
Exploratory and Explanatory Tools for ML Application

Development

Eldon Schoop

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-234

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-234.html

November 15, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Exploratory and Explanatory Tools for ML Application Development

by

Eldon K. Schoop

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Björn Hartmann, Chair
Professor John Canny
Professor Trevor Darrell

Doctor Yang Li

Fall 2022

Exploratory and Explanatory Tools for ML Application Development

Copyright 2022
by

Eldon K. Schoop

1

Abstract

Exploratory and Explanatory Tools for ML Application Development

by

Eldon K. Schoop

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Björn Hartmann, Chair

While Deep Learning (“DL”) techniques have enabled groundbreaking advances in many
domains, non-expert DL users encounter significant usability challenges when attempting to
develop, debug, and interpret DL applications. This work describes how techniques from
program analysis and DL interpretability are drawn upon to build novel, interactive tools
that support users in important stages of DL development. Key interactions of these tools
facilitate pattern discovery through exploration and provide explanations that reveal un-
derlying structure. At early stages, Acumen helps users find suitable templates to start
their DL projects through exploring and annotating an interactive visualization of code em-
beddings and extracted attributes. Umlaut helps users find and fix silent errors in DL
programs during model training with an interface unifying visualizations, code, and error
explanations. IMACS helps users explore and compare influential concepts extracted from
image classification models during model evaluation. User studies reveal how these systems
address usability gaps at di↵erent stages of the DL development process, as well as how these
interaction techniques can generalize to other scenarios.

i

To Mom and Dad

ii

Contents

Contents ii

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Contributions . 3
1.2 Overview . 5

1.2.1 Acumen . 5
1.2.2 Umlaut . 5
1.2.3 IMACS . 5

1.3 Statement of Multiple Authorship and Prior Publication 6

2 Acumen: Interactive Exploratory ML Project Search 7
2.1 Introduction . 7
2.2 Background . 10

2.2.1 ML Code Communicates Limited Context 10
2.2.2 Variation in ML Project Structure 10
2.2.3 Finding and Comparing Non-Code Elements 11
2.2.4 Designing for ML Project Search . 12

2.3 Related Work . 12
2.3.1 Code Search . 12
2.3.2 Exploring and Understanding Datasets 13
2.3.3 Library Exploration Tools . 14

2.4 Using Acumen . 14
2.4.1 Structured Search: Filtering Project Attributes 14
2.4.2 Unstructured Search: Exploring Relationships Between Files 16
2.4.3 Annotating and Labeling Meaningful Subsets 17
2.4.4 Using Labeled Points as a Basis for Further Exploration 17

2.5 Implementation . 17
2.5.1 Data Collection Pipelines . 18

iii

2.5.2 Acumen Web Interface . 19
2.6 Evaluation . 20

2.6.1 Participants . 20
2.6.2 Setup . 20
2.6.3 Procedure . 21

2.7 Results . 22
2.7.1 Semi-structured Interviews Rea�rm Existing ML Project Search Chal-

lenges . 22
2.7.2 Acumen Helped in Search, Promoted Learning, and Revealed Project

Structures . 23
2.7.3 Combining Metadata in Table with UMAP was Important for E↵ective

Searches . 24
2.7.4 Two Key Workflows Emerged . 25

2.8 Discussion and Future Work . 26
2.8.1 Interpretation of UMAP . 26
2.8.2 Project Search as a Sensemaking Task 27
2.8.3 Usability and Design Improvements 27

2.9 Conclusion . 28

3 UMLAUT: Debugging Deep Learning Programs using Program Struc-
ture and Model Behavior 29
3.1 Introduction . 29
3.2 Background: Challenges in Deep Learning (DL) Development 31

3.2.1 Key Di↵erences of Designing for DL over Classical ML 32
3.2.2 Detecting Errors during DL Training and Evaluation 33
3.2.3 Mapping Symptoms to Root Causes 34

3.3 Related Work . 34
3.3.1 Interfaces for Supporting Classical Machine Learning Workflows . . . 34
3.3.2 Tools for comparing and improving DL Model Performance 35
3.3.3 Prescribing Best Practices and Code Changes in Context 35

3.4 Debugging ML Programs with Umlaut . 36
3.4.1 Importing Umlaut and Creating a Session 36
3.4.2 User specification of Umlaut checks 37
3.4.3 Actionable Error messages . 37
3.4.4 Bidirectional Link Between Errors and Interactive Visualizations . . . 40

3.5 Umlaut Heuristics . 41
3.5.1 Data Preparation . 41
3.5.2 Model Architecture . 42
3.5.3 Parameter Tuning . 43

3.6 Implementation . 44
3.6.1 Umlaut Client Shims and Structure 44
3.6.2 Umlaut Client Logic: Running Checks and Raising Errors 46

iv

3.6.3 Umlaut Server . 47
3.7 User Evaluation . 47

3.7.1 Participants . 47
3.7.2 Setup . 48
3.7.3 Study Design and Tasks . 48
3.7.4 Procedure . 49

3.8 Results and Discussion . 50
3.8.1 Umlaut Helped Participants Find and Fix Significantly More Bugs . 50
3.8.2 Open-Ended Feedback . 51

3.9 Limitations and Future Work . 54
3.10 Conclusion . 55

4 IMACS: Image Model Attribution Comparison Summaries 56
4.1 Introduction . 56
4.2 Related Work . 58

4.2.1 ML Model Inspection Frameworks . 58
4.2.2 ML Interpretability Algorithms . 59

4.3 Building Blocks for Summarizing Attribution Di↵erences Between Models . . 61
4.4 The IMACS Algorithm . 61
4.5 Visualizing Di↵erences in Attributions Across Models 64

4.5.1 Cluster Histogram Visualization . 66
4.5.2 Concept Cluster Visualization . 69
4.5.3 Cluster Confusion Matrix Visualization 70
4.5.4 Alternative Sorting and Filtering Strategies 71

4.6 Validation . 72
4.6.1 Basic Validation Check . 72
4.6.2 Visualizing Domain Shift with Satellite Images 72

4.7 Discussion and Limitations . 75
4.7.1 Interactivity . 78

4.8 Conclusion . 78

5 Conclusion 79
5.1 Restatement of Contributions . 79
5.2 Future Work . 80

5.2.1 Data Collection and Labeling . 80
5.2.2 Closing the Loop from Interpretation and Evaluation 80
5.2.3 Human-Centered Model Explanations 81
5.2.4 Augmenting Traditional Software Development 81

5.3 Summary . 82

Bibliography 83

v

List of Figures

1.1 An idealized ML development workflow adapted from Hill et al. and Amershi et
al. [6, 64]. In practice, this process is rarely linear—it is iterative and experimen-
tal [123]. In turn, the stages behave more like a linear dependency graph than a
linear process. 4

2.1 Acumen is a tool that aims to help ML developers search for and explore ML
projects. Acumen renders neural source code embeddings in an interactive
UMAP visualization (1a) to help participants discover relationships between files
and projects. Acumen also extracts high-level attributes from open-source ML
software repositories (e.g., datasets, tasks, frameworks, etc.) and renders them in
a searchable table (2). Filters applied by lasso-selecting points in the UMAP or
table searches cause the other to update (3). Recalculating UMAP on the smaller
set of points highlights finer variations (1b). 8

2.2 Acumen extracts descriptive attributes and embeds source code from a given
input of ML projects, and renders this data in an interactive visualization that
enables iterative, exploratory search. 9

2.3 In our scenario, Alex applies table filters to narrow the set of projects down to a
manageable size (S1-S3a), and then lasso-selects part of the UMAP visualization
to dive deeper (S3b). This set of points is labeled, and filtered further with the
table (S4) to arrive at a small set of good candidates. To further explore the
dataset, Alex undoes many filtering steps and dives into dense UMAP clusters
(S5-S7). Project structures and conventions are explored (See Figure 2.5). . . . 15

2.4 Acumen tooltips bring table data into the UMAP visualization. Tooltips help
users quickly skim signals among files and decide if one is worth examining. . . . 16

2.5 Acumen’s code understanding model and UMAP can provide powerful groupings
of source files based on their purpose. Callouts annotate clusters with author-
provided labels (e.g., postprocessing, evaluation), and list filenames found within
the highlighted areas (e.g., crop bbox.py, metrics.py). 18

vi

3.1 The Umlaut web interface combines visualizations of model metrics (1); a time-
line showing errors over epochs (2); and explanations of underlying error con-
ditions with the program context and suggestions for best practices with code
examples (3). Plots and the timeline are automatically annotated with with
relevant data when errors are clicked. 30

3.2 To debug DL programs, users first recognize symptoms from errant model be-
havior or code structure. Experts use mental models built from experience to
translate from these symptoms to hypotheses of underlying root causes. Finally,
code changes are implemented to test the underlying hypotheses, and training is
rerun to check them. 32

3.3 Umlaut errors include several elements to help developers close the DL debug-
ging loop. Errors include short and long descriptions (1) with suggested solutions
(2), often incorporating program context (3). Solutions can include code snippets
or hints (4), and outbound documentation and Stack Overflow links (5). To help
users pinpoint the root cause(s) in code, some errors include links to open the
source file in VSCode at the specific location of the suspected root cause (6). . . 38

3.4 Umlaut uses the Keras callback system to collect metrics about the training
process during runtime. Umlaut also injects variables into the underlying Ten-
sorflow model graph to capture input and output values, and collects a reference
to the model object. 45

3.5 The Umlaut client uses data collected from shims to run static checks of the
model before training, and dynamic checks during training. Heuristic checks and
errors (reflecting root causes) are distinct concepts in Umlaut’s architecture,
allowing similar, yet subtly di↵erent symptoms to raise di↵erent root causes from
within the same check. 46

3.6 Distribution of participants’ ratings on likert-scale questions (Top row: 1=Strongly
Disagree to 5=Strongly Agree; Bottom Row: 1=Very Unlikely to 5=Very Likely) 51

4.1 IMACS helps stakeholders compare two models’ behavior by aggregating, clus-
tering, and visualizing a sample of the most influential image segments (for each
model). The double histogram visualization above shows a set of image segments
clustered by IMACS, with the segments organized on the horizontal axis by at-
tribution scores (more highly attributed segments appear on the right). Each
histogram corresponds to an input model and its attributions. In this example,
both models are trained to classify images of flowers, but the second model (bot-
tom) was trained on images of sunflowers that also contain watermarks. In the
bottom histogram, we can see that this latter model finds the watermark feature
highly influential, often leading to higher attribution scores than sunflower parts.
Additional clusters for this example can be viewed in Figure 4.4. 57

vii

4.2 IMACS first selects a subset of an evaluation dataset (by default, a sample of
images with balanced confusion matrices for each model). Next, images are seg-
mented into regions, and attribution scores are calculated for those regions. The
regions that contribute most to each models’ predictions are then embedded using
an ImageNet-trained model, and clustered using k-means. The IMACS visual-
ization ingests data from each step. 62

4.3 Example “IMACS” watermark added to images in the perturbed TF-Flowers
dataset. “IMACS” watermarks are added at random locations to 50% of the
“sunflowers” class for training, and 50% of all classes for validation. Left: original
image. Right: image perturbed with watermark. 64

4.4 IMACS histogram visualization of the 2 remaining (of 3) clusters from Figure 3.1.
Cluster 2 (top group of 2 plots) contains mostly watermarks. Model B clearly
attributes these watermarks more highly than model A (its attributions are on
the right side of the axis, while model A’s attributions are centered around 0).
This outcome reflects model B’s association between watermarks and sunflowers. 65

4.5 Concept Cluster Visualization of the flower classification example. The top cluster
containing watermarks has significantly higher attributions from the second model
(third plot, blue bar larger than the orange bar), reflecting the perturbed model’s
association between watermarks and sunflowers. 67

4.6 An IMACS cluster with associated graphs. 68
4.7 Image segments are annotated with their attribution score and classification cor-

rectness. 68
4.8 The IMACS visualization annotates clusters with three plots that present infor-

mation about the cluster’s composition (the proportion of segments representing
each model’s sampling), coherence (the distribution of its attribution scores), and
its importance (the average attribution scores for each model). 69

4.9 Two side-by-side confusion matrices for a particular cluster in the running ex-
ample (shown in Figure 4.1 and center rows of Figure 4.5). Segments from the
baseline model are shown on the left, and segments from the model trained to
associate watermarks with sunflowers is on the right. Watermarks are prevalent
in the top-right quadrant (false positives) of the right confusion matrix. 71

4.10 An IMACS histogram visualization comparing a trained flower classification
model with an untrained model on the “sunflowers” class of the TF-Flowers
dataset. Note the untrained model’s attributions are all near zero, while the
trained model has much higher variation in attribution scores. 73

4.11 IMACS is used to compare two models trained on di↵erent land use datasets:
eurosat and uc merced. Here, both models are evaluated on the “residential” class
of uc merced. The second cluster (second set of two rows) shows how the eurosat
trained model highly attributes greenery and vegetation as important features for
the “residential” class. Other clusters (e.g., first set of two rows) show how the
uc merced trained model attends to features such as angled roofs, and buildings
in close proximity to green areas. 74

viii

4.12 Histogram visualizations showing the first two of four clusters comparing Eurosat
and Merced Land Use trained models evaluated on the “residential” class of the
Merced dataset. Histograms are presented with the same ordering of clusters as
Figure 4.11. 76

4.13 Histogram visualizations showing the second two of four clusters comparing Eu-
rosat and Merced Land Use trained models evaluated on the “residential” class of
the Merced dataset. Histograms are presented with the same ordering of clusters
as Figure 4.11. 77

ix

List of Tables

2.1 Columns created by participants in our exploratory study. Files without labels
automatically labeled as “Unknown” are omitted. 22

4.1 Building blocks for summarizing and comparing two models’ attributions. Images
on the right are hypothetical examples. 60

x

Acknowledgments

There are many ways to describe the journey of the PhD. Inspiring, reflective, excruciating,
and fulfilling are some words that come to mind. But no matter the words used to describe
this amazing and fantastic journey, a truth of any PhD is, it is not an individual achievement.
It takes a village to produce a single PhD. In this section, I hope to thank some of the many
people who helped make mine possible.

Many, many thanks are due to my research advisor, Björn Hartmann, who supported
me since I was an undergraduate student. Björn stuck with me throughout many seismic
shifts in my research focus, and was able to keep advising me throughout, a feat that feels
nothing short of incredible. Björn’s guidance was instrumental, from digital fabrication to
Augmented Reality to supporting ML developers. More than anything, Björn taught me
how to think. He taught me how to ask the right questions, steered me to the right methods,
and gave me the confidence that I could answer them. My journey with Björn started with
designing card readers for the Jacobs Institute, since before that building existed, and it’s
unreal to see that, underneath everything else, the system I made as an undergrad is still
being used now, almost 8 years later. Thank you, Björn, for believing in me.

I would like to extend deep thanks to my other committee members. John Canny taught
me how to bring so many di↵erent perspectives to my work, from developing a stronger
analytical perspective to having an eye for the philosophy of science, to understanding the
social impacts of the work we do as technologists. The amount of hats John can wear
is nothing short of amazing, and it’s inspiring. Trevor Darrell warmly welcomed me into
a broader community of AI researchers and developed my confidence and vocabulary for
sharing my work with that audience. I’ll never forget the great conversations with the X-AI
group. I hope to continue building bridges between HCI and AI well into the future. Yang Li
was an incredible mentor at Google, who introduced me to the domain of UI understanding
and taught me to aim high with my research. Yang was amazingly supportive—he gave me
space when I needed it and pushed me when I needed it too. I’m proud of the work we did
together.

I was lucky to have amazing collaborators, mentors, and friends throughout this journey,
who all are owed my deepest gratitude. Forrest Huang and I authored 5 papers together
and collaborated on many more. Each time, I learned so much. Forrest’s insights have
helped shaped so many of my works, and steered the arc of my career. Thank you Forrest,
for making me a better researcher. Valkyrie Savage took me under her wing as a budding
fabrication researcher, and showed me the ropes. I was clueless about what grad school was,
until Valkyrie opened that door for me. Tolga Bolukbasi was a strong advocate for me. He
helped me take my first steps into the ML research community at Google, and taught me so
many things about interpretability research. Thanks also to Michael Terry for bringing me
on to IMACS and making that work possible. I’m deeply grateful to have been able to work
with James Smith, who made HindSight and my masters thesis possible. James brought
an uncanny touch of brilliance and humor to our work, and I feel incredibly lucky to have
worked together. Thanks to the senior students in the lab, Andrew Head, Amy Pavel, Peggy

xi

Chi, and Will McGrath, who taught me how to communicate my ideas, and, really, how to do
research. Your insights and suggestions have improved all of my work dramatically. Thanks
also to Philippe Laban for the pastry adventures, and for bouncing many ideas around which
made a lot of this work possible. Thanks to Chris Myers for teaching me how to be a better
designer and spending so much time with me in the Invention Lab. I’m proud of the work
we did together with MakerPass and am grateful to have been part of the community of
superusers you built. Elena Glassman, Tianyi Zhang, and Miryung Kim taught me about
program analysis, and turned Acumen into what it is today. Michelle Nguyen: the project
we did together, Drill Sergeant, is one of the things I’m most proud of. Thank you for helping
make my grad career possible. And thanks to Kevin Tian, Eric Paulos, and Sean Follmer
for your guidance and mentorship which made Drill Sergeant possible.

My coauthors and industry collaborators were critical and instrumental to getting me
through this journey. Thank you to Imran Sekalala, Gang Li, Xin Zhou, Ben Wedin, Andrei
Kapishnikov, Nathan Khuu, Mitchell Karchemsky, and Daniel Lim. Thanks also to my lab-
mates for the great friendships, stimulating conversations, and occasional shenanigans we’ve
had in the incredible Berkeley Institute of Design space. You helped me during conference
deadlines, gave feedback on the bad iterations of my work until they became good iterations,
and shared many fun times together. Jeremy Warner, JD Zamfirescu, Bala Kumaravel, Shm
Almeda, Erin Kraemer, Molly Nicholas, Sarah Sterman, Nate Weinman, Ananya Nandy,
Yakira Mirabito, Jingyi Li, Ilya Rostovtsev, John MacCallum, Gustavo Soares, Pablo Pare-
des, Stefanie Da↵ara, Tomas Vega, Corten Singer, and Tomas Georgiou. Thanks also to
those who took big bets on me and believed in my ideas: Narinder Singh, Adam Hutz, Mark
Oehlberg, Carrie Cai, and David Culler.

Outside of research, it has been a privilege to work with other students who have com-
mitted to serving the department through the EECS Graduate Student Association. Gabriel
Matute, Kelly Fernandez, Josh Sanz, Sara Fridovich-Keil, Alon Amid, Hani Gomez, Regina
Eckert, and Gabe Fierro all inspired me to work hard to make change happen, and all made
the department a better place. I’m proud to have worked with together with you.

I also need to give a very special thanks to Ti↵any Reardon, Marvin Lopez, Scott Moura,
and Oscar Dubon for their work in a program called T-Prep. T-Prep is an intense summer
program for incoming engineering transfer students. T-Prep helps students prepare for the
academic rigors of Berkeley, makes the overwhelming amount of resources this campus has to
o↵er more accessible and familiar, kickstarts career searches, and creates an amazing cohort
that sticks long after graduation. I was part of the very first T-Prep program in 2013, when I
transferred to Berkeley from community college. The program has left such a strong impact
on me that I have tried to stay a part of it every following year. Working with Scott on
teaching the design studio for T-Prep has been a highlight of every year I’ve been able to do
it. Ti↵any, the work you do is amazing, and you were such an important person in getting
me to finishing and filing this document.

Thanks also to the amazing friends who got me through the small things by helping me
focus on the big picture. Thank you to Arsam and Mahboubeh, and thank you to Connie.
And finally, thank you to my parents, Jila and Eric, who supported me throughout this entire

xii

journey with all its peaks and valleys. Thanks for the phone calls, the boxes of amazing fruits
from the garden, and for helping me get through it all.

1

Chapter 1

Introduction

In 2011, venture capitalist Marc Andreessen made a proclamation that has since been re-
garded as a prophetic reflection of the technology industry: software is eating the world [8].
In the original article, Andreessen describes how software companies will continue to engulf
and devour traditional industries. At the time the article was written, the software industry
was far from nascent, but software continues to take more and more bites out of traditional
industries and our world.

However, the landscape of software itself is changing. The advent of breakthrough re-
search achievements in Machine Learning (ML) has enabled advances in many domains,
from healthcare [81, 106], to transportation [160], to entertainment [116]. Modern Deep
Learning (DL) methods, which use Deep Neural Networks (DNNs) have enabled many novel
applications and interactions, from generating images [105, 128, 132, 137, 173], UIs [71],
or sketches [72] from text; to generating [17, 131] or summarizing [96] natural language; to
generating [23], repairing [163], or documenting [36] software source code. Andrej Karpathy,
a prominent ML researcher, wrote a similarly prophetic declaration to Andreessen’s about
how traditional software programming paradigms will eventually be overtaken by “Software
2.0”, or the use of powerful DL models for generic tasks [88]. Many of these predictions
are coming to fruition, especially with the advent of large, general-purpose models that can
be carefully prompted to generate output appropriate for very specific tasks [17]. Machine
Learning applications are now the software that is eating the software that is eating the
world.

This surging interest in ML has created a new landscape of development tools for working
with deep neural networks. Many artifacts from the research community have been translated
to products and software libraries [1, 10, 110] at record pace. Numerous development tools
have emerged which aim to simplify the process of developing ML applications by reducing
the amount of boilerplate code needed to train and deploy ML models [24, 34, 70, 76,
147, 166]. However, developing ML applications still has added challenges and knowledge
requirements compared to traditional software. Studies surveying practitioners from software
engineers learning ML [21] to professional, interdisciplinary ML teams [6, 64] all point to
numerous, common hurdles encountered when developing ML applications. These hurdles

CHAPTER 1. INTRODUCTION 2

appear at all stages of ML application development, from preparing datasets, to selecting
models and software architectures, to training, evaluation, and deployment (Figure 1.1).
This thesis focuses on three specific problems: project search, training and tuning, and
model evaluation.

• Project Search: At early stages in the process, software developers wishing to build
ML applications often search for existing applications to serve as starting points rather
than start from scratch. While there are many open-source ML projects available
online, searching for self-contained ML projects has unique challenges. ML code does
not communicate as much context as traditional software, and projects consist of more
than code, spanning training data, research publications, and saved model weights.
These can be di�cult to search for and are often not linked to ML software repositories.

• Training and Tuning: Once an ML application developer finds a template or suitable
starting point, the intended application often requires retraining or fine-tuning the
included model. Training deep neural networks often generates non-descriptive error
messages, and can produce unusual output without any explicit errors at all. While
experts rely on tacit knowledge to apply debugging strategies, non-experts lack the
experience required to interpret model output and correct DL programs.

• Model Evaluation: Throughout the training process, developers often produce mul-
tiple iterations of their models, where di↵erent versions are evaluated and compared.
While metrics such as accuracy are a powerful means to succinctly describe a model’s
performance across a dataset or to directly compare model versions, experienced prac-
titioners often wish to gain a deeper understanding of the factors that influence a
model’s predictions.

At each of these stages, ML application developers encounter large search spaces of hy-
potheses to follow or decisions to make (finding example projects, determining the causes
of application faults, and locating performance abberations) that are too complex to fully
internalize or are di�cult to navigate without tacit experience. In traditional software en-
gineering, developers rely on a library of techniques which add structure to their processes,
such as unit testing, linting, debugging, di�ng, and search. However, ML development is
less structured, and comparatively much more iterative and experimental [123]. Software
engineering metaphors often do not translate well to ML development, making the search
spaces for some of these problems intractable. This work adapts techniques and metaphors
from creativity support tools [145], search and sensemaking [126], and exploratory data
analysis [158] to help ML developers navigate these complex search spaces. Specifically, this
work contributes tools that use two key interaction techniques: supporting exploration by
giving users the tools to discover useful patterns and organize points in these search spaces;
and providing explanations by surfacing important areas in these spaces through algorith-
mic or heuristic techniques that encode the knowledge of experts. Exploration builds on

CHAPTER 1. INTRODUCTION 3

creativity support and sensemaking tools that help users refine large spaces through inter-
active filtering, clustering, and comparison [145], and supports the earlier “foraging loop”
of the sensemaking process, which consists of seeking, filtering, and extracting information
for hypothesis formation [126]. Explanation adapts techniques from program analysis and
explainable AI to surface trends in underlying program state and match them with explana-
tory descriptions or visualizations [60, 93], and supports the later “sensemaking loop” of
the sensemaking process, which consists of gathering evidence to iteratively build mental
models [126].

This thesis introduces three interactive applications that apply these interaction tech-
niques to address critical usability hurdles present in the ML application development pro-
cess. The thesis statement of this work is:

Interactive tools that support exploration and provide explanations can help
developers debug and understand ML applications. Adapting techniques from
traditional software engineering for exploration and explanations can sca↵old
mental models for unstructured areas of ML development.

These tools all target users who are comfortable with software engineering, but who have
di↵erent levels of experience developing ML applications. Acumen is a tool which helps
moderately-experienced to fluent ML developers search for ML applications, particularly
for use as starting points for their work. Umlaut is a debugger for DNN training that helps
non-experts debug, understand, and fix errors in their code. Finally, IMACS is a method
and visualization to help experienced ML developers compare the behavior of image models
by extracting and di�ng the most influential parts of images they used to make predictions.
A core design philosophy of this work is to recognize that ML application development is
inherently an iterative process [123], often exploratory and unstructured. The goal of this
work is to equip and empower ML developers to identify or create useful and informative
structures throughout this process themselves. The tools presented in this thesis embody this
philosophy and apply the exploration and explanation interaction techniques to meet this
goal. Through user studies and other evaluations, we demonstrate the abilities of these tools
to assist with ML application development and make strides in mitigating these hurdles.

1.1 Contributions

This thesis explores the application of techniques from HCI, program analysis, and ML inter-
pretability to address usability challenges that surface at di↵erent stages of ML application
development. This thesis makes the following contributions:

• Acumen, an interactive web application that helps ML developers search and explore
datasets of ML projects. Acumen enables users to narrow down a large collection of
ML projects into smaller sets by filtering their non-code attributes (e.g., datasets used),
and then organizing the resulting source files among the projects with an interactive

CHAPTER 1. INTRODUCTION 4

Training &

Tuning

Evaluation
 Deployment

ACUMEN Umlaut IMACS

Code Search

Unit Testing

Debugging

Linting

Regression Testing

Diffing

Exploration Explanation Exploration

Explanation

Problem Formulation

Data Prep

Project /

Code Search

Model Selection

Figure 1.1: An idealized ML development workflow adapted from Hill et al. and Amershi et
al. [6, 64]. In practice, this process is rarely linear—it is iterative and experimental [123]. In
turn, the stages behave more like a linear dependency graph than a linear process.

visualization powered by a code understanding neural network. The key interaction of
Acumen is to combine exploratory, data-driven visualizations of code with metadata-
driven summaries of project attributes to support interactive exploration. We conduct
an exploratory evaluation to measure the usability and utility of Acumen and discover
workflows used by our participants to learn more about the search space.

• Umlaut, a debugger for Deep Neural Network (DNN) model training. It is a library
and web interface that checks Deep Learning (DL) program structure and model behav-
ior against a set of collected expert heuristics; provides human-readable error messages
to users; and annotates erroneous model output to facilitate error correction. Umlaut
links code, model output, and tutorial-driven error messages in a single interface. Um-
laut works by encoding the knowledge experts use to apply debugging strategies for
interpreting model output and correcting DL programs. We evaluated Umlaut in
a study with 15 participants to determine its e↵ectiveness in helping developers find
and fix errors in their DL programs. Participants using Umlaut found and fixed
significantly more bugs compared to a baseline condition.

