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Abstract

Social Optimality via Dynamic Tolling and Adaptive Incentive Design

by

Kshitij Kulkarni

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Tolls and incentives are tools that can be used by societal-scale system designers to steer
selfish players to social optimality in a variety of settings. Some representative examples in-
clude traffic routing and competition between firms. These tools have been studied heavily
in static settings, but in many situations, players are learning or updating their strategies in
response to changing system conditions. We ask two questions: 1) In setting tolls on traffic
networks, how can a traffic authority design tolls that induce socially optimal traffic loads
with dynamically arriving travelers who make selfish routing decisions? 2) In the more gen-
eral setting of atomic and nonatomic games, how can a planner adaptively incentivize selfish
agents who are learning in a strategic environment to induce a socially optimal outcome in
the long run?

To answer both questions, we propose toll and incentive updates that account for the ex-
ternality created by the players as measured by the planner’s objective function over time.
These dynamics, when coupled to the strategy update dynamics of the selfish players, run at
a slower timescale. In the case of traffic routing, we consider load updates in which inflows
and outflows into the network are stochastically realized, and such that the travelers are
myopic. We show that the toll and load updates converge to a neighborhood of the socially
optimal loads. In the general case of atomic and nonatomic games, we provide sufficient
conditions for the incentive and strategy updates to converge asymptotically to social opti-
mality, and provide applications that satisfy these conditions, including Cournot competition
and quadratic aggregative games. This thesis is the compilation of the two works [28] and
[27].
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Chapter 1

Introduction

In recent years, traffic networks have experienced increasing problems due to congestion,

which occurs as a result of selfish users on the network choosing routes that are optimal

for themselves without considering their impact on the network [22], [42]. A generalization

of this problem manifests in many societal-scale systems in which selfish players make de-

cisions that affect themselves and other players. The outcome arising from such strategic

interactions – Nash equilibrium – often leads to suboptimal societal outcomes. This is due

to the fact that individual players often ignore the externality of their actions (i.e. how their

actions affect the cost of others) when minimizing their own cost. In traffic networks, tolling,

when properly set in response to real-time conditions, can effectively alleviate congestion and

even induce socially optimal loads [43, 33]. More generally, an important way to address

the issue of externality is to provide players with incentives that align their individual goal

of cost minimization with the goal of minimizing the total cost of the society ([33, 25, 20, 2]).

As an example, a traffic authority may want to minimize the total congestion on the network,

or maximize the throughput of the network subject to the selfish route choices of travelers.

This is also the case in more general games (for example, in firm competition), in which

there is a tension between selfish users’ decisions and the welfare of the collective. The static

properties of such games, along with optimal tolls to alleviate congestion and other negative

externalities, have been widely studied in the literature [38].

However, what distinguishes traffic networks in reality from the above discussion is that
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demand arrives at the network over time, and the decision to place flow on the network is

influenced by the current congestion levels on the edges at every time. That is, the users

on the network are dynamically making selfish decisions and placing flow on the network in

response to changing network conditions. To design tolls that induces efficient traffic loads,

one must account for the dynamics of incoming and outgoing traffic demands and the selfish

nature of travelers’ route choices. In particular, the tolls must be updated in response to

changing traffic conditions.

This is also the case in general games, where oftentimes, players are learning to a selfish

equilibrium (such as a Nash equilibrium) by deploying a class of learning updates ([1, 12,

28]). This intrinsically causes the emergence of dynamics in their strategies. Both these ex-

amples suggest the need for tolling and incentive schemes that adjust to the changing state

of the traffic network, and to the changing strategies of the players over time, respectively.

We therefore ask the following question:

How can adaptive tolling and incentive schemes be designed for situations in

which strategic players are dynamically responding to changing conditions?

The desiderata for such schemes (specified for traffic networks as a concrete example) are

proposed here as follows:

1. Stochastically arriving travelers on a traffic network should adjust their strategies (frac-

tion of the arriving travelers to send on a particular route) according to the current flow

on the network. The travelers should make the decision to send flow on the edges self-

ishly, by choosing routes that approximately minimize their travel time.

2. Correspondingly, the planner should use only the current network state to set tolls on

the edges of the network. The tolls enter the costs incurred by the travelers on every

edge.

3. The tolls should evolve at a slower timescale than the strategies. This is to ensure that

travelers on traffic networks do not experience rapidly changing tolls over days.

4. The flows and tolls should jointly evolve towards a socially optimal equilibrium. That

is, asymptotically, the flows converge to a game-theoretically relevant equilibrium that
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is also socially optimal as measured by a social cost, and the tolls converge to the

corresponding quantities that make the selfish equilibrium socially optimal.

These can be extended to incentive schemes for general atomic and nonatomic games by

replacing the specific traffic dynamics with a class of learning updates for the players’ strate-

gies, and a corresponding incentive update. In general, therefore, we propose coupling slowly

varying incentive updates with fast strategy updates for selfish players in games such that

jointly, the strategy and incentive dynamics converge to social optimality.

The above dynamic situation is less understood than the various results on static tolling

known in the literature. Motivated by this gap, this thesis is organized as follows:

• Chapter 2 analyzes a two-timescale tolling scheme coupled with a game-theoretically

relevant traffic load update on a parallel link network, following [27]. The intuition

behind this scheme is that for every value of the toll, stochastically arriving traffic

uses a selfish route choice to place loads on the network. The loads quickly converge

to a perturbed equilibrium which is a function of the tolls. As the tolls slowly vary

over time and adjust given the externality on the network at every time-step, the joint

load and toll update concentrate in a neighborhood of social optimality. We provide

numerical experiments that validate our theoretical results. This scheme can be used

by toll designers to better control congestion.

• Chapter 3 extends this framework to a wider class of game learning dynamics coupled

with incentive update schemes in atomic and nonatomic games, following [28]. Here,

the goal is to steer players who are learning (updating their strategies) according to a

class of well-known dynamics (for example, best-response or equilibrium update) in gen-

eral games to social optimality as measured by a social cost. The paper constructs an

incentive update that allows players to be steered to social optimality. We present ap-

plications of the theory, including incentive design in nonatomic routing games, atomic

Cournot games, and atomic networked aggregative games.

Both the tolls in the setting of traffic routing and incentives in general games have the

feature that they are computed by measuring the externality created by the actions of selfish

players relative to the social cost. Combined, these serve to provide traffic authorities,

regulators, and societal-scale system designers with methods for designing incentives that
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adapt to dynamic changes in the state of the system and in the strategies of selfish players.

The proposed incentives have the role of steering the selfish players to social optimality over

time, such that the joint strategy and incentive updates converge to an equilibrium desired

by the planner. The incentives have a natural economic meaning given by the externality

generated by a player on others in atomic games, and by a strategy on other strategies in

nonatomic games. Further, the incentives can be implemented only using locally available

information (the strategy of each player, and evaluations of the derivatives of the players’

cost functions and the social cost function). As societal-scale systems like traffic networks

experience increased usage and issues due to congestion, the proposed schemes serve to

enable tractable implementations of tolls and incentives.
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Chapter 2

Dynamic Tolling for Inducing Socially

Optimal Traffic Loads

In this chapter, we propose a discrete-time stochastic dynamics to capture the joint evolution

of loads and tolls in a parallel traffic network. In each time step of the dynamics, non-atomic

travelers arrive at the origin of the network, and they make routing decisions according to

a perturbed best response based on the travel time cost and toll of each link in that step.

Additionally, a fraction of load on each link leaves the network. Both the incoming and

outgoing demand are randomly realized, and are identically and independently distributed

across steps. Therefore, the discrete-time stochastic dynamics of loads forms a Markov pro-

cess, which is governed by the total arriving demand, the stochastic user equilibrium, and

the load discharge rate. Furthermore, at each time step, a traffic authority adjusts the toll

on each link by interpolating between the current toll and a new increment dependent on

the marginal cost of travel time given the load at that step.

In our setting, the dynamics of the toll evolves at a slower time-scale compared to that

of the load dynamics. In practice, fast changing tolls are undesirable ([15]). This property

ensures that the tolls change very slowly, and thus travelers can view the tolls as static when

they make routing decisions at the arrival.

We show that the loads and tolls in the discrete-time stochastic dynamics asymptotically

concentrate in a neighborhood of a unique fixed point with high probability. The fixed point
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load is socially optimal in that it minimizes the total travel time costs when the incoming

and outgoing traffic demands reach a steady state, and the fixed point toll on each link equals

to the marginal cost. That is, with high probability, our dynamic tolling eventually induces

the socially optimal loads that accounts for the incoming and outgoing travelers and their

selfish routing behavior. Furthermore, we emphasize that our dynamic tolling is distributed

in that the traffic authority only uses the information of the cost and load on each link to

update its toll.

Our technical approach to proving the main result involves: (i) Constructing a continuous-

time deterministic dynamical system associated with the two timescale discrete-time stochas-

tic dynamics; (ii) Demonstrating that the flow of the continuous-time dynamical system has

a unique fixed point that corresponds to the socially optimal load and tolls; (iii) Proving

that the unique fixed point of the flow of the continuous time dynamical system is globally

stable. In particular, we apply the theory of two time-scale stochastic approximation to show

that the loads and tolls under the stochastic dynamics concentrates with high probability

in the neighborhood of the fixed point of the flow of continuous time dynamics constructed

in (i) ([5]). Additionally, our proof in (ii) on the uniqueness and optimality of fixed point

of the flow of continuous time dynamics builds on a variational inequality, and extends the

analysis of stochastic user equilibrium in static routing games to account for the steady state

of the network given the incoming and outgoing demand ([10]). Furthermore, we show that

the continuous time dynamical system is cooperative, and thus its flow must converge to its

fixed point ([19]).

Our model and results contribute to the rich literature on designing tolling mechanisms

for inducing socially optimal route loads. Classical literature on static routing games has

focused on measuring the inefficiency of selfish routing by bounding the “price of anarchy”,

and designing marginal cost tolling to induce socially optimal route loads ([9, 39, 38]). In

static routing games, optimal tolling does not account for the dynamic arrival and departure

of travelers. The computation of optimal tolls relies on knowledge of the entire network

structure and the equilibrium route flows, which are challenging to compute.
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Dynamic toll pricing has been studied in a variety of settings to account for the continuous

incoming and outgoing traffic demand. The paper [3] analyzed a discrete-time stochastic

dynamics of of non-atomic travelers, and discussed the impact of tolling on routing strate-

gies. We consider an adaptive adjustment of tolls using marginal toll pricing. This allows

us to analyze the long-run outcomes of the joint evolution of the route loads and tolls, and

shows that the tolls eventually induce a socially optimal traffic load associated with the

steady state of the network. Additionally, we prove that the monotonicity condition – the

equilibrium routing strategy is monotonic in tolls (which is an assumption in [3]) – holds for

any equilibrium routing strategy.

Moreover, [12] proposed a continuous-time dynamical system to study socially optimal tolling

when strategic travelers continuously arrive and make selfish routing decisions. In their

model, the incoming and outgoing traffic demands are equal so that the aggregate load in

the network is a constant. In our setting, both the incoming and outgoing traffic demands

are random variables. Therefore, our fixed point analysis needs to account for the total load

at the steady state of the network. Moreover, [12] assumes that the tolls are adjusted at a

faster time scale than their traveler’s route preferences, while we assume that the update of

tolls is at a slower timescale compared to the change of routing decisions.

Finally, this chapter is also related to the literature on learning in routing games, and

learning for tolling with unknown network conditions. In particular, a variety of algorithms

have been proposed to study how travelers learn an equilibrium by repeatedly adjusting their

routing decisions based on the observed travel time in the network (e.g. [11, 24, 23]). Addi-

tionally, papers [15, 36, 30, 47] have analyzed how the traffic authority adaptively updates

the tolls while learning the unknown network condition using crowd-sourced data on traffic

load and time costs.

This chapter is organized as follows: we introduce the dynamic tolling model and the dis-

crete time stochastic dynamics in Section 2.1. We present the main result in Section 2.2,

and numerical examples in Section 2.3. We present the key ideas of our proof techniques in

the main text, and include all proofs in Appendix B.
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Notations

We denote the set of non-negative real numbers by R≥0. For any natural number R, we

succinctly write [R] = {1, 2, . . . , R}. For any vector x ∈ Rn, we define diag(x) ∈ Rn×n to be

a diagonal matrix with its diagonals filled with entries of x.

2.1 Model

Consider a parallel link network with R links connecting a single source-destination pair. At

each time step n = 1, 2, . . . , a non-atomic traveler population arrives at the source node,

and is routed through links R to the destination node.

At time step n, the traffic load (i.e. amount of travellers) on link i ∈ [R] is Xi(n). The

latency function on any link i ∈ [R] is a function of load on the link: ℓi : R≥0 −→ R≥0.

We assume that the latency function is strictly-increasing and convex, which reflect the con-

gestible nature of links and the fact that the latency increases faster when the load is higher.

A traffic authority sets toll prices on links, denoted as P (n) = (Pi(n))i∈R, where Pi(n) is the

toll on link i at step n. The cost function on link i ∈ [R] at step n, denoted ci(Xi(n), Pi(n)),

is the sum of the latency function ℓi(Xi(n)) and the charged toll price (see Fig. 2.1):

ci(Xi(n), Pi(n))) := ℓi(Xi(n)) + Pi(n) (2.1)

S D

c1(X1(n), P1(n))

c2(X2(n), P2(n))

. . .

cR−1(XR−1(n), PR−1(n))

cR(XR(n), PR(n))

Figure 2.1: An R−link parallel network with source node S, destination node D, and cost functions at step

n.

Furthermore, we define c̃i(Xi(n), Pi(n), νi(n)) := ci(Xi(n), Pi(n)) + νi(n) to be the randomly
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realized travel cost experienced by the travelers, where νi(n) is an identically and indepen-

dently distributed (i.i.d) random variable with zero mean.

The demand of traffic arriving at the source node at step n + 1 is a random variable

ζ(n + 1). We assume that {ζ(n)}n∈N are i.i.d with bounded support [λ, λ̄] and the mean λ

(i.e. E[ζ(n)] = λ for all n). At step n + 1, travelers make routing decisions F (in)(n + 1) =(
F

(in)
i (n+ 1)

)
i∈[R]

based on the latest cost vector at step n, where F
(in)
i (n+1) is the demand

of travelers who choose link i at step n+1. We assume that F (in)(n+1) is a perturbed best

response defined as follows:

Definition 2.1.1. (Perturbed Best Response Strategy) At any step n+ 1, the routing

strategy F
(in)
i (n+ 1) is perturbed best response if for all i ∈ [R],

F
(in)
i (n+ 1) :=

exp(−βci(Xi(n), Pi(n)))∑
j∈[R] exp(−βcj(Xj(n), Pj(n)))

ζ(n), (2.2)

where β ∈ [0,∞).

