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Abstract

Training, Evaluating, and Understanding Evolutionary Models for Protein Sequences

by

Roshan Maruthi Rao

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Canny, Co-chair

Professor Pieter Abbeel, Co-chair

Novel protein sequences arise through mutation. These mutations may be deleterious,
beneficial, or neutral; the effect of a mutation on an organism’s evolutionary fitness is
reflected in whether an organism survives long enough for its proteins to be sampled and
deposited in a sequence database. Bioinformatics has long sought to use this evolutionary
signal, commonly in the form of Multiple Sequence Alignments (MSAs), to make inferences
as to the structure and function of novel proteins. With the advent of neural networks and
self-supervised pretraining, a different approach emerged, where a large scale neural network
could be pretrained using a language modeling objective to automatically produce informative
features from an input protein sequence.

In this work, methods to train and evaluate protein language models on a common benchmark
are introduced. Subsequently, the effects of increased model scaling, dataset preprocessing
and training hyperparameters on the ability of transformers to learn protein contacts without
supervision are explored. A novel method operating on MSAs instead of single sequences is
then presented, and shown to achieve state-of-the-art performance on several downstream
tasks. Finally, the utility of all of these methods in protein design is discussed.
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Chapter 1

Introduction

Evolutionary modeling of protein sequences has been a mainstay of computational biology
for decades. This approach takes advantage of a particular filtering function - an organism’s
reproductive fitness - which influences the likelihood that particular protein sequences will
survive to be sequenced and deposited in large protein databases.

The typical evolutionary modeling pipeline is as follows: take a query sequence, search for
similar sequences in a protein database, align the resulting sequences, and build a model on
top of the result. Even very simple models of aligned sequences can be powerful. Consider an
independent-sites model (also known as a position-specific scoring matrix or PSSM). Residues
that are highly conserved (i.e. have low entropy) under this model are likely to be critical to
the protein’s function. For example, these may belong to an active site of an enzyme where
mutations to this site will cause the catalysis to fail.

Alternately, consider a pair of interacting residues. When a mutation occurs in one of
these residues, the interaction between the residues must be preserved in order to maintain
the protein’s structure and function. Thus, only certain combinations of amino acids would
be allowed at these positions. A pairwise-sites model (also known as a Potts model) can pick
up on this interaction, thus providing evidence for the likely structure of the query protein.

While this pipeline can provide a great deal of information, there is room for improvement.
The pipeline works well when the query sequence is similar to many existing sequences in the
target database - Potts models, for example, generally require at least 1000 similar sequences
to reach maximum accuracy. It can also be slow; each new query sequence requires a separate
database search and alignment, a process which can take anywhere from several minutes
to hours. Finally, it relies on a set of semi-independent components for each step instead
of being end-to-end. Each of these components has been tuned extensively over the years,
but lessons from computer vision, natural language processing (NLP), and other fields have
shown that end-to-end learning can surpass the best designed features.

Into these gaps comes the field of unsupervised language modeling. The new approaches,
popularized by works such as ELMo [11] and BERT [12] in natural language processing,
train large scale neural networks on large databases of sequences without requiring manual
supervision. Swapping out a database of English text for one of protein sequences requires



CHAPTER 1. INTRODUCTION 2

Title Venue Author List

Evaluating Protein Transfer
Learning with TAPE

Neural Information
Processing Systems,
2019

Roshan Rao1, Nicholas Bhat-
tacharya1, Neil Thomas1, Yan
Duan, Xi Chen, John Canny,
Pieter Abbeel, Yun S. Song

Transformer protein language
models are unsupervised struc-
ture learners

International Con-
ference on Learning
Representations, 2021

Roshan Rao, Joshua Meier,
Tom Sercu, Sergey Ovchin-
nikov, Alexander Rives

MSA Transformer International Con-
ference on Machine
Learning, 2021

Roshan Rao, Jason Liu, Robert
Verkuil, Joshua Meier, John
Canny, Pieter Abbeel, Tom
Sercu, Alexander Rives

Language models enable zero-
shot prediction of the effects of
mutations on protein function

Neural Information
Processing Systems,
2021

Joshua Meier, Roshan Rao,
Robert Verkuil, Jason Liu,
Tom Sercu, Alexander Rives

Table 1.1: List of prior work included in this dissertation, along with publication venues and
coauthors.

essentially no changes to the model architecture or training procedure, making them a natural
fit for developing neural models of proteins. Unsupervised language models promise to provide
more informative features, with minimal supervision, all for the cost of a GPU forward pass.

This thesis focuses on the design and training of unsupervised language models for protein
sequences, seeking to improve the learned features and to replace components or the entirety
of the existing evolutionary modeling pipeline.

As an equally important contribution, it also draws connections between language models
and existing independent- and pairwise-site models, and evaluates whether language models
actually fulfill the promised goals.

1.1 Statement on Prior Publications
Much of the content presented in this dissertation has been previously published in different
venues. See Table 1.1 for a list of prior works, including publication venues and coauthors.
Computational biology is an inherently collaborative field. I was a key contributor in
all included work and designed, wrote code for, ran, and analyzed experiments for each

1Denotes equal contribution.
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publication. However, none of these publications would have been possible without the work
from my coauthors.

Nicholas Bhattacharya and Neil Thomas were equal contributors to the work described in
Chapter 2 and were involved in the selection of datasets, training and analysis of models,
and paper writing. Yan Duan, Xi Chen, and Yun Song advised in the design of experiments
and in framing the paper.

Chapters 3-5 describe work done in collaboration with the protein group at Facebook AI
Research and with Sergey Ovchinnikov. The work in these chapters was greatly aided by
the data collection, model scaling, and model evaluation done by Joshua Meier, Jason Liu,
and Robert Verkuil. In addition, the work in Chapter 5 was spearheaded by Joshua, who
designed the experimental protocols and ran experiments with the ESM-1v models. Sergey
Ovchinnikov provided advice for work described in Chapter 3, and Tom Sercu and Alexander
Rives provided advice throughout.

Finally, my advisors John Canny and Pieter Abbeel directly contributed to the framing
and conceptualization of Chapters 2 and 4, and have generally shaped my work throughout
my PhD.

As these Chapters were the result of joint effort, Chapters 2-5 use the pronoun ‘we’. All
coauthors have provided written consent for the inclusion of their work in this dissertation.

1.2 Overview of the Thesis
This dissertation attempts to answer three key questions regarding language modeling for
protein sequences:

1. Do standard approaches to unsupervised learn-
ing in NLP learn biologically relevant features?

2. How can we tailor the data, model, and tasks
used to train unsupervised models for proteins?

3. Can large scale unsupervised models for protein
sequences be made useful for protein design?

Chapter 2 focuses on the first question. Introductions to multiple sequence alignments
and typical protein modeling tasks are provided for readers more familiar with machine
learning, while introductions to basic deep learning architectures (such as the Transformer
[13]) are provided for those more familiar with biology or classical machine learning methods.
Comparisons between language models and independent-sites models are introduced, and
independent-sites models are shown to produce significantly better features for structure
prediction based tasks.
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Chapter 3 looks at both the first and second questions by examining unsupervised contact
prediction with Transformer based language models. It explores representations extracted
from Transformer attention maps, showing that these representations carry a great deal
of information about protein structure, despite not being explicitly supervised to predict
structure. Additionally, it explores the effects of model scale and hyperparameters on the
resulting features.

Chapter 4 dives further into the second question by adapting a language model to take a
multiple sequence alignment (MSA) as input. The chapter discusses necessary changes to
model architecture, training, and inference when working with MSAs.

Chapter 5 begins to answer the third question, specifically in the context of predicting the
effects of single mutations. The role of training data, model ensembling, and MSA selection
are examined.

Chapter 6 concludes the dissertation, raises new questions, and discusses future work.

1.3 Research Contributions
The primary contributions in this thesis are as follows:

• A benchmark dataset for evaluating different protein language models on the
same tasks. Chapter 2 introduces the Tasks Assessing Protein Embeddings (TAPE),
suite of five biologically relevant downstream tasks that can be used to evaluate different
protein language models on an even playing field. These datasets are made available
for free in multiple easy-to-download formats.

• Publicly available library implementing multiple protein language models.
As part of work in Chapter 2, multiple protein language models were implemented in
PyTorch [14] using a HuggingFace-style API [15]. The resulting GitHub repository has
been widely used in the field.

• A method for predicting protein contacts from pretrained language models
with little-to-no supervision. Chapter 3 shows that it is possible to predict protein
contacts from attention maps of transformers trained with masked language modeling,
despite the fact there is no explicit structural supervision. A sparse subset of attention
heads learn to predict protein contacts. A simple logistic regression, trained using
between 1-20 protein structures, can select the attention heads which perform contact
prediction. The trained logistic regressions are made available for download on GitHub.

• A novel architecture for learning representations of MSAs. Chapter 4 introduces
the MSA Transformer, which extends protein language models to MSA-based language



CHAPTER 1. INTRODUCTION 5

models. This uses axial attention and other architectural modifications to achieve
state-of-the-art performance for unsupervised contact prediction. The model is also
analyzed and compared to pairwise-sites models and single sequence language models.

• State-of-the-art variant effect prediction from single sequence or from MSAs.
Chapter 5 explores the use of single-sequence language models and MSA-based language
models for variant effect prediction and shows that single-sequence language models
perform as well as prior methods, while being orders of magnitude faster, and MSA-
based language models outperform prior approaches. The question of what makes the
optimal data for training these models is explored, and ensembles of the best performing
models are provided on GitHub.

In addition to the concrete contributions above, the thesis seeks to help the reader place
protein language models in the larger context of evolutionary modeling and to develop
intuitions about why protein language models work and when they are likely to work well.
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Chapter 2

Evaluating Protein Language Models
with TAPE

2.1 Introduction
New sequencing technologies have led to an explosion in the size of protein databases over
the past decades. These databases have seen exponential growth, with the total number of
sequences doubling every two years [16]. Obtaining meaningful labels and annotations for
these sequences requires significant investment of experimental resources, as well as scientific
expertise, resulting in an exponentially growing gap between the size of protein sequence
datasets and the size of annotated subsets. Billions of years of evolution have sampled the
portions of protein sequence space that are relevant to life, so large unlabeled datasets of
protein sequences are expected to contain significant biological information [17–19]. Advances
in natural language processing (NLP) have shown that self-supervised learning is a powerful
tool for extracting information from unlabeled sequences [11, 12, 20], which raises a tantalizing
question: can we adapt NLP-based techniques to extract useful biological information from
massive sequence datasets?

To help answer this question, we introduce the Tasks Assessing Protein Embeddings
(TAPE), which to our knowledge is the first attempt at systematically evaluating semi-
supervised learning on protein sequences. TAPE includes a set of five biologically relevant
supervised tasks that evaluate the performance of learned protein embeddings across diverse
aspects of protein understanding.

We choose our tasks to highlight three major areas of protein biology where self-supervision
can facilitate scientific advances: structure prediction, detection of remote homologs, and
protein engineering. We construct data splits to simulate biologically relevant generalization,
such as a model’s ability to generalize to entirely unseen portions of sequence space or to finely
resolve small portions of sequence space. Improvement on these tasks range in application,
including designing new antibodies [21], improving cancer diagnosis [22], and finding new
antimicrobial genes hiding in the so-called “Dark Proteome”: tens of millions of sequences
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with no labels where existing techniques for determining protein similarity fail [23].
We assess the performance of three representative models (recurrent, convolutional, and

attention-based) that have performed well for sequence modeling in other fields to determine
their potential for protein learning. We also compare two previously proposed semi-supervised
models (Bepler and Berger [24], Alley et al. [25]). With our benchmarking framework, these
models can be compared directly to one another for the first time.

We show that self-supervised pretraining improves performance for almost all models on
all downstream tasks. Interestingly, performance for each architecture varies significantly
across tasks, highlighting the need for a multi-task benchmark such as ours. We also show that
features from alignment-based independent sites models (also know as position-speciic scoring
matrices or PSSMs) [26–29] outperform features learned via self-supervision on secondary
structure and contact prediction, while learned features perform significantly better on remote
homology detection.

Our results demonstrate that self-supervision for proteins is promising but considerable
improvements need to be made before self-supervised models can achieve breakthrough
performance. All code and data for TAPE are publicly available1, and we encourage members
of the machine learning community to participate in these exciting problems.

2.2 Background

Protein Terminology

Proteins are linear chains of amino acids connected by covalent bonds. We encode amino acids
in the standard 25-character alphabet, with 20 characters for the standard amino acids, 2 for
the non-standard amino acids selenocysteine and pyrrolysine, 2 for ambiguous amino acids,
and 1 for when the amino acid is unknown [16, 30]. Throughout this paper, we represent a
protein x of length L as a sequence of discrete amino acid characters (x1, x2, . . . , xL) in this
fixed alphabet.

Beyond its encoding as a sequence (x1, . . . , xL), a protein has a 3D molecular structure.
The different levels of protein structure include primary (amino acid sequence), secondary
(local features), and tertiary (global features). Understanding how primary sequence folds
into tertiary structure is a fundamental goal of biochemistry [17]. Proteins are often made
up of a few large protein domains, sequences that are evolutionarily conserved, and as such
have a well-defined fold and function.

Evolutionary relationships between proteins arise because organisms must maintain certain
functions, such as replicating DNA, as they evolve. Evolution has selected for proteins that
are well-suited to these functions. Though structure is constrained by evolutionary pressures,
sequence-level variation can be high, with very different sequences having similar structure [31].
Two proteins that share a common evolutionary ancestor are called homologs. Homologous
proteins may have very different sequences if they diverged in the distant past.

1https://github.com/songlab-cal/tape

https://github.com/songlab-cal/tape


CHAPTER 2. EVALUATING PROTEIN LANGUAGE MODELS WITH TAPE 8

Quantifying these evolutionary relationships is very important for preventing undesired
information leakage between data splits. We mainly rely on sequence identity, which measures
the percentage of exact amino acid matches between aligned subsequences of proteins [32].
For example, filtering at a 25% sequence identity threshold means that no two proteins in
the training and test set have greater than 25% exact amino acid matches. Other approaches
besides sequence identity filtering also exist, depending on the generalization the task attempts
to test [33].

Modeling Evolutionary Relationships with Sequence Alignments

The key technique for modeling sequence relationships in computational biology is alignment
[26, 29, 34, 35]. Given a database of proteins and a query protein at test-time, an alignment-
based method uses either carefully designed scoring systems [34] or Hidden Markov Models
(HMMs) [29] to align the query protein against all proteins in the database. Good alignments
give information about local perturbations to the protein sequence that may preserve, for
example, function or structure. The distribution of aligned residues at each position is also
an informative representation of each residue that can be fed into downstream models.

Semi-supervised Learning

The fields of computer vision and natural language processing have been dealing with the
question of how to learn from unlabeled data for years [36]. Images and text found on the
internet generally lack accompanying annotations, yet still contain significant structure. Semi-
supervised learning tries to jointly leverage information in the unlabeled and labeled data,
with the goal of maximizing performance on the supervised task. One successful approach to
learning from unlabeled examples is self-supervised learning, which in NLP has taken the form
of next token prediction [11], masked token prediction [12], and next sentence classification
[12]. Analogously, there is good reason to believe that unlabelled protein sequences contain
significant information about their structure and function [17, 19]. Since proteins can be
modeled as sequences of discrete tokens, we test both next token and masked token prediction
for self-supervised learning.

2.3 Related Work
The most well-known protein modeling benchmark is the Critical Assessment of Structure
Prediction (CASP) [37], which focuses on structure modeling. Each time CASP is held, the
test set consists of new experimentally validated structures which are held under embargo
until the competition ends. This prevents information leakage and overfitting to the test
set. The recently released ProteinNet [38] provides easy to use, curated train/validation/test
splits for machine learning researchers where test sets are taken from the CASP competition
and sequence identity filtering is already performed. We take the contact prediction task from
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ProteinNet. However, we believe that structure prediction alone is not a sufficient benchmark
for protein models, so we also use tasks not included in the CASP competition to give our
benchmark a broader focus.

Semi-supervised learning for protein problems has been explored for decades, with lots of
work on kernel-based pretraining [39, 40]. These methods demonstrated that semi-supervised
learning improved performance on protein network prediction and homolog detection, but
couldn’t scale beyond hundreds of thousands of unlabeled examples. Recent work in protein
representation learning has proposed a variety of methods that apply NLP-based techniques for
transfer learning to biological sequences [24, 25, 41–43]. In a related line of work, Riesselman
et al. [2] trained Variational Auto Encoders on aligned families of proteins to predict the
functional impact of mutations. Alley et al. [25] also try to combine self-supervision with
alignment in their work by using alignment-based querying to build task-specific pretraining
sets.

Due to the relative infancy of protein representation learning as a field, the methods
described above share few, if any, benchmarks. For example, both Rives et al. [43] and
Bepler and Berger [24] report transfer learning results on secondary structure prediction
and contact prediction, but they differ significantly in test set creation and data-splitting
strategies. Other self-supervised work such as Alley et al. [25] and Yang et al. [44] report
protein engineering results, but on different tasks and datasets. With such varied task
evaluation, it is challenging to assess the relative merits of different self-supervised modeling
approaches, hindering efficient progress.

2.4 Datasets
Here we describe our unsupervised pretraining and supervised benchmark datasets. To create
benchmarks that test generalization across large evolutionary distances and are useful in
real-life scenarios, we curate specific training, validation, and test splits for each dataset.
Producing the data for these tasks requires significant effort by experimentalists, database
managers, and others. Following similar benchmarking efforts in NLP [45], we describe a set
of citation guidelines in our repository2 to ensure these efforts are properly acknowledged.

Unlabeled Sequence Dataset

We use Pfam [46], a database of thirty-one million protein domains used extensively in
bioinformatics, as the pretraining corpus for TAPE. Sequences in Pfam are clustered into
evolutionarily-related groups called families. We leverage this structure by constructing a test
set of fully heldout families (see Appendix A.5 for details on the selected families), about 1%
of the data. For the remaining data we construct training and test sets using a random 95/5%
split. Perplexity on the uniform random split test set measures in-distribution generalization,

2https://github.com/songlab-cal/tape#citation-guidelines

https://github.com/songlab-cal/tape#citation-guidelines
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Figure 2.1: Structure and Annotation Tasks on protein KgdM Porin (pdbid: 4FQE). (a)
Viewing this Porin from the side, we show secondary structure, with the input amino acids
for a segment (blue) and corresponding secondary structure labels (yellow and white). (b)
Viewing this Porin from the front, we show a contact map, where entry i, j in the matrix
indicates whether amino acids at positions i, j in the sequence are within 8 angstroms of
each other. In green is a contact between two non-consecutive amino acids. (c) The fold-level
remote homology class for this protein.

while perplexity on the heldout families test set measures out-of-distribution generalization
to proteins that are less evolutionarily related to the training set.

Supervised Datasets

We provide five biologically relevant downstream prediction tasks to serve as benchmarks. We
categorize these into structure prediction, evolutionary understanding, and protein engineering
tasks. The datasets vary in size between 8,000-50,000 training examples (see Table A.1 for
sizes of all training, validation and test sets). Further information on data processing, splits
and experimental challenges is in Appendix A.1. For each task we provide:

(Definition) A formal definition of the prediction problem, as well as the source of the data.
(Impact) The impact of improving performance on this problem.
(Generalization) The type of understanding and generalization desired.
(Metrics) The metric reported in Table 2.2 to report results and additional metrics presented

in Appendix A.8

Task 1: Secondary Structure (SS) Prediction (Structure Prediction Task)
(Definition) Secondary structure prediction is a sequence-to-sequence task where each input

amino acid xi is mapped to a label yi ∈ {Helix(H), Strand(E),Other(C)}. See Fig. 2.1a
for illustration. The data are from Klausen et al. [47].

(Impact) SS is an important feature for understanding the function of a protein, especially
if the protein of interest is not evolutionarily related to proteins with known structure [47].
SS prediction tools are very commonly used to create richer input features for higher-level
models [48].
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(Generalization) SS prediction tests the degree to which models learn local structure. Data
splits are filtered at 25% sequence identity to test for broad generalization.

(Metrics) We report accuracy on a per-amino acid basis on the CB513 [49] dataset. We
further report three-way and eight-way classification accuracy for the test sets CB513,
CASP12, and TS115.

Task 2: Contact Prediction (Structure Prediction Task)
(Definition) Contact prediction is a pairwise amino acid task, where each pair xi, xj of

input amino acids from sequence x is mapped to a label yij ∈ {0, 1}, where the label
denotes whether the amino acids are “in contact” (< 8Å apart) or not. See Fig. 2.1b for
illustration. The data are from the ProteinNet dataset [38].

(Impact) Accurate contact maps provide powerful global information; e.g., they facilitate
robust modeling of full 3D protein structure [50]. Of particular interest are medium- and
long-range contacts, which may be as few as twelve sequence positions apart, or as many
as hundreds apart.

(Generalization) The abundance of medium- and long-range contacts makes contact pre-
diction an ideal task for measuring a model’s understanding of global protein context.
We select the data splits that was filtered at 30% sequence identity to test for broad
generalization.

(Metrics) We report precision of the L/5 most likely contacts for medium- and long-range
contacts on the ProteinNet CASP12 test set, which is a standard metric reported in CASP
[37]. We further report Area under PR Curve and Precision at L, L/2, and L/5 for
short-range, medium-range and long-range contacts in the supplement.

Task 3: Remote Homology Detection (Evolutionary Understanding Task)
(Definition) This is a sequence classification task where each input protein x is mapped to

a label y ∈ {1, . . . , 1195}, representing different possible protein folds. See Fig. 2.1c for
illustration. The data are from Hou et al. [51].

(Impact) Detection of remote homologs is of great interest in microbiology and medicine;
e.g., for detection of emerging antibiotic resistant genes [52] and discovery of new CAS
enzymes [53].

(Generalization) Remote homology detection measures a model’s ability to detect struc-
tural similarity across distantly related inputs. We hold out entire evolutionary groups
from the training set, forcing models to generalize across large evolutionary gaps.

(Metrics) We report overall classification accuracy on the fold-level heldout set from Liu
et al. [53]. We further report top-one and top-five accuracy for fold-level, superfamily-level
and family-level holdout sets in the supplement.

Task 4: Fluorescence Landscape Prediction (Protein Engineering Task)
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Figure 2.2: Protein Engineering Tasks. In both tasks, a parent protein p is mutated to explore
the local landscape. As such, dots represent proteins and directed arrow x → y denotes that
y has exactly one more mutation than x away from parent p. (a) The Fluorescence task
consists of training on small neighborhood of the parent green fluorescent protein (GFP) and
then testing on a more distant proteins. (b) The Stability task consists of training on a broad
sample of proteins, followed by testing on one-mutation neighborhoods of the most promising
sampled proteins.

(Definition) This is a regression task where each input protein x is mapped to a label
y ∈ R, corresponding to the log-fluorescence intensity of x. See Fig. 2.2a for illustration.
The data are from Sarkisyan et al. [54].

(Impact) For a protein of length L, the number of possible sequences m mutations away
is O(Lm), a prohibitively large space for exhaustive search via experiment, even if m
is modest. Moreover, due to epistasis (second- and higher-order interactions between
mutations at different positions), greedy optimization approaches are unlikely to succeed.
Accurate computational predictions could allow significantly more efficient exploration of
the landscape, resulting in better optima. Machine learning methods have already seen
some success in related protein engineering tasks [55].

(Generalization) The fluorescence prediction task tests the model’s ability to distinguish
between very similar inputs, as well as its ability to generalize to unseen combinations
of mutations. The train set is a Hamming distance-3 neighborhood of the parent green
fluorescent protein (GFP), while the test set has variants with four or more mutations.
Hamming distance is measured at the amino acid level.
The choice of Hamming distance between amino acids does not always reflect evolution, since
not all proteins at the same Hamming distance correspond to equal “evolutionary” distance
in the sense of number of nucleotide substitutions. Since we are trying to highlight the
protein engineering setting, we believe that this is an important feature of the Fluorescence
task. Our goal is to test the models’ ability to accurately predict phenotype as a function
of an input molecule (e.g. one presented by a protein designer)

(Metrics) We report Spearman’s ρ (rank correlation coefficient) on the test set. We further
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Table 2.1: Language modeling metrics: Language Modeling Accuracy (Acc), Perplexity (Perp)
and Exponentiated Cross-Entropy (ECE)

Random Families Heldout Families Heldout Clans

Acc Perp ECE Acc Perp ECE Acc Perp ECE

Transformer 0.45 8.89 6.01 0.35 11.77 8.87 0.28 13.54 10.76
LSTM 0.40 8.89 6.94 0.24 13.03 12.73 0.13 15.36 16.94
ResNet 0.41 10.16 6.86 0.31 13.19 9.77 0.28 13.72 10.62
Bepler [24] 0.28 11.62 10.17 0.19 14.44 14.32 0.12 15.62 17.05
Alley [25] 0.32 11.29 9.08 0.16 15.53 15.49 0.11 16.69 17.68
Random 0.04 25 25 0.04 25 25 0.04 25 25

report MSE and Spearman’s ρ for the full test set, only bright proteins, and only dark
proteins in the supplement.

