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Abstract

Detecting Backdoored Neural Networks with Structured Adversarial Attacks

by

Charles Yang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

,

Deep Learning models are becoming increasingly enmeshed into our digital infrastructure,
unlocking our phones and powering our social media feeds. It is critical to understand the
security vulnerabilities of these black-box models before they are deployed in safety-critical
applications, such as self-driving cars and biometric authentication. In particular, recent
literature has demonstrated the ability to install backdoors into deep learning models. This
thesis uses structured optimization constraints to find adversarial attacks in order to determine
if a model is backdoored. We use the TrojAI dataset [1] to benchmark our approach and
achieve 0.83AUC on the challenging round 3 dataset.
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Chapter 1

Introduction

1.1 Securing the Future of Deep Learning
Deep Learning is increasingly being used as a feature in high-level, widely deployed, software
applications, including self-driving cars, medical diagnoses, facial recognition, language
translation, and search engines.[2, 3, 4, 5, 6, 7, 8] The rise of artificial intelligence (AI) software
applications has been dubbed "Software 2.0", a paradigm where software behavior is no longer
specified by human-readable code but rather through data, models, and optimization.[9, 10,
11] The meteoric rise in code-as-models is driven by the incredible expressivity and power of
new AI models to perform human-like tasks, when trained on sufficient data.

And like traditional software, Software 2.0 can also be susceptible to security vulnerabilities.
The challenge is that we lack a robust set of procedures and methods to discern if a piece of
software has security vulnerabilities because, in the "Software 2.0" paradigm, code are models.
Indeed, the burgeoning growth in cybersecurity awareness is only now starting to encompass
deployed AI technologies[12, 13]. This thesis presents methods for detecting security flaws in
deep learning models, specifically for detecting models with backdoors, and to begin building
improved cybersecurity defenses for the coming "Software 2.0" world.

1.2 Adversarial Attacks and Backdoored Models

Overview of Security Threats

Despite impressive generalizability on unseen test sets, computer vision models are surprisingly
brittle. Their lack of robustness makes them susceptible to adversarial attacks, where targeted
small perturbations to the input data lead to misclassification [14, 15]. In this threat model,
the "trainer" creates a model that seems to generalize well on a test set. The model is then
somehow exposed to some open environment e.g. a cloud API[16] or cameras on self-driving
car[17]. The "adversary" then seeks to find small perturbations for given images that cause
misclassification. Such misclassifications can either be targeted (e.g. redirect image to a
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prespecified class) or untargeted (e.g. redirect image to any class but its own). Typical
methods use gradient information and norm-based constraints to find effective, yet small
perturbations for a given image. Traditionally, adversarial attacks are image and model
specific, but Universal adversarial perturbations (UAP) have also been shown to exist i.e.
perturbations that cause misclassification for any image [18, 19, 20]. Such UAP’s also
tend to generalize well across different models, which hints at deeper connections between
convolutional neural network architectures and robustness.

Recently, backdoors in deep learning models have also been shown to exist for both
computer vision[21] and natural language models[22]. Unlike adversarial attacks, the malicious
agent is now the person training the model. In this case, a malicious agent installs a backdoor
in the model, so that when a specific type of input is provided (commonly referred to as a
trigger), the model will misclassify in a pre-specified manner. Models can be backdoored
through poisoning the training data[21, 23], changing the model weights[24, 25], or by
altering the loss function[26]. Models using dropout can even have triggerless backdoors[27].
On a clean test set, backdoored model will perform normally. Without knowledge of the
trigger then, it is difficult to discern if a model is backdoored or not, on the basis of just its
generalization performance on a test set.

Backdoored models can be considered analogous to software backdoors in encryption.
The critical difference is that while we have a well-understood suite of methods to identify
and mitigate code-defined software backdoors, we currently lack a concrete set of operating
procedures and techniques for finding backdoors in model-defined software. The need for
robust procedures to root out and identify backdoored models is pressing. As deep learning
models become larger[28], requiring more compute and data to reach human-level performance,
the ability of individuals and companies to use deep learning models is increasingly based
on a limited supply of massive, pre-trained models from a handful of sources. Given that
backdoor models have been shown to be robust to transfer learning[29], the use of large-scale
pre-trained models from outside entities for fine-tuning on downstream tasks is an increasingly
perilous strategy and highlights the need for robust methods to detect and mitigate backdoors
in deep learning models.

