SCL: A Secure Concurrency Layer For Paranoid Stateful Lambdas

Eric Chen
Alexander Thomas
Hanming Lu
William Mullen
Jeffery Ichnowski
Rahul Arya
Nivedha Krishnakumar
Ryan Teoh
Willis Wang
Anthony D. Joseph
John D. Kubiatowicz

Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-232.html

October 21, 2022
SCL: A Secure Concurrency Layer For Paranoid Stateful Lambdas

University of California, Berkeley
{kych, alexthomas, hanming_lu, wmullen, jeffi, rahularya, nivedha, ryanteoh, williswang, adj, kubitron}@berkeley.edu

Abstract—We propose a federated Function-as-a-Service (FaaS) execution model that provides secure and stateful execution in both Cloud and Edge environments. The FaaS workers, called Paranoid Stateful Lambdas (PSLs), collaborate with one another to perform large parallel computations. We exploit cryptographically hardened and mobile bundles of data, called DataCapsules, to provide persistent state for our PSLs, whose execution is protected using hardware-secured TEEs. To make PSLs easy to program and performant, we build the familiar Key-Value Store interface on top of DataCapsules in a way that allows amortization of cryptographic operations. We demonstrate PSLs functioning in an edge environment running on a group of Intel NUCs with SGXv2.

As described, our Secure Concurrency Layer (SCL), provides eventually-consistent semantics over written values using untrusted and unordered multicast. All SCL communication is encrypted, unforgeable, and private. For durability, updates are recorded in replicated DataCapsules, which are append-only cryptographically-hardened blockchain with confidentiality, integrity, and provenance guarantees. Values for inactive keys are stored in a log-structured merge-tree (LSM) in the same DataCapsule. SCL features a variety of communication optimizations, such as an efficient message passing framework that reduces the latency up to 44x from the Intel SGX SDK, and an actor-based cryptographic processing architecture that batches cryptographic operations and increases throughput by 81x.

I. INTRODUCTION

Distributed computing uses workers on multiple hosts to jointly run a single task. Existing Function-as-a-Service (FaaS) providers, such as AWS Lambda [8], have pushed distributed computing to an extreme: users can launch hundreds or thousands of distributed workers concurrently. Some FaaS implementations, such as Cloudburst [38], even support stateful executions, in which distributed workers share storage with one another. At this time, the serverless FaaS model has become quite popular for a wide variety of applications.

Edge computing, in contrast to cloud computing, exploits resources at the edge of the network, presenting a variety of opportunities for low-latency, high-bandwidth communication, lower energy usage, and better privacy. It is arguably the next major computing paradigm after cloud computing [44]. Providing a stateful, serverless model of access to resources at the edge seems ideal for a variety of emerging IoT and robotic applications, since it is directly compatible with the paradigm of on-the-fly allocation of compute and storage resources by mobile devices as they transit regions on the edge of the network [23, 39, 41].

Unfortunately, general-purpose Edge computing presents a number of challenges [19, 35] and is thus not widely used by existing FaaS implementations. One huge challenge is that the edge environment is often not as trustworthy as the cloud; resources at the edge of the network may be owned and maintained by novice users or malicious third parties. Furthermore, physical security is less prevalent in edge environments, leading to a variety of physical attack vectors. Compromised devices, while appearing legitimate, could steal information, covertly monitor communication, or deny service. Even worse, malicious entities could seek to alter information in subtle ways that are not immediately obvious, but which corrupt edge applications in damaging or even dangerous ways. Application writers often attempt to “roll their own” data protection in ad-hoc and sometimes buggy ways, leading to data breaches and security violations. Clearly, the lack of a standardized approach to both protect and easily utilize information on the edge hinders exploitation of edge computing resources.

Paranoid Stateful Lambdas: In this paper, we introduce the first FaaS execution service that enables secure and stateful execution for both cloud and edge environments, while at the same time being easy to use. The FaaS workers, called
Paranoid Stateful Lambdas (PSLs), can collaborate to perform large parallel computations that span the globe and securely exploit resources from many domains. See Figure 1. We provide an easy-to-use data model and automatically manage cryptographic keys for compute and storage resources.

We take a two-fold approach to supporting PSLs. First, we exploit trusted execution environments (TEEs), such as those provided by Intel SGX [7, 15] and ARM TrustZone. TEEs provide confidentiality and integrity of executed functions while also providing strong isolation of data, computation, and cryptographic assets from the untrusted kernel or hypervisor. Through attestation, a multi-PSL application can be served by an untrusted, third-party service provider.

Second, we package persistent state in cryptographically hardened bundles of data called DataCapsules [29]. Each DataCapsule is a “blockchain [48] in a box,” exploiting a standardized metadata format to guarantee provenance, integrity, and privacy via cryptography. With append-only semantics, DataCapsules provide a permanent audit-trail of operations on their contents, thus allowing undo-like operations, multiversion support, and mediation in the presence of malicious failure. See Figure 2. While DataCapsules can be embedded in any network storage environment, they are particularly powerful when combined with a data-centric network such as the Global Data Plane (GDP) [29], which allows DataCapsules to be stored, migrated, and interacted with anywhere in the network. In this paper, we treat the DataCapsule service as a black box provided by the underlying infrastructure.

This combination of TEEs (for active computation and data in use) and DataCapsules (for data at rest or in motion) provides a powerful combination that enables secure, stateful computation in insecure environments. While DataCapsules by themselves provide a standardized way to encapsulate and protect information as it moves within the network (leading to a global, federated data service), we ease the burden of PSL programmers by presenting them with a familiar key-value store (KVS) interface. This is implemented on top of DataCapsules via a protected “runtime system” we call a Common Access API, or (CAAPI). Consequentially, communicating PSLs may interact via shared keys in the key-value store.