The perturbed best response strategy reflects the myopic nature of travelers’ route choices.

In particular, β is a dispersion parameter that governs the relative weight of link costs in

making routing decisions. If β ↑ ∞, F
(in)
i (n+ 1) is a best response strategy in that travelers

only take links with the minimum cost in F
(in)
i (n + 1). On the other hand, if β ↓ 0, then

F
(in)
i (n+ 1) assigns the arrival demand uniformly across all links.

Furthermore, the proportion of load discharged from link i ∈ [R] at step n + 1 is given

by the random variable ξi(n + 1) ∈ (0, 1). We assume that {ξi(n)}i∈[R],n∈N are i.i.d. with

bounded support [µ, µ̄] and mean µ (i.e. E[ξi(n)] = µ for all i ∈ [R]). Thus the load

discharged from link i ∈ [R] at step n+ 1 is given by

F
(out)
i (n+ 1) := Xi(n)ξi(n+ 1). (2.3)

In each step n, the load on each link is updated as follows:

Xi(n+ 1) = Xi(n) + F
(in)
i (n+ 1)− F

(out)
i (n+ 1). (2.4)

We note that the stochasticity of the load update arises from the randomness in the incoming
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load F (in)(n+ 1) and the outgoing load F (out)(n+ 1). We define

hi(xi, pi) :=
λ

µ

exp(−βci(xi, pi))∑
j∈[R] exp(−βcj(xj, pj))

. (2.5)

where x, p ∈ RR, and λ (resp. µ) is the mean of incoming (resp. outgoing) load respectively.

Using (2.2), (2.3), and (2.5), we can re-write (2.4) as follows:

Xi(n+ 1) = (1− µ)Xi(n) + µhi(Xi(n), Pi(n)) + µMi(n+ 1), (Update-X)

where

Mi(n+ 1) := hi(Xi(n), Pi(n))(ζ(n+ 1)− λ)

−Xi(n) (ξi(n+ 1)− µ) .
(2.6)

The central authority updates the toll vector P (n) ∈ RR at each step n as follows:

Pi(n+ 1) = (1− a)Pi(n) + aXi(n)
dℓi(Xi(n))

dx
(Update-P )

where i ∈ [R], n ∈ N and a ∈ [0, 1] is the step size. That is, the updated toll is an

interpolation between the current toll and the marginal cost of the link given the current

load. We note that the toll is updated in a distributed manner in that Pi(n + 1) only

depends on the load and cost on link i. The updates of (X(n), P (n)) are jointly governed by

the stochastic updates in (Update-X) and (Update-P ). We assume that tolls are updated

at a slower timescale compared with the load. That is, a ≪ µ, where a (resp. µ) is the step

size in (Update-P ) (resp. (Update-X)).

2.2 Main Results

In Section 2.2.1, we present a continuous-time deterministic dynamical system that is as-

sociated with the discrete-time updates (Update-X) and (Update-P ). We show that the

flow of the continuous-time dynamical system has a unique fixed point that corresponds to

the perturbed socially optimal load (refer Definition 2.2.2) and the socially optimal tolling.

In Section 2.2.2, we apply the two timescale stochastic approximation theory to show that

(X(n), P (n)) in the discrete-time stochastic updates concentrate on a neighborhood of the

fixed point of the flow of the continuous-time dynamical system. Therefore, our dynamical

tolling eventually induces a perturbed socially optimal load vector with high probability.
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2.2.1 Continuous-time dynamical system

We first introduce a deterministic continuous-time dynamical system that corresponds to

(Update-X) – (Update-P ). The time evolution in continuous-time dynamical system is de-

noted by t and it is related with the discrete-time step n as t = an, where a is the stepsize

in (Update-P ). We define x(t) ∈ RR as the load vector and p(t) ∈ RR as the toll vector at

time t ∈ [0,∞) We also define ϵ := a
µ
, where µ (resp. a) is the stepsize of the discrete-time

load update (resp. toll update). Since the toll update occurs at a slower timescale compared

to the load update (i.e. a ≪ µ), we have ϵ ≪ 1.

The continuous-time dynamical system is as follows:

ẋi(t) =
1

ϵ
(hi(x(t), p(t))− xi(t)) ,

ṗi(t) = −pi(t) + xi(t)
dℓi(xi(t))

dx
, ∀ t ≥ 0.

(2.7)

We introduce the following two definitions:

Definition 2.2.1. (Stochastic user equilibrium) For any fixed p ∈ RR, a load vector

x̄(β)(p)1 is the stochastic user equilibrium corresponding to the toll vector p and demand λ
µ
if

for all i ∈ [R]:

x̄
(β)
i (p) =

λ

µ

exp(−βci(x̄
(β)
i (p), pi))∑

j∈[R] exp(−βcj(x̄
(β)
j (p), pj))

. (2.8)

Given the stochastic user equilibrium in (2.8), all travelers with total demand of λ/µ make

routing decisions in the network according to a perturbed best response given the latency

functions on links and tolls p. We note that demand λ/µ is the expected value of the total

demand in network at step n when n ↑ ∞. This is because in each step n, the expected value

of the total demand in network is
∑n

m=1(1 − µ)n−mλ, where (1 − µ)n−mλ is the expected

incoming demand in step m that remains in the network in step n. Thus, as n ↑ ∞, the

expected value of the total demand is λ/µ.

Definition 2.2.2. (Perturbed socially optimal load) A load vector ȳ(β) is a perturbed

1We explicitly state the dependence on p, β in order relate the definition to later results.
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socially optimal load if ȳ(β) minimizes the following convex optimization problem:

min
y∈RR

∑
i∈[R]

yiℓi(yi) +
1

β

∑
i∈[R]

yi log(yi)

s.t
∑
i∈[R]

yi =
λ

µ
.

(2.9)

A commonly used notion to quantify the social objective is the total latency experienced

on the network [38, 15]. Note that (2.9) is an entropy regularized social objective function

where the regularization weight depends on β. As β ↑ ∞, the perturbed socially optimal

load ȳ(β) becomes the socially optimal flow, which minimizes the total latency.

The following theorem shows that the flow of the continuous-time dynamical system has

a unique fixed point, and this fixed point corresponds to the perturbed socially optimal load.

Theorem 2.2.3. The flow of the continuous-time dynamical system (2.7) has a unique fixed

point (x̄(β)(p̄), p̄) such that x̄(β)(p̄) is a stochastic user equilibrium corresponding to p̄, and

p̄i = x̄
(β)
i (p̄)

dℓi(x̄
(β)
i (p̄))

dx
. (2.10)

Moreover, x̄(β)(p̄) is the perturbed socially optimal load.

At (x̄
(β)
i (p̄), p̄), the load on the network is a stochastic user equilibrium given p̄ and demand

λ/µ. This implies that travelers’ routing strategy, when averaged over all time steps, is a

perturbed best response given p̄ and λ/µ. Moreover, the unique price vector p̄ is the marginal

latency cost, which ensures that the stochastic user equilibrium x̄(β)(p̄) is also a perturbed

socially optimal load. As β → ∞, x̄(β)(p̄) becomes a socially optimal load.

We prove Theorem 2.2.3 in three parts: Firstly, we show that for any toll vector p ∈ RR, the

stochastic user equilibrium x̄(β)(p) exists and is unique, and can be solved as the optimal

solution of a convex optimization problem (Lemma 2.2.4). Secondly, we show that there

exists a unique toll vector p̄ that satisfies (2.10) (Lemma 2.2.6). This requires us to prove

that the stochastic user equilibrium x̄(β)(p) is monotonic in p (Lemma 2.2.5 ). Finally, we

conclude the theorem by proving that at p̄ the stochastic user equilibrium x̄(β)(p̄) is the

perturbed socially optimal load (Lemma 2.2.7).
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We now present the lemmas that are referred in each of the parts above, and provide the

proof ideas of these results. We include the formal proofs in Appendix B.

Part 1: For any p, the load vector x̄(β)(p) is the unique stochastic user equilibrium.

Lemma 2.2.4. For every p ∈ RR, x̄(β)(p) is the unique optimal solution to the following

convex optimization problem:

min
y∈RR

∑
i∈[R]

∫ yi

0

ci(s, pi)ds+
1

β

∑
i∈[R]

yi ln yi,

s.t
∑
i∈[R]

yi =
λ

µ

(2.11)

The proof of Lemma 2.2.4 follows by verifying that x̄(β)(p) (refer Definition 2.2.1) satisfies

the Karush–Kuhn–Tucker (KKT) conditions corresponding to (2.11), which is strictly con-

vex problem and therefore has unique solution. We note that as β → ∞, the stochastic user

equilibrium x̄(β)(p) becomes a Wardrop equilibrium, where travelers only take routes with

the minimum cost.

Part 2: We first show that the stochastic user equilibrium x̄(β)(p) is monotonic in p. This

allows us to prove the existence and uniqueness of p̄ given by (2.10).

Lemma 2.2.5. (Monotonicity of x̄(β)(p)) For any p, p′ ∈ RR we have〈
x̄(β)(p)− x̄(β)(p′), p− p′

〉
< 0.

Furthermore, x̄(β)(p) is a continuously differentiable function. Consequently,
∂x̄

(β)
i (p)

∂pi
< 0 for

all i ∈ [R].

The proof of Lemma 2.2.5 is proved by using the variational inequalities of stochastic user

equilibrium, which are the first-order optimality conditions associated with (2.11). Moreover,

the monotonicity property relies on the fact that the latency on each link increases in the

load.

Lemma 2.2.6. (Existence and uniqueness of p̄) The price vector p̄, defined in (2.10),

exists and is unique.
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In Lemma 2.2.6 the existence is proved by using the Brouwer’s fixed point theorem. We

prove uniqueness by contradiction. More formally, let p, p′ ∈ RR be two distinct toll vectors

that satisfy (2.10). Then, from (2.10), we know that for every i ∈ [R]:

p̄i − p̄′i =
(
x̄
(β)
i (p)− x̄

(β)
i (p′)

) dℓi(x̄
(β)
i (p))

dx

+ x̄
(β)
i (p′)

(
dℓi(x̄

(β)
i (p))

dx
− dℓi(x̄

(β)
i (p′))

dx

)
. (2.12)

By multiplying both sides of (2.12) by (x̄
(β)
i (p)− x̄

(β)
i (p′)),and summing over all i ∈ [R], we

have 〈
x̄(β)(p)− x̄(β)(p′), p− p′

〉
≥ 0,

which contradicts the monotonicity condition proved in Lemma 2.2.5. Therefore, the price

p̄ is unique.

Part 3: Finally, we prove that given p̄, x̄(β)(p̄) is a perturbed socially optimal load.

Lemma 2.2.7. The load vector x̄(β)(p̄) is the perturbed socially optimal load.

We prove Lemma 2.2.7 by showing that the variational inequality satisfied by the stochas-

tic user equilibrium at p̄ is identical to that satisfied by the perturbed socially optimal load.

Lemmas 2.2.4 – 2.2.7 conclude Theorem 2.2.3.

2.2.2 Convergence

In this section, we show that (Xi(n), Pi(n)) induced by the discrete-time stochastic update

converges to a neighborhood of (x̄(β)(p̄), p̄). The size of the neighborhood depends on the

load update stepsize µ and the stepsize ratio between the two dynamics a/µ. That is, the

tolls eventually induce a perturbed socially optimal flow.

Theorem 2.2.8.

lim sup
n−→+∞

E[∥Xn − x̄(β)(p̄)∥2 + ∥Pn − p̄∥2] = O
(
µ+

a

µ

)
. (2.13)

Moreover, for any δ > 0:

lim sup
n−→+∞

Pr(∥Xn − x̄(β)(p̄)∥2 + ∥Pn − p̄∥2 ≥ δ) ≤ O
(
µ

δ
+

a

δµ

)
. (2.14)
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In Theorem 2.2.8, (2.13) provides the neighborhood of the socially optimal load and tolls,

where the discrete-time stochastic updates converge to in expectation. In particular, as the

step size µ and the stepsize ratio between the two updates ϵ = a/µ decreases (i.e. the

discrete-time step for load update is small, and the toll update is much slower than the load

update), the expected value of the distance between (X(n), P (n)) and (x̄(β)(p̄), p̄) decreases

for n → ∞. Moreover, by applying Markov’s inequality, (2.13) also implies that for any

neighborhood of (x̄(β)(p̄), p̄), (X(n), P (n)) converges to that neighborhood with high proba-

bility, and this probability increases as µ and ϵ decreases.

To prove Theorem 2.2.8, we need to prove the following technical lemma:

Lemma 2.2.9.

(C1) For all i ∈ [R], {Mi(n + 1)}n in (2.6) is a martingale difference sequence with respect

to the filtration

Fn = σ(∪i∈[R] (Xi(1), ζ(1), ξi(1), . . . , Xi(n), ζ(n), ξi(n)))

(C2) For all i ∈ [R], Xi(n) ∈
(
0, Xi(0) +

λ̄
µ

)
. Consequently, E[∥X(n)∥2] < +∞, E[∥P (n)∥2] <

+∞.

(C3) There exists K > 0 such that for any i ∈ [R] and any n, E[|Mi(n + 1)|2|Fn] ≤

K (1 + ∥Xi(n)∥2) < +∞.

(C4) For any p, any x̃(t) : R≥0 → RR induced by following continuous-time dynamical system

˙̃xi(t) = hi(x̃(t), p)− x̃i(t), ∀i ∈ [R],∀ t ≥ 0, (2.15)

satisfies limt→∞ x̃(t) = x̄(β)(p). Futhermore, x̄(β)(p) is Lipschitz.

(C5) Any p̃(t) : R≥0 → RR induced by following continuous-time dynamical system

˙̃pi(t) = −p̃i(t) + x̄
(β)
i (p̃(t))

dℓi(x̄
(β)
i (p̃(t)))

dx
, t ≥ 0, (2.16)

satisfies limt→∞ p̃(t) = p̄.

In Lemma 2.2.9, condition (C1) relies on the fact that both the incoming and outgoing

loads are i.i.d.. Condition (C2) ensures the boundedness of the loads and the tolls in the
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discrete-time stochastic updates, and it relies on the boundedness of ζn and ξn. Condition

(C3) ensures the boundedness of the martingale sequence {Mi(n + 1)}n, and it is built on

condition (C1) and (C2).

In conditions (C4), the continuous-time dynamical system (2.15) is associated with the

discrete-time load update (Update-X) when the toll is set as a constant p. That is, due to

the fact that toll update is at a slower timescale compared with the load update (ϵ ≪ 1),

the continuous-time dynamical system of load evolves as if the toll is a constant p. We prove

condition (C4) by showing that (2.15) is cooperative (see Theorem A.0.2 in the appendix).