Current Defenses against Backdoor Models

In this section, we provide a survey of the current literature of defenses against backdoored
models, with a focus on detecting backdoor models, rather than simply mitigating or detecting
poisoned samples. When benchmarking the runtime of different approaches, we use n to
refer to the number of clean samples provided and c to refer to the number of classes. We
focus our survey on approaches that have been benchmarked against the TrojAI dataset, a
comprehensive large-scale dataset of backdoored models provided by the Intelligence Advanced
Research Projects Activity (IARPA) and National Institute of Standards and Technologies
(NIST)[1].

One of the first defenses proposed for backdoor models for detection was Neural Cleanse,
developed by Wang et. al. in 2019 [30]. Neural Cleanse runs a targeted adversarial attack
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for each sample as shown in eq. 1.1 with a m of shape (224,224,3) and a δ with shape
(224,224,3). The application of the trigger to the original image is shown in eq. 1.2. The
authors "adjust λ dynamically during optimization to ensure >99% of clean images can be
successfully misclassified" [30] with an Adam optimizer[31]. The l1 norm of the triggers are
used as features to detect backdoored classes and models.

for each xk ∈ X
for each yt ∈ {1, 2, .., c} :

min
mk∈[0,1],δk∈[0,1]

L(f(A(xk,mk, δk)), yt) + λ‖mk‖1
(1.1)

A(xk,mk, δk) = xk ′

xk
i,j,c

′ = (1−mk
i,j)x

k
i,j,c +mk

i,jδ
k
i,j,c

(1.2)

However, neural cleanse is extremely computationally expensive due to the targeted nature
of its attack. Because it tries to target an adversarial class for each image and class in the
dataset, Neural Cleanse requires O(cn) adversarial attack procedures in order to extract
features for backdoor detection.

One of the more recent defenses against backdoored models proposed is "Transferability
of Perturbation" (TOP)[32]. This approach also uses adversarial attacks in a manner similar
to Neural Cleanse, except the authors here use undirected attacks (or "evasion" attacks),
which helps improve the runtime of the procedure. Rather than co-optimizing a m,δ, they
optimize over a single δ with shape (224,224,3). The authors use l0, l1, l2, and l∞ constraints
to match certain known trigger types.

for each xk ∈ X :

max
δk∈[0,1]

L(f(A(xk, δk))) (1.3)

A(xk, δk) = clamp(xk + δk, 0, 1) (1.4)

To detect backdoors, this work’s key insight is to examine the transferability of different
filters. The authors define two features to measure the transferability of the triggers: fool rate,
which measures the average accuracy of transferred masks (eq. 1.5) and fool concentration,
which describes which class is the most popular target class for evasion(eq. 1.6). However,
TOP is still a fairly computationally intensive adversarial attack procedure, requiring O(n)
calls to an adversarial attack procedure.

FR =
1

n2

n∑

i=1

n∑

j=1

1{f(xi) �= f(A(xi, δj)} (1.5)
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FC = max
k={1,2,..,c}

1

n2

n∑

i=1

n∑

j=1

1{(f(A(xi, δj) = yk) ∧ (f(xi) �= yk)} (1.6)

So far, one primary difference between the TOP[32] and Neural Cleanse[30] approaches
are the targeted vs. untargeted adversarial attacks. The tradeoff in computational efficiency
is balanced by the ability to directly compare different target class effectiveness, providing a
more nuanced method of measuring what the trigger target classes originally are. In contrast,
an approach by Shen et. al. uses an ε-greedy k-arm bandit optimizer to identify the right
labels to target, while minimizing computational cost[33].

The above approaches all use some form of adversarial attack, which does not consider
internal neuron activations. Using learned perturbations is a common thematic method to
determine if a model is backdoored. See [34, 35] for more examples of this motif.

Artificial Brain Stimulation (ABS) is a neuroscience inspired approach to examine how
labels for a given image change with respect to perturbations in the internal neuron activations,
rather than perturbations in the input space[36]. The authors of this approach identify
compromised neurons based on how confounded they are with other downstream neuron
activations. They then run an optimization procedure to find perturbations on the input
that maximize the compromised neurons outputs, so as to reverse-engineer a trigger. ABS is
one example of a weight-based approach that does not rely solely on input and loss-based
gradients for detecting backdoors. However, such an approach makes stronger assumptions
about model access, whereas input-based perturbations are more black-box.