Task 5: Stability Landscape Prediction (Protein Engineering Task)
(Definition) This is a regression task where each input protein x is mapped to a label y ∈ R

measuring the most extreme circumstances in which protein x maintains its fold above a
concentration threshold (a proxy for intrinsic stability). See Fig. 2.2b for illustration. The
data are from Rocklin et al. [56].

(Impact) Designing stable proteins is important to ensure, for example, that drugs are
delivered before they are degraded. More generally, given a broad sample of protein
measurements, finding better refinements of top candidates is useful for maximizing yield
from expensive protein engineering experiments.

(Generalization) This task tests a model’s ability to generalize from a broad sampling of
relevant sequences and to localize this information in a neighborhood of a few sequences,
inverting the test-case for fluorescence above. The train set consists of proteins from four
rounds of experimental design, while the test set contains Hamming distance-1 neighbors
of top candidate proteins.

(Metrics) We report Spearman’s ρ on the test set. In the supplement we also assess
classification of a mutation as stabilizing or non-stabilizing. We report Spearman’s ρ and
accuracy for this task broken down by protein topology in the supplement.

2.5 Models and Experimental Setup
Losses: We examine two self-supervised losses that have seen success in NLP. The first
is next-token prediction [57], which models p(xi | x1, . . . , xi−1). Since many protein tasks
are sequence-to-sequence and require bidirectional context, we apply a variant of next-token
prediction which additionally trains the reverse model, p(xi | xi+1, . . . , xL), providing full
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context at each position (assuming a Markov sequence). The second is masked-token prediction
[12], which models p(xmasked | xunmasked) by replacing the value of tokens at multiple positions
with alternate tokens.

Protein-specific loss: In addition to self-supervised algorithms, we explore another protein-
specific training procedure proposed by Bepler and Berger [24]. They suggest that further
supervised pretraining of models can provide significant benefits. In particular, they propose
supervised pretraining on contact prediction and remote homology detection, and show it
increases performance on secondary structure prediction. Similar work in computer vision has
shown that supervised pretraining can transfer well to other tasks, making this a promising
avenue of exploration [58].

Architectures and Training: We implement three architectures: an LSTM [59], a
Transformer [13], and a dilated residual network (ResNet) [60]. We use a 12-layer Transformer
with a hidden size of 512 units and 8 attention heads, leading to a 38M-parameter model.
Hyperparameters for the other models were chosen to approximately match the number of
parameters in the Transformer. Our LSTM consists of two three-layer LSTMs with 1024
hidden units corresponding to the forward and backward language models, whose outputs
are concatenated in the final layer, similar to ELMo [11]. For the ResNet we use 35 residual
blocks, each containing two convolutional layers with 256 filters, kernel size 9, and dilation
rate 2. We chose these hyperparameters based on common choices from the literature. Our
supervised tasks are of similar size to most of those in the SuperGLUE [45] benchmark,
which has been instrumental in demonstrating the success of self-supervision in NLP. Since
the models that were applied to GLUE have tens to hundreds of millions of parameters, we
chose to make our models roughly the same size. See Appendix A.7 for model size ablation
experiments. See Appendix A.2 for details of how these pretrained models are fed into
downstream tasks.

In addition, we benchmark two previously proposed architectures that differ significantly
from the three above. The first, proposed by Bepler and Berger [24], is a two-layer bidirectional
language model, similar to the LSTM discussed above, followed by three 512 hidden unit
bidirectional LSTMs. The second, proposed by Alley et al. [25], is a unidirectional mLSTM
[61] with 1900 hidden units. Details on implementing and training these architectures can be
found in the original papers.

The Transformer and ResNet are trained with masked-token prediction, while the LSTM
is trained with next-token prediction. Both Alley et al. [25] and Bepler and Berger [24] are
trained with next-token prediction. All self-supervised models are trained on four NVIDIA
V100 GPUs for one week.

Baselines: We evaluate learned features against two baseline featurizations. The first is a
one-hot encoding of the input amino acid sequence, which provides a simple baseline. Most
current state-of-the-art algorithms for protein classification and regression take advantage
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of alignment or HMM-based inputs (see Section 2.2). Alignments can be transformed into
various features, such as mutation probabilities [51] or the HMM state-transition probabilities
[47] for each amino acid position. These are concatenated to the one-hot encoding of the
amino acid to form another baseline featurization. For our baselines we use alignment-based
inputs that vary per task depending on the inputs used by the current state-of-the-art method.
See Appendix A.3 for details on the alignment-based features used for each task. We do not
use alignment-based inputs for protein engineering tasks. Proteins in the engineering datasets
differ by only a single amino acid, while alignment-based methods search for proteins with
high sequence identity, so alignment-based methods return the same set of features for all
proteins we wish to distinguish between.

Experimental Setup: The goal of our experimental setup is to systematically compare all
featurizations. For each task we select a particular supervised architecture, drawing from
state-of-the-art where available, and make sure that fine-tuning on all language models is
identical. See Appendix A.3 for details on supervised architectures and training.

2.6 Results
Table 2.1 contains accuracy, perplexity, and exponentiated cross entropy (ECE) on the
language modeling task for the five architectures we trained with self-supervision as well as a
random model baseline. We report metrics on both the random split and the fully heldout
families. Supervised LSTM metrics are reported after language modeling pretraining, but
before supervised pretraining. Heldout family accuracy is consistently lower than random-
split accuracy, demonstrating a drop in the out-of-distribution generalization ability. Note
that although some models have lower perplexity than others on both random-split and
heldout sets, this lower perplexity does not necessarily correspond to better performance on
downstream tasks. This replicates the finding in Rives et al. [43].

Table 2.2 contains results for all benchmarked architectures and training procedures on
all downstream tasks in TAPE. We report accuracy, precision, or Spearman’s ρ, depending
on the task, so higher is always better and each metric has a maximum value of 1.0. See
Section 2.4 for the metric reported in each task. Detailed results and metrics for each task
are in Appendix A.8.

We see from Table 2.2 that self-supervised pretraining improves overall performance across
almost all models and all tasks. Further analysis reveals aspects of these tasks with room for
significant improvement. In the fluorescence task, the distribution is bimodal with a mode of
bright proteins and a mode of dark proteins (see Fig. 2.3). Since one goal of using machine
learning models in protein engineering is to screen potential variants, it is important for these
methods to successfully distinguish between beneficial and deleterious mutations. Fig. 2.3
shows that the model does successfully perform some clustering of fluorescent proteins, but
that many proteins are still misclassified.
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Table 2.2: Results on downstream supervised tasks

Method Structure Evolutionary Engineering

SS Contact Homology Fluorescence Stability

No Pretrain
Transformer 0.70 0.32 0.09 0.22 -0.06
LSTM 0.71 0.19 0.12 0.21 0.28
ResNet 0.70 0.20 0.10 -0.28 0.61

Pretrain

Transformer 0.73 0.36 0.21 0.68 0.73
LSTM 0.75 0.39 0.26 0.67 0.69
ResNet 0.75 0.29 0.17 0.21 0.73
Bepler [24] 0.73 0.40 0.17 0.33 0.64
Alley [25] 0.73 0.34 0.23 0.67 0.73

Baseline One-hot 0.69 0.29 0.09 0.14 0.19
Alignment 0.80 0.64 0.09 N/A N/A

For the stability task, to identify which mutations a model believes are beneficial, we use
the parent protein as a decision boundary and label a mutation as beneficial if its predicted
stability is higher than the parent’s predicted stability. We find that our best pretrained
model achieves 70% accuracy in making this prediction while our best non-pretrained model
achieves 68% accuracy (see Table A.9 for full results). Improving the ability to distinguish
beneficial from deleterious mutations would make these models much more useful in real
protein engineering experiments.

In the contact prediction task, long-range contacts are of particular interest and can be

Log Fluorescence

(a) Dark Mode

Log Fluorescence

(b) Bright Mode (c) Embedding t-SNE

Figure 2.3: Distribution of training, test, and pretrained Transformer predictions on the dark
and bright modes, along with t-SNE of pretrained Transformer protein embeddings colored
by log-fluorescence.
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(a) True Contacts (b) LSTM (c) LSTM Pretrain (d) One Hot (e) Alignment

Figure 2.4: Predicted contacts for chain 1A of a Bacterioferritin comigratory protein (pdbid:
3GKN). Blue indicates true positive contacts while red indicates false positive contacts.
Darker colors represent more certainty from the model.

hundreds of positions apart. Fig. 2.4 shows the predictions of several models on a protein
where the longest range contact occurs between the 8th and 136th amino acids. Pretraining
helps the model capture more long-range information and improves the overall resolution
of the predicted map. However, the hand-engineered alignment features result in a much
sharper map, accurately resolving more long-range contacts. This increased specificity is
highly relevant in structure prediction pipelines [50, 62] and highlights a clear challenge for
pretraining.

2.7 Discussion
Comparison to state of the art. As shown in Table [47] achieves 85% accuracy on
the CB513 [49] secondary structure dataset, compared to our best model’s 75% accuracy,
RaptorX [63] achieves 0.69 precision at L/5 on CASP12 contact prediction, compared to our
best model’s 0.49, and DeepSF [51] achieves 41% accuracy on remote homology detection
compared to our best model’s 26%.

Need for multiple benchmark tasks. Our results support our hypothesis that multiple
tasks are required to appropriately benchmark performance of a given method. Our Trans-
former, which performs worst of the three models in secondary structure prediction, performs
best on the fluorescence and stability tasks. The reverse is true of our ResNet, which ties the
LSTM in secondary structure prediction but performs far worse for the fluorescence task,
with a Spearman’s ρ of 0.21 compared to the LSTM’s 0.67. This shows that performance
on a single task does not capture the full extent of a trained model’s knowledge and biases,
creating the need for multi-task benchmarks such as TAPE.
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Chapter 3

Transformer Protein Language Models
are Unsupervised Structure Learners

3.1 Introduction
Unsupervised modeling of protein contacts has an important role in computational protein
design [64–66] and is a central element of all current state-of-the-art structure prediction
methods [67–69]. The standard bioinformatics pipeline for unsupervised contact prediction
includes multiple components with specialized tools and databases that have been developed
and optimized over decades. In this Chapter we propose replacing the current multi-stage
pipeline with a single forward pass of a pre-trained end-to-end protein language model.

Protein language modeling with an unsupervised training objective has been investigated
by multiple groups [25, 42, 43, 70]. The longstanding practice in bioinformatics has been to
fit linear models on focused sets of evolutionarily related and aligned sequences; by contrast,
protein language modeling trains nonlinear deep neural networks on large databases of
evolutionarily diverse and unaligned sequences. High capacity protein language models have
been shown to learn underlying intrinsic properties of proteins such as structure and function
from sequence data [43].

Both Chapter 2 and concurrent work by Rives et al. [43] propose the Transformer for
protein language modeling. Originally developed in the NLP community to represent long
range context, the main innovation of the Transformer model is its use of self-attention
[13]. Self-attention has particular relevance for the modeling of protein sequences. Unlike
convolutional or recurrent models, the Transformer constructs a pairwise interaction map
between all positions in the sequence. In principle this mechanism has an ideal form to model
protein contacts.

In theory, end-to-end learning with a language model has advantages over the bioinfor-
matics pipeline: (i) it replaces the expensive query, alignment, and training steps with a
single forward pass, greatly accelerating feature extraction; and (ii) it shares parameters
for all protein families, enabling generalization by capturing commonality across millions of
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evolutionarily diverse and unrelated sequences.
We demonstrate that Transformer protein language models learn contacts in the self-

attention maps with state-of-the-art performance. We compare ESM-1b [43], a large-scale
(650M parameters) Transformer model trained on UniRef50 [71] to the Gremlin [72] pipeline
which implements a log linear model trained with pseudolikelihood [73, 74]. Contacts can be
extracted from the attention maps of the Transformer model by a sparse linear combination of
attention heads identified by logistic regression. ESM-1b model contacts have higher precision
than Gremlin contacts. When ESM and Gremlin are compared with access to the same set
of sequences the precision gain from the protein language model is significant; the advantage
holds on average even when Gremlin is given access to an optimized set of multiple sequence
alignments incorporating metagenomics data.

We find a linear relationship between language modeling perplexity and contact precision.
We also find evidence for the value of parameter sharing: the ESM-1b model significantly
outperforms Gremlin on proteins with low-depth MSAs. Finally we explore the Transformer
language model’s ability to generate sequences and show that generated sequences preserve
contact information.

3.2 Background
Multiple Sequence Alignments (MSAs) A multiple sequence alignment consists of
a set of evolutionarily related protein sequences. Since real protein sequences are likely
to have insertions, deletions, and substitutions, the sequences are aligned by minimizing
a Levenshtein distance-like metric over all the sequences. In practice heuristic alignment
schemes are used. Tools like Jackhmmer and HHblits can increase the number and diversity
of sequences returned by iteratively performing the search and alignment steps [10, 27].

Metrics For a protein of length L, we evaluate the precision of the top L, L/2, and L/5
contacts for short range (|i− j| ∈ [6, 12)), medium range (|i− j| ∈ [12, 24)), and long range
(|i = j| ∈ [24,∞)) contacts. We also separately evaluate local contacts (|i− j| ∈ [3, 6)) for
secondary structure prediction in Appendix B.9. In general, all contacts provide information
about protein structure and important interactions, with shorter-range contacts being useful
for secondary and local structure, while longer range contacts are useful for determining
global structure [75].

3.3 Related Work
There is a long history of protein contact prediction [76] both from MSAs, and more recently,
with protein language models.
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Supervised contact prediction Recently, supervised methods using deep learning have
resulted in breakthrough results in supervised contact prediction [67–69, 77, 78]. State-of-the
art methods use deep residual networks trained with supervision from many protein structures.
Inputs are typically covariance statistics [77, 78], or inferred coevolutionary parameters [67–
69, 79]. Other recent work with deep learning uses sequences or evolutionary features as
inputs [80, 81]. Xu et al. [82] demonstrates the incorporation of coevolutionary features is
critical to performance of current state-of-the-art methods.

Unsupervised contact prediction In contrast to supervised methods, unsupervised
contact prediction models are trained on sequences without information from protein structures.
In principle this allows them to take advantage of large sequence databases that include
information from many sequences where no structural knowledge is available. The main
approach has been to learn evolutionary constraints among a set of similar sequences by
fitting a Markov Random Field (Potts model) to the underlying MSA, a technique known as
Direct Coupling Analysis (DCA). This was proposed by Lapedes et al. [83] and reintroduced
by Thomas et al. [84] and Weigt et al. [85].

Various methods have been developed to fit the underlying Markov Random Field,
including mean-field DCA (mfDCA) [86], sparse inverse covariance (PSICOV) [87] and pseu-
dolikelihood maximization [73, 74, 88]. Pseudolikelihood maximization is generally considered
state-of-the-art for unsupervised contact prediction and the Gremlin [73] implementation is
used as the baseline throughout. We also provide mfDCA and PSICOV baselines. Recently
deep learning methods have also been applied to fitting MSAs, and Riesselman et al. [2]
found evidence that factors learned by a VAE model may correlate with protein structure.

Structure prediction from contacts While we do not perform structure prediction in this
work, many methods have been proposed to extend contact prediction to structure prediction.
For example, EVFold [89] and DCAFold [90] predict co-evolving couplings using a Potts Model
and then generate 3D conformations by directly folding an initial conformation with simulated
annealing, using the predicted residue-residue contacts as constraints. Similarly, FragFold
[91] and Rosetta [92] incorporate constraints from a Potts Model into a fragment assembly
based pipeline. Senior et al. [93], use features from a Potts model fit with pseudolikelihood
maximization to predict pairwise distances with a deep residual network and optimize the
final structure using Rosetta. All of these works build directly upon the unsupervised contact
prediction pipeline.

Contact prediction from protein language models Since the introduction of large
scale language models for natural language processing [12, 13], there has been considerable
interest in developing similar models for proteins [25, 42, 43, 70, 94, 95]. Rives et al. [43]
were the first to study protein Transformer language models, demonstrating that information
about residue-residue contacts could be recovered from the learned representations by linear
projections supervised with protein structures. Recently Vig et al. [7] performed an extensive
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Figure 3.1: Contact prediction pipeline. The Transformer is first pretrained on sequences
from a large database (Uniref50) via Masked Language Modeling. Once finished training, the
attention maps are extracted, passed through symmetrization and average product correction,
then into a regression. The regression is trained on a small number (n ≤ 20) of proteins to
determine which attention heads are informative. At test time, contact prediction from an
input sequence can be done entirely on GPU in a single forward pass.

analysis of Transformer attention, identifying correspondences to biologically relevant features,
and also found that different layers of the model are responsible for learning different features.
In particular Vig et al. [7] discovered a correlation between self-attention maps and contact
patterns, suggesting they could be used for contact prediction.

Prior work benchmarking contact prediction with protein language models has focused
on the supervised problem. Bepler and Berger [24] were the first to fine-tune an LSTM
pretrained on protein sequences to fit contacts. Chapter 2 as well as Rives et al. [43] perform
benchmarking of multiple protein language models using a deep residual network fit with
supervised learning on top of pretrained language modeling features.

In contrast to previous work on protein language models, we find that a state-of-the-art
unsupervised contact predictor can be directly extracted from the Transformer self-attention
maps. We perform a thorough analysis of the contact predictor, showing relationships
between performance and MSA depth as well as language modeling perplexity. We also
provide methods for improving performance using sequences from an MSA and for sampling
sequences in a manner that preserves contacts.
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3.4 Models
We compare Transformer models trained on large sequence databases to Potts Models trained
on individual MSAs. While Transformers and Potts Models emerged in separate research
communities, the two models share core similarities [96] which we exploit here.

Our main result is that just as Gremlin directly represents contacts via its pairwise
component (the weights), the Transformer also directly represents contacts via its pairwise
component (the self-attention).

Objectives

For a set of training sequences, X, Gremlin optimizes the following pseudolikelihood loss,
where a single position is masked and predicted from its context. Inputs are aligned, so all
have length L:

LPLL(X; θ) = E
x∼X

L∑
i=1

log p(xi|xj ̸=i; θ) (3.1)

The masked language modeling (MLM) loss used by the Transformer models can be seen
as a generalization of the Potts Model objective when written as follows:

LMLM(X; θ) = E
x∼X

E
mask

∑
i∈mask

log p(xi|xj ̸∈mask; θ) (3.2)

In contrast to Gremlin, the MLM objective applied by protein language modeling is
trained on unaligned sequences. The key distinction of MLM is to mask and predict multiple
positions concurrently, instead of masking and predicting one at a time. This enables the
model to scale beyond individual MSAs to massive sequence datasets. In practice, the
expectation under the masking pattern is computed stochastically using a single sample at
each epoch.

Gremlin

The log probability optimized by Gremlin is described in Appendix B.3.
Contacts are extracted from the pairwise Gremlin parameters by taking the Frobenius

norm along the amino acid dimensions, resulting in an L × L coupling matrix. Average
product correction (APC) is applied to this coupling matrix to determine the final predictions
(Appendix B.2).

Gremlin takes an MSA as input. The quality of the output predictions are highly dependent
on the construction of the MSA. We compare to Gremlin under two conditions. In the first
condition, we present Gremlin with all MSAs from the trRosetta training set [69]. These
MSAs were generated from all of Uniref100 and are also supplemented with metagenomic
sequences when the depth from Uniref100 is too low. The trRosetta MSAs are a key ingredient
in the state-of-the-art protein folding pipeline. See Yang et al. [69] for a discussion on the
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significant impact of metagenomic sequences on the final result. In the second setting, we
allow Gremlin access only to the same information as the ESM Transformers by generating
MSAs via Jackhmmer on the ESM training set (a subset of Uniref50). See Appendix B.5 for
Jackhmmer parameters.

Transformers

We evaluate several pre-trained Transformer models, including ESM-1 [43], ProtBert-BFD
[94] and the TAPE Transformer from Chapter 2. The key differences between these models
are the datasets, model sizes, and hyperparameters (major architecture differences described
in Table B.1). Liu et al. [97] previously showed that these changes can have a significant
impact on final model performance. In addition to ESM-1, we also evaluate an updated
version, ESM-1b, which is the result of a hyperparameter sweep. The differences are described
in Appendix B.4. The Transformer processes inputs through a series of blocks alternating
multi-head self-attention and feed-forward layers. In each head of a self-attention layer, the
Transformer views the encoded representation as a set of query-key-value triples. The output
of the head is the result of scaled dot-product attention:

Attention(Q,K, V ) = softmax(QKT/
√
n) · V

Rather than only computing the attention once, the multi-head approach runs scaled dot-
product attention multiple times in parallel and concatenates the output. Since self-attention
explicitly constructs pairwise interactions (QKT ) between all positions in the sequence, the
model can directly represent residue-residue interactions. In this work, we demonstrate that
the QKT pairwise “self attention maps” indeed capture accurate contacts.

Logistic Regression

To extract contacts from a Transformer, we first pass the input sequence through the model
to obtain the attention maps (one map for each head in each layer). We then symmetrize and
apply APC to each attention map independently. The resulting maps are passed through an
L1-regularized logistic regression, which is applied independently at each amino acid pair (i, j).
At training time, we only train the weights of the logistic regression; we do not backpropagate
through the entire model. At test time, the entire prediction pipeline can be run in a
single forward pass, providing a single end-to-end pipeline for protein contact prediction that
does not require any retrieval steps from a sequence database. See Appendix B.7 for a full
description of the logistic regression setup.

3.5 Results
We evaluate models with the 15051 proteins in the trRosetta training dataset [69], removing
43 proteins with sequence length greater than 1024, since ESM-1b was trained with a context
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Table 3.1: Average precision on 14842 test structures for Transformer models trained on 20
structures.

6 ≤ sep < 12 12 ≤ sep < 24 24 ≤ sep

Model L L/2 L/5 L L/2 L/5 L L/2 L/5

Gremlin (ESM Data) 15.2 23.0 37.8 18.1 27.9 44.3 31.3 43.1 55.5
mfDCA (Uniref100) 16.3 23.7 35.8 19.7 29.8 45.5 33.0 43.5 54.2
PSICOV1(Uniref100) 15.4 23.6 39.2 18.3 28.4 45.7 32.6 45.2 58.1
Gremlin (Uniref100) 17.2 26.7 44.4 21.1 33.3 52.3 39.3 52.2 62.8

TAPE 9.9 12.3 16.4 10.0 12.6 16.6 11.2 14.0 17.9
ProtBERT-BFD 20.4 30.7 48.4 24.3 35.5 52.0 34.1 45.0 57.4
ESM-1 (6 layer) 11.0 13.2 15.9 11.5 14.6 19.0 13.2 16.7 21.5
ESM-1 (12 layer) 15.2 21.1 30.5 18.1 24.7 34.0 23.7 30.5 39.3
ESM-1 (34 layer) 20.3 30.2 46.0 23.8 34.3 49.2 34.7 44.6 56.0
ESM-1b 21.6 33.2 52.7 26.2 38.6 56.4 41.1 53.3 66.1

size of 1024. Of these sequences, Jackhmmer fails on 126 when we attempt to construct MSAs
using the ESM training set (see Appendix B.5). This leaves us with 14882 total sequences.
We reserve 20 sequences for training, 20 sequences for validation, and 14842 sequences for
testing.

Table 3.1 shows evaluations of Gremlin, ESM-1, ESM-1b as well as the TAPE and
ProtBERT-BFD models. Confidence intervals are within 0.5 percentage points for all
statistics in Tables 3.1 and 3.2. In Table 3.1, all Transformer model contact predictors are
trained with logistic regression on 20 proteins. We find that with only 20 training proteins
ESM-1b has higher precision than Gremlin for short, medium, and long range contacts.

In addition to this set, we also evaluate performance on 15 CASP13 FM Domains in
Appendix B.6. On average ESM-1b has higher short, medium, and long range precision than
Gremlin on all metrics, and in particular can significantly outperform on MSAs with low
effective number of sequences. We also provide a comparison to the bilinear model proposed
by Rives et al. [43]. The logistic regression model achieves a long-range contact precision at
L of 18.6, while the fully supervised bilinear model achieves a long range precision at L of
20.1, an increase of only 1.5 points despite being trained on 700x more structures.
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Table 3.2: ESM-1b Ablations with limited supervision and with MSA information. n is the
number of logistic regression training proteins. s is the number of sequences ensembled over.