Performance Challenges: While security is one of our primary motivations for implementing the PSL framework, we also wish to enable high performance parallel computation using PSLs. This goal is hindered in multiple ways: First, the distributed nature of PSL-based parallelism leads to a need for relaxed consistency for most writes in our KVS. We discuss how to implement an eventually-consistent model for put() operations that allows interacting PSLs to operate with independence from one another while still detecting denial of service attacks and bounding the maximum write propagation delay over an unordered and untrusted network. Our mechanism further enables a release-consistent locking scheme [20].

Second, all communication between collaborating enclaves must be encrypted and signed to prevent malicious parties from forging, corrupting, or observing such communication. This security tax can be significant if not mitigated through batching and suppression of locally overwritten updates. We show how our relaxed consistency implementation permits a variety of cryptographic optimizations.

Third, the strong isolation provided by TEEs is a double-edged sword: while shielding in-enclave applications from external malicious parties, it imposes a strong impediment to communication across the enclave barrier. The common communication approach [15] involves hardware-specific attestation and complicated key exchange protocols for one-to-one communication, the complexity only increasing with larger enclave group sizes. Even crossing the enclave barrier on a local node using the popular SGX container framework (GrapheneSGX [43]) can exhibit horrendous overhead, combining an expensive context switch with byte-wise data copying. Our approach to speeding up communication exploits the standardized DataCapsule format (which protects information) combined with heavy optimization of communication across the enclave barrier and a fast but untrusted multicast tree for communication.

The Secure Concurrency Layer: Much of our communication innovations are embodied in the eponymous Secure Concurrency Layer (SCL), one of the primary topics of this paper. SCL is an in-enclave cache manager that securely and efficiently relays data between multiple enclaves while providing well-formed update semantics. In our system, a given PSL interacts with remote PSLs by issuing KVS put() operations to its own local cache. SCL translates these write operations into encrypted and signed update records compatible with the underlying DataCapsule. The updates are then propagated to other enclaves as well as the network-embedded DataCapsule (for durability) over an untrusted and unordered network multicast tree. SCL provides eventual consistency semantics over the written values, but enforces epoch-based resynchronization for liveness. SCL also features various performance optimizations. For example, SCL uses a circular

Footnotes:
1 The standard system call facility for SGX incurs between 8,000 and 20,000 cycles for an ocall and takes 8,000 cycles for an ocall.
2 Our system utilizes a Log-Structured Merge (LSM) tree to efficiently store idle Key-Value pairs, namely those not currently in PSL caches.
buffer based message passing design, which passes messages across secure enclave boundary 44x faster than using standard send calls. To parallelize the cryptographic computations, such as encryption, hashing, and signing, SCL uses an actor-based architecture for computing the DataCapsule’s headers. When combined with batching, these optimizations increase throughput by 81x over the unoptimized baseline.

We design and implement the PSL FaaS infrastructure using SCL. PSL-enabled worker nodes can run directly on top of SCL by static linking or dynamic script interpretation. To bootstrap secure enclaves with appropriate cryptographic identities, we design a key management scheme inspired by the Bitcoin wallet [6] and an optimized attestation protocol. Unlike previous works [25, 45] that only support Intel SGX and assume SGXv1, we implement SCL on Asylo [21, 22], a hardware-agnostic framework that allows SCL to run on most mainstream TEE hardware. The result is a third-party service running on the edge that can satisfy on-the-fly requests to securely execute PSL applications using compute and storage resources embedded in the edge environment.

We claim the following contributions in this paper:

- **Paranoid Stateful Lambdas (PSLs):** We introduce the notion of Paranoid Stateful Lambdas and show the design and implementation of our PSL execution environment.
- **Separation of State and Computation:** We propose to use DataCapsules as the ground-truth vehicle for communication among different types of secure enclave hardware with confidentiality, integrity, and provenance guarantees.
- **SCL KVS:** We design, implement and evaluate SCL, a secure and eventually-consistent replicated KVS that facilitates inter-enclave communication and bounds maximum write latency while mitigating denial of service. We implement associated key distribution and attestation protocols.
- **Communication Optimizations:** We reduce and amortize the communication and cryptographic overhead by rearchitecting the cryptographic pipeline and designing a circular buffer based message passing mechanism.

II. BACKGROUND

A. Secure Enclaves

Our design does not assume specific secure enclave hardware or a set of supported instructions; we only require the trusted hardware to have semantics for memory protection and attestation. Here, we introduce Intel Software Guard Extensions (SGX) [15] due to its widespread adoption. SGX allows users to create a secure, isolated environment protected from the privileged host OS, hypervisor, or any hardware devices connected to the host. SGX protects against physical adversaries and uses a hardware Memory Encryption Engine (MEE) to guarantee the confidentiality and integrity of enclave memory. All enclave memory must occupy a specific section of memory

3In the future, we hope to support dynamic linking of PSL binaries residing in DataCapsules.
that accepts standard user requests (e.g. POSIX filesystem requests) and translates them to operations on the underlying DataCapsule. Such CAAPIs run in secure enclaves, since they need access to cryptographic keys to produce signatures and to encrypt/decrypt information over the DataCapsule API.

In this paper, we assume that DataCapsules reside in some network server that is able satisfy DataCapsule read and write operations. However, the true power of DataCapsules is revealed in the context of a data-centric network such as the Global Data Plane (GDP) [29]. Each DataCapsule has a unique 256-bit identity derived from a hash over the public owner key and other metadata. The GDP can route messages to a DataCapsule using its identity rather than a location (i.e. an IP address). Thus, a data client can send reads and writes to a DataCapsule without knowing its location.\footnote{When multiple DataCapsules exist with the same identity, they are assumed to be equivalent; thus the GDP will try to route queries to the “closest” equivalent DataCapsule. Replication thus provides a mechanism for content distribution, providing a cryptographically hardened form of CDN with well-defined, in-network update semantics, unlike alternatives such as NDN [47].}

Thus, with the GDP, PSLs could launch anywhere and access their data simply by possessing (1) the unique identity of the DataCapsule containing its data, (2) the cryptographic ownership and encryption keys for the DataCapsule, and (3) a connection into the GDP.

