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Abstract

Learning Beyond the Standard Model (of Data)

by

Nilesh Tripuraneni

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

Classically, most machine learning (ML) methodology has made an innocuous modeling
assumption: data drawn from both the training/test sets has been independently sampled
from a pair of identical distributions with nice properties. Yet, in the situations modern
ML methods must confront, deviations from this idealized setting are quickly becoming the
norm–not the exception. In this thesis, we address the challenges arising in understanding
the often unexpected phenomenology in these settings by developing theory in two areas of
interest: transfer learning and robust learning. In particular, we focus on identifying what
structural conditions/techniques are needed to permit sample-efficient learning in these new
settings, in order to answer questions such as why pretraining is so effective and what the
limits of learning are for extremely heavy-tailed distributions.
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Chapter 1

Introduction

Machine learning (ML) has seen dramatic, empirical progress in recent years; with particularly
notable successes in areas such as as image understanding and statistical machine translation
[65]. Many of these banner successes have occurred in the regime of static prediction–that is,
on problems possessing “nice”, homogeneous data. Several key ingredients enabling success
in this setting have been:

1. Access to large volumes of “nice” data (i.e. with a high signal-to-noise ratio).

2. A nearly independent, identically distributed (i.i.d.) data source (i.e. problems where the
training and test data have come from essentially the same environment).

Yet, as the domains ML is applied become increasingly rich, a wealth of problems arise that
move beyond this setting we refer to as the “Standard Model of Data”. Beyond this setting,
obstacles to learning, opportunities to accelerate learning, as well as rich class of phenomenon
and methods that call for greater development and understanding emerge [100, 101, 86, 50,
23, 93, 62, 43]. The focus of this thesis is to mathematically investigate such phenomenon in
two settings of interest: transfer learning and robust learning. Several questions have guided
this work. In particular, we ask what (novel) structural conditions are needed to permit
sample-efficient learning in settings that move beyond “nice” i.i.d. data? Moreover, what
corresponding techniques/analysis must be developed to establish the algorithmic/statistical
efficiency results that reflect the corresponding empirical phenomenology?

In order to precisely frame these questions we consider the fundamental data model
p(x, y) = p(x)p(y|x)–which breaks apart data into an input distribution over covariates
(p(x)) and conditional distribution over labels (p(y|x))–and lies at the core of modeling and
analysis in ML. The “Standard Model” as we call it, operates in the setting that both these
distributions are often Gaussian-like and identical across training and test tasks. In this thesis,
we investigate the phenomenology that arises when ML deviates from these assumptions in
two settings:

1. Transfer learning – where data from multiple tasks with varying (but related) p(y|x) – are
leveraged to improve the performance of prediction across each other (i.e. via procedures
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like ImageNet pretraining). In this setting we have identified key structural conditions,
such as diversity over multiple tasks, which allow the efficient transfer of information from
data-rich source tasks to data-scarce target tasks. Perhaps surprisingly, our generalization
bounds are the first to decay with all of the training data samples–which is necessary to
reflect the practical efficacy of transfer learning across domains such as computer vision,
natural language processing, and biology.

2. Robust Learning – where p(x) and p(y|x) may be heavy-tailed – so extreme events
become commonplace. Here we have designed statistically optimal and computationally
efficient methods for the simplest ML problem – mean estimation. We have established
the statistical landscape of estimation for such problems is more nuanced than in the case
of Gaussian-like data: since it is not possible to obtain Gaussian-like confidence intervals
with widths O(

√
dimensions

Number of samples
) for very heavy-tailed data. Far from being a theoretical

curiosity, these results have algorithmic and statistical consequences in areas such as financial
forecasting, AB testing of user data and even reinforcement learning [73, 81, 45] where such
heavy-tails arise.

A central theme of this research has been to provide statistical understanding of the
techniques and problem structure needed to make sense of the unexpected phenomenology
and ML methodology in settings that move beyond “nice” i.i.d. data. Ultimately, this is
not only a question of mathematics but of modeling. The results we have developed also
lean on testable, data-driven conditions we believe can also be used to design more stable
and efficient machine learning methods. In the following I outline these directions in greater
detail and also suggest directions for further research.

Meta/Transfer Learning (Chapters 2 & 3):

In the setting of meta/transfer learning, data from multiple tasks with varying (but related)
p(y|x) is leveraged to improve the performance of prediction across each other. In the works
[104, 105] we studied the paradigm of transfer learning achieved via a common, shared
representation. This serves as a simple model to capture one of the most commonly used
procedures in machine learning – ImageNet pretraining – where only the final layers of a
neural network are retrained new task data, after initializing its earlier layers with hierarchical
representations/features from ImageNet [38, 48]. This paradigm has also found widespread
use in other areas such as deep reinforcement learning [4], and even protein engineering and
design [42]. The work [104] studies this question in the setting of linear regression where
computationally and statistically efficient algorithms for representation learning and transfer
are provided. [105] generalizes these results to a generic setting with arbitrary tasks, features,
and losses assuming access to an empirical risk minimization (ERM) oracle.

One principal contribution of this line of work is to introduce a problem-agnostic definition
of task diversity which can be used provide generalization bounds for transfer learning problems
with general losses, tasks, and features. Our framework uses this to provide guarantees of
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a fast convergence rate, decaying with all of the samples for the transfer learning problem.
Previous work in this vein proved bounds suggesting that increasing the number of samples
per training task could not improve generalization on new tasks, which did not provide
a fully satisfactory explanation for the widespread practical efficacy of transfer learning
methods across numerous application domains such as computer vision, natural language
processing, and biology. In addition, in [104] we shows this diversity condition is necessary for
recovery of the underlying representation in the case of linear regression. From the technical
stand point, our work [104] also provides provably, computationally efficient algorithms for
the non-convex representation recovery task in the case of linear regression. While [105]
also develops a novel chain rule for bounding the generalization error in learning problems
with composite structure (i.e. where predictors are composed of a common representation
and task-specific map). There exist numerous directions for continuing this line of work
given that multi-task/transfer learning are heavily used across a variety of domains. One
exciting direction is pursuing a theoretical understanding of the behavior of transfer learning
in sequential learning settings (i.e. bandits/reinforcement learning). In this case, agents
must additionally balance cooperative exploration (in order to share and efficiently transfer
information) along with individual exploitation (optimizing their own reward) whilst handling
the standard exploration/exploitation tradeoff. Similarly, exploring the utility of the task
diversity concept developed in these works as an empirical metric to apriori gauge the efficacy
of multi-task/transfer learning in could be useful for practical data analysis. Understanding
the interaction of transfer learning/fine-tuning methods in problems with distributional shift
is also exciting, as these algorithmic techniques inspired by transfer learning have shown
promising practical utility for mitigating performance degradations that accompany covariate
shift between training and test distributions [115].

Robust Learning (Chapter 4):

Even basic questions such as how to obtain (optimal) statistically and computationally efficient
algorithms for amongst the simplest estimation problems in ML1 have remained unanswered
when the underlying distributions p(x), p(y|x) are heavy-tailed. The regime where p(x),
p(y|x) are heavy tailed occurs routinely in applications such as financial forecasting, user data
and even reinforcement learning [73, 81, 45]. The simplest instantiation of such a problem is
estimating the mean of a distribution in d dimensions (which possesses a variance) with a
failure probability less than δ. Remarkably, only recently were estimators proposed in [79, 51,

20], which lead to the optimal statistical rate of O

(√
d
n
+
√

log 1/δ
n

)
2 in the high-probability

regime. In [22], we have designed computationally-efficient algorithms (which are polynomial-
time) to obtain optimal statistical rates for problems such as mean estimation in the absence

1Namely mean and covariance estimation along with linear regression.
2Note, the original estimator of [79] is not computationally-efficient. The works [51] reduced the runtime

to O(d28), while [20] further improved the runtime to O(d3.5).
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of a variance3. One theme of this work has been understanding when Gaussian-like rates of

the form O
(√

d
n

)
can be achieved–which we show is not possible for problems which move

beyond mean estimation with a variance. In the future, extending the study of our methods
to settings with heavy-tailed and correlated data is a promising direction for investigation.
Similarly, understanding the behavior of more complex predictive models routinely used in
machine learning (i.e. neural networks) under these extreme statistical conditions is important
to designing robust, reliable methods.

3Data with such heavy-tails often occurs in user data [73] in large-scale technology/logistics companies.
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Chapter 2

Meta-Learning Linear Representations

2.1 Introduction

The ability of a learner to transfer knowledge between tasks is crucial for robust, sample-
efficient inference and prediction. One of the most well-known examples of such transfer
learning has been in few-shot image classification where the idea is to initialize neural
network weights in early layers using ImageNet pre-training/features, and subsequently
re-train the final layers on a new task [38, 112]. However, the need for methods that can
learn data representations that generalize to multiple, unseen tasks has also become vital
in other applications, ranging from deep reinforcement learning [4] to natural language
processing [3, 72]. Accordingly, researchers have begun to highlight the need to develop
(and understand) generic algorithms for transfer (or meta) learning applicable in diverse
domains [43]. Surprisingly, however, despite a long line of work on transfer learning, there
is limited theoretical characterization of the underlying problem. Indeed, there are few
efficient algorithms for feature learning that provably generalize to new, unseen tasks. Sharp
guarantees are even lacking in the linear setting.

In the first chapter of this thesis, we study the problem of meta-learning of features in a
linear model in which multiple tasks share a common set of low-dimensional features. Our
aim is twofold. First, we ask: given a set of diverse samples from t different tasks how we can
efficiently (and optimally) learn a common feature representation? Second, having learned
a common feature representation, how can we use this representation to improve sample
efficiency in a new (t+ 1)st task where data may be scarce?1

Formally, given an (unobserved) linear feature matrix B = (b1, . . . ,br) ∈ Rd×r with
orthonormal columns, our statistical model for data pairs (xi, yi) is:

yi = x⊤
i Bαt(i) + ϵi ; βt(i) = Bαt(i), (2.1)

where there are t (unobserved) underlying task parameters αj for j ∈ {1, . . . , t}. Here
t(i) ∈ {1, . . . , t} is the index of the task associated with the ith datapoint, xi ∈ Rd is a

1This problem is sometimes referred to as learning-to-learn (LTL).
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random covariate, and ϵi is additive noise. We assume the sequence {αt(i)}∞i=1 is independent
of all other randomness in the problem. In this framework, the aforementioned questions
reduce to recovering B from data from the first {1, . . . , t} tasks, and using this feature
representation to recover a better estimate of a new task parameter, βt+1 = Bαt+1, where
αt+1 is also unobserved.

Our main result targets the problem of learning-to-learn (LTL), and shows how a feature
representation B̂ learned from t diverse tasks can improve learning on an unseen (t+ 1)st
task which shares the same underlying linear representation. We informally state this result
below.2

Theorem 2.1 (Informal). Suppose we are given n1 total samples from t diverse and normalized
tasks which are used in Algorithm 1 to learn a feature representation B̂, and n2 samples from
a new (t+ 1)st task which are used along with B̂ and Algorithm 2 to learn the parameters α̂
of this new (t+ 1)st task. Then, the parameter B̂α̂ has the following excess prediction error
on a new test point x⋆ drawn from the training data covariate distribution:

Ex⋆ [⟨x⋆, B̂α̂−Bαt+1⟩2] ⩽ Õ

(
dr2

n1

+
r

n2

)
, (2.2)

with high probability over the training data.

The naive complexity of linear regression which ignores the information from the previous
t tasks has complexity O( d

n2
). Theorem 2.1 suggests that “positive” transfer from the first

{1, . . . , t} tasks to the final (t + 1)st task can dramatically reduce the sample complexity
of learning when r ≪ d and n1

n2
≫ r2; that is, when (1) the complexity of the shared

representation is much smaller than the dimension of the underlying space and (2) when the
ratio of the number of samples used for feature learning to the number of samples present for
a new unseen task exceeds the complexity of the shared representation. We believe that the
LTL bound in Theorem 2.1 is the first bound, even in the linear setting, to sharply exhibit
this phenomenon (see Section 2.1 for a detailed comparison to existing results). Prior work
provides rates for which the leading term in (2.2) decays as ∼ 1√

t
, not as ∼ 1

n1
. We identify

structural conditions on the design of the covariates and diversity of the tasks that allow our
algorithms to take full advantage of all samples available when learning the shared features.
Our primary contributions in this paper are to:

• Establish that all local minimizers of the (regularized) empirical risk induced by (2.1) are
close to the true linear representation up to a small, statistical error. This provides strong
evidence that first-order algorithms, such as gradient descent [58], can efficiently recover
good feature representations (see Section 2.3).

• Provide a method-of-moments estimator which can efficiently aggregate information across
multiple differing tasks to estimate B—even when it may be information-theoretically
impossible to learn the parameters of any given task (see Section 2.3).

2Theorem 2.1 follows immediately from combining Theorems 2.3 and 2.4; see Theorem 2.6 for a formal
statement.
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• Demonstrate the benefits and pitfalls of transferring learned representations to new, unseen
tasks by analyzing the bias-variance trade-offs of the linear regression estimator based on a
biased, feature estimate (see Section 2.4).

• Develop an information-theoretic lower bound for the problem of feature learning, demon-
strating that the aforementioned estimator is a close-to-optimal estimator of B, up to
logarithmic and conditioning/eigenvalue factors in the matrix of task parameters (see As-
sumption 2.2). To our knowledge, this is the first information-theoretic lower bound for
representation learning in the multi-task setting (see Section 2.5).

Related Work

While there is a vast literature on papers proposing multi-task and transfer learning methods,
the number of theoretical investigations is much smaller. An important early contribution is
due to [6], who studied a model where tasks with shared representations are sampled from
the same underlying environment. [96] and [84], using tools from empirical process theory,
developed a generic and powerful framework to prove generalization bounds in multi-task
and learning-to-learn settings that are related to ours. Indeed, the closest guarantee to that
in our Theorem 2.1 that we are aware of is [84, Theorem 5]. Instantiated in our setting, [84,
Theorem 5] provides an LTL guarantee showing that the excess risk of the loss function with

learned representation on a new datapoint is bounded by Õ( r
√
d√
t
+
√

r
n2
), with high probability.

There are several principal differences between our work and results of this kind. First, we
address the algorithmic component (or computational aspect) of meta-learning while the
previous theoretical literature generally assumes access to a global empirical risk minimizer
(ERM). Computing the ERM in these settings requires solving a nonconvex optimization
problem that is in general NP hard. Second, in contrast to [84], we also provide guarantees
for feature recovery in terms of the parameter estimation error—measured directly in the
distance in the feature space.

Third, and most importantly, in [84], the leading term capturing the complexity of learning
the feature representation decays only in t but not in n1 (which is typically much larger than
t). Although, as they remark, the 1/

√
t scaling they obtain is in general unimprovable in

their setting, our results leverage assumptions on the distributional similarity between the
underlying covariates x and the potential diversity of tasks to improve this scaling to 1/n1.
That is, our algorithms make benefit of all the samples in the feature learning phase. We
believe that for many settings (including the linear model that is our focus) such assumptions
are natural and that our rates reflect the practical efficacy of meta-learning techniques.
Indeed, transfer learning is often successful even when we are presented with only a few
training tasks but with each having a significant number of samples per task (e.g., n1 ≫ t).3

There has also been a line of recent work providing guarantees for gradient-based meta-
learning (MAML) [43]. [44, 60, 61], and [24] work in the framework of online convex

3See Fig. 2.3 for a numerical simulation relevant to this setting.
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optimization (OCO) and use a notion of (a potentially data-dependent) task similarity that
assumes closeness of all tasks to a single fixed point in parameter space to provide guarantees.
In contrast to this work, we focus on the setting of learning a representation common to all
tasks in a generative model. The task model parameters need not be close together in our
setting.

In concurrent work, [40] obtain results similar to ours for multi-task linear regression
and provide comparable guarantees for a two-layer ReLU network using a notion of training
task diversity akin to ours. Their generalization bound for the two-layer ReLU network
uses a distributional assumption over meta-test tasks, but they provide bounds for linear
regression holding for both random and fixed meta-test tasks4. They provide purely statistical
guarantees—assuming access to an ERM oracle for nonconvex optimization problems. Our
focus is on providing sharp statistical rates for efficient algorithmic procedures (i.e., the
method-of-moments and local minima reachable by gradient descent). Finally, we also show
a (minimax)-lower bound for the problem of feature recovery (i.e., recovering B).

2.2 Preliminaries

Throughout, we will use bold lower-case letters (e.g., x) to refer to vectors and bold upper-case
letters to refer to matrices (e.g., X). We exclusively use B ∈ Rd×r to refer to a matrix with
orthonormal columns spanning an r-dimensional feature space, and B⊥ to refer a matrix
with orthonormal columns spanning the orthogonal subspace of this feature space. The norm
∥ · ∥ appearing on a vector or matrix refers to its ℓ2 norm or spectral norm respectively.
The notation ∥·∥F refers to a Frobenius norm. ⟨x,y⟩ is the Euclidean inner product, while
⟨M,N⟩ = tr(MN⊤) is the inner product between matrices. Generically, we will use “hatted”
vectors and matrices (e.g., α̂ and B̂) to refer to (random) estimators of their underlying
population quantities. We will use ≳, ≲, and ≍ to denote greater than, less than, and equal
to up to a universal constant and use Õ to denote an expression that hides polylogarithmic
factors in all problem parameters. Our use of O, Ω, and Θ is otherwise standard.

Formally, an orthonormal feature matrix B is an element of an equivalence class (under
right rotation) of a representative lying in Grr,d(R)—the Grassmann manifold [41]. The
Grassmann manifold, which we denote as Grr,d(R), consists of the set of r-dimensional
subspaces within an underlying d-dimensional space. To define distance in Grr,d(R) we define
the notion of a principal angle between two subspaces p and q. If E is an orthonormal matrix
whose columns form an orthonormal basis of p and F is an orthonormal matrix whose columns
form an orthonormal basis of q, then a singular value decomposition of E⊤F = UDV⊤ defines

4In a setting matching Theorem 2.1, they provide a guarantee of Õ
(
dr2/n1 + tr2/n1 + r/n2

)
for the ERM

when n1 ≳ dr under sub-Gaussian covariate/Gaussian additive noise assumptions. Theorem 2.1 holds for
the method-of-moments/linear regression estimator when n1 ≳ dr2 using a Gaussian covariate/sub-Gaussian
additive noise assumption; the bound is free of the additional Õ(tr2/n1) term which does not vanish as
t→∞ for fixed t/n1.
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the principal angles as:

D = diag(cos θ1, cos θ2, . . . , cos θk),

where 0 ⩽ θk ⩽ . . . ⩽ θ1 ⩽ π
2
. The distance of interest for us will be the subspace angle

distance sin θ1, and for convenience we will use the shorthand sin θ(E,F) to refer to it. With
some abuse of notation we will use B to refer to an explicit orthonormal feature matrix and
the subspace in Grr,d(R) it represents. We now detail several assumptions we use in our
analysis.

Assumption 2.1 (Sub-Gaussian Design and Noise). The i.i.d. design vectors xi are zero
mean with covariance E[xx⊤] = Id and are Id-sub-gaussian, in the sense that E[exp(v⊤xi)] ⩽

exp
(

∥v∥2
2

)
for all v. Moreover, the additive noise variables ϵi are i.i.d. sub-gaussian with

variance parameter 1 and are independent of xi.

Throughout, we work in the setting of random design linear regression, and in this context
Assumption 2.1 is standard. Our results do not critically rely on the identity covariance
assumption although its use simplifies several technical arguments. In the following we define
the population task diversity matrix as A = (α1, . . . ,αt)

⊤ ∈ Rt×r, ν = σr(
A⊤A

t
), the average

condition number as κ̄ =
tr(A

⊤A
t

)

rν
, and the worst-case condition number as κ = σ1(

A⊤A
t

)/ν.

Assumption 2.2 (Task Diversity and Normalization). The t underlying task parameters αj

satisfy ∥αj∥ = Θ(1) for all j ∈ {1, . . . , t}. Moreover, we assume ν > 0.

Recovering the feature matrixB is impossible without structural conditions onA. Consider
the extreme case in which α1, . . . ,αt are restricted to span only the first r− 1 columns of the
column space of the feature matrix B. None of the data points (xi, yi) contain any information
about the rth column-feature which can be any arbitrary vector in the complementary d−r−1
subspace. In this case recovering B accurately is information-theoretically impossible. The
parameters ν, κ̄, and κ capture how “spread out” the tasks αj are in the column space of B.
The condition ∥αj∥ = Θ(1) is also standard in the statistical literature and is equivalent to
normalizing the signal-to-noise (snr) ratio to be Θ(1)5. In linear models, the snr is defined as
the square of the ℓ2 norm of the underlying parameter divided by the variance of the additive
noise.

Our overall approach to meta-learning of representations consists of two phases that
we term “meta-train” and “meta-test”. First, in the meta-train phase (see Section 2.3),
we provide algorithms to learn the underlying linear representation from a set of diverse
tasks. Second, in the meta-test phase (see Section 2.4) we show how to transfer these learned
features to a new, unseen task to improve the sample complexity of learning. Detailed proofs
of our main results can be found in the Appendix.

5Note that for a well-conditioned population task diversity matrix where κ̄ ⩽ κ ⩽ O(1), our snr
normalization enforces that tr(A⊤A/t) = Θ(1) and ν ⩾ Ω( 1r ).
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2.3 Meta-Train: Learning Linear Features

Here we address both the algorithmic and statistical challenges of provably learning the linear
feature representation B.

Local Minimizers of the Empirical Risk

The remarkable, practical success of first-order methods for training nonconvex optimization
problems (including meta/multi-task learning objectives) motivates us to study the optimiza-
tion landscape of the empirical risk induced by the model in (2.1). We show in this section
that all local minimizers of a regularized version of empirical risk recover the true linear
representation up to a small statistical error.

Jointly learning the population parameters B and (α1, . . . ,αt)
⊤ defined by (2.1) is

reminiscent of a matrix sensing/completion problem. We leverage this connection for our
analysis, building in particular on results from [46]. Throughout this section we assume that
we are in a uniform task sampling model—at each iteration the task t(i) for the ith datapoint
is uniformly sampled from the t underlying tasks. We first recast our problem in the language
of matrices, by defining the matrix we hope to recover as M⋆ = (α1, . . . ,αt)

⊤B⊤ ∈ Rt×d.
Since rank(M⋆) = r, we let X⋆D⋆(Y⋆)⊤ = SVD(M⋆), and denote U⋆ = X⋆(D⋆)1/2 ∈ Rt×r,
V⋆ = (D⋆)1/2Y⋆ ∈ Rd×r. In this notation, the responses of the regression model are written
as follows:

yi = ⟨et(i)x⊤
i ,M⋆⟩+ ϵi. (2.3)

To frame recovery as an optimization problem we consider the Burer-Monteiro factorization
of the parameter M = UV⊤ where U ∈ Rt×r and V ∈ Rd×r. This motivates the following
objective:

min
U∈Rt×r,V∈Rd×r

f(U,V) =
2t

n

n∑
i=1

(yi − ⟨et(i)x⊤
i ,UV⊤⟩)2

+
1

2
∥U⊤U−V⊤V∥2F. (2.4)

The second term in (2.4) functions as a regularization to prevent solutions which send
∥U∥F → 0 while ∥V∥F → ∞ or vice versa. If the value of this objective (2.4) is small we
might hope that an estimate of B can be extracted from the column space of the parameter
V, since the column space of V⋆ spans the same subspace as B. Informally, our main result
states that all local minima of the regularized empirical risk are in the neighborhood of the
optimal V⋆, and have subspaces that approximate B well. Before stating our result we define
the constraint set, which contains incoherent matrices with reasonable scales, as follows:

W = { (U,V) | max
i∈[t]
∥e⊤i U∥2 ⩽

C0κ̄r
√
κν√

t
,

∥U∥2 ⩽ C0

√
tκν, ∥V∥2 ⩽ C0

√
tκν },
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for some large constant C0. Under Assumption 2.2, this set contains the optimal parameters.
Note that U⋆ and V⋆ satisfy the final two constraints by definition and Lemma 2.16 can be
used to show that Assumption 2.2 actually implies that U⋆ is incoherent, which satisfies the
first constraint. Our main result follows.

Theorem 2.2. Let Assumptions 2.1 and 2.2 hold in the uniform task sampling model. If the
number of samples n1 satisfies n1 ≳ polylog(n1, d, t)(κr)

4max{t, d}, then, with probability at
least 1− 1/poly(d), we have that given any local minimum (U,V) ∈ int(W) of the objective
(2.4), the column space of V, spanned by the orthonormal feature matrix B̂, satisfies:

sin θ(B̂,B) ⩽ O

 1√
ν

√
max{t, d}r log n1

n1

 .

We make several comments on this result:

• The guarantee in Theorem 2.2 suggests that all local minimizers of the regularized empirical
risk (2.4) will produce a linear representation at a distance at most Õ(

√
max{t, d}r/n1)

from the true underlying representation. Theorem 2.5 guarantees that any estimator
(including the empirical risk minimizer) must incur error ≳

√
dr/n1. Therefore, in the

regime t ⩽ O(d), all local minimizers are statistically close-to-optimal, up to logarithmic
factors and conditioning/eigenvalue factors in the task diversity matrix.

• Combined with a recent line of results showing that (noisy) gradient descent can efficiently
escape strict saddle points to find local minima [58], Theorem 2.2 provides strong evidence
that first-order methods can efficiently meta-learn linear features.6

The proof of Theorem 2.2 is technical so we only sketch the high-level ideas. The overall
strategy is to analyze the Hessian of the objective (2.4) at a stationary point (U,V) in int(W)
to exhibit a direction ∆ of negative curvature which can serve as a direction of local improve-
ment pointing towards M⋆ (and hence show (U,V) is not a local minimum). Implementing
this idea requires surmounting several technical hurdles including (1) establishing various
concentration of measure results (e.g., RIP-like conditions) for the sensing matrices et(i)x

⊤
i

unique to our setting and (2) handling the interaction of the optimization analysis with the
regularizer and noise terms. Performing this analysis establishes that under the aforemen-

tioned conditions all local minima in int(W) satisfy ∥UV⊤ −M⋆∥F ⩽ O(
√

tmax{t,d}r logn1

n1
)

(see Theorem 2.8). Guaranteeing that this loss is small is not sufficient to ensure recovery of
the underlying features. Transferring this guarantee in the Frobenius norm to a result on the
subspace angle critically uses the task diversity assumption (see Lemma 2.15) to give the
final result.

6To formally establish computational efficiency, we need to further verify the smoothness and the
strict-saddle properties of the objective function (2.4) (see, e.g., [58]).
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Algorithm 1 MoM Estimator for Learning Linear Features

Input: {(xi, yi)}n1
i=1.

B̂D1B̂
⊤ ← top-r SVD of 1

n1
·
∑n1

i=1 y
2
i xix

⊤
i

return B̂

Method-of-Moments Estimator

Next, we present a method-of-moments algorithm to recover the feature matrix B with
sharper statistical guarantees. An alternative to optimization-based approaches such as
maximum likelihood estimation, the method-of-moments is among the oldest statistical
techniques [95] and has recently been used to estimate parameters in latent variable models [2].

As we will see, the technique is well-suited to our formulation of multi-task feature learning.
We present our estimator in Algorithm 1, which simply computes the top-r eigenvectors of the
matrix (1/n1)

∑n1

i=1 y
2
i xix

⊤
i . Before presenting our result, we define the averaged empirical

task matrix as Λ̄ = 1
n

∑n
i=1αt(i)α

⊤
t(i) where ν̃ = σr(Λ̄), and κ̃ = tr(Λ̄)/(rν̃) in analogy with

Assumption 2.2.

Theorem 2.3. Suppose the n1 data samples {(xi, yi)}n1
i=1 are generated from the model in

(2.1) and that Assumptions 2.1 and 2.2 hold, but additionally that xi ∼ N (0, Id). Then, if
n1 ≳ polylog(d, n1)rdκ̃/ν̃, the output B̂ of Algorithm 1 satisfies

sin θ(B̂,B) ⩽ Õ

(√
κ̃

ν̃

dr

n1

)
,

with probability at least 1 − O(n−100
1 ). Moreover, if the number of samples generated from

each task are equal (i.e., Λ̄ = 1
t
A⊤A), then the aforementioned guarantee holds with κ̃ = κ̄

and ν̃ = ν.

We first make several remarks regarding this result.

• Theorem 2.3 is flexible—the only dependence of the estimator on the distribution of samples
across the various tasks is factored into the empirical task diversity parameters ν̃ and
κ̃. Under a uniform observation model the guarantee also immediately translates into an
analogous statement which holds with the population task diversity parameters ν and κ̄.

• Theorem 2.3 provides a non-trivial guarantee even in the setting where we only have Θ(1)
samples from each task, but t = Θ̃(dr). In this setting, recovering the parameters of
any given task is information-theoretically impossible. However, the method-of-moments
estimator can efficiently aggregate information across the tasks to learn B.

• The estimator does rely on the moment structure implicit in the Gaussian design to extract
B. However, Theorem 2.3 has no explicit dependence on t and is close-to-optimal in the
constant-snr regime; see Theorem 2.5 for our lower bound.
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Algorithm 2 Linear Regression for Learning a New Task with a Feature Estimate

Input: B̂, {(xi, yi)}n2
i=1.

α̂← (
∑n2

i=1 B̂xix
⊤
i B̂

⊤)†B̂⊤∑n2

i=1 xiyi
return α̂

We now provide a summary of the proof. Under oracle access to the population mean,
E[ 1

n

∑
i y

2
i xix

⊤
i ] = (2Γ̄ + (1 + tr(Γ̄))Id), where Γ̄ = 1

n

∑n
i=1Bαt(i)α

⊤
t(i)B

⊤ (see Lemma 2.1),
we can extract the features B by directly applying PCA to this matrix, under the condition
that κ̃ > 0, to extract its column space. In practice, we only have access to the samples
{(xi, yi)}ni=1. Algorithm 1 uses the empirical moments 1

n

∑
i y

2
i xix

⊤
i in lieu of the population

mean. Thus, to show the result, we argue that 1
n

∑n
i=1 y

2
i xix

⊤
i = E[ 1

n

∑n
i=1 y

2
i xix

⊤
i ] +E where

∥E∥ is a small, stochastic error (see Theorem 2.7). If this holds, the Davis-Kahan sin θ
theorem [9] shows that PCA applied to the empirical moments provides an accurate estimate
of B under perturbation by a sufficiently small E. The key technical step in this argument is
to show sharp concentration (in spectral norm) of the matrix-valued noise terms contained in
E which are neither bounded (in spectral norm) nor sub-gaussian/sub-exponential-like; we
refer the reader to the Appendix for further details on this argument.

2.4 Meta-Test: Transfer of Features to New Tasks

Having estimated a linear feature representation B̂ shared across related tasks, our second
goal is to transfer this representation to a new, unseen task—the (t+ 1)st task—to improve
learning. In the context of the model in (2.1), the approach taken in Algorithm 2 uses B̂ as
a plug-in surrogate for the unknown B, and attempts to estimate αt+1 ∈ Rr. Formally we
define our estimator α as follows:

α̂ = argmin
α
∥y −XB̂α∥2, (2.5)

where n2 samples (X,y) are generated from the model in (2.1) from the (t + 1)st task.
Effectively, the feature representation B̂ performs dimension reduction on the input covariates
X, allowing us to learn in a lower-dimensional space. Our focus is on understanding the
generalization properties of the estimator in Algorithm 2, since (2.5) is an ordinary least-
squares objective which can be analytically solved.

Assuming we have produced an estimate B̂ of the true feature matrix B, we can present
our main result on the sample complexity of meta-learned linear regression.

Theorem 2.4. Suppose n2 data points, {(xi, yi)}n2
i=1, are generated from the model in (2.1),

where Assumption 2.1 holds, from a single task satisfying ∥αt+1∥2 ⩽ O(1). Then,
if sin θ(B̂,B) ⩽ δ and n2 ≳ r log n2, the output α̂ from Algorithm 2 satisfies

∥B̂α̂−Bαt+1∥2 ⩽ Õ

(
δ2 +

r

n2

)
, (2.6)
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with probability at least 1−O(n−100
2 ).

Note that Bαt+1 is simply the underlying parameter in the regression model in (2.1). We
make several remarks about this result:

• Theorem 2.4 decomposes the error of transfer learning into two components. The first
term, Õ(δ2), arises from the bias of using an imperfect feature estimate B̂ to transfer
knowledge across tasks. The second term, Õ( r

n2
), arises from the variance of learning in a

space of reduced dimensionality.

• Standard generalization guarantees for random design linear regression ensure that the
parameter recovery error is bounded by O( d

n2
) w.h.p. under the same assumptions [55].

Meta-learning of the linear representation B̂ can provide a significant reduction in the
sample complexity of learning when δ2 ≪ d

n2
and r ≪ d.

• Conversely, if δ2 ≫ d
n2

the bounds in (2.6) imply that the overhead of learning the feature
representation may overwhelm the potential benefits of transfer learning (with respect to
baseline of learning the (t+ 1)st task in isolation). This accords with the well-documented
empirical phenomena of “negative” transfer observed in large-scale deep learning problems
where meta/transfer-learning techniques actually result in a degradation in performance
on new tasks [114]. For diverse tasks (i.e. κ ⩽ O(1)), using Algorithm 1 to estimate
B̂ suggests that ensuring δ2 ≪ d

n2
, where δ2 = Õ( dr

νn1
), requires n1

n2
≫ r/ν. That is, the

ratio of the number of samples used for feature learning to the number of samples used
for learning the new task should exceed the complexity of the feature representation to
achieve “positive” transfer.

In order to obtain the rate in Theorem 2.4 we use a bias-variance analysis of the estimator
error B̂α̂−Bαt+1 (and do not appeal to uniform convergence arguments). Using the definition
of y we can write the error as,

B̂α̂−Bα0 = B̂(B̂⊤X⊤XB̂)−1B̂X⊤XBα0

−Bα0 + B̂(B̂⊤X⊤XB̂)−1B̂⊤X⊤ϵ.

The first term contributes the bias term to (2.6) while the second contributes the variance
term. Analyzing the fluctuations of the (mean-zero) variance term can be done by controlling
the norm of its square, ϵ⊤Aϵ, where A = XB̂(B̂⊤X⊤XB̂)−2B̂⊤X⊤. We can bound this
(random) quadratic form by first appealing to the Hanson-Wright inequality to show w.h.p.
that ϵ⊤Aϵ ≲ tr(A) + Õ(∥A∥F + ∥A∥). The remaining randomness in A can be controlled
using matrix concentration/perturbation arguments (see Lemma 2.17).

With access to the true feature matrix B̂ (i.e., setting B̂ = B) the term
B̂(B⊤X⊤XB)−1BX⊤XBα0 −Bα0 = 0, due to the cancellation in the empirical covariance
matrices, (B⊤X⊤XB)−1BX⊤XB = Ir. This cancellation of the empirical covariance is
essential to obtaining a tight analysis of the least-squares estimator. We cannot rely on this
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effect in full since B̂ ̸= B. However, a naive analysis which splits these terms, (B̂⊤X⊤XB̂)−1

and B̂X⊤XB can lead to a large increase in the variance in the bound. To exploit the
fact B̂ ≈ B, we project the matrix B in the leading XB term onto the column space of B̂
and its complement—which allows a partial cancellation of the empirical covariances in the
subspace spanned by B̂. The remaining variance can be controlled as in the previous term
(see Lemma 2.18).

2.5 Lower Bounds for Feature Learning

To complement the upper bounds provided in the previous section, in this section we derive
information-theoretic limits for feature learning in the model (2.1). To our knowledge,
these results provide the first sample-complexity lower bounds for feature learning, with
regards to subspace recovery, in the multi-task setting. While there is existing literature
on (minimax)-optimal estimation of low-rank matrices (see, for example, [102]), that work
focuses on the (high-dimensional) estimation of matrices, whose only constraint is to be low
rank. Moreover, error is measured in the additive prediction norm. In our setting, we must
handle the additional difficulties arising from the fact that we are interested in (1) learning a
column space (i.e., an element in the Grr,d(R)) and (2) the error between such representatives
is measured in the subspace angle distance. We begin by presenting our lower bound for
feature recovery.

Theorem 2.5. Suppose a total of n data points are generated from the model in (2.1)
satisfying Assumption 2.1 with xi ∼ N (0, Id), ϵi ∼ N (0, 1), with an equal number from each
task, and that Assumption 2.2 holds with αj for each task normalized to ∥αj∥ = 1

2
. Then,

there are αj for r ⩽ d
2
and n ⩾ max

(
1
8ν
, r(d− r)

)
so that:

inf
B̂

sup
B∈Grr,d(R)

sin θ(B̂,B) ⩾ Ω

(
max

(√
1

ν

√
1

n
,

√
dr

n

))
,

with probability at least 1
4
, where the infimum is taken over the class of estimators that are

functions of the n data points.

Again we make several comments on the result.

• The result of Theorem 2.5 shows that the estimator in Algorithm 1 provides a close-to-
optimal estimator of the feature representation parameterized by B–up to logarithmic and
conditioning factors (i.e. κ, ν)7 in the task diversity matrix–that is independent of the task
number t. Note that under the normalization for αi, as κ → ∞ (i.e. the task matrix A
becomes ill-conditioned) we have that ν → 0. So the first term in Theorem 2.5 establishes
that task diversity is necessary for recovery of the subspace B.

7Note in the setting that κ ⩽ O(1), ν ∼ 1
r .
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• The dimension of Grr,d(R) (i.e., the number of free parameters needed to specify a feature
set) is r(d− r) ⩾ Ω(dr) for d/2 ⩾ r; hence the second term in Theorem 2.5 matches the
scaling that we intuit from parameter counting.

• Obtaining tight dependence of our subspace recovery bounds on conditioning factors in
the task diversity matrix (i.e. κ, ν) is an important and challenging research question.
We believe the gap between in conditioning/eigenvalue factors between Theorem 2.3 and
Theorem 2.5 on the

√
dr/n term is related to a problem that persists for classical estimators

in linear regression (i.e. for the Lasso estimator in sparse linear regression). Even in this
setting, a gap remains with respect to condition number/eigenvalue factors of the data
design matrix X, between existing upper and lower bounds (see [18, Section 7], [98, Theorem
1, Theorem 2] and [117] for example). In our setting the task diversity matrix A enters
into the problem in a similar fashion to the data design matrix X in these aforementioned
settings.

The dependency on the task diversity parameter 1
ν
(the first term in Theorem 2.5) is achieved

by constructing a pair of feature matrices and an ill-conditioned task matrix A that cannot
discern the direction along which they defer. The proof strategy to capture the second
term uses a f -divergence based minimax technique from [49] (restated in Lemma 2.20 in the
Appendix), similar in spirit to the global Fano (or Yang-Barron).

There are two key ingredients to using Lemma 2.20 and obtaining a tight lower bound.
First, we must exhibit a large family of distinct, well-separated feature matrices {Bi}Mi=1 (i.e.,
a packing at scale η). Second, we must argue this set of feature matrices induces a family of
distributions over data {(xi, yi)}Bi

which are statistically “close” and fundamentally difficult
to distinguish amongst. This is captured by the fact the ϵ-covering number, measured in
the space of distributions with divergence measure Df(·, ·), is small. The standard (global)
Fano method, or Yang-Barron method (see [113, Ch. 15]), which uses the KL divergence to
measure distance in the space of measures, is known to provide rate-suboptimal lower bounds
for parametric estimation problems.8 Our case is no exception. To circumvent this difficulty
we use the framework of [49], instantiated with the f -divergence chosen as the χ2-divergence,
to obtain a tight lower bound.

The argument proceeds in two steps. First, although the geometry of Grr,d(R) is complex,
we can adapt results from [94] to provide sharp upper/lower bounds on the metric entropy (or
global entropy) of the Grassmann manifold (see Proposition 2.9). The second technical step
of the argument hinges on the ability to cover the space of distributions parametrized by B
in the space of measures {PrB : B ∈ Grr,d(R)}—with distance measured by an appropriate
f -divergence. In order to establish a covering in the space of measures parametrized by
B, the key step is to bound the distance χ2(PrB1 ,PrB2) for two different measures over
data generated from the model (2.1) with two different feature matrices B1 and B2 (see
Lemma 2.21). This control can be achieved in our random design setting by exploiting the

8Even for the simple problems of Gaussian mean estimation the classical Yang-Barron method is
suboptimal; see [49] for more details.
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Gaussianity of the marginals over data X and the Gaussianity of the conditionals of y|X,B,
to ultimately be expressed as a function of the angular distance between B1 and B2.

2.6 Simulations

We complement our theoretical analysis with a series of numerical experiments highlighting the
benefits (and limits) of meta-learning9. For the purposes of feature learning we compare the
performance of the method-of-moments estimator in Algorithm 1 vs. directly optimizing the
objective in (2.4). Additional details on our set-up are provided in Section 2.14. We construct
problem instances by generating Gaussian covariates and noise as xi ∼ N (0, Id), ϵi ∼ N (0, 1),
and the tasks and features used for the first-stage feature estimation as αi ∼ 1√

r
· N (0, Ir),

with B generated as a (uniform) random r-dimensional subspace of Rd. In all our experiments
we generate an equal number of samples nt for each of the t tasks, so n1 = t ·nt. In the second
stage we generate a new, (t+1)st task instance using the same feature estimate B used in the
first stage and otherwise generate n2 samples, with the covariates, noise and αt+1 constructed
as before. Throughout this section we refer to features learned via a first-order gradient
method as LF-FO and the corresponding meta-learned regression parameter on a new task
by meta-LR-FO. We use LF-MoM and meta-LR-MoM to refer to the same quantities save
with the feature estimate learned via the method-of-moments estimator. We also use LR to
refer to the baseline linear regression estimator on a new task which only uses data generated
from that task.