Condition (C4) ensures that the load of the continuous-time dynamical system converges

to the stochastic user equilibrium (Definition 2.2.1) with respect to p. Recall from Lemma

2.2.4, the stochastic user equilibrium is unique.

On the other hand, in condition (C5), (2.16) is associated with (Update-P ) when the load

– which is updated at a faster timescale – has already converged to the stochastic user equi-

librium with respect to p(t). Similar to condition (C4), we show that (2.16) is a cooperative

dynamical system. The proof of this condition is built on the monotonicity of stochastic user

equilibrium with respect to the toll (Lemma 2.2.5) and the uniqueness of p̄ (Lemma 2.2.6).

The proofs of (C1) – (C5) are in Appendix B. Based on Lemma 2.2.9, we can apply the

theory of two timescale stochastic approximation with constant stepsizes:

Lemma 2.2.10 ([5]). Given ϵ ≪ 1, (2.13) is satisfied under (C1) – (C5).

Lemmas 2.2.9 and 2.2.10 proves (2.13). Additionally, (2.14) can be directly derived from

(2.13) using Markov’s inequality. Thus, we can conclude Theorem 2.2.8.

2.3 Numerical Experiments

In this section we present numerical experiments for the results presented in Section 2.2. We

observe that loads and tolls concentrate on a neighborhood of the socially optimal loads and

tolls, and the continuous-time dynamical system (2.7) closely approximates the discrete-

time stochastic updates (Update-X) – (Update-P ). Our numerical results are consistent

with Theorems 2.2.3 and 2.2.8.
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Consider a network with six parallel links (i.e. R = 6) with the following link latency

functions:

ℓi(x) = ix2 + i, ∀ i ∈ [R]. (2.17)

We set the total time steps of discrete-time stochastic update asN = 2000, and the dispersion

parameter β = 100. We conduct four sets of experiments with the following parameters:

(S1) λ = 0.1, µ = 0.05 and a = 0.0015;

(S2) λ = 0.2, µ = 0.05 and a = 0.0015;

(S3) λ = 0.1, µ = 0.05 and a = 0;

(S4) λ = 0.2, µ = 0.05 and a = 0.

We note that tolls are updated with positive stepsizes in (S1) – (S2), but remain zero

in (S3) – (S4). Also, the mean incoming load of travelers in each step λ is high in (S1) and

(S3), and low in (S2) – (S4). In Fig. 2.2, we demonstrate the loads and tolls obtained in

the discrete-time stochastic updates (Update-X) – (Update-P ) (represented by dots), and

those induced by the continuous-time dynamical system (2.7) (represented by solid lines)

in (S1) and (S2), respectively. In Fig. 2.3, we demonstrate the loads in the discrete-time

updates and the socially optimal load for (S3) and (S4). We omit the figures for tolls since

tolls are not updated with step size a = 0.

We now present the main observations from the numerical study. Firstly, we observe that

in Fig. 2.2, the trajectories of continuous-time dynamical system (2.7) closely track the

discrete-time stochastic load update. Moreover, we observe that it takes more time steps for

the tolls (refer Fig.2.2b, Fig.2.2d) to converge compared to the loads. This is because tolls

are updated at a slower timescale (i.e. a ≪ µ).

Secondly, we show that the repeatedly updated tolls eventually induce the perturbed so-

cially optimal load in Fig. 2.2a and 2.2c. On the other hand, when tolls are zero (i.e.

inactive) in all steps, loads converge to a stochastic user equilibrium (Fig. 2.3a and 2.3b),

which is different from the socially optimal load. This means that links are inefficiently

utilized when tolls are inactive. We observe that the low cost links (links 1, 2, and 3) are
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disproportionately over-utilized while the remaining links are underused especially in the

setting with high incoming load λ (Fig.2.3b).

Thirdly, we note that both the perturbed socially optimal load and the stochastic user

equilibrium change with the average incoming load λ. In particular, more links are utilized

at fixed point with high λ (Fig. 2.2c for (S2) and Fig. 2.3b for (S4)) compared to that with

low λ (Fig. 2.2a for (S2) and Fig. 2.3a for (S4)).
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(a) Loads in (S1) (b) Tolls in (S1)

(c) Loads in (S2) (d) Tolls in (S2)

Figure 2.2: Loads and Tolls in discrete-time stochastic update (Update-X) – (Update-P ) (dots) and

continuous-time dynamical system (2.7) (solid lines) in (S1) and (S2).

(a) Loads in (S3) (b) Loads in (S4)

Figure 2.3: Comparison between loads induced by the discrete-time stochastic update (Update-X)(solid

lines) when Pn = 0 and the socially optimal load (dashed lines) in (S3) and (S4).
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Chapter 3

Inducing Social Optimality in Games

via Adaptive Incentive Design

In this chapter we propose a discrete-time learning dynamics that jointly captures the play-

ers’ strategy updates and the designer’s updates of incentive mechanisms. Our learning

dynamics can be used for both atomic games and non-atomic games. The incentive mecha-

nism designed by the social planner sets a payment (tax or subsidy) for each player that is

added to their cost function in the game. In each time step, players update their strategies

based on the opponents’ strategies and the incentive mechanism in the current step, and

the social planner updates the incentive mechanism in response to players’ current strate-

gies. We assume that the incentive update proceeds at a slower timescale than the strategy

update of players. The slower evolution of incentives is in-fact a desirable characteristic for

any societal scale system, where frequent changes of incentives may lead to instability in the

system and may hamper participation by players. The slow evolution of incentives allows

players to consider the incentives as static while updating their strategies.

A key feature of our learning dynamics is that the incentive update in each time step is

based on the externality created by each player with their current strategy. In particular,

given any strategy profile, the externality of each player is evaluated as the difference be-

tween the marginal cost of their strategy on themselves and the marginal social cost. In

a static incentive design problem, when all players are charged with their externality, the

change of their total cost – original cost in game plus the payment – with respect to their
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strategy becomes identical to the change of social cost. Consequently, the induced Nash

equilibrium is also socially optimal [46, 13, 35]. In our learning dynamics, the social planner

accounts for the externality of each player evaluated at their current strategy, which evolves

with players’ strategy updates.

The externality-based incentive updates distinguish our adaptive incentive design from other

recent studies on incentive mechanisms with learning agents. The paper [37] studies the prob-

lem of incentive design while learning the cost functions of players. The authors assume that

both the cost functions and incentive policies are linearly parameterized, and the incentive

updates rely on the knowledge of players’ strategy update rules instead of just the current

strategy as in our setting. Additionally, the paper [26] considers a two-timescale discrete-

time learning dynamics, where players adopt a mirror descent-based strategy update, and

the social planner updates an incentive parameter according to a gradient descent method.

The convergence of such gradient-based learning dynamics relies on the assumption that the

social cost given players’ equilibrium strategy is convex in the incentive parameter. However,

the convexity assumption can be restrictive since the equilibrium strategy as a function of

the incentive parameter is nonconvex even in simple games.

We show that our externality-based incentive updates ensure that any fixed point of our

learning dynamics corresponds to a optimal incentive mechanism, such that the induced

Nash equilibrium of the game is also socially optimal (Proposition 3.2.1). This result is built

on the fact that at any fixed point of our learning dynamics, the strategy profile is a Nash

equilibrium corresponding to the incentive mechanism, and each player’s payment equals to

the externality created by their equilibrium strategy. Therefore, the equilibrium strategy

associated with this externality-based payment also minimizes the social cost. Additionally,

we present the sufficient conditions on the game such that the fixed point set is a singleton

set, and thus the socially optimal incentive mechanism is unique (Proposition 3.2.2).

Furthermore, we provide sufficient conditions on games that guarantee the convergence of

strategies and incentives induced by our learning dynamics (Theorem 3.2.3). Since the con-

vergent strategy profile and incentive mechanism corresponds to a fixed point that is also
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socially optimal, these sufficient conditions guarantee that the adaptive incentive mechanism

eventually induces a socially optimal outcome in the long run.

In the proof of our convergence theorem, we exploit the timescale separation between the

strategy update and the incentive updates. We use tools from the theory of two-timescale

dynamical systems [4] to analyze the convergence of strategy updates and incentive updates

separately after accounting of time separation. In particular, the convergence of strategy up-

dates can be derived from the rich literature of learning in games ([16],[40],[31], etc.) since

the incentive mechanism can be viewed as static in the strategy updates thanks to the time

separation. On the other hand, the convergence of incentive vectors can be analyzed via the

associated continuous-time dynamical system, in which the value of the externality function

is evaluated at the converged value of fast strategy update, which is the Nash equilibrium.

Our sufficient conditions are based broadly on two main techniques of proving global stabil-

ity of non-linear dynamical system: (i) cooperative dynamical systems theory [19] and (ii)

Lyapunov based methods [41].

Finally, we apply our general results to three classes of games: (i) atomic networked quadratic

games; (ii) atomic cournot competition; (iii) nonatomic routing games. In each class of

games, we present the adaptive incentive design based on the externality of players’ strate-

gies. We also provide sufficient conditions on the game parameters and social cost functions

under which the adaptive incentive design eventually induces a socially optimal outcome.

The chapter is organized as follows: in Section 3.1 we describe the setup of both atomic

and non-atomic game considered here. In addition, we also provide the joint strategy and

incentive update considered in this paper. We present the main results in Section 3.2 and

the applications of those results in three class of games in Section 3.3.

Notations

For any vector x ∈ Rn, we use xj or x
j to denote the j−th component of that vector. Given

a function f : Rn → R, we use Dxi
f(x) to denote ∂f

∂xi
(x), the derivative of f with respect to

xi for any i ∈ {1, 2, ..., n}. For any matrix A ∈ Rn×n we denote the set of eigenvalues of A
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by spec(A). For any set A we use conv(A) to denote the convex hull of the set. We use k to

denote the discrete-time index and t to denote the continuous-time index.

3.1 Model

We introduce both atomic and non-atomic static games in Section 3.1.1. In Section 3.1.2,

we present the two-timescale dynamics of strategy learning and incentive design.

3.1.1 Static games

Atomic Games

Consider a game G with a finite set of players I. The strategy of each player i ∈ I is

xi ∈ Xi, where Xi is a non-empty and closed interval in R. The strategy profile of all players

is x = (xi)i∈I , and the set of all strategy profiles is X :=
∏

i∈I Xi. The cost function of each

player i ∈ I is ℓi : X → R.1 For any x−i = (xj)j∈I\{i}, we assume that the cost function

ℓi(xi, x−i) is twice continuously differentiable and strictly convex in xi for all i ∈ I.

A social planner designs incentives by setting a payment pixi for each player i that is linear

in their strategy xi.
2 Here, pi represents the marginal payment for every unit increase in

strategy of player i. The value of pi can either be negative or positive, which represents a

marginal subsidy or a marginal tax, respectively.

Given the incentive vector p = (pi)i∈I , the total cost of each player i ∈ I is:

ci(x, p) = ℓi(x) + pixi, ∀ x ∈ X. (3.1)

A strategy profile x∗(p) ∈ X is a Nash equilibrium in the atomic game G with the incentive

vector p if

ci(x
∗
i (p), x

∗
−i(p), p) ≤ ci(xi, x

∗
−i(p), p), ∀ xi ∈ Xi, ∀i ∈ I.

Recall that the cost ℓi(xi, x−i) is a continuous function, and is strictly convex in xi. Ad-

ditionally, the strategy set Xi is convex for each player i. Therefore, we know that Nash
1We measure the outcome of our games by costs instead of utilities. Equivalently, the utility of each player is the negative

value of the cost.
2Considering a linear payment is sufficient to ensure optimal incentive design in atomic games.
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equilibrium must exist and must be unique in G. Moreover, we can equivalently represent

a Nash equilibrium x∗ as a strategy profile that satisfies the following variational inequality

([14]):

⟨J(x∗(p), p), x− x∗(p)⟩ ≥ 0, ∀ x ∈ X, (3.2)

where J(x∗(p), p) = (Ji(x
∗(p), p))i∈I , and

Ji(x
∗(p), p) = Dxi

ci(x
∗(p), p) = Dxi

ℓi(x
∗) + pi. (3.3)

Furthermore, a strategy profile x† ∈ X is socially optimal if x† minimizes the social cost

function Φ : X → R. We assume that the social cost function Φ(x) is strictly convex

and twice continuously differentiable in x. Then, the optimal strategy profile x† is unique.

Additionally, from the first order conditions of optimality, we know that x† minimizes the

social cost function Φ if and only if:

⟨∇Φ(x†), x− x†⟩ ≥ 0, ∀ x ∈ X. (3.4)

Finally, given a strategy profile x ∈ X, we define the externality caused by player i as the

difference between the marginal social cost, and the marginal cost of player i with respect

to xi. That is,

ei(x) = Dxi
Φ(x)−Dxi

ℓi(x). (3.5)

Non-atomic Games

Consider a game G̃ with a finite set of player populations Ĩ. Each population i ∈ Ĩ is com-

prised of a continuum set of players with mass Mi > 0. Individual players in each population

can choose an action in a finite set Si. The strategy of population i ∈ Ĩ is x̃i =
(
x̃j
i

)
j∈Si

,

where x̃j
i is the fraction of individuals in population i who choose action j ∈ Si. Then,

the strategy set of population i is X̃i =
{
x̃i|
∑

j∈Si
x̃j
i = Mi, x̃j

i ≥ 0, ∀j ∈ Si

}
. The strategy

profile of all populations is x̃ = (x̃i)i∈Ĩ ∈ X̃ =
∏

i∈Ĩ X̃i. Given a strategy profile x̃ ∈ X̃, the

cost of players in population i ∈ Ĩ for choosing action j ∈ Si is ℓ̃ji (x̃) which is assumed to

be continuously differentiable. We denote ℓ̃i(x̃) = (ℓ̃ji (x̃))j∈Si
as the vector of costs for each

population i ∈ Ĩ.
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Given any x̃ ∈ X̃, a social planner designs incentives by setting a payment p̃ji for players in

population i who choose action j. Consequently, given the incentive vector p̃ =
(
p̃ji
)
j∈Si,i∈Ĩ

,

the total cost of players in each population i ∈ Ĩ for choosing action j ∈ Si is given by:

c̃ji (x̃, p̃) = ℓ̃ji (x̃) + p̃ji ∀ x̃ ∈ X̃. (3.6)

A strategy profile x̃∗(p̃) ∈ X̃ is a Nash equilibrium in the nonatomic game G̃ with p̃ if

∀i ∈ Ĩ, ∀j ∈ Si, x̃j∗
i (p̃) > 0, ⇒

c̃ji (x̃
∗(p̃), p̃) ≤ c̃j

′

i (x̃
∗(p̃), p̃), ∀j′ ∈ Si.