III. Paranoid Stateful Lambda

Paranoid Stateful Lambdas (PSLs) provide unified access to the computation and storage resources of the cloud and edge. They provide access to the abundance of edge servers which have better locality and lower latency than would be available with cloud-only environments. The serverless abstraction enables applications to be transparent about the underlying infrastructure.

Paranoid: PSL allows clients to launch a scalable number of distributed workers (i.e. Lambdas) on both cloud clusters and edge servers. Recognizing that servers on the cloud and edge may come from mutually distrustful service providers, PSL executes all the privacy-sensitive programs in secure enclaves, guaranteeing the confidentiality and integrity of all executions.

For the threat model, PSL adopts the typical “cloud/edge attackers” who can listen and tamper with any communications or computations. For example, the attack may come from a compromised operating system kernel or a malicious staff member, both situations in which the attacker has full control over the system. SCL guarantees the confidentiality, integrity, and provenance of any data in execution and in transit. The trusted computation base (TCB) of SCL is limited to the processor chip, PSL code, and sandboxed application code running in an enclave, which explicitly excludes the operating system managed by the cloud provider. The design of SCL guards against message replay attacks and detects DDoS attacks at a granularity of a user-defined time interval (epoch). However, PSL does not guarantee against side-channel attacks, given that Intel SGX suffers from various side-channel vulnerabilities [11, 13, 36]. However, there are various techniques [11, 31, 36, 37] proposed to mitigate the risk of side channel attacks.

Stateful: Beyond other secure FaaS implementations [5], PSL supports stateful execution of distributed workers, meaning that one in-enclave worker is able to communicate with workers in other enclaves or even workers that will be executed in the future [38]. Statefulness has already become a necessity in...
many popular FaaS applications: for example, ExCamera [18], numpywren [33], mplambda [23].

In order for Lambdas to be Paranoid and Stateful, PSL consists the following main components: (1) Secure Concurrency Layer (SCL): enables secure communication between multiple enclaves, (2) In-Envelope LSM-tree based DB: provides persistence and durability of the DataCapsule, (3) PSL Secure FaaS: securely attests SCL, distributes cryptographic keys, and dispatches tasks to Worker Enclaves, and (4) Global Data Plane [29]: provides global routing infrastructure.

Secure Consistency Layer: In designing PSL, we recognize the need to have a secure layer that allows enclaves to communicate and concurrently share objects. This layer provides security and consistency semantics for transient messages over untrusted and unordered multicast. Consequently, distributed worker programs can use this layer as a form of shared memory, and PSL as a whole can use this layer to dispatch program scripts and coordinate idle secure enclaves. An analogy to this layer is BigTable for Google or Dynamo for Amazon, infrastructure which provides a KVS layer as foundational communication abstraction to higher level applications.

To enhance performance, we designed an eventually-consistent replicated KVS that presents a shared memory view to all the secure enclaves connected to the same network multicast tree. If an enclave makes KVS updates to the local cache, the changes will be propagated to all other secure enclaves by broadcast. The secure enclaves maintain the same copy of memory cache. SCL partitions the KVS into a memtable that fits in main memory, and PSL has a Log-Structured Merge (LSM) tree inspired by RocksDB [40] that stores inactive keys.

IV. SCL DESIGN

A. Overall Architecture

The essence of SCL is that every secure enclave replicates a portion of the underlying DataCapsule (Section IV-B), namely the portion dealing with active keys. This portion can be thought of as a write-ahead log. By allowing this log to branch, we free workers to be independent of one another for periods of time. The intuition is that we arrange these temporarily divergent histories to include sufficient information to provide well-defined, coherent, and eventually-consistent semantics. We do so while allowing updates to be propagated over an insecure and unordered multicast tree.

Figure 4 provides an overview of SCL’s architecture. Each enclave maintains an in-memory replicated cache called a memtable. All put() operations are placed into the local memtable, timestamped, and linked with previous updates before being encrypted, signed, and forwarded via multicast. The code which performs these operations is a CAAPI that provides the KVS interface on top of the DataCapsule storage.

The DataCapsule record appends are propagated by a network multicast tree. If an enclave receives a record to append, it verifies the cryptographic signatures and hashes, and merges the record with its own replica of the DataCapsule. The merge does not require explicit coordination due to the CRDT property of the DataCapsule hash chain, but the hash chain is periodically synchronized to bound the consistency. DataCapsule changes are also reflected to the memtable with the eventual consistency semantics. SCL enables fast KVS read queries because of its shared memory abstraction, so all get() operations can directly read from the enclave’s local memtable without querying other nodes.

B. DataCapsule Contents For SCL

Figure 5 shows a visual representation of DataCapsule contents for SCL. Each record contains one or more SHA256 hash pointers to previous records, encrypted data, and a signature. Multiple previous hash pointers occur during epoch-based resynchronization, which we discuss shortly. The data block of a record includes SenderID, a unique identifier of the writer, Timestamp, that indicates the sending time of the record, and Data, the actual data payload. In SCL, Data is an AES-encrypted string that contains the updated key-value pairs. The record contains a Signature signed on the entire record with Elliptic Curve Digital Signature Algorithm (ECDSA) using the private key of the writer.
C. Memtable

The Memtable KVS is an in-enclave cache of the most recently updated key-value pairs. The key-value pairs are stored in plaintext, as the confidentiality and integrity of the memtable are protected by the secure enclave’s EPC. In-enclave distributed applications communicate with other enclaves by interacting with the memtable using the standard KVS interface: \texttt{put(key, value)} to store a key-value pair and \texttt{get(key)} to retrieve the stored value for a given key.

SCL communicates with other enclaves to replicate the memtable consistently across enclaves. Local changes to the memtable are propagated to other enclaves and updates received from other enclaves are reflected in the local memtable. When receiving an update from other enclaves, the memtable performs verification and decryption before putting the key-value pair into the memtable. To achieve coherence, updates received from remote enclaves are only placed in the local cache if they have later timestamps (see below).