We begin by considering a challenging setting for feature learning where d = 100, r = 5,
but nt = 5 for varying numbers of tasks t. As Fig. 2.1 demonstrates, the method-of-moments
estimator is able to aggregate information across the tasks as t increases to slowly improve
its feature estimate, even though nt ≪ d. The loss-based approach struggles to improve its
estimate of the feature matrix B in this regime. This accords with the extra t dependence
in Theorem 2.2 relative to Theorem 2.3. In this setting, we also generated a (t+ 1)st test
task with d ≪ n2 = 2500, to test the effect of meta-learning the linear representation on
generalization in a new, unseen task against a baseline which simply performs a regression
on this new task in isolation. Fig. 2.1 also shows that meta-learned regressions perform
significantly worse than simply ignoring first t tasks. Theorem 2.4 indicates the bias from
the inability to learn an accurate feature estimate of B overwhelms the benefits of transfer
learning. In this regime n2 ≫ d so the new task can be efficiently learned in isolation. We
believe this simulation represents a simple instance of the empirically observed phenomena of
“negative” transfer [114].

We now turn to the more interesting use cases where meta-learning is a powerful tool.
We consider a setting where d = 100, r = 5, and nt = 25 for varying numbers of tasks t.
However, now we consider a new, unseen task where data is scarce: n2 = 25 < d. As Fig. 2.2
shows, in this regime both the method-of-moments estimator and the loss-based approach

9An open-source Python implementation to reproduce our experiments can be found at https://github.
com/nileshtrip/MTL.

https://github.com/nileshtrip/MTL
https://github.com/nileshtrip/MTL
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Figure 2.1: Left: LF-FO vs. LF-MoM estimator with error measured in the subspace angle
distance sin θ(B̂,B). Right: meta-LR-FO and meta-LR-MoM vs. LR on new task with error
measured on new task parameter. Here d = 100, r = 5, and nt = 5 while n2 = 2500 as the
number of tasks is varied.
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Figure 2.2: Left: LF-FO vs. LF-MoM estimator with error measured in the subspace angle
distance sin θ(B̂,B). Right: meta-LR-FO and meta-LR-MoM vs. LR on new task with error
measured on new task parameter. Here d = 100, r = 5, nt = 25 while n2 = 25 while the
number of tasks is varied.

can learn a non-trivial estimate of the feature representation. The benefits of transferring
this representation are also evident in the improved generalization performance seen by the
meta-regression procedures on the new task. Interestingly, the loss-based approach learns
an accurate feature representation B̂ with significantly fewer samples then the method-of-
moments estimator, in contrast to the previous experiment. Finally, we consider an instance
where d = 100, r = 5, t = 20, and n2 = 50 with varying numbers of training points nt per
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task. We see in Fig. 2.3 that meta-learning of representations provides significant value in
a new task. Note that these numerical experiments show that as the number of tasks is
fixed, but nt increases, the generalization ability of the meta-learned regressions significantly
improves as reflected in the bound (2.2).

0 1000 2000 3000 4000 5000 6000

Number of Training Points (per Task)

0.2

0.4

0.6

0.8

1.0

si
n
θ LF-MoM

LF-FO

0 1000 2000 3000 4000 5000 6000

Number of Training Points (per Task)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

` 2
P

ar
am

et
er

E
rr

or LR

meta-LR-MoM

meta-LR-FO

Figure 2.3: Left: LF-FO vs. LF-MoM estimator with error measured in the subspace angle
distance sin θ(B̂,B). Right: meta-LR-FO and meta-LR-MoM vs. LR on new task with error
measured on new task parameter. Here d = 100, r = 5, t = 20, and n2 = 50 while the number
of training points per task (nt) is varied.

2.7 Conclusions

In this paper we show how a shared linear representation may be efficiently learned and
transferred between multiple linear regression tasks. We provide both upper and lower
bounds on the sample complexity of learning this representation and for the problem of
learning-to-learn. We believe our bounds capture important qualitative phenomena observed
in real meta-learning applications absent from previous theoretical treatments.
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Appendix

Notation and Set-up We first establish several useful pieces of notation used throughout
the Appendices. We will say that a mean-zero random variable x is sub-gaussian, x ∼ sG(κ),
if E[exp(λx))] ⩽ exp(κ

2λ2

2
) for all λ. We will say that a mean-zero random variable x

is sub-exponential, x ∼ sE(ν, α), if E[exp(λx)] ⩽ exp(ν
2λ2

2
) for all |λ| ⩽ 1

α
. We will say

that a mean-zero random vector is sub-gaussian, x ∼ sG(κ), if ∀v ∈ Rp, E[exp(v⊤x)] ⩽

exp(
κ2∥v∥22

2
). A standard Chernoff argument shows that if x ∼ sE(ν, α) then Pr[|x| ⩾ t] ⩽

2 exp(−1
2
min( t2

ν2
, t
α
)). Throughout we will use c, C to refer to universal constants that may

change from line to line.

2.8 Proofs for Section 2.1

Here we provide a formal statement of Theorem 2.1.

Theorem 2.6 (Formal statement of Theorem 2.1). Suppose we are first given n1 total
samples from (2.1) which satisfy Assumption 2.1 and xi ∼ N (0, Id), with an equal number of
samples from each task, which collectively satisfy Assumption 2.2. Then, we are presented n2

samples also from (2.1), satisfying Assumption 2.1, but from a t+ 1st task which satisfies
∥αt+1∥2 ⩽ O(1). If the n1 samples are used in Algorithm 1 to learn a feature representation B̂,
which is used in Algorithm 2 along with the n2 samples to learn α̂, and n1 ≳ polylog(d, n1)

κ̄dr
ν
,

n2 ≳ r log n2, the excess prediction error on a new datapoint drawn from the covariate
distribution, is,

Ex⋆ [⟨x⋆, B̂α̂−Bαt+1⟩2] ⩽ Õ

(
κ̄dr

νn1

+
r

n2

)
,

with probability at least 1−O(n−100
1 + n−100

2 ).

Proof. Note that Ex⋆ [⟨x⋆, B̂α̂ − Bαt+1⟩2] = ∥B̂α̂−Bαt+1∥2. Combining Theorem 2.3,
Theorem 2.4 and applying a union bound then gives the result.

Note that in order to achieve the formulation in Theorem 2.1, we make the simplifying
assumption that the training tasks are well-conditioned in the sense that κ̄ ⩽ κ ⩽ O(1) and
ν ⩾ Ω(1

r
)—which is consistent with the normalization in Assumption 2.2. Such a setting is

for example achieved (w.h.p.) if each αt ∼ N (0, 1√
r
Σ) where σ1(Σ)/σr(Σ) ⩽ O(1).

2.9 Proofs for Section 2.3

Analyzing the performance of the method-of-moments estimator requires two steps. First,
we show that the estimator (1/n) ·

∑n
i=1 y

2
i xix

⊤
i converges to its mean in spectral norm,
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up to error fluctuations Õ(
√

dr
n
). Showing this requires adapting tools from the theory of

matrix concentration. Second, a standard application of the Davis-Kahan sin θ theorem shows
that top-r PCA applied to this noisy matrix, (1/n) ·

∑n
i=1 y

2
i xix

⊤
i , can extract a subspace

B̂ close to the true column space of B up to a small error. Throughout this section we let
Γ̄ = 1

n

∑n
i=1 Γ̄i with Γ̄i = Bαt(i)α

⊤
t(i)B

⊤. We also let Λ̄ = 1
n

∑n
i=1αt(i)α

⊤
t(i) be the empirically

observed task matrix. Note that under Assumption 2.2, we have that Γ̄ and Λ̄ behave
identically since B has orthonormal columns we have that tr(Γ̄) = tr(Λ̄) and σr(Γ̄) = σr(Λ̄).
Furthermore throughout this section we use κ̃ and ν̃ to refer to the average condition number
and r-th singular value of the empirically observed task matrix Λ̄ – since all our results hold
in generality for this matrix. Note that under the uniform task observation model the task
parameters of Λ̄ and the population task matrix A⊤A

t
are equal.

We first present our main theorem which shows our method-of-moments estimator can
recover the true subspace B up to small error.

Proof of Theorem 2.3. The proof follows by combining the Davis-Kahan sin θ theorem with
our main concentration result for the matrix 1

n

∑n
i=1 y

2
i x

⊤
i xi − E[ 1

n

∑n
i=1 y

2
i x

⊤
i xi]. First note

that E[ 1
n

∑n
i=1 y

2
i x

⊤
i xi] = (2Γ̄ + (1 + tr(Γ̄))Id by Lemma 2.1 and define 1

n

∑n
i=1 y

2
i x

⊤
i xi −

E[ 1
n

∑n
i=1 y

2
i x

⊤
i xi] = E. Note that under the conditions of the result for n ⩾ cd we have

that ∥E∥ ⩽ Õ(
√

dκ̃rν̃
n

) by Theorem 2.7 for large-enough c due to the SNR normalization;

so again by taking sufficiently large c such that n ⩾ c · polylog(d, n)κ̃rd/ν̃ we can ensure
that ∥E∥ ⩽ δ ⩽ 2ν̃ for as small δ as we choose with the requisite probability. Since
∥E∥ ⩽ δ we have that σr+1(y

2
i xix

⊤
i )− σr+1((2Γ̄+ (1 + tr(Γ̄))Id) ⩽ δ and since Γ̄ is rank r,

σr((2Γ̄+(1+tr(Γ̄))Id)−σr+1((2Γ̄+(1+tr(Γ̄))Id) = 2σr(Γ̄). Hence, applying the Davis-Kahan
sin θ theorem shows that,

∥B̂⊤
⊥B∥ ⩽

∥B̂⊤
⊥EB∥

2σr(Λ̄)− δ
⩽

∥E∥
2σr(Λ̄)− δ

⩽
∥E∥
ν̃

⩽ Õ

(√
1

ν̃

dκ̃r

n

)
,

where the final inequalities follows by taking c large enough to ensure δ ⩽ ν̃ and Theorem 2.7.

We now present our main result which proves the concentration of the estimator,

Theorem 2.7. Suppose the n data samples (xi, yi) are generated from the model in (2.11)
and that Assumptions 2.1 and 2.2 hold with xi ∼ N (0, 1) i.i.d. Then if n ≳ c for sufficiently
large c,

∥ 1
n

n∑
i=1

y2i xix
⊤
i − (2Γ̄+ (1 + tr(Γ̄))Id))∥ ⩽

log3 n · log3 d ·O

(√
dκ̃rν̃

n
+

d

n

)
,

with probability at least 1−O(n−100).
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Proof. Note that the mean of 1
n

∑n
i=1 y

2
i xix

⊤
i is 2Γ̄ + (1 + tr(Γ̄))Id) by Lemma 2.1. Then

using the fact that yi = x⊤
i Bαt(i) + ϵi, we can write down the error decomposition for the

estimator into signal and noise terms,

1

n

n∑
i=1

y2i xix
⊤
i − (2Γ̄+ (1 + tr(Γ̄))Id =

1

n

n∑
i=1

(xiBαt(i))
2xix

⊤
i − (2Γ̄+ tr(Γ̄))Id+

1

n

n∑
i=1

2ϵixiBαt(i)xix
⊤
i +

1

n

n∑
i=1

ϵ2ixix
⊤
i − Id.

We proceed to control the fluctuations of each term in spectral norm individually using
tools from matrix concentration. Applying Lemma 2.2, Lemma 2.3, Lemma 2.4, the triangle
inequality and a union bound shows the desired quantity is upper bounded as,

log3 n · log3 d·

O

(√
dmax(1, tr(Γ̄), tr(Γ̄)maxi ∥βi∥2)

n
+

dmax(1,maxi ∥βi∥,maxi ∥βi∥2)
n

)
.

Finally, using Assumption 2.2 and the fact that trΓ̄ = trΛ̄ and the fact ∥βi∥ = ∥αi∥,
simplifies the result to the theorem statement. Note that since ∥αi∥ = Θ(1) for all i we have
that, tr(Γ̄) = Θ(1) so the SNR normalization guarantees the leading noise term satisfies
1 ⩽ O(tr(Γ̄)).

We begin by computing the mean of the estimator.

Lemma 2.1. Suppose the n data samples (xi, yi) are generated from the model in (2.1) and
that Assumptions 2.1 and 2.2 hold. Then,

E[
1

n

n∑
i=1

y2i xix
⊤
i ] = 2Γ̄+ (1 + tr(Γ̄))Id

where Γ̄ = 1
n

∑n
i=1 Γ̄i with Γi = Bαt(i)α

⊤
t(i)B

⊤.

Proof. Since ϵi is mean-zero, using the definition of yi we immediately obtain,

E[
1

n

n∑
i=1

y2i xix
⊤
i ] = Id + E[

1

n

n∑
i=1

x⊤
i Γixixix

⊤
i ] = Id + E[x⊤Γ̄xxx⊤],

for x ∼ N (0, Id). Using the eigendecomposition of Γ̄ we have that E[x⊤Λ̄xxx⊤] =∑r
i=1 σiE[(x⊤vi)

2xx⊤]. Due to the isotropy of the Gaussian distribution, it suffices to
compute E[(x⊤e1)

2xx⊤] and rotate the result back to vi. In particular we have that,

(E[(x⊤e1)
2xx⊤])ij =


0 i ̸= j

1 i = j ̸= 1

3 i = j = 1

=⇒ E[(x⊤e1)
2xx⊤] = 2e1e1 + Id =⇒
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=⇒ E[(x⊤vi)
2xx⊤] = 2vivi + Id =⇒ E[x⊤Γ̄xxx⊤] = 2Γ̄+ tr(Γ̄)Id,

from which the conclusion follows.

We start by controlling the fluctuations of the final noise term (which has identity mean).

Lemma 2.2. Suppose the n data samples (xi, yi) are generated from the model in (2.1) and
that Assumptions 2.1 and 2.2 hold. Then for n ⩾ c for sufficiently large c,

∥ 1
n

n∑
i=1

ϵ2ixix
⊤
i − Id∥ ⩽ O

(
log2 n

(√
d

n
+

d

n

))
.

with probability at least 1−O(n−100).

Proof. We first decompose the expression as,

∥ 1
n

n∑
i=1

ϵ2ixix
⊤
i − Id∥ ⩽ ∥

1

n

n∑
i=1

ϵ2ixix
⊤
i −

1

n

n∑
i=1

ϵ2i Id∥+ ∥
1

n

n∑
i=1

ϵ2i Id − Id∥

We begin by controlling the second term. By a sub-exponential tail bound we have that
Pr[| 1

n

∑n
i=1 ϵ

2
i − 1| ⩾ t] ⩽ 2 exp(−Cnmin(t2/82, t/8)), since ϵ2i is sE(8, 8) by Lemma 2.25.

Letting t = c
√

log(1
δ
)/n for sufficiently large c, and assuming n ≳ log(1

δ
), implies

| 1
n

∑n
i=1 ϵ

2
i − 1| ⩽ O(

√
log(1/δ)

n
) with probability at least 1− 2δ. Hence ∥ 1

n

∑n
i=1 ϵ

2
i Id − Id∥ ⩽

O(
√

log(1/δ)
n

) on this event.

Now we apply Lemma 2.26 with ai = ϵi to control the first term. Using the properties
of sub-Gaussian maxima we can conclude that Pr[maxi |ϵ|i ⩾ t] ⩽ 2n exp(−t2/2); taking
t = 4

√
log n + c

√
log(1/δ) for sufficiently large c implies that maxi |ϵi| ⩽ O(

√
log n) +

O(
√

log(1/δ)) with probability at least 1− δ. In the setting of Lemma 2.26, conditionally on

ϵi, K = maxi |ϵi| and Σ = Id so taking t = c
√

log(1/δ) for sufficiently large c implies that

∥ 1
n

∑n
i=1 ϵ

2
ixix

⊤
i − 1

n

∑n
i=1 ϵ

2
i Id∥ ⩽ K ·O(

√
d/n+

√
log(1/δ)/n+ d

n
+ log(1/δ)

n
) with probability

at least 1− 2δ conditionally on ϵi. Conditioning on the event that maxi |ϵi| ⩽ O(
√
log n) +

O(
√

log(1/δ)) to conclude the argument finally shows that,

∥ 1
n

n∑
i=1

ϵ2ixix
⊤
i − Id∥ ⩽

O(log n+ log(1/δ)) ·O(

√
d

n
+

√
log(1/δ)

n
+

d

n
+

log(1/δ)

n
) +O(

√
log(1/δ)

n
),

with probability at least 1 − 5δ. Selecting δ = n−100 implies that ∥ 1
n

∑n
i=1 ϵ

2
ixix

⊤
i − Id∥ ⩽

O
(
log2 n

(√
d
n
+ d

n

))
, with probability at least 1−O(n−100).
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We now proceed to controlling the fluctuations of the second noise term (which is mean-
zero). Our main technical tool is Lemma 2.30.

Lemma 2.3. Suppose the n data samples (xi, yi) are generated from the model in (2.1) and
that Assumptions 2.1 and 2.2 hold. Then,

∥
n∑

i=1

2ϵix
⊤
i Bαt(i)xix

⊤
i ∥ ⩽ O(log n+ log d)

(√
dtr(Γ̄)

n
+

dmaxi ∥βi∥(log2(n) + log2(d))

n

)
.

with probability at least 1−O((nd)−100).

Proof. To apply the truncated version of the matrix Bernstein inequality (in the form
of Lemma 2.30) we need to set an appropriate truncation level R, for which need con-
trol on the norms of Zi = ∥2ϵix⊤

i Bαt(i)xix
⊤
i ∥ = 2|ϵi|∥xi∥2|x⊤

i Bαt(i)|. Using sub-gaussian,

and sub-exponential tail bounds we have that |ϵi| ⩽ O(1 +
√
log(1/δ)), ∥xi∥2 ⩽ O(d +

max(
√

d log(1/δ), log(1/δ))) = O(d+
√
d log(1/δ)), and |x⊤

i Bαt(i)| ⩽ O(∥βi∥(1+
√

log(1/δ))
each with probability at least 1 − δ. Accordingly with probability at least 1 − 3δ we
have that ∥Zi∥ ⩽ O(∥βi∥d(1 + log2(1/δ))). We can rearrange this statement to con-
clude that Pr[∥Zi∥ ⩾ c1∥βi∥d + t] ⩽ 3 exp(−c2( t

∥βi∥d)
1/2) for some c1, c2. Define a trun-

cation level R = c1maxi ∥βi∥d + Kmaxi ∥βi∥d for some K to be chosen later. We can
also use the aforementioned tail bound to control ∥E[Zi]− E[Z ′

i]∥ ⩽ E[Zi1[∥Zi∥ ⩾ α]] ⩽∫∞
K∥βi∥d 3 exp(−c2(

t
∥βi∥d)

1/2) ⩽ O((1 +
√
K) exp(−c

√
K)maxi ∥βi∥d) = ∆.

Next we must compute an upper bound for the matrix variance term

∥
n∑

i=1

E[ϵ2i (α⊤
i B

⊤xi)
2∥xi∥2xix

⊤
i ]∥ = ∥

n∑
i=1

E[(α⊤
i B

⊤x)2∥x∥2xx⊤]∥

= n∥E[x⊤Γ̄x∥x∥2xx⊤]∥ = n∥
r∑

i=1

σiE[(v⊤
i x)

2∥x∥2xx⊤]∥

, taking an expectation over ϵi in the first equality, and diagonalizing Γ̄. As before due to
isotropy of the Gaussian it suffices to compute the expectation with vi = e1 and rotate the
result back to vi. Before computing the term we note that for a standard normal gaussian
random variable g ∼ N (0, 1) we have that E[g6] = 15, E[g4] = 3, E[g2] = 1. Then by simple
combinatorics we find that,

(E[x2
1(

n∑
a=1

x2
a)xx

⊤])ij =


0 i ̸= j ̸= 1

0 i = 1 ̸= j

2 · 3 · 1 + (d− 2) · 1 i = j ̸= 1

15 + 3(d− 1) i = j = 1

=⇒

E[(x⊤e1)
2∥x∥2xx⊤] = (2d+ 8)e1e

⊤
1 + (d+ 4)Id
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=⇒ ∥
n∑

i=1

E[ϵ2i (α⊤
i B

⊤xi)
2∥xi∥2xix

⊤
i ]∥ ⩽ n(d+ 4)∥Γ̄+ tr(Γ̄)Id∥ ⩽ 10nd(tr(Γ̄)) = σ2.

Finally, we can assemble the previous two computations to conclude the result with
appropriate choices of R (parametrized through K) and t by combining with Lemma 2.30.
Before beginning recall by definition we have that tr(Γ̄) = 1

n
maxi ∥βi∥2. Let us choose√

K = c3
c
(log(n) + log(d)) for some sufficiently large c3. In this case, we can choose c3 such

that ∆ ⩽ O((log n+ log d)maxi ∥βi∥d
n10d10

) ⩽ O(

√
tr(Γ̄)

n8d8
), since

√
tr(Γ̄) ⩾ 1√

n
maxi ∥βi∥. Similarly,

our choice of truncation level becomes R = O((log2(n) + log2(d))maxi ∥βi∥d). At this point
we now choose t = c4(log n+log d)max(σ/

√
n,R/n) for sufficiently large c4. For large enough

c4 we can guarantee that t ⩾ 2∆ =⇒ t−∆ ⩾ t
2
.

Hence combining these results together and applying Lemma 2.30 we can provide the
following upper bound on the desired quantity,

Pr[∥ 1
n

n∑
i=1

2ϵix
⊤
i Bαt(i)xix

⊤
i ∥ ⩾ t] ⩽

O(d exp(−c · c4(log n+ log d)) +O(n
√
K exp(−c3(log n+ log d)) ⩽ O((nd)−100),

by taking c3 and c4 sufficiently large, with

t = O((log n+ log d)

(√
dtr(Γ̄)

n
+

dmaxi ∥βi∥(log2(n) + log2(d))

n

)
.

Finally we turn to controlling the fluctuations of the primary signal term around its mean
using a similar argument to the previous term.

Lemma 2.4. Suppose the n data samples (xi, yi) are generated from the model in (2.1) and
that Assumptions 2.1 and 2.2 hold. Then

∥ 1
n

n∑
i=1

(xiBαt(i))
2xix

⊤
i − (2Γ̄+ tr(Γ̄)Id)∥ ⩽

O((log n+ log d)

(√
dtr(Γ̄)maxi ∥βi∥2

n
+

dmaxi ∥βi∥2(log2(n) + log2(d))

n

)
,

with probability at least 1−O((nd)−100).

Proof. The proof is similar to the proof of Lemma 2.3 and uses Lemma 2.30. We begin by
controlling the norms of Zi = (x⊤

i Bαt(i))
2xix

⊤
i . ∥Zi∥ = ∥xi∥2(x⊤

i Bαt(i))
2. Using Gaussian

and sub-exponential tail bounds we have that, ∥xi∥2 ⩽ O(d+
√
d log(1/δ)) and (x⊤

i Bαt(i))
2 ⩽



CHAPTER 2. META-LEARNING LINEAR REPRESENTATIONS 26

O(∥βi∥2(1 + log(1/δ))) each with probability at least 1− δ. Hence with probability at least
1− 2δ we find that ∥Zi∥ ⩽ O(d∥βi∥2(1 + log2(1/δ)).

We can rearrange this statement to conclude that,
Pr[∥Zi∥ ⩾ c1∥βi∥2d+ t] ⩽ 2 exp(−c2( t

∥βi∥2d)
1/2) for some c1, c2. Define a truncation level R =

c1maxi ∥βi∥2d+Kmaxi ∥βi∥2d for some K to be chosen later. We can use the aforementioned
tail bound to control ∥E[Zi]− E[Z ′

i]∥ ⩽ E[Zi1[∥Zi∥ ⩾ α]] ⩽
∫∞
K∥βi∥2d 2 exp(−c2(

t
∥βi∥2d)

1/2) ⩽

O((1 +
√
K) exp(−c

√
K)maxi ∥βi∥2d) = ∆.

Next we must compute an upper bound the matrix variance term

∥
n∑

i=1

E[(α⊤
i B

⊤xi)
4∥xi∥2xix

⊤
i ]∥ = ∥

n∑
i=1

E[(β⊤
i x)

4∥x∥2xx⊤]∥.

As before due to isotropy of the Gaussian it suffices to compute each expectation assuming
βi ∝ e1 and rotate the result back to βi. Before computing the term we note that for a
standard normal gaussian random variable g ∼ N (0, 1) we have that E[g8] = 105, E[g6] = 15,
E[g4] = 3, E[g2] = 1. Then by simple combinatorics we find that,

(E[(x⊤e1)
4(

n∑
a=1

x2
a)xx

⊤])ij =


0 i ̸= j ̸= 1

0 i = 1 ̸= j

15 + 3 · 3 + (d− 2) · 3 i = j ̸= 1

105 + 15(d− 1) i = j = 1

=⇒

E[(x⊤βi)
4∥x∥2xx⊤] = (2d+ 75)e1e

⊤
1 + (3d+ 15)Id

=⇒ ∥
n∑

i=1

E[(α⊤
i B

⊤xi)
4∥xi∥2xix

⊤
i ]∥ ⩽ O(d)∥

n∑
i

∥βi∥4(βiβ
⊤
i + Id)∥ ⩽ O(d

n∑
i=1

∥βi∥42) ⩽

O(dnmax
i
∥βi∥2tr(Γ̄)) = σ2.

Finally, we can assemble the previous two computations to conclude the result with appropriate
choices of R (parametrized throughK) and t by combining with Lemma 2.30. Before beginning
recall by definition we have that trΓ̄ ⩾ 1

n
maxi ∥βi∥2. Let us choose

√
K = c3

c
(log(n)+ log(d))

for some sufficiently large c3. In this case, we can choose c3 such that ∆ ⩽ O((log n +

log d)maxi ∥βi∥2d
n10d10

) ⩽ O(

√
tr(Γ̄)maxi ∥βi∥

n7d7
), since

√
tr(Γ̄) ⩾ 1√

n
maxi ∥βi∥. Similarly, our choice

of truncation level becomes R = O((log2(n) + log2(d))maxi ∥βi∥2d). At this point we now
choose t = c4(log n+ log d)max(σ/

√
n,R/n) for sufficiently large c4. For large enough c4 we

can guarantee that t ⩾ 2∆ =⇒ t−∆ ⩾ t
2
.

Hence combining these results together and applying Lemma 2.30 we can provide the
following upper bound on the desired quantity:

Pr[∥ 1
n

n∑
i=1

(xiBαt(i))
2xix

⊤
i − (2Γ̄+ tr(Γ̄)Id)∥ ⩾ t]
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⩽ O(d exp(−c · c4(log n+ log d)) +O(n
√
K exp(−c3(log n+ log d))

⩽ O((nd)−100),

by taking c3 and c4 sufficiently large, with

t = O((log n+ log d)

(√
dtr(Γ̄)maxi ∥βi∥2

n
+

dmaxi ∥βi∥2(log2(n) + log2(d))

n

)
.

.

2.10 Proofs for Section 2.3

In our landscape analysis we consider a setting with t tasks and we observe a datapoint from
each of the t tasks uniformly at random at each iteration. Formally, we define the matrix we
are trying to recover as

M⋆ = (α1, . . . ,αt)
⊤B⊤ =︸︷︷︸

SVD

X⋆D⋆(Y⋆)⊤ ∈ Rt×d, (2.7)

with U⋆ = X⋆(D⋆)1/2, and (D⋆)1/2(Y⋆)⊤ = (V⋆)⊤, from which we obtain the observations:

yi = ⟨et(i)x⊤
i ,M⋆⟩+ σ · ϵi, (2.8)

where we sample tasks uniformly t(i) ∼ {1, . . . , t} and xi is a sub-gaussian random vector.
Note that M⋆ is a rank-r matrix, U⋆ ∈ Rt×r, and V⋆ ∈ Rd×r. In this section, we denote
d̃ = max{t, d} and let σ⋆

1, σ
⋆
r be the 1-st and r-th eigenvalue of matrix M⋆. We denote

κ⋆ = σ⋆
1/σ

⋆
r as its condition number. Note that as B is an orthonormal matrix we have that

M⋆(M⋆)⊤ = t ·A⊤A/t from which it follows that (σ⋆
1)

2 = t · σ1(A
⊤A/t) ⩽ tκ̄ν ⩽ O(t) by the

normalization on ∥αi∥. Similarly (σ⋆
r)

2 = tσr(A
⊤A/t) ⩾ tν. So it follows that σ⋆

1 ⩽
√
tκν,

σ⋆
r ⩾
√
tν and κ⋆ ⩽

√
κ. We use this to simplify the preconditions and the statement of the

incoherence ball in the main although we work in full generality throughout the Appendix.
We now present the proof of our main result.

Proof of Theorem 2.2. Under the conditions of the theorem note that by Theorem 2.8 we
have that,

∥UV⊤ −M⋆∥F ⩽ O

(
σ

√
t
max{t, d}r log n

n

)
,

for n ⩾ polylog(n, d, t)Cµ2r4max{t, d}(κ⋆)4. First recall by Lemma 2.16 the incoherence
parameter can in fact be shown to be µ = O(κ̄) under our assumptions which gives the
precondition on the sample complexity due to the task diversity assumption and normalization.
To finally convert this bound to a guarantee on the subspace angle we directly apply
Lemma 2.15 once again noting the task diversity assumption. Lastly note that as B is
orthonormal we have that σ⋆

1 ⩽
√
tκν, σ⋆

r ⩾
√
tν and κ⋆ ⩽

√
κ as previously argued and

σ = 1 under the conditions of the result.
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Geometric Arguments for Landscape Analysis

Our arguments here are generally applicable to various matrix sensing/completion problems
so we define some generic notation:

f(U,V) =
2

n

n∑
i=1

(⟨Ai,UV⊤⟩ −
√
tyi)

2 +
1

2
∥U⊤U−V⊤V∥2F, (2.9)

where Ai =
√
tet(i)x

⊤
i . We work under the following constraint set for large constant C0:

W = { (U,V) | max
i∈[t]
∥e⊤i U∥2 ⩽

C0µrσ
⋆
1

t
, ∥U∥2 ⩽ C0σ

⋆
1, ∥V∥2 ⩽ C0σ

⋆
1 }. (2.10)

We renormalize the statistical model for convenience simply for the purposes of the proof
throughout Section 2.10 the remainder of as:

yi = ⟨Ai,M
⋆⟩+ ni, (2.11)

where ni ∼
√
tσ · ϵi and where ϵi is a sub-gaussian random vector with parameter 1 (note

this is because we have scaled Ai up by a factor of
√
t). M⋆ is rank r, and we let X be the

left singular vector of M⋆, and assume X is µ-incoherent;10 i.e., maxi ∥e⊤i X∥2 ⩽ µr/t.
We now reformulate the objective (denoting M = UV⊤) as

f(U,V) = 2(M−M⋆) : H0 : (M−M⋆) +
1

2
∥U⊤U−V⊤V∥2F +Q(U), (2.12)

where M : H0 : M = 1
n

∑n
i=1⟨Ai,M⟩2 and E[M : H0 : M] = ∥M∥2F and Q is a regularization

term:

Q(U,V) =
2

n

n∑
i=1

[(⟨M−M⋆,Ai⟩ − ni)
2 − (⟨M−M⋆,Ai⟩)2]. (2.13)

In this section, we denote d̃ = max{t, d} and let σ⋆
1, σ

⋆
r be the 1-st and r-th eigenvalue of

matrix M⋆. We denote κ⋆ = σ⋆
1/σ

⋆
r as its condition number.

The high-level idea of the analysis uses ideas from [46]. The overall strategy is to argue
that if we are currently not located at local minimum in the landscape we can certify this by
inspecting the gradient or Hessian of f(U,V) to exhibit a direction of local improvement
∆ to decrease the function value of f . Intuitively this direction brings us close to the true
underlying (U⋆,V⋆).

We now establish some useful definitions and notation for the following analysis

10Note that for our particular problem this is not an additional assumption since by Lemma 2.16 our task
assumptions imply this.
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Definitions and Notation

Definition 2.1. Suppose M⋆ is the optimal solution with SVD is X⋆D⋆Y⋆⊤. Let U⋆ =
X⋆(D⋆)

1
2 , V⋆ = Y⋆(D⋆)

1
2 . Let M = UV⊤ be the current point in the landscape. We reduce

the problem of studying an asymmetric matrix objective to the symmetric case using the
following notational transformations:

W =

(
U
V

)
,W⋆ =

(
U⋆

V⋆

)
,N = WW⊤,N⋆ = W⋆W⋆⊤ (2.14)

We will also transform the Hessian operators to operate on (t + d) × r matrices. In
particular, define the Hessians H1,G such that for all W we have:

N : H1 : N = M : H0 : M

N : G : N = ∥U⊤U−V⊤V∥2F .

Now, letting Q(W) = Q(U,V), we can rewrite the objective function f(W) as

1

2
[(N−N⋆) : 4H1 : (N−N⋆) +N : G : N] +Q(W). (2.15)

We now introduce the definition of local alignment of two matrices.

Definition 2.2. Given matrices W,W⋆ ∈ Rd×r, define their difference ∆ = W −W⋆R⋆,
where R⋆ ∈ Rr×r is chosen as R⋆ = argminZ⊤Z=ZZ⊤=I ∥W −W⋆Z∥2F .

Note that this definition tries to “align” U and U⋆ before taking their difference, and
therefore is invariant under rotations. In particular, this definition has the nice property that
as long as N = WW⊤ is close to N⋆ = W⋆(W⋆)⊤ in Frobenius norm, the corresponding ∆
between them is also small (see Lemma 2.7).

Proofs for Landscape Analysis

With these definitions in hand we can now proceed to the heart of the landscape analysis.
Since W⋆ has rotation invariance, in the following section we always choose W⋆ so that it
aligns with the corresponding W according to Definition 2.2.

We first restate a useful result from [46],

Lemma 2.5 ([46, Lemma 16]). For the objective (2.15), let ∆,N,N⋆ be defined as in
Definition 2.1, Definition 2.2. Then, for any W ∈ R(t+d)×r, we have

∆ : ∇2f(W) : ∆ ⩽∆∆⊤ : H : ∆∆⊤ − 3(N−N⋆) : H : (N−N⋆)

+ 4⟨∇f(W),∆⟩+ [∆ : ∇2Q(W) : ∆− 4⟨∇Q(W),∆⟩], (2.16)

where H = 4H1 + G. Further, if H0 satisfies M : H0 : M ∈ (1± δ)∥M∥2F for some matrix
M = UV⊤, let W and N be defined as in (2.14), then N : H : N ∈ (1± 2δ)∥N∥2F .
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With this result we show a key result which shows that with enough samples all stationary
points in the incoherence ball W that are not close to W⋆ have a direction of negative
curvature.

Lemma 2.6. If Assumption 2.1 holds, then when the number of samples,
n ⩾ Cpolylog(d, n, t)µ2r4max{t, d}(κ⋆)4 for a sufficiently large constant C, with probability
at least 1− 1/poly(d), all stationary points W ∈ int(W) satisfy:

∆∆⊤ : H : ∆∆⊤ − 3(N−N⋆) : H : (N−N⋆) ⩽ −0.1∥N−N⋆∥2F.

Proof. We divide the proof into two cases according to the norm of ∆ and use different
concentration inequalities in each case. In this proof, we denote ∆ = (∆⊤

U,∆
⊤
V)

⊤, clearly, we
have ∥∆U∥F ⩽ ∥∆∥F and ∥∆V∥F ⩽ ∥∆∥F.
Case 1: ∥∆∥2F ⩽ σ⋆

r/1000. In this case, ∥∆U∥2F ⩽ ∥∆∥2F ⩽ σ⋆
r/1000 and ∥∆V∥2F ⩽ ∥∆∥2F ⩽

σ⋆
r/1000. By (2.18), we have

∆∆⊤ : H : ∆∆⊤ ⩽ ∥∆∆⊤∥2F + 0.004σ⋆
r∥∆V∥2F ⩽ 0.005σ⋆

r∥∆∥2F

On the other hand, denote S = W⋆∆⊤ +∆(W⋆)⊤, by (2.17) and Lemma 2.5, we know:

S : H : S ⩾ 0.999∥S∥2F.

Since we choose W⋆ to align with the corresponding W according to Definition 2.2, by
Lemma 2.7.

∥S∥2F = 2(∥∆⊤W⋆∥2F + ∥∆(W⋆)⊤∥2F) ⩾ 2∥∆(W⋆)⊤∥2F ⩾ 2σ⋆
r∥∆∥2F.

This gives:

∆∆⊤ : H : ∆∆⊤ − 3(N−N⋆) : H : (N−N⋆)

= ∆∆⊤ : H : ∆∆⊤ − 3(S+∆∆⊤) : H : (S+∆∆⊤)

⩽ −6S : H : ∆∆⊤ − 3S : H : S

⩽ −S : H : S− 2
√
S : H : S(

√
S : H : S− 3

√
∆∆⊤ : H : ∆∆⊤)

⩽ −0.999∥S∥2F − 2
√
S : H : S ·

√
σ⋆
r · (∥∆∥F − 0.3∥∆∥F) ⩽ −0.999∥S∥2F.

Finally, we know N −N⋆ = S + ∆∆⊤, and ∥S∥2F ⩾ 2σ⋆
r∥∆∥2F ⩾ 500∥∆∥4F = 500∥∆∆⊤∥2F.

Therefore:
∥N−N⋆∥F ⩽ ∥S∥F + ∥∆∆⊤∥F ⩽ 2∥S∥F.

This gives:

∆∆⊤ : H : ∆∆⊤ − 3(N−N⋆) : H : (N−N⋆) ⩽ −0.999∥S∥2F ⩽ −0.1∥N−N⋆∥2F.
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Case 2: ∥∆∥2F ⩾ σ⋆
r/1000, by (2.19), we have:

1

n

n∑
i=1

⟨Ai,M−M⋆⟩2 ⩾∥M−M⋆∥2F − (σ⋆
r)

2/106 ⩾ ∥M−M⋆∥2F − 0.001σ⋆
r∥∆∥2F.

This implies:
(N−N⋆) : H : (N−N⋆) ⩾ ∥N−N⋆∥2F − 0.004σ⋆

r∥∆∥2F.

Then by (2.18), we have:

∆∆⊤ : H : ∆∆⊤ − 3(N−N⋆) : H : (N−N⋆)

⩽∥∆∆⊤∥2F + 0.004σ⋆
r∥∆∥2F − 3(∥N−N⋆∥2F − 0.004σ⋆

r∥∆∥2F)
⩽− ∥N−N⋆∥2F + 0.016σ⋆

r∥∆∥2F ⩽ −0.1∥N−N⋆∥2F,

where the last step follows by applying Lemma 2.7. This finishes the proof.

With this key structural lemma in hand, we now present the main technical result for the
section which characterizes the effect of the additive noise ni on the landscape.

Theorem 2.8. If Assumption 2.1 holds, when the number of samples,
n ⩾ Cpolylog(n, d, t)µ2r4max{t, d}(κ⋆)4 for sufficiently large constant C, with probability at
least 1− 1/poly(d), we have that any local minimum (U,V) ∈ int(W) of the objective (2.9)
satisfies:

∥UV⊤ −M⋆∥F ⩽ O

(
σ

√
tmax{t, d}r log n

n

)
.

Proof. By Lemma 2.6, we know

∆∆⊤ : H : ∆∆⊤ − 3(N−N⋆) : H : (N−N⋆) ⩽ −0.1∥N−N⋆∥2F .

In order to use Lemma 2.5, we bound the contribution from the noise term Q. Recall (2.13):

Q(W) =− 4

n

n∑
i=1

(⟨M−M⋆,Ai⟩ni) +
2

n

n∑
i=1

(ni)
2

⟨∇Q(W),∆⟩ =− 4

n

n∑
i=1

(⟨U∆⊤
V +∆UV

⊤,Ai⟩ni)

∆ : ∇2Q(W) : ∆ =− 8

n

n∑
i=1

(⟨∆U∆
⊤
V,Ai⟩ni).

Let Bi be the (d1 + d2)× (d1 + d2) matrix whose diagonal blocks are 0, and off diagonal
blocks are equal to Ai and A⊤

i respectively. Then we have

[∆ : ∇2Q(W) : ∆− 4⟨∇Q(W),∆⟩]
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= − 8

n

n∑
i=1

(⟨∆U∆
⊤
V,Ai⟩ni) +

16

n

n∑
i=1

(⟨U∆⊤
V +∆UV

⊤,Ai⟩ni)

=
24

n

n∑
i=1

(⟨∆U∆
⊤
V,Ai⟩ni) +

16

n

n∑
i=1

(⟨U⋆∆⊤
V +∆U(V

⋆)⊤,Ai⟩ni)

Now we can use Lemma 2.14 again to bound the noise terms:

|24
n

n∑
i=1

(⟨∆U∆
⊤
V,Ai⟩ni)| ⩽

O

(
σ

√
tmax{t, d}r log n

n

)√
∥∆U∆⊤

V∥2F + 0.001σ⋆
r∥∆V∥2F

|16
n

n∑
i=1

(⟨U⋆∆⊤
V +∆U(V

⋆)⊤,Ai⟩ni)| ⩽ O

(
σ

√
tmax{t, d}r log n

n

)
∥U⋆∆⊤

V +∆U(V
⋆)⊤∥F .

