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Abstract

PolyVI: Deep Generative Models for Gene Expression, Chromatin Accessibility, and
Surface Protein Expression Data

by

Rohan V. Koodli

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Single-cell multimodal sequencing methods, which measure multiple different modalities si-
multaneously (such as gene expression, chromatin accessibility, and surface protein data) are
an exciting new space in the field of genomics as they provide a more comprehensive pic-
ture of cellular state than technologies that assay a single modality. Here I present PolyVI,
a suite of three deep generative models to analyze DOGMA-seq (gene expression, protein,
chromatin), ASAP-seq (chromatin, protein), and SNARE-seq (gene expression, chromatin)
datasets. PolyVI is able to map the data to a low dimensional latent space, batch correct,
and de-noise the data.
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Chapter 1

Introduction

Single-cell genomic sequencing has transformed molecular biology. Sequencing technolo-
gies such as single-cell RNA-sequencing [19] and single-cell ATAC-sequencing (Assay for
Transposase-Accessible Chromatin sequencing) [4] are pivotal to help understand the gene
expression and accessibility of genomic regions within cells. Up until recently, a majority
of the methods being used to profile cellular data has been limited to a single modality
[12, 3]; for example, single-cell ATAC-seq only profiles chromatin accessibility in a cell, and
single-cell RNA-seq only profiles gene expression levels.

Multimodal single-cell data is particularly of interest, since providing more than one
modality can provide a much clearer picture of cell state. Specifically, multiomic sequenc-
ing methods such as CITE-seq [17] profile cell surface protein and transcriptome (gene ex-
pression) data simultaneously. Recently, additional multimodal technologies have been pub-
lished, such as DOGMA-seq (gene expression, chromatin accessibility, surface protein expres-
sion), ASAP-seq (chromatin accessibility, surface protein expression) [14], and SNARE-seq
(gene expression, chromatin accessibility) [5]. Leveraging all the modalities in such multi-
modal assays is difficult, as such a method should be able to collate all the modalities to
learn a joint representation for each cell, thus providing a summary of its molecular state.

We present PolyVI, a suite of three deep generative models for probabilistic modelling
of ASAP-seq (AsapVI), DOGMA-seq (DogmaVI), and SNARE-seq (SnareVI). PolyVI is
implemented as part of the scvi-tools variational inference methods [12] and learns joint rep-
resentations of DOGMA-seq, ASAP-seq, and SNARE-seq data. PolyVI is based off existing
scvi-tools methods ScVI [12] (which models gene expression data), PeakVI [3] (chromatin ac-
cessibility), and TotalVI [6] (gene expression and surface protein data). PolyVI maps paired
measurements to low-dimensional latent spaces, which can then be used to stratify cells into
types, subtypes, quantitative gradients (such as developmental stage), and can be visualized
using a dimensionality reduction technique. In addition, PolyVI predicts likelihoods of each
of the modalities, quantifies uncertainties, and corrects for noise and batch effects in the
data.
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Chapter 2

Results

2.1 Architecture Overview

In order to provide the batch correction, latent cell type separation, and de-noising func-
tionalities, PolyVI uses a variational autoencoder (VAE) architecture [10]. Specifically, the
VAE architecture is comprised of two main parts: an encoder and a decoder neural network.
A diagram of the PolyVI architecture can be seen in Figure 1. A formal description of the
architecture is provided in Methods.

The encoder is comprised of a single feedforward neural network that learns a joint,
batch-corrected, Gaussian latent distribution of all modalities provided, qϕ(z|xR, xA, xP , s),
where z is the latent variable learned, x is the original data, and s is the batch. The encoder
is able to batch correct the data and produces a latent representation of the data, which can
then be used with a dimensionality reduction technique such as UMAP [13].

The decoder is comprised of several feedforward neural networks that sample from z using
distinct noise models for each modality to return observations that have been de-noised.
Specifically, we use a Negative Binomial noise model for scRNA-seq data (gene expression
data is count-based) [12], a Bernoulli noise model for scATAC-seq (chromatin accessibility
data is mostly binary) [3], and a Negative Binomial Mixture noise model for surface protein
expression data (protein data is also count-based but with non-zero background noise due to
non-specific binding of antibodies) [6]. DogmaVI consists of all three of the aforementioned
decoders, AsapVI models scATAC-seq and protein data, and SnareVI consists of scRNA-seq
and scATAC-seq.