• IMACS, a method that combines gradient-based model attributions with aggregation
and visualization techniques to summarize behavioral di↵erences between two DNN
image models. IMACS extracts the influential regions of images from an evaluation
dataset, clusters them based on similarity, then visualizes di↵erences in model attri-
butions for similar input features. A framework is introduced for aggregating, sum-
marizing, and comparing the attribution information for two models across a dataset;
present visualizations that highlight di↵erences between 2 image classification models;
and show how our technique can uncover behavioral di↵erences caused by domain shift
between two models trained on satellite images.

CHAPTER 1. INTRODUCTION 5

1.2 Overview

The following 3 chapters discuss the systems which instantiate the key contributions of this
thesis. Finally, the conclusion (chapter 5) summarizes those contributions and contributes
a roadmap for future research to build on the work presented in this thesis. The overview
section summarizes each chapter.

1.2.1 Acumen

Chapter 2 describes Acumen, a data collection pipeline and interactive web application that
enables iterative searching and exploration of a dataset of ML projects. Acumen visualizes
descriptive project attributes in a table, and renders neural embeddings of project source
code in a UMAP visualization, which are bidirectionally linked, i.e., searching the table or
selecting points in the UMAP plot will update the other. Users can also create annotations
of points or source files in Acumen, e↵ectively creating checkpoints that can be used to
assist further filtering, or comparison with other files once filters are removed. This chapter
discusses the implementation of Acumen, provides a scenario explaining its capabilities, and
describes an exploratory evaluation where we highlight significant workflows used in search
by our participants.

1.2.2 Umlaut

In chapter 3, we identify DL debugging heuristics and strategies used by experts, and de-
scribe how we use them to guide the design of Umlaut. These heuristics are instantiated
in a Python library which automatically injects and runs checks on model architecture and
training behavior in the program under test. Umlaut can stream metrics and test results
to a web application which provides visualizations and descriptive error messages that sum-
marize theory and include program context that use explanation to facilitate debugging.
The goal of Umlaut is to make “silent errors” that emerge during DL training and testing
explicit, and bridge theory with practice in error messages to help developers make the right
fixes in software. This chapter describes the implementation of Umlaut, a scenario show-
casing its features, and a user study with 15 participants that highlights its ability to help
developers find and fix errors in DL programs.

1.2.3 IMACS

Chapter 4 introduces IMACS, a method that combines gradient-based model attributions
with aggregation and visualization techniques to summarize di↵erences in attributions be-
tween two DNN image models. IMACS can assist ML developers in comparing the behavior
of image models by extracting and measuring the importance of salient “concepts” that in-
fluence their predictions in images across an evaluation dataset. The IMACS visualizations
enable exploration of the space of influential sub-image regions used to drive predictions by

CHAPTER 1. INTRODUCTION 6

using algorithmic techniques that help sca↵old explanations of predictions. This chapter
describes the implementation of IMACS and visualizations produced by its method. An ex-
ample is shared where IMACS is used to highlight potential factors behind degraded model
performance in a domain shift scenario with satellite imagery.

1.3 Statement of Multiple Authorship and Prior
Publication

This thesis is based on the following previously published papers:

• UMLAUT: Debugging Deep Learning Programs using Program Structure and Model
Behavior [138], published at CHI 2021 and co-authored with Forrest Huang and Björn
Hartmann.

• SCRAM: Simple Checks for Realtime Analysis of Model Training for Non-Expert ML
Programmers [139], published in CHI 2020 Extended Abstracts and co-authored with
Forrest Huang and Björn Hartmann.

• IMACS: Image Model Attribution Comparison Summaries [140], preprint shared on
ArXiv and coauthored with Ben Wedin, Andrei Kapishnikov, Tolga Bolukbasi and
Michael Terry.

I am the primary author of each publication, but these works would not have been
possible without the guidance and e↵orts of my advisor, Björn Hartmann, and other co-
authors. Co-authors Forrest Huang gave invaluable strategic and software development
support to Umlaut, and Imran Sekalala helped collect the first dataset for Acumen. IMACS
would not have been possible without the advice and engineering support from co-authors
Tolga Bolukbasi, Ben Wedin, Andrei Kapishnikov, and Michael Terry. Throughout this
dissertation, I will specifically indicate the support and contributions of collaborators by
using “we”, “us”, and “our”, with the exception of chapter 5, which reflects my personal
views and opinions.

7

Chapter 2

Acumen: Interactive Exploratory ML
Project Search

2.1 Introduction

Modern Machine Learning (ML) and Deep Learning (DL) methods have enabled many novel
applications and interactions, from generating images [128, 132, 137, 173], UIs [71], or
sketches [72] from text; to generating [17, 131] or summarizing [96] natural language; to
generating [23], repairing [163], or documenting [36] software source code. Numerous devel-
opment tools and classes have also emerged which aim to simplify the process of developing
ML applications by reducing the amount of boilerplate code needed to train and deploy ML
models [24, 34, 70, 76, 147, 166].

However, despite these emergent models and frameworks, many developers wishing to
start new ML applications struggle with finding appropriate templates and starting points
for their work. In a past study of software engineers learning ML, 1 of 5 pointed to hurdles
in finding a starting point for implementation or in selecting a dataset [21]. Some of these
hurdles stem from existing di�culties in searching for traditional software projects, e.g.:
formulating the right query [48], making sense of numerous results [66], and comparing
various libraries [46]. The pains of these obstacles are amplified when searching for ML
code due to the lack of context it communicates and the varied structures of ML projects.
Beyond di�culties in searching for code alone, the non-code elements of ML projects present
significant, further di�culties. Non-code elements are only sometimes co-located with ML
project code and are di�cult to compare directly (e.g., comparing models or datasets).

We introduceAcumen, an interactive web application and data extraction pipeline which
enables ML project search through sca↵olded exploration. Our goal for Acumen is to facil-
itate ML project search inclusive of all their components, e.g., considering trained models,
linked datasets, surrounding research context, software architecture, code quality, and other
indicators that aid in project selection. To do this, Acumen combines structured, high-level
attributes of ML projects with unstructured learned representations of their code content.

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 8

Explore relationships between source code files
by filtering to regions in UMAP visualization

(Projection of neural code embeddings)

Search for projects by non-code attributes using table
(e.g., Tasks, Frameworks, Datasets, ArXiv Papers)

UMAP and
table are
updated

Filtering the table through search
updates the UMAP and vice versa,
showing more variation in the
UMAP and refining the search.

1a

1b

2

3

Figure 2.1: Acumen is a tool that aims to help ML developers search for and explore ML
projects. Acumen renders neural source code embeddings in an interactive UMAP visual-
ization (1a) to help participants discover relationships between files and projects. Acumen
also extracts high-level attributes from open-source ML software repositories (e.g., datasets,
tasks, frameworks, etc.) and renders them in a searchable table (2). Filters applied by lasso-
selecting points in the UMAP or table searches cause the other to update (3). Recalculating
UMAP on the smaller set of points highlights finer variations (1b).

Through the Acumen interface, users browse and iteratively apply filters to a large dataset
of ML project software repositories, progressively narrowing the search space to a small set
of candidates that can be further compared or selected from to start new work. Acumen
extracts project attributes using AIMMX [157], a project metadata extractor, and produces
embeddings from code using CodeT5 [163], a large language model trained on code summa-
rization.

Acumen’s UMAP visualization helps group similar files among projects by projecting
precomputed embeddings of source code to 2D. The project attributes displayed in the Acu-
men interface help sca↵old and steer users through identifying meaningful structures in this
UMAP visualization. Both the UMAP visualization and table in Acumen are bidirection-
ally linked—selecting a region in the UMAP or conducting a search in the table will trigger
an update in the other, and vice versa. Users can also add their own metadata to the

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 9

Corpus of
Projects (URLs)

GitHub API + Files

Metadata
Extraction (AIMMX)

Python Function
Parsing

CodeT5
Embeddings

Combined
Dataset

UMAP

Table

Preprocessing Interactive Visualization

Interactions:
Bidirectional
filtering,

Adding Columns

Code
Inspection

Figure 2.2: Acumen extracts descriptive attributes and embeds source code from a given
input of ML projects, and renders this data in an interactive visualization that enables
iterative, exploratory search.

set of projects by creating and modifying new columns in the table which can label the
set of selected points. This makes a search using Acumen both a sensemaking task [135]
and an interpretability task: users inspect the structured attributes of clustered source files
as signals to understand why the model considered them to be similar. In an exploratory
evaluation, we show how 5 practitioners proficient in software engineering and familiar with
ML concepts successfully used Acumen to search for ML projects while also identifying
useful, semantically meaningful regions in the UMAP, and learning about ML projects in
the process. Two key workflows emerged from our study participants: filtering down and
propagating up, which broadened searches while keeping useful indicators in context, and
combining multi-value columns, which supported the creation of hierarchical labels.

Our work makes the following contributions:

• A discussion of influential factors and design opportunities which di↵erentiate searching
for ML projects compared to traditional software

• The Acumen system, which first extracts high-level descriptive attributes and gener-
ates code embeddings for ML projects to create a dataset, and then enables interactive
exploration and search of the resulting dataset in an interactive web application

• An exploratory evaluation which highlights opportunities for Acumen and describes
participant workflows that enable novel search interactions

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 10

2.2 Background

Several factors contribute to the challenges of searching for ML projects as starting points
for new work. Many of these challenges stem from existing di�culties in searching for code
generally, but are compounded by the non-code components that comprise ML projects.
This section summarizes these challenges and provides design considerations for tools that
aim to help with searching for ML projects.

2.2.1 ML Code Communicates Limited Context

Searching the web for software projects and code artifacts (e.g., usage examples or compar-
isons of APIs) is a core task of modern software development. Formulating the right query,
evaluating solutions from Q&A forums, and sifting through an ever-expanding landscape of
API choices can present challenges to developers, regardless of expertise. These di�culties
apply to ML projects as well, but are accentuated by the limited expressiveness of ML code.
The HCI and Programming Languages research communities have produced tools that in-
tegrate program context into searches for code resources [28, 133], and that extract API
examples from web search results [66, 133]. While these approaches can help with many
software engineering tasks, they rely on the expressiveness of API names or contextual ele-
ments from active files in an editor. The limited context of ML code can significantly hamper
these techniques.

When searching for code examples or looking for the name of an API, developers can use
keywords or plain language to find helpful web resources. APIs are often named to reflect
tasks specific to certain situations, e.g., using a “TextWatcher” to validate an “EditText”
text input field in an Android UI1. However, the bulk of APIs provided by ML libraries are
mathematical or otherwise general operations that do not communicate their immediate con-
text. For example, a “Conv2D” (2D convolution) operation is often associated with computer
vision tasks [89], but can also be found in sound processing [63] and natural language neural
networks [27]. Other common APIs, such as those for loading and preparing datasets, are
designed to be as generic and modular as possible. This makes them agnostic to the types of
data being passed through, but leaves out contextual information in code that could assist
searches2,3.

2.2.2 Variation in ML Project Structure

For many domains, new software frameworks emerge on a regular basis, and the abundance
of choice can be paralyzing to new developers [46, 57]. The same is the case for ML libraries,
especially with the influx of new tools designed to reduce the amount of boilerplate required
to train a model.

1
https://developer.android.com/reference/android/text/TextWatcher

2
https://pytorch.org/docs/stable/data.html

3
https://www.tensorflow.org/guide/data

https://developer.android.com/reference/android/text/TextWatcher
https://pytorch.org/docs/stable/data.html
https://www.tensorflow.org/guide/data

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 11

Finding the right code example or library can require deep dives into tutorials, docu-
mentation, and Q&A forums to develop a sense of the trade-o↵s between candidates. This
process can be arduous or even intimidating, especially to novice developers. Some tools
from research address this problem by summarizing API usage patterns from a large col-
lection of software projects [46, 169]. However, these techniques rely on preauthored “code
skeletons”, or sca↵olds, which rely on guarantees of API usage or the structure of projects.
While this technique works well with many traditional software APIs, it is generally not
possible to make their prerequisite assumptions about the structure of ML projects.

The organization of files in ML projects can vary significantly since architectural patterns
for traditional software such as MVC [19] have not yet fully crystallized for ML code. This
can make direct comparisons between projects burdensome, as files in di↵erent projects
may cut across logical boundaries. In addition, many ML projects, particularly tutorials
and examples, are presented in notebook format rather than being split among separate
files. While notebooks are useful for prototyping and integrating explanations, they are
di�cult to compare, and often contain “messes” and inconsistencies [59]. These factors limit
the applicability of tools that require guarantees of organizational or API usage patterns,
making it di�cult to compare broad sets of ML projects.

2.2.3 Finding and Comparing Non-Code Elements

In contrast to traditional software projects, ML projects use code as a medium to express
ideas and artifacts from ML research and adapt them to specific application contexts. In
practice, the code making up an ML project is a small part of the larger picture—the code
can instantiate a model architecture or algorithm based on a known design from a research
artifact that is trained on a particular dataset to produce weights for a new model.

In many ML projects, non-code elements are not co-located with code. These elements
are often hosted outside a code repository (e.g., in a file-sharing or blob storage service)
since version control systems such as Git are not well-suited to handling large binary files4.
In a prior study of 7,998 public ML software repositories, only 42% had associated dataset
information [157]. This means developers are sometimes left to their own devices to track
down an external dataset or resource in order to replicate a project’s results.

Comparing and selecting the non-code components of ML projects also presents chal-
lenges beyond those in traditional software. New models, datasets, and techniques are
continually being produced from a rapidly expanding body of research [174], and are not
easy to directly compare. Models produced by research are not always evaluated using the
same benchmarks, and their performance on general benchmarks (e.g., ImageNet [30]) is not
always a good proxy task for performance on domain-specific datasets [129]. Addressing the
challenges of comparing large datasets remains an open question in research, and is discussed
more in subsection 2.3.2.

4
https://git-lfs.github.com/

https://git-lfs.github.com/

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 12

2.2.4 Designing for ML Project Search

To find a template to begin a new project, ML practitioners first choose a known constraint
to fix, such as an algorithm or model architecture, that is appropriate for their specific
problem or context. From there, they iteratively seek out an implementation that is either
close to satisfying all of their design requirements, or can be adapted with as little e↵ort as
possible. Ultimately, the “right” template may be a trade-o↵ between the most important
design requirements (e.g., an object detection model designed to run on a smartphone)
and preferences (e.g., settling with a model with poorer performance than state-of-the-art,
selecting a model that cannot be used o↵-the-shelf and requires retraining, or using an
implementation in an unfamiliar software framework).

A tool to help with searching for and comparing ML projects must be capable of ex-
tracting and summarizing high-level project information while also enabling a means for
comparing less structured attributes in order to be useful to developers. Such a tool should
support a wide variety of potential constraints to aid in project search and enable the flex-
ible, iterative application of these constraints. The following design objectives would help
mitigate the key challenges of searching for and comparing ML projects described above:

D1 To overcome the limited expressiveness of ML code, a search tool should use a data-
driven approach to learn API usage patterns and similarities among a large set of ML
projects.

D2 To make sense of the varied organizational patterns of ML projects, a search tool
should indicate meaningful structures among ML software to facilitate exploration and
comparison of projects.

D3 To help evaluate all aspects of ML projects, non-code attributes should be summarized
and unified with ML project code in the same interface.

2.3 Related Work

Our work builds on prior research in three primary areas: code search, software library
comparison, and and dataset exploration.

2.3.1 Code Search

Developers rely on web-based resources to support software engineering tasks. Past research
has sought to make the task of formulating a code search query easier and to make code
search results more useful. Tools from the HCI and Program Analysis communities more
tightly unify existing web search results with code workflows by integrating context from
an active editor into the search [15, 28], extract the most relevant or useful information in
those searches [66], and weave search results directly into the IDE [48, 133]. However, the

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 13

limited context expressed in the names of ML library APIs limit the applicability of these
techniques to ML source code. Recent advances in the ML community have resulted in large
models that can perform tasks on software source code such as detecting bugs, summarizing
code, generating code from natural language, and matching natural language to code exam-
ples [74, 100]. These interactions are possible without the need for web resources [136]. Code
understanding models accept code inputs by extracting text tokens [136], parsing API call
ordering [52] or AST paths [3, 36], and tokenizing raw source code [84, 163]. Acumen draws
upon this emergent area of research by using CodeT5 [163], a large language model trained
on various code tasks in the CodeXGLUE benchmark [100]. We use CodeT5 to produce
embeddings from Python source files, which map from code to Euclidean space where the
nearest neighbors of a source file are other files the model considers the most similar [146].
These embeddings are projected to 2D using UMAP [26], which can preserve local and
global structure. This allows Acumen to help users find source code that is similar by style
or semantics, even when their other aspects di↵er. This enables novel search interactions
where users can discover relationships between projects (e.g., to learn how implementations
of similar models di↵er).

2.3.2 Exploring and Understanding Datasets

Acumen is also influenced by tools which support exploration and labeling of large vol-
umes of data. Many early HCI works support organization and retrieval of documents [61].
InfoSky uses a predefined hierarchy to support visual exploration document collections [9].
Scatter/Gather uses a clustering approach, where smaller subgroups of documents are itera-
tively filtered and reclustered until a small set of relevant documents remain [29]. This loop
supports sensemaking, where the user refines their search preferences and learns more about
the search space as the search itself is conducted [135]. Acumen’s key interactions build on
fundamental techniques from Scatter/Gather: filtering projects (by searching for attributes
with the table or lasso-selecting points in the UMAP plot) and then recalculating UMAP to
highlight variation among the refined results.

Newer works use embeddings produced by neural networks to assist with exploring and
labeling large volumes of data. Dataset visualization tools allow users to inspect the dis-
tributions of features within large datasets [78, 120, 165]. The TensorFlow Embeddings
Projector uses an interactive visualization of embeddings to help users discover relationships
between points in a large dataset [146]. The Exploratory Labeling Assistant combines those
techniques (embeddings and distributional visualizations) to help users iteratively label large
document collections [35]. Acumen combines interactions from classical search interfaces
with these newer techniques. Its UMAP visualization projects neural embeddings of code,
which can provide meaningful groupings of similar files. Acumen also supports structured
search over non-code attributes of ML software repositories (e.g., datasets used), but its
key interaction is iteratively applying these filters combined with unstructured search, where
users can interact with its UMAP visualization and find relationships between clusters of

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 14

similar source files. This interaction progressively narrows the search space while aiding
users in sensemaking of the greater search space.

2.3.3 Library Exploration Tools

HCI and program analysis works have also assist users in selecting software libraries through
comparing usage patterns or high-level attributes. Many of these tools use interactive visual-
izations to help developers compare software libraries by analyzing API usage patterns [46]
and measuring the frequencies of predefined concepts [170]. However, these tools require
manually authored concepts and “code skeletons”, whose assumptions of API usage pre-
clude their applicability to ML code. ExampleNet aims to solve similar problems as Acu-
men by interactively visualizing the layers used to construct neural networks among public
TensorFlow projects [169]. While comparing neural network architectures can be useful for
searches, integrating other project details (such as datasets used) and comparing the soft-
ware architectures of projects can be even more critical for project selection. This is the
motivating goal behind Acumen: to help users explore and compare all aspects of ML
projects by integrating descriptive attributes extracted from ML project repositories with a
visualization that allows pattern discovery and comparison of their code.

2.4 Using Acumen

To illustrate how Acumen can be used to search for ML projects, consider Alex, a profes-
sional software engineer with an interest in urban farming. Alex has several tomato plants,
and had the idea to set up a webcam to detect and alert them whenever their tomatoes
become ripe. Although Alex is a proficient software engineer and familiar with some ML
concepts, they have not implemented an end-to-end ML project before, and want to find
an existing project to serve as a starting point. Since evaluating and comparing entire ML
projects is partially subjective, each comparison is time-consuming and requires significant
e↵ort. An e↵ective role for a search tool like Acumen is to narrow a large search space of
ML projects to a small set of candidates which makes direct comparison feasible. UMAP
screenshots corresponding to Alex’s search steps are shown in Figure 2.3.

2.4.1 Structured Search: Filtering Project Attributes

Alex fires up a web browser and points it to Acumen (S0). They see a UMAP visualization
with many colorful points, and the first page of a table with thousands of rows. For each file
in the projects in the dataset, the table has a column for the file path (including its name),
and the source project’s name, description, domain (e.g., Vision, NLP, Speech), task (e.g.,
Object Detection, Sentiment Analysis), libraries (e.g., TensorFlow, PyTorch), datasets (e.g.,
ImageNet [30], GLUE [161]), year, and ArXiv Link, if any. Alex first uses the table to search
for projects that support object detection tasks (D3), with the hope that a larger, generally-

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 15

S1. Filter for object detection task
using table

S2. Search for Keras framework
using table

S3a. Search for COCO using table,
lasso left area

S3b. UMAP recalculated, label
“KerasCOCO”

S0. Initial view

S5. Undo filters to step S1, lasso
large area

S7. Explore remaining results

S6. Lasso concentrated cluster in
resulting UMAP

S4. Search for files containing “train”,
label updated

Figure 2.3: In our scenario, Alex applies table filters to narrow the set of projects down to
a manageable size (S1-S3a), and then lasso-selects part of the UMAP visualization to dive
deeper (S3b). This set of points is labeled, and filtered further with the table (S4) to arrive
at a small set of good candidates. To further explore the dataset, Alex undoes many filtering
steps and dives into dense UMAP clusters (S5-S7). Project structures and conventions are
explored (See Figure 2.5).

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 16

Figure 2.4: Acumen tooltips bring table data into the UMAP visualization. Tooltips help
users quickly skim signals among files and decide if one is worth examining.

trained model can be adapted to tomato detection through transfer learning. The table is
updated as well as the UMAP, which is recalculated and reprojected within the remaining
6,094 points. By default, Acumen colors points in the UMAP by their problem domain,
which is now “Computer Vision” for all points. Alex changes the coloring to Libraries used
to get more indicators (S1). Alex would prefer to use a library they are familiar with (D2),
so they search for “Keras” in the “Libraries” column of the table. Acumen updates, and
the UMAP now shows 936 points in two separated clusters of points (S2).

2.4.2 Unstructured Search: Exploring Relationships Between
Files

When distinct clusters or other notable structures appear in the UMAP plot, the points can
be explored by identifying “information scents” [125] in filenames from tooltips (Figure 2.4)
or inspecting source code itself. This exploration can create greater understanding of the
search space of ML projects or clue users into more specific examples of API usage, altogether
facilitating sensemaking.

The two blobs that appear are an interesting pattern, and Alex is wants to know what
distinguishes these points. Through browsing, they first realize that not all projects are an
exact match for general object detection—some operate on more domain-specific datasets
(e.g., mobile UI elements [177]), and others are slightly di↵erent tasks (e.g., segmentation
instead of detection), due to the heuristic nature of task estimation [157]. From this updated
knowledge of the space of search results, Alex has an idea to filter for results that also use
the COCO dataset (D3), which is commonly used to train general object detection neural
networks. The two blobs persist in the recalculated UMAP with 273 points (S3a), and a
further distinction between their contents becomes clear upon skimming the code behind
the points (D1). The left cluster contains better-formatted code with docstrings, and many

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 17

files on the right are less well-structured and documented. These “code smells” suggest
better-maintained projects, and Alex wants to bookmark them.

2.4.3 Annotating and Labeling Meaningful Subsets

Acumen lets users label points resulting from filters through adding and updating columns
in the table. In our scenario, Alex lasso-selects the left cluster in the UMAP to filter to these
122 points (S3b shows resulting points) and create a new column for the table, “mySearch”.
They add the “KerasCOCO” label to all the currently selected points in this new column.
Now, these files can be retrieved later by searching for “KerasCOCO” in this new table
column, or through changing the color coding in the UMAP.

Alex still wants to dive deeper since there are several repositories to choose from. They
figure that if training code is included with a project, they should be able to fine-tune its
model on one of the tomato datasets they found earlier. Alex further filters the points by
searching for the term “train” in paths to the active files, using the table. Now, only 5
files remain (S4), a manageable set! From here, Alex updates their “mySearch” column,
re-labeling these points as “KerasCOCOTrain”, to save the search results.

2.4.4 Using Labeled Points as a Basis for Further Exploration

Alex has found a small set of repositories to select from in 4 filtering steps, which select for
criteria that make good starting points for Alex’s work. Alex could stop here, but they want
to see if they can learn more about similar ML projects to the ones they found, and how
projects are organized more generally (D1). Alex undoes filtering steps all the way out to
the object detection search. From here, they change the color coding of the UMAP to their
“mySearch” column (S5). They roughly lasso select dense clumps of 3,729 and 480 points
in the UMAP, respectively (S6; S7 shows results).

From here, Alex arrives at a view that shows how their labeled files are distributed among
many others. Hovering their mouse over the resulting files, they can see how Acumen groups
files by their role in their projects (D1, D2). There are distinct regions of files which perform
data preprocessing, model definitions, evaluation, postprocesing, and testing (Figure 2.5).
One of the points they labeled is a file porting the YOLO model, which uses the DarkNet
framework, to Keras. The closest point to this file is another which was not in the blob Alex
labeled, but which does the same exact thing. By hovering over the files in this view and
inspecting their contents, Alex can gain a better sense of the entire landscape of ML projects
available to them, which can provide guidance in stages beyond early implementation.

2.5 Implementation

Acumen is implemented in two primary components: a data pipeline which extracts high-
level attributes and code embeddings from ML project repositories hosted on GitHub, and a

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 18

Evaluation

• per_image_evaluation.py
• swa_moving_average.py
• metrics.py

Postprocessing

• crop_bbox.py
• feature_extractor.py
• feature_extractor.py
• kalman_filter.py

Data Preprocessing

• preprocess_ops.py
• cifarnet_preprocessing.py
• preprocessor.py

Similar Results

• retrain_yolo.py
• [darkflow/flow/]net.py

Testing

• preprocessing_unittest.py
• test_models.py
• imagenet_utils_test.py
• kalman_filter.py

Model Definition

• pyramid_network.py
• keras_yolo.py
• vgg16.py
• nas_network.py

Config/Utilities

• utils.py
• tfidf_vectorizer.py

Figure 2.5: Acumen’s code understanding model and UMAP can provide powerful groupings
of source files based on their purpose. Callouts annotate clusters with author-provided labels
(e.g., postprocessing, evaluation), and list filenames found within the highlighted areas (e.g.,
crop bbox.py, metrics.py).

web application which interactively visualizes the dataset collected from the data collection
stage (Figure 2.2).

2.5.1 Data Collection Pipelines

Acumen’s data collection pipeline extracts high-level model attributes of ML projects and
creates vector embeddings of python source code extracted from GitHub repositories. Both of
these pipelines use only a text file containing GitHub repository URLs as input and produce
objects associated with project URLs as output. The resulting dataset used with Acumen
is merged into a Pandas DataFrame and pickled.

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 19

Acumen Dataset

ML projects were gathered from a dataset of highly-starred ML and deep learning projects
on GitHub from Yan et al [169]. The dataset contains 831 GitHub repositories representing a
wide variety of projects, e.g., libraries, model code associated with research papers, tutorials,
model zoos, prototypes, and others. 18 projects no longer existed or produced unresolvable
errors with our data pipeline. Our final dataset consists of 45,757 individual source files
across 813 projects. The URLs used in this dataset are available in supplemental materials.

High-Level Project Metadata Extraction

We use AIMMX [157], an open-source software package, to extract metadata from a list
of GitHub software repository URLs. AIMMX uses the the GitHub API to fetch contents
associated with a repository URL, and runs manually authored heuristics and predictive
modeling to infer descriptive attributes of the repository. Its real-world accuracy was shown
to be high in its evaluation, with a precision of 87% and recall of 83% when evaluated
over 7,998 open-source projects [157]. We use AIMMX to extract model names, references
(publications, ArXiv preprints, or scholarly blog posts), datasets, and libraries used by the
projects. We also use AIMMX to estimate problem domain (e.g., NLP) and task (e.g., text
summarization).