On the one hand, by Lemma 2.7, we have:

∥∆U∆
⊤
V∥2F + 0.001σ⋆

r∥∆V∥2F ⩽ ∥∆∆⊤∥2F + 0.001σ⋆
r∥∆∥2F ⩽ 3∥N−N⋆∥2F.

On the other hand, again by Lemma 2.7, we have:

∥U⋆∆⊤
V +∆U(V

⋆)⊤∥2F ⩽ ∥W⋆∆⊤ +∆(W⋆)⊤∥2F = 2[∥W⋆∆⊤∥2F + ∥∆⊤W⋆∥2F] ⩽
10∥N−N⋆∥2F.

In sum, we have:

[∆ : ∇2Q(W) : ∆− 4⟨∇Q(W),∆⟩] ⩽ O

(
σ

√
tmax{t, d}r log n

n

)
∥N−N⋆∥F.

Therefore, by Lemma 2.5, the Hessian at ∆ direction is equal to:

∆ : ∇2f(W) : ∆ ⩽− 0.1∥N−N⋆∥2F +O(σ

√
tmax{t, d}r log n

n
)∥N−N⋆∥F.

When the point further satisfies the second-order optimality condition we have

∥N−N⋆∥F ⩽ O

(
σ

√
tmax{t, d}r log n

n

)
.

In particular, M−M⋆ is a submatrix of N−N⋆, so ∥M−M⋆∥F ⩽ O(σ
√

tmax{t,d}r logn
n

).
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Linear Algebra Lemmas

We collect together several useful linear algebra lemmas.

Lemma 2.7. Given matrices W,W⋆ ∈ Rd×r, let N = WW⊤ and N⋆ = W⋆(W⋆)⊤, and
let ∆,R⋆ be defined as in Definition 2.2, and let W̃⋆ = W⋆R⋆then we have the followings
properties:

1. W(W̃⋆)⊤ is a symmetric p.s.d. matrix;

2. ∥∆∆⊤∥2F ⩽ 2∥N−N⋆∥2F ;

3. σ⋆
r∥∆∥2F ⩽ ∥∆(W̃⋆)⊤∥2F ⩽ 1

2(
√
2−1)
∥N−N⋆∥2F .

4. ∥∆⊤W̃⋆∥2F ⩽ ∥N−N⋆∥2F

Proof. Statement 1 is in the proof of [46, Lemma 6]. Statement 2 is by [46, Lemma 6].
Statement 3 & 4 follow by Lemma 2.8.

Lemma 2.8. Let U and Y be d × r matrices such that U⊤Y = Y⊤U is a p.s.d. matrix.
Then,

σmin(U
⊤U)∥U−Y∥2F ⩽ ∥(U−Y)U⊤∥2F ⩽

1

2(
√
2− 1)

∥UU⊤ −YY⊤∥2F

∥(U−Y)⊤U∥2F ⩽∥UU⊤ −YY⊤∥F.

Proof. For the first statement, the left inequality is immediate, so we only need to prove right
inequality. To prove this, we let ∆ = U−Y, and expand:

∥UU⊤ −YY⊤∥2F = ∥U∆⊤ +∆U⊤ −∆∆⊤∥2F
= tr(2U⊤U∆⊤∆+ (∆⊤∆)2 + 2(U⊤∆)2 − 4U⊤∆∆⊤∆)

= tr((4− 2
√
2)U⊤(U−∆)∆⊤∆+ (∆⊤∆−

√
2U⊤∆)2 + 2(

√
2− 1)U⊤U∆⊤∆)

⩾ tr((4− 2
√
2)U⊤Y∆⊤∆+ 2(

√
2− 1)U⊤U∆⊤∆) ⩾ 2(

√
2− 1)∥U∆⊤∥2F.

The last inequality follows since U⊤Y is a p.s.d. matrix. For the second statement, again,
we have:

∥UU⊤ −YY⊤∥2F = ∥U∆⊤ +∆U⊤ −∆∆⊤∥2F
= tr(2U⊤U∆⊤∆+ (∆⊤∆)2 + 2(U⊤∆)2 − 4U⊤∆∆⊤∆)

= tr(2U⊤(U−∆)∆⊤∆+ (∆⊤∆−U⊤∆)2 + (U⊤∆)2)

⩾ tr(2U⊤Y∆⊤∆+ (U⊤∆)2) ⩾ ∥U⊤∆∥2F,

where the last inequality follows since U⊤∆ = ∆⊤U.
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Concentration Lemmas

We need to show three concentration-style results for the landscape analysis. The first is an
RIP condition for over matrices in the linear space T = {U⋆X

⊤+YV⊤
⋆ |X ∈ Rt×r,Y ∈ Rd×r}

using matrix concentration. The second and third are coarse concentration results that
exploit the rank r structure of the underlying matrix M and are used in the two distinct
regimes where the distance to optimality can be small or large. Also note that throughout
we can assume a left-sided incoherence condition on the underlying matrix of the form
maxi∈[t] ∥e⊤i U⋆∥2 ⩽ µr

t
due to Assumption 2.2.

We first present the RIP-style matrix concentration result which rests on an applica-
tion of the matrix Bernstein inequality over a projected space. The proof has a similar
flavor to results in [99]. First we define a projection operator on the space of matrices
as PT Z = PUZ + ZPV − PUZPV where PU and PV are orthogonal projections onto the
subspaces spanned by U and V . While PU and PV are matrices, PT is a linear operator
mapping matrices to matrices. Intuitively we wish to show that for all W ∈ Rt×d, that the
observations matrices are approximately an isometry over the space of projected matrices
w.h.p: 1

n

∑n
i=1 t(⟨et(i)x⊤

i , PT W⟩2 ≈ ∥PT W∥2F = ∥W∥2F. Explicitly, we define the action of

the operator Ci = AiA
⊤
i where Ai =

√
txie

⊤
j as Ci(M) = txie

⊤
j ⟨ejx⊤

i ,M⟩.
We record a useful fact we will use in the sequel:

√
tPT (xie

⊤
j ) = PUeix

⊤
j + ei(PVxj)

⊤ − (PUei)(PVxj)
⊤ =⇒

∥PT (xie
⊤
j ∥2F = ⟨PT (xie

⊤
j ),xiej⟩ = ∥PUei∥2∥xi∥2 + ∥ei∥2∥PVxi∥2 − ∥PUei∥2∥PVxj∥2 ⩽

∥PUei∥2∥xi∥2 + ∥PVxi∥2,

where the last inequality holds almost surely.
We now present the proof of the RIP-style concentration result.

Lemma 2.9. Under Assumptions 2.1 and 2.2 and the uniform task sampling model above,

∥ 1
n

n∑
i=1

PT AiA
⊤
i PT − PT ∥ ⩽ (log(ndt)) ·O

(√
µdr2 + tr2

n
+

(µdr + rt) log(tdn)

n

)
,

with probability at least 1−O(n−100), where µ = O(κ̄).

Proof. Note that under the task assumption, Lemma 2.16 diversity implies incoherence
of the matrix U⋆ with incoherence parameter µ = O(κ̄). First, note E[Ci(M)] = M so
E[ 1

n

∑n
i=1 PT AiPT − PT ] = 0. To apply the truncated version of the matrix Bernstein

inequality from Lemma 2.30 we first compute a bound on the norms of each Ci to set the
truncation level R. Note that ∥PT AiAiPT ∥ = ∥PT (xie

⊤
j )∥2F ⩽ t · O((µr

t
∥xi∥2 + ∥PVxi∥2))

using the fact the operator Ai is rank-one along with the Lemma 2.16 which shows task
diversity implies incoherence with incoherence parameter κ̄. Now exploiting Lemma 2.29 we
have that ∥xi∥2 ⩽ O(d+max(

√
d log(1/δ), log(1/δ))) = O(d+

√
d log(1/δ)) and ∥PV xi∥2 ⩽

O(r +
√
r log(1/δ)) with probability at least 1− 2δ using sub-exponential tail bounds and
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a union bound11. Hence ∥PT AiPT ∥ ⩽ O(µrd + µr
√
d log(1/δ)) + tr + t

√
r log(1/δ)) =

O(µrd+ tr + (µr
√
d+ t

√
r) log(1/δ)).

We can rearrange this statement to conclude that Pr[∥PT AiA
⊤
i PT ∥ ⩾ c1(µrd + tr) +

x] ⩽ exp(−c2( x
µr

√
d+t

√
r
)) for some c1, c2. Define a truncation level R = c1(µrd + rt) +

K(µr
√
d + t

√
r) for some K to be chosen later. We can use the aforementioned tail

bound to control ∥E[Zi]− E[Z ′
i]∥ ⩽ E[Zi1[∥Zi∥ ⩾ R]] ⩽

∫∞
K(µr

√
d+t

√
r)
exp(−c2( x

µr
√
d+t

√
r
)) ⩽

O(exp(−cK)(µr
√
d+ t

√
r)) = ∆.

Now we consider the task of bounding the matrix variance term. The calculation is
somewhat tedious but straightforward under our assumptions. We make use of the standard
result that for two matrices X and Y that ∥X−Y∥ ⩽ max(∥X∥, ∥Y∥).

It suffices to bound the operator norm ∥E[∥PT Ai∥2FPT Ai(PT Ai)
⊤∥. Using the calculation

from the prequel and carefully cancelling terms we can see that,

∥E[∥PT Ai∥2FPT Ai(PT Ai)
⊤]∥ ⩽ t2∥E[(∥PUei∥2∥xi∥2 + ∥PVxi∥2 − ∥PUei∥2∥PVxj∥2)·

(∥PUei∥2xix
⊤
i + ∥PVx∥2eie⊤i − ∥PVxi∥2PUei(PUei)

⊤]∥
⩽ t2O(∥E[(∥PUei∥2∥xi∥2∥PUei∥2xix

⊤
i + (∥PUei∥2∥xi∥2∥PVxi∥2eie⊤i ∥] + ∥PVxi∥4eie⊤i ).

We show how to calculate these leading terms as the subleading terms can be shown to be
lower-order by identical calculations. First note using the fact that E[∥PUei∥2] ⩽ r

t
⩽ 1,

since t ⩾ r by the task diversity assumption. Then t2 · ∥E[(∥PUei∥2∥xi∥2∥PUei∥2xix
⊤
i ∥ ⩽

∥µrtE[∥xi∥2xix
⊤
i ]E[∥PUei∥2]∥ ⩽ O(µr2d) appealing to the fact E[∥x∥2xx⊤] ⪯ O(Id) by

Lemma 2.27.
Similarly, we have that, t2 · ∥E[∥PUei∥2∥xi∥2∥PVxi∥2eie⊤i ]∥ ⩽ µrE[∥xi∥2∥PVxi∥2] ⩽ µr2d

using incoherence and by Lemma 2.27. Finally, we have that t2·O(∥E[∥PVxi∥4eie⊤i ∥) ⩽ O(tr2).
Hence we have that σ2 = n ·O(µr2d+ tr2).

Finally, we can assemble the previous two computations to conclude the result with
appropriate choices of R (parametrized through K) and x by combining with Lemma 2.30.
Let us choose K = c3

c
(log(n) + log(d) + log(t)) for some sufficiently large c3. In this case,

we can choose c3 such that ∆ ⩽ O(µr
√
d+t

√
r

n10d10t10
) ⩽ O( µ

n10d8
). Similarly, our choice of truncation

level becomes R = O(µrd+ tr + (log n+ log d+ log t)(µr
√
d+ t

√
r). At this point we now

choose x = c4(log n+ log d+ log t)max(σ/
√
n,R/n) for sufficiently large c4. For large enough

c4 we can guarantee that x ⩾ 2∆ =⇒ x−∆ ⩾ x
2
.

Hence combining these results together and applying Lemma 2.30 we can provide the
following upper bound on the desired quantity:

Pr[∥ 1
n

n∑
i=1

PT AiPT − PT ∥ ⩾ x] ⩽

O(d exp(−c · c4(log n+ log d+ log t))+

11Note that by definition the orthogonal projection of a d-dimensional subgaussian random vector onto an
r-dimensional subspace is an r-dimensional subgaussian random vector.
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O(n
√
K exp(−c3(log n+ log d+ log t)) ⩽ O((ndt)−100)

by taking c3 and c4 sufficiently large, with

x = O((log(ndt))

(√
µdr2 + tr2

n
+

(µrd+ tr) + (µr
√
d+ t

√
r)(log(ndt)))

n

)

.

Lemma 2.10. Let the covariates xi satisfy the design conditions in Assumption 2.1 in the
uniform task sampling model. Then for all matrices M matrices that are of rank 2r, we have
uniformly that,

| 1
n

n∑
i=1

⟨Ai,M⟩2 − ∥M∥2F| ⩽

O

(√
max(t, d)r

n
·
√
tmax

i
∥e⊤i M∥∥M∥F +

max(t, d)r

n
· tmax

i
∥e⊤i M∥2

)
.

with probability at least 1− (3000r)−10max(t,d)r.

Proof. Note that by rescaling it suffices to restrict attention to matrices M that are of rank
2r and have Frobenius norm 1 (a set which we denote Γ). Applying Lemma 2.11, we have
that,

| 1
n

n∑
i=1

t(e⊤t(i)Mxi)
2 − ∥M∥2F | ⩽ O

(
1√
n

√
log(

1

δ
) +

1

n
log(

1

δ
)

)
,

for any fixed M ∈ Γ with probability at least 1 − δ. Now using 2.12 with ϵ = 1
1000

have
that the set Γ admits a cover K of size at most |K| = (3000r)(t+d+1)r. Now by choosing
δ = (3000)−c(t+d+1)r for a sufficiently large constant c we can ensure that,

| 1
n

n∑
i=1

t(e⊤t(i)Mjxi)
2 − ∥Mj∥2F | ⩽ O

(
1√
n

√
(max(t, d)r +

1

n
max(t, d)r

)
∀Mj ∈ K,

with probability at least 1− (3000r)−10max(t,d)r using a union bound. Now a straightforward
Lipschitz continuity argument shows that since any M ∈ Γ can be written as M = Mi + ϵai
for Mi ∈ K and another ai ∈ Γ, then

sup
M∈Γ
| 1
n

n∑
i=1

t(e⊤t(i)Mxi)
2 − ∥M∥2F | ⩽ 2( sup

Mj∈K
| 1
n

n∑
i=1

t(e⊤t(i)Mjxi)
2 − ∥Mj∥2F |),

and hence the conclusion follows. Rescaling the result by ∥M∥2F finishes the result.
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Lemma 2.11. Let the covariates xi satisfy the design condition in Assumption 2.1 in the
uniform task sampling model. Then if Yi = t(e⊤t(i)Axi)

2 − ∥A∥2F, Yi is a sub-exponential
random variable, and

| 1
n

n∑
i=1

t(e⊤t(i)Mxi)
2 − ∥M∥2F | ⩽

O

(√
tmaxi ∥e⊤i M∥2∥M∥F√

n

√
log(

1

δ
) +

tmaxi ∥e⊤i M∥2

n
log(

1

δ
)

)
,

for any fixed M with probability at least 1− δ.

Proof. First note that under our assumptions Yi, E[t(e⊤j Axi)
2] = ∥A∥2F . To establish the

result, we show the Bernstein condition holds with appropriate parameters. To do so, we
bound for k ⩾ 1,

|E[Y k
i ]| ⩽ tk22kE[(e⊤j Mjxi)

2k] = tk22k · E[∥e⊤j Mj∥2k]C2kk! ⩽

(C ′)4kk! · E[(t∥e⊤j M∥2)k−1 · (t∥e⊤j M∥2)] ⩽ (C ′′)kk!(tν2)k−2(tν2∥A∥2F) =
1

2
k!(C ′′tν2︸ ︷︷ ︸

b

)k−2 · (C ′′2tν2∥M∥2F︸ ︷︷ ︸
σ2

),

by introducing an independent copy of Y , using Jensen’s inequality, and the inequality
(a+b

2
)k ⩽ 2k−1(ak + bk) in the first inequality, and the sub-gaussian moment bound E[Z2k] ⩽

2kΓ(k)C2k ⩽ k!C2k for universal constant C which holds under our design assumptions.
Hence directly applying the Bernstein inequality (see [113, Proposition 2.9] shows that,

E[eλ·Yi ] ⩽ eλ
2(
√
2σ)2/2 ∀|λ| ⩽ 1

2b
.

Hence, using a standard sub-exponential tail bound we conclude that,

| 1
n

n∑
i=1

t(e⊤t(i)Mxi)
2 − ∥M∥2F | ⩽ O

(
σ√
n

√
log(

1

δ
) +

b

n
log(

1

δ
)

)
=

O

(√
tmaxi ∥e⊤i M∥2∥M∥F√

n

√
log(

1

δ
) +

tmaxi ∥e⊤i M∥2

n
log(

1

δ
)

)
,

for any fixed A ∈ Γ with probability at least 1− δ.

We now restate a simple covering lemma for rank-O(r) matrices from [13].

Lemma 2.12 (Lemma 3.1 from [13]). Let Γ be the set of matrices M ∈ Rt×d that are of
rank at most r and have Frobenius norm equal to 1. Then for any ϵ < 1, there exists an ϵ-net
covering of Γ in the Frobenius norm, S, which has cardinality at most (9

ϵ
)(t+d+1)r.
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We now state a central lemma which combines the previous concentration arguments into
a single condition we use in the landscape analysis.

Lemma 2.13. Let Assumptions 2.1 and 2.2 hold in the uniform task sampling model. When
number of samples is greater than n ⩾ Cpolylog(d, n, t)µ2r4max{t, d}(κ⋆)4 with large-enough
constant C, with at least 1−1/poly(d) probability, we have following holds for all (U,V) ∈ W
simultaneously:

1

n

n∑
i=1

⟨U⋆∆⊤
V +∆U(V

⋆)⊤,Ai⟩2 ∈(1± 0.001)∥U⋆∆⊤
V +∆U(V

⋆)⊤∥2F (2.17)

1

n

n∑
i=1

⟨Ai,∆U∆
⊤
V⟩2 ⩽∥∆U∆

⊤
V∥2F + 0.001σ⋆

r∥∆V∥2F (2.18)

1

n

n∑
i=1

⟨Ai,M−M⋆⟩2 ⩾∥M−M⋆∥2F − (σ⋆
r)

2/106, (2.19)

where M = UV⊤ and ∆U,∆V are defined as in Definition 2.2. Here µ = O(κ̄).

Proof. This result follows immediately by applying Lemma 2.9 to the first statement and
Lemma 2.10 to the following two statements using the definition of the incoherence ball
W .

Lemma 2.14. Suppose the set of matrices A1,A2, ...,An satisfy the event in Lemma 2.13,
let n1, n2, ..., nm be i.i.d. sub-gaussian random variables with variance parameter tσ2, then
with high probability for any (U,V) ∈ W, we have

| 1
n

n∑
i=1

(⟨∆U∆
⊤
V,Ai⟩ni)| ⩽ O(σ

√
tmax{t, d}r log n

n
)
√
∥∆U∆⊤

V∥2F + 0.001σ⋆
r∥∆V∥2F

| 1
n

n∑
i=1

(⟨U⋆∆⊤
V +∆U(V

⋆)⊤,Ai⟩ni)| ⩽ O(σ

√
tmax{t, d}r log n

n
)∥U⋆∆⊤

V +∆U(V
⋆)⊤∥F

for n ≳ polylog(d).

Proof. Note since the left hand side of the expressions are linear in the matrices we can
normalize to those of Frobenius norm 1. The proof of both statements is identical so we
simply prove the second.

Define δ = ∥U⋆∆⊤
V +∆U(V

⋆)⊤∥F and M = U⋆∆⊤
V+∆U(V

⋆)⊤ for convenience, which can
be thought of as arbitrary rank-r matrices. Then let S be an ϵ-net for all rank-r matrices with
Frobenius norm 1; by Lemma 2.12 we have that log |S| ⩽ O(max(t, d)r log(1

ϵ
)). We set ϵ = 1

n3

so log(1
ϵ
) = O(log n). Now for any matrix M ∈ S we have that 1

n
⟨Ai,M⟩ is a sub-gaussian

random variable with variance parameter at most tσ2 δ2

n
. Thus, using a sub-gaussian tail
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bound along with a union bound over the net shows that uniformly over the M ∈ S,

| 1
n

n∑
i=1

⟨M,Ai⟩ni)| ⩽ O

(
σδ

√
tmax{t, d}r log n

n

)
,

with probability at least 1− 1
poly(d)

. We now show how to lift to the set of all M. Note that

with probability at least 1− e−Ω(n) that ∥n∥ = O(
√
tσ
√
n) by a sub-gaussian tail bound (see

for example Lemma 2.29). Let M be an arbitrary element, and M′ its closest element in the
cover; then we have that zi = ⟨Ai,M−M′⟩ ⩽ δ

n2 using the precondition on Ai. Combining
and using a union bound then shows that,

| 1
n

n∑
i=1

ni⟨Ai,M⟩| ⩽ |
1

n

n∑
i=1

ni⟨Ai,M
′⟩|+ | 1

n

n∑
i=1

ni⟨Ai,M−M′⟩| ⩽

O

(
σδ

√
tmax{t, d}r log n

n

)
+

√
tσδ√
n

⩽ O

(
σδ

√
tmax(t, d)r log n

n

)
.

Rescaling and recalling the definition of δ gives the result.

Task Diversity for the Landscape Analysis

Here we collect several useful results for interpreting the results of the landscape analysis.
Throughout this section we use the notation U ∈ Rt×r and V ∈ Rd×r.

The first result allow us to convert a guarantee on error in Frobenius norm to a guarantee
in angular distance, assuming an appropriate diversity condition on U.

Lemma 2.15. Suppose V and V̂ are orthonormal projection matrices, that is V⊤V = Ir,
and V̂⊤V̂ = Ir. Then, for any ϵ > 0, if ∥ÛV̂⊤ −UV⊤∥2F ⩽ ϵ for some Û and U, then:

dist2(V, V̂) ⩽
ϵ

νt
,

where ν = σr(U
⊤U)/t.

Here the distance function is the sine function of the principal angle; i.e.

dist(V, V̂) := ∥V⊤V̂⊥∥,

and ν = σr(U
⊤U)/t represents an analog of the task diversity matrix.

Proof. Define the function f(Ũ) = ∥ŨV̂⊤ −UV⊤∥2F. The precondition of the theorem states
that there exists Û so that ∥ÛV̂⊤ −UV⊤∥2F ⩽ ϵ. This clearly implies the following:

min
Ũ

f(Ũ) ⩽ ϵ. (2.20)
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Setting the gradient df/dŨ = 0, we have the minimizer Ũ⋆ satisfies:

(Ũ⋆V̂⊤ −UV⊤)V̂ = 0,

which gives:
Ũ⋆ = UV⊤V̂.

Plugging this back to Eq. (2.20) gives:

∥UV⊤(V̂V̂⊤ − I)∥2F ⩽ ϵ.

Finally, we have:

∥UV⊤(V̂V̂⊤ − I)∥2F =∥UV⊤V̂⊥V̂
⊤
⊥∥2F = ∥UV⊤V̂⊥∥2F = tr(U⊤UV⊤V̂⊥V̂

⊤
⊥V)

⩾σr(U
⊤U)∥V⊤V̂⊥∥2F ⩾ σr(U

⊤U)∥V⊤V̂⊥∥2.

The second last inequality follow since for any p.s.d. matrices A and B, we have tr(AB) ⩾
σmin(A)tr(B). This concludes the proof.

For the following let A = (α1, · · · ,αt)
⊤ ∈ Rt×r and denote the SVD of A = UΣV⊤.

Next we remark that our assumptions on task diversity and normalization implicit in the
matrix A are sufficient to actually imply an incoherence condition on U (which is used in
the matrix sensing/completion style analysis).

Lemma 2.16. If µ = 1
rσr(A⊤A/t)

and maxi∈[t] ∥αi∥2 ⩽ C, then we have:

max
i∈[t]
∥e⊤i U∥2 ⩽

Cµr

t
.

Proof. Since maxi∈[t] ∥αi∥2 ⩽ C, we have, for any i ∈ [t]

C ⩾ ∥αi∥2 = ∥e⊤i A∥2 = ∥e⊤i UΣ∥2 ⩾ ∥e⊤i U∥2σ2
min(Σ) = ∥e⊤i U∥2σr(A

⊤A) = (t/µr)∥e⊤i U∥2,

which finishes the proof.

Note in the context of Assumption 2.2 the incoherence parameter corresponds to the
parameter κ̄ ⩽ κ since under our normalization tr(A⊤A/t) = Θ(1). Further to quickly verify
the incoherence ball contains the true parameters it is important to recall the scale difference
M⋆ and A⊤A/t by a factor of

√
t.
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2.11 Proofs for Section 2.4

Assuming we have obtained an estimate of the column space or feature set B̂ for the
initial set of tasks, such that ∥B̂⊤B∥ ⩽ δ, we now analyze the performance of the plug-in
estimator (which explicitly uses the estimate B̂ in lieu of the unknown B) on a new task.
Recall we define the estimator for the new tasks by a projected linear regression estimator:
α̂ = argminα ∥y −XB̂α∥2 =⇒ α̂ = (B̂⊤X⊤XB̂)−1B̂⊤X⊤y.

Analyzing the performance of this estimator requires first showing that the low-dimensional
empirical covariance and empirical correlation concentrate in Õ(r) samples and performing
an error decomposition to compute the bias resulting from using B̂ in lieu of B as the feature
representation. We measure the performance the estimator with respect to its estimation error
with respect to the underlying parameter Bα0; in particular, we use ∥B̂α̂−Bα0∥2. Note
that our analysis can accommodate covariates xi generated from non-isotropic non-Gaussian
distributions. In fact the only condition we require on the design is that the covariates are
sub-gaussian random vectors in the following sense.

Assumption 2.3. Each covariate vector xi is mean-zero, satisfies E[xx⊤] = Σ and Σ-sub-

gaussian, in the sense that E[exp(v⊤xi)] ⩽ exp
(

∥Σ1/2v∥2
2

)
. Moreover, the additive noise ϵi is

i.i.d. sub-gaussian with variance parameter 1 and is independent of xi.

Note that Assumption 2.1 immediately implies Assumption 2.3.
Throughout this section we will let B̂ and B̂⊥ be orthonormal projection matrices

spanning orthogonal subspaces which are rank r and rank d − r respectively—so that
range(B̂)⊕ range(B̂⊥) = Rd.

Proof of Theorem 2.4. To begin we use the definition of

α̂ = (B̂⊤X⊤XB̂)−1B̂X⊤y = (B̂⊤X⊤XB̂)−1B̂X⊤XBα0 + (B̂⊤X⊤XB̂)−1B̂X⊤ϵ

to decompose the error as,

(B̂α̂−Bα0) = B̂(B̂⊤X⊤XB̂)−1B̂X⊤XBα0 −Bα0 + B̂(B̂⊤X⊤XB̂)−1B̂⊤X⊤ϵ.

Now squaring both sides of the equation gives, so

∥B̂α̂−Bα0∥2 ⩽ 2(∥B̂(B̂⊤X⊤XB̂)−1B̂X⊤XBα0 −Bα0∥2 + ∥B̂(B̂⊤X⊤XB̂)−1B̂⊤X⊤ϵ∥2).

The first bias term can be bounded by Lemma 2.17, while the the variance term can be
bounded by Lemma 2.18 . Combining the results and using a union bound gives the result.

We now present the lemmas which allow us to bound the variance terms in the afore-
mentioned error decomposition. For the following two results we also track the conditioning
dependence with respect Cmin and Cmax. We first control the term arising from the projection
of the additive noise onto the empirical covariance matrix.
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Lemma 2.17. Let the sequence of n i.i.d. covariates xi and n i.i.d. additive noise variables
ϵi satisfy Assumption 2.3. Then if n ≳ C2

condr log n,

∥B̂(B̂⊤X⊤XB̂)−1B̂⊤X⊤ϵ∥2 ⩽ O

(
r log n

Cminn

)
,

with probability at least 1−O(n−100).

Proof. Since ∥B̂(B̂⊤X⊤XB̂)−1B̂⊤X⊤ϵ∥2 ⩽ ∥(B̂⊤X⊤XB̂)−1B̂⊤X⊤ϵ∥2, it suffices to bound

the latter term. Consider ϵ⊤
1

n

XB̂√
n
(B̂⊤X

⊤X

n
B̂)−2 B̂

⊤X⊤
√
n︸ ︷︷ ︸

A

ϵ. So applying the Hanson-Wright

inequality [110, Theorem 6.2.1] (conditionally onX) to conclude that Pr[|ϵ⊤Aϵ− E[ϵ⊤Aϵ]| ⩾
t] ⩽ 2 exp(−cmin( t2

∥A∥2F
, t
∥A∥)). Hence

ϵ⊤Aϵ ⩽ E[ϵ⊤Aϵ] +O(∥A∥F
√
log(2/δ1)) +O(∥A∥ log(2/δ1))

with probability at least 1− δ1.
Now using cyclicity of the trace we have that E[ϵ⊤Aϵ] = 1

n
tr[(B̂⊤X⊤X

n
B̂)−1]. Similarly

∥A∥ = 1
n
∥(B̂⊤X⊤X

n
B̂)−1∥ = 1

n
∥(E+ B̂⊤ΣB̂)−1∥. Applying Lemma 2.19 to the matrix E with

δ = n−200 and assuming n ≳ C2
condr log(1/δ) ≳ C2

condr log n shows that ∥(B̂⊤ΣB̂)−1E∥ ⩽ 1
4
.

Also note that on this event and this regime of sufficiently large n, this concentration result
shows that σmin(B̂

⊤X⊤X
n

B̂) > Cmin/2, so the matrix is invertible. Hence an application of

Lemma 2.24 shows that ∥A∥ ⩽ 1
n
( 1
Cmin
· (1 + Ccond

√
r logn

n
)) ⩽ O( 1

Cminn
). Similarly since

XB̂√
n
is rank r and invertible on this event, it follows ∥A∥F ⩽

√
r∥A∥ ⩽ O(

√
r

Cminn
) and that

1
n
tr[(B̂⊤X⊤X

n
B̂)−1] ⩽ r

Cminn
.

Hence taking δ1 = n−200, and using the union bound, we conclude that ϵ⊤Aϵ ⩽ 1
Cmin
·

O( r
n
) +O(

√
r logn
n

) +O( logn
n

) ⩽ O( r logn
Cminn

) with probability at least 1−O(n−100).

We now control the error term which arises both from the variance in the random design
matrix X and the bias due to mismatch between B̂ and B.

Lemma 2.18. Let the sequence of n i.i.d. covariates xi satisfy the design assumptions in
Assumption 2.3, and assume sin(B̂,B) ⩽ δ ⩽ 1. Then if n ≳ C2

condr log n,

∥B̂(B̂⊤X⊤XB̂)−1B̂X⊤XBα0 −Bα0∥2 ⩽ O(∥α0∥2C2
condδ

2),

with probability at least 1−O(n−100).

Proof. To control this term we first insert a copy of the identity Id = B̂B̂⊤ + B̂⊥B̂
⊤
⊥ to allow

the variance term in the design cancel appropriately in the span of B̂; formally,

B̂(B̂⊤X⊤XB̂)−1B̂X⊤XBα0 −Bα0 =
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B̂(B̂⊤X⊤XB̂)−1B̂X⊤X(B̂B̂⊤ + B̂⊥B̂
⊤
⊥)Bα0 −Bα0 =

(B̂B̂⊤ − I)Bα0 + B̂(B̂⊤X⊤XB̂)−1B̂X⊤XB̂⊥B̂
⊤
⊥Bα0 =

B̂⊥B̂
⊤
⊥Bα0 + B̂(B̂⊤X⊤XB̂)−1B̂X⊤XB̂⊥B̂

⊤
⊥Bα0 =⇒

∥B̂(B̂⊤X⊤XB̂)−1B̂X⊤XBα0 −Bα0∥2 ⩽
2(∥α0∥2δ2 + ∥(B̂⊤X⊤XB̂)−1B̂X⊤XB̂⊥∥2δ2∥α0∥2).

We now turn to bounding the second error term, ∥(B̂⊤X⊤XB̂)−1B̂⊤X⊤XB∥2. Let E1 =

B̂⊤X⊤X
n

B̂−B̂⊤ΣB̂ and E2 = B̂⊤X⊤X
n

B−B̂ΣB. Applying Lemma 2.19 to the matrix E1 with

δ = n−200 and assuming n ≳ C2
condr log(1/δ) ≳ C2

condr log n shows that ∥(B̂⊤ΣB̂)−1E1∥ ⩽ 1
4

and ∥E1∥ ⩽ O(Cmax

√
r logn

n
) with probability at least 1 − O(n−100). A further application

of Lemma 2.24 shows that (B̂⊤X⊤X
n

B̂)−1 = (E1 + B̂⊤ΣB̂)−1 = (B̂⊤ΣB̂)−1 + F, where

∥F∥ ⩽ 4
3
∥(B̂⊤ΣB̂)−1∥∥E1(B̂

⊤ΣB̂)−1∥ on this event. Similarly, defining B̂⊤X⊤X
n

B = E2 +

B̂⊤ΣB and applying Lemma 2.19 again but to the matrix E2 with δ = n−200 and assuming

n ≳ C2
condr log(1/δ) ≳ C2

condr log n, guarantees that ∥E2∥ ⩽ O(Cmax(
√

r logn
n

) with probability

at least 1−O(n−100).
Hence on the intersection of these two events,

∥(B̂⊤X
⊤X

n
B̂)−1B̂⊤X

⊤X

n
B∥ = ∥((B̂⊤ΣB̂)−1 + F)(B̂⊤ΣB+ E2)∥ ⩽

∥(B̂⊤ΣB̂)−1B̂⊤ΣB∥+ ∥(B̂⊤ΣB̂)−1E2∥+ ∥FB̂⊤ΣB∥+ ∥E2F∥ ⩽

Ccond +O(Ccond

√
r log n

n
) +O(C2

cond

√
r log n

n
) +O(C2

cond

r log n

n
) ⩽

Ccond +O(C2
cond

√
r log n

n
) = O(Ccond),

under the condition n ≳ C2
cond

r logn
n

. Taking a union bound over the aforementioned events
and combining terms gives the result.

Finally we present a concentration result for random matrices showing concentration
when the matrices are projected along two (potentially different) subspaces.

Lemma 2.19. Suppose a sequence of i.i.d. covariates xi satisfy the design assumptions in
Assumption 2.3. Then, if A and B are both rank r orthonormal projection matrices,

∥(A⊤X
⊤X

n
B)−A⊤ΣB)∥ ⩽ O(Cmax(

√
r

n
+

r

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)),

with probability at least 1− δ.
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Proof. The result follows by a standard sub-exponential tail bound and covering argument.
First note that for any fixed u,v ∈ Sr−1, we have that u⊤A⊤xi and v⊤B⊤xi are both
sG(
√
Cmax). Hence for any fixed u,v ∈ Sr−1, u⊤A⊤xix

⊤
i Bv−u⊤A⊤ΣBv is sE(8Cmax, 8Cmax).

Now, let S denote a ϵ-cover of Sr−1 which has cardinality at most (3
ϵ
)r by a volume-covering

argument. Hence for ϵ = 1
5
,

Pr[ sup
u∈Sr−1,v∈Sr−1

u⊤A⊤xix
⊤
i Bv − u⊤A⊤ΣBv ⩾ t] ⩽ 225r exp(−cnmin(t2/C2

max, t/Cmax))),

using a union bound over the covers and a sub-exponential tail bound. Taking t = C ·
Cmax(

√
r
n
+ r

n
+
√

log(1/δ)
n

+ log(1/δ)
n

) for sufficiently large C, shows that

225r exp(−cnmin(t2/C2
max, t/Cmax))) ⩽ δ

. Finally a standard Lipschitz continuity argument yields

sup
u∈Sr−1,v∈Sr−1

u⊤ 1

n

n∑
i=1

u⊤A⊤xix
⊤
i Bv − u⊤A⊤ΣBv

⩽
1

1− 3ϵ
sup

u∈Sr−1,v∈Sr−1

u⊤A⊤xix
⊤
i Bv − u⊤A⊤ΣBv,

which gives the result.

2.12 Proofs for Section 2.5

We begin by presenting the proof of the main statistical lower bound for recovering the feature
matrix B and relevant auxiliary results. Following this we provide relevant background on
Grassmann manifolds.

As mentioned in the main text our main tool is to use is a non-standard variant of the
Fano method, along with suitable bounds on the cardinality of the packing number and the
distributional covering number, to obtain minimax lower bound on the difficulty of estimating
B. We instantiate the f -divergence based lower bound below (which we instantiate with
χ2-divergence). We restate this result for convenience.

Lemma 2.20. [49, Theorem 4.1] For any increasing function ℓ : [0,∞)→ [0,∞),

inf
θ̂
sup
θ∈Θ

Prθ[ℓ(ρ(θ̂, θ)) ⩾ ℓ(η/2)] ⩾ sup
η>0,ϵ>0

{
1−

(
1

N(η)
+

√
(1 + ϵ2)MC(ϵ,Θ)

N(η)

)}
.

In the context of the previous result N(η) denotes a lower bound on the η-packing number
of the metric space (Θ, ρ). Moreover, MC(ϵ,Θ) is a positive real number for which there
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exists a set G with cardinality ⩽ MC(ϵ, S) and probability measures Qα, α ∈ G such that
supθ∈S minα∈G χ2(Prθ, Qα) ⩽ ϵ2, where χ2 denotes the chi-squared divergence. In words,
MC(ϵ, S) is an upper bound on the ϵ-covering on the space {Prθ : θ ∈ S} when distances are
measured by the square root of the χ2-divergence.

We obtain the other term capturing the difficulty of estimating B̂ with respect to the task
diversity minimum eigenvalue by constructing a pair of feature matrices which are hard to
distinguish for a particular ill-conditioned task matrix A. Using these two results we provide
the proof of our main lower bound.

Proof of Theorem 2.5. For our present purposes we simply take ℓ(·) to be the identity function
in our application of Lemma 2.20 as we obtain the second term in the lower bound. Then
by the duality between packing and covering numbers we have that logN ⩾ logM at the
same scale (see for example [113, Lemma 5.5]), so once again by Proposition 2.9 we have
that logN(η) ⩾ r(d − r) log( c1

η
). Then applying Lemma 2.21 we have that MC(ϵ,Θ

′) ⩽

( c2n
log(1+ϵ2)

)r(d−r)/2. For convenience we set k = r(d− r) in the following. We now choose the
pair η and ϵ appropriately in Lemma 2.20. The lower bound writes as,

1−

(
1

N(η)
+

√
(1 + ϵ2)MC(ϵ,Θ)

N(η)

)
⩾ 1−

(
(
η

c2
)k + (

η

c2
)k/2 · (c1n)k/4

(1 + ϵ2)1/2

log(1 + ϵ2)k/4

)
,

with the implicit constraint that ϵ′ =
√

2
n
log(1 + ϵ2) < 1. A simple calculus argument

shows that ϵ →
√
1 + ϵ2/(log(1 + ϵ2))k/4 is minimized when 1 + ϵ2 = ek/2 (subject to√

1
2n

log(1 + ϵ2) < 1). This constraint can always be ensured by taking n > k
4
. We then have

that the lower bound becomes

1−
(
(
η

c2
)k + (2e

c1
c22
η2n/k)k/4

)
. (2.21)

We now take η = C
√

k/n so the bound simplifies to 1 −
(
( η
c2
)k + (2e c1

c22
η2n/k)k/4

)
= 1 −(

(C
c2

√
k/n)k + (2e c1

c22
C2)k/4

)
. By choosing C to be sufficiently small and taking n > k we

ensure that 1 −
(
(C
c2

√
k/n)k + (2e c1

c22
C2)k/4

)
⩾ 99

100
. Finally, under the condition r ⩽ d

2
we

have that k ⩾ dr
2
. Combining with Lemma 2.20 gives the result for the second term.

The first term is lower bounded using the LeCam two-point method in an indepedent
fashion as a consequence of Lemma 2.23. A union bound over the events on which the lower
bounds hold give the result. Note that a single choice of A matrix can in fact be used for
both lower bounds by simply opting for the choice of A used in Lemma 2.23.

To implement the lower bound we require an upper bound on the covering number in the
space of distributions of PrB. Throughout we use standard properties of the χ2-divergence
which can be found in [108, Section 2.4].
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Lemma 2.21. Suppose n data points, (xi, yi), are generated from the model in (2.1) with
i.i.d. covariates xi ∼ N (0, Id) and independent i.i.d. noise ϵi ∼ N (0, 1). Further, assume
the task parameters satisfy Assumption 2.2 with each task normalized to ∥αi∥ = 1

2
. Then if

r ⩽ d
2
,

MC(ϵ,Θ
′) ⩽

(
cn

log(1 + ϵ2)

)r(d−r)/2

,

whenever
√

1
2n

log(1 + ϵ2) < 1.

Proof. We first upper bound the χ2 divergence between two data distributions for two distinct
Bi and Bj. Now the joint distribution over the observations for each measure PrBi can be
written as PrBi ≡ Πt

k=1p(Xk)p(y|Xk,B
i,αj), where p(Xk) corresponds to the density of the

Gaussian design matrix, and p(y|Xk,B
i,αk) the Gaussian conditionals of the observations y.