D. Consistency

SCL guarantees eventual consistency of values associated with each key, namely that if there were no further updates to a specific key \(k \), then \(\texttt{get}(k) \) from each of the in-enclave memtables should return the latest value. In addition, SCL guarantees the property of coherence among values, namely that no two enclaves will ever observe two updates to a given key in different orders. Since updates are propagated over an unordered multicast tree, SCL needs to order the DataCapsule updates in the memtable, and reject updates that are causally earlier than the ones already in the memtable. Naive approaches may lead to undesirable outcomes: for example, replacing the memtable’s value whenever a new record arrives leaves the memtable in inconsistent state.

To decide the order of the updates, SCL uses a Lamport logical clock to associate every key-value pair with a logical timestamp. Without relying on the actual clock \textit{time}, SCL increments a local Sequence Number (SN) whenever there is an update to the local memtable. When receiving a new DataCapsule record, it also synchronizes the SN with the received SN in the record by \(SN \leftarrow \max(\text{localSN}, \text{receivedSN}) + 1 \).

Although a vector clock is usually deemed as an upgrade to Lamport logical clocks by including a vector of all collected timestamps, SCL uses a Lamport clock because a DataCapsule already carries equivalent versioning and causality information, and a vector clock introduces additional complexity and messaging overhead to the system. The reason for not using the actual timestamp from the operating system is that getting such timestamp costs more than 8,000 CPU cycles due to enclave security design [45]. Getting trusted hardware counters from RDTSC and RDTSCP instructions is also expensive (60-250 ms) [9] only supported by SGX2.

E. Epoch-based Resynchronization

For performance, SCL branches the DataCapsule data structure by letting every enclave write to its own hash chain. Every append includes a hash pointer to the previous write from the same writer, instead of the previous write across all enclaves. To merge the hash chains maintained by each writer, SCL uses a synchronization (SYNC) report as a rendezvous point for all DataCapsule branches. The resultant DataCapsule hash chain is structured in a diamond shape like Figure 6. All writers’ first writes include a hash pointer to the previous SYNC report, and the next SYNC report includes a hash pointer to the last message of every writer. The SYNC report is useful in the following ways:

- \textbf{Detecting the freshness of a message}: Every message includes a monotonically increasing SYNC report sequence number, which is incremented when a new SYNC report is generated. As a

- \textbf{Fast Inconsistency Recovery}: After an enclave receives a SYNC report, it can use the hash pointers to backtrack to previous messages from the same writer until it reaches the last SYNC report. It detects a message is lost if a hash pointer cannot be recognized during the backtrack.

The usage of SYNC reports establishes a notion of epoch-based resynchronization, a tradeoff between synchronization overhead and consistency. With epoch-based resynchronization, the user defines a synchronization time interval called an epoch. Between the epochs, the enclaves use timestamps to achieve coherency and eventual consistency. At the end of an epoch, enclaves cross-validate their own DataCapsule replica with the SYNC report generated by a special Coordinator Enclave (CE).

F. Multicast Tree

We conclude this section by showing the overall structure of the multicast tree. Multicast enables one node on the multicast tree to communicate with multiple nodes by routers. Routers receive the message and rebroadcast the message to multiple nodes or routers. The overall structure forms a multicast tree. The tree-like structure extends the scalability that allows more than one router to handle the communication. SCL is agnostic to the multicast tree topology, as long as a node on the tree publishes the message, and all the rest of the nodes can receive that message. As a result, we can abstract SCL’s multicast tree structure as a plane where worker enclaves publish DataCapsule updates through multicast routers, the third party durability storage can log all the messages and third-party authenticators can verify the validity of the DataCapsule hash chain.
G. Durability and Fault Tolerance

We discuss the durability semantics of SCL, and how we use it to store inactive keys. We also discuss SCL when facing multiple types of failures.

SCL Durability with DataCapsule: Any secure enclave in SCL may fail by crashing or losing its network connection, causing it to fall behind or even leave its in-memory states inconsistent. SCL is durable if a such enclave can recover all of the in-memory states (i.e. the memtable) consistently and catch-up with the on-going communication. Due to the equivalence of the DataCapsule hash chain and the memtable shown in Section IV-C, the durability of SCL is achieved by making the DataCapsule hash chain persistent. An analogy to SCL’s durability is Write-ahead Logging(WAL) in many databases, which logs an update persistently before committing to the permanent database. In SCL, DataCapsule is the append-only log that records the entire history of the memtable, which a crashed enclave can use to recover. The crashed enclave can merge its local inconsistent DataCapsule hash chain with the persistent DataCapsule received from other components, either an in-enclave LSM tree DB or DataCapsule servers. The CRDT property of DataCapsule guarantees the consistency of the hash chain after the merge.

DataCapsule Replication: A DataCapsule replica may fail by crashing or network partitioning, resulting in service interruption by SCL. A DataCapsule replica may also be corrupted and lose partial or the entire SCL data permanently. To ensure durability and availability of DataCapsule replicas, we implement a continuous DataCapsule replication system that uses write quorum to tolerate user-defined replica failures or network partitioning in the system without disturbing the PSL computation.

Coordinator Failure: The failure of the coordinator only influences the resynchronization interval, but does not influence the strong eventual consistency given by the CRDT property of DataCapsules and the logical timestamp of the memtable. However, one can use multiple read-only shadow coordinators to improve the fault tolerance and to remove the single point of failure. If multiple consistency coordinators are on the same multicast tree, one consistency coordinator can actively send RTS broadcasts to the multicast tree. Other consistency coordinators remain in shadow mode until a SYNC report is not sent for an extended period of time.

H. CapsuleDB

CapsuleDB is a key-value store inspired by LSM trees and backed by DataCapsules. It is built to specifically take advantage of the properties of DataCapsules to provide long-term storage of large amounts of data as well as accelerate PSL recovery beyond reading every single record in the DataCapsule. Figure 3 shows how CapsuleDB fits into the PSL framework with its separate enclave running on behalf of the Worker Enclaves.