6 ≤ sep < 12 12 ≤ sep < 24 24 ≤ sep

Model Variant L L/2 L/5 L L/2 L/5 L L/2 L/5

Gremlin ESM Data 15.2 23.0 37.8 18.1 27.9 44.3 31.3 43.1 55.5
Uniref100 17.2 26.7 44.4 21.1 33.3 52.3 39.3 52.2 62.8

ESM-1b
(Ablations)

1 head 16.8 23.4 34.8 19.8 27.6 40.2 29.3 38.1 50.0
5 heads 19.2 28.5 44.5 23.3 33.8 49.0 35.0 45.2 57.3
10 heads 20.0 30.1 47.4 24.7 36.0 52.2 38.5 49.4 61.1
n=1, s=1 19.4 29.7 47.1 25.1 37.1 54.0 39.2 50.6 63.0
n=10, s=1 21.4 32.9 52.3 26.1 38.5 56.4 40.8 52.9 65.7
n=20, s=1 21.6 33.2 52.7 26.2 38.6 56.4 41.1 53.3 66.1
MSA, s=1 18.4 28.1 45.5 23.9 36.1 53.7 39.9 51.3 63.0

ESM-1b
(s seqs)

n=20, s=16 21.9 33.8 53.6 26.7 39.4 57.5 41.9 54.3 67.3
n=20, s=32 22.0 34.1 54.0 26.9 39.8 58.1 42.3 54.8 67.8
n=20, s=64 22.1 34.3 54.3 27.1 40.1 58.5 42.6 55.1 68.2

Ablations: Limiting supervision

While the language modeling objective is fully unsupervised, the logistic regression is trained
with a small number of supervised examples. In this section, we study the dependence of the
results on this supervision, providing evidence that the contacts are indeed learned in the
unsupervised phase, and the logistic regression is only necessary to extract the contacts.

Top Heads Here we use the logistic regression only to determine the most important heads.
Once they are selected, we discard the weights from the logistic regression and simply average
the attention heads corresponding to the top-k weight values. By taking the single best head
from ESM-1b, we come close to Gremlin performance given the same data, and averaging
the top-5 heads allows us to outperform Gremlin. Averaging the top-10 heads outperforms
a full logistic regression on all other Transformer models and comes close to Gremlin given
optimized MSAs.

Low-N The second variation we consider is to limit the number of supervised examples
provided to the logistic regression. We find that with only a single training example, the

1PSICOV fails to converge on 24 sequences using default parameters. Following the suggestion in
github.com/psipred/psicov, we increase ρ to 0.005, 0.01, and thereafter by increments of 0.01, to a
maximum of 0.1. PSICOV fails to converge altogether on 6 / 14842 sequences. We assign a score of 0 for
these sequences.

github.com/psipred/psicov
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model achieves a long range top-L precision of 39.2, which is statistically indistinguishable
from Gremlin (p > 0.05). Using only 10 training examples, the model outperforms Gremlin
on all the metrics. Since these results depend on the sampled training proteins, we also
show a bootstrapped performance distribution using 100 different logistic regression models
in Appendix B.10. We find that with 1 protein, performance can vary significantly, with
long range top-L precision mean of 35.6, a median of 38.4, and standard deviation 8.9. This
variation greatly decreases when training on 20 proteins, with a long range top-L precision
mean of 40.1, median of 41.1, and standard deviation of 0.3. See Fig. B.8 for the full
distribution on all statistics.

MSA Only Finally, we consider supervising the logistic regression only with MSAs instead
of real structures. This is the same training data used by the Gremlin baseline. To do this,
we first train Gremlin on each MSA. We take the output couplings from Gremlin and mark
the top L couplings with sequence separation ≥ 6 in each protein as true contacts, and
everything else as false contacts, creating a binary decision problem. When trained on 20
MSAs, we find that this model achieves a long range P@L of 39.9, and generally achieves
similar long range performance to Gremlin, while still having superior short and medium
range contact precision.

Ensembling over MSA

Transformer models are fundamentally single-sequence models, but we can further boost
performance by ensembling predictions from multiple sequences in the alignment. To do so,
we unalign each sequence in the alignment (removing any gaps), pass the resulting sequence
through the Transformer and regression, and realign the resulting contact maps to the
original aligned indices. For these experiments, we use the logistic regression weights trained
on single-sequence inputs, rather than re-training the logistic regression on multi-sequence
inputs. We also simply take the first s sequences in the MSA. Table 3.2 shows performance
improvements from averaging over 16, 32, and 64 sequences.

To better understand this result, we return to the single-sequence setting and study the
change in prediction when switching between sequences in the alignment. We find that
contact precision can vary significantly depending on the exact sequence input to the model,
and that the initial query sequence of the MSA does not necessarily generate the highest
contact precision (Fig. B.5).

Lastly, Alley et al. [25] presented a method of fine-tuning where a pretrained language
model is further trained on the MSA of the sequence of interest (‘evotuning’). Previously
this has only been investigated for function prediction and for relatively low-capacity models.
We fine-tune the full ESM-1b model (which has 50x more parameters than UniRep) on
380 protein sequence families. We find that after 30 epochs of fine-tuning, long range P@L
increases only slightly, with an average of 1.6 percentage points (Fig. B.12).
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Figure 3.2: Left: Language modeling validation perplexity on holdout of Uniref50 vs. contact
precision over the course of pre-training. ESM-1b was trained with different masking so
perplexities between the versions are not comparable. Right: Long range P@L performance
distribution of ESM-1b vs. Gremlin. Each point is colored by the log of the number of
sequences in the MSA used to train Gremlin.

Performance Distribution

Although our model is, on average, better than Gremlin at detecting contacts, the performance
distribution over all sequences in the dataset is still mixed. ESM-1b is consistently better at
extracting short and medium range contacts (Fig. B.3), but only slightly outperforms Gremlin
on long range contacts when Gremlin has access to Uniref100 and metagenomic sequences.
Fig. 3.2 shows the distribution of long range P@L for ESM-1b vs. Gremlin. Overall, ESM-1b
has higher long range P@L on 55% of sequences in the test set.

In addition, we examine the relationship between MSA depth and precision for short,
medium, and long range contacts (Fig. 3.3). Although our contact prediction pipeline does
not make explicit use of MSAs, there is still some correlation between MSA depth and
performance, since MSA depth is a measure of how many related sequences are present in the
ESM-1b training set. We again see that ESM-1b consistently outperforms Gremlin at all MSA
depths for short and medium range sequences. We also confirm that ESM-1b outperforms
Gremlin for long range contact extraction for sequences with small MSAs (depth < 1000).
ESM-1b also outperforms Gremlin on sequences with the very largest MSAs (depth > 16000),
which is consistent with prior work showing that Gremlin performance plateaus for very large
MSAs and suggests that ESM-1b does not suffer from the same issues [98].

Logistic Regression Weights

In Section 3.5 we show that selecting only a sparse subset of the attention heads can yield
good results for contact prediction. Overall, the L1-regularized logistic regression identifies
102 / 660 heads as being predictive of contacts (Fig. B.2b). Additionally, we train separate
logistic regressions to identify contacts at different ranges . These regressions identify an
overlapping, but non-identical set of useful attention heads. Two attention heads have the
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Figure 3.3: Gremlin (trRosetta) performance binned by MSA depth. For comparison, ESM-1b
performance is also shown for the sequences in each bin.

top-10 highest weights for detecting contacts at all ranges. One attention head is highly
positively correlated with local contacts, but highly negatively correlated with long range
contacts. Lastly, we identify a total of 104 attention heads that are correlated (positively or
negatively) with contacts at only one of the four ranges, suggesting that particular attention
heads specialize in detecting certain types of contacts.

Perplexity vs. Contact Precision

Fig. 3.2 explores the relationship between performance on the masked language modeling task
(validataion perplexity) and contact prediction (Long Range P@L). A linear relationship exists
between validation perplexity and contact precision for each model. Furthermore, for the
same perplexity, the 12-layer ESM-1 model achieves the same long range P@L as the 34 layer
ESM-1 model, suggesting that perplexity is a good proxy task for contact prediction. ESM-1
and ESM-1b models are trained with different masking patterns, so their perplexities cannot
be directly compared, although a linear relationship is clearly visible in both. ESM-1 and
ESM-1b have a similar number of parameters; the key difference is in their hyperparameters
and architecture. The models shown have converged in pre-training, with minimal decrease in
perplexity (or increase in contact precision) in the later epochs. This provides clear evidence
that both model scale and hyperparameters play a significant role in a model’s ability to
learn contacts.

Calibration, False Positives, and Robustness

One concern with neural networks is that, while they may be accurate on average, they
can also produce spurious results with high confidence. We investigate this possibility from
several perspectives. First, we find that logistic regression probabilities are close to true
contact probability (mean-squared error = 0.014) and can be used directly as a measure of
the model’s confidence (Fig. B.7).
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Second, we analyze the false positives that the model does predict. We find that these
are very likely to be within a Manhattan distance of 1-4 of a true contact (Fig. B.9a). This
suggests that false positives may arise due to the way a contact is defined (Cb-Cb distance
within 8 angstroms), and could be marked as true contacts under a different definition [99].
Further, when we explore an example where the model’s predictions are not near a true
contact, we see that the example in question is a homodimer, and that the model is picking
up on inter-chain interactions (Fig. B.10a). While these do not determine the structure of
the monomer, they are important for its function [98].

Third, we test the robustness of the model to insertions by inserting consecutive alanines
at the beginning, middle, or end of 1000 randomly chosen sequences. We find that ESM-1b
can tolerate up to 256 insertions at the beginning or end of the sequence and up to 64
insertions in the middle of the sequence before performance starts to significantly degrade.
This suggests that ESM-1b learns a robust implicit alignment of the protein sequence. See
Appendix B.12 for more details.

MSA Generation

Wang and Cho [96] note that Transformers trained with the MLM objective can be used
generatively. Here, we consider whether generations from ESM-1b preserve contact informa-
tion. The ability to generate sequences that preserve this information is a necessary condition
for generation of biologically active proteins [100]. We perform this evaluation by taking an
input protein, masking out several positions, and re-predicting them. This process is repeated
10000 times to generate a pseudo-MSA for the input sequence (Algorithm 1). We feed the
resulting MSA into Gremlin to predict contacts. Over all sequences from our test set, this
procedure results in a long range contact P@L of 14.5. Fig. B.13 shows one example where
the procedure works well, with Gremlin on the pseudo-MSA having long range P@L of 52.2.
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3.6 Discussion
Transformer protein language models trained with an unsupervised objective learn the tertiary
structure of a protein sequence in their attention maps. Residue-residue contacts can be
extracted from the attention by sparse logistic regression. Attention heads are found that
specialize in different types of contacts. An ablation analysis confirms that the contacts are
learned without supervision, and that the logistic regression is only necessary to extract the
part of the model that represents contacts.

These results have implications for protein structure determination and design. The
initial studies proposing Transformers for protein language modeling in Chapter 2 and in
Rives et al. [43], Elnaggar et al. [94] showed that representation learning could be used to
derive state-of-the-art features across a variety of tasks, but were not able to show a benefit
in the fully end-to-end setting. In this Chapter, we show that protein language models
can outperform state-of-the-art unsupervised structure learning methods that have been
intensively researched and optimized over decades.

Finally, we establish a link between language modeling perplexity and unsupervised
structure learning. A similar scaling law has been observed previously for supervised sec-
ondary structure prediction [43], and parallels observations in the NLP community [101, 102].
Evidence of scaling laws for protein language modeling support future promise as models and
data continue to grow.
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Chapter 4

MSA Transformer

4.1 Introduction
Unsupervised models learn protein structure from patterns in sequences. Sequence variation
within a protein family conveys information about the structure of the protein [18, 19, 103].
Since evolution is not free to choose the identity of amino acids independently at sites that
are in contact in the folded three-dimensional structure, patterns are imprinted onto the
sequences selected by evolution. Constraints on the structure of a protein can be inferred from
patterns in related sequences. The predominant unsupervised approach is to fit a Markov
Random Field in the form of a Potts Model to a family of aligned sequences to extract a
coevolutionary signal [83–85].

This thesis explores unsupervised protein language models, an approach which fits large
neural networks with shared parameters across millions of diverse sequences, rather than
fitting a model separately to each family of sequences. At inference time, a single forward pass
of an end-to-end model replaces the multi-stage pipeline, involving sequence search, alignment,
and model fitting steps, standard in bioinformatics. Recently, promising results have shown
that protein language models learn secondary structure, long-range contacts, and function
via the unsupervised objective [43], making them an alternative to the classical pipeline.
While Chapter 2 showed that small and recurrent models fall well short of state-of-the-art,
Chapter 3 showed that the internal representations of very large transformer models are
competitive with Potts models for unsupervised structure learning.

Potts models have an important advantage over protein language models during inference.
The input to the Potts model is a set of sequences. Inference is performed by fitting a model
that directly extracts the covariation signal from the input. Current protein language models
take a single sequence as input for inference. Information about evolutionary variation must
be stored in the parameters of the model during training. As a result, protein language
models require many parameters to represent the data distribution well.

In this Chapter, we unify the two paradigms within a protein language model that takes
sets of aligned sequences as input, but shares parameters across many diverse sequence
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Figure 4.1: Left: Sparsity structure of the attention. By constraining attention to operate
over rows and columns, computational cost is reduced from O(M2L2) to O(LM2) +O(ML2)
where M is the number of rows and L the number of columns in the MSA. Middle: Untied
row attention uses different attention maps for each sequence in the MSA. Tied row attention
uses a single attention map for all sequences in the MSA, thereby constraining the contact
structure. Ablation studies consider the use of both tied and untied attention. The final model
uses tied attention. Right: A single MSA Transformer block. The depicted architecture is
from the final model, some ablations alter the ordering of row and column attention.

families. Like prior protein language models operating on individual sequences, the approach
benefits from learning from common patterns across protein families, allowing information
to be generalized and transferred between them. By taking sets of sequences as input, the
model gains the ability to extract information during inference, which improves the parameter
efficiency.

We introduce the MSA Transformer, a model operating on sets of aligned sequences. The
input to the model is a multiple sequence alignment. The architecture interleaves attention
across the rows and columns of the alignment as in axial attention [104, 105]. We propose a
variant of axial attention which shares a single attention map across the rows. The model
is trained using the masked language modeling objective. Self supervision is performed by
training the model to reconstruct a corrupted MSA.

We train an MSA Transformer model with 100M parameters on a large dataset (4.3
TB) of 26 million MSAs, with an average of 1192 sequences per MSA. The resulting model
surpasses current state-of-the-art unsupervised structure learning methods by a wide margin,
outperforming Potts models and protein language models with 650M parameters. The model
improves over state-of-the-art unsupervised contact prediction methods across all multiple
sequence alignment depths, with an especially significant advantage for MSAs with lower
depth. Information about the contact pattern emerges directly in the tied row attention
maps. Evaluated in a supervised contact prediction pipeline, features captured by the MSA
Transformer outperform trRosetta [69] on the CASP13 and CAMEO test sets. We find that
high precision contact predictions can be extracted from small sets of diverse sequences, with
good results from as few as 8-16 sequences. We investigate how the model performs inference
by independently destroying the covariation or sequence patterns in the input, finding that
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the model uses both signals to make predictions.

4.2 Related Work
Unsupervised Contact Prediction The standard approach to unsupervised protein
structure prediction is to identify pairwise statistical dependencies between the columns of
an MSA, which are modeled as a Potts model Markov Random Field (MRF). Since exact
inference is computationally intractable, a variety of methods have been proposed to efficiently
fit the MRF, including mean-field inference [86], sparse-inverse covariance estimation [87],
and the current state-of-the-art, pseudolikelihood maximization [73, 74, 88]. In this work we
use Potts models fit with psuedolikelihood maximization as a baseline, and refer to features
generated from Potts models as “co-evolutionary features." Making a connection with the
attention mechanism we study here, Bhattacharya et al. [106] show that a single layer of
self-attention can perform essentially the same computation as a Potts model.

Deep Models of MSAs Several groups have proposed to replace the shallow MRF with a
deep neural network. Riesselman et al. [2] train deep variational autoencoders on MSAs to
predict function. Riesselman et al. [107] train autoregressive models on MSAs, but discard
the alignment, showing that function can be learned from unaligned sequences. In contrast to
our approach which is trained on many MSAs, these existing models are trained on a single
set of related sequences and do not provide a direct method of extracting protein contacts.

Supervised Structure Prediction Supervised structure prediction using deep neural
networks has driven groundbreaking progress on the protein structure prediction problem
[93, 108]. Initial models used coevolutionary features [67, 69, 78, 79, 93]. Recently MSAs have
been proposed as input to supervised structure prediction methods. Mirabello and Wallner
[109] and Kandathil et al. [110] study models that take MSAs as input directly, respectively
using 2D convolutions or GRUs to process the input. More recently, AlphaFold2 [108] uses
attention to process MSAs in an end-to-end model supervised with structures.

The central difference in our work is to model a collection of MSAs using unsupervised
learning. This results in a model that contains features potentially useful for a range of
downstream tasks. We use the emergence of structure in the internal representations of
the model to measure the ability of the model to capture biology from sequences. This is
a fundamentally distinct problem setting from supervised structure prediction. The MSA
Transformer is trained in a purely unsupervised manner and learns contacts without being
trained on protein structures.

Large protein sequence databases contain billions of sequences and are undergoing ex-
ponential growth. Unsupervised methods can directly use these datasets for learning, while
supervised methods are limited to supervision from the hundreds of thousands of crystallized
structures. Unsupervised methods can learn from regions of sequence space not covered by
structural knowledge.
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Protein Language Models Protein language modeling has emerged as a promising ap-
proach for unsupervised learning of protein sequences. Bepler and Berger [24] combined
unsupervised sequence pre-training with structural supervision to produce sequence embed-
dings. Alley et al. [25] and Heinzinger et al. [42] showed that LSTM language models capture
some biological properties. Simultaneously, Rives et al. [43] proposed to model protein
sequences with self-attention, showing that transformer protein language models capture
accurate information of structure and function in their representations. Chapter 2 evaluated
a variety of protein language models across a panel of benchmarks concluding that small
LSTMs and transformers fall well short of features from the bioinformatics pipeline.

A combination of model scale and architecture improvements has been instrumental
to recent successes in protein language modeling. Elnaggar et al. [94] study a variety of
transformer variants. Rives et al. [43] show that large transformer models produce state-of-
the-art features across a variety of tasks. Notably, the internal representations of transformer
protein language models are found to directly represent contacts. Vig et al. [7] find that
specific attention heads of pre-trained transformers correlate directly with protein contacts.
Chapter 3 uses these advances to combine multiple attention heads and predict contacts more
accurately than Potts models, despite using just a single sequence for inference.

Alternatives to the masked language modeling objective have also been explored, such as
conditional generation [70] and contrastive loss functions [95]. Most relevant to our work,
Sturmfels et al. [111] and Sercu et al. [112] study alternative learning objectives using sets
of sequences for supervision. Sturmfels et al. [111] extended the unsupervised language
modeling to predict the position specific scoring matrix (PSSM) profile. Sercu et al. [112]
used amortized optimization to simultaneously predict profiles and pairwise couplings. In
natural language processing, recent work [113, 114] has explored models using multiple
sequences. However, previous work on protein language models has not considered inference
directly from sets of sequences.

4.3 Methods
Transformers are powerful sequence models capable of passing information from any position
to any other position [13]. However, they are not trivially applied to a set of aligned sequences.
Naively concatenating M sequences of length L in an MSA would allow attention across all
sequences, but the (ML)2 self-attention maps would be prohibitively memory-intensive. The
main contribution of this paper is to extend transformer pre-training to operate on an MSA,
while respecting its structure as an M × L character matrix.

We describe the input MSA as a matrix x ∈ RM×L, where rows correspond to sequences
in the MSA, columns are positions in the aligned sequence, and entries xmi take integer
values1 encoding the amino acid identity of sequence m at position i. After embedding the
input, each layer has a RM×L×d state as input and output. For the core of the transformer,

1The final vocab size is 29, consisting of 20 standard amino acids, 5 non-standard amino acids, the
alignment character ‘.’, gap character ‘-’, the start token, and the mask token
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Figure 4.2: Left: Top-L long-range contact precision (higher is better). Comparison of MSA
Transformer with Potts model (left scatter plot), and ESM-1b (right scatter plot). Each
point represents a single protein (14,842 total) and is colored by the depth of the full MSA
for the sequence. The Potts model is given the full MSA as input; ESM-1b is given only the
reference sequence; and the MSA Transformer is given an MSA subsampled with hhfilter to a
maximum of 256 sequences. The MSA Transformer outperforms both models for the vast
majority of sequences. Right: Long-range contact precision performance as a function of
MSA depth. Sequences are binned by MSA depth into 10 bins; average performance in each
bin along with 95% confidence interval is shown. The minimum MSA depth in the trRosetta
dataset is 100 sequences. While model performance generally increases with MSA depth,
the MSA Transformer performs very well on sequences with low-depth MSAs, rivaling Potts
model performance on MSAs 10x larger.

we adapt the axial attention approach from Ho et al. [104], Huang et al. [105], and Child
et al. [115]. This approach alternates attention over rows and columns of the 2D state (see
Fig. 4.1). This sparsity pattern in the attention over the MSA brings the attention cost to
O(LM2) for the column attention, and O(ML2) for the row attention.

Feedforward Layers We deviate from Ho et al. [104] in the interleaving of the feedforward
layers. Rather than applying a feedforward layer after each row or column attention, we
apply row and column attention followed by a single feedforward layer (see Fig. 4.1). This
choice follows more closely the transformer decoder architecture [13].

Position Embedding The standard transformer position embedding is a 1D signal added to
each position in the sequence. Either fixed sinusoidal [13] or learned [12] position embeddings
are most commonly used. Rives et al. [43] found that learned position embeddings generally
resulted in better downstream performance for protein language models.

An MSA is a 2D input so we must consider two types of position embeddings. For all
models trained, we provide a 1D sequence position embedding, which is added independently
to each row of the MSA. This allows the model to distinguish different aligned positions. For
one model, we also add a position embedding independently to each column of the MSA,
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which allows the model to distinguish different sequences (without this, the model treats the
input sequences as an unordered set). We also ensure that the first position in the sequence
is always the reference so that it can always be uniquely identified through the position
embedding. We find that incorporating the column position embedding increases performance
slightly and so choose to use it in the final model (see Appendix C.3 for further discussion).

Tied Row Attention The standard implementation of axial attention allows for inde-
pendent attention maps for each row and column of the input. However, in an MSA each
sequence should have a similar structure; indeed, direct-coupling analysis exploits this fact
to learn contact information. To leverage this shared structure we hypothesize it would be
beneficial to tie the row attention maps between the sequences in the MSA. As an additional
benefit, tied attention reduces the memory footprint of the row attentions from O(ML2) to
O(L2).

Let M be the number of rows, d be the hidden dimension and Qm, Km be the matrix of
queries and keys for the m-th row of input. We define tied row attention (before softmax is
applied) to be:

M∑
m=1

QmK
T
m

λ(M,d)
(4.1)

The denominator λ(M,d) would be the normalization constant
√
d in standard scaled-dot

product attention. In tied row attention, we explore two normalization functions to prevent
attention weights linearly scaling with the number of input sequences: λ(M,d) = M

√
d

(mean normalization) and λ(M,d) =
√
Md (square-root normalization). Our final model uses

square-root normalization.

Pre-training Objective We adapt the masked language modeling objective [12] to the
MSA setting. The loss for an MSA x, and masked MSA x̃ is as follows:

LMLM(x; θ) =
∑

(m,i)∈mask

log p(xmi|x̃; θ) (4.2)

The probabilities are the output of the MSA transformer, softmax normalized over the amino
acid vocabulary independently per position i in each sequence m. We consider masking
tokens uniformly at random over the MSA or masking entire columns of the MSA. Masking
tokens uniformly at random results in best performance (Table C.2). Note that the masked
token can be predicted not only from context amino acids at different positions but also from
related sequences at the same position.