So using standard properties of the χ2-divergence we find that,

χ2(PrBi ,PrBj) = Πt
k=1(1 + EXk

[χ2(p(y|Xk,B
i), p(y|Xk,B

j))])− 1 =

Πt
k=1EXk

[
exp

(
∥Xk(B

iαk −Bjαk)∥2
)]
− 1.

Now note that ∥(Biαk −Bjαk)∥2 ⩽ 2∥αk∥2σ1(Ir − (Bi)⊤Bj). Recognizing σr((B
i)⊤Bj) =

cos θ1(B
i,Bj) and ∥(Bi

⊥)
⊤Bj∥ = sin θ1, where θ1 is largest principal angle between the

subspaces, we have that 1−σr((B
i)⊤Bj) = 1−

√
1− ∥(Bi

⊥)
⊤Bj∥2 ⩽ ∥(Bi

⊥)
⊤Bj∥2 ⩽ 1, using

the elementary inequality 1−
√
1− x2 ⩽ x2 for 0 ⩽ x ⩽ 1. Thus, ∥(Biαt −Bjαt)∥2 ⩽ 1

2
.

Now we use the identity that for x ∼ N (0, Id), and ∥v∥ ⩽ 1
2
that Ex exp((v

⊤x)2) =

Ex[exp(∥v∥2(( v⊤

∥v∥x)
2 − 1)] exp(∥v∥2) = exp(−∥v∥2))√

1−2∥v∥2
· exp(∥v∥2) ⩽ exp(2∥v∥4) · exp(∥v∥2) ⩽

exp(2∥v∥2). Hence combining the above two facts we obtain,

χ2(PrBi ,PrBj) ⩽ exp

(
2

t∑
k=1

nt∥Biαk −Bjαk∥2
)
− 1 ⩽ exp(2n · sin2 θ(Bi,Bj))− 1

applying Lemma 2.22 in the inequality with a rescaling. Hence to ensure that χ2(PrBi,Bj ) ⩽ ϵ2

we take Bi to be the closest element in a ϵ′ cover, S, of Grr,d(R) to Bj. Since further

χ2(PrBi ,PrBj) ⩽ exp(2n(ϵ′)2)− 1 this is satisfied by taking ϵ′ =
√

1
2n

log(1 + ϵ2) (with the

constraint we have ϵ′ < 1). Using Proposition 2.9, we then obtain that,

MC(ϵ,Θ
′) ⩽

(
cn

log(1 + ϵ2)

)r(d−r)/2

,

for a universal constant c.
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Lemma 2.22. Let the task parameters αi each satisfy ∥αi∥ = 1 with parameter ν =

σr(
A⊤A

t
) > 0, and let Bi and Bj be distinct, rank-r orthonormal feature matrices. Then,

t∑
k=1

nt∥Biαk −Bjαk∥2 ⩽ n sin2 θ(Bi,Bj).

where n = t · nt.

Proof. We can simplify the expression as follows,

t∑
k=1

nt∥Biαk −Bjαk∥2 = n · 1
t

t∑
j=1

2 · (α⊤
k αk −α⊤

k (B
i)⊤Bjαk) =

n · tr
((

Ir − (Bi)⊤Bj
) A⊤A

t

)
using the fact that B⊤B = Ir for an orthonormal feature matrix, the normalization of ∥αk∥ =
1, and the cyclic property of the trace. Now use the fact that tr

((
Ir − (Bi)⊤Bj

)
A⊤A

t

)
) ⩽

σmax(Ir − (Bi)⊤Bj)) · tr(A⊤A
t

) ⩽ 1
4
(1 − cos θ1) =

1
4
(1 −

√
1− sin2 θ1) ⩽ 1

4
sin2 θ1, using the

elementary inequality 1 −
√
1− x2 ⩽ x2 for 0 ⩽ x ⩽ 1. Note that tr(A⊤A/t) ⩽ 1

4
follows

from the normalization of the αj.

We now provide brief background on Grr,d(R) and establish several pieces of notation
relevant to the discussion. We denote the Grassmann manifold, which consists of the the set
of r-dimensional subspaces within the underlying d-dimensional space, as Grr,d(R). Another
way to define it is as the homogeneous space of the orthogonal group O(d) in the sense that,

Grr,d(R) ∼= O(d)/(O(r)×O(d− r)),

which defines its geometric structure. The underlying measure on the manifold Gr,n(R) is
the associated, normalized invariant (or Haar) measure.

Note that each orthonormal feature matrix B, is contained in an equivalence class (under
orthogonal rotation) of an element in Grr,d(R). To define distance in Grr,d(R) we define
the notion of a principal angle between two subspaces p and q. If C is an orthonormal
matrix whose columns form an orthonormal basis of p and D is an orthonormal matrix whose
columns form an orthonormal basis of q, then the singular values of the decomposition of
C⊤D = UDV⊤ defines the principal angles as follows:

D = diag(cos θ1, cos θ2, . . . , cos θk),

where 0 ⩽ θk ⩽ . . . ⩽ θ1 ⩽ π
2
. As shorthand we let θ = (θ1, θ2, . . . , θk), and let sin and cos

act element-wise on its components. The subspace angle distance which is induced by ℓ∞
norms on the vector sin θ. We refer the reader to [94] for geometric background on coding and
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packing/covering bounds in the context of Grassmann manifolds relevant to our discussion
here.

In the following we let M(Grr,d(R), sin θ1, η) denote the η-covering number of Grr,d(R) in
the subspace angle distance.

Proposition 2.9. [94, Adapted from Proposition 8] For any integers 1 ⩽ r ⩽ d
2
and every

ϵ > 0, we have that,

r(d− r) log(
c1
η
) ⩽ logM(Grr,d(R), sin θ1, η) ⩽ r(d− r) log(

c2
η
),

for universal constants c1, c2 > 0.

Proof. Define for a linear operator T , σq(T ) = (
∑

i⩾1 |si(T )|p)1/p for all 1 ⩽ q ⩽∞ where si(T )
denotes its ith singular value. Note that Proposition 8 in [94] states the result in the distance
metric d(E,F ) = σq(PE − PF ) where PE and PF denotes the projection operator onto the
subspace E and F respectively, and σq(T ) = (

∑
i⩾1 |si(T )|p)1/p. However, as the computation

in Proposition 6 of [94] establishes, we have that σq(PE − PF ) = (2
∑r

i=1(1− cos2 θi)
q/2)1/q;

taking q →∞ implies σq(PE − PF ) = sin θ1, and hence directly translating the result gives
the statement of the proposition.

Finally, we include the proof of the lower bound which captures the dependence on the
task diversity parameter. The proof uses the LeCam two-point method between two problem
instances which are difficult to distinguish for a particular, ill-conditioned task matrix.

Lemma 2.23. Under the conditions of Theorem 2.5, for n ⩾ 1
8ν
,

inf
B̂

sup
B∈Grr,d(R)

sin θ(B̂,B) ⩾ Ω

(√
1

ν

√
1

n

)

with probability at least 3
10
.

Proof. First consider an ill-conditioned task matrix where the sequence of αi = 1
2
ei for

i ∈ [r−1] but then αr =
1
2
(
√
1− b2er−1+ber) for 0 < b < 1 where ei are the standard basis in

Rr. Now, consider two task models for two different subspaces B1 and B2 which are distinct in
a single direction. Namely we takeB1 = [e1, . . . , er] andB2 = [e1, . . . , er−1,

√
1− a2er+aer+1],

for 0 < a < 1, where ei refer to the standard basis in Rd. Here we have cos θ1 = ∥B⊤
2 B1∥ =√

1− a2 =⇒ sin θ1 = a, where θ1 refers to the largest principle angle between the two
subspaces.

Data is generated from the two linear models as,

yi = x⊤
i B1αj + ϵi i = 1, . . . , n

yi = x⊤
i B2αj + ϵi i = 1, . . . , n
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with n total samples generated evenly from each of j in [t] tasks (nt from each task) inducing
two measures Pr1 and Pr2 over their respective data. The LeCam two-point method (see
[113, Ch. 15] for example) shows that,

inf
B̂

sup
B∈Grr,d(R)

PrB[sin θ(B̂,B) ⩾ a] ⩾
1

2
(1− ∥Pr1 −Pr2∥TV) (2.22)

for the B1 and B2 of our choosing as above.
We can now upper bound the total variation distance (via the Pinsker inequality) similar

to as in Lemma 2.21,

∥Pr1 −Pr2∥2TV ⩽
1

2
KL(Pr1|Pr2) =

1

4

t∑
j=1

nt∑
i=1

∥B1αj −B2αj∥22 = (2.23)

1

2
nt

t∑
j=1

(∥αj∥2 −α⊤
j B

⊤
1 B2αj) =

n

2
· (1
4
− tr(B⊤

1 B2C)) (2.24)

using cyclicity of the trace. Straightforward calculations show that given the A matrix,

C = 1
4r

[
Ir−2 0
0 M1

]
, where M1 =

[
2− b2 b

√
1− b2

b
√
1− b2 b2

]
. Similarly B⊤

1 B2 =

[
Ir−2 0
0 M2

]
where M2 =

[
1 0

0
√
1− a2

]
. Computing the trace term,

1

4
− tr((B⊤

1 B2)C) =
1

4
− 1

4

(
r − 2

r
+

1

r
· tr
([1 0

0
√
1− a2

] [
2− b2 b

√
1− b2

b
√
1− b2 b2

]))
=

(2.25)

1

4r
b2(1−

√
1− a2). (2.26)

Hence, ∥Pr1 −Pr2∥2TV ⩽ n
2r
b2(1−

√
1− a2) ⩽ n

2r
b2a2. Combining with the LeCam two-point

lemma shows that,

inf
B̂

sup
B∈Grr,d(R)

PrB[sin θ(B̂,B) ⩾ a] ⩾
1

2
(1− ∥Pr1 −Pr2∥TV) ⩾

1

2
(1−

√
n

2r
ba). (2.27)

Taking a = 1
2

√
r
n
1
b
< 1 suffices to ensure the lower bound with probability at least 3

10
.

This induces the constraint 1
2

√
r
n
1
b
< 1 =⇒ n > r

4b2
. As a last remark note that the C

matrix has maximum and minimum eigenvalues 1
4r
(1 +

√
1− b2) and 1

4r
(1 −

√
1− b2). So

ν = 1
4r
(1 −

√
1− b2) =⇒

√
2
√
rν ⩽ b ⩽ 2

√
2
√
rν for 0 < b < 1 using the inequality

x2/2 ⩽ 1−
√
1− x2 ⩽ x2. Hence it follows a ⩾ 1

8
1√
ν

√
1
n
as well. Similarly the constraint can

reduce too n > 1
8ν
.
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2.13 Auxiliary Results

Here we collect several auxiliary results. We begin by stating a simple matrix perturbation
result.

Lemma 2.24. Let A be a positive-definite matrix and E another matrix which satisfies
∥EA−1∥ ⩽ 1

4
, then,

(A+ E)−1 = A−1 + F,

where ∥F∥ ⩽ 4
3
∥A−1∥∥EA−1∥.

Proof.

(A+ E)−1 = A−1(I+ EA−1)−1.

Under the condition, ∥EA−1∥ ⩽ 1
4
, I+ EA−1 is invertible and has a convergent power series

expansion so

(A+ E)−1 = A−1(I− EA−1 + (EA−1)2 + . . .) = A−1 + F,

where F = A−1 · (−EA−1 + (EA−1)2 + . . .). Moreover,

∥F∥ ⩽ ∥A−1∥(∥EA−1∥+ ∥EA−1∥2 + . . .) ⩽
∥A−1∥∥EA−1∥
1− ∥EA−1∥

⩽
4

3
∥A−1∥∥EA−1∥.

We now present several results related to the concentration of measure.

Lemma 2.25. Let x, y be mean-zero random variables that are both sub-gaussian with
parameters κ1 and κ2 respectively. Then z = xy − E[xy] ∼ sE(8κ1κ2, 8κ1κ2).

The proof is a standard argument and omitted. Next we prove a matrix concentration
result for the individually rescaled covariance matrices of i.i.d. random variables. The proof
uses a standard covering argument.

Lemma 2.26. Let X ∈ Rn×d be a random matrix with rows aixi, where xi are i.i.d. random
vectors satisfying the design conditions in Assumption 2.1. Then,

∥ 1
n
X⊤X− 1

n

n∑
i=1

a2iΣ∥ ⩽ ∥Σ∥K2max(δ, δ2) for δ = C(
√

d/n+ t/
√
n),

with probability at least 1−2 exp(−t2). Here C denotes a universal constant and K = maxi |ai|.



CHAPTER 2. META-LEARNING LINEAR REPRESENTATIONS 51

Proof. First note that we bring all the vectors to isotropic position by rotating so that
∥ 1
n
X⊤X− 1

n

∑n
i=1 a

2
iΣ∥ ⩽ ∥Σ∥∥ 1n

∑n
i=1 a

2
i (Σ

−1/2xi)(Σ
−1/2xi)

⊤ − 1
n

∑n
i=1 a

2
i Id∥. Now by defi-

nition for any fixed v ∈ Rd : ∥v∥ = 1, each v⊤Σ−1/2xi is sG(1) and hence
a2i (v

⊤Σ−1/2xi)(Σ
−1/2xi)

⊤v is sE(8a2i , 8a
2
i ) by Lemma 2.25. For the latter quantity [110,

Theorem 4.6.1, Eq. 4.22] proves the result when ai = 1 using a standard covering argument
along with a sub-exponential tail bound. A close inspection of the proof of [110, Theorem
4.6.1, Eq. 4.22] shows that the aforementioned analogous statement holds when the sequence
of random vectors is scaled by ai.

We now include two useful results on operator norm bounds of higher-order matrices. The
results only require the condition of O(1)-L4-L2 hypercontractivity (which is directly implied
by Assumption 2.1—see for example the sub-gaussian moment bounds in [113, Theorem 2.6]).
Formally, we say a random vector x is L-L4-L2 hypercontractive if E[⟨v,x⟩4] ⩽ L2(E[⟨v,x⟩2])2
for all unit vectors v. Also note that if x is hypercontractive this immediately implies that
PVx is also hypercontractive with the same constant where PV is an orthogonal projection
operator.

Lemma 2.27. Let x be a mean-zero random vector from a distribution that is L-L4-L2
hypercontractive with covariance Σ and let PV be an orthogonal projection operator onto a
rank-r subspace. Then

∥E[∥x∥2xx⊤]∥ ⩽ Ltr(Σ)∥Σ∥; ∥E[∥PVx∥2xx⊤]∥ ⩽ Lr∥Σ∥2;
∥E[∥x∥2PVx(PVx)

⊤∥ ⩽ Ltr(Σ)∥Σ∥.

Proof of Lemma 2.27. We introduce a vector v with ∥v∥ ⩽ 1. Then,

E[⟨v, ∥x∥2xx⊤v⟩] = E[∥x∥2⟨v,x⟩2] ⩽ (E[∥x∥4])1/2(E[⟨v,x⟩4])1/2, (2.28)

by the Cauchy-Schwarz inequality. For the first term we have (E[∥x∥4])1/2 ⩽
√
Ltr(Σ) by

Lemma 2.28. For the second term once again using L-L4-L2 hypercontractivity we have
(E[⟨v,x⟩4])1/2 ⩽

√
LE[⟨v,x⟩]2 ⩽

√
L∥Σ∥. Maximizing over v gives the result. The remaining

statements follow using an identical calculation and appealing to Lemma 2.28.

Lemma 2.28. Let x be a mean-zero random vector from a distribution that is L-L4-L2
hypercontractive with covariance Σ and let PV be an orthogonal projection operator onto a
rank-r subspace. Then

E[∥x∥4] ⩽ L(trΣ)2; E[∥PVx∥2] ⩽ r∥Σ∥; E[∥PVx∥2∥x∥2] ⩽ Lr∥Σ∥(trΣ);

∥E[∥PVx∥4]∥ ⩽ L∥Σ∥2r2.

Proof of Lemma 2.28. A short computation using the Cauchy-Schwarz inequality and L4-L2
equivalence shows that,

E[∥x∥4] = E[(
d∑

i=1

⟨x, ei⟩2)2] = E[
∑
a,b

⟨x, ea⟩2⟨x, eb⟩2] ⩽
∑
a,b

(E[⟨x, ea⟩4]E[⟨x, eb⟩4])1/2 ⩽
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L
∑
a,b

E[⟨x, ea⟩2]E[⟨x, eb⟩2] ⩽ L(tr(Σ))2.

The second statement follows since E[∥PVx∥2] = E[tr(PVxx
⊤] = tr(PVΣ) ⩽ r∥Σ∥ where

the last line follows by the von Neumann trace inequality and the fact PV is a projection
operator. The final statements follow by combining the previous calculations.

Lemma 2.29. Let x be a random vector in d dimensions from a distribution satisfying
Assumption 2.3. Then, we have:

∥x∥ ⩽ O
(√

Cmax(
√
d+

√
log 1/δ)

)
,

with probability at least 1− δ.

Proof of Lemma 2.29. Note that by rotating the vectors into isotropic position y = Σ−1/2x
is Id-subgaussian in the sense of Assumption 2.3. Since ∥x∥ ⩽

√
Cmax∥Σ−1/2x∥ it suffices to

bound the norm of ∥y∥. First note that E[∥y∥] ⩽
√

E[∥y∥2] =
√
d. Now, take an 1/2-net

over the unit sphere, G; by a standard covering argument the number of elements in G can
be upper bounded by 6d [113, Chapter 5]. By definition of Id-subgaussianity, for any v ∈ G,
we have that,

Pr[|⟨v,y⟩| ⩾ t] ⩽ 2 exp

(
−t2

2

)
By a standard continuity argument it follows that maxv∈Sd−1 |⟨v,y⟩| ⩽ 3maxv∈G |⟨v,y⟩|.
So by a union bound, Pr[∥y∥ ⩾ t] ⩽ (12)d exp(−t2/20). Therefore, by taking t = C(

√
d +√

log 1/δ) for large-enough constant C we can ensure that (12)d exp(−t2/20) ⩽ δ. Re-
arranging gives the conclusion.

Finally, we prove a truncated version of the matrix Bernstein inequality we can apply to
matrices that are unbounded in spectral norm. This is our primary technical tool used to
show concentration of the higher-order moments used in the algorithm to recover the feature
matrix B.

Lemma 2.30. Consider a truncation level R > 0. If Zi is a sequence of symmetric indepen-
dent random matrices and if Z ′

i = Zi1[∥Zi∥ ⩽ R], then

Pr[∥ 1
n

n∑
i=1

Zi − E[Zi]∥ ⩾ t] ⩽ Pr[∥ 1
n

n∑
i=1

Z ′
i − E[Z ′

i]∥ ⩾ t−∆] + nPr[∥Zi∥ ⩾ R],

where ∆ ⩾ ∥E[Zi]− E[Z ′
i]∥. Further, for t ⩾ ∆, we have that,

Pr[∥ 1
n

n∑
i=1

Z ′
i − E[Z ′

i]∥ ⩾ t−∆] ⩽ 2d exp

(
n2(t−∆)2

σ2 + 2Rn(t−∆)/3

)
,

where σ2 = ∥
∑n

i=1 E[(Z ′
i − E[Z ′

i])
2]∥ ⩽ ∥

∑n
i=1 E[Z2

i ]∥.
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Proof. The first statement follows by splitting on the event {∥Zi∥ ⩽ R : ∀i ∈ [n]}, along with
a union bound, and an application of the triangle inequality to the first term. The second is
simply a restatement of the matrix Bernstein inequality in [107] along with the almost sure
upper bound ∥Z ′

i − E[Z ′
i]∥ ⩽ ∥Z ′

i∥+ ∥E[Z ′
i]∥ ⩽ R + E[∥Z ′

i∥] ⩽ 2R. The final bound on the
matrix variance follows from the facts that for the p.s.d. matrix

∑n
i=1 E[(Z ′

i − E[Z ′
i])

2] ⪯∑n
i=1 E[(Z ′

i)
2] and that (Z ′

i)
2 ⪯ Z2

i .

2.14 Experimental Details

In our experiments we did find that gradient descent was able to decrease the loss in (2.4),
but the algorithm was slow to converge. In practice, we found using the L-BFGS algorithm
required no tuning and optimized the loss in (2.4) to high-precision in far fewer iterations
[71]. Hence we used this first-order method throughout our experiments as our optimization
routine. Our implementation is in Python, and we leveraged the autograd package to compute
derivatives of the objective in (2.4), and the package Ray to parallelize our experiments [80,
87]. Each experiment is averaged over 30 repetitions with error bars representing ±1 standard
deviation over the repetitions. All the experiments herein were run on computer with 48
cores and 256 GB of RAM.

Note that after optimizing (2.4) directly using a first-order method in the variable (U,V),
we can extract an estimate B̂ of B by computing the column space of V (for example using
the SVD of V or applying the Gram-Schmidt algorithm).
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Chapter 3

On the Theory of Transfer Learning

3.1 Introduction

Transfer learning is quickly becoming an essential tool to address learning problems in
settings with small data. One of the most promising methods for multitask and transfer
learning is founded on the belief that multiple, differing tasks are distinguished by a small
number of task-specific parameters, but often share a common low-dimensional representation.
Undoubtedly, one of the most striking successes of this idea has been to only re-train the
final layers of a neural network on new task data, after initializing its earlier layers with
hierarchical representations/features from ImageNet (i.e., ImageNet pretraining) [38, 48].
However, the practical purview of transfer learning has extended far beyond the scope of
computer vision and classical ML application domains such as deep reinforcement learning
[4], to problems such as protein engineering and design [42].

In this chapter, we formally study the composite learning model in which there are
t + 1 tasks whose responses are generated noisily from the function f ⋆

j ◦ h⋆, where f ⋆
j are

task-specific parameters in a function class F and h⋆ an underlying shared representation
in a function class H. A large empirical literature has documented the performance gains
that can be obtained by transferring a jointly learned representation h to new tasks in this
model [116, 97, 68]. There is also a theoretical literature that dates back at least as far as
[6]. However, this progress belies a lack of understanding of the basic statistical principles
underlying transfer learning1:

How many samples do we need to learn a feature representation shared across
tasks and use it to improve prediction on a new task?

In this paper we study a simple two-stage empirical risk minimization procedure to learn a
new, j = 0th task which shares a common representation with t different training tasks. This
procedure first learns a representation ĥ ≈ h⋆ given n samples from each of t different training
tasks, and then uses ĥ alongside m fresh samples from this new task to learn f̂0 ◦ ĥ ≈ f ⋆

0 ◦h⋆.

1A problem which is also often referred to as learning-to-learn (LTL).
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Informally, our main result provides an answer to our sampling-complexity question by
showing that the excess risk of prediction of this two-stage procedure scales (on the new task)
as2,

Õ

(
1

ν

(√
C(H) + tC(F)

nt

)
+

√
C(F)
m

)
,

where C(H) captures the complexity of the shared representation, C(F) captures the com-
plexity of the task-specific maps, and ν encodes a problem-agnostic notion of task diversity.
The latter is a key contribution of the current paper. It represents the extent to which
the t training tasks f ⋆

j cover the space of the features h⋆. In the limit that n, t → ∞ (i.e.,
training task data is abundant), to achieve a fixed level of constant prediction error on the
new task only requires the number of fresh samples to be m ≈ C(F). Learning the task in
isolation suffers the burden of learning both F and H—requiring m ≈ C(F ◦H)—which can
be significantly greater than the transfer learning sample complexity.

[84] present a general, uniform-convergence based framework for obtaining generalization
bounds for transfer learning that scale as O(1/

√
t)+O(1/

√
m) (for clarity we have suppressed

complexity factors in the numerator). Perhaps surprisingly, the leading term capturing the
complexity of learning h⋆ decays only in t but not in n. This suggests that increasing the
number of samples per training task cannot improve generalization on new tasks. Given
that most transfer learning applications in the literature collect information from only a few
training tasks (i.e., n≫ t), this result does not provide a fully satisfactory explanation for
the practical efficacy of transfer learning methods.

Our principal contributions in this paper are as follows:

• We introduce a problem-agnostic definition of task diversity which can be integrated into
a uniform convergence framework to provide generalization bounds for transfer learning
problems with general losses, tasks, and features. Our framework puts this notion of
diversity together with a common-design assumption across tasks to provide guarantees of
a fast convergence rate, decaying with all of the samples for the transfer learning problem.

• We provide general-purpose bounds which decouple the complexity of learning the task-
specific structure from the complexity of learning the shared feature representation. Our
results repose on a novel user-friendly chain rule for Gaussian processes which may be
of independent interest (see Theorem 3.7). Crucially, this chain rule implies a form of
modularity that allows us to exploit a plethora of existing results from the statistics and
machine learning literatures to individually bound the sample complexity of learning task
and feature functions.

• We highlight the utility of our framework for obtaining end-to-end transfer learning
guarantees for several different multi-task learning models including (1) logistic regression,
(2) deep neural network regression, and (3) robust regression for single-index models.
2See Theorem 3.3 and discussion for a formal statement. Note our guarantees also hold for nonparametric

function classes, but the scaling with n, t, m may in general be different.
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Related Work

The utility of multitask learning methods was observed at least as far back as [14]. In
recent years, representation learning, transfer learning, and meta-learning have been the
subject of extensive empirical investigation in the machine learning literature (see [8], [54] for
surveys in these directions). However, theoretical work on transfer learning—particularly via
representation learning—has been much more limited.

A line of work closely related to transfer learning is gradient-based meta-learning (MAML)
[43]. These methods have been analyzed using techniques from online convex optimization,
using a (potentially data-dependent) notion of task similarity which assumes that tasks are
close to a global task parameter [44, 60, 24, 25, 61]. Additionally, [7] define a different notion
of distributional task similarity they use to show generalization bounds. However, these works
do not study the question of transferring a common representation in the generic composite
learning model that is our focus.

In settings restricted to linear task mappings and linear features, [74], [96], and [16] have
provided sample complexity bounds for the problem of transfer learning via representation
learning. [74] and [91] also address sparsity-related issues that can arise in linear feature
learning.

To our knowledge, [6] is the first theoretical work to provide generalization bounds for
transfer learning via representation learning in a general setting. The formulation of [6]
assumes a generative model over tasks which share common features; in our setting, this
task generative model is replaced by the assumption that training tasks are diverse (as in
Definition 3.3) and that there is a common covariate distribution across different tasks. In
follow-up work, [84] propose a general, uniform-convergence-based framework for obtaining
transfer learning guarantees which scale as O(1/

√
t) + O(1/

√
m) [84, Theorem 5]. The

second term represents the sample complexity of learning in a lower-dimensional space given
the common representation. The first term is the bias contribution from transferring the
representation—learned from an aggregate of nt samples across different training tasks—
to a new task. Note this leading term decays only in t and not in n: implying that
increasing the number of samples per training task cannot improve generalization on new
tasks. Unfortunately, under the framework studied in that paper, this Ω(1/

√
t) cannot be

improved [84].
Recent work in [104] and [40] has shown that in specific settings leveraging (1) common

design assumptions across tasks and (2) a particular notion of task diversity, can break
this barrier and yield rates for the leading term which decay as O(poly(1/(nt))). However,
the results and techniques used in both of these works are limited to the squared loss and
linear task maps. Moreover, the notion of diversity in both cases arises purely from the
linear-algebraic conditioning of the set of linear task maps. It is not clear from these works
how to extend these ideas/techniques beyond the case-specific analyses therein.
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3.2 Preliminaries

Notation: We use bold lower-case letters (e.g., x) to refer to vectors and bold upper-case
letters (e.g., X) to refer to matrices. The norm ∥ · ∥ appearing on a vector or matrix refers to
its ℓ2 norm or spectral norm respectively. We use the bracketed notation [n] = {1, . . . , n} as
shorthand for integer sets. Generically, we will use “hatted” vectors and matrices (e.g, α̂ and
B̂) to refer to (random) estimators of their underlying population quantities. σ1(A), . . . , σr(A)
will denote the sorted singular values (in decreasing magnitude) of a rank r matrix A.
Throughout we will use F to refer to a function class of tasks mapping Rr → R and H to be
a function class of features mapping Rd → Rr. For the function class F , we use F⊗t to refer
its t-fold Cartesian product, i.e., F⊗t = {f ≡ (f1, . . . , ft) | fj ∈ F for any j ∈ [t]}. We use Õ
to denote an expression that hides polylogarithmic factors in all problem parameters.

Transfer learning with a shared representation

In our treatment of transfer learning, we assume that there exists a generic nonlinear feature
representation that is shared across all tasks. Since this feature representation is shared, it
can be utilized to transfer knowledge from existing tasks to new tasks. Formally, we assume
that for a particular task j, we observe multiple data pairs {(xji, yji)} (indexed over i) that
are sampled i.i.d from an unknown distribution Pj, supported over X × Y and defined as
follows:

Pj(x, y) = Pf⋆
j ◦h⋆(x, y) = Px(x)Py|x(y|f ⋆

j ◦ h⋆(x)). (3.1)

Here, h⋆ : Rd → Rr is the shared feature representation, and f ⋆
j : Rr → R is a task-specific

mapping. Note that we assume that the marginal distribution over X—Px—is common
amongst all the tasks.

We consider transfer learning methods consisting of two phases. In the first phase (the
training phase), t tasks with n samples per task are available for learning. Our objective in
this phase is to learn the shared feature representation using the entire set of nt samples from
the first j ∈ [t] tasks. In the second phase (the test phase), we are presented with m fresh
samples from a new task that we denote as the 0th task. Our objective in the test phase is
to learn this new task based on both the fresh samples and the representation learned in the
first phase.

Formally, we consider a two-stage Empirical Risk Minimization (ERM) procedure for
transfer learning. Consider a function class F containing task-specific functions, and a function
class H containing feature maps/representations. In the training phase, the empirical risk for
t training tasks is:

R̂train(f ,h) :=
1

nt

t∑
j=1

n∑
i=1

ℓ(fj ◦ h(xji), yji), (3.2)

where ℓ(·, ·) is the loss function and f := (f1, . . . , ft) ∈ F⊗t. Our estimator ĥ(·) for the shared
data representation is given by ĥ = argminh∈H minf∈F⊗t R̂train(f ,h).
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For the second stage, the empirical risk for learning the new task is defined as:

R̂test(f,h) :=
1

m

m∑
i=1

ℓ(f ◦ h(x0i), y0i). (3.3)

We estimate the underlying function f ⋆
0 for task 0 by computing the ERM based on the

feature representation learned in the first phase. That is, f̂0 = argminf∈F R̂test(f, ĥ). We

gauge the efficacy of the estimator (f̂0, ĥ) by its excess risk on the new task, which we refer
to as the transfer learning risk :

Transfer Learning Risk = Rtest(f̂0, ĥ)−Rtest(f
⋆
0 ,h

⋆). (3.4)

Here, Rtest(·, ·) = E[R̂test(·, ·)] is the population risk for the new task and the population risk
over the t training tasks is similarly defined as Rtrain(·, ·) = E[R̂train(·, ·)]; both expectations
are taken over the randomness in the training and test phase datasets respectively. The
transfer learning risk measures the expected prediction risk of the function (f̂0, ĥ) on a new
datapoint for the 0th task, relative to the best prediction rule from which the data was
generated—f ⋆

0 ◦ h⋆.

Model complexity

A well-known measure for the complexity of a function class is its Gaussian complexity. For
a generic vector-valued function class Q containing functions q(·) : Rd → Rr, and N data
points, X̄ = (x1, . . . ,xN)

⊤, the empirical Gaussian complexity is defined as

ĜX̄(Q) = Eg[sup
q∈Q

1

N

r∑
k=1

N∑
i=1

gkiqk(xi)], gki ∼ N (0, 1) i.i.d.,

where g = {gki}k∈[r],i∈[N ], and qk(·) is the k-th coordinate of the vector-valued function q(·).
We define the corresponding population Gaussian complexity as GN(Q) = EX̄[ĜX̄(Q)], where
the expectation is taken over the distribution of data samples X̄. Intuitively, GN(Q) measures
the complexity of Q by the extent to which functions in the class Q can correlate with random
noise gki.

3.3 Main Results

We now present our central theoretical results for the transfer learning problem. We first
present statistical guarantees for the training phase and test phase separately. Then, we
present a problem-agnostic definition of task diversity, followed by our generic end-to-end
transfer learning guarantee. Throughout this section, we make the following standard, mild
regularity assumptions on the loss function ℓ(·, ·), the function class of tasks F , and the
function class of shared representations H.
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Assumption 3.1 (Regularity conditions). The following regularity conditions hold:

• The loss function ℓ(·, ·) is B-bounded, and ℓ(·, y) is L-Lipschitz for all y ∈ Y.

• The function f is L(F)-Lipschitz with respect to the ℓ2 distance, for any f ∈ F .

• The composed function f ◦h is bounded: supx∈X |f ◦h(x)| ⩽ DX , for any f ∈ F ,h ∈ H.

We also make the following realizability assumptions, which state that the true underlying
task functions and the true representation are contained in the function classes F ,H over
which the two-stage ERM oracle optimizes in (3.2) and (3.3).

Assumption 3.2 (Realizability). The true representation h⋆ is contained in H. Additionally,
the true task specific functions f ⋆

j are contained in F for both the training tasks and new test
task (i.e., for any j ∈ [t] ∪ {0}).

Learning shared representations

In order to measure “closeness” between the learned representation and true underlying
feature representation, we need to define an appropriate distance measure between arbitrary
representations. To this end, we begin by introducing the task-averaged representation
difference, which captures the extent two representations h and h′ differ in aggregate over
the t training tasks measured by the population train loss.

Definition 3.1. For a function class F , t functions f = (f1, . . . , ft), and data (xj, yj) ∼
Pfj◦h as in (3.1) for any j ∈ [t], the task-averaged representation difference between
representations h,h′ ∈ H is:

d̄F ,f (h
′;h) =

1

t

t∑
j=1

inf
f ′∈F

Exj ,yj

{
ℓ(f ′ ◦ h′(xj), yj)− ℓ(fj ◦ h(xj), yj)

}
.

Under this metric, we can show that the distance between a learned representation and the
true underlying representation is controlled in the training phase. Our following guarantees
also feature the worst-case Gaussian complexity over the function class F , which is defined
as:3

Ḡn(F) = max
Z∈Z

ĜZ(F), where Z = {(h(x1), · · · ,h(xn)) | h ∈ H,xi ∈ X for all i ∈ [n]}.
(3.5)

where Z is the domain induced by any set of n samples in X and any representation h ∈ H.
Moreover, we will always use the subscript nt, on Gnt(Q) = EX[ĜX(Q)], to refer to the

3Note that a stronger version of our results hold with a sharper, data-dependent version of the worst-case
Gaussian complexity that eschews the absolute maxima over xi. See Corollary 3.1 and Theorem 3.7 for the
formal statements.
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population Gaussian complexity computed with respect to the data matrix X formed from
the concatentation of the nt training datapoints {xji}t,nj=1,i=1. We can now present our training
phase guarantee.

Theorem 3.1. Let ĥ be an empirical risk minimizer of R̂train(·, ·) in (3.2). Then, if Assump-
tions 3.1 and 3.2 hold, with probability at least 1− δ:

d̄F ,f⋆(ĥ;h
⋆) ⩽ 16LGnt(F⊗t ◦ H) + 8B

√
log(2/δ)

nt

⩽ 4096L

[
DX

(nt)2
+ log(nt) · [L(F) ·Gnt(H) + Ḡn(F)]

]
+ 8B

√
log(2/δ)

nt
.

Theorem 3.1 asserts that the task-averaged representation difference (Definition 3.1)
between our learned representation and the true representation is upper bounded by the
population Gaussian complexity of the vector-valued function class F⊗t◦H = {(f1◦h, . . . , ft◦
h) : (f1, . . . , ft) ∈ F⊗t,h ∈ H}, plus a lower-order noise term. Up to logarithmic factors and
lower-order terms, this Gaussian complexity can be further decomposed into the complexity
of learning a representation in H with nt samples—L(F) ·Gnt(H)—and the complexity of
learning a task-specific function in F using n samples per task—Ḡn(F). For the majority
of parametric function classes used in machine learning applications, Gnt(H) ∼

√
C(H)/nt

and Ḡn(F) ∼
√

C(F)/n, where the function C(·) measures the intrinsic complexity of the
function class (e.g., VC dimension, absolute dimension, or parameter norm [113]).

We now make several remarks on this result. First, Theorem 3.1 differs from standard
supervised learning generalization bounds. Theorem 3.1 provides a bound on the distance
between two representations as opposed to the empirical or population training risk, despite
the lack of access to a direct signal from the underlying feature representation. Second,
the decomposition of Gnt(F⊗t ◦ H) into the individual Gaussian complexities of H and F ,
leverages a novel chain rule for Gaussian complexities (see Theorem 3.7), which may be
of independent interest. This chain rule (Theorem 3.7) can be viewed as a generalization
of classical Gaussian comparison inequalities and results such as the Ledoux-Talagrand
contraction principle [67]. Further details and comparisons to the literature for this chain
rule can be found in Section 3.6 (this result also avoids an absolute maxima over xi ∈ X ).

Transferring to new tasks

In addition to the task-averaged representation difference, we also introduce the worst-case
representation difference, which captures the distance between two representations h′, h in
the context of an arbitrary worst-case task-specific function f0 ∈ F0.

Definition 3.2. For function classes F and F0 such that f0 ∈ F0, and data (x, y) ∼ Pf0◦h as
in (3.1), the worst-case representation difference between representations h,h′ ∈ H is:

dF ,F0(h
′;h) = sup

f0∈F0

inf
f ′∈F

Ex,y

{
ℓ(f ′ ◦ h′(x), y)− ℓ(f0 ◦ h(x), y)

}
.
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For flexibility we allow F0 to be distinct from F (although in most cases, we choose
F0 ⊂ F). The function class F0 is the set of new tasks on which we hope to generalize. The
generalization guarantee for the test phase ERM estimator follows.

Theorem 3.2. Let f̂0 be an empirical risk minimizer of R̂test(·, ĥ) in (3.3) for any feature
representation ĥ. Then if Assumptions 3.1 and 3.2 hold, and f ⋆

0 ∈ F0 for an unknown class
F0, with probability at least 1− δ:

Rtest(f̂0, ĥ)−Rtest(f
⋆
0 ,h

⋆) ⩽ dF ,F0(ĥ;h
⋆) + 16L · Ḡm(F) + 8B

√
log(2/δ)

m

Here Ḡm(F) is again the worst-case Gaussian complexity4 as defined in (3.5). Theorem 3.2
provides an excess risk bound for prediction on a new task in the test phase with two dominant
terms. The first is the worst-case representation difference dF ,F0(ĥ;h

⋆), which accounts for

the error of using a biased feature representation ĥ ̸= h⋆ in the test ERM procedure. The
second is the difficulty of learning f ⋆

0 with m samples, which is encapsulated in Ḡm(F).

Task diversity and end-to-end transfer learning guarantees

We now introduce the key notion of task diversity. Since the learner does not have direct
access to a signal from the representation, they can only observe partial information about
the representation channeled through the composite functions f ⋆

j ◦ h⋆. If a particular
direction/component in h⋆ is not seen by a corresponding task f ⋆

j in the training phase, that
component of the representation h⋆ cannot be distinguished from a corresponding one in a
spurious h′. When this component is needed to predict on a new task corresponding to f ⋆

0 ,
which lies along that particular direction, transfer learning will not be possible. Accordingly,
Definition 3.1 defines a notion of representation distance in terms of information channeled
through the training tasks, while Definition 3.2 defines it in terms of an arbitrary new test
task. Task diversity essentially encodes the ratio of these two quantities (i.e. how well the
training tasks can cover the space of the representation h⋆ needed to predict on new tasks).
Intuitively, if all the task-specific functions were quite similar, then we would only expect the
training stage to learn about a narrow slice of the representation—making transferring to a
generic new task difficult.

Definition 3.3. For a function class F , we say t functions f = (f1, . . . , ft) are (ν, ϵ)-diverse
over F0 for a representation h, if uniformly for all h′ ∈ H,

dF ,F0(h
′;h) ⩽ d̄F ,f (h

′;h)/ν + ϵ.

Up to a small additive error ϵ, diverse tasks ensure that the worst-case representation
difference for the function class F0 is controlled when the task-averaged representation

4As before, a stronger version of this result holds with a sharper data-dependent version of the Gaussian
complexity in lieu of Ḡm(F) (see Corollary 3.2).
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difference for a sequence of t tasks f is small. Despite the abstraction in this definition of
task diversity, it exactly recovers the notion of task diversity in [104] and [40], where it is
restricted to the special case of linear functions and quadratic loss. Our general notion allows
us to move far beyond the linear-quadratic setting as we show in Section 3.4 and Section 3.4.

We now utilize the definition of task diversity to merge our training phase and test phase
results into an end-to-end transfer learning guarantee for generalization to the unseen task
f ⋆
0 ◦ h⋆.

Theorem 3.3. Let (·, ĥ) be an empirical risk minimizer of R̂train(·, ·) in (3.2), and f̂0 be an
empirical risk minimizer of R̂test(·, ĥ) in (3.3) for the learned feature representation ĥ. Then
if Assumptions 3.1 and 3.2 hold, and the training tasks are (ν, ϵ)-diverse, with probability at
least 1− 2δ, the transfer learning risk in (3.4) is upper-bounded by:

O
(
L log(nt) ·

[L(F) ·Gnt(H) + Ḡn(F)
ν

]
+ LḠm(F) +

LDX

ν(nt)2
+

B
[1
ν
·
√

log(2/δ)

nt
+

√
log(2/δ)

m

]
+ ϵ
)
.

