× $2 = $0.4 in this case. Here,
rather than losing out completely on the opportunity to get her job completed within 1s, she might
be ready to make a payment of $0.5, still within her budget of $1 to get a chance of completing
the job within 1s. Note that this behavior is different from the expected utility predictions which
say that the user’s willingness-to-pay for a 20% chance of getting the job done within 1s must be
0.2×$1 = $0.2. Customers are known to show such varying degrees of sensitivities to probabilities.

The correct model to consider to account for this phenomenon is cumulative prospect theory
(CPT) [267], which is a generalization of expected utility and one of the leading decision theory
models. It comprises of a probability weighting function in addition to the utility function that
captures the probabilistic-sensitivity of the customers. Besides, such probabilistic-sensitivities are
more commonly observed in small customers who are likely to adopt cloud-based services rather
than maintaining their own computing systems.

In Section 10.2, we explain the CPT model in detail. We then formulate a system problem called
SYS-CPT for a scheduler that allocates lotteries to the users based on their job requests and CPT
features, and the capacity constraints from the cloud. We onserve that this problem is non-convex
in general and it is hard to solve it optimally. We then use the discretization method proposed in
[248]. The idea is to restrict the lotteries presented to the users to have their probabilities of with
granularity 1/K, where K > 0 is an integer. (see (10.16)). For example, when K = 100, we
restrict all the probabilities to be of the form Z%, where Z is an integer from 0 to 100. This gives
rise to a discretized version of the system problem that we call SYS-CPT-K.

In Section 10.3, we analyse the problem SYS-CPT-K. We consider a relaxation to this problem
that we call SYS-CPT-K-R. The problem SYS-CPT-K-R is LP and can be solved efficiently. We
then establish several qualitative properties related to optimal solutions of SYS-CPT-K-R.

We then use these properties to show how to obtain an approximation to the optimal solution of
the non-relaxed problem SYS-CPT-K and give theoretical bounds on this approximation. Although
the number of variables in SYS-CPT-K-R are K times those in SYS-CPT-K, the qualitative results
abtained on the optimal solutions allow us to restrict the number of variables significantly. This
is important to implement and solve these problems in practice. It also allows us to conduct our
experiments in section 10.4.

In Section 10.4, we decompose the problem SYS-CPT-K-R into several user problems, one for
each user, and the cloud problem. This gives rise to a novel pricing mechanism that we discuss in
Section 10.4. Using this pricing mechanism we simulate a market dynamics in Section 10.4.
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10.2 Model
We first recall the model for serverless computing systems from [266]. According to this model,
the service provider has access to a certain fleet of serverless workers, which it can use to execute
the functions submitted by the customers (or users). We assume that each function execution
requires one serverless worker and takes unit time (e.g., 100 ms). The number of serverless workers
avaiblable to the service provider at any given time is an input to our model. A user can request for
a job comprised of any number of executions of her function at any time (which could be triggered
by external events.) We treat these requests as inputs to our system. We model the decision making
task of the service provider, namely, the allocation of serverless workers to execute the submitted
jobs, as a scheduler shown in figure 10.1.

The scheduler’s decisions affect the quality of service of the users, in particular, the completion
times of the user’s submitted jobs. User i’s job is said to be completed when all the Ji functions
in her job are executed. We assume that the users have certain preferences over the delays in their
job completion. Let Ui : R ∪ {∞} → R denote the utility function of user i. Here, Ui(τ) denotes
the utility for user i corresponding to her job getting completed at time τ . We assume that Ui is
a non-increasing function with Ui(∞) = 0. (See figure 9.1 from Chapter 9.) In contrast to the
model in [266], we allow the delay in user i’s job to be randomized and use lotteries to denote the
underlying uncertainties. For example, consider the lottery

Li := {(pi(1), yi(1)), . . . , (pi(K), yi(K))}, (10.1)

where yi(k) ∈ R+ ∪ {∞}, k ∈ [K], are the completion times and pi(k) the corresponding probabil-
ities with which they occur. We assume the lottery to be exhaustive, i.e.

∑K
j=1 pi(k) = 1. (Note

that we are allowed to have pi(k) = 0 for some values of k ∈ [K] and yi(k) = yi(k
′) for some

k, k′ ∈ [K]. A completion time of∞ denotes that the job is not completed.) Thus, a lottery

{(0.15, 0.1s); (0.05, 2s); (0.2, 10s); (0.6, 1000s)}, (10.2)

would mean that the user’s job is completed at τ = 0.1s with a 15% chance, at τ = 2s with a 5%
chance, at τ = 10s with a 20% chance, and at τ = 1000s with a 60% chance. Correspondingly, we
note that the user’s job is completed within 0.1s with a 15% chance, within 2s with a 20% chance,
within 10s with a 40% chance, and within 1000s for sure, i.e. with a 100% chance.

We assume that the users have certain preferences over such delay-lotteries. According to
expected utility theory, each user computes the expected utility from a given lottery. Thus the
“happiness” of user i under expected utility theory (EUT) for lottery Li would be

K∑
k=1

pi(k)Ui(yi(k)).

For example, the expected utility of user 2 in figure 9.1 (from Chapter 9) for the lottery Li in (10.2)
would be

0.15× 4 + 0.05× 3 + 0.2× 2.5 + 0.6× 1 = 1.85
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Figure 10.2: Examples of probability weighting functions. Here, we have used the form wi(p) =
δpγ

δpγ+(1−p)γ , suggested by [269] with δ = 0.7 and γ as indicated in the plot.

This is a special case of the cumulative prospect theory model to which we will generalize now.
Let us describe the CPT model that we use to measure the “happiness” derived by each player
from her lottery (for more details see [268]). Suppose an agent faces a lottery Li as shown in
(10.1). Each player i is associated with a utility function Ui : R+ → R+ as before, and a probability
weighting function wi : [0, 1]→ [0, 1] that is continuous, strictly increasing and satisfies wi(0) = 0
and wi(1) = 1. (See, for example, figure 10.2.)

For the prospect Li, let πi : [K]→ [K] be a permutation such that

Ui(ȳi(1)) ≥ Ui(ȳi(2)) ≥ · · · ≥ Ui(ȳi(K)), (10.3)

and
ȳi(k) := yi(πi(k)) for all k ∈ [K]. (10.4)

This is equivalent to the ordering

ȳi(1) ≤ ȳi(2) ≤ · · · ≤ ȳi(k),

since the utility function Ui(·) is assumed to be non-increasing. The prospect Li can equivalently be
written as

Li = {(p̄i(1), ȳi(1)); . . . ; (p̄i(k), ȳi(k))},
where p̄i(k) := pi(πi(k)) for all k ∈ [K]. The CPT value of prospect Li for the agent is evaluated
using the utility function Ui(·) and the probability weighting function wi(·) as follows:

Vi(L) :=
K∑
k=1

di(pi, πi, k)Ui(ȳi(k)), (10.5)

where di(pi, πi, k) are the decision weights given by di(pi, πi, 1) := wi(p̄(1)) and

di(pi, πi, k) := wi(p̄i(1) + · · ·+ p̄i(k))− wi(p̄i(1) + · · ·+ p̄i(k − 1)),
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for 1 < k ≤ K. Although the expression on the right in equation (10.5) depends on the permutation
πi, one can check that the formula evaluates to the same value Vi(Li) as long as πi satisfies (10.3)
and (10.4). Say, in our above example, the user 2 satisfies a CPT weighing of w2(p) = δpγ

δpγ+(1−p)γ
with δ = 0.7 and γ = 0.4 (see Fig. 10.2 for a plot of the weighting function). Thus, the CPT value
of user 2 is given by

(w2(0.15)− w2(0))× 4 + (w2(0.2)− w2(0.15))× 3

+(w2(0.4)− w2(0.2))× 2.5 + (w2(1)− w2(0.4))× 1 = 2.026

The CPT value of prospect Li, can equivalently be written as

Vi(Li) =
K∑
k=1

wi
( k∑
s=1

p̄i(s)
)

[Ui(ȳi(k))− Ui(ȳi(k + 1))] ,

where ȳi(K + 1) := 0. Thus the worst end time ȳi(K) is weighted by wi(1) = 1, and every
increment in the value of the allocations, Ui(ȳi(k))− Ui(ȳi(k + 1)),∀k ∈ [K − 1], is weighted by
the probability weighting function of the probability of receiving an allocation at least equal to
ȳi(k). For user 2, the CPT value can, thus, be equivalently written as

w2(0.15)× [4− 3] + w2(0.2)× [3− 2.5]

+w2(0.4)× [2.5− 1] + w2(1)× [1− 0] = 2.026

This completes the description of the CPT value computation of the users over the delay-lotteries.
Note that a user’s CPT value is completely characterized by her utility function and her probability
weighting function.

