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Chapter 1 

Introduction 

Micro electromechanical system (MEMS) based oscillators have become crucial for RF 

systems requiring high performing references with minimal power consumption. The 

combination of higher quality factor and low parasitic capacitances allows them to out-perform 

typical quartz crystal oscillators, capable of working at higher frequencies while providing 

excellent frequency stability with little power consumption. Previous work in [1] has 

demonstrated a 61 MHz oscillator meeting the GSM phase noise specification, while consuming 

less than 80 μW of power. More recent work in [2] demonstrates a 199 MHz oscillator, which is 

a much higher frequency than the limit for quartz crystal resonators, which is around 60 MHz.  

The key enabler for scaling capacitive transducer MEMS up in frequency while 

consuming less power is reducing the electrode-to-structure air gap, which drastically lowers the 

series motional resistance. As the transducer gap gets reduced further to improve performance of 

oscillators, it becomes more important to understand the nonlinearities which come with it. 

Lumped electrical models suffice for small signal analysis, but fall short of predicting the 

performance of oscillators reference to “tiny gap” resonators. This work aims to model the 

transducer nonlinearities of MEMS resonators, and apply the analysis to explain differences in 

the amplitude limiting of MEMS based oscillators from crystal based ones.  
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Chapter 2 

Linear Modeling of the Wineglass Disk Resonator 

 

 

Figure 1: Side supported wineglass disk resonator (a), equivalent circuit model (right) 

Capacitive transducer MEMS resonators can be modeled as a high Q series resonant LCR tank 

with an ideal transformer which models the electro-mechanical coupling factor. Figure 1 shows a 

side supported disk resonator with four electrodes, designed to operate in the wineglass mode. 

The core LCR represent the lumped mass, stiffness, and damping of the mechanical structure, 

can be derived from the equations below for the wineglass mode [3].   

𝑙𝑋 = 𝑚𝑚 = 𝜒𝑀𝑡𝑜𝑡 = 𝜒𝜌𝜋𝑅2𝑊𝑟 

𝑐𝑥 =
1

𝑘𝑚
=

1

𝜔𝑛𝑜𝑚
2 𝑚𝑚

 

𝑟𝑥 = 𝑏𝑚 =
√𝑘𝑚𝑚𝑚 

𝑄
 

 

Where  χ = 0.967 is the mode shape coefficient for the wineglass mode,  𝜌 is the density of 

polysilicon, R is the radius of the disk, and Wr  is the thickness of the disk.  
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The ideal transformer models the electro-mechanical coupling, where the turn ratio is given by 

the equation:  

𝜂𝑒 =
𝑉𝑝𝑘𝑖𝐶𝑜

𝑑𝑜
=

𝑉𝑝𝑘𝑖𝜖𝑜𝐴𝑜𝑣𝑙𝑝

𝑑𝑜
2

 

VP is the bias voltage of the structure, C0 is the electrode capacitance to the structure, do is the 

structure to electrode air gap, Aovlp is the electrode to structure overlap area, and ki = 0.724 for the 

wineglass mode. In the wineglass mode, the current through ports 1 and 3 are in phase with each 

other, which are 180 degrees out of phase with ports 2 and 4. Connecting the ports that are in 

phase to each other gives the electrical model in Figure 1c, where:  

𝑅𝑥 =
𝑟𝑥

4𝜂𝑒
2

, 𝐿𝑥 =
𝑙𝑥

4𝜂𝑒
2

, 𝐶𝑥 = 4𝜂𝑒
2𝑐𝑥 // (−2𝐶𝑜) 
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Chapter 3 

The Pierce Oscillator 

3.1 Small Signal Theory of the Pierce Oscillator 

   

Figure 2: (a) Pierce oscillator schematic and (b) small signal equivalent operating at parallel 

resonance 

 

 

The pierce oscillator is commonly used for quartz crystal resonators, and has proven to have 

great performance as a MEMS based oscillator as well. The theory of the MEMS based pierce 

oscillator is identical to that of a crystal. The main difference is the series motional resistance, Rx, 

of the MEMS resonator is often much larger than a crystal, but the MEMS based oscillator has 

much lower parasitic capacitances, C1, C2, and C3, allowing it to consume less power. The output 

impedances of M1 and M2 can be ignored, as they are typically much greater than the impedance 

of C1 and C2 at the oscillation frequency.  