Theorem 3.3 gives an upper bound on the transfer learning risk. The dominant terms
in the bound are the three Gaussian complexity terms. For parametric function classes we
expect Gnt(H) ∼

√
C(H)/(nt) and ḠN(F) ∼

√
C(F)/N , where C(H) and C(F) capture the

dimension-dependent size of the function classes. Therefore, when L and L(F) are constants,
the leading-order terms for the transfer learning risk scale as Õ(

√
(C(H) + t · C(F))/(nt) +√

C(F)/m). A naive algorithm which simply learns the new task in isolation, ignoring the

training tasks, has an excess risk scaling as Õ(
√
C(F ◦ H)/m) ≈ Õ(

√
(C(H) + C(F))/m).

Therefore, when n and t are sufficiently large, but m is relatively small (i.e., the setting
of few-shot learning), the performance of transfer learning is significantly better than the
baseline of learning in isolation.

3.4 Applications

We now consider a varied set of applications to instantiate our general transfer learning
framework. In each application, we first specify the function classes and data distributions
we are considering as well as our assumptions. We then state the task diversity and the
Gaussian complexities of the function classes, which together furnish the bounds on the
transfer learning risk–from (3.4)–in Theorem 3.3.

Multitask Logistic Regression

We first instantiate our framework for one of the most frequently used classification methods—
logistic regression. Consider the setting where the task-specific functions are linear maps,
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and the underlying representation is a projection onto a low-dimensional subspace. Formally,
let d ⩾ r, and let the function classes F and H be:

F ={ f | f(z) = α⊤z, α ∈ Rr, ∥α∥ ⩽ c1}, (3.6)

H ={ h | h(x) = B⊤x, B ∈ Rd×r, B is a matrix with orthonormal columns}.

Here X = Rd, Y = {0, 1}, and the measure Px is Σ-sub-gaussian (see Definition 3.4) and
D-bounded (i.e., ∥x∥ ⩽ D with probability one). We let the conditional distribution in (3.1)
satisfy:

Py|x(y = 1|f ◦ h(x)) = σ(α⊤B⊤x),

where σ(·) is the sigmoid function with σ(z) = 1/(1 + exp(−z)). We use the logistic
loss ℓ(z, y) = −y log(σ(z)) − (1 − y) log(1 − σ(z)). The true training tasks take the form
f ⋆
j (z) = (α⋆

j)
⊤z for all j ∈ [t], and we let A = (α⋆

1, . . . ,α
⋆
t )

⊤ ∈ Rt×r. We make the following
assumption on the training tasks being “diverse” and both the training and new task being
normalized.

Assumption 3.3. σr(A
⊤A/t) = ν̃ > 0 and ∥α⋆

j∥ ⩽ O(1) for j ∈ [t] ∪ {0}.

In this case where the F contains underlying linear task functions α⋆
j ∈ Rr (as in our

examples in Section 4), our task diversity definition reduces to ensuring these task vectors
span the entire r-dimensional space containing the output of the representation h(·) ∈ Rr.
This is quantitatively captured by the conditioning parameter ν̃ = σr(A) which represents
how spread out these vectors are in Rr. The training tasks will be well-conditioned in the
sense that σ1(A

⊤A/t)/σr(A
⊤A/t) ⩽ O(1) (w.h.p.) for example, if each αt ∼ N (0, 1√

r
Σ)

i.i.d. where σ1(Σ)/σr(Σ) ⩽ O(1).
Assumption 3.3 with natural choices of F0 and F establishes (Ω(ν̃), 0)-diversity as defined

in Definition 3.3 (see Lemma 3.1). Finally, by standard arguments, we can bound the
Gaussian complexity of H in this setting by GN(H) ⩽ Õ(

√
dr2/N). We can also show that

a finer notion of the Gaussian complexity for F , serving as the analog of ḠN(F), is upper
bounded by Õ(

√
r/N). This is used to sharply bound the complexity of learning F in the

training and test phases (see proof of Theorem 3.4 for more details). Together, these give the
following guarantee.

Theorem 3.4. If Assumption 3.3 holds, h⋆(·) ∈ H, and F0 = { f | f(x) = α⊤z, α ∈
Rr, ∥α∥ ⩽ c2}, then there exist constants c1, c2 such that the training tasks f ⋆

j are (Ω(ν̃), 0)-
diverse over F0. Furthermore, if for a sufficiently large constant c3, n ⩾ c3(d+log t), m ⩾ c3r,
and D ⩽ c3(min(

√
dr2,
√
rm)), then with probability at least 1− 2δ:

Transfer Learning Risk ⩽ Õ

(
1

ν̃

(√
dr2

nt
+

√
r

n

)
+

√
r

m

)
.

A naive bound for logistic regression ignoring the training task data would have a guarantee
O(
√

d/m). For n and t sufficiently large, the bound in Theorem 3.4 scales as Õ(
√
r/m),
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which is a significant improvement over O(
√
d/m) when r ≪ d. Note that our result in fact

holds with the empirical data-dependent quantities tr(ΣX) and
∑r

i=1 σi(ΣXj
) which can be

much smaller then their counterparts d, r in Theorem 3.4, if the data lies on/or close to a
low-dimensional subspace5.

Multitask Deep Neural Network Regression

We now consider the setting of real-valued neural network regression. Here the task-specific
functions are linear maps as before, but the underlying representation is specified by a
depth-K vector-valued neural network:

h(x) = WKσK−1(WK−1(σK−2(. . . σ(W1x)))). (3.7)

Each Wk is a parameter matrix, and each σk is a tanh activation function. We let ∥W∥1,∞ =
maxj(

∑
k |Wj,k|) and ∥W∥∞→2 be the induced ∞-to-2 operator norm. Formally, F and H

are6

F ={ f | f(z) = α⊤z, α ∈ Rr, ∥α∥ ⩽ c1M(K)2}, (3.8)

H ={h(·) ∈ Rr in (3.7) for Wk : ∥Wk∥1,∞ ⩽ M(k) for k ∈ [K − 1],

max(∥WK∥1,∞, ∥WK∥∞→2) ⩽ M(K), such that σr

(
Ex[h(x)h(x)

⊤]
)
> Ω(1)}.

We consider the setting where X = Rd, Y = R, and the measure Px is D-bounded. We also
let the conditional distribution in (3.1) be induced by:

y = α⊤h(x) + η for α,h as in (3.8), (3.9)

with additive noise η bounded almost surely by O(1) and independent of x. We use the
standard squared loss ℓ(α⊤h(x), y) = (y − α⊤h(x))2, and let the true training tasks take
the form f ⋆

j (z) = (α⋆
j)

⊤z for all j ∈ [t], and set A = (α⋆
1, . . . ,α

⋆
t )

⊤ ∈ Rt×r as in the
previous example. Here we use exactly the same diversity/normalization assumption on the
task-specific maps—Assumption 3.3—as in our logistic regression example.

Choosing F0 and F appropriately establishes a (Ω(ν̃), 0)-diversity as defined in Definition
3.3 (see Lemma 3.6). Standard arguments as well as results in [47] allow us to bound the
Gaussian complexity terms as follows (see the proof of Theorem 3.5 for details):

GN(H) ⩽ Õ

(
rM(K) ·D

√
K · ΠK−1

k=1 M(k)√
N

)
; ḠN(F) ⩽ Õ

(
M(K)3√

N

)
.

Combining these results yields the following end-to-end transfer learning guarantee.

5Here ΣX̄ denotes the empirical covariance of the data matrix X̄. See Corollary 3.3 for the formal
statement of this sharper, more general result.

6For the following we make the standard assumption each parameter matrixWk satisfies ∥Wk∥1,∞ ⩽ M(k)
for each j in the depth-K network [47], and that the feature map is well-conditioned.
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Theorem 3.5. If Assumption 3.3 holds, h⋆(·) ∈ H, and F0 = { f | f(z) = α⊤z, α ∈
Rr, ∥α∥ ⩽ c2}, then there exist constants c1, c2 such that the training tasks f ⋆

j are (Ω(ν̃), 0)-
diverse over F0. Further, if M(K) ⩾ c3 for a universal constant c3, then with probability at
least 1− 2δ:

Transfer Learning Risk ⩽ Õ

(
rM(K)6 ·D

√
K · ΠK−1

k=1 M(k)

ν̃
√
nt

+
M(K)6

ν̃
√
n

+
M(K)6√

m

)
.

The poly(M(K)) dependence of the guarantee on the final-layer weights can likely be
improved, but is dominated by the overhead of learning the complex feature map h⋆(·) which
has complexity poly(M(K)) ·D

√
K · ΠK−1

k=1 M(k). By contrast a naive algorithm which does
not leverage the training samples would have a sample complexity of

Õ
(
poly(M(K)) ·D

√
K · ΠK−1

k=1 M(k)/
√
m
)
via a similar analysis. Such a rate can be much

larger than the bound in Theorem 3.5 when nt≫ m: exactly the setting relevant to that of
few-shot learning for which ImageNet pretraining is often used.

Multitask Index Models

To illustrate the flexibility of our framework, in our final example, we consider a classical sta-
tistical model: the index model, which is often studied from the perspective of semiparametric
estimation [10]. As flexible tools for general-purpose, non-linear dimensionality reduction,
index models have found broad applications in economics, finance, biology and the social
sciences [10, 70, 92]. This class of models has a different flavor then previously considered: the
task-specific functions are nonparametric “link” functions, while the underlying representation
is a one-dimensional projection. Formally, let the function classes F and H be:

F ={ f | f(z) is a 1-Lipschitz, monotonic function bounded in [0, 1]}, (3.10)

H ={ h | h(x) = b⊤x, b ∈ Rd, ∥b∥ ⩽ W}.

We consider the setting where X = Rd, Y = R, the measure Px is D-bounded, and DW ⩾ 1.
This matches the setting in [59]. The conditional distribution in (3.1) is induced by:

y = f(b⊤x) + η for f,b as in (3.7),

with additive noise η bounded almost surely by O(1) and independent of x. We use the robust
ℓ1 loss, ℓ(f(b⊤x), y) = |y − f(b⊤x)|, in this example. Now, define Ft = conv{f ⋆

1 , . . . , f
⋆
t }

as the convex hull of the training task-specific functions f ⋆
j . Given this, we define the

ϵ̃-enlargement of Ft by Ft,ϵ̃ = {f : ∃f̃ ∈ Ft such that supz |f(z)− f̃(z)| ⩽ ϵ̃}.
We prove a transfer generalization bound for F0 = Ft,ϵ̃, for which we can establish

(ν̃, ϵ̃)-diversity with ν̃ ⩾ 1
t
as defined in Definition 3.3 (see Lemma 3.7). Standard arguments

once again show that GN(H) ⩽ O
(√

(W 2EX[tr(ΣX])/N)
)
and ḠN(F) ⩽ O

(√
WD/N

)
(see the proof of Theorem 3.6 for details). Together these give the following guarantee.
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Theorem 3.6. If f ⋆
j ∈ F for j ∈ [t], h⋆(·) ∈ H, and f ⋆

0 ∈ F0 = Ft,ϵ̃, then the training tasks
are (ν̃, ϵ̃)-diverse over F0 where ν̃ ⩾ 1

t
. Further, with probability at least 1− 2δ:

Transfer Learning Risk ⩽ Õ

(
1

ν̃
·

(√
W 2EX[tr(ΣX)]

nt
+

√
WD

n

)
+

√
WD

m

)
+ ϵ̃.

As before, the complexity of learning the feature representation decays as n→∞ . Hence
if E[tr(ΣX)] is large, the aforementioned bound will provide significant savings over the bound

which ignores the training phase samples of O
(√

(W 2EX[tr(ΣX)])/m
)
+O(

√
WD/m). In

this example, the problem-dependent parameter ν̃ does not have a simple linear-algebraic
interpretation. Indeed, in the worst-case it may seem the aforementioned bound degrades with
t7. However, note that F0 = Ft,ϵ̃, so those unseen tasks which we hope to transfer to itself
grows with t unlike in the previous examples. The difficulty of the transfer learning problem
also increases as t increases. Finally, this example utilizes the full power of (ν, ϵ)-diversity
by permitting robust generalization to tasks outside Ft, at the cost of a bias term ϵ̃ in the
generalization guarantee.

3.5 Conclusion

We present a framework for understanding the generalization abilities of generic models
which share a common, underlying representation. In particular, our framework introduces
a novel notion of task diversity through which we provide guarantees of a fast convergence
rate, decaying with all of the samples for the transfer learning problem. One interesting
direction for future consideration is investigating the effects of relaxing the common design
and realizability assumptions on the results presented here. We also believe extending the
results herein to accommodate “fine-tuning” of learned representations – that is, mildly
adapting the learned representation extracted from training tasks to new, related tasks – is
an important direction for future work.

7Note as ν̃ is problem-dependent, for a given underlying f⋆, h⋆, F0 problem instance, ν̃ may be significantly
greater than 1

t . See the proof of Lemma 3.7 for details.
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Appendix

Notation: Here we introduce several additional pieces of notation we will use throughout.
We use Ex[·] to refer to the expectation operator taken over the randomness in the

vector x sampled from a distribution Px. Throughout we will use F to refer exclusively to
a scalar-valued function class of tasks and H to a vector-valued function class of features.
For F , we use F⊗t to refer its t-fold Cartesian product such that (f1, . . . , ft) ≡ f ∈ F⊗t for
fj ∈ F , j ∈ [t]. We use f(h) as shorthand for the function composition, f ◦ h. Similarly,
we define the composed function class F(H) = {f(h) : f ∈ F ,h ∈ H} and its vector-valued
version F⊗t(H) = {(f1(h), . . . , ft(h)) : fj ∈ F , j ∈ [t],h ∈ H} with this shorthand. We will
use ≳, ≲, and ≍ to denote greater than, less than, and equal to up to a universal constant and
use Õ to denote an expression that hides polylogarithmic factors in all problem parameters.

In the context of the two-stage ERM procedure introduced in Section 3.2 we let the design
matrix and responses yji for the jth task be Xj and yj for j ∈ [t]∪ {0}, and the entire design
matrix and responses concatenated over all j ∈ [t] tasks as X and y respectively. Given
a design matrix X̄ = (x1, . . . ,xN)

⊤ (comprised of mean-zero random vectors) we will let
ΣX̄ = 1

N
X̄⊤X̄ denote its corresponding empirical covariance.

Recall we define the notions of the empirical and population Gaussian complexity for a
generic vector-valued function class Q containing functions q(·) : Rd → Rr, and data matrix
X with N datapoints as,

ĜX(Q) = Eg[sup
q∈Q

1

N

r∑
k=1

N∑
i=1

gkiqk(xi)], GN(Q) = EX[ĜX(Q)] gki ∼ N (0, 1) i.i.d.,

where for the latter population Gaussian complexity each its N datapoints are drawn from
the Px(·) design distribution. Analogously to the above we can define the empirical and
population Rademacher complexities for generic vector-valued functions as,

R̂X(Q) = Eϵ[sup
q∈Q

1

N

r∑
k=1

N∑
i=1

ϵkiqk(xi)], RN(Q) = EX[R̂X(Q)] ϵki ∼ Rad(
1

2
) i.i.d.

3.6 Proofs in Section 3.3

Here we include the proofs of central generalization guarantees and the Gaussian process
chain rule used in its proof.

Training Phase/Test Phase Proofs

In all the following definitions (xj, yj) refer to datapoint drawn from the jth component of
the model in (3.1). We first include the proof of Theorem 3.1 which shows that minimizing
the training phase ERM objective controls the task-average distance between the underlying
feature representation h and learned feature representation ĥ.
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Proof of Theorem 3.1. For fixed f ′,h′, define the centered training risk as,

L(f ′,h′, f⋆,h⋆) =
1

t

t∑
j=1

Exj ,yj

{
ℓ(f ′

j ◦ h′(xj), yj)− ℓ(f ⋆
j ◦ h⋆(xj), yj)

}
.

and its empirical counterpart,

L̂(f ′,h′, f⋆,h⋆) =
1

t

t∑
j=1

n∑
i=1

{
ℓ(f ′

j ◦ h′(xji), yji)− Ex,y[ℓ(f
⋆
j ◦ h⋆(x), y)]

}
Now if f̃ denotes a minimizer of the former expression for fixed ĥ, in the sense that

f̃ = 1
t

∑t
j=1 arg inff ′

j∈F Exj ,yj

{
ℓ(f ′

j ◦ ĥ(xj), yj) − ℓ(f ⋆
j ◦ h⋆(xj), yj)

}
, then by definition, we

have that d̄F ,f⋆(ĥ;h
⋆) equals the former expression. We first decompose the average distance

using the pair (f̂ , ĥ). Recall the pair (f̂ , ĥ) refers to the empirical risk minimizer in (3.2).

L(f̃ , ĥ, f⋆,h⋆)− L(f⋆,h⋆, f⋆,h⋆) =

L(f̃ , ĥ, f⋆,h⋆)− L(f̂ , ĥ, f⋆,h⋆)︸ ︷︷ ︸
a

+L(f̂ , ĥ, f⋆,h⋆)− L(f⋆,h⋆, f⋆,h⋆)

Note that by definition of the f̃ , a ⩽ 0. The second pair can be controlled via the canonical
risk decomposition,

L(f̂ , ĥ, f⋆,h⋆)− L(f⋆,h⋆, f⋆,h⋆) =

L(f̂ , ĥ, f⋆,h⋆)− L̂(f̂ , ĥ, f⋆,h⋆)︸ ︷︷ ︸
b

+ L̂(f̂ , ĥ, f⋆,h⋆)− L̂(f⋆,h⋆, f⋆,h⋆)︸ ︷︷ ︸
c

+

L̂(f⋆,h⋆, f⋆,h⋆)− L(f⋆,h⋆, f⋆,h⋆)︸ ︷︷ ︸
d

.

By definition c ⩽ 0 (note this inequality uses the realizability in Assumption 3.2) and
b, d ⩽ supf∈F⊗t,h∈H |Rtrain(f ,h)− R̂train(f ,h)|. By an application of the bounded differences
inequality and a standard symmetrization argument (see for example [113, Theorem 4.10] we
have that,

sup
f∈F⊗t,h∈H

|Rtrain(f ,h)− R̂train(f ,h)| ⩽ 2Rnt(ℓ(F⊗t(H))) + 2B

√
log(1/δ)

nt

with probability at least 1− 2δ.
It remains to decompose the leading Rademacher complexity term. First we center the

functions to ℓji(fj ◦ h(xji), yji) = ℓ(fj ◦ h(xji), yji)− ℓ(0, yji). Then noting |ℓji(0, yji)| ⩽ B,
the constant-shift property of Rademacher averages [113, Exercise 4.7c] gives,

Eϵ[ sup
f∈F⊗t,h∈H

1

nt

t∑
j=1

n∑
i=1

ϵijℓ(fj ◦ h(xji), yji)] ⩽
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Eϵ[ sup
f∈F ,h∈H

1

nt

t∑
j=1

n∑
i=1

ϵijℓij(fj ◦ h(xji), yji)] +
B√
nt

Now note each ℓij(·, ·) is L-Lipschitz in its first coordinate uniformly for every choice of the
second coordinate (and by construction centered in its first coordinate). So, defining the
set S = {(f1 ◦ h(x1i), . . . , fj ◦ h(xji), . . . , ft ◦ h(xti))) : j ∈ [t], fj ∈ F ,h ∈ H} ⊆ Rtn, and
applying the contraction principle [67, Theorem 4.12] over this set shows,

Eϵ[ sup
f∈F⊗t,h∈H

1

nt

t∑
j=1

n∑
i=1

ϵijℓij(fj ◦ h(xji), yji)] ⩽ 2L ·Rnt(F⊗t(H)). (3.11)

Combining gives,

sup
f∈F⊗t,h∈H

|Rtrain(f ,h)− R̂train(f ,h)| ⩽ 4L ·Rnt(F⊗t(H)) +
4B
√
log(1/δ)√
nt

with probability 1 − 2δ. Now note by [67, p.97] empirical Rademacher complexity is
upper bounded by empirical Gaussian complexity: R̂X(F⊗t(H)) ⩽

√
π
2
ĜX(F⊗t(H)). Taking

expectations of this and combining with the previous display yields the first inequality in the
theorem statement.

The last remaining step hinges on Theorem 3.7 to decompose the Gaussian complexity
over F and H. A direct application of Theorem 3.7 gives the conclusion that,

ĜX(F⊗t(H)) ⩽ 128

(
DX

(nt)2
+ C(F⊗t(H)) · log(nt)

)
where C(F⊗t(H);X) = L(F) · ĜX(H) + maxZ∈Z ĜZ(F) where Z = {h(X̄) : h ∈ H, X̄ ∈
∪tj=1{Xj}}. By definition of DX we have DX ⩽ 2DX and similarly that maxZ∈Z ĜZ(F) ⩽
maxZ∈Z1 ĜZ(F) for Z1 = {(h(x1), · · · ,h(xn)) | h ∈ H,xi ∈ X for all i ∈ [n]}. Taking
expectations over X in this series of relations and assembling the previous bounds gives the
conclusion after rescaling δ.

An analogous statement holds both in terms of a sharper notion of the worst-case Gaussian
complexity and in terms of empirical Gaussian complexities.

Corollary 3.1. In the setting of Theorem 3.1,

d̄F ,f⋆(ĥ;h
⋆) ⩽ 4096L

[
DX

(nt)2
+ log(nt) · [L(F) ·GX(H) + EX[max

Z∈Z
ĜZ(F)]

]
+ 8B

√
log(1/δ)

n

with probability 1− 2δ for Z = {h(X̄) : h ∈ H, X̄ ∈ ∪tj=1{Xj}}. Furthermore,

d̄F ,f⋆(ĥ;h
⋆) ⩽ 16ĜX(F⊗t(H)) + 16B

√
log(1/δ)

n
⩽
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4096L

[
DX

(nt)2
+ log(nt) · [L(F) · ĜX(H) + max

Z∈Z
ĜZ(F)]

]
+ 16B

√
log(1/δ)

n

with probability at least 1− 4δ.

Proof. The argument follows analogously to the proof of Theorem 3.1. The first statement
follows identically by avoiding the relaxation–maxZ∈Z ĜZ(F) ⩽ maxZ∈Z1 ĜZ(F) for Z1 =
{(h(x1), · · · ,h(xn)) | h ∈ H,xi ∈ X for all i ∈ [n]}–after applying Theorem 3.7 in the proof
of Theorem 3.1.

The second statement also follows by a direct modification of the proof of Theorem 3.1.
In the proof another application of the bounded differences inequality would show that

|Rnt(F⊗t(H))− R̂X((F⊗t(H))| ⩽ 4B
√

log(1/δ)
nt

with probability 1−2δ. Applying this inequal-

ity after (3.11) and union bounding over this event and the event in the theorem, followed by
the steps in Theorem 3.1, gives the result after an application of Theorem 3.7.

We now show how the definition of task diversity in Definition 3.3 and minimizing the
training phase ERM objective allows us to transfer a fixed feature representation ĥ and
generalize to a new task-specific mapping f0.

Proof of Theorem 3.2. Note f̃0 = argminf∈F Rtest(f, ĥ)–it is a minimizer of the population

test risk loaded with the fixed feature representation ĥ. The approach to controlling this
term uses the canonical risk decomposition,

Rtest(f̂0, ĥ)−Rtest(f̃0, ĥ) =

Rtest(f̂0, ĥ)− R̂test(f̂0, ĥ)︸ ︷︷ ︸
a

+ R̂test(f̂0, ĥ)− R̂test(f̃0, ĥ)︸ ︷︷ ︸
b

+ R̂test(f̃0, ĥ)−Rtest(f̃0, ĥ)︸ ︷︷ ︸
c

First by definition, b ⩽ 0. Now a standard uniform convergence/symmetrization argument
which also follows the same steps as in the proof of Theorem 3.1,

a+ c ⩽ 16L · EX0 [ĜZĥ
(F)] + 8B

√
log(1/δ)

m
⩽ 16Lmax

ĥ∈H
EX0 [ĜZĥ

(F)] + 8B

√
log(1/δ)

m

for Zĥ = ĥ(X0), with probability at least 1− 2δ. The second inequality simply uses the fact

that the map ĥ is fixed, and independent of the randomness in the test data. The bias from
using an imperfect feature representation ĥ in lieu of h arises in Rtest(f̃0, ĥ). For this term,

Rtest(f̃0, ĥ)−Rtest(f0,h
⋆) = inf

f̃0∈F
{Rtest(f̃0, ĥ)−Rtest(f0,h

⋆)} ⩽

sup
f0∈F0

inf
f̃0∈F
{L(f̃0, ĥ)− L(f0,h

⋆)} = dF ,F0(h; ĥ)

To obtain the final theorem statement we use an additional relaxation on the Gaussian
complexity term for ease of presentation,

max
ĥ∈H

EX0 [ĜZĥ
(F)] ⩽ Ḡm(F).
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Combining terms gives the conclusion.

We also present a version of Theorem 3.2 which can possess better dependence on
the boundedness parameter in the noise terms and has data-dependence in the Gaussian
complexities. As before our guarantees can be stated both in terms of population or empirical
quantities. The result appeals to the functional Bernstein inequality instead of the bounded
differences inequality in the concentration step. Although we only state (and use) this
guarantee for the test phase generalization an analogous statement can be shown to hold
for Theorem 3.1. Throughout the following, we use (xi, yi) ∼ Pf0◦h for i ∈ [m] for ease of
notation.

Corollary 3.2. In the setting of Theorem 3.2, assuming the loss function ℓ satisfies the
centering ℓ(0, y) = 0 for all y ∈ Y,

Rtest(f̂0, ĥ)−Rtest(f
⋆
0 ,h

⋆) ⩽

dF ,F0(ĥ;h
⋆) + 16L · EX0 [ĜZĥ

(F)] + 4σ

√
log(2/δ)

m
+ 50B

log(2/δ)

m

for Zĥ = ĥ(X0), with probability at least 1− δ. Here the maximal variance

σ2 = 1
m
supf∈F

∑m
i=1Var(ℓ(f ◦ ĥ(xi), yi)). Similarly we have that,

Rtest(f̂0, ĥ)−Rtest(f
⋆
0 ,h

⋆) ⩽ dF ,F0(ĥ;h
⋆) + 32L · ĜZĥ

(F) + 8σ

√
log(2/δ)

m
+ 100B

log(2/δ)

m

with probability at least 1− 2δ.

Proof of Corollary 3.2. The proof is identical to the proof of Theorem 3.2 save in how the
concentration argument is performed. Namely in the notation of Theorem 3.2, we upper
bound,

a+ c ⩽ 2 sup
f∈F
|R̂test(f, ĥ)−Rtest(f, ĥ)| = 2Z

Note by definition EX0,y0 [R̂test(f, ĥ)] = Rtest(f, ĥ), where R̂test(f, ĥ) =
1
m

∑m
i=1 ℓ(f ◦ ĥ(xi), yi),

and the expectation is taken over the test-phase data. Instead of applying the bounded
differences inequality to control the fluctuations of this term we apply a powerful form of
the functional Bernstein inequality due to [82]. Applying [82, Theorem 3] therein, we can
conclude,

Z ⩽ (1 + ϵ)E[Z] +
σ√
n

√
2κ log(

1

δ
) + κ(ϵ)

B

m
log(

1

δ
)

for κ = 2, κ(ϵ) = 2.5 + 32
ϵ
and σ2 = 1

m
supf∈F

∑m
i=1Var(ℓ(f ◦ ĥ(xi), yi)). We simply take

ϵ = 1 for our purposes, which gives the bound,

Z ⩽ 2E[Z] + 4
σ√
m

√
log(

1

δ
) + 35

B

m
log(

1

δ
)
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Next note a standard symmetrization argument shows that E[Z] ⩽ 2EX0,y0 [R̂Zĥ
(ℓ ◦ F)]

for Zĥ = ĥ(X0). Following the proof of Theorem 3.2 but eschewing the unnecessary centering

step in the application of the contraction principle shows that, R̂Zĥ
(ℓ ◦ F) ⩽ 2L · R̂Zĥ

(F).
Upper bounding empirical Rademacher complexity by Gaussian complexity and following the
steps of Theorem 3.2 gives the first statement.

The second statement in terms of empirical quantities follows similarly. First the popu-
lation Rademacher complexity can be converted into an empirical Rademacher complexity
using a similar concentration inequality based result which appears in a convenient form in
[5, Lemma A.4 (i)]. Directly applying this result (with α = 1

2
) shows that,

EX0,y0 [R̂Zĥ
(ℓ ◦ F)] ⩽ 2R̂Zĥ

(ℓ ◦ F) +
8B log(1

δ
)

m

with probability at least 1− δ. The remainder of the argument follows exactly as before and
as in the proof of Theorem 3.2 along with another union bound.

The proof of Theorem 3.3 is almost immediate.

Proof of Theorem 3.3. The result follows immediately by combining Theorem 3.1, Theo-
rem 3.2, and the definition of task diversity along with a union bound over the two events on
which Theorems 3.1 and 3.2 hold.

A User-Friendly Chain Rule for Gaussian Complexity

We provide the formal statement and the proof of the chain rule for Gaussian complexity
that is used in the main text to decouple the complexity of learning the class F⊗t(H) into
the complexity of learning each individual class. We believe this result may be a technical
tool that is of more general interest for a variety of learning problems where compositions of
function classes naturally arise.

Intuitively, the chain rule (Theorem 3.7) can be viewed as a generalization of the Ledoux-
Talagrand contraction principle which shows that for a fixed, centered L-Lipschitz function ϕ,
ĜX(ϕ(F)) ⩽ 2LĜX(F). However, as we are learning both f ∈ F⊗t (which is not fixed) and
h ∈ H, ĜX(F⊗t ◦ H) features a suprema over both F⊗t and H.

A comparable result for Gaussian processes to our Theorem 3.7 is used in [84] for multi-task
learning applications, drawing on the chain rule of [83]. Although their result is tighter with
respect to logarithmic factors, it cannot be written purely in terms of Gaussian complexities.
Rather, it includes a worst-case “Gaussian-like” average ([84, Eq. 4]) in lieu of ĜZ(F) in
Theorem 3.7. In general, it is not clear how to sharply bound this term beyond the using
existing tools in the learning theory literature. The terms appearing in Theorem 3.7 can be
bounded, in a direct and modular fashion, using the wealth of existing results and tools in
the learning theory literature.

Our proof technique and that of [83] both hinge on several properties of Gaussian processes.
[83] uses a powerful generalization of the Talagrand majorizing measure theorem to obtain
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their chain rule. We take a different path. First we use the entropy integral to pass to the
space of covering numbers–where the metric properties of the distance are used to decouple
the features and tasks. Finally an appeal to Gaussian process lower bounds are used to come
back to expression that involves only Gaussian complexities.

We will use the machinery of empirical process theory throughout this section so we
introduce several useful definitions we will need. We define the empirical ℓ2-norm as,
d22,X(f(h), f

′(h′)) = 1
t·n
∑t

j=1

∑n
i=1(fj(h(xji))− f ′

j(h
′(xji))

2, and the corresponding u-covering
number as N2,X(u; d2,X,F⊗t(H)). Further, we can define the worst-case ℓ2-covering number
as N2(u;F⊗t(H)) = maxX N2,X(u; d2,X,F⊗t(H)). For a vector-valued function class we define
the empirical ℓ2-norm similarly as d22,X(h,h

′) = 1
t·n
∑r

k=1

∑t
j=1

∑n
i=1(hk(xji)− h′

k(xji))
2.

Our goal is to bound the empirical Gaussian complexity of the set

S = {(f1(h(x1i)), . . . , fj(h(xji)), . . . , ft(h(xti))) : j ∈ [t], fj ∈ F ,h ∈ H} ⊆ Rtn

or function class,

Ĝnt(S) = ĜX(F⊗t(H)) = 1

nt
E[ sup

f∈F⊗t,h∈H

t∑
j=1

n∑
i=1

gjifj(h(xji))]; gji ∼ N (0, 1)

in a manner that allows for easy application in several problems of interest. To be explicit,
we also recall that,

ĜX(H) =
1

nt
Eg[sup

h∈H

r∑
k=1

t∑
j=1

n∑
i=1

gkjihk(xji)]; gkji ∼ N (0, 1)

We now state the decomposition theorem for Gaussian complexity.

Theorem 3.7. Let the function class F consist of functions that are ℓ2-Lipschitz with constant
L(F), and have boundedness parameter DX = supf ,f ′,h,h′ d2,X(f(h), f

′(h′)). Further, define
Z = {h(X̄) : h ∈ H, X̄ ∈ ∪t

j=1{Xj}}. Then the (empirical) Gaussian complexity of the
function class F⊗t(H) satisfies,

ĜX(F⊗t(H)) ⩽

inf
DX⩾δ>0

{
4δ + 64C(F⊗t(H)) · log

(
DX

δ

)}
⩽

4DX

(nt)2
+ 128C(F⊗t(H)) · log (nt)

where C(F⊗t(H)) = L(F) · ĜX(H) + maxZ∈Z ĜZ(F). Further, if C(F⊗t(H)) ⩽ DX then by
computing the exact infima of the expression,

ĜX(F⊗t(H)) ⩽ 64

(
C(F⊗t(H)) + C(F⊗t(H)) · log

(
DX

C(F⊗t(H))

))
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Proof. For ease of notation we define N = nt in the following. We can rewrite the Gaussian
complexity of the function class F⊗t(H) as,

ĜX(F⊗t(H)) = E[
1

nt
sup

f(h)∈F⊗t(H)

t∑
j=1

n∑
i=1

gjifj(h(xji))] = E[
1√
N
· sup
f(h)∈F⊗t(H)

Zf(h)]

from which we define the mean-zero stochastic process Zf(h) =
1√
N

∑t
j=1

∑n
i=1 gjifj(h(xji))

for a fixed sequence of design points xji, indexed by elements {f(h) ∈ F⊗t(H)}, and for
a sequence of independent Gaussian random variables gji. Note the process Zf(h) has sub-
gaussian increments, in the sense that, Zf(h) − Zf ′(h′) is a sub-gaussian random variable

with parameter d22,X(f(h), f
′(h′)) = 1

N

∑t
j=1

∑n
i=1(fj(h(xji))− f ′

j(h
′(xji))

2. Since Zf(h) is a
mean-zero stochastic process we have that, E[supf(h)∈F⊗t(H) Zf(h)] = E[supf(h)∈F⊗t(H) Zf(h) −
Zf ′(h′)] ⩽ E[supf(h),f ′(h′)∈F⊗t(H) Zf(h) − Zf ′(h′)]. Now an appeal to the Dudley entropy integral
bound, [113, Theorem 5.22] shows that,

E[ sup
f(h),f(h′)∈F⊗t(h)

Zf(h) − Zf(h′)] ⩽

4E[ sup
d2,X(f(h),f(h′))⩽δ

Zf(h) − Zf(h′)] + 32

∫ D

δ

√
logNX(u; d2,X,F⊗t(H))du.

We now turn to bounding each of the above terms. Parametrizing the sequence of i.i.d.
gaussian variables as g, it follows that supd2,X(f(h),f(h′))⩽δ Zf(h) − Zf(h′) ⩽ supv:∥v∥2⩽δ g · v ⩽
∥g∥δ. The corresponding expectation bound, after an application of Jensen’s inequality to
the
√
· function gives E[supd2,X(f(h),f(h′))⩽δ Zf(h) − Zf(h′)] ⩽ E[∥g∥2δ] ⩽

√
Nδ.

We now turn to bounding the second term by decomposing the distance metric d2,X into
a distance over F⊗t and a distance over H. We then use a covering argument on each of
the spaces F⊗t and H to witness a covering of the composed space F⊗t(H). Recall we refer
to the entire dataset concatenated over the t tasks as X ≡ {xji}t,nj=1,i=1. First, let CHX

be a
covering of the of function space H in the empirical ℓ2-norm with respect to the inputs X
at scale ϵ1. Then for each h ∈ CHX

, construct an ϵ2-covering, CF⊗t
h(X)

, of the function space

F⊗t in the empirical ℓ2-norm with respect to the inputs h(X) at scale ϵ2. We then claim
that set CF⊗t(H) = ∪h∈CHX

(CF⊗t
h(X)

) is an ϵ1 · L(F) + ϵ2-cover for the function space F⊗t(H)
in the empirical ℓ2-norm over the inputs X. To see this, let h ∈ H and f ∈ F⊗t be arbitrary.
Now let h′ ∈ CHX

be ϵ1-close to h. Given this h′, there exists f ′ ∈ CF⊗t
h′(X)

such that f ′ is

ϵ2-close to f with respect to inputs h′(X). By construction (h′, f ′) ∈ CF⊗t(H). Finally, using
the triangle inequality, we have that,

d2,X(f(h), f
′(h′)) ⩽ d2,X(f(h), f(h

′)) + d2,X(f(h
′), f ′(h′)) =√√√√ 1

N

t∑
j=1

n∑
i=1

(fj(h(xji))− fj(h′(xji)))2 +

√√√√ 1

N

t∑
j=1

n∑
i=1

(fj(h′(xji))− f ′
j(h

′(xji)))2 ⩽



CHAPTER 3. ON THE THEORY OF TRANSFER LEARNING 75

L(F)

√√√√ 1

N

r∑
k=1

t∑
j=1

n∑
i=1

(hk(xji)− h′
k(xji))2 +

√√√√ 1

N

t∑
j=1

n∑
i=1

(fj(h′(xji))− f ′
j(h

′(xji)))2 =

L(F) · d2,X(h,h′) + d2,h′(X)(f , f
′) ⩽ ϵ1 · L(F) + ϵ2

appealing to the uniform Lipschitz property of the function class F in moving from the
second to third line, which establishes the claim.

We now bound the cardinality of the covering CF⊗t(H). First, note
|CF⊗t(H)| =

∑
h∈CHX

|CF⊗t
h(X)
| ⩽ |CHX

| · maxh∈HX
|CF⊗t

h(X)
|. To control maxh∈HX

|CF⊗t
h(X)
|,

note an ϵ-cover of F⊗t
h(X) in the empirical ℓ2-norm with respect to h(X) can be obtained

from the cover CFh(X1)
× . . . × CFh(Xt)

where CFh(Xi)
denotes a ϵ-cover of F in the empir-

ical ℓ2-norm with respect to h(Xi). Hence maxh∈HX
|CF⊗t

h(X)
| ⩽ |CFh(X1)

× . . .× CFh(Xt)
| ⩽

|max
z∈Z

CFz × . . .×max
z∈Z

CFz︸ ︷︷ ︸
t times

| ⩽ |maxz∈Z CFz|t. Combining these facts provides a bound on the

metric entropy of,

logN2,X(ϵ1 · L(F) + ϵ2, d2,X,F⊗t(H)) ⩽ logN2,X(ϵ1, d2,X,H) + t ·max
Z∈Z

logN2,Z(ϵ2, d2,Z,F).

Using the covering number upper bound with ϵ1 =
ϵ

2·L(F)
, ϵ2 =

ϵ
2
and sub-additivity of the√

· function then gives a bound on the entropy integral of,∫ D

δ

√
logN2(ϵ, d2,X,F⊗t(H)) dϵ ⩽∫ D

δ

√
logN2,X(ϵ/(2L(F)), d2,X,H) dϵ+

√
t

∫ D

δ

max
Z∈Z

√
logN2,Z(

ϵ

2
, d2,Z,F) dϵ

From the Sudakov minoration theorem [113][Theorem 5.30] for Gaussian processes and the
fact packing numbers at scale u upper bounds the covering number at scale u we find:

logN2,X(u; d2,X,H) ⩽ 4

(√
ntĜX(H)

u

)2

∀u > 0 and

logN2,Z(u; d2,Z,F) ⩽ 4

(√
nĜZ(F)

u

)2

∀u > 0.

For the H term we apply the result to the mean-zero Gaussian process
Zh = 1√

nt

∑r
k=1

∑t
j=1

∑n
i=1 gkjihk(xji), for gkji ∼ N (0, 1) i.i.d. and h ∈ H. Combining all of

the aforementioned upper bounds, shows that

ĜX(F⊗t(H)) ⩽
1√
nt

(
4δ
√
nt+ 64L(F) · ĜX(H) ·

√
nt

∫ DX

δ

1

u
du+ 64

√
nt ·max

Z∈Z
ĜZ(F)

∫ DX

δ

1

u
du

)
⩽
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4δ + 64(L(F) · ĜX(H) + max
Z∈Z

ĜZ(F)) · log
(
DX

δ

)
= δ + C(F⊗t(H)) · log

(
DX

δ

)
defining C(F⊗t(H)) = L(F) · ĜX(H) + maxZ∈Z ĜZ(F). Choosing δ = DX/(nt)

2 gives the
first inequality. Balancing the first and second term gives the optimal choice δ = 1

C(F⊗t(H))

for the second inequality under the stated conditions.

3.7 Proofs in Section 3.4

In this section we instantiate our general framework in several concrete examples. This
consists of two steps: first verifying a task diversity lower bound for the function classes and
losses and then bounding the various complexity terms appearing in the end-to-end LTL
guarantee in Theorem 3.3 or its variants.