We will now recall the scheduler model from [266], and modify it to allow for randomized
resource allocations. A queue is maintained by the scheduler, where all the jobs requested by the
users are added. A job remains in the queue until it is scheduled for execution. The scheduler is
operated periodically and schedules the jobs that are currently in its queue. Let Ji denote the size of
job i in the queue, i.e. the number of function executions needed for job i. (If there are two or more
jobs corresponding to the same user in the queue, we will treat them as jobs from different users
with identical characteristics.) Let [N ] := {1, . . . , N} be the set of jobs that are currently pending
in the queue. We will refer to job i as user i’s job.

As in [266], we will consider the multi-tier model of resource allocation with T service tiers.
Let τt denote the end time of tier t and Ui,t := Ui(τt) be the utility of user i corresponding to her
job getting completed in tier t. Let Pi,t denote the probability that user i’s jobs are completed by the
end of tier t. For all i, t, let

pi,t := Pi,t − Pi,(t−1) (10.6)

denote the probability that user i’s jobs are completed in tier t, i.e., they are completed by the end of
tier t but not by the end of tier (t− 1).
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LetMt denote the number of available machines in tier t. Suppose we ask that the cloud capacity
constraints are satisfied in expectation. Then this condition can be written as the constraint

N∑
i=1

pi,tJi ≤Mt, (10.7)

for all t. Suppose the cloud service provider does the following: For each job i and tier t it tosses
a coin with a bias pi,t. If it lands heads and the job i has not been executed before tier t then it is
executed in tier t. As a result of such independent sampling, it can happen that the total required job
executions in tier t exceeds the capacity Mt. Cloud service providers often have reserves which they
can use in such cases. As a first order condition, we know from queuing theory that the system with
such reserves will be stable if it satisfies the capacity contraints in expectation. Hence we consider
the capacity constraints as in (10.7).

The problem of maximizing the total “happiness” of all the users with a probabilistic allocation
of resources to users is given by

SYS-CPT

max
pi,t,Pi,t≥0

N∑
i=1

T∑
t=1

wi (Pi,t)ui,t (10.8)

subject to
T∑
t=1

pi,t ≤ 1,∀i ∈ [N ], (10.9)

N∑
i=1

pi,tJi ≤Mt,∀t ∈ [T ], (10.10)

t∑
s=1

pi,s = Pi,t, ∀ i ∈ [N ], t ∈ [T ], (10.11)

where ui,t := Ui,t − Ui,(t+1).
If the users are restricted to have EUT preferences, then the system problem of maximizing the

total expected utility for all the users with a probabilistic allocation of resources to users is given by

SYS-EU

max
pi,t≥0

N∑
i=1

T∑
t=1

pi,tUi,t

subject to
T∑
t=1

pi,t ≤ 1,∀i ∈ [N ], (10.12)

N∑
i=1

pi,tJi ≤Mt,∀t ∈ [T ]. (10.13)



CHAPTER 10. CUMULATIVE PROSPECT THEORY PERSPECTIVE 189

We observe that SYS-EU is exactly same as SYS-LP in [266] with the transformation xi,t =
pi,tJi.

SYS-LP

max
xi,t≥0

N∑
i=1

T∑
t=1

xi,t
Ui,t
Ji

subject to
T∑
t=1

xi,t ≤ Ji, ∀i ∈ [N ], (10.14)

N∑
i=1

xi,t ≤Mt,∀t ∈ [T ]. (10.15)

Being a linear programming, SYS-LP can be solved efficiently, and hence we get the solution for
SYS-EU. Further, it is shown in [266] that under certain natural conditions, the optimal solution xi,t
to SYS-LP is such that there are at most T non-zero entries in the matrix xi,t that are not equal to Ji.
Translating this into the optimal solution pi,t, we get that except for at most T entries, all other jobs
are either not executed at all or executed with probability 1 in some tier. That is, for most of the
users we have a lottery Li that allocates resources in a specific tier with probability 1. Thus, for
most of the users, we assign them deterministic lotteries under EUT.

Remark 17. The problem SYS-CPT, in general, is non-convex and has several local minima. We
verified this by solving SYS-CPT in the popular non-convex programming framework PyTorch
[270]. We used gradient descent with back-propagation and observed that the solution reached
different minima for different initializations of gradient descent.

We now use the discretization method introduced in [248] to solve SYS-CPT approximately.
Besides, there are behavioral reasons to adopt such a discretization. We will explain them shortly.
Let us first describe the discretization method. Fix an integer K > 0. We restrict our attention to
lotteries where each user i is shown lotteries

L̂i = {(qi,1, τ1); . . . ; (qi,1, τT )}

such that

qi,t ∈ ∆ :=

{
k

K
: 0 ≤ k ≤ K

}
, (10.16)

for all t. Let

Qi,t :=
t∑

s=1

qi,t, (10.17)

denote the corresponding cumulative probabilities for all t. Note that

Qi,t ∈
{
k

K
: 0 ≤ k ≤ K

}
= ∆, (10.18)
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for all t. As K →∞, we get better approximations to any probability distribution. However, there
is a practical motivation to keep K limited. From a behavioral perspective, people often do not
comprehend small differences in probability. For this reason, it is useful to restrict K (for example
K ≤ 100).

Although we restrict ourselves to presenting lotteries to the agents with probabilities belonging
to the discretized mesh ∆, it does not stop us from using implementations with general probabilities
as long as we are providing the agents at least what we are promising them. Let us make this
argument concrete. Suppose we show each player i a lottery Li with cumulative probabilities

Qi,• := (Qi,t)t∈[T ],

and corresponding probabilities
qi,• := (qi,t)t∈[T ],

satisfying (10.17). Suppose we use an implementation defined by probabilities p := (pi,t)i,t, where
pi,t denotes the probability with which player i is allocated her resources Ji in tier t. Thus the true
lottery for player i is given by

Li := {(pi,1, τ1); . . . ; (pi,1, τT )}.

Let
pi,• := (pi,t)t,

and the corresponding cumulative probabilities

Pi,• := (Pi,t)t,

satisfy (10.6)
We use the notion of first order stochastic dominance to determine when one lottery is better

than the other. Lottery Li first order stochastically dominates lottery L̂i if

Pi,t ≥ Qi,t,∀t ∈ [T ].

For example, consider the lottery

{(0.10, 0.1s); (0, 2s); (0.25, 10s); (0.65, 1000s)}. (10.19)

Compare this lottery with the lottery shown in (10.2). It is easy to check that the lottery shown in
(10.2) first order stochastically dominates the lottery shown in (10.19). We notice that the lottery in
(10.19) is formed by shifting a 5% chance from outcome 0.1s to outcome 1000s and a 5% chance
from outcome 2s to 10s. In general, if lottery Li first order stochastically dominates lottery L̂i,
then lottery Li is formed by shifting probability mass from some outcomes to outcomes that are
strictly preferred to them. This is a very strong condition of dominance and it is widely held that
any satisfactory theory of preferences should satisfy it [271]. In particular, the CPT preferences and
EUT preferences satisfy this condition [272].