CapsuleDB has two main data structures, CapsuleBlocks and indices, as well as its own memtable. CapsuleBlocks are groups of keys, each of which represents a single record in the DataCapsule backing the database. It’s data storage structure is inspired by level databases such as RocksDB [40] and SplinterDB [12]. Data is split into levels, each with increasing size. In CapsuleDB, Level 0 (L0) is the smallest while subsequent levels L1, L2, and so on increase by a factor of ten each time. Each level is made up of CapsuleBlocks. In L0, each block represents a memtable that has been filled and marked immutable. Blocks in lower levels each contain a sorted run of keys, such that the keys in the level are monotonically increasing.

The index manages which CapsuleBlocks are in each level, the hashes of each block, and which blocks contain active data. The index also acts as a checkpoint system for CapsuleDB, as it too is stored in the DataCapsule. While the main purpose of storing the index in the DataCapsule is to ensure CapsuleDB can quickly restore service after a failure, it has the added benefit that old copies of the indices serve as snapshots of the database over the lifetime of its operation.

Writing to CapsuleDB CapsuleDB participates in SCL just like the worker enclaves. Consequently, every write is stored into CapsuleDB’s local memtable. In this way, it has visibility to the most recent values written by the workers. Once the memtable fills, it is marked as immutable and appended to the DataCapsule. The resulting record’s hash is then stored in L0 in the index. If this write causes L0 to become full, the compaction process, described below is triggered, pushing compacted blocks out to the DataCapsule.

Reading from CapsuleDB Retrieving a value from CapsuleDB is triggered by a get operation from one of the worker enclaves when it attempts to find a value that is not stored in its local memtable. This get is routed to CapsuleDB where it begins at the CapsuleDB’s memtable. If the requested key is not found, the request moves to the index for CapsuleBlock retrieval. Note that once CapsuleDB finds a value for the requested key, it multicasts the result as a put on the multicast tree with a timestamp from the blocks—exactly as if it were a worker enclave.

When searching for the most recent value associated with a key, CapsuleDB checks the index associated with L0. If the key is found after scanning through each block, then the corresponding tuple is returned. If the search fails, the process is repeated at L1. However, L1 is sorted, so our search can be performed substantially faster. In addition, L1 is likely too large to bring fully into memory, especially given the tight memory constraints imposed by some secure enclaves. As such, only the requested block is retrieved from the DataCapsule. Again, it is checked to see if the requested KV pair is present. If not, the same procedure is run at lower levels until it is found, or CapsuleDB determines it does not have the requested KV pair.

Indexing the Blocks The index is at the core of CapsuleDB and serves several critical roles. Primarily, it tracks the hashes of active CapsuleBlocks to quickly lookup keys. Whenever
a block is added, removed, or modified, the hash mapping is updated in the index. When compaction, the process of moving old data to lower levels, occurs, the index updates which levels the moved CapsuleBlocks are now associated with. In this way, CapsuleDB can always quickly find the most recently updated CapsuleBlock that may have a requested key. Further, CapsuleDB keeps a complete record of the history of updates to the KV store, effectively acting similar to a Git repository.

Since the index is written out whenever it is modified, the CapsuleDB instance can be instantly restored simply by loading the most recent index. Then, only the records since the last update need to be played forward to restore the most recent KV pairs that were in CapsuleDB’s memtable.

Compaction Compaction is critical to managing the data in any level-based system. CapsuleDB’s compaction process uses key insights from the flush-then-compact strategy of SplinterDB [12] to limit write amplification. Each level has a maximum size; we say a level is full once the summed sizes of the CapsuleBlocks in that level meets or exceeds the level’s maximum size. This triggers a compaction.

All writes to CapsuleDB are first stored in the in-memory memtable. Once the memtable fills, it is marked as immutable and written to L0 as a CapsuleBlock, also simultaneously appending the block as a record to the DataCapsule. Once L0 is full, compaction begins by sorting the keys in L0. They are then inserted into the correct locations in L1 such that after all the keys are inserted L1, the level is still a monotonically increasing run of keys. Any keys in L0 that are already present in L1 would replace that data in L1, since the L0 value and timestamp would be fresher. Finally, the CapsuleBlocks and their corresponding hashes are written out to the DataCapsule and updated in the index, marking the end of compaction.

V. Optimizations

In this section, we discuss optimizations that significantly improve the throughput of SCL. Because of the high overhead of various cryptographic operations when constructing DataCapsule fields, we propose an actor-based architecture to pipeline the cryptographic operations. The proposed pipeline also enables high-throughput batching and message prioritization. We discuss our circular buffer, a design that efficiently passes messages across application-enclave boundary.

A. **Actors and Batching**

For security, one DataCapsule transaction involves encryption, signing, and hashing. These cryptographic operations combined introduce large computational overhead to the critical path when the client issues a `put`. Because frameworks such as Intel SGX SDK [13] and Asylo [21] do not support async operations, SCL introduces actors to amortize the overhead.

When the client issues `put(k, v)`, SCL piggybacks a timestamp t to the key-value pair and pushes the (k, v, t) tuple to a thread-safe Data Queue. The control and coordination messages, such as RTS and EOE, are sent to a thread-safe Control Queue. We call the Data Queue and Control Queue together the Crypto Actor Task Pool. SCL starts multiple threads as crypto actors. These actors take the messages from the task pool, first drawing from the higher priority Control Queue due to latency constraints, and process them into encrypted, hashed, and signed DataCapsule transactions. The generated DataCapsule records are put into the circular buffer and propagated to other enclaves.

Batching: To optimize the overall throughput and amortize the cost of transmission, SCL can batch multiple key-value pairs in the same DataCapsule record. A crypto actor takes (k, v, t) tuples from the Task Pool. The batch size is the max of the user-preset batch size and the remaining tuples in the task pool. The actor serializes all the control messages and key-value tuples into a Comma-Separated Values (CSV) string and feed into cryptographic pipeline.