2.2 Inference Model Analysis

In single-cell genomic datasets, different cell culture environments, different synthesis tech-
niques, etc. cause batch effects in datasets; batch correction measures how well inference
methods can filter out the discrepancies across different batches. Latent cell type separation
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measures how well inference models can separate different cell types. We use local inverse
Simpson’s index (LISI), as described in [11], to compute both these metrics.

The LISI scores we use measure how well batches are mixed (iLISI) and how separate
different cell types are (cLISI). For iLISI, we want batches to be mized evenly; so in any
given neighborhood of cells, an effective integration of cells should have n batches. Thus,
the optimal batch correction iLISI score is n [11] (in our dataset, n = 2). Similarly, cLISI
measures the separation of cell types, so in any given neighborhood of cells, we want only 1
cell type to be present [11]. Thus, the optimal cLISI is 1 and the worst possible cLISI would
be m where m is the number of cell types (our dataset has m = 8). Detailed descriptions of
the two metrics can be found in 5.3 and 5.4.

We compared PolyVI to three other multiomic methods: Schema [16], which uses metric
learning to identify specific features per modality; MOFA+ [1], which uses statistical infer-
ence methods to construct low dimensional representations; and Seurat v4 [8], which uses a
weighted nearest neighbor approach to rank cells. As opposed to PolyVI, the three afore-
mentioned algorithms do not have an analog to the generative model. Schema, MOFA+, and
Seurat v4 only contain the inference aspect of the analysis, mainly to infer a low dimensional
embedding that summarizes all modalities and can be used to perform batch and visualize
latent spaces. The LISI scores for PolyVI, Schema, MOFA+, and Seurat v4 are listed in
Tables 1 and 2 below.

We tested these models on the Mimitou et al dataset [14], which contains DOGMA-seq
bone marrow PBMCs (peripheral blood mononuclear cell). This data contains two batches,
cells treated with low-loss lysis (LLL) and cells treated with digitonin (DIG). In addition, this
dataset contains monocytes (CD14, CD16 cells) and lymphocytes (CD4, CD8 T cells, other
T cells, B cells, NK cells), which serve as our cell types to benchmark cell type separation.

Figure 2 shows UMAP visualizations of PolyVI latent spaces. Figure 2A shows Leiden
algorithm [20] clusters based on gene expression, protein expression, and chromatin acces-
sibility. Figure 2B shows the UMAP with annotated cell types (included in the original
Mimitou et al study); we can see that the Leiden clusters are similar to the pre-determined
cell types given in the dataset, implying that PolyVI is able to separate cell types well. In
particular, clusters 4 and 6 in Figure 2A correspond well with B cells and NK cells in Figure
2B. In addition, the Leiden clustering distinguishes between the two largest subpopulations
of cells, the CD4 and CD8 T cells, even though the clusters are subdivided (Figure 2A, see
clusters 0, 1 and 2, 3). Figure 2C shows that the two batches, LLL and DIG, are mixed well
throughout the latent space. This shows that PolyVI is able to batch correct well, further
backed up by the high iLISI score shown in Table 1.
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Algorithm iLISI

PolyVI 1.89
Schema 1.88
MOFA+ 1.88
Seurat v4 1.74

Table 1: Batch correction scores

Algorithm cLISI

PolyVI 2.09
Schema 1.50
MOFA+ 2.03
Seurat v4 2.06

Table 2: Latent separation scores

As seen above, PolyVI performs the best out of the four algorithms on iLISI, albeit by a
slim margin. PolyVI, MOFA+, and Seurat v4 exhibit similar performance on cLISI, while
Schema performs the best. While this is a good result, the main benefit of using PolyVI
over these methods is that PolyVI can de-noise and impute data in addition to its batch
correction functionalities, which are discussed in section 2.3.