Logistic Regression

Here we include the proofs of the results which both bound the complexities of the function
classes F and H in the logistic regression example as well establish the task diversity lower
bound in this setting. In this section we use the following definition,

Definition 3.4. We say the covariate distribution Px(·) is Σ-sub-gaussian if for all v ∈ Rd,

E[exp(v⊤xi)] ⩽ exp
(

∥Σ1/2v∥2
2

)
where the covariance Σ further satisfies σmax(Σ) ⩽ C and

σmin(Σ) ⩾ c > 0 for universal constants c, C.

We begin by presenting the proof of the Theorem 3.4 which essentially relies on instanti-
ating a variant of Theorem 3.3. In order to obtain a sharper dependence in the noise terms
in the test learning stage we actually directly combine Corollaries 3.1 and 3.2.

Since we are also interested in stating data-dependent guarantees in this section we use
the notation ΣX = 1

nt

∑t
j=1

∑n
i=1 xjix

⊤
ji to refer to the empirical covariance across the the

training phase samples and ΣXj
for corresponding empirical covariances across the per-task

samples. Immediately following this result we present the statement of sharp data-dependent
guarantee which depends on these empirical quantities for completeness.

Proof of Theorem 3.4. First note due to the task normalization conditions we can choose
c1, c2 sufficiently large so that the realizability assumption in Assumption 3.2 is satisfied–in
particular, we can assume that c2 is chosen large enough to contain all the parameters α⋆

j

for j ∈ [t] ∪ {0} and c1 ⩾ C
c
c2. Next note that under the conditions of the result we can

use Lemma 3.1 to verify the task diversity condition is satisfied with parameters (ν̃, 0) with
ν = σr(A

⊤A/t) > 0 with this choice of constants.
Finally, in order to combine Corollaries 3.1 and 3.2 we begin by bounding each of the

complexity terms in the expression. First,
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• In the following we use bk for k ∈ [r] to index the orthonormal columns of B. For the
feature learning complexity in the training phase we obtain,

ĜX(H) =
1

nt
E[sup

B∈H

r∑
k=1

t∑
j=1

n∑
i=1

gkjib
⊤
k xji] =

1

nt
E[ sup

(b1,...,br)∈H

r∑
k=1

b⊤
k (

t∑
j=1

n∑
i=1

gkjixji)] ⩽

1

nt

r∑
k=1

E[∥
t∑

j=1

n∑
i=1

gkjixji∥] ⩽
1

nt

r∑
k=1

√√√√E[∥
t∑

j=1

n∑
i=1

gkjixji∥2] ⩽
1

nt

r∑
k=1

√√√√ t∑
j=1

n∑
i=1

∥xji∥2

=
r√
nt

√
tr(ΣX).

Further by definition the class F as linear maps with parameters ∥α∥2 ⩽ O(1) we obtain
that L(F) = O(1). We now proceed to convert this to a population quantity by noting
that E[

√
tr(ΣX)] ⩽

√
d · E[∥ΣX∥] ⩽ O(

√
d) for nt ≳ d by Lemma 3.4.

• For the complexity of learning F in the training phase we obtain,

Ĝh(X)(F) =
1

n
E[ sup

∥α∥⩽c1

n∑
i=1

giα
⊤B⊤xji] =

c1
n
E[∥

n∑
i=1

giB
⊤xji∥] ⩽

c1
n

√√√√ n∑
i=1

∥B⊤xji∥2 =

c1√
n

√
tr(BB⊤ΣXj

) =
c1√
n

√
tr(B⊤ΣXj

B).

Now by the variational characterization of singular values it follows that

max
B∈H

c1√
n

√
tr(B⊤ΣXj

B) ⩽
c1
n

√√√√ r∑
i=1

σi(ΣXj
)

Thus it immediately follows that,

max
Z∈Z

c1√
n

√
tr(ΣXj

) = max
Xj

max
B∈H

c1√
n

√
tr(B⊤ΣXj

B) ⩽ max
Xj

c1√
n

√√√√ r∑
i=1

σi(ΣXj
).

for j ∈ [t]. We can convert this to a population quantity again by applying Lemma 3.4

which shows E[
√∑r

i=1 σi(ΣXj
)] ⩽ O(

√
r) for n ≳ d+ log t. Hence Ḡn(F) ⩽ O(

√
r
n
).

• A nearly identical argument shows the complexity of learning F in the testing phase is,

ĜZĥ
(F) = 1

m
E[ sup

∥α∥⩽c1

m∑
i=1

ϵiα
⊤B̂⊤x(0)i] ⩽

c1√
m

√√√√ r∑
i=1

σi(B̂⊤ΣX0B̂)

Crucially, here we can apply the first result in Corollary 3.2 which allows us to take the
expectation over X0 before maximizing over B. Thus applying Lemma 3.4 as before gives
the result, E[

√∑r
i=1 σi(B⊤ΣX0B)] ⩽ O(

√
r) for m ≳ r. Hence Ḡm(F) ⩽ O(

√
r
m
).
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This gives the first series of claims.
Finally we verify that Assumption 3.1 holds so as to use Theorem 3.1 and Corollary 3.2

to instantiate the end-to-end guarantee. First the boundedness parameter becomes,

DX = sup
α,B

(x⊤Bα) ⩽ O(D)

using the assumptions that ∥x∥2 ⩽ D, ∥α∥2 ⩽ O(1), ∥B∥2 = 1. For the logistic loss bounds,

recall ℓ(η; y) = yη− log(1+exp(η)). Since |∇ηℓ(η; y)| = |y − exp(η)
1+exp(η)

| ⩽ 1 it is O(1)-Lipschitz

in its first coordinate uniformly over its second, so L = O(1). Moreover, |ℓ(η; y)| ⩽ O(η)
where η = x⊤Bα ⩽ ∥x∥ ⩽ D it follows the loss is uniformly bounded with parameter O(D)
so B = O(D).

Lastly, to use Corollary 3.2 to bound the test phase error we need to compute the maximal
variance term σ2 = 1

m
supf∈F

∑m
i=1Var(ℓ(f ◦ ĥ(xi), yi)). Since the logistic loss ℓ(·, ·) satisfies

the 1-Lipschitz property uniformly we have that, Var(ℓ(f ◦ ĥ(xi), yi)) ⩽ Var(f ◦ ĥ(xi)) for
each i ∈ [m]. Collapsing the variance we have that,

1

m
sup

α:∥α∥2⩽O(1)

m∑
i=1

Var(x⊤
i B̂α) ⩽

1

m
sup

α:∥α∥2⩽O(1)

m∑
i=1

(αB̂)⊤ΣB̂α ⩽ O(∥B̂ΣB̂∥2) ⩽

O(∥Σ∥) ⩽ O(C) = O(1)

under our assumptions which implies that σ ⩽ O(1). Assembling the previous bounds shows
the transfer learning risk is bounded by,

≲
1

ν̃
·

(
log(nt) ·

[√
dr2

nt
+

√
r

n

])
+

√
r

m

+

(
D

ν̃
·max

(
1

(nt)2
,

√
log(2/δ)

nt

)
+

√
log(2/δ)

m
+D

log(2/δ)

m

)
.

with probability at least 1− 2δ. Suppressing all logarithmic factors and using the additional
condition D ≲ min(dr2,

√
rm) guarantees the noise terms are higher-order.

Recall, in the context of the two-stage ERM procedure introduced in Section 3.2 we let
the design matrix and responses yji for the jth task be Xj and yj for j ∈ [t] ∪ {0}, and the
entire design matrix and responses concatenated over all j ∈ [t] tasks as X and y respectively.
Given a design matrix X̄ = (x1, . . . ,xN)

⊤ (comprised of mean-zero random vectors) we will
let ΣX̄ = 1

N
X̄⊤X̄ denote its corresponding empirical covariance.

We now state a sharp, data-dependent guarantee for logistic regression.

Corollary 3.3. If Assumption 3.3 holds, h⋆(·) ∈ H, and F0 = { f | f(x) = α⊤z, α ∈
Rr, ∥α∥ ⩽ c2}, then there exist constants c1, c2 such that the training tasks f ⋆

j are (Ω(ν̃), 0)-
diverse over F0. Then with probability at least 1− 2δ:

Transfer Learning Risk ⩽
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O
(1
ν̃
·
(
log(nt) ·

[√
tr(ΣX)r2

nt
+max

j∈[t]

√∑r
i=1 σi(Xj)

n

])
+

√∑r
i=1 σi(X0)

m

)
+O

(D
ν̃
·max

(
1

(nt)2
,

√
log(4/δ)

nt

)
+

√
log(4/δ)

m
+D

log(4/δ)

m

)
.

Proof of Corollary 3.3. This follows immediately from the proof of Theorem 3.4 and applying
Corollaries 3.1 and 3.2. Merging terms and applying a union bound gives the result.

The principal remaining challenge is to obtain a lower bound on the task diversity.

Lemma 3.1. Let Assumption 3.3 hold in the setting of Theorem 3.4. Then there exists c2
such that if c1 ⩾ C

c
c2 the problem is task-diverse with parameter (Ω(ν̃), 0) in the sense of

Definition 3.3 where ν̃ = σr(A
⊤A/t).

Proof. Our first observation specializes Lemma 3.2 to the case of logistic regression where
Φ(η) = log(1 + exp(η)), s(σ) = 1 with h(x) = Bx parametrized with B ∈ Rd×r having
orthonormal columns and f ≡ α. Throughout we also assume that c2 is chosen large enough
to contain all the parameters α⋆

j for j ∈ [t] ∪ {0} and c1 ⩾ C
c
c2. These conditions are

consistent with the realizability assumption.
This lemma uses smoothness and (local) strong convexity to bound the task-averaged

representation distance and worst-case representation difference by relating it to a result for
the squared loss established in Lemma 3.6. By appealing to Lemma 3.2 and Lemma 3.3 we
have that,

1

8
Exj

[exp(−max(|ĥ(xj)
⊤α̂|, |h(xj)

⊤α|)) · (ĥ(xj)
⊤α̂− h(xj)

⊤α)2] ⩽

Exj ,yj [ℓ(f̂ ◦ ĥ(xj), yj)− ℓ(f ◦ h(xj), yj)] ⩽
1

8
Exj

[(ĥ(xj)
⊤α̂− h(xj)

⊤α)2]

for xj, yj ∼ (Px(·),Py|x(·|fj ◦ h(x)) We now bound each term in the task diversity,

• We first bound the representation difference where x, y ∼ (Px(·),Py|x(·|f ⋆
0 ◦ h⋆(x)),

dF ,F0(ĥ;h
⋆) = sup

f0∈F0

inf
f̂∈F

Ex,y[ℓ(f̂ ◦ ĥ(x), y)− ℓ(f0 ◦ h⋆(x), y)]] ⩽

sup
α:∥α∥2⩽c2

inf
α̂:∥α̂∥⩽c1

1

8
Ex[(ĥ(x)

⊤α̂− h⋆(x)⊤α)2].

Now for sufficiently large c1, by Lagrangian duality the unconstrained minimizer of the inner
optimization problem is equivalent to the constrained minimizer. In particular first note
that under the assumptions of the problem there is unique unconstrained minimizer given by
infα̂

1
8
Exi

[(ĥ(xi)
⊤α̂− h⋆(xi)

⊤α)2]→ α̂unconstrained = −FĥĥFĥhα = (B̂⊤ΣB̂)−1(B̂⊤ΣB̂)α

from the proof and preamble of Lemma 3.6. Note that since B̂ and B have orthonormal
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columns it follows that ∥α̂∥ ⩽ C
c
c2 since B̂⊤ΣB̂ is invertible. Thus if c1 ⩾ C

c
c2, by

appealing to Lagrangian duality for this convex quadratic objective with convex quadratic
constraint, the unconstrained minimizer is equivalent to the constrained minimizer (since
the unconstrained minimizer is contained in the constraint set). Hence leveraging the proof
and result of Lemma 3.6 we obtain supα:∥α∥2⩽c2 infα̂:∥α̂∥⩽c1

1
8
Exi

[(ĥ(xi)
⊤α̂−h⋆(xi)

⊤α)2] ⩽
c2
8
σ1(Λsc(h, ĥ)).

• We now turn out attention to controlling the average distance which we must lower bound.
Here xj, yj ∼ (Px(·),Py|x(·|f ⋆

j ◦ h⋆(x))

d̄F ,f⋆(h; ĥ) =
1

t

t∑
j=1

inf
f̂∈F

Exj ,yj [ℓ(f̂ ◦ ĥ(xj), yj)− ℓ(f ⋆
j ◦ h⋆(xj), yj)]] ⩾

1

8t

t∑
j=1

inf
∥α̂∥⩽c1

Exj
[exp(−max(|ĥ(xj)

⊤α̂|, |h⋆(xj)
⊤α⋆

j |)) · (ĥ(xj)
⊤α̂− h⋆(xj)

⊤α⋆
j)

2]

We will use the fact that in our logistic regression example h(xj) = Bxj; in this case if
xj is C-subgaussian random vector in d dimensions, then Bxi is C-subgaussian random
vector in r dimensions. We lower bound each term in the sum over j identically. For
fixed j, note the random variables Z1 = (α⋆

j)
⊤Bxj and Z2 = α̂⊤B̂xj are sub-gaussian

with variance parameter at most ∥α⋆
j∥22C2 and ∥α̂∥22C2 respectively. Define the event

1[E] = 1[|Z1| ⩽ Ck∥α⋆
j∥ ∩ 1{|Z2| ⩽ Ck∥α̂∥] for k to be chosen later. We use this event

to lower bound the averaged task diversity since it is a non-negative random variable,

Ex[exp(−max(|ĥ(x)⊤α̂|, |h⋆(x)⊤α⋆
j |)) · (ĥ(x)⊤α̂− h⋆(x)⊤α⋆

j)
2] ⩾

Ex[1[E] exp(−max(|ĥ(x)⊤α̂|, |h⋆(x)⊤α⋆
j |)) · (ĥ(x)⊤α̂− h⋆(x)⊤α⋆

j)
2] ⩾

exp(−Ckmax(c1, c2)) · Ex[1[E](ĥ(x)⊤α̂− h⋆(x)⊤α⋆
j)

2]

We now show that for appropriate choice of k, Ex[1[E](ĥ(x)⊤α̂ − h⋆(x)⊤α⋆
j)

2] is lower

bounded by Ex[(ĥ(x)
⊤α̂− h⋆(x)⊤α⋆

j)
2] modulo a constant factor. First write,

Ex[1[E](ĥ(x)⊤α̂− h⋆(x)⊤α⋆
j)

2] =

Ex[(ĥ(x)
⊤α̂− h⋆(x)⊤α⋆

j)
2]− Ex[1[E

c](ĥ(x)⊤α̂− h⋆(x)⊤α⋆
j)

2]

.

We upper bound the second term first using Cauchy-Schwarz,

Ex[1[E
c](ĥ(x)⊤α̂− h⋆(x)⊤α⋆

j)
2] ⩽

√
P[Ec]

√
Ex(ĥ(x)⊤α̂− h⋆(x)⊤α⋆

j)
4
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Define Z3 = x⊤((B⋆)⊤α⋆
j − B̂⊤α̂) which by definition is sub-gaussian with parameter

at most ((B⋆)⊤α⋆
j − B̂⊤α̂)Σ((B⋆)⊤α⋆

j − B̂⊤α̂) = σ2; since this condition implies L4-L2
hypercontractivity (see for example [113, Theorem 2.6]) we can also conclude that,√

Ex(ĥ(x)⊤α̂− h⋆(x)⊤α⋆
j)

4 ⩽ 10σ2 = 10 · Ex(ĥ(x)
⊤α̂− h⋆(x)⊤α⋆

j)
2.

Recalling the sub-gaussianity of Z1 and Z2, from an application of Markov and Jensen’s
inequality,

P[|Z1| ⩾ k · C∥α⋆
j∥2] ⩽

E[Z2]

k2 · C2∥α⋆
j∥2

⩽
1

k2

with an identical statement true for Z2. Using a union bound we have that
√

P[Ec] ⩽√
2
k

using these probability bounds. Hence by taking k = 30 we can ensure that

Ex[1[E](ĥ(x)⊤α̂ − h⋆(x)⊤α⋆
j)

2] ⩾ 1
2
Ex[(ĥ(x)

⊤α̂ − h⋆(x)⊤α⋆
j)

2] by assembling the pre-
vious bounds. Finally since c1, c2, C, k are universal constants, by definition the conclusion
that,

Ex[exp(−max(|ĥ(x)⊤α̂|, |h⋆(x)⊤α⋆
j |)) · (ĥ(x)⊤α̂− h⋆(x)⊤α⋆

j)
2] ⩾

Ω(Ex(ĥ(x)
⊤α̂− h⋆(x)⊤α⋆

j)
2)

follows for each j. Hence the average over the t tasks is identically lower bounded as,

Ω

(
1

t

t∑
j=1

Ex(ĥ(xj)
⊤α̂− h⋆(xj)

⊤α⋆
j)

2

)

Now using the argument from the upper bound to compute the infima since all the
∥α⋆

j∥ ⩽ c2 (and hence the constrained minimizers identical to the unconstrained minimizers

for each of the j terms for c1 ⩾ C
c
c2) and using the proof of Lemma 3.6 we conclude that,

d̄F ,f⋆(ĥ;h
⋆) ⩾ Ω(tr(Λsc(h

⋆, ĥ)C)).

Combining these upper and lower bounds and concluding as in the proof of Lemma 3.6 shows

dF ,F0(ĥ;h
⋆) ⩽

1

Ω(ν̃)
d̄F ,f⋆(ĥ;h

⋆)

Before showing the convexity-based lemmas used to control the representation differences
in the loss we make a brief remark to interpret the logistic loss in the well-specified model.
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Remark 3.1. If the data generating model satisfies the logistic model conditional likelihood
as in Section 3.4, for the logistic loss ℓ we have that,

Ey∼f◦h(x)[ℓ(f̂ ◦ ĥ(x), y)− ℓ(f ◦ h(x), y)]] = Ex[KL[Bern(σ(f ◦ h(x)) | Bern(σ(f̂ ◦ ĥ(x))]].

simply using the fact the data is generated from the model y ∼ Py|x(·|f ◦ h(x)).

To bound the task diversity we show a convexity-based lemma for general GLM/nonlinear
models,

Lemma 3.2. Consider the generalized linear model for which the Py|x(·) distribution is,

Py|x(y|α⊤h(x)) = b(y) exp

(
yα⊤h(x)− Φ(α⊤h(x))

s(σ)

)
.

Then if supp(x)∈S(x) Φ
′′(p(x)) = L(x) and infp(x)∈S(x)Φ

′′(p(x)) = µ(x) where

p(x) ∈ S(x) = [ĥ(x)⊤α̂,h(x)⊤α],

µ(x)

2s(σ)
(ĥ(x)⊤α̂− h(x)⊤α)2 ⩽ KL[Py|x(·|α⊤h(x)),Py|x(·|α̂⊤ĥ(x))] ⩽

L(x)

2s(σ)
(ĥ(x)⊤α̂− h(x)⊤α)2

where the KL is taken with respect to a fixed design point x, and fixed feature functions h,
and ĥ.

Proof.

KL[Py|x(·|α⊤h(x)),Py|x(·|α̂⊤ĥ(x))] =∫
dy Py|x(y|α⊤h(x))

(
y(h(x)⊤α− ĥ(x)⊤α̂)

s(σ)
+
−Φ(h(x)⊤α) + Φ(ĥ(x)⊤α̂))

s(σ)

)
=

1

s(σ)

[
Φ′(h(x)⊤α)(h(x)⊤α− ĥ(x)⊤α̂)− Φ(h(x)⊤α) + Φ(ĥ(x)⊤α̂)

]
since we have that

Φ(h(x)⊤α)

s(σ)
= log

∫
dy b(y) exp(

yh(x)⊤α⟩
s(σ)

) =⇒ Φ′(h(x)⊤α)

s(σ)
=

∫
dy Py|x(y|α⊤h(x))y

s(σ)

as it is the log-normalizer. Using Taylor’s theorem we have that

Φ(ĥ(x)⊤α̂) =

Φ
(
h(x)⊤α

)
+ Φ′(h(x)⊤α)(ĥ(x)⊤α̂− h(x)⊤α) +

Φ′′(p(x))

2
(ĥ(x)⊤α̂− h(x)⊤α)2
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for some intermediate p(x) ∈ [ĥ(x)⊤α̂,h(x)⊤α]. Combining the previous displays we obtain
that:

KL[Py|x(·|α⊤h(x)),Py|x(·|α̂⊤ĥ(x))] =
1

2s(σ)

[
Φ′′(p(x))(ĥ(x)⊤α̂− h(x)⊤α)2

]
Now using the assumptions on the second derivative Φ′′ gives,

µ

2s(σ)
(ĥ(x)⊤α̂− h(x)⊤α)2 ⩽

1

2s(σ)

[
Φ′′(p(x))(ĥ(x)⊤α̂− h(x)⊤α)2

]
⩽

L

2s(σ)
(ĥ(x)⊤α̂− h(x)⊤α)2

We now instantiate the aforementioned lemma in the setting of logistic regression.

Lemma 3.3. Consider the Py|x(·) logistic generative model defined in Section 3.4 for a general
feature map h(x). Then for this conditional generative model in the setting of Lemma 3.2,
where Φ(η) = log(1 + exp(η)), s(σ) = 1, b(y) = 1,

sup
p(x)∈S(x)

Φ′′(p(x)) ⩽
1

4

and

inf
p(x)∈S(x)

Φ′′(p(x)) ⩾
1

4
exp(−max(|ĥ(x)⊤α̂|, |h(x)⊤α|)).

for fixed x.

Proof. A short computation shows Φ′′(t) = et

(et+1)2
. Note that the maxima of Φ′′(t) over all R

occurs at t = 0. Hence we have that, Ex[supp(x)∈S(x)Φ
′′(p(x))] ⩽ 1

4
using a uniform upper

bound. The lower bound follows by noting that

inf
p(x)∈S(x)

Φ′′(t) = min(Φ′′(|ĥ(xi)
⊤α̂|),Φ′′(|h(xi)

⊤α)|)).

For the lower bound note that for t > 0 that e2t ⩾ et ⩾ 1 implies that et

(1+et)2
⩾ 1

4
e−t. Since

Φ′′(t) = Φ′′(−t) it follows that Φ′′(t) ⩾ 1
4
e−|t| for all t ∈ R.

Finally we include a simple auxiliary lemma to help upper bound the averages in our
data-dependent bounds which relies on a simple tail bound for covariance matrices drawn
from sub-gaussian ensembles ([111, Theorem 4.7.3, Exercise 4.7.1] or [113, Theorem 6.5]).
Further recall that in Definition 3.4 our covariate distribution is O(1)-sub-gaussian.



CHAPTER 3. ON THE THEORY OF TRANSFER LEARNING 84

Lemma 3.4. Let the common covariate distribution Px(·) satisfy Definition 3.4. Then if
nt ≳ d,

E[∥ΣX∥] ⩽ O(1),

if n ≳ d+ log t,

E[max
j∈[t]
∥ΣXj

∥] ⩽ O(1),

and if m ≳ r,

max
B∈H

E[∥B⊤ΣX0B∥] ⩽ O(1),

where H is the set of d× r orthonormal matrices.

Proof. All of these statements essentially follow by integrating a tail bound and applying
the triangle inequality. For the first statement since E[∥ΣX∥] = E[∥ΣX −Σ∥] + ∥Σ∥ ⩽ O(1),
under the conditions nt ≳ d, the result follows directly by [111, Theorem 4.7.3].

For the second by [113, Theorem 6.5], E[exp(λ∥Σ−Σ∥) ⩽ exp(c0(λ
2/N) + 4d)] for all

|λ| ⩽ N
c1
, given a sample covariance averaged over N datapoints, and universal constants

c0, c1. So using a union bound alongside a tail integration since the data is i.i.d. across tasks,

E[max
j∈[t]
∥ΣXj

−Σ∥] ⩽
∫ ∞

0

min(1, tP[∥ΣX1 −Σ∥ > δ])dδ ⩽∫ ∞

0

min(1, exp(c0(λ
2/n) + 4d+ log t− λδ)] ⩽∫ ∞

0

min(1, exp(4d+ log t) · exp(−c2 · nmin(δ2, δ))dδ ⩽

O

(√
d+ log t

n
+

d+ log t

n

)
⩽ O(1),

via a Chernoff argument. The final inequality follows by bounding the tail integral and using
the precondition n ≳ d+ log t. Centering the expectation and using the triangle inequality
gives the conclusion.

For the last statement the crucial observation that allows the condition m ≳ r, is that
B⊤x0i, for all i ∈ [m], is by definition an r-dimensional O(1)-sub-Gaussian random vector
since B is an orthonormal projection matrix. Thus an identical argument to the first statement
gives the result.

Deep Neural Network Regression

We first begin by assembling the results necessary to bound the Gaussian complexity of our
deep neural network example. To begin we introduce a representative result which bounds
the empirical Rademacher complexity of a deep neural network.
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Theorem 3.8 (Theorem 2 adapted from [47]). Let σ be a 1-Lipschitz activation function
with σ(0) = 0, applied element-wise. Let N be the class of real-valued networks of depth K
over the domain X with bounded data ∥xi∥ ⩽ D for i ∈ [n], where ∥Wk∥1,∞ ⩽ M(k) for all
k ∈ [K]. Then,

R̂X(N ) ⩽(
2

n
ΠK

k=1M(k)

)√√√√(K + 1 + log d) ·max
j∈[d]

n∑
i=1

x2
i,j ⩽

2D
√
K + 1 + log d · ΠK

k=1M(k)√
n

.

where xi,j denotes the j-th coordinate of the vector xi and X is an n× d design matrix (with
n datapoints).

With this result in hand we proceed to bound the Gaussian complexities for our deep neural
network and prove Theorem 3.5. Note that we make use of the result R̂X(N ) ⩽

√
π
2
· ĜX(N )

and that ĜX(N ) ⩽ 2
√
logN · R̂X(N ) for any function class N when X has N datapoints

[67, p. 97].

Proof of Theorem 3.5. First note due to the task normalization conditions we can choose
c1, c2 sufficiently large so that the realizability assumption in Assumption 3.2 is satisfied–in
particular, we can assume that c2 is chosen large enough to contain parameter α⋆

0 and c1 large
enough so that c1M(K)2 ⩾ c1c

2
3 is larger then the norms of the parameters α⋆

j for j ∈ [t].
Next recall that under the conditions of the result we can use Lemma 3.6 to verify

the task diversity condition is satisfied with parameters (ν̃, 0) with ν̃ = σr(A
⊤A/t) > 0.

In particular under the conditions of the theorem we can verify the well-conditioning of
the feature representation with c = Ω(1) which follows by definition of the set H and we
can see that ∥Ex[ĥ(x)h

⋆(x)⊤]∥2 ⩽ Ex[∥ĥ(x)∥∥h⋆(x)∥] ⩽ O(M(K)2) using the norm bound
from Lemma 3.5. Hence under this setting we can choose c1 sufficiently large so that

c1M(K)2 ≳ M(K)2

c
c2. The condition M(K) ≳ 1 in the theorem statement is simply used to

clean up the final bound.
In order to instantiate Theorem 3.3 we begin by bounding each of the complexity terms

in the expression. First,

• For the feature learning complexity in the training phase we leverage Theorem 3.8 from [47]

(which holds for scalar-valued outputs). For convenience let nn =
2D

√
K+1+log d·ΠK

k=1M(k)√
nt

.
To bound this term we simply pull the summation over the rank r outside the complexity
and apply Theorem 3.8, so

ĜX(H) =
1

nt
E[sup

WK

r∑
l=1

t∑
j=1

n∑
i=1

gkjihk(xji)] ⩽
r∑

k=1

ĜX(hk(xji)) ⩽

log(nt) ·
r∑

k=1

R̂X(hk(xji)) ⩽ log(nt) · r · nn
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since under the weight norm constraints (i.e. the max ℓ1 row norms are bounded) each
component of the feature can be identically bounded. This immediately implies the
population Gaussian complexity bound as the expectation over X is trivial. Further by
definition the class F as linear maps with parameters ∥α∥2 ⩽ M(K)2 we obtain that
L(F) = O(M(K)2).

• For the complexity of learning F in the training phase we obtain,

ĜXj
(F) = 1

n
Eg[sup

α∈F

n∑
i=1

gjiα
⊤h(xji)] = O

(
M(K)2

n
Eg[∥

n∑
i=1

gjih(xji)∥]

)

⩽ O

M(K)2

n

√√√√ n∑
i=1

∥h(xji)∥2

 ⩽ O

(
M(K)2√

n
max

i
∥h(xji)∥

)
.

Now by appealing to the norm bounds on the feature map from Lemma 3.5 we have that
maxh∈H maxXj

maxi ∥h(xji)∥ ≲ M(K). Hence in conclusion we obtain the bound,

Ḡn(F) ⩽ O

(
M(K)3√

n

)
since the expectation is once again trivial.

• A nearly identical argument shows the complexity of learning F in the testing phase is,

ĜX0(F) =
1

m
Eg

[
sup

α:∥α∥⩽c1

m∑
i=1

giα
⊤h(x(0)i)

]
⩽

c1M(K)3√
m

from which the conclusion follows.

Finally we verify that Assumption 3.1 holds so as to use Theorem 3.3 to instantiate the
end-to-end guarantee. The boundedness parameter is,

DX ⩽ O(M(K)3)

by Lemma 3.5 since it must be instantiated with α ∈ F . For the ℓ2 loss bounds, ℓ(η; y) = (y−
η)2. Since∇ηℓ(η; y) = 2(y−η) ⩽ O(N+|η|) = O(M(K)3) where |η| ⩽ |α⊤h(x)| ⩽ O(M(K)3)
for α ∈ F , h ∈ H by Lemma 3.5 and N = O(1). So it follows the loss is Lipschitz with
L = O(M(K)3). Moreover by an analogous argument, |ℓ(η; y)| ⩽ O(M(K)6) so it follows the
loss is uniformly bounded with parameter B = O(M(K)6).

Assembling the previous bounds shows the transfer learning risk is bounded by.

≲
L

ν̃
·
(
log(nt) ·

[
log(nt) · r ·M(K)2 · nn +

M(K)3√
n

])
+

LM(K)3√
m
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+

(
1

ν̃
·max

(
L · M(K)3

(nt)2
, B

√
log(1/δ)

nt

)
+B

√
log(1/δ)

m

)
.

where nn =
2D

√
K+1+log d·ΠK

k=1M(k)√
nt

. Under the conditions of the result, the risk simplifies as in
the theorem statement.

We now state a simple result which allows us to bound the suprema of the empirical
ℓ2 norm (i.e. the DX̄ parameter in Theorem 3.1) and activation outputs for various neural
networks.

Lemma 3.5. Let ĥ(x) be a vector-valued neural network of depth K taking the form in (3.7)
with each fj ≡ αj satisfying ∥αj∥ ⩽ A with bounded data ∥x∥ ⩽ D. Then the boundedness
parameter in the setting of Theorem 3.1 satisfies,

DX ≲ AD · ΠK
k=1∥Wk∥2.

If we further assume that σ(z) = ez−e−z

ez+e−z which is centered and 1-Lipschitz (i.e. the tanh
activation function), then we obtain the further bounds that,

∥h(x)∥ ⩽ ∥WK∥∞→2

and

DX ≲ A · ∥WK∥∞→2

which holds without requiring boundedness of x. Note ∥WK∥∞→2 is the induced ∞ to 2
operator norm.

Proof. For the purposes of induction let rk(·) denote the vector-valued output of the kth
layer for k ∈ [K]. First note that the bound

DX ≲ sup
α,h,x

(α⊤h(x))2 ⩽ sup
Wk,x

A2∥rK∥2

Now, for the inductive step, ∥rK∥2 = ∥WKσ(Wk−1rK−1)∥2 ⩽ ∥WK∥22∥σ(WK−1rK−1)∥2 ⩽
∥WK∥22∥WK−1rK−1∥2 ⩽ ∥WK∥22∥WK−1∥22∥rK−1∥2 where the first inequality follows because
σ(·) is element-wise 1-Lipschitz and zero-centered. Recursively applying this inequality to
the base case where r0 = x gives the conclusion after taking square roots.

If we further assume that σ(z) = ez−e−z

ez+e−z (which is centered and 1-Lipschitz) then we can
obtain the following result by simply bounding the last layer by noting that ∥rK−1∥∞ ⩽ 1.
Then,

∥h(x)∥2 = ∥rK∥22 = ∥WKrK−1∥22 ⩽ ∥WK∥2∞→2

where ∥WK∥∞→2 is the induced ∞ to 2 operator norm
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We now turn to proving a task diversity lower bound applicable to general ℓ2 regression
with general feature maps h(·) under the assumptions of the Py|x of the generative model
specified in (3.8). As our result holds only requiring f ⋆

j ≡ α⋆
j and applies to more then neural

network features we define some generic notation.
We assume the data generating model takes the form,

yji = (α⋆
j)

⊤h⋆(xji) + ηji for j ∈ {1, . . . , t}, i ∈ {1, . . . , n} (3.12)

for ηji with bounded second moments and independent of xji. Here the shared feature
representation h⋆(·) ∈ Rr is given by a generic function. In our generic framework we
can identify f ⋆

j ≡ α⋆
j for j ∈ {1, . . . , t}. As before we define the population task diversity

matrix as A = (α⋆
1, . . . ,α

⋆
t )

⊤ ∈ Rt×r, C = A⊤A/t and ν̃ = σr(
A⊤A

t
). Given two feature

representations ĥ(·) and h⋆(·), we can define their population covariance as,

Λ(ĥ,h⋆) =

[
Ex[ĥ(x)ĥ(x)

⊤] Ex[ĥ(x)h
⋆(x)⊤]

Ex[h
⋆(x)ĥ(x)⊤] Ex[h

⋆(x)h⋆(x)⊤]

]
≡
[
Fĥĥ Fĥh⋆

Fh⋆ĥ Fh⋆h⋆

]
⪰ 0

and the generalized Schur complement of the representation of h⋆ with respect to ĥ as,

ΛSc(ĥ,h
⋆) = Fh⋆h⋆ − Fh⋆ĥ(Fĥĥ)

†Fĥh⋆ ⪰ 0.

We now instantiate the definition of task diversity in this setting. We assume that the universal
constants c2 and c1 are large-enough such that F and F0 contain the true parameters α⋆

0

and α⋆
j respectively for the following.

Lemma 3.6. Consider the Py|x(·) regression model defined in (3.12) with the loss function
ℓ(·, ·) taken as the squared ℓ2 loss and let Assumption 3.3 hold. Then for this conditional
generative model with F = {α : α ∈ Rr} and F0 = {α : ∥α∥2 ⩽ c2} the model is ( ν̃

c2
, 0)

diverse in the sense of Definition 3.3 and,

dF ,F0(ĥ;h
⋆) = c2 · σ1(Λsc(ĥ,h

⋆)); d̄F ,f⋆(ĥ;h
⋆) = tr(Λsc(ĥ,h

⋆)C).

Moreover, if we assume the set of feature representations ĥ ∈ H in the infima over ĥ are
well-conditioned in the sense that σr(Ex[ĥ(x)ĥ(x)

⊤]) ⩾ c > 0 and ∥Ex[ĥ(x)h
⋆(x)⊤]∥2 ⩽ C,

then if F = {α : ∥α∥ ⩽ c1}, F0 = {α : ∥α∥2 ⩽ c2} and c1 ⩾ C
c
c2, the same conclusions hold

for sufficiently large constants c1, c2.

Proof. We first bound the worst-case representation difference and then the task-averaged

representation difference. For convenience we let v(α̂,α) =

[
α̂
α

]
in the following. First, note

that under the regression model defined with the squared ℓ2 loss we have that,

Ex,y∼f◦h(x)

{
ℓ(f̂ ◦ ĥ(x), y)− ℓ(f ◦ h(x), y)

}
= Ex[|α̂⊤ĥ(x)−α⊤h(x)|2]
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• the worst-case representation difference between two distinct feature representations ĥ
and h⋆ becomes

dF ,F0(ĥ;h
⋆) = sup

α:∥α∥2⩽c2

inf
α̂

Ex|ĥ(x)⊤α̂− h⋆(x)⊤α0|2 =

sup
α0:∥α0∥2⩽c2

inf
α̂
{v(α̂,−α)⊤Λ(ĥ,h⋆)v(α̂,−α)} =

sup
α0:∥α0∥2⩽c2

inf
α̂
{v(α̂,α0)

⊤Λ(ĥ,h⋆)v(α̂,α0)}.

Recognizing the inner infima as the partial minimization of a convex quadratic form (see
for example [12, Example 3.15, Appendix A.5.4]), we find that,

inf
α̂
{v(α̂,α0)

⊤Λ(ĥ,h⋆)v(α̂,α0)} = α⊤
0 Λsc(ĥ,h

⋆)α0

Note that in order for the minimization be finite we require Fĥĥ ⪰ 0 and that Fĥh⋆α ∈
range(Fĥĥ) – which are both satisfied here since they are constructed as expectations
over appropriate rank-one operators. In this case, a sufficient condition for α̂ to be an
minimizer is that α̂ = −F†

ĥĥ
Fĥh⋆α. Finally the suprema over α can be computed using

the variational characterization of the singular values.

sup
α0:∥α0∥2⩽c2

α⊤
0 Λsc(ĥ,h

⋆)α0 = c2 · σ1(Λsc(ĥ,h
⋆))

• The task-averaged representation difference can be computed by similar means

d̄F ,f⋆(ĥ;h
⋆) =

1

t

t∑
j=1

inf
α̂

Ex|ĥ(x)⊤α̂− h⋆(x)⊤α⋆
j |2 =

1

t

t∑
j=1

(α⋆
j)

⊤Λsc(ĥ,h
⋆)α⋆

j

= tr(Λsc(ĥ,h
⋆)C)

Note that since Λsc(ĥ,h
⋆) ⪰ 0, andC ⪰ 0, by a corollary of the Von-Neumann trace inequal-

ity, we have that tr(Λsc(ĥ,h
⋆)C) ⩾

∑r
i=1 σi(Λsc(ĥ,h

⋆))σr−i+1(C) ⩾ tr(Λsc(ĥ,h
⋆))σr(C) ⩾

σ1(Λsc(ĥ,h
⋆)) · σr(C).

Combining the above two results we can immediately conclude that,

dF ,F0(ĥ;h
⋆) = c2σ1(Λsc(ĥ,h

⋆)) ⩽
1

ν̃/c2
d̄F ,f⋆(ĥ;h

⋆)

The second conclusion uses Lagrangian duality for the infima in both optimization prob-
lems for the worst-case and task-averaged representation differences. In particular, since
the infα̂ Ex|ĥ(x)⊤α̂− h⋆(x)⊤α|2 is a strongly-convex under the well-conditioned assump-
tion, we have its unique minimizer is given by α̂ = −(Fĥĥ)

−1Fĥh⋆α; hence ∥α̂∥ ⩽ C
c
∥α∥.

Thus, if we consider the convex quadratically-constrained quadratic optimization problem



CHAPTER 3. ON THE THEORY OF TRANSFER LEARNING 90

infα̂:∥α̂∥2⩽c0 Ex|ĥ(x)⊤α̂− h⋆(x)⊤α|2 and c0 ⩾ C
c
∥α∥ the constraint is inactive, and the con-

strained optimization problem is equivalent to the unconstrained optimization problem. Hence
for the choices of F = {α : ∥α∥ ⩽ c1} and F0 = {α : ∥α∥ ⩽ c2}, since all the ∥α⋆

j∥ ⩽ O(1)
for j ∈ [t] ∪ {0}, the infima in both the computation of the task-averaged distance and
worst-case representation difference can be taken to be unconstrained for sufficiently large
c1, c2. The second conclusion follows.

Index Models

We prove the general result which provides the end-to-end learning guarantee. Recall that
we will use ΣX to refer the sample covariance over the the training phase data.

Proof of Theorem 3.6. First by definition of the sets F0 and F the realizability assumption
holds true. Next recall that under the conditions of the result we can use Lemma 3.7 to verify
the task diversity condition is satisfied with parameters (ν̃, ϵ̃) for ν̃ ⩾ 1

t
. Note in fact we have

the stronger guarantee ν̃ ⩾ ∥v∥1
∥v∥∞

1
t
for vj = inf f̂∈F Ex,η[L(f

⋆
j (b

⋆(x))− f̂(b̂(x)) + η)]. So if v

is well spread-out given a particular learned representation b̂, the quantity ν̃ could be much
larger in practice and the transfer more sample-efficient then the worst-case bound suggests.

In order to instantiate Theorem 3.3 we begin by bounding each of the complexity terms
in the expression. First,

• For the feature learning complexity in the training phase standard manipulations give,

ĜX(H) ⩽
1

nt
E

[
sup

b:∥b∥2⩽W

t∑
j=1

n∑
i=1

gjib
⊤xji

]
⩽

W

nt

√√√√E[∥
t∑

j=1

n∑
i=1

gjixji∥22]

⩽
W

nt

√√√√ t∑
j=1

n∑
i=1

∥xji∥2 =
√

W 2tr(ΣX)

nt

Further by definition the class F is 1-Lipschitz so L(F) = 1. Taking expectations and
using concavity of the

√
· yields the first term.

• For the complexity of learning F in the training phase we appeal to the Dudley entropy
integral (see [113, Theorem 5.22]) and the metric entropy estimate from [59, Lemma 6(i)].
First note that N2,bXj

(F , d2,bXj
, ϵ) ⩽ N(F , ∥·∥∞, ϵ), where the latter term refers to the

covering number in the absolute sup-norm. By [59, Lemma 6(i)], N(F , ∥·∥∞, ϵ) ⩽ 1
ϵ
22DW/ϵ.