CHAPTER 10. CUMULATIVE PROSPECT THEORY PERSPECTIVE 191

We ask that p be implementable, i.e. it satisfies the capacity constraints (10.9) and (10.10).
For each player i, lottery Li corresonding to pi,• first order stochastically dominates lottery L̂i
corresponding to qi,•. The probabilities Qi,t and qi,t belong to the mesh ∆. Let us call this
discretized version of SYS-CPT as SYS-CPT-K, that is given by

SYS-CPT-K

max
pi,t≥0,Qi,t∈∆

N∑
i=1

T∑
t=1

wi (Qi,t)ui,t (10.20)

subject to
T∑
t=1

pit ≤ 1,∀i ∈ [N ] (10.21)

N∑
i=1

pi,tJi ≤Mt,∀t ∈ [T ], (10.22)

t∑
s=1

pi,s ≥ Qit, ∀ i ∈ [N ], t ∈ [T ]. (10.23)

10.3 Analysis
We now give a richer problem formulation that would help us solve the above discretized version
of SYS-CPT, namely, SYS-CPT-K. Suppose the cloud provider achieves a lottery implementation
through a scheme as follows: The scheduler implements with equal probability one of the K
allocation schemes

x(k) := (xi,t(k))i∈[N ],t∈[T ],

for k ∈ [K]. Let [K] denote the set of alternatives. For alternative k, the job end time for user i is
given by

Ti(k) := min{t ∈ [T ] :
t∑

s=1

xi,s(k) ≥ Ji}, (10.24)

We will follow the convention that the right hand side takes value (T + 1) if
∑T

t=1 xi,t(k) < Ji.
Thus, if the job is not completed by the end of tier T , then we say that it is completed in the dummy
tier (T + 1). We will assume that τ(T+1) =∞, and hence, Ui,(T+1) = 0, for all players i. Thus the
probability that user i’s job is completed by the end of tier t is given by

Qi,t =
|{k : Ti(k) ≤ t}|

K
, (10.25)

and the lottery faced by user i is given by

Li = {(qi,1, τ1); . . . ; (qi,T , τT )},
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Figure 10.3: An illustration of how hi(·) is calculated using the CPT weighing function wi(·).

where
qi,t = Qi,t −Qi,(t−1). (10.26)

Note that qi,t, Qi,t ∈ ∆ for all i, t. The CPT value of this lottery is

Vi(Li) =
T∑
t=1

wi(Qi,t)ui,t. (10.27)

This lottery can equivalent be written as

Li = {(1/K, τTi(1)); . . . ; (1/K, τTi(k))}.

Note that in this formulation the end times can appear repeatedly, but the total probability of any
particular end time is same in both the formulations. It is easy to verify that the CPT value formula
is invariant under such equivalent representations. Also note that the end times in the second
formulation are not ordered. Let πi : [K]→ [K] be a permutation such that

T̄i(1) ≤ T̄i(2) ≤ · · · ≤ T̄i(K),

where T̄i(k) = Ti(πi(k)), for all k ∈ [K]. Then the CPT value of user i for lottery Li is given by

Vi(Li) =
K∑
k=1

hi(k)Ui,T̄i(k). (10.28)

where
hi(k) := wi(k/K)− wi((k − 1)/K),

for all k ∈ [K]. Note that the two formulas for the CPT value in (10.27) and (10.28) are equivalent.
Also note that if wi(·) is an identity function (as in the EUT setting), then hi(k) = 1/K, and
the corresponding CPT value is simply the average of the utilities from all the alternatives. An
illustration of how hi(k)’s are calculated is provided in Fig. 10.3.
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We now use the relaxation similar to that used in [266]. We approximate the utility for user i
corresponding to alternative k as follows:

Ui,Ti(k) ≈
T∑
t=1

xit(k)Ui,t
Ji

. (10.29)

Note that if (xit(k), t ∈ [T ]) is 1-sparse, with that non-zero entry equal to Ji, or an all zero vector,
then the above approximation is exact. With this relaxation our objective can be written as

N∑
i=1

K∑
k=1

hi(k)F̄i(xi,•(πi(k))),

where F̄ (xi,•(k)) :=
∑T

t=1 xi,t(k)Fi,t =
∑T

t=1 xi,t(k)Ui,t/Ji and the permutation πi(k) is such that

F̄i(xi,•(πi(1))) ≥ F̄i(xi,•(πi(2))) ≥ · · · ≥ F̄i(xi,•(πi(K))), (10.30)

for all i.
Corresponding to allocations x(k),∀k ∈ [K] and permutations πi,∀i ∈ [N ], let

zi,t(k) := xi,t(πi(k))

be a |T |-dimensional column vector, for i ∈ [N ], k ∈ [K]. With this notation, the objective function
can be written as

N∑
i=1

K∑
k=1

hi(k)F̄i(zi,•(k)), (10.31)

and the inequalities (10.30) take the form

F̄i(zi,•(1)) ≥ F̄i(zi,•(2)) ≥ · · · ≥ F̄i(zi,•(k)), (10.32)

for all i.
Strictly speaking, such a scheme in our richer problem formulation is feasible if and only if each

of the alternatives is feasible, i.e.
N∑
i=1

xit(k) ≤Mt, (10.33)

for all t, k. However, we will use this richer formulation only as an intermediate step to solve
SYS-CPT-K, where we are interested in the implementations that are feasible in expectation. Hence
we will, instead, consider the constraint

1

K

K∑
k=1

N∑
i=1

xi,t(k) ≤Mt,∀t ∈ [T ]. (10.34)
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This motivates the following relaxed system problem:

SYS-CPT-K-R

max
z(k)≥0

N∑
i=1

K∑
k=1

hi(k)F̄i(zi,•(k)) (10.35)

subject to
T∑
t=1

zi,t(k) ≤ Ji, ∀ i ∈ [N ], k ∈ [K], (10.36)

1

K

K∑
k=1

N∑
i=1

zi,t(k) ≤Mt, ∀ t ∈ [T ], (10.37)

F̄i(zi,•(k)) ≥ F̄i(zi,•(k + 1)), ∀ i ∈ [N ], ∀ 1 ≤ k ≤ K − 1. (10.38)

Notice that the problem SYS-CPT-K-R is an LP problem. As compared to the previous problems
SYS-CPT and SYS-CPT-K, the number of variables in SYS-CPT-K-R has becomeK-fold. Although
this might seem like a problem from a computational point of view, later we will derive some
qualitative features about the optimal solution which will let us significantly reduce the dimensions
of our variables. But more on this later. Let us first observe how the solution to SYS-CPT-K-R
compares to the solution to SYS-CPT-K.

Suppose p∗i,t, Q
∗
i,t,∀i, t, is an optimal solution to the SYS-CPT-K problem. Then, let us construct

a corresponding lottery allocation (z∗(k))k∈[K] as follows: let

z∗i,t(k) =

{
Ji, if Q∗i,(t−1) < k/K ≤ Q∗i,t,

0, otherwise,
(10.39)

for all i, t, k. (Recall that Q∗i,t ∈ ∆,∀i, t.) One can verify that (z∗(k))k is a feasible solution to
SYS-CPT-K-R, and the objectives (10.35) and (10.8) match exactly. This is because the allocations
z∗i,•(k) are either 1-sparse with the non-zero entry equal to Ji, or equal to the zero vector, and hence
the approximation in (10.29) is exact. Further, the optimal value of SYS-CPT-K matches

V ∗ :=
N∑
i=1

K∑
k=1

hi(k)F̄i(z
∗
i,•(k)). (10.40)

On the other hand, let (zR(k))k be an optimal solution of SYS-CPT-K-R. Let V R denote the
optimal value of the objective function of SYS-CPT-K-R, i.e.