In order to meet a loop phase of 0 degrees for oscillation start up, the resonator has to operate in 

parallel resonance, and can be modeled as a series LR network, where: 

𝐿𝑃 =
1

𝜔𝑜
2(𝐶3 + 𝐶1//𝐶2)

 

 

𝜔0 is the series resonant frequency. For a high Q resonator, the frequency pulling from operating at 

parallel resonance can be ignored for the purpose oscillation startup analysis. Breaking the loop at the 

gate of M1, the loop gain can be formulated as: 

 

𝐴𝐿 = −
𝑔𝑚

𝐶1 + 𝐶2

1

𝑠(𝑠2𝐿𝑝𝐶𝑝 + 𝑠𝑅𝑥𝐶𝑝 + 1
 



7 
 

 

𝑤ℎ𝑒𝑟𝑒 𝐶𝑝 = 𝐶1//𝐶2 + 𝐶3 

 

The critical gm for oscillation can be solved by setting the loop gain to unity, giving 

 

𝑔𝑚,𝑐𝑟𝑖𝑡 = 𝐶1𝐶2𝜔𝑜
2 (1 +

𝐶1 + 𝐶2

𝐶1𝐶2
𝐶3)

2

𝑅𝑋 

 

  𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔   𝑔𝑚1𝐶3 ≪ 𝜔𝑜(𝐶1𝐶2 + 𝐶1𝐶3 + 𝐶2𝐶3) 

 

From the analysis, we can see the importance of minimizing Rx. Assuming the bias current of M1 is 

proportional to 𝑔𝑚1 =
2𝐼𝐷

𝑉∗ , we can see the power consumption of the pierce has a fourth power 

dependence on the capacitive transducer gap. 

𝑃𝑝𝑖𝑒𝑟𝑐𝑒 =
𝑉𝐷𝐷𝑉∗

2
𝐶1𝐶2𝜔𝑜

2 (1 +
𝐶1 + 𝐶2

𝐶1𝐶2
𝐶3)

2 𝑟𝑥𝑑𝑜
4

4(𝑉
𝑝
𝑘𝑖𝜖𝑜𝐴𝑜𝑣𝑙𝑝)2

 

 

This highlights the importance of scaling down the transducer gap, and understanding the 

nonlinearities which come with it.  

 

3.2 Pierce Oscillator Design 

 

 
 

Figure 3: Pierce oscillator designed in TSMC 180nm 
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M0 36u / .36u 

M1 25.6u / 1u 

M2 6.4u / 1u 

R0 100k 

 

Table 1: Device and passive sizings for the pierce oscillator 

 
Figure 4:  Current mirror op-amp with common drain output stage for the closed loop buffer 

 

A pierce oscillator was taped out in TSMC 180nm. Figure 3 shows the pierce sustaining 

amplifier, with device sizings given in Table 1. Theory on phase noise highlighted in [1] 

described how 1/f  noise from the active load and gm device contribute to 1/𝑓3 phase noise. 

Using longer channel lengths is an effective method to improve phase noise performance of the 

oscillator. To minimize power consumption, it is important for the buffer to have minimal input 

capacitance, while capable of driving 50Ω terminated coax lines at the maximum oscillation 

amplitude, around 500 mV. The current mirror op-amp provided excellent linearity, needed for 

oscillation amplitude measurements, with a design GBW of 700 MHz.  

 

3.3 Fully Differential Pierce Oscillator Design  
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Figure 5: Fully Differential Pierce Oscillator 

 

 

Another version of the pierce topology is the fully differential, using a differential pair with 

resistive common mode feedback as the gm stage of the pierce. The analysis is almost identical to 

the single-ended pierce in Figure 2b, with the single ended small signal parameters replaced with 

their differential counterparts: 𝐺𝑚,𝑑 = 𝑔𝑚2, 𝐶1,𝐷 =
1

2
𝐶1,  𝐶2,𝐷 =

1

2
𝐶2,  𝑅𝑥,𝐷 = 𝑅𝑥 

 

The circuit has been taped out in TSMC 180nm, with the device sizings shown in Table 2 

 

M1 105.92u / 600n 

M2 15.68u / 180n 

M3 29.92u / 180n 

M4 29.92u / 180n 

M5 64u / 400n 

 

Table 2: Device sizings for fully differential TIA design 
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Chapter 4 

Amplitude Limiting of the Pierce Oscillator 
 

4.1 Theory 

As we will see in the following sections, nonlinearities of small gap MEMS resonators affects 

the amplitude limiting of the pierce oscillator. To understand how, analysis and experimentation 

has been conducted on the amplitude limiting of quartz crystal oscillators, and applied to MEMS 

based oscillators, assuming an ideal, linear resonator.  