Producing Embeddings from Python Source

In addition to extracting descriptive attributes from projects, we generate vector representa-
tions of all Python source files and Python Notebooks they contain. To do this, we created
a data pipeline that ingests a list of GitHub repository URLs, extracts and sanitizes source
code, and embeds them with a CodeT5, a large language model trained on coding tasks [163].
We specifically use a checkpoint of CodeT5 trained on a multi-language code summarization
task5, which accepts a function-scope code block as input and produces natural language
description (i.e., a docstring) as output. We specifically chose this checkpoints since its en-
coder outputs must e↵ectively capture information needed to produce descriptive summaries
of code, a good prerequisite for comparing code at a high level. Embeddings are taken from
the final encoder layer, averaged per function, and max-pooled per source file into a 1-by-768
vector. Resulting vectors are then stored and later merged with AIMMX output.

2.5.2 Acumen Web Interface

Acumen’s web interface is implemented using the Plotly Dash framework6. The application
is stateless, and caching is performed on the client side, so a database is not needed. The
table is implemented using the Dash DataTable API7, which supports interactive search and

5
https://huggingface.co/Salesforce/codet5-base-multi-sum

6
https://dash.plotly.com/

7
https://dash.plotly.com/datatable

https://huggingface.co/Salesforce/codet5-base-multi-sum
https://dash.plotly.com/
https://dash.plotly.com/datatable

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 20

filtering of table data, returning resulting row indices. Because the UMAP projection is
computationally intensive, we use the RAPIDS library8 which provides a GPU-accelerated
implementation of DataFrame and UMAP. The GPU acceleration makes interactivity pos-
sible, i.e., computing UMAP and rendering on the order of 10 seconds for the most intense
visualizations, versus minutes on CPU.

2.6 Evaluation

We conducted an exploratory study of Acumen to measure its utility and usability, and to
understand what workflows emerge when practitioners use Acumen to narrow a large search
space of ML projects on GitHub. We asked our participants about how they search for ML
projects as starting points for their work, and asked them to complete searches using the
Acumen interface. We summarize findings from participants’ interactions with Acumen
and discuss themes in workflows and labels in section 2.7.

2.6.1 Participants

We recruited 5 participants from university mailing lists to participate in our study. Through
a recruiting survey, we only accepted participants with working experience in software en-
gineering and ML. Our participants had an average 9.0 years (� = 2.1) of experience in
software engineering or programming, and 3.2 years (� = 1.5) implementing ML algorithms
and applications. Participants were graduate students in computer science (3), or electri-
cal/computer engineering (2). All participants reported working on software and ML projects
for their job or career, and for school or classes. 3 of 5 have done so independently or for
fun; 1 of 5 as a volunteer, or to support others; and 1 of 5 independently, for their own
enrichment.

2.6.2 Setup

The study was conducted entirely remotely by giving participants remote control of a laptop
via Zoom video-conferencing software. Acumen was accessed via web browser, which ran on
a Google Compute Engine instance with an Nvidia Tesla T4 GPU to accelerate the UMAP
visualization.

For our study, we curated a smaller dataset of 90 GitHub ML projects comprising li-
braries, individual applications, sets of multiple examples, tutorials, and research prototypes.
These projects captured many common frameworks, styles, structures, and research artifacts,
while keeping the dataset small enough to balance the performance costs of Acumen for
its responsiveness and the duration of evaluation sessions. With this smaller dataset, the
worst-case UMAP visualizations of all 16,066 files took less than 1.5s on average to render,

8
https://rapids.ai/

https://rapids.ai/

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 21

with most visualizations rendering in under 500ms. A full list of projects in this dataset is
shared in supplemental material.

2.6.3 Procedure

After completing an intake survey, we conducted semi-structured interviews focusing on what
template or starting point was used for a recent ML project they completed. Interviews took
approximately 10-15 minutes. Next, participants were onboarded to the Acumen interface
through screen sharing. The experimenter demonstrated a search for a predetermined prompt
using Acumen (“looking for example code to help write tests for a new model distillation
library”), thinking out loud and pointing out relevant clusters in the UMAP visualization.
Participants were invited to ask questions during this phase and give direct instructions to
the experimenter (e.g., to explore a particular cluster) if desired.

In the example scenario, the experimenter first used table filters, selecting rows where
the “file url” contained the string “test”. From here, the experimenter iteratively filtered
the UMAP visualization, unless the participant directed the experimenter to filter the table
further. Throughout this process, the experimenter opened files by clicking points in the
UMAP visualization, pointing out potential stylistic or structural similarities within clusters
in the UMAP, and probing the participant for confirmation or other observations. A cluster
was selected and labeled based on agreement between the experimenter and participant. The
entire onboarding process took approximately 20 minutes.

After the onboarding phase, the experimenter explained that the participant will now
start a search task of their own using Acumen by remote controlling the screen. Participants
were informed their task was to add a column to the table of their own design by labeling a
region in the UMAP plot. Participants were told the label was an open-ended task and could
be anything of their choosing. The experimenter suggested the new column could be within
a single project or between projects, capturing high or low level details, or anything else.
The label was not required to cover the entire dataset. The only requirement was for the
added column to be useful or meaningful to the participant, with a preference for capturing
patterns not trivially searchable by filtering the table (e.g., searching for “TensorFlow” in
the “Libraries” column and creating a column from those results). This task was chosen to
facilitate engagement with all features of theAcumen interface while priming participants to
evaluate the relevance of patterns extracted by the UMAP within their own search contexts.
The experimenter was available to answer questions, and, when necessary, encouraged the
participant to consider information in the Acumen interface to reduce time inspecting the
content of source files. Once the participant added a column and was satisfied with the
result, the experimenter stopped sharing the laptop screen and directed the participant to
complete the study exit survey. Participant searches took approximately 20 minutes. Entire
sessions lasted approximately 60 minutes and participants were compensated $20 USD.

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 22

Table 2.1: Columns created by participants in our exploratory study. Files without labels
automatically labeled as “Unknown” are omitted.

ID Column Title Unique Values Participant-provided Descrip-
tion

P1 hastransformername LSTM, True,
Transformer Image

P1 transformerutils True (Binary) “A column that investigates spe-
cial Transformer models.”

P2 filetype short tests and

configs, init,
inference

“determine if a file was doing an
inference task”

P3 config file True (Binary) “It captured some config files in
NLP models.”

P4 tutorial True (Binary) “whether a file was used in a tu-
torial along with being a note-
book or notebook like”

P5 file content model def (Binary) “captured files with transformer
model definitions”

2.7 Results

Results from our exploratory study show how Acumen e↵ectively supported searches and
sensemaking in the space of ML projects. We also describe workflows used by participants
to discover relationships between projects and source files.

2.7.1 Semi-structured Interviews Rea�rm Existing ML Project
Search Challenges

In semi-structured interviews, 4 of 5 participants mentioned using GitHub to search for or
implement a recent ML project, and 2 of 5 were given a fixed starting point through their
work. One critical result we found in interviews was that, in the past, 3 of 5 participants
mentioned finding an initial software repository to use as a template for new work, but then
later discovered this initial candidate did not meet their needs. Those 3 participants reported
needing to start new searches from scratch with more informed preferences in the course of
their own work.

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 23

2.7.2 Acumen Helped in Search, Promoted Learning, and
Revealed Project Structures

All participants successfully completed the task of adding a column to the Acumen table
capturing information they discovered in the interface (detailed results in Table 2.1). All 5
of our participants unanimously reported that “Acumen would be helpful when I want to
search for ML projects or code”. On 5-point Likert scale questions (1 = strongly disagree; 5 =
strongly agree), participants also reported Acumen was easy to use (µ = 4.6, � = 0.55), and
that they learned something new about ML projects or code while using Acumen (µ = 4.4,
� = 0.55).

Participants’ columns captured semantic indicators

Most of the columns participants created labeled semantic (rather than syntactic or stylistic)
similarities between files and on the organization of files among projects. 4 of 5 participants’
columns labeled organizational structures of ML projects, capturing config files (P3), model
definitions (P2, P5), and training infrastructure code (P1). Participants labeled these orga-
nizational attributes within specific domains (e.g., NLP - P3), model architectures (e.g., P5
and P1, who filtered for Transformers), or for narrow sets of projects (i.e., P2, who compared
the structures of 3 facial recognition projects). 4 of 5 participants created binary columns
to indicate the presence of particular attributes. 2 of 5 participants created columns with
multiple values (including a participant who made a multi-value column as an intermediate
step towards a final binary column). A summary of the columns and signals that participants
identified is shown in Table 2.1.

Acumen helped participants learn about ML projects

In open-ended responses, participants shared what they learned while using Acumen, which
aligned with their search objectives: “i learned a lot more about common sca↵olding (testing
and pipeline and templates)” (P1); “tutorial content sometimes comes in raw .py file content
as opposed to being in a notebook” (P4); “There are many ways to solve the same task using
python + any given ML framework.” (P2). This reflects Acumen’s ability to help users
with ML project search as a sensemaking task [135], such that users can iteratively develop
stronger mental models of the search space and more refined preferences for their objective
throughout the exploratory search process.

Participants used clustering to organize files

When asked what they liked most about Acumen, 3 of 5 open-ended responses mentioned
the UMAP’s ability to help organize files through clustering: “The clustering of files is very
interesting. I feel like near the end of my session I started to understand why files would be
clustered together” (P2); “really liked the visualization for grouping files” (P5), “Cool to link

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 24

back to the GitHub code, and being able to identify clusters of similar file structures [. . .] I
was able to find notebook and notebook-like files very easily from the projection.” (P4).

UI and Performance Improvements

When asked what obstacles were encountered while using Acumen, 3 of 5 participants
mentioned UI and performance issues that impacted usability: “a more obvious sign to
indicate whether the query is in process or it is finished.” (P3); “Tooltip occasionally getting
in the way” (P4); “Speed of the interface was slow” (P2).

In addition, P2 wished to see a feature that saved a snapshot of particular UMAP views,
rather than recalculating UMAP every time a filter is removed (“Being able to save filters
would have made me a lot more comfortable in exploring alternative searches.”). In the
current implementation of Acumen, only indices are preserved at every filtering stage, and
the UMAP is recalculated when a step is undone. While the recalculated UMAP may be
similar, it may be visually di↵erent (e.g., rotated or warped). Caching the UMAP calculation
for each filtering step will be considered for future work. P3 felt they could explore the search
space more deeply with a 3D UMAP option, which could add more separation to clusters
(“files from di↵erent semantic areas get grouped together because the plot is limited to 2D”).

2.7.3 Combining Metadata in Table with UMAP was Important
for E↵ective Searches

All participants in our study used both the table and UMAP as part of their search process.
Most participants used the table to initially narrow the UMAP to a set of files broadly within
their search scope (e.g., eliminating extraneous ML tasks or only considering projects with
a particular dataset). From there, participants progressively filtered the UMAP to discover
the higher-level structure of the search space, or to identify relationships between apparent
clusters of files.

Acumen table and UMAP both used in search processes

4 of 5 participants mentioned both the table and UMAP when describing the most important
part of their overall search process was, e.g.: “performing an initial filtering to narrow the
area of ML I was interested in (attention) followed by finding a relevant grouping of files
on the visualiztion” (P5); “Trying to understand what each cluster represented, and honing
my filtering down to the parts that I wanted (looking for inference or main method code)”
(P2). In particular, P4 described how using Acumen revealed additional dimensions in their
search for tutorial notebooks: “Filtering by extension gets some of the way there but the
results would ultimately not be the same as what was given from the system, which captured
a broader set of useful examples” (P4).

Many participants relied on tooltip data which annotated points in the UMAP when
hovered over. Tooltips displayed table data (e.g., file name and path, framework, domain)

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 25

in context, which provided lightweight indicators and “scents” that signaled the presence
of commonalities between files. This was a critical interaction that promoted sensemaking,
discussed further in subsection 2.8.2.

Acumen expanded participants’ search capabilities

We asked participants if they could write a parser that could have created the column they
added to the table. Only 2 of 5 participants said they could, one estimating it would take
a few hours, and the other estimating about a day, for what they were able to label in
approximately 20 minutes. However, both participants remarked that their parsers may
not be perfect, e.g., “It would be a mixture of regular expressions looking for main methods
that perform common ML framework inference methods. This would miss any files that
don’t use the common API methods ” (P2). Altogether, these results show how having both
search (through filtering high-level attributes in the table) and navigation (through exploring
relationships in the UMAP plot) was key to e↵ective searches.

2.7.4 Two Key Workflows Emerged

Two key workflows emerged from our participants. 3 of 5 participants annotated structural
information in a small area, and zoomed out, exploring related nearby points in the UMAP.
The second workflow, used by one participant, relied on combining multi-value columns into
a highly specific binary column. These workflows are described in the following sections.

Filtering Down and Propagating Up

A common technique among our participants helped facilitate exploration and discovery by
showing how patterns identified in a small set of projects manifested in a broader set of
projects. In this workflow, participants first used the table and/or the UMAP to refine the
selection to a small set of projects or points in the dataset. It was important for this filtered
set to have a relatively small size to accentuate the similarities between points, and thus
make them easier to label in a new column. Once a collection of interest was labeled, the
participant progressively had filters undone, and set the color coding of the UMAP plot to
the newly added column. This incrementally broadened the scope of the search at each step,
yet bubbled up indicators identified by the added label.

At each step when filters were undone, the key interaction employed by participants
was to explore surrounding points by controlling the n neighbors parameter of the UMAP.
This parameter “e↵ectively controls how UMAP balances local versus global structure” [26],
i.e., low values will accentuate finer, local di↵erences between files (e.g., syntax and style),
and higher values will show higher-level di↵erences (e.g., problem domains and libraries).
Participants were able to identify how patterns in small sets generalized to the broader
picture in the dataset by controlling the granularity of similarity in the UMAP visualization.
For example, P1 tagged files in a set of 3 specific projects, and used this workflow to identify

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 26

other projects that were organized in similar ways (using higher values of n neighbors; and
files from other projects that performed similar tasks (using smaller values).

Combining multi-value columns to make compound filters

One participant developed a workflow to help produce highly-specific labels in incremental
steps. P1 used a combination of the UMAP and table filters to find Transformer models
used in computer vision tasks, and then identified a region of infrastructure files for Vision
Transformers. In this first step, P1 created a multi-valued column (with multiple labels) to
help color-code the UMAP visualization. P1 labeled both positive and negative examples
with this column (labeling LSTMs for exclusion, and transformers for inclusion). From
here, they zoomed out to the initial view and started a new search for configuration and
infrastructure files. Once a cluster was identified, it was zoomed into, and the color coding
was switched to the initial column. Within this set of infrastructure files, the points that
were color-coded as Vision Transformers were selected and labeled as “Transformer Utils”.

While this technique was specific to a single participant, it illustrates how Acumen could
be used to generate hierarchical labels. In this workflow, P1 used a temporary column to
preserve results from an initial search to be used as a filter in following searches. This was in
part to overcome filtering limitations described in section 2.8, but also suggests the value of
using Acumen to uncover latent patterns in datasets that may be useful for future searches.

2.8 Discussion and Future Work

2.8.1 Interpretation of UMAP

Acumen uses CodeT5, a large language model, to produce embeddings from software source.
Neural networks in general are known to be di�cult to interpret [98], and emergent research
shows how interpreting large language models can be especially complex [13]. The key
interaction of Acumen is to explore an unstructured space of embeddings produced by
such a model, and the study task of adding a column to the table requires ascribing a
specific meaning to a subarea of the UMAP visualization. Although this task is not an
“interpretability task” in the strictest sense (i.e., to identify the mechanisms or learned data
in a model that contributed to a prediction), it is so in the sense that participants must
associate a meaning with unstructured representations of code source files in a visualization.
All participants in our study were able to do this, successfully identifying specific areas of
the UMAP that were useful in their search task. We believe a key contributor to this result
is that labels were not required to generalize to the entire dataset, and could be restricted in
scope with table filters. This means labels only needed to capture similarities within local
neighborhoods of points, which can be easier to interpret [130, 146]. These local labels were
enough to provide useful and meaningful indicators that helped with participants searches.
Acumen may be a useful platform to investigate how di↵erent practitioners, particularly
non-experts, ascribe meaning to learned representations of data in other tasks, such as

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 27

language, in future work. One promising direction would be to investigate whether the
workflows from our study results generalize and what other workflows appear for other
domains, particularly when Acumen is used by domain experts.

2.8.2 Project Search as a Sensemaking Task

Results from our study echo early research results in search user interfaces, where a user
study of the Scatter/Gather hierarchical clustering interface showed that the combination
of navigation and search was a critical factor; omitting either interaction resulted in poorer
search performance [61, 127]. At early stages in search, our participants heavily used tooltip
data in the visualization (which shows data from a point’s corresponding table row) as heuris-
tic signals for interpreting the UMAP plot (as opposed to in-depth examination of source
file contents). Many participants skimmed the tooltips to recognize how individual projects
were organized using the relative file path field, or identified higher-level similarities between
projects using file names. These high-level categorical signals provided important cues and
“scents” to indicate whether deeper dives were warranted. There are many opportunities for
future work to produce short, meaningful summaries of entire ML projects. Recent works
have made large strides in summarizing the expected behaviors and known biases of ML
models [109] and datasets [41]. Designing e↵ective “tooltips”, cards, or just-in-time sum-
maries for code, and unifying those descriptions, would make great strides in aiding in ML
project search.

The “Filtering Down and Propagating Up” workflow also complements findings from
our semi-structured interviews, where many participants shared a process of searching for
GitHub projects to start implementation, but described needing to restart an updated search
once they realized the initial project did not fully meet their requirements. Being able to
single out a small set of projects, and then find similarly-organized projects or similarly-
implemented files may help ML application developers consider and compare alternatives
beyond the scope of their initial searches in the same search session. We see these results as
a reflection of how both the unstructured and structured elements of search are important
for comparing and evaluating ML projects, and how facilitating exploration can assist with
this sensemaking task.

2.8.3 Usability and Design Improvements

In open-ended feedback in our exploratory evaluation, participants shared feature requests
and areas for UI/UX improvements that could be made in future work. These are described
in section 2.7.2. Other additions to future versions of Acumen could including tracking files
that were already visited [61] and multiple types of point highlighting (e.g., color plus opac-
ity). Supporting exclusion filters in the table (i.e., “does not contain” filters) could also help
facilitate deeper exploration, but is not currently supported by the Plotly DataTable API9.

9
https://dash.plotly.com/datatable/filtering

https://dash.plotly.com/datatable/filtering

CHAPTER 2. ACUMEN: EXPLORATORY ML PROJECT SEARCH 28

Future works should also investigate alternative visualizations and means for summarizing
code embeddings. Using clustering with embeddings to compare image models, a technique
described in chapter 4, could potentially be applied to comparing ML projects.

2.9 Conclusion

In this work, we described the challenges of searching for ML projects and presented Acu-
men, a data extraction pipeline and interactive web application that supports users in search-
ing for ML projects. Acumen supports inspection of structured attributes of ML projects,
such as datasets and frameworks used, while enabling exploration and comparison of their
unstructured attributes by browsing source file embeddings in a UMAP visualization. When
interacting with Acumen, users iteratively narrow down a large dataset of open source ML
projects by refining queries for structured attributes while filtering into meaningful regions
and correspondences between files in the UMAP visualization. In an exploratory evalua-
tion, we showed how Acumen can help users who are proficient in software engineering and
familiar with ML concepts conduct searches for ML projects. Acumen also helped our par-
ticipants learn new things about ML projects while expanding their search capabilities. We
additionally discuss two key workflows which emerged in our study that enabled participants
to e↵ectively browse project structures among the Acumen dataset.

29

Chapter 3

UMLAUT: Debugging Deep Learning
Programs using Program Structure
and Model Behavior

3.1 Introduction

Deep Neural Network (DNN) models have been an enabling factor of many powerful ML
applications, which can extract and discriminate features from raw data by using massive
amounts of learned parameters [18]. These “Deep Learning” (DL) approaches are incredibly
powerful, even surpassing human-level accuracy on some tasks [55]. DNNs also enable many
new interactions over “Classical ML”, such as generating high-dimensional data [50], and
supporting transfer learning, where selected parameters from a DNN may be retrained to
generalize to new applications, creating high performing models without needing millions of
data points or massive computational resources.

Non-expert ML programmers, such as software engineers, domain experts, and artists,
can use transfer learning to create their own models by using recent frameworks which
make this task more approachable with high-level APIs [24, 76]. However, when bugs are
introduced, the default failure mode of DL programs is to produce unexpected output without
explicit errors [156]. ML novices often expect models to behave as APIs, and have limited
mental models to facilitate debugging, sometimes even abandoning ML approaches altogether
when they fail [21, 64]. Further compounding the issue, DNNs are considered “black box”
models, and cannot be debugged with traditional means such as breakpoints. Experts rely
on their experience and tools such as Tensorboard [1] and tfdbg [22] to begin inspecting
model behavior, but often fall back on trial-and-error approaches guided by intuition [21].
Adding structure to the DL development process through explanations and guidance could
help users close this debugging loop and bridge theory with practice [6, 123].

We introduceUmlaut, the Usable Machine LeArning UTility, a system which uses a mul-
tifactor approach to assist non-experts in identifying, understanding, and fixing bugs in their

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 30

�

� �

Figure 3.1: The Umlaut web interface combines visualizations of model metrics (1); a
timeline showing errors over epochs (2); and explanations of underlying error conditions
with the program context and suggestions for best practices with code examples (3). Plots
and the timeline are automatically annotated with with relevant data when errors are clicked.

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 31

DL programs1 (Figure 3.1). Umlaut draws inspiration from tools and metaphors in software
engineering which inspect code to provide warning messages and suggestions to developers.
This includes linting [82], unit testing, dynamic analysis [113], and explanation-based de-
bugging [93]. Umlaut attaches to the DL program runtime, running heuristic checks of
model structure and behavior that encode the tacit knowledge of experts. Umlaut then
displays results of checks as error messages that integrate program context, explain best
practices, and suggest code recipes to address the root cause(s). Our aim is not to define
new heuristics or outperform experts, but to show how existing heuristics used by experts
can be automatically checked and made accessible to a broader set of users.

A key objective of Umlaut is to support users in overcoming three critical “gulfs” of the
DL debugging process: mapping from symptoms to their root cause(s), choosing a strategy
to address the underlying problem, and mapping from strategy to concrete code implemen-
tation. Umlaut uses an automated checking infrastructure to detect errant model behavior
and raise error messages reflecting the surrounding context. Error messages are presented in
a web interface that tightly couples errors with visualizations of model output, linking root
causes to their symptoms. Error messages include descriptions of their underlying theoreti-
cal concepts, and suggest potential debugging strategies to bridge theoretical and practical
knowledge gaps. To translate these strategies into actionable changes, Umlaut errors in-
clude code recipes which implement suggested fixes, outbound links to curated Stack overflow
and documentation searches, and links to the suspect lines of code in source.

Our work makes the following contributions:

• A discussion of opportunities for supporting the DL debugging process, in contrast to
Classical ML, through novel user interfaces

• A novel approach of encoding expert heuristics into computational checks of DL pro-
gram structure and DL model behavior

• The Umlaut system, a tool which implements several automatic checks to assist in
finding, understanding, and fixing bugs in Keras programs

• An evaluation which shows Umlaut helps non-expert ML users find and fix signifi-
cantly more bugs in DL applications.

3.2 Background: Challenges in Deep Learning (DL)
Development

The recent success of deep learning in a variety of domains has led to an increase in users
of DL, and a corresponding growth of tools that have emerged to help developers with DL
workflows. This section summarizes background information and design considerations for
tools that aim to aid the DL development process.

1Source code for our system is available at https://github.com/BerkeleyHCI/umlaut

https://github.com/BerkeleyHCI/umlaut

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 32

�*-(�
	4+*/# .$.�

(+' ()/�
�#�)" .

� �*")$5 �
�4(+/*(Ж.З ��+��4(+/*(.�/*�

��0.

�-$�" ��# *-4�2$/#�
�*)�- / ��-��/$�

� Љ-0)
�-�$)$)"

�
�� �0""$)"��4�'

Figure 3.2: To debug DL programs, users first recognize symptoms from errant model be-
havior or code structure. Experts use mental models built from experience to translate from
these symptoms to hypotheses of underlying root causes. Finally, code changes are imple-
mented to test the underlying hypotheses, and training is rerun to check them.

3.2.1 Key Di↵erences of Designing for DL over Classical ML

Both “classical” and “deep” ML development processes are often exploratory [123], where
the data, model, and sca↵old code are iteratively refined to reach target benchmarks [64].
However, there are critical di↵erences between the implementation of classical ML and DL
approaches which significantly alter the developer experience. While classical ML can be
e↵ectively applied to many problems, DL can handle high-dimensional, unstructured input
and output spaces, such as object detection and audio-cue detection. We characterize the
fundamental di↵erences between classical ML and DL in this section and introduce a unique
set of challenges that DL support tools should address.

Data Requirements: Both DL and classical ML models require ground truth labeled data
to train. However, DNNs often require significantly more data: a rule of thumb suggests a
minimum of 5,000 samples per class [49], while classical algorithms such as SVM or Random
Forests require far fewer data points. Handling large-scale datasets drives up costs for data
collection and processing, particularly in domains with noisy or incomplete data [106].

Featurization: Classical ML algorithms require hand-engineered features to maximize
signal from input data. In contrast, DNNs learn features from patterns in the data directly,
eliminating the developer-driven feature engineering step [6, 49]. While this provides DNNs

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 33

tremendous flexibility in handling unstructured input data, this o↵ers less control and means
developers cannot verify whether the model has received “features” from extraneous patterns
in the data that confound the e↵ectiveness of the model.

Interpretability: A key feature of classical ML algorithms are that they are often more
interpretable than DNNs. While there are many meanings and subsets of model interpretabil-
ity, it is widely accepted that we do not yet fully understand the exact rules and features
that DNNs rely on to produce specific outputs, and how well DNNs generalize to new prob-
lems [98]. This makes pinpointing the exact source of numerical errors in DNNs very di�cult
and gives rise to “silent errors” in the model that can only be spotted by experts with expe-
rience pattern-matching code smells to possible errors [178]. Visualization has been a critical
tool in interpreting DNN behavior, but this still remains an open research question [69]. In
contrast, some classical approaches intrinsically attribute the hand-engineered features most
relevant to any prediction.

Training: Unlike classical ML algorithms, DNNs require nonconvex optimization of a
large number of parameters. This requires proper initialization of neural network weights [55]
and an involved search process for network hyperparameters [12]. DNN training time can
take days or weeks, often even requiring online tuning in order to converge [150], lengthening
the feedback loop. Experts rely on experience to determine an ‘educated guess’ of the typical
range of hyperparameters which can drastically decrease the search space. Novices encounter
di�culty in this process, especially when it generates unknown or ambiguous symptoms.

Transfer Learning: DNNs allow developers to reuse the “feature-picking” parts of the NN,
and “fine-tune” the bottom layers to use those feature for new domains and applications.
A common interaction is fine-tuning a model trained on many images to a new, smaller,
dataset.

3.2.2 Detecting Errors during DL Training and Evaluation

To show how Umlaut fits in the DL development process, we identify four high-level stages
of DL development from prior work [6, 122]: (1) Data Processing, (2) Training and Tuning,
(3) Evaluation; and (4) Deployment. We focus on the challenges that DL developers face in
Phases (2) and (3).

Typical DL workflows require developers to iteratively train and evaluate their models
to identify bugs and modeling issues [6, 156]. We characterize this debugging process using
the DL debugging cycle shown in Figure Figure 3.2. During this cycle, developers repeatedly
train models with a specific experimental setup of network architectures, loss functions, and
hyperparameters. The model performance is then evaluated by qualitatively inspecting the
classification results of various data examples, and quantitatively by calculating accuracy
on a validation set. Using the results generated by the training run, developers recognize
symptoms, form hypotheses to the root causes of problems, and make decisions to modify the
experimental setup using their theoretical understanding of the models. They will then re-
run the experiment and this cycle continues until developers obtain a model with satisfactory
performance.