B. Circular Buffer

All secure enclave applications are partitioned into trusted `enclave` code and untrusted `application` code. The trusted enclave code can access encrypted memory, but cannot issue system calls; the reverse is true for untrusted application code. The boundary of this application-enclave partition is marked by `ecalls` and `ocalls`. In order to transfer the data crossing the application-enclave boundary, a standard and straightforward approach is to invoke `ecalls` and `ocalls` directly, which is adopted by popular SGX container framework GrapheneSGX [43], and even enclave runtime environment Asylo [22]. The untrusted application establishes a socket and uses `send` and `recv` to pass messages on behalf of the enclave code. However, this approach incurs extremely high overhead. The high cost of a context switch is coupled with byte-wise copying the buffer in and out (contrasted with zero-copying). An `ecall` usually takes 8,000 to 20,000 CPU cycles, and an `ocall` usually takes 8,000 CPU cycles on average.

SCL enables efficient application-enclave communication by leveraging a circular buffer data structure. SCL initializes...
VI. PSL with SCL

We discuss the experience and implementation effort to use SCL for PSL. Every PSL worker is started with a Worker Enclave in SCL, and attested by In-Enclave FaaS Leader. The code for PSL is directly executed on sandboxed Javascript engine. Our key distribution and management protocol provides every worker enclave with unique private keys derived from a master key by the FaaS Leader. The keys can be easily generated, verified and rotated to prevent potential key leakage.

A. Sandboxing

To isolate in-enclave applications from the PSL infrastructure, we use a sandboxed Javascript interpreter, Duktape, to dynamically interpret the Lambda program at runtime. In order for sandboxed Javascript program communicate with its other counterparts, we modify the Duktape and introduce two functions put and get to interact with SCL. We note that the program is transparent with and sandboxed from the underlying cryptographic schemes, so that it cannot observe and unintentionally leak the cryptographic secrets.

B. Attestation

PSL builds its attestation protocol on top of the Asylo’s attestation primitives. For each worker or FaaS leader that requires code running in the enclave, it starts with an Assertion Generation Enclave(AGE) as a Quoting Enclave(QE) that helps generates quotes on behalf of the enclave. The QE is certified by the Provisioning Certification Enclave (PCE), which uses Provisioning Certification Key (PCK) that is written, and distributed by Intel to sign QE’s hardware REPORT. The PCK certificate chain can be traced back to Intel SGX Root Certificate Authority(CA). After receiving an assertion request from a remote attester, the worker or FaaS leader establishes bi-directional local attestation with AGE to forward the assertion request from the remote attester and to get the assertion from the AGE. After the remote attester verifies the assertion, they establish a secure gRPC channel and the remote attester sends confidential information, such as cryptographic keys, to the worker or FaaS leader.

C. Launching Process

Each PSL worker node starts a lambda runtime in the enclave, which is registered with a third-party job scheduler. To launch a PSL workload, the user contacts the job scheduler with an encrypted program and corresponding launching configurations, such as how many lambdas are needed. The job scheduler contacts idle worker nodes within its registry and forwards the encrypted program to the potential worker nodes. To prevent malicious worker nodes, the user sends cryptographic keys via a separate channel through FaaS leader that runs in an enclave. After verifies the identity of the FaaS leader using remote attestation, the worker distributes the keys to the FaaS leader. The workers which receive the encrypted program also verify itself with remote attestation with the FaaS leader. After the workers are authenticated, the FaaS leader forwards the cryptographic keys to the worker nodes, and the worker nodes can decrypt and run the program. When the PSL workload is finished, all the user-related confidential information, such as the content of the memtable, is cleared by a RESET command by the FaaS leader, because restarting the lambda runtime may take longer time. The FaaS leader keeps track of the idleness of the workers and only distribute keys to the idle workers. The workers after RESET need to be re-attested for the next PSL workload.

D. Key Management

In PSL, key management is needed for worker enclaves to verify each other’s identity, and to satisfy the security guarantees of DataCapsules. Our key management design goals are: 1) Provenance; by providing a unique key pair per worker enclave; 2) Authentication; each worker enclave needs to sign with the (derived) DataCapsule owner identity; 3), PSL uses a hierarchical structure with a parent FaaS Leader and multiple child Lambda Enclaves. We want to design a key management scheme to efficiently manage hierarchically structured key pairs with low overhead.

To derive a each set of public/private key pairs from a master key, we use Hierarchical Deterministic (HD) Wallet from Bitcoin Wallet[30]. HD Wallet is a key management scheme that allows all the child public keys to be derived from a single parent public key. We use hardened derived child keys, a scheme of HD wallet to prevent the problem of HD Wallet that the leakage of the child private key leaks the private key...
Key Leakage and Rotation
We enable efficient key rotation invocations may not affect previous function invocations. Keys per function invocation. This ensures any new function depends on the user's threat model. Users may choose to rotate SYNC reports. The frequency in which key rotation occurs by validating the keys against the consistency coordinator's that they are using the correct signing keys in a given epoch. SYNC reports. This ensures that any enclave worker can verify coordinator and include the current parent public key in the or enclave worker failure, we can rely on SCL's consistency from the new key pair. To handle lost multicasted messages and multicasting the public key to all enclave workers; (2) the FaaS Leader generates a child public/private key pair for the workers from the new hardened key pair. 4) The FaaS Leader multicasts the application public key to all enclaves. 6) Each worker enclave derives the other worker enclaves' public keys using the application public key.

With this key management scheme, both provenance and authentication are achieved. In particular, 1) every worker enclave has its own signing key (i.e. provenance), and 2) every worker can sign messages on behalf of the owner identity using a derived grandchild key pair (i.e. authentication). This scheme minimizes key exchanges among the client, the FaaS Leader, and worker enclaves. For n worker enclaves, the initial key exchange overhead reduces from possibly \(O(n^2) \) for a naive key management scheme to \(O(n) \).