 

Figure 6: Large signal model of the pierce oscillator 

Analysis on the amplitude limiting of the pierce oscillator has been done in [5], and a similar 

approach has been taken in this work. A key difference is the influence of larger Rx on the 

relative waveforms of the pierce. In quartz crystal oscillators, V1 and V2 are perfectly 180 degrees 

out of phase with each other, with a transfer function of  
𝑉1

𝑉2
= −

𝐶2

𝐶1
, which neglects the influence 

of series motional resistance. This is a good approximation for crystal oscillators, since crystal 

resonators have much smaller motional resistances, but RX must be taken in account when 

analyzing the amplitude limiting of MEMS oscillators. In the same fashion, the transfer function 

describing the relative waveforms at V1 and V2 is written in the equation below, including the 

effect of RX and C3.  

𝑉1

𝑉2
=

(𝑗𝜔)2𝐿𝑃𝐶3 + (𝑗𝜔)𝑅𝑋𝐶3 + 1

(𝑗𝜔)2𝐿𝑃(𝐶1 + 𝐶3) + (𝑗𝜔)𝑅𝑋(𝐶1 + 𝐶3)
 

 

After substituting Lp for the quantity written in terms of capacitances, we get the equation in a form which 

resembles a transfer function with a LHP zero and RHP pole.  

  



11 
 

𝑉1

𝑉2
= −

𝐶2

𝐶1

1 + 𝑗
𝜔𝑜
𝜔𝑧

1 − 𝑗
𝜔𝑜
𝜔𝑝

 

𝜔𝑧 =
𝐶1𝐶2

𝑅𝑋𝐶3(𝐶1𝐶2 + 𝐶1𝐶3 + 𝐶2𝐶3)
 

 

𝜔𝑝 =
𝐶1

2

𝑅𝑋(𝐶1 + 𝐶3)(𝐶1𝐶2 + 𝐶1𝐶3 + 𝐶2𝐶3)
 

 

One observation is that the effect of the numerator from 𝜔𝑧 can be ignored, since in a functioning pierce 

oscillator  C1 >> C3. Given the previous assumption, the relative amplitudes and phase between V1 and V2 

can be formulated: 

𝐴 =
𝐶2

𝐶1

1

√1 + (
𝜔𝑜
𝜔𝑝

)
2

 

𝜙 = −𝑡𝑎𝑛−1(
𝜔𝑜

𝜔𝑝
) 

 

From the analysis, we can see that when 𝜔0 ≪ 𝜔𝑝, the relative waveforms are identical the 

approximation in [5]. As 𝜔0 approaches 𝜔𝑝, there is an additional attention and phase shift between V1 

and V2.  

 

Using the relative waveforms, the large signal waveform of V1 and V2 can be appropximated as 

 

𝑉2 = 𝑉𝐵 + 𝑉𝑜cos (𝜔𝑜𝑡) 

 

𝑉1 = 𝑉𝐵 −
𝐶2

𝐶1
𝐴𝑉𝑜cos (𝜔𝑜𝑡 + 𝜙) 

 

Where VB is the periodic steady state DC component of the output voltages, and is strictly lower than the 

DC operating point of the sustaining amplifier. VB can be solved by assuming an ideal current source as 

the active load, and imposing the condition that the average current through M1 must be equivalent to the 

DC current supplied by M2. 

𝐼𝐷,𝑀2 =
1

2𝜋
∫ 𝐼𝐷,𝑀1𝑑𝜔𝑜𝑡

𝜋

−𝜋

 

 
Where ID,M1 is strictly a function of V1, ignoring channel length modulation. To solve for Vo of the 

oscillator, the effective large signal transconductance must be derived as a function of Vo.  

𝐺𝑚 =
𝐼𝐷,𝑀1(1)

𝑉1(1)
=

𝐶1

𝐶2𝐴𝑉𝑜
𝐼𝐷,𝑀1(1) 

ID,M1(1) is the first harmonic of the current through M1, and can be derived from a Fourier analysis.  