In addition, we decided to compare PolyVI to MultiVI [2], a similar scvi-tools model
that supports scRNA-seq and scATAC-seq. MultiVI has the same functionality as PolyVI
(SnareVI), but can also work with data that is not fully paired (i.e., either some gene
expression or accessibility data is missing). MultiVI is able to accomplish this as it has 2
separate encoders, one for chromatin accessibility and one for gene expression, as opposed
to PolyVI (which has 1 encoder for all modalities). We decided to compare the two models
on the Mimitou data for the inference model (since the Mimitou data has batches), and on
a fully paired 10x granulocyte dataset [15] for the generative model. We benchmark the
two models on only fully paired scRNA-seq and scATAC-seq, as PolyVI only supports fully
paired data, and MultiVI currently does not support protein data.

Batch corrected latent spaces for the two models can be seen in Figure 3; both models
appear to have good mixing between the DIG and LLL batches of the Mimitou data. We
used the SnareVI model within PolyVI to compare against MultiVI since MultiVI currently
does not support protein data. Batch correction scores for SnareVI and MultiVI are shown
below in Table 3.

Algorithm iLISI

PolyVI (SnareVI) 1.3
MultiVI 1.17

Table 3: Batch correction scores
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The score for PolyVI is lower than in Table 1 since we are not using protein data. However,
the model still does better than MultiVI, likely due to the fact that PolyVI uses a single,
unified encoder that can accept both scRNA-seq and scATAC-seq data, whereas MultiVI
has two separate encoders, one for each modality.

2.3 Generative Model Analysis

To test the PolyVI generative model, we compared a standard PolyVI model trained on the
Mimitou data [14] with a PolyVI model on the same dataset, but corrupted. We ‘corrupted’
the data by randomly setting genomic regions to 0 with probability 0.3 and adding Gaussian
noise to gene and protein counts. Figure 4 shows the comparisons between PolyVI-corrupted
and PolyVI-uncorrupted.

Figures 4A-B shows chromatin de-noising (the confidence of the model in confirming
an observed 0/1 and that the data point is not a false negative/positive, respectively) in
the original and corrupted data. Overall, PolyVI-uncorrupted is slightly more confident in
imputing non-zero values. Figures 4C-D show that regardless of data corruption, there is a
strong correlation between the log standard deviation of imputed values (the uncertainty of
PolyVI) and the deviation from the observed. Figures 4E-F show that the model is able to
produce gene counts values close to the actual observed values, even when PolyVI is provided
with corrupted data.

In Figure 4 we can see that even though 30 percent of the data has been set to zero,
PolyVI is robust enough to be able to predict with strong confidence that much of the data
is false negatives, and not true signal. Figure 4 thus shows that the decoders are robust
enough to maintain predictive power, even in the presence of increased false negatives.

Next, we show a comparison of the generative models of PolyVI and MultiVI on the
10x granulocyte dataset [15] (Figure 5, has the same type of plots as Figure 4). PolyVI and
MultiVI exhibit very similar performance across chromatin accessibility and gene expression.
Spearman correlations between “smoothed” gene expression and accessibility data is shown
in the table below. Because raw single-cell data can be affected by low sensitivity [2], we
smooth the data using a k-nearest neighbors approach (see sections 5.5 and 5.6), identical
to the one used in MultiVI [2].

Algorithm Gene Expression Chromatin Accessibility

PolyVI 0.83 0.81
MultiVI 0.83 0.82

Table 4: Spearman Correlations for PolyVI and MultiVI

The Spearman correlations are nearly identical for PolyVI and MultiVI. However, Fig-
ure 5 implies that PolyVI is marginally more confident in chromatin accessibility values as
opposed to MultiVI. Figures 5A and 5B show the models’ confidence in imputing a value for
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a 0 or 1 in chromatin accessibility, and Figures 5E and 5F show the models’ accuracy in im-
puted gene expression counts; both PolyVI and MultiVI do well. However, PolyVI appears
to be more confident and has a lower error than MultiVI in imputing some chromatin values
(bottom left corners of 5C and 5D).
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Chapter 3

Summary

PolyVI is a set of new additions to the scvi-tools suite, performing variational inference on
fully paired DOGMA-seq, ASAP-seq, and SNARE-seq data. When provided fully paired
datasets, PolyVI can learn joint latent representations, correct for batch effects, and denoise
data. When compared to similar multiomic analysis algorithms, PolyVI does as well and
sometimes better than the other algorithms in batch correction and latent separation metrics.
Moreover, these other algorithms are unable to replicate the decoder element of PolyVI and
of the scvi-tools suite, as only PolyVI can perform denoising on this type of data.
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Chapter 4