Key Leakage and Rotation
We enable efficient key rotation scheme with SCL that can derive and distribute a new set of key pairs for the workers from the new hardened key pair. This prevents the cryptographic key leakage over time. This is done by (1) client deriving a new child hardened key pair and multicasting the public key to all enclave workers; (2) the FaaS Leader then derives a new set of key pairs for the workers from the new key pair. To handle lost multicasted messages or enclave worker failure, we can rely on SCL's consistency coordinator and include the current parent public key in the SYNC reports. This ensures that any enclave worker can verify that they are using the correct signing keys in a given epoch by validating the keys against the consistency coordinator's SYNC reports. The frequency in which key rotation occurs depends on the user's threat model. Users may choose to rotate keys per function invocation. This ensures any new function invocations may not affect previous function invocations.

VII. IMPLEMENTATION
Our codebase contains 32,454 LoC in C++ excluding comments and 43,011 LoC code base in total counted by cloc[1]. The core SCL KVS code consisted of roughly 4,000 lines of code in C++, excluding the attestation, distributive application implementations, and experiment scripts. We implement the KVS directly on top of Asylo instead of on a containerized enclave environment. This yields a much smaller TCB than related works such as Speicher [9].

Asylo is a hardware-agnostic framework for TEEs, supporting Intel SGX(v1 and v2) and ARM TrustZone. It also provided a POSIX compliant library that made it easier to port existing applications into enclaves. We use ZeroMQ to implement network multicast and communication between Worker Enclaves. We use gRPC to create a secure FaaS Leader Enclave, which can generate HD Wallet keypairs and startup enclave workers. We use DukTape, an embedded JavaScript engine in C++, to sandbox enclave applications, now that enclaves can directly execute JavaScript code.

CapsuleDB is implemented in C++ and is 2200 LoC. It also uses several features of Asylo and the structures created in the PSL implementation. We use a similar mutable implementation, but leverage mutexes on each entry instead of a spinlock. Due to the implementation timeline, the current version of CapsuleDB writes data to disc rather than to a network attached DataCapsule using the Boost serialization library. The DataCapsule replication service contains about 1,000 LoC in C++ excluding comments. We use RocksDB as embedded persistent storage for each DataCapsule replica, ZeroMQ to implement network communication between DataCapsule replicas, and OpenSSL for signature and verification.

VIII. EVALUATION
SCL leverages DataCapsules as the data representation to support inter-enclave communication. To quantify the benefits and limitations, we ask: (1) How does SCL perform as a KVS(§VIII-B)? (2) How do circular buffer (§VIII-D), and replication (§VIII-C) affect the overhead? (3) How long does it take to securely launch a PSL task? (§VIII-E) (4) How much does SCL pay to run in-enclave distributed applications(§VIII-F)?

A. Experiment Setup
We evaluate PSL on fifteen Intel NUCs 7PJYH, equipped with Intel(R) Pentium(R) Silver J5005 CPU @ 1.50GHz with 4 physical cores (4 logical threads). The processor has 96K L1 data cache, a 4MiB L2 cache, and 16GB memory. The machine uses Ubuntu 18.04.5 LTS 64bit with Linux 5.4.0-1048-azure. We run Asylo version 0.6.2. We report the average of experiments that are conducted 10 times. For each NUC, it runs two PSL threads by default.

B. End-To-End Benchmark of SCL
Benchmark Design: An end-to-end evaluation of SCL starts the worker sends the first acknowledgement to the user, and ends when the client receives its last request’s response from the workers. We evaluate the performance using a workload generated by YCSB workload generators. Due to the difference between get and put protocols, we focus on the read-only and write-only workloads. All workloads comply zipfian distribution, where keys are accessed at non-uniform frequency. For each get, we evaluate the performance of getting from the local memtable of the lambda(get(cached)), and of getting the data from CapsuleDB(get(uncached)). Each get request is synchronous that the next request is sent only if it gets the value of the previous get request.

Overall Performance: Figure 9 shows the throughput of the end-to-end YCSB benchmark. The aggregated throughput of put. The get(CapsuleDB) throughput is flattened as we increment the number of the lambdas, because we run one single CapsuleDB instance that handle all the queries, which is bottlenecked as the number of lambdas that issue get(CapsuleDB) increases.
C. Replication-enabled End-To-End Benchmark

Benchmark Design: Replication-enabled end-to-end evaluation measures the performance of the SCL layer with durability. In particular, it includes the overhead of workers sending each write to the DataCapsule replicas, a quorum of DataCapsule replicas receive data and persist it on disk, and then acking the worker. We evaluate the performance using a workload generated by YCSB workload generators. Since replication involves only write operations, we evaluate a write-only workload. The workload involves a zipfian distribution, with keys accessed at a non-uniform frequency.

Overall Performance: Figure 10 illustrates the performance of the DataCapsule backend. It shows that SCL with replication has reached a bottleneck after 9 workers while SCL without durability continues to scale. The performance drop and bottleneck are due to several reasons: 1) disk operations are inherently slow; 2) the burden on replication system’s leader is high for collecting acks from DataCapsule replicas and sending the aggregated ack back to worker. We aim to improve SCL with replication by mitigating the workload on the replication leader.

D. Circular Buffer Microbenchmark

Benchmark Design: The circular buffer provides efficient application-enclave communication. We compare the performance of the circular buffer with the SGX SDK baseline and the state-of-the-art HotCall. We evaluate them based on the number of clock cycles required for communications in both directions.

Overall Performance: As shown in Table I, baseline SGX SDK incurs a significant overhead of over 20,000 clock cycles from application to enclave, and over 8,600 clock cycles from enclave to application. For both directions, HotCall is able to reduce the overhead to under a thousand clock cycles. Our circular buffer reduces overheads even further. Our solution only requires 461.1 and 525.54 clock cycles from application to enclave and vice versa. Compared to state-of-the-art HotCall, our solution provides 103% and 44% improvements, respectively.