 

The analytical large signal transconductance profile for the single ended pierce designed in Section X.X is 

plotted in Figure 7. As expected, Gm is equivalent to the small signal gm of M1, and begins to drop more 

rapidly when M1 exits saturation for a portion of each period, with better linearity when operated at a 

larger Vov.  
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Figure 7: Large signal Gm versus Vo (left) with example waveforms (right) of the pierce operating at Vov 

= 200mV and Vo = 300 mV 

 

In steady state, the RHP complex pole of the oscillator are on the 𝑗𝜔 axis, which means the output 

amplitude, Vo, is the solution to 𝐺𝑚(𝑉𝑜) = 𝑔𝑚,𝑐𝑟𝑖𝑡. Visually, this is the intersection between gm,crtt and  

𝐺𝑚(𝑉𝑜), with an example shown in Figure 8.  

 
Figure 8: Visualization of solving for output amplitude of the pierce oscillator 
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The Gm nonlinearity is not the only mechanism which could limit the amplitude of oscillation. However, 

for moderately large amplitudes, where the active load does not exit saturation, it is the dominant 

nonlinearity limiting the amplitude of oscillation.  

 

4.2 Experiment 
 

To test the theory on amplitude limiting and relative waveforms in the pierce with larger Rx, an 

quartz crystal pierce oscillator was constructed using a resistor in series with the crystal to mimic 

a linear MEMS resonator with non-negligent Rx. The sustaining amplifier used was the same as 

[1]. Figure 9 shows the schematic and PCB of the experiment. The parasitics of the crystal were 

measured with a network analyzer, shown in Figure 10. The output amplitude of the oscillator is 

changed by sweeping the bias current of the pierce.  

 

Figure 9: Schematic and PCB of the experiment to predict the amplitude and relative waveforms 

of a pierce 

 

 

Figure 10: S21 measurement of the 12 MHz quartz crystal 
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Table 3 shows the nominal values of each passive in the schematic, along with the adjusted value 

within the error margin of the experiment which yielded a closer result to the theory. Figures 11 

and 12 compare the theory of the input and output amplitudes, respectively, of the pierce. Table 

4 compares the measured relative waveform magnitude and phase between the input and output 

voltage waveforms.  

Component Nominal Value Adjusted Value 

RX 480 Ω, 700 Ω, 830 Ω, 1010 Ω 540Ω, 720Ω, 835Ω, 965Ω 

C1 11.7 pF 10.4 pF 

C2 11.7 pF 12 pF 

C3 3 pF 3 pF 

 

Table 3: Passive component/parasitic values in the pierce oscillator 

 

Figure 11: Amplitude at the input node of the pierce oscillator, prediction plotted with the 

measurement points.  
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Figure 11: Amplitude at the output node of the pierce oscillator, prediction plotted with the 

measurement points.  

 

 

Table 4: Measurement and calculation of the relative magnitude (left) and phase (right) between 

the input and output waveforms of the pierce.  
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From the experimental results, we can see that the large signal analysis does well at predicting 

the amplitude limiting of a pierce, when the resonator has good linearity and larger series 

motional resistance. Experimental results with an oscillator referenced to a 53 MHz wineglass 

disk resonator in Section X show very different behavior, and requires analysis of capacitive 

transducer nonlinearities.  
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Chapter 5 

Capacitive Transducer Nonlinearities of Small Gap 

Resonators 

5.1 Analysis  

Dynamic nonlinearity in MEMS resonators have been analyzed in prior work, like in [4]. 

Transducer based spring softening and mechanical based spring stiffening leads to “duffing” in 

the frequency response, a phenomenon which has been analyzed and measured before for MEMS 

resonators. Figure 12, taken from [6], illustrates a duffing resonator under spring stiffening.  

 

 

 

 

 

 

 

 

 

Figure 12: Illustration of a duffing resonator frequency response, taken from [6] 

Duffing occurs due to dynamic nonlinearity in the resonator stiffness, which becomes a function 

of the displacement amplitude of the resonator, generally described by the equation 𝑘𝑡𝑜𝑡 = 𝑘𝑚 +
𝑘𝑚2(𝑋). 𝑘𝑚 is the small signal stiffness derived in Section 1, and 𝑘𝑚2 represent the portion of 

the total stiff which is amplitude dependent. When 𝑘𝑚2  term is positive, the stiffness increases 

with amplitude, making the frequency response bend to the right as the resonance frequency 

increases along with the displacement during a frequency sweep. The opposite is true for when 

the 𝑘𝑚2 is negative.  