Methods

PolyVI can model any set of scRNA-seq, scATAC-seq, and cell surface protein data (except
for surface protein data alone; 7 total models). The models for scRNA-seq, CITE-seq, and
scATAC-seq have all been previously published [12, 6, 3], so in this paper, we introduce
models for paired measurements for ASAP-seq, DOGMA-seq, and SNARE-seq (scRNA-seq
and scATAC-seq).

4.1 VAE Background

PolyVI uses variational autoencoders (VAEs) to model the likelihood of the single-cell data.
Our work focuses on three new models in PolyVI: DogmaVI (gene expression, chromatin,
protein), AsapVI (chromatin and protein), and SnareVI (gene expression and chromatin).
A diagram for the construction of the DogmaVI model can be seen in Figure 1.

All three models introduced in this paper (DogmaVI, AsapVI, SnareVI) uses VAE noise
models [12, 3, 6, 2]. Regardless of the number of modalities, these models use one encoder
which maps the data to a multivariate Gaussian ‘latent’ distribution while accounting for
noise, sparsity, and batch effects. Following the VAE loss function, the model is penalized
if the model’s latent space deviates from the underlying multivariate Gaussian distribution
(using a metric for distributional similarity known as the Kullback-Leibler Divergence) [10].

The generative part of the model aims to probabilistically generate data from the learned
latent space, following a modality-specific distribution. For scRNA-seq data, the model de-
coder follows a Negative Binomial distribution; for scATAC-seq, the decoder uses a Bernoulli
distribution; for surface protein data, the decoder uses a Negative Binomial Mixture model
(one component for foreground signal and one for background signal). In addition to the
Kullback-Leibler Divergence term, we penalize the model for producing data points that are
different from the original data (known as the reconstruction loss).

Combining the KL-Divergence and reconstruction loss terms, we get the overall loss
functions for VAEs, known as the Evidence Lower Bound (ELBO) loss, where p(z) is the
prior of the variational distribution, qϕ is the probability distribution of the encoder (a
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Gaussian) controlled by neural network parameters ϕ, mapping the data distribution x to
the latent distribution z. pθ is the distribution of the decoder (Negative Binomial, Bernoulli,
Negative Binomial Mixture), controlled by neural network parameters θ.

ELBO = Ez∼qϕ(z|x)[log(pθ(x|z))] +DKL[qϕ(z|x)||p(z)]

The VAE architecture allows PolyVI to learn joint latent representations regardless of
the modalities in the sequencing methods, which can be batch-corrected and normalized. In
addition, the VAE can generate new data points according to the data distribution.

4.2 The Encoder Model

Across all models, the inference (‘encoder’) part of the model is the same: a single en-
coder maps the input data to a multivariate Gaussian distribution, regardless of the number
of modalities. The posterior is intractable, so we use the ELBO loss described above to
approximate the evidence.

p(z) = N (0, I)

p(z|x) = p(x|z)p(z)
p(x)

The generative (‘decoder’) distributions vary across the VI models.

4.3 The SnareVI Model

SNARE-seq consists of chromatin accessibility and gene expression data, so we have one
decoder for each modality.

We use a Bernoulli distribution for chromatin accessibility due to the nature of the data.
Chromatin accessibility measures where DNA is (or is not) accessible (i.e., wrapped around
histones). Histones ‘package’ DNA: if the DNA is wrapped around a histone, it is inaccessible
(called closed chromatin); if it is unwound, it is accessible (open chromatin). For every cell,
we observe whether a genomic region (i.e., 50 base pairs to 100 base pairs) is accessible or
not. Chromatin accessibility data is binary, and hence we use a Bernoulli distribution with
a learned parameter p to model this data.