V R :=
N∑
i=1

K∑
k=1

hi(k)F̄i(z
R
i,•(k)). (10.41)

We now define the end times T̃i(k), for each player i, for her kth best alternative by

T̃i(k) := min{t ∈ [T ] :
t∑

τ=1

zRi,τ (k) ≥ Ji}, (10.42)
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similarly to (10.24). Now consider Q̃it given by

Q̃i,t :=
|{k : T̃i(k) ≤ t}|

K
, (10.43)

similar to (10.25). Finally, let

z̃i,t(k) :=

{
Ji, if Q̃i,(t−1) < k/K ≤ Q̃i,t,

0, otherwise,
(10.44)

similarly to (10.39). Let the value of the objective function in SYS-CPT-K-R corresponding to z̃ be

Ṽ :=
N∑
i=1

K∑
k=1

hi(k)F̄i(z̃i,•(k)). (10.45)

Now note that in the allocation (z̃(k))k, the players get resources only in their completion tier. Thus,
they do not get any partial utility in our approximation (10.29). Hence, we have that Ṽ ≤ V R.
Further, Ṽ is equal to the value of the objective function in SYS-CPT-K corresponding to Q̃i,t, i.e.

Ṽ =
N∑
i=1

T∑
t=1

wi

(
Q̃i,t

)
ui,t. (10.46)

This is because the allocations z̃i,•(k) are either 1-sparse with the non-zero entry equal to Ji, or
equal to the zero vector. Now, if we let

pRi,t :=
1

K

K∑
k=1

zRi,t(k), (10.47)

then pRi,t, Q̃it is a feasible solution to SYS-CPT-K with value Ṽ . Thus Ṽ ≤ V ∗, since V ∗ is an
optimal solution to SYS-CPT-K.

Together, we get that
Ṽ ≤ V ∗ ≤ V R. (10.48)

In Theorem 15, we bound the gap between V R and Ṽ and thus get a bound on the gap between the
optimal solution to SYS-CPT-K and the solution arising from our relaxation.

We will now prove certain qualitative features of the optimal solution to SYS-CPT-K-R that we
had promised earlier. These will shed light on the optimal lottery allocations and help us bound the
gap between the optimal solutions to SYS-CPT-K and SYS-CPT-K-R. Besides, it will significantly
reduce the dimension of our problem SYS-CPT-K-R making it practical for actual deployment. This
is what allows us to run our simulations.

To describe these qualitative features let us define a few parameters of interest related to
the probability weighting functions wi,∀i. First we impose some additional conditions on the
probability weighting functions that are typically based on empirical evidence and psychological
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arguments [273]. We assume that the probability weighting function wi(pi) is concave for small
values of the probability pi, say for pi ∈ [0, p̃i], and convex for the rest. Typically the point of
inflection is around 1/3. Let w∗i : [0, 1]→ [0, 1] be the minimum concave function that dominates
wi, i.e. w∗i (pi) ≥ wi(pi) for all pi ∈ [0, 1]. Let p∗i ∈ [0, 1] be the smallest probability such that
w∗i (pi) is linear over the interval [p∗i , 1]. The following properties are evident from the figure (see
[248] for their proofs). We have p∗i ≤ p̃i, and

w∗i (pi) = wi(pi) for pi ∈ [0, p∗i ].

Further, if p∗i < 1, then for any p′i ∈ [p∗i , 1), we have

wi(pi) ≤ wi(p
′
i) + (pi − p′i)

1− wi(p′i)
1− p′i

,

for all pi ∈ [p′i, 1].

Proposition 14. If (z(k))k is an optimal solution to SYS-CPT-K-R, then

F̄i(zi,•(k
∗
i )) = F̄i(zi,•(k

∗
i + 1)) = · · · = F̄i(zi,•(K)), (10.49)

where k∗i := min{k ∈ [K] : (k − 1)/K ≥ p∗i }, provided p∗i ≤ (K − 1)/K.

We prove this proposition in Appendix 10.6.1.
Additionally, if there is an optimal solution (z(k))k such that F̄i(zi,•(k)) = F̄i(zi,•(k + 1)),

then we can construct a solution that is also optimal and satisfies zi,•(k) = zi,•(k + 1). To see this,
consider the allocation (z̃(k))k such that

z̃i,•(k) = z̃i,•(k + 1) =
zi,•(k) + zi,•(k + 1)

2
,

and let z̃(k) be the same as z(k) everywhere else. It is easy to see that z̃ is also an optimal solution
to SYS-CPT-K-R.

Corollary 3. There exists an optimal solution (z(k))k to SYS-CPT-K-R such that (10.49) holds for
all users i, and whenever F̄i(zi,•(k)) = F̄i(zi,•(k + 1)), we have zi,•(k) = zi,•(k + 1).

In the following, we will first establish some additional properties related to the structure of
an optimal solution (z(k))k to SYS-CPT-K-R, and use this to bound the gap between the optimal
solutions of SYS-CPT-K and SYS-CPT-K-R.
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The Lagrangian for the problem SYS-CPT-K-R is given by

L((z(k))k, (λi(k))i,k,(µt)t, (αi(k))k)

=
N∑
i=1

K∑
k=1

hi(k)F̄i(zi,•(k))−
N∑
i=1

K∑
k=1

λi(k)

(
Ji −

T∑
t=1

zi,t(k)

)

−
T∑
t=1

µt

(
Mt −

1

K

N∑
i=1

K∑
k=1

zi,t(k)

)

−
N∑
i=1

K∑
k=1

αi(k)

(
T∑
t=1

Fi,tzi,t(k)−
T∑
t=1

Fi,tzi,t(k + 1)

)
,

where λi(k) ≥ 0, µt ≥ 0, αi(k) ≥ 0 are the dual variables corresponding to the constraints (10.36),
(10.37), and (10.38). The complementary slackness conditions for the SYS-CPT-K-R problem are:

hi(k)Fi,t − λi(k)− µt
k

+ Fi,t(αi(k)− αi(k − 1))

{
= 0, if zi,t(k) > 0,

≥ 0, if zi,t(k) = 0,
∀i, t, (10.50)

T∑
t=1

zi,t(k)

{
= Ji, if λi(k) > 0,

≤ Ji, if λi(k) = 0,
∀i, k, (10.51)

1

K

N∑
i=1

K∑
k=1

zi,t(k)

{
= Mt, if µt > 0,

≤Mt, if µt = 0,
∀t, (10.52)

T∑
t=1

Fi,tzi,t(k)−
T∑
t=1

Fi,tzi,t(k + 1)

{
= 0, if αi(k) > 0,

≥ 0, if αi(k) = 0,
∀i, k. (10.53)

Now observe that αi(0) = αi(k) = 0 for all i. Consider the set Si comprising of elements (k1, k2; i)
such that 0 < k1 ≤ k2 < K, αi(k1 − 1) = αi(k2) = 0, and αi(k) > 0 for all k1 ≤ k ≤ k2 − 1.
Note that each k ∈ [K] belongs to the interval defined by a unique element (k1, k2; i) ∈ Si. In
words, k1 and k2 determine the maximal contiguous strip of indices such that αi(k) > 0. From
(10.53), αi(k) > 0 implies

∑T
t=1 Fi,tzi,t(k) =

∑T
t=1 Fi,tzi,t(k + 1).