E. Lambda Launch Time

Benchmark Design: We evaluate the launching process of PSL by running Workers and FaaS leader in SGXv2 hardware mode, which the worker lambda, FaaS leader and user on different physical Intel NUCs machines. For each NUC, it runs Asylo AGE in hardware mode with PCE signed by Intel that helps enclave generates attestation assertions. We assume the machines already have the pulled the prebuilt lambda runtime binaries and execute the runtime. The cold-start bootstrapping process lasts 42 seconds on average in our experiment setting.

Lambda Launch Breakdown: Figure 11 show the latency breakdown of the Paranoid Stateful Lambda launching process. The bold line represents the critical path of the lambda launching process. The total launching time to run code in authenticated worker is less than 0.61 second.
worker enclave. We note that this attestation latency is mostly constituted by the network delay of gRPC request and the local attestation assertion generation time of the worker’s AGE, so it does not incur scalability issue with the FaaS leader when multiple workers are launched at the same time.

F. Case Study: Fog Robotics Motion Planner

We experiment with a sampling-based motion planner that is parallelized to run on multiple concurrent serverless processes, MPLambda [23], and modifying it to use SCL. Most of the porting effort done was to integrate MPLambda’s build system into Asylo. The modification is about 100 LoC. Many system calls that MPLambda uses are proxied by Asylo.

Using MPLambda with SCL, we compute a motion plan running a fetch scenario in which a Fetch mobile manipulator robot [17] declutters a desk. We measure the median wall-clock time to find the first solution by the planners. We also measure the median average path cost per time of the lowest cost path the planners return. This captures how efficiently the planners can compute the best path. Because the planner uses random sampling, we run the same computation multiple times with different seeds. As with previous experiments, we run this test on Intel NUCs 7PJYH, equipped with Intel(R) Pentium(R) Silver J5005 CPU @ 1.50GHz with 4 physical cores (4 logical threads). We set a timeout of 600 seconds for the planners to compute a path.

We run up to 8 planners, running on separate Intel NUCs using SCL and comparing this to running MPLamda without SCL. We observe an increase in performance as we scale out the number of planners. Each planner runs computationally heavy workloads and PSL introduces several threads (i.e. crypto actors, zmq clients, OCALL/ECALL handlers) that take away CPU time from the planner thread. Furthermore, MPLambda planners use the Rapidly-exploring random tree (RRT*) [24] algorithm, to search for paths by randomly generating samples from a search space, checking whether the sample is feasible to explore, and adding the sample to a constructed tree data structure. The tree data structure may grow large and take up a significant amount of memory. Memory in SGX is a limited resource and increased memory pressure leads to more misses in the EPC and requiring paging in and out of enclaves frequently. There is work on limiting the memory usage of RRT* by bounding the memory for the tree data structure, which we can adopt in future work. [2].

IX. RELATED WORK

Current Frameworks for FaaS: Existing cloud-based FaaS implementations, such as AWS Lambda [8] or OpenFaaS [32], underutilize computing resources on the edge of the network. Attempts to deploy such frameworks to the edge, such as Akamai [4], do not deliver the security guarantee required by the Edge Computing. S-FaaS [5], Clemmys [42] uses TEE and cryptographic attestation to protect the confidentiality of the execution. For all the aforementioned FaaS frameworks, they do not support stateful FaaS execution [38].

Secure Execution with TEE: PSL is motivated by the vision that the distributive worker can run securely in a TEE on a single host, making the security and efficiency of communication among multiple enclaves a logical research problem. This vision is supported by a variety of available container services and platforms, for example, TEE-enabled container services such as GrapheneSGX [43], Scone [7], and Occlum [34] and hardware TEE platforms [27], Elasticclave [46] and Penglai [16]. Snort [26] is an in-enclave intrusion detection framework that also uses a circular buffer for communication. We note our approach differs from Snort in that they use circular buffers to convert hugepages in DPDK, while our circular buffer design is to eliminate the context switch in ecalls/ocalls.

KVS based on TEE: Existing TEE-based KVS designs mainly focus on single-TEE persistence and performance optimizations. ShieldStore [25] solves the 128MB limitation of SGXv1 by conducting most processing outside the enclave. Each key-value pair is encrypted and protected with a signature when it leaves the enclave, and the main data structures of the KVS are also stored outside the enclave. The in-enclave KVS server handles queries from an out-of-enclave client by fetching encrypted key-value pairs from untrusted memory. Speicher [9] and DiskShield [3] implement secure storage inside a secure enclave, so that the TEE can exchange data securely to the underlying storage of the host. Both SCL and Speicher [9] use a LSM-based structure for durability, but SCL takes a step further to integrate the stored data blocks as part of the DataCapsule hash chain, and to enable efficient inter-enclave communication. SCL also has a much smaller TCB required than Speicher. EnclaveCache [10] and Omega [14] supported shares, in-memory KVS cache but does not support communication of enclaves from different hosts.

X. CONCLUSION

We introduced Paranoid Stateful Lambdas, a federated FaaS framework for secure and stateful execution in both cloud and edge computing environments. We focus on the security and communication aspects of PSL by exploiting the properties and extensions of DataCapsules, a cryptographically-hardened blockchain. We propose an abstraction, the Secure Concurrency Layer, that provides security and eventual consistency to the enclaves, as well as discuss its durability and fault tolerance semantics. On our end-to-end benchmark, SCL has up to 81x higher throughput and 2.08x lower latency than the unoptimized baseline. Our system throughput scales linearly with the number of the lambdas, and our lambda task can be dispatched to authenticated workers within 0.61 second.
REFERENCES

[27] Dae-yol Lee, David Kohlbrenner, Shweta Shinde, Dawn

[38] Vikram Sreekanti, Chenggang Wu, Xiaoye Charles Lin, Johann Schleier-Smith, Jose M Faleiro, Joseph E Gonza-