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 34

Debugging DL models is challenging because even though errors occur in both the training
and evaluation phase, the symptoms often only materialize in the evaluation phase in the
form of poor model performance [6]. While experts often rely on a continuously refined set
of best practices that pattern-match model outputs to e↵ective modifications, novices often
think of DL models as black boxes and can have di�culty in recognizing and understanding
symptoms [6, 21, 64].

3.2.3 Mapping Symptoms to Root Causes

One critical step in the DL debugging cycle (Figure Figure 3.2) is to map modeling issues from
symptoms to their root causes. This step requires developers to analyze model outputs and
training curves, classify specific issues from these statistics, and convert them into actionable
items. Current error mitigation practices are often ad hoc, such that developers usually
only have tools that document performance metrics and general theory resources, but are
required to manually draw connections between them. For example, a developer might need
to consult best practices collected from literature, expert blogs, and academic lectures [14,
87, 89, 144] to derive a set of actionable items that resolve their issues. Developing this skill
requires extensive time and exposure to errors at di↵erent stages and levels of abstraction:
the program, theory, data, etc. These skills are essential for successfully training a model
with high performance, yet helping novices gain the tacit knowledge needed to successfully
diagnose and debug model issues remains an open challenge [7].

3.3 Related Work

We map prior work in three axes that correspond to Section 3.2 based on their contributions,
and discover design opportunities for Umlaut in complementary areas.

3.3.1 Interfaces for Supporting Classical Machine Learning
Workflows

HCI research has produced novel interfaces which allow users to interactively train and tune
ML models as early as 2003 [33, 37, 90, 101]. Gestalt is a toolkit which adds structure to
the ML development process with an IDE [122]. Makers can use ESP to interactively train
and deploy gesture recognition models on hardware [103]. Other works help compare DL
model performance, but only once the models are trained [112]. While these tools support
the feature engineering workflow required for classical ML, Umlaut focuses on training
and tuning DNNs. DNNs instead learn features from input data and enable powerful new
applications.

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 35

3.3.2 Tools for comparing and improving DL Model Performance

Research and engineering teams have produced novel interfaces to compare model perfor-
mance [112, 159, 172] and subsequently debug modeling issues. Because of the intrinsic
relationship between training data and a model, these tools can highlight relevant training
data contributing to outliers [67, 120, 165] and refine the model itself [4]. Taking steps to-
wards debugging these issues, TensorFuzz adapts coverage-based fuzzing to identify model
inputs which generate numerical errors [117].

In addition, Umlaut is inspired by a field of academic research in Explainable Artificial
Intelligence (XAI) which help practitioners interpret the output and behavior of their ML
models. DNNs often have too many parameters to easily understand, and explaining their
output is an active area of research [44]. Methods like Saliency Maps can highlight the specific
parts of an input image used to make a prediction [86, 118], while Concept Activation Vectors
(CAV) can explain the higher-level concepts used [91].

Evaluating the performance of ML models is a critical step, but all of the aforementioned
prior work depends on having an already-trained model. Umlaut assists users in the training
step required before evaluation. We believe Umlaut is an early step in both debugging and
providing explanations of neural network output during the training process.

3.3.3 Prescribing Best Practices and Code Changes in Context

As mentioned in Section 3.2, current tools mostly help inform code changes in DL develop-
ment workflows by tracking and instrumenting experiments for large-scale deployments [40,
77, 97]. While these tools are critical for developers to track the progress of their experi-
ments, they typically do not directly report any potential errors. ML practitioners can also
add instrumentation and visualizations to their DL models using toolkits such as Tensor-
Watch [142] and Lucid [118], but the choice of visualization and its interpretation requires
expertise.

Several studies conduct empirical analyses of bugs found in ML programs using data from
Stack Overflow and GitHub [73, 79, 176, 178]. These works create a high-level classification
of common bugs, but don’t link between symptoms, root causes, and actionable items in
context. On the other hand, some tools in research [14, 139] and deployment (such as
EarlyStoppingHooks [24]) use algorithmic checks for training. However, while these actions
are taken in context during training, they do not produce error messages, link to root causes,
or tie back to other information (e.g. learning curves).

Inspired by work in supporting traditional software development [16, 39, 48, 53], Um-
laut also suggests code examples from o�cial documentation and best practices pulled from
StackOverflow, which helps users to directly address errors and dive deeper into the code.
Umlaut builds upon established paradigms in software engineering such as linting [82], unit
testing, dynamic analysis [113], and explanation-based debugging [60, 93]. Umlaut works
in context to help users interpret the behavior and inspect the points of failure of their ML
applications [58], as similar paradigms have not been extensively explored for DL develop-

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 36

ment. We draw additional inspiration from software visualization [149] and tutorial systems
for complex user interfaces [51]. Umlaut also adapts an automated-checking infrastructure
that enables running tests over model runtime behavior to flag problems for non-expert users.
This approach has been used in other HCI research to assist debugging electrical circuits
and embedded systems [32, 102].

3.4 Debugging ML Programs with Umlaut

To use Umlaut, users attach a Umlaut client to their program, which injects static and
dynamic heuristic checks on the program, parameters, model structure, and model behavior.
Violated heuristics raise error flags which are propagated to a web-based interface that uses
interlinked visualizations, tutorial explanations, and code snippets to help users find and
fix errors in their model. Umlaut also emits flagged error messages to the command line,
inline with Keras training output, to reduce context switching. Heuristics, errors, and their
implementation are described further in Section 3.6.

To illustrate how Umlaut works in practice, consider Jordan, a park ranger who wants
to receive a notification when rare birds appear in a bird feeder camera. Jordan has domain
expertise in ornithology and birding, and has taken an online data science course, but they
are not an ML expert. Jordan was able to prepare a labeled dataset of birds at the feeder
using previous recordings, and they found a template project from the data science course to
use a pretrained Resnet image classification model [54] for transfer learning. Jordan’s next
step is to fine-tune the pretrained model on their new dataset. After fixing the input image
shapes from a bug produced by Keras, Jordan is able to get the training loop to run. The
loss is now decreasing, and accuracy rising, but only to 60%–not enough for their application.
Jordan manages to contact their former data science instructor, who volunteers a quick look
at the program, but can’t seem to find anything wrong. Jordan hears that Umlaut can
help detect and fix bugs in DL programs, and gives it a try.

3.4.1 Importing Umlaut and Creating a Session

To use Umlaut, Jordan adds three simple lines of code to import and attach it to their
program: they import the Umlaut package, pass the model and other inputs to the Um-
laut object, and add the Umlaut callback to the training loop.

A key design principle of Umlaut is to ensure it integrates smoothly into existing DL
frameworks and development tools. We choose to integrate Umlaut into the Keras API of
Tensorflow 2, because of its high-level API and its broad community support. At runtime,
the Umlaut client adds a callback and injects shims into the Keras training routine. While
the model is training, the client runs several heuristic checks, sending metrics and raised
errors to a Umlaut server through a named session. Colliding session names are appended
with an auto-incremented integer.

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 37

3.4.2 User specification of Umlaut checks

Before running Umlaut with their training loop, Jordan tells Umlaut that their model
expects images as input and a sparse vector output indicating the predicted class by pass-
ing the inputtype=’image’ and outputtype=’classification’ arguments to their Um-
laut call. These flags tell Umlaut to run additional checks (e.g., ensuring the input
dimensions are consistent with image formats and that a softmax layer is used on the out-
put).

Users can supply arguments to Umlaut which specify the expected input and output
formats of the model, reflecting the high-level problem statement. Umlaut supports image
or sparse text inputs, and classification or regression outputs. Depending on the user’s
guidance, Umlaut selects di↵erent checks to run based on the input, and alters the content of
output error messages (e.g., ensuring an RGB color image has 3 dimensions and is normalized,
or that a classification loss function such as cross entropy is not used for a regression output).
This specification is optional, but leads to more detail in error messages and a wider selection
of checks. This is a novel interaction for DL debugging, and can be used to ensure the model
architecture and data preparation match with the intended problem type.

3.4.3 Actionable Error messages

When Jordan runs Umlaut with a training session, they see some errors appear in the web
interface. They first turn to an error marked as Critical (“Missing Activation Functions”).

A significant, novel component of the Umlaut system is that it generates error messages
to explain silent error conditions. Umlaut lists suspected DL program issues, highlights
their root cause(s) with integrated program context, o↵ers potential solutions from collected
best practices, and directly links error messages to visualizations of model output. Error
messages produced by Umlaut contain the following elements:

Title and Severity Qualifier

Error messages produced by Umlaut have titles which reflect their respective root causes.
Titles are given severity qualifiers (Warning, Error, and Critical) depending on the expected
impact on model performance. Warnings have minimal impact on accuracy, but may lead to
issues in the future (e.g., an issue with validation data). Critical errors can prevent the model
from learning from data at all (e.g., a hyperparameter causing loss to reach NaN). Severity
qualifiers are added manually to error message titles, but future iterations of Umlaut could
automatically assign them based on predicted impact.

Instructional Description with Program Context

Studies of the experiences of non-expert ML developers show that building an understand-
ing of ML theory and bridging that theory with practice are significant hurdles [21, 64].
In Umlaut error messages, descriptions explain the surrounding ML theory, describe the

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 38

�$/'

�*�0()/�/$*)�ЖϯЗ��)���*0-� �
�*� �ЖϰЗ�
$)&.

�*� ��)$++ /�ЖϮЗ

� ./��-��/$� .��)��
�0"" ./ ����/$*)ЖϬЗ

�-*"-�(��*)/ 3/�ЖϭЗ
�# *-4Љ�)/-$��� .�-$+/$*)�ЖϫЗ

�$/'

�*�0()/�/$*)�
$)&.�ЖϯЗ

� ./��-��/$� .��)��
�0"" ./ ����/$*)ЖϬЗ

�-*"-�(��*)/ 3/�ЖϭЗ

�# *-4Љ�)/-$��� .�-$+/$*)�ЖϫЗ

Figure 3.3: Umlaut errors include several elements to help developers close the DL de-
bugging loop. Errors include short and long descriptions (1) with suggested solutions (2),
often incorporating program context (3). Solutions can include code snippets or hints (4),
and outbound documentation and Stack Overflow links (5). To help users pinpoint the root
cause(s) in code, some errors include links to open the source file in VSCode at the specific
location of the suspected root cause (6).

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 39

heuristic check used to raise the error, and suggest actionable bug resolution steps in order to
bridge knowledge gaps for non-expert users. Error messages can also include program context
to shed light on the particular conditions which raised an error during program execution.
The context is dependent on the particular error, and includes runtime data, such as values
of variables which exceeded the limits of a heuristic, prototypes of API calls with invalid
arguments, or names of model layers with invalid hyperparameters assigned.

Jordan remembers learning about di↵erent activation functions for DNNs in their class,
helped by the quick refresher from Umlaut’s error description. Jordan looks at the program
context in the error and sees that Umlaut printed the names of layers in the model with
linear activation functions—the bottom layers which were swapped in for transfer learning
on the bird dataset. It was a simple mistake: Jordan simply forgot to add an activation
argument, and Keras assigns linear activations when the argument is omitted.

Bridging to Best Practices with Code Examples

While theory is critical for building mental models to aid in DL debugging, theory alone is
not enough to guide users in decision making when debugging. Furthermore, understanding
the proper API usage of DL frameworks themselves can remain challenging to novices [64].
Umlaut makes error messages actionable by including descriptions of potential solutions
based on best practices and by instantiating them with concrete code examples.

Beyond code snippets, error messages in Umlaut can provide outbound links to cu-
rated Stack Overflow searches (e.g., [keras] is:closed from logits to search for closed
issues with a “Keras” tag for a search query) and links to Tensorflow documentation for
relevant APIs. Altogether, program context, grounded in explanations of why it has raised
errors, helps develop user mental models of DL debugging; while code snippets embodying
best practices help users close the debugging loop by making the appropriate fixes to their
application.

Jordan remembers learning about many kinds of activations in their class—sigmoid, tanh,
relu, . . .—but can’t remember when to use which one. Reading further in the Umlaut error
message, a code hint suggests adding activation=’relu’ when working with image data. Jordan
copies this hint to paste into their program.

Referencing the Suspected Root Cause in Code

To further assist users in closing the debugging loop in larger models or more complex
programs, the Umlaut client ingests the source of the program being debugged and inspects
stack frames in the Python runtime to guess the closest line of code to the source of a given
error. The Umlaut web interface renders these links as URLs which open the Visual Studio
Code editor to the specified line and character in the file where the bug occurred.

Jordan notices the error message has an “Open in VSCode link”. They click the button
and are taken directly to first layer missing an activation function. They paste the code hint

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 40

from Umlaut there and into the other layers missing nonlinear activations. Relieved it
wasn’t something more serious, Jordan restarts the training process.

3.4.4 Bidirectional Link Between Errors and Interactive
Visualizations

Inspired by development tools such as Tensorboard [1] and Weights and Biases2, Um-
laut uses simple visualizations to show how model training progresses over time. Line
plots show loss and validation accuracy values at the end of every training epoch (a com-
plete iteration over the training dataset), with multiple traces for training and validation.
As a rule of thumb, decreasing loss and increasing accuracy plots that slow over time are
a positive indicator. When errors are present in a DL program, anomalies may appear in
these plots, which are often subtle and require expertise to decipher [89].

Jordan keeps an eye on the Umlaut plots as new training metrics stream in. They notice
the validation loss plot starts decreasing, then plateaus and starts increasing. A new warning
message pops up: “Possible Overfitting”. Clicking the error highlights the epochs in the loss
plot where the validation curve started increasing while the training curve decreased, con-
firming Jordan’s suspicion that this was an undesired result. Following the recommendations
of the overfitting warning, Jordan adds Dropout to the model and reruns training.

Error Timeline

Umlaut also displays a timeline visualization, which encodes the type and frequency of
errors encountered in the DL program over time. For every training epoch, unique errors
are stacked on a vertical axis, distinguished by a 4-element categorical color scale. This
visualization allows the user to inspect the behavior of the model and training process over
time, e.g., spotting errors flagged before the beginning of the training process (plotted below
the horizontal axis) or errors which only appear later during training (such as overfitting or
spiking loss from an outlier in data). Users can click on the timeline or on error messages
to highlight specific regions in the line plots. Plot annotations show which epoch(s) the
errors occurred, and where the behavior of the curves caused a heuristic to raise an error.
Inspecting the timeline may also help determine when a raised error was a false positive,
e.g., when an error appears sporadically, or rarely.

After the last training run, Jordan keeps an eye on the loss and validation plots. They
seem to look fine this time, but the Overfitting warning pops up again. They’re skeptical,
since they just implemented a fix earlier, so they click the error to highlight parts of the
error timeline, and the loss and accuracy plots. Jordan sees there were two epochs when
the validation loss went up a small amount, but the overall trend looks fine. They make the
judgment call that the error was likely a false alarm, and save the model checkpoint, at an
accuracy of 84%.

2https://www.wandb.com/

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 41

With the model trained, Jordan writes a quick program that uses it to classify live images
from the camera feed and notify them by email when a rare bird appears. The system not only
helps Jordan enjoy the wildlife, but logging the rare birds’ feeding activity from the classifier
output also helps in their conservation e↵orts.

3.5 Umlaut Heuristics

In order to codify best practices from experts into Umlaut’s automated checking infras-
tructure, we identify and implement 10 preliminary heuristics based on commonalities in
various sources including lecture notes [89, 115, 144], industry courses and articles [70, 99],
textbooks [49], expert practitioner blogs [87], default values in APIs [1, 24], and early-stage
research cataloguing tensorflow program tests [14]. We prioritized heuristics which covered
bugs and conceptual misunderstandings shown to be common themes in Stack Overflow
questions, open source DL projects, and expert interviews from existing literature [73, 176,
178].

Our heuristics map to common issues in data preparation, model architecture, and pa-
rameter tuning. We implement a check for each which is static (using a snapshot of the
program prior to training) or dynamic (analyzing the program during model training run-
time). Each heuristic check has an associated severity qualifier (Critical, Error, Warning)
and error message written by the authors. These error messages include context and sug-
gestions summarized from the heuristic’s sources. Our list is not exhaustive, and we discuss
how Umlaut may be extended with additional heuristics checks in Section 3.6.

Although the heuristics we select are widely-accepted and often apply to common use
cases, they may not always apply to a user’s specific context (resulting in a false positive or
negative). In particular, some heuristics used in the ML community suggest concrete values,
e.g., for learning rate or image dimensions. Umlaut adopts commonly used values, e.g.,
input normalization between -1 and 1. There values might change with new developments
in underlying algorithms or community conventions. Future versions of Umlaut could have
such values exposed as configuration parameters that users can update over time.

3.5.1 Data Preparation

Input Data Exceeds Typical Limits (dynamic)

Normalizing input data to a common scale can help models converge more quickly, weigh
features more evenly, and prevent numerical errors [99, 144]. Normalization is often regarded
as an important “default” setting [156]. Umlaut checks if the input data exceeds the typical
normalization interval of [�1, 1].

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 42

NaN Encountered in Loss or Input (dynamic)

The loss value of a training batch can overflow and become NaN during training as a re-
sult of non-normalized inputs or an unusually high learning rate [89, 99]. Umlaut checks
whether NaN values appear in the loss output, and, if so, whether they appear in the input.
Umlaut separately checks if the current learning rate is unreasonably high (Section 3.5.3)
which could also be causing NaN loss values.

Image input data may have incorrect shape (dynamic)

DL frameworks expect image inputs to convolutional layers to follow a particular format
(typically “NHWC” or “NCHW”)3. If these dimensions are not ordered as expected, the
program may still run without an error, but the network will have incorrect calculations
of convolutions in those layers (i.e. convolving over the wrong channels). This can reduce
accuracy and speed due to a resulting incorrect number of parameters. Umlaut checks
the input sizes of these dimensions (assuming input image height matches width, common
for many vision tasks) against the configured ordering. Umlaut raises an additional error
message if the configured channel ordering is not optimal for the hardware the program is
running on (CPU or GPU).

Unexpected Validation Accuracy (dynamic)

When a model’s prediction accuracy on a validation set is unusually high or when it exceeds
the value of its training set accuracy, this may indicate leakage between the training and
validation data splits [99]. Umlaut checks if the validation accuracy exceeds the training
accuracy or exceeds 95% after the third epoch (to reduce noise).

3.5.2 Model Architecture

Missing Activation Functions (static)

When multiple linear, or “Dense” layers are stacked together without a non-linear activation
in-between, they mathematically collapse into a single linear layer rendering additional pa-
rameters useless. Therefore, a nonlinear activation function must be used between them to
produce nonlinear decision boundaries [49, 144]. Umlaut inspects the model architecture
and raises an error if two linear layers are stacked together without a nonlinear activation in
between.

Missing Softmax Layer before Cross Entropy Loss (static)

Some loss functions expect normalized inputs from a softmax layer (i.e., classification outputs
that model a probability distribution, such that each class’s probability is between 0-1 and

3
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 43

sums to 1) [156]. The Keras defaults for cross-entropy loss expect softmax inputs, so omitting
a softmax layer (or omitting the from logits=True argument to the loss function) can result
in a model that learns ine�ciently due to improper gradients. Umlaut checks that softmax
is being calculated before the cross-entropy loss calculation.

Final Layer has Multiple Activations (static)

A complementary problem to a missing softmax layer prior to the loss calculation is the
addition of an extra activation function. Umlaut checks for stacked activation functions,
which is redundant or may even impact model performance negatively.

3.5.3 Parameter Tuning

Learning Rate out of common range (dynamic)

Setting the learning rate too high or too low can cause drastic changes to model behavior
and cause several symptoms in output. A learning rate which is too high can cause NaN
outputs or a non-decreasing loss value during training, while a low learning rate can cause
loss to converge to non-optimal values early [89, 156]. Best practices for initializing learning
rates vary: Keras initializes the Adam optimizer with a learning rate of 0.001, while some
experts suggest 0.0003 [87]. Because selecting a learning rate is highly problem-specific,
Umlaut checks that the optimizer’s learning rate falls between 0.01 and 10�7 (near the
limit of precision for 32-bit floating point numbers) and raises an error if it falls outside this
range.

Possible Overfitting (dynamic)

Overfitting occurs when a model fits training data too closely, reducing its ability to gen-
eralize to new data. This is a core challenge to DL development since features created by
a DNN may capture subtle elements disproportionately common in training data [98]. To
check for overfitting, Umlaut determines if the generalization error of its model has started
to increase while the training error continues to drop, a widely-accepted indicator of over-
fitting [49, 89, 99, 144]. Our implementation of this check is reproduced in pseudocode
below:

function DetectOverfitting(epoch, model, logs)
d loss = logs.loss - model.history.prev loss
d val loss = logs.val loss - model.history.prev val loss
if d val loss ¿ 0 and d loss ¡= 0 then

raise OverfittingError(epoch, context=(d loss, d val loss))
end if

end function

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 44

High Dropout Rate (static)

In order to prevent overfitting and aid in generalization, dropout can be used, which proba-
bilistically prevents a percentage of neurons from receiving gradient updates. Umlaut checks
the model configuration before training and raises a warning if the dropout probability ex-
ceeds 50%, which could lead to redundancy in the model and a reduction in accuracy due to
lower-than-desired number of parameters. This error is often be caused by the users’ confu-
sion between the ‘drop’ and ‘keep’ probability, which are opposites. Our implementation of
this check is reproduced in pseudocode below:

function DetectHighDropout(model)
flagLayers = list()
for layer in model do

if layer is Dropout and layer.dropoutRate ¿= 0.5 then
flagLayers.append(layer.index, layer.name, layer.dropoutRate)

end if
end for
if flagLayers then raise HighDropoutError(context=flagLayers)
end if

end function

3.6 Implementation

Umlaut is comprised of 2 major components. The first is a client program which interfaces
with a Keras training session, injects checks into the runtime, then uses those checks to raise
errors. Metrics and errors are streamed from the Umlaut client to the second component,
the Umlaut server. The server logs errors and metrics in a database, and renders data and
error messages with a web application.

3.6.1 Umlaut Client Shims and Structure

The Umlaut client is packaged as a Python library which can be imported and configured
for use with a Keras program in 3 lines. Users import the library, configure and initialize the
imported UmlautCallback object which returns a tf.Keras.callbacks.Callback instance,
and pass that callback instance as an argument to the model.fit training function.

In order to access and diagnose a broad range of error symptoms, Umlaut requires
several data sources from the DL program runtime. Because these sources must be trans-
parently instrumented, we refer to the instrumentation as “Model Shims”. Umlaut uses
various APIs and shims to ingest the following runtime information (Figure 3.4).

Keras Callbacks Provide Epoch Number and Training logs: The Keras frame-
work implements a callback mechanism which provides hooks at various steps during the
model training process. The Umlaut client is primarily implemented as a Keras callback

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 45

� -�.
�-�$)$)"�

��

��/��
)+0/

�*� '

�4 -.

�*)!$"

� /-$�.

�-*"-�(
�*0-�
�*�

�('�0/��'$)/

'*".

��/�#Љ$)+0/

�('�0/
�*� '
�#$(.

+- �$�/$*).

(*� '

��/�# .

Figure 3.4: Umlaut uses the Keras callback system to collect metrics about the training
process during runtime. Umlaut also injects variables into the underlying Tensorflow model
graph to capture input and output values, and collects a reference to the model object.

which runs static program checks before training starts and dynamic checks after the com-
pletion of every training epoch. Pre-training checks are not provided data from Keras, and
rely on access to the model object and source module (described below). Callbacks fired
during training are passed epoch numbers for indexing, and a logs object which contains
the loss and accuracy values from the current epoch on the training and validation data.

Users Provide the tf.keras.Model Object: When initializing the UmlautCallback,
Users must pass the model being trained as an argument. The model object exposes many
critical elements for diagnosing errors. The logs object provided by Keras callbacks only
provides a snapshot of the model’s loss and accuracy metrics. Having access to the model
instance exposes a tf.Keras.callbacks.History object which stores loss and accuracy
values from every epoch in the current training run. The history object allows Umlaut to
check the behavior of the model over time, enabling more complex heuristics (e.g., detecting
overfitting). The model object also exposes its underlying structure, e.g., the individual
layers and optimizer.

Model call Overrided to Access Input and Output: In order to access copies
of data passed into and predictions from the model during training, we override its call

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 46

��/��

)+0/.

�('�0/��'$)/

�- /-�$)
	 0-$./$�.

�-�$)$)"
	 0-$./$�.

�--*-�
�'�.. .

/*�
�('�0/�
� -1 -

��/�#���/�

(*� '�*�% �/

/-�$)$)"�(/-$�.
Ж'*".З

+-*"-�(�.*0-�
�*�

Figure 3.5: The Umlaut client uses data collected from shims to run static checks of the
model before training, and dynamic checks during training. Heuristic checks and errors
(reflecting root causes) are distinct concepts in Umlaut’s architecture, allowing similar, yet
subtly di↵erent symptoms to raise di↵erent root causes from within the same check.

function. To do this, we add two tf.Variable objects to the model execution graph (before
and after). The variables store copies of the model’s latest input and output data, and can
be evaluated in the Tensorflow session used in the Keras backend.

Module Source Code Captured by Searching Stack Frames: Some error messages
rely on the location and contents of the program source code. Umlaut uses the Python
traceback library to guess which source module contains the training loop, and then stores
the contents of the file for searching.

3.6.2 Umlaut Client Logic: Running Checks and Raising Errors

During the training process, Umlaut aggregates inputs from model shims and dispatches
them to test runners. Test runners run static checks before training starts, and dynamic
checks during program execution, after every training epoch. Checks during either of these
stages can raise errors, which include client program context, and are stored on the Um-
laut server. A key design choice in the implementation of Umlaut was to decouple checks
and errors. This allows more flexibility and brevity in cases where one heuristic could detect
similar symptoms that map to di↵erent errors.

Static checks inspect the structure of the model and its parameters without any context
from runtime. Dynamic checks use context from program runtime in concert with model
structure and parameters. Dynamic checks can capture snapshots of the program execution
environment (e.g., to find input data with NaN values), or can track the behavior of the

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 47

model over time (e.g., capturing overfitting when training loss decreases and validation loss
increases). The performance impact of static checks is minimal, and model size impacts
performance on the order of ms. For dynamic checks, Umlaut mostly operates on aggregate
metrics already collected by Keras, and the added operations from shims have no noticeable
e↵ect on performance. We confirmed this by running Umlaut on more complex models (see
Section 3.7).

When a check raises an error, it initializes that error with the program context necessary
to render the error in Umlaut’s web application (e.g., including the names of layers with
missing activation functions or the value of a high learning rate). At the end of every epoch,
the client sends metrics (loss and accuracy for test and validation sets) and errors to the
server. For errors, only a unique error key and the related context is sent to the server,
and the server renders the error’s static description and contents. Since these requests use
aggregate data, they impact performance on the order of tens to hundreds of ms (including
network latency) per epoch.

Umlaut’s design allows new checks and errors to be added in a standardized way. To
do this, a developer must add a new error message by subclassing a base error template in
the Umlaut server, and a check function that raises the new error to a check runner in the
Umlaut client.

3.6.3 Umlaut Server

The Umlaut web interface is implemented using Plotly Dash with the Flask web framework,
and MongoDB for the database. The web application exposes a REST API to accept updates
from the Umlaut client which stores errors and metrics associated with their session in the
database. When a user navigates to the Umlaut session view, the page polls the database
and rerenders the page when new data is present. Interactive graphing features in the web
application are implemented using Plotly Dash’s Pattern Matching Callbacks feature. This
functionality allows click events on an error, the timeline, or a plot to update the other
corresponding elements.