As observed above, without loss of generality, let (z(k)k) be an optimal solution such that
whenever F̄i(zi,•(k)) = F̄i(zi,•(k + 1)), we have zi,•(k) = zi,•(k + 1). Thus, corresponding to any
element (k1, k2; i) ∈ Si, we have a common vector z∗i,• := (z∗it)t∈[T ] such that z∗i,• = zi,•(k), for all
k1 ≤ k ≤ k2. From (10.50), we have

hi(k)Fi,t − λi(k)− µt
k

= Fi,t(αi(k − 1)− αi(k)), (10.54)

for all z∗i,t > 0. Telescoping over k1 ≤ k ≤ k2 + 1, we get

Fi,t

(
k2∑

k=k1

hi(k)

)
=

k2∑
k=k1

λi(k) +

k2∑
k=k1

µt
k
. (10.55)
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Suppose there are more than one tiers t, say t 6= t′, for which z∗i,t > 0, then we get

(Fi,t − Fi,t′)
(

k2∑
k=k1

hi(k)

)
= (k2 − k1 + 1)

µt − µt′
K

. (10.56)

Thus, if we have an intance (k1, k2, t, t
′; i) such that (k1, k2; i) ∈ Si and z∗i,t > 0 and z∗i,t′ > 0

for the corresponding common allocation vector z∗i,•, then we have an equality relation as shown
in (10.56). We now note that the parameters µt are not indexed by i. If we have more than T such
distinct instances then we get a non-trivial relationship between the variables Fi,t. Now using an
argument similar to the one given in [266], we have

Lemma 16. There exists an optimal solution (z(k))k such that except for at most T elements in
∪iSi, the corresponding common vector z∗i,• has either one element that is equal to Ji, or is the zero
vector.

Let T ⊂ ∪iSi denote the set of all elements (k1, k2; i) such that the corresponding common
vector z∗i,• either has more than one non-zero elements or has a single non-zero element not equal to
Ji. According to lemma 16, there exists an optimal solution (z(k))k such that |T | ≤ T. The proof
is similar to the one in [266] and we omit it. Using this property regarding the existence of a sparse
solution, we get a bound on the gap that we prove in appendix 10.6.2.

Theorem 15. Let V ∗ and V R be the optimal objective values of the problem in SYS-CPT-K and
SYS-CPT-K-R, respectively. We have,

V ∗ ≥
(

1− T (maxi Ji)

mintMt

)
V R. (10.57)

10.4 Pricing Mechanisms for Lottery-based Allocation
Previously, we assumed that the users’ utilities are known at the cloud provider. However, this is not
true in general. Here, we design a feedback-based scheme to find the optimal lottery allocation. We
will decompose the system problem SYS-CPT-K-R into USER(i) problems–one for each user–and
a CLOUD problem.

First, let us see how the observation in Corollary 3 helps us reduce the dimensions of the problem
SYS-CPT-K-R. For each player i, we have p∗i ∈ [0, 1] as defined above Proposition 14. As noted
earlier, p∗i ≤ 1/3 for typical probability weighting functions. Let K ≥ 3. Thus, p∗i ≤ (K − 1)/K.
Let k∗i = min{k ∈ [K] : (k − 1)/K ≥ p∗i }, for each player i. Let k∗ = maxi{k∗i }. From
Proposition 3, we know that there exists an optimal solution to SYS-CPT-K-R such that the lottery
allocations zi,•(k) are identical for all k ≥ k∗. Let us club all these alternatives into a single
alternative K∗. We consider a setting with K∗ = k∗ alternatives, where each of the alternatives
k ∈ [K∗−1] has its corresponding probability 1/K and the last alternativeK∗ has its corresponding
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probability (K −K∗ + 1)/K. Let

δ(k) :=

{
1/K, for 1 ≤ k < K∗,

(K −K∗ + 1)/K, for k = K∗.

Let

h∗i (k) :=

{
wi(k/K)− wi((k − 1)/K), for 1 ≤ k < K∗,

1− wi(k∗ − 1/K), for k = K∗.

Now, without loss of generality, we can reduce the problem SYS-CPT-K-R to the following
problem:

SYS-CPT-K*-R

max
z(k)≥0

N∑
i=1

K∗∑
k=1

h∗i (k)F̄i(zi,•(k)) (10.58)

subject to
T∑
t=1

zi,t(k) ≤ Ji, ∀ i ∈ [N ], k ∈ [K∗], (10.59)

K∗∑
k=1

N∑
i=1

δ(k)zi,t(k) ≤Mt, ∀ t ∈ [T ], (10.60)

F̄i(zi,•(k)) ≥ F̄i(zi,•(k + 1)), ∀ i ∈ [N ], ∀ 1 ≤ k ≤ K∗ − 1. (10.61)

To decompose the problem, we define a new variable matrices mi,•(k) ∈ RT , for all i ∈
[N ], k ∈ [K∗], which is representative of user i’s budgets corresponding to different alternatives k
and different tiers t. Let (µt)t∈[T ] denote a price vector.

We define the USER(i) problem as follows:

USER (i)

max
mi,•(k),∀k∈[K∗],
mi,t(k)≥0,∀t,k

T∑
t=1

K∗∑
k=1

mi,t(k)

µt
(h∗i (k)Fi,t − δ(k)µt)

subject to
T∑
t=1

mi,t(k)

µt
≤ Ji, ∀ k ∈ [K∗], (10.62)

T∑
t=1

Fi,t
mi,t(k)

µt
≥

T∑
t=1

Fi,t
mi,,t(k + 1)

µt
, ∀ 1 ≤ k ≤ K∗ − 1. (10.63)

Given the budget vectors mi(k) ≥ 0 for all players i and alternatives k, consider the following
problem for the cloud service provider:
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CLOUD

max
zi,t(k)≥0

K∗∑
k=1

N∑
i=1

T∑
t=1

δ(k)mi,t(k) log(zi,t(k))

subject to
K∗∑
k=1

N∑
i=1

δ(k)zi,t(k) ≤Mt, ∀ t ∈ [T ]. (10.64)

Theorem 16. There exist an equilibrium price vector (µt)t, allocation matrices z(k) for all k ∈ [K∗],
and budget vectors mi,•(k) for all i ∈ [N ], k ∈ [K∗], such that

1. (mi,•(k))k∈[K∗] solves USER(i), ∀ i ∈ [N ],

2. (z(k))k∈[K∗] solves the CLOUD problem,

3. mi,t(k) = zi,t(k)µt, for all i ∈ [N ], t ∈ [T ], k ∈ [K],

4. for any t, if
∑

i

∑
k δ(k)zi,t(k) < Mt, then qt = 0.

Further, if the allocations (z(k))k are at equilibrium, i.e. have a corresponding price vector (µt)t
and budget vectors mi,•(k) for all i ∈ [N ], k ∈ [K∗], that together satisfy (i), (ii), (iii), and (iv),
then (z(k))k solves the problem SYS-CPT-K*-R.

Proof. Similarly to the Lagrangian for SYS-CPT-K-R, we can form the Lagrangian for SYS-CPT-
K*-R with the dual variables λi(k) ≥ 0, i ∈ [N ], k ∈ [K∗], µt ≥ 0, t ∈ [T ], and αi(k) ≥ 0, i ∈
[N ], k ∈ [K∗]. The corresponding complementary slackness conditions take the form

h∗i (k)Fi,t − λi(k)− µt
k

+ Fi,t(αi(k)− αi(k − 1))

{
= 0, if zi,t(k) > 0,

≥ 0, if zi,t(k) = 0,
∀i, t, k ∈ [K∗]

(10.65)
T∑
t=1

zi,t(k)

{
= Ji, if λi(k) > 0,

≤ Ji, if λi(k) = 0,
∀i, k, (10.66)

N∑
i=1

K∑
k=1

δ(k)zi,t(k)

{
= Mt, if µt > 0,

≤Mt, if µt = 0,
∀t, (10.67)

T∑
t=1

Fi,tzi,t(k)−
T∑
t=1

Fi,tzi,t(k + 1)

{
= 0, if αi(k) > 0,

≥ 0, if αi(k) = 0,
∀i, k. (10.68)
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The Lagrangian for the USER(i) problem with γi(k) and βi(k), i ∈ [N ], k ∈ [K] as dual
variables corresponding to the two constraints (10.62) and (10.63) is given by

L((mi,•(k))k, (γi(k))k, (βi(k))k)

=
K∗∑
k=1

mi,t(k)

µt
(h∗i (k)Fi,t − δ(k)µt)

+
K∗∑
k=1

γi(k)

(
Ji −

mi,t(k)

µt

)
+

K∗−1∑
k=1

βi(k)

(
T∑
t=1

mi,t(k)

µt
Fi,t −

T∑
t=1

mi,t(k + 1)

µt
Fi,t

)
.