So for all 0 ⩽ ϵ ⩽ 1,

ĜZ(F) ≲ 4ϵ+
32√
n

∫ 1

ϵ/4

√
logN(F , ∥·∥∞, u)du ≲ ϵ+

1√
n

∫ 1

ϵ/4

√
log

(
1

u

)
+

2WD

u
du
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≲ ϵ+

√
WD√
n

∫ 1

ϵ/4

1

u1/2
du ≲ ϵ+

√
WD

n
· (2− ϵ) ⩽ O

(√
WD

n

)
using the inequality that log( 1

u
) ⩽ 2WD

u
and taking ϵ = 0. This expression has no

dependence on the input data or feature map so it immediately follows that,

Ḡn(F) ⩽ O

(√
WD

n

)

• A nearly identical argument shows the complexity of learning F in the testing phase is,

Ḡm(F) ⩽ O

(√
WD

m

)

Finally we verify that Assumption 3.1 holds so as to use Theorem 3.3 to instantiate the
end-to-end guarantee. First the boundedness parameter becomes,

DX = 1

by definition since all the functions f are bounded between [0, 1]. Again, simply by definition
the ℓ1 norm is 1-Lipschitz in its first coordinate uniformly over the choice of its second
coordinate. Moreover as the noise ηij = O(1), the loss is uniformly bounded by O(1) so
B = O(1). Assembling the previous bounds and simplifying shows the transfer learning risk
is bounded by,

≲
log(nt)

ν̃
·

(√
W 2EX[tr(ΣX)]

nt
+

√
WD

n

)
+

√
WD

m
+

1

(nt)2
+

1

ν̃

√
log(1/δ)

nt
+

√
log(1/δ)

m
+ ϵ̃

If we hide all logarithmic factors, we can verify the noise-terms are all higher-order to get the
simplified statement in the lemma.

We now introduce a generic bound to control the task diversity in a general setting. In
the following recall Ft = conv{f1, . . . , ft} where fj ∈ F for j ∈ [t] where F is a convex
function class. Further, we define the ϵ̃-enlargement of Ft with respect to the sup-norm by
Ft,ϵ̃ = {f : ∃f̃ ∈ Ft such that supz |f(z)− f ′(z)| ⩽ ϵ̃}. We also assume the loss function
ℓ(a, b) = L(a− b) for a positive, increasing function L obeying a triangle inequality (i.e. a
norm) for the following.

Our next results is generic and holds for all regression models of the form,

y = f(h(x)) + η. (3.13)

which encompasses the class of multi-index models.
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Lemma 3.7. In the aforementioned setting and consider the Py|x(·) regression model defined
in (3.13). If F is a convex function class, and F0 = Ft,ϵ̃ the model is (ν̃, ϵ̃) diverse in the
sense of Definition 3.3 for ν̃ ⩾ 1

t
.

Proof. This result follows quickly from several properties of convex functions. We will
use the pair (x, y) to refer to samples drawn from the generative model in (3.13); that is
x ∼ Px(·), y ∼ Py|x(f ◦ h(x)). First the mapping

(f, f̂)→ Ex,y

[
ℓ(f̂ ◦ ĥ(x), y)− ℓ(f ◦ h(x), y)

]
=

Ex,η[L(f(h(x))− f̂(ĥ(x)) + η)]− Eη[L(n)]

is a jointly convex function of (f, f̂). This follows since first as an affine precomposition of a
convex function, L(f(h(x))− f̂(ĥ(x)) + η) is convex for all x, η, and second the expectation
operator preserves convexity. Now by definition of Ft,ϵ̃, for all f ∈ Ft,ϵ̃ there exists f̃ ∈ Ft

such supz |f(z)− f̃(z)| ⩽ ϵ̃. Thus for all f we have that,

Ex,η[L(f(h(x))− f̂(ĥ(x)) + η)]− Eη[L(η)] ⩽ Ex,η[L(f̃(h(x))− f̂(ĥ(x)) + η)]− Eη[L(η)] + ϵ̃

for some f̃ ∈ Ft. Then since partial minimization of f̂ over the convex set F of this
jointly convex upper bound preserves convexity, we have that the mapping from f to
inf f̂∈F Ex,n[L(f(h(x))− f̂(ĥ(x)) + ϵ)]− Eη[L(η)] is a convex function of f . Thus,

inf
f̂∈F

Ex,η[L(f(h(x))− f̂(ĥ(x)) + η)]− Eη[L(η)] ⩽

inf
f̂∈F

Ex,η[L(f̃(h(x))− f̂(ĥ(x)) + η)]− Eη[L(η)] + ϵ̃

Now taking the suprema over f ∈ Ft,ϵ̃ gives,

sup
f∈Ft,ϵ̃

inf
f̂∈F

Ex,η[L(f(h(x))− f̂(ĥ(x)) + η)]− Eη[L(η)] ⩽

sup
f̃∈Ft

inf
f̂∈F

Ex,η[L(f̃(h(x))− f̂(ĥ(x)) + η)]− Eη[L(η)] + ϵ̃

Finally, since the suprema of a a convex function over a convex hull generated by a finite set
of points can be taken to occur at the generating set,

sup
f̃∈Ft

inf
f̂∈F

Ex,η[L(f̃(h(x))− f̂(ĥ(x)) + η)] = max
j∈[t]

inf
f̂∈F

Ex,η[L(f
⋆
j (h(x))− f̂(ĥ(x)) + η)]

To relate the worst-case and task-averaged representation differences, recall for a t-dimensional
vector v, ∥v∥∞ ⩽ ∥v∥1. Instantiating this with the vector with components

vj = inf
f̂∈F

Ex,η[L(f
⋆
j (h

⋆(x))− f̂(ĥ(x)) + η)]
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and combining with the above shows that8,

dF ,F0(ĥ;h
⋆) ⩽ d̄F ,f⋆(ĥ;h

⋆) · 1
ν̃
+ ϵ

where ν̃ ⩾ 1
t
(but might potentially be larger). Explicitly ν̃ ⩾ 1

t
∥v∥1
∥v∥∞ . In the case the vector

v is well-spread out over its coordinates we expect the bound ∥v∥1 ⩾ ∥v∥∞ to be quite loose
and ν̃ could be potentially much greater.

Note if v is well-spread out – intuitively the problem possesses a problem-dependent
“uniformity” and the bound ν̃ ⩾ 1

t
is likely pessimistic. However, formalizing this notion in a

clean way for nonparametric function classes considered herein seems quite difficult.
Also note the diversity bound of Lemma 3.7 is valid for generic functions and repre-

sentations in addition to applying to a wide class of regression losses. In particular, all
p-norms such L(a, b) = ∥a− b∥p satisfy the requisite conditions. Further only mild moments
boundedness conditions are required on ϵ to ensure finiteness of the objective.

8note the Eη[L(η)] terms cancel in the expressions for dF,F0
(ĥ;h⋆) and d̄F,f⋆(ĥ;h

⋆).
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Chapter 4

Optimal Mean Estimation without
Variance

4.1 Introduction

In this chapter, we aim to solve a fundamental problem in statistical inference—mean
estimation—under minimal assumptions. Formally, we seek the tightest confidence interval
(up to constants) achievable for the problem of mean estimation, equipped solely with a weak
moment assumption on the Xi (say, when Xi are drawn from a multivariate t-distribution):

Problem 4.1. Consider a sequence of n i.i.d. vectors from a distribution D over Rd with
mean µ satisfying the following weak moment condition for some 0 ⩽ α ⩽ 1:

∀v ∈ Rd, ∥v∥ = 1 : E
[
|⟨v,Xi − µ⟩|1+α

]
⩽ 1, ∀i ∈ {1, . . . , n}. (MC)

Given a confidence level δ > 0, output an estimate µ̂ with the smallest radius rδ satisfying:

P {∥µ̂− µ∥ > rδ} ⩽ δ.

At first blush, such a question might seem only a theoretical curiosity. However, distri-
butions lacking a variance (i.e. those with α < 1) routinely arise in settings involving AB
testing of user data and even reinforcement learning [106, 73, 45]. In these applications, the
statistical consequences of Problem 4.1 are important to basic questions that often arise–such
as how to effectively compute a treatment effect (the difference-in-means between a response
variable in a heavy-tailed treatment group vs. a heavy-tailed control group) or a policy
gradient (the mean across heavy-tailed stochastic gradients from a reinforcement learning
simulator).

For the case of α = 1, Problem 4.1 amounts to an assumption on the spectral norm
of the covariance matrix of the distribution D. Even in this special case, estimators with
optimal confidence interval, rδ, were only recently discovered ([75, 15]), building upon the
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one-dimensional median-of-means (MoM) framework introduced in [89]. These estimators
achieve the following rate:

rδ = O

(√
d

n
+

√
log 1/δ

n

)
.

Unfortunately, however, there is no known polynomial-time algorithm to compute the
estimators proposed in these papers. Computationally-efficient estimators achieving the
optimal confidence interval were first proposed in [51] based on the sum-of-squares family
of semidefinite relaxations of the estimator from [75]. By combining these ideas with a
algorithm based on gradient descent, faster mean estimators were subsequently developed
in [20]. Perhaps surprisingly, this line of work shows as long as the variance of the random
vector exists, neither statistical nor computational efficiency is necessarily sacrificed when
estimating µ. In particular, the dependence on d, n, δ of the confidence interval for MoM
estimators, when the samples have bounded second moments, exactly matches the optimal
dependence on d, n, δ, when the samples Xi are Gaussian.

When α < 1, the situation is markedly different. In the one-dimensional case, the (optimal)
achievable radius satisfies [29]:

rδ = O

(
log 1/δ

n

) α
1+α

,

which can be achieved by a univariate MoM-style estimator. Even in one dimension, the lack
of a second moment degrades the information-theoretic bound with respect to both n and δ.
Unlike the case α ⩾ 1, Gaussian-like confidence intervals cannot be obtained in this regime.
Moreover, in d dimensions, there is very little known about the optimal achievable radius
save for the fact that one can obtain the following trivial rate by applying the univariate
estimator coordinate-wise:1

rδ = Õ

(
√
d

(
log 1/δ

n

) α
1+α

)
.

Two natural questions thus present themselves. First, in the regime where α < 1, what is
minimax-optimal rate for mean estimation in higher dimensions? Second, can this (hitherto
unknown) rate also be achieved in polynomial time?

The primary contribution of the current paper is to present to sharp answers to both
of these questions. These answers are contained in the following two theorems, the first of
which presents a rate that is achievable by a polynomial-time algorithm and the second of
which establishes the optimality of this rate.

Theorem 4.2. Let X = X1, . . . , Xn be iid random vectors with mean µ, satisfying the weak
moment assumption (MC) for some known α > 0. There is a polynomial-time algorithm

1This follows by the triangle inequality and union bound.
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which, when given inputs X and a target confidence δ > 2−
n

16000 , returns a point x∗ satisfying:

∥x∗ − µ∥ ⩽ 108

(√
d

n
+

(
d

n

) α
1+α

+

(
log 1/δ

n

) α
1+α

)
,

with probability at least 1− δ.

Theorem 4.2 is based on a two-stage estimation procedure. In the first step, the set of
inputs X is truncated to discard samples that are too far from the empirical centroid of X.
The second step uses an estimation-to-testing framework for heavy-tailed estimation [20]
by first setting up a testing problem which decides if a candidate mean is close to the true
mean µ and, subsequently, using this procedure to improve the estimate. By iterating this
procedure, we eventually converge to a good approximation of the true mean.

Our second main result is a matching minimax lower bound establishing the optimality of
the rate in Theorem 4.2.

Theorem 4.3. Let n > 0 and let δ ∈
(
e−

n
4 , 1

4

)
. Then there exists a set of distributions F

over Rd such that each D ∈ F obeys the weak moment condition (MC) for some α > 0, and
any estimator µ̂ satisfies:

PD∈F

{
∥µ̂(X)− µ(D)∥ ⩾ 1

24
·max

((
d

n

) α
1+α

,

√
d

n
,

(
log 2/δ

n

) α
1+α

)}
⩾ δ,

where the data X are generated iid from D.

The main challenge in proving Theorem 4.3 lies in obtaining tight dependence on dimension.
The proof begins by using a standard reduction from estimation to testing for proving minimax
rates [see, for example, 113, Chapter 15]. We then avoid traditional Fano-style information-
theoretic approaches, however, in establishing difficulty of the testing problem. We instead
take a Bayesian approach and use a carefully chosen set of discrete distributions to instantiate
the testing problem, allowing us to establish a sharp dependence on dimension in our lower
bound, once various technical challenges are surmounted.

Together, Theorem 4.2 and Theorem 4.3 have the following implications for the problem
of mean estimation without a variance:

• In the case in which the failure probability δ is a constant, our upper and lower bounds
simplify to O(

√
d/n+(d/n)α/(1+α)). Interestingly, Theorem 4.2 and Theorem 4.3 reveal

the existence of a phase transition in the estimation rate when n ≍ d—the estimation

rate is dominated by
√

d
n
when n ≲ d and ( d

n
)α/(1+α) when n ≳ d.

• While it is established in [29] that it is impossible to obtain subgaussian rates in
this setting even in one dimension, our results reveal a decoupling between the terms
depending on the failure probability and the dimension that parallels the finite-variance
case (where α = 1).
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• Finally, our results also extend to the more general problem of mean estimation under
adversarial corruption, which has received much recent attention in both the computer
science and statistics communities. In this setting, an adversary is allowed to inspect
the data points and arbitrarily corrupt a fraction η of them. We recover the mean up
to an error of O(ηα/(1+α)) which is information-theoretically optimal (Theorem 4.8).
Furthermore, as a consequence of Theorem 4.3, our sample complexity of O(d/η) is
also optimal.

The main technical challenge in establishing our upper bound is the analysis of the
estimation-to-testing framework of [20] in the weak-moment setting. The analysis in [20]
makes critical use of the decomposition of the variance of sums of independent random
variables which does not hold in our setting. This allows tight control of the second moments
of
∑m

i=1Xi and ∥X − µ∥, which are crucial to that analysis. Despite the lack of such
decompositions for weak moments, we establish tight control over the appropriate quantities
allowing us to establish our optimal recovery guarantees.

Similarly, the presence of weak moments also complicates the task of establishing a
matching lower bound with tight dependence on the dimension d. The main difficulty is in
proving the optimality of the dimension-dependent term, (d/n)α/(1+α). For the specific case
where α = 1, the lower bound may be proved within the estimation-to-testing framework by
utilizing a distribution over a well-separated collection of Gaussian distributions. However,
this approach fails for the weak-moment mean estimation problem; indeed, hypercontractivity
properties of Gaussian distributions ensure a bounded variance leading to a lower bound
that scales as 1/

√
n as opposed to the slower rate n−α/(1+α). To prove our lower bound,

we instead use a collection of carefully chosen distributions with discrete supports whose
means are separated by O((d/n)α/(1+α)). Further challenges arise at this point—if we follow
the standard path of bounding the complexity of the testing problem in terms of pairwise
f -divergences between distributions in the hypothesis set, we obtain vacuous bounds. We
instead directly analyze the posterior distribution obtained from the framework and show
that random independent samples from the posterior tend to be well separated, yielding our
tight lower bound.

4.2 Related Work

There has been much interest in designing information-theoretically optimal estimators for
fundamental inferential tasks under minimal assumptions on the distributions generating the
data [89, 57, 1, 75, 78, 51, 20, 21, 76, 28, 69, 26, 27, 77]. In the one-dimensional setting,
estimators achieving the information theoretically-optimal subgaussian rate were obtained in
the seminal work of [1, 57, 89]. In recent years, focus has shifted towards the high-dimensional
setting where one aims for optimal recovery error in terms of the number of samples n, the
dimension d, and the failure probability δ, without making strong distributional assumptions
such as Gaussianity. As a consequence of this effort, information-theoretically optimal
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estimators have been developed for mean estimation [75], linear regression [78] and covariance
estimation [85]. However, the estimators proposed in these works lack computationally efficient
algorithms to compute them. The first computationally efficient estimator was proposed by
[51] and its runtime and analysis were subsequently improved in [20, 28, 69]. Subsequently,
improved algorithms have been devised for linear regression and covariance estimation [21].
Most recently, [26] extended the approach of [69] to linear regression, improving on [21] in
settings where the covariance matrix of the data-generating distribution is known. We direct
the interested reader to the survey [77] and the references therein for more detailed discussion
of this line of research. Note that the optimal recovery guarantee obtainable in all these
settings is the subgaussian rate. This is provably not possible in the weak-moment scenario
even in the one-dimensional case as evidenced by our lower bound.

Another approach towards achieving distributional robustness which has received much
attention in the computer science community is robust estimation under a contamination
model. In this setting, an adversary is allowed to inspect a set of data points generated
from a well-behaved distribution and can arbitrarily corrupt a fraction η of them according
to their choosing. Broadly speaking, the primary goal of this field is to obtain optimal
recovery of the underlying parameter as a function of the corruption factor η as opposed
to achieving optimal dependence on n, d, δ. Starting with the foundational works of [56,
109], which obtain information-theoretically optimal (albeit computationally intractable)
estimators, computationally efficient estimators are now known for a range of statistical
estimation problems in various settings [64, 35, 17, 103, 34, 32, 63, 36, 39, 19]. Since the
literature of this field is vast, we restrict ourselves to the specific setting of mean estimation
and direct the reader to [30] for more context on these developments. For the mean estimation
problem under adversarial corruption, this line of work has resulted in estimators which
succeed with constant probability, say 2/3, and achieve the optimal recovery error of

√
η

assuming the data is drawn from a distribution with finite covariance [39, 19, 28]. In addition,
[76, 28] achieve this rate along with the optimal dependence on δ in the recovery guarantees.
Finally, recent work [31, 53] has led to a formal unification of algorithmic approaches towards
each of these settings along with extensions of these approaches to the differentially private
setting as well [52]. A corollary of our work extends these results to the setting where the
covariance matrix is not defined.

4.3 Algorithm

In this section, we describe our algorithm for mean estimation problem in the setting of the
weak moment condition (MC). We build on the approach of [20] which operates in the setting
where the covariance matrix of the distribution generating the data is defined. However,
the absence of second moments complicates the design of our algorithm leading to a more
intricate procedure. Concretely, our algorithm is comprised of the following three broad
stages:

1. Data Pruning: First, we compute an initial crude estimate of the mean which is within
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O(
√
d) of µ and then proceed to use this estimate to filter out data points which are far

from our estimate. This truncation must be chosen carefully to ensure that the mean
of the truncated data points still approximates the true mean well. As a consequence,
this truncation is a function of n, d and α. Algorithms 4 and 5 describe this crude
estimation procedure and truncation step in greater detail. Intriguingly, this additional
thresholding step (which is not necessary in the α = 1 case) is critical to achieve the
statistically optimal confidence intervals in this scenario.

2. Data Batching: In this stage, the data points that survive the truncation procedure in
Algorithm 5 are then divided into k bins and mean estimates are computed by averaging
the set of points in each bin. The number of bins is chosen depending on the desired
failure probability, δ. The precise setting of parameters is described in Algorithm 3.

3. Median Computation: Finally, the bucket estimates, Zi, produced in the previous stage
are aggregated to produce our final estimate of the mean. The procedure to do this
follows along the testing-to-estimation framework for robust estimation explored in
[20]. Here, one first designs a procedure to test whether a given candidate, x, is close
to µ. Subsequently, a solution to the testing program is then used to improve the
estimate. In this setting, one shows that the testing program can be used to estimate
both ∥x− µ∥ and an approximation to ∆ = µ−x

∥x−µ∥ which may be used to improve
our estimate. Algorithms 6 and 7 and Algorithm 2 display the estimation and tuning
components of this stage. The testing program is defined in MT and is discussed in
more detail subsequently.

Algorithm 1 Mean Estimation

1: Input: Data Points X ∈ Rn×d, Target Confidence δ
2: x† ← Initial Mean Estimate({X1, . . . , Xn/2})
3: Z ← Produce Bucket Estimates(

{
Xn/2+1, . . . , Xn

}
, x†, δ)

4: T ← 106 log dn
5: x∗ = Gradient Descent(Z, x†, T )
6: Return: x∗
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Algorithm 2 Gradient Descent

1: Input: Bucket Means Z ∈ Rk×d, Initialization x†, Number of Iterations T
2: x∗, x0 ← x† and d∗, d0 ←∞
3: for t = 0 : T do
4: dt ← Distance Estimation(Z, xt)
5: gt ← Gradient Estimation(Z, xt)
6: if dt < d∗ then
7: x∗ ← xt

8: d∗ ← dt
9: xt+1 ← xt +

1
20
dtgt

10: Return: x∗

Algorithm 3 Produce Bucket Estimates

1: Input: Data Points X ∈ Rn×d, Mean Estimate x†, Target Confidence δ
2: Y ← Prune Data(X, x†)
3: m← |Y |
4: k ← 4000 log 1/δ
5: Split data points into k buckets with bucket Bi consisting of the points X(i−1)m

k
+1, . . . , Xim

k

6: Zi ← Mean(Bi) ∀ i ∈ [k] and Z ← (Z1, . . . , Zk)
7: Return: Z

Algorithm 4 Initial Mean Estimate

1: Input: Set of data points X = {Xi}ni=1

2: µ̂← argminXi∈X min
{
r > 0 :

∑n
j=1 1 {∥Xj −Xi∥ ⩽ r} ⩾ 0.6n

}
3: Return: µ̂

Algorithm 5 Prune Data

1: Input: Set of data points X = {Xi}ni=1, Mean Estimate x†

2: τ ← max
(
100n

1
1+αd−

(1−α)
2(1+α) , 100

√
d
)

3: C ← {Xi : ∥Xi − x†∥ ⩽ τ}
4: Return: C
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Algorithm 6 Distance Estimation

1: Input: Data Points Z ∈ Rk×d, Current
point x

2: d∗ = argmaxr>0MT(x, r,Z) ⩾ 0.9k
3: Return: d∗

Algorithm 7 Gradient Estimation

1: Input: Data Points Z ∈ Rk×d, Current
point x

2: d∗ = Distance Estimation(Z, x)
3: (v,X) = MT(x, d∗,Z)
4: g ← Top Singular Vector(Xv)
5: Return: g

As in [51, 20], the following polynomial optimization problem and its semidefinite relaxation
play a key role in our subsequent analysis. Intuitively, given a test point, x, the program
searches for a direction (denoted by v) such that a large fraction of the bucket estimates, Zi,
are far away from x along v. Formally, the polynomial optimization problem, parameterized
by x, r and Z, is defined below:

max
k∑

i=1

bi

s.t b2i = bi

∥v∥2 = 1

bi(⟨v, Zi − x⟩ − r) ⩾ 0 ∀i ∈ [k]. (MTE)

The binary variables bi indicates whether the ith bucket mean Zi is far away along v.
Unfortunately, the binary constraints on bi, the restriction of v and the final constraint
make this problem nonconvex and there are no efficient algorithms known to compute it.
Accordingly, we work with the semidefinite relaxation defined as follows:

max
k∑

i=1

X1,bi

X1,bi = Xbi,bi

d∑
j=1

Xvj ,vj = 1

⟨vbi , Zi − x⟩ ⩾ Xbi,bir ∀i ∈ [k]

X1,1 = 1

X ≽ 0, (MT)

where vbi = [Xbi,v1 , . . . , Xbi,vd ]
⊤. The matrixX ∈ S(k+d+1)

+ is symbolically indexed by 1 and the
variables b1, . . . , bk and v1, . . . , vd. We will restrict ourselves to analyzing MT and will refer
to the program initialized with x, r and Z as MT(x, r,Z). We will use (v,X) = MT(x, r,Z)
to denote the optimal value, v, and solution, X, of MT initialized with x, r and Z. For the
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sake of clarity, MT(x, r,Z) in the absence of any specified output will refer to the optimal
value of MT(x, r,Z).

4.4 Proof Overview

In this section, we outline the main steps in proving Theorem 4.2, providing full details in
the Appendix. For ease of exposition, we restrict most of our attention to those steps of our
proof which are complicated by the weaker assumptions used in our work. From Section 4.3,
we see that our estimation procedure is divided into three stages:

1. We obtain an initial coarse estimate, µ̂, of µ (Algorithm 4);

2. We then use µ̂ to prune data points far away from µ (Algorithm 5);

3. Finally, the remaining data points are incorporated into a gradient-descent algorithm
to obtain our final estimate (Algorithm 1).

To obtain our tight rates, we crucially require the following correctness guarantees on these
three steps, each with high probability: our initial estimate µ̂ is within a radius of O(

√
d) of

µ, a large fraction of data points pass the pruning steps in Algorithm 5, and finally, a tight
analysis on the error of the gradient descent procedure in Algorithm 1. The first two steps
are novel to the weak-moment setting and the third step, while explored previously for the
case α = 1, is complicated here due to the lack of strong decomposition structure in the weak
moments.

To deal with these difficulties, we establish two crucial structural lemmas, proved in
Section 4.6, on distributions satisfying weak-moment conditions. The first is a bound on the
1 + α moments of the lengths of such random vectors:

Lemma 4.1. Let X be a zero-mean random vector satisfying the weak-moment assumption
for some 0 ⩽ α ⩽ 1. We have the following bound:

E[∥X∥1+α] ⩽
π

2
· d

1+α
2 .

As we will see, this lemma is crucial in all three steps of our analysis. Note that the upper
bound obtained by the lemma is tight up to a small constant factor. (A standard Gaussian
random vector yields an upper bound of d(1+α)/α). The proof follows by first considering
independent random Gaussian projections of the random vector along with an application of
Jensen’s inequality.

The second key lemma is a bound on the 1 + α moments of the sum of random variables
satisfying weak-moment assumptions. This lemma plays a key role in obtaining tight bounds
on the accuracy of the gradient-descent procedure in Algorithm 1:
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Lemma 4.2. Let X1, . . . , Xn be n mean-zero i.i.d. random variables satisfying the following
bound, for some 0 ⩽ α ⩽ 1:

E[|Xi|1+α] ⩽ 1. (4.1)

We have:

E

[
|

n∑
i=1

Xi|1+α

]
⩽ 2n. (4.2)

The proof of this lemma uses techniques employed previously for establishing the Ne-
mirovskii inequalities for Banach spaces but crucially hold even when the covariance of the
matrices are not defined [88]. We now sketch the argument establishing guarantees on the
first two steps of the algorithm. Firstly, from Lemma 4.1, we have that most of the sample
sample data points are within a radius of O(

√
d) of µ with high probability. Therefore, the

value of the minimizer in Line 2 of Algorithm 4 is O(
√
d) (by simply picking any of the data

points close to µ) and, furthermore, at least one of the points within O(
√
d) of µ̂ must be

at a distance at most O(
√
d) from µ as most data points are close to µ. This establishes

the required correctness guarantees on Algorithm 4 which is formalized in Lemma 4.11. For
the second step, we condition on the success of the first step and note that our threshold, τ ,
is chosen such that all points within O(

√
d) of µ are within τ of µ̂. Another application of

Lemma 4.1 now ensures that most data points pass this threshold, establishing correctness for
the second step of our procedure. This is outlined in Lemma 4.15. We devote the following
subsection to the final and most technical step in our analysis.

Gradient Descent Analysis

In this section we sketch the main steps in the analysis of the gradient-descent procedure
used in Algorithm 1. Throughout this subsection, we assume that the previous two steps of
the procedure are successful; that is, µ̂ constructed as part of Algorithm 5 is within O(

√
d) of

µ and as a consequence at least Ω(n) points are used to construct the bucket estimates. Now,
let {Zi}ki=1 denote the bucket estimates produced as part of Algorithm 3 and let µ̃ = E[Zi].
From prior work [20], the estimate returned by Algorithm 1 is within a radius of O(r∗) of µ̃,
where:

r∗ := min {r > 0 : MT(µ̃, r,Z) ⩽ 0.05k} .

Therefore, the error of our estimate may be upper bounded by the sum of two terms: the
first is the degree to which µ̃ approximates µ and the second is an upper bound on r∗. We
will see that there is an inherent tradeoff between these two terms—by picking the threshold
τ in Algorithm 5 to be extremely large, µ̃ may be an arbitrarily good approximation of µ
but our bound on r∗ may be poor. We now state a structural lemma capturing the tradeoff
between r∗ and τ .
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Lemma 4.3. Let Z = {Zi}ki=1 be k iid random vectors with mean µ̃ and covariance matrix
Λ. Suppose that E [|⟨v, Zi − µ̃⟩|1+α] ⩽ β for all ∥v∥ = 1. We have:

r∗ ⩽ 1000

(√
TrΛ

k
+ β1/(1+α)

)
where r∗ := min{r > 0 : MT(µ̃, r,Z) ⩽ 0.05k},

with probability at least 1− e−k/800.

Given this lemma, the main remaining difficulty is in obtaining bounds on E [|⟨Zi, v⟩|1+α],
Tr(Λ), and the deviation of µ̃ from µ. Note that from the definition of Algorithm 3, the Zi

are means of truncated data points and hence their covariance matrix is well defined.
To obtain bounds on ∥µ̃− µ∥, an application of Markov’s inequality and Lemma 4.1

establishes that the probability of Xi being truncated in Algorithm 5 is at most O(d/n).
Then, a standard variational argument along with our weak-moment assumption allows us to
bound ∥µ̃− µ∥ (see Lemma 4.9 for more details).

We obtain a bound on TrΛ by first observing that each Xi used to compute one of
the bucket estimates, Zj, is truncated with respect to its distance from µ̂. By an ap-
plication of the triangle inequality, we infer that all of the Xi used in the computation
satisfy ∥Xi − µ̂∥ ⩽ τ + O(

√
d). Therefore, to bound TrΛ, all we need is a bound on

E[∥Xi − µ̃∥21
{
∥Xi − µ̂∥ ⩽ τ +O(

√
d)
}
]. Another appeal to Lemma 4.1 and a straightfor-

ward truncation argument establishes a bound of O(
√
d/n+ (d/n)α/(1+α)) (see Lemmas 4.10

and 4.15).
For the final term, observe that the Zi are averages of truncated versions of Xi. A simple

argument shows that truncated Xi satisfy a weak-moment bound (Lemma 4.9). Therefore, a
direct application of Lemma 4.2 yields a bound of O(k/n) on β. Incorporating these bounds
into Lemma 4.3 and the gradient-descent framework for heavy-tailed estimation from [20]
concludes the proof of Theorem 4.2.

4.5 Lower Bound

In this section, we present a lower bound for heavy-tailed regression which shows that the
bound obtained in Theorem 4.2 is tight.

For a given dimension d, and sample size n, we will consider a family of distributions
parameterized by size d/2 subsets of [d]. That is, we will consider a family of distributions
F = {DS : S ⊂ [d] and |S| = d/2}. Now, for each particular distribution DS, we have
X ∼ DS as follows:

X =

{
0, with probability 1− d

8n

n
1

1+α · d−
(1−α)
2(1+α) · ei, for i ∈ S with probability 1

4n
.

We will first show that the distribution DS satisfies the 1 + α moment condition.
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Lemma 4.4. Let X ∼ DS for some S ⊂ [d] such that |S| = d/2. Then, X satisfies the
following:

∀v : ∥v∥ = 1 : E
[
|⟨v,X − µS⟩|1+α

]
⩽

1

2
.

Proof. We first note that:

(µS)i =

0, for i /∈ S

n
− α

1+α ·d
− (1−α)

2(1+α)

4
, otherwise.

Let v be such that ∥v∥ = 1. We have:

E
[
|⟨v,X − µS⟩|1+α

]
=
∑
i∈S

1

4n
· |vi

(
n

1
1+α · d−

(1−α)
2(1+α) − n− α

1+α · d−
(1−α)
2(1+α)

4

)
|1+α

+
∑
i∈S

(
1− 1

4n

)
· |vi

(
n− α

1+α · d−
(1−α)
2(1+α)

4

)
|1+α.

For the first term in this sum, we have:

∑
i∈S

1

4n
· |vi

(
n

1
1+α · d−

(1−α)
2(1+α) − n− α

1+α · d−
(1−α)
2(1+α)

4

)
|1+α ⩽

∑
i∈S

1

4n
· |vin

1
1+α · d−

(1−α)
2(1+α) |1+α

=
1

4

∑
i∈S

|vi|1+α · d−
(1−α)

2 ⩽
1

4

(∑
i∈S

v2i

) 1+α
2

·

(∑
i∈S

d−1

) 1−α
2

⩽
1

4
,

where the second inequality follows from Hölder’s inequality. For the second term, we have:

∑
i∈S

(
1− 1

4n

)
· |vi

(
n− α

1+α · d−
(1−α)
2(1+α)

4

)
|1+α ⩽

1

4

∑
i∈S

|vi|1+αn−αd−
(1−α)

2

⩽
1

4

∑
i∈S

|vi|1+αd−
(1−α)

2 ⩽
1

4
,

where the last inequality again follows from Hölder’s inequality. Putting the two bounds
together, we obtain:

∀v : ∥v∥ = 1 : E
[
|⟨v,X − µS⟩|1+α

]
⩽

1

2
.

We now prove a lemma that establishes the optimality of Theorem 4.2 in the regime
of constant failure probability. We use the following generative process for the data X =
X1, . . . , Xn:
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1. Randomly pick a subset S uniformly from the set {T ⊂ [d] : |T | = d/2}.

2. Generate X1, . . . , Xn iid from the distribution, DS.

Lemma 4.5. Let (S,X) be generated according to the above process. We have, for any
estimator µ̂(X),

PS,X

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

}
⩾

1

4
.

Proof. We first define the random variable Y :=
∑n

i=1 1 {Xi ̸= 0}. From the definition of the
distributions DS we have:

E [Y ] =
d

8

Therefore, we have that Y ⩽ d/4 with probability at least 1/2, by Markov’s inequality. We
now define the following random set: T := {i ∈ [d] : ∃j ∈ [n] such that (Xj)i ̸= 0}. We see
from the definition of T and Y that |T | ⩽ Y . We have with probability at least 1/2 that
|T | ⩽ d/4. Let X be an outcome for which |T | = k ⩽ d/4. We have by the symmetry of the
distribution that:

P {S|X} =

{
1

( d−k
d/2−k)

, if T ⊂ S and |S| = d/2

0, otherwise.

For given X, define Zi = 1 {i ∈ S} for i /∈ T (For i ∈ T , Zi is 1). We have for Zi and Zj for
distinct i, j /∈ T :

E [Zi|X] = E [Zj|X] =
d− 2k

2(d− k)
.

Furthermore, we have:

Cov(Zi, Zj|X) =
(d− 2k)(d− 2k − 2)(d− k)− (d− 2k)2(d− k − 1)

4(d− k)2(d− k − 1)

=
(d− 2k)((d− 2k)(d− k)− 2(d− k)− (d− 2k)(d− k) + (d− 2k))

4(d− k)2(d− k − 1)

=
−d(d− 2k)

4(d− k)2(d− k − 1)
< 0.

Now, consider some R ⊂ [d] such that |R| = d/2 and T ⊂ R. Let Q = R \ T . For Q, we have
|Q| = d/2− k. We have for S:

|S ∩R| = k +
∑
i∈Q

Zi.

This means that:

Var (|S ∩R| |X) = Var

(∑
i∈Q

Zi |X

)
⩽
∑
i∈Q

(
d− 2k

2(d− k)

)2

⩽
d/2− k

4
=

d

8
.
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Furthermore, we have that:

E (|S ∩R| |X) = k +

(
d

2
− k

)
· (d− 2k)

2(d− k)
⩽

d

4
+

d

4
· d

4(3d/4)
=

d

4
+

d

12
=

d

3
.

Therefore, we have by Chebyshev’s inequality that:

P
{
|S ∩R| ⩾ 5d

12

}
⩽

1

2
.

Note that for any S1, S2 such that |Si| = d
2
and |S1 ∩ S2| ⩽ 5d

12
, we have:

∥µS1 − µS2∥ ⩾

√√√√2 · d
12
·

(
n− α

1+α · d−
1−α

2(1+α)

4

)2

⩾
1

12
·
(
d

n

) α
1+α

.

Consider any estimator µ̂. Suppose that there exists R such that T ⊂ R, |R| = d/2 and

∥µ̂(X)− µR∥ ⩽ 1
24
·
(
d
n

) α
1+α . Then, we have that by the triangle inequality that:

P

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

|X

}
⩾

1

2
.

In the alternate case where ∥µ̂(X)− µR∥ ⩾ 1
24
·
(
d
n

) α
1+α for all such R, the same conclusion

holds true trivially. From these two cases, we obtain:

P

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

|X

}
⩾

1

2
.

Since such an X occurs with probability at least 1/2, we arrive at our result:

P

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

}
⩾

1

4
.

As part of our proof, we use the following one-dimensional lower bound from [29].

Theorem 4.4. For any n, δ ∈
(
2−

n
4 , 1

2

)
, there exists a set of distributions G such that any

D ∈ G satisfies the weak-moment condition for some α > 0 such that for any estimator µ̂:

PD∈G

{
|µ̂(X)− µ(D)| ⩾

(
log 2/δ

n

) α
1+α

}
⩾ δ

where X are drawn iid from D.
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Finally, we have the main theorem of the section:

Theorem 4.5. Let n > 0 and δ ∈
(
e−

n
4 , 1

4

)
. Then, there exists a set of distributions over

Rd, F such that each D ∈ F satisfies the weak-moment condition for some α > 0 and the
following holds, for any estimator µ̂:

PD∈F

{
∥µ̂(X)− µ(D)∥ ⩾ 1

24
·max

((
d

n

) α
1+α

,

√
d

n
,

(
log 2/δ

n

) α
1+α

)}
⩾ δ,

where X are generated iid from D.

Proof. When n > d, the bound follows from applications of Lemma 4.5 and Theorem 4.4.
When n ⩽ d, the bound follows from known results for the bounded-covariance (α = 1)
setting [77]; we include a proof for completeness (see Lemma 4.22).
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Appendix

4.6 Auxiliary Results

Lemma 4.6. For any Z ∈ Rk×d and x ∈ Rd, the optimal value of MT (x, r,Z) is monotoni-
cally nonincreasing in r.

Proof. The lemma follows trivially from the fact that a feasible solution X of MT (x, r,Z) is
also a feasible solution for MT (x, r′,Z) for r′ ⩽ r.

Lemma 4.7. For X ∼ N (0, 1), E[|X|] =
√

2
π
.

Proof.

E[|X|] =
∫ ∞

−∞
|x| 1√

2π
exp

{
−x2

2

}
dx = 2

∫ ∞

0

x
1√
2π

exp

{
−x2

2

}
dx

=

√
2

π

∫ ∞

0

exp{−t}dt =
√

2

π
.

Proof of Lemma 4.1. The argument hinges on a Gaussian projection trick which introduces
g ∼ N (0, I) to rewrite the norm. From Lemma 4.7 and the convexity of the function
f(x) = |x|1+α, we have:

E[∥X∥1+α] = EX

[(√
π

2
Eg|⟨X, g⟩|

)1+α
]
⩽

π

2
EXEg

[
|⟨X, g⟩|1+α

]
=

π

2
Eg∥g∥1+αEX

[
|
〈
X,

g

∥g∥

〉
|1+α

]
⩽

π

2
Eg[∥g∥1+α] ⩽

π

2
· d

1+α
2 .

The following result derives an analogue of the Chebyshev inequality that applies under
the weak-moment assumption. The primary technical difficulty to showing concentrations
of sums of such random variables is that we cannot exploit orthogonality of independent
random variables in L2 by “expanding” out the square—since the requisite second moments
do not necessarily exist.

Proof of Lemma 4.2. The case where α = 0 is trivial. When α > 0, we start by defining:

Si =
i∑

j=1

Xj, S0 = 0, f(x) = |x|1+α.



CHAPTER 4. OPTIMAL MEAN ESTIMATION WITHOUT VARIANCE 110

Therefore, we have from an application of Lemma 4.8:

E [f(Sn)] = E

[
n∑

i=1

f(Si)− f(Si−1)

]
=

n∑
i=1

E [f(Si)− f(Si−1)]

=
n∑

i=1

E
[∫ Si

Si−1

f ′(x)dx

]
=

n∑
i=1

E
[
Xif

′(Si−1) +

∫ Si

Si−1

f ′(x)− f ′(Si−1)dx

]

=
n∑

i=1

E
[∫ Si

Si−1

f ′(x)− f ′(Si−1)dx

]
⩽ 21−α

n∑
i=1

E

[∫ |Xi|

0

f ′
(
t

2

)
dt

]

= 21−α

n∑
i=1

E

[∫ |Xi|/2

0

2f ′ (s) ds

]
= 22−α

n∑
i=1

E
[
f

(
|Xi|
2

)]
⩽ 2n.

Lemma 4.8. Let g(x) = sgn(x)|x|α for some 0 < α ⩽ 1. Then we have for any h ⩾ 0:

max
x

g(x+ h)− g(x) = 21−αhα.

Proof. Consider the function l(x) = g(x+h)−g(x). We see that l is differentiable everywhere
except at x = 0 and x = −h. As long as x ̸= 0,−h, we have:

l′(x) = g′(x+ h)− g′(x) = α(|x+ h|α−1 − |x|α−1)

Since, we have α ⩽ 1, x = −h
2
is a local maxima for l(x). Furthermore, note that l′(x) ⩾ 0

for x ∈ (−∞,−h
2
) \ {−h} and l′(x) ⩽ 0 for x ∈ (−h

2
,∞) \ {0}. Therefore, we get from the

continuity of l that x = −h
2
is a global maxima for l(x).