Similar to atomic games, we can equivalently represent the Nash equilibrium x̃∗(p̃) in non-

atomic game G̃ as a strategy profile that satisfies the following variational inequality ([40]):

⟨c̃(x̃∗(p̃), p̃), x̃− x̃∗(p̃)⟩ ≥ 0 ∀ x̃ ∈ X̃, (3.7)

where c̃(x̃∗(p̃), p̃) = (c̃i(x̃
∗(p̃), p̃))i∈Ĩ .

Note that a Nash equilibrium always exists in a population game G̃ [40, Theorem 2.1.1].

Under the assumption that the cost function c̃(x̃, p̃) is strictly monotone in x̃ (Assumption

3.1.1), Nash equilibrium x̃∗ is also unique [40].

Assumption 3.1.1. For every incentive vector p̃,

⟨c̃(x, p̃)− c̃(x′, p̃), x− x′⟩ > 0, ∀x ̸= x′ ∈ X̃.

Analogous to the atomic games, a strategy profile x̃† ∈ X̃ is socially optimal if x̃† minimizes

a social cost function Φ̃ : X̃ → R. We assume that Φ̃(x̃) is strictly convex, and twice

continuously differentiable in x̃. Therefore, x̃† is unique, and satisfies the following variational

inequality constraints:

⟨∇Φ̃(x̃†), x̃− x̃†⟩ ≥ 0, ∀ x̃ ∈ X̃. (3.8)

Finally, give any x̃ ∈ X̃, we define the externality caused by players in population i who play

action j ∈ Si as the difference between the marginal social cost, and the cost experienced by

the players in population i who chooses action j, i.e.

ẽji (x̃) = Dx̃j
i
Φ̃(x̃)− ℓ̃ji (x̃). (3.9)
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3.1.2 Learning dynamics

We now introduce the discrete-time learning dynamics considered in this paper. For every

time step k = 1, 2, ..., we denote the strategy profile in the atomic game G (resp. non-

atomic game G̃) as xk = (xi,k)i∈I (resp. x̃k = (x̃i,k)i∈Ĩ), where xi,k (resp. x̃i,k) is the

strategy of player i (population i) in step k. Additionally, we denote the incentive vector as

pk = (pi,k)i∈I (resp. p̃k = (p̃ji,k)j∈Si,i∈Ĩ). The strategy updates and the incentive updates are

presented below:

Strategy update. In each step k + 1, the updated strategy is a linear combination of the

previous strategy in stage k (i.e. xk in G and x̃k in G̃), and a new strategy (i.e. f(xk, pk) ∈ X

in G and f̃(x̃k, p̃k) ∈ X̃ in G̃) that depends on the previous strategy and the incentive vector

in stage k. The relative weight in the linear combination is determined by the step-size

γk ∈ (0, 1).

xk+1 = (1− γk)xk + γkf(xk, pk) (x-update)

x̃k+1 = (1− γk)x̃k + γkf̃(x̃k, p̃k) (x̃-update)

We consider generic strategy updates (x-update) and (x̃-update) such that the new strategy

profile f(xk, pk) = (fi(xk, pk))i∈I and f̃(x̃k, p̃k) = (f̃i(x̃k, p̃k))i∈Ĩ can incorporate a variety of

strategy update rules. Two simple examples of such updates include:

1. Equilibrium update: The strategy update incorporates a Nash equilibrium strategy

profile with respect to the incentive vector in stage k. That is, f(xk, pk) = x∗(pk) and

f̃(x̃k, p̃k) = x̃∗(p̃k).

2. Best response update: The strategy update incorporates a best response strategy with

respect to the strategy and the incentive vector in the previous step, i.e. fi(xk, pk) =

BRi(xk, pk) = argmin
yi∈Xi

ci(yi, x−i,k, pk), f̃i(x̃k, p̃k) = B̃Ri(x̃k, p̃k) = argmin
ỹi∈X̃i

ỹ⊤i c̃i(x̃k, p̃k).

Incentive update. In each step k+1, the updated incentive vector is a linear combination

of the previous vector in step k (i.e. pk in G and p̃k in G̃), and the externality (i.e. e(xk) in

G and ẽ(x̃k) in G̃) based on the strategy profile in step k. The relative weight in the linear
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combination is determined by the step size βk ∈ (0, 1).

pk+1 = (1− βk)pk + βke(xk); (p-update)

p̃k+1 = (1− βk)p̃k + βkẽ(x̃k); (p̃-update)

The incentive updates (p-update)-(p̃-update) modify the incentives on the basis of the ex-

ternality caused by the players. We emphasize that this update is adaptive to the evolution

of players’ strategies since the externality is evaluated based on players’ current strategies.

Moreover, the computation of each player’s externality only requires that the social planner

knows the gradients of its own costs and those of the players, evaluated at the players’ cur-

rent strategy profile. The joint evolution of strategy profiles and incentive vectors (xk, pk)
∞
k=1

(resp. (x̃k, p̃k)
∞
k=1) in the atomic game G (resp. non-atomic game G̃) is governed by the

learning dynamics (x-update) – (p-update) (resp. (x̃-update) – (p̃-update)). The step-sizes

(γk)
∞
k=1 and (βk)

∞
k=1 determine the speed of strategy updates and incentive updates. We

make the following assumption on step-sizes:

Assumption 3.1.2.

(i)
∑∞

k=1 γk =
∑∞

k=1 βk = +∞,
∑∞

k=1 γ
2
k + β2

k < +∞.

(ii) limk→∞
βk

γk
= 0.

Assumption 3.1.2, (i) is a standard assumption on step-sizes that allow us to analyze the

convergence of the discrete-time learning dynamics. Additionally, (ii) assumes that the in-

centive update occurs at a slower timescale compared to the update of strategies.

Since the assumption on stepsizes (Assumption 3.1.2 (ii)) ensures that the incentive evolves

on a slower timescale than the strategies, players may view the incentive mechanism as ap-

proximately static (although not completely fixed) when updating their strategies. One can

show that with any fixed incentive mechanism, strategy updates with Nash equilibrium be-

ing the new strategy always converges. On the other hand, although best response updates,

which we also consider, do not converge in all games, they converge in many practically-

relevant games such as zero sum games [18], potential games [44], and dominance solvable

games [32]. Additionally, our strategy updates (x-update) and (x̃-update) can incorporate

many other learning dynamics; their convergence properties in static game environments
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have been extensively studied in the literature, in both atomic and nonatomic games [29],

[40], [16], [31].

We emphasize that the convergence of strategy updates with fixed incentive mechanism

is not the focus of our paper. Instead, our goal is to characterize conditions under which the

adaptive incentive updates (p-update) and (p̃-update) converge to a socially optimal mech-

anism. We note that such convergence cannot be achieved in scenarios where the strategy

updates do not converge even with completely fixed incentive vector. Therefore, we impose

the following assumption that the strategy updates consider in our dynamics converge to a

Nash equilibrium with any fixed incentive vector.

Assumption 3.1.3. In G (resp. G̃), the updates (x-update) (resp. (x̃-update)) starting

from any initial strategy x1 (resp. x̃1) with (pk) ≡ p for any p (resp. (p̃k) ≡ p̃ for any p̃),

satisfies limk→∞ xk = x∗(p) (resp. limk→∞ x̃k = x̃∗(p̃)), where x∗(p) (resp. x̃∗(p̃)) is the

Nash equilibrium corresponding to p (resp. p̃).

3.2 Main Results

In Section 3.2.1 we characterize the set of fixed points of the dynamic updates (x-update)-

(p-update) and (x̃-update)-(p̃-update), and show that any fixed point corresponds to a so-

cially optimal incentive mechanism such that the induced Nash equilibrium strategy profile

minimizes the social cost. In Section 3.2.2, we provide a set of sufficient conditions that guar-

antee the convergence of strategies and incentives in our learning dynamics. Under these

conditions, our learning dynamics designs an adaptive incentive mechanism that eventually

induces a socially optimal outcome.

3.2.1 Fixed point analysis

We first characterize the set of fixed points of our learning dynamics (x-update)-(p-update),

and (x̃-update)-(p̃-update)) as follows:

Atomic game G, {(x, p)|f(x, p) = x, e(x) = p} , (3.10a)

Nonatomic game G̃,
{
(x̃, p̃)|f̃(x̃, p̃) = x̃, ẽ(x̃) = p̃

}
. (3.10b)
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We can check that if the learning dynamics start with a fixed point strategy and incentive

vector, then the strategies and incentive vectors remain at that fixed point for all time steps.

Moreover, under Assumption 3.1.3, we know that for any incentive vector p (resp. p̃), a

strategy profile that satisfies f(x, p) = x (resp. f̃(x̃, p̃) = x̃) in game G (resp. G̃) must be a

Nash equilibrium x∗(p) (resp. x̃∗(p)). Thus, from (3.10a) – (3.10b), we can write the set of

incentive vectors at the fixed point as follows:

Atomic game G, P † = {(p†i )i∈I |e(x∗(p†)) = p†},

Nonatomic game G̃, P̃ † = {(p̃†i )i∈I |ẽ(x̃∗(p̃†)) = p̃†}.

That is, at any fixed point, the incentive of each player is set to be equal to the externality

evaluated at their equilibrium strategy profile.

Our next proposition shows that the fixed point set P † (resp. P̃ †) is non-empty in G

(resp. G̃). Moreover, given any fixed point incentive parameter p† ∈ P † and p̃† ∈ P̃ †,

the corresponding Nash equilibrium is socially optimal.

Proposition 3.2.1. In G (resp. G̃), the set P † (resp. P̃ †) is non-empty. Additionally, any

p† ∈ P † (resp. p̃† ∈ P̃ †) is socially optimal in that x∗(p†) = x† (resp. x̃∗(p̃†) = x̃†).

This result is especially interesting from perspective of implementation because the existence

of the optimal incentives implies that for G there exists a linear incentive policy (as in (3.1))

which is optimal. Moreover for G̃ there exists a constant incentive policy (as in (3.6)) that

is optimal.

The proof of Proposition 3.2.1 is based on Brouwer’s fixed point theorem. The bound-

edness of the strategy space allows us to construct convex compact sets which maps to itself

under e(x∗(·)) (resp. ẽ(x̃∗(·))) in G (resp. in G̃).

Next, we provide sufficient conditions under which the fixed point set P † and P̃ † are singleton.

Proposition 3.2.2. In an atomic game G, the set P † is singleton if any one of the following

conditions holds:

(i) The equilibrium strategy profile x∗(p) is in the interior of the strategy set X for any p.
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(ii) ⟨e(x)− e(x′), x− x′⟩ > 0 for all x ̸= x′.

In a non-atomic game G̃, P̃ † is singleton if the externality function ẽ(·) satisfies Assumption

3.1.1 and condition (ii).

3.2.2 Convergence to optimal incentive mechanism

The next result provides sufficient conditions for strategies and incentives updates (x-update)-

(p-update) and (x̃-update)-(p̃-update) to converge to social optimality.

Theorem 3.2.3. Under Assumptions 3.1.2 and 3.1.3, the sequence of strategies and incen-

tives induced by the discrete-time dynamics (x-update)-(p-update) in G satisfies

lim
k→∞

(xk, pk) = (x†, p†) (3.12)

if at least one of the following conditions holds:

(C1) If ei(x
∗(0)) ≥ 0, then limp→∞ ei(x

∗(p)) − pi < 0 for all i ∈ I. If ei(x
∗(0)) ≤ 0, then

limp→−∞ ei(x
∗(p))− pi > 0 for all i ∈ I.3 Moreover, ∂ei(x

∗(p))
∂pj

> 0 for all p ∈ Rn and all

i ̸= j.

(C2) There exists a continuously differentiable, positive definite and decrescent function 4

V (p) : Rn → R+ such that V (p†) = 0 and V (p) > 0 for all p ̸= p†. Moreover:

∇V (p)⊤ (e(x∗(p))− p) < −ω(∥p− p†∥) ∀ p ̸= p†,

where ω(·) is strictly increasing, and satisfies ω(0) = 0.

Analogously, the sequence of strategies and incentives in G̃ induced by (x̃-update) and

(p̃-update) satisfies limk→∞(x̃k, p̃k) = (x̃†, p̃†) if the externality function ẽ satisfies at least

one of (C1) and (C2).

Owing to Assumption 3.1.2, we utilize the timescale separation between the strategy update

(x-update) and the incentive update (p-update) to prove Theorem 3.2.3. Indeed, the two-

timescale stochastic approximation theory [4] suggests that the strategy update (x-update)

is a fast transient while the incentive update (p-update) is a slow component. Therefore

3p → ∞ means pi → ∞ for all i.
4A function V : Rn → R is positive definite if V (x) ≥ α1(∥x∥) for some continuous, strictly increasing function α1(·) such

that α1(0) = 0, and α1(t) → ∞ as t → ∞. V is decrescent if V (x) ≤ α2(∥x∥) for some continuous, strictly increasing function

α2(·) such that α2(0) = 0.
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while considering the fast strategy update one should expect that slow incentive updates

are quasi-static. Consequently, Assumption 3.1.3 in game G along with Assumption 3.1.2

ensures that the tuple (xk, pk) converges to the set {(x∗(p), p) : p ∈ R|I|} [4]. Thus for

sufficiently large values of k, the update xk closely tracks x∗(pk). Therefore, we consider the

following update to analyze the convergence of the slow incentive update (p-update):

pk+1 = (1− βk)pk + βke(x
∗(pk)). (3.13)

Since the step sizes {βk} are asymptotically going to zero and have infinite travel (Assump-

tion 3.1.2-(i)) we can approximate the updates in (B.24) by the following continuous-time

dynamical system:

ṗ(t) = e(x∗(p(t)))− p(t), (3.14)

The convergence of discrete-time updates (x-update)-(p-update) then hold if the flow of

(3.14) globally converges to P †.

Requirements (C1) in Theorem 3.2.3 are sufficient conditions for convergence of the tra-

jectories of (3.14) to the set P †. This condition is based on cooperative dynamical systems

theory [19]. Intuitively, condition (C1) demands that in the equilibrium if the players inflict

(resp. alleviate) some externality when no incentive is applied then there should exist high

enough prices (resp. subsidies) which can compensate for the externality. Moreover, it de-

mands that higher prices (resp. subsidies) on other player increases the externality inflicted

(resp. alleviated) by a player.

Requirement (C2) in Theorem 3.2.3 on the other hand ensures convergence by positing

existence of a Lyapunov function [41] that is strictly positive everywhere except at P † and

decreases along the flow of (3.14).

Note that either one of the conditions (C1) or (C2) guarantees the convergence of the flow

of the slow system (3.14) to P †. This in addition to the convergence of the fast strategy up-

date (Assumption 3.1.3) leads to the convergence of the discrete-time dynamics (x-update)-

(p-update) [4, Chapter 6].
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Thus, we have shown that there exists an incentive which induces an equilibrium which

is socially optimal and the externality based pricing update along with any strategy update,

satisfying requirements of Theorem 3.2.3, converges to the optimal incentive.