The corresponding KKT conditions are given by

h∗i (k)Fi,t − γi(k)− δ(k)µt + Fi,t(βi(k)− βi(k − 1))

{
= 0, if mi,t(k) > 0,

≥ 0, if mi,t(k) = 0,
∀i, t, k ∈ [K∗],

(10.69)
T∑
t=1

mi,t(k)

µt

{
= Ji, if γi(k) > 0,

≤ Ji, if γi(k) = 0,
∀i, k,

(10.70)
T∑
t=1

Fi,t
µt

(mi,t(k)−mi,t(k + 1))

{
= 0, if βi(k) > 0,

≥ 0, if βi(k) = 0,
∀i, k.

(10.71)

Similarly, for the CLOUD problem, the Lagrangian with dual variables qt, t ∈ [T ] can be written
as

L((z(k)k, (qt)t) =
N∑
i=1

T∑
t=1

K∗∑
k=1

δ(k)mi,t(k) log(zi,t(k)) +
T∑
t=1

qt

(
Mt −

K∗∑
k=1

N∑
i=1

δ(k)zi,t(k)

)
.

The corresponding KKT conditions are given by

mi,t(k) = qtzi,t(k) ∀ i, t, k ∈ [K∗], (10.72)
N∑
i=1

K∑
k=1

δ(k)zi,t(k)

{
= Mt, if qt > 0,

≤Mt, if qt = 0,
∀t, (10.73)

Now, observe that given a solution (z, λ, µ, α) to SYS-CPT-K-R and satisfies the corresponding
KKT conditions, it also satisfies the KKT conditions for USER(i), for all i ∈ [N ], and CLOUD
problems with mk

it = zkit/λ,q = µµµ,p = λλλ and βββ = α.

The detailed steps of the pricing mechanism process is provided in Algorithm 21. Further, in
Fig. 10.4, we plot the results of decentralized pricing scheme from Algorithm 21 for N = 100
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(a) The tracking algorithm eventually achieves opti-
mal utility.

Tier 1

- - - Users’ budgets

       Total price charged

Tier 2

Tier 3

(b) The prices set by the cloud provider and the
budgets showed by the users converge to the optimal
with the tracking algorithm.

Figure 10.4: Performance of the tracking-based algorithm.

users and T = 3 tiers with i.i.d. user utilities. CPT weighing function is given shown in Fig. 10.2
where γ is chosen i.i.d. from [0.3, 0.5] for each user. Number of gradient steps, G, was chosen to be
100 and the step-size κ was kept at 3× 10−5. From Fig. 10.4a, we note that after only 7 iterations
(budget/pricing) updates, the system utility of the tracking-based scheme converges to the optimal
system utility. Further, as seen from Fig. 10.4b, with small changes in the pricing scheme, the cloud
service provider is able to nudge the users to change their budget to match the optimal solution.

10.5 Experiments
In this section, we present some experiments to show the advantages of considering a CPT based
utility objective over a naive Expected Utility (EU) objective considered earlier. We consider the
general CPT weighing function from Figure 10.2 that is a function of two parameters, that is, for
the i-th user, the CPT weighing is given by

wi (pi) =
δpγii

δpγi + (1− p)γi .

For all the experiments in this section, we keep δ = 0.7 and γi is chosen uniformly randomly in
an i.i.d. fashion from [0.3, 0.5] for each user i. Further, we fix the number of users N = 100, the
number of service tiers T = 3, and the number of machines at the cloud provider Mt = 1000, for
all t. Each user obtains a utility between 50 and 100, uniformly chosen, upon successful completion
of all her jobs. In Fig. 10.5, we plot the variation in utilities when the demand of the users is varied.
The number of jobs at the i-th user, Ji, is chosen to be a uniform random variable between 10 and 99
for all i ∈ [1, 100]. To vary the demand in the system, the number of users in the system is increased
from 20 to 100, and the overall utility of the system with the CPT and EUT objectives is plotted.

We see the when the number of users is increased (i.e., the demand is increased while keeping
the supply constant), the system utility with the CPT objective increases. In particular, when the



CHAPTER 10. CUMULATIVE PROSPECT THEORY PERSPECTIVE 203

Algorithm 21: Finding the optimal resource allocation and pricing without utility infor-
mation at the cloud end

Input :Total number of machines M , step-size κ, error tolerance ε, gradient steps G, job
sizes Ji, CPT weighing wi(·), and utilities Ui(·) (known only to user i for i ∈ [N ])

1 Initialization: Cloud service provider shows some initial prices q = q0 ∈ RT (say, the all
ones vector)

2 while ‖q− qprev‖ ≥ ε‖qprev‖ do
3 qprev = q
4 Users, for all, i ∈ [N ], solve for budget vector mi ∈ RT using the price vector q in the

USER(i) problem
5 The cloud service provider receives the budget matrix m and does the following
6 step = 0
7 while step ≤ G do
8 qt = max

[
qt + κ

(∑K
k=1

∑N
i=1m

k
itδk

qt
−Mt

)
, 0
]
∀ t ∈ [T ]

9 step = step+ 1

10 end
11 end
12 zkit = mk

it/qt for all i ∈ [N ], t ∈ [T ]
13 Use Algorithm 22 to project zkit to the constraint sets

∑
k

∑
i z

k
it ≤Mt, ∀ t and

zkit ≥ 0 ∀ i, t, k.
Result: Solution to SYS, that is, the optimal pricing vector q∗ and the optimal resource

allocation vector x∗

number of users is 20, we keep the demand and supply of the system almost the same. In that case,
the CPT system utility is only 4% better than the EU utility. However, when the number of users is
increased to 100 while keeping the supply constant, the CPT system utility is 20% better. For the
rest of the experiments in this section, we consider the latter case (i.e., when the demand exceeds
supply by approximately a factor of five).

In Fig. 10.6, we show the effect of having CPT users in the system and how does that affect the
overall system utility. Since the EU problem does the account for the CPT behaviour, the system
utility does not change much. Further, we note that the cloud provider can significantly increase the
system utility if it takes into account the CPT behaviour of the users.

10.5.1 Market Simulations
In this section, we run an experiment for 60 days with N = 100 users and T = 3 tiers, where each
day, users’ utilities are changing based on the market trends. Specifically, for the first 30 days,
we synthetically generate utilities that follow an upward trend based on the market following by a
downward trend for the next 30 days. To simulate this, we generate uit, for all i, t, from a uniform
distribution in [5, 10] in an i.i.d. fashion. The job size for the i-th user, Ji, for all i, is an i.i.d. integer
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Algorithm 22: Han’s algorithm for projection on the intersection of convex sets
Input :z ∈ RK×N×T , Constraint sets C1, C2 ∈ RK×N×T , where

C1 := {zkit|
∑

k

∑
i z

k
it ≤Mt, ∀ t}, and C2 := {zkit| zkit ≥ 0 ∀ i, t, k}, error

tolerance ε
1 Initialization: Define z1 = z, z2 = z.
2 while ‖z− zprev‖ ≥ ε‖zprev‖ do
3 zprev = z

4 (z′1)kit = zkit − δk max
[∑

i,k z
k
itδk−Mt

N
∑
δ2k

, 0
]
∀ i, t, k.

5 z′2 = z, z′2[z′2 < 0] = 0
6 z = (z′1 + z′2)/2
7 z1 = z + z1 − z′1
8 z2 = z + z2 − z′2
9 end

Result: z: Projection of the input matrix to sets C1 and C2

20% 
better

Figure 10.5: CPT versus EU Utilities when the
number of users (that is, demand) is increased.

20% 
better

Figure 10.6: CPT versus EU Utilities when the
percentage of users that exhibit CPT behavior
is increased.

chosen between 10 to 100 (which remains constant throughout the 60 days of the experiment) and
Mt = 5000 for all t. To generate an upward market trend, we add 0.5 to uit,∀i, t, with probability
0.55 and -0.5 with probability 0.45 (the probabilities are flipped to generate a downward trend).