3.7 User Evaluation

We evaluate the usability of Umlaut’s interface as well as its ability to help developers
find and fix bugs in ML programs in a within-subjects user study with 15 participants. We
introduce bugs into two image classification programs, and measure the number of bugs
participants find and fix, with and without Umlaut.

3.7.1 Participants

We recruited 15 participants (12 male, 3 female; ages 18-30, µ = 23.8, � = 3.1) from
university mailing lists to participate in our study. Through a recruiting survey, we accepted

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 48

participants who were at least familiar with ML concepts and development, but who did not
identify as an expert or professional (i.e., excluding ML reserachers who primarily develop
ML models). Of our participants, 12 had integrated existing machine learning models into
projects, and 9 had retrained the last layers of an existing machine learning model to adapt
it to a use case. 4 participants had developed new machine learning models, and 2 had
contributed to open source machine learning projects. Questions determining expertise were
adapted from Cai et al. [21]. 14 participants were graduate students, and 1 undergraduate.
11 had academic backgrounds in computer science, 3 in electrical or computer engineering,
and 1 in mechanical engineering. Participants were compensated $20 USD. Evaluations
lasted under 60 minutes.

3.7.2 Setup

Due to the COVID-19 pandemic, the study was conducted remotely using Zoom video-
conferencing software on the experimenter’s laptop, a 2016 MacBook Pro. Participants used
the Visual Studio Code IDE with the Pylance Python language server [119] and VS Intel-
liCode [104], which together provide relevance-ranked autocompletion and syntax checking.
Python files for the debugging tasks were loaded and executed by the IDE on a Google Cloud
Platform instance with an Nvidia Tesla T4 GPU to reduce model training time. For the
CIFAR-10 task, training the provided model for 10 epochs took under 1 minute.

3.7.3 Study Design and Tasks

We modeled the design of our user evaluation after that of Gestalt [122]. Our study was
a within-subjects design, comparing Umlaut to a baseline condition across two debugging
tasks. To account for interaction e↵ects from the ordering of these conditions, tasks were
counterbalanced by condition (baseline vs Umlaut) and by order (Program A vs Program
B). We measured the number of bugs found (i.e., the explicit root cause verbally indicated
by the participant) and fixed in each task. Bugs which only had a partial fix (e.g., adding
missing nonlinearities in convolutional but not linear layers) were not counted as fixed.

For the debugging tasks, we created a simple Keras program which loads the CIFAR-10
dataset [94], constructs a 7-layer convolutional neural network, configures cross entropy loss
and Adam optimization [92], trains the model for 10 epochs, and evaluates model accuracy on
the CIFAR-10 test set. We designed this program to be as simple as possible—under 35 lines
of code (under 40 when adding Umlaut)—for two key reasons. First, simplicity strengthens
the baseline condition by being easier for the participant to fully understand. Second, the
model is able to train quickly (under one minute on a GPU) before the test accuracy plateaus
around 77%, making more iteration feasible in the study timeframe compared to a larger
(but potentially more accurate) model.

We created two modifications of this program, Program A and Program B, and inoculated
both with three unique bugs. These programs both execute without any explicit Python er-
rors or warnings, but the bugs impact the accuracy of the model at di↵erent levels of severity:

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 49

low (approx. 0-5% reduction in accuracy), medium (approx. 6-20% reduction in accuracy),
and high (accuracy will not increase beyond random chance). The bugs in both programs
were also chosen to span common stages of the ML development process: Model Architecture,
Parameter Tuning, and Data Preparation. Finally, the bugs may generalize well to di↵erent
learning tasks, e.g., image classification, sentiment classification, pose estimation,. . .).

The bugs introduced into Program A were:

• A1: No softmax function was added after the final Dense layer, causing the optimizer
to receive unnormalized logits and not improve loss (High severity, model architecture)

• A2: Dropout rate set to 0.8, resulting in only 20% of model capacity being used
(Medium severity, parameter tuning)

• A3: Input images were not normalized, with values ranging from 0-255 (Low severity,
data preparation)

The bugs introduced into Program B were:

• B1: Learning rate was set to -1e3 instead of 1e-3, resulting model being unable to
learn from data (High severity, parameter tuning)

• B2: No ReLU activation functions were added to the model, resulting in stacked
convolution or dense layers collapsing into a single layer (Medium severity, model
architecture)

• B3: Validation data overlapped with the training set, picking the first 100 training
images (Low severity, data preparation)

As a test, we connectedUmlaut with VGG16 and ResNet101 from the Keras.applications
API and ran it in the same scenarios as our user evaluation (adding bugs A1, A3, B1, B3).
A2 and B2 were not considered as they would require source code changes to Keras. We
verified the same errors as our small test model were raised.

3.7.4 Procedure

After completing an entry survey, participants were shown a minimum-example Keras pro-
gram which fit a linear model (2 Dense layers) on a di↵erent, simpler dataset (Fashion-
MNIST [168]) in the Visual Studio IDE. Participants were shown the dataset Readme, the
structure of the program was explained (imports, data loading, model architecture, train-
ing configuration, training, and evaluation), and the program was executed in the editor.
For participants starting in the Umlaut condition, the application had lines of code added
for invoking Umlaut. The Umlaut web interface was loaded on a web browser on the re-
searcher’s laptop, and the example program was run with an Umlaut session attached. The
Umlaut command line and web interfaces were explained, and participants were told error
messages were based on heuristics, so there may be false positives. For participants starting

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 50

in the baseline condition, the example program with Umlaut code added was demonstrated
between completing the baseline and Umlaut tasks.

Before starting the first debugging task, participants were shown the Readme for the
dataset used by their debugging task programs, CIFAR-10 [94]. Participants were told they
would be shown a program with multiple bugs, and their task would be to find, explain, and
fix all the bugs they found in that program. Participants were told they should not need
to make major architectural changes to the models (e.g., by adding or removing layers, or
changing the sizes of Conv2D or Dense layers), but were able to if desired. Participants were
told they could use any online resources needed, e.g., documentation, Stack Overflow, or web
search; and the researcher could troubleshoot the apparatus or explain theUmlaut interface,
but not assist with debugging. Finally, participants were told a bug free version of this
program could have a target test accuracy of 77%, but were reminded their goal was not
to maximize accuracy, and that a high accuracy does not guarantee a bug-free model. The
training period took approximately 15 minutes (plus 5 for Umlaut).

Participants were then shown program A or B, in the baseline or Umlaut condition.
The only di↵erences between conditions were that Umlaut code was added to the program
and opened in a web browser. Participants were not allowed to use Umlaut software in
the baseline condition. After completing the first task, the other program was shown, in the
other condition. Participants were limited to 15 minutes of debugging time per program.

3.8 Results and Discussion

3.8.1 Umlaut Helped Participants Find and Fix Significantly
More Bugs

Across both programs, participants using Umlaut found more bugs (µ = 2.8, � = 0.4)
compared to the baseline condition (µ = 1.8, � = 1.1). This di↵erence is statistically signif-
icant (Wilcoxon Signed-Rank test, Z = 2.67, p = 0.004). Furthermore, participants using
Umlaut were able to implement fixes for more bugs (µ = 2.5, � = 0.5) compared to the base-
line condition (µ = 1.5, � = 0.9). Again, this di↵erence is statistically significant (Wilcoxon
Signed-Rank test, Z = 2.65, p = 0.004).4

Furthermore, survey responses collected from participants confirm and strengthen these
findings. On 5-point Likert scale questions (1= strongly disagree, 5=strongly agree), partici-
pants indicated that Umlaut helped them find (µ = 4.3, � = 0.70) and fix (µ = 4.0, � = 1.1)
bugs they would have not noticed without it. Participants also indicated a high likelihood
of integrating Umlaut as a regular part of [their] ML development processes (µ = 4.3, � =
0.60). The distribution of ratings for these questions is shown in Figure 3.6.

4We measure significance using a non-parametric test to account for the possibility that our partici-
pants’ actual skill levels may not be normally distributed due to recruiting graduate students in engineering
departments.

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 51

Figure 3.6: Distribution of participants’ ratings on likert-scale questions (Top row:
1=Strongly Disagree to 5=Strongly Agree; Bottom Row: 1=Very Unlikely to 5=Very Likely)

3.8.2 Open-Ended Feedback

We asked participants to share open-ended comments on the advantages and disadvantages of
Umlaut, what they liked and disliked about its interface, and what additional features would
make it truly useful. We conducted an open coding phase over the qualitative responses,
and further grouped codes into related topics [164].

Model Checks Illuminate Silent Errors and Save Time

Many participants commented on the general di�culty of debugging ML code, and remarked
that Umlaut was a significant step in making the process quicker and easier. P7 related ML
debugging to trial-and-error, and suggested Umlaut added missing structure: “[Umlaut]
Makes the whole guess-and-check debugging flow a lot faster and smoother. Instead of having
to comb over the code and form my own hypotheses about what could be wrong, Umlaut will
provide you with a list of possible issues.”

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 52

Others validated the prevalence of silent errors in ML debugging, and how Umlaut shed
light on these di�cult-to-find errors, saving time: “[The primary advantage of using Um-
laut was] automatic checking for common ”errors” like missing activations or strange learn-
ing rates that don’t cause runtime errors but prevent successful training” (P2); “[Umlaut helped]
me quickly find bugs in my machine learning model that are di�cult to detect through code
inspection. I have always found debugging machine learning models to be a time-consuming
and error-prone process” (P9); “[Umlaut can] Identify basic bugs (e.g. out-of-distribution
that aren’t trivially caught through type/shape checks)” (P8).

One participant noted Umlaut’s time savings could reach beyond debugging itself, as
validating bug fixes can also be time consuming: “[Umlaut’s primary advantage was]
Finding ‘bugs’ that otherwise would not have produced an actual error (bad parameters,
values outside recommended ranges, overfitting). These bugs are by far more time consuming
to debug because they usually require me to train a model for at least some time (5 epochs?)
to verify that they’ve been fixed” (P5).

Best Practices and Code Examples Help Close the Debugging Loop

Participants appreciated the explanations of underlying error conditions and suggestions
based on best practices: “The potential diagnosis along with reasoning was quite helpful”
(P3); “Error messages were descriptive and gave me specific actions to do. Also good values
for parameters e.g. dropout rate is much better than saying the value is too high” (P13);
“Moreover, it does not only suggest to me what’s potentially wrong, but also how to fix it.
Very useful” (P12).

Code snippets were helpful in translating theory into practice and navigating complex
APIs: “Web interface had very helpful blurbs- e.g. for overfitting it immediately suggests to
adjust filter count or add dropout, and it gives the one line fix for the sparse cross entropy
loss issue” (P5); “Because my goal was to make fixes to the code, it was helpful to have
concrete code snippets that I could copy into the code and modify lightly. It can be tricky to
find up-to-date code snippets for machine learning libraries on the web as the libraries can
change quite frequently, and often there are many di↵erent API members that can accomplish
the same goals. Umlaut saved me a lot of time” (P9).

Some participants wished Umlaut provided code samples more frequently: “I’d prefer
to see more code suggestions (e.g. suggestions of what class to use for the logits case in the
second example)” (P15). Integrating direct comparisons between snippets and the underlying
program could help bridge gulfs in debugging: “Suggested code changes in context of actual
source code (similar to GitHub PR suggested changes feature), would make debugging even
easier” (P13); and counterexamples could potentially help users search for faulty code “There
were a few instances where I felt like Umlaut could skip some of the prose (even though it’s
only a few sentences long) and lead in with a code snippet showing an anti-pattern, and
another code snippet that fixes it” (P9).

Some error messages in Umlaut include explanations of API components, but not ex-
plicit snippets which can be copied and pasted into the source program, e.g., in cases where

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 53

an unknown root cause could be addressed by one of many candidate solutions. This is
discussed further below.

E↵ectively Communicating the Heuristic Nature of Umlaut

E↵ectively communicating the uncertainty of ML models and intelligent systems is an open
research question. Umlaut uses heuristic checks which have the potential to miss errors or
raise false positives. Some participants took this into consideration while using Umlaut:
“I would use Umlaut with the understanding that it might not be perfect, so in my particular
case, I don’t think I would be misled into thinking I had debugged all of the issues in my
model if Umlaut didn’t report any issues” (P9). However, P5 cautioned against potential
over-reliance on Umlaut: “[The primary disadvantage is] “Autograder-driven development”
e↵ect [. . .] I feel like relying on Umlaut to point out errors means I’m less likely to scrutinize
parts of the program that Umlaut did not pick up on. [...] The second time around, without
Umlaut providing feedback I felt more compelled to look at the entire program top to bottom.”
Suggestions provided by Umlaut use qualifying language and o↵er multiple solutions in
cases where there is not a single guaranteed fix (e.g., overfitting). Identifying e↵ective ways
to communicate the underlying uncertainty of Umlaut is an important direction of future
work.

Umlaut as a Pedagogical Tool

10 participants who indicated involvement with teaching or ML education also responded
to a 5-point Likert scale question indicating a high likelihood of integrating Umlaut as
a regular part of ML teaching (µ = 4.5, � = 0.67). Open-ended comments also suggested
the potential for Umlaut as an instructional aid: “I think this would be a fantastic tool
especially for new students of deep learning” (P6); “It can point out areas where there are
potential problems that someone especially someone new to ML might not notice” (P4); “It
definitely helped out in the debugging process, especially as someone returning to machine
learning after a long time” (P15).

UI Tweaks

Several participants (P1, P2, P3, P4, P7) suggested changing the sessions dropdown menu
to automatically refresh (currently, the entire webpage must be refreshed). P15 suggested
more deeply linking visualizations with errors: “It would also be nice to see an icon saying
what warning/critical errors are associated with each epoch when I hover over it, instead of
just the accuracies.”

Some users appreciated the detailed descriptions and suggestions from error messages:
“The error messages were designed and structured well. (having both short and long ver-
sions of the error message, and identifying the particular layer/epoch)” (P14). However,
others thought the detail cluttered the Umlaut user interface, and should be hidden unless
expanded by the user: “the textbox displaying the error messages cannot be resized, so it

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 54

is di�cult to see all the errors at once” (P6); “the longer blurbs tend to clog the screen
so you have to scroll to see all of the errors & recommended solutions, if there’s a way to
expand/collapse and just show a one-line blurb” (P5). These visual design issues could be
addressed in a future iteration of Umlaut.

3.9 Limitations and Future Work

Because of the stochastic nature of the DL training process itself, Umlaut has important
limitations. As a prototype, it also has limitations from engineering constraints.

Model Checks are Based on Heuristics Model checks are implemented as heuristics, so
they may be raised as false positives or missed. For example, “Check Validation Accuracy”
can be raised if random noise in data causes a spike in validation accuracy to exceed training
accuracy during one epoch. While Umlaut errors include qualifying language and the error
timeline can help determine if errors form a pattern, these mitigation strategies are not
perfect and require some training to interpret. False positives could potentially be mitigated
further with customizable filtering.

Umlaut may also miss errors (false negatives) for several reasons. Model checks were
developed to apply to general cases, but these cases may not generalize to some specific
conditions, e.g., omitting a nonlinear activation may sometimes increase performance, and
the range of reasonable learning rates is highly dependent on the model structure and data.
Future iterations of Umlaut could use deeper inspection of the data and model to adjust
heuristic boundary conditions.

Mappings from Heuristics to Root Causes May Not Always Hold In software
debugging, there are often multiple possible root causes that lead to a common error symptom
(e.g., null pointers). DL debugging is no exception, andUmlaut checks may miss the correct
solution or possible suggest an incorrect one. Error messages include text to remind users
of their inherent uncertainty, but this mitigation strategy is not perfect.

Generalization to New Model Architectures New types of model architectures pro-
duced by research may require new debugging strategies, including di↵erent heuristics and
parameter ranges. While significant work has been done to understand the taxononmy
of DL errors [73], DL programming paradigms are still evolving, and the landscape of er-
rors may change over time. Umlaut supports custom layers implementing the standard
Keras.layers.get config API. Umlaut also works with di↵erent types of input and out-
put (e.g., NLP, tabular data, regression, etc.) and could be extended to work with novel
data types.

CHAPTER 3. UMLAUT: DEBUGGING DEEP LEARNING TRAINING 55

Crowd-based Error Message Creation In the future, error message content and heuris-
tic check thresholds could include crowdsourced best practices and tips from the broader DL
community and others who have faced similar issues such as in HelpMeOut [53].

Outbound Links are Hardcoded Error messages with outbound links to Stack Overflow
and documentation currently only support hardcoded links, with the intent for documen-
tation to provide more context on suggested code recipes, and Stack Overflow searches to
search for a wider net of related issues. Hardcoded links will not capture all cases, and future
versions of Umlaut could integrate program context into the links (e.g., searching Stack
Overflow for normalization with the value 255 extracted from the program), but translating
from a symptom to a well-formed search query is an open research problem.

Umlaut Code Awareness is Incompatible with Python Notebooks Umlaut uses
stack frame inspection to find a source module with a training loop. This routine currently
fails on Python Notebooks, a common tool for developing DL programs [59]. This limitation
could be overcome with additional engineering e↵ort, or by implementing Umlaut as a
Python Notebook extension.

Version Control and Comparing Sessions Umlaut currently has no ability to compare
training sessions side by side. This would allow faster verification that underlying program
bugs have been solved, and better enable users to track their experiments over time.

3.10 Conclusion

Umlaut addresses critical gaps in the DL development process by discovering bugs in pro-
grams automatically, and using theory-grounded explanations to translate from their symp-
toms to their root causes. Umlaut assists in selecting a debugging strategy building from
best practices, and guides the implementation of best practices with concrete code recipes.
Umlaut unifies these principles into a single interface which blends together contextual
error messages, visualizations, and code. An evaluation of Umlaut with 15 participants
demonstrated its ability to help non-expert ML users find and fix more bugs in a DL pro-
gram compared to when not using Umlaut in an identical development environment. We
believe Umlaut is a stepping stone in the direction of designing user-centric ML develop-
ment tools which enable users to learn from the process of DL development while making
the overall process more e�cient for users of all skill levels.

56

Chapter 4

IMACS: Image Model Attribution
Comparison Summaries

4.1 Introduction

Developing a suitable Machine Learning (ML) model often requires significant iteration. In
this process, ML engineers and researchers often train many versions of models that vary
based on their training data, model architectures, hyperparameters, or any combination of
these elements. A significant need within this development process is the ability to compare
models resulting from these iterations. In this paper, we focus on the problem of comparing
image models.

Models are frequently evaluated and compared using metrics such as AUC-ROC, preci-
sion, recall, or confusion matrices. These metrics provide high-level summaries of a model’s
performance across an entire dataset, and facilitate comparisons between model versions.
However, performance metrics can leave out important, deeper characteristics of models,
such as their specific failure modes or the patterns they learn from data [20, 151, 155]. Prior
work has shown that performance metrics alone are rarely satisfactory for selecting models,
and that stakeholders desire a deeper understanding of why models make the predictions
they do [114].

try Research in Explainable Artificial Intelligence (XAI) and ML Interpretability has
produced numerous techniques for inspecting the behavior of “black box” image models,
such as Deep Neural Networks (DNNs), in finer detail. For example, attribution techniques
aim to identify which inputs a DNN considers most important for a given prediction. For
image models, these methods may use the gradients of predictions to annotate the most
salient input pixels or regions in a given input [86, 141, 152], or perturb parts of model
inputs to determine the features that contribute most to predictions [38, 130, 143].

While attribution techniques are useful for examining the predictions of small sets of
input instances in detail, it can be di�cult to determine whether attribution results (e.g.,
the importance of particular regions) observed on a few instances generalize across a dataset.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 57
Cl

us
te

r 1
/3

M
od

el
 A

M
od

el
 B

Figure 4.1: IMACS helps stakeholders compare two models’ behavior by aggregating, clus-
tering, and visualizing a sample of the most influential image segments (for each model). The
double histogram visualization above shows a set of image segments clustered by IMACS,
with the segments organized on the horizontal axis by attribution scores (more highly at-
tributed segments appear on the right). Each histogram corresponds to an input model and
its attributions. In this example, both models are trained to classify images of flowers, but
the second model (bottom) was trained on images of sunflowers that also contain water-
marks. In the bottom histogram, we can see that this latter model finds the watermark
feature highly influential, often leading to higher attribution scores than sunflower parts.
Additional clusters for this example can be viewed in Figure 4.4.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 58

Techniques like ACE [43] identify and summarize the high-level visual “concepts” of an entire
dataset to help users develop a holistic understanding of a dataset, but these summaries
are independent of a model’s attributions. If one could similarly summarize which input
features (e.g., visual patterns) contribute most strongly to model predictions across an entire
dataset, these data could then be used to more easily compare how two models di↵er in their
attributions in aggregate.

This work introduces Image Model Attribution Comparison Summaries (IMACS), a
method that combines model attributions with aggregation and visualization techniques to
summarize di↵erences in attributions between two DNN image models. IMACS extracts
input features from an evaluation dataset, clusters them based on similarity, then visualizes
di↵erences in model attributions for similar input features (Figure 3.1). The examples in
this paper demonstrate how this method can uncover model behavior di↵erences due to
di↵erences in training data distributions.

This paper’s specific contributions are:

• A novel technique for aggregating, summarizing, and comparing the attribution infor-
mation of two models across an entire dataset.

• A basic design space describing the core building blocks for summarizing model attri-
butions and their di↵erences.

• A method that produces visualizations summarizing di↵erences in image model attri-
butions.

• Example results, including basic validation checks, that validate IMACS’s ability to
extract high-level di↵erences in model attributions between two models.

IMACS and the results obtained via IMACS are of interest to developers of machine
learning models, as well as stakeholders and others with interests in understanding how
choices in training data, model architectures, and training parameters a↵ect model behavior
in the aggregate.

4.2 Related Work

IMACS builds on two related areas of research: 1) model performance and visualization
frameworks to support ML development, and 2) model intepretability methods.

4.2.1 ML Model Inspection Frameworks

Numerous systems have been developed to sca↵old the creation, debugging, and evaluation
of machine learning models. One common strategy is to provide summary statistics of overall
model performance. For example, ModelTracker [5] and DeepCompare [111] provide aggre-
gate statistics of model performance, while also enabling the user to drill down to examine
model behavior on individual examples. Chameleon produces visualizations summarizing
model behavior on subsets of a dataset, or prior versions of a dataset [68].

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 59

Other tools facilitate comparisons between two or more models through high-level statis-
tics and by identifying di↵erently classified instances. For example, the MLCube Explorer [83]
and Boxer [47] both provide summary statistics for subsets of a dataset, but also o↵er the
ability to compare two models on these subsets. ConfusionFlow enables users to view one
or more models’ performance over time [65].

These prior works aggregate and summarize predictions on the instance level, i.e., entire
images or complete input examples. IMACS adapts aggregation and visualization techniques
from these works to the analysis of sub-instance data, allowing users to view summaries of
the features (e.g., visual patterns among many image segments) that influence model predic-
tions. This takes a significant step beyond comparing prediction performance on subsets of
a dataset, since extracting and summarizing influential features can help users gain a better
understanding of the potential causes for failure cases and behavioral di↵erences between
models.

4.2.2 ML Interpretability Algorithms

Research in interpretability methods seeks to provide explanations for a model’s [148]. For
example, attribution methods identify the most salient inputs for predicting a given class
on a given example, e.g., for images, highlighting the most influential pixels to predictions
for specified classes [152]. Region-based attribution methods can summarize pixel-level in-
formation over segments [86] or indicate influential areas in images [141]. Other methods
perturb model inputs to approximate a local, interpretable model [124, 130] or determine the
parts of inputs which contribute most to predictions [38, 143]. Concept-based methods, such
as TCAVs, identify how high-level concepts (e.g., “stripes” in images) factor into a model’s
predictions [31, 91].

Given the central importance of datasets to model performance, research e↵orts also
consider how to help people holistically understand a dataset [41, 75]. Automatic Concept-
based Explanations (ACE) [43] automatically extract concepts from a dataset, cluster them
based on visual similarity, and present them to end-users. REVISE [162] similarly analyzes
a dataset and outputs summary statistics of high-level attributes (e.g., the distribution of
perceived gender in examples), as well as examples of what the model has learned for those
high-level attributes (e.g., what it considers to be a sports uniform for a given perceived
gender).

A key goal of our work is to introduce a framework for reasoning about model attributions
in the aggregate. Specifically, IMACS uses region-based attribution methods to determine
what segments from a collection of images are the most influential for their respective predic-
tions. IMACS then groups these segments into sets of visually similar concepts. This enables
users to compare models by the features used to make predictions, and by the di↵erences in
how those features are weighed, a novel capability.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 60

Table 4.1: Building blocks for summarizing and comparing two models’ attributions. Images
on the right are hypothetical examples.

Data type Concrete instances of data type Examples

Model inputs

• Raw features (e.g., pixels)
• Higher-level features (e.g., seg-
ments within the image)

Model outputs

• Model predictions
• Prediction scores or confidence
(e.g., softmax values)

Class probabilities:
sunflower: 0.9700

daisy: 0.0228

tulip: 2.1e-3

Model attributions

• Attributions for individual in-
puts (e.g., pixels)
• Attributions for image seg-
ments

Ground truth labels

• Class ID or binary classification
• Additional annotations or la-
bels applied to the data

class: sunflower

species: [...]

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 61

4.3 Building Blocks for Summarizing Attribution
Di↵erences Between Models

Given the general goal of comparing the feature attributions of two models in aggregate, we
summarize the basic building blocks for doing so in Table 4.1. We categorize these building
blocks as Model Inputs, Model Outputs, Model Attributions, and Ground Truth Labels. To
help summarize and understand model di↵erences, any of these data can be transformed and
filtered via arbitrary functions, individually or in the aggregate. For example, one could filter
data to focus only on false positive predictions from both models. In this work, we make use
of the following operations to assist in identifying di↵erences between models’ attributions:

• Segmenting images and assigning attribution scores for each segment.

• Producing embeddings for image segments using an independent, third model.

• Clustering image segments based on assigned embeddings to identify sets of similar
features.

Image segments and embeddings provide a way to create clusters of similar, high-level
visual patterns within an evaluation dataset. Once clustered, attribution scores for segments
within a cluster provide a means for comparing the relative importance of the visual patterns
contained within between the two models. The clusters also help reduce the amount of
information a user must consider at once.

One challenge of using embeddings to identify similar visual patterns is that embeddings
are idiosyncratic to each trained model. One strategy to address this issue is to assign embed-
dings values from an independent, third model. Image models trained on large-scale image
datasets (e.g., ImageNet [134], OpenImages [95]) have been shown to produce embeddings
which correspond to perceptually similar inputs [175], meaning that the clusters produced
from these embeddings should represent visually similar concepts.

With these data building blocks (model inputs, outputs, attributions, and ground truth
labels) and these basic operations (assigning embedding values to inputs, clustering data,
and filtering data), one can then produce a wide range of summaries and visualizations
to help users discover the specific ways models di↵er from one another. The next section
describes our particular approach for surfacing di↵erences in model attributions.

4.4 The IMACS Algorithm

Our implementation of IMACS (Figure 4.2) requires two trained image classification models,
a third embedding model, a set of common evaluation images, prediction scores from both
models on the evaluation set, and additional dataset labels for filtering inputs, if desired.
We describe these components in greater detail below.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 62

Model A Model B

Sampled Images

Sampling Strategy

Predictions

IMACS
VisualizationSegmentation + Attribution

Attributions

Segments

Embedding Model

Combined Embeddings

KMeans Clustering
Clusters

Common Evaluation Dataset

Figure 4.2: IMACS first selects a subset of an evaluation dataset (by default, a sample of
images with balanced confusion matrices for each model). Next, images are segmented into
regions, and attribution scores are calculated for those regions. The regions that contribute
most to each models’ predictions are then embedded using an ImageNet-trained model, and
clustered using k-means. The IMACS visualization ingests data from each step.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 63

Data Sampling IMACS makes use of a dataset sampling strategy to help accentuate
the di↵erences between two models. In our current implementation, we sample 100 total
images for each model, for a total of 200 images. Our examples use the sampling strategy
of sampling a balanced confusion matrix, or an equal number of true positive, true negative,
false positive, and false negative inputs (image instances) for each model.