Pre-training Dataset Models are trained on a dataset of 26 million MSAs. An MSA is
generated for each UniRef50 [71] sequence by searching UniClust30 [116] with HHblits [117].
The average depth of the MSAs is 1192. See Fig. C.2 for MSA depth distribution.
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Models and Training We train 100M parameters model with 12 layers, 768 embedding
size, and 12 attention heads, using a batch size of 512 MSAs, learning rate 10−4, no weight
decay, and an inverse square root learning rate schedule with 16000 warmup steps. All models
are trained on 32 V100 GPUs for 100k updates. The four models with best contact precision
are then further trained to 150k updates. Finally, the best model at 150k updates is trained
to 450k updates. Unless otherwise specified, all downstream experiments use this model.

Despite the use of axial attention and tied attention to lower the memory requirements,
large MSAs still do not easily fit in memory at training time. The baseline model fits a
maximum of N = 214 tokens on a 32 GB V100 GPU at training time. To work around this
limitation we subsample the input MSAs to reduce the number of sequences and limit the
maximum sequence length to 1024.

MSA Subsampling During Inference At inference time, memory is a much smaller
concern. Nevertheless we do not provide the full MSA to the model as it would be com-
putationally expensive and the model’s performance can decrease when the input is much
larger than that used during training. Instead, we explore four strategies for subsampling the
sequences provided to the model.

• Random: This strategy parallels the one used at training time, and selects random
sequences from the MSA (ensuring that the reference sequence is always included).

• Diversity Maximizing: This is a greedy strategy which starts from the reference and
adds the sequence with highest average hamming distance to current set of sequences.

• Diversity Minimizing: This strategy is equivalent to the Diversity Maximizing
strategy, but adds the sequence with lowest average hamming distance. It is used to
explore the effects of diversity on model performance.

• HHFilter: This strategy applies hhfilter [117] with the -diff M parameter, which
returns M or more sequences that maximize diversity (the result is usually close to M).
If more than M sequences are returned we apply the Diversity Maximizing strategy on
top of the output.

4.4 Results
We study the MSA Transformer in a panel of structure prediction tasks, evaluating unsuper-
vised contact prediction from the attentions of the model, and performance of features in
supervised contact and secondary structure prediction pipelines.

To calibrate the difficulty of the masked language modeling task for MSAs, we compare
against two simple prediction strategies using the information in the MSA: (i) column
frequency baseline, and (ii) nearest sequence baseline. These baselines implement the
intuition that a simple model could use the column frequencies to make a prediction at
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Figure 4.3: Contact prediction from a small set of input sequences. Predictions are compared
under diversity minimizing and diversity maximizing sequence selection strategies. Visualized
for 4zjp chain A. Raw contact probabilities are shown below the diagonal, top L contacts
are shown above the diagonal. (blue: true positive, red: false positive, grey: ground-truth
contacts). Top-L long-range contact precision below each plot. Contact precision improves
with more sequences under both selection strategies. Maximizing the diversity enables
identification of long-range contacts from a small set of sequences.

the masked positions, or copy the identity of the missing character from the most similar
sequence in the input. Table C.1 reports masked language modeling performance. The MSA
Transformer model (denoising accuracy of 64.0) significantly outperforms the PSSM (accuracy
41.4) and nearest-neighbor (accuracy 46.7) baselines.

Unsupervised Contact Prediction

Chapter 3 showed that transformer protein language models learned to capture information
about protein structure in their attention maps using little to no supervision. This is done by
training a small logistic regression (one parameter per attention head) on a limited number
of protein structures to predict the probability of a contact between residues i and j based
on the attentions between the residues for all attention heads. The logistic regression weights
are shared for all pairs of positions (see Appendix C.1 for more details).

We use the same validation methodology. A logistic regression with 144 parameters is
fit on 20 training structures from the trRosetta dataset [69]. This is then used to predict
the probability of protein contacts on another 14842 structures from the trRosetta dataset
(training structures are excluded). At inference time, we use hhfilter to subsample 256
sequences.

We compare to two state-of-the-art transformer protein language models: ESM-1b [43]
with 650M parameters and ProTrans-T5 [94] with 3B parameters. For the single-sequence
protein language models we use the sequence belonging to the structure as input. We also
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Table 4.1: Average long-range precision for MSA and single-sequence models on the unsuper-
vised contact prediction task.

Model L L/2 L/5

Potts 39.3 52.2 62.8

TAPE 11.2 14.0 17.9
ProTrans-T5 35.6 46.1 57.8
ESM-1b 41.1 53.3 66.1

MSA Transformer 57.4 71.7 82.1

compare against Potts models using the APC-corrected [118] Frobenius norm of the coupling
matrix computed on the MSA [72].

Table 4.1 compares unsupervised contact prediction performance of the models. The
MSA Transformer significantly outperforms all baselines, increasing top-L long-range contact
precision by a full 15 points over the previous state-of-the-art. Table 4.2 shows results on
harder test sets CAMEO hard targets [119] and CASP13-FM [120]. The CASP13-FM test
set consists of 31 free modeling domains (from 25 targets); the CAMEO hard targets are a
set of 131 domains (out of which we evaluate on the 129 that fit within the 1024 character
maximum context length of the model). On the CASP13-FM test set, unsupevised contact
prediction with the MSA Transformer (43.4 top-L long-range precision) is competitive with
the trRosetta base model (45.7 top-L long-range precision), a fully supervised structure
prediction model.

Fig. 4.2 shows the top-L long-range precision distribution across all structures, comparing
the MSA Transformer with Potts models and ESM-1b. The MSA Transformer matches or
exceeds Potts models on 98.5% of inputs and matches or exceeds ESM-1b on 91.0% of inputs.
Fig. 4.2 also shows unsupervised contact performance as a function of MSA depth. The
model outperforms ESM-1b and Potts models across all MSA depths and has a significant
advantage for lower depth MSAs. We find no statistically significant correlation between
sequence length and contact precision.

These experiments also help address performance increases resulting from overlap between
the training set and test sets. The Potts models, ESM-1b, and MSA Transformer are trained
using the same Uniref database version. The third panel in Fig. 4.2 shows that there is
significant correlation between the performance of all three models and the depth of the MSA
provided to the Potts model, despite the fact that ESM-1b receives only a single sequence
as input, and the MSA Transformer receives a subsampled MSA. The depth of the MSA
provided to the Potts model can be used as a proxy for the density of similar sequences in
the training sets of ESM-1b and MSA Transformer. ESM-1b and MSA Transformer show
a clear increase in performance with increased homology overlap, but are on par with or
outperform Potts models for any given degree of homology. In addition, because the Uniref
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Table 4.2: Unsupervised contact prediction on CASP13 and CAMEO (long-range precision).
Note the large improvement of MSA Transformer over classical Potts models and ESM-1b.

CASP13-FM CAMEO

Model L L/5 L L/5

Potts 16.9 31.5 24.0 42.8
ProTrans-T5 16.5 27.0 25.9 43.4
ESM-1b 17.0 30.4 30.9 52.7
MSA Transformer 44.8 72.5 43.5 66.8

Table 4.3: Supervised contact prediction on CASP13 and CAMEO (long-range precision).
∗Uses outer-concatenation of the query sequence representation as features. †Additionally
uses the row attention maps as features.

CASP13-FM CAMEO

Model L L/5 L L/5

trRosettabase 45.7 69.6 50.9 75.5
trRosettafull 51.8 80.1 53.2 77.5

Co-evolutionary 40.1 65.2 47.3 72.1
ProTrans-T5 25.0 41.4 40.8 63.3
ESM-1b 28.2 50.2 44.4 68.4
MSA Transformer∗ 54.5 80.2 53.6 78.0
MSA Transformer† 54.6 77.5 55.8 79.1

database version used was released prior to CASP13, there should be no train/test leakage
for the results on CASP13 in Table 4.2.

Supervised Contact Prediction

Used independently, features from current state-of-the-art protein language models fall short
of co-evolutionary features from Potts models on supervised contact prediction tasks [43].

We evaluate the MSA Transformer as a component of a supervised structure prediction
pipeline. Following Rives et al. [43], we train a deep residual network with 32 pre-activation
blocks, each with a filter size of 64, using learning rate 0.001. The network is supervised with
binned pairwise distance distributions (distograms) using the trRosetta training set [69] of
15051 MSAs and structures.

We evaluate two different ways of extracting features from the model. In the first, we
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Table 4.4: CB513 8-class secondary structure prediction accuracy.

Model CB513

Netsurf 72.1

HMM Profile 71.2± 0.1
ProTrans-T5 71.4± 0.3
ESM-1b 71.6± 0.1
MSA Transformer 73.4 ± 0.3

use the outer concatenation of the output embeddings of the query sequence. In the second,
we combine the outer concatenation with the symmetrized row self-attention maps. For
comparison, we train the same residual network over co-evolutionary features from Potts
models [88]. Additionally we compare to features from state-of-the-art protein language
models ESM-1b and ProTrans-T5 using the outer concatenation of the sequence embeddings.
Dropout of 0.1 is used for all language model-based contact predictors. We also compare to
trRosetta [69], a state-of-the-art supervised structure prediction method prior to AlphaFold2
[108].

The MSA Transformer produces a substantial improvement over co-evolutionary features
for supervised contact prediction. Table 4.3 shows a comparison between the models on
the CASP13-FM and CAMEO test sets. The best MSA Transformer model, using the
combination of attention maps with features from the final hidden layer, outperforms all
other models including the trRosetta baseline model (which uses 36 residual blocks) and the
trRosetta full model (which uses 61 residual blocks, data augmentation via MSA subsampling,
and predicts inter-residue orientations). Model ensembling over all 5 released models is used
in the evaluation of the trRosetta models. Table C.4 gives additional comparisons with LSTM
and transformer protein language models available in the literature.

Secondary Structure Prediction

To further evaluate the quality of representations generated by the MSA Transformer, we train
a state-of-the-art downstream head based on the Netsurf architecture [47]. The downstream
model is trained to predict 8-class secondary structure from the pretrained representations.
We evaluate models on the CB513 test set [49].

The models are trained on the Netsurf training dataset. Representations from the
MSA Transformer (72.9%) surpass the performance of HMM profiles (71.2%) and ESM-1b
embeddings (71.6%) (Table 4.4).
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Ablation Study

We perform an ablation study over seven model hyperparameters, using unsupervised contact
prediction on the validation set for evaluation. For each combination of hyperparameters, a
model is pre-trained with the masked language modeling objective for 100k updates. Training
curves for the models are shown in Fig. C.3 and Top-L long-range precision is reported in
Table C.2.

The ablation studies show the use of tied attention plays a critical role in model per-
formance. After 100k updates, a model trained with square-root normalized tied attention
outperforms untied attention by more than 17 points and outperforms mean normalized
tied-attention by more than 6 points on long-range contact precision.

Parameter count also affects contact precision. A model with half the embedding size
(384) and only 30M parameters reaches a long-range precision of 52.8 after 100k updates,
3.5 points lower than the base model, yet 11.7 points higher than the state-of-the-art 650M
parameter single-seequence model. See Appendix C.3 for further discussion.

4.5 Model Analysis
We examine how the model uses its input MSA in experiments to understand the role of
sequence diversity, attention patterns, and covariation in the MSA.

Effect of MSA diversity

The diversity of the input sequences strongly influences inference of structure. We explore
three inference time strategies to control the diversity of the input sequence sets: (i) diversity
maximizing, (ii) diversity minimizing, and (iii) random selection (see Section 4.3). Fig. 4.4
shows average performance across the test set for each selection strategy as the number of
sequences used for input increases. Two approaches to maximize diversity, greedy hamming
distance maximization and hhfilter, perform equivalently. Both strategies surpass ESM-1b
performance with just 16 input sequences. In comparison, the diversity minimizing strategy,
hamming distance minimization, performs poorly, requiring 256 sequences to surpass ESM-1b.
Random selection performs well, although it falls behind the diversity maximizing strategies.
The qualitative effects of MSA diversity are illustrated in Fig. 4.3, where the addition of just
one high-diversity sequence outperforms the addition of 31 low-diversity sequences.

In principle, the model’s attention could allow it to identify and focus on the most
informative parts of the input MSA. We find row attention heads that preferentially attend
to highly variable columns. We also identify specific column attention heads that attend to
more informative sequences. In this experiment random subsampling is used to select inputs
for the model. Fig. 4.5 compares the distribution of attention weights with two measures
of MSA diversity: (i) per-column entropy of the MSA; and (ii) computed sequence weights
(Appendix C.5). Per column entropy gives a measure of how variable a position is in the
MSA. Computed sequence weights measure how informative a sequence is in the context of
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Figure 4.4: Comparison of MSA selection strategies. Model performance increases with more
sequences. Selection strategies that maximize diversity of the input (MaxHamming and
hhfilter) perform best. Random selection is nearly as good, suggesting the model has learned
to compensate for the varying diversity during training time. Minimizing diversity performs
worst. Using diversity maximizing approaches the MSA Transformer outperforms ESM-1b
and Potts baselines using just 16 input sequences.

the other sequences in the MSA. Sequences with few similar sequences receive high weights.
The maximum average Pearson correlation between a row attention head and column entropy
is 0.59. The maximum average Pearson correlation between a column attention head and
sequence weights is 0.58. These correlations between attention weights and measures of MSA
diversity suggest the model is specifically looking for informative sequences when processing
the input.

Attention Corresponds to Protein Contacts

In Section 4.4, we use the heads in the model’s tied row attention directly to predict contacts
in the protein’s three-dimensional folded structure. Following methodology developed in
Chapter 3, we fit a sparse logistic regression to the model’s row attention maps to identify
heads that correspond with contacts. Fig. C.1 shows the weight values in the learned sparse
logistic regression fit using 20 structures. A sparse subset (45 / 144) of heads are predictive
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Figure 4.5: Left: Average correlation between row-attention and column entropy. This is
computed by taking an average over the first dimension of each L× L row-attention map
and computing correlation with per-column entropy of the MSA. Right: Average correlation
between column-attention and sequence weights. This is computed by taking an average
over the first two dimensions for each L ×M ×M column-attention map and computing
correlation with sequence weights (see Appendix C.5). Both quantities are measures of MSA
diversity. The relatively high correlation (> 0.57) of some attention heads to these measures
suggests the model explicitly looks at diverse sequences.

of protein contacts. The most predictive heads are concentrated in the final layers.

Inference: Covariance vs. Sequence Patterns

Potts models and single-sequence language models predict protein contacts in fundamentally
different ways. Potts models are trained on a single MSA; they extract information directly
from the covariance between mutations in columns of the MSA. Single-sequence language
models do not have access to the MSA, and instead make predictions based on patterns seen
during training. The MSA Transformer may use both covariance-based and pattern-based
inference. To disentangle the two modes, we independently ablate the covariance and sequence
patterns in the model’s input via random shuffling. To ensure that there is enough information
in the input for covariance-based extraction to succeed, we subsample each MSA to 1024
sequences using hhfilter, using only MSAs with at least 1024 sequences, and apply the model
to unshuffled and shuffled inputs.

To remove covariance information, we randomly permute the values in each column of the
MSA. This preserves per-column amino acid frequencies (PSSM information) while destroying
pairwise correlations between columns. Under this condition, Potts model performance drops
to the random guess baseline. Since ESM-1b takes a single sequence as input, the permutation
trivially produces the same sequence, and the result is unaffected. Unlike the Potts model,
the MSA Transformer retains some ability to predict contacts, which increases sharply as a
function of MSA Depth. This indicates that the model can make predictions from patterns
in the sequence profile in the absence of covariance.

To remove sequence patterns seen during training, we randomly permute the order of
positions (columns) in the MSA. This preserves all covariance information between pairs of
columns, but results in a scrambled input dissimilar to a real protein. Under this condition,
Potts model performance is unaffected since its parameterization is invariant to sequence
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Figure 4.6: The MSA Transformer uses both covariance and similarity to training sequences
to perform inference. Left: Examples (pdbid: 5ahw, chain: A) of model performance after
independently shuffling each column of an MSA to destroy covariance information, and after
independently permuting the order of positions to destroy sequence patterns. The MSA
Transformer maintains reasonable performance under both conditions. A Potts model fails
on the covariance-shuffled MSA, while a single-sequence language model (ESM-1b) fails on
the position-shuffled sequence. Right: Model performance before and after shuffling, binned
by depth of the original (non-subsampled) MSA. 1024 sequence selected with hhfilter are
used as input to MSA Transformer and Potts models. MSAs with fewer than 1024 sequences
are not considered in this analysis. Average Top-L long-range precision drops from 52.9
(no ablation) to 15.9 (shuffled covariance) and 27.9 (shuffled positions) respectively. A Null
(random guessing) baseline is also considered. Potts model performance drops to the Null
baseline under the first condition and ESM-1b performance drops to the Null baseline under
the second condition. The MSA Transformer produces reasonable predictions under both
scenarios, implying it uses both modes of inference.

order. ESM-1b performance drops to the random guess baseline. The MSA Transformer does
depend on sequence order, and predicts spurious contacts along the diagonal of the reordered
sequence. When predicted contacts with sequence separation < 6 are removed, the remaining
predictions align with the correct contacts. This shows the model can predict directly from
covariance when presented with sequence patterns unobserved in training.

Together these ablations independently destroy the information used by Potts models and
single-sequence language models, respectively. Under both conditions, the MSA Transformer
maintains some capability to predict contacts, demonstrating that it uses both modes of
inference.
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4.6 Discussion
Prior work in unsupervised protein language modeling has focused on inference from individual
sequences. In this Chapter, we study an approach to perform inference from a set of aligned
sequences in an MSA. We use axial attention to efficiently parameterize attention over the
rows and columns of the MSA. This approach enables the model to extract information from
dependencies in the input set and generalize patterns across MSAs. We find the internal
representations of the model enable state-of-the-art unsupervised structure learning with an
order of magnitude fewer parameters than current protein language models.

While supervised methods have produced breakthrough results for protein structure
prediction [108], unsupervised learning provides a way to extract the information contained in
massive datasets of sequences produced by low cost gene sequencing. Unsupervised methods
can learn from billions of sequences, enabling generalization to regions of sequence space not
covered by structural knowledge.

Models fit to MSAs are widely used in computational biology including in applications
such as fitness landscape prediction [2], pathogenicity prediction [121, 122], remote homology
detection [51], and protein design [64]. The improvements we observe for structure learning
suggest the unsupervised language modeling approach here could also apply to these problems.

Improvement in unsupervised learning of structure and function with protein language
models has been linked to scale of the models [43]. Further scaling the approach studied here
in the number of parameters and input sequences is a potential direction for investigating
the limits of unsupervised learning for protein sequences.
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Chapter 5

Language models enable zero-shot
prediction of the effects of mutations on
protein function

5.1 Introduction
Proteins have a myriad of diverse functions that underlie the complexity of life. Protein
sequences encode function via structure through the spontaneous folding of the sequence into
the three dimensional structure of the protein [123]. The effects of sequence mutations on
function form a landscape that reveals how function constrains sequence. Alterations at some
sites in a protein sequence cannot be tolerated because they are essential to the protein’s
function. Other sites evolve together because the structure and function is determined by
them collectively. Mutations can enhance the activity of a protein, attenuate it, or leave it
unchanged.

The functional effect of sequence variations can be measured through deep mutational
scanning experiments [124]. Consisting of thousands to hundreds of thousands of measure-
ments of protein function, deep mutational scans give insight into the intrinsic constraints
on a protein’s structure and function. Due to the cost and difficulty of implementing such
experiments, compilations of deep mutational scanning data include experiments on a few
dozens of proteins at most, relative to the tens of thousands of proteins encoded in the human
genome, and the millions more across the tree of life that we would like to understand.

A model that learns the landscape linking sequence to function can provide insight into
function without having to do experiments. Unsupervised models of mutational effects can
be learned from sequences [1, 125]. Statistical patterns in a family of evolutionarily related
protein sequences contain information about structure and function [18, 19, 126]. This is
because the properties of a protein act as constraints on the selection of sequences through
evolution [103].

In the natural language modeling community, there has been interest in zero-shot transfer
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Figure 5.1: Depiction of a mutational effect prediction task. The objective is to score the effect
of sequence mutations on the function of a protein. Deep mutational scanning experiments
provide ground truth experimental measurements of the protein’s function (fluorescence
activity in the example here) for a large set of single mutations or combinations of mutations.
For each protein, the prediction task is to score each possible mutation and rank its relative
activity. Predictions for single substitutions can be described in a score matrix. The columns
are the positions in the sequence. The rows are the possible variations at each position.

of models to new tasks. Massive language models can solve tasks they haven’t been directly
trained on [20, 102, 127]. Recent protein language models, introduced in Chapter 4 and
elsewhere, have achieved state-of-the-art in various structure prediction tasks [43, 94]. Work
to date has mainly focused on transfer in the classical representation learning setting, using
pre-trained features with supervision on the downstream task.

In this Chapter we show that language models trained on large and diverse protein
sequence databases can predict experimental measurements of protein function without further
supervision. Prior work has focused on transferring the representations using supervision
from experimental data [128, 129]. We find that language models can transfer to predict
functional measurements without supervision. Language models perform zero-shot and
few-shot prediction of mutational effects across a variety of proteins with widely differing
functions. We perform experiments with state-of-the-art protein language models ESM-1b [43]
and MSA Transformer from Chapter 4. We introduce a new protein language model, ESM-
1v, with zero-shot performance comparable to state-of-the-art mutational effect predictors.
Performance can be further improved by fine-tuning the model with sequences from the
protein family. Predictions capture the functional landscape of the protein, correlate with
amino acid conservation patterns in the core and surface, and identify residues responsible
for binding and activity.
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5.2 Zero-shot transfer
Zero-shot learning has classically described the extension of a classifier to a new set of classes
that have not been seen in training [130]. In natural language processing this idea has been
extended to describe the transfer of models to entirely new tasks without further training.
Proposed as zero-data learning by Larochelle et al. [131], this perspective on transfer has been
at the center of recent work understanding the generalization capabilities of large language
models [20, 102, 127, 132]. The distinction from representation learning is that the models
are used directly without additional supervision for the task. This means that the tasks must
be learned purely from pre-training.

In this work we take a similar perspective on zero-shot transfer to that of GPT-3, described
in Brown et al. [102]. We define zero-shot transfer to be transfer of a model to a new task
without any further supervision to specialize the model to the task. We also consider the
closely related idea of few-shot transfer. Here as in Brown et al. [102] we define the few-shot
setting to be one in which a few positive examples are given to the model as inputs at inference
time. As in the zero-shot setting, no gradient updates are performed to specialize the model.
Similar to Brown et al. [102], the claim is not one of out-of-distribution generalization. The
assumption is that in the pre-training stage, the model learns information relevant to the tasks
to which it will later be transferred. In the case of protein language models, the pre-training
dataset includes sequences from across evolution, which implies the model may see examples
of sequences from protein families on which it will be evaluated. The essential departure
from the standard approach in computational biology is that the model is general purpose
and can be applied across a variety of tasks without specialization.

Measurements of function, a property of central importance to the understanding and
design of proteins, are a practical ground for studying the generalization capability of protein
language models. Deep mutational scanning experiments measure the effects of thousands to
hundreds of thousands of mutations on a single protein, and have been performed on a variety
of proteins having different functions and using various forms of experimental measurement.
We study zero-shot and few-shot transfer of protein language models to function prediction
using this data.

Supervised methods trained with data from experimental measurements [128, 129], and
unsupervised methods trained only on sequences [1, 125] have been developed for prediction
of mutational effects. Unsupervised mutational effect predictors are trained as task specific
models on sequences from an individual protein family. In this view every protein is an
independent prediction task where the objective is to score the effect of mutations on the
protein’s function. While mutational effect predictors trained on multiple sequence alignments
(MSAs) are typically described as unsupervised, they can also be seen as weakly supervised.
Hsu et al. [128] observe that such models have weak supervision on the task through the
MSA, which describes the fitness landscape of the protein through positive examples.

If protein language models can learn the information necessary to solve a task from pre-
training, then they can be applied directly to new instances of the task, without specialization.
This would mean that in practice a single general purpose model can be trained once and
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Figure 5.2: Steps involved in variant effect prediction methods. Compared with EVMutation
[1] and DeepSequence [2], MSA Transformer and ESM-1v require no task-specific model
training for inference. Moreover, ESM-1v does not require MSA generation.

then applied to a variety of possible tasks. Thus zero-shot and few-shot transfer represent
fundamentally new unsupervised learning capabilities that protein language models can bring
to the computational biology toolkit.

5.3 Method
Protein language models trained with the masked language modeling objective are supervised
to output the probability that an amino acid occurs at a position in a protein given the
surrounding context. We use this capability to score sequence variations. For a given mutation
we can consider the amino acid in the wildtype protein as a reference state, comparing the
probability assigned to the mutated amino acid with the probability assigned to the wildtype.

