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Abstract

Learning to Perceive and Manipulate Deformable Objects by Leveraging Simulation and
Cloud Robotics

by

Aditya Ganapathi

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

Deformable object manipulation has been an area of high interest in the robotics commu-
nity due to its myriad applications in manufacturing, supply chain and hospitality services.
However, teaching robots to manipulate deformable objects has proven to be a long stand-
ing challenge due to their infinite dimensional configuration space, tendency to self occlude,
and complex dynamics. Fortunately, recent advances in deep learning, computer vision
and simulation-to-reality have opened up exciting new directions to tackle these challenges.
In this work, we study the problem of fabric manipulation through a variety of methods
ranging from learning-based perception combined with control to fully end-to-end learning
techniques.

First, we study the problem of general-purpose fabric smoothing and folding. While there
has been significant prior work on learning policies for specific fabric manipulation tasks, less
focus has been given to algorithms which can perform many di↵erent tasks. We take a step
towards this goal by learning point-pair correspondences across di↵erent fabric configurations
in simulation. Then, given a single demonstration of a new task from an initial fabric
configuration, these correspondences can be used to compute geometrically equivalent actions
in a new fabric configuration. This makes it possible to define policies to robustly imitate
a broad set of multi-step fabric smoothing and folding tasks. The resulting policies achieve
80.3% average task success rate across 10 fabric manipulation tasks on two di↵erent physical
robotic systems. Results also suggest robustness to fabrics of various colors, sizes, and
shapes. We also propose Multi-Modal Gaussian Shape Descriptor (MMGSD), a new visual
representation of deformable objects which extends ideas from dense object descriptors to
predict all symmetric correspondences between di↵erent object configurations.

Next, we present the first systematic benchmarking of fabric manipulation algorithms on
physical hardware using Reach, a cloud robotics platform that enables low-latency remote
execution of control policies on physical robots. We develop 4 novel learning-based algo-
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rithms that model expert actions, keypoints, reward functions, and dynamic motions, and
we compare these against 4 learning-free and inverse dynamics algorithms on the task of
folding a crumpled T-shirt with a single robot arm. The entire lifecycle of data collection,
model training, and policy evaluation is performed remotely without physical access to the
robot workcell. Results suggest a new algorithm combining imitation learning with analytic
methods achieves 84% of human-level performance on the folding task.
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Chapter 1

Introduction

Robot fabric manipulation has applications in folding laundry [79, 38, 13, 49], bed mak-
ing [68], surgery [75, 76, 70, 23], and manufacturing [53, 78]. However, while robots are able
to learn policies to manipulate a variety of rigid objects with increasing reliability [45, 17, 57,
34, 41], learning such policies for manipulating deformable objects remains an open problem
due to di�culties in sensing and control. While there is significant prior work on geomet-
ric [65, 79, 3, 46] and learning based approaches [81, 66, 68] for fabric manipulation, these
approaches often involve designing or learning task-specific manipulation policies, making it
di�cult to e�ciently reuse information across tasks.

In Chapter 3, we leverage recent advances in dense keypoint learning [17] to learn visual
point-pair correspondences across fabric in di↵erent configurations. Then, given a single
o✏ine demonstration of a fabric manipulation task from a given configuration, we utilize the
learned correspondences to compute geometrically equivalent actions to complete the task on
a similar fabric in a di↵erent configuration. For example, a human might provide a sequence
of actions that would fold a T-shirt when it is placed neck up in a smoothed configuration.
However, when the robot is deployed, it may encounter a di↵erent T-shirt whose color, size
and pose di↵er from the T-shirt used for the demonstration. Learning visual correspondences
that are invariant across these fabric attributes provides a powerful representation for defining
policies that can generalize to these variations. This chapter is based on [21] and contributes
(1) a framework for learning dense visual correspondences of fabric in simulation using dense
object descriptors from [17, 74] and applying them to manipulation tasks on real fabrics with
unseen colors, scales, and textures, (2) a data generation pipeline for collecting images of
fabrics and clothing in Blender [11] and a testbed to experiment with di↵erent manipulation
policies on these fabrics in simulation and (3) physical experiments on both the da Vinci
Research Kit (dVRK) [35] and the ABB YuMi suggesting that the learned descriptors transfer
e↵ectively on two di↵erent robotic systems. We experimentally validate the method on 10
di↵erent tasks involving 5 T-shirts and 5 square fabrics of varying dimensions and colors and
achieve an average task success rate of 80.3%.

Chapter 4 is based on [22] and is extension of Chapter 3 as it addresses the issues of
uncertainty and symmetries, which can cause issues for downstream planning and control.
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Consider a robotic agent attempting to identify a corner of towel to fold it according to a
video demonstration. The agent could leverage the fabric’s inherent symmetry to manipulate
the corner of the towel for which its uncertainty in its location is the lowest, since all four
corners are viable options. To enable such behaviors, we extend the correspondence learning
algorithms from [74, 17, 21] to (1) provide measures of uncertainty in predicted correspon-
dences by formulating a distribution matching objective for correspondence learning inspired
by [16] and (2) explicitly predicting symmetric correspondences. Experiments suggest that
the learned correspondences for both 1D and 2D deformable objects are more stable and
continuous than those used in prior work and are less prone to symmetrical ambiguities and
provide uncertainty estimates.

In Chapter 5, we discuss the importance of reproducibility in robotics research and pro-
vide a case study that benchmarks a set of fabric smoothing and folding algorithms on
Reach, a prototype hardware testbed from Robotics at Google [80] which provides shared
access to remote, standardized hardware via the Cloud. Reach consists of several physical
robot workcells as well as open source software for remote execution of control policies in real
time. Each workcell is configured for a particular benchmark task: one such task is folding
a T-shirt with a UR5 robot arm and 3-jaw piSOFTGRIP gripper [55]. This work is based
on [29] and was performed in collaboration with Ryan Hoque, Kaushik Shivakumar, Shrey
Aeron, Gabriel Deza, myself and Professor Goldberg. The work contributes (1) four novel
learning-based algorithms for the folding task, (2) implementation of and comparison with
four additional benchmarks, and (3) a case study of robotics research performed exclusively
using a remotely managed robot workcell. This paper does not contribute the design of the
Reach cloud robotics platform, which is being developed by a larger team at Google [80].
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Chapter 2

Related Work

2.1 Fabric Manipulation

Fabric manipulation is an active area of robotics research [5, 63, 39, 31]. Over the past
decade, the research has primarily been focused on three di↵erent categories: perception-
based manipulation, learning-based algorithms in the real world, and learning-based algo-
rithms in simulation which are then transferred to real robots.

Traditional Vision-Based Algorithms for Fabric Manipulation

Much of the prior work on perception-based deformable object manipulation relies on tra-
ditional image processing techniques to estimate fabric state. This state estimation is then
used to define geometric controllers which bring the fabric into some desired configuration.
However, due to the generalization challenges faced by these algorithms, most prior work
makes specific assumptions on the fabric’s initial configurations or requires more complex
robotic manipulators to bring the fabric into a desired starting configuration. For example,
Miller et al. [49] demonstrate a robust folding pipeline for clothing by fitting a polygonal
contour to the fabric and designing a geometric controller on top of it, but assume that the
initial state of the fabric is flat. Sun et al. [72, 73] perform e↵ective fabric smoothing by
estimating the wrinkles in the fabric, but condition on a near-flat starting fabric. Other
work relies on “vertically smoothing” fabrics using gravity [52, 37, 38, 13, 46] to standardize
the initial configuration and to expose fabric corners before attempting the task, which is
di�cult for large fabrics or single-armed robots.