3.3 Applications

In this section, we apply our general results to three classes of games that are practically rel-

evant: (Section 3.3.1) Atomic networked aggregative games; (Section 3.3.2) Atomic Cournot

games; and (Section 3.3.3) Non-atomic routing games. In each case, we show that our

adaptive incentive mechanism asymptotically induces a socially optimal outcome.

3.3.1 Atomic networked aggregative games

We consider a finite set of players I who are connected in a network. The strategy of each

player i ∈ I is a real number xi ∈ R. We represent the network that connects players by a

matrix w = (wij)i,j∈I , where wij captures the impact of player j’s strategy xj on player i’s

cost. We assume that wii = 0 for all i ∈ I. The cost of each player i ∈ I given any strategy

profile x = (xi)i∈I is a quadratic function as follows:

ℓi(x) =
1

2
x2
i − aixizi(x)

where ai > 0 and zi(x) =
∑

j∈I wijxj is the average strategy of player i’s neighbors weighted

by the network matrix w. That is, zi(x) captures the network effect of opponents’ strategies

on player i.

Networked aggregative games are applicable in a variety of settings, where players’ strategies

and costs are affected by those around them. Examples of such settings include peer effects,

investment in networked markets, and cross-neighborhood impacts of crime [21].

A social planner designs an incentive mechanism that charges each player i with payment

pixi. The total cost of player i under strategy profile x and p is

ci(x, p) =
1

2
x2
i − xiaizi(x) + pixi.
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Let A = diag([a1, a2, ..., a|I|]
⊤). We assume that the matrix (I − Aw) is invertible and let

L = (I − Aw)−1. In the economics literature, the matrix (I − Aw)−1 is referred to as the

Leontief matrix, where the ij entry of this matrix captures how the payment of player j

affects the equilibrium strategy of player i ([34]).

For any p, we show that the aggregative game has a unique Nash equilibrium given by:

x∗(p) = −(I − Aw)−1p. (3.15)

Given x, the cost of the social planner is Φ(x) = 1
2

∑
i∈I(xi−ξi)

2 for ξi ∈ R, where x† = (ξi)i∈I

is the planner’s socially optimal strategy profile. Moreover, from (3.5), the externality caused

by player i given the strategy profile x is ei(x) = ξi + aizi(x).

We consider the learning dynamics, where players update their strategies using best re-

sponse. Given any strategy profile x and incentive p, the best response of player i is

BRi(x−i, pi) = aizi(x)− pi and the best response vector BR(x, p) = (BRi(x−i, pi))i∈I . Thus

the strategy update is f(x, p) = BR(x, p) = Awx − p. Then, the discrete-time leaning

dynamics (x-update) – (p-update) can be written as follows:

xk+1 = (1− γk)xk + γk (Awxk − pk) , (3.16a)

pk+1 = (1− βk)pk + βk (ξ + Awxk) , (3.16b)

and the step-sizes {γk}∞k=1, {βk}∞k=1 satisfy Assumption 3.1.2.

We show that there exists a unique p† such that the induced equilibrium strategy profile

x∗(p†) equals to the socially optimal strategy x†. Moreover, we also provide sufficient condi-

tion on the Leontief matrix under which our learning dynamics converges the unique socially

optimal incentive mechanism.

Proposition 3.3.1. The unique socially optimal incentive mechanism is p† = (I − Aw)ξ.

Furthermore if the real part of eigenvalues of (I − Aw) is positive, i.e. spec(L) ⊂ C◦
+, then

the discrete-time learning dynamics (3.16a)-(3.16b) satisfy limk→∞(xk, pk) = (x†, p†).

From (3.15), we know that for any p, there exists a unique equilibrium strategy profile x∗(p)

that is linear in p. Then, we obtain the socially optimal incentive p† that satisfies x∗(p†) = x†.
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Additionally, p† also satisfies that e(x†(p†)) = p†, and therefore p† is a fixed point of the learn-

ing dynamics. To show the convergence results in Proposition 3.3.1 we verify the conditions

in Theorem 3.2.3 holds. The condition spec(L) ⊂ C◦
+ ensures that Assumption 3.1.3 holds.

Indeed, we show that the strategy update (3.16a) with fixed incentives asymptotically track

the flow of a continuous-time linear dynamical system. The condition spec(L) ⊂ C◦
+ ensures

that the flow of continuous-time dynamical system asymptotically converges to fixed points

of (3.16a) with fixed incentives. Finally, we verify that if spec(L) ⊂ C◦
+ then K = −L ⊂ C◦

−

and there exists a Lyapunov function that satisfies (C2) in Theorem 3.2.3. In particular, the

Lyapunov function is given by

V (p) = (p− p†)⊤M(p− p†)

where M is a matrix that satisfies K⊤M +MK = −I.5

3.3.2 Atomic Cournot competition

A finite set of firms I compete in a single market. The strategy of each firm i ∈ I is its

production quantity xi. Given any strategy profile x = (xi)i∈I , the price of the good is

ξ(x) = θ− δ
∑

i∈I xi with θ, δ > 0. The per-unit production cost of the good is ν. Then, the

cost function of firm i ∈ I (written as negative of the profit) is given by:

ℓi(x) = −xiξ(x) + νxi (3.17)

A social planner designs an incentive mechanism that charges each player i with payment

pixi. The total cost of firm i ∈ I given x and p is:

ci(x, p) = −xiξ(x) + (ν + pi)xi

The game has a unique Nash equilibrium given by: 6

x∗
i (p) =

1

δ(|I|+ 1)

(
θ − ν − |I|pi +

∑
j ̸=i

pj

)
(3.18)

The goal of the social planner is to minimize the aggregate cost of players while also ac-

counting for the environmental cost of good production, which is unpriced in equilibrium.

We model the environmental cost to be a quadratic function of production following [7].

5The existence of a matrix M is guaranteed by the Lyapunov theorem [8] as spec(K) ⊂ C◦
−.

6We assume that θ is large enough such that x∗(p) > 0 for all p in a neighborhood of the socially optimal incentive p†.
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Thus, the social cost function is Φ(x) =
∑n

i=1 ℓi(x) + λ
∑n

i=1 x
2
i where λ > 0 is a parameter

that determines the relative weight between the firm costs and environmental cost. Finally,

the externality (3.5) caused by of a firm i ∈ I is ei(x) = 2λxi + δ
∑

j ̸=i xj.

We consider best response strategy updates. Given any x−i, the best response of firm i ∈ I

is:

BRi(x−i, pi) =
θ − δ

∑
j ̸=i xj − ν − pi

2δ
.

Following (x-update) – (p-update), we can write the updates of strategies and incentives as

follows:

xi,k+1 = (1− γk)xi,k + γk

(
θ − δ

∑
j ̸=i xj,k − ν − pi,k

2δ

)
, (3.19a)

pi,k+1 = (1− βk)pi,k + βk(δ
∑
j ̸=i

xj,k + 2λxi,k). (3.19b)

and the step-sizes {γk}∞k=1, {βk}∞k=1 satisfy Assumption 3.1.2.

We can show that for any fixed p, the best response learning dynamics (3.19a) converges

to a Nash equilibrium x∗(p) associated with p. Indeed, we show that the strategy update

(3.19a) with fixed incentives asymptotically track the flow of a continuous-time linear dy-

namical system whose flow asymptotically converges to the Nash equilibrium x∗(p). Thus,

Assumption 3.1.3 is satisfied.

The next proposition shows that the optimal incentive p† is unique. Moreover, the in-

centive vectors induced by (3.19b) converge to the socially optimal incentive p† if the weight

of environmental cost, λ, is sufficiently high.

Proposition 3.3.2. There exists a unique socially optimal incentive mechanism p† that

satisfies p† = e(x∗(p†)). Given p†, the induced equilibrium strategy profile is socially optimal,

i.e. x∗(p†) = x†. Moreover, the discrete-time learning dynamics (3.19a)-(3.19b) satisfy

limk→∞(xk, pk) = (x†, p†) if λ > δ.

Recall that λ is the weight of environmental cost in the social cost function, and δ is the

increase of firm cost with respect to the increase of production level. The sufficient condi-

tion λ > δ states that if the social planner assigns higher weight to the environmental cost
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compared to the per-unit increase of firm cost, then the adaptive incentive mechanism can

asymptotically induce a socially optimal outcome.

The proof of Proposition 3.3.2 follows similarly to that of Proposition 3.3.1. We show that

there is a unique incentive p† such that the corresponding Nash equilibrium as in (3.19a)

equals to the socially optimal strategy profile, and p† is a fixed point of the discrete-time

learning dynamics (3.19b). Moreover, we show that when λ > δ, we can construct a Lyapnov

function that satisfies (C2) in Assumption (3.1.3). Therefore, following Theorem (3.2.3), we

can conclude that the discrete-time learning dynamics converges to a socially optimal out-

come.

3.3.3 Non-atomic routing games

A traveler population with total demand of 1 make routing decisions on a parallel-route

network, where a single origin - destination pair is connected by a finite set of routes S.

The strategy of the traveler population is x̃ = (x̃j)j∈S, where x̃
j is the mass of travelers who

choose route j ∈ S. The population’s strategy set is X̃ = {x̃|
∑

j∈S x̃
j = 1, x̃j ≥ 0, ∀j ∈ S}.

Given any x̃ and any route j ∈ S, the travel time cost ℓj(x̃j) is a strictly-increasing and

convex function of the mass of travelers who take route j ∈ S. This reflects the congestible

nature of the traffic routes and the fact that the travel time increases faster as more travelers

take that route.

A social planner designs a tolling mechanism p̃ = (p̃j)j∈S, where the toll price of route

j is p̃j. Given any x̃ and p̃, the total cost experienced by travelers who take route j is

c̃j(x̃, p̃) = ℓj(x̃j) + p̃j.

Given any toll vector p̃, the routing game has a unique Nash equilibrium x̃∗(p̃). The

goal of the social planner is to minimize the total cost of all routes in the network, i.e.

Φ̃(x̃) =
∑

j∈S x̃
jℓj(x̃

j). We can check that Φ̃(x̃) is strictly convex in x̃, and thus the socially

optimal strategy x̃† is unique. Finally, following from (3.9), the externality caused by trav-

elers on route j ∈ S is ẽj(x̃) = x̃j dℓ
j(x̃j)
dx̃j .
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We consider perturbed best response strategy updates. Given any x̃, the perturbed best

response strategy is

f̃ i(x̃, p̃) =
exp(−ηc̃i(x̃, p̃))∑
j∈S exp(−ηc̃j(x̃, p̃))

,

where η evaluates the sensitivity of travelers’ route choices with respect to the costs. We note

that as η → ∞, the perturbed best response strategy reduces to a best response strategy

that only chooses routes with the minimal costs.

The discrete-time learning dynamics are:

x̃j
k+1 = (1− γk)x̃

j
k + γk

exp(−ηc̃j(x̃k, p̃k))∑
j∈S exp(−ηc̃j(x̃k, p̃k))

, (3.20a)

p̃jk+1 = (1− βk)p̃
j
k + βkx̃

j
k

dℓj(x̃j
k)

dx̃j
k

. (3.20b)

and the step-sizes {γk}∞k=1, {βk}∞k=1 satisfy Assumption 3.1.2. Moreover, we can show that

for any fixed p̃, the perturbed best response dynamics (3.20a) converges to the perturbed

equilibrium. Indeed, due to Assumption 3.1.2-i) the discrete-time updates (3.20a), with fixed

incentive p̃, tracks the flow of a cooperative continuous-time dynamical system [19] whose

flows converges to the perturbed equilibrium. Thus Assumption 3.1.3 holds.

The next proposition shows that the optimal incentive p̃† is unique. Moreover, the incentive

vectors induced by (3.20b) converge to the socially optimal incentive p†.

Proposition 3.3.3. As η → ∞, the strategies and incentives induced by the discrete-time

learning dynamics (3.20a)-(3.20b) converge to a unique fixed point, i.e. limk→∞(x̃k, p̃k) =

(x̃∗(p̃†), p̃†), where x̃∗(p†) is a Nash equilibrium given p†, and p† satisfies ẽ(x̃∗(p̃†)) = p̃†.

Additionally, p̃† is the unique optimal incentive mechanism, and the corresponding Nash

equilibrium x̃∗(p†) = x̃†.

In the proof of Proposition 3.3.3, we first show that the externality function ẽ is monotonic

in x̃. Thus, the existence and uniqueness of fixed point toll price follows from Propositions

3.2.1 and 3.2.2. Additionally, we show that the value of externality in equilibrium ẽ(x̃∗(p))

satisfies (C1) in Theorem 3.2.3. Therefore, we can conclude that the discrete-time learning

dynamics converge to the socially optimal outcome.
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Chapter 4

Conclusion

In this thesis, we proposed tolling and incentive updates that can allow societal-scale system

designers to steer selfish players to social optimality in situations where the players are

dynamically responding to changing system conditions and other players’ strategies. In

particular, we demonstrated the following:

• In Chapter 2, we proposed a two timescale discrete-time stochastic dynamics that cap-

tures the joint evolution of loads in parallel networks and adaptive adjustment of tolls

[28]. We analyzed the properties of fixed points and the convergence of loads and tolls in

this dynamics. Under our dynamics, the tolls asymptotically induce a socially optimal

load with high probability. Our results allow a central authority to set tolls in traffic

networks adaptively and optimally in response to the dynamic arrival of travelers who

myopically and selfishly make routing decisions.

• In Chapter 3, we proposed a joint strategy and incentive update scheme for general

atomic and nonatomic games so that the emergent Nash equilibrium minimizes a social

planner’s cost (or equivalently maximizes social welfare) [27]. We assume that the plan-

ner, at each time-step, can modify the costs of players by setting a payment. There are

three key features of the proposed scheme: first, the incentives are updated at a slower

timescale as compared to the players’ strategy update. Second, the incentive update

is based on the externality caused by the players’ strategy evaluated as the difference

between players’ marginal cost and the planner’s marginal cost. Third, the incentive

update is agnostic to the specific strategy update deployed by players, and relies on
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the current strategy profile. We showed applications to atomic networked quadratic

aggregative games, atomic Cournot competition and nonatomic routing games.

Combined, these provide a general scheme for system designers to adaptively incentivize

selfish players and steer them to social optimality over time. Both the tolling scheme for

traffic networks and incentives for general games focus on updates that have a natural eco-

nomic meaning as the externality caused by players on others. Further, the updates can be

implemented using available information in both cases (the loads on the edges of the traffic

network and the strategies of the players, respectively).

A direction for future work in the case of traffic routing is to extend the results from parallel

networks to general networks, and account for the fact that travelers may change their route

choices at intermediate nodes in the network. In the case of incentives in general games, it

remains to be understood for what class of games the sufficient conditions for convergence

of the incentive updates are satisfied.
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Appendix A

Convergence for cooperative

dynamical systems

In this section we review a result from [19] which provides an easily verifiable requirement

on the vector field which ensures convergence to equilibrium.