We score mutations using the log odds ratio at the mutated position, assuming an additive
model when multiple mutations T exist in the same sequence:∑

t∈T

log p(xt = xmt
t |x\T )− log p(xt = xwt

t |x\T ) (5.1)

Here the sum is over the mutated positions, and the sequence input to the model is masked
at every mutated position.
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Zero-shot and few-shot transfer

In the zero-shot setting, inference is performed directly on the sequence to be evaluated.
Since the MSA Transformer can take multiple sequences as input at inference time, we use
this model in the few-shot setting, where additional sequences from the protein family are
provided along with the sequence to be evaluated. In both the zero-shot and few-shot settings,
only forward passes of the models are performed during inference; no gradient updates are
taken. Fig. 5.2 illustrates the approach in comparison to the current practice of fitting a new
model for each task.

Inference efficiency

Inference with ESM-1v is more efficient than current state-of-the-art methods. This is a
result of two important differences: (i) the effect of mutations can be inferred directly without
training a task-specific model; (ii) fitness landscapes can be predicted with a single forward
pass. Time requirements are summarized in Fig. D.1.

Scoring with MSA Transformer

We score mutations with MSA Transformer using the log odds ratio and additive model in
Eq. (5.1). However, since MSA Transformer uses a set of sequences for inference, we input
the sequence to be evaluated as the first sequence, and provide additional sequences from the
MSA as context. Masking and scoring are performed on the first sequence only.

5.4 Results

Experimental setup

Prediction Models We compare to state-of-the-art unsupervised variant prediction meth-
ods, EVMutation [1] and DeepSequence [2]. We also examine performance of a variety of
protein language models that have been recently introduced in the literature.

The position specific scoring matrix (PSSM), EVmutation [1], and DeepSequence [2]
methods are all MSA based. The PSSM treats each position in the sequence independently,
factorizing the likelihood into one term per sequence position. EVmutation is a Potts model,
which adds pairwise terms modeling the interactions between positions. DeepSequence
introduces a latent code, allowing potential higher-order interactions between positions.

UniRep [25], TAPE (Chapter 2), ProtBERT-BFD [94], ESM-1b [43], and ESM-1v (intro-
duced here), are all single-sequence language models trained on large databases of unaligned
and unrelated protein sequences (e.g. Pfam [46] or UniRef [71]). With the exception of
UniRep, which is trained using next token prediction, all models are trained with masked
language modeling [12].
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Table 5.1: Comparison of protein language models to state-of-the-art methods. Average
|Spearman ρ| on full and test sets. DeepSequence and ESM-1v models are each ensembles of
5 models. MSA Transformer is a single model, but is ensembled across 5 random samples of
the MSA.

Models Full Test

PSSM 0.460 0.460
EVMutation (published) 0.508 0.495
EVMutation (replicated) 0.511 0.498
DeepSequence (published) 0.514 0.499
DeepSequence (replicated) 0.520 0.506
MSA Transformer 0.542 0.524
ESM-1v (zero shot) 0.509 0.482
ESM-1v (+further training) 0.538 0.519

Finally, the MSA Transformer introduced in Chapter 4 is a combination of both approaches;
it is trained on a large database of MSAs using masked language modeling and takes an MSA
as input during inference.

ESM-1v We train ESM-1v, a 650M parameter transformer language model for prediction of
variant effects, on 98 million diverse protein sequences across evolution. The model is trained
only on sequences, without any supervision from experimental measurements of function.
We use Uniref90 2020-03 [71], employing the ESM-1b architecture and masked language
modeling approach of Rives et al. [43]. The model attains a perplexity of 7.29 on a set of
held-out Uniref90 sequences (Table D.8). We train five models with different seeds to produce
an ensemble.

Evaluation Models are evaluated on a set of 41 deep mutational scans collected by
Riesselman et al. [2], which comprise a variety of tasks assessing a diverse set of proteins.
Across tasks, the experiments differ in the functions tested and in the measurements performed.
We treat each deep mutational scanning dataset as a separate prediction task, scoring each
of the variants in the dataset with the model. The tasks are split into a validation set of
ten mutational scanning datasets and a test set consisting of the remaining datasets. We
evaluate performance by comparing the scores with the experimental measurements using
Spearman rank correlation.

Comparisons Since the published versions of EVMutation and DeepSequence use MSAs
generated from an earlier version of Uniref100, we generate new MSAs using EVMutation
methodology and the version of Uniref100 concurrent with our pretraining dataset. We train
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Figure 5.3: Per task performance. Comparison across 41 deep mutational scanning datasets.
Points are |Spearman ρ| on each dataset, error bars show standard deviation of 20 bootstrapped
samples. Validation proteins are shown to the left of the dividing line and test proteins
to the right. In 17 out of the 41 tasks, ESM-1v zero-shot has a higher |Spearman ρ| than
DeepSequence.

replications of EVMutation and DeepSequence using their open source code. The same MSAs
are also used in few-shot experiments with MSA Transformer and unsupervised fine-tuning
experiments with ESM-1v.

Language models enable zero-shot and few-shot prediction of the
effects of mutations

ESM-1v and MSA Transformer models make state-of-the-art predictions. Table 5.1 compares
overall performance of the models across the 41 mutational scanning datasets. Fig. 5.3 presents
a comparison between ESM-1v and DeepSequence on each of the tasks. Zero-shot inference
with ESM-1v has a better correlation with experimental measurements than DeepSequence
on 17 of the 41 datasets. The two methods are not statistically distinguishable via a paired
t-test.

Table 5.2 compares protein language models in the zero-shot setting. ESM-1v outperforms
existing protein language models TAPE, UniRep [25], ProtBERT-BFD [94], and ESM-1b
[43]. Fig. D.2 breaks down performance across each of the tasks.
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Table 5.2: Zero-shot performance. Average |Spearman ρ| on full and test sets. †Average
performance of five ESM-1v models. ⋆Ensemble of the five ESM-1v models.

Models Full Test

UniRep 0.156 0.151
TAPE 0.171 0.175
ProtBERT-BFD 0.428 0.399
ESM-1b 0.459 0.424
ESM-1v† 0.484 0.457
ESM-1v⋆ 0.509 0.482

Pre-training data We examine the effect of the clustering level of pre-training data. Fig. 5.4
compares models pre-trained on datasets clustered at increasing sequence identity thresholds.
ESM-1b is trained on sequences clustered at a 50% identity threshold. Improvements are seen
using a 70% threshold with greatest improvement at 90%. Uniref100 performance appears to
deteriorate early in training despite being the largest of the datasets. These results establish
a link between model performance and the data distribution, highlighting the importance of
training data in the design of protein language models.

Scoring methods We compare four scoring methods on the validation set - masked
marginals, wildtype marginals, mutant marginals, and psuedolikelihood. Table D.3 shows
that the masked marginal approach described in Eq. (5.1) outperforms other scoring methods,
including ones in which the likelihood changes at non-mutated positions are considered. The
scoring methods are described in detail in Appendix D.1.

Parameter count Previous work in Chapter 3 and Rives et al. [43] has established a
link between model scale and learning of protein structure. We examine zero-shot transfer
performance as a function of parameter count. We train models using the same width, depth,
and learning rate as described in Henighan et al. [6], observing improvements with scale
(Fig. D.3). These findings suggest that continued scaling of the models will further improve
results.

MSA Transformer

We examine how the sequences provided to MSA Transformer affect few-shot transfer.
Table D.6 compares sequence selection methods that vary the diversity of the sequences.
Providing a more diverse set of sequences improves few-shot performance. Selecting a set of
sequences to maximize diversity outperforms selecting a diversity minimizing set of sequences.
Random sampling performs even better, and sampling sequences according to sequence
weights [86] performs best.
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Figure 5.4: Comparison of pre-training datasets. Average |Spearman ρ| on the single-mutation
validation set. While a 50% clustering threshold was used for ESM-1b, training with 90%
clustering results in a significant improvement on variant prediction tasks. Notably, models
trained on Uniref100, the largest dataset in this figure, appear to deteriorate early in training.
These results establish a link between model performance and the data distribution, and
highlight the importance of training data in the design of protein language models.

We also vary the number of sequences used for inference. Fig. D.5 shows few-shot
performance as a function of the number of sequences given as input. The model performs
well using only a few sequences, but performs best with 384 total sequences. In the main
tables we report results sampling 384 sequences using sequence reweighting and ensembling
predictions over five different subsamples from the MSA.

Unsupervised fine-tuning on MSAs

While ESM-1v performs well when evaluated in the zero-shot setting, we explore whether
results can be improved by fine-tuning on the MSA. Fine-tuning on MSAs has been used in
previous work [25, 129] as a stage in transfer learning to specialize a pre-trained model to a
protein family, before applying supervision with labeled data. Here we consider using the
fine-tuned model to make unsupervised predictions directly, without adding supervision from
experimental data.

We observe that naively fine-tuning the model on the MSA results in rapid overfitting
and poor performance on the prediction tasks (Fig. D.6). While we experiment with a variety
of approaches to freezing parameters during fine-tuning, detailed in Appendix D.2, none
produce significant improvements. We find that an approach using pre-training sequences
to regularize the fine-tuning performs well and enables training of all parameters without
overfitting (Fig. D.7). Spiked fine-tuning improves average absolute Spearman rho on the full
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Figure 5.5: ESM-1v reflects the molecular basis of function in proteins. (A) DNA methylase
HaeIII (pdbid: 1DCT [3]). Side chains for the top 10 positions with lowest prediction entropy
shown in blue. Low-entropy positions cluster in the active site. (B) TIM Barrel (pdbid: 1IGS
[4]) with residues colored by entropy. The model’s predictions for residues on the surface have
highest entropy (red) while those in the core have lower entropy (blue). Notably, residues on
the alpha helices show a clear gradient from high to low entropy as residues transition from
surface-facing to core-facing. (C) Sucrose-specific Porin (pdbid: 1A0T [5]), a transmembrane
protein. The model predicts a hydrophobic band where the protein is embedded in the
membrane.

dataset from 0.510 for zero-shot evaluation to 0.537 with fine-tuning.

5.5 Analysis of models
Protein structure and function ESM-1v probabilities reflect the functional properties
of sites within the protein. We use the entropy of the model’s predictions for a position as a
measure of its estimation of conservation. The lowest entropy predictions cluster at binding
sites. Fig. D.8 compares the distribution of the model’s entropy between binding sites and
non-binding sites. A significant difference is observed between the entropy assignment to
binding and non-binding site residues. Fig. 5.5 visualizes the side chains of the 10 lowest
entropy residues as predicted by the model on the crystal structure of DNA methyltransferase
M.HaeIII interacting with its DNA substrate. In the crystal structure a cytosine of the
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Figure 5.6: Calibration plot for ESM-1v predictions on each of the 20 naturally occurring
amino acids on the trRosetta dataset. The multi-class classification is converted into a set of
20 one-versus-all classifications for the purpose of this analysis. Left and right plots show
calibration of all positions and positions excluding the first residue, respectively. Since full
sequences always start with Methionine, the model overwhelmingly predicts it in the first
position. When evaluating the model on subsequences, such as those in the trRosetta dataset,
this causes a miscalibration at the first residue. Including the first residue, the model has an
average calibration error (ACE) of 0.011 in the first case and 0.006 in the second.

substrate is inserted into the active site of the enzyme. The low entropy residues cluster in
the active site and interact with the cytosine. Additional examples are visualized in Fig. D.12.

The model probabilities also correspond to structure. Fig. D.9 compares the entropy
assigned to sites that are buried in the core of the protein vs. exposed on the surface. The
model assigns significantly lower entropy to sites that are in the core of the protein, consistent
with the idea that tight packing in the core places greater constraints on the selection of
residues. Fig. 5.5B visualizes the entropy assigned by the model to each position overlayed on
the structure of Indole-3-glycerolphosphate Synthase, a TIM barrel protein. Higher entropy is
assigned to residues having outward facing side chains on the alpha helices, while lower entropy
is assigned to the inward facing positions. Fig. D.11 compares the probability assigned to
hydrophobic, polar, and charged amino acids for buried sites vs. non-buried sites. The model
prefers hydrophobic residues in the core and hydrophilic residues on the surface. The model
probabilities closely match the empirical probabilities and those from the PSSM. Fig. 5.5C
visualizes probability assigned to hydrophobic amino acids on the structure of Sucrose-specific
Porin, a transmembrane protein. The model predicts a hydrophobic band in the center where
the protein embeds in the membrane.
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Calibration We evaluate model calibration using 15008 sequences with length < 1024 from
the trRosetta [133] dataset. ESM-1v probabilities for each amino acid at each position are
calculated with the masked marginal probability in Eq. (5.1). Fig. 5.6 shows that the model
is generally well calibrated for all amino acids except Methionine. ESM-1v always predicts
Methionine as the first position in the sequence since full protein sequences always start with
it, so care must be used when applying the model to subsequences. When excepting the first
residue, the model achieves an average calibration error (defined for the multi-class setting in
Appendix D.4) of 0.006.

We also explore the relationship between conservation (entropy of the PSSM) and the
model’s predicted entropy. Fig. D.10 shows that these are well correlated (Pearson’s r = 0.44),
suggesting the model is able to identify conserved positions.

5.6 Related Work

Protein language models

In addition to Chapters 2 to 4, a number of groups have developed language models for
protein sequences [24, 25, 43, 70, 94, 95]. These models have been used for many tasks,
including supervised low-N function prediction [43, 129], remote homology detection [43],
and protein generation [70]. The approach to the tasks typically involves transfer learning,
where a pretrained language model is fine-tuned for a particular problem. Vig et al. [7] found
that transformer attention corresponds to known biological properties such as structure and
binding sites.

Mutation effect prediction

Supervised and unsupervised methods have been developed for prediction of mutational
effects. Supervised methods train models using experimental measurements or labels from
databases of clinical variants. Standard machine learning tools including linear regression,
random forests, and support-vector machines can be used [133]. Models have been designed
specifically for proteins, using feature engineering such as Envision [134] and PolyPhen-2
[135], ensemble methods such as Revel [136], MPC [137], CADD [138], and M-CAP [139],
language models such as UniRep [25, 129] and ESM [43], and other representation learning
approaches [121, 140].

Unsupervised mutation effect predictors work by inferring the likelihood of a mutation
from the evolutionary landscape of the original protein. A density model fit to related
sequences is used for scoring. SIFT [141] is a first order approach using a position-specific-
scoring-matrix. EVMutation [1] extends this to a second-order approach by training a Potts
model on the MSA. DeepSequence [2] includes higher-order interactions by training a VAE
on the MSA instead, using the ELBO to score mutations. Riesselman et al. [107] proposes
using an autoregressive model that does not require the sequences to be aligned.
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Hsu et al. [128] show that unsupervised mutational effect predictors can be extended
to perform supervised predictions, with better unsupervised predictors generally resulting
in better supervised predictors. This suggests improving unsupervised prediction can drive
progress in both settings. Concurrent with our work, Hie et al. [142] use open-source protein
language models ESM-1b and TAPE to predict the direction of evolution in protein fitness
landscapes.

5.7 Discussion
Advances in language modeling at scale are bringing the goal of a general purpose model
for proteins closer to realization. This line of work aspires to a model that learns to read
and write biology in its native language, that can be directly applied across a range of
protein understanding and design tasks. For scalability, learning from sequences is important:
while there are no central databases of high-throughput functional measurements, and few
compilations exist, billions of sequences are available to learn from in sequence databases
[143, 144]. Sequences give an unparalleled view into the vast diversity and complexity of
molecular parts invented by nature through billions of years of evolution.

Unsupervised structure [73, 83–87] and function [1, 125] learning methods first effectively
realized the idea that biological properties could be read directly from sequences without
supervision from experimental measurements. However these methods are not general purpose
in the sense that a specialized model must be trained for every protein for which a prediction
is to be made. We show that the same performance can be realized by a general purpose
model that has been trained across many diverse protein families. Similar to observations
on the learning of tertiary protein structure in large language models (Chapter 3, [43]), we
find that increasing the scale of models leads to improvements in function learning. The
understanding of mutational landscapes in the models correlates with the molecular basis of
function in proteins, capturing binding sites and amino acid preferences that are determined
by the folded structure.

Zero-shot transfer is an interesting capability of large scale language models, and represents
a major point of departure from the unsupervised learning methods that are the basis for
current state-of-the-art inference of protein structure and function. The capability for
zero-shot transfer implies that a model can be trained once and then applied to perform
inference for many tasks. It is also a window into deeper questions about the forms of
generalization that are possible in learning from sequences. Reading structural and functional
design principles from sequences is a necessary capability for writing new biologically active
sequences. Generalization in the zero-shot setting suggests the potential for large language
models to capture knowledge that can be transferred to generating new functional proteins.
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Chapter 6

Conclusions

6.1 Future Work
The developments proposed in this dissertation, along with advances such as AlphaFold [108]
(which combined an MSA Transformer-like architecture and loss with additional equivariant
modeling and supervised losses), shows that computational modeling (and specifically deep
neural network-based modeling) of proteins can produce strong results.

Variant Prediction

Chapter 5 looks at the performance of unsupervised language model for variant effect
prediction, specifically in the context of protein design. However, variant prediction can also
be of enormous clinical value [175]. As sequencing costs decrease, genome sequencing will
become a more and more common diagonstic tool. Improving the accuracy with which we
are able to predict the effects of mutations would enable the early detection and treatment of
rare genetic mutations for a large swath of the population. Expanding current models from
proteins to nucleotides could also have an impact, allowing the detection of mutational effects
of synonymous substitutions or in non-coding regions.

Representation Learning

Current neural models of proteins are largely based on evolutionary relationships between
sequences. Evolutionary information is clearly powerful, as shown both in this work and
elsewhere, and is able to capture significant information about protein structure and function.

However, as we move further from the realm of natural proteins and towards designed
proteins, evolutionary priors begin to lose some of their utility. Will this protein bind to a
novel ligand, one which may never have been seen in nature? Will this protein be stable at
100C? Will this protein be soluble at very high concentrations?

Answering these questions will require new model architectures, training schemes, and
better representations. These advances may come in the form of joint representations of
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proteins and ligands, physical priors and attempts to encode kinematics, or multitask learning
on other metadata and computational predictions.

The ultimate goal of protein representation learning should not be to predict structure,
stability, or binding affinity. Rather the goal is to create an invertible mapping between
sequence and any arbitrary function, while also being sensitive to changes in the environment.
Even the best neural models today fail to account for temperature, concentration, pH, or the
presence of other molecules. There’s still a long way to go.

6.2 Reflections
This dissertation started with three questions:

1. Do standard approaches to unsupervised learn-
ing in NLP learn biologically relevant features?

2. How can we tailor the data, model, and tasks
used to train unsupervised models for proteins?

3. Can large scale unsupervised models for protein
sequences be made useful for protein design?

Over the course of this work, methods for training and evaluating language models
on protein sequences have been developed. Language models have been shown to learn
important information regarding the structure and function of protein sequences with no
explicit supervisory signal. Effects of model scale, data deduplication, and the use of MSAs
have been investigated.

Additionally, multiple publicly available artifacts have been produced, including the TAPE
benchmark suite, the TAPE model repository, the MSA Transformer, ESM-1v, and scripts for
contact and variant effect prediction. These projects have already directly enabled additional
research, from further analysis of protein language models [7, 176], to improving machine
learning directed evolution [177].

I would therefore answer the first question with a resounding yes. It is clear that language
models learn biologically relevant information. To the second question we have some answers.
Deduplicating data and incorporating MSAs play key roles in improving the features learned
by large scale models, but there are multiple avenues of optimization left to explore. And
to the third question, I would say we are only just getting started. With the release of
AlphaFold [108], deep neural network-based modeling of proteins is poised to become a major
component of protein design. More work on representation learning, transfer learning, and
evolutionary modeling will be required to realize the ultimate goal of fully de novo design.
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Appendix A

Evaluating Protein Transfer Learning
with TAPE

A.1 Dataset Details
In Table A.1 we show the size of all train, validation, and test sets.

We provide further details about dataset sources, preprocessing decisions, data splitting,
and experimental challenges in obtaining labels for each of our supervised tasks below. For
ease of reading, each section starts with the following items:
(Dataset) The source of the dataset and creation of train/test splits.
(Labeling) The current approach to acquiring supervised labels for this task.

Secondary Structure Details

(Dataset) We use a training and validation set from Klausen et al. [47], which is filtered
such that no two proteins have greater than 25% sequence identity. We use three test sets,
CB513 [49], CASP12 [37], and TS115 [178]. The training set is also filtered at the 25%

Table A.1: Dataset sizes

Task Train Valid Test

Language Modeling 32,207,059 N/A 2,147,130 (Random split) / 44,314 (Heldout)
Secondary Structure 8,678 2,170 513 (CB513) / 115 (TS115) / 21 (CASP12)
Contact Prediction 25,299 224 40 (CASP12)
Remote Homology 12,312 736 718 (Fold) / 1,254 (Superfamily) / 1,272 (Family)
Fluorescence 21,446 5,362 27,217
Stability 53,679 2,447 12,839
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identity threshold with these test sets. This filtering tests the model’s ability to generalize
in the interesting case where test proteins are not closely related to train proteins.

(Labeling) Determining the secondary structure of a protein experimentally requires high-
resolution imaging of the structure, a particularly labor intensive task for structural
biologists. Imaging often uses Cryo Electron-Microscopy or X-Ray Crystallography, which
can take between weeks and years and can cost over $200, 000 [179].

Contact Prediction Details

(Dataset) We use training, validation, and test sets from ProteinNet [38], which uses a test
set based on the CASP12 [37] competition, with training and validation sets filtered at
the 30% sequence identity threshold. This tests the ability of the model to generalize to
proteins that are not closely related to any train proteins.

(Labeling) Determining the contacts of a protein requires knowing its full 3D structure. As
with secondary structure, determining the 3D structure requires imaging a protein.

Remote Homology Details

(Dataset) We use a training, validation, and test set from [51], derived from the SCOP 1.75
database [180] of hierarchically classified protein domains. All proteins of a given fold are
further categorized into related superfamilies. Entire superfamilies are held out from the
training set, allowing us to evaluate how the model generalizes across evolutionary distance
when structure is preserved.

(Labeling) Each fold is annotated from the structure of the sequence, which SCOP pulls
from the Protein DataBank [180, 181]. Finding new superfamilies with the same fold
is a challenging task, requiring sequencing in extreme environments as is often done in
metagenomics [182].

Fluorescence Details

(Dataset) We use data generated by an experimental technique called Deep Mutational
Scanning (DMS) [54]. This technique allows for extensive characterizations of small
neighborhoods of a parent protein through mutagenesis. We create training, validation, and
test splits ourselves, partitioning the data so that train and validation are in a Hamming
distance 3 neighborhood of the original protein, while test data is a sample from the
Hamming distance 4-15 neighborhood.

(Labeling) DMS is efficient for local characterization near a single protein, but its samples
become vanishingly small once neighborhoods start to expand outside of Hamming distance
2.
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Stability Details

(Dataset) We use data generated by a novel combination of parallel DNA synthesis and
protein stability measurements [56]. We create training, validation, and test splits ourselves,
partitioning the data so that training and validation sets come from four rounds of experi-
mental data measuring stability for many candidate proteins, while our test set consists of
seventeen 1-Hamming distance neighborhoods around promising proteins observed in the
four rounds of experimentation.

(Labeling) This approach for observing stability is powerful because of its throughput,
allowing the authors to find the most stable proteins ever observed for certain classes [56].
The authors observe that the computational methods used to guide their selection at each
stage could be improved, meaning that in this case better models could actually lead to
better labeled data in a virtuous cycle.

A.2 Featurization of Pretrained Models
We followed standard practice for feeding large pretrained models into downstream supervised
architectures. For the Transformer, ResNet, and UniRep we extracted a vector of dimension
512, 256 and 1900, respectively, at each position. For the LSTM and Bepler, we obtained
a forward and backward vector at each position, which we concatenated. This resulted in
vectors of dimension 2048 and 1024, respectively. For details on how these vectors were used
for downstream tasks, see the next section.

A.3 Supervised Architectures
For each task, we fixed one supervised architecture and tried one-hot, alignment-based,
and neural net based features. We did not perform hyperparameter tuning or significant
architecture optimization, as the main goal was to compare feature extraction techniques.

For each task we define the supervised architecture below. If this is a state of the art
architecture from other work, we highlight any novel training procedure or inputs they take.

Secondary Structure Architecture

We used the NetSurfP2.0 model from Klausen et al. [47]. The model consists of two
convolutional layers followed by two bidirection LSTM layers and a linear output layer.
The convolutional layers have filter size 32 and kernel size 129 and 257, respectively. The
bidirectional LSTM layers have 1024 hidden units each.