Learning-Based Algorithms in the Real World

More recent approaches have focused on end-to-end learning of fabric manipulation policies
directly on a real system, but these approaches can fail to generalize to a variety of fabrics
and tasks due to the high volume of training data required. For example, [14] use model-
based reinforcement learning to learn fabric manipulation policies which generalize to many
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tasks, but require several days of continuous data collection on a real physical system and
perform relatively low precision tasks. Jia et al. [33, 32] show impressive collaborative human-
robot cloth folding under the assumption that fabric has already been grasped and is in a
particular starting configuration, and [65] demonstrate deformable object manipulation while
requiring task-specific kinesthetic demonstrations. In follow-up work, [40] consider many of
the same tasks as in this paper and demonstrate that policies can be learned to fold fabric
using reinforcement learning with only one hour of experience on a real robot. In contrast,
we learn entirely in simulation and decouple perception from control, making it easier to
generalize to di↵erent fabric colors and shapes and deploy the learned policies on di↵erent
robots without further learning.

Sim-to-Real Learning-Based Algorithms

Due to the recent success of sim-to-real transfer [62, 77], many recent papers leverage simu-
lation to collect large amounts of training data, which is used to learn fabric manipulation
policies. Seita et al. [68, 66] and [81] address the smoothing task from [72] but generalize
to a wider range of initial fabric states using imitation learning (DAgger [60]), and rein-
forcement learning (Soft Actor-Critic [26]) respectively. Similarly, [47] learn fabric folding
policies by using deep reinforcement learning augmented with task-specific demonstrations.
However, these works learn policies that are specialized only to fabric smoothing [68, 66]
and folding [81] respectively. In follow-up and concurrent work, [30] and [84] use simulation
to train fabric manipulation policies using model-based reinforcement learning for multiple
tasks. In contrast, we leverage simulation to learn visual representations of fabric to capture
its geometric structure without task-specific data or a model of the environment and then
use this representation to design intuitive policies for several tasks from di↵erent starting
configurations.

Dense Object Descriptors

We learn visual representations for fabric by using dense object descriptors [17, 64], which
were shown to enable task oriented manipulation of various rigid and slightly deformable
objects [17]. This approach uses a deep neural network to learn a representation which
encourages corresponding pixels in images of an object in di↵erent configurations to have
similar representations in embedding space. Such descriptors can be used to design geo-
metrically structured manipulation policies for grasping [17], assembly [87], or for learning
from demonstrations [15]. [74] extend this idea to manipulation of ropes, and demonstrate
that deformation-invariant dense object descriptors can be learned for rope using synthetic
depth data in simulation and then transferred to a real physical system. [74] then use the
learned descriptors to imitate o✏ine demonstrations of various rope manipulation tasks. In
this work, we apply the techniques from [74] to learn descriptors which capture geometric
correspondence across di↵erent fabric configurations from synthetic RGB images and use
them for 2D fabric manipulation.
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2.2 Remote Testbeds

The most similar remote robotics testbed initiative is from Bauer et al. [4], who hosted
the online “Real Robot Challenge” in 2020 and in 2021 at Neural Information Processing
Systems (NeurIPS). Six robotics groups from around the world were able to access their
tri-finger robot [83] remotely via the Internet and evaluate their algorithms on the shared
infrastructure. Our study di↵ers from this project in the following ways: (1) they consider
dexterous manipulation of rigid objects while we consider deformable object manipulation;
(2) they use a custom tri-finger robotic system while we use a UR5 robot arm, standard in
industrial settings; and (3) the Real Robot Challenge submissions are either learning-free
[20, 9, 86] or learned only in simulation [48, 2], while we consider learning algorithms trained
on real data. Other remote testbeds that do not consider manipulation are the Robotarium
[56] for swarm robotics and Duckietown [54] for autonomous driving.

2.3 Reproducibility in Robotics

Several other approaches have been proposed for facilitating reproducibility in robotics re-
search. One direction is benchmarking in simulation, where evaluation is inexpensive and
reproducible. Simulation environments have been developed for robot locomotion [6], house-
hold tasks [71], and deformable object manipulation [43]. While researchers have made
significant progress on these benchmarks [27, 19], especially using reinforcement learning,
such advances do not readily transfer to physical robots [10]. Another initiative for improv-
ing reproducibility is development of a low-cost open source platform that can be assembled
independently by di↵erent labs [1, 85, 83]. A third approach considers benchmarking per-
formance on large o✏ine datasets such as robot grasps on 3D object models, e.g., EGAD
[50] and Dex-Net [44]; RGBD scans and meshes of real-world common household objects,
e.g., the YCB Object and Model set [7]; and video frames of robot experience, e.g., RoboNet
[12]. These datasets have been used to explore and compare algorithms [36], but they limit
evaluation to states within the dataset.
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Chapter 3

Learning Dense Visual
Correspondences in Simulation to
Smooth and Fold Real Fabrics

3.1 Introduction

This chapter is based on [21], where we leverage recent advances in dense keypoint learn-
ing [17] to learn visual point-pair correspondences across fabric in di↵erent configurations.
Then, given a single o✏ine demonstration of a fabric manipulation task from a given config-
uration, we utilize the learned correspondences to compute geometrically equivalent actions
to complete the task on a similar fabric in a di↵erent configuration. For example, a human
might provide a sequence of actions that would fold a T-shirt when it is placed neck up in
a smoothed configuration. However, when the robot is deployed, it may encounter a di↵er-
ent T-shirt whose color, size and pose di↵er from the T-shirt used for the demonstration.
Learning visual correspondences that are invariant across these fabric attributes provides
a powerful representation for defining policies that can generalize to these variations. See
Figure 3.1 for an overview.

3.2 Problem Statement

Assumptions

We assume a deformable object is on a planar workspace in initial configuration ⇠1 with
overhead RGB image observation I1 := I1(⇠1) 2 RW⇥H⇥3. As in prior work [66, 81], we focus
on fabric manipulation tasks that can be completed by a sequence of pick and place actions.
Precisely, each action involves grasping the fabric at a pick point, pulling to a place point

without changing the orientation of the end-e↵ector, and releasing the fabric. We assume
that the pick point and place point are both visible in the camera frame and that the camera
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Figure 3.1: We use learned visual correspondences across di↵erent fabric configurations to
perform a variety of fabric manipulation tasks on the ABB YuMi (top) and the da Vinci
Research Kit (bottom). Given a single demonstration of smoothing or folding, the robot
uses the learned correspondences to compute geometrically equivalent actions for fabric of
di↵erent color and in di↵erent initial configurations. This enables robust one-shot imitation
learning of tasks that involve smoothing then folding.

intrinsics and extrinsics are known at test-time. We additionally assume access to a single
demonstration of each task in the form of a sequence of pick and place actions from some
arbitrary initial fabric configuration ⇠1. These demonstrations can be collected o✏ine, such
as through a GUI where a user clicks on an image of fabric to indicate pick and place point
pixels. However, the fabric used to create the instruction does not have to be of the same
color, the same size or in the same initial configuration as the fabric the robot sees at test
time. The only requirement is that the fabric be of a similar geometry. For example, T-shirts
can be compared to other instances of T-shirts, but not to pants or long-sleeved shirts.

Task Definition

Define the action at step j as

aj = ((xg, yg)j, (xp, yp)j) (3.1)

where (xg, yg)j and (xp, yp)j are the pixel coordinates of a grasp point on the fabric and place
point respectively in image Ij at time j. The robot grasps the world coordinate associated
with the grasp point and then moves to the world coordinate associated with the place point
without changing the end e↵ector orientation. This causes the fabric located at (xg, yg)j in
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the image to be placed on top of the world coordinate associated with (xp, yp)j with the
same surface normals as before. In future work, we will investigate how to execute more
complex actions that result in reversed surface normals, which requires a rotation motion
during the action. We are given a sequence of actions (aj)

n

j=1 executed on a fabric starting
in configuration ⇠1 and corresponding observations (Ij)

n

j=1 where Ij is the observation of
the fabric before action aj is taken. Then at test-time, a similar object is dropped onto
the surface in a previously unseen configuration and the goal is to generate a corresponding
sequence of actions for a fabric in some previously unseen configuration. Specifically, the
robot generates a new sequence of actions:

⇣
a0
j

⌘n

j=1
=

⇣
dIj!I

0
j
(xg, yg)j, dIj!I

0
j
(xp, yp)j

⌘n

j=1
(3.2)

for j 2 {1, . . . , n} where dIj!I
0
j
: R2 ! R2 is a function which estimates the corresponding

point (x0, y0)j in I 0
j
given a point (x, y)j in Ij. This function is di�cult to compute directly

from images in general, and even more so for images of highly deformable objects due to
their infinite degrees of freedom and tendency to self-occlude. Thus, we leverage dense object
descriptors [17] to approximate dIj!I

0
j
for any Ij and I 0

j
, as described in Sections 3.4 and 3.5.