We have focused our literature review on papers that used the TrojAI benchmark dataset,
so as to provide a uniform comparison between our method and others. For a more in-depth
review of backdoor attacks and defenses, see [37, 38].
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Chapter 2

Methods

2.1 The TrojAI dataset
The TrojAI dataset is a large corpus of clean and backdoored models provided by the
Intelligence Advanced Research Projects Agency (IARPA) and National Institute of Standards
and Technologies (NIST)[1]. The dataset is organized into rounds, where each round is
progressively more difficult. We benchmark our approach on Round 3 of this dataset, which
has 1008 human-accuracy computer vision classification models, which are also trained
with adversarial training[39]. There are two possible classes of triggers: polygon stickers or
instagram filters (see Figure 2.1 for examples). In addition, a large family of model classes
is used: Densenet[40], ResNet[41], ShuffleNet[42], VGG[43], SqueezeNet[44], MobileNet[45],
LeNet[46], Inception[46], and WideResNet[47]. Several different unique traffic-sign datasets
are used for training. The training parameters, including the adversarial training, are
randomly generated for each model. The TrojAI dataset used pytorch models and our
subsequent codebase was also based on pytorch[48]. The full competition data details are
available here. We use the TrojAI dataset as a benchmark to compare our approach with
those found in literature.

2.2 Structured Adversarial Attacks
Our adversarial attacks use structured constraints on the adversarial optimization formulation
to allow our adversarial attack to match more closely to the types of triggers specified in the
TrojAI competition. In our formulation, we use undirected adversarial attacks i.e. we don’t
specify the target class. This allows us to improve the runtime of our method compared to
[30], which uses an adversarial attack with a specified target misclassification class. We do
keep both a mask m and a delta δ to ensure the resulting adversarial xi,adv ∈ [0, 1]. However,
because we use structured constraints, we can constrain the m to be monochromatic i.e. of
shape (224,224,1) and the δ to contain the color information of the trigger, with a shape
(1,3).
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Figure 2.1: Two poisoned example images from the TrojAI dataset are shown: (a) an example
of a polygon trigger and (b) an example of an instagram trigger from the TrojAI round3
dataset

We found empirically that finding a single universal adversarial δ,m does not provide a
clear enough of a signal on whether or not a model is backdoored. In addition, backdoors
can often be class-specific, with a few-to-one or one-to-one mapping. Trying to find one δ
and m that is truly universal then does not fit the full scope of the threat model posed by
backdoors. Instead, we run a structured adversarial attack on each class of clean data that
we are given. This will allow us to detect class-specific triggers and provide more fidelity in
detecting backdoors and reverse-engineering triggers. This approach is motivated in part by
the previously demonstrated existence of universal adversarial perturbations[18].

We use the Group-LASSO constraint on a mask to drive the optimizer towards polygon
shaped triggers as shown in eq. 2.1 (which we henceforth refer to as GroupL1). We use a
tracenorm low-rank constraint to model instagram filter triggers as shown in eq. 2.2. The
optimizers and constraints were implemented using the python CHOP package.[49]

for each yt ∈ {1, 2, .., c} :

max
m∈[0,1],δ∈[0,1]

1

G

∑

i∈{i:f(xi)=yt}
L(f(xi,adv), yt)

where G = |{i : f(xi) = yt}|
s.t. xi,adv = (1−mt) ∗ xi +mt ∗ δt

‖mt‖G ≤ λ

mt, δt ∈ [0, 1]

δt
c,i,j = δt

c

(2.1)
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for each yt ∈ {1, 2, .., c} :

max
m∈[0,1],δ∈[0,1]

1

G

∑

i∈{i:f(xi)=yt}
L(f(xi,adv), yt)

where G = |{i : f(xi) = yt}|
s.t. xi,adv = (1−mt) ∗ xi +mt ∗ δt

‖mt‖∗ ≤ λ

mt, δt ∈ [0, 1]

δt
c,i,j = δt

c

(2.2)

To optimize the mask m, we use stochastic 3-convex minimizer (S3CM) [50], a proximal
splitting algorithm to handle both the box constraint and the non-smooth group LASSO term.
Such an optimizer has improved convergence properties compared to standard adversarial
optimizers for problems with structured constraints. The simpler Projected gradient descent
(PGD) [51] was used to optimize the delta δ given that it was only a vector with 3 terms.