Definition A.0.1. A dynamical system

ẋ(t) = f(x(t)) (A.1)

with a C1− function f : Rn → Rn is cooperative if:

(P-i) for any i ̸= j ∈ [n] and x ∈ Rn we have ∂fi(x)
∂xj

≥ 0;

(P-ii) the Jacobian matrix ∇f(x) is irreducible;1

(P-iii) for every i ∈ [n], fi(0) ≥ 0;

(P-iv) for any x ∈ Rn
≥0 there exists y > x with fi(y) < 0 for all i ∈ [n]

Theorem A.0.2 ([19, Theorem 5.1]). If the dynamical system (A.1) is cooperative (i.e. sat-

isfies the assumptions (P-i)-(P-iv)), trajectories starting almost everywhere in Rn
≥0 converge

to the set {x : f(x) = 0}.

1A matrix A = [Aij ] ∈ Rn×n is irreducible if whenever the set {1, . . . , n} is expressed as the union of two disjoint proper

subsets S, S′, then for every i ∈ S there exist j, k ∈ S′ such that Aij ̸= 0 and Aki ̸= 0.
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Appendix B

Proofs

B.0.1 Proof of Lemma 2.2.4

In the subsequent proof we shall show that the following claims hold:

(C-I) For any p ∈ RR, the optimizer of (2.11) is unique; call it y⋆(p);

(C-II) y⋆(p) is an optimal solution if and only if it satisfies h(y⋆(p), p) = y⋆

Note that the above two claims ensure that x̄(β)(p) = y⋆(p). The subsequent exposition

establishes the validity of these claims.

To see that (C-I) is true, we note that the feasible set of (2.11) is a compact convex set.

Moreover, from the convexity of ℓ it follows that
∑

i∈[R]

∫ yi
0

ci(s, pi)ds +
1
β

∑
i∈[R] yi ln yi is a

strictly convex function in y. Strict convexity ensures the uniqueness of solution of a convex

optimization problem on a convex compact set [6].

For (C-II), we now employ KKT conditions of optimality: let δ ∈ R be the Lagrange

multiplier corresponding to the equality constraint. Define the Lagrangian as follows:

L(y, δ, p) :=
∑
i∈[R]

∫ yi

0

ci(s, pi)ds+
1

β

∑
i∈R

yi ln yi + δ

∑
i∈[R]

yi −
λ

µ


The optimal solution y⋆(p) and Lagrange multiplier δ⋆ satisfy:

1. ∇yL(y
⋆(p), δ⋆, p) = 0. This gives us ci(y

⋆
i (p), pi) +

1
β
(1 + ln(y⋆i (p))) + δ⋆ = 0, which can

47



be also written as follows

y⋆i (p) = exp(−βδ⋆ − 1) exp(−βci(y
⋆
i (p), pi)), ∀ i ∈ [R]. (B.1)

2. ∇δL(y
⋆(p), δ⋆, p) = 0. That is,

∑
i∈R y⋆i (p) =

λ
µ
.

From (B.1), summing over i ∈ [R] on both the sides, we obtain

λ

µ
= exp(−βδ⋆ − 1)

∑
i∈[R]

exp(−βci(y
⋆
i (p), pi))

The above conditions give us that y⋆(p) is an optimal solution of (2.11) if and only if it

satisfies:

y⋆i (p) =
λ

µ

exp(−βci(y
⋆
i (p), pi))∑

i∈[R] exp(−βci(y⋆i (p), pi))
= hi(y

⋆(p), p), ∀ i ∈ [R].

B.0.2 Proof of Lemma 2.2.5

Before proving Lemma 2.2.5, we will first state the following result that will be useful later.

Define C(x) := diag

((
dℓi(x)
dx

)R
i=1

)
and M(x) := diag

((
xi

dℓi(x)
dx

)R
i=1

)
.

Lemma B.0.1. The function h(x, p) presented in (2.5) is Lipschitz in x and p and satisfies:

∇xh(x̄
(β)(p), p) =

λ

µ
βx̄(β)(p)x̄(β)(p)⊤C(x̄(β)(p))− βM

(
x̄(β)(p)

)
(B.2)

Proof of Lemma B.0.1. To show that the function is Lipschitz, it is sufficient to show that

the norm of the gradient of this function is bounded. This is due to the first order Taylor

expansion of the function. Therefore, for every i ∈ [R] we first compute ∇xhi(x, p) entrywise

as follows:

∂hi(x, p)

∂xj

=


λ
µ

−β
dℓi(xi)

dx

∑
k∈[R] exp(−βck(xk,pk)) exp(−βci(xi,pi))+β

dℓi(xi)

dx
(exp(−βci(xi,pi)))

2

(
∑

k∈[R] exp(−βck(xk,pk)))
2 if i = j;

λ
µ
β

dℓj(xj)

dx
exp(−βci(xi, pi))

exp(−βcj(xj ,pj))

(
∑

k∈[R] exp(−βck(xk,pk)))
2 otherwise

(B.3)

Evaluating the above derivative at x̄(β)(p)

∂hi(x̄
(β)(p), p)

∂xj

=


β

dℓi(x̄
(β)
i (p))

dx

(
−x̄

(β)
i (p) + µ

λ

(
x̄
(β)
i (p)

)2)
if i = j;

µ
λ
β

dℓj(x̄
(β)
j (p))

dx
x̄
(β)
i (p)x̄

(β)
j (p) otherwise

(B.4)

To state it concisely:

∇xh(x̄
(β)(p), p) =

λ

µ
βx̄(β)(p)x̄(β)(p)⊤C(x̄(β)(p))− βM

(
x̄(β)(p)

)
(B.5)
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Similarly,

∂hi(x, p)

∂pj
=


λ
µ

−β
∑

k∈[R] exp(−βck(xk,pk)) exp(−βci(xi,pi))+β(exp(−βci(xi,pi)))
2

(
∑

k∈[R] exp(−βck(xk,pk)))
2 if i = j;

λ
µ
β exp(−βci(xi, pi))

exp(−βcj(xj ,pj))

(
∑

k∈[R] exp(−βck(xk,pk)))
2 otherwise

(B.6)

To conclude the proof we observe that on a bounded domain the derivative in (B.3) and

(B.6) are bounded.

Proof of Lemma 2.2.5

Recall from the proof of Lemma 2.2.4 ((C-II) to be precise) that for any p ∈ RR, x̄(β)(p) is a

solution to the optimization problem (2.11). Let the feasible set in the optimization problem

(2.11) be denoted by F . Using first order conditions for constrained optimization we obtain

the variational inequality:∑
i∈[R]

(
ci

(
x̄
(β)
i (p), p

)
+

1

β

(
ln
(
x̄
(β)
i (p)

)
+ 1
))(

xi − x̄
(β)
i (p)

)
≥ 0 ∀x ∈ F. (B.7)

Similarly writing the above condition for p′, we obtain∑
i∈[R]

(
ci

(
x̄
(β)
i (p′), p′

)
+

1

β

(
ln
(
x̄
(β)
i (p′)

)
+ 1
))(

yi − x̄
(β)
i (p′)

)
≥ 0 ∀y ∈ F. (B.8)

Choosing x = x̄(β)(p′) in (B.7) and y = x̄(β)(p) in (B.8) and adding the two equations we

obtain ∑
i∈[R]

(
ci(x̄

(β)
i (p), p)− ci(x̄

(β)
i (p′), p′)

)(
x̄
(β)
i (p′)− x̄

(β)
i (p)

)
+
∑
i∈[R]

(
1

β
ln(x̄

(β)
i (p))− ln(x̄

(β)
i (p′))

)(
x̄
(β)
i (p′)− x̄

(β)
i (p)

)
≥ 0.

From the fact that prices enter additively, we have∑
i∈[R]

(
ℓi(x̄

(β)
i (p))− ℓi(x̄

(β)
i (p′))

)(
x̄
(β)
i (p′)− x̄

(β)
i (p)

)
+
∑
i∈[R]

(
pi − p′i +

1

β
ln(x̄

(β)
i (p))− ln(x̄

(β)
i (p′))

)(
x̄
(β)
i (p′)− x̄

(β)
i (p)

)
≥ 0.
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This gives 〈
x̄(β)(p)− x̄(β)(p′), p− p′

〉
≤
〈
ℓ(x̄(β)(p))− ℓ(x̄(β)(p′)), x̄(β)(p′)− x̄(β)(p)

〉
+

1

β

〈
ln(x̄(β)(p))− ln(x̄(β)(p′)), x̄(β)(p′)− x̄(β)(p)

〉
< 0,

where the last inequality follows due to the monotonicity of the cost function and natural

logarithm.

Next, we show that x̄(β)(p) is a differentiable function of p. Recall the notation C(x) :=

diag

((
dℓi(x)
dx

)R
i=1

)
and M(x) := diag

((
xi

dℓi(x)
dx

)R
i=1

)
.

To show the differentiability of x̄(β)(p) with respect to p, we invoke the implicit function

theorem for the map g(x, p) = x − h(x, p). Note that for any fixed p, x̄(β)(p) is the zero of

g(·, p). To satisfy the hypothesis for the implicit function theorem, for any p we compute the

Jacobian of the function g(x, p) with respect to x and evaluate it at x̄(β)(p). Using Lemma

B.0.1 the Jacobian is given by:

∇xg(x̄
(β)(p), p) = I −∇xh(x̄

(β)(p), p)

= I − µ

λ
βx̄(β)(p)x̄(β)(p)⊤C(x̄(β)(p)) + βM

(
x̄(β)(p)

)
=
((
M−1(x̄(β)(p)) + βI

)
− βv1⊤)M(x̄(β)(p))

where v := µ
λ
x̄(β)(p). Note that from (2.8) we have 1⊤v = 1. We claim that det(∇xg(x̄

(β)(p), p)) ̸=

0. Indeed,

det(∇xg(x̄
(β)(p), p)) = det

(
M(x̄(β)(p)

)
det
((
M−1(x̄(β)(p)) + βI

)
− βv1⊤)

= det
(
M(x̄(β)(p)

)
· det

(
I − βv1⊤ (M−1(x̄(β)(p)) + βI

)−1
)

· det
(
M−1(x̄(β)(p)) + βI

)−1

It is sufficient to show that det
(
I − βv1⊤ (M−1(x̄(β)(p)) + βI

)−1
)
̸= 0. Using the Sherman-

Morrison formula [17] it is necessary and sufficient to show that β1⊤ (M−1(x̄(β)(p)) + βI
)−1

v ̸=
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1. We show this by contradiction. Suppose β1⊤ (M−1(x̄(β)(p)) + βI
)−1

v = 1. Then

=⇒
R∑
i=1

vi
β

1
mi

+ β
= 1

=⇒
R∑
i=1

vi
β

1
mi

+ β
=

R∑
i=1

vi

=⇒
R∑
i=1

vi

1
mi

β + 1
mi

= 0

This is not possible as the terms on the left hand side are all positive.

The claim that
∂x̄

(β)
i (p)

∂pi
< 0 also follows from the monotonicity of x̄(β)(p). Indeed, if we

choose two price profiles that differ only at one index then the monotonicity property of

x̄(β)(p) ensures
∂x̄

(β)
i (p)

∂pi
< 0. This completes the proof.

B.0.3 Proof of Lemma 2.2.6

We shall first show the existence and then prove the uniqueness of p̄.

For any p ∈ RR, i ∈ [R], define zi(p) = x̄(β)(p)
dℓi(x̄

(β)
i (p))

dx
. The equilibrium price p̄ is

then solution to the fixed point equation p = z(p) where z(p) = [zi(p)]i∈[R]. Define a set

K = {y ∈ RR : y ≥ 0, ∥y∥1 ≤ λ
µ
maxi∈[R]

dci(λ
µ)

dx
}. Observe that z(·) maps the convex compact

set K to itself. Therefore, Brouwer’s fixed point theorem [41] guarantees the existence of

fixed point p̄.

Now, we prove the uniqueness of the fixed point p̄ satisfying (2.10). We shall prove this

via a contradiction argument. Assume that there are two distinct price profiles p̄, p̄′ ∈ RR

that both satisfy the fixed point equation (2.10), therefore for every i ∈ [R]:

p̄i = x̄
(β)
i (p̄)

dℓi(x̄
(β)
i (p̄))

dx

p̄′i = x̄
(β)
i (p̄′)

dℓi(x̄
(β)
i (p̄′))

dx
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Taking the difference we get:

p̄i − p̄′i = x̄
(β)
i (p̄)

dℓi(x̄
(β)
i (p̄))

dx
− x̄

(β)
i (p̄′)

dℓi(x̄
(β)
i (p̄′))

dx
,

= x̄
(β)
i (p̄)

dℓi(x̄
(β)
i (p̄))

dx
− x̄

(β)
i (p̄′)

dℓi(x̄
(β)
i (p̄))

dx

+ x̄
(β)
i (p̄′)

dℓi(x̄
(β)
i (p̄))

dx
− x̄

(β)
i (p̄′)

dℓi(x̄
(β)
i (p̄′))

dx
,

=
(
x̄
(β)
i (p̄)− x̄

(β)
i (p̄′)

) dℓi(x̄
(β)
i (p̄))

dx

+ x̄
(β)
i (p̄′)

(
dℓi(x̄

(β)
i (p̄))

dx
− dℓi(x̄

(β)
i (p̄′))

dx

)
,

for every i ∈ [R]. Multiplying (x̄
(β)
i (p̄)− x̄

(β)
i (p̄′)) in the preceding equation we obtain

(x̄
(β)
i (p̄)− x̄

(β)
i (p̄′))(p̄i − p̄′i) =

(
x̄
(β)
i (p̄)− x̄

(β)
i (p̄′)

)2 dℓi(x̄(β)
i (p̄))

dx

+ x̄
(β)
i (p̄′)

(
dℓi(x̄

(β)
i (p̄))

dx
− dℓi(x̄

(β)
i (p̄′))

dx

)
(x̄

(β)
i (p̄)− x̄

(β)
i (p̄′)),

(B.9)

for every i ∈ [R]. Convexity of the edge cost function ensures that right hand side of (B.9)

is always non-negative for every i ∈ [R]. Summing over i ∈ [R] and using Lemma 2.2.5 we

obtain:

0 >
〈
x̄
(β)
i (p̄)− x̄

(β)
i (p̄′), p̄− p̄′

〉
≥ 0.

which contradicts our original hypothesis that there are two distinct price profiles satisfying

(2.10).