As shown in the analysis ahead, spring softening is dominant for small gap MEMS resonators, 

and is the focus of the analysis. This work repeats the transducer nonlinear analysis similar to 

[4], applying it to small gap wineglass resonators instead. The following analysis also gives an 

explanation for gain expansion measured for small gap resonators, where the series motional 

resistance decreases at larger amplitudes.  
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Figure 13: Nonlinear model of a capacitive transducer MEMS resonator used in analysis 

The setup for the analysis is a wineglass disk resonator, with the in-phase ports connected to 

each other. To simplify the analysis, the mechanical nonlinearities of the resonator have been 

ignored, assuming a linear lumped mechanical model. Additionally, the displacement as a 

function of time is assumed to be sinusoidal, which is a reasonable assumption for high Q 

resonators. 

The displacement, 𝑥(𝑡), and drive voltage, 𝑣1(𝑡), can be written as  

𝑣1(𝑡) = 2𝑉1 cos(𝜔𝑡) = 𝑉1𝑒𝑗𝜔𝑡 + 𝑉1
∗𝑒−𝑗𝜔𝑡 

𝑥𝑅(𝑡) = 2𝑋𝑅 cos(𝜔𝑡) = 𝑋𝑅𝑒𝑗𝜔𝑡 + 𝑋𝑅
∗ 𝑒−𝑗𝜔𝑡 

Where V1 and XR can be complex. The factor of two is there to make the analysis simpler, and 

makes no difference in the end result. Not that this makes the solution, |𝑋𝑅|, half the magnitude 

of the displacement amplitude. For a capacitive transducer, the force applied to the structure is 

𝐹(𝑡) =
1

2
(𝑉𝑃 − 𝑣1)2

𝜕𝐶

𝜕𝑥
=

1

2
(𝑉𝑃 − 𝑣1)2𝜅𝑖

𝐶0

𝑑0
(1 − 𝜅𝑖

𝑥

𝑑0
)

−2

 

≈
1

2
(𝑉𝑃 − 𝑣1)2𝜅𝑖

𝐶0

𝑑0
(1 +

2𝜅𝑖

𝑑0
𝑥 +

3𝜅𝑖
2

𝑑0
2 𝑥2 +

4𝜅𝑖
3

𝑑0
3 𝑥3)  

The last expression substitutes  (1 − 𝜅𝑖
𝑥

𝑑0
)

−2

 for its Taylor expansion up to the third power, to 

model third order nonlinearity. After substituting the time function of 𝑣1 and 𝑥𝑅 and grouping all 

the terms at the fundamental frequency, and assuming 𝑉1 ≪ 𝑉𝑃 we get the expression: 

𝐹(𝑡) = [−𝑉𝑃𝑉1𝜅𝑖

𝐶0

𝑑0
𝑉1 − 6𝑉𝑃𝑉1𝜅𝑖

3 𝐶0

𝑑0
3

|𝑋𝑅|2 + (𝑉𝑃
2𝜅𝑖

2
𝐶0

𝑑0
2 + 6𝑉𝑃

2𝜅𝑖
4

𝐶0

𝑑0
4

|𝑋𝑅|2)𝑋𝑅]𝑒𝑗𝜔𝑡 + 𝐶. 𝐶. 
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Similar to solving for a linear system, the magnitude squared of the displacement, |𝑋𝑅|2, can be 

solved with the equation: 

𝐹 = 𝑚𝑚�̈� + 𝑏𝑚�̇� + 𝑘𝑚𝑥 

After substituting 𝑥𝑅(𝑡), we get 

(−𝑚𝑚𝜔2𝑋𝑅 + 𝑗𝜔𝑏𝑚𝑋𝑅 + 𝑘𝑚𝑋𝑅)𝑒𝑗𝜔𝑡 + 𝐶. 𝐶. = 𝐹(𝑡) 

Terms proportional to 𝑋𝑅 in 𝐹(𝑡) can be treated as stiffness, since they represent a force 

proportional to displacement. Grouping them with the mechanical stiffness term, we get the full 

equation.  