3.3 Fabric Simulator

We use Blender 2.8, an open-source simulation and rendering engine [11] released in mid-
2019, to both create large synthetic RGB training datasets and model the fabric dynamics for
simulated experiments using its in-built fabric solver based on [59, 58]. We simulate T-shirts
and square fabrics, each of which we model as a polygonal mesh made up of 729 vertices, a
square number we experimentally tuned to trade-o↵ between fine-grained deformations and
reasonable simulation speed. See Figure 3.2 for an illustration. Each vertex on the mesh has
a global coordinate which we can query directly through Blender’s API, allowing for easily
available ground truth information about various locations on the mesh and their pixel
counterparts. We can also simulate finer-grained manipulation of the mesh including grasps,
pulls, and folds. See the supplement for further details on how we perform manipulation and
experiments in simulation.

3.4 Dense Shape Descriptor Training

Dense Object Descriptor Training Procedure

We consider an environment with a deformable fabric on a flat workspace and learn policies
that perform smoothing and folding tasks. The policies are defined using learned point-
pair correspondences between overhead images of the fabric in di↵erent configurations. We
generate deformation-invariant correspondences by training dense object descriptors [74, 17]
on synthetically generated images of the fabric in di↵erent configurations.
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Figure 3.2: Fabric Meshes: Examples of the meshes generated in Blender for both square
cloth (left) and t-shirts (right). The ground-truth vertices are highlighted in the second and
fourth columns.

In [17], an input image I is mapped to a descriptor volume Z = f✓(I) 2 RW⇥H⇥D, where
each pixel (i, j) has a corresponding descriptor vector Zi,j 2 RD. Descriptors are generated
by a Siamese network f✓ and are guided closer together for corresponding pixels in images
and pushed apart by at least some margin M for non-corresponding pairs by minimizing
a pixel-wise contrastive loss function during training [17]. Corresponding pairs of pixels
represent the same point on an object. In this work, we also train a Siamese network to
cluster corresponding pixel pairs and seperate non-corresponding pixel pairs in descriptor
space. Since ground-truth pixel correspondences are di�cult to obtain in images across
deformations of a real fabric, we train the network on synthetic RGB data from Blender (see
Section 3.3), where perfect information about the pixel correspondences is available through
the global coordinates of the fabric mesh’s vertices. Note that during training, the sampled
image inputs to the Siamese network are enforced to be of the same fabric type to ensure valid
correspondences. That is, two di↵erent images of T-shirts can be passed into the network,
but not a T-shirt and square fabric. Figure 3.3 demonstrates the pipeline for predicting
descriptors for correspondence generation. The learned descriptors can then be used to
approximate the correspondence function dI!I0 described in Section 4.2 by (1) computing
the top k pixel matches based on their distance in descriptor space and (2) computing the
geometric median of these matches in pixel space:

((i00
l
, j00

l
))k

l=1 =(i01,j
0
1)...(i

0
k,j

0
k)

kX

l=1

kf✓(I)i,j � f✓(I
0)i0l,j0lk2

s.t. (i0
n
, j0

n
) 6= (i0

m
, j0

m
) 8m,n 2 [k]

dI!I0(i, j) =(i0,j0)

kX

l=1

k(i0, j0)� (i00
l
, j00

l
)k2

In experiments we find k = 20 gives the most robust predictions.
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Figure 3.3: Learning Visual Correspondences: pipeline for training dense object nets
for robot fabric manipulation. Left: we train a dense correspondence network on pairs of
simulated fabric images to learn pixel-wise correspondences using a pixel-wise contrastive
loss. Right: we use the learned descriptors for policy optimization. We can use correspon-
dence to map a reference action to a new fabric configuration. For example, we show an
image of a wrinkled fabric in “State 2,” and we can use descriptors to figure out the action
needed to smooth the fabric from “State 2” to “State 1.”

Dataset Generation and Domain Randomization

To enable generalization of the learned descriptors to a range of fabric manipulation tasks, we
generate a diverse dataset of initial fabric configurations. The first step simulates dropping
the fabric onto the planar workspace while pinning an arbitrary subset of vertices, causing
some vertices to fall due to gravity while others stay fixed. We then release the pinned
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vertices 30 frames later so that they collapse on top of the fabric. This allows us to create
realistic deformations in the mesh. We then export RGB images which serve as inputs to
the Siamese network, pixel-wise annotations for correspondences, and segmentation masks
which allow us to sample matches on the fabric.

Simulating soft-body animations is in general a computationally time-consuming process
which makes it di�cult to render large datasets in short periods of time. We take steps
toward mitigating this issue by rendering 10 images per drop, allowing us to collect 10x as
much data in the same time period. In simulation, we found that the test time pixel match
error was una↵ected when including these unsettled images of the fabric in the dataset. We
additionally make use of domain randomization [62, 77] by rendering images of the scene
while randomizing parameters including mesh size, lighting, camera pose, texture, color and
specularity (see supplement for further details). We also restrict the rotation about the z-
axis to be between (�⇡/4, ⇡/4) radians to reduce ambiguity during descriptor training due
to the natural symmetry of fabrics such as squares. To randomize the image background,
we sample an image from MSCOCO [42] and “paste” the rendered fabric mask on top. For
experiments, we generate one (domain-randomized) dataset, including both T-shirts and
square fabric, and train a single model which we use for all experiments in Section 4.4. For
reference, generating a single dataset of 7,500 images, half T-shirts and half square cloth,
with 729 annotations per image takes approximately 2 hours on a 2.6GHz 6-core Intel Core
i7 MacBook Pro.

3.5 Descriptor-Parameterized Policies

As discussed in Section 3.2, the robot receives a demonstration of the task consisting of
actions (aj)

n

j=1 and observations (Ij)
n

j=1. At execution time, the robot starts with the fabric
in a di↵erent configuration, and the fabric itself may have a di↵erent texture or color. At

time j 2 [n], the robot observes I 0
j
then executes ⇡j(I 0j) =

⇣
dIj!I

0
j
(xg, yg)j, dIj!I

0
j
(xp, yp)j

⌘

where dIj!I
0
j
is defined in Section 3.4. We train a single descriptor network for a variety of

tasks and use it to identify correspondences in di↵erent fabric configurations from those in
the supplied in demonstrations. ⇡j then uses these correspondences to identify semantically
relevant pixels in I 0

j
to generate actions that manipulate these keypoints.

For example, one step of a task could involve grasping the top-right corner of the fabric
and taking an action to place it in alignment with the bottom-left corner, thereby folding
the fabric. The robot could receive an o✏ine demonstration of this task on an initially flat
fabric, but then be asked to perform the same task on a crumpled, rotated fabric. To do this,
the robot must be able to identify the corresponding points in the new fabric configuration
(top-right and bottom-left corners) and define a new action to align them. ⇡j computes
correspondences for the pick and place points across the demonstration frame and the new
observation to generate a corresponding action for the new configuration.
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Fabric Smoothing

In the square fabric smoothing task, the robot starts with a crumpled fabric and spreads
it into a smooth configuration on a planar workspace as in [66]. To complete this task,
we use the approach from [66] and iterate over fabric corners, pulling each one to their
target locations on an underlying plane. However, while [66] design a policy to do this using
ground-truth knowledge of the fabric in simulation, we alternatively locate corners on the
crumpled fabric using a learned descriptor network and a source image of a flat fabric where
the corners are labeled. For the T-shirt smoothing task, we apply a similar method, but
instead iterate over the corners of the sleeves and the base of the T-shirt.