Let c, C denote and individual cell and the total number of cells; let j, J denote an
individual region and the total number of regions. We have XA ∈ NC×J

0 , a scATAC-seq data
matrix with C rows and J columns. The probability of observing a region as accessible is
defined as follows, using the Bernoulli distribution:

zn ∼ N (0, I)

ρcj = fA(zn, sn)
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xA ∼ Bernoulli(ℓcρcj)

where ρcj is the true biological noise, fA is a neural network, s is the batch, and ℓ is the
library size.

For gene expression, we use a Negative Binomial model. Unlike chromatin accessibility
data, gene expression data is measured in counts: for every cell, we measure the count of
each unique gene.

The number of counts of a gene is directly proportional to the rate of transcription:
the higher the rate of the DNA to RNA conversion, the higher the gene count. Therefore,
we could use a Poisson distribution for gene counts. However, single cell data is often
overdispersed. As a result, we use a Negative Binomial model, which is a Poisson distribution
whose parameter is sampled from a Gamma distribution [18, 6]. The Negative Binomial has
an additional variance parameter that can by learned by the VAE neural network.

zn ∼ N (0, I)

ρcg = fR(zn, sn)

xR ∼ NegativeBinomial(ℓcρcg, θg)

ρ is the learned mean parameter, fR is a neural network, ℓ is the latent RNA library size,
and θ is the learned variance parameter.

4.4 The AsapVI Model

ASAP-seq data combines chromatin accessibility with surface protein data.
AsapVI uses the same Bernoulli model as SnareVI for chromatin accessibility:

zn ∼ N (0, I)

ρcj = fA(zn, sn)

xA ∼ Bernoulli(ℓcρcj)

Surface protein data is similar to gene expression data, as we measure the count of
each unique protein on the surface of each cell. However, protein expression data follows a
different distribution compared to gene expression due to a discrepancy in the sequencing
method. Sometimes, a protein that is not present on the surface of a cell gets counted due to
the non-specific binding nature of tagged antibodies; this rarely happens for gene counts [6].
Because of this, protein counts have background noise; a key challenge in modelling protein
data is distinguishing true negatives from false negatives.

To model this, we use a Negative Binomial Mixture model, with one component for true
foreground signal, and one for background noise. Let p, P denote an individual protein and
the total number of proteins. and XP ∈ NC×P

0 , a protein observation matrix with C rows
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and P columns. Given zn (latent representation, a multivariate Gaussian distribution), βn

(protein mean), and sn (batch), we have:

zn ∼ N (0, I)

πn = hπ(zn, sn)

vnp|zn, sn ∼ Bernoulli(πnp)

xP ∼ NegativeBinomial(vnpβnp + (1− vnp)βnp, ϕ)

πnp is the output of the decoder neural network h, which measures the probability of
a protein count coming from either background or foreground. vnp is a Bernoulli random
variable based on πnp, and ϕ is the variance parameter learned by the neural network.

4.5 The DogmaVI Model

DOGMA-seq measures gene expression, chromatin accessibility, and surface protein data
simultaneously.

The DogmaVI model is a combination of SnareVI and AsapVI:

zn ∼ N (0, I)

ρcg = fR(zn, sn)

ρcj = fA(zn, sn)

xR ∼ NegativeBinomial(ℓcρcg, θg)

xA ∼ Bernoulli(ℓcρcj)

πn = hπ(zn, sn)

vnp|zn, sn ∼ Bernoulli(πnp)

xP ∼ NegativeBinomial(vnpβnp + (1− vnp)βnp, ϕ)
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Chapter 5

Benchmarking and Evaluation

5.1 Datasets and Preprocessing

For benchmarking and analysis, we use the ASAP-seq and DOGMA-seq datasets provided
in the Mimitou et al [14], downloaded from GEO (Accession number GSE156478). The
raw scATAC-seq fragment files were downloaded from the GEO site, and were preprocessed
using ArchR [7]. The raw gene and protein count data was used directly in our analysis.
In addition, we used the 10x granulocyte dataset [15]. No preprocessing was done here, as
peaks were called on the ATAC-seq data.

We used AnnData [9] for our data handling and scanpy [21] for quality control. We align
the RNA and ATAC data horizontally in the adata.X field, where the rows (cells) are the
same. The protein data is placed in the adata.obsm[‘protein expression’] field. Then,
depending on the model, we train a VAE on the AnnData-formatted object.