B.0.4 Proof of Lemma 2.2.7

Note that for any i ∈ [R]

p̄i = x̄
(β)
i (p̄)

dℓi(x̄
(β)
i (p̄))

dx
(B.10)

Let

x⋆ = argmin
y∈F

∑
i∈[R]

yiℓi(yi) +
1

β

∑
i∈[R]

yi log(yi)

 ,

where F = {y :
∑

i∈[R] yi =
λ
µ
} is the feasible set. We claim that x⋆ = x̄(β)(p̄).
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To show this claim, we first note that the above problem is a strictly convex optimiza-

tion problem. The necessary and sufficient conditions for constrained optimality ensures

that for any y ∈ F :∑
i∈[R]

(
ℓi(x

⋆
i ) + x⋆

i

dℓi(x
⋆
i )

dx
+

1

β
(1 + log(x⋆

i ))

)
(yi − x⋆

i ) ≥ 0. (B.11)

Now recall that x̄(β)(p̄) satisfies

x̄(β)(p̄) = argmin
y∈F

∑
i∈[R]

∫ yi

0

(ℓi(z) + p̄i) dz +
1

β

∑
i∈[R]

yi log(yi).

Note that we have already noted in proof of Lemma 2.2.4 that the above optimization

problem is strictly convex. The constrained optimality conditions ensure that for any y ∈ F :∑
i∈[R]

(
ℓi(x̄

(β)
i (p̄)) + p̄i +

1

β

(
1 + log(x̄

(β)
i (p̄))

))(
yi − x̄

(β)
i (p̄)

)
≥ 0. (B.12)

Note that using (B.10) in (B.12) we obtain that for any y ∈ F :∑
i∈[R]

(
ℓi(x̄) + x̄i

dℓi(x̄i)

dx
+

1

β
(1 + log(x̄i))

)
(yi − x̄i) ≥ 0, (B.13)

where we have used x̄ = x̄(β)(p̄) to simplify the expression. Comparing expression (B.11)

and (B.13) we conclude that x⋆ = x̄(β)(p̄). This concludes the proof.

B.0.5 Proof of Lemma 2.2.9

We prove the claims in the lemma sequentially.

Proof of (C1): Using the independence of sequence ζ(n), ξi(n) we see that the conditional

expection of Mi(n+ 1) conditioned on the filtration Fn is zero. That is,

E[Mi(n+ 1)|Fn] = hi(Xi(n), Pi(n)) (E[ζ(n+ 1)]− λ)−Xi(n) (E[ξi(n+ 1)− µ]) = 0.

Proof of (C2): Recall that we assume that the incoming loads and outgoing fraction have

finite support. That is, for every i ∈ [R] and n we have ζ(n) ∈ [λ, λ̄] ⊂ (0,∞) and ξi(n) ∈

[µ, µ̄] ⊂ (0, 1). Note that Xi(0) ≥ 0 for all i ∈ [R] as it is impractical to have negative load

on the network; therefore our update reflects the physical constraints of the network. Under
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this assumption, the discrete-time stochastic update (2.4) can be written as

Xi(n+ 1) = (1− ξ(n+ 1))Xi(n) +
exp(−βci(Xi(n), Pi(n)))∑

j∈[R] exp(−βcj(Xj(n), Pj(n)))
ζ(n),

≤ (1− µ)Xi(n) + ζ(n),

≤ (1− µ)Xi(n) + λ̄,

≤ (1− µ)nXi(0) +
λ̄

µ
.

The preceding inequalities establish that E[∥Xi(n)∥2] < +∞. Consequently, it also ensure

that E
[
Xi(n)

dℓi(n)
dx

]
< +∞ and is independent of n, which in turn, from (Update-P ) leads

to E[∥Pi(n)∥2] < +∞.

Proof of (C3): We see that:

E[|Mi(n+ 1)|2|Fn] = E[|hi(Xi(n), Pi(n))(ζ(n+ 1)− λ)−Xi(n) (ξi(n+ 1)− µ) |2|Fn]

≤ E[2|hi(Xi(n), Pi(n))(ζ(n+ 1)− λ)|2 + 2|Xi(n) (ξi(n+ 1)− µ) |2|Fn]

≤ E[2
λ

µ
|(ζ(n+ 1)− λ)|2 + 2|Xi(n) (ξi(n+ 1)− µ) |2|Fn]

≤ K1 +K2∥Xi(n)∥2

≤ K
(
1 + |Xi(n)|2

)
< +∞

where K1 = 2λ
µ
|λ̄ − λ|2, K2 = 2|µ̄ − µ|2 and K = max(K1, K2). To obtain the preceding

bound we used hi(Xi(n), Pi(n)) ≤ λ
µ
.

Proof of (C4): To prove this result we shall use Theorem A.0.2. For that purpose we need

to check conditions Theorem A.0.2(P-i)-(P-iv). The condition (P-i) is satisfied if we show

that ∂hi(x,p)
∂xj

≥ 0. Indeed, by definition

∂hi(x, p)

∂xj

=
λ

µ
exp(−βci(xi, pi))

β exp(−βcj(xj, pj))
∂cj(xj ,pj)

∂xj(∑
j∈[R] exp (−βcj(xj, pj))

)2 > 0.

Furthermore, note that condition (P-ii) is also satisfied because the Jacobian matrix has all

the off-diagonal terms positive and is therefore irreducible. Moreover, it follows from (2.5)

that for any x, p ∈ RR , hi(x, p) ∈
(
0, λ

µ

)
and therefore (P-iii)-(P-iv) are also satisfied. This

completes the proof.

Proof of (C5): We shall now show that (2.16) satisfies conditions (P-i)-(P-iv) in Theorem

A.0.2. This ensures global convergence to the equilibrium set which is guaranteed to be
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singleton by Lemma 2.2.6. For better presentation, for any i, j ∈ [R], we denote the derivative

of x̄
(β)
i (p) with respect to pj by ∇jx̄

(β)(p)1. Using (2.8) for any i ̸= j we have

exp(−βcj(x̄
(β)
j (p), pj))x̄

(β)
i (p) = exp(−βci(x̄

(β)
i (p), pi))x̄

(β)
j (p) (B.14)

Taking derivative of the above equation with respect to pk for k ̸= i ̸= j:

exp(−βcj(x̄
(β)
j (p), pj))∇kx̄

(β)
i (p)

+ x̄
(β)
i (p) exp(−βcj(x̄

(β)
j (p), pj))(−β∇xcj(x̄

(β)
j (p), pj)∇kx̄

(β)
j (p))

= exp(−βci(x̄
(β)
i (p), pi))∇kx̄

(β)
j (p)

+ x̄
(β)
j (p) exp(−βci(x̄

(β)
i (p), pi))(−β∇xci(x̄

(β)
i (p), pi)∇kx̄

(β)
i (p)).

Collecting similar terms together we get

∇kx̄
(β)
i (p)

(
exp(−βcj(x̄

(β)
j (p), pj))

)
+∇kx̄

(β)
i (p)

(
x̄
(β)
j (p) exp(−βci(x̄

(β)
i (p), pi))(β∇xci(x̄

(β)
i (p), pi))

)
= ∇kx̄

(β)
j (p)

(
exp(−βci(x̄

(β)
i (p), pi))

)
+∇kx̄

(β)
j (p)

(
x̄
(β)
i (p) exp(−βcj(x̄

(β)
j (p), pj))(β∇xcj(x̄

(β)
j (p), pj))

)
.

This implies for i ̸= j ̸= k and for any p ∈ RR we have

∇kx̄
(β)
i (p) · ∇kx̄

(β)
j (p) > 0. (B.15)

Moreover, by definition of fixed point in (2.8) we have the constraint that∑
l∈[R]

x̄
(β)
l (p) =

λ

µ
.

Taking the derivative with respect to pk of the above equation we obtain∑
l ̸=k

∇kx̄
(β)
l (p) = −∇kx̄

(β)
k (p) > 0, (B.16)

where the last inequality follows from Lemma 2.2.5. Equation (B.16) in conjunction with

(B.15) implies that ∇kx̄
(β)
i (p) > 0 for all i ̸= k. This ensures satisfaction of (P-i)-(P-ii).

The requirement (P-iii)-(P-iv) is also satisfied as for any p ∈ RR, x̄(β)(p) ∈
(
0, λ

µ

)
. This

completes the proof.

1Note that in Lemma 2.2.5, we established that x̄(β)(p) is continuously differentiable
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B.0.6 Proof of Lemma 2.2.10

Note that to invoke the results from two timescale stochastic approximation theory [5], in

addition to Lemma 2.2.9 we also need to ensure the following

(i) the function x̄(β)(p) is Lipschitz;

(ii) the function g(x, p) := h(x, p)− x, which is the vector field in (2.15), is Lipschitz;

(iii) the function ri(p) := x̄
(β)
i (p)

dℓi(x̄
(β)
i (p))

dx
−pi, which is the vector field in (2.16), is Lipschitz

for all i ∈ [R].

If the above conditions hold, then [5, Chapter 9] ensures that Theorem 2.2.3 hold.

Note that (i) holds due the fact that x̄(β)(p) ∈ (0, λ/µ) and Lemma 2.2.5 where we es-

tablished that it is continuously differentiable. Moreover, (ii) holds due to Lemma B.0.1. At

last, to show (iii) we note that for any p, p′ ∈ RR and i ∈ [R]:

∥ri(p)− ri(p
′)∥ =

∥∥x̄(β)
i (p)

dℓi(x̄
(β)
i (p))

dx
− x̄

(β)
i (p′)

dℓi(x̄
(β)
i (p′))

dx

∥∥
≤
∥∥x̄(β)

i (p)
dℓi(x̄

(β)
i (p))

dx
− x̄

(β)
i (p′)

dℓi(x̄
(β)
i (p))

dx

∥∥
+
∥∥x̄(β)

i (p′)
dℓi(x̄

(β)
i (p))

dx
− x̄

(β)
i (p′)

dℓi(x̄
(β)
i (p′))

dx

∥∥
≤
∣∣dℓi(x̄(β)

i (p))

dx

∣∣∥x̄(β)
i (p)− x̄

(β)
i (p′)∥+ |x̄(β)

i (p′)|
∥∥dℓi(x̄(β)

i (p))

dx
− dℓi(x̄

(β)
i (p′))

dx

∥∥
≤ K1L̄∥p− p′∥+K2L̃∥p− p′∥,

where K1 = maxi∈[R],x∈[0,λ/µ]
∣∣dℓi(x)

dx

∣∣, L̄ is the Lipschitz constant for x̄(β)(·), K2 = λ/µL̄ and

L̃ is the Lipschitz constant for dℓi(x)
dx

when x ∈ [0, λ/µ].

B.0.7 Proof of Proposition 3.2.1

Proof. We provide a detailed proof for the setting of atomic games as the proof for the

non-atomic game follows similarly.

Atomic game G: We show that P † is non-empty. That is, there exists p† such that

e(x∗(p†)) = p†. Define a function θ(p) = e(x∗(p)). Thus, the remaining proof is based on

application of Brouwer’s fixed point theorem to show existence of the fixed points of function

θ(·).

56



We note that θ(p) is a continuous function based on the setup presented in Sec 2.1. Further-

more, let’s define K := {θ(p) : p ∈ R|I|} ⊂ R|I|. We claim that the set K is compact. Indeed,

this follows by two observations. First, the externality function e(·) is continuous. Second,

the range of the function x∗(·) is X which is a compact space. These two observations ensure

that θ(p) = e(x∗(p)) is a bounded function. Let K̃ := conv(K) be the convex hull of K,

which in turn is also a compact set. Let’s denote the restriction of function θ on the set

K̃ as θ|K̃ : K̃ −→ K̃ where θ|K̃(p) = θ(p) for all p ∈ K̃. We note that θ|K̃ a is continuous

function from a convex compact set to itself and therefore Brouwer’s fixed point theorem

ensures that there exists p† ∈ K̃ such that p† = θ|K̃(p
†) = θ(p†). This concludes the proof

about existence of p†.

Next, we show that incentive p† aligns Nash equilibrium with social optimality (i.e. for

any p† ∈ P †, x∗(p†) = x†). Fix p† ∈ P †. For every i ∈ I we have p†i = ei(x
∗(p†)). This

implies Dxi
ℓi(x

∗(p†)) + p†i = Dxi
Φ(x∗(p†)) for every i ∈ I. This implies

J(x∗(p†), p†) = ∇Φ(x∗(p†)). (B.17)

Next, from (3.2) we know that x∗(p†) is a Nash equilibrium if and only if

⟨J(x∗(p†), p†), x− x∗(p†)⟩ ≥ 0, ∀ x ∈ X. (B.18)

Using (B.17) and (B.18) the following holds:

⟨∇Φ(x∗(p†)), x− x∗(p†)⟩ ≥ 0, ∀ x ∈ X. (B.19)

Comparing (B.19) with (3.4) we note that x∗(p†) is the minimizer of social cost function Φ.

This implies x∗(p†) = x† as x† is the unique minimizer of social cost function Φ.

B.0.8 Proof of Proposition 3.2.2

Proof. The proof is based on a contradiction argument.

(i) We make the following observation which are central to the proof:
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(O1) We note that if x∗(p) ∈ int(X) for every p then the variational inequality charac-

terization (3.2) implies that J(x∗(p), p) = 0 for every p. As a result the externality

function (3.5) becomes e(x∗(p)) = ∇Φ(x∗(p)) + p.

(O2) The strict convexity of the social cost function implies that

⟨∇Φ(x)−∇Φ(y), x− y⟩ > 0, ∀ x, y ∈ X such that x ̸= y

Suppose there exists two distinct elements p†, q† ∈ P †. We claim that x∗(p†) ̸= x∗(q†).

Indeed, using (O1) and (3.3) the following holds:

p†i = −Dxi
ℓ(x∗(p†)), ∀ i ∈ I

q†i = −Dxi
ℓ(x∗(q†)), ∀ i ∈ I.

(B.20)

If x∗(p†) = x∗(q†) then (B.20) implies p† = q†, but these are assumed to be distinct.

Thus in the following proof we assume x∗(p†) ̸= x∗(q†).

We note from (O1) that

0 = ∇Φ(x∗(p†)), 0 = ∇Φ(x∗(q†)). (B.21)

Substracting the two expressions in (B.21) and taking inner product with x∗(p†)−x∗(q†)

we see that

0 =
〈
x∗(p†)− x∗(q†),∇Φ(x∗(p†))−∇Φ(x∗(q†))

〉
(B.22)

We arrive at a contradiction by noting that x∗(p†) ̸= x∗(q†) and (O2) imply that RHS

is strictly positive.

(ii) To begin the proof we define Dℓ(x) = (Dxi
ℓi(x))i∈I . Under this notation, we have

e(x) = ∇Φ(x)−Dℓ(x). The proof is based on the following observations:

(O3) We claim that ⟨x∗(p1)− x∗(p2), p1 − p2⟩ < 0 for any two distinct incentives p1 ̸= p2.