We now provide an auxiliary result which will be useful to controlling the moments of the
thresholded versions of the vectors Xi.

Lemma 4.9. Let ν be a mean-zero distribution over Rd such that X ∼ ν satisfies the weak-
moment condition for some α > 0. Furthermore, let A ⊂ Rd be such that ν(A) = δ ⩽ 1

2
. Let

νS() be the conditional distribution of ν conditioned on the event {X ∈ S} for any X ⊂ Rd.
Then we have for Y ∼ ν(Ac):

Claim 1: ∥µ(νAc)∥ ⩽ 2δ
α

1+α , Claim 2: ∀v ∈ Sd−1, E
[
|⟨v, Y − µ(νAc)⟩|1+α

]
⩽ 20.

Proof. Letting pA = P {X ∈ A}, we have ν = pAνA + pAcνAc . Then,

∥µ(ν)− µ(νAc)∥ = max
v∈Sd−1

⟨v, µ(ν)− µ(νAc)⟩.

So for any v ∈ Sd−1:

⟨v, µ(ν)− µ(νAc)⟩ = ⟨v, pAµ(νA) + pAcµ(νAc)− µ(νAc)⟩
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= ⟨v, pAµ(νA)− pAµ(νAc)⟩ = pA⟨v, µ(νA)− µ(νAc)⟩.

Since µ(ν) = 0, we have pAµ(νA) = −pAcµ(νAc). We now get:

pA⟨v, µ(νA)− µ(νAc)⟩ = pA

〈
v, µ(νA) +

pA
pAc

µ(νA)

〉
=

(
1 +

pA
pAc

)
⟨v, pAµ(νA)⟩.

Finally,

⟨v, pAµ(νA)⟩ = EX∼µ [1 {X ∈ A} ⟨X, v⟩]

⩽
(
E
[
(1 {X ∈ A})

1+α
α

]) α
1+α ·

(
E
[
|⟨X, v⟩|1+α

]) 1
1+α = p

α
1+α

A

where the inequality follows by an application of Hölder’s inequality. We get the first claim
as:

max
v∈Sd−1

⟨v, µ(ν)− µ(νAc)⟩ =
(
1 +

pA
pAc

)
⟨v, pAµ(νAc)⟩ ⩽

(
1 +

pA
pAc

)
p

α
1+α

A ⩽ 2δ
α

1+α ,

where the final inequality follows from the fact that pAc ⩾ pA.
For the second claim, let Y ∼ νAc and µY = E[Y ]. We decompose the required term as

follows:
E
[
|⟨Y − µY , v⟩|1+α

]
⩽ 21+α · E

[
|⟨µY , v⟩|1+α + |⟨Y, v⟩|1+α

]
.

For the first term, we have with Z ∼ νA:

E
[
|⟨Y, v⟩|1+α

]
= p−1

Ac

(
E
[
|⟨X, v⟩|1+α

]
− pAE

[
|⟨Z, v⟩|1+α

])
⩽ 2.

Therefore, we finally have:

E
[
|⟨Y − µY , v⟩|1+α

]
⩽ 8 + 21+α · 21+α · δα ⩽ 16,

which proves the second claim of the lemma.

Lemma 4.10. Let X ∼ ν be a mean-zero random vector satisfying the weak-moment condition
for some 0 ⩽ α ⩽ 1. Then, we have for any τ > 0:

E
[
∥X∥2 · 1 {∥X∥ ⩽ τ}

]
⩽

π

2
d

1+α
2 τ 1−α.

Proof. The proof of the lemma proceeds as follows:

E
[
∥X∥2 · 1 {∥X∥ ⩽ τ}

]
⩽ τ 1−αE

[
∥X∥1+α1 {∥X∥ ⩽ τ}

]
⩽ τ 1−αE

[
∥X∥1+α

]
⩽

π

2
d

1+α
2 τ 1−α,

where the last inequality follows from Lemma 4.1.
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4.7 Initial Estimate

In this subsection, we analyze the initial estimate used in the thresholding step. We will
show that the estimate is within O(

√
d) of the true mean with high probability.

Lemma 4.11. Let X1, . . . , Xn be i.i.d. random vectors with mean µ, satisfying the weak-
moment condition for some α > 0. Then the mean estimate, µ̂, provided by Algorithm 4
satisfies:

∥µ− µ̂∥ ⩽ 24
√
d,

with probability at least 1− e−
n
50 .

Proof. Since our algorithm is translation invariant, we may assume without loss of generality
that µ = 0. Therefore, it suffices to prove that with probability at least 2−Ω(n):

∥µ̂∥ ⩽ 16
√
d.

We have from Lemma 4.1 that E[∥X∥] ⩽ π
2
·
√
d. Applying Markov’s inequality:

P
{
∥X∥ ⩽ 8

√
d
}
⩾

3

4
.

Combining with Hoeffding’s inequality we conclude that:

P

{
n∑

i=1

1
{
∥Xi∥ ⩽ 8

√
d
}
⩽ 0.6n

}
⩽ exp

{
− n

50

}
.

Since Algorithm 4 returns as an estimate one of the data points, let µ̂ = Xi for some i and
let rj = min{r > 0 :

∑n
k=1 1 {∥Xj −Xk∥ ⩽ r} ⩾ 0.6n} for any j ∈ [n]. We now condition on

the following event:
n∑

i=1

1
{
∥Xi∥ ⩽ 8

√
d
}
> 0.6n.

Let S =
{
j : ∥Xj∥ ⩽ 8

√
d
}
. By the triangle inequality, for any j ∈ S we have:

n∑
k=1

1
{
∥Xk −Xj∥ ⩽ 16

√
d
}
⩾ 0.6n.

Therefore, by the definition of µ̂ we infer that ri ⩽ 16
√
d. Now, let T = {k : ∥Xk −Xi∥ ⩽ ri}.

We have by the definition of ri that |T | ⩾ 0.6n. By the pigeonhole principle, we have that
T ∩ S ̸= ϕ. Let j ∈ T ∩ S. By the triangle inequality we obtain:

∥Xi∥ ⩽ ∥Xi −Xj∥+ ∥Xj∥ ⩽ 16
√
d+ 8

√
d = 24

√
d.

Since the event being conditioned on occurs with probability at least 1− e−
n
50 , this concludes

the proof of the lemma.
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4.8 Analyzing Relaxation

We first show that the optimal value of the semidefinite program MT satisfies a bounded-
difference condition with respect to the Zi’s.

Lemma 4.12. Let Y = (Y1, . . . , Yk) be any set of k vectors in Rd. Now,
let Y ′ = (Y1, . . . , Y

′
i , . . . , Yk) be the same set of k vectors with the ith vector replaced by

Y ′
i ∈ Rd. If m and m′ are the optimal values of MT (x, r,Y ) and MT (x, r,Y ′), we have:

|m−m′| ⩽ 1.

Proof. First, assume that X is a feasible solution to MT (x, r,Y ). Let us define X ′ as:

X ′
i,j =

{
Xi,j if i, j ̸= bi

0 otherwise.

That is, X ′ is equal to X except with the row and column corresponding to bi being set to 0.
We see that X ′ forms a feasible solution to MT (x, r,Y ′). Therefore, we have that:

k∑
j=1

Xbj ,bj =
k∑

j=1,j ̸=i

X ′
bj ,bj

+Xbi,bi ⩽
k∑

j=1,j ̸=i

X ′
bj ,bj

+ 1 ⩽ m′ + 1,

where the bound Xbi,bi ⩽ 1 follows from the fact that the 2× 2 submatrix of X formed by the
rows and columns indexed by 1 and bi is positive semidefinite and from the constraint that
Xbi,bi = X1,bi . Since the series of equalities holds for all feasible solutions X of MT (x, r,Y ),
we get:

m ⩽ m′ + 1.

Through a similar argument, we also conclude that m′ ⩽ m+ 1. Putting the two inequalities
together, we obtain the required conclusion.

For the next few lemmas, we are concerned with the case where x = µ. Since we already
know that the optimal SDP value satisfies the bounded differences condition, we need to
verify that the expectation is small. As a first step towards this, we define the 2-to-1 norm of
a matrix M .

Definition 4.1. The 2-to-1 norm of M ∈ Rn×d is defined as

∥M∥2→1 = max
∥v∥=1

σi∈{±1}

σ⊤Mv = max
∥v∥=1

∥Mv∥1.

We consider the classical semidefinite programming relaxation of the 2-to-1 norm. To
start with, we will define a matrix X ∈ R(n+d+1)×(n+d+1) with the rows and columns indexed
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by 1 and the elements σi and vj. The semidefinite programming relaxation is defined as
follows:

max
∑
i,j

Mi,jXσi,vj

s.t X1,1 = 1,
d∑

j=1

Xvj ,vj = 1, Xσi,σi
= 1, X ≽ 0. (TOR)

We now state a theorem of Nesterov as stated in [51]:

Theorem 4.6. ([90]) There is a constant K2→1 =
√

π/2 ⩽ 2 such that the optimal value,
m, of the semidefinite programming relaxation TOR satisfies:

m ⩽ K2→1∥M∥2→1.

In the next step, we bound the expected 2-to-1 norm of the random matrix Z. To do this,
we begin by recalling the Ledoux-Talagrand Contraction Theorem [66].

Theorem 4.7. Let X1, . . . , Xn ∈ Rd be i.i.d. random vectors, F be a class of real-valued
functions on Rd and σi, . . . , σn be independent Rademacher random variables. If ϕ : R→ R
is an L-Lipschitz function with ϕ(0) = 0, then:

E sup
f∈F

n∑
i=1

σiϕ(f(Xi)) ⩽ L · E sup
f∈F

n∑
i=1

σif(Xi).

We are now ready to bound the expected 2-to-1 norm of the random matrix Z.

Lemma 4.13. Let Y = (Y1, . . . , Yn) ∈ Rn×d be a set of n i.i.d. random vectors such that
E[Yi] = 0 and E[YiY

⊤
i ] = Λ and assume that:

max
v∈Sd−1

E
[
|⟨v, Y ⟩|1+α

]
⩽ β.

Then we have:
E∥Y ∥2→1 ⩽ 2

√
nTrΛ + nβ

1
1+α .

Proof. Denoting by Y and Y ′
i random vectors that are independently and identically dis-

tributed as Yi and by σi independent Rademacher random variables, we have:

E[∥Y ∥2→1] = E

[
max
∥v∥=1

n∑
i=1

|⟨Yi, v⟩|

]
= E

[
max
∥v∥=1

n∑
i=1

|⟨Yi, v⟩|+ E|⟨v, Yi⟩| − E|⟨v, Yi⟩|

]

⩽ E

[
max
∥v∥=1

n∑
i=1

|⟨Yi, v⟩| − E|⟨Y ′
i , v⟩|

]
+ n max

∥v∥=1
E[|⟨v, Y ⟩|]



CHAPTER 4. OPTIMAL MEAN ESTIMATION WITHOUT VARIANCE 115

⩽ E

[
max
∥v∥=1

n∑
i=1

σi(|⟨Yi, v⟩| − |⟨Y ′
i , v⟩|)

]
+ n max

∥v∥=1
E [|⟨v, Y ⟩|] .

Now, we have for the second term:

max
∥v∥=1

E[|⟨v, Y ⟩|] ⩽ max
∥v∥=1

(
E⟨v, Y ⟩1+α

) 1
1+α ⩽ β

1
1+α .

For the first term, we employ a standard symmetrization argument:

E

[
max
∥v∥=1

n∑
i=1

σi(|⟨Yi, v⟩| − |⟨Y ′
i , v⟩|)

]
⩽ E

[
max
∥v∥=1

n∑
i=1

σi|⟨Yi, v⟩|

]
+ E

[
max
∥v∥=1

n∑
i=1

−σi|⟨Y ′
i , v⟩|

]

= 2E

[
max
∥v∥=1

n∑
i=1

σi|⟨v, Yi⟩|

]
⩽ 2E

[
max
∥v∥=1

n∑
i=1

σi⟨v, Yi⟩

]

= 2E

[
∥

n∑
i=1

σiYi∥

]
⩽ 2

(
E

[
∥

n∑
i=1

σiYi∥2
])1/2

= 2

(
E
∑

1⩽i,j⩽n

σiσj⟨Yi, Yj⟩

)1/2

= 2
√
nTrΛ,

where the second inequality follows from the Ledoux-Talagrand Contraction Principle (Theo-
rem 4.7). By putting these two bounds together, we prove the lemma.

We now bound the expected value of MT (µ, r,Y ) by relating it to ∥Y ∥2→1.

Lemma 4.14. Let Y = (Y1, . . . , Yk) ∈ Rk×d be a collection of k i.i.d. random vectors with
mean µ and covariance Λ and assume that:

max
v∈Sd−1

E
[
|⟨v, Y ⟩|1+α

]
⩽ β.

Denoting by S the set of feasible solutions for MT (µ, r,Y ), we have:

Emax
x∈S

k∑
i=1

X1,bi ⩽
1

2r

(
5
√
kTrΛ + 2kβ

1
1+α

)
.

Proof. First, let X be a feasible solution for MT (µ, r,Y ). We construct a new matrix W
which is indexed by σi and vj as opposed to bi and vj for X:

Wσi,σj
= 4Xbi,bj − 2X1,bi − 2X1,bj + 1, Wvi,vj = Xvi,vj , W1,1 = 1,

W1,vi = X1,vi , W1,σi
= 2X1,bi − 1, Wvi,σj

= 2Xvi,bj −X1,vi .
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We prove that W is a feasible solution to the SDP relaxation TOR of Y − µ. We see that:

Wσi,σi
= 1 and

d∑
i=1

Wvi,vi = 1.

Thus, we simply need to verify that W is positive semidefinite. Let w ∈ Rk+d+1 be indexed
by 1, σi and vj . We construct from w a new vector w′, indexed by 1, bi and vj and defined as
follows:

w′
1 = w1 −

k∑
i=1

wσi
, w′

bi
= 2wσi

, w′
vj
= wvj .

With w′ defined in this way, we have the following equality:

w⊤Ww = (w′)⊤Xw′ ⩾ 0.

Since the condition holds for all w ∈ Rk+d+1, we get that W ≽ 0. Therefore, we conclude
that W is a feasible solution to the SDP relaxation TOR of Y − µ.

We bound the expected value of MT (µ, r,Y ) as follows, denoting by vbi the vector
(Xbi,v1 , . . . , Xbi,vd) and by v the vector (X1,v1 , . . . , X1,vd):

Emax
X∈S

k∑
i=1

X1,bi = Emax
X∈S

k∑
i=1

Xbi,bi ⩽
1

r
Emax

X∈S

k∑
i=1

⟨vbi , Yi − µ⟩

=
1

2r
Emax

X∈S

[ k∑
i=1

⟨2vbi − v, Yi − µ⟩+
k∑

i=1

⟨v, Yi − µ⟩
]

⩽
1

2r

(
Emax

X∈S

k∑
i=1

⟨2vbi − v, Yi − µ⟩+ Emax
X∈S

k∑
i=1

⟨v, Yi − µ⟩

)
.

From the fact that X is positive semidefinite, and from the fact that the 2× 2 submatrix
indexed by vi and bj is positive semidefinite, we obtain:

X2
vi,bj

⩽ Xvi,viXbj ,bj ⩽ Xvi,vi =⇒ ∥vbj∥2 =
d∑

i=1

X2
vi,bj

⩽
d∑

i=1

Xvi,vi = 1.

Therefore, we get for the second term in the above equation:

Emax
X∈S

k∑
i=1

⟨v, Yi − µ⟩ ⩽ E∥
k∑

i=1

Yi − µ∥ ⩽

(
E∥

k∑
i=1

Yi − µ∥2
)1/2

= (kTrΛ)1/2.

We bound the first term using the following series of inequalities where W is constructed
from X as described above:

Emax
x∈S

k∑
i=1

⟨2vbi − v, Yi − µ⟩ = Emax
x∈S

k∑
i=1

d∑
j=1

(Yi − µ)jWσi,vj = Emax
x∈S

k∑
i=1

d∑
j=1

(Yi,j − µj)Wσi,vj
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⩽ 2E∥Y − 1µ⊤∥2→1 ⩽ 4
√
kTrΛ + 2kβ

1
1+α ,

where the first inequality follows from Theorem 4.6 and the second inequality follows from
Lemma 4.13. By combining these three inequalities, we get:

Emax
x∈S

k∑
i=1

X1,bi ⩽
1

2r

(
5
√
kTrΛ + 2kβ

1
1+α

)
.

Finally, we establish the main technical result of this section, Lemma 4.3.

Proof of Lemma 4.3. From Lemma 4.14, we see that:

Emax
X∈S

k∑
i=1

Xbi,bi ⩽
k

40
.

Now from Lemma 4.12 and an application of the bounded difference inequality (see, for
example, Theorem 6.2 in [11]), with probability at least 1− ek/800:

max
X∈S

k∑
i=1

Xbi,bi ⩽
k

20
.

In the following lemma, we analyze the set of random vectors returned by Algorithm 5. It
will be useful to condition on the conclusion of Lemma 4.11.

Lemma 4.15. Let X = {Xi}ni=1 ∼ ν be iid zero-mean random vectors, satisfying the weak-
moment condition for some α > 0. Furthermore, suppose x† satisfies ∥x†∥ ⩽ 24

√
d. Then,

the set of vectors Y returned by Algorithm 5 with input X and x† are iid random vectors
vectors with mean µ̃ and covariance Σ̃ and satisfy:

Claim 1: P
{
|Y | ⩾ 3n

4

}
⩾ 1− e−

n
50 ,

Claim 2: ∥µ̃∥ ⩽ 2

(
d

n

) α
1+α

Claim 3: ∀∥v∥ = 1 : E
[
|⟨Yi − µ̃, v⟩|1+α

]
⩽ 20,

Claim 4: tr(Σ̃) ⩽ 750max
(
n

1−α
1+αd

2α
(1+α) , d

)
.
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Proof. First, consider the set A = {x : ∥x− x†∥ ⩽ τ} as defined in Algorithm 5. Note from
the definition of the set A that {x : ∥x∥ ⩽ 0.75τ} ⊆ A. We have from Markov’s inequality
and Lemma 4.1:

P {Xi ∈ A} ⩾ 1−min

(
d

n
,
1

25

)
Therefore, by an application of Hoeffding’s inequality, using the definition of the set of points
Y1, . . . , Ym, we have that, with probability at least 1− e−

n
50 :

|Y | ⩾ 3n

4

This proves the first claim of the lemma. For the next two claims, note that conditioned on
the random variable µ̂, each of the Yi are independent and identically distributed according
to νA. Again, we get from the bound on P {Xi ∈ A} by an application of Lemma 4.9, the
next two claims of the lemma:

Claim 2: ∥µ̃∥ ⩽ 2

(
d

n

) α
1+α

, Claim 3: ∀∥v∥ = 1 : E
[
|⟨Yi − µ̃, v⟩|1+α

]
⩽ 20.

For the final claim, note that as ∥x†∥ ⩽ 24
√
d, we have A ⊆ B := {x : ∥x∥ ⩽ 1.25τ}.

Therefore, we have by the property of the mean that:

trΣ̃ = E
[
∥Yi − µ̃∥2

]
⩽ E

[
∥Yi∥2

]
=

1

ν(A)
E
[
∥Xj∥21{Xj ∈ A}

]
⩽ 2E

[
∥Xj∥21{Xj ∈ B}

]
⩽ 750max

(
n

1−α
1+αd

2α
(1+α) , d

)
,

where the final inequality follows from Lemma 4.10 and the definition of τ .

The main result of this section is the following high probability guarantee on the set of
points output by Algorithm 3.

Lemma 4.16. Let δ > en/8000 and X = {Xi}ni=1 be iid random vectors with mean µ, sat-
isfying the weak-moment condition for some known α > 0. Furthermore, suppose that
x† satisfies ∥x† − µ∥ ⩽ 24

√
d. Let Z = {Zi}ki=1 denote the set of vectors output by Al-

gorithm 3 run with inputs X, x† and δ. Then, there exists a point µ̃ such that for all

r ⩾ 106
(√

d
n
+
(
d
n

) α
1+α +

(
log 1/δ

n

) α
1+α

)
:

∥µ̃− µ∥ ⩽ 2

(
d

n

) α
1+α

and max
X∈S

k∑
i=1

Xbi,bi ⩽
k

20
,

with probability at least 1− δ/2 where S denotes the set of feasible solutions of MT(µ̃, r,Z).
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Proof. Note that it is sufficient to prove the lemma in the specific case where µ = 0. We may
now assume each of the Yi are iid random variables satisfying the conclusions of Lemma 4.15.
Therefore, Zi are iid random vectors with mean µ̃ and covariance Σ̃ satisfying:

∥µ̃∥ ⩽ 2

(
d

n

) α
1+α

tr(Σ̃) ⩽
750kmax

(
n

1−α
1+αd

2α
(1+α) , d

)
n

.

Furthermore, we have by an application of Lemma 4.2 that:

∀∥v∥ = 1 : E
[
|⟨v, Zi − µ̃⟩|1+α

]
⩽ 80

(
k

n

)α

.

Finally, the conclusion of the lemma follows by an application of Lemma 4.3 and the bound
on the probabilities follows from the bounds in Lemmas 4.3 and 4.15.

4.9 Gradient Descent Step

In this section, we analyze the gradient descent step in Algorithm 1. This part of our proof
is essentially identical to prior work for the finite covariance setting and we repeat it here for
the sake of completeness [20]. Throughout the section, we will analyze the convergence of
gradient descent to an arbitrary point µ̃. However, in the final application, we will pick µ̃
to be close to µ. As discussed previously, the recovery guarantees of the gradient descent
procedure are determined by the parameter r∗ defined below:

Definition 4.2. For the bucket means, Z = (Z1, . . . , Zk), and point µ̃, let r∗ be defined as
follows:

r∗ := min

{
r > 0 : MT(µ̃, r,Z) ⩽

k

20

}
.

We also make use of the following remark implied by Definition 4.2 (the implication
follows by picking integral solutions for Xbi,bi and setting the submatrix of X corresponding
to v to be rank one in the semidefinite program MT:

Remark 4.1. For the bucket means, Z = (Z1, . . . , Zk), we have:

∀v ∈ Rd, ∥v∥ = 1 ⇒ |{i : ⟨Zi − µ̃, v⟩ ⩾ r∗}| ⩽ 0.05k

Distance Estimation Step

In this subsection, we analyze the distance estimation step from Algorithm 6. We show that
an accurate estimate of the distance of the current point from µ̃ can be found. We begin by
stating a lemma that shows that a feasible solution for MT(x, r,Z) can be converted to a
feasible solution for MT(µ̃, r∗,Z) with a reduction in optimal value.
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Lemma 4.17. Let X ∈ R(k+d+1)×(k+d+1) be a positive semidefinite matrix, symbolically
indexed by 1 and the variables bi and vj. Moreover, suppose that X satisfies:

X1,1 = 1, Xbi,bi = X1,bi ,

d∑
j=1

Xvj ,vj = 1,
k∑

i=1

Xbi,bi ⩾ 0.9k.

Then, there is a set of at least 0.85k indices T such that for all i ∈ T :

⟨Zi − µ̃, vbi⟩ < Xbi,bir
∗,

and a set of at least k/3 indices R such that for all j ∈ R, we have Xbj ,bj ⩾ 0.85.

Proof. We prove the lemma by contradiction. Firstly, note that X is infeasible for
MT(µ̃, r∗,Z) as the optimal value for MT(µ̃, r∗,Z) is less than k/20 (Definition 4.2). Note
that the only constraints of MT(µ̃, r∗,Z) that are violated by X are constraints of the form:

⟨Zi − µ̃, vbi⟩ < Xbi,bir
∗.

Now, let T denote the set of indices for which the above inequality is violated. We can
convert X to a feasible solution for MT(µ̃, r∗,Z) by setting to zero the rows and columns
corresponding to the indices in T . Let X ′ be the matrix obtained by the above operation.
We have from Definition 4.2:

0.05k ⩾
k∑

i=1

X ′
bi,bi

=
k∑

i=1

Xbi,bi −
∑
i∈T

Xbi,bi ⩾ 0.9k − |T |,

where the last inequality follows from the fact that Xbi,bi ⩽ 1. By rearranging the above
inequality, we get the first claim of the lemma.

For the second claim, let R denote the set of indices j satisfying Xbj ,bj ⩾ 0.85. We have:

0.9k ⩽
k∑

j=1

Xbj ,bj =
∑
j∈R

Xbj ,bj +
∑
j /∈R

Xbj ,bj ⩽ |R|+ 0.85k − 0.85|R| =⇒ k

3
⩽ |R|.

This establishes the second claim of the lemma.

The following lemma shows that if the distance between µ̃ and a point x is small then the
estimate returned by Algorithm 6 is also small.

Lemma 4.18. Suppose a point x ∈ Rd satisfies ∥x− µ̃∥ ⩽ 20r∗. Then, Algorithm 6 returns
a value d′ satisfying

d′ ⩽ 25r∗.
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Proof. Let r′ = 25r∗. Suppose that the optimal value of MT(x, r′,Z) is greater than 0.9k
and let its optimal solution be X. Let R and T denote the two sets whose existence is
guaranteed by Lemma 4.17. From, the cardinalities of R and T , we see that their intersection
is not empty. For j ∈ R ∩ T , we have:

0.85r′ ⩽ ⟨Zj − x, vbj⟩ = ⟨Zj − µ̃, vbj⟩+ ⟨µ̃− x, vbj⟩ < r∗ + ∥x− µ̃∥,

where the first inequality follows from the fact that j ∈ R and the fact that X is feasible for
MT(x, r′,Z) and the last inequality follows from the inclusion of j in T and Cauchy-Schwarz.

By plugging in the bounds on r′ and r, we get:

∥x− µ̃∥ > 20.25r∗.

This contradicts the assumption on ∥x− µ̃∥ and concludes the proof of the lemma.

The next lemma shows that the distance between µ̃ and a point x can be accurately
estimated as long as x is sufficiently far from µ̃.

Lemma 4.19. Suppose a point x satisfies d̃ = ∥x− µ̃∥ ⩾ 20r∗. Then, Algorithm 6 returns a
value d′ satisfying:

0.95d̃ ⩽ d′ ⩽ 1.25d̃.

Proof. Let us define the direction ∆ to be the unit vector in the direction of x− µ̃. From
Remark 4.1, the number of Zi satisfying ⟨Zi − µ̃,∆⟩ ⩾ r∗ is less than k/20. Therefore, we
have that for at least 0.95k points:

⟨Zi − x,−∆⟩ = ⟨x− µ̃+ µ̃− Zi,∆⟩ = ∥x− µ̃∥ − r∗ ⩾ 0.95d̃.

Along with the monotonicity of MT(x, r,Z) in r (Lemma 4.6), this implies the lower bound.
For the upper bound, we show that the optimal value of MT(x, 1.25d̃,Z) is less than

0.9k. For the sake of contradiction, suppose that this optimal value is greater than 0.9k. Let
X be a feasible solution of MT(x, 1.25d̃,Z) that achieves 0.9k. Let R and T be the two sets
whose existence is guaranteed by Lemma 4.17 and j be an element in their intersection. We
have for j:

0.85(1.25d̃) ⩽ Xbj ,bj1.25d̃ ⩽ ⟨Zj − x, vbj⟩ = ⟨Zj − µ̃, vbj⟩+ ⟨µ̃− x, vbj⟩
< Xbj ,bjr

∗ + ∥µ̃−x∥=Xbj ,bjr
∗+d̃,

where the first inequality follows from the inclusion of j in R and the last inequality follows
from the inclusion of j in T and Cauchy-Schwarz. By rearranging the above inequality, we
get:

Xbj ,bj > (1.0625d̃− d̃)(r∗)−1 > 1,

which is a contradiction. Therefore, we get from the monotonicity of MT(x, r,Z) (see
Lemma 4.6), that d′ ⩽ 1.25d̃ and this concludes the proof of the lemma.
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Gradient Estimation Step

In this section, we analyze the gradient estimation step of the algorithm. We show that an
approximate gradient can be found as long as the current point x is not too close to µ̃. The
following lemma shows that Algorithm 7 produces a nontrivial estimate of the gradient.

Lemma 4.20. Suppose a point x satisfies ∥x− µ̃∥ ⩾ 20r∗ and let ∆ be the unit vector along
µ̃− x. Then, Algorithm 7 returns a vector g satisfying:

⟨g,∆⟩ ⩾ 1

15
.

Proof. In the running of Algorithm 7, let X denote the solution of MT(x, d∗,Z). We begin
by factorizing the solution X as UU⊤, with the rows of U denoted by u1, ub1 , . . . , ubk and
uv1 , . . . , uvd . We also define the matrix Uv=(uv1 , . . . , uvd) in R(k+d+1)×d. From the constraints
in MT, we have:

Xbi,bi = ∥ubi∥2 ⩽ 1 =⇒ ∥ubi∥ ⩽ 1,
d∑

j=1

Xvj ,vj =
d∑

j=1

∥uvj∥2 = ∥Uv∥2F = 1 =⇒ ∥Uv∥F = 1.

Let R and T denote the sets defined in Lemma 4.17. Let j ∈ T ∩ R. By noting that
vbj = u⊤

bj
Uv, we have:

0.85d∗ ⩽ ⟨Zj − µ̃, vbj⟩+ ⟨µ̃− x, vbj⟩ ⩽ Xbj ,bjr
∗ + u⊤

bj
Uv(µ̃− x),

where the first inequality follows from the inclusion of j in R and the second from its inclusion
in T . By rearranging this equation and using our bound on d∗ from Lemma 4.19, we obtain:

0.80∥µ̃− x∥ ⩽ 0.85d∗ ⩽ Xbj ,bjr
∗ + u⊤

bj
Uv(µ̃− x). (4.3)

By rearranging (4.3), using Cauchy-Schwarz, ∥ubi∥ ⩽ 1 and the assumption on ∥x− µ̃∥:

∥Uv(µ̃− x)∥ ⩾ u⊤
bj
Uv(µ̃− x) ⩾ 0.75∥µ̃− x∥,

which yields:
∥Uv∆∥ ⩾ 0.75.

Now, we have:

1 = ∥Uv∥2F = ∥UvP∆∥2F + ∥UvP⊥
∆∥2F ⩾ ∥UvP⊥

∆∥2F + (0.75)2 =⇒ ∥UvP⊥
∆∥F ⩽ 0.67.

Let y be the top singular vector of Xv. Note that Xv = U⊤
v Uv and y is also the top right

singular vector of Uv. We have that:

0.75 ⩽ ∥Uvy∥ ⩽ ∥UvP∆y∥+ ∥UvP⊥
∆y∥ ⩽ ∥P∆y∥+ ∥UvP⊥

∆∥F ⩽ ∥P∆y∥+ 0.67.



CHAPTER 4. OPTIMAL MEAN ESTIMATION WITHOUT VARIANCE 123

This means that we have:

|⟨y,∆⟩| ⩾ 1

15
.

Note that the algorithm returns either y or −y. Consider the case where ⟨y,∆⟩ > 0. From
Remark 4.1 (implied by Definition 4.2), we have for at least 0.95k points:

⟨Zi − µ̃, y⟩ ⩽ r∗.

Therefore, we have for 0.95k points:

⟨Zi − x, y⟩ = ⟨Zi − µ̃, y⟩+ ⟨µ̃− x, y⟩ ⩾ −r∗ + 20r∗

15
> 0.

This means that in the case where ⟨y,∆⟩ > 0, we return y which satisfies ⟨µ̃−x, y⟩ > 0. This
implies the lemma in this case. The case where ⟨y,∆⟩ < 0 is similar, with −y used instead of
y. This concludes the proof of the lemma.

We now prove a lemma regarding the output of Algorithm 2.

Lemma 4.21. Let Z = {Zi}ki=1 be k points in Rd, µ̃ ∈ Rd and r∗ be as in Definition 4.2.

Then, Algorithm 2, with input Z, initialization x†, and number of iterations T ⩾ 106 log ∥µ̃−x†∥
ϵ

satisfies:
∥x∗ − µ̃∥ ⩽ max {30r∗, ϵ} .

Proof. First, let G = {x : ∥x− µ̃∥ ⩽ 20r∗}. We prove the lemma in two cases:

Case 1: None of the iterates xt lie in G. In this case, we have from Lemma 4.19:

0.95∥xt − µ̃∥ ⩽ dt ⩽ 1.25∥xt − µ̃∥. (4.4)

This yields:

∥xt+1 − µ̃∥2 = ∥xt − µ̃∥2 − 2
dt
20
⟨gt, µ̃− xt⟩+

d2t
400

⩽ ∥xt − µ̃∥2 − dt∥µ̃− xt∥
150

+
d2t
400

⩽ ∥xt − µ̃∥2 − dt

(
∥µ− xt∥

150
− dt

400

)
⩽

(
1− 1

500

)
∥xt − µ̃∥2,

where the first inequality follows from Lemma 4.20 and the last inequality follows by
substituting the lower bound on dt in the first term and the upper bound on dt in the
second term ((4.4)). By an iterated application of the above inequality, we have:

∥x∗ − µ̃∥ ⩽ 1

0.95
· d∗ ⩽ 1

0.95
· dT+1 ⩽

ϵ

10
,

which concludes the proof of the lemma in this case.
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Case 2: One of the iterates xt falls into the set G. If the algorithm returns an element
from G, the lemma is true from the definition of G. Otherwise, from Lemma 4.18, we
have for xt ∈ G that dt ⩽ 25r∗. Therefore, we have at the conclusion of the algorithm a
value d∗ ⩽ 25r∗ along with a returned vector x∗ lying outside G. Thus, we have from
Lemma 4.19:

0.95∥x∗ − µ̃∥ ⩽ 25r∗ =⇒ ∥x∗ − µ̃∥ ⩽ 30r∗.

This concludes the proof of the lemma.

4.10 Proof of Theorem 4.2

We assemble the results established in other sections to prove Theorem 4.2. Let x† denote
the output of Algorithm 4 in the running of Algorithm 1. Note that this is passed as input
to Algorithms 3 and 5. We now define the event E :

E := {∥x† − µ∥ ⩽ 24
√
d}.

From Lemmas 4.11 and 4.16, we may assume the conclusions of Lemma 4.16, an event which
occurs with probability at least 1 − δ. Since ∥x† − µ∥ ⩽ 24

√
d, the proof of the theorem

follows from Lemma 4.21, our bound on the number of iterations T and the final desired
accuracy.

4.11 Lower Bound for Robust Estimation under Weak

Moments

In this section, we establish a lower bound for robust mean estimation under weak moments.
The lower bound will be a consequence of the following theorem:

Theorem 4.8. Given η, α ∈ (0, 1), there exist two distributions D1 and D2 over R with
means µ1 and µ2, respectively, satisfying:

1. dTV (D1,D2) ⩽
η
4

2. |µ1 − µ2| ⩾ 1
4
· ηα/(1+α)

3. EX∼D1 [|X − µ1|1+α],EX∼D2 [|X − µ2|1+α] ⩽ 1.

Proof. We prove the theorem by explicit construction. Let D1 be a δ-distribution on 0:
PX∼D1(X = 0) = 1. We have µ1 = 0 and the weak moment condition holds trivially for D1.
Now, for D2, we have:
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PX∼D2(X = x) =


1− η

4
, when x = 0

η
4
, when x =

(
1
η

)1/(1+α)

0, otherwise.

.

From the definitions of D1 and D2, we obtain the first conclusion of the lemma. By direct
computation, we have µ1 = 0 and µ2 = 1

4
· ηα/(1+α). Finally, we verify the weak moment

condition on D2 using the convexity of the function f(x) = |x|1+α:

EX∼D2 [|X − µ2|1+α] ⩽ 2α · E[|X|1+α + |µ2|1+α] ⩽ 2α
(
1

4
+

ηα

4(1+α)

)
⩽ 1.

This concludes the proof of the theorem.

4.12 Lower Bound for the Bounded Covariance Setting

In this section, we a present a proof of the lower bound for high-dimensional mean estimation
in the bounded covariance setting (with α = 1) in the constant probability regime; i.e, a
lower bound on the best attainable confidence interval for any estimation algorithm which
succeeds with probability at least 1/2. The main result of the section is the following lemma
used to prove Theorem 4.5.

Lemma 4.22. Let n > 0, d ⩾ 2. Then, under the following Bayesian generative process:

1. Draw µ from N (0, I)

2. Draw X := X1, . . . , Xn iid from N (µ, I),

we have for any estimator µ̂(X):

P
{
∥µ− µ̂(X)∥ ⩾

√
d− 2− 2

√
log 2√

n+ 1

}
⩾

1

2
.

Proof. Note that the posterior distribution over µ upon observation of the samples X remains
a Gaussian; indeed, we have:

f(µ |X) ∝ exp

{
−∥µ∥

2 +
∑n

i=1 ∥Xi − µ∥2

2

}
∝ exp

{
−(n+ 1)∥µ∥2 − 2⟨

∑n
i=1Xi, µ⟩

2

}
∝ exp

{
−∥µ∥

2 − 2⟨
∑n

i=1 Xi/(n+ 1), µ⟩
2 · (n+ 1)

}
∝ exp

{
−∥µ−

∑n
i=1Xi/(n+ 1)∥2

2 · (n+ 1)

}
Hence, the posterior distribution over µ is a Gaussian with covariance I/(n + 1). Letting
µ̂(X) be any estimator of µ, we have from Lemma 4.23:

∀r > 0 : P {∥µ− µ̂(X)∥ ⩽ r |X} ⩽ P
{
∥µ−

∑n
i=1Xi

(n+ 1)
∥ ⩽ r |X

}
. (4.5)
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Hence, we have from Lemma 4.24, the fact that ∥g∥ is a Lipschitz function of g:

P
{
∥µ−

∑n
i=1Xi

(n+ 1)
∥ ⩾
√
d− 2− 2

√
log 2√

n+ 1
|X
}

⩾
1

2
.

With (4.5), taking expectation over X in the above display yields:

P
{
∥µ− µ̂(X)∥ ⩾

√
d− 2− 2

√
log 2√

n+ 1

}
⩾

1

2
.

The following two lemmas feature in the proof of Lemma 4.22.

Lemma 4.23. For g ∼ N (0, I), we have:

∀r > 0 : argmax
c

P {∥g − c∥ ⩽ r} = 0.

Proof. Fix r > 0 and consider the functions:

∀∥v∥ = 1, t ⩾ 0 : fv(t) := log

∫
∥z∥⩽r

exp

{
−∥z + tv∥2

2

}
dz.

We will prove that fv(t) is maximized at t = 0 for all ∥v∥ = 1 which will imply the lemma.
To do so, fix ∥v∥ = 1 and observe that the derivative of fv, f

′
v has the following expression:

f ′
v(t) = −

1∫
∥z∥⩽r

exp
{
−∥z+tv∥2

2

}
dz
·
∫
∥z∥⩽r

exp

{
−∥z + tv∥2

2

}
(t+ ⟨z, v⟩)dz

Note that when t ⩾ r, the above expression is trivially negative as it corresponds to a negative
conditional expectation of the (non-negative) quantity (t+ ⟨z, x⟩) which is positive on a set
of non-zero measure. When t < r, we have:∫

∥z∥⩽r

exp

{
−∥z + tv∥2

2

}
(t+ ⟨z, v⟩)dz

=

∫ t+r

w=t−r

we−w2/2

∫
∥y∥⩽
√

r2−(w−t)2
e−∥y∥2/2dydw ⩾∫ r−t

w=t−r

we−w2/2

∫
∥y∥⩽
√

r2−(w−t)2
e−∥y∥2/2dydw

⩾
∫ r−t

w=0

we−w2/2

[∫
∥y∥⩽
√

r2−(w−t)2
e−∥y∥2/2dy −

∫
∥y∥⩽
√

r2−(w+t)2
e−∥y∥2/2dy

]
dw > 0

where the last inequality follows from the fact that the inner difference of integrals is positive
when w ∈ (0, r − t). Hence, f ′

v(t) < 0 for all t > 0. Noting that fv(·) is continuous, we get
that fv(t) is uniquely maximized at t = 0. Now, the lemma follows from fact that for any
c ̸= 0, we have c = tv for some ∥v∥ = 1 and t > 0 and therefore, fv(t) < fv(0).
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Lemma 4.24. We have for all d ⩾ 2 and g ∼ N (0, I)

E[∥g∥] ⩾
√
d− 2.

Proof. We have E[∥g∥2] = d. Furthermore, note that ∥g∥ is a Lipschitz function of g and
hence, we have [11, Theorem 5.6]:

P {|∥g∥ − E[∥g∥]| ⩾ t} ⩽ 2 exp

{
−t2

2

}
.

By integrating the tails we have:

E[(∥g∥ − E[∥g∥])2] ⩽ 2 =⇒ E[∥g∥] =
√

E[∥g∥2]− E[(∥g∥ − E[∥g∥])2] ⩾
√
d− 2.
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[77] Gábor Lugosi and Shahar Mendelson. “Mean estimation and regression under heavy-
tailed distributions: A survey”. In: Found. Comput. Math. 19.5 (2019), pp. 1145–1190.
doi: 10.1007/s10208-019-09427-x. url: https://doi.org/10.1007/s10208-
019-09427-x.
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