Our evolutionary features for secondary structure prediction are transition probabilities
and state information from HHblits [27], an HMM-HMM alignment method. In the original
model, the authors take HHblits outputs in addition to a one-hot encoding of the sequence,
giving 50-dimensional inputs at each position. They train the model on multiple tasks
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including secondary structure prediction (3 and 8 class), bond-angle prediction, and solvent
accessibility prediction. For clarity, we only compared to the model trained without the
multitask training, which in our experiments contributed an extra one to two percent in test
accuracy. In addition to multitask training, they balance the losses between different tasks to
achieve maximum accuracy on secondary structure prediction. All features and code to do
the full multitask training is available in our repository.

Contact Prediction Architecture

We used a supervised network inspired by the RaptorX-Contact model from Ma et al. [63].
Since a contact map is a 2D pairwise prediction, we form a 2D input from our 1D features
by concatenating the features at position i and j for all i, j. This 2D input is then passed
through a convolutional residual network with. The 2D network contains 30 residual blocks
with two convolutional layers each. Each convolution in the residual block has filter size 64
and a kernel size of 3.

Currently our evolutionary features for contact prediction are Position Specific Scoring
Matrices (PSSMs) available in ProteinNet [38]. The original RaptorX method has a more
complex evolutionary featurization: they construct a Multiple Sequence Alignment for each
protein, then pass it through CCMpred [88] - a Markov Random Field based contact prediction
method. This outputs a 2D featurization including mutual information and pairwise potential.
This, along with 1D HMM alignment features and the one-hot encoding of each amino acid
are fed to their network. We are currently recreating this pipeline to use these features
instead of PSSMs, as the results reported by RaptorX are better than those with the PSSMs.

Remote Homology Architecture

Remote homology requires a single prediction for each protein. To obtain a sequence-length
invariant protein embedding we compute an attention-weighted mean of the amino acid
embeddings. More precisely, we predict an attention value for each position in the sequence
using a trainable dense layer, then use those attention values to compute an attention-weighted
mean protein embedding. This protein embedding is then passed through a 512 hidden unit
dense layer, a relu nonlinearity, and a final linear output layer to predict logits for all 1195
classes. We note that Hou et al. [51] propose a deep architecture for this task and report state
of the art performance. When we compared the performance of this supervised architecture to
that of the attention-weighted mean above, the attention-based embedding performed better
for all featurizations. As such, we choose to report results using the simpler attention-based
downstream architecture.

Our evolutionary features for remote homology detection are Position Specific Scoring
Matrices (PSSMs), following the recent work DeepSF [51]. The current state of the art method
in this problem, DeepSF [51], takes in a one-hot encoding of the amino acids, predicted
secondary structure labels, predicted solvent accessibility labels, and a 1D alignment-based
features. In an ablation study, the authors show that the secondary structure labels are most
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useful for performance of their model. We report only one-hot and alignment-based results in
the main paper to maintain consistency with alignment-based featurizations for other tasks.
All input features used by DeepSF are available in our repository.

Protein Engineering Architectures

Protein engineering also requires a single prediction for each protein. Therefore we use the
same architecture as we do for remote homology, computing an attention-weighted mean
protein embedding, a dense layer with 512 hidden units, a relu nonlinearity and a final linear
output layer to predict the quantity of interest (either stability or fluorescence).

Since we create these training, validation, and test splits ourselves, no clear previous state
of the art exists. Related work on protein engineering has used a similar architecture by
computing a single protein embedding followed by some form of projection (linear or with a
small feed forward network) [25, 43]. These methods also do not take in alignment-based
features and only use one-hot amino acids as inputs.

A.4 Training Details
Self-supervised models were all trained on four NVIDIA V100 GPUs on AWS for 1 week.
Training used a learning rate of 10−3 with a linear warm up schedule, the Adam optimizer,
and a 10% dropout rate. Since proteins vary in length significantly, we use variable batch sizes
depending on the length of the protein. These sizes also differ based on model architecture, as
some models (e.g. the Transformer) have significantly higher memory requirements. Specific
batch sizes for each model at each protein length are available in our repository.

Supervised models were trained on two NVIDIA Titan Xp GPUs until convergence (no
increase in validation accuracy for 10 epochs) with the exception of the memory-intensive
Contact Prediction task, which was trained on two NVIDIA Titan RTX GPUs until con-
vergence. Training used a learning rate of 10−4 with a linear warm up schedule, the Adam
optimizer, and a 10% dropout rate. We backpropagated fully through all models during
supervised fine-tuning.

In addition, due to high memory requirements of some downstream tasks (especially
contact prediction) we use memory saving gradients [183] to fit more examples per batch on
the GPU.

A.5 Pfam Heldout Families
The following Pfam clans were held out during self-supervised training: CL0635, CL0624,
CL0355, CL0100, CL0417, CL0630. The following Pfam families were held out during self-
supervised training: PF18346, PF14604, PF18697, PF03577, PF01112, PF03417. First, a
“clan” is a cluster of families grouped by the maintainers of Pfam based on shared function
or evolutionary origin (see [184] for details). We chose holdout clans and families in pairs,
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Table A.2: Results for small pretrained models on downstream supervised tasks

Method Structure Evolutionary Engineering

SS Contact Homology Fluorescence Stability

Transformer (small) 0.70 0.31 0.13 0.68 0.68
LSTM (small) 0.73 0.26 0.18 0.66 0.67
ResNet (small) 0.73 0.37 0.11 0.43 0.68

where a clan of novel function is held out together with a family that is similar in sequence
but different evolutionarily or functionally. This serves to simultaneously test generalization
across large distances (entirely held out families) and between similar looking unseen groups
(e.g. the paired holdout clan and holdout family).

A.6 Bepler Supervised Training
We perform supervised pretraining using the same architecture described in Bepler and Berger
[24]. We train on the same tasks, a paired remote homology task and contact map prediction
task. However, in order to accurately report results on downstream secondary structure,
contact map, and remote homology datasets, which were filtered by sequence identity, we
perform this same sequence identity filtering on the supervised pretraining set. This reduced
the supervised pretraining dataset size by 75% which likely reduced the effectiveness of the
supervised pretraining. Both filtered and unfiltered supervised pretraining datasets are made
available in our repository.

A.7 Model Size Ablation
In this benchmark we made the choice to train relatively large, 40 million parameter models
as larger models have been found to improve performance in other applications of deep
learning. To determine whether this trend holds for our benchmark, as well as to quantify the
performance difference, we evaluate smaller versions of our three models (the Transformer,
LSTM, and ResNet).

Our Transformer model has 6 layers, a hidden dimension of 256, a filter dimension of 512,
and 8 attention heads, for a total of 3,315,200 parameters. Our LSTM model has 3 layers
with 128 hidden units each, for a total of 796288 parameters. Our ResNet has 8 layers, a filter
size of 256, a kernel size of 3, and a dilation rate of 2, for a total of 3,268,992 parameters.
Each model was trained for 1,000,000 gradient updates on Pfam, in the same manner that
the corresponding large models were trained. Results are reported in Table A.2.
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Table A.3: Detailed secondary structure results

Three-Way Accuracy (Q3) Eight-Way Accuracy (Q8)

CB513 CASP12 TS115 CB513 CASP12 TS115

No Pretrain
Transformer 0.70 0.68 0.73 0.51 0.52 0.58
LSTM 0.71 0.69 0.74 0.47 0.48 0.52
ResNet 0.70 0.68 0.73 0.55 0.56 0.61

Pretrain
Transformer 0.73 0.71 0.77 0.59 0.59 0.64
LSTM 0.75 0.70 0.78 0.59 0.57 0.66
ResNet 0.75 0.72 0.78 0.58 0.58 0.64

Supervised [24] LSTM 0.73 0.70 0.76 0.58 0.57 0.65
UniRep [25] mLSTM 0.73 0.72 0.77 0.57 0.59 0.63

Baseline One-hot 0.69 0.68 0.72 0.52 0.53 0.58
Alignment 0.8 0.76 0.81 0.63 0.61 0.68

We note several interesting phenomena from this table. First, we see a drop in performance
across all models and tasks, with the exception of the ResNet on the Contact Prediction
task and the Transformer on the Fluorescence task. Second, with the exception of the
Contact Prediction task, the relative ordering of the models is preserved, even while overall
performance decreases. As the Contact Prediction task has the most complicated downstream
architecture, it suggests that the downstream architecture has a large effect on performance.

A.8 Detailed Results on Supervised Tasks
Here we provide detailed results on each task, examining multiple metrics and test-conditions
to further determine what the models are learning.

Secondary Structure Results

We perform both three-class and eight-class secondary structure classification following the
DSSP labeling system [185]. Three way classification tags each position as either Helix,
Strand or Other. Eight-way classification breaks these three labels into more specialized
classes, for example Helix is broken into 3-turn, 4-turn or 5-turn helix. Table A.3 shows
results on these tasks. We note that test-set performance is comparable for all three test sets,
in particular alignment does better at both eight-way and three-way classification by a large
margin.

We follow the standard notation, where Q3 refers to three-way classification accuracy and
Q8 refers to eight-way classification accuracy.
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Table A.4: Detailed short-range contact prediction results. Short range contacts are contacts
between positions separated by 6 to 11 positions, inclusive.

AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.29 0.25 0.32 0.4
LSTM 0.23 0.22 0.26 0.33
ResNet 0.2 0.18 0.24 0.31

Pretrain
Transformer 0.35 0.28 0.35 0.46
LSTM 0.35 0.26 0.36 0.49
ResNet 0.32 0.25 0.34 0.46

Supervised [24] LSTM 0.33 0.27 0.35 0.44
UniRep [25] mLSTM 0.27 0.23 0.3 0.39

Baseline One-hot 0.3 0.26 0.34 0.42
Alignment 0.51 0.35 0.5 0.66

Table A.5: Detailed medium-range contact prediction results. Medium range contacts are
contacts between positions separated by 12 to 23 positions, inclusive.

AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.2 0.18 0.24 0.31
LSTM 0.13 0.13 0.15 0.19
ResNet 0.15 0.14 0.18 0.23

Pretrain
Transformer 0.23 0.19 0.25 0.33
LSTM 0.23 0.2 0.26 0.34
ResNet 0.23 0.18 0.25 0.35

Supervised [24] LSTM 0.26 0.22 0.29 0.37
UniRep [25] mLSTM 0.2 0.17 0.23 0.32

Baseline One-hot 0.2 0.17 0.23 0.3
Alignment 0.45 0.32 0.45 0.59

Contact Prediction Results

We report all metrics commonly used to capture contact prediction results [63] in Tables A.5
and A.6. The metrics “P@K” are precision for the top K contacts, where all contacts are
sorted from highest confidence to lowest confidence. Note that L is the length of the protein,
so “P@L/2”, for example, denotes the precision for the L/2 most likely predicted contacts in
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Table A.6: Detailed long-range contact prediction results. Long range contacts are contacts
between positions separated by 24 or more positions, inclusive.

AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.09 0.15 0.17 0.19
LSTM 0.05 0.1 0.12 0.15
ResNet 0.06 0.11 0.13 0.15

Pretrain
Transformer 0.1 0.17 0.2 0.24
LSTM 0.11 0.2 0.23 0.27
ResNet 0.06 0.1 0.13 0.17

Supervised [24] LSTM 0.11 0.18 0.22 0.26
UniRep [25] mLSTM 0.09 0.17 0.2 0.22

Baseline One-hot 0.07 0.13 0.16 0.22
Alignment 0.2 0.33 0.42 0.51

a protein of length L. In Table A.5 we report all metrics for medium range contacts, which
are contacts for positions between five and twelve amino acids apart. In Table A.6 we report
all metrics for long range contacts, which are contacts for positions greater than 12 amino
acids apart.

All results decay as we transition from short range to long range contacts, which we note
is not the case for many state of the art methods from recent CASP competitions [62, 63].

Remote Homology Results

In Table A.7, we report results on three remote homology test datasets constructed in Hou
et al. [51]. Recall that “Fold” has the most distantly related proteins from train, while
“Superfamily” and “Family” are increasingly related (see Appendix A.1 for more details). This
is reflected in the accuracies in Table A.7, which increase drastically as the test sets get easier.

Fluorescence Results

Fluorescence distribution in the train, validation, and test sets is bimodal, with one mode
corresponding to bright proteins and one mode corresponding to dark proteins. The dark
mode is significantly more diverse in the test set than the train and validation sets, which
makes sense as most random mutations will destroy the refined structure necessary for
fluorescence. With this in mind, we report Spearman’s ρ and mean-squared-error (MSE) on
the whole test-set, on only dark mode, and on only the bright mode in Table A.8. The drop
in MSE for both modes shows that pretraining helps our best models distinguish between
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Table A.7: Detailed remote homology prediction results

Fold Superfamily Family

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

No Pretrain
Transformer 0.09 0.21 0.07 0.2 0.31 0.58
LSTM 0.12 0.28 0.13 0.29 0.68 0.85
ResNet 0.1 0.24 0.07 0.19 0.39 0.6

Pretrain
Transformer 0.21 0.37 0.34 0.51 0.88 0.94
LSTM 0.26 0.43 0.43 0.59 0.92 0.97
ResNet 0.17 0.29 0.31 0.44 0.77 0.87

Supervised [24] LSTM 0.17 0.30 0.20 0.36 0.79 0.91
UniRep [25] mLSTM 0.23 0.39 0.38 0.54 0.87 0.94

Baseline One-hot 0.09 0.21 0.08 0.21 0.39 0.66
Alignment 0.09 0.21 0.09 0.24 0.53 0.77

Table A.8: Detailed fluorescence prediction results. ρ denotes Spearman ρ.

Full Test Set Bright Mode Only Dark Mode Only

MSE ρ MSE ρ MSE ρ

No Pretrain
Transformer 2.59 0.22 0.08 0.08 3.79 0
LSTM 2.35 0.21 0.11 0.05 3.43 -0.01
ResNet 2.79 -0.28 0.07 -0.07 4.1 -0.01

Pretrain
Transformer 0.22 0.68 0.09 0.60 0.29 0.05
LSTM 0.19 0.67 0.12 0.62 0.22 0.04
ResNet 3.04 0.21 0.12 0.05 4.45 0.02

Supervised [24] LSTM 2.17 0.33 0.08 0.06 3.17 0.02
UniRep [25] mLSTM 0.20 0.67 0.13 0.63 0.24 0.04

Baseline One-hot 2.69 0.14 0.08 0.03 3.95 0.0
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Table A.9: Overall stability prediction results

Spearman’s ρ Accuracy

No Pretrain
Transformer -0.06 0.5
LSTM 0.28 0.6
ResNet 0.61 0.68

Pretrain
Transformer 0.73 0.70
LSTM 0.69 0.69
ResNet 0.73 0.66

Supervised [24] LSTM 0.64 0.67
UniRep [25] mLSTM 0.73 0.69

Baseline One-hot 0.19 0.58

dark and bright proteins. However low Spearman’s ρ for the dark mode suggests that models
are not able to rank proteins within this mode.

Stability Results

Table A.10: Stability prediction results broken down by protein topology

ααα αββα βαββ ββαββ

ρ Acc ρ Acc ρ Acc ρ Acc

No Pretrain
Transformer -0.39 0.49 -0.41 0.47 0.52 0.5 0.25 0.52
LSTM -0.07 0.57 0.39 0.7 -0.43 0.56 -0.34 0.56
ResNet 0.64 0.69 0.16 0.69 0.63 0.67 0.65 0.67

Pretrain
Transformer 0.66 0.68 0.48 0.73 0.65 0.71 0.65 0.67
LSTM 0.71 0.7 0.17 0.73 0.68 0.67 0.67 0.7
ResNet 0.68 0.68 0.15 0.63 0.61 0.68 0.6 0.68

Supervised [24] LSTM 0.33 0.66 0.24 0.79 0.54 0.7 0.58 0.53
UniRep [25] mLSTM 0.72 0.66 0.11 0.76 0.68 0.66 0.65 0.67

Baseline One-hot 0.58 0.59 0.04 0.58 -0.05 0.58 0.54 0.58

The goal of the Rocklin et al. [56] experiment was to find highly stable proteins. In the last
stage of this experiment they examine variants of the the most promising candidate proteins.
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Therefore we wish to measure both whether our model was able to learn the landscape around
these candidate proteins, as well as whether it successfully identified those variants with
greater stability than the original parent proteins. In Table A.9 we report Spearman’s ρ to
measure the degree to which the landscape was learned. In addition, we report classification
accuracy of whether a mutation is beneficial or harmful using the predicted stability of the
parent protein as a decision boundary.

In Table A.10 report all metrics separately for each of the four protein topologies tested in
Rocklin et al. [56], where α denotes a helix and β denotes a strand (or β-sheet). We do this
because success rates varied significantly by topology in their experiments, so some topologies
(such as ααα were much easier to optimize than others (such as αββα). We find that our
prediction success also varies significantly by topology.
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Appendix B

Transformer protein language models are
unsupervised structure learners

B.1 Notation
In the figures, we report contact precision in the range of 0.0 to 1.0. In the text and in the
tables, we report contact precision in terms of percentages, in the range of 0 to 100.

B.2 Average Product Correction (APC)
In protein contact prediction, APC is commonly used to correct for background effects of
entropy and phylogeny [118]. Given an L× L coupling matrix F , APC is defined as

FAPC
ij = Fij −

FiFj

F
(B.1)

Where Fi, Fj, and F are the sum over the i-th row, j-th column, and the full matrix
respectively. We apply APC independently to the symmetrized attention maps of each head
in the Transformer. These corrected attention maps are passed in as input to a logistic
regression.

B.3 Gremlin Implementation Details
Gremlin is trained by optimizing the pseudolikelihood of W and V , which correspond to
pairwise and individual amino acid propensities. The pseudolikelihood approximation models
the conditional distributions of the original joint distribution and can be written:

log p(xd
i = a|xd

j ̸=i;Wi, Vi) = log
exp

(
Via +

∑N
j=1,j ̸=i

∑20
b=1 1(x

d
j = b)Wijab

)∑20
c=1 exp

(
Vic +

∑N
j=1,j ̸=i

∑20
b=1 1(x

d
j = b)Wijcb

) (B.2)
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Table B.1: Major Architecture Differences in Protein Transformer Language Models

Name Layers Hidden Size Attn Heads Parameters Dataset
TAPE 12 768 12 92M Pfam
ProtBERT-BFD 30 1024 16 420M BFD100
ESM-1 (6 layer) 6 768 12 43M Uniref50
ESM-1 (12 layer) 12 768 12 85M Uniref50
ESM-1 (34 layer) 34 1280 20 670M Uniref50
ESM-1b 33 1280 20 650M Uniref50

subject to the constraint that Wii = 0 for all i, and that Wijab is symmetric in both sequence
(i, j) and amino acid (a, b). Additionally, Gremlin uses a regularization parameter that is
adjusted based on the depth of the MSA.

B.4 ESM-1 Implementation Details
The original ESM-1 models were described in [43]. ESM-1 is trained on Uniref50 in contrast
to the TAPE model, which is trained on Pfam [46] and the ProtBERT-BFD model, which is
trained on Uniref100 and BFD100 [144]. ESM-1b is a new model, which is the result of an
extensive hyperparameter sweep that was performed on smaller 12 layer models. ESM-1b is
the result of scaling up that model to 33 layers.

Compared to ESM-1, the main changes in ESM-1b are: higher learning rate; dropout
after word embedding; learned positional embeddings; final layer norm before the output;
and tied input/output word embeddings. Weights for all ESM-1 and ESM-1b models can be
found at https://github.com/facebookresearch/esm.

B.5 Jackhmmer Details
We use Jackhmmer version 3.3.1 with a bitscore threshold of 27 and 8 iterations to construct
MSAs from the ESM training set. The failures on 126 sequences noted in Section 3.4 result
from a segmentation fault in hmmbuild after several iterations (the number of successful
iterations before the segmentation fault varies depending on the input sequence). Since we
see this failure for less than 1% of the dataset we choose to ignore these sequences during
evaluation.

Additionally, we evaluated alternate MSAs by running Jackhmmer until a Neff of 128 was
achieved (with a maximum of 8 iterations), a procedure described by Zhang et al. [186]. This
resulted in very similar, but slightly worse results (average long range P@L 29.3, versus 31.3
when always using the output of the eighth iteration). We therefore chose to report results
using the 8 iteration maximum.

https://github.com/facebookresearch/esm
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Table B.2: Average metrics on 15 CASP13 FM Targets. All baselines use MSAs generated
via the trRosetta MSA generation approach.

sep

Model Variant L L/2 L/5 L L/2 L/5 L L/2 L/5

Baselines
mfDCA 11.0 13.6 19.7 12.8 17.9 26.2 14.4 19.4 26.6
PSICOV1 10.6 14.0 18.3 12.2 17.1 25.9 14.1 19.8 27.9
Gremlin 12.1 16.1 23.6 14.5 20.8 32.5 16.8 23.4 28.5

ESM-1b
(attention)

top-1 heads 11.8 15.8 23.8 17.0 20.8 29.6 13.6 17.9 22.7
top-5 heads 15.3 20.9 29.6 18.7 27.0 33.0 14.6 20.6 26.8
top-10 heads 16.6 22.7 32.1 21.8 29.5 39.8 17.9 23.2 30.4
n=1, s=1 16.4 23.5 34.7 23.0 30.8 41.6 18.1 23.3 29.9
n=10, s=1 18.6 25.3 39.3 24.1 31.9 41.4 18.7 25.2 33.2
n=20, s=1 19.3 26.6 37.0 24.0 31.5 40.2 18.6 25.0 33.8
MSA, s=1 14.2 20.3 30.5 21.0 29.1 42.3 18.4 23.7 31.5

ESM-1b
(bilinear)

n=20 14.1 17.7 19.8 17.7 20.9 27.9 11.2 13.9 17.0
n=14257 20.8 31.1 45.9 25.7 33.7 43.3 20.1 26.2 34.2

B.6 Results on CASP13
In Table B.2 we report results on the 15 CASP13 Free Modeling targets for which PDBs
were publicly released. The specific domains evaluated are: T0950-D1, T0957s2-D1, T0960-
D2, T0963-D2, T0968s1-D1, T0968s2-D1, T0969-D1, T0980s1-D1, T0986s2-D1, T0990-D1,
T0990-D3, T1000-D2, T1021s3-D1, T1021s3-D2, T1022s1-D1. ESM-1b is able to outperform
Gremlin, and simply averaging the top-10 heads of ESM-1b has comparable performance to
Gremlin.

In addition, we compare our logistic regression model to the bilinear contact prediction
model proposed by Rives et al. [43]. This model trains two separate linear projections of the
final representation layer and computes contact probabilities via the outer product of the two
projections plus a bias term, which generates the following unnormalized log probability:

log p(contact) ∝ (xW1)(xW2)
T + b (B.3)

Here x is a sequence-length vector of features in RL×d. Each Wi is a matrix in Rd×k,
where k is a hyperparameter controlling the projection size.

We train this model in both the limited supervision (n = 20) and full supervision
(n = 14257) setting. For the limited supervision setting, we use the same 20 proteins used

1PSICOV fails to converge on 3 / 15 targets with default parameters. We follow the procedure suggested
in https://github.com/psipred/psicov to increase rho to 0.005 for those domains.

https://github.com/psipred/psicov


APPENDIX B. TRANSFORMER PROTEIN LANGUAGE MODELS ARE
UNSUPERVISED STRUCTURE LEARNERS 100

0.0 0.2 0.4 0.6 0.8 1.0
Gremlin

0.0

0.2

0.4

0.6

0.8

1.0
E

SM
-1

b
Long Range P@L

0.0 0.2 0.4 0.6 0.8 1.0
Gremlin

Long Range P@L/5

neff
10
100
1000

Figure B.1: Results on 15 CASP13 FM Domains colored by Neff.

to train the sparse logistic regression model. For the full supervision setting we generate a
95/5% random training/validation split of the 15008 trRosetta proteins with sequence length
≤ 1024.

We performed independent grid searches over learning rate, weight decay, and hidden
size for the two settings. For the n = 20 setting, we found a learning rate of 0.001, weight
decay of 10.0, and projection size of 512 had best performance on the validation set. For the
n = 14257 setting we found a learning rate of 0.001, weight decay of 0.01, and projection size
of 512 had best performance on the validation set. All models were trained to convergence to
maximize validation long range P@L with a patience of 10. The n = 20 models were trained
with a batch size of 20 (i.e. 1 batch = 1 epoch) and the n = 14257 models were trained with
a batch size of 128.