5.2 Using other models

We benchmarked PolyVI against three other models: Schema [16], Seurat v4 [8], and MOFA+
[1] to compare their batch correction and latent separation scores. For all three models, we
followed the documentation provided on their website to train a model on the DOGMA-seq
data.

In addition, we compared PolyVI to MultiVI to compare if the 2-encoder approach of
MultiVI yielded different results to the 1-encoder approach of PolyVI. We trained models
on the Mimitou data to conduct our inference analysis (section 2.2), and trained models on
the 10x granulocyte data to conduct our generative analysis (section 2.3).
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5.3 Batch Correction Metric

The batch correction metric uses LISI (local inverse Simpson’s index) [11]. To test batch
correction, we use the ‘iLISI’ metric, which computes how well ‘mixed’ two populations are.

First, we define a set number of neighboring samples to observe (similar to k-nearest
neighbors). We then compute the inverse Simpson’s index is computed as

1∑B
b=1 P (b)

where P (b) is the batch probability in the context of the neighbors (a Gaussian based dis-
tribution of neighborhoods in the latent space) [11]. Effectively, this measures the number
of batches in a given neighborhood.

5.4 Latent Separation Metric

The latent cell type separation metric, cLISI uses the exact same formula as iLISI, but
instead of specifying batches, we specify the cell types. 1∑B

b=1
P (c)

is computed, and P (c) is

the cell type probability in the local neighborhood.

5.5 Raw Chromatin Accessibility Smoothing

We wanted a simple method to remove the effects of false negative observations in scATAC-
seq data, so we use Latent Semantic Analysis to compute a 30-dimensional latent space,
where for each cell, we averaged the accessibility profiles of the 50 nearest neighbors. This
approach was taken from MultiVI (Methods, [2]).

5.6 Raw Gene Expression Smoothing

For gene expression, we use PCA to compute a 30-dimensional latent space and averaged the
profiles over the 50 nearest neighbors, similar to 5.5. This approach was taken from MultiVI
(Methods, [2]).
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Chapter 6

Figures
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Figure 1: PolyVI (DogmaVI) model overview. Given a unified dataset of gene expression,
chromatin, and protein data, a single encoder maps the data to a latent space. To decode
and de-noise the data, three decoders are used, one for each modality.
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Figure 2: UMAPs of PolyVI latent spaces. A) Latent space with Leiden algorithm clustering.
B) Latent space with annotated cell type (given in the dataset) clusters. C) Latent space
colored by batch (blue for DIG, orange for LLL).
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Figure 3: UMAPs of PolyVI and MultiVI batch corrected latent spaces. A) PolyVI (SnareVI,
only gene expression and chromatin accessibility data) batch corrected latent space. B)
MultiVI batch corrected latent space.
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Figure 4: Comparison of PolyVI performance on uncorrupted and corrupted Mimitou data.
A, B) PolyVI imputed estimates for chromatin accessibility versus actual observed values
for uncorrupted and corrupted, respectively. Panel B compares imputed values of PolyVI
(based on corrupted data) versus the ground-truth uncorrupted chromatin accessibility data.
C, D) Imputation error (y axis) versus imputation standard deviation for chromatin data
for uncorrupted and corrupted, respectively. This measures the model’s uncertainty in pre-
diction (the SD) versus the squared error between the imputed and observed values. Panel
D’s y axis plots the MSE between PolyVI’s imputed (based on corrupted data) chromatin
data and the uncorrupted ground-truth data. E, F) Logarithmic imputed gene counts ver-
sus logarithmic observed gene counts for uncorrupted and corrupted, respectively. Panel
F compares imputed values of PolyVI (based on corrupted data) versus the ground-truth
uncorrupted RNA count data.
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Figure 5: Comparison of PolyVI (SnareVI) and MultiVI on the fully-paired 10x granulocyte
dataset. A, B) PolyVI versus MultiVI imputed estimates for chromatin accessibility versus
actual observed values. C, D) Imputation error (y axis) versus imputation standard deviation
for chromatin data. This measures the models’ uncertainty in prediction (the SD) versus the
squared error between the imputed and observed values. E, F) Logarithmic imputed gene
counts versus logarithmic observed gene counts.
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