We compare the following four schemes:

• Optimal CPT pricing: Here, we assume that the cloud provider is able to solve for the
optimal lotteries and maximize system utility by utilizing the knowledge of users’ utilities at
each day.

• Price Tracking (CPT): In this case, the users’ utilities are not known, and the cloud provider
tracks users’ utilities based on their budget signals (as described in Algorithm 21). The cloud
provider is assumed to update the prices everyday. Users send budget signals only once per



CHAPTER 10. CUMULATIVE PROSPECT THEORY PERSPECTIVE 205

(a) One user budget update each day for the price
tracking schemes (EU and CPT)

(b) Two user budget updates each day for the
price tracking algorithms (EU and CPT)

Figure 10.7: Sum utilities for the four resource allocation schemes

day. These budget signals depend on the user’s utility function on that day and the prices
published by the cloud on that day.

• Price Tracking (EUT): Here, we do not consider the CPT-ness of users and use the price
tracking algorithm from earlier work.

• First-In-First-Out (FIFO): Here, the pricing of the resources remains constant (as currently
employed by most commercial service providers). It is the optimum prices determined by
the utilities on day 1 and does not capture the mood of the market. Each day, the users are
allocated resources on a first-come-first-serve (which is assumed to be random in order) or a
lottery basis.

In Fig. 10.7, we compare the four schemes in terms of overall system utility. Fig. 10.7a shows
the case where the tracking algorithms are limited to only one interaction between the user and the
cloud. The best hyperparameters (obtained through tuning) were chosen for both CPT and EUT
tracking pricing schemes (step-size and the number of gradient updates). The CPT-based tracking
scheme from Algorithm 21 is always within 25% of the optimal system utility.

Further, when we increase the number of interactions between users and the cloud provider to
two (see Fig. 10.7b), we observe that the CPT price tracking algorithms emulates the optimal CPT
solution (which is obtained through the knowledge of user utility at the cloud). Further, in both
cases, the price tracking with the EU solution and first-come-first-serve are suboptimal. For the
rest of the experiments in this section, we consider the case case when the user and the cloud are
interacting only once per day.

In Fig. 10.8, we focus on one low-utility user in the high-demand-low-supply system. We
identify the low-utility user by plotting its normalized utility across tiers (see Fig. 10.8d), where the
normalized utility for the i-th user in the t-th tier is given by is defined as

Ui(t)/Ji∑
i Ui(t)/

∑
i Ji

.
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Figure 10.8: Resource allocation statistics for a low-utility user
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Figure 10.9: Resource allocation statistics for a high-utility user

We see that the normalized utility of the given user is much less than the average utility per job of
the system.

In Fig. 10.8(a) and (b), we plot the bar graph of probabilities that the user gets all her jobs
allocated for the three tiers in the CPT and EUT cases, respectively. This is done for days numbered
0, 10, 20, 30, 40, 50, 60. As expected, in the EUT case, the user does not get any resources allocated
across the 60 days of the simulation due to her low utility. However, the CPT allocation assigns
a small probability of allocating resources to the user, taking advantage of the positive weighing
assigned to small probabilities in the CPT function (Fig. 10.2). Thus, when we plot the expected
revenue obtained from the user by the cloud in Fig. 10.8(c), we see that the CPT objective (exact
and tracking-based) is able to extract a non-zero revenue on average from the low-utility user by
assigning a non-zero chance of giving her resources in the lottery.

In Fig. 10.9, we focus on a high-utility user. As can be seen from Fig. 10.9(d), the user has a
higher-than-average normalized utility. We note from Fig. 10.9(a) that the user is getting resources
in the first tier with a small probability in the CPT case, again utilizing the positive weighing of the
CPT function for smaller lotteries. However, in the EUT case as well, the user is getting resources
allocated with high probability since the user has a high utility, but notice that in days 0, 20 and 30,
the user does not get resources allocated with probability one (across all the three tiers). This does
not happen in the CPT case since it under-weighs high probabilities that are less than one.

In Fig. 10.10, we show the effect of different pricing mechanisms on the prices charged by the
cloud and its corresponding revenue. First-come-first-serve has a constant pricing independent of
the market and the users’ utilities, similar to the setup in present day pricing employed by the cloud.
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Tier 1

- - - EUT

       CPT

Tier 2

Tier 3

(a) Price Charged by the Cloud in the first tier (b) Expected revenue of the Cloud

Figure 10.10: Price tracking using only one user-budget update per day is close to optimal for
the CPT case. Further, the average revenue of the Cloud increased with the CPT allocation while
maximizing the system utility.

In Fig. 10.10a, we plot the prices charged by the cloud provider in the first tier, and observe that in
the CPT case the price follows the trend of the market, while the EU price tracking is suboptimal.

In Fig. 10.10b, we plot the total expected revenue of the cloud for the four schemes. CPT-based
schemes, by the virtue of assigning lotteries to low-utility users, is able to perform better than EU
based scheme that does not take into account the CPT weighings. As expected, the revenue obtained
by the first-come-first-serve scheme is constant. Even though it is better than the EU based scheme
during some days, assigning resources to users randomly decreases the overall utility of the system
(Fig. 10.7).

10.6 Proofs

10.6.1 Proof of Proposition 14
We will decompose the problem SYS-CPT-K-R into user problems and a central problem in order
to decouple the different users. The decomposition here is different from the one given in section
10.4. For each user i, consider the follwoing user problem:

USER (i)-v2

max
zi,t(k)≥0

K∑
k=1

hi(k)F̄i(zi,•(k))− 1

K

K∑
k=1

T∑
t=1

ρ̄tzi,t(k)

subject to
T∑
t=1

zi,t(k) ≤ Ji, ∀ k ∈ [K], (10.74)

F̄i(zi,•(k)) ≥ F̄i(zi,•(k + 1)), ∀ 1 ≤ k ≤ K − 1. (10.75)
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Let the central problem we given by

CENTRAL

max
zki,t≥0

N∑
i=1

1

K

K∑
k=1

T∑
t=1

ρ̄tzi,t(k)

subject to
N∑
i=1

1

K

K∑
k=1

zi,t(k) ≤Mt, ∀ t ∈ [T ]. (10.76)

We will first show that there exists equilibrium prices ρ̄t such that any solution (z(k))k to
SYS-CPT-K-R is a common solution to USER(i), for all i, and CENTRAL problems, and vice
versa, i.e. a common solution to to USER(i), for all i, and CENTRAL problems is a solution to
SYS-CPT-K-R. This essentially follows from showing that the complementary slackness conditions
match.

The Lagrangian for the user problem USER(i)-v2 is given by

L((z(k)k), (λi(k))i,k, (αi(k)i,k)) =
K∑
k=1

hi(k)F̄i(zi,•(k))− 1

K

K∑
k=1

T∑
t=1

ρ̄i,tzi,t(k)

−
N∑
i=1

K∑
k=1

λi(k)

(
Ji −

T∑
t=1

zi,t(k)

)

−
N∑
i=1

K∑
k=1

αi(k)

(
T∑
t=1

Fi,tzi,t(k)−
T∑
t=1

Fi,tzi,t(k + 1)

)
,

where λi(k) ≥ 0 and αi(k) ≥ 0 are the dual variables corresponding to constraints (10.74) and
(10.75). The complementary slackness conditions for the USER(i)-v2 problem are:

hi(k)Fi,t − λi(k)− ρi,t
k

+ Fi,t(αi(k)− αi(k − 1))

{
= 0, if zi,t(k) > 0,

≥ 0, if zi,t(k) = 0,
∀i, t, k, (10.77)

T∑
t=1

zi,t(k)

{
= Ji, if λi(k) > 0,

≤ Ji, if λi(k) = 0,
∀i, k, (10.78)