Fabric Folding

The fabric folding task involves executing a sequence of folds on a fairly smooth starting
configuration. For each folding task, we use a single o✏ine demonstration containing up
to 4 pick and place actions collected by a human through a simple GUI. The descriptor-
parameterized controller is then executed in an open-loop manner.

Figure 3.4: Fabric Specifications: Images and dimensions of the square fabrics and shirts
we use in experiments.

3.6 Experiments

We experimentally evaluate (1) the quality of the learned descriptors and their sensitivity to
training parameters and (2) the performance of the descriptor-parameterized policies from
Section 3.5 across 10 di↵erent fabric manipulation tasks on two physical robotic systems, the
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da Vinci Research Kit (dVRK) [35] and the ABB YuMi. Results suggest that the learned
descriptors and the resulting policies are robust to changes in fabric configuration and color.

Tasks

We consider 10 fabric manipulation tasks executed on a set of 5 T-shirts and 5 square fabrics
in the real world:

1. Single Fold (SF): A single fold where one corner is pulled to its opposing corner.

2. Double Inward Fold (DIF): Two opposing corners are folded to the center of the fabric.

3. Double Triangle Fold (DTF): Two sets of opposing corners are aligned with each other.

4. Double Straight Fold (DSF): The square cloth is folded in half twice, first along the
horizontal bisector and then along the vertical bisector.

5. Four Corners Inward Fold (FCIF): All four corners are sequentially folded to the center
of the cloth.

6. T-Shirt Sleeves Fold (TSF): The two sleeves of a t-shirt are folded to the center of the
shirt.

7. T-Shirt Sleeve to Sleeve Fold (TSTSF): The left sleeve of a T-shirt is folded to the
right sleeve of the T-shirt.

8. Smoothing (S): Fabric is flattened from a crumpled state.

9. Smoothing + Double Triangle Fold (SDTF): Fabric is smoothed then the DTF is exe-
cuted.

10. Smoothing + Sleeve to Sleeve Fold (SSTSF): T-shirt is smoothed then TSTSF is exe-
cuted.

All fabrics are varied either in dimension or color according to Figure 3.4. Additionally, we
execute a subset of these tasks in simulation. A single visual demonstration consisting of
up to 4 actions is provided to generate a policy which the robot then tries to emulate in the
same number of actions.

Experimental Setup

We execute fabric folding and smoothing experiments on the dVRK [35] and ABB YuMi
robot. The dVRK is equipped with the Zivid OnePlus RGBD sensor that outputs 1900⇥1200
pixel images at 13 FPS at depth resolution 0.5 mm. The workspace of the dVRK is only
5”⇥5”, so we use only square fabric of the same dimension while varying the color according
to Figure 3.4. Manipulating small pieces of fabric into folds is challenging due to the elasticity
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Figure 3.5: Policy Rollouts: Policy execution on the YuMi for tasks 2, 3, 4, 5, 6 and 7 as
described in Section 3.6. The first four columns show the folding instructions on some initial
fabric and the last four show the corresponding folds executed on novel starting configurations
for a di↵erent fabric.

of the fabric, so we add weight to the fabric by dampening it with water. Additionally, we
place a layer of 1 inch foam rubber below the fabric to avoid damaging the gripper. The
YuMi has a 36” ⇥ 24” workspace, and since only one arm is utilized resulting in a more
limited range of motion, we only manipulate at most 12” ⇥ 12” pieces of fabric which we
do not dampen. In this setup we use a 1080p Logitech webcam to collect overhead color
images. For the YuMi, we use both T-shirts and square fabric of varying dimension and
color but go no lower than 9”⇥ 9” fabrics due to its larger gripper. Finally, for both robots,
we use a standard pixel to world calibration procedure to get the transformation from pixel



CHAPTER 3. LEARNING DENSE VISUAL CORRESPONDENCES IN SIMULATION
TO SMOOTH AND FOLD REAL FABRICS 15

Figure 3.6: Full Folding Sequence: The first and second row is a time-lapse of a sequence
of 6 actions taken by the YuMi and dVRK respectively, and with actions overlaid by red
arrows, to successively smooth a wrinkled fabric and then fold it according to task 3 in
Section 3.6. The third row is a time-lapse of a sequence of 5 actions taken by the YuMi to
complete task 10 in Section 3.6. Here, robot actions are overlaid with blue arrows.

coordinates to planar workspace coordinates.
For both robots, we follow the same experimental protocol. We manually place the

fabric in configurations similar to those shown in Figure 3.2 and deform them by pulling at
multiple locations on the fabric. To obtain image input for the descriptor networks, we crop
and resize the overhead image to be 485⇥ 485 such that the fabric is completely contained
within the image. Although lighting conditions, camera pose and workspace dimensions are
significantly di↵erent between the two robotic systems, no manual changes are made to the
physical setup. We find that the learned descriptors are su�ciently robust to handle this
environmental variability.

We evaluate the smoothing task by computing the coverage of the cropped workspace
before and after execution. For the folding tasks, as in [40], we consider an outcome a
success if the final state is visually consistent with the goal image. Conventional quantitative
metrics such as intersection of union between the final state and a target image provide
limited diagnostic information when starting configurations are significantly di↵erent as in
the presented experiments.

3.7 Results

We evaluate the smoothing and folding policies on both the YuMi and dVRK on square
fabrics and T-shirts. Table 3.2 shows the success rates of our method on all proposed tasks
in addition to a breakdown of the failure cases detailed in Table 3.3. We observe that the
descriptor-parameterized controller is able to successfully complete almost all folding tasks at
least 75% of the time, and the smoothing policies are able to increase coverage of the cloth to
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over 83% (Table 3.1). The execution of the smoothing policy followed by the double triangle
folding policy results in successful task completion 6/10 and 8/10 times on the YuMi and
dVRK respectively. We find that the most frequent failure mode is an unsuccessful grasp
of the fabric which is compounded for tasks that require more actions. Though this is
independent of the quality of the learned descriptors, it highlights the need for more robust
methods to grasp highly deformable objects.

Task Robot Avg. Start Coverage Avg. End Coverage

S YuMi 71.4± 6.2 83.2± 8.1
S dVRK 68.4± 4.4 86.4± 5.2

Table 3.1: Physical Fabric Smoothing Experiments: We test the smoothing policies
designed in Section 3.5 on the YuMi and the dVRK. Both robots achieve an average increase
in coverage of 11� 22 percent.
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Task Robot # Actions Success Error A Error B Error C

SF YuMi 1 18/20 2 0 0
SF dVRK 1 20/20 0 0 0
DIF YuMi 2 16/20 3 0 1
DIF dVRK 2 20/20 0 0 0
DTF YuMi 2 14/20 3 2 1
DTF dVRK 2 18/20 0 2 0
TSF YuMi 2 15/20 3 0 2
SDTF YuMi 6 6/10 2 1 1
SDTF dVRK 6 8/10 0 2 0
DSF YuMi 3 15/20 1 1 3
DSF dVRK 3 17/20 1 0 2
FCIF YuMi 4 13/20 5 1 1
FCIF dVRK 4 18/20 0 1 1
TSTSF YuMi 1 17/20 2 0 1
SSTSF YuMi 5 6/10 2 0 2

Table 3.2: Physical Fabric Folding Experiments: We test the folding policies from
Section 3.5 on the YuMi and the dVRK. We observe both robots are able to perform almost
all folding tasks at least 75 percent of the time. The YuMi is able to perform the smoothing
then folding task 6/10 times and the dVRK is able to do so 8/10 times.
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Error Description

A Gripper picks up more than
one layer of fabric or fabric
slips out of gripper

B Pick or drop correspon-
dence error greater than 30
pixels (10% of cloth width)
or pick correspondence not
on fabric mask

C Unintended physics: result-
ing fold does not hold due
to variable sti↵ness of the
fabric, friction of the fabric,
or friction of the underlying
plane

Table 3.3: Failure Mode Categorization
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Chapter 4

Multi-Modal Gaussian Shape
Descriptors for Correspondence
Matching in 1D and 2D Deformable
Objects

4.1 Introduction

This chapter is based on [22] and is an extension to Chapter 3. Here we address the is-
sue of symmetry that arises in Chapter 3 when an object has multiple correspondences
(i.e. the four corners of a square cloth). We extend the correspondence learning algorithms
from [74, 17, 21] to (1) provide measures of uncertainty in predicted correspondences by for-
mulating a distribution matching objective for correspondence learning inspired by [16] and
(2) explicitly predicting symmetric correspondences. Experiments suggest that the learned
correspondences for both 1D and 2D deformable objects are more stable and continuous
than those used in prior work and are less prone to symmetrical ambiguities and provide
uncertainty estimates. See Figure 4.1 for an overview.