Segmenting Input Images and Calculating Attribution Scores For simplicity, we
segment each image into a 4-by-4 grid of segments. (One opportunity for future work would
be to experiment with segmentation techniques that identify regions of similar pixels, such
as SLIC [2]). We determine the contribution of individual image segments to a given model
prediction by calculating segment Shapley values [143]. However, computing Shapley values
for all N segments is computationally prohibitive due to the combinatorial explosion of the
Shapley algorithm. For that reason, we identify a reduced subset of segments of size M
(M⌧N) which are likely to have high influence on the model prediction. We do this by first
computing segment attribution values with respect to the top k predicted classes using the
XRAI method [86] in combination with Guided Integrated Gradients [85]. Then, we sort the
segments by their attribution values and pick the top M with the highest values. For our
example dataset, we choose M = 5 and k = 5, resulting in 500 total image segments per
model with associated attribution scores for up to 5 classes.

Shapley values are computed by sequentially excluding segments from the input image
and observing the changes in model predictions. One way to exclude a segment is to gray out
all of its pixels. However, such an approach may result in undesirable e↵ects if the model was
not trained on images with removed parts, or if the gray color correlates with a particular
class. To reduce these e↵ects, we apply Gaussian Blur to excluded segments.

Assigning Embedding Values and Clustering Image segments from both models
are pooled into a single collection and clustered by their corresponding embedding values.
We embed individual image segments by inputting them into an ImageNet-trained [134]
Inception-V2 model [153], and extracting the final pooling layer activation values. These
embeddings are then clustered using k-means with a user-defined number of clusters. Adapt-
ing additional clustering methods, e.g., fair k-means [42], to IMACS is an opportunity for
future work.

Because 100 images are sampled for each model based on each model’s predictions (i.e.,
an equal number of true positive, true negative, false positive, and false negative examples),
a cluster of image segments may contain more segments from one model’s set of sampled
images than from the other model’s sampled images. For example, if model A’s training
leads to a large set of false positives that model B correctly classifies as true negatives, then
it is possible to have a cluster of segments representing these false positives (with these
segments deriving primarily from sampling images for model A). As will be evident in the
visualizations produced by IMACS, imbalances such as these can provide an indicator of
how two models may behave di↵erently in the aggregate.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 64

Figure 4.3: Example “IMACS” watermark added to images in the perturbed TF-Flowers
dataset. “IMACS” watermarks are added at random locations to 50% of the “sunflowers”
class for training, and 50% of all classes for validation. Left: original image. Right: image
perturbed with watermark.

4.5 Visualizing Di↵erences in Attributions Across
Models

In this section, we present the IMACS visualizations and describe how they support an-
swering the following questions drawn from research in concept-based explanations [43]:

D1 What features do the models use to make predictions, and how do they group into
higher-level concepts?

D2 What is the relative importance of each cluster of similar features compared to others?

D3 What features are shared between models, and which are not?

D4 For common features, how does their importance di↵er between the models?

To illustrate how IMACS can be used to compare the behavior of two models in this
section, we construct a scenario with two models trained on a flower classification task using
the TF-Flowers dataset [154]. One of the models is trained with a version of the dataset
perturbed with watermarks, leading to an association between watermarks and sunflowers.
Even though both models achieve high accuracy, we show how IMACS surfaces di↵erences
due to the introduction of the watermark in the training data.

TF-Flowers comprises 3,670 images of flowers in 5 classes (tulips, daisies, dandelions,
roses, and sunflowers). We split 85% of the images for training, and 15% for testing. One of
the models is trained on the baseline dataset, and the other is trained on a modified version
of TF-Flowers, where a watermark is added at a random location for 50% of the images
in the “sunflower” class (Figure 4.3). The baseline model achieves an accuracy of 94.9%,

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 65
Cl

us
te

r 2
/3

M
od

el
 A

M
od

el
 B

Cl
us

te
r 3

/3
M

od
el

 B

Figure 4.4: IMACS histogram visualization of the 2 remaining (of 3) clusters from Figure 3.1.
Cluster 2 (top group of 2 plots) contains mostly watermarks. Model B clearly attributes these
watermarks more highly than model A (its attributions are on the right side of the axis, while
model A’s attributions are centered around 0). This outcome reflects model B’s association
between watermarks and sunflowers.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 66

while the “perturbed” model achieves an accuracy of 91.8% on their respective test sets. To
construct an scenario demonstrating how a model’s unwanted association between a visual
feature and class predictions can lead to unwanted behavior when that feature appears in
other classes, we construct an additional test dataset introducing the same watermark at
random locations to 50% of images in all classes. On this test set, the baseline model achieves
an accuracy of 95.1% while the perturbed model achieves an accuracy of 79.6% (the drop
in accuracy suggests the e↵ects of the watermark the training data). While this dataset has
an artificially introduced bias, we will next show how IMACS can help surface biases. (In
section 4.6, we show additional results from actual, unaltered satellite image datasets.)

4.5.1 Cluster Histogram Visualization

The IMACS Cluster Histogram Visualization (Figure 4.1) shows, for predictions of a partic-
ular class, how the visual concepts contained in clusters are distributed by their attribution
scores. Each cluster (out of a user-specified total; in this example, k = 3) is presented by
two histograms of image segment tiles bucketed by their attribution scores, one for each
model being compared (D1). Image segments correspond to each model’s attribution-based
sampling of the dataset. Histograms for all clusters share the same horizontal axis scale to
aid in comparing the importance of visual features between clusters (D2). Binning segments
by their importance allows users to assess the composition of individual clusters (i.e., what
concepts are contained within), and compare the weighting of similar features among clusters
(D4). This visualization also reveals when a feature is not apparent in one of the models’ sets
of sample segments (due to dataset sampling di↵erences, where a feature may not be present
because it is not highly attributed by one model compared to the other). (Of note, the total
number of tiles in this view is truncated to 5 to conserve space. A full (non-truncated) his-
togram of attribution scores within clusters is shown in the Cluster Concept View, described
in the following section.)

Returning to the sunflower/watermarks scenario, clusters 1 (Figure 4.1) and 2 (top pair
in Figure 4.4) provide the strongest signals for predicting images in the “sunflower” class.
The presence of a distinct visual pattern (the “IMACS” watermark) in the second model’s
histogram in cluster 1 indicates it is a significant feature for model B, and the high relative
attribution scores of the watermarks (even above sunflower features) confirm model B’s asso-
ciation between the sunflower class and watermarks. Cluster 2 is comprised almost entirely
of “IMACS” watermarks, and the di↵erence in how this visual concept is weighted between
the two models is readily apparent, with some segments almost completely responsible for
model B’s predictions, and model A attributing most segments near zero. This reveals the
true di↵erence between the models: the second model was trained to artificially associate
the presence of a watermark with sunflowers.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 67

F
ig
u
re

4.
5:

C
on

ce
p
t
C
lu
st
er

V
is
u
al
iz
at
io
n
of

th
e
fl
ow

er
cl
as
si
fi
ca
ti
on

ex
am

p
le
.
T
h
e
to
p
cl
u
st
er

co
nt
ai
n
in
g
w
at
er
m
ar
ks

h
as

si
gn

ifi
ca
nt
ly

h
ig
h
er

at
tr
ib
u
ti
on

s
fr
om

th
e
se
co
n
d
m
od

el
(t
h
ir
d
p
lo
t,
b
lu
e
b
ar

la
rg
er

th
an

th
e
or
an

ge
b
ar
),
re
fl
ec
ti
n
g

th
e
p
er
tu
rb
ed

m
od

el
’s
as
so
ci
at
io
n
b
et
w
ee
n
w
at
er
m
ar
ks

an
d
su
n
fl
ow

er
s.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 68

Total of number of segments
in this cluster, and number of
segments from each model

Maximum attribution scores
across clusters, and average

attribution scores for this cluster

Model A Segments

Model B SegmentsClusters sorted by agreement
(most positive first)

Distribution of
attribution scores

Figure 4.6: An IMACS cluster with associated graphs.

Attribution scores
(bars)

Segment coloring

True Positive

False Positive

True Negative

False Negative

Figure 4.7: Image segments are annotated with their attribution score and classification
correctness.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 69

Figure 4.8: The IMACS visualization annotates clusters with three plots that present in-
formation about the cluster’s composition (the proportion of segments representing each
model’s sampling), coherence (the distribution of its attribution scores), and its importance
(the average attribution scores for each model).

4.5.2 Concept Cluster Visualization

The IMACS Concept Cluster Visualization (Figure 4.5) introduces descriptive statistics to
each cluster and its constituent components (i.e., the individual image regions) to facilitate
comparisons. More specifically, this visualization sorts the contents of each cluster, annotates
individual elements with attribution data, and introduces plots summarizing key statistics
of the clusters. We present details of these components below.

Organizing and Summarizing Visual Signals in Clusters

Each cluster is presented as two separate rows of image segment thumbnails (Figure 4.6)
corresponding to each model’s sampling of the common evaluation dataset. Clusters are
ordered from top to bottom based on the imbalance of their average attribution scores, with
the largest disparities presented first. This ordering helps draw attention to the largest dif-
ferences in feature attributions between models (D4). (One could also imagine alternative
sorting methods, such as sorting by the highest average attribution score between the mod-
els, which would rank the most “important” (rather than the most di↵ering) visual concepts
first.) Within each cluster’s rows, image segments are ordered from highest to lowest at-
tribution scores, providing an indication of which visual patterns the models consider most
important (D2).

Within clusters, image segments are annotated by their classification correctness (true
positive, true negative, false positive, false negative) by drawing a color-coded border around
them. Attribution scores (which can be positive or negative) are also overlaid on top of each
segment as a bar, color-coded by their source model (A or B) to help di↵erentiate similar
rows (Figure 4.7). The colored borders and attribution score bar help convey whether the
visual features captured in a cluster are the source of class confusion or model errors.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 70

Determining Composition, Coherence, and Importance of Clusters

In addition to the visual presentation of the image segments, we also provide three graphs
summarizing the data in each cluster (Figure 4.8). The left plot describes the composition of
a cluster, by displaying the total number of segments in the cluster (black), and the number
of segments contributed by each model’s sampling of the dataset. This graph helps users
determine (1) whether the cluster contains a significant number of segments in comparison
to other clusters (a “critical mass” suggests an influential visual pattern in the cluster could
persist across the dataset (D1)); and (2) whether a cluster’s contents derive more from one
model’s sampling process (suggesting the set of features are more important for one model
than the other (D3)).

The center plot depicts the distribution of attribution scores via two histograms, corre-
sponding to the two models’ sets of segments within the cluster. This is the same histogram
shown in the Cluster Histogram Visualization, but is not truncated. In this view, examining
the distribution of scores from each model can help determine the composition of a cluster
(e.g., whether multiple concepts are represented in a single cluster (D1)). Significantly dif-
ferent attributions (e.g., a bimodal distribution within a cluster) may suggest the overlap of
multiple concepts or potential di↵erences between the models.

The right plot shows the importance of the cluster, by reporting the average segment
attribution score calculated for each model, as well as the maximum mean attribution score
across all clusters. The black bar serves as a visual reference point to help users determine
the relative importance of a cluster (D2). The average attribution scores from each model
serve multiple purposes. First, they establish the validity of the underlying concept (e.g.,
if the attribution is near zero, then the visual pattern is likely inconsequential to a model).
Second, the scores indicate the relative importance of the concept between the models (D4).
If the attributions do not di↵er significantly between models, then the visual pattern is not
likely to be a key di↵erentiator between the models.

Returning to our earlier scenario (Figure 4.5), IMACS shows the second model highly
attributes the watermarks when classifying sunflowers (first set of clusters). In the first
cluster (top set of two rows), the most prevalent visual feature represented by the segments
is the “IMACS” watermark added to the images. The histogram (center plot of this cluster)
and average attribution score plot (right plot) show the baseline model (in orange) attributes
watermark segments with a score near zero (meaning it is not an important feature for the
baseline model). On the other hand, the watermark is the most important feature to the
perturbed model for classifying the “sunflower” class: the average attribution score of the
cluster with watermarks is the highest among all clusters.

4.5.3 Cluster Confusion Matrix Visualization

To more deeply inspect a particular cluster, the IMACS Cluster Confusion Matrix Visual-
ization allows users to explode a cluster into two side-by-side confusion matrices (Figure 4.9).
In this visualization, the segments from a particular cluster are split and organized by their

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 71

GT Sunflower

Pr
ed

ic
te

d 
Su

nfl
ow

er

Model A Model B

Pr
ed

ic
te

d 
N

ot
 S

un
flo

w
er

GT Not Sunflower GT Sunflower

Pr
ed

ic
te

d 
Su

nfl
ow

er
Pr

ed
ic

te
d 

N
ot

 S
un

flo
w

er

GT Not Sunflower

Figure 4.9: Two side-by-side confusion matrices for a particular cluster in the running ex-
ample (shown in Figure 4.1 and center rows of Figure 4.5). Segments from the baseline
model are shown on the left, and segments from the model trained to associate watermarks
with sunflowers is on the right. Watermarks are prevalent in the top-right quadrant (false
positives) of the right confusion matrix.

classification correctness (e.g., true positives, false positives, true negatives, and false nega-
tives). This can help users determine what visual patterns within a cluster are contributing
to erroneous predictions.

4.5.4 Alternative Sorting and Filtering Strategies

In the concept cluster view (Figure 4.5), image segments within a cluster’s rows are ordered
based on their attribution scores (in descending order, from high to low). This ordering
helps the user understand which image segments are most important within the cluster, for
each model. We also experimented with alternative methods for sorting within and between
clusters. Sorting segments within a cluster based on their distance from the cluster’s centroid
can provide a sense of the central visual concept for that cluster. This sorting criteria displays
the most representative image segments of the cluster first. Clusters can also be ordered by

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 72

their average attribution score, which would surface the most important concepts first, rather
than highlighting imbalances between the models.

While sampling a balanced confusion matrix for each model highlights concept mis-
matches that contribute to misclassifications, additional dataset sampling strategies such
as filtering for confident disagreements using models’ softmax scores, or filtering only for
false positives in all visualizations, can similarly yield additional, useful perspectives on the
di↵erences between models.

4.6 Validation

In this section, we validate IMACS’s technique of using attributions to organize, summarize,
and compare the visual features used by two models. First, we conduct a basic validation
check of IMACS by comparing the baseline model from section 4.5 with an untrained model.
Next, we evaluate IMACS through the analysis of a case illustrating concept drift between
two models.

4.6.1 Basic Validation Check

While prior techniques such as ACE [43] also extract, cluster, and visualize concepts, our
technique makes use of attribution scores to organize, summarize, and compare model ca-
pabilities. We demonstrate the utility of attributions in surfacing di↵erences between two
models through a basic validation check. For this, we use IMACS to compare a trained
model with an untrained model. As seen in Figure 4.10, the average attribution scores for
the untrained model are nearly zero in all clusters. The histogram visualization shows this
e↵ect most strongly, with the untrained model’s segment tiles in a single bin centered on
zero. In addition, segments in the Concept Cluster Visualization are not ordered in any
discernible pattern: While the embeddings from the independent, third model are able to
create clusters of similar inputs, we observe a lack of order to them without attributions
from a trained model.

4.6.2 Visualizing Domain Shift with Satellite Images

In this section, we show how IMACS visualizations can highlight clear behavioral di↵erences
between models in an additional scenario.

We illustrate the problem of domain shift, where a model trained on a land use dataset
capturing European cities [62] does not generalize well to the overlapping classes in a similar
dataset for regions in the United States, UC Merced Land Use [171]. We use IMACS to
compare the datasets, diagnosing the specific source of the confusion in predicting the “res-
idential” class. Unlike the previous examples, this scenario does not modify the images in
the datasets, and compares their real-world di↵erences for a class they share in common.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 73

Figure 4.10: An IMACS histogram visualization comparing a trained flower classification
model with an untrained model on the “sunflowers” class of the TF-Flowers dataset. Note
the untrained model’s attributions are all near zero, while the trained model has much higher
variation in attribution scores.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 74

F
ig
u
re

4.
11
:
IM

A
C
S
is
u
se
d
to

co
m
p
ar
e
tw

o
m
od

el
s
tr
ai
n
ed

on
d
i↵
er
en
t
la
n
d
u
se

d
at
as
et
s:

eu
ro
sa
t
an

d
u
c
m
er
ce
d
.
H
er
e,

b
ot
h
m
od

el
s
ar
e
ev
al
u
at
ed

on
th
e
“r
es
id
en
ti
al
”
cl
as
s
of

u
c
m
er
ce
d
.
T
h
e
se
co
n
d
cl
u
st
er

(s
ec
on

d
se
t
of

tw
o
ro
w
s)

sh
ow

s
h
ow

th
e
eu
ro
sa
t
tr
ai
n
ed

m
od

el
h
ig
h
ly

at
tr
ib
u
te
s
gr
ee
n
er
y
an

d
ve
ge
ta
ti
on

as
im

p
or
ta
nt

fe
at
u
re
s
fo
r
th
e
“r
es
id
en
ti
al
”

cl
as
s.

O
th
er

cl
u
st
er
s
(e
.g
.,
fi
rs
t
se
t
of

tw
o
ro
w
s)

sh
ow

h
ow

th
e
u
c
m
er
ce
d
tr
ai
n
ed

m
od

el
at
te
n
d
s
to

fe
at
u
re
s
su
ch

as
an

gl
ed

ro
of
s,
an

d
b
u
il
d
in
gs

in
cl
os
e
p
ro
xi
m
it
y
to

gr
ee
n
ar
ea
s.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 75

To simplify model training, we identify the set of intersecting classes between these
datasets (agricultural, forest, freeway, industrial, residential, river, vegetation), and train two
ImageNet-pretrained ResNet50V2 models [56] on separate subsets of Eurosat and Merced,
corresponding to their intersecting classes. These models achieve test-set accuracies on their
own datasets of 93.3% and 95.1% respectively. To simulate domain shift, we evaluate both
models on the Merced-subset dataset only, representing a scenario where a pretrained model
fails on a dataset with similar labels but di↵erently distributed data. The Eurosat-subset
model achieves a test-set accuracy of 38.7% on the subset of intersecting classes with the
Merced dataset. (The Merced-subset model achieves an accuracy of 23.06% on the Eurosat-
subset test set.) We use IMACS to show what features are responsible for the performance
degradation of the Eurosat model on the “residential” class of the Merced dataset.

In Figure 4.11, the first two clusters in the IMACS visualization uncover a key discrep-
ancy between the models: the Eurosat model (orange bars) strongly weighs segments with
vegetation for the “residential” class (top row of second cluster–almost all false positives
with greenery), while the Merced model recognizes a wider variety of features (e.g., the first,
third, and fourth clusters contain angled rooflines, small buildings next to patches of green-
ery, and residential streets). For deeper inspection, histogram visualizations of the clusters
in Figure 4.11 are shown in Figure 4.12 and Figure 4.13.

4.7 Discussion and Limitations

In this section, we discuss patterns observed in the use of IMACS in our scenarios, and
discuss implications for using IMACS in new settings, including future work.

Aiding E�cient Understanding of Visual Patterns

In IMACS, image segments are presented on their own, without the benefit of their original
context (i.e., the rest of the image). This can make it di�cult to quickly understand the
particular “concept” represented by the cluster, and the contexts in which these image
segments typically appear. Interactive techniques could be helpful to address these issues.
For example, hovering over an image segment could show the original image in a tooltip to
aid understanding.

Attribution Location Summaries

Our current implementation of IMACS extracts image segments from the underlying image.
This process e↵ectively strips out location data for the image segment (more specifically,
where in the image the segment derives from). Summarizing where the most highly attributed
regions are in images, across the entire dataset, could provide additional, useful information.
For example, if highly attributed image segments are all found in the center of images, or in
one specific corner, this finding could suggest potential issues in the dataset itself. (It could

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 76

Figure 4.12: Histogram visualizations showing the first two of four clusters comparing Eu-
rosat and Merced Land Use trained models evaluated on the “residential” class of the Merced
dataset. Histograms are presented with the same ordering of clusters as Figure 4.11.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 77

Figure 4.13: Histogram visualizations showing the second two of four clusters comparing
Eurosat and Merced Land Use trained models evaluated on the “residential” class of the
Merced dataset. Histograms are presented with the same ordering of clusters as Figure 4.11.

CHAPTER 4. IMACS: COMPARING IMAGE MODEL ATTRIBUTIONS 78

also provide evidence that the model is learning the right visual patterns, if it is known that
the important features should be located in a particular part of the image.)

4.7.1 Interactivity

As previously discussed, there are a number of possible variations for sorting, filtering, aggre-
gating, and presenting model attributions for two models. It is unlikely that any one partic-
ular configuration will meet every possible use case. To address this situation, a promising
extension to this work would be to provide interactive capabilities enabling end-users to
dynamically adjust the pipeline to meet their specific needs.

4.8 Conclusion

This chapter presents IMACS, a method for summarizing and comparing feature attribu-
tions derived from two di↵erent models. We have shown how this technique can reveal key
di↵erences in what each model considers important for predicting a given class, an important
capability in facilitating discovery of unintended or unexpected learned associations. Given
these results, promising future directions include extending this technique to view di↵er-
ences between two datasets (given one model); linking segments in the visualization to their
original context (i.e., source image); and supporting interactive sorting and filtering (e.g.,
comparing false positives only) to facilitate deeper exploration of datasets and models.

79

Chapter 5

Conclusion

5.1 Restatement of Contributions

This thesis presented systems which address critical usability gaps in the ML application
development process by using the ideas of exploration and explanations to help guide
users. The technical and design contributions of these systems are reiterated and summarized
below:

• Acumen, a tool which enables search for ML projects by providing a means to filter
for non-code attributes and examine the relationships between project code through
an interactive visualization.

– A data pipeline which first extracts high-level descriptive attributes and generates
code embeddings from ML projects to produce a dataset.

– An interactive web application that bidirectionally links a table of searchable ML
project attributes with a UMAP visualization that allows inspection and direct
filtering to regions of points.

– A means to create annotations of specified points filtered to in the web applica-
tion, which can be used to checkpoint working memory or to facilitate further
comparison of labeled points within a relaxed set of filters.

– An exploratory evaluation which highlights opportunities and describes partici-
pant workflows that enable novel search interactions.

• Umlaut, a system that uses a multifactor approach to help assist ML developers in
identifying, understanding, and fixing bugs in their DL programs.

– A novel approach of encoding expert heuristics into computational checks of DL
program structure and DL model behavior.

– The Umlaut system, a tool which implements several automatic checks to assist
in finding, understanding, and fixing bugs in Keras programs.

CHAPTER 5. CONCLUSION 80

– An evaluation which shows Umlaut helps non-expert ML users find and fix sig-
nificantly more bugs in DL applications.

• IMACS, a method that combines model attributions with aggregation and visual-
ization techniques to summarize di↵erences in attributions between two DNN image
models.

– A novel technique for aggregating, summarizing, and com- paring the attribution
information of two models across an entire dataset.

– A basic design space describing the core building blocks for summarizing model
attributions and their di↵erences.

– A method that produces visualizations summarizing di↵erences in image model
attributions.

– Example results, including basic validation checks, that validate IMACS’s ability
to extract high-level di↵erences in model attributions between two models.

5.2 Future Work

5.2.1 Data Collection and Labeling

Of all stages in the ML development process, collecting and labeling a dataset is perhaps the
most constraining variable. It is ultimately the dataset that drives the model and determines
its generalizability. There are many opportunities for extending exploration and explanation
techniques to this early stage. One such opportunity is to consider whether the mental
model of those creating label taxonomies, or even labeling the data itself, are well-aligned
with the dataset’s (and model’s) end application. One such example is the use of descriptive
attributes of people (“is this person a [doctor, hiker, chef]?”) versus descriptions of a task
observed in an image (person practicing medicine, person hiking, person preparing a meal).
When descriptions of people are used, ambiguities can appear during labeling (how should
one label an image of a person wearing scrubs and a backpacking bag inside a commercial
kitchen?). However, when descriptions of actions or tasks are used, the severity of these
ambiguities can be mitigated (is the person preparing a meal?). Recent works have emerged
which explore the problem of bias in annotation instructions [121] and disconnects in the
mental models of annotators and evaluators [25]. Continuing this frontier of work is an
opportunity for deep collaboration between the Human-Computer Interaction and Machine
Learning communities.

5.2.2 Closing the Loop from Interpretation and Evaluation

While saliency and interpretability toolkits can be critical for understanding edge cases and
examining model behavior, all of these toolkits su↵er from the existential question of how to

CHAPTER 5. CONCLUSION 81

reckon with their results. What is the best way to “fix” a model with unwanted behavior?
Of note, IMACS is not exempt from this question—how should one “correct” the glasses bias
in the model in the scenario? Researchers and developers often make changes to datasets
with the goal of eliminating unwanted biases. Editing the dataset necessarily requires some
degree of model retraining. Other techniques have emerged from the ML research community
that support “model editing”, which can adjust specific outputs with auxiliary models [107,
108] or through more careful resampling and exclusion of data [167]. There is still a wide
field of opportunity in this space, particularly for interactive techniques, and interfaces that
support non-experts in better understanding and editing their models. This is a phenomenal
opportunity for collaboration as well, where direct manipulation or exploratory techniques
from HCI [33] could complement algorithmic advances from the ML research community.

5.2.3 Human-Centered Model Explanations

One particularly exciting avenue for future work is to understand the needs that explanations
of model behavior fulfill, and to design algorithms, visualizations, and interactions that meet
specific, individual needs. The ML interpretabiliy and Explainable AI research communities
have highlighted many dimensions of what make explanations e↵ective and truthful in the
general case [98]. An inspiring recent work has sought to link design criteria for model expla-
nations with theories of how people understand behavior [80]. Understanding what makes
a good explanation, and how one can adjust explanations to match the mental models and
contexts of their consumers will remain an important research question, especially as large
language models will become the backbones of new user experiences. A possible approach
may be to consider a model explanation as a process, rather than a snapshot. There are
potential parallels to sensemaking and information foraging [125] in the ways practitioners
can begin to understand the mechanisms that influence ML model predictions. For this spec-
ulative interaction, what are the best signals that provide clues, and how would one extract
them? One important step in this process would be to conduct need finding through con-
textual inquiries, user evaluations, or participatory design workshops to better understand
the disconnects in mental models among di↵erent target user groups.

Another parallel track for future work in designing explanations is to understand how
the societal expectations of model capabilities and failures will evolve. Many consumers of
ML applications have learned to expect specific types of failures, such as imperfect machine
translations or unexpected social media recommendations. In an optimistic speculative fu-
ture, consumers of these systems could be given increased agency through more transparent
control that can leverage exploration or explanations.

5.2.4 Augmenting Traditional Software Development

One of the most exciting recent trends is the application of large language models to code.
Codex [23] and Copilot [45] have already made a significant impact in the software engineer-
ing community with their ability to generate code from natural language prompts. Even

CHAPTER 5. CONCLUSION 82

general-purpose conversational models have been able to produce and refine code in dia-
logue [11]. Newer models can perform more advanced tasks, such as bug localization, bug
fixing, and generating descriptions of code [163]. These models will enable new programming
paradigms (e.g., turning software programming into more of a prompt programming task)
which are worth exploring. One opportunity for future work could be to consider interactions
with these models as a basis for learning more about API usage or adhering to good design
patterns and practices.