−𝑚𝑚𝜔2𝑋𝑅 + 𝑗𝜔𝑏𝑚𝑋𝑅 + (𝑘𝑚 − 𝑘𝑒1 − 𝑘𝑒2|𝑋𝑅|2)𝑋𝑅 = (𝜂𝑒1 + 𝜂𝑒2|𝑋𝑅|2)𝑉1 

𝑘𝑒1 = 𝑉𝑃
2𝜅𝑖

2
𝐶0

𝑑0
2 =

𝜂𝑒1
2

𝐶0
, 𝑘𝑒2 = 6𝑉𝑃

2𝜅𝑖
4

𝐶0

𝑑0
4 =

𝜂𝑒1𝜂𝑒2

𝐶0
 

𝜂𝑒1 = 𝑉𝑃𝜅𝑖

𝐶0

𝑑0
, 𝜂𝑒2 = 6𝑉𝑃𝜅𝑖

3 𝐶0

𝑑0
3 

Writing the equations in this form make it easier to understand the influence of small gap 

transducers on nonlinearity. The first observation is the term 𝑘𝑒1 is the electrical stiffness, 

analyzed in [1], and comes from modeling 
𝜕𝐶

𝜕𝑥
 up to the first order. 𝜂𝑒1 is the linear transducer 

gain, seen in Section 1. Taking up to third order nonlinearity into account gives rise to amplitude 

dependent electrical stiffness, 𝑘𝑒2|𝑋𝑅|2, and transducer gain, 𝜂𝑒2|𝑋𝑅|2.  

𝑖𝑅(𝑡) can be solved from the solution of |𝑋𝑅|2 in a similar fashion, using the equation 

𝑖𝑅(𝑡) =
𝜕𝐶

𝜕𝑥
= �̇�𝑅𝜅𝑖

𝐶0

𝑑0
(1 +

2𝜅𝑖

𝑑0
𝑥𝑅 +

3𝜅𝑖
2

𝑑0
2 𝑥𝑅

2 +
4𝜅𝑖

3

𝑑0
3 𝑥𝑅

3)  

 

 Substituting the sinusoidal form for 𝑥𝑅 and grouping all terms at the fundamental frequency, we 

get the solution: 

𝐼𝑅 = 𝑗𝜔𝑋𝑅(𝜂𝑒 + 𝜂𝑒2|𝑋𝑅|2) 

Figure 14 shows the lumped model of a MEMS resonator taking transducer nonlinearity into 

account, and now has an amplitude dependent turn ratio and capacitance.  
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Figure 14: Lumped nonlinear model of a two port MEMS resonator 

The amplitude dependent negative capacitance results in duffing when large enough, pulling the 

center resonance frequency lower than the nominal small signal center frequency. The amplitude 

dependent resonance frequency can be written as: 

𝑓0 =
1

2𝜋

√
𝑘𝑚 −

𝜂𝑒1
2

𝐶0
−

𝜂𝑒1𝜂𝑒2|𝑋𝑅|2

𝐶0

𝑚𝑚
 

Another effect is the reduction of series motional resistance with increasing amplitude, and can 

be written as 

𝑅𝑥 =
𝑟𝑥

(𝜂𝑒1 + 𝜂𝑒2|𝑋𝑅|2)2
 

 

5.2 Measurements 

Figures 15, 16, and 17 shows the frequency response of a 40 nm gap 13 MHz, 27 MHz, and 53 

MHz wineglass disk resonator respectively. The measurements were taken using a Lakeshore 

vacuum probing station, with a network analyzer. All three resonators are spring softening 

dominated, which is not necessarily the case with larger gap resonators. This is due to the strong 

dependence of nonlinear electrical stiffness on the gap, d0. Additionally for moderately large 

input powers, we can see the admittance at peak resonance increase, consistent with the analysis 

showing RX decreasing at larger amplitudes. At much larger input powers, however, the 

admittance at peak resonance takes the opposite trend, and decreases with increasing amplitude. 