4.2 Problem Statement

Given two images, Ia and Ib, of a deformable object in two di↵erent configurations respec-
tively, and a source pixel location (ua, va) (such that the pixel is Ia[ua, va]), find its n(ua, va)
pixel correspondences ((ubi , vbi))

n(ua,va)
i=1 in Ib. There may be multiple possible matches due

to symmetry, such as when matching a corner of a square cloth in Ia to all four corners of
the cloth in Ib. We assume access to a dataset of pairs of images of deformable objects,
for which n(ua, va) is known, and a collection of correspondences and non-correspondences
between each pair. We use Blender 2.8 [11] to both generate arbitrary configurations of
cloth and rope in simulation as well as to render images of these configurations for dataset
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Figure 4.1: Multi-Modal Gaussian Shape Descriptors (MMGSD) learns symmetry-aware
pixelwise correspondences for multi-modal semantic keypoints between source and target
images of deformable objects. We visualize the results of 2-modal and 4-modal MMGSD
correspondence heatmaps for rope and cloth, respectively, relative to the source pixels from
column 1.

curation. Blender gives us access to the underlying mesh vertices that these objects are
composed of which allows us to densely sample mesh vertex pixel locations at any point.

4.3 Methods

Preliminaries: Pixel-wise Contrastive Loss

We first review the unimodal matching method from [21, 74, 17, 64]. A neural network f
maps Ia to a D-dimensional descriptor volume: f : RW⇥H⇥3 7�! RW⇥H⇥D. During training,
a pair of images and sets of both matching pixels and non-matching pixels are sampled
between the image pair. The following contrastive loss minimizes descriptor distance between
matching pixels and pushes descriptors for non-matching pixels apart by a fixed margin M :
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Figure 4.2: We visualize the multi-modal ground truth distributions (B) and predicted (A,C)
correspondences on domain-randomized images of both cloth and rope. Contrastive descriptor-
based methods can fail to generalize to objects with inherent symmetries, as in example A. In
contrast, the predicted 2-modal and 4-modal MMGSD heatmaps for rope and cloth, respectively,
appear to be sensitive to object symmetries. MMGSD exhibits the least uncertainty at object
extremities and greater variance as the source pixel moves inward (C), as shown in the probability
mass distributed around the rope knot (top heatmap of C).

L(Ia, Ib, ua, va, ub, vb) =
(
||f(Ib)[ub, vb]� f(Ia)[ua, va]||22 match

max(0,M � ||f(Ib)[ub, vb]� f(Ia)[ua, va]||2)2 non-match

While this method is e↵ective at determining pixel-wise correspondences for both cloth
and rope [74, 21], it does not account for inherent symmetry in these objects and therefore
is susceptible to symmetric orientation based error as is shown in the 2D cloth example of
Figure 4.2B. The authors of [21] address this by limiting the rotation of the training data

for a square fabric to be between (�⇡

4
,�⇡

4
), but the model still su↵ers from symmetric

ambiguities at the boundary conditions. The authors of [74] break symmetry by adding a
ball to the end of the rope.

Symmetric Pixel-wise Contrastive Loss (SPCL) Baseline

This method extends Section 4.3 to handle multiple matches for the same source pixel
(ua, va). Now, we try to match equivalent source pixels ((uai , vai))

n

i=0 to a set of destina-
tion pixels ((ubi , vbi))

n

i=0 that are equivalent due to symmetry by adding all pairs of pixels as
matches. We use the same loss function as in Section 4.3.

While this method addresses the symmetry issue from method 4.3 by learning to find
multiple matches in the destination image for an input pixel, we find that it is unstable and
has discontinuity issues due to the contrastive nature of training. During test time, we create
a heatmap of the target image by normalizing the descriptor norm di↵erences. We then fit
an n(ua, va)-modal Gaussian distribution to the heatmap and take the n(ua, va) pixel modes
as the predicted symmetric correspondences.
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Symmetric Distributional Loss (MMGSD)

We extend a distributional descriptor network method suggested in [16] to learn an estima-
tor p̂(ub = u, vb = v|Ia, ua, va, Ib) that outputs the probability that (u, v) in Ib matches with

(ua, va) in Ia. Specifically, we let p̂(ub = u, vb = v|Ia, ua, va, Ib) =
exp kf(Ia)[ua,va]�f(Ib)[u,v]k22P

u0,v0 exp kf(Ia)[ua,va]�f(Ib)[u0,v0]k22
,

where f is a neural network with trainable parameters. To fit p̂, we use the cross-entropy
loss function with respect to a target distribution p that is an isotropic Gaussian mixture
model with modes at all the ground truth pixel correspondences in Ib, thus accounting for
all symmetric matches. For the ground truth target distributions, � is empirically fine-
tuned to tradeo↵ spatial continuity in the learned distribution with overlap and collapse of
modes. Using this distributional divergence loss function maintains spatial continuity be-
tween matches, and we find that this can be more stable than the method in Section 4.3.
Additionally, predicting a distribution instead allows uncertainty estimation by computing
the entropy of the predicted distribution. This method is similar to [16] but uses a multi-
modal target distribution due to the multiple symmetric correspondences. As illustrated in
Figure 4.2B and Figure 4.1B, this method is successfully able to place its mass at the mul-
tiple possible matches in the target image. We fit an n(ua, va)-modal Gaussian distribution
to the predicted output distribution p̂ and take the n(ua, va) pixel modes as the predicted
symmetric correspondences.

4.4 Quantitative Results

We evaluate the quality of the symmetric learned correspondences (methods 4.3 and 4.3)
using the root-mean-square error (RMSE) metric. Both the rope and cloth networks are
trained on 3,500 training images each and evaluated on a held-out test set of 500 images.
All training and testing is carried out with images of a synthetic square cloth and braided
synthetic nylon rope. The cloth images are 485⇥ 485 and the rope images are 640⇥ 480 in
aspect ratio. We compute the n(ua, va) pixel mode predictions and compare them directly

to the ground truth pixel locations:
1

n(ua, va)

P
n(ua,va)
i=1 ||[ûbi , v̂bi ]� [ubi , vbi ]||22 where [ubi , vbi ]

is the ground truth pixel correspondence in Ib for the source pixel [ua, va]. We average over
625 source pixel locations in each of 500 test image pairs from simulation (Figure 4.3) using
a model trained on 3500 image pairs of cloth and rope each.

In Figure 4.3 we compare MMGSD against SPCL with the probability density function
of percentage of correspondences below an L2 pixel threshold (as a percentage of the pixel
dimensions of the object). We note that while MMGSD is able to predict multi-modal cor-
respondences more e↵ectively than SPCL, it exhibits high uncertainty and modal collapse
for highly occluded regions, such as rope knots (Figure 4.2C), object interiors, or occluded
fabric corners. This high degree of variance in the resulting heatmaps is a consequence of
MMGSD attempting to preserve spatial continuity, at the expense of concentrating proba-
bility mass in isolated symmetric regions. We illustrate this in the bottom half of Figure 4.3
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by visualizing the source of high RMSE error on both rope and cloth. The top half of Figure
4.3 also reveals this second mode centered at higher RMSE error.