5.3 Summary

This thesis introduces works that address critical usability challenges at di↵erent stages
of the ML application development process. Three systems were presented that help ML
application developers conduct searches for ML projects as starting points for their work; help
them debug, understand, and fix bugs in their model training code; and better compare and
understand the behavioral patterns of their image models. All of these systems instantiate
the goal of this thesis, which is to empower ML application developers to identify or create
useful and informative structures at each of these stages themselves, by using exploration
and explanation. Ultimately, the goal of this work continues the thread of HCI works that
aim to lower the barrier to entry to developing ML applications, and providing tools to help
people gain a greater understanding of their applications. A key reflection of this work is that
combining design-based approaches, which seek to meet the specific needs of select target
users, with general, algorithmic approaches that can provide strong theoretical guarantees,
is not only compatible, but necessary. I imagine a future where people with vastly di↵erent
levels of experience can create and use ML applications as intuitive and expressive media
that enhance and spark creativity. The surest way to arrive there is to facilitate deep,
meaningful collaborations between the Human-Computer Interaction and Machine Learning
research communities, where design-based and axiomatic approaches can be combined to
unlock powerful applications that can help elevate and unleash our creative potential.

83

Bibliography

[1] Mart́ın Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016, pp. 265–283.
isbn: 9781931971331.

[2] Radhakrishna Achanta et al. “SLIC superpixels”. In: Technical report, EPFL (June
2010).

[3] Uri Alon et al. “code2vec: Learning Distributed Representations of Code”. In: arXiv:1803.09473
[cs, stat] (Oct. 2018). arXiv: 1803.09473. url: http://arxiv.org/abs/1803.09473
(visited on 02/18/2021).

[4] Saleema Amershi et al. “ModelTracker: Redesigning Performance Analysis Tools for
Machine Learning”. In: Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems. CHI ’15. Seoul, Republic of Korea: Association
for Computing Machinery, 2015, pp. 337–346. isbn: 9781450331456. doi: 10.1145/
2702123.2702509. url: https://doi.org/10.1145/2702123.2702509.

[5] Saleema Amershi et al. “ModelTracker: Redesigning Performance Analysis Tools for
Machine Learning”. In: Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems. CHI ’15. Seoul, Republic of Korea: Association
for Computing Machinery, 2015, pp. 337–346. isbn: 9781450331456. doi: 10.1145/
2702123.2702509. url: https://doi.org/10.1145/2702123.2702509.

[6] Saleema Amershi et al. “Software Engineering for Machine Learning: A Case Study”.
In: Proceedings of the 41st International Conference on Software Engineering: Soft-
ware Engineering in Practice. ICSE-SEIP ’19. Montreal, Quebec, Canada: IEEE
Press, 2019, pp. 291–300. doi: 10.1109/ICSE- SEIP.2019.00042. url: https:
//doi.org/10.1109/ICSE-SEIP.2019.00042.

[7] Kanav Anand et al. “Black Magic in Deep Learning: How Human Skill Impacts Net-
work Training”. In: The British Machine Vision Conference (2020).

[8] Marc Andreessen. “Why Software Is Eating The World”. en-US. In: Wall Street
Journal (Aug. 2011). issn: 0099-9660. url: https://online.wsj.com/article/
SB10001424053111903480904576512250915629460.html (visited on 10/11/2022).

http://arxiv.org/abs/1803.09473
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://online.wsj.com/article/SB10001424053111903480904576512250915629460.html
https://online.wsj.com/article/SB10001424053111903480904576512250915629460.html

BIBLIOGRAPHY 84

[9] Keith Andrews et al. “The InfoSky Visual Explorer: Exploiting Hierarchical Structure
and Document Similarities”. In: Information Visualization 1.3/4 (Dec. 2002), pp. 166–
181. issn: 1473-8716. doi: 10.1057/palgrave.ivs.9500023. url: https://doi.
org/10.1057/palgrave.ivs.9500023.

[10] Anyscale - E↵ortlessly develop, scale and deploy AI, at any scale — Anyscale. url:
https://www.anyscale.com/ (visited on 10/12/2022).

[11] Jacob Austin et al. Program Synthesis with Large Language Models. 2021. doi: 10.
48550/ARXIV.2108.07732. url: https://arxiv.org/abs/2108.07732.

[12] J. Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In: NIPS. 2011.

[13] Tolga Bolukbasi et al. An Interpretability Illusion for BERT. 2021. doi: 10.48550/
ARXIV.2104.07143. url: https://arxiv.org/abs/2104.07143.

[14] Houssem Ben Braiek and Foutse Khomh. TFCheck : A TensorFlow Library for Detect-
ing Training Issues in Neural Network Programs. 2019. arXiv: 1909.02562 [cs.LG].

[15] Joel Brandt et al. “Example-Centric Programming: Integrating Web Search into the
Development Environment”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’10. Atlanta, Georgia, USA: Association for Com-
puting Machinery, 2010, pp. 513–522. isbn: 9781605589299. doi: 10.1145/1753326.
1753402. url: https://doi.org/10.1145/1753326.1753402.

[16] Joel Brandt et al. “Example-Centric Programming: Integrating Web Search into the
Development Environment”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’10. Atlanta, Georgia, USA: Association for Com-
puting Machinery, 2010, pp. 513–522. isbn: 9781605589299. doi: 10.1145/1753326.
1753402. url: https://doi.org/10.1145/1753326.1753402.

[17] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 1877–1901. url: https://proceedings.neurips.cc/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[18] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.
14165 [cs.CL].

[19] Steve Burbeck. “Applications programming in smalltalk-80: how to use model-view-
controller (mvc)”. In: 1987.

[20] Carrie J Cai et al. “Onboarding Materials as Cross-Functional Boundary Objects for
Developing AI Assistants”. In: Extended Abstracts of the 2021 CHI Conference on Hu-
man Factors in Computing Systems. CHI EA ’21. Yokohama, Japan: Association for
Computing Machinery, 2021. isbn: 9781450380959. doi: 10.1145/3411763.3443435.
url: https://doi.org/10.1145/3411763.3443435.

https://doi.org/10.1057/palgrave.ivs.9500023
https://doi.org/10.1057/palgrave.ivs.9500023
https://doi.org/10.1057/palgrave.ivs.9500023
https://www.anyscale.com/
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2104.07143
https://doi.org/10.48550/ARXIV.2104.07143
https://arxiv.org/abs/2104.07143
https://arxiv.org/abs/1909.02562
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3411763.3443435
https://doi.org/10.1145/3411763.3443435

BIBLIOGRAPHY 85

[21] Carrie J. Cai and Philip J. Guo. “Software Developers Learning Machine Learning:
Motivations, Hurdles, and Desires”. In: 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). Oct. 2019, pp. 25–34. doi: 10.1109/
VLHCC.2019.8818751.

[22] Shanqing Cai. Debug TensorFlow Models with tfdbg. Feb. 2017. url: https : / /

developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.

html.

[23] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. doi:
10.48550/ARXIV.2107.03374. url: https://arxiv.org/abs/2107.03374.

[24] François Chollet. keras. https://github.com/fchollet/keras. 2015.

[25] Elizabeth Clark et al. All That’s ’Human’ Is Not Gold: Evaluating Human Evaluation
of Generated Text. 2021. doi: 10.48550/ARXIV.2107.00061. url: https://arxiv.
org/abs/2107.00061.

[26] Andy Coenen and Adam Pearce. “Understanding UMAP”. In: URL https://pair-
code.github.io/understanding-umap (2019).

[27] Alexis Conneau et al. “Very Deep Convolutional Networks for Text Classification”.
In: Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers. Valencia, Spain: Association for
Computational Linguistics, Apr. 2017, pp. 1107–1116. url: https://aclanthology.
org/E17-1104 (visited on 09/16/2022).

[28] D. Cubranic et al. “Hipikat: a project memory for software development”. In: IEEE
Transactions on Software Engineering 31.6 (June 2005). Conference Name: IEEE
Transactions on Software Engineering, pp. 446–465. issn: 1939-3520. doi: 10.1109/
TSE.2005.71.

[29] Douglass R. Cutting et al. “Scatter/Gather: A Cluster-Based Approach to Browsing
Large Document Collections”. In: Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR
’92. Copenhagen, Denmark: Association for Computing Machinery, 1992, pp. 318–
329. isbn: 0897915232. doi: 10.1145/133160.133214. url: https://doi.org/10.
1145/133160.133214.

[30] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848.

[31] Emily Denton et al. “Detecting Bias with Generative Counterfactual Face Attribute
Augmentation”. In: CoRR abs/1906.06439 (2019). arXiv: 1906.06439. url: http:
//arxiv.org/abs/1906.06439.

https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1109/VLHCC.2019.8818751
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://doi.org/10.48550/ARXIV.2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/fchollet/keras
https://doi.org/10.48550/ARXIV.2107.00061
https://arxiv.org/abs/2107.00061
https://arxiv.org/abs/2107.00061
https://aclanthology.org/E17-1104
https://aclanthology.org/E17-1104
https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1145/133160.133214
https://doi.org/10.1145/133160.133214
https://doi.org/10.1145/133160.133214
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1906.06439
http://arxiv.org/abs/1906.06439
http://arxiv.org/abs/1906.06439

BIBLIOGRAPHY 86

[32] Daniel Drew et al. “The Toastboard: Ubiquitous Instrumentation and Automated
Checking of Breadboarded Circuits”. In: Proceedings of the 29th Annual Symposium
on User Interface Software and Technology. UIST ’16. Tokyo, Japan: Association
for Computing Machinery, 2016, pp. 677–686. isbn: 9781450341899. doi: 10.1145/
2984511.2984566. url: https://doi.org/10.1145/2984511.2984566.

[33] Jerry Alan Fails and Dan R. Olsen. “Interactive Machine Learning”. In: Proceed-
ings of the 8th International Conference on Intelligent User Interfaces. IUI ’03. Mi-
ami, Florida, USA: Association for Computing Machinery, 2003, pp. 39–45. isbn:
1581135866. doi: 10.1145/604045.604056. url: https://doi.org/10.1145/
604045.604056.

[34] William Falcon et al. PyTorchLightning/pytorch-lightning: 0.7.6 release. Version 0.7.6.
May 2020. doi: 10.5281/zenodo.3828935. url: https://doi.org/10.5281/
zenodo.3828935.

[35] Cristian Felix, Aritra Dasgupta, and Enrico Bertini. “The Exploratory Labeling Assis-
tant: Mixed-Initiative Label Curation with Large Document Collections”. In: Proceed-
ings of the 31st Annual ACM Symposium on User Interface Software and Technology.
UIST ’18. Berlin, Germany: Association for Computing Machinery, 2018, pp. 153–164.
isbn: 9781450359481. doi: 10.1145/3242587.3242596. url: https://doi.org/10.
1145/3242587.3242596.

[36] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Programming and Nat-
ural Languages”. In: arXiv:2002.08155 [cs] (Sept. 2020). arXiv: 2002.08155. url:
http://arxiv.org/abs/2002.08155 (visited on 03/09/2021).

[37] Rebecca Fiebrink and Perry R Cook. “The Wekinator: a system for real-time, in-
teractive machine learning in music”. In: Proceedings of The Eleventh International
Society for Music Information Retrieval Conference (ISMIR 2010)(Utrecht). 2010.

[38] Ruth C Fong and Andrea Vedaldi. “Interpretable explanations of black boxes by
meaningful perturbation”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 3429–3437.

[39] Adam Fourney and Meredith Ringel Morris. “Enhancing Technical Q&A Forums with
CiteHistory”. In: Proceedings of ICWSM 2013. You can download the CiteHistory plu-
gin at http://research.microsoft.com/en-us/um/redmond/projects/citehistory/. AAAI,
July 2013. url: https://www.microsoft.com/en-us/research/publication/
enhancing-technical-qa-forums-with-citehistory/.

[40] Rolando Garcia et al. flor. 2019. url: https://github.com/ucbrise/flor.

[41] Timnit Gebru et al. “Datasheets for Datasets”. In: Commun. ACM 64.12 (Nov. 2021),
pp. 86–92. issn: 0001-0782. doi: 10.1145/3458723. url: https://doi.org/10.
1145/3458723.

https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/604045.604056
https://doi.org/10.1145/604045.604056
https://doi.org/10.1145/604045.604056
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.1145/3242587.3242596
https://doi.org/10.1145/3242587.3242596
https://doi.org/10.1145/3242587.3242596
http://arxiv.org/abs/2002.08155
https://www.microsoft.com/en-us/research/publication/enhancing-technical-qa-forums-with-citehistory/
https://www.microsoft.com/en-us/research/publication/enhancing-technical-qa-forums-with-citehistory/
https://github.com/ucbrise/flor
https://doi.org/10.1145/3458723
https://doi.org/10.1145/3458723
https://doi.org/10.1145/3458723

BIBLIOGRAPHY 87

[42] Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. “Socially Fair K-Means
Clustering”. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency. FAccT ’21. Virtual Event, Canada: Association for Computing Ma-
chinery, 2021, pp. 438–448. isbn: 9781450383097. doi: 10.1145/3442188.3445906.
url: https://doi.org/10.1145/3442188.3445906.

[43] Amirata Ghorbani et al. “Towards Automatic Concept-based Explanations”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper/
2019/file/77d2afcb31f6493e350fca61764efb9a-Paper.pdf.

[44] Leilani H. Gilpin et al. Explaining Explanations: An Overview of Interpretability of
Machine Learning. 2018. arXiv: 1806.00069 [cs.AI].

[45] GitHub Copilot · Your AI pair programmer. en. url: https://github.com/features/
copilot (visited on 10/14/2022).

[46] Elena L. Glassman et al. “Visualizing API Usage Examples at Scale”. In: Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. CHI ’18.
Montreal QC, Canada: Association for Computing Machinery, 2018, pp. 1–12. isbn:
9781450356206. doi: 10.1145/3173574.3174154. url: https://doi.org/10.1145/
3173574.3174154.

[47] Michael Gleicher et al. Boxer: Interactive Comparison of Classifier Results. 2020.
arXiv: 2004.07964 [cs.HC].

[48] Max Goldman and Robert C. Miller. “Codetrail: Connecting source code and web re-
sources”. In: 2008 IEEE Symposium on Visual Languages and Human-Centric Com-
puting. 2008, pp. 65–72. doi: 10.1109/VLHCC.2008.4639060.

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[50] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in neural informa-
tion processing systems. 2014, pp. 2672–2680.

[51] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. “A survey of software learn-
ability: metrics, methodologies and guidelines”. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. ACM. 2009, pp. 649–658.

[52] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. “Deep Code Search”. In: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 2018,
pp. 933–944. doi: 10.1145/3180155.3180167.

[53] Björn Hartmann et al. “What Would Other Programmers Do: Suggesting Solutions
to Error Messages”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’10. Atlanta, Georgia, USA: Association for Computing
Machinery, 2010, pp. 1019–1028. isbn: 9781605589299. doi: 10 . 1145 / 1753326 .
1753478. url: https://doi.org/10.1145/1753326.1753478.

https://doi.org/10.1145/3442188.3445906
https://doi.org/10.1145/3442188.3445906
https://proceedings.neurips.cc/paper/2019/file/77d2afcb31f6493e350fca61764efb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/77d2afcb31f6493e350fca61764efb9a-Paper.pdf
https://arxiv.org/abs/1806.00069
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3173574.3174154
https://arxiv.org/abs/2004.07964
https://doi.org/10.1109/VLHCC.2008.4639060
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/1753326.1753478

BIBLIOGRAPHY 88

[54] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–
778. doi: 10.1109/CVPR.2016.90.

[55] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification”. In: 2015 IEEE International Conference on Com-
puter Vision (ICCV). 2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123.

[56] Kaiming He et al. Identity Mappings in Deep Residual Networks. 2016. arXiv: 1603.
05027 [cs.CV].

[57] Andrew Head. “Social health cues developers use when choosing open source pack-
ages”. en. In: Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. Seattle WA USA: ACM, Nov. 2016,
pp. 1133–1135. isbn: 978-1-4503-4218-6. doi: 10 . 1145 / 2950290 . 2983973. url:
https://dl.acm.org/doi/10.1145/2950290.2983973 (visited on 09/15/2022).

[58] Andrew Head et al. “Composing Flexibly-Organized Step-by-Step Tutorials from
Linked Source Code, Snippets, and Outputs”. In: Proceedings of the 2020 CHI Con-
ference on Human Factors in Computing Systems. CHI ’20. Honolulu, HI, USA:
Association for Computing Machinery, 2020, pp. 1–12. isbn: 9781450367080. doi:
10.1145/3313831.3376798. url: https://doi.org/10.1145/3313831.3376798.

[59] Andrew Head et al. “Managing Messes in Computational Notebooks”. In: Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems. CHI ’19.
Glasgow, Scotland Uk: Association for Computing Machinery, 2019, pp. 1–12. isbn:
9781450359702. doi: 10.1145/3290605.3300500. url: https://doi.org/10.1145/
3290605.3300500.

[60] Andrew Head et al. “Tutorons: Generating context-relevant, on-demand explanations
and demonstrations of online code”. In: 2015 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). Oct. 2015, pp. 3–12. doi: 10.1109/
VLHCC.2015.7356972.

[61] Marti A. Hearst. Search User Interfaces. 1st. USA: Cambridge University Press, 2009.
isbn: 0521113792.

[62] Patrick Helber et al. “EuroSAT: A Novel Dataset and Deep Learning Benchmark
for Land Use and Land Cover Classification”. In: IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 12.7 (2019), pp. 2217–2226. doi:
10.1109/JSTARS.2019.2918242.

[63] Shawn Hershey et al. “CNN architectures for large-scale audio classification”. In: 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2017), pp. 131–135.

[64] Charles Hill et al. “Trials and tribulations of developers of intelligent systems: A field
study”. In: 2016 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). Sept. 2016, pp. 162–170. doi: 10.1109/VLHCC.2016.7739680.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2015.123
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://doi.org/10.1145/2950290.2983973
https://dl.acm.org/doi/10.1145/2950290.2983973
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1109/JSTARS.2019.2918242
https://doi.org/10.1109/VLHCC.2016.7739680

BIBLIOGRAPHY 89

[65] Andreas Hinterreiter et al. “ConfusionFlow: A model-agnostic visualization for tempo-
ral analysis of classifier confusion”. In: IEEE Transactions on Visualization and Com-
puter Graphics (2020), pp. 1–1. issn: 2160-9306. doi: 10.1109/tvcg.2020.3012063.
url: http://dx.doi.org/10.1109/TVCG.2020.3012063.

[66] Raphael Ho↵mann, James Fogarty, and Daniel S. Weld. “Assieme: Finding and Lever-
aging Implicit References in a Web Search Interface for Programmers”. In: Proceed-
ings of the 20th Annual ACM Symposium on User Interface Software and Technol-
ogy. UIST ’07. Newport, Rhode Island, USA: Association for Computing Machinery,
2007, pp. 13–22. isbn: 9781595936790. doi: 10.1145/1294211.1294216. url: https:
//doi.org/10.1145/1294211.1294216.

[67] Fred Hohman et al. “Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models”. In: Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. CHI ’19. Glasgow, Scotland Uk: Associa-
tion for Computing Machinery, 2019. isbn: 9781450359702. doi: 10.1145/3290605.
3300809. url: https://doi.org/10.1145/3290605.3300809.

[68] Fred Hohman et al. “Understanding and Visualizing Data Iteration in Machine Learn-
ing”. In: Proceedings of the 2020 CHI Conference on Human Factors in Comput-
ing Systems. CHI ’20. Honolulu, HI, USA: Association for Computing Machinery,
2020, pp. 1–13. isbn: 9781450367080. doi: 10.1145/3313831.3376177. url: https:
//doi.org/10.1145/3313831.3376177.

[69] Fred Hohman et al. “Visual Analytics in Deep Learning: An Interrogative Survey for
the Next Frontiers”. In: IEEE Transactions on Visualization and Computer Graphics
25.8 (2019), pp. 2674–2693. doi: 10.1109/TVCG.2018.2843369.

[70] Jeremy Howard and Sylvain Gugger. “Fastai: A Layered API for Deep Learning”. In:
Information 11.2 (Feb. 2020), p. 108. issn: 2078-2489. doi: 10.3390/info11020108.
url: http://dx.doi.org/10.3390/info11020108.

[71] Forrest Huang et al. “Creating User Interface Mock-ups from High-Level Text De-
scriptions with Deep-Learning Models”. In: CoRR abs/2110.07775 (2021). arXiv:
2110.07775. url: https://arxiv.org/abs/2110.07775.

[72] Forrest Huang et al. “Scones: Towards Conversational Authoring of Sketches”. In:
Proceedings of the 25th International Conference on Intelligent User Interfaces. IUI
’20. Cagliari, Italy: Association for Computing Machinery, 2020, pp. 313–323. isbn:
9781450371186. doi: 10.1145/3377325.3377485. url: https://doi.org/10.1145/
3377325.3377485.

[73] Nargiz Humbatova et al. Taxonomy of Real Faults in Deep Learning Systems. 2019.
arXiv: 1910.11015 [cs.SE].

[74] Hamel Husain et al. “CodeSearchNet challenge: Evaluating the state of semantic code
search”. In: arXiv preprint arXiv:1909.09436 (2019).

https://doi.org/10.1109/tvcg.2020.3012063
http://dx.doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1145/3313831.3376177
https://doi.org/10.1145/3313831.3376177
https://doi.org/10.1145/3313831.3376177
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.3390/info11020108
http://dx.doi.org/10.3390/info11020108
https://arxiv.org/abs/2110.07775
https://arxiv.org/abs/2110.07775
https://doi.org/10.1145/3377325.3377485
https://doi.org/10.1145/3377325.3377485
https://doi.org/10.1145/3377325.3377485
https://arxiv.org/abs/1910.11015

BIBLIOGRAPHY 90

[75] Ben Hutchinson et al. “Towards Accountability for Machine Learning Datasets: Prac-
tices from Software Engineering and Infrastructure”. In: Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency. FAccT ’21. Vir-
tual Event, Canada: Association for Computing Machinery, 2021, pp. 560–575. isbn:
9781450383097. doi: 10.1145/3442188.3445918. url: https://doi.org/10.1145/
3442188.3445918.

[76] Apple Inc. Apple Create ML. 2019. url: https://developer.apple.com/machine-
learning/create-ml/.

[77] Databricks Inc. MLFlow. 2019. url: https://mlflow.org/.

[78] Google Inc.Know Your Data. en. May 2021. url: https://knowyourdata.withgoogle.
com/ (visited on 09/30/2022).

[79] Md Johirul Islam et al. “A Comprehensive Study on Deep Learning Bug Character-
istics”. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing. ESEC/FSE 2019. Tallinn, Estonia: Association for Computing Machinery, 2019,
pp. 510–520. isbn: 9781450355728. doi: 10.1145/3338906.3338955. url: https:
//doi.org/10.1145/3338906.3338955.

[80] Alon Jacovi et al. Diagnosing AI Explanation Methods with Folk Concepts of Behavior.
2022. doi: 10.48550/ARXIV.2201.11239. url: https://arxiv.org/abs/2201.
11239.

[81] Andrew Janowczyk and Anant Madabhushi. “Deep learning for digital pathology
image analysis: A comprehensive tutorial with selected use cases”. In: Journal of
pathology informatics 7 (2016).

[82] S. C. Johnson. “Lint, a C Program Checker”. In: Technical Report. Bell Telephone
Laboratories, 1978, pp. 78–1273.

[83] Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. “Visual Exploration of
Machine Learning Results Using Data Cube Analysis”. In: Proceedings of the Work-
shop on Human-In-the-Loop Data Analytics. HILDA ’16. San Francisco, California:
Association for Computing Machinery, 2016. isbn: 9781450342070. doi: 10.1145/
2939502.2939503. url: https://doi.org/10.1145/2939502.2939503.

[84] Aditya Kanade et al. “Learning and Evaluating Contextual Embedding of Source
Code”. In: arXiv:2001.00059 [cs] (Aug. 2020). arXiv: 2001.00059. url: http://
arxiv.org/abs/2001.00059 (visited on 03/09/2021).

[85] Andrei Kapishnikov et al. “Guided Integrated Gradients: An Adaptive Path Method
for Removing Noise”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2021, pp. 5050–5058.

[86] Andrei Kapishnikov et al. XRAI: Better Attributions Through Regions. 2019. arXiv:
1906.02825 [cs.CV].

https://doi.org/10.1145/3442188.3445918
https://doi.org/10.1145/3442188.3445918
https://doi.org/10.1145/3442188.3445918
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://mlflow.org/
https://knowyourdata.withgoogle.com/
https://knowyourdata.withgoogle.com/
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.48550/ARXIV.2201.11239
https://arxiv.org/abs/2201.11239
https://arxiv.org/abs/2201.11239
https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1145/2939502.2939503
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2001.00059
https://arxiv.org/abs/1906.02825

BIBLIOGRAPHY 91

[87] Andrej Karpathy. A Recipe for Training Neural Networks. Apr. 2019. url: https:
//karpathy.github.io/2019/04/25/recipe/.

[88] Andrej Karpathy. Software 2.0. en. Nov. 2017. url: https://karpathy.medium.
com/software-2-0-a64152b37c35 (visited on 10/11/2022).

[89] Andrej Karpathy. “Training Neural Networks, Part 1”. In: Convolutional Neural Net-
works for Visual Recognition. Lecture Slides (Jan. 2016). url: http://cs231n.
stanford.edu/2016/syllabus.html.

[90] Jun Kato, Sean McDirmid, and Xiang Cao. “DejaVu: integrated support for devel-
oping interactive camera-based programs”. In: Proceedings of the 25th annual ACM
symposium on User interface software and technology. 2012, pp. 189–196.

[91] Been Kim et al. Interpretability Beyond Feature Attribution: Quantitative Testing with
Concept Activation Vectors (TCAV). 2017. arXiv: 1711.11279 [stat.ML].

[92] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.org/abs/1412.6980.

[93] Amy J. Ko and Brad A. Myers. “Finding Causes of Program Output with the Java
Whyline”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’09. Boston, MA, USA: Association for Computing Machinery, 2009,
pp. 1569–1578. isbn: 9781605582467. doi: 10.1145/1518701.1518942. url: https:
//doi.org/10.1145/1518701.1518942.

[94] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep.
2009.

[95] Alina Kuznetsova et al. “The Open Images Dataset V4: Unified image classification,
object detection, and visual relationship detection at scale”. In: IJCV (2020).

[96] Philippe Laban et al. “The Summary Loop: Learning to Write Abstractive Summaries
Without Examples”. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational Linguistics,
July 2020, pp. 5135–5150. doi: 10.18653/v1/2020.acl-main.460. url: https:
//aclanthology.org/2020.acl-main.460.

[97] Lezhi Li and Yang Wang. Manifold: A Model-Agnostic Visual Debugging Tool for
Machine Learning at Uber. Aug. 2019. url: https://eng.uber.com/manifold/.

[98] Zachary Chase Lipton. “The Myth of Model Interpretability”. In: CoRR abs / 1606.03490
(2016). arXiv: 1606.03490. url: http://arxiv.org/abs/1606.03490.

[99] Google LLC. Machine Learning Crash Course with TensorFlow APIs. 2020. url:
https://developers.google.com/machine-learning/crash-course.

[100] Shuai Lu et al. “CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation”. In: CoRR abs/2102.04664 (2021).

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
http://cs231n.stanford.edu/2016/syllabus.html
http://cs231n.stanford.edu/2016/syllabus.html
https://arxiv.org/abs/1711.11279
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.18653/v1/2020.acl-main.460
https://aclanthology.org/2020.acl-main.460
https://aclanthology.org/2020.acl-main.460
https://eng.uber.com/manifold/
https://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://developers.google.com/machine-learning/crash-course

BIBLIOGRAPHY 92

[101] Dan Maynes-Aminzade, Terry Winograd, and Takeo Igarashi. “Eyepatch: prototyping
camera-based interaction through examples”. In: Proceedings of the 20th annual ACM
symposium on User interface software and technology. 2007, pp. 33–42.