Indeed, from the variational inequality characterization of Nash equilibrium (3.2)

we know that

⟨Dℓ(x∗(p1)) + p1, x1 − x̃∗(p1)⟩ ≥ 0, ∀x1 ∈ X

⟨Dℓ(x∗(p2)) + p2, x2 − x̃∗(p2)⟩ ≥ 0, ∀x2 ∈ X
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Picking x1 = x̃∗(p2) and x2 = x̃∗(p1), and adding the two inequalities in preceding

equation we obtain

⟨x∗(p1)− x∗(p2), p1 − p2⟩ ≤ −⟨Dℓ(x∗(p1))−Dℓ(x∗(p2)), x
∗(p1)− x∗(p2)⟩ ≤ 0

where the last inequality follows due to the convexity of ℓ.

We prove the uniqueness by contradiction. Suppose there exists two incentives p†, q† ∈

P † such that ẽ(x̃∗(p†)) = p† and ẽ(x̃∗(q†)) = q†. Then we have

p† = ∇Φ(x∗(p†))−Dℓ(x∗(p†))

q† = ∇Φ(x∗(q†))−Dℓ(x∗(q†)).

Subtracting the two expressions and taking inner product with x∗(p†)− x∗(q†) we have〈
x∗(p†)− x∗(q†), p† − q†

〉
=
〈
x∗(p†)− x∗(q†), e(x∗(p†))− e(x∗(q†))

〉
> 0.

But from (O3) we see that we arrive at a contradiction as
〈
x∗(p†)− x∗(q†), p† − q†

〉
≤ 0.

B.0.9 Proof of Theorem 3.2.3

Proof. To ensure the convergence of (xk, pk) to the fixed point (x†, p†) of (x-update)-(p-update),

we exploit the timescale separation introduced due to Assumption 3.1.2. The proof is based

on two-timescale dynamical systems theory described in [4]. Due to this timescale separation

the strategy update evolves faster than the incentive update. This allows us to appropriately

decouple the strategy and incentive update and analyze them separately.

Note that we can equivalently write (x-update)-(p-update) as follows:

xk+1 = xk + γk (f(xk, pk)− xk)

pk+1 = pk + γk

(
βk

γk
(e(xk)− pk)

)
,

(B.23)

where limk−→∞
βk

γk
= 0 and limk−→∞ γk = 0. From two timescale dynamical systems theory

we know that under Assumption 3.1.3 the tuple (xk, pk) converges to the set {(x∗(p), p) : p ∈

R|I|}. Thus for sufficiently large values of k, the update xk closely tracks x∗(pk). Therefore,
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we consider the following update to analyze the convergence of the slow incentive update

(p-update):

pk+1 = (1− βk)pk + βke(x
∗(pk)). (B.24)

Since the step sizes {βk} are asymptotically going to zero and is non-summable (Assump-

tion 3.1.2-(i)) we can approximate the updates in (B.24) by the following continuous-time

dynamical system :

ṗ(t) = e(x∗(p(t)))− p(t), (B.25)

Convergence of discrete-time updates (x-update)-(p-update) then hold if the flow of (B.25)

globally converges to P †.

Requirements (C1) in Theorem 3.2.3 is a sufficient condition for convergence of the tra-

jectories of (B.25) to the set P †. This condition is based on cooperative dynamical systems

theory [19]. On the other hand requirement (C2) in Theorem 3.2.3 ensures convergence the

trajectories of (B.25) to the set P † by demanding existence of a Lyapunov function [41] that

is strictly positive everywhere except at P † and decreases along the flow of (B.25).

B.0.10 Proof of Proposition 3.3.1

Proof. We first show that the set P † is singleton for the setup in Sec 3.3.12. Then we show

that the dynamic update (xk, pk) corresponding to (3.16a)-(3.16b) converges to the social

optimality (x†, p†).

Note that any element p† ∈ P † should satisfy p† = e(x∗(p†)) = ξ+Awx∗(p†). Moreover, from

(3.15) we know that x∗(p†) = Awx∗(p†) − p†. Succintly writing the preceding two relations

in matrix form gives us: I −Aw

I I − Aw


︸ ︷︷ ︸

Γ

 p†

x∗(p†)

 =

ξ
0

 .

2Note that we cannot directly use Proposition 3.2.1 as that requires compactness of strategy space.
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We claim that Γ is an invertible matrix3 with the inverse as follows:

Γ−1 =

I − Aw Aw

−I I


Thus (x∗(p†), p†) exists and is unique. Moreover p† = (I − Aw)ξ and x∗(p†) = −ξ = x†.

Next, to ensure that the dynamic update (xk, pk) corresponding to (3.15)-(3.16b) converges

to the fixed point (x†, p†) we use Theorem 3.2.3. It is sufficient to show that Assumption

3.1.3 and condition (C2) hold in order to use the results from Theorem 3.2.3 directly.

First, we show that Assumption 3.1.3 hold. That is, for any fixed incentive update (pk) ≡ p

the strategy update satisfies limk−→∞ xk = x∗(p). Indeed, due to Assumption 3.1.2, the

convergence properties of discrete time updates can be obtained by analysing the corre-

sponding continuous time dynamical system. That is, we consider the following continuous

time dynamical system corresponding to the strategy update:

ẋ(t) = −(I − Aw)x(t)− p. (B.26)

We note that the trajectories of (B.26) satisfy limt−→∞ x(t) = x∗(p). This is due to the

assumption that −(I − Aw) is Hurwitz4 [8]. Thus Assumption 3.1.3 holds.

Next, we show that condition (C2) is satisfied which then fulfils all the requirement of

Theorem 3.2.3. We claim that the function V (p) = (p− p†)⊤L(p− p†) satisfies (C2) where

L5 is a symmetric positive definite matrix that satisfies the following condition:

(I − Aw)−⊤M +M(I − Aw)−1 = I. (B.27)

3Invertibility of I −Aw is a necessary condition for invertiblility of Γ.
4A matrix A is called Hurwitz if spec(A) ⊂ C◦

−.
5Note that the existence of such a matrix L is guaranteed from Lyapunov’s theorem [8] as spec(I −Aw) ⊂ C◦

+.
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Indeed, V (p†) = 0 and since L is a positive definite matrix, this means V (p) > 0 for all

p ̸= p†. Furthermore, we compute

∇V (p)⊤(e(x∗(p))− p) = 2(p− p†)⊤L(e(x∗(p))− p),

=
(a)

2(p− p†)⊤L (ξ + Awx∗(p)− p) ,

= 2(p− p†)⊤L
(
−x∗(p†) + Awx∗(p)− p

)
,

=
(b)

2(p− p†)⊤L
(
−x∗(p†) + x∗(p)

)
,

=
(c)

−2(p− p†)⊤L(I − Aw)−1(p− p†),

=
(d)

−(p− p†)⊤
(
L(I − Aw)−1 + (I − Aw)−⊤L

)
(p− p†),

= −(p− p†)⊤(p− p†) < 0,

where (a) is by the definition of externality function (3.5), (b), (c) is by the Nash equilibrium

(3.15) and (d) is by (B.27). This completes the proof.

B.0.11 Proof of Proposition 3.3.2

Before stating the proof of Proposition 3.3.2 we present the following two results which are

crucial in the proof of Proposition 3.3.2. First, we prove the Nash equilibrium takes the form

stated in (3.18). Next, we present a technical lemma.

Below, we state the Nash equilibrium in Cournot competition in terms of incentives.

Lemma B.0.2 (Nash equilibrium). For any given incentive p, the Nash equilibrium is given

by

x∗(p) =
θ − ν

δ(|I|+ 1)
1− 1

δ
p+

1

δ(|I|+ 1)
11

⊤p

Proof. In the setup of Sec 3.3.2 the variational inequality characterization of Nash equilibrium

(3.2) implies that for any given p, x∗(p) is a Nash equilibrium if and only if J(x∗(p), p) = 0.

Consequently, x∗(p) satisfies the following

2x∗
i (p) +

∑
j ̸=i

x∗
j(p) =

θ − ν − pi
δ

.
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Recasting this in the matrix form gives the following:
2 1 . . . 1

1 2 . . . 1

. . . . . . . . . . . .

1 1 . . . 2


︸ ︷︷ ︸

A


x∗
1(p)

x∗
2(p)

. . .

x∗
n(p)

 =


θ−ν−p1

δ

θ−ν−p2
δ

. . .

θ−ν−pn
δ

 . (B.28)

Note that A = I + 11
⊤. Furthermore, by the Sherman-Morrison formula:

A−1 =
1

|I|+ 1


|I| −1 . . . −1

−1 |I| . . . −1

. . . . . . . . . . . .

−1 −1 . . . |I|

 = I − 1

|I|+ 1
11

⊤. (B.29)

Therefore, by (B.28) we have :
x∗
1(p)

x∗
2(p)

. . .

x∗
n(p)

 =
1

δ(|I|+ 1)


θ − ν − |I|p1 +

∑
j ̸=1 pj

θ − ν − |I|p2 +
∑

j ̸=2 pj

. . .

θ − ν − |I|pn +
∑

j ̸=n pj

 .

This completes the proof.

Next, we present a technical lemma that is crucial in the proof of Proposition 3.3.2.

Lemma B.0.3. Let Γ = (2λ − δ)I + δ11⊤ and Ω = −1
δ
I + 1

δ(|I|+1)
11

⊤. If λ > δ then

spec(ΓΩ) ⊂ C◦
−.

Proof. Note that

−ΓΩ =
1

δ(|I|+ 1)
((2λ− δ)I + δ11⊤)((|I|+ 1)I − 11

⊤)

=
1

δ(|I|+ 1)

(
(|I|+ 1)(2λ− δ)I − (2λ− δ)11⊤ + (|I|+ 1)δ11⊤ − |I|δ11⊤)

=
1

δ(|I|+ 1)

(
(|I|+ 1)(2λ− δ)I − (2λ− 2δ)11⊤)

From Gershgorin’s circle theorem6 we know that for the result to hold it is sufficient to ensure

|(|I|+ 1)(2λ− δ)− (2λ− 2δ)| > (|I| − 1)|2λ− 2δ| (B.31)

6Gershgorin’s circle theorem [45], which says that for a square matrix A ∈ Rn×n, each eigenvalue of A is contained in at
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In fact if λ > δ then (B.31) holds.

Finally, we present the proof of Proposition 3.3.2 below:

Proof of Proposition 3.3.2. We show that the set P † is singleton for the setup in Section

3.3.17. Then we show that the dynamic update (xk, pk) corresponding to (3.16a)-(3.16b)

converges to social optimality (x†, p†).

Note that any element p† ∈ P † should satisfy p† = e(x∗(p†)) =
(
(2λ− δ)I + δ11⊤)x∗(p†).

Moreover from Lemma B.0.2 we know that x∗(p†) = θ−ν
δ(|I|+1)

1− 1
δ

(
I − 11

⊤

|I|+1

)
p†. Succinctly

writing these two requirements in matrix form gives us:(2λ− δ)I + δ11⊤ −I

δI I − 1
|I|+1

11
⊤


︸ ︷︷ ︸

B

x∗(p†)

p†

 =

 0

θ−ν
|I|+1

1



We claim that B is an invertible matrix. Indeed, lower diagonal is an invertible block by

(B.29) and the Schur complement of B with respect to that block is 2λI + 2δ11⊤ which is

also invertible. Thus (x∗(p†), p†) exists and is unique.

Next, we use Theorem 3.2.3 to ensure that the dynamic update (xk, pk) corresponding

to (3.19a)-(3.19b) converges to the fixed point (x∗(p†), p†). It is sufficient to show that

Assumption 3.1.3 and condition (C2) hold. Before checking these conditions we define

Γ = (2λ− δ)I + δ11⊤ and Ω = −1
δ
I + 1

δ(|I|+1)
11

⊤.

First, we show that Assumption 3.1.3 holds. That is, for any fixed incentive (pk) = p,

the strategy update satisfies limk→∞ xk = x∗(p). Indeed, due to Assumption 3.1.2, the con-

vergence properties of discrete time updates can be obtained by analysing the corresponding

least one of the disks:

Di = {z ∈ C : |z −Aii| ≤
∑
j ̸=i

|Aij |} (B.30)

where Aii are the diagonal entries of A, and Aij are the off-diagonal entries. In our case, to ensure that ΓΩ has eigenvalues on

the open right half plane, we need to ensure that |Aii| −
∑

j ̸=i |Aij | > 0
7Note that we cannot directly use Proposition 3.2.1 as that requires compactness of strategy space.
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continuous time dynamical system stated below:

ẋi(t) = −xi(t) +

(
θ − δ

∑
j ̸=i xj(t)− ν − pi

2δ

)
(B.32)

We claim that the trajectories of (B.32) satisfy limt→0 x(t) = x∗(p). Indeed, the atomic

Cournot competition is a potential game with the following potential function for any p:

T (x, p) = −
∫ ∑|I|

i=1 xi

0

(θ − δz)dz +
δ

2

∑
i∈I

x2
i +

|I|∑
i=1

(ν + pi)xi, (B.33)

and (B.32) is the corresponding continuous time best response dynamics. Thus [44, Theorem

2] ensures limt→∞ x(t) = x∗(p).

Next, we show that condition (C2) is satisfied, which fulfills the requirements of Theo-

rem (3.2.3). We claim that the function V (p) = (p− p†)L(p− p†) satisfies (C2), where L is

a symmetric positive definite matrix that satisfies:

(ΓΩ)⊤L+ L⊤(ΓΩ) = −I (B.34)

Note that the existence of L follows from the Lyapunov theorem [8] as from Lemma B.0.3

we know that −ΓΩ is a Hurwitz matrix.

Indeed, V (p†) = 0 and since L is positive definite, this means V (p) > 0 for all p ̸= p†.

Furthermore, we compute:

∇V (p)⊤(e(x∗(p))− p) = 2(p− p†)⊤L(e(x∗(p))− p)

=
(a)

2(p− p†)⊤L
((
(2λ− δ)I + δ11⊤)x∗(p)− p

)
=
(b)

2(p− p†)⊤L
((
(2λ− δ)I + δ11⊤) (x∗(p)− x∗(p†)) + p† − p

)
= 2(p− p†)⊤LΓ(x∗(p)− x∗(p†))− 2(p− p†)⊤L(p− p†)

=
(c)

2(p− p†)⊤LΓΩ(p− p†)− 2(p− p†)⊤L(p− p†)

=
(d)

(p− p†)⊤(L(ΓΩ) + (ΓΩ)⊤L)(p− p†)− 2(p− p†)⊤L(p− p†)

= −(p− p†)(2L+ I)(p− p†)

where (a) is by the definition of the externality function e(x∗(p)), (b) is by adding and

subtracting p†, (c) is by the definition of the Nash equilibrium x∗(p), and (d) is by (B.34).

This completes the proof.
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