RMSE of Symmetric Correspondences

Figure 4.3: We find that MMGSD, trained with � = 1px, is able to more e↵ectively learn
symmetric correspondences over SPCL, evaluated by the PDF of correspondences with re-
spect to L2 pixel error. For all other �, MMGSD degrades due to intermixing of modes
caused by higher variance in the ground truth target distributions. We also visualize the
average RMSE in 1D and 2D space for rope and cloth, respectively, noting that MMGSD
exhibits the highest error at object interiors due to modal collapse and relatively low RMSE
at object extremities. This behavior of MMGSD is also suggested by the bimodal nature of
the PDF with low error at object exteriors (first peak) and higher error at object interiors
(second peak).
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Chapter 5

Learning to Fold Real Garments with
One Arm: A Case Study in
Cloud-Based Robotics Research

5.1 Introduction

This chapter is based on [29], a case study in which we evaluate a series of fabric smooth-
ing and folding algorithms on Reach [80], a prototype hardware testbed from Robotics at
Google. This case study not only provides benchmarking between several fabric smoothing
and folding algorithms, but also serves as a standard for reproducibility in robotics research
where benchmarking is di�cult due to interaction with physical environments. This work
contributes: (1) four novel learning-based algorithms for the folding task, (2) implementa-
tion of and comparison with four additional benchmarks, and (3) a case study of robotics
research performed exclusively using a remotely managed robot workcell. This work does
not contribute the design of the Reach cloud robotics platform, which is being developed by
a larger team at Google [80].

5.2 The Google Reach Testbed

In this section, we review the most salient details of the Google Cloud Robotics testbed [80]
as it relates to this case study.

Hardware

See Figure 5.1 for an image of the workcell. The robot is a single Universal Robot UR5e arm
equipped with a Piab piSOFTGRIP vacuum-driven soft 3-jaw gripper [55]. The workcell is
equipped with 4 Intel Realsense D415 cameras which each capture 640 ⇥ 360 RGB images
at 20 FPS and 640 ⇥ 360 depth images at 1 FPS. The worksurface is a bright pink silicone
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Figure 5.1: A Reach cloud robotics workcell developed by Robotics and Google.

mat and the garment is a blue crew-neck short sleeve T-shirt. The workcell is maintained
by lab technicians who are onsite 8 hours a day to reset the robot and troubleshoot.

Software

Reach includes PyReach, an open source Python library developed by Robotics at Google for
interfacing with the Reach system. The software includes infrastructure for authenticated
users to establish a network connection with the robot server over the Internet, a viewer
tool for locally displaying the 4 workcell camera feeds in real time (Figure 5.2), a simulated
workcell that mimics the real workcell for safely testing motions prior to deployment on the
real system, and utility functions such as a pixel-to-world transform using the depth camera
and conversions between di↵erent pose representations.

PyReach also includes PyReach Gym, an application programming interface (API) mod-
eled after OpenAI Gym [6]. Remote agents receive observations of the environment and
request actions through this interface. In particular, at each time step with frequency up
to 10 Hz, a remote agent can receive the joint angles and Cartesian pose of the arm, the
binary state of the gripper (closed or open), and camera observations. The agent specifies
an action to execute as a desired pose of the arm in either joint or Cartesian space and a
desired binary state of the gripper.
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Figure 5.2: The client PyReach viewer, which updates the RGB images from the workcell
cameras at about 10 Hz and depth images at 1 Hz. Our algorithms use the overhead RGB
images (top left panel).

Garment Folding Case Study: Problem Definition

We assume that the target folded configuration is known beforehand, that training and
evaluation are performed in real (not simulation), that the hardware setup is as specified
in Section 5.2, and that the garment stays the same during training and evaluation. The
task is to iteratively execute two procedures in a loop: (1) crumple the T-shirt and (2)
fold the T-shirt. Crumpling is performed via a series of 6 random drops of the T-shirt
resulting in an average of 37.5% coverage (Section 5.4), where coverage is the fraction of
the maximum 2D area the T-shirt is able to attain. The folding task is to manipulate the
T-shirt toward the target configuration in Figure 5.3. We decompose the folding task into
two subtasks: (1) flattening, i.e., spreading out from an initially crumpled configuration
until the garment is smooth, followed by (2) folding, i.e., folding the t-shirt from initially
flattened until su�ciently close to the target configuration. We measure folding accuracy
with a combination of Intersection over Union (IOU) and wrinkle detection (Section 5.4).

5.3 Garment Folding Algorithms

Due to the unique challenges of the flattening and folding subtasks, we benchmark each
subtask with its own set of algorithms. Hyperparameter and implementation details for all
algorithms are available in the appendix, and notation for this section is defined in Table 5.1.
With the exception of Section 5.3, all actions are quasistatic pick-and-place actions from pick
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Figure 5.3: Examples of crumpled states (Row 1) and folded states (Row 2).

ot Cropped RGB observation of the
workcell state from the overhead Re-
alsense camera at timestep t (Fig-
ure 5.2).

at The action at time t, expressed as a
pick-and-place action (p0, p1) in pixel
coordinates except in Section 5.3.

om

t
Color-thresholded mask of the T-shirt
analytically computed from ot.

com(om

t
) A function that returns the visual

center of the T-shirt.

cover(om

t
) A function that computes the 2D fab-

ric coverage.

T A template image of a fully flattened
shirt in the workspace.

Table 5.1: Notation for Section 5.3.

point p0 to place point p1, where p0 and p1 are specified as (x, y) coordinates in pixel space;
see Section 5.4 for implementation details.

Flattening: 4 New Algorithms

Learned Pick-Analytic Place (LP0AP1)

Inspired by prior work in imitation learning for fabric manipulation [67, 28], we develop an
algorithm to learn pick points from human demonstrations. Since we empirically observe
that human-selected pick points combined with analytic placing performs well on flattening,
we propose only learning the pick points p0 and analytically computing place points with
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Figure 5.4: LP0AP1 pick point predictions on the test set. Bright red and yellow regions
correspond to high probability pick points. The output heatmap is able to capture the
multimodality in human actions.

the strategy in Section 5.3 to improve sample e�ciency. While other work has considered
learning a pick-conditioned place policy for fabric manipulation [82], we define analytic
placing actions that make the pick-conditioned policy unnecessary. To handle the inherent
multimodality in the human policy, we train a fully convolutional network (FCN) [69] to
output heatmaps corresponding to probability density instead of regressing to individual
actions (Figure 5.4). The FCN can be interpreted as an implicit energy-based model [18, 88]
where the state and action pairs are the receptive fields of the network. As in DAgger [61],
we reduce distribution shift by iteratively adding on-policy action labels to the dataset.

Learning Keypoints (KP)

This approach separates perception from planning and proposes to only learn the perception
component. Specifically, we collect a hand-labeled dataset of images with up to 5 visible
keypoints on the fabric corresponding to the collar, 2 sleeves, and 2 base corners (Figure 5.5).
While the dataset generation policy is open-ended for this approach, we choose to first train
an initial KP policy on random data (Section 5.3) and then augment the dataset with states
encountered under the policy to mitigate distribution mismatch similar to DAgger [61]. We
train a FCN with 3 output heatmaps to predict each of the 3 classes of keypoints separately.
Using keypoint predictions, we propose an analytic corner-pulling policy inspired by [67] that
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Figure 5.5: KP predictions on the test set. The predicted collar is colored green, the two
sleeves are red, and the two base points are blue. Shirt images are shown in grayscale for
viewing convenience.

iteratively moves the keypoints from their current positions to their respective locations on
a template flattened shirt T . To reduce ambiguity, we compute the rotation and translation
of T that best matches the current state and first move the keypoint farthest from its target
location to its destination. To our knowledge, the combination of the FCN for multi-class
keypoint prediction, T-shirt template matching, and corner pulling is a novel flattening
policy.