The bilinear model performs very poorly in the limited supervision setting, worse than
simply taking the top-1 attention head. With full supervision, it moderately outperforms the
logistic regression for an increase in long range P@L of 1.5 while using 700x more data.

In Fig. B.1 we display results on the 15 FM targets colored by effective number of sequences.
ESM-1b shows higher precision at L and L/5 on average, and is sometimes significantly higher
for sequences with low Neff. Since ESM-1b training data was generated prior to CASP13,
this suggests ESM-1b is able to generalize well to new sequences.
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Figure B.2: (a) Gridsearch on logistic regression over number of training examples and
number regularization penalty. Values shown are long range P@L over a validation set of 20
proteins. (b) Per-head and layer weights of the logistic regression on the best ESM-1b model.

B.7 Logistic Regression Details
Given a model with M layers, H heads, and an input sequence x of length L, let Amh be
the L× L contact map from the h-th head in the m-th layer. We first symmetrize this map
and apply APC and let amhij be the coupling weight between sequence position i and j in
the resulting map. Then we define the probability of a contact between positions i and j
according to a logistic regression with parameters β:

p(cdij; β) =
1

1 + exp

(
− β0 −

∑M
m=1

∑H
h=1 βmhadmhij

) (B.4)

To fit β, let D be a set of training proteins, k be a minimum sequence separation, and λ
be a regularization weight. The objective can then be defined as follows:

L(D; β) =
∏
d∈D

Ld−k∏
i=1

Ld∏
j=i+k

p(cdij; β) (B.5)

β̂ = max
β

L(D; β) +
1

λ

M∑
m=1

H∑
h=1

|βmh| (B.6)

We fit the parameters β via scikit-learn [187] and do not backpropagate the gradients
through the attention weights. In total, our model learns MH +1 parameters, many of which
are zero thanks to the L1 regularization.
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Figure B.3: Short, medium, and long range P@L performance distribution of ESM-1b vs.
Gremlin. Each point is colored by the log2 of the number of sequences in the MSA.

There are three hyperparameters in our training setup: the number of proteins in our
training set D, the regularization parameter λ, and the minimum sequence separation of
training contacts k. We find that performance improves significantly when increasing the
D from 1 protein to 10 proteins, but that the performance gains drop off when D increases
from 10 to 20 (Fig. 3.1). Through a hyperparameter sweep, we determined that the optimal
λ is 0.15. We find that ignoring local contacts (|i− j| < 6) is also helpful. Therefore, unless
otherwise specified, all logistic regressions are trained with |D| = 20, λ = 0.15, k = 6. See
Fig. B.2a for a gridsearch over the number of training proteins and regression penalty. We
used 20 training proteins and 20 validation proteins for this gridsearch. Fig. B.2b shows the
weights of the final logistic regression used for ESM-1b.

B.8 Performance Distribution
Fig. B.3 shows the full distribution of performance of ESM-1b compared with Gremlin. When
we provide Gremlin access to Uniref100, along with metagenomic sequences, ESM-1b still
consistenly outperforms Gremlin when extracting short and medium range contacts. For long
range contacts, Gremlin is much more comparable, and has higher contact precision on 47%
of sequences. With access to the same set of sequences, ESM-1b consistently outperforms
Gremlin in detecting short, medium, and long range contacts. This suggests that ESM-1b
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Figure B.4: Gremlin performance binned by MSA depth using both ESM (top) and trRosetta
(bottom) MSAs. For comparison, ESM-1b performance is also shown for the sequences in
each bin.

can much better extract information from the same set of sequences and suggests that further
scaling of training data may improve ESM-1b even further.

This analysis is further borne out in Fig. B.4. Given the same set of sequences, ESM-1b
outperforms Gremlin on average for short, medium, and long-range contacts regardless of the
depth of the MSA generated from the ESM-1b training set.

Additionally, we find that ESM-1b can provide varying contact maps for different sequences
in the MSA (Fig. B.5). This is not possible for Gremlin, which is a family-level model. We
leverage this in a fairly simple way to provide a modest boost to the contact precision of
ESM-1b (Section 3.5).

B.9 Secondary Structure
In Section 3.5 we show that some heads that detect local contacts (which often correspond
to secondary structure) are actually negatively correlated with long range contacts. We
test ESM-1b’s ability to detect secondary structure via attention by training a separate
logistic regression on the Netsurf dataset [47]. As with the logistic regression on contacts, we
compute attentions and perform APC + symmetrization. To predict the secondary structure
of amino acid i, we feed as input the couplings amhij for each layer m, for each head h, and
for j ∈ [i− 5, i+ 5], for a total of 7260 input features. Using just 100 of the 8678 training
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Figure B.5: Distribution of contact perplexity when evaluating different sequences from
the same MSA. The x-axis shows the index of each sequence, sorted in ascending order by
hamming distance from the query sequence (query sequence is always index 0). The y-axis
shows long range P@L. The black line indicates Gremlin performance on that MSA.

.

proteins, we achieve 79.3% accuracy on 3-class secondary structure prediction on the CB513
test set [49]. Fig. B.6 shows the importance of each layer to predicting the three secondary
structure classes. There are spikes in different layers for all three classes, indicating that
particular heads within those layers are specializing in detecting specific classes of secondary
structure.

Fig. B.6 shows importance of each Transformer layer to predicting each of the three
secondary structure classes. We see that, as with contact prediction, the most important
layers are in the middle layers (14-20) and the final layers (29-33). Some layers spike more
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Figure B.8: Distribution of precision for all reported statistics using 100 different logistic
regression models. Each regression model is trained on a random sample of N = 1, 10, 20
proteins.

heavily on particular contact classes (e.g. layer 33 is important for all classes, but particularly
important for β-strand prediction). This suggests that particular heads within these layers
activate specifically for certain types of secondary structure.

B.10 Bootstrapped Low-N Confidence Interval
Section 3.5 shows results from Low-N supervision on 1, 10, and 20 proteins. Since performance
in this case depends on the particular proteins sampled we use bootstrapping to determine a
confidence interval for each of these estimates. Using the full training, validation, and test
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Figure B.9: (a) Distribution of Manhattan distance between the coordinates of predicted
contacts and the nearest true contact at various thresholds of minimum p(contact). A distance
of zero corresponds to a true contact. (b) Actual counts of predictions by Manhattan distance
across the full dataset (note y-axis is in log scale).

set of 14882 proteins, we train 100 logistic regression models using a random sample of N
proteins, for N = 1, 10, and 20. Each model is then evaluated on the remaining 14882−N
proteins. The full distribution of samples can be seen in Fig. B.8. The confidence interval
estimates for long range precision at L with 1, 10, and 20 training proteins are: 35.6± 1.8,
40.6± 0.1, and 41.0± 0.1 respectively.

B.11 Model Calibration and False Positives
Vig et al. [7] suggested that the attention probability from the TAPE Transformer was a
well-calibrated estimator for the probability of a contact. In Fig. B.7 we examine the same
with the logistic regression trained on the ESM-1 and ESM-1b models. We note that ESM-1b,
in addition to being more accurate overall than Gremlin, also provides actual probabilities.

We find that as with model accuracy, model calibration increases with larger scale and
better hyperparameters. The 6, 12, and 34 layer ESM-1 models have mean-squared error
of 0.074, 0.028, and 0.020 between predicted and actual contact probabilities, respectively.
ESM-1b has a mean squared error of 0.014. Mean squared error is computed between contact
probabilites split into 20 bins according to the scikit-learn calibration_curve function. It is
therefore reasonable to use the logistic regression probability as a measure of the model’s
confidence.

In the case of false positive contacts we attempt to measure the Manhattan distance
between the coordinates of predicted contacts and the nearest true contact (Fig. B.9a). We
observe that the Manhattan distance between the coordinates of false positive contacts are
often very close (Manhattan distance between 1-4) to real contacts, and that very few false
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Figure B.10: Illustration of two modes for ESM-1b where significant numbers of spurious
contacts are predicted. (a) Predicted contacts which do occur in the full homodimer complex,
but are not present as intra-chain contacts. (b) CTCF protein contacts. A small band of
contacts near the 30-residue off-diagonal is predicted by ESM-1b. This band, along with
additional similar bands are also predicted by Gremlin.

positives have a Manhattan distance ≥ 10 from a true contact. With a threshold contact
probability of 0.5, 83.8% of proteins have at least one predict contact with Manhattan distance
> 4 to the nearest contact. This drops to 71.7% with a threshold probability of 0.7, and to
52.5% with a threshold probability of 0.9.

Fig. B.10 highlights two modes for ESM-1b where signficant numbers of spurious contacts
are predicted. Fig. B.10a shows one example where the model does appear to hallucinate
contacts around residues 215 and 415, which do not appear in the contact map for this protein.
However, this protein is a homodimer and these contacts are present in the inter-chain contact
map. This suggests that some ‘highly incorrect’ false positives may instead be picking up on
inter-chain contacts. Fig. B.10b shows an example of a repeat protein, for which evolutionary
coupling methods are known to pick up on additional ‘bands’ of contacts [98, 188]. Multiple
bands are visible in the Gremlin contact map, while only the first band, closest to the diagonal,
is visible in the ESM-1b contact map. More analysis would be necessary to determine the
frequency of these modes, along with additional potential modes.
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Figure B.11: Robustness of ESM-1b and TAPE models to insertions of Alanine at the
beginning, middle, and end of sequence

.

B.12 Alignment
One hypothesis as to the benefit of large language models as opposed to simpler Potts models
is that they may be able to learn an implicit alignment due to their learned positional
embedding. For a Potts Model, an alignment enables a model to relate positions in the
sequence given evolutionary context despite the presence of insertions or deletions. We test
the robustness of the model to insertions by inserting consecutive alanines at the beginning,
middle, or end of 1000 randomly chosen sequences with initial sequence length < 512 (we limit
initial sequence length in order to avoid out-of-memory issues after insertion). We find that
ESM-1b can tolerate up to 256 insertions at the beginning or end of the sequence and up to
64 insertions in the middle of the sequence before performance starts to significantly degrade.
This suggests that ESM-1b learns a robust implicit alignment of the protein sequence.

On the other hand, we find that the TAPE Transformer is less robust to insertions. On one
sequence (pdbid: 1a27), we find the TAPE Transformer drops in precision by 12 percentage
points after adding just 8 alanines to the beginning of the sequence, while ESM-1b sees
minimal degradation until 256 alanines are inserted. We hypothesize that, because TAPE
was trained on protein domains, it did not learn to deal with mis-alignments in the input
sequence.

B.13 Evolutionary Finetuning Details
We finetuned each model using a learning rate of 1e-4, 16k warmup updates, an inverse
square root learning rate schedule, and a maximum of 30 epochs. This resulted in a varying
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Figure B.12: Left: Average change in contact precision vs. number of finetuning epochs over
380 proteins. Right: Real and predicted contacts before and after evolutionary finetuning for
1a3a and avGFP. For 1a3a, long range P@L improves from 54.5 to 61.4. For avGFP, long
range P@L improves from 7.9 to 11.4.

number of total updates depending on the size of the MSA, with larger MSAs being allowed
to train for more updates. This should ideally help prevent the model from overfitting too
quickly on very small MSAs. We use a variable batch size based on the length of the input
proteins, fixing a maximum of 16384 tokens per batch (so for a length 300 protein this would
correspond to a batch size of 54). We use MSAs from trRosetta for finetuning all proteins
with the exception of avGFP, where we use the same set of sequences from Alley et al. [25].
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Figure B.13: Contacts for 3qhp from Gremlin trained on pseudo-MSA generated by ESM-1b,
compared to real and ESM-1b predicted contacts. The generated MSA achieves a long-range
P@L of 52.2 while the attention maps achieve a precision of 76.7.

B.14 MSA Generation
Result: Generated MSA
input // protein sequence
curr = input // optionally, the input can be repeated for batching
for 0 ≤ i < 10000 do

masked = mask 20% of positions in curr;
pred = model(masked);
curr[masked positions] = pred[masked positions];
MSA.append(curr);
if random() < 0.1 then

curr = input;
end

end
Algorithm 1: Quickly generate a pseudo-MSA from an input sequence.

Algorithm 1 presents the algorithm used to generate pseudo-MSAs from ESM-1b. Each
pseudo-MSA is passed to GREMLIN in order to evaluate the preservation of contact informa-
tion (Fig. B.13).
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Appendix C

MSA Transformer

C.1 Unsupervised Contact Prediction
For unsupervised contact prediction, we adopt the methodology from Chapter 3, which shows
that sparse logistic regression trained on the attention maps of a single-sequence transformer
is sufficient to predict protein contacts using a small number (between 1− 20) of training
structures. To predict the probability of contact between amino acids at position i and j, the
attention maps from each layer and head are independently symmetrized and corrected with
APC [118]. The input features are then the values ālhij for each layer l and head h. The
models have 12 layers and 12 heads for a total of 144 attention heads.
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Figure C.1: Weight values of learned sparse logistic regression trained on 20 structures. A
sparse subset (55 / 144) of contact heads, largely in the final layers, are predictive of protein
contacts.

An L1-regularization coefficient of 0.15 is applied. The regression is trained on all contacts
with sequence separation ≥ 6. 20 structures are used for training. Trained regression weights
are shown in Fig. C.1.
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Figure C.2: Distribution of MSA depths in the MSA Transformer training set. Average MSA
depth is 1192 and median MSA depth is 1101.

C.2 Dataset Generation
For the unsupervised training set we retrieve the UniRef-50 [71] database dated 2018-03. The
UniRef50 clusters are partitioned randomly in 90% train and 10% test sets. For each sequence,
we construct an MSA using HHblits, version 3.1.0. [117] against the UniClust302017−10

database [116]. Default settings are used for HHblits except for the the number of search
iterations (-n), which we set to 3.

C.3 Ablation Studies
Ablation studies are conducted over a set of seven hyperparameters listed in Table C.2. Since
the cost of an exhaustive search over all combinations of hyperparameters is prohibitive, we
instead train an exhaustive search over four of the hyperparameters (embedding size, block
order, tied attention, and masking pattern) for 10k updates. The best run is then selected as
the base hyperparameter setting for the full ablation study, in which only one parameter is
changed at a time.

For the full ablation study, each model is trained for 100k updates using a batch size of
512. The four best performing models are then further trained to 150k updates. Contact
prediction on the trRosetta dataset [133] is used as a validation task. Precision after 100k
updates (and 150k for the best models) is reported in Table C.2 and the full training curves
are shown in Fig. C.3. The model with best hyperparameters is then further trained to 450k
updates. The performance of this model is reported in Table C.3. Validation perplexity is
also reported in Table C.2. In general we find limited correspondence between perplexity and
contact prediction performance across models.

Potts [73], TAPE transformer (see Chapter 2), ESM-1b [43], ProtBERT-BFD, and
ProTrans-T5 [94] are used as unsupervised contact prediction comparisons. The best MSA
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Table C.1: Validation perplexity and denoising accuracy on UniRef50 validation MSAs. PSSM
probabilities and nearest-neighbor matching are used as baselines. To compute perplexity
under the PSSM, we construct PSSMs using the input MSA, taking the cross-entropy between
the PSSM and a one-hot encoding of the masked amino acid. When calculating PSSM
probabilities, we search over pseudocounts in the range [10−10, 10), and select 10−2, which
minimizes perplexity. For denoising accuracy, the argmax for each column is used. For
nearest-neighbor matching, masked tokens are predicted using the values from the sequence
with minimum hamming distance to the masked sequence. This does not provide a probability
distribution, so perplexity cannot be calculated. MSAs with depth 1 are ignored, since the
baselines fail in this condition. Perplexity ranges from 1 for a perfect model to 21 for a
uniform model selecting over the common amino acids and gap token.

Model Perplexity Denoising Accuracy

PSSM 14.1 41.4
Nearest-Neighbor - 46.7
MSA Transformer 2.44 64.0

Table C.2: Hyperparameter search on MSA Transformer. P@L is long-range (s ≥ 24) precision
on unsupervised contact prediction following. Perplexity is reported after 100k updates and
precision is reported after 100k and 150k updates.

D Block Tied Masking Mask p
MSA

Pos Emb Subsample P@L
(100k)

P@L
(150k)

Ppl
(100k)

768 Row-Column Sqrt Uniform 0.15 No Log-uniform 56.3 56.3 3.01
384 52.8 - 3.10

Column-Row 55.7 - 3.01
None 42.1 - 3.03
Mean 50.1 - 3.00

Column 38.8 - 3.54
0.2 56.6 56.3 3.04

Yes 56.5 57.1 3.00
Full 56.5 56.1 2.91

Transformer outperforms all other methods by a wide margin, increasing long-range precision
at L by a full 16 points. See below for a discussion of all seven hyperparameters.

Embedding Size (D)

Since the MSA Transformer is provided with more information than single sequence protein
language models, it is possible that many fewer parameters are needed to learn the data
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Table C.3: Average precision on 14842 test structures for MSA and single-sequence models
trained on 20 structures.

6 ≤ sep < 12 12 ≤ sep < 24 24 ≤ sep

Model L L/2 L/5 L L/2 L/5 L L/2 L/5

Potts 17.2 26.7 44.4 21.1 33.3 52.3 39.3 52.2 62.8

TAPE 9.9 12.3 16.4 10.0 12.6 16.6 11.2 14.0 17.9
ProtBERT-BFD 20.4 30.7 48.4 24.3 35.5 52.0 34.1 45.0 57.4
ProTrans-T5 20.1 30.6 48.5 24.6 36.1 52.4 35.6 46.1 57.8
ESM-1b 21.6 33.2 52.7 26.2 38.6 56.4 41.1 53.3 66.1

MSA Transformer 25.6 41.0 64.6 31.9 48.9 71.1 57.4 71.7 82.1

Table C.4: Supervised Contact Prediction performance on CASP13-FM and CAMEO-hard
targets. Reported numbers are long-range (s ≥ 24) contact precision. Three variants of the
MSA Transformer are included for comparison: ∗unsupervised model, †supervised model
using final hidden representations of the reference sequence as input, ‡supervised model using
final hidden representations of reference sequence and all attention maps as input. Baseline
and final trRosetta models are also included for comparison. L is defined as the number of
valid residues.

CASP13-FM CAMEO

Model L L/2 L/5 L L/2 L/5

Co-evolutionary 40.1 52.5 65.2 47.3 60.9 72.1
Unirep 11.2 14.5 16.6 17.8 23.0 30.8
SeqVec 13.8 18.3 21.9 22.5 30.3 39.8
TAPE 12.3 14.4 17.8 15.9 20.6 26
ProtBERT-BFD 24.7 32.1 40.6 37.0 48.1 60.0
ProTrans-T5 25.0 32.9 41.4 40.8 52.5 63.3
ESM-1b 28.2 37.4 50.2 44.4 57.2 68.4

trRosettabase 45.7 58.4 69.6 50.9 64.6 75.5
trRosettafull 51.8 66.6 80.1 53.2 67.1 77.5

MSA Transformer∗ 44.8 59.7 72.5 43.5 55.9 66.8
MSA Transformer† 54.5 70.0 80.2 53.6 68.4 78.0
MSA Transformer‡ 54.6 68.4 77.5 55.8 69.8 79.1
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distribution. To test this hypothesis we train a model with half the embedding size (384
instead of 768) resulting in 30M total parameters. The resulting model achieves a Top-L
long-range precision of 52.8 after 100k updates, 3.5 points lower than the baseline model.
This suggests that model size is still an important factor in contact precision, although also
shows that a model with fewer than 30M parameters can still outperform 650M and 3B
parameter single-sequence models.

Masking Pattern

We consider two strategies for applying BERT masking to the MSA: uniform and column.
Uniform masking applies masking uniformly at random across the MSA. Column masking
always masks full columns of the MSA. This makes the training objective substantially more
difficult since the model cannot look within a column of an MSA for information about
masked tokens. We find that column masking is significantly worse (by almost 20 points)
than uniform masking.

Block Ordering

Row attention followed by column attention slightly outperforms column attention followed
by row attention.

Tied Attention

We consider three strategies for row attention: untied, mean normalization, and square root
normalization (see Section 4.3). We find that tied attention substantially outperforms untied
attention and that square root normalization outperforms mean normalization.

Masking Percentage

As the MSA Transformer has more context than single sequence models, its training objective
is substantially easier than that of single sequence models. Therefore, we explore whether
increasing the masking percentage (and thereby increasing task difficulty) would improve the
model. However, we do not find a statistically significant difference between masking 15% or
20% of the positions. Therefore, we use a masking percentage of 15% in all other studies for
consistency with ESM-1b and previous masked language models.

MSA Positional Embedding

An MSA is an unordered set of sequences. However, due to the tools used to construct MSAs,
there may be some pattern to the ordering of sequences in the MSA. We therefore examine
the use of a learned MSA positional embedding in addition to the existing learned sequence
positional embedding. The positional embedding for a sequence is then a learned function of
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Figure C.3: Training curves for MSA Transformer with different hyperparameters. See
Section 4.4 for a description of each hyperparameter searched over. ESM-1b training curve,
ESM-1b final performance (after 505k updates), and average Potts performance are included
as dashed lines for comparison.

its position in the input MSA (not in the full MSA). Subsampled sequences in the input MSA
are sorted according to their relative ordering in the full MSA. We find that the inclusion
of an MSA positional embedding does modestly increase model performance, and therefore
include it in our final model.

Subsample Strategy

At training time we explore two subsampling strategies. The first strategy is adapted from
Yang et al. [133]: we sample the number of output sequences from a log-uniform distribution,
with a maximum of N/L sequences to avoid exceeding the maximum tokens we are able
to fit in GPU memory. Then, we sample that number of sequences uniformly from the
MSA, ensuring that the reference sequence is always chosen. In the second strategy, we
always sample the full N/L sequences from the MSA. In our hyperparameter search, most
models use the first strategy, while our final model uses the second. We find no statistically
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Figure C.4: KL Divergence between distribution of row attention across amino acids and
background distribution of amino acids. The fraction of attention on an amino acid k is
defined as the average over the dataset of alhi 1{xi == k}, where xi is a particular token in
the input MSA and alh is the attention in a particular layer and head. KL Divergence is
large for early layers but decreases in later layers.

significant difference in performance between the two strategies. However, it is possible that
the log-uniform strategy would help prevent overfitting and ultimately perform better after
more training.

The CCMpred implementation of Potts [73, 74], UniRep [25], SeqVec [42], TAPE trans-
former (see Chapter 2), ESM-1b [43], ProtBERT-BFD, and ProTrans-T5 [94] are used as
supervised contact prediction comparisons. In Table C.4 we show the complete results for
long-range precision over the CASP-13 FM targets and CAMEO-hard domains referenced in
[133]. All baseline models are trained for 200 epochs with a batch size of 4.

C.4 Attention to Amino Acids
Vig et al. [7] examine the distribution of amino acids attended to by single-sequence models.
The attention in single-sequence models is roughly equivalent to the row-attention in our
model, but there is no column-attention analogue. We therefore examine the distribution
of amino acids attended to by the column attention heads. In Fig. C.4 we show the KL-
divergence between the distribution of attention across amino acids and the background
distribution of amino acids. The divergence is large for earlier layers in the model but
decreases in later layers, suggesting the model stops focusing on the amino acid identities in
favor of focusing on other properties.

C.5 Sequence Weights
Sequence reweighting is a common technique used for fitting Potts models which helps to
compensate for data bias in MSAs [86]. Informally, sequence reweighting downweights groups



APPENDIX C. MSA TRANSFORMER 118

of highly similar sequences to prevent them from having as large of an effect on the model.
The sequence weight wi is defined as,

wi =

(
1 +

∑
j ̸=i

1
{
dhamming(xi, xj) < 0.2

})−1

(C.1)

where xi, xj are the i-th and j-th sequences in the MSA, dhamming is the hamming distance
between two sequences normalized by sequence length, and wi is the sequence weight of the
i-th sequence.



119

Appendix D

Language models enable zero-shot
prediction of the effects of mutations on
protein function

D.1 Extraction methods
ESM-1v is pre-trained to output the probability for each possible amino acid at a masked
position. We explore four methods of scoring the effects of mutations using the model:

• Masked marginal: Probabilities are extracted according to the mask noise during
pre-training. At each position, we introduce a mask token and record the model’s
predicted probabilities of the tokens at that position.

• Mutant marginal: Probabilities are extracted according to the random token noise
during pre-training. Among the 15% predicted positions in the sequence during pre-
training, 10% of those are randomly mutated and 10% retain their original identities.
The model is tasked to predict the correct token at those positions. Therefore, in
this extraction method, we follow the pre-training methodology by passing in mutated
tokens and recording the model’s probability that they are correct.

• Wildtype marginal: We perform a single forward pass using the wildtype sequence.
This method enables fast scoring as just a single forward pass is used.