[102] Will McGrath et al. “Bifröst: Visualizing and Checking Behavior of Embedded Sys-
tems across Hardware and Software”. In: Proceedings of the 30th Annual ACM Sympo-
sium on User Interface Software and Technology. UIST ’17. Québec City, QC, Canada:
Association for Computing Machinery, 2017, pp. 299–310. isbn: 9781450349819. doi:
10.1145/3126594.3126658. url: https://doi.org/10.1145/3126594.3126658.

[103] David A. Mellis et al. “Machine Learning for Makers: Interactive Sensor Data Clas-
sification Based on Augmented Code Examples”. In: Proceedings of the 2017 Con-
ference on Designing Interactive Systems. DIS ’17. Edinburgh, United Kingdom: As-
sociation for Computing Machinery, 2017, pp. 1213–1225. isbn: 9781450349222. doi:
10.1145/3064663.3064735. url: https://doi.org/10.1145/3064663.3064735.

[104] Microsoft. Automate code completions tailored to your codebase with IntelliCode Team
completions. 2020. url: https://github.com/microsoft/vs-intellicode.

[105] Midjourney. en. url: https://www.midjourney.com/home/ (visited on 10/11/2022).

[106] Riccardo Miotto et al. “Deep learning for healthcare: review, opportunities and chal-
lenges”. In: Briefings in Bioinformatics 19.6 (May 2017), pp. 1236–1246. issn: 1477-
4054. doi: 10 . 1093 / bib / bbx044. eprint: https : / / academic . oup . com / bib /
article-pdf/19/6/1236/27119191/bbx044.pdf. url: https://doi.org/10.
1093/bib/bbx044.

[107] Eric Mitchell et al. Fast Model Editing at Scale. 2021. doi: 10.48550/ARXIV.2110.
11309. url: https://arxiv.org/abs/2110.11309.

[108] Eric Mitchell et al. Memory-Based Model Editing at Scale. 2022. doi: 10.48550/
ARXIV.2206.06520. url: https://arxiv.org/abs/2206.06520.

[109] Margaret Mitchell et al. “Model Cards for Model Reporting”. In: Proceedings of the
Conference on Fairness, Accountability, and Transparency. FAT* ’19. Atlanta, GA,
USA: Association for Computing Machinery, 2019, pp. 220–229. isbn: 9781450361255.
doi: 10.1145/3287560.3287596. url: https://doi.org/10.1145/3287560.
3287596.

[110] Philipp Moritz et al. Ray: A Distributed Framework for Emerging AI Applications.
2017. doi: 10.48550/ARXIV.1712.05889. url: https://arxiv.org/abs/1712.
05889.

[111] Sugeerth Murugesan et al. “DeepCompare: Visual and Interactive Comparison of
Deep Learning Model Performance”. In: IEEE Comput. Graph. Appl. 39.5 (Sept.
2019), pp. 47–59. issn: 0272-1716. doi: 10.1109/MCG.2019.2919033. url: https:
//doi.org/10.1109/MCG.2019.2919033.

https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3064663.3064735
https://doi.org/10.1145/3064663.3064735
https://github.com/microsoft/vs-intellicode
https://www.midjourney.com/home/
https://doi.org/10.1093/bib/bbx044
https://academic.oup.com/bib/article-pdf/19/6/1236/27119191/bbx044.pdf
https://academic.oup.com/bib/article-pdf/19/6/1236/27119191/bbx044.pdf
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.48550/ARXIV.2110.11309
https://doi.org/10.48550/ARXIV.2110.11309
https://arxiv.org/abs/2110.11309
https://doi.org/10.48550/ARXIV.2206.06520
https://doi.org/10.48550/ARXIV.2206.06520
https://arxiv.org/abs/2206.06520
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.48550/ARXIV.1712.05889
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889
https://doi.org/10.1109/MCG.2019.2919033
https://doi.org/10.1109/MCG.2019.2919033
https://doi.org/10.1109/MCG.2019.2919033

BIBLIOGRAPHY 93

[112] Sugeerth Murugesan et al. “DeepCompare: Visual and Interactive Comparison of
Deep Learning Model Performance”. In: IEEE Computer Graphics and Applications
PP (May 2019), pp. 1–1. doi: 10.1109/MCG.2019.2919033.

[113] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.
3rd. Wiley Publishing, 2011. isbn: 1118031962.

[114] Shweta Narkar et al. “Model LineUpper: Supporting Interactive Model Comparison
at Multiple Levels for AutoML”. In: 26th International Conference on Intelligent User
Interfaces. IUI ’21. College Station, TX, USA: Association for Computing Machinery,
2021, pp. 170–174. isbn: 9781450380171. doi: 10.1145/3397481.3450658. url:
https://doi.org/10.1145/3397481.3450658.

[115] Soroush Nasiriany et al. A Comprehensive Guide to Machine Learning. Nov. 2019.

[116] NVIDIA DLSS 2.0: A Big Leap In AI Rendering. url: https://www.nvidia.com/
en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/.

[117] Augustus Odena et al. “TensorFuzz: Debugging Neural Networks with Coverage-
Guided Fuzzing”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. Long Beach, California, USA: PMLR, June 2019,
pp. 4901–4911. url: http://proceedings.mlr.press/v97/odena19a.html.

[118] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visualization”.
In: Distill (2017). https://distill.pub/2017/feature-visualization. doi: 10 . 23915 /

distill.00007.

[119] Savannah Ostrowski. Announcing Pylance: Fast, feature-rich language support for
Python in Visual Studio Code. 2020. url: https://devblogs.microsoft.com/
python/announcing- pylance- fast- feature- rich- language- support- for-

python-in-visual-studio-code/.

[120] Google PAIR. FACETS. 2017. url: https://pair-code.github.io/facets/.

[121] Mihir Parmar et al. Don’t Blame the Annotator: Bias Already Starts in the Annotation
Instructions. 2022. doi: 10.48550/ARXIV.2205.00415. url: https://arxiv.org/
abs/2205.00415.

[122] Kayur Patel et al. “Gestalt: Integrated Support for Implementation and Analysis
in Machine Learning”. In: Proceedings of the 23nd Annual ACM Symposium on User
Interface Software and Technology. UIST ’10. New York, New York, USA: Association
for Computing Machinery, 2010, pp. 37–46. isbn: 9781450302715. doi: 10.1145/
1866029.1866038. url: https://doi.org/10.1145/1866029.1866038.

[123] Kayur Patel et al. “Investigating 1Statistical Machine Learning as a Tool for Soft-
ware Development”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’08. Florence, Italy: Association for Computing Machin-
ery, 2008, pp. 667–676. isbn: 9781605580111. doi: 10.1145/1357054.1357160. url:
https://doi.org/10.1145/1357054.1357160.

https://doi.org/10.1109/MCG.2019.2919033
https://doi.org/10.1145/3397481.3450658
https://doi.org/10.1145/3397481.3450658
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00007
https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/
https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/
https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/
https://pair-code.github.io/facets/
https://doi.org/10.48550/ARXIV.2205.00415
https://arxiv.org/abs/2205.00415
https://arxiv.org/abs/2205.00415
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/1357054.1357160

BIBLIOGRAPHY 94

[124] Neel Patel, Martin Strobel, and Yair Zick. “High Dimensional Model Explanations:
An Axiomatic Approach”. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. FAccT ’21. Virtual Event, Canada: Association
for Computing Machinery, 2021, pp. 401–411. isbn: 9781450383097. doi: 10.1145/
3442188.3445903. url: https://doi.org/10.1145/3442188.3445903.

[125] Peter Pirolli and Stuart Card. “Information foraging”. In: Psychological Review 106
(1999). Place: US Publisher: American Psychological Association, pp. 643–675. issn:
1939-1471. doi: 10.1037/0033-295X.106.4.643.

[126] Peter Pirolli and Stuart Card. “The Sensemaking Process and Leverage Points for
Analyst Technology as Identified Through Cognitive Task Analysis”. In: Proceedings
of the International Conference on Intelligence Analysis. Vol. 5. May 2005.

[127] Peter Pirolli et al. “Scatter/Gather Browsing Communicates the Topic Structure of
a Very Large Text Collection”. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. CHI ’96. Vancouver, British Columbia, Canada:
Association for Computing Machinery, 1996, pp. 213–220. isbn: 0897917774. doi:
10.1145/238386.238489. url: https://doi.org/10.1145/238386.238489.

[128] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP
Latents. 2022. doi: 10.48550/ARXIV.2204.06125. url: https://arxiv.org/abs/
2204.06125.

[129] Benjamin Recht et al. “Do ImageNet Classifiers Generalize to ImageNet?” In: Pro-
ceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika
Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Re-
search. PMLR, June 2019, pp. 5389–5400. url: https://proceedings.mlr.press/
v97/recht19a.html.

[130] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust
You?”: Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’16. San Francisco, California, USA: Association for Computing Machinery,
2016, pp. 1135–1144. isbn: 9781450342322. doi: 10.1145/2939672.2939778. url:
https://doi.org/10.1145/2939672.2939778.

[131] Adam Roberts et al. “Scaling Up Models and Data with t5x and seqio”. In: arXiv
preprint arXiv:2203.17189 (2022). url: https://arxiv.org/abs/2203.17189.

[132] Robin Rombach et al. High-Resolution Image Synthesis with Latent Di↵usion Models.
2021. doi: 10.48550/ARXIV.2112.10752. url: https://arxiv.org/abs/2112.
10752.

https://doi.org/10.1145/3442188.3445903
https://doi.org/10.1145/3442188.3445903
https://doi.org/10.1145/3442188.3445903
https://doi.org/10.1037/0033-295X.106.4.643
https://doi.org/10.1145/238386.238489
https://doi.org/10.1145/238386.238489
https://doi.org/10.48550/ARXIV.2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://proceedings.mlr.press/v97/recht19a.html
https://proceedings.mlr.press/v97/recht19a.html
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/2203.17189
https://doi.org/10.48550/ARXIV.2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752

BIBLIOGRAPHY 95

[133] Xin Rong et al. “CodeMend: Assisting Interactive Programming with Bimodal Em-
bedding”. In: Proceedings of the 29th Annual Symposium on User Interface Software
and Technology. UIST ’16. Tokyo, Japan: Association for Computing Machinery, 2016,
pp. 247–258. isbn: 9781450341899. doi: 10.1145/2984511.2984544. url: https:
//doi.org/10.1145/2984511.2984544.

[134] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. en.
In: arXiv:1409.0575 [cs] (Sept. 2014). arXiv: 1409.0575. url: http://arxiv.org/
abs/1409.0575 (visited on 03/18/2019).

[135] Daniel M. Russell et al. “The Cost Structure of Sensemaking”. In: Proceedings of the
INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems.
CHI ’93. Amsterdam, The Netherlands: Association for Computing Machinery, 1993,
pp. 269–276. isbn: 0897915755. doi: 10.1145/169059.169209. url: https://doi.
org/10.1145/169059.169209.

[136] Saksham Sachdev et al. “Retrieval on source code: a neural code search”. en. In:
Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages. Philadelphia PA USA: ACM, June 2018, pp. 31–41.
isbn: 978-1-4503-5834-7. doi: 10.1145/3211346.3211353. url: https://dl.acm.
org/doi/10.1145/3211346.3211353 (visited on 07/17/2021).

[137] Chitwan Saharia et al. Photorealistic Text-to-Image Di↵usion Models with Deep Lan-
guage Understanding. 2022. doi: 10.48550/ARXIV.2205.11487. url: https://
arxiv.org/abs/2205.11487.

[138] Eldon Schoop, Forrest Huang, and Bjoern Hartmann. “UMLAUT: Debugging Deep
Learning Programs Using Program Structure and Model Behavior”. In: Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. CHI ’21.
Yokohama, Japan: Association for Computing Machinery, 2021. isbn: 9781450380966.
doi: 10.1145/3411764.3445538. url: https://doi.org/10.1145/3411764.
3445538.

[139] Eldon Schoop, Forrest Huang, and Björn Hartmann. “SCRAM: Simple Checks for
Realtime Analysis of Model Training for Non-Expert ML Programmers”. In: Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. CHI
EA ’20. Honolulu, HI, USA: Association for Computing Machinery, 2020, pp. 1–10.
isbn: 9781450368193. doi: 10.1145/3334480.3382879. url: https://doi.org/10.
1145/3334480.3382879.

[140] Eldon Schoop et al. “IMACS: Image Model Attribution Comparison Summaries”. In:
CoRR abs/2201.11196 (2022). arXiv: 2201.11196. url: https://arxiv.org/abs/
2201.11196.

[141] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep networks
via gradient-based localization”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2017, pp. 618–626.

https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1145/2984511.2984544
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1145/169059.169209
https://doi.org/10.1145/169059.169209
https://doi.org/10.1145/169059.169209
https://doi.org/10.1145/3211346.3211353
https://dl.acm.org/doi/10.1145/3211346.3211353
https://dl.acm.org/doi/10.1145/3211346.3211353
https://doi.org/10.48550/ARXIV.2205.11487
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://doi.org/10.1145/3411764.3445538
https://doi.org/10.1145/3411764.3445538
https://doi.org/10.1145/3411764.3445538
https://doi.org/10.1145/3334480.3382879
https://doi.org/10.1145/3334480.3382879
https://doi.org/10.1145/3334480.3382879
https://arxiv.org/abs/2201.11196
https://arxiv.org/abs/2201.11196
https://arxiv.org/abs/2201.11196

BIBLIOGRAPHY 96

[142] Shital Shah, Roland Fernandez, and Steven Drucker. “A System for Real-Time Inter-
active Analysis of Deep Learning Training”. In: Proceedings of the ACM SIGCHI Sym-
posium on Engineering Interactive Computing Systems. EICS ’19. Valencia, Spain:
Association for Computing Machinery, 2019. isbn: 9781450367455. doi: 10.1145/
3319499.3328231. url: https://doi.org/10.1145/3319499.3328231.

[143] Lloyd S Shapley. “A value for n-person games”. In: Contributions to the Theory of
Games 2.28 (1953), pp. 307–317.

[144] Jonathan R. Shewchuk. Concise Machine Learning. May 2020. url: https://people.
eecs.berkeley.edu/~jrs/papers/machlearn.pdf.

[145] Ben Shneiderman. “Creativity Support Tools: Accelerating Discovery and Innova-
tion”. In: Commun. ACM 50.12 (Dec. 2007), pp. 20–32. issn: 0001-0782. doi: 10.
1145/1323688.1323689. url: https://doi.org/10.1145/1323688.1323689.

[146] Daniel Smilkov et al. Embedding Projector: Interactive Visualization and Interpreta-
tion of Embeddings. 2016. doi: 10.48550/ARXIV.1611.05469. url: https://arxiv.
org/abs/1611.05469.

[147] Daniel Smilkov et al. TensorFlow.js: Machine Learning for the Web and Beyond. 2019.
doi: 10.48550/ARXIV.1901.05350. url: https://arxiv.org/abs/1901.05350.

[148] Kacper Sokol and Peter Flach. “Explainability Fact Sheets: A Framework for Sys-
tematic Assessment of Explainable Approaches”. In: Proceedings of the 2020 Con-
ference on Fairness, Accountability, and Transparency. FAT* ’20. Barcelona, Spain:
Association for Computing Machinery, 2020, pp. 56–67. isbn: 9781450369367. doi:
10.1145/3351095.3372870. url: https://doi.org/10.1145/3351095.3372870.

[149] John T Stasko, Marc H Brown, and Blaine A Price. Software Visualization. MIT
press, 1997.

[150] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and Policy Con-
siderations for Deep Learning in NLP”. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. Florence, Italy: Association for Com-
putational Linguistics, July 2019, pp. 3645–3650. doi: 10.18653/v1/P19-1355. url:
https://www.aclweb.org/anthology/P19-1355.

[151] Dong Sun et al. “DFSeer: A Visual Analytics Approach to Facilitate Model Selection
for Demand Forecasting”. In: Proceedings of the 2020 CHI Conference on Human Fac-
tors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Computing
Machinery, 2020, pp. 1–13. isbn: 9781450367080. doi: 10.1145/3313831.3376866.
url: https://doi.org/10.1145/3313831.3376866.

[152] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep
Networks”. In: Proceedings of the 34th International Conference on Machine Learning
- Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 3319–3328.

[153] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer Vi-
sion”. In: June 2016. doi: 10.1109/CVPR.2016.308.

https://doi.org/10.1145/3319499.3328231
https://doi.org/10.1145/3319499.3328231
https://doi.org/10.1145/3319499.3328231
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.48550/ARXIV.1611.05469
https://arxiv.org/abs/1611.05469
https://arxiv.org/abs/1611.05469
https://doi.org/10.48550/ARXIV.1901.05350
https://arxiv.org/abs/1901.05350
https://doi.org/10.1145/3351095.3372870
https://doi.org/10.1145/3351095.3372870
https://doi.org/10.18653/v1/P19-1355
https://www.aclweb.org/anthology/P19-1355
https://doi.org/10.1145/3313831.3376866
https://doi.org/10.1145/3313831.3376866
https://doi.org/10.1109/CVPR.2016.308

BIBLIOGRAPHY 97

[154] The TensorFlow Team. Flowers. Jan. 2019. url: http://download.tensorflow.
org/example_images/flower_photos.tgz.

[155] Rachel Thomas and David Uminsky. The Problem with Metrics is a Fundamental
Problem for AI. 2020. arXiv: 2002.08512 [cs.CY].

[156] Josh Tobin. Troubleshooting Deep Neural Networks: A Field Guide to Fixing Your
Model. 2019. url: http://josh- tobin.com/troubleshooting- deep- neural-
networks.html.

[157] Jason Tsay et al. “AIMMX: Artificial Intelligence Model Metadata Extractor”. In:
Proceedings of the 17th International Conference on Mining Software Repositories.
MSR ’20. New York, NY, USA: Association for Computing Machinery, June 2020,
pp. 81–92. isbn: 978-1-4503-7517-7. doi: 10.1145/3379597.3387448. url: https:
//doi.org/10.1145/3379597.3387448 (visited on 07/16/2021).

[158] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[159] Manasi Vartak et al. “M¡span class=”smallcaps SmallerCapital”¿odel¡/span¿DB: A
System for Machine Learning Model Management”. In: Proceedings of the Workshop
on Human-In-the-Loop Data Analytics. HILDA ’16. San Francisco, California: Associ-
ation for Computing Machinery, 2016. isbn: 9781450342070. doi: 10.1145/2939502.
2939516. url: https://doi.org/10.1145/2939502.2939516.

[160] Matthew Veres and Medhat Moussa. “Deep learning for intelligent transportation
systems: A survey of emerging trends”. In: IEEE Transactions on Intelligent trans-
portation systems (2019).

[161] Alex Wang et al. “GLUE: A Multi-Task Benchmark and Analysis Platform for Natu-
ral Language Understanding”. In: Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium:
Association for Computational Linguistics, Nov. 2018, pp. 353–355. doi: 10.18653/
v1/W18-5446. url: https://aclanthology.org/W18-5446.

[162] Angelina Wang, Arvind Narayanan, and Olga Russakovsky. “REVISE: A Tool for
Measuring and Mitigating Bias in Visual Datasets”. In: Computer Vision – ECCV
2020. Ed. by Andrea Vedaldi et al. Cham: Springer International Publishing, 2020,
pp. 733–751. isbn: 978-3-030-58580-8.

[163] Yue Wang et al. “CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder
Models for Code Understanding and Generation”. In: Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing. Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 8696–
8708. doi: 10.18653/v1/2021.emnlp-main.685. url: https://aclanthology.
org/2021.emnlp-main.685.

[164] Robert Stuart Weiss. Learning from strangers: the art and method of qualitative in-
terview studies. Free Press, 1995.

http://download.tensorflow.org/example_images/flower_photos.tgz
http://download.tensorflow.org/example_images/flower_photos.tgz
https://arxiv.org/abs/2002.08512
http://josh-tobin.com/troubleshooting-deep-neural-networks.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html
https://doi.org/10.1145/3379597.3387448
https://doi.org/10.1145/3379597.3387448
https://doi.org/10.1145/3379597.3387448
https://doi.org/10.1145/2939502.2939516
https://doi.org/10.1145/2939502.2939516
https://doi.org/10.1145/2939502.2939516
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/W18-5446
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685

BIBLIOGRAPHY 98

[165] James Wexler et al. “The What-If Tool: Interactive Probing of Machine Learn-
ing Models”. In: IEEE Transactions on Visualization and Computer Graphics 26.1
(2020), pp. 56–65. doi: 10.1109/TVCG.2019.2934619.

[166] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. 2019. doi: 10.48550/ARXIV.1910.03771. url: https://arxiv.org/
abs/1910.03771.

[167] Ga Wu, Masoud Hashemi, and Christopher Srinivasa. PUMA: Performance Un-
changed Model Augmentation for Training Data Removal. 2022. doi: 10.48550/
ARXIV.2203.00846. url: https://arxiv.org/abs/2203.00846.

[168] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms. Aug. 28, 2017. arXiv: cs.LG/1708.
07747 [cs.LG].

[169] Litao Yan, Elena L. Glassman, and Tianyi Zhang. “Visualizing Examples of Deep
Neural Networks at Scale”. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. CHI ’21. Yokohama, Japan: Association for Comput-
ing Machinery, 2021. isbn: 9781450380966. doi: 10.1145/3411764.3445654. url:
https://doi.org/10.1145/3411764.3445654.

[170] Litao Yan et al. “Concept-Annotated Examples for Library Comparison”. In: Pro-
ceedings of the 35th Annual ACM Symposium on User Interface Software and Tech-
nology. UIST ’22. Bend, Oregon, USA: Association for Computing Machinery, 2022.
isbn: 9781450393201. doi: 10.1145/3526113.3545647. url: https://doi.org/10.
1145/3526113.3545647.

[171] Yi Yang and Shawn Newsam. “Bag-of-Visual-Words and Spatial Extensions for Land-
Use Classification”. In: Proceedings of the 18th SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems. GIS ’10. San Jose, California:
Association for Computing Machinery, 2010, pp. 270–279. isbn: 9781450304283. doi:
10.1145/1869790.1869829. url: https://doi.org/10.1145/1869790.1869829.

[172] Geo↵rey X. Yu, Tovi Grossman, and Gennady Pekhimenko. “Skyline: Interactive In-
Editor Computational Performance Profiling for Deep Neural Network Training”. In:
Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. UIST ’20. Virtual Event, USA: Association for Computing Machinery,
2020, pp. 126–139. isbn: 9781450375146. doi: 10.1145/3379337.3415890. url:
https://doi.org/10.1145/3379337.3415890.

[173] Jiahui Yu et al. Scaling Autoregressive Models for Content-Rich Text-to-Image Gen-
eration. 2022. doi: 10.48550/ARXIV.2206.10789. url: https://arxiv.org/abs/
2206.10789.

[174] Daniel Zhang et al. The AI Index 2021 Annual Report. Tech. rep. Stanford, CA: AI
Index Steering Committee, Human-Centered AI Institute, Stanford University, Mar.
2021.

https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.48550/ARXIV.1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.48550/ARXIV.2203.00846
https://doi.org/10.48550/ARXIV.2203.00846
https://arxiv.org/abs/2203.00846
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1145/3411764.3445654
https://doi.org/10.1145/3411764.3445654
https://doi.org/10.1145/3526113.3545647
https://doi.org/10.1145/3526113.3545647
https://doi.org/10.1145/3526113.3545647
https://doi.org/10.1145/1869790.1869829
https://doi.org/10.1145/1869790.1869829
https://doi.org/10.1145/3379337.3415890
https://doi.org/10.1145/3379337.3415890
https://doi.org/10.48550/ARXIV.2206.10789
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2206.10789

BIBLIOGRAPHY 99

[175] Richard Zhang et al. “The Unreasonable E↵ectiveness of Deep Features as a Percep-
tual Metric”. In: CVPR. 2018.

[176] Tianyi Zhang et al. “An Empirical Study of Common Challenges in Developing Deep
Learning Applications”. In: 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE). 2019, pp. 104–115. doi: 10.1109/ISSRE.2019.
00020.

[177] Xiaoyi Zhang et al. “Screen Recognition: Creating Accessibility Metadata for Mobile
Applications from Pixels”. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. CHI ’21. Yokohama, Japan: Association for Comput-
ing Machinery, 2021. isbn: 9781450380966. doi: 10.1145/3411764.3445186. url:
https://doi.org/10.1145/3411764.3445186.

[178] Yuhao Zhang et al. “An Empirical Study on TensorFlow Program Bugs”. In: Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2018. Amsterdam, Netherlands: Association for Computing Machin-
ery, 2018, pp. 129–140. isbn: 9781450356992. doi: 10.1145/3213846.3213866. url:
https://doi.org/10.1145/3213846.3213866.

https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3213846.3213866

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Overview
	Acumen
	Umlaut
	IMACS

	Statement of Multiple Authorship and Prior Publication

	Acumen: Interactive Exploratory ML Project Search
	Introduction
	Background
	ML Code Communicates Limited Context
	Variation in ML Project Structure
	Finding and Comparing Non-Code Elements
	Designing for ML Project Search

	Related Work
	Code Search
	Exploring and Understanding Datasets
	Library Exploration Tools

	Using Acumen
	Structured Search: Filtering Project Attributes
	Unstructured Search: Exploring Relationships Between Files
	Annotating and Labeling Meaningful Subsets
	Using Labeled Points as a Basis for Further Exploration

	Implementation
	Data Collection Pipelines
	Acumen Web Interface

	Evaluation
	Participants
	Setup
	Procedure

	Results
	Semi-structured Interviews Reaffirm Existing ML Project Search Challenges
	Acumen Helped in Search, Promoted Learning, and Revealed Project Structures
	Combining Metadata in Table with UMAP was Important for Effective Searches
	Two Key Workflows Emerged

	Discussion and Future Work
	Interpretation of UMAP
	Project Search as a Sensemaking Task
	Usability and Design Improvements

	Conclusion

	UMLAUT: Debugging Deep Learning Programs using Program Structure and Model Behavior
	Introduction
	Background: Challenges in Deep Learning (DL) Development
	Key Differences of Designing for DL over Classical ML
	Detecting Errors during DL Training and Evaluation
	Mapping Symptoms to Root Causes

	Related Work
	Interfaces for Supporting Classical Machine Learning Workflows
	Tools for comparing and improving DL Model Performance
	Prescribing Best Practices and Code Changes in Context

	Debugging ML Programs with Umlaut
	Importing Umlaut and Creating a Session
	User specification of Umlaut checks
	Actionable Error messages
	Bidirectional Link Between Errors and Interactive Visualizations

	Umlaut Heuristics
	Data Preparation
	Model Architecture
	Parameter Tuning

	Implementation
	Umlaut Client Shims and Structure
	Umlaut Client Logic: Running Checks and Raising Errors
	Umlaut Server

	User Evaluation
	Participants
	Setup
	Study Design and Tasks
	Procedure

	Results and Discussion
	Umlaut Helped Participants Find and Fix Significantly More Bugs
	Open-Ended Feedback

	Limitations and Future Work
	Conclusion

	IMACS: Image Model Attribution Comparison Summaries
	Introduction
	Related Work
	ML Model Inspection Frameworks
	ML Interpretability Algorithms

	Building Blocks for Summarizing Attribution Differences Between Models
	The IMACS Algorithm
	Visualizing Differences in Attributions Across Models
	Cluster Histogram Visualization
	Concept Cluster Visualization
	Cluster Confusion Matrix Visualization
	Alternative Sorting and Filtering Strategies

	Validation
	Basic Validation Check
	Visualizing Domain Shift with Satellite Images

	Discussion and Limitations
	Interactivity

	Conclusion

	Conclusion
	Restatement of Contributions
	Future Work
	Data Collection and Labeling
	Closing the Loop from Interpretation and Evaluation
	Human-Centered Model Explanations
	Augmenting Traditional Software Development

	Summary

	Bibliography