This is possibly due to other mechanical nonlinearities, and cannot be explained by transducer 

nonlinearity alone.  
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Figure 15: Frequency response of a 40 nm gap 13 MHz wineglass disk resonator, with VP = 2 V, 

sweeping input power from -40 dBm to -10 dBm 

 

 

Figure 16: Frequency response of a 40 nm gap 27 MHz wineglass disk resonator, with VP = 3 V, 

sweeping input power from -40 dBm to -10 dBm 
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Figure 17: Frequency response of a 40 nm gap 53 MHz wineglass disk resonator, with VP = 6 V, 

sweeping input power from -50 dBm to -6 dBm 
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Chapter 6 

Effect of Transducer Nonlinearities on Amplitude Limiting 

of the Pierce Oscillator 

6.1 Theory 

As derived in Section 5.1, the series motional resistance of small gap MEMS resonator decreases 

with increasing amplitude, at least for moderately large amplitudes. In the pierce oscillator, this 

has a strong impact on the critical gm for oscillation. Figure 18 shows measurements of a 40 nm 

gap 53 MHz wineglass disk resonator, along with a finer power sweep at VP = 7V. The 

measurement data from Figure 18 was used to generate the RX versus input amplitude plot in 

Figure 19, along with the theoretical gm,crit versus input amplitude due to RX changing. From the 

measurement, we can see that the variation in gm,crit is fairly significant, dropping by 30% from 

the small signal value.  

 

 

  

Figure 18: Measurements of a 40 nm gap 53 MHz wineglass disk resonator, sweeping VP (left) 

and input power with VP = 7 V (right) 
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Figure 19: Rx (left) and gm,crit in a pierce oscillator (right) versus voltage amplitude across the 

resonator port 

 

The result of gm,crit depending on amplitude is hysteresis in the amplitude limiting of the pierce 

oscillator versus the bias point of the pierce. Figure 20 illustrates a hypothetical example to 

explain why. The initial oscillation startup occurs at point A, when the small signal gm of the 

pierce reaches small signal gm,crit. As the amplitude of oscillation increases slightly from startup, 

the large signal Gm decreases, analyzed in Section 3, but gm,crit decreases due to the RX 

nonlinearity of the resonator. This makes point A unstable, making the oscillator jump to point 

B, where the gm,crit intersects with Gm a second time. From point B, the amplitude can be reduced 

by decreasing the bias current to reach point C, operating at the intersection of the new Gm curve 

and gm,crit. Note that point C is not reachable from regular oscillation startup, because the small 

signal gm of the pierce is not large enough to start oscillation at small signal. The resonator RX 

nonlinearity benefits the power consumption of an oscillator, since the steady state operating 

point of RX is smaller than the initial small signal value.   
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Figure 20: Hypothetical example to demonstrate hysteresis in amplitude limiting of the pierce 

 

6.2 Measurements 

The resonator measured in Figure 18 was wire bonded to the pierce sustaining amplifier designed 

in Section 2. Figure 21 shows the output waveforms and spectrum of the oscillator. From Figure 

22, we can see the hysteresis behavior of the amplitude limiting. Instead of gradually increasing 

with bias current like a crystal oscillator, the amplitude jumps to several hundred millivolts, 

shown in the forward sweeps in Figure 21. While oscillation is sustained, the amplitude can be 

adjusted gradually to a desired operating point.  Due to the gain expansion of the resonator, the 

oscillator consumes less power to operate at larger amplitudes, which is a benefit of transducer 

nonlinearity from shrinking the gap.  
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Figure 21: Time domain waveforms (left) and output spectrum of the 53 MHz pierce oscillator 

 

 

Figure 22: Amplitude limiting of the 53 MHz pierce oscillator versus bias current.  
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Conclusion  

This work demonstrated the difference in amplitude limiting between small gap MEMS and 

crystal-based oscillators. The analysis gives a possible explanation behind the reduction of RX of 

MEMS resonators at higher amplitudes, and how it results in hysteresis in the amplitude limiting 

of oscillators. For moderately large amplitudes, the nonlinear frequency response of MEMS 

resonators behaved as the theory predicted, duffing via spring softening, and decreasing RX with 

increasing amplitude. At larger amplitudes however, the gain expansion of the frequency 

response reverses to gain compression, as RX begin to increase past a certain point. One 

possibility is mechanical based nonlinearities coming into play, which result in increasing RX 

against the transducer gain expansion. Future work would investigate the source of this 

nonlinearity, and verify the result by matching measurements to predictions. The benefit of 

having transducer nonlinearities is lower power consumption for oscillators, compared to the 

nominal linear case. As studied in previous work, the dynamic nonlinearity in MEMS resonators 

have a negative impact on close to carrier phase noise performance, which is a topic related to 

this work. 
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