T∑
t=1

Fi,tzi,t(k)−
T∑
t=1

Fi,tzi,t(k + 1)

{
= 0, if αi(k) > 0,

≥ 0, if αi(k) = 0,
∀i, k. (10.79)

The Lagrangian for the CENTRAL problem is given by

L((z(k)k), (µt)t) =
N∑
i=1

1

K

K∑
k=1

T∑
t=1

ρ̄tzi,t(k)−
T∑
t=1

µt

(
Mt −

N∑
i=1

1

K

K∑
k=1

zi,t(k)

)
,
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where µt ≥ 0 are the dual variables corresponding to constraint (10.76). The complementary
slackness conditions are given by

1

K
ρ̄t −

1

K
µt

{
= 0, if zi,t(k) > 0,

≥ 0, if zi,t(k) = 0,
∀i, t, k (10.80)

1

K

N∑
i=1

K∑
k=1

zi,t(k)

{
= Mt, if µt > 0,

≤Mt, if µt = 0,
∀t, (10.81)

Now, notice that if we have an optimal solution to SYS-CPT-K-R along with its dual variables
then taking the equilibrium prices ρ̄t = µt,∀t, we get that these variables also satisfy the comple-
mentary slackness conditions for all user problems USER(i)-v2 and the CENTRAL problem. On
the other hand, if we have equilirbrium prices ρ̄t for which we have a solution to the user problems
USER(i)-v2 and the CENTRAL problem with a common solution (z(k))k, then it follows that the
corresponding dual variables also satisfy the complementary slackness conditions for SYS-CPT-K-R.
This shows that the converse is also true.

This decomposition allows us to decouple the preferences of the different users. Note that
the preference features of each player, namely, her utility and probability weighting functions,
appear in her corresponding USER problem. And the CENTRAL problem correlates different
players’ preferences via psuedo prices ρ̄t. We will use this decomposition to study the typical lottery
allocation received by a player by analysing the USER(i)-v2 problem.

For Zi ≥ 0, let us define

Wi(Zi) := max
z̄i,t≥0

T∑
t=1

Fi,tz̄i,t

subject to
T∑
t=1

ρ̄tz̄i,t ≤ Zi,

T∑
t=1

z̄i,t ≤ Ji.

We observe that the function Wi(Zi) is non-decreasing, continuous, differentiable, and concave in
zi. The USER(i)-v2 problem can now we written as

USER (i)-v3

max
Zi(k)≥0

K∑
k=1

hi(k)Wi(Zi(k))− 1

K

K∑
k=1

Zi(k)

subject to Wi(Zi(k)) ≥ Wi(Zi(k + 1)), ∀ 1 ≤ k ≤ K, (10.82)

where Zi(K + 1) = 0.
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It is proved in [248] that for a non-decreasing concave function, any optimal solution (Z∗i (k))k
for USER(i)-v3 satisfies

Wi(Z
∗
i (k∗)) = Wi(Z

∗
i (k∗ + 1)) = · · · = Wi(Z

∗
i (K)),

where k∗ = min{k ∈ [K] : (k − 1)/K ≥ p∗i }, provided p∗i ≤ (K − 1)/K.1 This proves
proposition 3.

10.6.2 Proof of Theorem 15
Let zR be an optimal resource allocation for SYS-CPT-K-R. Suppose (k1, k2, i) ∈ T corresponding
to zR. That is, user i is getting non-zero resources in slots m and n (and say m < n) in alternatives
k1 through k2, i.e. zim(k) > 0, xin(k) > 0,∀k1 ≤ k ≤ k2. Recall that zRi,•(k) are identical for all
k1 ≤ k ≤ k2. Consider a user j which is getting positive resources in slot m and alternative k′, i.e.
zjm(k′) > 0.

Suppose we redistribute ε(> 0) fraction of the job from user j in slot m and alternative k′ to
user i in slot m and alternatives k ∈ [k1, k2] (equally distributed) and vice versa in slot n. By the
optimality of zR, we know that this can only decrease the objective function in SYS-CPT-K-R, that
is (∑k2

k=k1
hi(k)

k2 − k1 + 1

)
(Fim − Fin)ε− hj(k)(Fjm − Fjn)ε ≤ 0.

Then, , we have (∑k2
k=k1

hi(k)

k2 − k1 + 1

)
(Fim − Fin) ≤ hj(k

′)(Fjm − Fjn). (10.83)

Now, we are ready to prove the theorem. From Eq. (10.48), we get that

V R − V ∗
V R

≤ V R − Ṽ
V R

where Ṽ is the objective of SYS-CPT-K at z̃ obtained by projecting solution of SYS-CPT-K-R as
described in Eq. (10.42), (10.43), and (10.44).

Now, our aim is to upper bound the RHS above to get an upper bound on the gap. To that
end, we bound the numerator and denominator at each time slot t ∈ [T ]. Let V R

t and Ṽt be the
corresponding utilities obtained only at tier t ∈ [T ], i.e.

V R
t :=

N∑
i=1

K∑
k=1

hi(k)Fitzit(k) and Ṽt :=
N∑
i=1

K∑
k=1

hi(k)Fitz̃it(k).

1In [248], it is assumed that the function Wi(·) is strictly increasing, continuous, differentiable and strictly concave.
However, the same proof allows us to show the required property under the weaker conditions that the function Wi(·) is
non-decreasing, continuous, differentiable, and concave. In [248], the authors show a stronger result where

Z∗
i (k∗) = Z∗

i (k∗ + 1) = · · · = Z∗
i (K),

for which they need the function Wi(·) to be strictly increasing.
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Let T̃i be the time at which the job of user i are getting finished according to the resource allocation
zR as defined in (10.42).

Thus, for time slot m, we have

V R
m − Ṽm
V R
m

=

∑
(k1,k2;i)∈Tm

∑k2
k=k1

hi(k)(Fim − FiT̃ki )zRim(k)∑N
j=1

∑K
k=1 Fjmz

R
jm(k)

, (10.84)

where Tm is the set of elements (k1, k2; i) ∈ T for which 0 < zRim(k) < Ji, for k1 ≤ k ≤ k2. We
can further write

V R
m − Ṽm
V R
m

≤
∑

(k1,k2;i)∈Tm

(
∑k2

k=k1
hi(k))(Fim − FiT̃ki )zRit (k)∑N

j=1

∑K
k=1 hj(k)(Fjm − FjT̃ki )zRjt(k)

(10.85)

≤
∑

(k1,k2;i)∈Tm

(
∑k2

k=k1
hi(k))(Fim − FiT̃ki )zRit (k)∑N

j=1

∑K
k=1

∑k2
k=k1

hi(k)

k2−k1+1
(Fi,m − Fi,T̃ki )zRjt(k)

, (10.86)

where the last inequality uses Eq. (10.83). Now, since at time m, user i is getting fractional
resources, it implies that the system is operating at full capacity, that is

1

K

N∑
j=1

K∑
k=1

zRjt(k) = Mt.

Hence, we get

V R
t − Ṽt
V R
t

≤
∑

(k1,k2;i)∈Tm

KzRit (k)

(k2 − k1 + 1)Mt

≤
∑

(k1,k2;i)∈Tm

maxi(Ji)

Mt

, (10.87)

where the last inequality uses the fact that zRit (k) ≤ maxi(Ji) and k2 − k1 + 1 ≤ K. Also, since
T ≤ T , we get

V R
t − Ṽt
V R
t

≤ T maxi(Ji)

Mt

≤ T maxi(Ji)

mintMt

. (10.88)

Thus,

V R − V ∗ ≤ V R − Ṽ =
T∑
t=1

(V R
t − Ṽt) ≤

T maxi(Ji)

mintMt

T∑
t=1

V R
t =

T maxi(Ji)

mintMt

V R, (10.89)

Rearranging, we get

V ∗ ≥
(

1− T (maxi Ji)

mintMt

)
V R,

which proves the desired result.
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