• Pseudolikelihood: This method is proposed in the literature for scoring with masked
language models [189].

In all cases, we assume an additive model when multiple mutations are present in a
sequence. Results are summarized in Tables D.3 and D.5.

Let xmt and xwt represent the mutant and wildtype sequences. We refer to x−i as the
sequence x with a mask introduced at position i. We refer to the set of mutations that are
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Table D.1: Zero-shot learning is a natural extension of the various approaches that have been
used for mutational effect prediction to date. Rather than training a new model for every
task, a single general purpose model is trained and can be directly applied across multiple
tasks. The approach is fully unsupervised, no information from experimental measurements
of function is used.

Approach Formal setting Task level super-
vision

Representative
Methods

Supervised mutation
prediction

Supervised Direct supervision
from experimental
measurements

Reviewed in [44]

Model trained on se-
quences from indi-
vidual family

Unsupervised Weak positive super-
vision from MSA

[1, 2]

Fine-tuning on ex-
perimental data

Semi-supervised
transfer

Supervision from ex-
perimental measure-
ments

[25, 43, 129]

Fine-tuning on MSA Transfer learning
with weak-positive
supervision

Weak positive super-
vision from MSA

Introduced for trans-
fer learning in [25]

Direct forward pass Zero-shot learning None This work

introduced as the set M . For example, if mutations are introduced at positions 3 and 6, then
M = {3, 6}.

Masked marginal probability (L forward passes) This method performs best among
the four. We introduce masks at the mutated positions and compute the score for a mutation
by considering its probability relative to the wildtype amino acid (Strategy a):∑

i∈M

log p(xi = xmt
i |x−M)− log p(xi = xwt

i |x−M)

This formulation assumes an additive model, consistent with the training objective. We
show that this assumption is justified empirically by evaluating the model with different
choices at the non-mutated positions. First, the wildtype sequence (Strategy b):∑

i∈M

log p(xi = xmt
i |xmt

−i )− log p(xi = xwt
i |xwt

−i)
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Figure D.1: Compute requirements in GPU-seconds for (left) pre-training and (right) average
task. With open-sourced pre-trained models, end users bypass the pre-training phase and
only incur inference costs. ESM-1v and MSA Transformer amortize compute cost into a single
expensive pre-training run. After pre-training, inference is fast. On average, it takes < 10
seconds to label a deep mutational scan from Riesselman et al. [2] with ESM-1v (Zero-shot,
Single Forward Pass). Performance improves marginally with the more expensive scoring
scheme (Table D.3).

Table D.2: Average |Spearman ρ| on the single-mutation validation set after training a 650M
parameter Transformer model for 170,000 updates on various sequence identity clusterings of
Uniref.

Clustering | Spearman ρ |

30% 0.456
50% 0.537
70% 0.552
90% 0.564
100% 0.458

and the mutant sequence (Strategy c):∑
i∈M

log p(xi = xmt
i |xmt

−i )− log p(xi = xwt
i |xmt

−i )

Strategy (a), where we mask all positions at the same time, performs best on the PABP
Yeast Doubles validation dataset (Table D.5).
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Figure D.2: Zero-shot performance of ESM-1v compared to earlier protein language models
on all 41 deep mutational scans. Points are |Spearman ρ| on each dataset, error bars show
standard deviation of 20 bootstrapped samples. Validation proteins are shown to the left of
the dividing line and test proteins to the right. ESM-1v is the best performing method on 30
of the 41 deep mutational scans.

Method | Spearman ρ |

Masked marginal 0.582
Mutant marginal 0.578

Wildtype marginal 0.572
Pseudo-likelihood 0.552

Table D.3: Benchmarking scoring schemes on the single-mutation validation set. The means
across the validation set are listed. The masked marginal scheme performs best.

Mutant marginal probability This method is analogous to the wildtype marginal
probability, except we use the mutant sequence instead.∑

i∈M

[log p(xi = xmt
i |xmt)− log p(xi = xwt

i |xmt)]

This method requires a single forward pass for every mutation.

Wildtype marginal probability (1 forward pass) In the fastest scheme, we perform a
single forward pass using the wildtype sequence as input. For a set of mutations at positions
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Input Consensus columns only | Spearman ρ |

MSA seed Yes 0.573
MSA seed No 0.567
Uniprot N/A 0.582

Table D.4: ESM-1v performs better when including the full protein sequence as listed
in Uniprot, compared to using the seed sequence of the MSA corresponding to the deep
mutational scan. Results on single-mutation validation set. The means across the validation
set are listed. We experiment with a number of strategies for inference: (i) the consensus
columns only; (ii) the aligned part of the query sequence; and (iii) the complete Uniprot
sequence. The complete Uniprot sequence performs best, possibly because the model was
pre-trained on complete Uniprot sequences. We use the MSA seed sequence from the MSAs
released by [2] corresponding to the deep mutational scans.

Method | Spearman ρ |

Masked marginal (a) 0.692
Masked marginal (b) 0.482
Masked marginal (c) 0.483

Mutant marginal 0.694
Wildtype marginal 0.672
Pseudo-likelihood 0.608

Table D.5: Ablating scoring schemes on the PABP Yeast Doubles dataset. The masked
marginal scheme performs best when masking all mutated sites together. Mean absolute
Spearman ρ across the single-mutation validation tasks is reported.

M , the score is: ∑
i∈M

[log p(xi = xmt
i |xwt)− log p(xi = xwt

i |xwt)]

We find that the method performs well with a minor 1% decrease in absolute performance,
while requiring very limited computational resources. The strong performance indicates that
the masked language modeling objective causes the model to capture the fitness landscape of
the protein in its outputs.

Pseudolikelihood Psuedolikelihood has been proposed in the literature as a method to
score sequences using masked language models [189]. We compute the score as follows:∑

i

log p(xi = xmt
i |xmt

−i )− log p(xi = xwt
i |xwt

−i)
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Figure D.3: Larger models perform better on variant prediction. We trained four models
of various scales, following the hyperparameters listed in Henighan et al. [6]. Results on
single-mutation validation set.

MSA Subsample Strategy Context size | Spearman ρ |

Diversity minimizing 256 sequences 0.255
Random 256 sequences 0.535 ± 0.024
HHFilter 256 sequences 0.550 ± 0.015
Sequence reweighting 256 sequences 0.578 ± 0.005

Table D.6: Subsampling strategies for MSA Transformer evaluated on the single-mutation
validation set. Sequence reweighting performs best. When sampling methods are stochastic,
5 seeds are run and the mean and standard deviation is reported. With HHFilter, we run
with the -diff M parameter and randomly subsample the output if more than M sequences
are returned. We use a coverage parameter of 75 and a sequence identity parameter of 99.
Mean absolute Spearman ρ across the single-mutation validation tasks is reported.

As mutation prediction is a ranking task and as the contribution from the second term is
constant throughout the deep mutation scan (i.e. the wildtype sequence is always the same),
we can safely drop it from the computation.

Evaluation

We compare the methods described above on the validation set, finding that the masked
marginal scheme performs best. To determine the specific mode of inference when multiple
mutations are present, we examine each method on the "doubles" component of the PABP
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Figure D.4: Filtering sequences with high sequence identity to the query improves performance.
The curve illustrates mean ± standard deviation across the 9 validation proteins. HHFilter is
used to filter the MSAs with coverage of 75 and various sequence identity values as shown on
x-axis. After filtering, 384 sequences are sampled for inference. Each sequence identity value
s refers to using sequences with no more than s% sequence identity to the seed sequence. The
MSA Transformer appears to primarily use sequences that are close to the seed sequence, yet
performance drops if sequences that are too similar remain in the MSA. Results are broken
down across the single-mutation validation set in Table D.7.

Yeast dataset finding the masked marginal (a) strategy performs best. This scoring method
is used across the results.

Evaluating ESM-1v on subsequences

DeepSequence, EVMutation, and the MSA Transformer use the consensus columns of a MSA
as input. We construct MSAs using the seed sequences from the DeepSequence paper, which
usually correspond to a subsequence of the protein capturing the domain where the deep
mutational scan was performed.

Table D.4 explores using the MSA seed sequence vs. the full Uniprot sequence for inference
on the validation set. We find that the full Uniprot sequence performs best, possibly because
the model was pre-trained on Uniprot sequences. We note in Figure Fig. 5.6 that the model
captures some bias in the Uniprot dataset, for example that most proteins begin with a
methionine (corresponding to the start codon).

D.2 Unsupervised fine-tuning ESM-1v
Experimental setup We assess a number of approaches for fine-tuning ESM-1v on task-
specific MSAs. We evaluate modeling decisions by fine-tuning on tasks from the validation
set and examining the mean change in Spearman ρ over the course of training. For efficiency,
we compute Spearman ρ using the wildtype marginal strategy, as this requires just a single
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Table D.7: Filtering MSAs from the single-mutation validation set with HHFilter coverage 75
and various sequence identity values. Filtering sequences to an identity threshold of 75% or
90% consistently performs best. The Spearman rank correlation between MSA Transformer
predictions and experimental data is shown for each deep mutational scan.

Sequence Identity (%) 10 30 50 75 90 99 100

AMIE_PSEAE_Whitehead 0.025 0.461 0.467 0.365 0.665 0.654 0.622
BG505_env_Bloom2018 0.055 0.055 0.417 0.482 0.452 0.450 0.457
BLAT_ECOLX_Ranganathan2015 0.060 0.630 0.745 0.776 0.795 0.662 0.478
DLG4_RAT_Ranganathan2012 0.008 0.431 0.416 0.431 0.457 0.418 0.400
GAL4_YEAST_Shendure2015 0.080 0.287 0.366 0.441 0.576 0.542 0.388
SUMO1_HUMAN_Roth2017 0.131 0.430 0.516 0.541 0.500 0.492 0.495
TIM_SULSO_b0 0.026 0.581 0.633 0.625 0.649 0.324 0.632
UBC9_HUMAN_Roth2017 0.165 0.376 0.557 0.583 0.494 0.555 0.475
KKA2_KLEPN_Mikkelsen2014 0.192 0.484 0.560 0.601 0.637 0.616 0.602
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Figure D.5: Few-shot performance of the MSA Transformer is robust to the number of
sequences used for inference. Left: Varying the number of sequences used in inference.
Right: Varying the number of tokens used for inference. Since the number of sequences
in each MSA varies, we assess the effect of fixing the total number of tokens sampled from
each MSA and drawing the corresponding number of sequences to fill the context. Results on
single-mutation validation set.

forward pass. After the final modeling decisions are selected, we train all models for 7500
updates and evaluate on all proteins using the masked marginals strategy. All models in
this section were trained with a constant learning rate of 10−5 using the masked language
modeling objective. For reference, the ESM-1v pre-training was performed with a target
batch size of 1M tokens.
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Figure D.6: Unsupervised fine-tuning baselines. Mean change in Spearman ρ across 9 models
trained on the single-mutation validation set tasks. The title of each plot denotes the
parameters that are trained. We find that fine-tuning the entire model results in overfitting,
but limiting the training to just the embeddings or just the layer norms does not improve
performance with respect to the pre-trained initialization. The choice of gap token and label
smoothing has limited effect.

Unsupervised fine-tuning baselines The concept of unsupervised fine-tuning of an MSA
has been previously proposed [25, 129]. Fig. D.6 studies a basic fine-tuning setup on the
consensus columns of the MSA. Each model is fine-tuned on a single MSA with a target
batch size of 8192 tokens. We first observe that that models overfit quickly if the entire
model is trained. This results in a decrease in Spearman ρ compared to initialization. As the
fine-tuning is performed on the consensus columns of the MSA, we sought to regularize the
model by fine-tuning only the embeddings. As a PSSM already captures information relevant
to the task, we hypothesize that tuning the embeddings could capture similar information
and boost performance. Similarly, we experiment with tuning only the layer normalizations,
as these have also been recently shown to enable transfer to new tasks. In both cases, we
found no improvement to the average Spearman ρ. We also assessed label smoothing and
replacing the gap token with a mask token or a pad token finding no significant impact; for
simplicity, we omit label smoothing and use the mask token for future experiments.

Minimal models We also examine a set of minimal models, in which we freeze all
parameters in the Transformer and learn a projection from the ESM-1v outputs onto a PSSM,
taking the sum of the projection and the PSSM. We experiment with freezing the PSSM or
allowing it to train. We did not see a change in Spearman ρ of more than 0.01.

Spiked unsupervised fine-tuning Next, we examine a new strategy, which we call spiked
fine-tuning. In spiked fine-tuning, we regularize the fine-tuning by continuing to spike
pre-training sequences into the fine-tuning batch. In this setting, we train on the entire MSA,
including non-consensus positions. We find that spiked fine-tuning with a small ratio (0.01)
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Figure D.7: Spiked unsupervised fine-tuning. Mean change in Spearman ρ across 9 models
trained on the single-mutation validation tasks. The title of each plot denotes the parameters
that are trained; and the ratio of MSA tokens to pre-training tokens. We find that a small
ratio performs well and reduces the tendency for the model to overfit, while preserving strong
performance. Performance is not improved if the fine-tuning is limited to just the embeddings
or just the layer norms.
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Figure D.8: Box plot comparing entropy scores for binding vs non-binding positions in
structures labeled in the Provis validation dataset (as described in Appendix B.4 of [7]). A
Welch’s t-test determines that the difference between the two means is statistically significant
(p < 0.01).
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Figure D.9: Box plot comparing entropy scores across residue depths in structures from
the trRosetta dataset. Residue depths are categorized based on the number of neighboring
residues with C-beta distance<10 angstroms. (exposed≤16, buried≥24 [8]). A one way Anova
test determines that the differences between all three means are statistically significant (p <
0.01).

of MSA tokens to pre-training tokens performs best and enables training of all parameters
without overfitting.

The final models were trained for 7500 updates using spiked fine-tuning with a batch size
of 500k tokens. To produce an ensemble, we perform the fine-tuning scheme on five models
that were pre-trained with different seeds. Each model was also fine-tuned with a unique
seed.

D.3 Datasets

Evaluation Tasks

We evaluate models on a set of 41 deep mutational scans collected by Riesselman et al.
[2], which comprise a variety of tasks assessing a diverse set of proteins. Across tasks, the
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Figure D.10: Entropy of PSSM versus ESM-1v predicted entropy on the trRosetta dataset.
PSSM entropy determines the level of conservation at a given position in a protein family.
ESM-1v entropy is well correlated with PSSM entropy (Pearson’s r = 0.44), suggesting the
model is able to identify conserved positions.
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Figure D.11: Predicted distribution of hydrophobic, polar and charged amino acids at the
surface and core of proteins in the trRosetta dataset. We compare to the actual proportion
in the protein structure. We classify residues into buried, intermediate or exposed by residue
depths based on the number of neighboring residues with C-beta distance < 10 angstroms
(exposed ≤ 16, buried ≥ 24) [8]. ESM-1v and PSSM both see increased hydrophobicity
predictions for buried residues, in correspondence with the ground truth data. Predicted
probabilities are produced by introducing a mask token at each position.

experimental data differ widely in the functions tested and in the experimental measurements
performed. Of the 41 datasets, 37 are single-mutation only, 1 is double-mutation only, and
the rest contain a variable number of mutations per sequence between 1 and 28. The median
number of mutations is 2979, and the average is 16822; the smallest dataset has 37 mutations,
and the largest has 496137. We randomly select 9 single-mutation experiments as a validation
set. We also ablate the multiple mutation scoring approach on the double mutations from
the PABP Yeast deep mutational scan. We exclude the 10 tasks used for validation and
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ablations from the test set. These datasets are reported in results for the full set. While the
original compilation has 43 datasets, we exclude the tRNA (which is not a protein) and the
toxin-antitoxin complex (which comprises multiple proteins).

We treat each deep mutational scanning dataset as a separate prediction task, scoring
each of the variants in the dataset with the model. We evaluate performance by comparing
the scores with the experimental measurements using Spearman rank correlation. Results
are broken out between the test set, which excludes the validation set, as well as the full set
of 41 datasets. All ablations are performed on the single mutant validation set or the PABP
Yeast doubles experiment. Only the final models are evaluated on the test set.

Pre-training datasets

For the clustering sweep in Fig. 5.4, we use the Uniref50 and Uniref90 databases from the
2020_03 release of Uniref [71], a publicly available database of proteins, clustered respectively
to 50% and 90% sequence identity. For the 30% sequence identity dataset, we use Uniclust30
2020_03 [116]. For the 70% sequence identity dataset, we Uniref100 is hierarchically clustered
to the 90%, then 70% sequence identity level. MMseqs settings are those used by Uniref:
80% overlap with longest sequnece in the cluster, which translates to mmseqs-cluster
–min-seq-id 90,70 –cov-mode 0 -alignment-mode 3 -c 0.8. In order to compute pre-
training perplexities on a heldout validation set, we randomly select 1% of sequences each
from Uniref30, Uniref50, and Uniref90. We then exclude sequences that are similar to the
validation sequences by removing all sequences found with MMSeqs search (–min-seq-id
0.xx) for validation set xx. We use the most sensitive settings in MMSeqs –alignment-mode
3 –max-seqs 300 -s 7, taking the train set as the query database and the validation set as
the target database. We use settings -c 0.8 –cov-mode 0 to match the settings of Uniref.
Pretraining perplexities on the validation sets are reported in Table D.8.

Baselines

The MSAs used for training DeepSequence and EVMutation are generated from the 2017-10
version of Uniref100, whereas the models we study are trained on sequences from Uniref90
2020-03. In the case of MSA Transformer, the model is pre-trained on the 2018-03 Uniref,
but we use 2020-03 MSAs for inference. In order to provide a fair comparison, we regenerate
MSAs against the 2020-03 Uniref according to the methodology in Hopf et al. [1] and retrain
EVMutation (replication) and DeepSequence (replication) on these datasets using their open-
source codebases. For the viral proteins BF520_env_Bloom2018, BG505_env_Bloom2018,
HG_FLU_Bloom2016, PA_FLU_Sun2015, POLG_HCVJF_Sun2014,
POL_HV1N5-CA_Ndungu2014, we compute the sequence weights with θ = 0.01 (ver-
sus default θ = 0.2) following Riesselman et al. [2]. In the replication of the DeepSequence
ensemble, for BF520_env_Bloom2018, BG505_env_Bloom2018, one of the five runs failed
so we reran with a different random seed.
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Validation and test set
The single-mutation validation set consists of the following deep mutational scans:

• AMIE_PSEAE_Whitehead

• BG505_env_Bloom2018

• BLAT_ECOLX_Ranganathan2015

• BRCA1_HUMAN_RING

• DLG4_RAT_Ranganathan2012

• GAL4_YEAST_Shendure2015

• POLG_HCVJF_Sun2014

• SUMO1_HUMAN_Roth2017

• TIM_SULSO_b0

• UBC9_HUMAN_Roth2017

• KKA2_KLEPN_Mikkelsen2014

For ablations studies with multiple mutations the following dataset is used:
• PABP_YEAST_Fields2013-doubles

The test set consists of the following deep mutational scans:

• B3VI55_LIPSTSTABLE

• B3VI55_LIPST_Whitehead2015

• BF520_env_Bloom2018

• BG_STRSQ_hmmerbit

• BLAT_ECOLX_Ostermeier2014

• BLAT_ECOLX_Palzkill2012

• BLAT_ECOLX_Tenaillon2013

• BRCA1_HUMAN_BRCT

• CALM1_HUMAN_Roth2017

• HG_FLU_Bloom2016

• HIS7_YEAST_Kondrashov2017

• HSP82_YEAST_Bolon2016

• IF1_ECOLI_Kishony

• MK01_HUMAN_Johannessen

• MTH3_HAEAESTABILIZED_Tawfik2015

• P84126_THETH_b0

• PABP_YEAST_Fields2013-singles

• PA_FLU_Sun2015

• POL_HV1N5-CA_Ndungu2014

• PTEN_HUMAN_Fowler2018

• RASH_HUMAN_Kuriyan

• RL401_YEAST_Bolon2013

• RL401_YEAST_Bolon2014

• RL401_YEAST_Fraser2016

• TIM_THEMA_b0

• TPK1_HUMAN_Roth2017

• TPMT_HUMAN_Fowler2018

• UBE4B_MOUSE_Klevit2013-singles

• YAP1_HUMAN_Fields2012-singles

D.4 Methodology

Model selection

ESM-1b and MSA Transformer model checkpoints are selected based on performance on the
single mutation validation set. Open sourced checkpoints are used for ESM-1b and other
protein language model baselines.
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Treatment of synonymous mutations

Synonymous mutations are mutations in DNA that do not change the protein sequence that is
expressed. The deep mutational scanning datasets that we evaluate here can therefore include
DNA mutations that do not change the protein sequence itself. Synonymous mutations are
excluded from results.

Bootstraps

To compute bootstraps for the pointplots, we randomly resample each deep mutational scan
(with replacement) and compute the Spearman ρ between the experimental data and model
predictions.

Average calibration error

The standard expected calibration error (ECE) performs poorly for highly imbalanced data
[190]. Following Neumann et al. [190] and Nixon et al. [191] we adapt average calibration
error for the multi-class setting as follows:

1

K

K∑
k=1

1

B+
k

B+
k∑

b=1

|acc(b, k)− conf(b, k)|

where K is the number of classes, B+
k is the number of non-empty bins for class k, and acc

and conf are the accuracy and confidence for bin b and class k.

D.5 Performance by MSA depth
We examine the relationship between the number of related sequences in the pre-training set
and performance on the task. We use Jackhmmer [10] version 3.3.1 with a bitscore threshold
of 27 and 8 iterations to construct MSAs from the ESM-1v training set. We do not observe
a strong correlation between MSA depth and the observed absolute value of Spearman ρ
(Figure Fig. D.13).

D.6 Compute costs
ESM-1v models are pre-trained for 6 days on 64 V100 GPUs. Weights for the MSA Transformer
were retrieved from the open-source repository released by the authors; the model was pre-
trained for 13 days on 128 V100 GPUs. Once trained, the models can be used directly for
function prediction tasks. Forward inference is efficient, meaning that for applications of
the models, the additional compute is minimal. In total, five ESM-1v models were trained
on various Uniref clustering thresholds to five different levels: 30%, 50%, 70%, 90%, and
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100%. For the 90% sequence identity level, five total models with different random seeds
were trained, for use in an ensemble. As illustrated in Fig. D.1, inference is inexpensive by
comparison. Batch inference was performed with preemptible, short (shorter than one hour),
single V100 GPU jobs on a shared compute cluster.

D.7 Licenses
We note the following licenses for datasets used in our work:

• 41 deep mutational scans from Riesselman et al. [2]: License unclear

• Sequences and binding-site information from Vig et al. [7]: BSD3 License

• PDB structures from Protein Data Bank [181]: free of all copyright restrictions and is
made fully and freely available for both non-commercial and commercial use.

• 15K sequences and structural information from Yang et al. [133]: License unclear, as
the code uses MIT license but dataset has no license listed. The dataset is a derivative
of the PDB [181].

Table D.8: Perplexities on heldout pre-training validation sequences after training a 650M
parameter Transformer model for 170,000 updates on various sequence identity clusterings of
Uniref.

Clustering Valid (30%) Valid (50%) Valid (90%)

30% 8.93 8.33 7.29
50% 8.90 7.77 6.27
70% 9.05 7.80 5.85
90% 9.37 8.10 5.56
100% 9.89 8.65 6.05
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Figure D.12: ESM-1v accurately captures functional properties. Further examples. The ten
positions with lowest predicted entropy highlighted in blue. (A) Kanamycin kinase APH(3’)-
II (pdbid: 1ND4 [9]). The highlighted residues interact with the kanamycin aminoglycoside,
as well as the magnesium and sodium ions. (B) Thiamin pyrophosphokinase 1 (pdbid: 3S4Y).
Residue 216 is one of the 10 lowest entropy residues, and we highlight it on the other chain
(in cyan) to show both chains of the dimer interacting with the thiamine diphosphate.



APPENDIX D. LANGUAGE MODELS ENABLE ZERO-SHOT PREDICTION OF THE
EFFECTS OF MUTATIONS ON PROTEIN FUNCTION 136

0 200000 400000 600000 800000 1000000
MSA Depth

0.0

0.2

0.4

0.6

0.8

1.0

|S
pe

ar
m

an
 

|

Figure D.13: Relation between MSA depth and zero-shot performance of ESM-1v. We use
JackHMMer [10] version 3.3.1 with a bitscore threshold of 27 and 8 iterations to construct
MSAs from the ESM-1v training set. We do not observe a strong correlation between MSA
depth and the observed |Spearman ρ|.
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