2.3 Transferability of Structured Attacks
After optimizing a class-specific δ,m, we then analyze the transferability of the class-specific
δ,m, i.e. their ability to cause misclassification, to images in other classes. This allows us
to see how generalizable our class-specific triggers are - if they have successfully reverse-
engineered a trigger, then we should expect them to generalize quite well to other classes. By
doing class-specific attacks, rather than instance-specific attacks, we improve our runtime
compared to the transferability analysis used in [32]. Concretely, because we use class-wise
attacks, we make O(c) adversarial attacks, rather than O(n) adversarial attack calls.

Half of the class-samples are used as a training set to find a δ,m and the other half as
a test set used to evaluate the effectiveness of the δ,m at misclassification. Given that we
only had 10-20 images per class, the entire train set was batched together when running the
optimization procedure for finding adversarial perturbations. We run both the GroupL1 and
low-rank adversarial attack procedures nrestarts times and take the average and max of the
features obtained from each run. nrestarts = 2 for low-rank and nrestarts = 3 for GroupL1
Given the 6 features in Table 3.2, the two adversarial procedures for GroupL1 and low-rank,
and the avg and max operators over the nrestarts, we end up with 24 features in total to pass
into a logistic regression classifier.
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Feature Name Feature Description

num_distinct_target_class

The target class of a given class-specific δ,m is the
most common target class that the perturbation
redirects to. This feature counts the total number
of distinct target classes for all the class-specific δ,
m.

max_test_misclass The maximum misclassification rate on the test set
over all classes

avg_train_test_diff Average difference between train and test set mis-
classification over all classes

avg_num_class_target
This feature takes the average number of distinct
target classes that were redirected to for each class-
specific δ, m.

fool_conc
see eq. 1.6. We modified our feature due to the
use of class-specific triggers, rather than instance-
specific triggers.

fool_rate
see eq. 1.5. We modified our feature due to the
use of class-specific triggers, rather than instance-
specific triggers.

Table 2.1: Features for Backdoor Model Classifier
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Chapter 3

Results

3.1 TrojAI Round 3 Benchmark Results and
Comparison

The results of our trained logistic classifier compared to prior methods is shown in Table
3.1. We use cross validation scoring to determine the average AUC of our approach on the
training set provided by TrojAI. We achieve performance better than ABS [36] and Neural
Cleanse [30]. Our performance is around the same as TOP[32]. We don’t outperform K-arm
optimization [33]. However, we note that our performance has better theoretic runtime in
terms of the number of classes and samples provided than TOP and a simpler implementation
than K-Arm optimization. In particular, given that we only train on round 3 data, our
performance actually beats the performance of TOP when trained on just round 3, which
only reaches 0.76 AUC (see Table 7 in [32]).

TrojAI: Round 3 Benchmark
Method AUC Loss

NC+Pre-selection [30] 0.61 0.81
ABS [36] 0.56 0.62
TOP [32] 0.83 0.5

K-Arm Optimization [33] 0.91 0.31
Our result 0.83 0.5

Table 3.1: Benchmarking Structured Universal Attacks against prior literature on TrojAI
Round 3 dataset

We also break down the predictive accuracy of our approach based on the trigger type and
the model architecture in Table 3.2, for combinations with sufficient samples to calculate a
test set on. Differences in the ability to predict whether or not a certain model architecture is
backdoored for a given trigger type may, in the future, serve as part of the security dimension
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when considering which model API can be used by critical-security applications. In addition,
the difference in the ease with which we can detect backdoored models for a given architecture
and trigger type may provide deeper hints at connections between model architecture and
model robustness.

Model Architecture Trigger Type
None (clean model) Polygon Trigger Instagram Trigger

ResNet (32) 1.0 0.82 0.25
DenseNet (24) 0.83 1.0 0.5

LeNet (30) 0.87 0.86 0.63
VGG (12) 1.0 1.0 1.0

WideResNet (12) 1.0 1.0 0.33

Table 3.2: Accuracy at predicting if a model is backdoored, broken down by model architecture
and trigger type. The number of samples in the test set for each architecture is provided in
the parentheses next to the model architecture.