Coverage Reward Learning (CRL)

This approach seeks to learn a reward function corresponding to fabric coverage cover(·)
from data and execute a policy using this reward function. We learn this reward with self-
supervised learning and execute a greedy policy that seeks to maximize the 1-step reward at
each time step. Specifically, we fit a Convolutional Neural Network (CNN) R✓(ot, at) to the
scalar change in coverage (i.e., cover(om

t+1)�cover(om

t
)) that results from executing action at

on ot. At execution time we randomly sample thousands of pick points on the fabric mask
om

t
and place points in the workspace and select the action with the highest predicted change

in coverage. To our knowledge, greedy planning over a learned model of coverage dynamics
for fabric flattening is novel. Once again, the dataset generation policy is a design choice;
here, we opt for a random action policy (Section 5.3) to enable large-scale self-supervised
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data collection and increase data diversity.

Drop (DROP)

Inspired by Ha et al. [25], we investigate whether dynamic motions can leverage aerodynamic
e↵ects to accelerate the flattening of the shirt when combined with Approach 5.3. We propose
a simple vertical drop primitive that grabs the visual center of mass com(om

t
), lifts the shirt

into the air, and releases. We profile the coverage dynamics of the drop and the LP0AP1

pick-and-place and run Q-value iteration to determine which primitive to execute (i.e., drop
or pick-and-place) given a discretized version of the current coverage cover(om

t
). Q-value

iteration on the following reward function produces a policy that minimizes the total number
of actions required to flatten the shirt:

r(s = cover(·), a) =
(
�1 cover(·) < C

0 cover(·) � C

where C is a coverage threshold defined in Section 5.4 and cover(·) is the discretized current
coverage.

Flattening: 4 Baselines

Random (RAND)

As a simple baseline, we implement a random pick-and-place policy that selects p0 uniformly
at random from om

t
and p1 uniformly at random in the workspace within a maximum distance

from p0.

Human Teleoperation (HUMAN)

As an upper bound on performance and action e�ciency, a human selects pick and place
points through a point-and-click interface (see the appendix for details).

Analytic Edge-Pull (AEP)

We implement a fully analytic policy to explore to what extent learning is required for the
T-shirt flattening task. The policy seeks to flatten the shirt by picking the edges and corners
and pulling outwards. Formally, we sample p0 uniformly from the set of points in the shirt
mask om

t
that are within a distance k from the perimeter of om

t
, where k is a hyperparameter.

Given p0, we compute p1 by pulling a fixed distance l in the direction of the average of two
unit vectors: (1) away from the visual center of mass com(om

t
) and (2) toward the nearest

pixel outside om

t
.
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Learning an Inverse Dynamics Model (IDYN)

A inverse dynamics model f(ot,ot+1) produces the action at that causes the input transition
from ot to ot+1. Here we implement the algorithm proposed by Nair et al. [51], which learns
to model visual inverse dynamics. Specifically, we approximate the dynamics with a Siamese
CNN f✓(·, ·) trained on the random action dataset collected in Section 5.3. As in [51], the
network factors the action by predicting the pick point p0 before the pick-conditioned place
point p1 to improve sample e�ciency. During policy evaluation, the inputs to the network
are the current observation ot and the template goal observation T .

Folding Algorithms

Human Teleoperation (HUMAN)

As an upper bound on performance, a human chooses pick and place points for folding
through a point-and-click interface.

Analytic Shape-Matching (ASM)

Since the folding subtask is significantly more well-defined than flattening, we investigate
whether an open-loop policy computed via shape matching can successfully fold the shirt.
We specify a fixed sequence of folding actions with a single human demonstration. During
evaluation, we compute rotations and translations of the corresponding template images
to find the best match with ot and transform the folding actions in the demonstration
accordingly.

Learned Pick-Learned Place (LP0LP1)

This approach is identical to Section 5.3 but learns both pick points and place points, as the
analytically computed place point is designed for flattening. Since folding demonstrations
are di�cult to obtain (the garment must be flattened first) and successful folding episodes
are short-horizon and visually similar, we collect only two demonstrations and augment the
data by a factor of 20 with a�ne transforms that encourage rotational and translational
invariance.

Fully Autonomous Flattening with Analytic Shape-Matching (A-ASM)

The algorithms above are evaluated after the garment is fully flattened via human teleoper-
ation to study the folding subtask in isolation. This approach combines the best performing
autonomous flattening algorithm (i.e., LP0AP1) with ASM (Section 5.3) to evaluate the per-
formance of a fully autonomous pipeline for manipulating the garment from crumpled to
folded.
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5.4 Experiments

Experimental Setup

All actions executed on the robot are either a pick-and-place primitive (p0, p1) or a drop
primitive (for the DROP algorithm). During flattening, the pick-and-place primitive is a
composition of 9 calls to the PyReach Gym API (Section 5.2) that moves the gripper (ori-
ented top-down) to p0, lowers the gripper to grab the top layer of the fabric at p0 (computed
via a pixel-to-world transform using the depth camera), lifts the gripper, translates to p1,
and releases. During folding, the pick-and-place primitive moves the gripper more slowly;
performs a deeper, possibly multi-layer pick; and lowers the gripper at p1 instead of letting
go in the air. The drop primitive uses a similar vertical pick to grab the shirt at com(om

t
),

raise it to a predefined height over the center of the workspace, and let go. After executing
an action, the arm is commanded to clear the field of view of the camera to prevent occlusion
in the image observation. See the appendix or code for exact implementation details. During
data collection, actions are chosen either autonomously (e.g., with RAND in Section 5.3) or
by a human via a point-and-click graphical user interface. At execution time, actions are
specified by trained model outputs.

To improve the performance of the deployed flattening algorithms, we include two addi-
tional primitives: (1) a recentering primitive for when the shirt has drifted too far from the
center of the workspace, and (2) a recovery primitive that executes a random action when
the coverage is stalled for an extended period of time.

Flattening Metrics

We perform 10 trials of all flattening algorithms from an initially crumpled state (Figure 5.3).
Crumpling is performed autonomously via a series of 6 actions, each of which grabs the T-
shirt at a random point, quickly lifts it into the air, and releases, resulting in an initial
coverage of 37.5% ± 14.9% over 45 trials. In Table 5.2 we report maximum coverage as
a percentage of the pixel coverage of a fully flattened shirt, i.e. 47,000 pixels in the shirt
mask om

t
. We also report the number of samples used to train the algorithm, the execution

time per action, and the number of actions executed, where we allow a maximum of 100
actions but terminate early if a coverage threshold is reached (C = 45,000 pixels or 96% of
maximally flattened).

Folding Metrics

We perform 5 trials of all folding algorithms from an initially flattened state. A-ASM initial
states are flattened by LP0AP1 while all other initial states are flattened via human teleop-
eration. In Table 5.3 we report the number of actions and execution time per action, and
we measure the quality of the final state against a goal configuration (Figure 5.3) according
to two metrics: (1) intersection over union (IoU) and (2) a penalty for edges and wrinkles.
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IoU is calculated between the shirt mask and the goal template, after rotating and trans-
lating the goal to best match the shirt mask. The wrinkle penalty calculates the fraction of
pixels in the interior of the shirt mask detected as edges by the Canny edge detector [8]. A
high-quality folding episode achieves a high IoU score and low edge penalty; for reference,
the scores for a fully folded goal image are provided in Table 5.3 as GOAL.

Flattening Results

See Table 5.2 and Figure 5.6 for results. We find that fully analytical policies such as RAND
and AEP are unable to attain high coverage while HUMAN is able to consistently flatten
the garment in 11.9 actions on average, suggesting the e�cacy of the pick-and-place action
primitive and the value of intelligently selecting pick points. Interestingly, we find that
despite training an inverse dynamics model on nearly 4,000 real samples, IDYN is unable to
outperform RAND. We hypothesize that the fully flattened goal image T provided as input
is too distant from the encountered states, resulting in a data sample outside the training
data distribution. While a more fine-grained sequence of subgoal images can mitigate this,
such a sequence is not well-defined for flattening, suggesting IDYN is not well-suited for
flattening without significant modifications.