3.2 Exploring Structured Constraints for Different
Trigger Types

We show an example of the triggers found by the structured optimization triggers for two
poisoned models in Figure 3.1. Even when dealing with backdoored models that have different
trigger structures, the GroupL1 and Low-Rank constraints generalize well, suggesting their
flexibility and robustness to other types of triggers. For instance, in Figure 3.1(f), the
GroupL1 constrained optimizer still learns a similar instagram-filter style trigger, while in
Figure 3.1(c), the low-rank constrained optimizer matches the color of the polygon trigger.

We also compare how well each type of structured adversarial attack does on each type
of trigger in Figure 3.2. Polygon triggers seem to be an easier task, given that both types
of structured attacks do better with polygon triggers. Interestingly, the low-rank constraint
outperforms the GroupL1 constraint at both instagram and polygon type triggers. This could
suggest a relationship between backdoors and fourier components of the input i.e. inserting
polygon backdoors also creates low-rank exploits. This would build off of other recent work
analyzing adversarial attacks and robustness of convolutional neural networks from a fourier
perspective[52, 53, 54, 55]. Such a hypothesis strengthens the idea that backdoor models are
"fundamentally broken" by characterizing the specific method by which backdooring models
"breaks" a model [35, 56].
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Figure 3.1: A sample of the trigger δ,m for both types of structured constraints from
backdoored models with different ground-truth trigger types. (a)-(d) are from model id 935,
which is a backdoored model with a polygon trigger. (e)-(h) are from model id 738, which is
a backdoored model with an instagram trigger. (a) and (e) show a randomly sampled clean
image. (b) and (f) show a class-specific GroupL1 trigger applied to the original clean image
shown in (a) and (e) respectively. (c) and (g) show a class-specific low-rank trigger applied
to the original clean image shown in (a) and (e) respectively. A randomly sampled poisoned
image is shown in (d) and (h).
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Figure 3.2: We plot the AUC of a classifier trained to predict on only certain trigger types,
using features derived from only one type of structured constraint.
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Chapter 4

Future Work and Conclusion

In this thesis, we have outlined how structured universal attacks can be used to identify
backdoored computer vision deep learning models. Such structured attacks leverage cus-
tomized optimization constraints to tune the adversarial perturbations to the suspected
trigger types. We benchmark our approach on the challenging TrojAI corpus of backdoored
models and demonstrate strong performance and improved runtimes compared to other
published approaches.

Potential avenues for future research include:

• Structured constraints for Detecting Backdoored Natural Language Models. The TrojAI
competition [1] has progressed to further rounds, including backdoored large-scale Nat-
ural Language Processing (NLP) models (specifically, round 5 and onward). Imposing
structured universal attacks can also be a promising approach for detecting backdoored
NLP models. For instance, cosine angle-based similarity constraints on the adversarial
perturbations of embeddings may be one analogous constraint for NLP.

• Exploring Low-Rank and Low-Frequency Constraints. The superior performance of
the low-rank constraint may suggest that even polygon-type triggers, or perhaps any
general trigger, also creates low-rank or frequency-specific vulnerabilities in deep learning
models. Connecting the empirical results of using structured adversarial attacks to more
theoretic approaches may be a way to probe the fundamental properties of backdoor
models.

• Robustness and Structured Constraints. Using structured constraints may be one
method to probe the connection between model robustness and backdoored models.
For instance, backdoored models may be connected to ideas of boundary thickness
for robustness [57], may alter the loss landscape in measurable ways e.g. Hessian
eigenvalues[58], or be related to fourier frequency analyses of neural networks[59].

Deep Learning models are powerful tools that are increasingly being used to define
human-like software-based functionality. However, given our lack of theoretical understanding
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of how these models behave and learn, deep learning models are susceptible to a variety
of security threats. In this thesis, we develop an approach to detect backdoor models
and benchmark our approach on the TrojAI dataset. We compare our approach to other
approaches in the literature and discuss possible insights our approach might provide to more
theoretical understanding of backdoors. Our hope is that this thesis may help advance deep
learning security and provide a better understanding of how to diagnose and detect backdoor
vulnerabilities in deep learning applications.
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