CRL is better able to leverage the large self-supervised dataset as it attains higher cov-
erage, though it does require more time per action due to executing thousands of forward
passes through the network during planning. However, since the dataset is generated by
RAND, which achieves an average maximum coverage of only 55.0%, CRL has trouble pro-
ducing high-quality actions in the high coverage regime, where it has encountered relatively
little data. Modifications to the dataset such as including demonstration data or actively
interleaving data collection and training with policy execution could lead to further im-
provements and is an interesting direction for future work. KP is also able to improve upon
RAND but struggles with achieving high coverage, despite having access to hand-labeled
data relatively within the distribution of encountered states. While KP achieves a higher
maximum coverage than AEP and RAND, it is prone to executing regressive actions that
prevent it from maintaining this coverage. Results suggest that KP can be improved by
(1) autonomous labeling, e.g. with fiducial markers, to avoid human error on challenging
garment states with high self-occlusion, and (2) improvements to the analytic corner-pulling
policy, which, for example, can struggle when all visible keypoints are positioned correctly
but others are layered underneath the garment.

We find that LP0AP1 significantly outperforms all other algorithms, rivaling HUMAN-
level performance by consistently reaching the threshold coverage C in less than 3 times the
amount of actions as HUMAN. We hypothesize that this is due to increased sample e�ciency
from analytic placing in conjunction with the modeling power of the FCN, which exhibits
equivariance by sharing parameters for pixel predictions and is an implicit energy-based
model like other state-of-the-art architectures [18, 88].

Finally, we find that DROP, which converges through Q-iteration to a policy that executes
a drop if coverage is below 45% and LP0AP1 otherwise, is unable to improve upon LP0AP1.
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Figure 5.6: Coverage vs. time plot for the various flattening policies that we benchmark on
the workcell, averaged across 10 rollouts. Shading represents one standard deviation, and
the horizontal dashed line is the flattening success threshold (96%).

This may occur due to our modeling of the coverage dynamics of LP0AP1 as the same
regardless of the current coverage, whereas in reality, LP0AP1 improves coverage faster in
lower-coverage states (Figure 5.6). Nevertheless, the DROP framework may be an e↵ective
way to combine multiple action primitives given more powerful dynamic primitives, such as
bimanual actions that can better leverage aerodynamic e↵ects [25].

Folding Results

See Table 5.3 for results and Figure 5.7 for folding episodes. The folding subtask presents
unique challenges: (1) data collection and evaluation require an initially flattened state,
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Table 5.2: Flattening results. We report maximum coverage, number of actions, number of samples
in the dataset, and evaluation time, where averages and standard deviations are computed over 10
trials.

Algorithm % Coverage Actions Dataset Time/Act (s)

RAND 55.0 ± 6.0 100.0 ± 0.0 N/A 23.9 ± 2.5

HUMAN 97.7 ± 3.9 11.9 ± 5.3 N/A 45.1 ± 18.6

AEP 55.3 ± 5.5 100.0 ± 0.0 N/A 24.6 ± 2.0

IDYN 57.0 ± 5.9 100.0 ± 0.0 3936 23.7 ± 3.7

KP 72.4 ± 9.2 100.0 ± 0.0 681 25.7 ± 2.7

CRL 73.8 ± 8.4 100.0 ± 0.0 3936 32.1 ± 5.3

DROP 97.7 ± 1.3 38.6 ± 20.6 524 25.7 ± 0.8

LP0AP1 97.7 ± 1.4 31.9 ± 17.2 524 25.6 ± 0.9

Table 5.3: Folding results. We report intersection over union (IoU), wrinkle penalty, number of
actions, and evaluation time, where averages and standard deviations are computed over 5 trials.

Algo. IoU (") Wrinkle (#) Actions Time/Act (s)

GOAL 0.98 0.093 N/A N/A

HUMAN 0.74 ± 0.06 0.088 ± 0.023 4.4 ± 0.5 63.8 ± 14.9

ASM 0.69 ± 0.08 0.087 ± 0.038 4.0 ± 0.0 35.1 ± 1.9

LP0LP1 0.68 ± 0.08 0.112 ± 0.032 4.0 ± 0.0 35.7 ± 1.3

A-ASM 0.62 ± 0.12 0.112 ± 0.038 4.0 ± 0.0 35.5 ± 1.7

which is di�cult to attain through a remote interface, (2) slightly incorrect actions can
dramatically alter the fabric state, often requiring re-flattening the garment, and (3) the
single-arm pick-and-place primitive is not well-suited for the precise manipulation required
for crisp garment folding. Indeed, we find that even with folding optimizations to the pick-
and-place (Section 5.4), a human teleoperator attains only 76% of the goal IoU on average
(Table 5.3). However, we find that both ASM and LP0LP1 are able to e↵ectively leverage
the primitive to achieve near human-level performance, where ASM performs similarly to
LP0LP1. We also find that the fully autonomous pipeline A-ASM is able to reach similar
performance from an initially crumpled state, setting a baseline score for the end-to-end
folding task. Although ASM is open-loop and LP0LP1 learns from only 2 demonstrations,
HUMAN cannot significantly outperform them due to the di�culty of correcting inaccurate
actions in folding. Further progress on the folding subtask will likely benefit more from the
design of manipulation primitives than from algorithmic innovations.
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Figure 5.7: Representative episodes of the folding subtask executed by HUMAN (Row 1),
LP0LP1 (Row 2), and ASM (Row 3). LP0LP1 and ASM achieve performance competitive
with human teleoperation.
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Chapter 6

Conclusions and Future Work

In Chapter 3, we present an approach for multi-task fabric manipulation by learning dense
visual correspondences entirely in simulation. Experiments suggest that the learned cor-
respondences are robust to di↵erent fabric colors, shapes, textures, and sizes and make it
possible to e�ciently learn 10 di↵erent fabric smoothing and folding tasks on two di↵erent
physical robotic systems with no training in the real world. In future work, we plan to
explore hierarchical fabric manipulation policies, where visual correspondences can be used
to define coarse action plans while a closed loop controller can be learned to realize these
plans. We will also explore more complex fabric manipulation tasks, such as wrapping rigid
objects, in which reasoning about fabric dynamics is critical. Finally, we will also explore the
use of a new inverted tweezer gripper that is more reliable for grasping fabric and addresses
the common Type A error that occurs in this work.

Chapter 4 proposes an extension of dense descriptor-based pixel-wise correspondence that
addresses symmetry and uncertainty estimation in deformable object tracking. In future
work, we will explore generalizing MMGSD to other types of objects with task-relevant
multimodal properties such as sleeves, buttons, drawstrings, or pockets on clothing. We
hypothesize that the uncertainty of MMGSD — in object interiors or in occluded parts —
would pose a challenge to tasks that involve manipulating all parts of a deformable object,
such as untangling a knotted rope or performing consecutive folds on a fabric. However,
we will further investigate the limitations of MMGSD and ways to utilize these measures of
uncertainty while planning, such as by taking actions to disambiguate a deformable object’s
state. The framework presented is also applicable to rigid objects containing an axis of
symmetry or multimodal properties. Additionally, we will explore learning the dynamics
of these correspondences conditioned on robot action sequences. We will also explore 3D
representations of deformable objects using geodesic distance as a measure of correspondence.

Finally, Chapter 6 discusses work on benchmarking novel and existing algorithms for T-
shirt smoothing and folding tasks. We find that policies that combine learning with analytical
methods achieve the highest performance in practice, suggesting the value of future work in
this area.

Remote robotics research poses both opportunities and challenges. On the one hand,



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 38

the ability to access a robot from anywhere, the abstraction of robot operations behind an
intuitive API, the setup and maintenance by dedicated sta↵, and the consistency of the task
environment all contributed to quick and convenient experimentation. On the other hand,
onsite technicians have limited availability, variable-latency 2D camera projections are at
times insu�cient for fully understanding the scene, and manual resets (e.g., flattening the
T-shirt) become di�cult to perform, suggesting the importance of learning self-supervised
reset policies [24] or integrating flattening more closely with folding.

In future work, we will (1) further optimize performance on the unimanual folding task,
(2) evaluate alternative approaches such as continuous control, reinforcement learning, and
di↵erent action primitives, and (3) evaluate each algorithm’s ability to generalize to other
garments with variation in color, shape, size, and material.
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